ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40dbab0b41a080f68721481ff93b8cef4cc88ab
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. # """ Tests for L{twisted.trial.util} """ from twisted.trial.unittest import TestCase from unittest import skipIf @skipIf(True, "Skip all tests when @skipIf is used on a class") class SkipDecoratorUsedOnClass(TestCase): """ All tests should be skipped because @skipIf decorator is used on this class. """ def test_shouldNeverRun_1(self): raise Exception("Test should skip and never reach here") def test_shouldNeverRun_2(self): raise Exception("Test should skip and never reach here") @skipIf(True, "") class SkipDecoratorUsedOnClassWithEmptyReason(TestCase): """ All tests should be skipped because @skipIf decorator is used on this class, even if the reason is an empty string """ def test_shouldNeverRun_1(self): raise Exception("Test should skip and never reach here") def test_shouldNeverRun_2(self): raise Exception("Test should skip and never reach here") class SkipDecoratorUsedOnMethods(TestCase): """ Only methods where @skipIf decorator is used should be skipped. """ @skipIf(True, "skipIf decorator used so skip test") def test_shouldNeverRun(self): raise Exception("Test should skip and never reach here") @skipIf(True, "") def test_shouldNeverRunWithEmptyReason(self): raise Exception("Test should skip and never reach here") def test_shouldShouldRun(self): self.assertTrue(True, "Test should run and not be skipped") @skipIf(False, "should not skip") def test_shouldShouldRunWithSkipIfFalse(self): self.assertTrue(True, "Test should run and not be skipped") @skipIf(False, "") def test_shouldShouldRunWithSkipIfFalseEmptyReason(self): self.assertTrue(True, "Test should run and not be skipped") class SkipAttributeOnClass(TestCase): """ All tests should be skipped because skip attribute is set on this class. """ skip = "'skip' attribute set on this class, so skip all tests" def test_one(self): raise Exception("Test should skip and never reach here") def test_two(self): raise Exception("Test should skip and never reach here") class SkipAttributeOnMethods(TestCase): """ Only methods where @skipIf decorator is used should be skipped. """ def test_one(self): raise Exception("Should never reach here") test_one.skip = "skip test, skip attribute set on method" # type: ignore[attr-defined] def test_shouldNotSkip(self): self.assertTrue(True, "Test should run and not be skipped")
py
b40dbb3fe1c4a1cf3230ea820795aec2e781ec54
# python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A simple agent-environment training loop.""" from bsuite.baselines import base from bsuite.logging import terminal_logging import dm_env import numpy as np import wandb def run(agent: base.Agent, train_environment: dm_env.Environment, test_environment: dm_env.Environment, num_episodes: int, verbose: bool = False) -> None: """Runs an agent on an environment. Note that for bsuite environments, logging is handled internally. Args: agent: The agent to train and evaluate. environment: The environment to train on. num_episodes: Number of episodes to train for. verbose: Whether to also log to terminal. """ if verbose: test_environment = terminal_logging.wrap_environment( test_environment, log_every=True) # pytype: disable=wrong-arg-types train_scores, test_scores = [], [] for i_episode in range(num_episodes): # Run an episode. score = 0 ep_var, ep_weights, eff_bs_list, eps_list = [], [], [], [] timestep = train_environment.reset() while not timestep.last(): # Generate an action from the agent's policy. action = agent.select_action(timestep) # Step the environment. new_timestep = train_environment.step(action) # Tell the agent about what just happened. logs = agent.update(timestep, action, new_timestep) if len(logs) > 0: ep_var.extend(logs[0]) ep_weights.extend(logs[1]) eff_bs_list.append(logs[2]) eps_list.append(logs[3]) # Book-keeping. timestep = new_timestep score += timestep.reward train_scores.append(score) if i_episode % 1 == 0: test_score = test(agent, test_environment) test_scores.append(test_score) # wandb.log({"Test Return": test_score, "Test Return / 100 episodes": np.mean(test_scores[-100:])}, commit=False) # if len(ep_var) > 0: # agent.train_log(ep_var, ep_weights, eff_bs_list, eps_list) # wandb.log({"Train Return": score, "Train Return / 100 episodes": np.mean(train_scores[-100:])}) print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(train_scores[-100:])), end="") def test(agent, environment): score = 0 timestep = environment.reset() while not timestep.last(): action = agent.select_action_test(timestep) new_timestep = environment.step(action) timestep = new_timestep score += timestep.reward return score
py
b40dbb9d4da9339396da34fe6417c535e8cc01cc
# # Metrix++, Copyright 2009-2019, Metrix++ Project # Link: https://github.com/metrixplusplus/metrixplusplus # # This file is a part of Metrix++ Tool. # import mpp.api import re class Plugin(mpp.api.Plugin, mpp.api.IConfigurable, mpp.api.Child, mpp.api.MetricPluginMixin): def declare_configuration(self, parser): parser.add_option("--std.code.member.fields", "--scmf", action="store_true", default=False, help="Enables collection of number of data members / fields " "per classes, structs and interfaces [default: %default]") parser.add_option("--std.code.member.globals", "--scmg", action="store_true", default=False, help="Enables collection of number of global variables / fields " "per global regions and namespaces [default: %default]") parser.add_option("--std.code.member.classes", "--scmc", action="store_true", default=False, help="Enables collection of number of classes defined " "per any region [default: %default]") parser.add_option("--std.code.member.structs", "--scms", action="store_true", default=False, help="Enables collection of number of structs defined " "per any region [default: %default]") parser.add_option("--std.code.member.interfaces", "--scmi", action="store_true", default=False, help="Enables collection of number of interfaces defined " "per any region [default: %default]") parser.add_option("--std.code.member.types", "--scmt", action="store_true", default=False, help="Enables collection of number of types (classes, structs " "or interface) defined per any region [default: %default]") parser.add_option("--std.code.member.methods", "--scmm", action="store_true", default=False, help="Enables collection of number of methods (functions) defined " "per any region [default: %default]") parser.add_option("--std.code.member.namespaces", "--scmnss", action="store_true", default=False, help="Enables collection of number of namespaces defined " "globally and enclosed (sub-namespaces) [default: %default]") def configure(self, options): self.is_active_fields = options.__dict__['std.code.member.fields'] self.is_active_globals = options.__dict__['std.code.member.globals'] self.is_active_classes = options.__dict__['std.code.member.classes'] self.is_active_structs = options.__dict__['std.code.member.structs'] self.is_active_interfaces = options.__dict__['std.code.member.interfaces'] self.is_active_types = options.__dict__['std.code.member.types'] self.is_active_methods = options.__dict__['std.code.member.methods'] self.is_active_namespaces = options.__dict__['std.code.member.namespaces'] def initialize(self): # counts fields and properties with default getter/setter pattern_to_search_cs = re.compile( r'''([_a-zA-Z][_a-zA-Z0-9]*\s+[_a-zA-Z][_a-zA-Z0-9])\s*([=;]|''' r'''[{]\s*(public\s+|private\s+|protected\s+|internal\s+)?(get|set)\s*[;]\s*[a-z \t\r\n]*[}])''') pattern_to_search_cpp = re.compile( r'''([_a-zA-Z][_a-zA-Z0-9]*\s+[_a-zA-Z][_a-zA-Z0-9])\s*[=;]''') pattern_to_search_java = re.compile( r'''([_$a-zA-Z][_$a-zA-Z0-9]*\s+[_$a-zA-Z][_$a-zA-Z0-9])\s*[=;]''') self.declare_metric(self.is_active_fields, self.Field('fields', int, non_zero=True), { 'std.code.java': pattern_to_search_java, 'std.code.cpp': pattern_to_search_cpp, 'std.code.cs': pattern_to_search_cs, }, marker_type_mask=mpp.api.Marker.T.CODE, region_type_mask=mpp.api.Region.T.CLASS | mpp.api.Region.T.STRUCT | mpp.api.Region.T.INTERFACE) self.declare_metric(self.is_active_globals, self.Field('globals', int, non_zero=True), { 'std.code.java': pattern_to_search_java, 'std.code.cpp': pattern_to_search_cpp, 'std.code.cs': pattern_to_search_cs, }, marker_type_mask=mpp.api.Marker.T.CODE, region_type_mask=mpp.api.Region.T.GLOBAL | mpp.api.Region.T.NAMESPACE) self.declare_metric(self.is_active_classes, self.Field('classes', int, non_zero=True), (None, self.ClassesCounter), exclude_subregions=False, merge_markers=True) self.declare_metric(self.is_active_structs, self.Field('structs', int, non_zero=True), (None, self.StructCounter), exclude_subregions=False, merge_markers=True) self.declare_metric(self.is_active_interfaces, self.Field('interfaces', int, non_zero=True), (None, self.InterfaceCounter), exclude_subregions=False, merge_markers=True) self.declare_metric(self.is_active_types, self.Field('types', int, non_zero=True), (None, self.TypeCounter), exclude_subregions=False, merge_markers=True) self.declare_metric(self.is_active_methods, self.Field('methods', int, non_zero=True), (None, self.MethodCounter), exclude_subregions=False, merge_markers=True) self.declare_metric(self.is_active_namespaces, self.Field('namespaces', int, non_zero=True), (None, self.NamespaceCounter), exclude_subregions=False, merge_markers=True) super(Plugin, self).initialize(fields=self.get_fields()) if self.is_active() == True: self.subscribe_by_parents_interface(mpp.api.ICode) class ClassesCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.CLASS, region_id=self.region.get_id())) class StructCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.STRUCT, region_id=self.region.get_id())) class InterfaceCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.INTERFACE, region_id=self.region.get_id())) class TypeCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.CLASS | mpp.api.Region.T.STRUCT | mpp.api.Region.T.INTERFACE, region_id=self.region.get_id())) class MethodCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.FUNCTION, region_id=self.region.get_id())) class NamespaceCounter(mpp.api.MetricPluginMixin.PlainCounter): def count(self, marker, pattern_to_search): self.result = sum(1 for unused in self.data.iterate_regions( filter_group=mpp.api.Region.T.NAMESPACE, region_id=self.region.get_id()))
py
b40dbc1d9bb6f8bc376aa2eda5b3cade7f06cda5
import logging import numpy as np import cv2 from ml_serving.utils.helpers import load_image LOG = logging.getLogger(__name__) def init_hook(**params): LOG.info('Loaded.') def process(inputs, ct_x, **kwargs): original_image, is_video = load_image(inputs, 'inputs') if original_image is None: raise RuntimeError('Missing "inputs" key in inputs. Provide an image in "inputs" key') if original_image.shape[2] > 3: original_image = original_image[:, :, 0:3] def _return(result): encoding = '' if not is_video: if result.shape[2] == 3: result = result[:, :, ::-1] result = cv2.imencode('.jpg', result)[1].tostring() encoding = 'jpeg' else: result = result result = cv2.imencode('.png', result)[1].tostring() encoding = 'png' return {'output': result, 'encoding': encoding} ratio = 1.0 w = float(original_image.shape[1]) h = float(original_image.shape[0]) if w > h: if w > 1024: ratio = w / 1024.0 else: if h > 1024: ratio = h / 1024.0 if ratio > 1: image = cv2.resize(original_image, (int(w / ratio), int(h / ratio))) else: image = original_image serv_image = cv2.resize(image, (160, 160)).astype(np.float32) / 255.0 result = ct_x.drivers[0].predict({'image': np.expand_dims(serv_image, axis=0)}) mask = result['output'][0] mask[mask < 0.5] = 0 if mask.shape != image.shape: mask = cv2.resize(mask, (image.shape[1], image.shape[0])) mask = cv2.GaussianBlur(mask, (21, 21), 11) if len(mask.shape) == 2: mask = np.expand_dims(mask, axis=2) if not is_video: mask = (mask * 255).astype(np.uint8) image = image[:, :, ::-1].astype(np.uint8) image = np.concatenate([image, mask], axis=2) else: image = image.astype(np.float32) * mask image = image.astype(np.uint8) return _return(image)
py
b40dbc59b44c1f4c881c548a5587fe3262d54079
import time import board import terminalio import displayio import adafruit_sgp30 from adafruit_bitmap_font import bitmap_font from adafruit_display_text import label import adafruit_imageload from adafruit_clue import clue # --| User Config |------------------------- TVOC_LEVELS = (80, 120) # set two TVOC levels MESSAGES = ("GOOD", "SUS?", "BAD!") # set three messages (4 char max) # ------------------------------------------ # setup UI cow_bmp, cow_pal = adafruit_imageload.load("bmps/milk_bg.bmp") background = displayio.TileGrid(cow_bmp, pixel_shader=cow_pal) mouth_bmp, mouth_pal = adafruit_imageload.load("bmps/mouth_sheet.bmp") mouth = displayio.TileGrid( mouth_bmp, pixel_shader=mouth_pal, tile_width=40, tile_height=20, width=1, height=1, x=35, y=110, ) msg_font = bitmap_font.load_font("fonts/Alphakind_28.bdf") msg_font.load_glyphs("".join(MESSAGES)) message = label.Label(msg_font, text="WAIT", color=0x000000) message.anchor_point = (0.5, 0.5) message.anchored_position = (172, 38) data_font = bitmap_font.load_font("fonts/F25_Bank_Printer_Bold_12.bdf") data_font.load_glyphs("eTVOC=12345?") tvoc = label.Label(data_font, text="TVOC=?????", color=0x000000) tvoc.anchor_point = (0, 1) tvoc.anchored_position = (5, 235) eco2 = label.Label(data_font, text="eCO2=?????", color=0x000000) eco2.anchor_point = (0, 1) eco2.anchored_position = (130, 235) splash = displayio.Group(max_size=5) splash.append(background) splash.append(mouth) splash.append(message) splash.append(tvoc) splash.append(eco2) clue.display.show(splash) # setup SGP30 and wait for initial warm up sgp30 = adafruit_sgp30.Adafruit_SGP30(board.I2C()) time.sleep(15) # loop forever while True: eCO2, TVOC = sgp30.iaq_measure() tvoc.text = "TVOC={:5d}".format(TVOC) eco2.text = "eCO2={:5d}".format(eCO2) level = 0 for thresh in TVOC_LEVELS: if TVOC <= thresh: break level += 1 if level <= len(TVOC_LEVELS): message.text = MESSAGES[level] mouth[0] = level else: message.text = "????" time.sleep(1)
py
b40dbddd26abe02008da4cd37ef97c3ad410030b
from flask import Flask from flask import request as rq import token_srm import attendence_marks import timetable import course_personal_details import json from flask import Response app = Flask(__name__) @app.route('/') def home(): json_o = {"status": "success", "msg": "Ready to Push Data from academia server"} json_o = json.dumps(json_o) return json_o @app.route('/token', methods=['GET', 'POST']) def request(): if 'email' in rq.args and 'pass' in rq.args: response = token_srm.getToken(rq.args.get('email'), rq.args.get('pass')) response = Response(response, status=200, mimetype='application/json') return response else: response = {"status":"error", "msg":"Error in Input Parameters"} response = json.dumps(response) response = Response(response, status=200, mimetype='application/json') return response @app.route('/AttAndMarks', methods=['GET', 'POST']) def AttAndMarks(): if 'token' in rq.args: token = str(rq.args.get('token')) att_marks = attendence_marks.getAttendenceAndMarks(token) response = Response(att_marks, status=200, mimetype='application/json') return response else: response = {"status": "error", "msg": "Error in Input Parameters"} response = json.dumps(response) response = Response(response, status=200, mimetype='application/json') return response @app.route('/TimeTable', methods=['GET', 'POST']) def TimeTable(): if 'batch' in rq.args and 'token' in rq.args: batchNo = rq.args.get('batch') token = rq.args.get('token') timeTable = timetable.getTimeTable(token, batchNo) response = Response(timeTable, status=200, mimetype='application/json') return response else: response = {"status": "error", "msg": "Error in Input Parameters"} response = json.dumps(response) response = Response(response, status=200, mimetype='application/json') return response @app.route('/PersonalDetails', methods=['GET', 'POST']) def getPersonalDetails(): if 'token' in rq.args: token = rq.args.get('token') details = course_personal_details.getCoursePersonalDetails(token) response = Response(details, status=200, mimetype='application/json') return response else: response = {"status": "error", "msg": "Error in Input Parameters"} response = json.dumps(response) response = Response(response, status=200, mimetype='application/json') return response if __name__ == '__main__': from os import environ app.run(debug=False, host='0.0.0.0', port=environ.get("80", 5000))
py
b40dbdebaf31966d5566424f30b6460dd408c6b9
import tkinter as tk from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) # Implement the default Matplotlib key bindings. from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def curva_de_ejemplo(): """ Curva de Ejemplo que despliega una curva paramétrica en una ventana nueva Integrantes: - Omar Olivares Urrutia (@ofou) :return: plot curve """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Prepare arrays x, y, z theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z ** 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label='Curva Paramétrica de Ejemplo') ax.legend() fig.show() # Añadir el plot de matplotlib # fig = Figure(figsize=(5, 4), dpi=100) # t = np.arange(0, 3, .01) # fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t)) # # canvas = FigureCanvasTkAgg(fig, master=root) # A tk.DrawingArea. # canvas.draw() # canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1) # # toolbar = NavigationToolbar2Tk(canvas, root) # toolbar.update() # canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1) # canvas.mpl_connect("key_press_event", on_key_press) # If you put root.destroy() here, it will cause an error if the window is # closed with the window manager. def helice_conica(): # añadir sus códigos aca """ Curva de Ejemplo que despliega una Helice Cónica Integrantes: - Mario Labbé (@LsMario1998) - Mario González (@tatameister) - Cristóbal Cortés (@Cristobal140) - Thadly Guerra (@Thadly64) - Luis Inostroza (@luisinostrozaf) :return: Curva Helice Cónica """ plt.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') # Prepare arrays x, y, z theta = np.linspace(-6 * np.pi, 6 * np.pi, 1000) print (np.cos((np.pi*30)/180)) e = 2.718281 a = 3 x = a * (e**(np.sin(45) * (1/np.tan(30)*theta))) * np.cos(theta) y = a * (e**(np.sin(45) * (1/np.tan(30)*theta)))* np.sin(theta) z = a * (e**(np.sin(45) * (1/np.tan(30)*theta))) * (1/np.tan(45)) ax.plot(x, y, z, label='helice cónica') ax.legend() plt.show() pass def helice_circular_1(): """ Curva que depliega una una helice circular en una ventana nueva Integrantes: - Felipe Lopez Vergara (@felipelopez00) - Bastian Bustamante Moraga (@BastianBustamante) - Rodrigo Torrez Queupan (@imperium31) - Juan Hernandez Gatica (@juanpablo1994) -Eric Rojas Palma (@valukar) :return: circular propeller """ # añadir sus códigos aca n = 1000 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # caracteristicas de la helice circular t_max = 8 * np.pi t = np.linspace(0, t_max, n) z = t r = 5 y = r * np.sin(t) x = r * np.cos(t) ax.plot(x, y, z, 'b', lw=2, label='Curva Hélice Circular') ax.legend() # linea ax.legend()oja al centro de la helice circular ax.plot((0, 0), (0, 0), (-t_max * 0.2, t_max * 1.2), color='r', lw=2) plt.show() pass def Corona_Sinusoidal(): ''' INTEGRANTES GRUPO: _Luis Soto Zelada (@Luiss23) _Diego Rojas (@diegoskky) _Lucia Vilches (@luciavj) grafica una corona sinusoidal en un plano cartesiano De la forma f(x)=2sen(pi * x)''' Fs: int = 80 # corresponde al limite de la funcion en un ciclo f: float = 1 # cantidad de unidades del eje y sample: int = 80 x = np.arange(sample) y = np.sin(2 * np.pi * f * x / Fs) plt.plot(x, y) plt.show() pass def curva_de_viviani(): """ Funcion que muestra una curva de viviani en una nueva ventana Integrantes: Levi Urbina Natalia Valenzuela Ricardo Vergara Estefany Alarcon return: curva_de_viviani """ a = 1 t = np.linspace(-4, 4 * np.pi, 100) x = a * (1 + np.cos(t)) y = a * np.sin(t) z = 2 * a * np.sin(t / 2) fig = plt.figure() ax = fig.gca(projection='3d') ax.set_title("Curva de viviani") ax.plot(x, y, z, label="Curva de Viviani", lw=5) plt.show() pass def hipopoda_1(): # añadir sus códigos aca ''' Integrantes: - Boris Gutiérrez Cornejo (@BorisAndresLmb) - Juan González Jélvez (@JuanGonzalez33) - Pablo Barrera Whiteley (@Pablobw) - José Flores Cáceres (@JoseFlores9) - Cristobal Rojas Saavedra (@cristotix) Función hipopoda_1: Grafica la hipopoda Utiliza la forma paramétrica de la función x= a+(r-a)*cos(t) y=(r-a)*sen(t) z=2*((a*(r-a))**1/2))*sen(t) Parametros: a= distancia del centro de la esfera al eje del cilindro r=Radio de la esfera return: plot Curve (Hipopede) ''' plt.rcParams['legend.fontsize'] = 12 fig = plt.figure() ax = fig.gca(projection='3d') # Prepare arrays x, y, z theta = np.linspace(-4 * np.pi, 4 * np.pi, 99) a = 1 r = 5 x = a + (r - a) * np.cos(theta) y = (r - a) * np.sin(theta) z = 2 * (a * (r - a)) ** (1 / 2) * np.sin(theta / 2) ax.plot(x, y, z, label='Hipopede de Eudoxo') ax.legend() plt.show() pass def conica_de_papus(): """ Curva que entrega una conica de papus en la interfaz grafica Integrantes: - José Fabián Ignacio González Encina (@GoldenFenix) - Cristian Eduardo Castillo (@criseduardjjd) - Diego Faundez Mendez(@diegofaundezm) - Claudio Alcaino Muñoz (@klauser99) - Francisco Castillo Moraga(@taifokk) :return: conica de papus """ plt.rcParams['legend.fontsize'] = 12 fig = plt.figure() ax = fig.gca(projection='3d') # Prepare arrays x, y, z t = np.linspace(-9 * np.pi, 9 * np.pi, 2000) a1 = 30 a = 15 z = a1 * np.cos(a) * t r = z ** 2 + 1 x = a1 * np.sin(a) * t * np.cos(t) y = a1 * np.sin(a) * t * np.sin(t) ax.plot(x, y, z, label='espiral conica de papus') ax.legend() plt.show() pass def Curva_de_Arquitas(): """"" Tipo de curva: Curva de Arquitas Integrantes: Nicolas Fernandez (@matiche) Sebastian Mendez (@SebaMendez) Cristobal Moreira (@cmoreirab) Gabriel Lara (@Gabolara453) Dennis Queirolo (@dennis-queirolo) :return: Curva de arquitas """ plt.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') # Prepare arrays x, y, z theta = np.linspace(-10 * np.pi, 10 * np.pi, 100) a = 4 t = 10 z = a * ((1 - np.cos(theta)) * np.cos(theta)) - (np.pi / 2 <= t <= np.pi / 2) z = - a * ((1 - np.cos(theta)) * np.cos(theta)) - (np.pi / 2 <= t <= np.pi / 2) x = a * np.cos(theta) ** 2 y = a * np.cos(theta) * np.sin(theta) ax.plot(x, y, z, label=('Curva de Arquitas')) ax.legend() plt.show() def horoptera(): # añadir sus códigos aca pass def Curva_Bicilindrica(): # añadir sus códigos aca pass if __name__ == '__main__': # Creación de Ventanas root = tk.Tk() root.wm_title("Proyecto de Fisica 2019/01") root.geometry("800x600") # Crear frame contenedor de los elementos frame = tk.Frame(root) frame.pack(padx=20, pady=20) # Añadir titulo label = tk.Label(frame, text="Curvas Paramétricas Famosas", height="2") label.pack(fill=tk.X, expand=1) # Cada grupo debe utilizar sus propia función curva_de_ejemplo = tk.Button(master=frame, text="Curva de Ejemplo", command=curva_de_ejemplo) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Hélice Cónica", command=helice_conica) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Hélice Circular", command=helice_circular_1) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Corona Sinusoidal", command=Corona_Sinusoidal) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Curva de Viviani", command=curva_de_viviani) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Hipopoda", command=hipopoda_1) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Curva de Arquitas", command=Curva_de_Arquitas) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Curva Bicilindrica", command=Curva_Bicilindrica) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Conica de Papus", command=conica_de_papus) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) curva_de_ejemplo = tk.Button(master=frame, text="Horoptera", command=horoptera) curva_de_ejemplo.pack(side=tk.BOTTOM, padx=10, pady=10) tk.mainloop()
py
b40dbeb8d95f4c5dcdefd49eac45027355d3c35f
from .models import async_manager_func __all__ = [ 'async_manager_func', ]
py
b40dbf2a42141c1139eb9c25611404e974385992
import re from django import forms from django.forms.models import fields_for_model from nautobot.utilities.querysets import RestrictedQuerySet from .constants import ALPHANUMERIC_EXPANSION_PATTERN, IP4_EXPANSION_PATTERN, IP6_EXPANSION_PATTERN __all__ = ( "add_blank_choice", "add_field_to_filter_form_class", "expand_alphanumeric_pattern", "expand_ipaddress_pattern", "form_from_model", "parse_alphanumeric_range", "parse_numeric_range", "restrict_form_fields", "parse_csv", "validate_csv", ) def parse_numeric_range(string, base=10): """ Expand a numeric range (continuous or not) into a decimal or hexadecimal list, as specified by the base parameter '0-3,5' => [0, 1, 2, 3, 5] '2,8-b,d,f' => [2, 8, 9, a, b, d, f] """ values = list() for dash_range in string.split(","): try: begin, end = dash_range.split("-") except ValueError: begin, end = dash_range, dash_range begin, end = int(begin.strip(), base=base), int(end.strip(), base=base) + 1 values.extend(range(begin, end)) return list(set(values)) def parse_alphanumeric_range(string): """ Expand an alphanumeric range (continuous or not) into a list. 'a-d,f' => [a, b, c, d, f] '0-3,a-d' => [0, 1, 2, 3, a, b, c, d] """ values = [] for dash_range in string.split(","): try: begin, end = dash_range.split("-") vals = begin + end # Break out of loop if there's an invalid pattern to return an error if (not (vals.isdigit() or vals.isalpha())) or (vals.isalpha() and not (vals.isupper() or vals.islower())): return [] except ValueError: begin, end = dash_range, dash_range if begin.isdigit() and end.isdigit(): for n in list(range(int(begin), int(end) + 1)): values.append(n) else: # Value-based if begin == end: values.append(begin) # Range-based else: # Not a valid range (more than a single character) if not len(begin) == len(end) == 1: raise forms.ValidationError('Range "{}" is invalid.'.format(dash_range)) for n in list(range(ord(begin), ord(end) + 1)): values.append(chr(n)) return values def expand_alphanumeric_pattern(string): """ Expand an alphabetic pattern into a list of strings. """ lead, pattern, remnant = re.split(ALPHANUMERIC_EXPANSION_PATTERN, string, maxsplit=1) parsed_range = parse_alphanumeric_range(pattern) for i in parsed_range: if re.search(ALPHANUMERIC_EXPANSION_PATTERN, remnant): for string in expand_alphanumeric_pattern(remnant): yield "{}{}{}".format(lead, i, string) else: yield "{}{}{}".format(lead, i, remnant) def expand_ipaddress_pattern(string, family): """ Expand an IP address pattern into a list of strings. Examples: '192.0.2.[1,2,100-250]/24' => ['192.0.2.1/24', '192.0.2.2/24', '192.0.2.100/24' ... '192.0.2.250/24'] '2001:db8:0:[0,fd-ff]::/64' => ['2001:db8:0:0::/64', '2001:db8:0:fd::/64', ... '2001:db8:0:ff::/64'] """ if family not in [4, 6]: raise Exception("Invalid IP address family: {}".format(family)) if family == 4: regex = IP4_EXPANSION_PATTERN base = 10 else: regex = IP6_EXPANSION_PATTERN base = 16 lead, pattern, remnant = re.split(regex, string, maxsplit=1) parsed_range = parse_numeric_range(pattern, base) for i in parsed_range: if re.search(regex, remnant): for string in expand_ipaddress_pattern(remnant, family): yield "".join([lead, format(i, "x" if family == 6 else "d"), string]) else: yield "".join([lead, format(i, "x" if family == 6 else "d"), remnant]) def add_blank_choice(choices): """ Add a blank choice to the beginning of a choices list. """ return ((None, "---------"),) + tuple(choices) def form_from_model(model, fields): """ Return a Form class with the specified fields derived from a model. This is useful when we need a form to be used for creating objects, but want to avoid the model's validation (e.g. for bulk create/edit functions). All fields are marked as not required. """ form_fields = fields_for_model(model, fields=fields) for field in form_fields.values(): field.required = False return type("FormFromModel", (forms.Form,), form_fields) def restrict_form_fields(form, user, action="view"): """ Restrict all form fields which reference a RestrictedQuerySet. This ensures that users see only permitted objects as available choices. """ for field in form.fields.values(): if hasattr(field, "queryset") and issubclass(field.queryset.__class__, RestrictedQuerySet): field.queryset = field.queryset.restrict(user, action) def parse_csv(reader): """ Parse a csv_reader object into a headers dictionary and a list of records dictionaries. Raise an error if the records are formatted incorrectly. Return headers and records as a tuple. """ records = [] headers = {} # Consume the first line of CSV data as column headers. Create a dictionary mapping each header to an optional # "to" field specifying how the related object is being referenced. For example, importing a Device might use a # `site.slug` header, to indicate the related site is being referenced by its slug. for header in next(reader): if "." in header: field, to_field = header.split(".", 1) headers[field] = to_field else: headers[header] = None # Parse CSV rows into a list of dictionaries mapped from the column headers. for i, row in enumerate(reader, start=1): if len(row) != len(headers): raise forms.ValidationError(f"Row {i}: Expected {len(headers)} columns but found {len(row)}") row = [col.strip() for col in row] record = dict(zip(headers.keys(), row)) records.append(record) return headers, records def validate_csv(headers, fields, required_fields): """ Validate that parsed csv data conforms to the object's available fields. Raise validation errors if parsed csv data contains invalid headers or does not contain required headers. """ # Validate provided column headers for field, to_field in headers.items(): if field not in fields: raise forms.ValidationError(f'Unexpected column header "{field}" found.') if to_field and not hasattr(fields[field], "to_field_name"): raise forms.ValidationError(f'Column "{field}" is not a related object; cannot use dots') if to_field and not hasattr(fields[field].queryset.model, to_field): raise forms.ValidationError(f'Invalid related object attribute for column "{field}": {to_field}') # Validate required fields for f in required_fields: if f not in headers: raise forms.ValidationError(f'Required column header "{f}" not found.') def add_field_to_filter_form_class(form_class, field_name, field_obj): """ Attach a field to an existing filter form class. """ if not isinstance(field_obj, forms.Field): raise TypeError(f"Custom form field `{field_name}` is not an instance of django.forms.Field.") if field_name in form_class.base_fields: raise AttributeError( f"There was a conflict with filter form field `{field_name}`, the custom filter form field was ignored." ) form_class.base_fields[field_name] = field_obj
py
b40dbf6ca736f0e4767cd8ee78c2a97669c5622d
import json from ..helpers import BaseApplicationTest import mock from nose.tools import assert_equal, assert_false class TestStatus(BaseApplicationTest): def setup(self): super(TestStatus, self).setup() self._data_api_client = mock.patch( 'app.status.views.data_api_client' ).start() self._search_api_client = mock.patch( 'app.status.views.search_api_client' ).start() def teardown(self): self._data_api_client.stop() self._search_api_client.stop() @mock.patch('app.status.views.data_api_client') def test_should_return_200_from_elb_status_check(self, data_api_client): status_response = self.client.get('/_status?ignore-dependencies') assert_equal(200, status_response.status_code) assert_false(data_api_client.called) def test_status_ok(self): self._data_api_client.get_status.return_value = { 'status': 'ok' } self._search_api_client.get_status.return_value = { 'status': 'ok' } status_response = self.client.get('/_status') assert_equal(200, status_response.status_code) json_data = json.loads(status_response.get_data().decode('utf-8')) assert_equal( "ok", "{}".format(json_data['api_status']['status'])) assert_equal( "ok", "{}".format(json_data['search_api_status']['status'])) def test_status_error_in_one_upstream_api(self): self._data_api_client.get_status.return_value = { 'status': 'error', 'app_version': None, 'message': 'Cannot connect to Database' } self._search_api_client.get_status.return_value = { 'status': 'ok' } response = self.client.get('/_status') assert_equal(500, response.status_code) json_data = json.loads(response.get_data().decode('utf-8')) assert_equal("error", "{}".format(json_data['status'])) assert_equal("error", "{}".format(json_data['api_status']['status'])) assert_equal("ok", "{}".format( json_data['search_api_status']['status'])) def test_status_no_response_in_one_upstream_api(self): self._data_api_client.get_status.return_value = { 'status': 'ok' } self._search_api_client.get_status.return_value = None response = self.client.get('/_status') assert_equal(500, response.status_code) json_data = json.loads(response.get_data().decode('utf-8')) assert_equal("error", "{}".format(json_data['status'])) assert_equal("ok", "{}".format(json_data['api_status']['status'])) assert_equal(None, json_data.get('search_api_status')) def test_status_error_in_two_upstream_apis(self): self._data_api_client.get_status.return_value = { 'status': 'error', 'app_version': None, 'message': 'Cannot connect to Database' } self._search_api_client.get_status.return_value = { 'status': 'error', 'app_version': None, 'message': 'Cannot connect to elasticsearch' } response = self.client.get('/_status') assert_equal(500, response.status_code) json_data = json.loads(response.get_data().decode('utf-8')) assert_equal("error", "{}".format(json_data['status'])) assert_equal("error", "{}".format(json_data['api_status']['status'])) assert_equal("error", "{}".format( json_data['search_api_status']['status']))
py
b40dbf9a27db1fe73164f43d204c90233e759b0f
from django.urls import path from share import views urlpatterns = [ path('makePublic', views.makePublic, name="makePublic"), path('makePrivate', views.makePrivate, name="makePrivate"), path('<slug:slug>/', views.share, name="share"), ]
py
b40dbff861202129fdfa9a15f3f0467f31c53bb3
import numpy as np import igl from context import gpytoolbox # This tests crashes if you use the igl binding. # This is a cube, centered at the origin, with side length 1 v,f = igl.read_triangle_mesh("unit_tests_data/cube.obj") cam_pos = np.array([[1,0.1,0.1],[1,0.1,0.0]]) cam_dir = np.array([[-1,0,0],[-1,0,0]]) t, ids, l = gpytoolbox.ray_mesh_intersect(cam_pos.astype(np.float64),cam_dir.astype(np.float64),v.astype(np.float64),f.astype(np.int32)) # There should only be two hits (there are three because the C++ ray_mesh_intersect doesn't work well? ) print("Number of hits:", t.shape[0]) # t (travelled distance) should be 0.5 print("Travelled distance:", t[0]) # intersection should be [0.5,0.1,0.1] intersection = cam_pos + t[:,None]*cam_dir print("Intersected at: ", intersection)
py
b40dc12736d099cf08e73998c3de930347278d28
# Custom extension that zips all the examples for download. from zipfile import ZipFile import fnmatch from os import path, walk my_path = path.dirname(path.abspath(__file__)) root_path = path.abspath(path.join(my_path, '..', '..')) zip_filename = path.join(root_path, 'docs', 'examples.zip') def my_glob(folder, ext): """ glob does not work recursively in all python versions """ for root, dirnames, filenames in walk(folder): for filename in fnmatch.filter(filenames, ext): yield path.join(root, filename) def zip_examples(app): glob_patterns = [ ("examples", "*.c3"), ("examples", "*.asm"), ("examples", "*.mmap"), ("examples", "build.xml"), ("librt", "*.c3")] with ZipFile(zip_filename, 'w') as myzip: for folder, ext in glob_patterns: pat = path.join(path.join(root_path, folder)) for filename in my_glob(pat, ext): zfn = path.relpath(filename, root_path) app.info('zipping {} as {}'.format(filename, zfn)) myzip.write(filename, zfn) def setup(app): app.connect('builder-inited', zip_examples) return {'version': '0.1'}
py
b40dc1cd2c07fbecf3f8b6e9e1f943edf2f6030a
# -*- coding: utf-8 -*- """ Implements a Class for Representing a Simulated Senate Election. """ from collections import Counter from random import random from random import seed as set_seed from time import asctime from time import localtime from aus_senate_audit.senate_election.base_senate_election import BaseSenateElection class SimulatedSenateElection(BaseSenateElection): """ Implements a class for representing a simulated senate election. :ivar int _sample_increment_size: The number of ballots to add to the growing sample during each audit stage. NOTE: The :attr:`_candidates` and :attr:`_candidate_ids` instance attributes are set as a [1, ..., :attr:`_m`]. """ TYPE = 'Simulated' DEFAULT_ID = 'SimulatedElection{}' def __init__(self, seed, n, m, sample_increment_size): """ Initializes a :class:`SimulatedSenateElection` object. The number of seats in a simulated senate election is equal to the floor of the number of candidates in the election divided by two. :param int seed: The starting value for the random number generator. :param int n: The total number of ballots cast in the election. :param int m: The total number of candidates in the election. :param int sample_increment_size: The number of ballots to add to the growing sample during each audit stage. """ super(SimulatedSenateElection, self).__init__() self._n = n self._m = m self._seats = int(self._m / 2) self._candidates = list(range(1, self._m + 1)) self._candidate_ids = list(range(1, self._m + 1)) self._election_id = SimulatedSenateElection.DEFAULT_ID.format(asctime(localtime())) self._sample_increment_size = sample_increment_size set_seed(seed) # Set the initial value of the RNG. def draw_ballots(self): """ Adds simulated ballots to the sample of ballots drawn thus far. These ballots are biased so (1, 2, ..., m) is likely to be the winner. More precisely, each ballot candidate `i` is given a value `i + v * U` where `U = uniform(0, 1)` and `v` is the level of noise. Then the candidates are sorted into increasing order by these values. Note that the total number of ballots drawn may not exceed the total number of cast votes, :attr:`_n`. """ v = self._m / 2.0 # Noise level to control position variance. batch_size = min(self._sample_increment_size, self._n - self._num_ballots_drawn) for _ in range(batch_size): candidate_values = [(i + v * random(), cid) for i, cid in enumerate(self._candidate_ids)] ballot = tuple(cid for val, cid in sorted(candidate_values)) self.add_ballot(ballot, 1) def get_outcome(self, ballot_weights): """ Returns the outcome of a senate election with the given ballot weights. The social choice function used in the simulated senate election is Borda count. :param :class:`Counter` ballot_weights: A mapping from a ballot type to the number of ballots drawn of that type. :returns: The IDs of the candidates elected to the available seats, sorted in lexicographical order. :rtype: tuple """ counter = Counter() for ballot, weight in ballot_weights.items(): for i, cid in enumerate(ballot): counter[cid] += weight * i # Get the :attr:`_seat` candidates with the lowest Borda counts in increasing order. winners = counter.most_common()[-self._seats:][::-1] return tuple(sorted([cid for cid, count in winners]))
py
b40dc27bde0f31e70468b6e4742e595dec2f9e35
#!/usr/bin/env python # # This program shows how to use Scatterv. Each processor gets a # different amount of data from the root processor. We use MPI_Gather # first to tell the root how much data is going to be sent. # import numpy from numpy import * from mpi4py import MPI import sys comm=MPI.COMM_WORLD myid=comm.Get_rank() numprocs=comm.Get_size() print("hello from ",myid," of ",numprocs) mpi_root=0 # Three step process for setting up the call to Scatterv # Each processor gets different amounts of data in # the Scatterv # Step 1 # Here we set up the amount of data each will get. mysize=2*myid+2 # Step 2 # Send the different numbers of values from each processor to the # root #mysize contains the number of values we will send in the scatterv counts=comm.gather(mysize,root=mpi_root) if myid != mpi_root: displacements=None sray=None else: # Step 3 # We set up the displacement array. This says where in our # final array each processor will get its data. For the # normal simple case this is just a running total of the # counts array and thus is optional. See P_ex08.py for # usage of the displacements array print("counts=",counts) displacements=zeros(numprocs,"i") displacements[0]=0 for i in range(1, numprocs): displacements[i]=counts[i-1]+displacements[i-1] size=0 for i in range(0, numprocs): size=size+counts[i] sray=zeros(size,"i") for i in range(0, size): sray[i]=i allray=empty(mysize,"i") comm.Scatterv(sendbuf=[sray, (counts)], recvbuf=[allray, (mysize)], root=mpi_root) print(myid,"allrray= ",allray) MPI.Finalize()
py
b40dc2e3448a9ed09f69528de5b93e2a4a207893
import PyPDF2 import re pdf_file = open('coroa3.pdf', 'rb') read_pdf = PyPDF2.PdfFileReader(pdf_file) number_of_pages = read_pdf.getNumPages() page = read_pdf.getPage(35).extractText() pdf_file.close() #page_content = page.extractText() ##parsed = ''.join(page_content) ##parsed = re.sub('\n', '', parsed) print(len(page))
py
b40dc345a447a63ee1d8764e525f4aae67318e96
# This program checks that a machine is up by sending it a ping. It shows if the ping to a device was "ok" or "unsuccessful". from subprocess import check_call, CalledProcessError,PIPE import time def pingiprange(): # Principe du programme : print("This program will run a Ping request every 5 seconds on a round of IP's until told to stop (using ctrl+c).") # Combien d'ip faut-il surveiller ? n = int(input("How many IP's are we checking: ")) ips = [] while n<1: # On se prépare à l'exception ou un nombre d'ip inférieur à 1 est saisi. n = int(input("Please input a number above 0 :")) if n>0: ips = [input("Enter IP number {}: ".format(i)) for i in range(1, n + 1)] while True: # Pour chaque ip renseignée, on envoie un ping : for ip in ips: try: out = check_call(['ping', '-n', '2', ip],stdout=PIPE) except CalledProcessError as e: # Si absence de réponse au ping alors : print("Ping to {} unsuccessful".format(ip)) continue # Si on arrive jusqu'ici, le ping a fonctionné : print("Ping to {} ok".format(ip)) print("Ctrl+c to stop this program.") time.sleep(3)
py
b40dc3508340234d3abf638ddc9bacdceef4feb4
#!/usr/bin/env python3 import singer import tap_framework from tap_lever.client import LeverClient from tap_lever.streams import AVAILABLE_STREAMS LOGGER = singer.get_logger() # noqa class LeverRunner(tap_framework.Runner): pass @singer.utils.handle_top_exception(LOGGER) def main(): args = singer.utils.parse_args(required_config_keys=['token']) client = LeverClient(args.config) runner = LeverRunner( args, client, AVAILABLE_STREAMS) if args.discover: runner.do_discover() else: runner.do_sync() if __name__ == '__main__': main()
py
b40dc3738498df8254303b3c85cf245d0da0b85e
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2015-2017 The PIVX developers # Copyright (c) 2018 CTS Developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "cts.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. ctsd and cts-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run ctsd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "ctsd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "cts-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:[email protected]:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in cts.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a ctsd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "ctsd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "cts-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple ctsds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
py
b40dc412859d9f76e6288792167077733c76e3bb
# coding: utf-8 """ Influx OSS API Service. No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 2.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from influxdb_client.domain.view_properties import ViewProperties class HistogramViewProperties(ViewProperties): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'queries': 'list[DashboardQuery]', 'colors': 'list[DashboardColor]', 'shape': 'str', 'note': 'str', 'show_note_when_empty': 'bool', 'x_column': 'str', 'fill_columns': 'list[str]', 'x_domain': 'list[float]', 'x_axis_label': 'str', 'position': 'str', 'bin_count': 'int', 'legend_colorize_rows': 'bool', 'legend_hide': 'bool', 'legend_opacity': 'float', 'legend_orientation_threshold': 'int' } attribute_map = { 'type': 'type', 'queries': 'queries', 'colors': 'colors', 'shape': 'shape', 'note': 'note', 'show_note_when_empty': 'showNoteWhenEmpty', 'x_column': 'xColumn', 'fill_columns': 'fillColumns', 'x_domain': 'xDomain', 'x_axis_label': 'xAxisLabel', 'position': 'position', 'bin_count': 'binCount', 'legend_colorize_rows': 'legendColorizeRows', 'legend_hide': 'legendHide', 'legend_opacity': 'legendOpacity', 'legend_orientation_threshold': 'legendOrientationThreshold' } def __init__(self, type=None, queries=None, colors=None, shape=None, note=None, show_note_when_empty=None, x_column=None, fill_columns=None, x_domain=None, x_axis_label=None, position=None, bin_count=None, legend_colorize_rows=None, legend_hide=None, legend_opacity=None, legend_orientation_threshold=None): # noqa: E501,D401,D403 """HistogramViewProperties - a model defined in OpenAPI.""" # noqa: E501 ViewProperties.__init__(self) # noqa: E501 self._type = None self._queries = None self._colors = None self._shape = None self._note = None self._show_note_when_empty = None self._x_column = None self._fill_columns = None self._x_domain = None self._x_axis_label = None self._position = None self._bin_count = None self._legend_colorize_rows = None self._legend_hide = None self._legend_opacity = None self._legend_orientation_threshold = None self.discriminator = None self.type = type self.queries = queries self.colors = colors self.shape = shape self.note = note self.show_note_when_empty = show_note_when_empty self.x_column = x_column self.fill_columns = fill_columns self.x_domain = x_domain self.x_axis_label = x_axis_label self.position = position self.bin_count = bin_count if legend_colorize_rows is not None: self.legend_colorize_rows = legend_colorize_rows if legend_hide is not None: self.legend_hide = legend_hide if legend_opacity is not None: self.legend_opacity = legend_opacity if legend_orientation_threshold is not None: self.legend_orientation_threshold = legend_orientation_threshold @property def type(self): """Get the type of this HistogramViewProperties. :return: The type of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._type @type.setter def type(self, type): """Set the type of this HistogramViewProperties. :param type: The type of this HistogramViewProperties. :type: str """ # noqa: E501 if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def queries(self): """Get the queries of this HistogramViewProperties. :return: The queries of this HistogramViewProperties. :rtype: list[DashboardQuery] """ # noqa: E501 return self._queries @queries.setter def queries(self, queries): """Set the queries of this HistogramViewProperties. :param queries: The queries of this HistogramViewProperties. :type: list[DashboardQuery] """ # noqa: E501 if queries is None: raise ValueError("Invalid value for `queries`, must not be `None`") # noqa: E501 self._queries = queries @property def colors(self): """Get the colors of this HistogramViewProperties. Colors define color encoding of data into a visualization :return: The colors of this HistogramViewProperties. :rtype: list[DashboardColor] """ # noqa: E501 return self._colors @colors.setter def colors(self, colors): """Set the colors of this HistogramViewProperties. Colors define color encoding of data into a visualization :param colors: The colors of this HistogramViewProperties. :type: list[DashboardColor] """ # noqa: E501 if colors is None: raise ValueError("Invalid value for `colors`, must not be `None`") # noqa: E501 self._colors = colors @property def shape(self): """Get the shape of this HistogramViewProperties. :return: The shape of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._shape @shape.setter def shape(self, shape): """Set the shape of this HistogramViewProperties. :param shape: The shape of this HistogramViewProperties. :type: str """ # noqa: E501 if shape is None: raise ValueError("Invalid value for `shape`, must not be `None`") # noqa: E501 self._shape = shape @property def note(self): """Get the note of this HistogramViewProperties. :return: The note of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._note @note.setter def note(self, note): """Set the note of this HistogramViewProperties. :param note: The note of this HistogramViewProperties. :type: str """ # noqa: E501 if note is None: raise ValueError("Invalid value for `note`, must not be `None`") # noqa: E501 self._note = note @property def show_note_when_empty(self): """Get the show_note_when_empty of this HistogramViewProperties. If true, will display note when empty :return: The show_note_when_empty of this HistogramViewProperties. :rtype: bool """ # noqa: E501 return self._show_note_when_empty @show_note_when_empty.setter def show_note_when_empty(self, show_note_when_empty): """Set the show_note_when_empty of this HistogramViewProperties. If true, will display note when empty :param show_note_when_empty: The show_note_when_empty of this HistogramViewProperties. :type: bool """ # noqa: E501 if show_note_when_empty is None: raise ValueError("Invalid value for `show_note_when_empty`, must not be `None`") # noqa: E501 self._show_note_when_empty = show_note_when_empty @property def x_column(self): """Get the x_column of this HistogramViewProperties. :return: The x_column of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._x_column @x_column.setter def x_column(self, x_column): """Set the x_column of this HistogramViewProperties. :param x_column: The x_column of this HistogramViewProperties. :type: str """ # noqa: E501 if x_column is None: raise ValueError("Invalid value for `x_column`, must not be `None`") # noqa: E501 self._x_column = x_column @property def fill_columns(self): """Get the fill_columns of this HistogramViewProperties. :return: The fill_columns of this HistogramViewProperties. :rtype: list[str] """ # noqa: E501 return self._fill_columns @fill_columns.setter def fill_columns(self, fill_columns): """Set the fill_columns of this HistogramViewProperties. :param fill_columns: The fill_columns of this HistogramViewProperties. :type: list[str] """ # noqa: E501 if fill_columns is None: raise ValueError("Invalid value for `fill_columns`, must not be `None`") # noqa: E501 self._fill_columns = fill_columns @property def x_domain(self): """Get the x_domain of this HistogramViewProperties. :return: The x_domain of this HistogramViewProperties. :rtype: list[float] """ # noqa: E501 return self._x_domain @x_domain.setter def x_domain(self, x_domain): """Set the x_domain of this HistogramViewProperties. :param x_domain: The x_domain of this HistogramViewProperties. :type: list[float] """ # noqa: E501 if x_domain is None: raise ValueError("Invalid value for `x_domain`, must not be `None`") # noqa: E501 self._x_domain = x_domain @property def x_axis_label(self): """Get the x_axis_label of this HistogramViewProperties. :return: The x_axis_label of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._x_axis_label @x_axis_label.setter def x_axis_label(self, x_axis_label): """Set the x_axis_label of this HistogramViewProperties. :param x_axis_label: The x_axis_label of this HistogramViewProperties. :type: str """ # noqa: E501 if x_axis_label is None: raise ValueError("Invalid value for `x_axis_label`, must not be `None`") # noqa: E501 self._x_axis_label = x_axis_label @property def position(self): """Get the position of this HistogramViewProperties. :return: The position of this HistogramViewProperties. :rtype: str """ # noqa: E501 return self._position @position.setter def position(self, position): """Set the position of this HistogramViewProperties. :param position: The position of this HistogramViewProperties. :type: str """ # noqa: E501 if position is None: raise ValueError("Invalid value for `position`, must not be `None`") # noqa: E501 self._position = position @property def bin_count(self): """Get the bin_count of this HistogramViewProperties. :return: The bin_count of this HistogramViewProperties. :rtype: int """ # noqa: E501 return self._bin_count @bin_count.setter def bin_count(self, bin_count): """Set the bin_count of this HistogramViewProperties. :param bin_count: The bin_count of this HistogramViewProperties. :type: int """ # noqa: E501 if bin_count is None: raise ValueError("Invalid value for `bin_count`, must not be `None`") # noqa: E501 self._bin_count = bin_count @property def legend_colorize_rows(self): """Get the legend_colorize_rows of this HistogramViewProperties. :return: The legend_colorize_rows of this HistogramViewProperties. :rtype: bool """ # noqa: E501 return self._legend_colorize_rows @legend_colorize_rows.setter def legend_colorize_rows(self, legend_colorize_rows): """Set the legend_colorize_rows of this HistogramViewProperties. :param legend_colorize_rows: The legend_colorize_rows of this HistogramViewProperties. :type: bool """ # noqa: E501 self._legend_colorize_rows = legend_colorize_rows @property def legend_hide(self): """Get the legend_hide of this HistogramViewProperties. :return: The legend_hide of this HistogramViewProperties. :rtype: bool """ # noqa: E501 return self._legend_hide @legend_hide.setter def legend_hide(self, legend_hide): """Set the legend_hide of this HistogramViewProperties. :param legend_hide: The legend_hide of this HistogramViewProperties. :type: bool """ # noqa: E501 self._legend_hide = legend_hide @property def legend_opacity(self): """Get the legend_opacity of this HistogramViewProperties. :return: The legend_opacity of this HistogramViewProperties. :rtype: float """ # noqa: E501 return self._legend_opacity @legend_opacity.setter def legend_opacity(self, legend_opacity): """Set the legend_opacity of this HistogramViewProperties. :param legend_opacity: The legend_opacity of this HistogramViewProperties. :type: float """ # noqa: E501 self._legend_opacity = legend_opacity @property def legend_orientation_threshold(self): """Get the legend_orientation_threshold of this HistogramViewProperties. :return: The legend_orientation_threshold of this HistogramViewProperties. :rtype: int """ # noqa: E501 return self._legend_orientation_threshold @legend_orientation_threshold.setter def legend_orientation_threshold(self, legend_orientation_threshold): """Set the legend_orientation_threshold of this HistogramViewProperties. :param legend_orientation_threshold: The legend_orientation_threshold of this HistogramViewProperties. :type: int """ # noqa: E501 self._legend_orientation_threshold = legend_orientation_threshold def to_dict(self): """Return the model properties as a dict.""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Return the string representation of the model.""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`.""" return self.to_str() def __eq__(self, other): """Return true if both objects are equal.""" if not isinstance(other, HistogramViewProperties): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Return true if both objects are not equal.""" return not self == other
py
b40dc41d821cb463f4d961653d772dcbdde25691
test = { 'name': 'q24', 'points': 4, 'suites': [ { 'cases': [ { 'code': '>>> pivot_GlobalSales.shape\n' '(17, 12)', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
py
b40dc472948f7133d5f1afc7fd72dde450761ca9
from commands import add_to_friends_on_chat_enter from commands import aliases from commands import aliases_manager from commands import auto_exit_from_chat from commands import delete_messages from commands import delete_messages_vks from commands import delete_notify from commands import disable_notifications from commands import duty_signal from commands import info from commands import members_manager from commands import ping from commands import prefixes from commands import regex_deleter from commands import repeat from commands import role_play_commands from commands import run_eval from commands import self_signal from commands import set_secret_code from commands import sloumo commands_bp = ( add_to_friends_on_chat_enter.user, aliases.user, aliases_manager.user, auto_exit_from_chat.user, delete_messages.user, delete_messages_vks.user, delete_notify.user, disable_notifications.user, duty_signal.user, run_eval.user, ping.user, info.user, prefixes.user, regex_deleter.user, repeat.user, role_play_commands.user, self_signal.user, set_secret_code.user, sloumo.user, *members_manager.users_bp, )
py
b40dc4eb346f61290c665fc843aaeaaea3ed4f93
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Workspace'] class Workspace(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, e_tag: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, public_network_access_for_ingestion: Optional[pulumi.Input[str]] = None, public_network_access_for_query: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, retention_in_days: Optional[pulumi.Input[int]] = None, sku: Optional[pulumi.Input[pulumi.InputType['WorkspaceSkuArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workspace_capping: Optional[pulumi.Input[pulumi.InputType['WorkspaceCappingArgs']]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ The top level Workspace resource container. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] e_tag: The ETag of the workspace. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input[str] provisioning_state: The provisioning state of the workspace. :param pulumi.Input[str] public_network_access_for_ingestion: The network access type for accessing Log Analytics ingestion. :param pulumi.Input[str] public_network_access_for_query: The network access type for accessing Log Analytics query. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[int] retention_in_days: The workspace data retention in days. -1 means Unlimited retention for the Unlimited Sku. 730 days is the maximum allowed for all other Skus. :param pulumi.Input[pulumi.InputType['WorkspaceSkuArgs']] sku: The SKU of the workspace. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[pulumi.InputType['WorkspaceCappingArgs']] workspace_capping: The daily volume cap for ingestion. :param pulumi.Input[str] workspace_name: The name of the workspace. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['e_tag'] = e_tag if location is None: raise TypeError("Missing required property 'location'") __props__['location'] = location __props__['provisioning_state'] = provisioning_state __props__['public_network_access_for_ingestion'] = public_network_access_for_ingestion __props__['public_network_access_for_query'] = public_network_access_for_query if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['retention_in_days'] = retention_in_days __props__['sku'] = sku __props__['tags'] = tags __props__['workspace_capping'] = workspace_capping if workspace_name is None: raise TypeError("Missing required property 'workspace_name'") __props__['workspace_name'] = workspace_name __props__['customer_id'] = None __props__['name'] = None __props__['private_link_scoped_resources'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:operationalinsights/latest:Workspace"), pulumi.Alias(type_="azure-nextgen:operationalinsights/v20151101preview:Workspace"), pulumi.Alias(type_="azure-nextgen:operationalinsights/v20200801:Workspace")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Workspace, __self__).__init__( 'azure-nextgen:operationalinsights/v20200301preview:Workspace', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Workspace': """ Get an existing Workspace resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return Workspace(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="customerId") def customer_id(self) -> pulumi.Output[str]: """ This is a read-only property. Represents the ID associated with the workspace. """ return pulumi.get(self, "customer_id") @property @pulumi.getter(name="eTag") def e_tag(self) -> pulumi.Output[Optional[str]]: """ The ETag of the workspace. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateLinkScopedResources") def private_link_scoped_resources(self) -> pulumi.Output[Sequence['outputs.PrivateLinkScopedResourceResponse']]: """ List of linked private link scope resources. """ return pulumi.get(self, "private_link_scoped_resources") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ The provisioning state of the workspace. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicNetworkAccessForIngestion") def public_network_access_for_ingestion(self) -> pulumi.Output[Optional[str]]: """ The network access type for accessing Log Analytics ingestion. """ return pulumi.get(self, "public_network_access_for_ingestion") @property @pulumi.getter(name="publicNetworkAccessForQuery") def public_network_access_for_query(self) -> pulumi.Output[Optional[str]]: """ The network access type for accessing Log Analytics query. """ return pulumi.get(self, "public_network_access_for_query") @property @pulumi.getter(name="retentionInDays") def retention_in_days(self) -> pulumi.Output[Optional[int]]: """ The workspace data retention in days. -1 means Unlimited retention for the Unlimited Sku. 730 days is the maximum allowed for all other Skus. """ return pulumi.get(self, "retention_in_days") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.WorkspaceSkuResponse']]: """ The SKU of the workspace. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") @property @pulumi.getter(name="workspaceCapping") def workspace_capping(self) -> pulumi.Output[Optional['outputs.WorkspaceCappingResponse']]: """ The daily volume cap for ingestion. """ return pulumi.get(self, "workspace_capping") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
b40dc55d7920516ac47956a29ca5a54e02b7d675
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from sos_trades_core.execution_engine.sos_discipline import SoSDiscipline from climateeconomics.core.core_dice.geophysical_model import CarbonEmissions from sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart import InstanciatedSeries, TwoAxesInstanciatedChart from sos_trades_core.tools.post_processing.charts.chart_filter import ChartFilter import pandas as pd class CarbonemissionsDiscipline(SoSDiscipline): "carbonemissions discipline for DICE" # ontology information _ontology_data = { 'label': 'Carbon Emissions DICE Model', 'type': 'Research', 'source': 'SoSTrades Project', 'validated': '', 'validated_by': 'SoSTrades Project', 'last_modification_date': '', 'category': '', 'definition': '', 'icon': 'fas fa-smog fa-fw', 'version': '', } _maturity = 'Research' DESC_IN = { 'year_start': {'type': 'int', 'unit': 'year', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'year_end': {'type': 'int', 'unit': 'year', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'time_step': {'type': 'int', 'unit': 'years per period', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'init_land_emissions': {'type': 'float', 'unit': 'GtCO2 per year', 'default': 2.6}, 'decline_rate_land_emissions': {'type': 'float', 'default': .115}, 'init_cum_land_emisisons': {'type': 'float', 'unit': 'GtCO2', 'default': 100}, 'init_gr_sigma': {'type': 'float', 'default': -0.0152}, 'decline_rate_decarbo': {'type': 'float', 'default': -0.001}, 'init_indus_emissions': {'type': 'float', 'unit': 'GtCO2 per year', 'default': 35.745}, 'init_gross_output': {'type': 'float', 'unit': 'trillions $', 'visibility': 'Shared', 'namespace': 'ns_dice', 'default': 105.1}, 'init_cum_indus_emissions': {'type': 'float', 'unit': 'GtCO2', 'default': 400}, 'economics_df': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_scenario'}, 'emissions_control_rate': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_scenario', 'dataframe_descriptor': {'year': ('float', None, False), 'value': ('float', None, True)}, 'dataframe_edition_locked': False} } DESC_OUT = { 'emissions_df': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_scenario'} } def run(self): # Get inputs in_dict = self.get_sosdisc_inputs() emissions_control_rate = in_dict.pop('emissions_control_rate') # Compute de emissions_model emissions_model = CarbonEmissions(in_dict) emissions_df = emissions_model.compute(in_dict, emissions_control_rate) # Warning : float are mandatory for MDA ... emissions_df = emissions_df.astype(float) # Store output data dict_values = {'emissions_df': emissions_df} self.store_sos_outputs_values(dict_values) def get_chart_filter_list(self): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then chart_filters = [] chart_list = ['carbon emission', 'emission control rate'] # First filter to deal with the view : program or actor chart_filters.append(ChartFilter( 'Charts', chart_list, chart_list, 'charts')) return chart_filters def get_post_processing_list(self, chart_filters=None): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then instanciated_charts = [] # Overload default value with chart filter if chart_filters is not None: for chart_filter in chart_filters: if chart_filter.filter_key == 'charts': chart_list = chart_filter.selected_values emissions_df = self.get_sosdisc_outputs('emissions_df') emissions_df = resize_df(emissions_df) if 'carbon emission' in chart_list: to_plot = ['total_emissions', 'land_emissions', 'indus_emissions'] #emissions_df = discipline.get_sosdisc_outputs('emissions_df') total_emission = emissions_df['total_emissions'] years = list(emissions_df.index) year_start = years[0] year_end = years[len(years) - 1] max_value = total_emission.values.max() chart_name = 'total carbon emissions' new_chart = TwoAxesInstanciatedChart('years', 'carbon emissions (Gtc)', [year_start - 5, year_end + 5], [ 0, max_value * 1.1], chart_name) for key in to_plot: visible_line = True c_emission = list(emissions_df[key]) new_series = InstanciatedSeries( years, c_emission, key, 'lines', visible_line) new_chart.series.append(new_series) instanciated_charts.append(new_chart) if 'emission control rate' in chart_list: to_plot = ['emissions_control_rate'] inputs = self.get_sosdisc_inputs() control_rate_df = inputs.pop('emissions_control_rate') control_rate = list(control_rate_df['value']) emissions_df = self.get_sosdisc_outputs('emissions_df') total_emission = emissions_df['total_emissions'] years = list(total_emission.index) year_start = years[0] year_end = years[len(years) - 1] max_value = max(control_rate) chart_name = 'emission control rate over the years' new_chart = TwoAxesInstanciatedChart('years', 'emission control rate', [year_start - 5, year_end + 5], [ 0, max_value * 1.1], chart_name) for key in to_plot: visible_line = True new_series = InstanciatedSeries( years, control_rate, 'emissions_control_rate', 'lines', visible_line) new_chart.series.append(new_series) instanciated_charts.append(new_chart) return instanciated_charts def resize_df(df): index = df.index i = len(index) - 1 key = df.keys() to_check = df.loc[index[i], key[0]] while to_check == 0: i = i - 1 to_check = df.loc[index[i], key[0]] size_diff = len(index) - i new_df = pd.DataFrame() if size_diff == 0: new_df = df else: for element in key: new_df[element] = df[element][0:i + 1] new_df.index = index[0: i + 1] return new_df def resize_array(array): i = len(array) - 1 to_check = array[i] while to_check == 0: i = i - 1 to_check = to_check = array[i] size_diff = len(array) - i new_array = array[0:i] return new_array def resize_index(index, array): l = len(array) new_index = index[0:l] return new_index
py
b40dc5aee79bcf1042902cc79bb677ff8d623688
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'gui/mainwindow.ui' # # Created: Mon Aug 24 09:59:26 2015 # by: PyQt4 UI code generator 4.11.3 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(996, 715) self.centralWidget = QtGui.QWidget(MainWindow) self.centralWidget.setObjectName(_fromUtf8("centralWidget")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.centralWidget) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.data_input_group_box = QtGui.QGroupBox(self.centralWidget) self.data_input_group_box.setMaximumSize(QtCore.QSize(16777215, 281)) font = QtGui.QFont() font.setPointSize(14) self.data_input_group_box.setFont(font) self.data_input_group_box.setObjectName(_fromUtf8("data_input_group_box")) self.horizontalLayout = QtGui.QHBoxLayout(self.data_input_group_box) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.offsetMarkerTableView = QtGui.QTableView(self.data_input_group_box) self.offsetMarkerTableView.setObjectName(_fromUtf8("offsetMarkerTableView")) self.horizontalLayout.addWidget(self.offsetMarkerTableView) self.off_marker_button_vlayout = QtGui.QVBoxLayout() self.off_marker_button_vlayout.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.off_marker_button_vlayout.setObjectName(_fromUtf8("off_marker_button_vlayout")) self.moveOffsetMarkerUpButton = QtGui.QPushButton(self.data_input_group_box) self.moveOffsetMarkerUpButton.setObjectName(_fromUtf8("moveOffsetMarkerUpButton")) self.off_marker_button_vlayout.addWidget(self.moveOffsetMarkerUpButton) self.moveOffsetMarkerDownButton = QtGui.QPushButton(self.data_input_group_box) self.moveOffsetMarkerDownButton.setObjectName(_fromUtf8("moveOffsetMarkerDownButton")) self.off_marker_button_vlayout.addWidget(self.moveOffsetMarkerDownButton) spacerItem = QtGui.QSpacerItem(28, 18, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.off_marker_button_vlayout.addItem(spacerItem) self.addOffsetMarkerButton = QtGui.QPushButton(self.data_input_group_box) self.addOffsetMarkerButton.setObjectName(_fromUtf8("addOffsetMarkerButton")) self.off_marker_button_vlayout.addWidget(self.addOffsetMarkerButton) self.removeOffsetMarkerButton = QtGui.QPushButton(self.data_input_group_box) self.removeOffsetMarkerButton.setObjectName(_fromUtf8("removeOffsetMarkerButton")) self.off_marker_button_vlayout.addWidget(self.removeOffsetMarkerButton) self.horizontalLayout.addLayout(self.off_marker_button_vlayout) self.verticalLayout_2.addWidget(self.data_input_group_box) self.run_config_box = QtGui.QGroupBox(self.centralWidget) self.run_config_box.setMaximumSize(QtCore.QSize(16777215, 110)) font = QtGui.QFont() font.setPointSize(14) self.run_config_box.setFont(font) self.run_config_box.setObjectName(_fromUtf8("run_config_box")) self.verticalLayout = QtGui.QVBoxLayout(self.run_config_box) self.verticalLayout.setContentsMargins(2, 4, 2, 4) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.importButton = QtGui.QPushButton(self.run_config_box) self.importButton.setObjectName(_fromUtf8("importButton")) self.horizontalLayout_2.addWidget(self.importButton) self.exportButton = QtGui.QPushButton(self.run_config_box) self.exportButton.setObjectName(_fromUtf8("exportButton")) self.horizontalLayout_2.addWidget(self.exportButton) spacerItem1 = QtGui.QSpacerItem(13, 13, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem1) self.fit_type_label = QtGui.QLabel(self.run_config_box) self.fit_type_label.setObjectName(_fromUtf8("fit_type_label")) self.horizontalLayout_2.addWidget(self.fit_type_label) self.linearFitRadio = QtGui.QRadioButton(self.run_config_box) self.linearFitRadio.setChecked(True) self.linearFitRadio.setObjectName(_fromUtf8("linearFitRadio")) self.fitTypeButtonGroup = QtGui.QButtonGroup(MainWindow) self.fitTypeButtonGroup.setObjectName(_fromUtf8("fitTypeButtonGroup")) self.fitTypeButtonGroup.addButton(self.linearFitRadio) self.horizontalLayout_2.addWidget(self.linearFitRadio) self.piecewiseFitRadio = QtGui.QRadioButton(self.run_config_box) self.piecewiseFitRadio.setObjectName(_fromUtf8("piecewiseFitRadio")) self.fitTypeButtonGroup.addButton(self.piecewiseFitRadio) self.horizontalLayout_2.addWidget(self.piecewiseFitRadio) self.nPiecesSpinBox = QtGui.QSpinBox(self.run_config_box) self.nPiecesSpinBox.setMinimumSize(QtCore.QSize(0, 20)) self.nPiecesSpinBox.setMinimum(2) self.nPiecesSpinBox.setMaximum(10) self.nPiecesSpinBox.setProperty("value", 2) self.nPiecesSpinBox.setObjectName(_fromUtf8("nPiecesSpinBox")) self.horizontalLayout_2.addWidget(self.nPiecesSpinBox) self.cubicFitRadio = QtGui.QRadioButton(self.run_config_box) self.cubicFitRadio.setObjectName(_fromUtf8("cubicFitRadio")) self.fitTypeButtonGroup.addButton(self.cubicFitRadio) self.horizontalLayout_2.addWidget(self.cubicFitRadio) spacerItem2 = QtGui.QSpacerItem(13, 13, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem2) self.runButton = QtGui.QPushButton(self.run_config_box) font = QtGui.QFont() font.setPointSize(15) self.runButton.setFont(font) self.runButton.setObjectName(_fromUtf8("runButton")) self.horizontalLayout_2.addWidget(self.runButton) self.cancelButton = QtGui.QPushButton(self.run_config_box) font = QtGui.QFont() font.setPointSize(15) self.cancelButton.setFont(font) self.cancelButton.setObjectName(_fromUtf8("cancelButton")) self.horizontalLayout_2.addWidget(self.cancelButton) self.plotButton = QtGui.QPushButton(self.run_config_box) font = QtGui.QFont() font.setPointSize(15) self.plotButton.setFont(font) self.plotButton.setObjectName(_fromUtf8("plotButton")) self.horizontalLayout_2.addWidget(self.plotButton) self.verticalLayout.addLayout(self.horizontalLayout_2) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.nItersLineEdit = QtGui.QLineEdit(self.run_config_box) self.nItersLineEdit.setObjectName(_fromUtf8("nItersLineEdit")) self.horizontalLayout_3.addWidget(self.nItersLineEdit) self.nItersLabel = QtGui.QLabel(self.run_config_box) self.nItersLabel.setObjectName(_fromUtf8("nItersLabel")) self.horizontalLayout_3.addWidget(self.nItersLabel) spacerItem3 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem3) self.zeroOffsetLineEdit = QtGui.QLineEdit(self.run_config_box) self.zeroOffsetLineEdit.setObjectName(_fromUtf8("zeroOffsetLineEdit")) self.horizontalLayout_3.addWidget(self.zeroOffsetLineEdit) self.zeroOffsetLabel = QtGui.QLabel(self.run_config_box) self.zeroOffsetLabel.setObjectName(_fromUtf8("zeroOffsetLabel")) self.horizontalLayout_3.addWidget(self.zeroOffsetLabel) spacerItem4 = QtGui.QSpacerItem(48, 17, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem4) self.randSeedLineEdit = QtGui.QLineEdit(self.run_config_box) self.randSeedLineEdit.setObjectName(_fromUtf8("randSeedLineEdit")) self.horizontalLayout_3.addWidget(self.randSeedLineEdit) self.randSeedCheckBox = QtGui.QCheckBox(self.run_config_box) self.randSeedCheckBox.setChecked(True) self.randSeedCheckBox.setObjectName(_fromUtf8("randSeedCheckBox")) self.horizontalLayout_3.addWidget(self.randSeedCheckBox) spacerItem5 = QtGui.QSpacerItem(38, 17, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem5) self.forceIncrCheckBox = QtGui.QCheckBox(self.run_config_box) self.forceIncrCheckBox.setObjectName(_fromUtf8("forceIncrCheckBox")) self.horizontalLayout_3.addWidget(self.forceIncrCheckBox) self.slipRevCheckBox = QtGui.QCheckBox(self.run_config_box) self.slipRevCheckBox.setObjectName(_fromUtf8("slipRevCheckBox")) self.horizontalLayout_3.addWidget(self.slipRevCheckBox) self.verticalLayout.addLayout(self.horizontalLayout_3) self.verticalLayout_2.addWidget(self.run_config_box) self.widget = QtGui.QWidget(self.centralWidget) self.widget.setObjectName(_fromUtf8("widget")) self.horizontalLayout_4 = QtGui.QHBoxLayout(self.widget) self.horizontalLayout_4.setMargin(0) self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.vlayout_for_ipython = QtGui.QVBoxLayout() self.vlayout_for_ipython.setObjectName(_fromUtf8("vlayout_for_ipython")) self.horizontalLayout_4.addLayout(self.vlayout_for_ipython) self.verticalLayout_2.addWidget(self.widget) MainWindow.setCentralWidget(self.centralWidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None)) self.data_input_group_box.setTitle(_translate("MainWindow", "Data Input", None)) self.moveOffsetMarkerUpButton.setText(_translate("MainWindow", "^", None)) self.moveOffsetMarkerDownButton.setText(_translate("MainWindow", "v", None)) self.addOffsetMarkerButton.setText(_translate("MainWindow", "+", None)) self.removeOffsetMarkerButton.setText(_translate("MainWindow", "-", None)) self.run_config_box.setTitle(_translate("MainWindow", "Run Configuration", None)) self.importButton.setText(_translate("MainWindow", "Import", None)) self.exportButton.setText(_translate("MainWindow", "Export", None)) self.fit_type_label.setText(_translate("MainWindow", "Fit Type", None)) self.linearFitRadio.setText(_translate("MainWindow", "Linear", None)) self.piecewiseFitRadio.setText(_translate("MainWindow", "Piecewise Linear", None)) self.cubicFitRadio.setText(_translate("MainWindow", "Cubic Spline", None)) self.runButton.setText(_translate("MainWindow", "Run", None)) self.cancelButton.setText(_translate("MainWindow", "Cancel", None)) self.plotButton.setText(_translate("MainWindow", "Plot", None)) self.nItersLineEdit.setText(_translate("MainWindow", "1000", None)) self.nItersLabel.setText(_translate("MainWindow", "Iterations", None)) self.zeroOffsetLineEdit.setText(_translate("MainWindow", "0.", None)) self.zeroOffsetLabel.setText(_translate("MainWindow", "Zero offset age", None)) self.randSeedLineEdit.setText(_translate("MainWindow", "69.", None)) self.randSeedCheckBox.setText(_translate("MainWindow", "random seed", None)) self.forceIncrCheckBox.setText(_translate("MainWindow", "Force increasing data", None)) self.slipRevCheckBox.setText(_translate("MainWindow", "Allow slip reversals", None))
py
b40dc62f9c5e1267765768b5380f49a6fe25a8cf
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CheckVerifyCodeResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'token': 'str', 'expire': 'int' } attribute_map = { 'token': 'token', 'expire': 'expire' } def __init__(self, token=None, expire=None): """CheckVerifyCodeResponse - a model defined in huaweicloud sdk""" super(CheckVerifyCodeResponse, self).__init__() self._token = None self._expire = None self.discriminator = None if token is not None: self.token = token if expire is not None: self.expire = expire @property def token(self): """Gets the token of this CheckVerifyCodeResponse. 访问token字符串 :return: The token of this CheckVerifyCodeResponse. :rtype: str """ return self._token @token.setter def token(self, token): """Sets the token of this CheckVerifyCodeResponse. 访问token字符串 :param token: The token of this CheckVerifyCodeResponse. :type: str """ self._token = token @property def expire(self): """Gets the expire of this CheckVerifyCodeResponse. 过期时间,单位:秒 :return: The expire of this CheckVerifyCodeResponse. :rtype: int """ return self._expire @expire.setter def expire(self, expire): """Sets the expire of this CheckVerifyCodeResponse. 过期时间,单位:秒 :param expire: The expire of this CheckVerifyCodeResponse. :type: int """ self._expire = expire def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CheckVerifyCodeResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b40dc69a153ade7e5721c26a8278704d8a733bea
import os import sys from typing import List from pydantic import BaseSettings if os.getenv("ENV_FILE"): ENV_FILE_BASE = str(os.path.splitext(os.path.basename(os.getenv("ENV_FILE")))[0]) else: sys.exit("ERROR: 'ENV_FILE' missing.") class UtilsSettings(BaseSettings): """Utils settings. * `BASE_URL`: Base URL of your Dataverse installation without trailing slash. * `USER_FILENAME`: relative path to user file (JSON) * `PRODUCTION`: If `true`, the creation and removal of test-data is not activated. This is important to set to `true`, if this represents a production instance, as you don't want to create or delete data on production. To allow creation or removal on a production instance, you have to pass `--force` to the function call. * `INSTANCE`: Name for instance. First an institution-specific string (e. g. "aussda"), second an installation-specific one (e. g. "production"). This will also be the folder name, where your test-specific data is stored in (`src/dvtests/testing/data/INSTANCE/`, `src/dvtests/testing/custom/INSTANCE/`) * `FILENAME_DATAVERSES`: name of created dataverse JSON file from utils collect * `FILENAME_DATASETS`: name of created datasets JSON file from utils collect * `FILENAME_DATAFILES`: name of created datafiles JSON file from utils collect * `FILENAME_METADATA`: name of created metadata JSON file from utils collect * `BUILTIN_USER_KEY`: Builtin user key to create users """ BASE_URL: str USER_FILENAME: str PRODUCTION: bool = False INSTANCE: str = ENV_FILE_BASE FILENAME_DATAVERSES: str = "dataverses.json" FILENAME_DATASETS: str = "datasets.json" FILENAME_DATAFILES: str = "datafiles.json" FILENAME_METADATA: str = "metadata.json" BUILTIN_USER_KEY: str = None class TestSettings(BaseSettings): """Settings for Testing. * `BASE_URL`: Base URL of your Dataverse installation without trailing slash. * `USER_FILENAME`: relative path to user file (JSON) * `VERSION`: Dataverse version string. e. g. `4.20` * `INSTANCE`: Name for instance. First an institution-specific string (e. g. "aussda"), second an installation-specific one (e. g. "production"). This will also be the folder name, where your test-specific data is stored in (`src/dvtests/testing/data/INSTANCE/`, `src/dvtests/testing/custom/INSTANCE/`) * `HEADLESS`: Executes Selenium tests with or without browser window opening (default = `true` -> without browser window). * `USER_AGENT`: Passed user agent for requests and selenium requests (e. g. `SELENIUM-TEST`). This allows to exclude tracking by your web-analytics tool (e. g. Matomo, Google Analytics) of requests done by Dataverse tests. For this, you have to tell your web-analytics tool to exclude all visits with the defined user-agent. * `WINDOW_HEIGHT`: Window height for Selenium * `WINDOW_WIDTH`: Window width for Selenium * `MAX_WAIT_TIME`: max wait time for selenium waits * `LOGIN_OPTIONS`: List of user login options (options: `normal`, `shibboleth`) * `FILENAME_DATAVERSES`: name of created dataverse JSON file from utils collect * `FILENAME_DATASETS`: name of created datasets JSON file from utils collect * `FILENAME_DATAFILES`: name of created datafiles JSON file from utils collect * `FILENAME_METADATA`: name of created metadata JSON file from utils collect * `SHIBBOLETH_INSTITUTION`: name of Shibboleth institution for login purpose * `SHIBBOLETH_LOGIN_PAGE_TITLE`: title of Shibboleth Login page * `BUILTIN_USER_KEY`: Builtin user key to create users * `DATA_COLLECTOR`: descriptor for data collector. It is ether 1. the user handle of dataverse user, which collected the data or 2. "public" for publicly accessible data """ BASE_URL: str USER_FILENAME: str VERSION: str INSTANCE: str = ENV_FILE_BASE HEADLESS: bool = True USER_AGENT: str = "TESTING" WINDOW_HEIGHT: int = 1400 WINDOW_WIDTH: int = 1600 MAX_WAIT_TIME: int = 20 LOGIN_OPTIONS: List[str] = ["normal"] FILENAME_DATAVERSES: str = "dataverses.json" FILENAME_DATASETS: str = "datasets.json" FILENAME_DATAFILES: str = "datafiles.json" FILENAME_METADATA: str = "metadata.json" SHIBBOLETH_INSTITUTION: str = None SHIBBOLETH_LOGIN_PAGE_TITLE: str = None BUILTIN_USER_KEY: str = None DATA_COLLECTOR: str = None
py
b40dc7809fb38ae257f48256cc5a99bdc7cac190
from setuptools import setup from linx import __version__ setup( name="linxpy", version=__version__, py_modules=["linx"], entry_points={ "console_scripts": [ "linx = linx:linx", "unlinx = linx:unlinx", ], }, install_requires=["requests>=2.4"], description="A Python client for linx.li.", license="WTFPL", author="mutantmonkey", author_email="[email protected]", keywords="linx linxpy upload", url="https://github.com/mutantmonkey/linxpy" )
py
b40dc82f9556a1db715685b1b3e8e564a2e1ac15
import datetime try: from dateutil.tz import tzutc, tzlocal except ImportError: # pragma: no cover raise ImportError( 'Using the datetime fields requires the dateutil library. ' 'You can obtain dateutil from http://labix.org/python-dateutil' ) from .base import DateTimeType EPOCH = datetime.datetime.utcfromtimestamp(0).replace(tzinfo=tzutc()) class TimeStampType(DateTimeType): """Variant of a datetime field that saves itself as a unix timestamp (int) instead of a ISO-8601 string. """ @classmethod def timestamp_to_date(cls, value): return datetime.datetime.fromtimestamp(value, tz=tzutc()) @classmethod def date_to_timestamp(cls, value): if value.tzinfo is None: value = value.replace(tzinfo=tzlocal()) delta = value - EPOCH return (delta.days * 24 * 3600) + delta.seconds + delta.microseconds def to_primitive(self, value, context=None): return TimeStampType.date_to_timestamp(value)
py
b40dc8ade98354ef901c763c2f73e2eeafa7a31d
#!/bin/python2 # Copyright (c) 2019 ZettaDB inc. All rights reserved. # This source code is licensed under Apache 2.0 License, # combined with Common Clause Condition 1.0, as detailed in the NOTICE file. import sys import json import getpass import re import time import uuid import os import os.path import argparse def addIpToMachineMap(map, ip, args): if not map.has_key(ip): mac={"ip":ip, "user":args.defuser, "basedir":args.defbase} map[ip] = mac def addMachineToMap(map, ip, user, basedir): mac={"ip":ip, "user":user, "basedir":basedir} map[ip] = mac def addIpToFilesMap(map, ip, fname, targetdir): if not map.has_key(ip): map[ip] = {} tmap = map[ip] if not tmap.has_key(fname): tmap[fname] = targetdir def addNodeToFilesMap(map, node, fname, targetdir): ip = node['ip'] addIpToFilesMap(map, ip, fname, targetdir) def addNodeToIpset(set, node): ip = node['ip'] set.add(ip) # Not used currently. def addToCommandsMap(map, ip, targetdir, command): if not map.has_key(ip): map[ip] = [] cmds = map[ip] cmds.append([targetdir, command]) def addToCommandsList(cmds, ip, targetdir, command, envtype="no"): lst = [ip, targetdir, command, envtype] cmds.append(lst) def addToDirMap(map, ip, newdir): if not map.has_key(ip): map[ip] = [] dirs = map[ip] dirs.append(newdir) def getuuid(): return str(uuid.uuid1()) def addPortToMachine(map, ip, port): if not map.has_key(ip): map[ip] = set([port]) else: pset = map[ip] if port in pset: raise ValueError("duplicate port:%s on host:%s" % (str(port), ip)) else: pset.add(port) def addDirToMachine(map, ip, directory): if not map.has_key(ip): map[ip] = set([directory]) else: dset = map[ip] if directory in dset: raise ValueError("duplicate directory:%s on host:%s" % (directory, ip)) else: dset.add(directory) def validate_config(jscfg): cluster = jscfg['cluster'] meta = cluster['meta'] comps = cluster['comp']['nodes'] datas = cluster['data'] portmap = {} dirmap = {} metacnt = len(meta['nodes']) if metacnt == 0: raise ValueError('Error: There must be at least one node in meta shard') hasPrimary=False for node in meta['nodes']: addPortToMachine(portmap, node['ip'], node['port']) addPortToMachine(portmap, node['ip'], node['xport']) addPortToMachine(portmap, node['ip'], node['mgr_port']) addDirToMachine(dirmap, node['ip'], node['data_dir_path']) addDirToMachine(dirmap, node['ip'], node['log_dir_path']) if node.has_key('innodb_log_dir_path'): addDirToMachine(dirmap, node['ip'], node['innodb_log_dir_path']) if node.get('is_primary', False): if hasPrimary: raise ValueError('Error: Two primaries found in meta shard, there should be one and only one Primary specified !') else: hasPrimary = True if metacnt > 1: if not hasPrimary: raise ValueError('Error: No primary found in meta shard, there should be one and only one primary specified !') else: node['is_primary'] = True for node in comps: addPortToMachine(portmap, node['ip'], node['port']) addDirToMachine(dirmap, node['ip'], node['datadir']) i=1 for shard in datas: nodecnt = len(shard['nodes']) if nodecnt == 0: raise ValueError('Error: There must be at least one node in data shard%d' % i) if nodecnt > 1 and metacnt == 1: raise ValueError('Error: Meta shard has only one node, but data shard%d has two or more' % i) elif nodecnt == 1 and metacnt > 1: raise ValueError('Error: Meta shard has two or more node, but data shard%d has only one' % i) hasPrimary=False for node in shard['nodes']: addPortToMachine(portmap, node['ip'], node['port']) addPortToMachine(portmap, node['ip'], node['xport']) addPortToMachine(portmap, node['ip'], node['mgr_port']) addDirToMachine(dirmap, node['ip'], node['data_dir_path']) addDirToMachine(dirmap, node['ip'], node['log_dir_path']) if node.has_key('innodb_log_dir_path'): addDirToMachine(dirmap, node['ip'], node['innodb_log_dir_path']) if node.get('is_primary', False): if hasPrimary: raise ValueError('Error: Two primaries found in shard%d, there should be one and only one Primary specified !' % i) else: hasPrimary = True if metacnt > 1: if not hasPrimary: raise ValueError('Error: No primary found in shard%d, there should be one and only one primary specified !' % i) else: node['is_primary'] = True i+=1 def generate_haproxy_config(jscfg, machines, confname): cluster = jscfg['cluster'] comps = cluster['comp']['nodes'] haproxy = cluster['haproxy'] mach = machines[haproxy['ip']] maxconn = haproxy.get('maxconn', 10000) conf = open(confname, 'w') conf.write('''# generated automatically global pidfile %s/haproxy.pid maxconn %d daemon defaults log global retries 5 timeout connect 5s timeout client 30000s timeout server 30000s listen kunlun-cluster bind :%d mode tcp balance roundrobin ''' % (mach['basedir'], maxconn, haproxy['port'])) i = 1 for node in comps: conf.write(" server comp%d %s:%d weight 1 check inter 10s\n" % (i, node['ip'], node['port'])) i += 1 conf.close() def generate_install_scripts(jscfg, args): validate_config(jscfg) installtype = args.installtype sudopfx="" if args.sudo: sudopfx="sudo " localip = '127.0.0.1' machines = {} for mach in jscfg['machines']: ip=mach['ip'] user=mach.get('user', args.defuser) base=mach.get('basedir', args.defbase) addMachineToMap(machines, ip, user, base) storagedir = "kunlun-storage-%s" % args.product_version serverdir = "kunlun-server-%s" % args.product_version clustermgrdir = "kunlun-cluster-manager-%s" % args.product_version filesmap = {} commandslist = [] dirmap = {} usemgr=True cluster = jscfg['cluster'] cluster_name = cluster['name'] meta = cluster['meta'] usemgr=False metacnt = len(meta['nodes']) if metacnt > 1: usemgr = True if not meta.has_key('group_uuid'): meta['group_uuid'] = getuuid() my_metaname = 'mysql_meta.json' metaf = open(r'install/%s' % my_metaname,'w') json.dump(meta, metaf, indent=4) metaf.close() cmdpat = '%spython2 install-mysql.py --config=./%s --target_node_index=%d --cluster_id=%s --shard_id=%s' # commands like: # python2 install-mysql.py --config=./mysql_meta.json --target_node_index=0 targetdir='%s/dba_tools' % storagedir i=0 pries = [] secs = [] shard_id = "meta" for node in meta['nodes']: addNodeToFilesMap(filesmap, node, my_metaname, targetdir) addIpToMachineMap(machines, node['ip'], args) cmd = cmdpat % (sudopfx, my_metaname, i, cluster_name, shard_id) if node.get('is_primary', False): pries.append([node['ip'], targetdir, cmd]) else: secs.append([node['ip'], targetdir, cmd]) addToDirMap(dirmap, node['ip'], node['data_dir_path']) addToDirMap(dirmap, node['ip'], node['log_dir_path']) if node.has_key('innodb_log_dir_path'): addToDirMap(dirmap, node['ip'], node['innodb_log_dir_path']) i+=1 datas = cluster['data'] i=1 for shard in datas: if not shard.has_key('group_uuid'): shard['group_uuid'] = getuuid() shard_id = "shard%d" % i my_shardname = "mysql_shard%d.json" % i shardf = open(r'install/%s' % my_shardname, 'w') json.dump(shard, shardf, indent=4) shardf.close() j = 0 for node in shard['nodes']: addNodeToFilesMap(filesmap, node, my_shardname, targetdir) addIpToMachineMap(machines, node['ip'], args) cmd = cmdpat % (sudopfx, my_shardname, j, cluster_name, shard_id) if node.get('is_primary', False): pries.append([node['ip'], targetdir, cmd]) else: secs.append([node['ip'], targetdir, cmd]) addToDirMap(dirmap, node['ip'], node['data_dir_path']) addToDirMap(dirmap, node['ip'], node['log_dir_path']) if node.has_key('innodb_log_dir_path'): addToDirMap(dirmap, node['ip'], node['innodb_log_dir_path']) j += 1 i+=1 extraopt = " " if not usemgr: extraopt = " --ha_mode=no_rep" for item in pries: addToCommandsList(commandslist, item[0], item[1], item[2] + extraopt) for item in secs: addToCommandsList(commandslist, item[0], item[1], item[2] + extraopt) # This only needs to transfered to machine creating the cluster. pg_metaname = 'postgres_meta.json' metaf = open(r'install/%s' % pg_metaname, 'w') objs = [] for node in meta['nodes']: obj = {} obj['ip'] = node['ip'] obj['port'] = node['port'] obj['user'] = "pgx" obj['password'] = "pgx_pwd" objs.append(obj) json.dump(objs, metaf, indent=4) metaf.close() # This only needs to transfered to machine creating the cluster. pg_shardname = 'postgres_shards.json' shardf = open(r'install/%s' % pg_shardname, 'w') shards = [] i=1 for shard in datas: obj={'shard_name': "shard%d" % i} i+=1 nodes=[] for node in shard['nodes']: n={'user':'pgx', 'password':'pgx_pwd'} n['ip'] = node['ip'] n['port'] = node['port'] nodes.append(n) obj['shard_nodes'] = nodes shards.append(obj) json.dump(shards, shardf, indent=4) shardf.close() comps = cluster['comp']['nodes'] pg_compname = 'postgres_comp.json' compf = open(r'install/%s' % pg_compname, 'w') json.dump(comps, compf, indent=4) compf.close() # python2 install_pg.py --config=docker-comp.json --install_ids=1,2,3 targetdir="%s/scripts" % serverdir for node in comps: addNodeToFilesMap(filesmap, node, pg_compname, targetdir) addIpToMachineMap(machines, node['ip'], args) cmdpat = r'python2 install_pg.py --config=./%s --install_ids=%d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (pg_compname, node['id'])) addToDirMap(dirmap, node['ip'], node['datadir']) comp1 = comps[0] addNodeToFilesMap(filesmap, comp1, pg_metaname, targetdir) addNodeToFilesMap(filesmap, comp1, pg_shardname, targetdir) resourcedir = "%s/resources" % serverdir cmdpat=r'/bin/bash build_driver.sh' addToCommandsList(commandslist, comp1['ip'], resourcedir, cmdpat, "all") cmdpat=r'python2 bootstrap.py --config=./%s --bootstrap_sql=./meta_inuse.sql' addToCommandsList(commandslist, comp1['ip'], targetdir, cmdpat % pg_metaname, "storage") cmdpat='python2 create_cluster.py --shards_config=./%s \ --comps_config=./%s --meta_config=./%s --cluster_name=%s --cluster_owner=abc --cluster_biz=test' if not usemgr: cmdpat = cmdpat + " --ha_mode=no_rep" addToCommandsList(commandslist, comp1['ip'], targetdir, cmdpat % (pg_shardname, pg_compname, pg_metaname, cluster_name), "all") # bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid clustermgr.cnf >& run.log </dev/null & mgr_name = 'clustermgr.cnf' os.system('mkdir -p install') mgrf = open(r'install/%s' % mgr_name, 'w') mgrtempf = open(r'clustermgr.cnf.template','r') firstmeta = meta['nodes'][0] for line in mgrtempf: newline = re.sub('META_HOST', firstmeta['ip'], line) newline = re.sub('META_PORT', str(firstmeta['port']), newline) mgrf.write(newline) mgrtempf.close() mgrf.close() targetdir=clustermgrdir addIpToMachineMap(machines, cluster['clustermgr']['ip'], args) addIpToFilesMap(filesmap, cluster['clustermgr']['ip'], mgr_name, targetdir) cmdpat = r'bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid %s >& run.log </dev/null &' addToCommandsList(commandslist, cluster['clustermgr']['ip'], targetdir, cmdpat % mgr_name, "clustermgr") haproxy = cluster.get("haproxy", None) if haproxy is not None: addIpToMachineMap(machines, haproxy['ip'], args) generate_haproxy_config(jscfg, machines, 'install/haproxy.cfg') cmdpat = r'haproxy-2.5.0-bin/sbin/haproxy -f haproxy.cfg >& haproxy.log' addToCommandsList(commandslist, haproxy['ip'], machines[haproxy['ip']]['basedir'], cmdpat) com_name = 'commands.sh' comf = open(r'install/%s' % com_name, 'w') comf.write('#! /bin/bash\n') # files copy. for ip in machines: mach = machines.get(ip) if args.sudo: mkstr = "bash remote_run.sh --user=%s %s 'sudo mkdir -p %s && sudo chown -R %s:`id -gn %s` %s'\n" tup= (mach['user'], ip, mach['basedir'], mach['user'], mach['user'], mach['basedir']) else: mkstr = "bash remote_run.sh --user=%s %s 'mkdir -p %s'\n" tup= (mach['user'], ip, mach['basedir']) comf.write(mkstr % tup) # Set up the files if installtype == 'full': comstr = "bash dist.sh --hosts=%s --user=%s %s %s\n" comf.write(comstr % (ip, mach['user'], '%s.tgz' % storagedir, mach['basedir'])) comf.write(comstr % (ip, mach['user'], '%s.tgz' % serverdir, mach['basedir'])) comf.write(comstr % (ip, mach['user'], '%s.tgz' % clustermgrdir, mach['basedir'])) if cluster.has_key('haproxy'): comf.write(comstr % (ip, mach['user'], 'haproxy-2.5.0-bin.tar.gz', mach['basedir'])) extstr = "bash remote_run.sh --user=%s %s 'cd %s && tar -xzf %s'\n" comf.write(extstr % (mach['user'], ip, mach['basedir'], '%s.tgz' % storagedir)) comf.write(extstr % (mach['user'], ip, mach['basedir'], '%s.tgz' % serverdir)) comf.write(extstr % (mach['user'], ip, mach['basedir'], '%s.tgz' % clustermgrdir)) if cluster.has_key('haproxy'): comf.write(extstr % (mach['user'], ip, mach['basedir'], 'haproxy-2.5.0-bin.tar.gz')) # files fmap = {'build_driver.sh': '%s/resources' % serverdir, 'process_deps.sh': '.'} if cluster.has_key('haproxy'): fmap['haproxy.cfg'] = '.' for fname in fmap: comstr = "bash dist.sh --hosts=%s --user=%s install/%s %s/%s\n" tup=(ip, mach['user'], fname, mach['basedir'], fmap[fname]) comf.write(comstr % tup) comstr = "bash remote_run.sh --user=%s %s 'cd %s/%s || exit 1; test -d etc && echo > etc/instances_list.txt 2>/dev/null; exit 0'\n" comf.write(comstr % (mach['user'], ip, mach['basedir'], serverdir)) comstr = "bash remote_run.sh --user=%s %s 'cd %s/%s || exit 1; test -d etc && echo > etc/instances_list.txt 2>/dev/null; exit 0'\n" comf.write(comstr % (mach['user'], ip, mach['basedir'], storagedir)) # Set up the env.sh comstr = "bash dist.sh --hosts=%s --user=%s env.sh.template %s\n" extstr = ''' bash remote_run.sh --user=%s %s "cd %s && sed -s 's#KUNLUN_BASEDIR#%s#g' env.sh.template > env.sh" ''' tup=(ip, mach['user'], mach['basedir']) exttup=(mach['user'], ip, mach['basedir'], mach['basedir']) comf.write(comstr % tup) comf.write(extstr % exttup) comf.write("\n") extstr = ''' bash remote_run.sh --user=%s %s "cd %s && sed -i 's#KUNLUN_VERSION#%s#g' env.sh" ''' exttup=(mach['user'], ip, mach['basedir'], args.product_version) comf.write(extstr % exttup) comf.write("\n") comstr = "bash remote_run.sh --user=%s %s 'cd %s && envtype=storage && source ./env.sh && cd %s/lib && bash ../../process_deps.sh'\n" comf.write(comstr % (mach['user'], ip, mach['basedir'], storagedir)) comstr = "bash remote_run.sh --user=%s %s 'cd %s && envtype=computing && source ./env.sh && cd %s/lib && bash ../../process_deps.sh'\n" comf.write(comstr % (mach['user'], ip, mach['basedir'], serverdir)) comstr = "bash remote_run.sh --user=%s %s 'cd %s && envtype=clustermgr && source ./env.sh && cd %s/lib && bash ../../process_deps.sh'\n" comf.write(comstr % (mach['user'], ip, mach['basedir'], clustermgrdir)) # dir making for ip in dirmap: mach = machines.get(ip) dirs=dirmap[ip] for d in dirs: if args.sudo: mkstr = "bash remote_run.sh --user=%s %s 'sudo mkdir -p %s && sudo chown -R %s:`id -gn %s` %s'\n" tup= (mach['user'], ip, d, mach['user'], mach['user'], d) else: mkstr = "bash remote_run.sh --user=%s %s 'mkdir -p %s'\n" tup= (mach['user'], ip, d) comf.write(mkstr % tup) # files copy. for ip in filesmap: mach = machines.get(ip) # files fmap = filesmap[ip] for fname in fmap: comstr = "bash dist.sh --hosts=%s --user=%s install/%s %s/%s\n" tup=(ip, mach['user'], fname, mach['basedir'], fmap[fname]) comf.write(comstr % tup) # The reason for not using commands map is that, # we need to keep the order for the commands. for cmd in commandslist: ip=cmd[0] mach = machines[ip] mkstr = "bash remote_run.sh --user=%s %s $'cd %s && envtype=%s && source ./env.sh && cd %s || exit 1; %s'\n" tup= (mach['user'], ip, mach['basedir'], cmd[3], cmd[1], cmd[2]) comf.write(mkstr % tup) comf.close() # The order is meta shard -> data shards -> cluster_mgr -> comp nodes def generate_start_scripts(jscfg, args): sudopfx="" if args.sudo: sudopfx="sudo " localip = '127.0.0.1' machines = {} for mach in jscfg['machines']: ip=mach['ip'] user=mach.get('user', args.defuser) base=mach.get('basedir', args.defbase) addMachineToMap(machines, ip, user, base) storagedir = "kunlun-storage-%s" % args.product_version serverdir = "kunlun-server-%s" % args.product_version clustermgrdir = "kunlun-cluster-manager-%s" % args.product_version filesmap = {} commandslist = [] cluster = jscfg['cluster'] meta = cluster['meta'] # commands like: # bash startmysql.sh [port] targetdir='%s/dba_tools' % storagedir for node in meta['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'%sbash startmysql.sh %s' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['port'])) # bash startmysql.sh [port] targetdir='%s/dba_tools' % storagedir datas = cluster['data'] for shard in datas: for node in shard['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'%sbash startmysql.sh %s' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['port'])) # bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid clustermgr.cnf >& run.log </dev/null & addIpToMachineMap(machines, cluster['clustermgr']['ip'], args) mgr_name = 'clustermgr.cnf' targetdir=clustermgrdir cmdpat = r'bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid %s >& run.log </dev/null &' addToCommandsList(commandslist, cluster['clustermgr']['ip'], targetdir, cmdpat % mgr_name, "clustermgr") # su postgres -c "python2 start_pg.py port=5401" comps = cluster['comp']['nodes'] targetdir="%s/scripts" % serverdir for node in comps: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'python2 start_pg.py port=%d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['port'], "computing") haproxy = cluster.get("haproxy", None) if haproxy is not None: addIpToMachineMap(machines, haproxy['ip'], args) cmdpat = r'haproxy-2.5.0-bin/sbin/haproxy -f haproxy.cfg >& haproxy.log' addToCommandsList(commandslist, haproxy['ip'], machines[haproxy['ip']]['basedir'], cmdpat) com_name = 'commands.sh' os.system('mkdir -p start') comf = open(r'start/%s' % com_name, 'w') comf.write('#! /bin/bash\n') for cmd in commandslist: ip=cmd[0] mach = machines[ip] mkstr = "bash remote_run.sh --user=%s %s $'cd %s && envtype=%s && source ./env.sh && cd %s || exit 1; %s'\n" tup= (mach['user'], ip, mach['basedir'], cmd[3], cmd[1], cmd[2]) comf.write(mkstr % tup) comf.close() # The order is: comp-nodes -> cluster_mgr -> data shards -> meta shard def generate_stop_scripts(jscfg, args): localip = '127.0.0.1' machines = {} for mach in jscfg['machines']: ip=mach['ip'] user=mach.get('user', args.defuser) base=mach.get('basedir', args.defbase) addMachineToMap(machines, ip, user, base) storagedir = "kunlun-storage-%s" % args.product_version serverdir = "kunlun-server-%s" % args.product_version clustermgrdir = "kunlun-cluster-manager-%s" % args.product_version commandslist = [] cluster = jscfg['cluster'] haproxy = cluster.get("haproxy", None) if haproxy is not None: addIpToMachineMap(machines, haproxy['ip'], args) cmdpat="cat haproxy.pid | xargs kill -9" addToCommandsList(commandslist, haproxy['ip'], machines[haproxy['ip']]['basedir'], cmdpat) # pg_ctl -D %s stop" comps = cluster['comp']['nodes'] targetdir="%s/scripts" % serverdir for node in comps: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'pg_ctl -D %s stop -m immediate' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['datadir'], "computing") # bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid --stop addIpToMachineMap(machines, cluster['clustermgr']['ip'], args) targetdir=clustermgrdir cmdpat = r"bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid --stop" addToCommandsList(commandslist, cluster['clustermgr']['ip'], targetdir, cmdpat, "clustermgr") # bash stopmysql.sh [port] targetdir='%s/dba_tools' % storagedir datas = cluster['data'] for shard in datas: for node in shard['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'bash stopmysql.sh %d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['port'], "storage") meta = cluster['meta'] # commands like: # mysqladmin --defaults-file=/kunlun/kunlun-storage-$version/etc/my_6001.cnf -uroot -proot shutdown targetdir='%s/dba_tools' % storagedir for node in meta['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'bash stopmysql.sh %d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['port'], "storage") com_name = 'commands.sh' os.system('mkdir -p stop') comf = open(r'stop/%s' % com_name, 'w') comf.write('#! /bin/bash\n') for cmd in commandslist: ip=cmd[0] mach = machines[ip] mkstr = "bash remote_run.sh --user=%s %s $'cd %s && envtype=%s && source ./env.sh && cd %s || exit 1; %s'\n" tup= (mach['user'], ip, mach['basedir'], cmd[3], cmd[1], cmd[2]) comf.write(mkstr % tup) comf.close() # The order is: comp-nodes -> cluster_mgr -> data shards -> meta shard def generate_clean_scripts(jscfg, args): sudopfx="" if args.sudo: sudopfx="sudo " cleantype = args.cleantype localip = '127.0.0.1' machines = {} for mach in jscfg['machines']: ip=mach['ip'] user=mach.get('user', args.defuser) base=mach.get('basedir', args.defbase) addMachineToMap(machines, ip, user, base) storagedir = "kunlun-storage-%s" % args.product_version serverdir = "kunlun-server-%s" % args.product_version clustermgrdir = "kunlun-cluster-manager-%s" % args.product_version commandslist = [] cluster = jscfg['cluster'] haproxy = cluster.get("haproxy", None) if haproxy is not None: addIpToMachineMap(machines, haproxy['ip'], args) cmdpat="cat haproxy.pid | xargs kill -9" addToCommandsList(commandslist, haproxy['ip'], machines[haproxy['ip']]['basedir'], cmdpat) cmdpat="rm -f haproxy.pid" addToCommandsList(commandslist, haproxy['ip'], machines[haproxy['ip']]['basedir'], cmdpat) # pg_ctl -D %s stop" comps = cluster['comp']['nodes'] targetdir="%s/scripts" % serverdir for node in comps: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'pg_ctl -D %s stop -m immediate' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['datadir'], "computing") cmdpat = r'%srm -fr %s' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['datadir'])) # bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid --stop addIpToMachineMap(machines, cluster['clustermgr']['ip'], args) targetdir=clustermgrdir cmdpat = r"bash -x bin/cluster_mgr_safe --debug --pidfile=run.pid --stop" addToCommandsList(commandslist, cluster['clustermgr']['ip'], targetdir, cmdpat, "clustermgr") # bash stopmysql.sh [port] targetdir='%s/dba_tools' % storagedir datas = cluster['data'] for shard in datas: for node in shard['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'bash stopmysql.sh %d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['port'], "storage") cmdpat = r'%srm -fr %s' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['log_dir_path'])) addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['data_dir_path'])) if node.has_key('innodb_log_dir_path'): addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['innodb_log_dir_path'])) meta = cluster['meta'] # commands like: # mysqladmin --defaults-file=/kunlun/kunlun-storage-$version/etc/my_6001.cnf -uroot -proot shutdown targetdir='%s/dba_tools' % storagedir for node in meta['nodes']: addIpToMachineMap(machines, node['ip'], args) cmdpat = r'bash stopmysql.sh %d' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % node['port'], "storage") cmdpat = r'%srm -fr %s' addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['log_dir_path'])) addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['data_dir_path'])) if node.has_key('innodb_log_dir_path'): addToCommandsList(commandslist, node['ip'], targetdir, cmdpat % (sudopfx, node['innodb_log_dir_path'])) if cleantype == 'full': for ip in machines: mach =machines[ip] cmdpat = '%srm -fr %s/*' addToCommandsList(commandslist, ip, "/", cmdpat % (sudopfx, mach['basedir'])) com_name = 'commands.sh' os.system('mkdir -p clean') comf = open(r'clean/%s' % com_name, 'w') comf.write('#! /bin/bash\n') for cmd in commandslist: ip=cmd[0] mach = machines[ip] mkstr = "bash remote_run.sh --user=%s %s $'cd %s && envtype=%s && source ./env.sh && cd %s || exit 1; %s'\n" tup= (mach['user'], ip, mach['basedir'], cmd[3], cmd[1], cmd[2]) comf.write(mkstr % tup) comf.close() def checkdirs(dirs): for d in dirs: if not os.path.exists(d): os.mkdir(d) if __name__ == '__main__': actions=["install", "start", "stop", "clean"] parser = argparse.ArgumentParser(description='Specify the arguments.') parser.add_argument('--action', type=str, help="The action", required=True, choices=actions) parser.add_argument('--config', type=str, help="The config path", required=True) parser.add_argument('--defuser', type=str, help="the command", default=getpass.getuser()) parser.add_argument('--defbase', type=str, help="the command", default='/kunlun') parser.add_argument('--installtype', type=str, help="the install type", default='full', choices=['full', 'cluster']) parser.add_argument('--cleantype', type=str, help="the clean type", default='full', choices=['full', 'cluster']) parser.add_argument('--sudo', help="whether to use sudo", default=False, action='store_true') parser.add_argument('--product_version', type=str, help="kunlun version", default='0.9.1') args = parser.parse_args() checkdirs(actions) print str(sys.argv) jsconf = open(args.config) jstr = jsconf.read() jscfg = json.loads(jstr) jsconf.close() # print str(jscfg) if args.action == 'install': generate_install_scripts(jscfg, args) elif args.action == 'start': generate_start_scripts(jscfg, args) elif args.action == 'stop': generate_stop_scripts(jscfg, args) elif args.action == 'clean': generate_clean_scripts(jscfg, args) else : usage() sys.exit(1)
py
b40dc91fc4d8f645560e83ad0293a8f9106e0bff
""" ========================================= Nested versus non-nested cross-validation ========================================= This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV estimates the generalization error of the underlying model and its (hyper)parameter search. Choosing the parameters that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score. Model selection without nested CV uses the same data to tune model parameters and evaluate model performance. Information may thus "leak" into the model and overfit the data. The magnitude of this effect is primarily dependent on the size of the dataset and the stability of the model. See Cawley and Talbot [1]_ for an analysis of these issues. To avoid this problem, nested CV effectively uses a series of train/validation/test set splits. In the inner loop (here executed by :class:`GridSearchCV <sklearn.model_selection.GridSearchCV>`), the score is approximately maximized by fitting a model to each training set, and then directly maximized in selecting (hyper)parameters over the validation set. In the outer loop (here in :func:`cross_val_score <sklearn.model_selection.cross_val_score>`), generalization error is estimated by averaging test set scores over several dataset splits. The example below uses a support vector classifier with a non-linear kernel to build a model with optimized hyperparameters by grid search. We compare the performance of non-nested and nested CV strategies by taking the difference between their scores. .. topic:: See Also: - :ref:`cross_validation` - :ref:`grid_search` .. topic:: References: .. [1] `Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res 2010,11, 2079-2107. <http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf>`_ """ from sklearn.datasets import load_iris from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, cross_val_score, KFold import numpy as np print(__doc__) # Number of random trials NUM_TRIALS = 30 # Load the dataset iris = load_iris() X_iris = iris.data y_iris = iris.target # Set up possible values of parameters to optimize over p_grid = {"C": [1, 10, 100], "gamma": [.01, .1]} # We will use a Support Vector Classifier with "rbf" kernel svm = SVC(kernel="rbf") # Arrays to store scores non_nested_scores = np.zeros(NUM_TRIALS) nested_scores = np.zeros(NUM_TRIALS) # Loop for each trial for i in range(NUM_TRIALS): # Choose cross-validation techniques for the inner and outer loops, # independently of the dataset. # E.g "GroupKFold", "LeaveOneOut", "LeaveOneGroupOut", etc. inner_cv = KFold(n_splits=4, shuffle=True, random_state=i) outer_cv = KFold(n_splits=4, shuffle=True, random_state=i) # Non_nested parameter search and scoring clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv) clf.fit(X_iris, y_iris) non_nested_scores[i] = clf.best_score_ # Nested CV with parameter optimization nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv) nested_scores[i] = nested_score.mean() score_difference = non_nested_scores - nested_scores print("Average difference of {0:6f} with std. dev. of {1:6f}." .format(score_difference.mean(), score_difference.std())) # Plot scores on each trial for nested and non-nested CV plt.figure() plt.subplot(211) non_nested_scores_line, = plt.plot(non_nested_scores, color='r') nested_line, = plt.plot(nested_scores, color='b') plt.ylabel("score", fontsize="14") plt.legend([non_nested_scores_line, nested_line], ["Non-Nested CV", "Nested CV"], bbox_to_anchor=(0, .4, .5, 0)) plt.title("Non-Nested and Nested Cross Validation on Iris Dataset", x=.5, y=1.1, fontsize="15") # Plot bar chart of the difference. plt.subplot(212) difference_plot = plt.bar(range(NUM_TRIALS), score_difference) plt.xlabel("Individual Trial #") plt.legend([difference_plot], ["Non-Nested CV - Nested CV Score"], bbox_to_anchor=(0, 1, .8, 0)) plt.ylabel("score difference", fontsize="14") plt.show()
py
b40dc99feb1fccb6c26efe0e7082c7b3b06660f3
# encoding: utf-8 from decimal import Decimal from datetime import datetime from psi.app import const from psi.app.models.data_security_mixin import DataSecurityMixin from psi.app.service import Info from psi.app.utils.format_util import format_decimal from sqlalchemy import Column, Integer, ForeignKey, Numeric, Text, DateTime, select, func from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import backref, relationship db = Info.get_db() class Shipping(db.Model, DataSecurityMixin): __tablename__ = 'shipping' id = Column(Integer, primary_key=True) date = Column(DateTime, nullable=False) remark = Column(Text) status_id = Column(Integer, ForeignKey('enum_values.id'), nullable=False) status = relationship('EnumValues', foreign_keys=[status_id]) type_id = Column(Integer, ForeignKey('enum_values.id'), nullable=False) type = relationship('EnumValues', foreign_keys=[type_id]) sales_order_id = Column(Integer, ForeignKey('sales_order.id'), nullable=False) sales_order = relationship('SalesOrder', backref=backref('so_shipping', uselist=False)) inventory_transaction_id = Column(Integer, ForeignKey('inventory_transaction.id'), nullable=True) inventory_transaction = relationship('InventoryTransaction', backref=backref('it_shipping', uselist=False, )) organization_id = db.Column(Integer, ForeignKey('organization.id')) organization = relationship('Organization', foreign_keys=[organization_id]) @staticmethod def status_filter(): from psi.app.models.enum_values import EnumValues return EnumValues.type_filter(const.SHIPPING_STATUS_KEY) @hybrid_property def total_amount(self): return format_decimal(Decimal(sum(line.total_amount for line in self.lines))) @total_amount.expression def total_amount(self): return (select([func.sum(ShippingLine.price * ShippingLine.quantity)]) .where(self.id == ShippingLine.shipping_id).label('total_amount')) @total_amount.setter def total_amount(self, value): pass @staticmethod def filter_by_so_id(so_id): return Info.get_db().session.query(Shipping).filter_by(sales_order_id=so_id).all() def __unicode__(self): return str(self.id) + ' - ' + str(self.total_amount) def create_or_update_inventory_transaction(self): from psi.app.models.inventory_transaction import InventoryTransactionLine, InventoryTransaction from psi.app.models.enum_values import EnumValues if self.type.code == const.DIRECT_SHIPPING_TYPE_KEY: it_type = EnumValues.get(const.SALES_OUT_INV_TRANS_TYPE_KEY) else: it_type = EnumValues.get(const.FRANCHISE_SALES_OUT_INV_TRANS_TYPE_KEY) it = self.inventory_transaction if it is None: it = InventoryTransaction() it.type = it_type self.inventory_transaction = it it.date = self.date it.organization = self.organization for line in self.lines: itl = line.inventory_transaction_line if itl is None: itl = InventoryTransactionLine() itl.quantity = -line.quantity itl.product = line.product itl.price = line.price itl.in_transit_quantity = 0 itl.inventory_transaction = it line.inventory_transaction_line = itl self.update_saleable_qty_in_purchase_inv_lines(line) Info.get_db().session.add(it) def update_saleable_qty_in_purchase_inv_lines(self, ship_line): from psi.app.models import InventoryTransactionLine, InventoryInOutLink avail_inv_trans = Info.get_db().session.query(InventoryTransactionLine) \ .filter(InventoryTransactionLine.saleable_quantity > 0, InventoryTransactionLine.product_id == ship_line.product.id) \ .order_by(InventoryTransactionLine.id).all() to_update_purchase_inventory_line, inventory_in_out_links = [],[] for recv_iv_trans in avail_inv_trans: remain_qty = ship_line.quantity if recv_iv_trans.saleable_quantity >= ship_line.quantity: recv_iv_trans.saleable_quantity = recv_iv_trans.saleable_quantity \ - ship_line.quantity remain_qty = 0 else: recv_iv_trans.saleable_quantity = 0 remain_qty = ship_line.quantity \ - recv_iv_trans.saleable_quantity link = InventoryInOutLink() link.date = datetime.now() link.product = ship_line.product link.in_price = recv_iv_trans.price link.in_date = recv_iv_trans.itl_receiving_line.receiving.date link.receiving_line_id = recv_iv_trans.itl_receiving_line.id link.out_price = ship_line.price link.out_date = ship_line.shipping.date link.out_quantity = ship_line.quantity link.shipping_line = ship_line link.organization = ship_line.shipping.organization to_update_purchase_inventory_line.append(recv_iv_trans) inventory_in_out_links.append(link) if remain_qty == 0: break for l in to_update_purchase_inventory_line: Info.get_db().session.add(l) for l in inventory_in_out_links: Info.get_db().session.add(l) class ShippingLine(db.Model): __tablename = 'shipping_line' id = Column(Integer, primary_key=True) quantity = Column(Numeric(precision=8, scale=2, decimal_return_scale=2), nullable=False) price = Column(Numeric(precision=8, scale=2, decimal_return_scale=2), nullable=False) product_id = Column(Integer, ForeignKey('product.id'), nullable=False) product = relationship('Product', backref=backref('shipping_lines')) shipping_id = Column(Integer, ForeignKey('shipping.id'), nullable=False) shipping = relationship('Shipping', backref=backref('lines', uselist=True, cascade='all, delete-orphan')) sales_order_line_id = Column(Integer, ForeignKey('sales_order_line.id'), nullable=False) sales_order_line = relationship('SalesOrderLine', backref=backref('sol_shipping_line', uselist=False, )) inventory_transaction_line_id = Column(Integer, ForeignKey('inventory_transaction_line.id'), nullable=True) inventory_transaction_line = relationship('InventoryTransactionLine', backref=backref('itl_shipping_line', uselist=False, )) def __repr__(self): return "{0:s}{1:f}个(价格{2:f}元)".format(self.product.name, self.quantity, self.price) @hybrid_property def total_amount(self): if self.quantity is None: q = 0 else: q = self.quantity return format_decimal(Decimal(self.price * q)) @total_amount.setter def total_amount(self, val): pass @total_amount.expression def total_amount(self): return select([self.price * self.quantity]).label('line_total_amount') @total_amount.setter def total_amount(self, value): pass
py
b40dca3594d9749c51e125faa208115b31d295d4
#/usr/bin/python from __future__ import print_function import argparse import torch import pickle import numpy as np import os import math import random import sys import matplotlib.pyplot as plt import data import scipy.io from torch import nn, optim from torch.nn import functional as F from etm import ETM from utils import nearest_neighbors, get_topic_coherence, get_topic_diversity parser = argparse.ArgumentParser(description='The Embedded Topic Model') ### data and file related arguments parser.add_argument('--dataset', type=str, default='20ng', help='name of corpus') parser.add_argument('--data_path', type=str, default='data/20ng', help='directory containing data') parser.add_argument('--emb_path', type=str, default='data/20ng_embeddings.txt', help='directory containing word embeddings') parser.add_argument('--save_path', type=str, default='./results', help='path to save results') parser.add_argument('--batch_size', type=int, default=1000, help='input batch size for training') ### model-related arguments parser.add_argument('--num_topics', type=int, default=50, help='number of topics') parser.add_argument('--rho_size', type=int, default=300, help='dimension of rho') parser.add_argument('--emb_size', type=int, default=300, help='dimension of embeddings') parser.add_argument('--t_hidden_size', type=int, default=800, help='dimension of hidden space of q(theta)') parser.add_argument('--theta_act', type=str, default='relu', help='tanh, softplus, relu, rrelu, leakyrelu, elu, selu, glu)') parser.add_argument('--train_embeddings', type=int, default=0, help='whether to fix rho or train it') ### optimization-related arguments parser.add_argument('--lr', type=float, default=0.005, help='learning rate') parser.add_argument('--lr_factor', type=float, default=4.0, help='divide learning rate by this...') parser.add_argument('--epochs', type=int, default=20, help='number of epochs to train...150 for 20ng 100 for others') parser.add_argument('--mode', type=str, default='train', help='train or eval model') parser.add_argument('--optimizer', type=str, default='adam', help='choice of optimizer') parser.add_argument('--seed', type=int, default=2019, help='random seed (default: 1)') parser.add_argument('--enc_drop', type=float, default=0.0, help='dropout rate on encoder') parser.add_argument('--clip', type=float, default=0.0, help='gradient clipping') parser.add_argument('--nonmono', type=int, default=10, help='number of bad hits allowed') parser.add_argument('--wdecay', type=float, default=1.2e-6, help='some l2 regularization') parser.add_argument('--anneal_lr', type=int, default=0, help='whether to anneal the learning rate or not') parser.add_argument('--bow_norm', type=int, default=1, help='normalize the bows or not') ### evaluation, visualization, and logging-related arguments parser.add_argument('--num_words', type=int, default=10, help='number of words for topic viz') parser.add_argument('--log_interval', type=int, default=2, help='when to log training') parser.add_argument('--visualize_every', type=int, default=10, help='when to visualize results') parser.add_argument('--eval_batch_size', type=int, default=1000, help='input batch size for evaluation') parser.add_argument('--load_from', type=str, default='', help='the name of the ckpt to eval from') parser.add_argument('--tc', type=int, default=0, help='whether to compute topic coherence or not') parser.add_argument('--td', type=int, default=0, help='whether to compute topic diversity or not') args = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print('\n') np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) ## get data # 1. vocabulary vocab, train, valid, test = data.get_data(os.path.join(args.data_path)) vocab_size = len(vocab) args.vocab_size = vocab_size # 1. training data train_tokens = train['tokens'] train_counts = train['counts'] args.num_docs_train = len(train_tokens) # 2. dev set valid_tokens = valid['tokens'] valid_counts = valid['counts'] args.num_docs_valid = len(valid_tokens) # 3. test data test_tokens = test['tokens'] test_counts = test['counts'] args.num_docs_test = len(test_tokens) test_1_tokens = test['tokens_1'] test_1_counts = test['counts_1'] args.num_docs_test_1 = len(test_1_tokens) test_2_tokens = test['tokens_2'] test_2_counts = test['counts_2'] args.num_docs_test_2 = len(test_2_tokens) emb_type = 'none' #bert embeddings = None if(emb_type=='w2v'): from gensim.models import Word2Vec model = Word2Vec.load("/content/word2vec/w2v_10eps_model.model") vectors=model.wv print('loaded') elif(emb_type=='bert'): from sentence_transformers import SentenceTransformer from sentence_transformers import models, losses import scipy.spatial import pickle as pkl word_embedding_model = models.BERT("/content/models") # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True,pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) import pandas as pd from tqdm import tqdm #if not args.train_embeddings: emb_path = args.emb_path embeddings = np.zeros((vocab_size, args.emb_size)) words_found = 0 errors=0 if(emb_type=='bert'): data_embs=[] batch=[] for i, word in enumerate(vocab): batch.append(word) if(i%500==0): print(i) embs=model.encode(batch,show_progress_bar=False) for e in embs: data_embs.append(e) batch=[] embs=model.encode(batch,show_progress_bar=False) for e in embs: data_embs.append(e) if(emb_type=='bert'): import numpy as np from sklearn.decomposition import PCA pca = PCA(n_components=300) data_embs=pca.fit_transform(data_embs) print(pca.explained_variance_ratio_.cumsum()) if(emb_type=='w2v' or emb_type=='bert'): for i, word in enumerate(vocab): try: if(emb_type=='w2v'): embeddings[i] = vectors[word] elif(emb_type=='bert'): embeddings[i] = data_embs[i] words_found += 1 except KeyError: errors+=1 embeddings[i] = np.random.normal(scale=0.6, size=(args.emb_size, )) embeddings = torch.from_numpy(embeddings).to(device) args.embeddings_dim = embeddings.size() vectors=[] model=[] print('errors: ',errors) print('words_found: ',words_found) print('=*'*100) print('Training an Embedded Topic Model on {} with the following settings: {}'.format(args.dataset.upper(), args)) print('=*'*100) ## define checkpoint if not os.path.exists(args.save_path): os.makedirs(args.save_path) if args.mode == 'eval': ckpt = args.load_from else: ckpt = os.path.join(args.save_path, 'etm_{}_K_{}_Htheta_{}_Optim_{}_Clip_{}_ThetaAct_{}_Lr_{}_Bsz_{}_RhoSize_{}_trainEmbeddings_{}'.format( args.dataset, args.num_topics, args.t_hidden_size, args.optimizer, args.clip, args.theta_act, args.lr, args.batch_size, args.rho_size, args.train_embeddings)) ## define model and optimizer model = ETM(args.num_topics, vocab_size, args.t_hidden_size, args.rho_size, args.emb_size, args.theta_act, embeddings, args.train_embeddings, args.enc_drop).to(device) print('model: {}'.format(model)) if args.optimizer == 'adam': optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay) elif args.optimizer == 'adagrad': optimizer = optim.Adagrad(model.parameters(), lr=args.lr, weight_decay=args.wdecay) elif args.optimizer == 'adadelta': optimizer = optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.wdecay) elif args.optimizer == 'rmsprop': optimizer = optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=args.wdecay) elif args.optimizer == 'asgd': optimizer = optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay) else: print('Defaulting to vanilla SGD') optimizer = optim.SGD(model.parameters(), lr=args.lr) def train(epoch): model.train() acc_loss = 0 acc_kl_theta_loss = 0 cnt = 0 indices = torch.randperm(args.num_docs_train) indices = torch.split(indices, args.batch_size) for idx, ind in enumerate(indices): optimizer.zero_grad() model.zero_grad() data_batch = data.get_batch(train_tokens, train_counts, ind, args.vocab_size, device) sums = data_batch.sum(1).unsqueeze(1) if args.bow_norm: normalized_data_batch = data_batch / sums else: normalized_data_batch = data_batch recon_loss, kld_theta = model(data_batch, normalized_data_batch) total_loss = recon_loss + kld_theta total_loss.backward() if args.clip > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() acc_loss += torch.sum(recon_loss).item() acc_kl_theta_loss += torch.sum(kld_theta).item() cnt += 1 if idx % args.log_interval == 0 and idx > 0: cur_loss = round(acc_loss / cnt, 2) cur_kl_theta = round(acc_kl_theta_loss / cnt, 2) cur_real_loss = round(cur_loss + cur_kl_theta, 2) print('Epoch: {} .. batch: {}/{} .. LR: {} .. KL_theta: {} .. Rec_loss: {} .. NELBO: {}'.format( epoch, idx, len(indices), optimizer.param_groups[0]['lr'], cur_kl_theta, cur_loss, cur_real_loss)) cur_loss = round(acc_loss / cnt, 2) cur_kl_theta = round(acc_kl_theta_loss / cnt, 2) cur_real_loss = round(cur_loss + cur_kl_theta, 2) print('*'*100) print('Epoch----->{} .. LR: {} .. KL_theta: {} .. Rec_loss: {} .. NELBO: {}'.format( epoch, optimizer.param_groups[0]['lr'], cur_kl_theta, cur_loss, cur_real_loss)) print('*'*100) def visualize(m, show_emb=True): if not os.path.exists('./results'): os.makedirs('./results') m.eval() #queries = ['andrew', 'computer', 'sports', 'religion', 'man', 'love', # 'intelligence', 'money', 'politics', 'health', 'people', 'family'] queries = ['plantar','evolucao','gene','diversidade'] ## visualize topics using monte carlo with torch.no_grad(): print('#'*100) print('Visualize topics...') topics_words = [] gammas = m.get_beta() for k in range(args.num_topics): gamma = gammas[k] top_words = list(gamma.cpu().numpy().argsort()[-args.num_words+1:][::-1]) topic_words = [vocab[a] for a in top_words] topics_words.append(' '.join(topic_words)) print('Topic {}: {}'.format(k, topic_words)) if show_emb: ## visualize word embeddings by using V to get nearest neighbors print('#'*100) print('Visualize word embeddings by using output embedding matrix') try: embeddings = m.rho.weight # Vocab_size x E except: embeddings = m.rho # Vocab_size x E neighbors = [] for word in queries: print('word: {} .. neighbors: {}'.format( word, nearest_neighbors(word, embeddings, vocab))) print('#'*100) def evaluate(m, source, tc=False, td=False): """Compute perplexity on document completion. """ m.eval() with torch.no_grad(): if source == 'val': indices = torch.split(torch.tensor(range(args.num_docs_valid)), args.eval_batch_size) tokens = valid_tokens counts = valid_counts else: indices = torch.split(torch.tensor(range(args.num_docs_test)), args.eval_batch_size) tokens = test_tokens counts = test_counts ## get \beta here beta = m.get_beta() ### do dc and tc here acc_loss = 0 cnt = 0 indices_1 = torch.split(torch.tensor(range(args.num_docs_test_1)), args.eval_batch_size) for idx, ind in enumerate(indices_1): ## get theta from first half of docs data_batch_1 = data.get_batch(test_1_tokens, test_1_counts, ind, args.vocab_size, device) sums_1 = data_batch_1.sum(1).unsqueeze(1) if args.bow_norm: normalized_data_batch_1 = data_batch_1 / sums_1 else: normalized_data_batch_1 = data_batch_1 theta, _ = m.get_theta(normalized_data_batch_1) ## get prediction loss using second half data_batch_2 = data.get_batch(test_2_tokens, test_2_counts, ind, args.vocab_size, device) sums_2 = data_batch_2.sum(1).unsqueeze(1) res = torch.mm(theta, beta) preds = torch.log(res) recon_loss = -(preds * data_batch_2).sum(1) loss = recon_loss / sums_2.squeeze() loss = loss.mean().item() acc_loss += loss cnt += 1 cur_loss = acc_loss / cnt ppl_dc = round(math.exp(cur_loss), 1) print('*'*100) print('{} Doc Completion PPL: {}'.format(source.upper(), ppl_dc)) print('*'*100) if tc or td: beta = beta.data.cpu().numpy() if tc: print('Computing topic coherence...') get_topic_coherence(beta, train_tokens, vocab) if td: print('Computing topic diversity...') get_topic_diversity(beta, 25) return ppl_dc if args.mode == 'train': ## train model on data best_epoch = 0 best_val_ppl = 1e9 all_val_ppls = [] print('\n') print('Visualizing model quality before training...') visualize(model) print('\n') for epoch in range(1, args.epochs): train(epoch) val_ppl = evaluate(model, 'val') if val_ppl < best_val_ppl: with open(ckpt, 'wb') as f: torch.save(model, f) best_epoch = epoch best_val_ppl = val_ppl else: ## check whether to anneal lr lr = optimizer.param_groups[0]['lr'] if args.anneal_lr and (len(all_val_ppls) > args.nonmono and val_ppl > min(all_val_ppls[:-args.nonmono]) and lr > 1e-5): optimizer.param_groups[0]['lr'] /= args.lr_factor if epoch % args.visualize_every == 0: visualize(model) all_val_ppls.append(val_ppl) with open(ckpt, 'rb') as f: model = torch.load(f) model = model.to(device) val_ppl = evaluate(model, 'val') else: with open(ckpt, 'rb') as f: model = torch.load(f) model = model.to(device) model.eval() with torch.no_grad(): ## get document completion perplexities test_ppl = evaluate(model, 'test', tc=args.tc, td=args.td) ## get most used topics indices = torch.tensor(range(args.num_docs_train)) indices = torch.split(indices, args.batch_size) thetaAvg = torch.zeros(1, args.num_topics).to(device) thetaWeightedAvg = torch.zeros(1, args.num_topics).to(device) cnt = 0 for idx, ind in enumerate(indices): data_batch = data.get_batch(train_tokens, train_counts, ind, args.vocab_size, device) sums = data_batch.sum(1).unsqueeze(1) cnt += sums.sum(0).squeeze().cpu().numpy() if args.bow_norm: normalized_data_batch = data_batch / sums else: normalized_data_batch = data_batch theta, _ = model.get_theta(normalized_data_batch) thetaAvg += theta.sum(0).unsqueeze(0) / args.num_docs_train weighed_theta = sums * theta thetaWeightedAvg += weighed_theta.sum(0).unsqueeze(0) if idx % 100 == 0 and idx > 0: print('batch: {}/{}'.format(idx, len(indices))) thetaWeightedAvg = thetaWeightedAvg.squeeze().cpu().numpy() / cnt print('\nThe 10 most used topics are {}'.format(thetaWeightedAvg.argsort()[::-1][:10])) ## show topics beta = model.get_beta() topic_indices = list(np.random.choice(args.num_topics, 10)) # 10 random topics print('\n') for k in range(args.num_topics):#topic_indices: gamma = beta[k] top_words = list(gamma.cpu().numpy().argsort()[-args.num_words+1:][::-1]) topic_words = [vocab[a] for a in top_words] print('Topic {}: {}'.format(k, topic_words)) if args.train_embeddings: ## show etm embeddings try: rho_etm = model.rho.weight.cpu() except: rho_etm = model.rho.cpu() queries = ['andrew', 'woman', 'computer', 'sports', 'religion', 'man', 'love', 'intelligence', 'money', 'politics', 'health', 'people', 'family'] print('\n') print('ETM embeddings...') for word in queries: print('word: {} .. etm neighbors: {}'.format(word, nearest_neighbors(word, rho_etm, vocab))) print('\n')
py
b40dca7bc4bca9f4797cc9d60ee9a070e20506e7
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.rpc import status_pb2 # type: ignore __protobuf__ = proto.module( package="google.devtools.artifactregistry.v1beta2", manifest={ "YumArtifact", "ImportYumArtifactsGcsSource", "ImportYumArtifactsRequest", "ImportYumArtifactsErrorInfo", "ImportYumArtifactsResponse", "ImportYumArtifactsMetadata", }, ) class YumArtifact(proto.Message): r"""A detailed representation of a Yum artifact. Attributes: name (str): Output only. The Artifact Registry resource name of the artifact. package_name (str): Output only. The yum package name of the artifact. package_type (google.cloud.artifactregistry_v1beta2.types.YumArtifact.PackageType): Output only. An artifact is a binary or source package. architecture (str): Output only. Operating system architecture of the artifact. """ class PackageType(proto.Enum): r"""Package type is either binary or source.""" PACKAGE_TYPE_UNSPECIFIED = 0 BINARY = 1 SOURCE = 2 name = proto.Field(proto.STRING, number=1,) package_name = proto.Field(proto.STRING, number=2,) package_type = proto.Field(proto.ENUM, number=3, enum=PackageType,) architecture = proto.Field(proto.STRING, number=4,) class ImportYumArtifactsGcsSource(proto.Message): r"""Google Cloud Storage location where the artifacts currently reside. Attributes: uris (Sequence[str]): Cloud Storage paths URI (e.g., gs://my_bucket//my_object). use_wildcards (bool): Supports URI wildcards for matching multiple objects from a single URI. """ uris = proto.RepeatedField(proto.STRING, number=1,) use_wildcards = proto.Field(proto.BOOL, number=2,) class ImportYumArtifactsRequest(proto.Message): r"""The request to import new yum artifacts. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: gcs_source (google.cloud.artifactregistry_v1beta2.types.ImportYumArtifactsGcsSource): Google Cloud Storage location where input content is located. This field is a member of `oneof`_ ``source``. parent (str): The name of the parent resource where the artifacts will be imported. """ gcs_source = proto.Field( proto.MESSAGE, number=2, oneof="source", message="ImportYumArtifactsGcsSource", ) parent = proto.Field(proto.STRING, number=1,) class ImportYumArtifactsErrorInfo(proto.Message): r"""Error information explaining why a package was not imported. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: gcs_source (google.cloud.artifactregistry_v1beta2.types.ImportYumArtifactsGcsSource): Google Cloud Storage location requested. This field is a member of `oneof`_ ``source``. error (google.rpc.status_pb2.Status): The detailed error status. """ gcs_source = proto.Field( proto.MESSAGE, number=1, oneof="source", message="ImportYumArtifactsGcsSource", ) error = proto.Field(proto.MESSAGE, number=2, message=status_pb2.Status,) class ImportYumArtifactsResponse(proto.Message): r"""The response message from importing YUM artifacts. Attributes: yum_artifacts (Sequence[google.cloud.artifactregistry_v1beta2.types.YumArtifact]): The yum artifacts imported. errors (Sequence[google.cloud.artifactregistry_v1beta2.types.ImportYumArtifactsErrorInfo]): Detailed error info for artifacts that were not imported. """ yum_artifacts = proto.RepeatedField(proto.MESSAGE, number=1, message="YumArtifact",) errors = proto.RepeatedField( proto.MESSAGE, number=2, message="ImportYumArtifactsErrorInfo", ) class ImportYumArtifactsMetadata(proto.Message): r"""The operation metadata for importing artifacts. """ __all__ = tuple(sorted(__protobuf__.manifest))
py
b40dcbf28ad93c35b0db9422ebf38d664ff2e60d
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickfont(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "scatter3d.line.colorbar" _path_str = "scatter3d.line.colorbar.tickfont" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.new_plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Tickfont object Sets the color bar's tick label font Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`new_plotly.graph_objs.scatter3d.line .colorbar.Tickfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Tickfont """ super(Tickfont, self).__init__("tickfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the new_plotly.graph_objs.scatter3d.line.colorbar.Tickfont constructor must be a dict or an instance of :class:`new_plotly.graph_objs.scatter3d.line.colorbar.Tickfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
py
b40dcdfc1a994ae2ecb28b2041f8540b7059d402
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members """ Buildbot metrics module Keeps track of counts and timings of various internal buildbot activities. Basic architecture: MetricEvent.log(...) || \/ MetricLogObserver || \/ MetricHandler || \/ MetricWatcher """ from collections import deque from twisted.python import log from twisted.internet.task import LoopingCall from twisted.internet import reactor from twisted.application import service from buildbot import util from buildbot.util.bbcollections import defaultdict import gc, os, sys # Make use of the resource module if we can try: import resource assert resource except ImportError: resource = None class MetricEvent(object): @classmethod def log(cls, *args, **kwargs): log.msg(metric=cls(*args, **kwargs)) class MetricCountEvent(MetricEvent): def __init__(self, counter, count=1, absolute=False): self.counter = counter self.count = count self.absolute = absolute class MetricTimeEvent(MetricEvent): def __init__(self, timer, elapsed): self.timer = timer self.elapsed = elapsed ALARM_OK, ALARM_WARN, ALARM_CRIT = range(3) ALARM_TEXT = ["OK", "WARN", "CRIT"] class MetricAlarmEvent(MetricEvent): def __init__(self, alarm, msg=None, level=ALARM_OK): self.alarm = alarm self.level = level self.msg = msg def countMethod(counter): def decorator(func): def wrapper(*args, **kwargs): MetricCountEvent.log(counter=counter) return func(*args, **kwargs) return wrapper return decorator class Timer(object): # For testing _reactor = None def __init__(self, name): self.name = name self.started = None def startTimer(self, func): def wrapper(*args, **kwargs): self.start() return func(*args, **kwargs) return wrapper def stopTimer(self, func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) finally: self.stop() return wrapper def start(self): self.started = util.now(self._reactor) def stop(self): if self.started is not None: elapsed = util.now(self._reactor) - self.started MetricTimeEvent.log(timer=self.name, elapsed=elapsed) self.started = None def timeMethod(name, _reactor=None): def decorator(func): t = Timer(name) t._reactor=_reactor def wrapper(*args, **kwargs): t.start() try: return func(*args, **kwargs) finally: t.stop() return wrapper return decorator class FiniteList(deque): def __init__(self, maxlen=10): self._maxlen = maxlen deque.__init__(self) def append(self, o): deque.append(self, o) if len(self) > self._maxlen: self.popleft() class AveragingFiniteList(FiniteList): def __init__(self, maxlen=10): FiniteList.__init__(self, maxlen) self.average = 0 def append(self, o): FiniteList.append(self, o) self._calc() def _calc(self): if len(self) == 0: self.average = 0 else: self.average = float(sum(self)) / len(self) return self.average class MetricHandler(object): def __init__(self, metrics): self.metrics = metrics self.watchers = [] self.reset() def addWatcher(self, watcher): self.watchers.append(watcher) def removeWatcher(self, watcher): self.watchers.remove(watcher) # For subclasses to define def reset(self): raise NotImplementedError def handle(self, eventDict, metric): raise NotImplementedError def get(self, metric): raise NotImplementedError def keys(self): raise NotImplementedError def report(self): raise NotImplementedError def asDict(self): raise NotImplementedError class MetricCountHandler(MetricHandler): _counters = None def reset(self): self._counters = defaultdict(int) def handle(self, eventDict, metric): if metric.absolute: self._counters[metric.counter] = metric.count else: self._counters[metric.counter] += metric.count def keys(self): return self._counters.keys() def get(self, counter): return self._counters[counter] def report(self): retval = [] for counter in sorted(self.keys()): retval.append("Counter %s: %i" % (counter, self.get(counter))) return "\n".join(retval) def asDict(self): retval = {} for counter in sorted(self.keys()): retval[counter] = self.get(counter) return dict(counters=retval) class MetricTimeHandler(MetricHandler): _timers = None def reset(self): self._timers = defaultdict(AveragingFiniteList) def handle(self, eventDict, metric): self._timers[metric.timer].append(metric.elapsed) def keys(self): return self._timers.keys() def get(self, timer): return self._timers[timer].average def report(self): retval = [] for timer in sorted(self.keys()): retval.append("Timer %s: %.3g" % (timer, self.get(timer))) return "\n".join(retval) def asDict(self): retval = {} for timer in sorted(self.keys()): retval[timer] = self.get(timer) return dict(timers=retval) class MetricAlarmHandler(MetricHandler): _alarms = None def reset(self): self._alarms = defaultdict(lambda x: ALARM_OK) def handle(self, eventDict, metric): self._alarms[metric.alarm] = (metric.level, metric.msg) def report(self): retval = [] for alarm, (level, msg) in sorted(self._alarms.items()): if msg: retval.append("%s %s: %s" % (ALARM_TEXT[level], alarm, msg)) else: retval.append("%s %s" % (ALARM_TEXT[level], alarm)) return "\n".join(retval) def asDict(self): retval = {} for alarm, (level, msg) in sorted(self._alarms.items()): retval[alarm] = (ALARM_TEXT[level], msg) return dict(alarms=retval) class PollerWatcher(object): def __init__(self, metrics): self.metrics = metrics def run(self): # Check if 'BuildMaster.pollDatabaseChanges()' and # 'BuildMaster.pollDatabaseBuildRequests()' are running fast enough h = self.metrics.getHandler(MetricTimeEvent) if not h: log.msg("Couldn't get MetricTimeEvent handler") MetricAlarmEvent.log('PollerWatcher', msg="Coudln't get MetricTimeEvent handler", level=ALARM_WARN) return for method in ('BuildMaster.pollDatabaseChanges()', 'BuildMaster.pollDatabaseBuildRequests()'): t = h.get(method) db_poll_interval = self.metrics.parent.db_poll_interval if t < 0.8 * db_poll_interval: level = ALARM_OK elif t < db_poll_interval: level = ALARM_WARN else: level = ALARM_CRIT MetricAlarmEvent.log(method, level=level) class AttachedSlavesWatcher(object): def __init__(self, metrics): self.metrics = metrics def run(self): # Check if 'BotMaster.attached_slaves' equals # 'AbstractBuildSlave.attached_slaves' h = self.metrics.getHandler(MetricCountEvent) if not h: log.msg("Couldn't get MetricCountEvent handler") MetricAlarmEvent.log('AttachedSlavesWatcher', msg="Coudln't get MetricCountEvent handler", level=ALARM_WARN) return botmaster_count = h.get('BotMaster.attached_slaves') buildslave_count = h.get('AbstractBuildSlave.attached_slaves') # We let these be off by one since they're counted at slightly # different times if abs(botmaster_count - buildslave_count) > 1: level = ALARM_WARN else: level = ALARM_OK MetricAlarmEvent.log('attached_slaves', msg='%s %s' % (botmaster_count, buildslave_count), level=level) def _get_rss(): if sys.platform == 'linux2': try: return int(open("/proc/%i/statm" % os.getpid()).read().split()[1]) except: return 0 return 0 def periodicCheck(_reactor=reactor): # Measure how much garbage we have garbage_count = len(gc.garbage) MetricCountEvent.log('gc.garbage', garbage_count, absolute=True) if garbage_count == 0: level = ALARM_OK else: level = ALARM_WARN MetricAlarmEvent.log('gc.garbage', level=level) if resource: r = resource.getrusage(resource.RUSAGE_SELF) attrs = ['ru_utime', 'ru_stime', 'ru_maxrss', 'ru_ixrss', 'ru_idrss', 'ru_isrss', 'ru_minflt', 'ru_majflt', 'ru_nswap', 'ru_inblock', 'ru_oublock', 'ru_msgsnd', 'ru_msgrcv', 'ru_nsignals', 'ru_nvcsw', 'ru_nivcsw'] for i,a in enumerate(attrs): # Linux versions prior to 2.6.32 didn't report this value, but we # can calculate it from /proc/<pid>/statm v = r[i] if a == 'ru_maxrss' and v == 0: v = _get_rss() * resource.getpagesize() / 1024 MetricCountEvent.log('resource.%s' % a, v, absolute=True) MetricCountEvent.log('resource.pagesize', resource.getpagesize(), absolute=True) # Measure the reactor delay then = util.now(_reactor) dt = 0.1 def cb(): now = util.now(_reactor) delay = (now - then) - dt MetricTimeEvent.log("reactorDelay", delay) _reactor.callLater(dt, cb) class MetricLogObserver(service.MultiService): _reactor = reactor def __init__(self, config): service.MultiService.__init__(self) self.config = config self.periodic_task = None self.log_task = None # Mapping of metric type to handlers for that type self.handlers = {} # Register our default handlers self.registerHandler(MetricCountEvent, MetricCountHandler(self)) self.registerHandler(MetricTimeEvent, MetricTimeHandler(self)) self.registerHandler(MetricAlarmEvent, MetricAlarmHandler(self)) # Make sure our changes poller is behaving self.getHandler(MetricTimeEvent).addWatcher(PollerWatcher(self)) self.getHandler(MetricCountEvent).addWatcher( AttachedSlavesWatcher(self)) def reloadConfig(self, config): self.config = config log_interval = self.config.get('log_interval', 60) if self.log_task: self.log_task.stop() if log_interval: # Start up periodic logging self.log_task = LoopingCall(self.report) self.log_task.clock = self._reactor self.log_task.start(log_interval) else: self.log_task = None periodic_interval = self.config.get('periodic_interval', 10) if self.periodic_task: self.periodic_task.stop() if periodic_interval: self.periodic_task = LoopingCall(periodicCheck, self._reactor) self.periodic_task.clock = self._reactor self.periodic_task.start(periodic_interval) else: self.periodic_task = None def startService(self): log.msg("Starting %s" % self) service.MultiService.startService(self) log.addObserver(self.emit) self.reloadConfig(self.config) def stopService(self): log.msg("Stopping %s" % self) service.MultiService.stopService(self) if self.periodic_task: self.periodic_task.stop() self.periodic_task = None if self.log_task: self.log_task.stop() self.log_task = None log.removeObserver(self.emit) def registerHandler(self, interface, handler): old = self.getHandler(interface) self.handlers[interface] = handler return old def getHandler(self, interface): return self.handlers.get(interface) def emit(self, eventDict): # Ignore non-statistic events metric = eventDict.get('metric') if not metric or not isinstance(metric, MetricEvent): return if metric.__class__ not in self.handlers: return h = self.handlers[metric.__class__] h.handle(eventDict, metric) for w in h.watchers: w.run() def asDict(self): retval = {} for interface, handler in self.handlers.iteritems(): retval.update(handler.asDict()) return retval def report(self): try: for interface, handler in self.handlers.iteritems(): report = handler.report() if not report: continue for line in report.split("\n"): log.msg(line) except: log.err()
py
b40dce2dcc91d8abf04e9f96e2ffa8f3f0b77188
import pytest import copy class Compare(object): def __init__(self): self._diff = {} def diff(self, d1, d2): self._recursive_compare(d1, d2) return self._diff def _recursive_compare(self, d1, d2, level='root'): if isinstance(d1, dict) and isinstance(d2, dict): if d1.keys() != d2.keys(): s1 = set(d1.keys()) s2 = set(d2.keys()) print('{:<20} + {} - {}'.format(level, s1-s2, s2-s1)) common_keys = s1 & s2 else: common_keys = set(d1.keys()) for k in common_keys: self._recursive_compare(d1[k], d2[k], level='{}.{}'.format(level, k)) elif isinstance(d1, list) and isinstance(d2, list): if len(d1) != len(d2): print('{:<20} len1={}; len2={}'.format(level, len(d1), len(d2))) common_len = min(len(d1), len(d2)) for i in range(common_len): self._recursive_compare(d1[i], d2[i], level='{}[{}]'.format(level, i)) else: if d1 != d2: diff = '{:<20} {} != {}'.format(level, d1, d2) self._nested_set(level.split('.')[1:], d2) def _nested_set(self, keys, value): d = self._diff for key in keys[:-1]: if key in d: d = d[key] else: d = d.setdefault(key, {}) d[keys[-1]] = value @pytest.mark.ConfigTest def test_recursive_compare(): first = { 'a': 1, 'b': 'one', 'c': { 'd': 2, 'e': 'two' } } second = copy.deepcopy(first) second['b'] = 'three' second['c']['d'] = 3 diff = Compare().diff(first, second) assert(len(diff.keys()) == 2) assert(len(diff['c'].keys()) == 1) assert(diff['b'] == 'three') assert(diff['c']['d'] == 3) @pytest.mark.skip(reason='IndexError: list index out of range') def test_obj_compare(): a = lambda: None a.name = 'asdf' b = lambda: None b.name = 'asdf' a.c = lambda: None b.c = lambda: None a.c.name ='asdf' b.c.name = 'ddd' diff = Compare().diff(a, b) assert(len(diff.keys)) if __name__ == '__main__': pytest.main(['-s', __file__])
py
b40dcf7d124749deb07597cb4f2869a0094703e0
import setuptools with open("README.rst", "r", encoding='utf-8') as fh: long_description = fh.read() setuptools.setup( name="arclet-alconna", version="1.0.0", author="ArcletProject", author_email="[email protected]", description="A Fast Command Analyser based on Dict", license='MIT', long_description=long_description, long_description_content_type="text/rst", url="https://github.com/ArcletProject/Alconna", package_dir={"": "src"}, packages=setuptools.find_namespace_packages(where="src"), install_requires=['typing_extensions'], extras_require={ 'graia': [ 'arclet-alconna-graia', ], 'cli': [ 'arclet-alconna-cli' ], }, classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Operating System :: OS Independent", ], include_package_data=True, keywords=['command', 'argparse', 'fast', 'alconna', 'cli', 'parsing', 'optparse', 'command-line', 'parser'], python_requires='>=3.8', project_urls={ 'Documentation': 'https://arcletproject.github.io/docs/alconna/tutorial', 'Bug Reports': 'https://github.com/ArcletProject/Alconna/issues', 'Source': 'https://github.com/ArcletProject/Alconna', }, )
py
b40dcfcfdcc224134c751a62befffe7a8cd119e4
from django.urls import include, path from rest_framework.routers import DefaultRouter from profiles_api import views router = DefaultRouter() router.register("hello-viewset", views.HelloViewSet, basename="hello-viewset") router.register("profile", views.UserProfileViewSet) router.register("feed", views.ProfileFeedItemViewSet) urlpatterns = [ path("hello-view/", views.HelloApiView.as_view()), path("login/", views.UserLoginApiView.as_view()), path("", include(router.urls)), ]
py
b40dd052e87945fdd546e83e934f2487387d74ed
import cs_grading as CS import os text_editor = 'subl' #Options for p5 run_p5_test = 1 # Change to 0 to turn off these tests . p5_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p5_source_files = '../barry.cpp' # The name and location of the student's solution file relative to this script. p5_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p5_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p6 run_p6_test = 1 # Change to 0 to turn off these tests . p6_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p6_source_files = '../hw1q6.cpp' # The name and location of the student's solution file relative to this script. p6_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p6_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p7 run_p7_test = 1 # Change to 0 to turn off these tests . p7_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p7_source_files = '../game_of_pointers.cpp' # The name and location of the student's solution file relative to this script. p7_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p7_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. ### p5 run tests if run_p5_test: p5_result_file = 'p5_result.txt' p5_valgrind_file = 'p5_valgrind.txt' p5_target = 'barry' if CS.check_file_existence(p5_result_file): CS.remove_file(p5_result_file) if CS.check_file_existence(p5_valgrind_file): CS.remove_file(p5_valgrind_file) CS.compile_student_code(0, source_files=p5_source_files, target=p5_target, flags='-g -Wall -std=c++11') CS.mkdir('q5_student_output') f = open('q5_input/input.txt', 'r') correct_test = 0 for i in xrange(1,11): string = f.readline().strip() output_file = 'q5_student_output/output' + str(i) + '.out' expected_output_file = 'q5_output/output' + str(i) + '.txt' CS.run_executable('./', p5_target, string + ' > ' + output_file, use_valgrind=p5_use_valgrind, valgrind_log_filename=p5_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p5_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p5_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p5_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p5_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p5_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p5_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p5_open_results: CS.open_file(p5_result_file, text_editor) if p5_use_valgrind: CS.open_file(p5_valgrind_file, text_editor) # Clean up if p5_remove_files: CS.remove_file(p5_target) os.system('rm -r q5_student_output') ### p6 run tests if run_p6_test: p6_result_file = 'p6_result.txt' p6_valgrind_file = 'p6_valgrind.txt' p6_target = 'hw1q6' if CS.check_file_existence(p6_result_file): CS.remove_file(p6_result_file) if CS.check_file_existence(p6_valgrind_file): CS.remove_file(p6_valgrind_file) CS.compile_student_code(0, source_files=p6_source_files, target=p6_target, flags='-g -Wall -std=c++11') CS.mkdir('q6_student_output') correct_test = 0 for i in xrange(1,11): string = 'q6_input/input' + str(i) + '.txt' output_file = 'q6_student_output/output' + str(i) + '.out' expected_output_file = 'q6_output/output' + str(i) + '.txt' CS.run_executable('./', p6_target, string + ' > ' + output_file, use_valgrind=p6_use_valgrind, valgrind_log_filename=p6_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p6_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p6_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p6_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p6_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p6_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p6_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p6_open_results: CS.open_file(p6_result_file, text_editor) if p6_use_valgrind: CS.open_file(p6_valgrind_file, text_editor) # Clean up if p6_remove_files: CS.remove_file(p6_target) os.system('rm -r q6_student_output') if run_p7_test: p7_result_file = 'got_result.txt' p7_valgrind_file = 'got_valgrind.txt' p7_target = 'game_of_pointers' p7_test_count = 16 if CS.check_file_existence(p7_result_file): CS.remove_file(p7_result_file) if CS.check_file_existence(p7_valgrind_file): CS.remove_file(p7_valgrind_file) CS.compile_student_code(0, source_files=p7_source_files, target=p7_target, flags='-g -Wall -std=c++11') CS.mkdir('q7_student_output') correct_test = 0 for i in xrange(1,p7_test_count + 1): parameters = 'q7_input/input' + str(i) + '.txt' parameters += ' q7_student_output/output' + str(i) +'.txt' output_file = 'q7_student_output/output' + str(i) +'.txt' expected_output_file = 'q7_input/solution' + str(i) + '.txt' CS.run_executable('./', p7_target, parameters, use_valgrind=p7_use_valgrind, valgrind_log_filename=p7_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p7_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p7_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p7_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p7_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == p7_test_count: CS.write_message(p7_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p7_result_file, 'Failed ' + str(p7_test_count - correct_test) + ' tests!') if p6_open_results: CS.open_file(p7_result_file, text_editor) if p6_use_valgrind: CS.open_file(p7_valgrind_file, text_editor) # Clean up if p7_remove_files: CS.remove_file(p7_target) os.system('rm -r q7_student_output')
py
b40dd060ed8aa052fe5924acd8efd36f18307830
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Generic sentence handling tools: hopefully reusable. """ from typing import Set class _BaseSentence: """ A base sentence class for a particular protocol. Using this base class, specific sentence classes can almost automatically be created for a particular protocol. To do this, fill the ALLOWED_ATTRIBUTES class attribute using the C{getSentenceAttributes} class method of the producer:: class FooSentence(BaseSentence): \"\"\" A sentence for integalactic transmodulator sentences. @ivar transmogrificationConstant: The value used in the transmogrifier while producing this sentence, corrected for gravitational fields. @type transmogrificationConstant: C{Tummy} \"\"\" ALLOWED_ATTRIBUTES = FooProtocol.getSentenceAttributes() @ivar presentAttributes: An iterable containing the names of the attributes that are present in this sentence. @type presentAttributes: iterable of C{str} @cvar ALLOWED_ATTRIBUTES: A set of attributes that are allowed in this sentence. @type ALLOWED_ATTRIBUTES: C{set} of C{str} """ ALLOWED_ATTRIBUTES: Set[str] = set() def __init__(self, sentenceData): """ Initializes a sentence with parsed sentence data. @param sentenceData: The parsed sentence data. @type sentenceData: C{dict} (C{str} -> C{str} or L{None}) """ self._sentenceData = sentenceData @property def presentAttributes(self): """ An iterable containing the names of the attributes that are present in this sentence. @return: The iterable of names of present attributes. @rtype: iterable of C{str} """ return iter(self._sentenceData) def __getattr__(self, name): """ Gets an attribute of this sentence. """ if name in self.ALLOWED_ATTRIBUTES: return self._sentenceData.get(name, None) else: className = self.__class__.__name__ msg = f"{className} sentences have no {name} attributes" raise AttributeError(msg) def __repr__(self) -> str: """ Returns a textual representation of this sentence. @return: A textual representation of this sentence. @rtype: C{str} """ items = self._sentenceData.items() data = [f"{k}: {v}" for k, v in sorted(items) if k != "type"] dataRepr = ", ".join(data) typeRepr = self._sentenceData.get("type") or "unknown type" className = self.__class__.__name__ return f"<{className} ({typeRepr}) {{{dataRepr}}}>" class _PositioningSentenceProducerMixin: """ A mixin for certain protocols that produce positioning sentences. This mixin helps protocols that store the layout of sentences that they consume in a C{_SENTENCE_CONTENTS} class variable provide all sentence attributes that can ever occur. It does this by providing a class method, C{getSentenceAttributes}, which iterates over all sentence types and collects the possible sentence attributes. """ @classmethod def getSentenceAttributes(cls): """ Returns a set of all attributes that might be found in the sentences produced by this protocol. This is basically a set of all the attributes of all the sentences that this protocol can produce. @return: The set of all possible sentence attribute names. @rtype: C{set} of C{str} """ attributes = {"type"} for attributeList in cls._SENTENCE_CONTENTS.values(): for attribute in attributeList: if attribute is None: continue attributes.add(attribute) return attributes
py
b40dd10087794fbba33d65ee26f35e616a7a37a4
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd import unittest from itertools import product from sdc.tests.indexes import ( TestEmptyIndex, TestPositionalIndex, TestRangeIndex, TestInt64Index, ) from sdc.tests.indexes.index_datagens import _generate_index_param_values, get_sample_index from sdc.datatypes.indexes import * class TestIndexes( TestEmptyIndex, TestPositionalIndex, TestRangeIndex, TestInt64Index ): """ This suite combines tests from all concrete index-type suites and also adds tests for common use-cases that need to be checked for all index-types. """ def assert_indexes_equal(self, index1, index2): # for SDC indexes that are represented with arrays (e.g. Uint64Index) supported_pandas_indexes = (pd.RangeIndex, pd.Int64Index, ) if (not isinstance(index1, supported_pandas_indexes) or not isinstance(index2, supported_pandas_indexes)): index1 = np.asarray(index1) index2 = np.asarray(index2) np.testing.assert_array_equal(index1, index2) else: pd.testing.assert_index_equal(index1, index2) @unittest.skip("TODO: support boxing/unboxing and parent ref for Python ranges in Numba") def test_indexes_unbox_data_id_check(self): def test_impl(index): return index sdc_func = self.jit(test_impl) n = 11 indexes_to_test = [ pd.RangeIndex(n, name='abc'), # only this one fails, other pass pd.Int64Index(np.arange(n), name='abc'), ] data_attr_names_map = { pd.RangeIndex: '_range', pd.Int64Index: '_data', } for index in indexes_to_test: with self.subTest(index_type=type(index)): result = sdc_func(index) result_ref = test_impl(index) data1, data2, data3 = map( lambda x: getattr(x, data_attr_names_map[type(x)]), [index, result, result_ref] ) self.assertIs(data1, data3) self.assertIs(data2, data3) @unittest.skip("Needs writable native struct type members in Numba") def test_indexes_named_set_name(self): def test_impl(index): index.name = 'def' return index sdc_func = self.jit(test_impl) n = 11 indexes_to_test = [ pd.RangeIndex(n, name='abc'), pd.Int64Index(np.arange(n), name='abc'), ] for index in indexes_to_test: with self.subTest(index_type=type(index)): index1 = index.copy(deep=True) index2 = index.copy(deep=True) result = sdc_func(index1) result_ref = test_impl(index2) pd.testing.assert_index_equal(result, result_ref) @unittest.skip("Needs writable native struct type members and single common type for name") def test_indexes_unnamed_set_name(self): def test_impl(index): index.name = 'def' return index sdc_func = self.jit(test_impl) n = 11 indexes_to_test = [ pd.RangeIndex(n), pd.Int64Index(np.arange(n)), ] for index in indexes_to_test: with self.subTest(index_type=type(index)): index1 = index.copy(deep=True) index2 = index.copy(deep=True) result = sdc_func(index1) result_ref = test_impl(index2) pd.testing.assert_index_equal(result, result_ref) @unittest.skip("Need support unboxing pandas indexes with parent ref") def test_indexes_operator_is_unbox(self): def test_impl(index1, index2): return index1 is index2 sdc_func = self.jit(test_impl) indexes_to_test = [ pd.RangeIndex(1, 21, 3), pd.Int64Index([1, 2, 3, 5, 6, 3, 4]), ] for index in indexes_to_test: # positive testcase with self.subTest(subtest="same indexes"): index1 = index.copy(deep=True) index2 = index1 result = sdc_func(index1, index2) result_ref = test_impl(index1, index2) self.assertEqual(result, result_ref) self.assertEqual(result, True) # negative testcase with self.subTest(subtest="not same indexes"): index1 = index.copy(deep=True) index2 = index.copy(deep=True) result = sdc_func(index1, index2) result_ref = test_impl(index1, index2) self.assertEqual(result, result_ref) self.assertEqual(result, False) def test_indexes_unbox_series_with_index(self): @self.jit def test_impl(S): # TO-DO: this actually includes calling 'index' attribute overload, should really be S._index, # but this requires separate type (e.g. PositionalIndexType) instead of types.none as default index return S.index n = 11 for index in _generate_index_param_values(n): expected_res = pd.RangeIndex(n) if index is None else index with self.subTest(series_index=index): S = pd.Series(np.ones(n), index=index) result = test_impl(S) self.assert_indexes_equal(result, expected_res) def test_indexes_create_series_with_index(self): @self.jit def test_impl(data, index): S = pd.Series(data=data, index=index) return S.index n = 11 series_data = np.ones(n) for index in _generate_index_param_values(n): expected_res = pd.RangeIndex(n) if index is None else index with self.subTest(series_index=index): result = test_impl(series_data, index) self.assert_indexes_equal(result, expected_res) def test_indexes_box_series_with_index(self): def test_impl(data, index): return pd.Series(data=data, index=index) sdc_func = self.jit(test_impl) n = 11 series_data = np.ones(n) for index in _generate_index_param_values(n): with self.subTest(series_index=index): result = sdc_func(series_data, index) result_ref = test_impl(series_data, index) pd.testing.assert_series_equal(result, result_ref) def test_indexes_get_series_index(self): def test_impl(S): return S.index sdc_func = self.jit(test_impl) n = 11 for index in _generate_index_param_values(n): with self.subTest(series_index=index): S = pd.Series(np.ones(n), index=index) result = sdc_func(S) result_ref = test_impl(S) self.assert_indexes_equal(result, result_ref) def test_indexes_unbox_df_with_index(self): @self.jit def test_impl(df): # TO-DO: this actually includes calling 'index' attribute overload, should really be df._index, # but this requires separate type (e.g. PositionalIndexType) instead of types.none as default index return df.index n = 11 for index in _generate_index_param_values(n): expected_res = pd.RangeIndex(n) if index is None else index with self.subTest(df_index=index): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}, index=index) result = test_impl(df) self.assert_indexes_equal(result, expected_res) def test_indexes_create_df_with_index(self): @self.jit def test_impl(A, B, index): df = pd.DataFrame({'A': A, 'B': B}, index=index) return df.index n = 11 A, B = np.ones(n), np.arange(n) for index in _generate_index_param_values(n): expected_res = pd.RangeIndex(n) if index is None else index with self.subTest(df_index=index): result = test_impl(A, B, index) self.assert_indexes_equal(result, expected_res) def test_indexes_box_df_with_index(self): def test_impl(A, B, index): return pd.DataFrame({'A': A, 'B': B}, index=index) sdc_func = self.jit(test_impl) n = 11 A, B = np.ones(n), np.arange(n, dtype=np.intp) for index in _generate_index_param_values(n): with self.subTest(df_index=index): result = sdc_func(A, B, index) result_ref = test_impl(A, B, index) pd.testing.assert_frame_equal(result, result_ref) def test_indexes_get_df_index(self): def test_impl(df): return df.index sdc_func = self.jit(test_impl) n = 11 for index in _generate_index_param_values(n): with self.subTest(df_index=index): df = pd.DataFrame({'A': np.ones(n)}, index=index) result = sdc_func(df) result_ref = test_impl(df) self.assert_indexes_equal(result, result_ref) def test_indexes_support_numpy_like_take_by(self): """ Verifies numpy_like.take can handle SDC index types as indices """ from sdc.functions import numpy_like def pyfunc(arr, index): return np.take(arr, index) @self.jit def sdc_func(arr, index): return numpy_like.take(arr, index) n, k = 1000, 200 np.random.seed(0) arr = np.arange(n) * 2 indexes_to_test = [ get_sample_index(k, PositionalIndexType), get_sample_index(k, RangeIndexType), get_sample_index(k, Int64IndexType), ] for index in indexes_to_test: with self.subTest(index=index): result = sdc_func(arr, index) result_ref = pyfunc(arr, index) np.testing.assert_array_equal(result, result_ref) def test_indexes_support_series_operator_add(self): def test_impl(data, index1, index2): S1 = pd.Series(data, index=index1) S2 = pd.Series(2 * data + 1, index=index2) return S1 + S2 sdc_func = self.jit(test_impl) n = 11 series_data = np.arange(n, dtype=np.float64) index_params_to_test = [ None, pd.RangeIndex(0, -n, -1), pd.Int64Index(np.arange(n) * 2), ] for index1, index2 in product(index_params_to_test, repeat=2): with self.subTest(index1=index1, index2=index2): result = sdc_func(series_data, index1, index2) result_ref = test_impl(series_data, index1, index2) pd.testing.assert_series_equal(result, result_ref, check_dtype=False) def test_indexes_support_series_operator_lt(self): def test_impl(data, index1, index2): S1 = pd.Series(data, index=index1) S2 = pd.Series(2 * data + 1, index=index2) return S1 < S2 sdc_func = self.jit(test_impl) n = 11 series_data = np.arange(n, dtype=np.float64) index_params_to_test = [ None, pd.RangeIndex(0, -n, -1), pd.Int64Index(np.arange(n) * 2), ] for index1 in index_params_to_test: index2 = index1 with self.subTest(index1=index1, index2=index2): result = sdc_func(series_data, index1, index2) result_ref = test_impl(series_data, index1, index2) pd.testing.assert_series_equal(result, result_ref, check_dtype=False) def test_indexes_support_series_reindexing(self): from sdc.datatypes.common_functions import sdc_reindex_series def pyfunc(data, index, name, by_index): S = pd.Series(data, index, name=name) return S.reindex(by_index) @self.jit def sdc_func(data, index, name, by_index): return sdc_reindex_series(data, index, name, by_index) n = 17 np.random.seed(0) mask = np.random.choice([True, False], n) name = 'asdf' range_index = pd.RangeIndex(n) int64_index = pd.Int64Index(np.random.choice(range_index.values, n, replace=False)) indexes_combinations = [ (range_index, range_index), (range_index, range_index[::-1]), (range_index[::-1], range_index), (range_index, int64_index), (int64_index, range_index), ] for index1, index2 in indexes_combinations: with self.subTest(index1=index1, index2=index2): result = sdc_func(mask, index1, name, index2) result_ref = pyfunc(mask, index1, name, index2) pd.testing.assert_series_equal(result, result_ref) if __name__ == "__main__": unittest.main()
py
b40dd11572c10690ca6a28b1bad5489fb41fb194
""" Copyright (C) 2008, 2009 - Luke Kenneth Casson Leighton <[email protected]> """ from pyjamas import DOM from pyjamas.ui import Event class ClickHandler(object): def __init__(self, preventDefault=False): self._clickListeners = [] self._doubleclickListeners = [] self._clickPreventDefault = preventDefault self.sinkEvents(Event.ONCLICK) self.sinkEvents(Event.ONDBLCLICK) def onClick(self, sender=None): pass def onDoubleClick(self, sender=None): pass def addDoubleClickListener(self, listener): self._doubleclickListeners.append(listener) def addClickListener(self, listener): stylename = self.getStyleName() if stylename: self.addStyleName("%s-clickable" % stylename.split()[0]) self._clickListeners.append(listener) def onBrowserEvent(self, event): """Listen to events raised by the browser and call the appropriate method of the listener (widget, ..) object. """ type = DOM.eventGetType(event) if type == "click": if self._clickPreventDefault: DOM.eventPreventDefault(event) for listener in self._clickListeners: if hasattr(listener, "onClick"): listener.onClick(self) else: listener(self) elif type == "dblclick": if self._clickPreventDefault: DOM.eventPreventDefault(event) for listener in self._doubleclickListeners: if hasattr(listener, "onDoubleClick"): listener.onDoubleClick(self) else: listener(self) def removeClickListener(self, listener): self._clickListeners.remove(listener) def removeDoubleClickListener(self, listener): self._doubleclickListeners.remove(listener) def clearClickListener(self): self._clickListeners[:] = [] def clearDoubleClickListener(self): self._doubleclickListeners.remove(listener)[:] = []
py
b40dd1e1f4d0a6d6b32be482c1d239b123be8d3d
import atnp.categorization as categorization import atnp.preprocessor as preprocessor import atnp.visualizer as visualizer import atnp.vectorizer as vectorizer import atnp.sentiment as sentiment import atnp.clusters as clusters import matplotlib.pyplot as plt import atnp.topics as topics import atnp.utils as utils import pandas as pd import imgkit import os from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score from atnp.corpus import TokenizedCorpusReader from contextlib import redirect_stdout from collections import Counter from joblib import dump, load from spacy import displacy class Analyser(): def __init__(self, path_corpus, path_pickle, path_docs, labels_title): self.path_docs = path_docs self.path_corpus = path_corpus self.path_pickle = path_pickle self.labels_title = labels_title self.__init_corpus__() def __init_corpus__(self): utils.create_if_not_exists(self.path_docs) self.corpus = TokenizedCorpusReader( self.path_corpus, header=['fileid', 'subject', 'journal']) self.sujects = self.corpus.categ.get_cats("subject") self.journals = self.corpus.categ.get_cats("journal") def __get_docs_path(self, path): path = os.path.join(self.path_docs, path) utils.create_if_not_exists(path) return path def __get_pickle_path(self, path): path = os.path.join(self.path_pickle, path) utils.create_if_not_exists(path) return path def summary(self): journal_count = [self.corpus.categ.get( fileid, "journal") for fileid in self.corpus.fileids()] subject_count = [self.corpus.categ.get( fileid, "subject") for fileid in self.corpus.fileids()] print(dict(Counter(journal_count))) print(dict(Counter(subject_count))) def wordcloud_subjects(self): base_path = self.__get_docs_path("wordcloud") for subject in self.sujects: print("Making wordcloud of %s" % subject) corpus = self.corpus.apply((preprocessor.word_segmentation, preprocessor.clean_tokens), categories=[subject]) wc = visualizer.word_cloud(corpus) wc.to_file(os.path.join(base_path, subject + ".png")) def get_tokens(self, mode): namefile = "%s.pickle" % mode path = self.__get_pickle_path(os.path.join("tokens")) total_path = os.path.join(path, namefile) if not os.path.exists(total_path): corpus = None if mode == "stem": corpus = self.corpus.apply((preprocessor.word_segmentation, preprocessor.clean_tokens, preprocessor.remove_acentuation, preprocessor.stemmer_doc)) elif mode == "not_stem": corpus = self.corpus.apply((preprocessor.word_segmentation, preprocessor.clean_tokens, preprocessor.remove_acentuation)) elif mode == "mwe": corpus = self.corpus.apply((preprocessor.tokenize_mwe, preprocessor.clean_tokens, preprocessor.remove_acentuation)) utils.save_pickle( path, namefile, [(list(doc), fileid) for doc, fileid in corpus]) return utils.get_pickle(total_path) def gen_head_vectors(self): base_path = self.__get_docs_path("corpusinfo") corpus = self.get_tokens("stem") docs, fileids = zip(*corpus) for name, vector_fun in [("tf-idf", vectorizer.generate_tf_idf), ("frequency", vectorizer.generate_count)]: print("Making head for %s" % name) vectors, vectorizer_model = vector_fun(docs) df = pd.DataFrame(vectors.toarray()) df.columns = vectorizer_model.get_feature_names() df.insert(0, 'Document', fileids) with open(os.path.join(base_path, "head-%s.txt" % name), "w") as file: file.write(str(df.head())) def reducers_with_tfidf(self): base_path = self.__get_docs_path("reducers") for mode in ["stem", "not_stem", "mwe"]: corpus = self.get_tokens(mode) self.__reducers_with_tfidf(corpus, os.path.join(base_path, mode)) def __reducers_with_tfidf(self, corpus, base_path): utils.create_if_not_exists(base_path) docs, fileids = zip(*corpus) vectors, _ = vectorizer.generate_tf_idf(docs) for label in ['subject', 'journal']: y = [self.corpus.categ.get(fileid, label) for fileid in fileids] for dimen in [2, 3]: base_sub_section_path = os.path.join(base_path, "%dd" % dimen) utils.create_if_not_exists(base_sub_section_path) for name, function in [ ('umap', visualizer.umap_word_visualize), ('t-sne', visualizer.t_sne_word_visualize), ('pca', visualizer.pca_word_visualizer)]: print("Saving %s %s %s" % (label, dimen, name)) fig, _ = function(vectors, y, dimen) fig.savefig(os.path.join(base_sub_section_path, "%s-%s.png" % (label, name))) plt.close(fig) del y del docs del fileids del vectors def word2vec_personalities(self): table = [] base_path = self.__get_docs_path( os.path.join("word2vec")) pickle_path = self.__get_pickle_path(os.path.join("word2vec")) for theme, persons in [ ('impeachment-dilma', ['dilma', 'lula', 'cunha', 'bolsonaro']), ('reforma-trabalhista', ['temer', 'maia', 'empresa', 'empregado']), ('afastamento-aecio', ['aecio', 'temer', 'jbs']), ('prisao-lula', ['lula', 'moro', ]), ('soltura-lula', ['lula', 'moro', 'stf', 'supremo']), ('reforma-previdencia', ['maia', 'guedes', "bolsonaro"])]: model_path_name = os.path.join( pickle_path, "%s-word2vec.model" % theme) model = None if not os.path.exists(model_path_name): print("Making model for %s" % theme) corpus = self.corpus.apply( (preprocessor.word_segmentation, preprocessor.clean_tokens, preprocessor.remove_acentuation), categories=[theme]) model = vectorizer.generate_word2vec( [list(doc) for doc, fileid in corpus]) else: print("Loading model %s" % theme) model = vectorizer.load_word2vec(model_path_name) df = pd.DataFrame(model.wv.vectors) df.insert(0, 'Token', pd.Series(model.wv.index_to_key).values) with open(os.path.join(base_path, "head-%s.txt" % theme), "w") as file: file.write(str(df.head())) x_vals, y_vals, labels = visualizer.reduce_dimensions_word2vec( model) fig, _ = visualizer.plot_word2vec_with_matplotlib( x_vals, y_vals, labels, "Word2Vec %s" % self.labels_title[theme]) fig.savefig(os.path.join(base_path, "word2vec-%s.png" % (theme))) plt.close(fig) if not os.path.exists(model_path_name): model.save(model_path_name) for person in persons: print("Making table of data %s to %s" % (theme, person)) x = [theme, person] for words in model.wv.most_similar(person): x.extend(list(words)) table.append(x) del model del corpus utils.save_csv(base_path, "personalities", table) def clusers_plot(self, type_model, function, tokens_type): base_path = self.__get_docs_path( os.path.join("clusters", type_model)) corpus = self.get_tokens("stem") docs, fileids = zip(*corpus) vectors, _ = vectorizer.generate_tf_idf(docs) models = [] number_clusters = [] elbow_values = [] silhouette_values = [] db_values = [] init_n_cluster = 2 silhouette_path = os.path.join(base_path, "silhouette") utils.create_if_not_exists(silhouette_path) for i in range(init_n_cluster, 15): number_clusters.append(i) kmeans = function(vectors, i) models.append(kmeans) silhouette_avg = silhouette_score( vectors.toarray(), kmeans.labels_) sample_silhouette_values = silhouette_samples( vectors.toarray(), kmeans.labels_) db = davies_bouldin_score(vectors.toarray(), kmeans.labels_) elbow_values.append(kmeans.inertia_) silhouette_values.append(silhouette_avg) db_values.append(db) fig_silhouette, _ = visualizer.silhouette_cluster_plot( vectors, kmeans.labels_, kmeans.cluster_centers_, i, silhouette_avg, sample_silhouette_values) fig_silhouette.savefig(os.path.join( silhouette_path, "%d_clusters.png" % i)) plt.close(fig_silhouette) print("Saving silhouette of cluster %d" % i) choose_cluster_elbow = clusters.ellbow_optimal_number_of_clusters( elbow_values) ex_fig_silhouette_score, _ = visualizer.satter_graph_metrics( silhouette_values, number_clusters, "Silhouette Score") ex_fig_silhouette_score.show() choose_cluster_sihlouette = int(input("sihlouette\n")) plt.close(ex_fig_silhouette_score) ex_fig_db, _ = visualizer.satter_graph_metrics( db_values, number_clusters, "Davies-Bouldin Score") ex_fig_db.show() choose_cluster_db = int(input("davies bouldin\n")) plt.close(ex_fig_db) print("best elbow cluster is %d" % choose_cluster_elbow) print("best sihouette cluster is %d" % choose_cluster_sihlouette) print("best db cluster is %d" % choose_cluster_db) x_label = "Número de clusters" fig_elbow_score, _ = visualizer.satter_graph_metrics( elbow_values, number_clusters, "Método Elbow %s" % type_model, contrast=[number_clusters.index(choose_cluster_elbow)], y_label="Variação Explicada", x_label=x_label ) fig_elbow_score.savefig(os.path.join(base_path, "elbow_score.png")) plt.close(fig_elbow_score) print("saving elbow score") fig_silhouette_score, _ = visualizer.satter_graph_metrics( silhouette_values, number_clusters, "Método Silhueta %s" % type_model, contrast=[number_clusters.index(choose_cluster_sihlouette)], y_label="Silhueta", x_label=x_label ) fig_silhouette_score.savefig(os.path.join( base_path, "silhouette_score.png")) plt.close(fig_silhouette_score) print("saving sihouette score") fig_db, _ = visualizer.satter_graph_metrics( db_values, number_clusters, "Método Davies-Bouldin %s" % type_model, contrast=[number_clusters.index(choose_cluster_db)], y_label="Davies-Bouldin", x_label=x_label ) fig_db.savefig(os.path.join(base_path, "db_score.png")) plt.close(fig_db) print("saving db score") chosed_clusters = list(set([choose_cluster_elbow, choose_cluster_sihlouette, choose_cluster_db])) labels = {"journal": [], "subject": []} for label in ['journal', 'subject']: y = [self.corpus.categ.get(fileid, label) for fileid in fileids] labels[label] = y for clst in chosed_clusters: model = models[number_clusters.index(clst)] fig, _ = visualizer.kmeans_visualizer( vectors, y, model.labels_, model.cluster_centers_, "Scatter %s %d Clusters por %s" % (type_model, clst, self.labels_title[label])) fig.savefig(os.path.join(base_path, "%s-%d" % (label, clst))) print("saving labeled %s cluster %d" % (label, clst)) del y pickle_path = self.__get_pickle_path( os.path.join("clusters", type_model)) for clst in chosed_clusters: model = models[number_clusters.index(clst)] df = pd.DataFrame({ "fileid": fileids, "cluster": model.labels_, "journal": labels["journal"], "subject": labels["subject"]}) df.to_csv(os.path.join( base_path, "result-model-cluster-%d.csv" % clst)) for label in ['journal', 'subject']: gr = df.groupby(["cluster", label]).size() gr.to_csv( (os.path.join(base_path, "group-by-%s=model-cluster-%d.csv" % (label, clst)))) utils.save_joblib(pickle_path, "df-model-cluster-%d" % clst, df) utils.save_joblib( pickle_path, "model-cluster-%s.joblib" % clst, model) def types_kmeans(self, tokens_type="stem"): self.clusers_plot("kmeans", clusters.generate_kmeans, tokens_type) self.clusers_plot("mini-batch-kmeans", clusters.generate_mini_bath_kmeans, tokens_type) def mean_shift_plot(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("clusters", "mean-shift")) corpus = self.get_tokens(tokens_type) docs, fileids = zip(*corpus) vectors, _ = vectorizer.generate_tf_idf(docs) mn = clusters.generate_mean_shift(vectors.toarray()) fig, _ = visualizer.cluster_docs_plot( vectors, mn.labels_, mn.cluster_centers_) fig.savefig(os.path.join(base_path, "cluser-plot.png")) plt.close(fig) labels = {"journal": [], "subject": []} for label in ['journal', 'subject']: y = [self.corpus.categ.get(fileid, label) for fileid in fileids] labels[label] = y fig, _ = visualizer.kmeans_visualizer( vectors, y, mn.labels_, mn.cluster_centers_, "Scatter Mean Shift por %s" % label) fig.savefig(os.path.join(base_path, "%s.png" % label)) plt.close(fig) del y print("saving labeled %s cluster" % label) pickle_path = self.__get_pickle_path( os.path.join("clusters", "mean-shift")) df = pd.DataFrame({ "fileid": fileids, "cluster": mn.labels_, "journal": labels["journal"], "subject": labels["subject"]}) df.to_csv(os.path.join( base_path, "result-model-cluster-mean-shift.csv")) for label in ['journal', 'subject']: gr = df.groupby(["cluster", label]).size() gr.to_csv( (os.path.join(base_path, "group-by-%s-model-cluster-mean-shift.csv" % (label)))) utils.save_joblib(pickle_path, "df-model-cluster-mean-shift", df) utils.save_joblib( pickle_path, "model-cluster-mean-shift.joblib", mn) def afinity_plot(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("clusters", "afinity")) corpus = self.get_tokens(tokens_type) docs, fileids = zip(*corpus) vectors, _ = vectorizer.generate_tf_idf(docs) af = clusters.generate_affinity_propagation(vectors.toarray()) fig, _ = visualizer.cluster_docs_plot( vectors, af.labels_, af.cluster_centers_) fig.savefig(os.path.join(base_path, "cluser-plot.png")) plt.close(fig) labels = {"journal": [], "subject": []} for label in ['journal', 'subject']: y = [self.corpus.categ.get(fileid, label) for fileid in fileids] labels[label] = y fig, _ = visualizer.kmeans_visualizer( vectors, y, af.labels_, af.cluster_centers_, "Scatter Afinity por %s" % label) fig.savefig(os.path.join(base_path, "%s.png" % label)) plt.close(fig) del y print("saving labeled %s cluster" % label) pickle_path = self.__get_pickle_path( os.path.join("clusters", "afinity")) df = pd.DataFrame({ "fileid": fileids, "cluster": af.labels_, "journal": labels["journal"], "subject": labels["subject"]}) df.to_csv(os.path.join( base_path, "result-model-cluster-afinity.csv")) for label in ['journal', 'subject']: gr = df.groupby(["cluster", label]).size() gr.to_csv( (os.path.join(base_path, "group-by-%s-model-cluster-afinity.csv" % (label)))) utils.save_joblib(pickle_path, "df-model-cluster-afinity", df) utils.save_joblib( pickle_path, "model-cluster-afinity.joblib", af) def agglomerative_plot(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("clusters", "agglomerative")) corpus = self.get_tokens("stem") docs, fileids = zip(*corpus) vectors, _ = vectorizer.generate_tf_idf(docs) pickle_path = self.__get_pickle_path( os.path.join("clusters", "agglomerative")) for algorithm in ['ward', 'complete', 'average', 'single']: ag = clusters.generate_agglomerative(vectors.toarray(), algorithm) y = [self.corpus.categ.get(fileid, "subject") for fileid in fileids] utils.save_joblib( pickle_path, "model-cluster-agglomerative-%s.joblib" % algorithm, ag) fig, _ = visualizer.plot_dendrogram(ag, y) fig.savefig(os.path.join( base_path, "%s-dendogram.png" % algorithm)) print("saving dendogram %s cluster" % algorithm) def default_categ_results(self, base_path, y_test, y_pred, name, theme, title=""): cfm, clr, ac = categorization.evaluating(y_test, y_pred) print(cfm, clr, ac) fig, _ = visualizer.plot_confusion_matrix(cfm, y_test, title) fig.savefig(os.path.join(base_path, "confusion-matix-%s-%s.png" % (name, theme))) plt.close(fig) with open(os.path.join(base_path, "report-%s-%s.txt" % (name, theme)), "w") as file: file.write(clr) file.write("\naccuracy score: %s" % str(ac)) def analysis_nb_categ(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("categorization", "nb")) pickle_path = self.__get_pickle_path( os.path.join("categorization", "nb")) tokens = self.get_tokens(tokens_type) docs, fileids = zip(*tokens) vectors, _ = vectorizer.generate_tf_idf(docs) for theme in ['subject']: y = [self.corpus.categ.get(fileid, theme) for fileid in fileids] for name, alg in [("Gaussian ", categorization.generate_gaussian_nb), ("Multinomial", categorization.generate_multinomial_nb), ("Complement", categorization.generate_complement_nb), ("Bernoulli", categorization.generate_bernoulli_nb), ("Categorical", categorization.generate_categorical_nb) ]: model, (y_test, y_pred) = alg(vectors.toarray(), y) utils.save_joblib( pickle_path, "model-nb-%s-%s.joblib" % (theme, name), model) self.default_categ_results( base_path, y_test, y_pred, name, theme, "Heatmap %s Naive Bayes por %s" % (name, self.labels_title[theme])) def analysis_svm_categ(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("categorization", "svm")) pickle_path = self.__get_pickle_path( os.path.join("categorization", "svm")) tokens = self.get_tokens(tokens_type) docs, fileids = zip(*tokens) X, _ = vectorizer.generate_tf_idf(docs) for theme in ['subject']: y = [self.corpus.categ.get(fileid, theme) for fileid in fileids] for kernel in ["linear", "poly", "rbf", "sigmoid"]: model, (y_test, y_pred) = categorization.generate_svm( X.toarray(), y, kernel) utils.save_joblib( pickle_path, "model-svm-%s-%s.joblib" % (theme, kernel), model) self.default_categ_results( base_path, y_test, y_pred, kernel, theme, "Heatmap Svm kernel %s por %s" % (kernel, self.labels_title[theme])) def analysis_tree(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("categorization", "tree")) pickle_path = self.__get_pickle_path( os.path.join("categorization", "tree")) tokens = self.get_tokens(tokens_type) docs, fileids = zip(*tokens) X, _ = vectorizer.generate_tf_idf(docs) for theme in ['subject']: y = [self.corpus.categ.get(fileid, theme) for fileid in fileids] model, (y_test, y_pred) = categorization.generate_tree( X.toarray(), y) utils.save_joblib( pickle_path, "model-tree-%s.joblib" % theme, model) self.default_categ_results( base_path, y_test, y_pred, "tree", theme, "Heatmap Tree por %s" % self.labels_title[theme]) def analysis_nns(self, tokens_type="stem"): base_path = self.__get_docs_path( os.path.join("categorization", "nns")) pickle_path = self.__get_pickle_path( os.path.join("categorization", "nns")) tokens = self.get_tokens(tokens_type) docs, fileids = zip(*tokens) X, _ = vectorizer.generate_tf_idf(docs) for theme in ['subject']: for num_layers in [50, 150]: for num_hidden in [0, 2, 5]: y = [self.corpus.categ.get(fileid, theme) for fileid in fileids] model, hist, (y_test, y_pred) = categorization.generate_nn( X.toarray(), y, num_layers=num_layers, num_hidden_layers=num_hidden) name = "(%d)_dense-(%d)_hidden" % (num_layers, num_hidden) utils.create_if_not_exists(pickle_path) model.save(os.path.join( pickle_path, "model-nn-%s-%s.h5" % (theme, name))) self.default_categ_results( base_path, y_test, y_pred, theme, name, "Heatmap Nn %s por %s" % (name, self.labels_title[theme])) with open(os.path.join(base_path, "%s-%s.txt" % (theme, name)), "w") as file: with redirect_stdout(file): model.summary() def make_lsi(self, tokens, num_topics, type_transformation): return topics.generate_lsi_model( tokens, num_topics=num_topics, type_transformation=type_transformation) def make_lda(self, tokens, num_topics, type_transformation): return topics.generate_lda_model( tokens, num_topics=num_topics, type_transformation=type_transformation) def report_topics(self, model, base_path, theme, type_transformation, num_topics): with open(os.path.join(base_path, "report-lda-%s-%d-topics-%s.txt" % (type_transformation, num_topics, theme)), "w") as f: for topic_id, topic in model.print_topics(num_topics=num_topics, num_words=20): f.write('Topic #'+str(topic_id+1)+':') f.write(topic + "\n") def analysis_topic_func(self, base_path, pickle_path, docs, func, theme, type_transformation, name, **kwargs): range_start = kwargs["range_start"] if "range_start" in kwargs else 2 range_end = kwargs["range_end"] if "range_end" in kwargs else 20 step = kwargs["step"] if "step" in kwargs else 2 models = [] dictionaries = [] tcorpuses = [] coherence_models = [] coherence_scores = [] topics_available = list(range(range_start, range_end, step)) for num_topics in topics_available: print("Making %d tranformation %s for theme %s" % (num_topics, type_transformation, theme)) model, dictionary, transformed_corpus = func( docs, num_topics, type_transformation) coeherence_model = topics.generate_coeherence_model( model, transformed_corpus, docs, dictionary) coherence_scores.append(coeherence_model.get_coherence()) models.append(model) coherence_models.append(coeherence_model) dictionaries.append(dictionary) tcorpuses.append(transformed_corpus) fig, _ = visualizer.coeherence_score( range_start, range_end, step, coherence_scores, "Coeherence for %s %s %s" % (name, type_transformation, theme)) fig.savefig(os.path.join( base_path, "coeherence-%s-%s.png" % (type_transformation, theme))) fig.show() choose_num_topic = int(input("Num Topic\n")) plt.close(fig) calculated_index_topic = int((choose_num_topic - range_start)/step) choosed_model = models[calculated_index_topic] coherence_model = coherence_models[calculated_index_topic] dictionary = dictionaries[calculated_index_topic] tcorpus = tcorpuses[calculated_index_topic] coherence_score = coherence_scores[calculated_index_topic] with open(os.path.join(base_path, "coeherence-topics-%s-%s-%s.txt" % (name, theme, type_transformation)), "w") as f: f.write(str(coherence_score)) utils.create_if_not_exists(pickle_path) choosed_model.save(os.path.join( pickle_path, "model-%s-%s-%s.model" % (name, theme, type_transformation))) coherence_model.save(os.path.join( pickle_path, "coherence-model-%s-%s-%s.model" % (name, theme, type_transformation))) dictionary.save(os.path.join( pickle_path, "dictionary-%s-%s-%s.dict" % (name, theme, type_transformation))) tcorpus.save(os.path.join(pickle_path, "tcorpus-%s-%s-%s.model" % (name, theme, type_transformation))) calculated_num_topics = topics_available[calculated_index_topic] print("Calculated num topic available is %d" % calculated_num_topics) self.report_topics(choosed_model, base_path, theme, type_transformation, calculated_num_topics) del models del coherence_scores del docs def analysis_topic(self, func, name, transformations=["tf-idf", "bow"]): base_path = self.__get_docs_path(os.path.join("topics", name)) pickle_path = self.__get_pickle_path( os.path.join("topics", name)) tokens = self.get_tokens("mwe") docs, _ = zip(*tokens) range_start = 4 range_end = 6 step = 2 for type_transformation in transformations: self.analysis_topic_func(base_path, pickle_path, docs, func, "all", type_transformation, name, range_start=range_start, range_end=range_end, step=step) for theme in self.sujects: print("making model for subject %s" % theme) corpus = self.corpus.apply((preprocessor.tokenize_mwe, preprocessor.clean_tokens, preprocessor.remove_acentuation), categories=[theme]) self.analysis_topic_func(base_path, pickle_path, [list(doc) for doc, fileid in corpus], func, theme, type_transformation, name, range_start=range_start, range_end=range_end, step=step) del corpus def analysis_lda(self, transformations=["tf-idf"]): self.analysis_topic(self.make_lda, "lda", transformations) def analysis_lsi(self, transformations=["tf-idf"]): self.analysis_topic(self.make_lsi, "lsi", transformations) def semantic(self): base_path = self.__get_docs_path("semantic") nlp = preprocessor.SpacyInstance.get_normal_instance() sentences = "" pos_sentences = "" for theme in self.sujects: print("Making Semantic for %s" % theme) document = next(self.corpus.documents(categories=[theme])) ndoc = nlp(document[0]) ehtml = displacy.render(ndoc, style='ent') meta = "<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>" ehtml = "%s%s" % (meta, ehtml) imgkit.from_string(ehtml, os.path.join( base_path, "%s-random_entity-%s.jpg" % (theme, document[1])), options={"encoding": "UTF-8"}) sent = list(ndoc.sents)[0] dephtml = displacy.render( sent, style="dep") dephtml = "%s%s" % (meta, dephtml) sentences += "%s%s" % (str(sent), "\n") pos_sentences += "%s%s" % (str([(w, w.pos_) for w in sent]), "\n") imgkit.from_string(dephtml, os.path.join( base_path, "%s-dept-%s.jpg" % (theme, document[1])), options={"encoding": "UTF-8"}) with open(os.path.join(base_path, "sentences.txt"), "w") as file: file.write(sentences) with open(os.path.join(base_path, "pos_sentences.txt"), "w") as file: file.write(pos_sentences) def analysis_sentiment(self): base_path = self.__get_docs_path("sentiment") pickle_path = self.__get_pickle_path( os.path.join("sentiment")) tokens = self.get_tokens("mwe") sent_corpus = [] count = 0 df = None df_path = os.path.join(pickle_path, "df-sentiment") if not os.path.exists(df_path): for doc, fileid in tokens: count = count + 1 print("fileid:", count) print((count/1706) * 100, "%") opl_cnt = Counter(sentiment.categs_pol_oplexicon_document(doc)) sent_cnt = Counter(sentiment.categs_pol_sentilex_document(doc)) sent_corpus.append(( fileid, self.corpus.categ.get(fileid, 'subject'), self.corpus.categ.get(fileid, 'journal'), sent_cnt[None], sent_cnt[-1], sent_cnt[1], sent_cnt[0], opl_cnt[None], opl_cnt[-1], opl_cnt[1], opl_cnt[0] )) df = pd.DataFrame(sent_corpus, columns=[ 'fileid', 'subject', 'journal', 'sent_none', 'sent_neg', 'sent_pos', 'sent_neut', 'opl_none', 'opl_neg', 'opl_pos', 'opl_neut' ]) df['polarity_oplexicon'] = df['opl_pos'] - df['opl_neg'] df['polarity_sentilex'] = df['sent_pos'] - df['sent_neg'] df.to_pickle(os.path.join(pickle_path, "df-sentiment")) else: print("Loading sentiment df") df = pd.read_pickle(df_path) # df.to_csv(os.path.join(base_path, "df-sentiments.csv")) dfopl = df[['subject', 'journal', 'polarity_oplexicon', 'opl_neg', 'opl_pos', 'opl_neut', 'opl_none']] dfsent = df[['subject', 'journal', 'polarity_sentilex', 'sent_neg', 'sent_pos', 'sent_neut', 'sent_none']] for theme in ['subject', 'journal']: gdfopl = dfopl.groupby(theme).sum() gdfsent = dfsent.groupby(theme).sum() gdfopl.to_csv(os.path.join( base_path, 'opl-groupby-%s.csv' % theme)) gdfsent.to_csv(os.path.join( base_path, 'sent-groupby-%s.csv' % theme)) fig, _ = visualizer.plot_compare_bar( ('Oplexicon', list(gdfopl['polarity_oplexicon'].values)), ('Sentilex', list(gdfsent['polarity_sentilex'].values)), gdfopl['polarity_oplexicon'].to_dict().keys(), "Comparativo de polaridade por lexicos e por %s" % self.labels_title[theme]) fig.savefig(os.path.join( base_path, "compare_bar_plot_%s.png" % theme)) fig, _ = visualizer.plot_compare_bar( ('Oplexicon', list(gdfopl['opl_none'].values)), ('Sentilex', list(gdfsent['sent_none'].values)), gdfsent['sent_none'].to_dict().keys(), "Comparativo de perda por lexicos e por %s" % self.labels_title[theme], "Quantidade") fig.savefig(os.path.join( base_path, "missing_compare_bar_plot_%s.png" % theme)) for name, _gdf in [('Oplexicon', gdfopl), ('Sentliex', gdfsent)]: gdf = _gdf.copy() gdf.columns = ['pol', 'neg', 'pos', 'neut', 'none'] tgdf = gdf.transpose() result = {key: [value['neg'], value['neut'], value['pos']] for key, value in tgdf.to_dict().items()} fig, _ = visualizer.compare_survey( result, ['Negativo', 'Neutro', 'Positivo'], "Distribuição Polaridade %s por %s" % (name, theme)) fig.savefig(os.path.join( base_path, "comapre_dist_bar_plot_%s_%s.png" % (theme, name)))
py
b40dd279541757285a5f13c596ae79355386efd8
# # This file is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions available in SMV's Python shell """ from inspect import formatargspec, getargspec import sys from smv import SmvApp from test_support.test_runner import SmvTestRunner from test_support.testconfig import TestConfig from pyspark.sql import DataFrame def _jvmShellCmd(): return SmvApp.getInstance()._jvm.org.tresamigos.smv.shell.ShellCmd def df(name, forceRun=False, version=None, runConfig=None, quickRun=False): """The DataFrame result of running the named module Args: name (str): The unique name of a module. Does not have to be the FQN. forceRun (bool): True if the module should be forced to run even if it has persisted output. False otherwise. version (str): The name of the published version to load from runConfig (dict): runtime configuration to use when running the module quickRun (bool): skip computing dqm+metadata and persisting csv Returns: (DataFrame): The result of running the named module. """ return SmvApp.getInstance().runModuleByName(name, forceRun, version, runConfig, quickRun)[0] def props(): """The current app propertied used by SMV after the app, user, command-line and dynamic props are merged. Returns: (dict): The 'mergedProps' or final props used by SMV """ return SmvApp.getInstance().getCurrentProperties() def dshash(name, runConfig=None): """The current hashOfHash for the named module as a hex string Args: name (str): The uniquen name of a module. Does not have to be the FQN. runConfig (dict): runConfig to apply when collecting info. If module was run with a config, the same config needs to be specified here to retrieve the correct hash. Returns: (int): The hashOfHash of the named module """ return SmvApp.getInstance().getDsHash(name, runConfig) def getModel(name, forceRun = False, version = None): """Get the result of running the named SmvModel module Args: name (str): The name of a module. Does not have to be the FQN. forceRun (bool): True if the module should be forced to run even if it has persisted output. False otherwise. version (str): The name of the published version to load from Returns: (object): The result of running the named module """ app = SmvApp.getInstance() urn = app.inferUrn(name) return app.getModuleResult(urn, forceRun, version) def openHive(tableName): """Read in a Hive table as a DataFrame Args: tableName (str): The name of the Hive table Returns: (DataFrame): The resulting DataFrame """ return DataFrame(_jvmShellCmd().openHive(tableName), SmvApp.getInstance().sqlContext) def openCsv(path, validate=False): """Read in a CSV file as a DataFrame Args: path (str): The path of the CSV file validate (bool): If true, validate the CSV before return DataFrame (raise error if malformatted) Returns: (DataFrame): The resulting DataFrame """ app = SmvApp.getInstance() jdf = app.j_smvPyClient.shellOpenCsv(path, validate) return DataFrame(jdf, SmvApp.getInstance().sqlContext) def smvExportCsv(name, path): """Export the result of a module to a CSV file at a local path Args: fqn (str): the name of the module path (str): a path on the local file system """ _jvmShellCmd().smvExportCsv(name, path, None) def help(): """Print a list of the SMV helper functions available in the shell """ this_mod = sys.modules[__name__] help_msg = "SMV shell commands:" for func_name in __all__: func = getattr(this_mod, func_name) signature = formatargspec(*getargspec(func)) help_msg += "\n* {}{}".format(func_name, signature) smv_version = SmvApp.getInstance().j_smvApp.smvVersion() doc_url = ("http://tresamigossd.github.io/SMV/pythondocs/{}/smv.html#module-smv.smvshell" .format(smv_version)) help_msg += "\nDocumentation may be found at " + doc_url print(help_msg) def lsStage(): """List all the stages """ print(_jvmShellCmd().lsStage()) def ls(stageName = None): """List all datasets in a stage Args: stageName (str): The name of the stage. Defaults to None, in which ase all datasets in all stages will be listed. """ if(stageName is None): print(_jvmShellCmd().ls()) else: print(_jvmShellCmd().ls(stageName)) def lsDead(stageName = None): """List dead datasets in a stage Args: stageName (str): The name of the stage. Defaults to None, in which ase all datasets in all stages will be listed. """ if(stageName is None): print(_jvmShellCmd().lsDead()) else: print(_jvmShellCmd().lsDead(stageName)) def lsDeadLeaf(stageName = None): """List 'deadLeaf' datasets in a stage A 'deadLeaf' dataset is dataset for which "no modules in the stage depend on it, excluding Output modules" Note: a `deadLeaf` dataset must be `dead`, but some `dead` datasets aren't `leaves`. Args: stageName (str): The name of the stage. Defaults to None, in which ase all datasets in all stages will be listed. """ if(stageName is None): print(_jvmShellCmd().lsDeadLeaf()) else: print(_jvmShellCmd().lsDeadLeaf(stageName)) def exportToHive(dsname, runConfig=None): """Export dataset's running result to a Hive table Args: dsname (str): The name of an SmvDataSet """ SmvApp.getInstance().publishModuleToHiveByName(dsname, runConfig) def ancestors(dsname): """List all ancestors of a dataset Ancestors of a dataset are the dataset it depends on, directly or in-directly, including datasets from other stages. Args: dsname (str): The name of an SmvDataSet """ print(_jvmShellCmd().ancestors(dsname)) def descendants(dsname): """List all descendants of a dataset Descendants of a dataset are the datasets which depend on it directly or in-directly, including datasets from other stages Args: dsname (str): The name of an SmvDataSet """ print(_jvmShellCmd().descendants(dsname)) def graph(stageName = None): """Print ascii graph of all datasets in a given stage or all stages Args: stageName (str): Optional name of stage to graph. Do not """ if(stageName is None): print(_jvmShellCmd()._graph()) else: print(_jvmShellCmd()._graph(stageName)) def graphStage(): """Print ascii graph of all stages (not datasets) """ print(_jvmShellCmd()._graphStage()) def now(): """Print current time """ print(_jvmShellCmd().now()) def smvDiscoverSchemaToFile(path, n=100000, ca=None): """Try best to discover Schema from raw Csv file Will save a schema file with postfix ".toBeReviewed" in local directory. Args: path (str): Path to the CSV file n (int): Number of records to check for schema discovery, default 100k ca (CsvAttributes): Defaults to CsvWithHeader """ SmvApp.getInstance()._jvm.SmvPythonHelper.smvDiscoverSchemaToFile(path, n, ca or SmvApp.getInstance().defaultCsvWithHeader()) def edd(ds_name): """Print edd report for the result of an SmvDataSet Args: ds_name (str): name of an SmvDataSet """ report = _jvmShellCmd()._edd(ds_name) print(report) def run_test(test_name): """Run a test with the given name without creating new Spark context First reloads SMV and the test from source, then runs the test. Args: test_name (str): Name of the test to run """ # Ensure TestConfig has a canonical SmvApp (this will eventually be used # to restore the singleton SmvApp) TestConfig.setSmvApp(SmvApp.getInstance()) first_dot = test_name.find(".") if first_dot == -1: test_root_name = test_name else: test_root_name = test_name[:first_dot] _clear_from_sys_modules(["smv", test_root_name]) SmvTestRunner("src/test/python").run([test_name]) def _clear_from_sys_modules(names_to_clear): """Clear smv and the given names from sys.modules (don't clear this module) """ for name in sys.modules.keys(): for ntc in names_to_clear: if name != "smv.smvshell" and (name.startswith(ntc + ".") or name == ntc): sys.modules.pop(name) break def show_run_info(collector): """Inspects the SmvRunInfoCollector object returned by smvApp.runModule""" collector.show_report() def get_run_info(name, runConfig=None): """Get the SmvRunInfoCollector with full information about a module and its dependencies Args: name (str): name of the module whose information to collect runConfig (dict): runConfig to apply when collecting info. If module was run with a config, the same config needs to be specified here to retrieve the info. """ return SmvApp.getInstance().getRunInfoByPartialName(name, runConfig) __all__ = [ 'df', 'dshash', 'getModel', 'openHive', 'openCsv', 'smvExportCsv', 'help', 'lsStage', 'ls', 'lsDead', 'lsDeadLeaf', 'props', 'exportToHive', 'ancestors', 'descendants', 'graph', 'graphStage', 'now', 'smvDiscoverSchemaToFile', 'edd', 'run_test', 'show_run_info', 'get_run_info' ]
py
b40dd38245d1e58638b14ca478aa2a098782dad6
def foo(): for a<caret> pass
py
b40dd3adf80aa2c3a8dd393ca94af7366356b7f4
import numpy as np def y_grayscale(rgb_image): """Return a grayscale version of the RGB image, using the Y channel of the YCbCr color space.""" # For details on the YCbCr color space, see: # https://en.wikipedia.org/wiki/YCbCr # https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf return (.299 * rgb_image[:, :, 0] + .587 * rgb_image[:, :, 1] + .114 * rgb_image[:, :, 2]).round().astype(np.uint8)
py
b40dd3f5f476b8994f2843ca17c4a078b1d39351
"""This file contains techniques for extracting data from HTML pages.""" from parsel import Selector class Technique(object): def __init__(self, extractor=None, *args, **kwargs): """Capture the extractor this technique is running within, if any.""" self.extractor = extractor super(Technique, self).__init__(*args, **kwargs) def extract(self, html): """Extract data from a string representing an HTML document.""" return { 'titles': [], 'descriptions': [], 'images': [], 'urls': [], } class HeadTags(Technique): """Extract info from standard HTML metatags like title, for example: <head> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> <meta name="author" content="Will Larson" /> <meta name="description" content="Will Larson&#39;s blog about programming and other things." /> <meta name="keywords" content="Blog Will Larson Programming Life" /> <link rel="alternate" type="application/rss+xml" title="Page Feed" href="/feeds/" /> <link rel="canonical" href="http://lethain.com/digg-v4-architecture-process/"> <title>Digg v4&#39;s Architecture and Development Processes - Irrational Exuberance</title> </head> This is usually a last-resort, low quality, but reliable parsing mechanism. """ meta_name_map = { "description": "descriptions", "author": "authors", } def extract(self, html): """Extract data from meta, link and title tags within the head tag.""" extracted = {} selector = Selector(html) # extract data from title tag title_tag = selector.xpath('//title/text()').extract_first() if title_tag: extracted['titles'] = [title_tag] # extract data from meta tags for meta_tag in selector.xpath('//meta'): if 'name' in meta_tag.attrib and 'content' in meta_tag.attrib: name = meta_tag.attrib['name'] if name in self.meta_name_map: name_dest = self.meta_name_map[name] if name_dest not in extracted: extracted[name_dest] = [] extracted[name_dest].append(meta_tag.attrib['content']) # extract data from link tags for link_tag in selector.xpath('//link'): if 'rel' in link_tag.attrib: if ('canonical' in link_tag.attrib['rel'] or link_tag.attrib['rel'] == 'canonical') and 'href' in link_tag.attrib: if 'urls' not in extracted: extracted['urls'] = [] extracted['urls'].append(link_tag.attrib['href']) elif ('alternate' in link_tag.attrib['rel'] or link_tag.attrib['rel'] == 'alternate') and 'type' in link_tag.attrib and link_tag.attrib['type'] == "application/rss+xml" and 'href' in link_tag.attrib: if 'feeds' not in extracted: extracted['feeds'] = [] extracted['feeds'].append(link_tag.attrib['href']) return extracted class FacebookOpengraphTags(Technique): """Extract info from html Facebook Opengraph meta tags. Facebook tags are ubiquitous on high quality sites, and tend to be higher quality than more manual discover techniques. Especially for picking high quality images, this is probably your best bet. Some example tags from `the Facebook opengraph docs <https://developers.facebook.com/docs/opengraphprotocol/>`:: <meta property="og:title" content="The Rock"/> <meta property="og:type" content="movie"/> <meta property="og:url" content="http://www.imdb.com/title/tt0117500/"/> <meta property="og:image" content="http://ia.media-imdb.com/rock.jpg"/> <meta property="og:site_name" content="IMDb"/> <meta property="fb:admins" content="USER_ID"/> <meta property="og:description" content="A group of U.S. Marines, under command of a renegade general, take over Alcatraz and threaten San Francisco Bay with biological weapons."/> There are a bunch of other opengraph tags, but they don't seem useful to extraction's intent at this point. """ key_attr = 'property' property_map = { 'og:title': 'titles', 'og:url': 'urls', 'og:image': 'images', 'og:description': 'descriptions', } def extract(self, html): """Extract data from Facebook Opengraph tags.""" extracted = {} selector = Selector(html) for meta_tag in selector.xpath('//meta'): if self.key_attr in meta_tag.attrib and 'content' in meta_tag.attrib: property = meta_tag.attrib[self.key_attr] if property in self.property_map: property_dest = self.property_map[property] if property_dest not in extracted: extracted[property_dest] = [] extracted[property_dest].append(meta_tag.attrib['content']) return extracted class TwitterSummaryCardTags(FacebookOpengraphTags): """Extract info from the Twitter SummaryCard meta tags.""" key_attr = 'name' property_map = { 'twitter:title': 'titles', 'twitter:description': 'descriptions', 'twitter:image': 'images', } class HTML5SemanticTags(Technique): """ The HTML5 `article` tag, and also the `video` tag give us some useful hints for extracting page information for the sites which happen to utilize these tags. This technique will extract information from pages formed like:: <html> <body> <h1>This is not a title to HTML5SemanticTags</h1> <article> <h1>This is a title</h1> <p>This is a description.</p> <p>This is not a description.</p> </article> <video> <source src="this_is_a_video.mp4"> </video> </body> </html> Note that `HTML5SemanticTags` is intentionally much more conservative than `SemanticTags`, as it provides high quality information in the small number of cases where it hits, and otherwise expects `SemanticTags` to run sweep behind it for the lower quality, more abundant hits it discovers. """ def extract(self, html): """Extract data from HTML5 semantic tags.""" titles = [] descriptions = [] videos = [] selector = Selector(html) for article in selector.xpath('//article') or []: title = article.xpath('string(.//h1)').extract() print(title) if title: titles.append(' '.join(title)) desc = article.xpath('string(.//p)') if desc: descriptions.append(' '.join(desc.extract())) for video in selector.xpath('.//video') or []: for source in video.xpath('.//source') or []: if 'src' in source.attrib: videos.append(source.attrib['src']) return { 'titles': titles, 'descriptions': descriptions, 'videos': videos } class SemanticTags(Technique): """ This technique relies on the basic tags themselves--for example, all IMG tags include images, most H1 and H2 tags include titles, and P tags often include text usable as descriptions. This is a true last resort technique. """ # list to support ordering of semantics, e.g. h1 # is higher quality than h2 and so on # format is ("name of tag", "destination list", store_first_n) extract_string = [ ('string(//h1)', 'titles', 3), ('string(//h2)', 'titles', 3), ('string(//h3)', 'titles', 1), ('string(//p)', 'descriptions', 5), ] # format is ("name of tag", "destination list", "name of attribute" store_first_n) extract_attr = [('//img', 'images', 'src', 10)] def extract(self, html): """Extract data from usual semantic tags.""" extracted = {} soup = Selector(html) for tag, dest, max_to_store in self.extract_string: for found in soup.xpath(tag)[:max_to_store] or []: if dest not in extracted: extracted[dest] = [] extracted[dest].append(found.extract()) for tag, dest, attribute, max_to_store in self.extract_attr: for found in soup.xpath(tag)[:max_to_store] or []: if attribute in found.attrib: if dest not in extracted: extracted[dest] = [] extracted[dest].append(found.attrib[attribute]) return extracted
py
b40dd4086f5ee37e420f291ddfa8d7439d973c4c
"""Test utilities.""" from os.path import basename import cobra import numpy as np import micom import micom.util as util from .fixtures import community URL = "http://bigg.ucsd.edu/static/models/e_coli_core.xml.gz" tax = micom.data.test_taxonomy() def test_download(tmpdir): print(tmpdir.dirpath()) util.download_model(URL, str(tmpdir)) assert tmpdir.join("e_coli_core.xml.gz").check() model = util.load_model(URL) assert len(model.reactions) == 95 assert len(model.metabolites) == 72 def test_load_model(): row = tax.loc[0] model = util.load_model(row.file) assert len(model.reactions) == 95 assert len(model.metabolites) == 72 def test_serialization(tmpdir): row = tax.loc[0] util.serialize_models([row.file], str(tmpdir)) assert tmpdir.join("e_coli_core.pickle").check() def test_fluxes_from_primals(community): community.solver.optimize() fluxes = util.fluxes_from_primals(community, tax.loc[0]) assert len(fluxes) < len(community.reactions) assert len(fluxes) == 95 def test_join_models(): single = util.load_model(tax.file[0]) single_coefs = { v.name: coef for v, coef in single.objective.get_linear_coefficients(single.variables).items() } mod = util.join_models(tax.file, id="test_model") coefs = { v.name: coef for v, coef in mod.objective.get_linear_coefficients(mod.variables).items() } assert len(mod.reactions) == len(single.reactions) + 1 # added biomass assert len(mod.metabolites) == len(single.metabolites) assert np.allclose(single.slim_optimize(), mod.slim_optimize()) def test_compartment_id(): met = cobra.core.Metabolite(id="test_met_e__taxon") met.community_id = "taxon" met.global_id = "text_met_e" met.compartment = "e__taxon" assert util.compartment_id(met) == "e" met.compartment = "C_e__taxon" assert util.compartment_id(met) == "e" met.global_id = "test_met[e]" assert util.compartment_id(met) == "e" met.global_id = "test_met(e)" assert util.compartment_id(met) == "e"
py
b40dd5bea864e9f18d7f89bd7da25ac6d4524fba
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test bitcoind with different proxy configuration. Test plan: - Start kcoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on kcoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create kcoinds that connect to them - Manipulate the kcoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import KcoinTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(KcoinTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("bitcoinostk4e4re.onion:8333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"bitcoinostk4e4re.onion") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
py
b40dd6717debff9b47806386707b0728dcbe361d
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: usage.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='usage.proto', package='', syntax='proto3', serialized_pb=_b('\n\x0busage.proto\"$\n\x05Usage\x12\x0c\n\x04time\x18\x01 \x01(\x02\x12\r\n\x05usage\x18\x02 \x01(\x02\x62\x06proto3') ) _USAGE = _descriptor.Descriptor( name='Usage', full_name='Usage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='time', full_name='Usage.time', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='usage', full_name='Usage.usage', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=15, serialized_end=51, ) DESCRIPTOR.message_types_by_name['Usage'] = _USAGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Usage = _reflection.GeneratedProtocolMessageType('Usage', (_message.Message,), dict( DESCRIPTOR = _USAGE, __module__ = 'usage_pb2' # @@protoc_insertion_point(class_scope:Usage) )) _sym_db.RegisterMessage(Usage) # @@protoc_insertion_point(module_scope)
py
b40dd6760c6b1fca3787f96af2effc91af367c86
# -*- coding: utf-8 -*- ''' File name: code\coin_partitions\sol_78.py Author: Vaidic Joshi Date created: Oct 20, 2018 Python Version: 3.x ''' # Solution to Project Euler Problem #78 :: Coin partitions # # For more information see: # https://projecteuler.net/problem=78 # Problem Statement ''' Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7. OOOOO OOOO   O OOO   OO OOO   O   O OO   OO   O OO   O   O   O O   O   O   O   O Find the least value of n for which p(n) is divisible by one million. ''' # Solution # Solution Approach ''' '''
py
b40dd6ac60e9006f5c2b0484a27caac03f7c1128
# ext/asyncio/__init__.py # Copyright (C) 2020-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from .engine import AsyncConnection # noqa from .engine import AsyncEngine # noqa from .engine import AsyncTransaction # noqa from .engine import create_async_engine # noqa from .events import AsyncConnectionEvents # noqa from .events import AsyncSessionEvents # noqa from .result import AsyncMappingResult # noqa from .result import AsyncResult # noqa from .result import AsyncScalarResult # noqa from .session import AsyncSession # noqa from .session import AsyncSessionTransaction # noqa
py
b40dd84e6be4e19634e4af5c911d0e76caeeb977
#!/usr/bin/python # -*- coding: utf-8 -*- import sys sys.path.append('../../../') from rusentrel.classic.ctx.self_att_bilstm import run_testing_self_att_bilstm from rusentrel.classic_cv.common import CV_COUNT, \ classic_cv_common_callback_modification_func, \ CV_NAME_PREFIX if __name__ == "__main__": run_testing_self_att_bilstm( name_prefix=CV_NAME_PREFIX, cv_count=CV_COUNT, custom_callback_func=classic_cv_common_callback_modification_func)
py
b40dd86948b2de3b1337ce2d931dc47a27dfe317
from sqlalchemy import Column, Integer, String from sqlalchemy.orm import relationship from db.db_connection import Base class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String, nullable=True) surname = Column(String, nullable=True) email = Column(String) login = Column(String) password = Column(String) user_settings = relationship("UserSettings", back_populates="user") site_settings = relationship("SiteSettings", back_populates="user") def __repr__(self): return f"<User(id:{self.id}, login:{self.login}, email:{self.email}, password:{self.password})>"
py
b40dd902fa13da85748db53a298104f14409be6c
#!/usr/bin/env python """ This module provides PrimaryDataset.GetID data access object. """ from dbs.dao.Oracle.PrimaryDataset.GetID import GetID as OraPrimaryDatasetGetID class GetID(OraPrimaryDatasetGetID): pass
py
b40dd959caacec9610b879d52b3cd68b9140a45c
""" MIT License Copyright (c) 2022 Grapphy Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import List, Optional, TYPE_CHECKING if TYPE_CHECKING: from .types.wiki import WikiPage as WikiPagePayload from .connection import Connector class WikiPage: __slots__ = ( "_connector", "layout", "locale", "markdown", "path", "tags", "title", "available_locales", "subtitle", ) if TYPE_CHECKING: _connector: Connector available_locales: List[str] layout: str locale: str markdown: str path: str subtitle: Optional[str] tags: List[str] title: str def __init__(self, *, connector: Connector, data: WikiPagePayload) -> None: self._connector = connector self._update_data(data) def __repr__(self) -> str: return ( f"<WikiPage title={self.title} tags={self.tags}" f" path={self.path} locale={self.locale}" ) def __str__(self) -> str: return f"{self.markdown}" @property def url(self) -> str: return f"https://osu.ppy.sh/wiki/{self.locale}/{self.path}" def _update_data(self, data: WikiPagePayload) -> None: self.layout = data["layout"] self.locale = data["locale"] self.markdown = data["markdown"] self.path = data["path"] self.tags = data["tags"] self.title = data["title"] self.available_locales = data["available_locales"] self.subtitle = data.get("subtitle")
py
b40dd9ae9840fae1c02eb586de44c0573ce2ecb4
# Copyright (C) 2021 Satoshi Konno. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union, List, Tuple, Optional, Dict from .object import Object class Node(object): PORT = 3610 __address: Optional[Tuple[str, int]] __objects: Dict[int, Object] def __init__(self, addr: Optional[Tuple[str, int]] = None): self.__address = () self.__objects = {} self.set_address(addr) def set_address(self, addr: Tuple[str, int]) -> bool: if not isinstance(addr, tuple) or len(addr) != 2: return False self.__address = addr return True @property def address(self) -> Optional[Tuple[str, int]]: return self.__address @property def ip(self) -> str: if len(self.__address) != 2: return "" return self.__address[0] @property def port(self) -> int: if len(self.__address) != 2: return 0 return Node.PORT def add_object(self, obj: Object) -> bool: if not isinstance(obj, Object): return False self.__objects[obj.code] = obj obj.node = self return True @property def objects(self) -> List[Object]: objs = [] for obj in self.__objects.values(): objs.append(obj) return objs def has_object(self, code: int) -> bool: return code in self.__objects.keys() def get_object(self, code: Union[int, Tuple[int, int, int]]) -> Optional[Object]: """ Returns the object specified the code. Args: code (Union[str, Tuple[int, int, int]]): A object code. Returns: Optional[Object]: Returns the object when the node has the object specified by the code, otherwise None. """ obj = Object(code) try: return self.__objects[obj.code] except KeyError: return None
py
b40dd9de34ba5f3c3625985ecbf3216f1c7a5e99
# -*- coding: utf-8 -*- """ Base implementation of a torrent provider. New providers should mostly be ok just overriding the fetch_releases method. """ import logging from abc import ABCMeta, abstractmethod from time import time from tranny.app import config, Session from tranny.models import Download class TorrentProvider(object, metaclass=ABCMeta): """ Base torrent provider used to download new releases from trackers """ def __init__(self, config_section): """ Provides a basic interface to generate new torrents from external services. :param config_section: :type config_section: """ # Timestamp of last successful update self.enabled = False self.last_update = 0 self._config_section = config_section self.interval = config.get_default(config_section, "interval", 60, int) self.log = logging.getLogger(config_section) self.log.debug("Initialized {} Provider ({} State): {}".format( self.__class__.__name__, 'Enabled' if self.enabled else 'Disabled', self.name) ) @property def name(self): return self._config_section.split("_")[1] def find_matches(self): """ :return: :rtype: """ t0 = time() delta = t0 - self.last_update if not delta > self.interval or not self.enabled: raise StopIteration self.last_update = t0 session = Session() for torrent, release_info in self.fetch_releases(session): yield session, [torrent, release_info] @abstractmethod def fetch_releases(self, session): """ :param session: :type session: sqlalchemy.orm.session.Session """ raise NotImplementedError("Must override this method") def exists(self, session, release_key): try: return session.query(Download).filter_by(release_key="{}".format(release_key)).all() except Exception as err: self.log.exception(err) return False def is_replacement(self, release_info): """ :param release_info: """ fetch_proper = config.get_default("general", "fetch_proper", True, bool) # Skip releases unless they are considered propers or repacks if fetch_proper and not (release_info.is_repack or release_info.is_repack): self.log.debug("Skipped previously downloaded release ({0}): {1}".format( release_info.release_key, release_info.release_name)) return False return True
py
b40ddaf664fe624c248b7ff1957b6cec970a57c7
"""Attachments interface Direct access to the attachments endpoint The user is not expected to use this class directly. It is an attribute of the :class:`Archivist` class. For example instantiate an Archivist instance and execute the methods of the class: .. code-block:: python with open(".auth_token", mode="r", encoding="utf-8") as tokenfile: authtoken = tokenfile.read().strip() # Initialize connection to Archivist arch = Archivist( "https://app.rkvst.io", authtoken, ) with open("something.jpg") as fd: attachment = arch.attachments.upload(fd) """ # pylint:disable=too-few-public-methods from typing import BinaryIO import logging from requests.models import Response # pylint:disable=unused-import # To prevent cyclical import errors forward referencing is used # pylint:disable=cyclic-import # but pylint doesn't understand this feature from . import archivist as type_helper from .constants import ATTACHMENTS_SUBPATH, ATTACHMENTS_LABEL LOGGER = logging.getLogger(__name__) class Attachment(dict): """Attachment Attachment object has dictionary attributes. """ class _AttachmentsClient: """AttachmentsClient Access to attachments entities using CRUD interface. This class is usually accessed as an attribute of the Archivist class. Args: archivist (Archivist): :class:`Archivist` instance """ def __init__(self, archivist: "type_helper.Archivist"): self._archivist = archivist def upload(self, fd: BinaryIO, *, mtype: str = "image/jpg") -> Attachment: """Create attachment Creates attachment from opened file or other data source. Args: fd (file): opened file descriptor or other file-type iterable. mtype (str): mimetype of data. Returns: :class:`Attachment` instance """ LOGGER.debug("Upload Attachment") return Attachment( **self._archivist.post_file( f"{ATTACHMENTS_SUBPATH}/{ATTACHMENTS_LABEL}", fd, mtype, ) ) def download(self, identity: str, fd: BinaryIO) -> Response: """Read attachment Reads attachment into data sink (usually a file opened for write).. Note that returns the response as the body will be consumed by the fd iterator Args: identity (str): attachment identity e.g. attachments/xxxxxxxxxxxxxxxxxxxxxxx fd (file): opened file escriptor or other file-type sink.. Returns: REST response """ return self._archivist.get_file( ATTACHMENTS_SUBPATH, identity, fd, )
py
b40ddb782df220f75228a298431bb092eebc728b
from __future__ import annotations from . import actions from . import card from . import dealer from . import deck from . import engine from . import player from . import pot from . import random_player from . import state from . import table
py
b40ddcdeeb3ddcec6741ab884b6b52c4d2e98f47
#!/usr/bin/env python3 import sys import apx import argparse if __name__ == '__main__': arg_parser = argparse.ArgumentParser() arg_parser.add_argument('input_file', nargs='*', help='Path to input file (.apx)') arg_parser.add_argument('-o', dest='output_file', help='Output file name (default is to overwrite input file)', default=None) arg_parser.add_argument('-p', '--pipe', help='Uses stdin and stdout instead of files', action='store_true', default=False) args = arg_parser.parse_args() if len(args.input_file) == 0 and not args.pipe: arg_parser.print_help() sys.exit(1) output_file = args.output_file if args.output_file is not None else args.input_file[0] if args.pipe: node = apx.Parser().load(sys.stdin) print(node.dumps(normalized=True)) else: node = apx.Parser().parse(args.input_file[0]) node.save_apx(output_file = output_file, normalized=True)
py
b40ddce7950ad05a5247374c011da1e0582f1723
__author__ = 'patras' from domain_springDoor import * from timer import DURATION from state import state, rv DURATION.TIME = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } DURATION.COUNTER = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } rv.LOCATIONS = [1, 2, 3, 4, 5] rv.EDGES = {1: [2], 2: [1, 3], 3: [2, 4, 5], 4: [3], 5: [3]} rv.DOORS = ['d1', 'd2'] rv.DOORLOCATIONS = {(2, 3): 'd1', (3, 5): 'd2'} rv.DOORTYPES = {'d1': 'spring', 'd2': 'spring'} rv.ROBOTS = ['r1', 'r2', 'r3'] def ResetState(): state.load = {'r1': NIL, 'r2': NIL, 'r3': NIL} state.status = {'r1': 'free', 'r2': 'free', 'r3': 'free'} state.loc = {'r1': 1, 'r2': 1, 'r3': 1} state.pos = {'o1': 4} state.doorStatus = {'d1': 'closed', 'd2': 'closed', } state.doorType = {'d1': UNK, 'd2': UNK, } tasks = { 7: [['fetch', 'r1', 'o1', 2]], } eventsEnv = { }
py
b40ddd39e9e34e7ce4f9d5568b66c06e6d0cc547
import copy from cantoolz.module import CANModule class ecu_switch(CANModule): name = "CAN Switch" help = """ This module emulating CAN Switch. Init params (example): { 'Cabin': { # From Cabin interface 'OBD2':[ # To OBD2 allowed next ID 0x81, # Left door status 0x82 # Right door status ], }, 'Engine': { 'OBD2': [ 0x79, 0x709 ], 'Cabin':[ 0x79 ] }, 'OBD2': { 'Engine':[ 0x701 ], } } """ _active = True def do_init(self, params): self._rules = params # Effect (could be fuzz operation, sniff, filter or whatever) def do_effect(self, can_msg, args): current_rule = self._rules.get(args['pipe'], {}) if can_msg.CANData and args['action'] == "read": # READ for route_to, allowed_id in current_rule.items(): if can_msg.CANFrame.frame_id in allowed_id: buffer = self._rules[route_to].get('buffer', []) buffer.append(copy.deepcopy(can_msg.CANFrame)) self._rules[route_to].update({'buffer': buffer}) elif args['action'] == "write" and not can_msg.CANData: # Write buffer_len = len(current_rule.get('buffer', [])) if buffer_len > 0: can_msg.CANFrame = self._rules[args['pipe']]['buffer'].pop(0) can_msg.CANData = True can_msg.bus = self._bus return can_msg
py
b40dde7737f40e23af3a4a20c9f550a0ac17257b
from sklearn.model_selection import ParameterSampler, ParameterGrid from scipy.stats.distributions import uniform from subprocess import run param_grid = { "mutation_rate": uniform(), "crossover_rate": uniform(), "population_size": uniform(5, 100), } grid = ParameterSampler(param_grid, 5) file_grid = { "target": ["banth1", "ecol", "ngon", "paer"], "insert": ["BoNT", "gfp", "human_HBB", "insulin", "luciferase", "oxytocin"], } file_grid = ParameterGrid(file_grid) for params in grid: print(params) cmd = ["freqgen generate"] cmd.append(f"-p {int(params['population_size'])}") cmd.append(f"-m {params['mutation_rate']}") cmd.append(f"-e 15") cmd.append(f"-c {params['crossover_rate']}") # cmd.append(f"--pop-count {int(params['population_count'])}") cmd.append(f"--log --dna ") for f in file_grid: cmd_for_file = ( " ".join(cmd) + f"-s inserts/{f['insert']}.fasta " + f"-f targets/{f['target']}.yaml" + " > /dev/null" ) print(cmd_for_file) run(cmd_for_file, shell=True)
py
b40ddeacb4b762b72894a6c52ce61d910fe90f80
import sys import pandas as pd from ftfy import fix_encoding from math import sqrt import unidecode def fixerino(row, field): if row[field] == row[field]: a = unidecode.unidecode(fix_encoding(row[field])) return "'{}'".format(a.strip().replace("'", '')) else: return 'undefined' def parse_list(s): if ',' in str(s): return ','.join(filter(None, str(s).split(','))) else: return s #paragem(gid,latitude,longitude,Estado de Conservacao,Tipo de Abrigo,Abrigo com Publicidade?,Operadora,[Carreira],Codigo de Rua,Nome da Rua,Freguesia'). def parse_paragens(): xl = pd.read_excel('paragem_autocarros_oeiras_processado_4.xlsx') for index, row in xl.iterrows(): print("paragem({0},{1},{2},{3},{4},{5},{6},[{7}],{8},{9},{10}).".format( row['gid'], row['latitude'], row['longitude'], fixerino(row,'Estado de Conservacao'), fixerino(row, 'Tipo de Abrigo'), fixerino(row, 'Abrigo com Publicidade?'), fixerino(row,'Operadora'), parse_list(row['Carreira']), row['Codigo de Rua'], fixerino(row, 'Nome da Rua'), fixerino(row, 'Freguesia') )) def distancia(row, n_row): x1 = row['latitude'] y1 = row['longitude'] x2 = n_row['latitude'] y2 = n_row['longitude'] d = sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) if d == d: return d else: return 'undefined' # edge(gid_row, gid_next_row, carreira, distancia). def parse_graph(): xl = pd.ExcelFile('lista_adjacencias_paragens.xlsx') for sheet in xl.sheet_names: book = xl.parse(sheet) for i in range(book.shape[0]-1): org = book.iloc[i]['gid'] dest = book.iloc[i + 1]['gid'] if org != dest: print("edge({0},{1},{2},{3}).".format( org, dest, book.iloc[i]['Carreira'], distancia(book.iloc[i], book.iloc[i+1]) )) def main(): if len(sys.argv) == 2 and '--stops' in sys.argv[1].lower(): parse_paragens() elif len(sys.argv) == 2 and '--edges' in sys.argv[1].lower(): parse_graph() else: print('USAGE: parse [--stops|--edges]') main()
py
b40ddf042336452ac87d854630ea27a83d7e3fb9
from flask import render_template from . import auth from flask import render_template,redirect,url_for,flash,request from .forms import RegistrationForm,LoginForm from .. import db from flask_login import login_user,logout_user,login_required from ..models import User from ..email import mail_message @auth.route('/login',methods=['GET','POST']) def login(): login_form = LoginForm() if login_form.validate_on_submit(): user = User.query.filter_by(email = login_form.email.data).first() if user is not None and user.verify_password(login_form.password.data): login_user(user) return redirect(request.args.get('next') or url_for('main.loggedin')) flash('Invalid username or Password') title = "SignIn | theBlog" return render_template('auth/login.html',login_form = login_form,title=title) @auth.route('/register',methods = ["GET","POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email = form.email.data, username = form.username.data,password = form.password.data) db.session.add(user) db.session.commit() #mail_message("Welcome to The blog","email/welcome_user",user.email,user=user) return redirect(url_for('auth.login')) title = "SignUp | theBlog" return render_template('auth/signup.html',registration_form = form,title = title) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
py
b40ddf6b8ef6a2699326f136bd1720ae4445c075
from . import prop from . import imaging from . import wotf from . import ledarray from . import noise from . import ransac from . import simulation from . import transformation from . import error from . import camera from . import containers
py
b40ddfc9ac0675d9892a6214d763319cb8c63694
# Django settings for DjangoAnalysisTestApp project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'n(bd1f1c%e8=_xad02x5qtfn%wgwpi492e$8_erx+d)!tpeoim' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'DjangoAnalysisTestApp.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'DjangoAnalysisTestApp.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'myapp', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
py
b40de072ba376bb9ac604cef0fc732efdfe4de81
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Partially based on AboutMethods in the Ruby Koans # from runner.koan import * def my_global_function(a,b): return a + b class AboutMethods(Koan): pass # def test_calling_a_global_function(self): # self.assertEqual(__, my_global_function(2,3)) # # NOTE: Wrong number of arguments is not a SYNTAX error, but a # # runtime error. # def test_calling_functions_with_wrong_number_of_arguments(self): # try: # my_global_function() # except TypeError as exception: # msg = exception.args[0] # # Note, the text comparison works for Python 3.2 # # It has changed in the past and may change in the future # self.assertRegex(msg, # r'my_global_function\(\) missing 2 required positional arguments') # try: # my_global_function(1, 2, 3) # except Exception as e: # msg = e.args[0] # # Note, watch out for parenthesis. They need slashes in front! # self.assertRegex(msg, __) # # ------------------------------------------------------------------ # def pointless_method(self, a, b): # sum = a + b # def test_which_does_not_return_anything(self): # self.assertEqual(__, self.pointless_method(1, 2)) # # Notice that methods accessed from class scope do not require # # you to pass the first "self" argument? # # ------------------------------------------------------------------ # def method_with_defaults(self, a, b='default_value'): # return [a, b] # def test_calling_with_default_values(self): # self.assertEqual(__, self.method_with_defaults(1)) # self.assertEqual(__, self.method_with_defaults(1, 2)) # # ------------------------------------------------------------------ # def method_with_var_args(self, *args): # return args # def test_calling_with_variable_arguments(self): # self.assertEqual(__, self.method_with_var_args()) # self.assertEqual(('one',), self.method_with_var_args('one')) # self.assertEqual(__, self.method_with_var_args('one', 'two')) # # ------------------------------------------------------------------ # def function_with_the_same_name(self, a, b): # return a + b # def test_functions_without_self_arg_are_global_functions(self): # def function_with_the_same_name(a, b): # return a * b # self.assertEqual(__, function_with_the_same_name(3,4)) # def test_calling_methods_in_same_class_with_explicit_receiver(self): # def function_with_the_same_name(a, b): # return a * b # self.assertEqual(__, self.function_with_the_same_name(3,4)) # # ------------------------------------------------------------------ # def another_method_with_the_same_name(self): # return 10 # link_to_overlapped_method = another_method_with_the_same_name # def another_method_with_the_same_name(self): # return 42 # def test_that_old_methods_are_hidden_by_redefinitions(self): # self.assertEqual(__, self.another_method_with_the_same_name()) # def test_that_overlapped_method_is_still_there(self): # self.assertEqual(__, self.link_to_overlapped_method()) # # ------------------------------------------------------------------ # def empty_method(self): # pass # def test_methods_that_do_nothing_need_to_use_pass_as_a_filler(self): # self.assertEqual(__, self.empty_method()) # def test_pass_does_nothing_at_all(self): # "You" # "shall" # "not" # pass # self.assertEqual(____, "Still got to this line" != None) # # ------------------------------------------------------------------ # def one_line_method(self): return 'Madagascar' # def test_no_indentation_required_for_one_line_statement_bodies(self): # self.assertEqual(__, self.one_line_method()) # # ------------------------------------------------------------------ # def method_with_documentation(self): # "A string placed at the beginning of a function is used for documentation" # return "ok" # def test_the_documentation_can_be_viewed_with_the_doc_method(self): # self.assertRegex(self.method_with_documentation.__doc__, __) # # ------------------------------------------------------------------ # class Dog: # def name(self): # return "Fido" # def _tail(self): # # Prefixing a method with an underscore implies private scope # return "wagging" # def __password(self): # return 'password' # Genius! # def test_calling_methods_in_other_objects(self): # rover = self.Dog() # self.assertEqual(__, rover.name()) # def test_private_access_is_implied_but_not_enforced(self): # rover = self.Dog() # # This is a little rude, but legal # self.assertEqual(__, rover._tail()) # def test_attributes_with_double_underscore_prefixes_are_subject_to_name_mangling(self): # rover = self.Dog() # with self.assertRaises(___): password = rover.__password() # # But this still is! # self.assertEqual(__, rover._Dog__password()) # # Name mangling exists to avoid name clash issues when subclassing. # # It is not for providing effective access protection
py
b40de105004b3f42d3810c7f25afc4e6d3d7cc98
""" WSGI config for WebAppLAN_MonitorDjango project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'main_app.settings') application = get_wsgi_application()
py
b40de1ad17a312665d971555f5b98069af2838b9
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("mnist_data/",one_hot=True) training_digits, training_labels = mnist.train.next_batch(5000) test_digits,test_labels = mnist.test.next_batch(200) training_digits_pl = tf.placeholder("float",[None,784]) test_digit_pl = tf.placeholder("float",[784]) #nearest neighbour calculation using L1 Distancte method l1_distance = tf.abs(tf.add(training_digits_pl,tf.negative(test_digit_pl))) distance = tf.reduce_sum(l1_distance,axis=1) #prediction get min index (nearest neighbour) pred= tf.arg_min(distance,0) accuracy = 0. init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(len(test_digits)): nn_index = sess.run(pred,\ feed_dict={training_digits_pl:training_digits,test_digit_pl:test_digits[i,:]}) print("Test",i,"Prediction:",np.argmax(training_labels[nn_index]),\ "true label:",np.argmax(test_labels[i])) if np.argmax(training_labels[nn_index]) == np.argmax(test_labels[i]): accuracy += 1./len(test_digits) print("Done") print("Accuracy: ",accuracy)
py
b40de31926589d2df14a8c681ec64859756b24e8
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the REST API.""" import binascii from decimal import Decimal from enum import Enum from io import BytesIO import json from struct import pack, unpack import http.client import urllib.parse from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_greater_than_or_equal, hex_str_to_bytes, ) from test_framework.messages import BLOCK_HEADER_SIZE class ReqType(Enum): JSON = 1 BIN = 2 HEX = 3 class RetType(Enum): OBJ = 1 BYTES = 2 JSON = 3 def filter_output_indices_by_value(vouts, value): for vout in vouts: if vout['value'] == value: yield vout['n'] class RESTTest (BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [["-rest"], []] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def test_rest_request(self, uri, http_method='GET', req_type=ReqType.JSON, body='', status=200, ret_type=RetType.JSON): rest_uri = '/rest' + uri if req_type == ReqType.JSON: rest_uri += '.json' elif req_type == ReqType.BIN: rest_uri += '.bin' elif req_type == ReqType.HEX: rest_uri += '.hex' conn = http.client.HTTPConnection(self.url.hostname, self.url.port) self.log.debug('%s %s %s', http_method, rest_uri, body) if http_method == 'GET': conn.request('GET', rest_uri) elif http_method == 'POST': conn.request('POST', rest_uri, body) resp = conn.getresponse() assert_equal(resp.status, status) if ret_type == RetType.OBJ: return resp elif ret_type == RetType.BYTES: return resp.read() elif ret_type == RetType.JSON: return json.loads(resp.read().decode('utf-8'), parse_float=Decimal) def run_test(self): self.url = urllib.parse.urlparse(self.nodes[0].url) self.log.info("Mine blocks and send Focalcoin to node 1") # Random address so node1's balance doesn't increase not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ" self.nodes[0].generate(1) self.sync_all() self.nodes[1].generatetoaddress(100, not_related_address) self.sync_all() assert_equal(self.nodes[0].getbalance(), 50) txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() self.log.info("Test the /tx URI") json_obj = self.test_rest_request("/tx/{}".format(txid)) assert_equal(json_obj['txid'], txid) # Check hex format response hex_response = self.test_rest_request("/tx/{}".format(txid), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than_or_equal(int(hex_response.getheader('content-length')), json_obj['size']*2) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) self.log.info("Query an unspent TXO using the /getutxos URI") self.nodes[1].generatetoaddress(1, not_related_address) self.sync_all() bb_hash = self.nodes[0].getbestblockhash() assert_equal(self.nodes[1].getbalance(), Decimal("0.1")) # Check chainTip response json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is one utxo assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1')) self.log.info("Query a spent TXO using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) # Check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is no utxo in the response because this outpoint has been spent assert_equal(len(json_obj['utxos']), 0) # Check bitmap assert_equal(json_obj['bitmap'], "0") self.log.info("Query two TXOs using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent))) assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['bitmap'], "10") self.log.info("Query the TXOs using the /getutxos URI with a binary response") bin_request = b'\x01\x02' for txid, n in [spending, spent]: bin_request += hex_str_to_bytes(txid) bin_request += pack("i", n) bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES) output = BytesIO(bin_response) chain_height, = unpack("i", output.read(4)) response_hash = binascii.hexlify(output.read(32)[::-1]).decode('ascii') assert_equal(bb_hash, response_hash) # check if getutxo's chaintip during calculation was fine assert_equal(chain_height, 102) # chain height must be 102 self.log.info("Test the /getutxos URI with and without /checkmempool") # Create a transaction, check that it's found with /checkmempool, but # not found without. Then confirm the transaction and check that it's # found with or without /checkmempool. # do a tx and don't sync txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) json_obj = self.test_rest_request("/tx/{}".format(txid)) # get the spent output to later check for utxo (should be spent by then) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 0) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 0) self.nodes[0].generate(1) self.sync_all() json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) # Do some invalid requests self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ) # Test limits long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ) long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200) self.nodes[0].generate(1) # generate block to not affect upcoming tests self.sync_all() self.log.info("Test the /block, /blockhashbyheight and /headers URIs") bb_hash = self.nodes[0].getbestblockhash() # Check result if block does not exists assert_equal(self.test_rest_request('/headers/1/0000000000000000000000000000000000000000000000000000000000000000'), []) self.test_rest_request('/block/0000000000000000000000000000000000000000000000000000000000000000', status=404, ret_type=RetType.OBJ) # Check result if block is not in the active chain self.nodes[0].invalidateblock(bb_hash) assert_equal(self.test_rest_request('/headers/1/{}'.format(bb_hash)), []) self.test_rest_request('/block/{}'.format(bb_hash)) self.nodes[0].reconsiderblock(bb_hash) # Check binary format response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_greater_than(int(response.getheader('content-length')), BLOCK_HEADER_SIZE) response_bytes = response.read() # Compare with block header response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_equal(int(response_header.getheader('content-length')), BLOCK_HEADER_SIZE) response_header_bytes = response_header.read() assert_equal(response_bytes[:BLOCK_HEADER_SIZE], response_header_bytes) # Check block hex format response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_hex_bytes = response_hex.read().strip(b'\n') assert_equal(binascii.hexlify(response_bytes), response_hex_bytes) # Compare with hex block header response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_header_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_header_hex_bytes = response_header_hex.read(BLOCK_HEADER_SIZE*2) assert_equal(binascii.hexlify(response_bytes[:BLOCK_HEADER_SIZE]), response_header_hex_bytes) # Check json format block_json_obj = self.test_rest_request("/block/{}".format(bb_hash)) assert_equal(block_json_obj['hash'], bb_hash) assert_equal(self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']))['blockhash'], bb_hash) # Check hex/bin format resp_hex = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_equal(resp_hex.read().decode('utf-8').rstrip(), bb_hash) resp_bytes = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.BIN, ret_type=RetType.BYTES) blockhash = binascii.hexlify(resp_bytes[::-1]).decode('utf-8') assert_equal(blockhash, bb_hash) # Check invalid blockhashbyheight requests resp = self.test_rest_request("/blockhashbyheight/abc", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: abc") resp = self.test_rest_request("/blockhashbyheight/1000000", ret_type=RetType.OBJ, status=404) assert_equal(resp.read().decode('utf-8').rstrip(), "Block height out of range") resp = self.test_rest_request("/blockhashbyheight/-1", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: -1") self.test_rest_request("/blockhashbyheight/", ret_type=RetType.OBJ, status=400) # Compare with json block header json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash)) assert_equal(len(json_obj), 1) # ensure that there is one header in the json response assert_equal(json_obj[0]['hash'], bb_hash) # request/response hash should be the same # Compare with normal RPC block response rpc_block_json = self.nodes[0].getblock(bb_hash) for key in ['hash', 'confirmations', 'height', 'version', 'merkleroot', 'time', 'nonce', 'bits', 'difficulty', 'chainwork', 'previousblockhash']: assert_equal(json_obj[0][key], rpc_block_json[key]) # See if we can get 5 headers in one response self.nodes[1].generate(5) self.sync_all() json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash)) assert_equal(len(json_obj), 5) # now we should have 5 header objects self.log.info("Test tx inclusion in the /mempool and /block URIs") # Make 3 tx and mine them on node 1 txs = [] txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) self.sync_all() # Check that there are exactly 3 transactions in the TX memory pool before generating the block json_obj = self.test_rest_request("/mempool/info") assert_equal(json_obj['size'], 3) # the size of the memory pool should be greater than 3x ~100 bytes assert_greater_than(json_obj['bytes'], 300) # Check that there are our submitted transactions in the TX memory pool json_obj = self.test_rest_request("/mempool/contents") for i, tx in enumerate(txs): assert tx in json_obj assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2]) assert_equal(json_obj[tx]['depends'], txs[i - 1:i]) # Now mine the transactions newblockhash = self.nodes[1].generate(1) self.sync_all() # Check if the 3 tx show up in the new block json_obj = self.test_rest_request("/block/{}".format(newblockhash[0])) non_coinbase_txs = {tx['txid'] for tx in json_obj['tx'] if 'coinbase' not in tx['vin'][0]} assert_equal(non_coinbase_txs, set(txs)) # Check the same but without tx details json_obj = self.test_rest_request("/block/notxdetails/{}".format(newblockhash[0])) for tx in txs: assert tx in json_obj['tx'] self.log.info("Test the /chaininfo URI") bb_hash = self.nodes[0].getbestblockhash() json_obj = self.test_rest_request("/chaininfo") assert_equal(json_obj['bestblockhash'], bb_hash) if __name__ == '__main__': RESTTest().main()
py
b40de35d8677e61a48d4dafc3753b1480bddf300
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Old tests for the incoming email handler.""" from constants import constants from core.domain import feedback_services from core.platform import models from core.tests import test_utils import feconf (feedback_models, email_models) = models.Registry.import_models([ models.NAMES.feedback, models.NAMES.email]) class IncomingReplyEmailTests(test_utils.GenericTestBase): USER_A_EMAIL = '[email protected]' USER_B_EMAIL = '[email protected]' def setUp(self): super(IncomingReplyEmailTests, self).setUp() self.signup(self.USER_A_EMAIL, 'A') self.user_id_a = self.get_user_id_from_email(self.USER_A_EMAIL) self.signup(self.USER_B_EMAIL, 'B') self.user_id_b = self.get_user_id_from_email(self.USER_B_EMAIL) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.exploration = self.save_new_default_exploration( 'A', self.editor_id, title='Title') self.can_send_emails_ctx = self.swap( feconf, 'CAN_SEND_EMAILS', True) self.can_send_feedback_email_ctx = self.swap( feconf, 'CAN_SEND_FEEDBACK_MESSAGE_EMAILS', True) def test_that_reply_emails_are_added_to_thread(self): with self.can_send_emails_ctx, self.can_send_feedback_email_ctx: # Create thread. with self.swap( constants, 'ENABLE_GENERALIZED_FEEDBACK_THREADS', False): feedback_services.create_thread( feconf.ENTITY_TYPE_EXPLORATION, self.exploration.id, 'a_state_name', self.user_id_a, 'a subject', 'some text') threadlist = feedback_services.get_all_threads( feconf.ENTITY_TYPE_EXPLORATION, self.exploration.id, False) thread_id = threadlist[0].id # Create another message. feedback_services.create_message( thread_id, self.user_id_b, None, None, 'user b message') # Check that there are 2 messages in thread. messages = feedback_services.get_messages(thread_id) self.assertEqual(len(messages), 2) # Check that received_via_email is set to False. self.assertFalse(messages[0].received_via_email) # Get reply_to id for user A. model = email_models.FeedbackEmailReplyToIdModel.get( self.user_id_a, thread_id) recipient_email = 'reply+%s@%s' % ( model.reply_to_id, feconf.INCOMING_EMAILS_DOMAIN_NAME) # Send email to Oppia. self.post_email( str(recipient_email), self.USER_A_EMAIL, 'feedback email reply', 'New reply') # Check that new message is added. messages = feedback_services.get_messages(thread_id) self.assertEqual(len(messages), 3) # Check content of message is correct. msg = messages[-1] self.assertEqual(msg.text, 'New reply') self.assertEqual(msg.author_id, self.user_id_a) self.assertTrue(msg.received_via_email)
py
b40de458052ebec7ff6880cd81a8d9d1bac13ffa
# -*- coding: utf-8 -*- """Provides classes to interface solvers with PyMzn. PyMzn interfaces with solvers through the ``Solver`` base class. This class includes the necessary infomation for PyMzn to setup the solver, together with the ``solve`` and ``solve_start`` methods, which respectively take care of the running or asynchronously starting a process that solves the MiniZinc/FlatZinc model. PyMzn provides a number of solver implementations out-of-the-box. PyMzn's default solver is ``pymzn.gecode``, an instance of `pymzn.Gecode`. To use a solver that is not provided by PyMzn or to exend an existing one, one has to subclass the `Solver` class and implement the ``args`` method, which returns a list of command line arguments for executing the process. This is generally enough for most solvers, but you can also directly reimplement the ``solve`` and ``solve_start`` methods for extra flexibility. For instance:: from pymzn import Solver from pymzn.process import Process class MySolver(Solver): def __init__(self, path='path/to/solver', globals_dir='path/to/gobals'): super().__init__(globals_dir) self.cmd = path def args(self, fzn_file, *args, arg1=val1, arg2=val2, **kwargs): return [self.cmd, '-arg1', arg1, '-arg2', arg2, fzn_file] Then it is possible to run the ``minizinc`` function with the custom solver:: my_solver = MySolver() pymzn.minizinc('test.mzn', solver=my_solver, arg1=val1, arg2=val2) """ import re import logging import pymzn.config as config from ..process import Process from subprocess import CalledProcessError class Solver: """Abstract solver class. All the solvers inherit from this base class. Parameters ---------- globals_dir : str The path to the directory for global included files. """ def __init__( self, globals_dir='std', support_mzn=False, support_all=False, support_num=False, support_timeout=False, support_output_mode=False, support_stats=False ): self.globals_dir = globals_dir self.support_mzn = support_mzn self.support_all = support_all self.support_num = support_num self.support_timeout = support_timeout self.support_output_mode = support_output_mode self.support_stats = support_stats def args(*args, **kwargs): """Returns the command line arguments to start the solver""" raise NotImplementedError() def solve_start(self, *args, timeout=None, all_solutions=False, **kwargs): """Like `solve`, but returns a started Process""" log = logging.getLogger(__name__) if timeout and not self.support_timeout: if not self.support_all: raise ValueError('Timeout not supported') all_solutions = True solver_args = self.args( *args, timeout=timeout, all_solutions=all_solutions, **kwargs ) timeout = None if self.support_timeout else timeout try: log.debug('Starting solver with arguments {}'.format(solver_args)) return Process(solver_args).start(timeout=timeout) except CalledProcessError as err: log.exception(err.stderr) raise RuntimeError(err.stderr) from err def solve(self, *args, timeout=None, all_solutions=False, **kwargs): """Solve a problem encoded with MiniZinc/FlatZinc. This method should call an external solver, wait for the solution and provide the output of the solver. If the solver does not have a Python interface, the ``pymzn.process`` module can be used to run external executables. If a solver does not support dzn output, then its PyMzn implementation should take care of parsing the solver output and return a dzn equivalent. """ log = logging.getLogger(__name__) if timeout and not self.support_timeout: if not self.support_all: raise ValueError('Timeout not supported') all_solutions = True solver_args = self.args( *args, timeout=timeout, all_solutions=all_solutions, **kwargs ) timeout = None if self.support_timeout else timeout try: log.debug('Running solver with arguments {}'.format(solver_args)) process = Process(solver_args).run(timeout=timeout) out = process.stdout_data err = process.stderr_data except CalledProcessError as err: log.exception(err.stderr) raise RuntimeError(err.stderr) from err return out, err class Gecode(Solver): """Interface to the Gecode solver. Parameters ---------- mzn_path : str The path to the mzn-gecode executable. fzn_path : str The path to the fzn-gecode executable. globals_dir : str The path to the directory for global included files. """ def __init__( self, mzn_path='mzn-gecode', fzn_path='fzn-gecode', globals_dir='gecode' ): super().__init__( globals_dir, support_mzn=True, support_all=True, support_num=True, support_timeout=True, support_stats=True ) self.mzn_cmd = mzn_path self.fzn_cmd = fzn_path def args( self, mzn_file, *dzn_files, data=None, include=None, timeout=None, all_solutions=False, num_solutions=None, output_mode='item', parallel=1, seed=0, statistics=False, **kwargs ): mzn = False args = [] if mzn_file.endswith('fzn'): args.append(self.fzn_cmd) else: mzn = True args += [self.mzn_cmd, '-G', self.globals_dir] if include: if isinstance(include, str): include = [include] for path in include: args += ['-I', path] if data: args += ['-D', data] fzn_flags = [] if statistics: args.append('-s') if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', str(num_solutions)] if parallel != 1: fzn_flags += ['-p', str(parallel)] if timeout and timeout > 0: timeout = timeout * 1000 # Gecode takes milliseconds fzn_flags += ['-time', str(timeout)] if seed != 0: fzn_flags += ['-r', str(seed)] if mzn and fzn_flags: args += ['--fzn-flags', '{}'.format(' '.join(fzn_flags))] else: args += fzn_flags args.append(mzn_file) if mzn and dzn_files: for dzn_file in dzn_files: args.append(dzn_file) return args def solve(self, *args, suppress_segfault=False, **kwargs): """Solve a MiniZinc/FlatZinc problem with Gecode. Parameters ---------- suppress_segfault : bool Whether to accept or not a solution returned when a segmentation fault has happened (this is unfortunately necessary sometimes due to some bugs in Gecode). """ log = logging.getLogger(__name__) solver_args = self.args(*args, **kwargs) try: log.debug('Running solver with arguments {}'.format(solver_args)) process = Process(solver_args).run() out = process.stdout_data err = process.stderr_data except CalledProcessError as err: if suppress_segfault and len(err.stdout) > 0 \ and err.stderr.startswith('Segmentation fault'): log.warning('Gecode returned error code {} (segmentation ' 'fault) but a solution was found and returned ' '(suppress_segfault=True).'.format(err.returncode)) out = err.stdout else: log.exception(err.stderr) raise RuntimeError(err.stderr) from err return out, err class Chuffed(Solver): """Interface to the Chuffed solver. Parameters ---------- mzn_path : str The path to the mzn-chuffed executable. fzn_path : str The path to the fzn-chuffed executable. globals_dir : str The path to the directory for global included files. """ def __init__( self, mzn_path='mzn-chuffed', fzn_path='fzn-chuffed', globals_dir='chuffed' ): super().__init__( globals_dir, support_mzn=True, support_all=True, support_num=True, support_timeout=True ) self.mzn_cmd = mzn_path self.fzn_cmd = fzn_path def args( self, mzn_file, *dzn_files, data=None, include=None, timeout=None, all_solutions=False, num_solutions=None, output_mode='item', seed=0, **kwargs ): mzn = False args = [] if mzn_file.endswith('fzn'): args.append(self.fzn_cmd) else: mzn = True args += [self.mzn_cmd, '-G', self.globals_dir] if include: if isinstance(include, str): include = [include] for path in include: args += ['-I', path] if data: args += ['-D', data] fzn_flags = [] if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', str(num_solutions)] if timeout and timeout > 0: fzn_flags += ['--time-out', str(timeout)] if seed != 0: fzn_flags += ['--rnd-seed', str(seed)] if mzn and fzn_flags: args += ['--fzn-flags', '"{}"'.format(' '.join(fzn_flags))] else: args += fzn_flags args.append(mzn_file) if mzn and dzn_files: for dzn_file in dzn_files: args.append(dzn_file) return args class Optimathsat(Solver): """Interface to the Optimathsat solver. Parameters ---------- path : str The path to the optimathsat executable. globals_dir : str The path to the directory for global included files. """ def __init__(self, path='optimathsat', globals_dir='std'): super().__init__(globals_dir, support_stats=True) self.cmd = path self._line_comm_p = re.compile('%.*\n') self._rational_p = re.compile('(\d+)\/(\d+)') def _parse_out(self, out, statistics=False): stats = ''.join(self._line_comm_p.findall(out)) out = self._line_comm_p.sub(out, '') for m in self._rational_p.finditer(out): n, d = m.groups() val = float(n) / float(d) out = re.sub('{}/{}'.format(n, d), str(val), out) if statistics: return '\n'.join([out, stats]) return out def args(self, fzn_file, *args, **kwargs): return [self.cmd, '-input=fzn', fzn_file] def solve(fzn_file, *args, statistics=False, **kwargs): out, err = super().solve(fzn_file, *args, **kwargs) return self._parse_out(out, statistics), err def solve_start(self, *args, **kwargs): raise NotImplementedError() class Opturion(Solver): """Interface to the Opturion CPX solver. Parameters ---------- path : str The path to the fzn-cpx executable. globals_dir : str The path to the directory for global included files. """ def __init__(self, path='fzn-cpx', globals_dir='opturion-cpx'): super().__init__(globals_dir, support_all=True, support_stats=True) self.cmd = path def args( self, fzn_file, *args, all_solutions=False, statistics=False, **kwargs ): args = [self.cmd] if all_solutions: args.append('-a') if statistics: args.append('-s') args.append(fzn_file) return args class MIPSolver(Solver): """Interface to the MIP solver. Parameters ---------- path : str The path to the mzn-gurobi executable. globals_dir : str The path to the directory for global included files. """ def __init__(self, path='mzn-gurobi', globals_dir='linear'): super().__init__( globals_dir, support_mzn=True, support_all=True, support_num=True, support_timeout=True, support_output_mode=True, support_stats=True ) self.cmd = path def args( self, mzn_file, *dzn_files, data=None, include=None, timeout=None, all_solutions=False, num_solutions=None, output_mode='item', parallel=1, statistics=False, **kwargs ): mzn = False args = [self.cmd] if mzn_file.endswith('fzn') and output_mode not in ['dzn', 'json']: raise ValueError('Only dzn or json output available with fzn input') else: mzn = True args += ['-G', self.globals_dir] if include: if isinstance(include, str): include = [include] for path in include: args += ['-I', path] if data: args += ['-D', data] if statistics: args.append('-s') if all_solutions: args += ['-a', '--unique'] if num_solutions is not None: args += ['-n', str(num_solutions)] if parallel != 1: args += ['-p', str(parallel)] if timeout and timeout > 0: args += ['--timeout', str(timeout)] args += ['--output-mode', output_mode, mzn_file] if mzn and dzn_files: for dzn_file in dzn_files: args.append(dzn_file) return args class Gurobi(MIPSolver): """Interface to the Gurobi solver. Parameters ---------- path : str The path to the mzn-cbc executable. globals_dir : str The path to the directory for global included files. """ def __init__(self, path='mzn-gurobi', globals_dir='linear'): super().__init__(path, globals_dir) class CBC(MIPSolver): """Interface to the COIN-OR CBC solver. Parameters ---------- path : str The path to the mzn-cbc executable. globals_dir : str The path to the directory for global included files. """ def __init__(self, path='mzn-cbc', globals_dir='linear'): super().__init__(path, globals_dir) class G12Solver(Solver): """Interface to a generic G12 solver. Parameters ---------- mzn_path : str The path to the mzn executable. fzn_path : str The path to the flatzinc executable. globals_dir : str The path to the directory for global included files. backend : str The backend code of the specific solver used. """ def __init__( self, mzn_path='mzn-g12fd', fzn_path='flatzinc', globals_dir='g12_fd', backend=None ): super().__init__( globals_dir, support_mzn=True, support_all=True, support_num=True, support_stats=True ) self.fzn_cmd = fzn_path self.mzn_cmd = mzn_path self.backend = backend def args( self, mzn_file, *dzn_files, data=None, include=None, statistics=False, all_solutions=False, num_solutions=None, **kwargs ): mzn = False args = [] if mzn_file.endswith('fzn'): args.append(self.fzn_cmd) if self.backend: args += ['-b', self.backend] else: mzn = True args += [self.mzn_cmd, '-G', self.globals_dir] if include: if isinstance(include, str): include = [include] for path in include: args += ['-I', path] if data: args += ['-D', data] if statistics: args.append('-s') if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', str(num_solutions)] args.append(mzn_file) if mzn and dzn_files: for dzn_file in dzn_files: args.append(dzn_file) return args class G12Fd(G12Solver): """Interface to the G12Fd solver. Parameters ---------- mzn_path : str The path to the mzn executable. fzn_path : str The path to the flatzinc executable. globals_dir : str The path to the directory for global included files. """ def __init__( self, mzn_path='mzn-g12fd', fzn_path='flatzinc', globals_dir='g12_fd' ): super().__init__(mzn_path, fzn_path, globals_dir) class G12Lazy(G12Solver): """Interface to the G12Lazy solver. Parameters ---------- mzn_path : str The path to the mzn executable. fzn_path : str The path to the flatzinc executable. globals_dir : str The path to the directory for global included files. """ def __init__( self, mzn_path='mzn-g12lazy', fzn_path='flatzinc', globals_dir='g12_lazyfd' ): super().__init__(mzn_path, fzn_path, globals_dir, 'lazy') class G12MIP(G12Solver): """Interface to the G12MIP solver. Parameters ---------- mzn_path : str The path to the mzn executable. fzn_path : str The path to the flatzinc executable. globals_dir : str The path to the directory for global included files. """ def __init__( self, mzn_path='mzn-g12mip', fzn_path='flatzinc', globals_dir='linear' ): super().__init__(mzn_path, fzn_path, globals_dir, 'mip') class OscarCBLS(Solver): """Interface to the Oscar/CBLS solver. Parameters ---------- path : str The path to the fzn-oscar-cbls executable. globals_dir : str The path to the directory for global included files. You should either copy or link the 'mznlib' folder from the oscar-cbls-flatzinc distribution into the minizinc library directory (with name 'oscar-cbls') or provide the full path here. """ def __init__(self, path='fzn-oscar-cbls', globals_dir='oscar-cbls'): super().__init__( globals_dir, support_all=True, support_num=True, support_timeout=True, support_stats=True ) self.cmd = path def args( self, mzn_file, *dzn_files, data=None, include=None, timeout=None, all_solutions=False, num_solutions=None, statistics=False, **kwargs ): """Solve a FlatZinc problem with Oscar/CBLS. Parameters ---------- mzn_file : str The path to the fzn file to solve. Returns ------- str The output of the solver in dzn format. """ log = logging.getLogger(__name__) args = [self.cmd] if statistics: args += ['-s', '-v'] if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', str(num_solutions)] if timeout: args += ['-t', str(timeout)] args.append(mzn_file) return args class ORTools(Solver): """Interface to the OR-tools solver. Parameters ---------- path : str The path to the fzn-or-tools executable. globals_dir : str The path to the directory for global included files. You should either copy or link the 'share/minizinc_cp' folder from the or-tools distribution into the minizinc library directory (with name 'or-tools') or provide the full path here. """ def __init__(self, fzn_path='fzn-or-tools', globals_dir='or-tools'): super().__init__( globals_dir, support_all=True, support_num=True, support_timeout=True, support_stats=True ) self.fzn_cmd = fzn_path def args( self, mzn_file, *dzn_files, data=None, include=None, timeout=None, all_solutions=False, num_solutions=None, output_mode='item', parallel=1, seed=0, statistics=False, **kwargs ): """Solve a FlatZinc problem with OR-tools. Parameters ---------- mzn_file : str The path to the fzn file to solve. Returns ------- str The output of the solver in dzn format. """ args = [self.fzn_cmd] if statistics: args.append('-statistics') if all_solutions: args.append('--all_solutions') if num_solutions is not None: args += ['--num_solutions', str(num_solutions)] if parallel != 1: args += ['--threads', str(parallel)] if timeout and timeout > 0: timeout = timeout * 1000 # OR-tools takes milliseconds args += ['--time_limit', str(timeout)] if seed != 0: args += ['--fz_seed', str(seed)] args.append(mzn_file) return args #: Default Gecode instance. gecode = Gecode() #: Default Chuffed instance. chuffed = Chuffed() #: Default Optimathsat instance. optimathsat = Optimathsat() #: Default Opturion instance. opturion = Opturion() #: Default Gurobi instance. gurobi = Gurobi() #: Default CBC instance. cbc = CBC() #: Default G12Fd instance. g12fd = G12Fd() #: Default G12Lazy instance. g12lazy = G12Lazy() #: Default G12Lazy instance. g12mip = G12MIP() #: Default Oscar/CBLS instance. oscar_cbls = OscarCBLS() #: Default ORTools instance. or_tools = ORTools()
py
b40de64a7cdbd58441c8d5e71f8c937199cba979
#!/usr/bin/env python import argparse import logging import os import glob import shutil import sys import stat import tempfile sys.path.append(os.path.join( os.path.dirname(__file__), "extension", "textext" )) from requirements_check import \ set_logging_levels, \ TexTextRequirementsChecker, \ defaults, \ LoggingColors, \ SUCCESS from utility import Settings # taken from https://stackoverflow.com/a/3041990/1741477 def query_yes_no(question, default="yes"): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) if sys.version_info[0] > 2: read_input = input else: read_input = raw_input while True: sys.stdout.write(question + prompt) choice = read_input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") class TemporaryDirectory(object): """ Mimic tempfile.TemporaryDirectory from python3 """ def __init__(self): self.dir_name = None def __enter__(self): self.dir_name = tempfile.mkdtemp("textext_") return self.dir_name def __exit__(self, exc_type, exc_val, exc_tb): def retry_with_chmod(func, path, exec_info): os.chmod(path, stat.S_IWRITE) func(path) if self.dir_name: shutil.rmtree(self.dir_name, onerror=retry_with_chmod) class StashFiles(object): def __init__(self, stash_from, rel_filenames, tmp_dir, unstash_to=None): self.stash_from = stash_from self.unstash_to = stash_from if unstash_to is None else unstash_to self.rel_filenames = rel_filenames self.tmp_dir = tmp_dir def __enter__(self): for old_name, new_name in self.rel_filenames.items(): src = os.path.join(self.stash_from, old_name) dst = os.path.join(self.tmp_dir, old_name) if os.path.isfile(src): if not os.path.isdir(os.path.dirname(dst)): logger.info("Creating directory `%s`" % os.path.dirname(dst) ) os.makedirs(os.path.dirname(dst)) logger.info("Stashing `%s`" % dst) shutil.copy2(src, dst) def __exit__(self, exc_type, exc_val, exc_tb): for old_name, new_name in self.rel_filenames.items(): src = os.path.join(self.tmp_dir, old_name) dst = os.path.join(self.unstash_to, new_name) if os.path.isfile(src): if not os.path.isdir(os.path.dirname(dst)): logger.info("Creating directory `%s`" % os.path.dirname(dst) ) os.makedirs(os.path.dirname(dst)) logger.info("Restoring old `%s` -> `%s`" % (old_name, dst)) shutil.copy2(src, dst) class CopyFileOverDirectoryError(RuntimeError): pass class CopyFileAlreadyExistsError(RuntimeError): pass def copy_extension_files(src, dst, if_already_exists="raise"): """ src: glob expresion to copy from dst: destination directory if_already_exists: action on existing files. One of "raise" (default), "skip", "overwrite" """ if os.path.exists(dst): if not os.path.isdir(dst): logger.critical("Can't copy files to `%s`: it's not a directory") raise CopyFileOverDirectoryError("Can't copy files to `%s`: it's not a directory") else: logger.info("Creating directory `%s`" % dst) os.makedirs(dst) for file in glob.glob(src): basename = os.path.basename(file) destination = os.path.join(dst, basename) if os.path.exists(destination): if if_already_exists == "raise": logger.critical("Can't copy `%s`: `%s` already exists" % (file, destination)) raise CopyFileAlreadyExistsError("Can't copy `%s`: `%s` already exists" % (file, destination)) elif if_already_exists == "skip": logger.info("Skipping `%s`" % file) continue elif if_already_exists == "overwrite": logger.info("Overwriting `%s`" % destination) pass if os.path.isfile(file): logger.info("Copying `%s` to `%s`" % (file, destination)) shutil.copy(file, destination) else: logger.info("Creating directory `%s`" % destination) if os.path.exists(destination): if not os.path.isdir(destination): os.remove(destination) os.mkdir(destination) else: os.mkdir(destination) copy_extension_files(os.path.join(file, "*"), destination, if_already_exists=if_already_exists) def remove_previous_installation(extension_dir): previous_installation_files_and_folders = [ "asktext.py", "default_packages.tex", "latexlogparser.py", "textext", "textext.inx", "textext.py", "typesetter.py", "win_app_paths.py", ] for file_or_dir in previous_installation_files_and_folders: file_or_dir = os.path.abspath(os.path.join(extension_dir, file_or_dir)) if os.path.isfile(file_or_dir): logger.info("Removing `%s`" % file_or_dir) os.remove(file_or_dir) elif os.path.isdir(file_or_dir): logger.info("Removing `%s`" % file_or_dir) shutil.rmtree(file_or_dir) else: logger.debug("`%s` is not found" % file_or_dir) if __name__ == "__main__": EXIT_SUCCESS = 0 EXIT_REQUIREMENT_CHECK_UNKNOWN = 64 EXIT_REQUIREMENT_CHECK_FAILED = 65 EXIT_BAD_COMMAND_LINE_ARGUMENT_VALUE = 2 parser = argparse.ArgumentParser(description='Install TexText') parser.add_argument( "--inkscape-extensions-path", default=defaults.inkscape_extensions_path, type=str, help="Path to inkscape extensions directory" ) parser.add_argument( "--inkscape-executable", default=None, type=str, help="Full path to inkscape executable" ) parser.add_argument( "--pdflatex-executable", default=None, type=str, help="Full path to pdflatex executable" ) parser.add_argument( "--lualatex-executable", default=None, type=str, help="Full path to lualatex executable" ) parser.add_argument( "--xelatex-executable", default=None, type=str, help="Full path to xelatex executable" ) parser.add_argument( "--skip-requirements-check", default=False, action='store_true', help="Bypass minimal requirements check" ) parser.add_argument( "--skip-extension-install", default=False, action='store_true', help="Don't install extension" ) parser.add_argument( "--keep-previous-installation-files", default=None, action='store_true', help="Keep/discard files from previous installation, suppress prompt" ) parser.add_argument( "--color", default=defaults.console_colors, choices=("always", "never"), help="Enables/disable console colors" ) files_to_keep = { # old_name : new_name "default_packages.tex": "textext/default_packages.tex", # old layout "textext/default_packages.tex": "textext/default_packages.tex", # new layout "textext/config.json": "textext/config.json" # new layout } args = parser.parse_args() args.inkscape_extensions_path = os.path.expanduser(args.inkscape_extensions_path) if args.color == "always": LoggingColors.enable_colors = True elif args.color == "never": LoggingColors.enable_colors = False set_logging_levels() logger = logging.getLogger('TexText') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('[%(name)s][%(levelname)6s]: %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) fh = logging.FileHandler("setup.log") fh.setLevel(ch.level) fh.setFormatter(formatter) logger.addHandler(fh) settings = Settings() checker = TexTextRequirementsChecker(logger, settings) for executable_name in [ "inkscape", "lualatex", "pdflatex", "xelatex", ]: executable_path = getattr(args, "%s_executable" % executable_name) if executable_path is not None: if not checker.check_executable(executable_path): logger.error("Bad `%s` executable provided: `%s`. Abort installation." % (executable_name, executable_path)) exit(EXIT_BAD_COMMAND_LINE_ARGUMENT_VALUE) settings["%s-executable" % executable_name] = executable_path if not args.skip_requirements_check: check_result = checker.check() if check_result == None: logger.error("Automatic requirements check is incomplete") logger.error("Please check requirements list manually and run:") logger.error(" ".join(sys.argv + ["--skip-requirements-check"])) exit(EXIT_REQUIREMENT_CHECK_UNKNOWN) if check_result == False: logger.error("Automatic requirements check found issue") logger.error("Follow instruction above and run install script again") logger.error("To bypass requirement check pass `--skip-requirements-check` to setup.py") exit(EXIT_REQUIREMENT_CHECK_FAILED) if not args.skip_extension_install: if args.keep_previous_installation_files is None: found_files_to_keep = {} for old_filename, new_filename in files_to_keep.items(): if not os.path.isfile(os.path.join(args.inkscape_extensions_path, old_filename)): logger.debug("%s not found" % old_filename) else: logger.debug("%s found" % old_filename) if not os.path.isfile(os.path.join("extension", new_filename)): logger.info("`%s` is not found in distribution, keep old file" % new_filename) found_files_to_keep[old_filename] = new_filename continue with open(os.path.join(args.inkscape_extensions_path, old_filename)) as f_old, \ open(os.path.join("extension", new_filename)) as f_new: if f_old.read() != f_new.read(): logger.debug("Content of `%s` are not identical version in distribution" % old_filename) found_files_to_keep[old_filename] = new_filename else: logger.debug("Content of `%s` is identical to distribution" % old_filename) files_to_keep = {} if len(found_files_to_keep) > 0: file_s = "file" if len(found_files_to_keep) == 1 else "files" for old_filename, new_filename in found_files_to_keep.items(): if os.path.isfile(os.path.join("extension", new_filename)): logger.warn("Existing `%s` differs from newer version in distribution" % old_filename) if query_yes_no("Keep `%s` from previous installation?" % old_filename): files_to_keep[old_filename] = new_filename args.keep_previous_installation_files = True else: args.keep_previous_installation_files = False if not args.keep_previous_installation_files: files_to_keep = {} with TemporaryDirectory() as tmp_dir, \ StashFiles(stash_from=args.inkscape_extensions_path, rel_filenames=files_to_keep, tmp_dir=tmp_dir ): remove_previous_installation(args.inkscape_extensions_path) copy_extension_files( src="extension/*", dst=args.inkscape_extensions_path, if_already_exists="overwrite" ) settings.save() logger.log(SUCCESS, "--> TexText has been SUCCESSFULLY installed on your system <--") exit(EXIT_SUCCESS)
py
b40de653cc740a2292d4fc3e6286326ed03a422e
import inspect from argparse import ArgumentParser from torch import nn from lasaft.source_separation.conditioned.cunet.dcun_gpocm import DenseCUNet_GPoCM, DenseCUNet_GPoCM_Framework from lasaft.source_separation.conditioned.loss_functions import get_conditional_loss from lasaft.source_separation.sub_modules.building_blocks import TFC from lasaft.utils import functions class DCUN_TFC_GPoCM(DenseCUNet_GPoCM): def __init__(self, n_fft, n_blocks, input_channels, internal_channels, n_internal_layers, first_conv_activation, last_activation, t_down_layers, f_down_layers, kernel_size_t, kernel_size_f, tfc_activation, control_vector_type, control_input_dim, embedding_dim, condition_to, control_type, control_n_layer, pocm_type, pocm_norm ): tfc_activation = functions.get_activation_by_name(tfc_activation) def mk_tfc(in_channels, internal_channels, f): return TFC(in_channels, n_internal_layers, internal_channels, kernel_size_t, kernel_size_f, tfc_activation) def mk_ds(internal_channels, i, f, t_down_layers): if t_down_layers is None: scale = (2, 2) else: scale = (2, 2) if i in t_down_layers else (1, 2) ds = nn.Sequential( nn.Conv2d(in_channels=internal_channels, out_channels=internal_channels, kernel_size=scale, stride=scale), nn.BatchNorm2d(internal_channels) ) return ds, f // scale[-1] def mk_us(internal_channels, i, f, n, t_down_layers): if t_down_layers is None: scale = (2, 2) else: scale = (2, 2) if i in [n - 1 - s for s in t_down_layers] else (1, 2) us = nn.Sequential( nn.ConvTranspose2d(in_channels=internal_channels, out_channels=internal_channels, kernel_size=scale, stride=scale), nn.BatchNorm2d(internal_channels) ) return us, f * scale[-1] super(DCUN_TFC_GPoCM, self).__init__( n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, mk_tfc, mk_ds, mk_us, first_conv_activation, last_activation, t_down_layers, f_down_layers, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, condition_to, control_type, control_n_layer, pocm_type, pocm_norm ) class DCUN_TFC_GPoCM_Framework(DenseCUNet_GPoCM_Framework): def __init__(self, n_fft, hop_length, num_frame, spec_type, spec_est_mode, optimizer, lr, dev_mode, train_loss, val_loss, **kwargs): valid_kwargs = inspect.signature(DCUN_TFC_GPoCM.__init__).parameters tfc_tdf_net_kwargs = dict((name, kwargs[name]) for name in valid_kwargs if name in kwargs) tfc_tdf_net_kwargs['n_fft'] = n_fft conditional_spec2spec = DCUN_TFC_GPoCM(**tfc_tdf_net_kwargs) train_loss_ = get_conditional_loss(train_loss, n_fft, hop_length, **kwargs) val_loss_ = get_conditional_loss(val_loss, n_fft, hop_length, **kwargs) super(DCUN_TFC_GPoCM_Framework, self).__init__(n_fft, hop_length, num_frame, spec_type, spec_est_mode, conditional_spec2spec, optimizer, lr, dev_mode, train_loss_, val_loss_ ) valid_kwargs = inspect.signature(DCUN_TFC_GPoCM_Framework.__init__).parameters hp = [key for key in valid_kwargs.keys() if key not in ['self', 'kwargs']] hp = hp + [key for key in kwargs if not callable(kwargs[key])] self.save_hyperparameters(*hp) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--n_internal_layers', type=int, default=5) parser.add_argument('--kernel_size_t', type=int, default=3) parser.add_argument('--kernel_size_f', type=int, default=3) parser.add_argument('--tfc_activation', type=str, default='relu') return DenseCUNet_GPoCM_Framework.add_model_specific_args(parser)
py
b40de6a7451746f9568789aa07b43f9ce2d21f21
# -*- coding: utf-8 -*- """ Created on Sun Sep 30 12:33:58 2018 @author: michaelek """ import pandas as pd from pyhydrotel import get_mtypes, get_sites_mtypes, get_ts_data import detidelevel as dtl pd.options.display.max_columns = 10 ###################################### ### Parameters server = 'sql2012prod05' database = 'hydrotel' site = '66401' mtypes = ['water level', 'water level detided'] from_date = '2018-01-01' to_date = '2018-03-01' quantile = 0.3 output_path = r'E:\ecan\shared\projects\de-tide\de-tide_2018-10-16.html' ###################################### ### Get data mtypes1 = get_sites_mtypes(server, database, sites=site) tsdata = get_ts_data(server, database, mtypes, site, from_date, to_date, None) tsdata1 = dtl.util.tsreg(tsdata.unstack(1).reset_index().drop(['ExtSiteID'], axis=1).set_index('DateTime')).interpolate('time') roll1 = tsdata1[['water level']].rolling(12, center=True).mean().dropna() roll1.columns = ['smoothed original'] ###################################### ### Run detide det1 = dtl.detide(roll1, quantile) det2 = dtl.plot.plot_detide(roll1, quantile, output_path=output_path)
py
b40de754f9446d4740c918bb8abd3fb731e2f358
import xml.etree.ElementTree as ET import os import csv import shutil root_path = 'downloaded_images' save_path = "images_train" train_csv = 'train.csv' with open(train_csv) as f: reader = csv.reader(f) i = 0 for row in reader: if i == 0: print('dong') else: filename_value = row[0] print(filename_value) m = shutil.copy(os.path.join(root_path, filename_value), os.path.join(save_path, filename_value)) i = i + 1
py
b40de77fe751fc3d2220cef31f07642a84e9e781
import logging import sys from pathlib import Path import boto3 from igata import settings from igata.handlers.aws.input.s3 import S3BucketImageInputCtxManager from tests.utils import setup_teardown_s3_file # add test root to PATH in order to load dummypredictor BASE_TEST_DIRECTORY = Path(__file__).absolute().parent.parent.parent sys.path.append(str(BASE_TEST_DIRECTORY)) logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format="%(asctime)s [%(levelname)s] (%(name)s) %(funcName)s: %(message)s") logger = logging.getLogger(__name__) # reduce logging output from noisy packages logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("botocore").setLevel(logging.WARNING) logging.getLogger("boto3").setLevel(logging.WARNING) logging.getLogger("pynamodb.connection.base").setLevel(logging.WARNING) S3 = boto3.client("s3", endpoint_url=settings.S3_ENDPOINT) TEST_INPUT_SQS_QUEUENAME = "input-test-queue" TEST_SQS_OUTPUT_QUEUENAME = "output-test-queue" TEST_BUCKETNAME = "test-bucket-local" TEST_OUTPUT_BUCKETNAME = "test-output-bucket-local" TEST_IMAGE_FILENAME = "pacioli-512x512.png" TEST_IMAGE_FILEPATH = BASE_TEST_DIRECTORY / "data" / "images" / TEST_IMAGE_FILENAME assert TEST_IMAGE_FILEPATH.exists() SAMPLE_CSV_FILEPATH = Path(__file__).parent.parent.parent / "data" / "sample.csv" SAMPLE_CSVGZ_FILEPATH = Path(__file__).parent.parent.parent / "data" / "sample.csv.gz" TEST_IMAGE_S3URI = f"s3://{TEST_BUCKETNAME}/{TEST_IMAGE_FILENAME}" class DummyException(Exception): pass @setup_teardown_s3_file(local_filepath=TEST_IMAGE_FILEPATH, bucket=TEST_BUCKETNAME, key=TEST_IMAGE_FILENAME) def test_input_handler_s3bucketimageinputctxmanager(): image_found = False s3uris = [TEST_IMAGE_S3URI] input_settings = {} with S3BucketImageInputCtxManager(**input_settings) as s3images: for image, info in s3images.get_records(s3uris): assert image.any() assert info image_found = True assert image_found
py
b40de9b2a779019e49dc3a8537aed866c30ed2cb
from django.shortcuts import render # Create your views here. from django.http import HttpResponse from django.shortcuts import render import youtube_dl from .forms import DownloadForm import re def download_video(request): global context form = DownloadForm(request.POST or None) if form.is_valid(): video_url = form.cleaned_data.get("url") regex = r'^(http(s)?:\/\/)?((w){3}.)?youtu(be|.be)?(\.com)?\/.+' #regex = (r"^((?:https?:)?\/\/)?((?:www|m)\.)?((?:youtube\.com|youtu.be))(\/(?:[\w\-]+\?v=|embed\/|v\/)?)([\w\-]+)(\S+)?$\n") print(video_url) if not re.match(regex,video_url): print('nhi hoa') return HttpResponse('Enter correct url.') # if 'm.' in video_url: # video_url = video_url.replace(u'm.', u'') # elif 'youtu.be' in video_url: # video_id = video_url.split('/')[-1] # video_url = 'https://www.youtube.com/watch?v=' + video_id # if len(video_url.split("=")[-1]) < 11: # return HttpResponse('Enter correct url.') ydl_opts = {} with youtube_dl.YoutubeDL(ydl_opts) as ydl: meta = ydl.extract_info( video_url, download=False) video_audio_streams = [] for m in meta['formats']: file_size = m['filesize'] if file_size is not None: file_size = f'{round(int(file_size) / 1000000,2)} mb' resolution = 'Audio' if m['height'] is not None: resolution = f"{m['height']}x{m['width']}" video_audio_streams.append({ 'resolution': resolution, 'extension': m['ext'], 'file_size': file_size, 'video_url': m['url'] }) video_audio_streams = video_audio_streams[::-1] context = { 'form': form, 'title': meta['title'], 'streams': video_audio_streams, 'description': meta['description'], 'likes': meta['like_count'], 'dislikes': meta['dislike_count'], 'thumb': meta['thumbnails'][3]['url'], 'duration': round(int(meta['duration'])/60, 2), 'views': f'{int(meta["view_count"]):,}' } return render(request, 'home.html', context) return render(request, 'home.html', {'form': form})
py
b40dea2e4fad379e836b0cac59310e8feb496cf9
import asyncio import discord import nacre, re class HelpSession: def __init__(self, pearl, config): self.pearl = pearl self.hangouts = self.pearl.hangouts self.config = config self.buildUsage() self.buildHandle() def build(self): pass def buildUsage(self): self.usage = "Usage: {} command<br>Commands:".format(self.pearl.config['format']) for command in self.config['commands']: self.usage += '<br><b>{}</b>: {}'.format(command, self.config['commands'][command]) self.discUsage = discord.Embed(title=("Commands that I understand:"), color=int("ffdead", 16)) for command in self.config['commands']: self.discUsage.add_field(name=command, value=self.config['commands'][command], inline=False) def buildHandle(self): messageFilter = nacre.handle.newMessageFilter('^{}\s+help(\s.*)?$'.format(self.pearl.config['format'])) async def handle(update): if nacre.handle.isMessageEvent(update): event = update.event_notification.event if messageFilter(event): await self.respond(event, caller="h") self.pearl.updateEvent.addListener(handle) async def respond(self, event, caller=None): if caller == 'h': message = self.usage conversation = self.hangouts.getConversation(event=event) await self.hangouts.send(message, conversation) elif caller == 'd': incoming = re.match('^{}\s+help(\s.*)?.*$'.format(self.pearl.config['format']), event.content) if not incoming: return await self.pearl.embed(self.discUsage, event.channel) def load(pearl, config): return HelpSession(pearl, config)
py
b40debc4dc430898d799dd065657f7ab7068acd0
# -*- coding: utf-8 -*- # Copyright 2014-2020 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Mario Lassnig <[email protected]>, 2014-2018 # - Vincent Garonne <[email protected]>, 2017 # - Thomas Beermann <[email protected]>, 2018 # - Hannes Hansen <[email protected]>, 2018-2019 # - Andrew Lister <[email protected]>, 2019 # - Benedikt Ziemons <[email protected]>, 2020 import json from traceback import format_exc from flask import Flask, Blueprint, Response, request from flask.views import MethodView from rucio.api.heartbeat import list_heartbeats from rucio.common.exception import RucioException from rucio.common.utils import APIEncoder from rucio.web.rest.flaskapi.v1.common import request_auth_env, response_headers, check_accept_header_wrapper_flask from rucio.web.rest.utils import generate_http_error_flask class Heartbeat(MethodView): """ REST API for Heartbeats. """ @check_accept_header_wrapper_flask(['application/json']) def get(self): """ List all heartbeats. .. :quickref: Heartbeat; List heartbeats. :resheader Content-Type: application/json :status 200: OK. :status 401: Invalid Auth Token. :status 406: Not Acceptable. :returns: List of heartbeats. """ try: return Response(json.dumps(list_heartbeats(issuer=request.environ.get('issuer'), vo=request.environ.get('vo')), cls=APIEncoder), content_type='application/json') except RucioException as error: return generate_http_error_flask(500, error.__class__.__name__, error.args[0]) except Exception as error: print(format_exc()) return str(error), 500 def blueprint(): bp = Blueprint('heartbeat', __name__, url_prefix='/heartbeats') heartbeat_view = Heartbeat.as_view('heartbeat') bp.add_url_rule('', view_func=heartbeat_view, methods=['get', ]) bp.before_request(request_auth_env) bp.after_request(response_headers) return bp def make_doc(): """ Only used for sphinx documentation """ doc_app = Flask(__name__) doc_app.register_blueprint(blueprint()) return doc_app
py
b40debdc931d290ada107f51ad17a6da56e41381
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 21 2019 @author: joao ortigao """ from pandas import DataFrame as pd_DataFrame from pandas import ExcelWriter as pd_ExcelWriter from os.path import join as pathjoin from os.path import exists as pathexists from os.path import isfile from os import mkdir as osmkdir from os import getcwd as osgetcwd from Bio import Entrez from re import sub from glob import glob as gb import xml.etree.ElementTree as ET parser = ET.XMLParser(encoding="utf-8") ############################################################################## def CREATE_DIR(OUTDIR): if not pathexists(pathjoin(OUTDIR)): osmkdir(pathjoin(OUTDIR)) for DIR in ["IdListDIR","IdListDIR/disease","IdListDIR/query"]: if not pathexists(pathjoin(OUTDIR,DIR)): osmkdir(pathjoin(OUTDIR,DIR)) ############################################################################## def MAKE_DICIONARY(DISEASE_LIST): DISEASES=[] DISEASES = [line.rstrip('\n') for line in open(DISEASE_LIST)] CODES = [s.replace(' ', '_') for s in DISEASES] CODES = [s.replace('\'', '') for s in CODES] DIC = dict(zip(DISEASES,CODES)) return(DIC) ############################################################################## def esearch_disease(DISEASE_LIST,OUTDIR): CREATE_DIR(OUTDIR) DISEASE_DIC = MAKE_DICIONARY(DISEASE_LIST) # data frame to store all Counts # +2 for one extra line for "COUNTS" and "TOTAL1" df=pd_DataFrame(index=range(0,len(DISEASE_DIC)+2),columns=range(0,8)) df.columns=["disease","COD","QUERY1","QUERY2","QUERY3","QUERY4",\ "QUERY5","TOTAL2"] COL1=list(DISEASE_DIC); COL1.append('COUNTS'); COL1.append('TOTAL1') df['disease']=COL1 # data frame to store all the commands used for each search COMMAND=pd_DataFrame(index=range(0,len(DISEASE_DIC)),columns=range(0,8)) COMMAND.columns=["disease","COD","QUERY1","QUERY2","QUERY3","QUERY4",\ "QUERY5","END"] COMMAND["disease"]=COL1[0:len(DISEASE_DIC)] COMMAND["END"]='.' # data frameto store the queries' explanations QUERY_description=pd_DataFrame(index=range(0,5),columns=range(0,1)) QUERY_description.columns=["DESCRIPTION"] QUERY_description.index=["QUERY1","QUERY2","QUERY3","QUERY4","QUERY5"] QUERY1_desc='Procura o nome da doença em todos os campos e filtra por'\ ' experimentos de expressão gênica feitos com amostras '\ 'humanas. Essa é a QUERY mais abrangente.' QUERY2_desc='Igual a QUERY1 só que também procura por "patient" OU '\ '"patients" em todos os campos' QUERY3_desc='Igual a QUERY2 só que também filtra por bioprojects '\ 'presentes na base de dados SRA' QUERY4_desc='Procura o nome da doença somente no título do bioproject, '\ 'procura por "patient" OU "patients" em todos os campos e '\ 'filtra por experimentos de expressão gênica feitos com '\ 'amostras humanas' QUERY5_desc='Igual a QUERY4 só que também filtra por bioprojects '\ 'presentes na base de dados SRA' QUERY_description["DESCRIPTION"]=[QUERY1_desc,QUERY2_desc,QUERY3_desc,\ QUERY4_desc,QUERY5_desc] IdList_QUERY1=[] IdList_QUERY2=[] IdList_QUERY3=[] IdList_QUERY4=[] IdList_QUERY5=[] IdList_total=[] N=0 for DISEASE in list(DISEASE_DIC): print(str(N)+'\t'+DISEASE) COD=DISEASE_DIC[DISEASE] df["COD"][N]=COD COMMAND["COD"][N]=COD QUERY_DIC={'1':'("'+DISEASE+'"[All Fields])AND'\ '("transcriptome gene expression"[Filter]AND"org '\ 'human"[Filter])', '2':'("'+DISEASE+'"[All Fields]AND'\ '("patient"[All Fields]OR"patients"[All Fields])AND'\ '("transcriptome gene expression"[Filter]AND"org '\ 'human"[Filter])', '3':'("'+DISEASE+'"[All Fields]AND'\ '("patient"[All Fields]OR"patients"[All Fields])AND'\ '("transcriptome gene expression"[Filter]AND"org '\ 'human"[Filter]AND"bioproject sra"[Filter])', '4':'("'+DISEASE+'"[Title]AND'\ '("patient"[All Fields]OR"patients"[All Fields])AND'\ '("transcriptome gene expression"[Filter]AND"org '\ 'human"[Filter])', '5':'("'+DISEASE+'"[Title]AND'\ '("patient"[All Fields]OR"patients"[All Fields])AND'\ '("transcriptome gene expression"[Filter]AND"org '\ 'human"[Filter])AND"bioproject sra"[Filter])'} Idlist_disease=[] ROUND=['1','2','3','4','5'] for R in ROUND: QUERY='QUERY'+R TERM=QUERY_DIC[R] # COMMAND[locals[QUERY]][N]=TERM handle = Entrez.esearch(db="bioproject", retmax=1000, term=TERM) record = Entrez.read(handle) handle.close() if int(record["Count"]) > 1000: print('\nATTENTION!\nn'+record["Count"]+' bioprojects are '\ 'related to this esearch and only 1000 will be written '\ 'to the Idlist for the further analysis.\n\n'+QUERY+\ 'for '+DISEASE+'\n\n'+QUERY_DIC[R]+'\n') exit # MONTAR LISTA POR DOENÇA Idlist_disease+=list(record["IdList"]) IdList_total+=list(record["IdList"]) # ADD IDS TO QUERY AND TOTAL LISTS # IdList_total+=record["IdList"] if R == '1': IdList_QUERY1+=list(record["IdList"]) COMMAND['QUERY1'][N]=TERM df['QUERY1'][N]=int(record["Count"]) elif R == '2': IdList_QUERY2+=list(record["IdList"]) COMMAND['QUERY2'][N]=TERM df['QUERY2'][N]=int(record["Count"]) elif R == '3': IdList_QUERY3+=list(record["IdList"]) COMMAND['QUERY3'][N]=TERM df['QUERY3'][N]=int(record["Count"]) elif R == '4': IdList_QUERY4+=list(record["IdList"]) COMMAND['QUERY4'][N]=TERM df['QUERY4'][N]=int(record["Count"]) elif R == '5': IdList_QUERY5+=list(record["IdList"]) COMMAND['QUERY5'][N]=TERM df['QUERY5'][N]=int(record["Count"]) #remove replicates from the list Idlist_disease=list(set(Idlist_disease)) df['TOTAL2'][N]=len(Idlist_disease) outfile=pathjoin(OUTDIR,"IdListDIR/disease",COD+".txt") with open(outfile, 'w') as f: print( "\n".join(Idlist_disease), file = f) f.close() N+=1 #preencher a linha com totais for COL in list(df)[2:len(df)]: #COL da terceira coluna até a última df[COL][len(DISEASE_DIC)]=df[COL][0:len(DISEASE_DIC)].sum(axis=0) # ESCREVER DEMAIS LISTAS PARA ARQUIVOS TXT IdList_total=list(set(IdList_total)) outfile=pathjoin(OUTDIR,"IdListDIR/IdList_total.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_total), file = f) f.close() IdList_QUERY1=list(set(IdList_QUERY1)) df.loc[len(DISEASE_DIC)+1,"QUERY1"] = len(IdList_QUERY1) outfile=pathjoin(OUTDIR,"IdListDIR/query","IdList_QUERY1.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_QUERY1), file = f) f.close() IdList_QUERY2=list(set(IdList_QUERY2)) df.loc[len(DISEASE_DIC)+1,"QUERY2"] = len(IdList_QUERY2) outfile=pathjoin(OUTDIR,"IdListDIR/query","IdList_QUERY2.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_QUERY2), file = f) f.close() IdList_QUERY3=list(set(IdList_QUERY3)) df.loc[len(DISEASE_DIC)+1,"QUERY3"] = len(IdList_QUERY3) outfile=pathjoin(OUTDIR,"IdListDIR/query","IdList_QUERY3.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_QUERY3), file = f) f.close() IdList_QUERY4=list(set(IdList_QUERY4)) df.loc[len(DISEASE_DIC)+1,"QUERY4"] = len(IdList_QUERY4) outfile=pathjoin(OUTDIR,"IdListDIR/query","IdList_QUERY4.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_QUERY4), file = f) f.close() IdList_QUERY5=list(set(IdList_QUERY5)) df.loc[len(DISEASE_DIC)+1,"QUERY5"] = len(IdList_QUERY5) outfile=pathjoin(OUTDIR,"IdListDIR/query","IdList_QUERY5.txt") with open(outfile, 'w') as f: print( "\n".join(IdList_QUERY5), file = f) f.close() #ESCREVER TODOS OS RESULTADOS PARA UM ARQUIVO EXCEL writer = pd_ExcelWriter(pathjoin(OUTDIR,'search_NCBI_RESULT.xlsx'), engine='xlsxwriter') df.to_excel(writer, sheet_name='counts') COMMAND.to_excel(writer, sheet_name='command_lines') QUERY_description.to_excel(writer, sheet_name='query_description') writer.save() return(pathjoin(osgetcwd(),OUTDIR)) ############################################################################## def efetch_found_bioprojects(OUTDIR): def printProgressBar (iteration, total, prefix = '', suffix = '', \ decimals = 1, length = 100, fill = '█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent \ complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}")\ .format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') # Print New Line on Complete if iteration == total: print() """ COLETAR INFORMAÇOES SOBRE BIOPROJECTS ECONTRADOS """ if pathexists(OUTDIR): for DIR in ['Bioprojects','Bioprojects/xml']: if not pathexists(pathjoin(OUTDIR,DIR)): osmkdir(pathjoin(OUTDIR,DIR)) path_to_list=pathjoin(OUTDIR,'IdListDIR/IdList_total.txt') if isfile(path_to_list): with open(path_to_list,'r') as f: IdList_total=list(filter(None, f.read().splitlines())) else: print('File '+f+' was not found. Run esearch_disease(OUTDIR) '\ 'for making it.') exit() else: print('Directory '+pathjoin(OUTDIR)+' is not accessible. Did you run'\ 'esearch_disease() previously? If not, do it and try again.') exit() df2=pd_DataFrame(index=range(0,len(IdList_total)),columns=range(0,7)) df2.columns=["ID","accession","GEO","title","abstract","disease","COD"] df2["ID"]=IdList_total print("\n\n") # ESSE PRINT SERVE PARA DISTANCIAR A BARRA DE PROCESSAMENTO # QUE VEM LOGO ABAIXO DENTRO DO LOOPING # prepare bar progress l = len(IdList_total) i=0 printProgressBar(0, l, prefix = 'Download:', suffix = 'Complete', length = 50) RECALL=[] # if download fails, the ID is stored in RECALL DIC_ID={} for ID in IdList_total: try: handle = Entrez.efetch(db="bioproject", id=ID) except: RECALL+=[ID] print('handle = Entrez.efetch(db="bioproject", id='+ID+')\tFAILED') continue # avoid catastrophic event in case NCBI fails to give # the informatio for one ID try: record = handle.read() root = ET.fromstring(record) DIC = root.find(".//ProjectID/ArchiveID").attrib DIC_ID[DIC['accession']] = DIC_ID.get(DIC['accession'],DIC['id']) outfile=pathjoin(OUTDIR,'Bioprojects/xml',DIC['accession']+\ '_'+DIC['id']+'.xml') #print(outfile) with open(outfile, "w", encoding="utf-8") as f: print(record, file = f) except: RECALL+=[ID] print('FAILED to process '+ID+' during the first trial') continue printProgressBar(i+1, l, prefix = 'Download:', suffix = 'Complete', length = 50) i+=1 # RECALL for failure IDs if len(RECALL) > 0: print("\n\nFailure to download IDs. STARTING RECALL.") l = len(RECALL) i=0 printProgressBar(0, l, prefix = 'Download:', suffix = 'Complete', length = 50) RECALL2=[] for ID in RECALL: try: handle = Entrez.efetch(db="bioproject", id=ID) except: RECALL2+=[ID] print('handle = Entrez.efetch(db="bioproject", id='+ID+')'\ '\tFAILED in RECALL') continue try: record = handle.read() root = ET.fromstring(record) DIC = root.find(".//ProjectID/ArchiveID").attrib DIC_ID[DIC['accession']] = DIC_ID.get(DIC['accession'],DIC['id']) outfile=pathjoin(OUTDIR,'Bioprojects/xml',DIC['accession']+\ '_'+DIC['id']+'.xml') #print(outfile) with open(outfile, "w", encoding="utf-8") as f: print(record, file = f) except: RECALL2+=[ID] print('FAILED to process '+ID+' during the RECALL') continue printProgressBar(i+1, l, prefix = 'RECALL:', suffix = 'Complete', length = 50) i+=1 if len(RECALL2) > 0: outfile=pathjoin(OUTDIR,'Bioprojects/','RECALL_failure.txt') open(outfile,'w').write(str(RECALL2)) print("It was not possible to get ID even during the RECALL\nYou"\ "can find the problematic IDs on file:\n"+outfile) outfile=pathjoin(OUTDIR,'Bioprojects/','dict_ID_ACC.txt') open(outfile,'w').write(str(DIC_ID)) ############################################################################## def collect_XML_file(OUTDIR): # aqui são importados os xml com a descrição de cada bioproject files = gb(pathjoin(OUTDIR,'Bioprojects/xml/*.xml')) df=pd_DataFrame(index=range(0,len(files)),columns=range(0,13)) df.columns=["ID","accession","GEO","title","abstract","disease1",\ "COD1","disease2","COD2","disease3","COD3","disease4","COD4"] DIC_ID={} N=0 for file in files: #with open(file, "r", encoding="utf-8") as f: #contents = f.read() #tree = ET.fromstring(contents) tree = ET.parse(file,parser=ET.XMLParser(encoding="utf-8")) root = tree.getroot() try: GEO = root.find(".//ExternalLink/dbXREF/ID").text except: GEO = None # declare empty variable title = root.find(".//ProjectDescr/Title").text abstract = root.find(".//ProjectDescr/Description").text DIC = root.find(".//ProjectID/ArchiveID").attrib DIC_ID[DIC['accession']] = DIC_ID.get(DIC['accession'],DIC['id']) accession=DIC['accession'] ID=DIC['id'] for COL in ['ID','accession','GEO','title','abstract']: df[COL][N]=locals()[COL] #print(N) N+=1 return df ############################################################################## def classify_disease(df2,OUTDIR,DISEASE_LIST): DATADIR=OUTDIR COD_DIC = MAKE_DICIONARY(DISEASE_LIST) COD_DIC = {v: k for k, v in COD_DIC.items()} # invert the dictionary map files2 = gb(pathjoin(OUTDIR,'IdListDIR/disease/*.txt')) DISEASE1=[] DISEASE2=[] DISEASE3=[] DISEASE4=[] for file2 in files2: COD = sub('.txt','',sub('.*IdListDIR/disease\\\\','',file2)) DISEASE = COD_DIC[COD] with open(file2,'r') as f: IDs = filter(None, f.read().splitlines()) f.close() ROUND=['1','2','3','4'] for ID in IDs: #print(ID) for R in ROUND: if ID not in locals()["DISEASE"+R]: POS=df2[df2["ID"] == ID].index[0] df2.loc[[POS],'disease'+R] = DISEASE df2.loc[[POS],'COD'+R] = COD locals()["DISEASE"+R].append(ID) break return df2 ############################################################################## def writer(df2, OUTDIR): writer = pd_ExcelWriter(pathjoin(OUTDIR,'db_para_curagem.xlsx'), engine='xlsxwriter') df2.to_excel(writer, sheet_name='db_completo_nov18') writer.save() df2.to_csv(pathjoin(OUTDIR,'db_para_curagem.tsv'),sep='\t')
py
b40dec52b527e266cd5d596e78ddddac28d29742
#coding: utf-8 import os import cv2 import numpy as np from . import cvui from ._cvpath import PYCHARMERS_OPENCV_VIDEO_DIR from .editing import resize_aspect from .video_image_handler import VideoCaptureCreate from .windows import cv2key2chr from ..utils.generic_utils import now_str from ..utils.subprocess_utils import get_monitor_size from ..utils._colorings import toBLUE from ..__meta__ import __project_name__ class cv2Project(): """OpenCV project wrapper with useful GUI tools. Args: args (Namespace) : Simple object for storing attributes. Note: * Image object ( ``np.ndarray`` ) has the shape ( ``height`` , ``width`` , ``channel`` ) * ``XXX_size`` attributes are formatted as ( ``width`` , ``height`` ) Attributes: cap (VideoCapture) : VideoCapture (mimic) object. See :meth:`VideoCaptureCreate <pycharmers.opencv.video_image_handler.VideoCaptureCreate>` monitor (np.ndarray) : Background image. shape= ( ``monitor_height`` , ``monitor_width``, 3) monitor_height : The height of monitor. monitor_width : The width of monitor. original_height (int) : The height of original frame. original_width (int) : The width of original frame. frame_height (int) : The height of resized frame. frame_width (int) : The width of resized frame. frame_dsize (tuple) : ( ``frame_width`` , ``frame_height`` ) frame_halfsize (tuple) : ( ``frame_width//2`` , ``frame_height//2`` ) gui_x (int) : ``frame_width`` + ``gui_margin`` fps (int) : Frame per seconds. video (cv2.VideoWriter) : Video Writer. video_fn (str) : The file name of video. OtherAttributes: See :py:class:`cv2ArgumentParser <pycharmers.utils.argparse_utils.cv2ArgumentParser>` . """ def __init__(self, args, **kwargs): self.__dict__.update(args.__dict__) self.__dict__.update(kwargs) self.init() def init(self): """Initialize VideoCapture (mimic) object and GUI tools. Note: * To run this method, ``self`` must have these attributes. * winname (str) : Window name. * path (str) : Path to video or image. * cam (int) : The ID of the web camera. * ext (str) : The extension for saved image. * gui_width (int) : The width of the GUI tools. * gui_margin (int) : The margin of GUI control tools. * monitor_size (ListParamProcessor) : Monitor size. ( ``width`` , ``height`` ) * autofit (bool) : Whether to fit display size to window size. * twitter (bool) : Whether you want to run for tweet. ( ``display_size`` will be () ) * capture (bool) : Whether you want to save as video. * After run this method, ``self`` will have these attributes. * cap (VideoCapture) : VideoCapture (mimic) object. See :meth:`VideoCaptureCreate <pycharmers.opencv.video_image_handler.VideoCaptureCreate>` * monitor (np.ndarray) : Background image. shape= ( ``monitor_height`` , ``monitor_width``, 3) * monitor_height : The height of monitor. * monitor_width : The width of monitor. * original_height (int) : The height of original frame. * original_width (int) : The width of original frame. * frame_height (int) : The height of resized frame. * frame_width (int) : The width of resized frame. * frame_dsize (tuple) : ( ``frame_width`` , ``frame_height`` ) * frame_halfsize (tuple) : ( ``frame_width//2`` , ``frame_height//2`` ) * gui_x (int) : ``frame_width`` + ``gui_margin`` * fps (int) : Frame per seconds. * video (cv2.VideoWriter) : Video Writer. * video_fn (str) : The file name of video. * fn_prefix (str) : The prefix of filename ( ``"" if self.path is None else self.path+"."`` ) """ cap = VideoCaptureCreate(path=self.path, cam=self.cam) if self.autofit: monitor_width, monitor_height = get_monitor_size() elif self.twitter: monitor_width, monitor_height = (1300, 733) else: monitor_width, monitor_height = self.monitor_size fn_prefix = "" if self.path is None else self.path+"." monitor = np.zeros(shape=(monitor_height, monitor_width, 3), dtype=np.uint8) original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height, frame_width = resize_aspect(src=np.zeros(shape=(original_height, original_width, 1), dtype=np.uint8), dsize=(monitor_width-self.gui_width, monitor_height)).shape[:2] frame_dsize = (frame_width, frame_height) frame_halfsize = (frame_width//2, frame_height//2) gui_x = frame_width + self.gui_margin fps = cap.get(cv2.CAP_PROP_FPS) video_path = f'{fn_prefix}.{now_str()}.mp4' video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc('m','p','4','v'), fps, (monitor_width, monitor_height)) print(f"Created {toBLUE(video_path)}") cvui.init(windowNames=self.winname, numWindows=1, delayWaitKey=1, createNamedWindows=True) cv2.moveWindow(winname=self.winname, x=0, y=0) # NOTE: Register the variables defined here as attributes. defined_args = locals() defined_args.pop("self") self.__dict__.update(defined_args) def wrap(self, func): """Wrap the function. Args: func (function) : A function that receives and returns ``frame``. """ params = self.__dict__ char = "" while (True): self.monitor[:] = self.gui_color ret, frame = self.cap.read() if not ret: break # Wrap the function. frame = func(frame=frame, **params) # Recieve the key. key = cvui.lastKeyPressed() if key != -1: char = cv2key2chr(key) # y = self.frame_height-120 cvui.text(where=self.monitor, x=self.gui_x, y=self.frame_height-120, text=f" Your input: {char}") # y = self.frame_height-95 if cvui.button(where=self.monitor, x=self.gui_x, y=self.frame_height-95, width=70, height=30, label="&Save", color=(137, 225, 241)): filename = f'{self.fn_prefix}.{now_str()}{self.ext}' cv2.imwrite(filename=filename, img=frame) cv2.imshow(winname=filename, mat=resize_aspect(cv2.imread(filename), dsize=self.frame_halfsize)) print(f"Saved {toBLUE(filename)}") if cvui.button(where=self.monitor, x=self.gui_x+80, y=self.frame_height-95, width=80, height=30, label="&Stop" if self.capture else "&Capture", color=(110, 93, 211) if self.capture else (177, 163, 121)): self.capture = not self.capture # y = self.frame_height-60 if key == cvui.ESCAPE or cvui.button(where=self.monitor, x=self.gui_x+105, y=self.frame_height-60, width=55, height=30, label="&Quit", color=(128, 95, 159)): break if cvui.button(where=self.monitor, x=self.gui_x, y=self.frame_height-60, width=95, height=30, label="&FullScreen", color=(116, 206, 173)): cv2.setWindowProperty( winname=self.winname, prop_id=cv2.WND_PROP_FULLSCREEN, prop_value=1-cv2.getWindowProperty( winname=self.winname, prop_id=cv2.WND_PROP_FULLSCREEN, ) ) # y = self.frame_height-20 cvui.text(where=self.monitor, x=self.gui_x, y=self.frame_height-20, text=__project_name__) cvui.beginRow(where=self.monitor, x=0, y=0) cvui.image(image=cv2.resize(src=frame, dsize=self.frame_dsize)) cvui.endRow() cvui.update() cv2.imshow(self.winname, self.monitor) if self.capture: self.video.write(self.monitor) self.release() def release(self): """Do the necessary processing at the end""" cv2.destroyAllWindows() self.cap.release() if os.path.getsize(self.video_path) <= 1000: os.remove(self.video_path) print(f"Deleted {toBLUE(self.video_path)} (because you didn't capture the window)")
py
b40dec92d0092c3f81dae609fc7f6395bf44a343
"""Sopel Plugins Command Line Interface (CLI): ``sopel-plugins``""" from __future__ import generator_stop import argparse import inspect import operator from sopel import config, plugins, tools from . import utils ERR_CODE = 1 """Error code: program exited with an error""" def build_parser(): """Configure an argument parser for ``sopel-plugins``. :return: the argument parser :rtype: :class:`argparse.ArgumentParser` """ parser = argparse.ArgumentParser( description='Sopel plugins tool') # Subparser: sopel-plugins <sub-parser> <sub-options> subparsers = parser.add_subparsers( help='Action to perform', dest='action') # sopel-plugins show <name> show_parser = subparsers.add_parser( 'show', formatter_class=argparse.RawTextHelpFormatter, help="Show plugin details", description="Show detailed information about a plugin.") utils.add_common_arguments(show_parser) show_parser.add_argument('name', help='Plugin name') # sopel-plugins configure <name> config_parser = subparsers.add_parser( 'configure', formatter_class=argparse.RawTextHelpFormatter, help="Configure plugin with a config wizard", description=inspect.cleandoc(""" Run a config wizard to configure a plugin. This can be used whether the plugin is enabled or not. """)) utils.add_common_arguments(config_parser) config_parser.add_argument('name', help='Plugin name') # sopel-plugins list list_parser = subparsers.add_parser( 'list', formatter_class=argparse.RawTextHelpFormatter, help="List available Sopel plugins", description=inspect.cleandoc(""" List available Sopel plugins from all possible sources. Plugin sources are: built-in, from ``sopel_modules.*``, from ``sopel.plugins`` entry points, or Sopel's plugin directories. Enabled plugins are displayed in green; disabled, in red. """)) utils.add_common_arguments(list_parser) list_parser.add_argument( '-C', '--no-color', help='Disable colors', dest='no_color', action='store_true', default=False) list_enable = list_parser.add_mutually_exclusive_group(required=False) list_enable.add_argument( '-e', '--enabled-only', help='Display only enabled plugins', dest='enabled_only', action='store_true', default=False) list_enable.add_argument( '-d', '--disabled-only', help='Display only disabled plugins', dest='disabled_only', action='store_true', default=False) list_parser.add_argument( '-n', '--name-only', help='Display only plugin names', dest='name_only', action='store_true', default=False) # sopel-plugins disable disable_parser = subparsers.add_parser( 'disable', formatter_class=argparse.RawTextHelpFormatter, help="Disable a Sopel plugins", description=inspect.cleandoc(""" Disable a Sopel plugin by its name, no matter where it comes from. It is not possible to disable the ``coretasks`` plugin. """)) utils.add_common_arguments(disable_parser) disable_parser.add_argument( 'names', metavar='name', nargs='+', help=inspect.cleandoc(""" Name of the plugin to disable. Can be used multiple times to disable multiple plugins at once. In case of error, configuration is not modified. """)) disable_parser.add_argument( '-f', '--force', action='store_true', default=False, help=inspect.cleandoc(""" Force exclusion of the plugin. When ``core.enable`` is defined, a plugin may be disabled without being excluded. In this case, use this option to force its exclusion. """)) disable_parser.add_argument( '-r', '--remove', action='store_true', default=False, help="Remove from ``core.enable`` list if applicable.") # sopel-plugins enable enable_parser = subparsers.add_parser( 'enable', formatter_class=argparse.RawTextHelpFormatter, help="Enable a Sopel plugin", description=inspect.cleandoc(""" Enable a Sopel plugin by its name, no matter where it comes from. The ``coretasks`` plugin is always enabled. By default, a plugin that is not excluded is enabled, unless at least one plugin is defined in the ``core.enable`` list. In that case, Sopel uses an "allow-only" policy for plugins, and all desired plugins must be added to this list. """)) utils.add_common_arguments(enable_parser) enable_parser.add_argument( 'names', metavar='name', nargs='+', help=inspect.cleandoc(""" Name of the plugin to enable. Can be used multiple times to enable multiple plugins at once. In case of error, configuration is not modified. """)) enable_parser.add_argument( '-a', '--allow-only', dest='allow_only', action='store_true', default=False, help=inspect.cleandoc(""" Enforce allow-only policy. It makes sure the plugin is added to the ``core.enable`` list. """)) return parser def handle_list(options): """List Sopel plugins. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine """ settings = utils.load_settings(options) no_color = options.no_color name_only = options.name_only enabled_only = options.enabled_only disabled_only = options.disabled_only # get usable plugins items = ( (name, info[0], info[1]) for name, info in plugins.get_usable_plugins(settings).items() ) items = ( (name, plugin, is_enabled) for name, plugin, is_enabled in items ) # filter on enabled/disabled if required if enabled_only: items = ( (name, plugin, is_enabled) for name, plugin, is_enabled in items if is_enabled ) elif disabled_only: items = ( (name, plugin, is_enabled) for name, plugin, is_enabled in items if not is_enabled ) # sort plugins items = sorted(items, key=operator.itemgetter(0)) for name, plugin, is_enabled in items: description = { 'name': name, 'status': 'enabled' if is_enabled else 'disabled', } # optional meta description from the plugin itself try: plugin.load() description.update(plugin.get_meta_description()) # colorize name for display purpose if not no_color: if is_enabled: description['name'] = utils.green(name) else: description['name'] = utils.red(name) except Exception as error: label = ('%s' % error) or 'unknown loading exception' error_status = 'error' description.update({ 'label': 'Error: %s' % label, 'type': 'unknown', 'source': 'unknown', 'status': error_status, }) if not no_color: if is_enabled: # yellow instead of green description['name'] = utils.yellow(name) else: # keep it red for disabled plugins description['name'] = utils.red(name) description['status'] = utils.red(error_status) template = '{name}/{type} {label} ({source}) [{status}]' if name_only: template = '{name}' print(template.format(**description)) return 0 # successful operation def handle_show(options): """Show plugin details. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine; 1 if the plugin doesn't exist or can't be loaded """ plugin_name = options.name settings = utils.load_settings(options) usable_plugins = plugins.get_usable_plugins(settings) # plugin does not exist if plugin_name not in usable_plugins: tools.stderr('No plugin named %s' % plugin_name) return ERR_CODE plugin, is_enabled = usable_plugins[plugin_name] description = { 'name': plugin_name, 'status': 'enabled' if is_enabled else 'disabled', } # optional meta description from the plugin itself loaded = False try: plugin.load() description.update(plugin.get_meta_description()) loaded = True except Exception as error: label = ('%s' % error) or 'unknown loading exception' error_status = 'error' description.update({ 'label': 'Error: %s' % label, 'type': 'unknown', 'source': 'unknown', 'status': error_status, }) print('Plugin:', description['name']) print('Status:', description['status']) print('Type:', description['type']) print('Source:', description['source']) print('Label:', description['label']) if not loaded: print('Loading failed') return ERR_CODE print('Loaded successfully') print('Setup:', 'yes' if plugin.has_setup() else 'no') print('Shutdown:', 'yes' if plugin.has_shutdown() else 'no') print('Configure:', 'yes' if plugin.has_configure() else 'no') return 0 # successful operation def handle_configure(options): """Configure a Sopel plugin with a config wizard. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine; 1 if the plugin doesn't exist or can't be loaded """ plugin_name = options.name settings = utils.load_settings(options) usable_plugins = plugins.get_usable_plugins(settings) # plugin does not exist if plugin_name not in usable_plugins: tools.stderr('No plugin named %s' % plugin_name) return ERR_CODE plugin, is_enabled = usable_plugins[plugin_name] try: plugin.load() except Exception as error: tools.stderr('Cannot load plugin %s: %s' % (plugin_name, error)) return ERR_CODE if not plugin.has_configure(): tools.stderr('Nothing to configure for plugin %s' % plugin_name) return 0 # nothing to configure is not exactly an error case print('Configure %s' % plugin.get_label()) try: plugin.configure(settings) except KeyboardInterrupt: tools.stderr( '\nOperation cancelled; the config file has not been modified.') return ERR_CODE # cancelled operation settings.save() if not is_enabled: tools.stderr( "Plugin {0} has been configured but is not enabled. " "Use 'sopel-plugins enable {0}' to enable it".format(plugin_name) ) return 0 # successful operation def _handle_disable_plugin(settings, plugin_name, force): excluded = settings.core.exclude # nothing left to do if already excluded if plugin_name in excluded: tools.stderr('Plugin %s already disabled.' % plugin_name) return False # recalculate state: at the moment, the plugin is not in the excluded list # however, with ensure_remove, the enable list may be empty, so we have # to compute the plugin's state here, and not use what comes from # plugins.get_usable_plugins is_enabled = ( not settings.core.enable or plugin_name in settings.core.enable ) # if not enabled at this point, exclude if options.force is used if not is_enabled and not force: tools.stderr( 'Plugin %s is disabled but not excluded; ' 'use -f/--force to force its exclusion.' % plugin_name) return False settings.core.exclude = excluded + [plugin_name] return True def display_unknown_plugins(unknown_plugins): """Print an error message when one or more plugins are unknown. :param list unknown_plugins: list of unknown plugins """ # at least one of the plugins does not exist tools.stderr(utils.get_many_text( unknown_plugins, one='No plugin named {item}.', two='No plugin named {first} or {second}.', many='No plugin named {left}, or {last}.' )) def handle_disable(options): """Disable Sopel plugins. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine; 1 if the plugin doesn't exist, or if attempting to disable coretasks (required) """ plugin_names = options.names force = options.force ensure_remove = options.remove settings = utils.load_settings(options) usable_plugins = plugins.get_usable_plugins(settings) actually_disabled = [] # coretasks is sacred if 'coretasks' in plugin_names: tools.stderr('Plugin coretasks cannot be disabled.') return ERR_CODE # do nothing and return an error code unknown_plugins = [ name for name in plugin_names if name not in usable_plugins ] if unknown_plugins: display_unknown_plugins(unknown_plugins) return ERR_CODE # do nothing and return an error code # remove from enabled if asked if ensure_remove: settings.core.enable = [ name for name in settings.core.enable if name not in plugin_names ] settings.save() # disable plugin (when needed) actually_disabled = tuple( name for name in plugin_names if _handle_disable_plugin(settings, name, force) ) # save if required if actually_disabled: settings.save() else: return 0 # nothing to disable or save, but not an error case # display plugins actually disabled by the command print(utils.get_many_text( actually_disabled, one='Plugin {item} disabled.', two='Plugins {first} and {second} disabled.', many='Plugins {left}, and {last} disabled.' )) return 0 def _handle_enable_plugin(settings, usable_plugins, plugin_name, allow_only): enabled = settings.core.enable excluded = settings.core.exclude # coretasks is sacred if plugin_name == 'coretasks': tools.stderr('Plugin coretasks is always enabled.') return False # is it already enabled, but should we enforce anything? is_enabled = usable_plugins[plugin_name][1] if is_enabled and not allow_only: # already enabled, and no allow-only option: all good if plugin_name in enabled: tools.stderr('Plugin %s is already enabled.' % plugin_name) else: # suggest to use --allow-only option tools.stderr( 'Plugin %s is enabled; ' 'use option -a/--allow-only to enforce allow only policy.' % plugin_name) return False # not enabled, or option allow_only to enforce if plugin_name in excluded: # remove from excluded settings.core.exclude = [ name for name in settings.core.exclude if plugin_name != name ] elif plugin_name in enabled: # not excluded, and already in enabled list: all good tools.stderr('Plugin %s is already enabled' % plugin_name) return False if plugin_name not in enabled and (enabled or allow_only): # not excluded, but not enabled either: allow-only mode required # either because of the current configuration, or by request settings.core.enable = enabled + [plugin_name] return True def handle_enable(options): """Enable a Sopel plugin. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine; 1 if the plugin doesn't exist """ plugin_names = options.names allow_only = options.allow_only settings = utils.load_settings(options) usable_plugins = plugins.get_usable_plugins(settings) # plugin does not exist unknown_plugins = [ name for name in plugin_names if name not in usable_plugins ] if unknown_plugins: display_unknown_plugins(unknown_plugins) return ERR_CODE # do nothing and return an error code actually_enabled = tuple( name for name in plugin_names if _handle_enable_plugin(settings, usable_plugins, name, allow_only) ) # save if required if actually_enabled: settings.save() else: return 0 # nothing to disable or save, but not an error case # display plugins actually disabled by the command print(utils.get_many_text( actually_enabled, one='Plugin {item} enabled.', two='Plugins {first} and {second} enabled.', many='Plugins {left}, and {last} enabled.' )) return 0 def main(): """Console entry point for ``sopel-plugins``.""" parser = build_parser() options = parser.parse_args() action = options.action if not action: parser.print_help() return ERR_CODE try: if action == 'list': return handle_list(options) elif action == 'show': return handle_show(options) elif action == 'configure': return handle_configure(options) elif action == 'disable': return handle_disable(options) elif action == 'enable': return handle_enable(options) except KeyboardInterrupt: tools.stderr('Bye!') return ERR_CODE except config.ConfigurationNotFound as err: tools.stderr(err) tools.stderr('Use `sopel-config init` to create a new config file.') return ERR_CODE
py
b40dee4c88e22265fa70d255caf1b0ff50420d07
# Copyright (c) 2021 - present, Timur Shenkao # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from python_code.helper.binary_trees import generate_binary_tree, print_binary_tree from solution import Solution def main(): solution = Solution() ########################################################### root1 = generate_binary_tree([1, 3, 2, 5]) root2 = generate_binary_tree([2, 1, 3, None, 4, None, 7]) print_binary_tree(solution.merge_trees_iteration(root1, root2), is_root=True) root1 = generate_binary_tree([1]) root2 = generate_binary_tree([1, 2]) print_binary_tree(solution.merge_trees_iteration(root1, root2), is_root=True) if __name__ == '__main__': main()
py
b40dee7b29f817a7ae0b1f188136df6e1a00a506
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PoolStopResizeOptions(Model): """Additional parameters for the Pool_stop_resize operation. :param timeout: The maximum time that the server can spend processing the request, in seconds. The default is 30 seconds. Default value: 30 . :type timeout: int :param client_request_id: The caller-generated request identity, in the form of a GUID with no decoration such as curly braces, e.g. 9C4D50EE-2D56-4CD3-8152-34347DC9F2B0. :type client_request_id: str :param return_client_request_id: Whether the server should return the client-request-id in the response. Default value: False . :type return_client_request_id: bool :param ocp_date: The time the request was issued. If not specified, this header will be automatically populated with the current system clock time. :type ocp_date: datetime :param if_match: An ETag is specified. Specify this header to perform the operation only if the resource's ETag is an exact match as specified. :type if_match: str :param if_none_match: An ETag is specified. Specify this header to perform the operation only if the resource's ETag does not match the specified ETag. :type if_none_match: str :param if_modified_since: Specify this header to perform the operation only if the resource has been modified since the specified date/time. :type if_modified_since: datetime :param if_unmodified_since: Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :type if_unmodified_since: datetime """ def __init__(self, timeout=30, client_request_id=None, return_client_request_id=False, ocp_date=None, if_match=None, if_none_match=None, if_modified_since=None, if_unmodified_since=None): self.timeout = timeout self.client_request_id = client_request_id self.return_client_request_id = return_client_request_id self.ocp_date = ocp_date self.if_match = if_match self.if_none_match = if_none_match self.if_modified_since = if_modified_since self.if_unmodified_since = if_unmodified_since
py
b40deee19f16bdaa8d09d457f686a4d19fbe743a
import os import cv2 import sys import pdb import math import time import torch import torch.nn import torch.nn.functional as F from pytracking import TensorList from pytracking.features import augmentation from pytracking.tracker.base import BaseTracker from pytracking.utils.plotting import show_tensor from pytracking.features.preprocessing import sample_patch from pytracking.features.preprocessing import numpy_to_torch class SBDT(BaseTracker): def initialize_model(self): ''' if not getattr(self, 'model_initialized', False): self.params.model.initialize() self.model_initialized = True ''' self.params.model.initialize() # for reproduce the VOT result # ------ MAIN INITIALIZE ------# def initialize(self, image, state, *args, **kwargs): self.frame_num = 1 # For debug show only #image_show = image.copy() # Fix random seed torch.manual_seed(1024) torch.cuda.manual_seed_all(1024) # Initialize features self.initialize_model() # Get position and size (y, x, h, w) self.target_pos = torch.Tensor([state[1] + (state[3] - 1)/2, state[0] + (state[2] - 1)/2]) self.target_sz = torch.Tensor([state[3], state[2]]) self.initial_target_sz = self.target_sz.clone() # Set target scale and base target size (N) self.img_sample_sz = torch.Tensor([math.sqrt(self.params.img_sample_area)]) * torch.ones(2) self.target_sample_area = self.params.img_sample_area / self.params.search_area_scale**2 # Get initial search area, sample scale ratio and target size in sample image self.search_area = torch.prod(self.target_sz * self.params.search_area_scale) self.sample_scale = torch.sqrt(self.search_area / self.params.img_sample_area) self.target_sample_sz = self.target_sz / self.sample_scale # Generate centers of proposals for locator (N) self.proposals_xc, self.proposals_yc = self.init_proposal_centers_function() # Generate labels for locator (N) self.labels = self.init_labels_function() assert(self.labels.max().item()==1.0) # Creat output score window (N) self.output_window = None if getattr(self.params, 'window_output', True): self.output_window = self.init_output_window_function() # Setup scale bounds (N) self.min_scale_factor = self.params.min_scale_factor self.max_scale_factor = self.params.max_scale_factor # Extract initial transform samples im_tensor = numpy_to_torch(image) train_samples = self.generate_init_samples(im_tensor, self.target_pos, self.sample_scale).cuda() # Setup scale bounds (Martin) self.image_sz = torch.Tensor([im_tensor.shape[2], im_tensor.shape[3]]) self.min_scale_factor = torch.max(10 / self.initial_target_sz) self.max_scale_factor = torch.min(self.image_sz / self.initial_target_sz) # Generate initial proposals for locator batch_size = train_samples.shape[0] init_proposals = self.get_locator_proposals(self.target_sample_sz) init_proposals = init_proposals.repeat(batch_size,1,1) # Feature Extract self.params.model.extract(train_samples, init_proposals) # Initialize iounet self.init_iou_net(self.target_pos, self.target_sz, self.sample_scale) # Initialize locator features self.initial_locator_features = self.params.model.locator_features.clone().mean(dim=0) self.locator_features_model = self.params.model.locator_features.clone().mean(dim=0) # Train locator model self.regularization_matrix = None self.locator_model = self.train_locator_model(self.locator_features_model) # Initial the hard negative sample detect region self.hard_negative_region_mask = self.init_hard_negative_region_function() # Initial the weight of first frame self.current_initial_frame_weight = 1.0 # Output result image #self.output_result_image(image_show, state) # ------ MAIN TRACK ------# def track(self, image): self.frame_num += 1 # For debug show only #image_show = image.copy() # Conver to tensor and GPU image_cuda = self.numpy_to_tensor_gpu(image) # ------- LOCALIZATION ------- # sample_pos = self.target_pos.clone() sample_scale = self.sample_scale.clone() target_sample_sz = self.target_sample_sz.clone() # sample and extract features test_sample = sample_patch(image_cuda, sample_pos, sample_scale*self.img_sample_sz, self.img_sample_sz) test_locator_proposals = self.get_locator_proposals(target_sample_sz) self.params.model.extract(test_sample, test_locator_proposals) # calcualte the localization score test_locator_score = torch.mm(self.params.model.locator_features, self.locator_model) if getattr(self.params, 'window_output', False): test_locator_score = test_locator_score * self.output_window max_score, max_id = torch.max(test_locator_score, dim=0) max_score, max_id = max_score.item(), max_id.item() # when target not found if max_score < self.params.target_not_found_threshold: # maintain the original target position and size new_state = torch.cat((self.target_pos[[1,0]] - (self.target_sz[[1,0]]-1)/2, self.target_sz[[1,0]])) # Output result image #self.output_result_image(image_show, new_state) return new_state.tolist() # update the target position self.target_pos[0] = self.target_pos[0] + (self.proposals_yc[max_id].item() - self.img_sample_sz[1]*0.5) * sample_scale self.target_pos[1] = self.target_pos[1] + (self.proposals_xc[max_id].item() - self.img_sample_sz[0]*0.5) * sample_scale # refine the target position and size by IoUNet new_pos, new_target_sz = self.refine_target_box(self.target_pos, self.target_sz, sample_pos, sample_scale) # bound the taeget size if new_target_sz is not None: new_target_sz = torch.min(new_target_sz, self.initial_target_sz*self.max_scale_factor) new_target_sz = torch.max(new_target_sz, self.initial_target_sz*self.min_scale_factor) # update the target and sampling message if new_pos is not None: self.target_pos = new_pos.clone() self.target_sz = new_target_sz.clone() self.search_area = torch.prod(self.target_sz * self.params.search_area_scale) self.sample_scale = torch.sqrt(self.search_area / self.params.img_sample_area) self.target_sample_sz = self.target_sz / self.sample_scale # Return new state new_state = torch.cat((self.target_pos[[1,0]] - (self.target_sz[[1,0]]-1)/2, self.target_sz[[1,0]])) # Output result image #self.output_result_image(image_show, new_state) # ------- UPDAT MODEL------- # train_sample = sample_patch(image_cuda, self.target_pos, self.sample_scale*self.img_sample_sz, self.img_sample_sz) train_locator_proposals = self.get_locator_proposals(self.target_sample_sz) self.params.model.extract(train_sample, train_locator_proposals, only_locator=True) hard_flag = False if self.params.hard_negative_mining: train_locator_score = torch.mm(self.params.model.locator_features, self.locator_model) train_locator_score = train_locator_score * self.hard_negative_region_mask max_score, _ = torch.max(train_locator_score, dim=0) if max_score > self.params.hard_negative_threshold: hard_flag = True if hard_flag: learning_rate = self.params.hard_negative_learning_rate else: learning_rate = self.params.learning_rate self.locator_features_model = (1 - learning_rate) * self.locator_features_model + learning_rate * self.params.model.locator_features self.current_initial_frame_weight = (1 - learning_rate) * self.current_initial_frame_weight if self.current_initial_frame_weight < self.params.init_samples_minimum_weight: diff = self.params.init_samples_minimum_weight - self.current_initial_frame_weight coff = diff / (1 - self.current_initial_frame_weight) self.locator_features_model = (1 - coff) * self.locator_features_model + coff * self.initial_locator_features self.current_initial_frame_weight = self.params.init_samples_minimum_weight if (self.frame_num % self.params.train_skipping == 0) or (hard_flag): self.locator_model = self.train_locator_model(self.locator_features_model, self.locator_model) return new_state.tolist() def numpy_to_tensor_gpu(self, image): image = torch.from_numpy(image) image = image.cuda() image = image.permute(2,0,1).unsqueeze(0).to(torch.float32) return image def init_proposal_centers_function(self): search_area_scale = self.params.search_area_scale num_proposals = self.params.num_proposals_locator num_proposals_sqrt = int(math.sqrt(num_proposals)) WIDTH, HEIGHT = self.img_sample_sz[0], self.img_sample_sz[1] x_step = ((WIDTH - WIDTH/search_area_scale) / (num_proposals_sqrt-1)) y_step = ((HEIGHT - HEIGHT/search_area_scale) / (num_proposals_sqrt-1)) proposals_xc = torch.arange(num_proposals_sqrt).repeat(num_proposals_sqrt).type(torch.float32) proposals_yc = torch.arange(num_proposals_sqrt).repeat(num_proposals_sqrt,1).t().reshape(-1).type(torch.float32) proposals_xc = proposals_xc * x_step + WIDTH/(search_area_scale*2) proposals_yc = proposals_yc * y_step + HEIGHT/(search_area_scale*2) proposals_xc = proposals_xc.to(self.params.device) proposals_yc = proposals_yc.to(self.params.device) return proposals_xc, proposals_yc def init_labels_function(self): proposals_xc = self.proposals_xc proposals_yc = self.proposals_yc sigma_factor = self.params.output_sigma_factor target_sample_area = self.target_sample_area WIDTH, HEIGHT = self.img_sample_sz[0], self.img_sample_sz[1] x_dist = proposals_xc - (WIDTH * 0.5).item() y_dist = proposals_yc - (HEIGHT * 0.5).item() sigma = sigma_factor * math.sqrt(target_sample_area) labels = torch.exp(-0.5 * (x_dist.pow(2)+y_dist.pow(2))/sigma**2) labels = labels.to(self.params.device).reshape(-1,1) return labels def init_output_window_function(self): proposals_xc = self.proposals_xc proposals_yc = self.proposals_yc window_min = self.params.window_min sigma_factor = self.params.window_sigma_factor target_sample_area = self.target_sample_area WIDTH, HEIGHT = self.img_sample_sz[0], self.img_sample_sz[1] x_dist = proposals_xc - (WIDTH * 0.5).item() y_dist = proposals_yc - (HEIGHT * 0.5).item() sigma = sigma_factor * math.sqrt(target_sample_area) output_window = torch.exp(-0.5 * (x_dist.pow(2)+y_dist.pow(2))/sigma**2) output_window = output_window.clamp(window_min) output_window = output_window.to(self.params.device).reshape(-1,1) return output_window def init_hard_negative_region_function(self): proposals_xc = self.proposals_xc proposals_yc = self.proposals_yc img_sample_area = self.params.img_sample_area distance_ratio = self.params.hard_negative_distance_ratio region_mask = torch.zeros(proposals_xc.shape, device=self.params.device) x_distance = proposals_xc - (self.img_sample_sz[0] * 0.5).item() y_distance = proposals_yc - (self.img_sample_sz[1] * 0.5).item() distance = torch.sqrt(x_distance.pow(2)+y_distance.pow(2)) distance_threshold = math.sqrt(img_sample_area * distance_ratio**2) region_mask[distance>distance_threshold] = 1.0 region_mask = region_mask.view(-1,1) return region_mask def generate_init_samples(self, im: torch.Tensor, target_pos, sample_scale) -> TensorList: """Generate augmented initial samples.""" # Compute augmentation size aug_expansion_factor = getattr(self.params, 'augmentation_expansion_factor', None) aug_expansion_sz = self.img_sample_sz.clone() aug_output_sz = None if aug_expansion_factor is not None and aug_expansion_factor != 1: aug_expansion_sz = (self.img_sample_sz * aug_expansion_factor).long() aug_expansion_sz += (aug_expansion_sz - self.img_sample_sz.long()) % 2 aug_expansion_sz = aug_expansion_sz.float() aug_output_sz = self.img_sample_sz.long().tolist() # Random shift operator get_rand_shift = lambda: None # Create transofmations self.transforms = [augmentation.Identity(aug_output_sz)] if 'shift' in self.params.augmentation: self.transforms.extend([augmentation.Translation(shift, aug_output_sz) for shift in self.params.augmentation['shift']]) if 'relativeshift' in self.params.augmentation: get_absolute = lambda shift: (torch.Tensor(shift) * self.img_sample_sz/2).long().tolist() self.transforms.extend([augmentation.Translation(get_absolute(shift), aug_output_sz) for shift in self.params.augmentation['relativeshift']]) if 'fliplr' in self.params.augmentation and self.params.augmentation['fliplr']: self.transforms.append(augmentation.FlipHorizontal(aug_output_sz, get_rand_shift())) if 'blur' in self.params.augmentation: self.transforms.extend([augmentation.Blur(sigma, aug_output_sz, get_rand_shift()) for sigma in self.params.augmentation['blur']]) if 'scale' in self.params.augmentation: self.transforms.extend([augmentation.Scale(scale_factor, aug_output_sz, get_rand_shift()) for scale_factor in self.params.augmentation['scale']]) if 'rotate' in self.params.augmentation: self.transforms.extend([augmentation.Rotate(angle, aug_output_sz, get_rand_shift()) for angle in self.params.augmentation['rotate']]) init_sample = sample_patch(im, target_pos, sample_scale*aug_expansion_sz, aug_expansion_sz) init_samples = torch.cat([T(init_sample) for T in self.transforms]) if not self.params.use_augmentation: init_samples = init_samples[0:1,...] return init_samples def init_iou_net(self, target_pos, target_sz, sample_scale): # Setup IoU net self.iou_predictor = self.params.model.iou_predictor for p in self.iou_predictor.parameters(): p.requires_grad = False # Get target boxes and convert target_boxes = self.get_iounet_box(target_pos, target_sz, target_pos.round(), sample_scale) target_boxes = target_boxes.unsqueeze(0).to(self.params.device) # Get iou backbone features iou_backbone_features = self.params.model.iounet_backbone_features # Remove other augmentations such as rotation iou_backbone_features = TensorList([x[:target_boxes.shape[0],...] for x in iou_backbone_features]) # Extract target IoU feat with torch.no_grad(): target_iou_feat = self.iou_predictor.get_filter(iou_backbone_features, target_boxes) self.target_iou_feat = TensorList([x.detach().mean(0) for x in target_iou_feat]) def get_iounet_box(self, target_pos, target_sz, sample_pos, sample_scale): """All inputs in original image coordinates""" box_center = (target_pos - sample_pos) / sample_scale + (self.img_sample_sz - 1) / 2 box_sz = target_sz / sample_scale target_ul = box_center - (box_sz - 1) / 2 return torch.cat([target_ul.flip((0,)), box_sz.flip((0,))]) def get_locator_proposals(self, target_sample_sz): proposals_xc = self.proposals_xc proposals_yc = self.proposals_yc num_proposals_locator = self.params.num_proposals_locator proposals = torch.zeros(num_proposals_locator, 4, device=self.params.device) proposals[:,0] = proposals_xc - (target_sample_sz[1]*0.5).item() proposals[:,1] = proposals_yc - (target_sample_sz[0]*0.5).item() proposals[:,2] = target_sample_sz[1].item() proposals[:,3] = target_sample_sz[0].item() return proposals.unsqueeze(0) def train_locator_model(self, locator_features, model=None): regularization = self.params.regularization if self.regularization_matrix is None: self.regularization_matrix = regularization*torch.eye(locator_features.shape[1], device=self.params.device) train_XTX = torch.mm(locator_features.t(), locator_features) train_XTX = train_XTX + self.regularization_matrix train_XTY = torch.mm(locator_features.t(), self.labels) if model is None: model = torch.potrs(train_XTY, torch.potrf(train_XTX)) else: for _ in range(30): model, _ = torch.trtrs(train_XTY - torch.mm(torch.triu(train_XTX, diagonal=1), model), torch.tril(train_XTX, diagonal=0), upper=False) return model def refine_target_box(self, target_pos, target_sz, sample_pos, sample_scale): # Initial box for refinement init_box = self.get_iounet_box(target_pos, target_sz, sample_pos, sample_scale) # Extract features from the relevant scale iou_features = self.params.model.iounet_features iou_features = TensorList([x[0:1,...] for x in iou_features]) init_boxes = init_box.view(1,4).clone() if self.params.num_init_random_boxes > 0: # Get random initial boxes square_box_sz = init_box[2:].prod().sqrt() rand_factor = square_box_sz * torch.cat([self.params.box_jitter_pos * torch.ones(2), self.params.box_jitter_sz * torch.ones(2)]) minimal_edge_size = init_box[2:].min()/3 rand_bb = (torch.rand(self.params.num_init_random_boxes, 4) - 0.5) * rand_factor new_sz = (init_box[2:] + rand_bb[:,2:]).clamp(minimal_edge_size) new_center = (init_box[:2] + init_box[2:]/2) + rand_bb[:,:2] init_boxes = torch.cat([new_center - new_sz/2, new_sz], 1) init_boxes = torch.cat([init_box.view(1,4), init_boxes]) # Refine boxes by maximizing iou output_boxes, output_iou = self.optimize_boxes(iou_features, init_boxes) # Remove weird boxes with extreme aspect ratios output_boxes[:, 2:].clamp_(1) aspect_ratio = output_boxes[:,2] / output_boxes[:,3] keep_ind = (aspect_ratio < self.params.maximal_aspect_ratio) * (aspect_ratio > 1/self.params.maximal_aspect_ratio) output_boxes = output_boxes[keep_ind,:] output_iou = output_iou[keep_ind] # If no box found if output_boxes.shape[0] == 0: return None, None # Take average of top k boxes k = getattr(self.params, 'iounet_k', 5) topk = min(k, output_boxes.shape[0]) _, inds = torch.topk(output_iou, topk) predicted_box = output_boxes[inds, :].mean(0).cpu() predicted_iou = output_iou.view(-1, 1)[inds, :].mean(0).cpu() # Update position new_pos = predicted_box[:2] + predicted_box[2:]/2 - (self.img_sample_sz - 1) / 2 new_pos = new_pos.flip((0,)) * sample_scale + sample_pos # Linear interpolation to update the target size new_target_sz = predicted_box[2:].flip((0,)) * sample_scale new_target_sz = self.params.scale_damp * self.target_sz + (1 - self.params.scale_damp) * new_target_sz return new_pos, new_target_sz def optimize_boxes(self, iou_features, init_boxes): # Optimize iounet boxes output_boxes = init_boxes.view(1, -1, 4).to(self.params.device) step_length = self.params.box_refinement_step_length for i_ in range(self.params.box_refinement_iter): # forward pass bb_init = output_boxes.clone().detach() bb_init.requires_grad = True outputs = self.iou_predictor.predict_iou(self.target_iou_feat, iou_features, bb_init) if isinstance(outputs, (list, tuple)): outputs = outputs[0] outputs.backward(gradient = torch.ones_like(outputs)) # Update proposal output_boxes = bb_init + step_length * (bb_init.grad*100).round()/100 * bb_init[:, :, 2:].repeat(1, 1, 2) output_boxes.detach_() step_length *= self.params.box_refinement_step_decay return output_boxes.view(-1,4), outputs.detach().view(-1) def output_result_image(self, image, state): if self.params.output_image: if not os.path.exists(self.params.output_image_path): os.mkdir(output_dir) cv2.rectangle(image, (int(state[0]),int(state[1])),(int(state[0]+state[2]),int(state[1]+state[3])), (255,0,0), 3) cv2.imwrite(os.path.join(output_dir,'{}.jpg'.format(self.frame_num)), cv.cvtColor(image, cv.COLOR_RGB2BGR)) ''' import cv2 for i in range(train_samples.shape[0]): output_dir = '/home/zhenglinyu2/SBDT_tracking/debug/transform_image/' count = len(os.listdir(output_dir)) transform_image = train_samples[i,...].permute(1,2,0) transform_image = transform_image.data.numpy() cv2.imwrite(os.path.join(output_dir,'{}.jpg'.format(count+1)),transform_image)) ''' ''' torch.cuda.synchronize() start = time.time() torch.cuda.synchronize() print(time.time() - start) '''
py
b40def1ea838b445bc965b674d92a5ad1ffcbb3f
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import sys from kfp.components import executor as component_executor from kfp.components import kfp_config from kfp.components import utils def _setup_logging(): logging_format = '[KFP Executor %(asctime)s %(levelname)s]: %(message)s' logging.basicConfig( stream=sys.stdout, format=logging_format, level=logging.INFO) def executor_main(): _setup_logging() parser = argparse.ArgumentParser(description='KFP Component Executor.') parser.add_argument( '--component_module_path', type=str, help='Path to a module containing the KFP component.') parser.add_argument( '--function_to_execute', type=str, required=True, help='The name of the component function in ' '--component_module_path file that is to be executed.') parser.add_argument( '--executor_input', type=str, help='JSON-serialized ExecutorInput from the orchestrator. ' 'This should contain inputs and placeholders for outputs.') args, _ = parser.parse_known_args() func_name = args.function_to_execute module_path = None module_directory = None module_name = None if args.component_module_path is not None: logging.info( 'Looking for component `{}` in --component_module_path `{}`'.format( func_name, args.component_module_path)) module_path = args.component_module_path module_directory = os.path.dirname(args.component_module_path) module_name = os.path.basename(args.component_module_path)[:-len('.py')] else: # Look for module directory using kfp_config.ini logging.info('--component_module_path is not specified. Looking for' ' component `{}` in config file `kfp_config.ini`' ' instead'.format(func_name)) config = kfp_config.KFPConfig() components = config.get_components() if not components: raise RuntimeError('No components found in `kfp_config.ini`') try: module_path = components[func_name] except KeyError: raise RuntimeError( 'Could not find component `{}` in `kfp_config.ini`. Found the ' ' following components instead:\n{}'.format( func_name, components)) module_directory = str(module_path.parent) module_name = str(module_path.name)[:-len('.py')] logging.info( 'Loading KFP component "{}" from {} (directory "{}" and module name' ' "{}")'.format(func_name, module_path, module_directory, module_name)) module = utils.load_module( module_name=module_name, module_directory=module_directory) executor_input = json.loads(args.executor_input) function_to_execute = getattr(module, func_name) logging.info('Got executor_input:\n{}'.format( json.dumps(executor_input, indent=4))) executor = component_executor.Executor( executor_input=executor_input, function_to_execute=function_to_execute) executor.execute() if __name__ == '__main__': executor_main()
py
b40def282cbefc189ce45e69717b46e08ce7b523
import os import json import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, random_split import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl import datasets @datasets.register('mnist-ds') class mnist_wrapper(Dataset): def __init__(self, mnist=None, train=True, root_dir=None): if mnist is not None: self._dataset = mnist else: self.root_dir = root_dir self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) self._dataset = torchvision.datasets.MNIST(self.root_dir, train=train, download=True, transform=self.transform) def __len__(self): return len(self._dataset) def __getitem__(self, idx): img, label = self._dataset[idx] return { 'img': img, 'label': label, } @datasets.register('mnist-dm') class MNISTDataModule(pl.LightningDataModule): def __init__(self, root_dir, batch_size): super().__init__() self.root_dir = root_dir self.batch_size = batch_size self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) def setup(self, stage=None): if stage == "fit" or stage is None: mnist_full = torchvision.datasets.MNIST(self.root_dir, train=True, transform=self.transform) self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000]) if stage == "test" or stage is None: self.mnist_test = torchvision.datasets.MNIST(self.root_dir, train=False, transform=self.transform) def prepare_data(self): # download torchvision.datasets.MNIST(self.root_dir, train=True, download=True) torchvision.datasets.MNIST(self.root_dir, train=False, download=True) def general_loader(self, dataset, tag): return DataLoader( dataset, shuffle=(tag=='train'), num_workers=os.cpu_count(), batch_size=self.batch_size, pin_memory=True, ) def train_dataloader(self): return self.general_loader(mnist_wrapper(self.mnist_train), 'train') def val_dataloader(self): return self.general_loader(mnist_wrapper(self.mnist_val), 'val') def test_dataloader(self): return self.general_loader(mnist_wrapper(self.mnist_test), 'test')
py
b40defafabc210d05df293402d7a863f4d5cefe5
class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: ans = [] n = len(candidates) visited = set() candidates.sort() def dfs(idx: int, cur: int, path: List[int]): if cur == 0: ans.append(path[:]) return elif idx == n: return # 当前数字与前面数字相同并且前面数字没有在路径中,则忽略这个数字 if ( idx != 0 and candidates[idx] == candidates[idx - 1] and (idx - 1) not in visited ): dfs(idx + 1, cur, path) return # 1.加入这个数字 if candidates[idx] <= cur: path.append(candidates[idx]) visited.add(idx) # 向下递归时考虑下一个数字 dfs(idx + 1, cur - candidates[idx], path) # 消除影响 path.pop() visited.remove(idx) # 2.不加入这个数字 dfs(idx + 1, cur, path) dfs(0, target, []) return ans
py
b40df00d6c45cca40d02f228b61b3cfd73c20f27
from ._stopping_criterion import StoppingCriterion from ..accumulate_data import MeanVarData from ..discrete_distribution import IIDStdUniform from ..true_measure import Gaussian, BrownianMotion from ..integrand import Keister, AsianOption from ..util import MaxSamplesWarning from numpy import * from scipy.stats import norm from time import time import warnings class CubMCCLT(StoppingCriterion): """ Stopping criterion based on the Central Limit Theorem. >>> k = Keister(IIDStdUniform(2,seed=7)) >>> sc = CubMCCLT(k,abs_tol=.05) >>> solution,data = sc.integrate() >>> solution 1.801... >>> data Solution: 1.8010 Keister (Integrand Object) IIDStdUniform (DiscreteDistribution Object) d 2^(1) seed 7 mimics StdUniform Lebesgue (TrueMeasure Object) transform Gaussian (TrueMeasure Object) mean 0 covariance 2^(-1) decomp_type pca CubMCCLT (StoppingCriterion Object) inflate 1.200 alpha 0.010 abs_tol 0.050 rel_tol 0 n_init 2^(10) n_max 10000000000 MeanVarData (AccumulateData Object) levels 1 solution 1.801 n 5741 n_total 6765 error_bound 0.051 confid_int [1.75 1.852] time_integrate ... >>> ac = AsianOption(IIDStdUniform(), ... multi_level_dimensions = [2,4,8]) >>> sc = CubMCCLT(ac,abs_tol=.05) >>> solution,data = sc.integrate() """ parameters = ['inflate','alpha','abs_tol','rel_tol','n_init','n_max'] def __init__(self, integrand, abs_tol=1e-2, rel_tol=0., n_init=1024., n_max=1e10, inflate=1.2, alpha=0.01): """ Args: integrand (Integrand): an instance of Integrand inflate (float): inflation factor when estimating variance alpha (float): significance level for confidence interval abs_tol (float): absolute error tolerance rel_tol (float): relative error tolerance n_max (int): maximum number of samples """ # Set Attributes self.abs_tol = float(abs_tol) self.rel_tol = float(rel_tol) self.n_init = float(n_init) self.n_max = float(n_max) self.alpha = float(alpha) self.inflate = float(inflate) # QMCPy Objs self.integrand = integrand self.true_measure = self.integrand.true_measure self.discrete_distrib = self.integrand.discrete_distrib # Verify Compliant Construction allowed_levels = ['single','fixed-multi'] allowed_distribs = ["IIDStdUniform"] super(CubMCCLT,self).__init__(allowed_levels, allowed_distribs) def integrate(self): """ See abstract method. """ # Construct AccumulateData Object to House Integration data self.data = MeanVarData(self, self.integrand, self.true_measure, self.discrete_distrib, self.n_init) t_start = time() # Pilot Sample self.data.update_data() # use cost of function values to decide how to allocate temp_a = self.data.t_eval ** 0.5 temp_b = (temp_a * self.data.sighat).sum() # samples for computation of the mean # n_mu_temp := n such that confidence intervals width and conficence will be satisfied tol_up = max(self.abs_tol, abs(self.data.solution) * self.rel_tol) z_star = -norm.ppf(self.alpha / 2.) n_mu_temp = ceil(temp_b * (self.data.sighat / temp_a) * \ (z_star * self.inflate / tol_up)**2) # n_mu := n_mu_temp adjusted for previous n self.data.n_mu = maximum(self.data.n, n_mu_temp) self.data.n += self.data.n_mu.astype(int) if self.data.n_total + self.data.n.sum() > self.n_max: # cannot generate this many new samples warning_s = """ Alread generated %d samples. Trying to generate %d new samples, which would exceed n_max = %d. The number of new samples will be decrease proportionally for each integrand. Note that error tolerances may no longer be satisfied""" \ % (int(self.data.n_total), int(self.data.n.sum()), int(self.n_max)) warnings.warn(warning_s, MaxSamplesWarning) # decrease n proportionally for each integrand n_decease = self.data.n_total + self.data.n.sum() - self.n_max dec_prop = n_decease / self.data.n.sum() self.data.n = floor(self.data.n - self.data.n * dec_prop) # Final Sample self.data.update_data() # CLT confidence interval sigma_up = (self.data.sighat ** 2 / self.data.n_mu).sum(0) ** 0.5 self.data.error_bound = z_star * self.inflate * sigma_up self.data.confid_int = self.data.solution + self.data.error_bound * array([-1, 1]) self.data.time_integrate = time() - t_start return self.data.solution, self.data def set_tolerance(self, abs_tol=None, rel_tol=None): """ See abstract method. Args: abs_tol (float): absolute tolerance. Reset if supplied, ignored if not. rel_tol (float): relative tolerance. Reset if supplied, ignored if not. """ if abs_tol != None: self.abs_tol = abs_tol if rel_tol != None: self.rel_tol = rel_tol
py
b40df0303f8abde0680ff7f5cccb14e409be1bf3
import subprocess subprocess.Popen(['python','hear_auto.py']) subprocess.Popen(['python','hear_auto.py']) subprocess.Popen(['python','hear_auto.py']) #subprocess.Popen(['python','hear_auto.py']) #subprocess.Popen(['python','hear_auto.py'])
py
b40df10c24a07a3011201cfc12c6461638414772
import os import sys import tempfile import requests from pymystem3.mystem import _get_tarball_url def install(path): """ Install mystem binary as :py:const:`~pymystem3.constants.MYSTEM_BIN`. Overwrite if already installed. """ url = _get_tarball_url() print("Installing mystem to %s from %s" % (path, url), file=sys.stdout) if not os.path.isdir(path): os.makedirs(path) tmp_fd, tmp_path = tempfile.mkstemp() try: r = requests.get(url, stream=True) with os.fdopen(tmp_fd, 'wb') as fd: for chunk in r.iter_content(64 * 1024): fd.write(chunk) fd.flush() if url.endswith('.tar.gz'): import tarfile tar = tarfile.open(tmp_path) try: tar.extract('mystem', path) finally: tar.close() elif url.endswith('.zip'): import zipfile zip = zipfile.ZipFile(tmp_path) try: zip.extractall(path) finally: zip.close() else: raise NotImplementedError("Could not install mystem from %s" % url) finally: os.unlink(tmp_path)
py
b40df1837192c6e31ff3461c36add7dca4027c9d
import baza import sqlite3 import random import hashlib conn = sqlite3.connect('olimpijske-igre.db') baza.ustvari_bazo_ce_ne_obstaja(conn) conn.execute('PRAGMA foreign_keys = ON') def mozna_leta(): poizvedba = """ SELECT leto FROM olimpijske_igre """ leta = conn.execute(poizvedba) return [leto for leto, in leta] def poisci_olimpijske(letoPodano): """ Funkcija, ki vrne kljuc >>> poisci_olimpijske('1948') 11 """ poizvedba = """ SELECT kljuc FROM olimpijske_igre WHERE leto = ? """ indeks, = conn.execute(poizvedba, [letoPodano]).fetchone() return indeks def podatki_olimpijske(kljucPodan): """ Funkcija, ki vrne začetek, konec, kraj OI in stevilo drzav. >>> poisci_olimpijske('11') [29.7., 14.8., London, 44] """ poizvedba = """ SELECT zacetek, konec, mesto, st_drzav FROM olimpijske_igre WHERE kljuc = ? """ return conn.execute(poizvedba, [kljucPodan]).fetchone() def poisci_osebe(niz): """ Funkcija, ki vrne IDje vseh oseb, katerih ime vsebuje dani niz. >>> poisci_osebe('elia') [8, 42, 457, 497] """ poizvedba = """ SELECT id FROM osebe WHERE ime LIKE ? ORDER BY ime """ idji_oseb = [] for (id_osebe,) in conn.execute(poizvedba, ['%' + niz + '%']): idji_oseb.append(id_osebe) return idji_oseb def podatki_oseb(id_oseb): """ Vrne osnovne podatke vseh oseb z danimi IDji. >>> podatki_oseb([8, 42, 457, 497]) [(8, 'Belia Verduin'), (42, 'Othelia Scullion'), (457, 'Delia Louden'), (497, 'Rafaelia Lambot')] """ poizvedba = """ SELECT id, ime, priimek FROM osebe WHERE id IN ({}) """.format(','.join('?' for _ in range(len(id_oseb)))) return conn.execute(poizvedba, id_oseb).fetchall() def podatki_osebe(id_osebe): """ Vrne podatke o osebi z danim IDjem. >>> podatki_osebe(8) ('Belia Verduin', ) """ poizvedba = """ SELECT ime,priimek FROM osebe WHERE id = ? """ cur = conn.cursor() cur.execute(poizvedba, [id_osebe]) osnovni_podatki = cur.fetchone() if osnovni_podatki is None: return None else: ime,priimek = osnovni_podatki poizvedba_za_podatke = """ SELECT sporti.sport, discipline.disciplina, uvrstitve.mesto FROM uvrstitve JOIN osebe ON uvrstitve.id_osebe = osebe.id JOIN discipline ON discipline.id = uvrstitve.id_disciplina JOIN sporti ON sporti.kljuc = discipline.id_sport WHERE osebe.id = ? ORDER BY uvrstitve.mesto """ uvrstitve = conn.execute(poizvedba_za_podatke, [id_osebe]).fetchall() return ime, priimek, uvrstitve def poisci_discipline(disciplina): """ Funkcija, ki vrne ID discipline. >>> poisci_discipline('krogla') [9] """ poizvedba = """ SELECT id FROM discipline WHERE disciplina = ? """ return conn.execute(poizvedba, [disciplina]).fetchone() def podatki_disciplina(id_disciplina): """ Vrne podatke o prvouvrščenih osebah v dani disciplini z danim IDjem. >>> podatki_disciplina(100m delfin) (Crissy Keyhoe (1976) ) """ poizvedba = """ SELECT osebe.ime, osebe.priimek, olimpijske_igre.leto FROM osebe JOIN uvrstitve ON osebe.id = uvrstitve.id_osebe JOIN olimpijske_igre ON olimpijske_igre.kljuc = uvrstitve.kljuc_leto WHERE id_disciplina = ? AND uvrstitve.mesto == 1 """ osebe = [] for ime,priimek,leto in conn.execute(poizvedba, [id_disciplina]): osebe.append((ime,priimek,leto)) return osebe def dodaj_OI(leto, mesto, zacetek, konec, st_drzav): with conn: id = conn.execute(""" INSERT INTO olimpijske_igre (leto, mesto, zacetek, konec, st_drzav) VALUES (?,?,?,?,?) """,[leto, mesto, zacetek, konec, st_drzav]).lastrowid return id def zakodiraj(geslo, sol=None): if sol is None: sol = ''.join(chr(random.randint(65, 122)) for _ in range(16)) posoljeno_geslo = geslo + '$' + sol zakodirano_geslo = hashlib.sha512(posoljeno_geslo.encode()).hexdigest() return zakodirano_geslo, sol def preveri_geslo(uporabnisko_ime, geslo): poizvedba = """ SELECT geslo, sol FROM uporabniki WHERE uporabnisko_ime = ? """ uporabnik = conn.execute(poizvedba, [uporabnisko_ime]).fetchone() if uporabnik is None: return False shranjeno_geslo, sol = uporabnik zakodirano_geslo, _ = zakodiraj(geslo, sol) return shranjeno_geslo == zakodirano_geslo def ustvari_uporabnika(uporabnisko_ime, geslo): poizvedba = """ INSERT INTO uporabniki (uporabnisko_ime, geslo, sol) VALUES (?, ?, ?) """ with conn: zakodirano_geslo, sol = zakodiraj(geslo) conn.execute(poizvedba, [uporabnisko_ime, zakodirano_geslo, sol]).fetchone() return True
py
b40df29169cd70e3331b51f81736d5d246f4d491
#!/usr/bin/env python2 # Copyright (c) 2014-2020 The Bitcoin Core developers # Copyright (c) 2014-2020 The Skicoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import SkicoinTestFramework from test_framework.util import * import threading class LongpollThread(threading.Thread): def __init__(self, node): threading.Thread.__init__(self) # query current longpollid templat = node.getblocktemplate() self.longpollid = templat['longpollid'] # create a new connection to the node, we can't use the same # connection from two threads self.node = get_rpc_proxy(node.url, 1, timeout=600) def run(self): self.node.getblocktemplate({'longpollid':self.longpollid}) class GetBlockTemplateLPTest(SkicoinTestFramework): ''' Test longpolling with getblocktemplate. ''' def run_test(self): print "Warning: this test will take about 70 seconds in the best case. Be patient." wait_to_sync(self.nodes[0]) self.nodes[0].generate(10) templat = self.nodes[0].getblocktemplate() longpollid = templat['longpollid'] # longpollid should not change between successive invocations if nothing else happens templat2 = self.nodes[0].getblocktemplate() assert(templat2['longpollid'] == longpollid) # Test 1: test that the longpolling wait if we do nothing thr = LongpollThread(self.nodes[0]) thr.start() # check that thread still lives thr.join(5) # wait 5 seconds or until thread exits assert(thr.is_alive()) # Test 2: test that longpoll will terminate if another node generates a block self.nodes[1].generate(1) # generate a block on another node # check that thread will exit now that new transaction entered mempool thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 3: test that longpoll will terminate if we generate a block ourselves thr = LongpollThread(self.nodes[0]) thr.start() self.nodes[0].generate(1) # generate a block on another node thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 4: test that introducing a new transaction into the mempool will terminate the longpoll thr = LongpollThread(self.nodes[0]) thr.start() # generate a random transaction and submit it (txid, txhex, fee) = random_transaction(self.nodes, Decimal("1.1"), Decimal("0.0"), Decimal("0.001"), 20) # after one minute, every 10 seconds the mempool is probed, so in 80 seconds it should have returned thr.join(60 + 20) assert(not thr.is_alive()) if __name__ == '__main__': GetBlockTemplateLPTest().main()
py
b40df38571178e5e40d4be41df5c90d0718446a0
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import pickle from dataset.mnist import load_mnist from common.functions import sigmoid, softmax def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_test, t_test def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network def predict(network, x): """ 784 = 28 * 28 W1: (784, 50) b1: 50 x ‧ W1 + b1 -> a1 W2: (50, 100) b2: 100 a1 ‧ W2 + b2 -> a2 W3: (100, 10) b3: 10 a2 ‧ W3 + b3 -> a3 """ W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] """ print('784 = 28 * 28') print('W1: ', len(W1), ',', len(W1[0])) print('b1: ', len(b1)) print('x ‧ W1 + b1 -> a1') print('W2: ', len(W2), ',', len(W2[0])) print('b2: ', len(b2)) print('a1 ‧ W2 + b2 -> a2') print('W3: ', len(W3), ',', len(W3[0])) print('b3: ', len(b3)) print('a2 ‧ W3 + b3 -> a3') """ a1 = np.dot(x, W1) + b1 z1 = sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = sigmoid(a2) a3 = np.dot(z2, W3) + b3 y = softmax(a3) return y x, t = get_data() network = init_network() accuracy_cnt = 0 for i in range(len(x)): y = predict(network, x[i]) p= np.argmax(y) # 最も確率の高い要素のインデックスを取得 if p == t[i]: accuracy_cnt += 1 print("Accuracy:" + str(float(accuracy_cnt) / len(x))) # Result stdout: # Accuracy:0.9352
py
b40df4563c8eb7dbb72ecf06666dc6c5e1fe4642
from unittest import TestCase, mock, main from test_trymerge import mocked_gh_graphql from trymerge import GitHubPR from gitutils import get_git_remote_name, get_git_repo_dir, GitRepo from typing import Any from tryrebase import rebase_onto class TestRebase(TestCase): @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) @mock.patch('gitutils.GitRepo._run_git') @mock.patch('tryrebase.gh_post_comment') def test_rebase(self, mocked_post_comment: Any, mocked_run_git: Any, mocked_gql: Any) -> None: "Tests rebase successfully" pr = GitHubPR("pytorch", "pytorch", 31093) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) rebase_onto(pr, repo, 'master') calls = [mock.call('fetch', 'origin', 'pull/31093/head:pull/31093/head'), mock.call('rebase', 'refs/remotes/origin/master', 'pull/31093/head'), mock.call('push', '-f', 'https://github.com/mingxiaoh/pytorch.git', 'pull/31093/head:master')] mocked_run_git.assert_has_calls(calls) self.assertTrue( "Successfully rebased `master` onto `refs/remotes/origin/master`" in mocked_post_comment.call_args[0][3]) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) @mock.patch('gitutils.GitRepo._run_git') @mock.patch('tryrebase.gh_post_comment') def test_rebase_to_stable(self, mocked_post_comment: Any, mocked_run_git: Any, mocked_gql: Any) -> None: "Tests rebase to viable/strict successfully" pr = GitHubPR("pytorch", "pytorch", 31093) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) rebase_onto(pr, repo, 'viable/strict', False) calls = [mock.call('fetch', 'origin', 'pull/31093/head:pull/31093/head'), mock.call('rebase', 'refs/remotes/origin/viable/strict', 'pull/31093/head'), mock.call('push', '-f', 'https://github.com/mingxiaoh/pytorch.git', 'pull/31093/head:master')] mocked_run_git.assert_has_calls(calls) self.assertTrue( "Successfully rebased `master` onto `refs/remotes/origin/viable/strict`" in mocked_post_comment.call_args[0][3]) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) @mock.patch('gitutils.GitRepo._run_git', return_value="Everything up-to-date") @mock.patch('tryrebase.gh_post_comment') def test_no_need_to_rebase(self, mocked_post_comment: Any, mocked_run_git: Any, mocked_gql: Any) -> None: "Tests branch already up to date" pr = GitHubPR("pytorch", "pytorch", 31093) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) rebase_onto(pr, repo, 'master') calls = [mock.call('fetch', 'origin', 'pull/31093/head:pull/31093/head'), mock.call('rebase', 'refs/remotes/origin/master', 'pull/31093/head'), mock.call('push', '-f', 'https://github.com/mingxiaoh/pytorch.git', 'pull/31093/head:master')] mocked_run_git.assert_has_calls(calls) self.assertTrue( "Tried to rebase and push PR #31093, but it was already up to date" in mocked_post_comment.call_args[0][3]) if __name__ == "__main__": main()
py
b40df480f6d3ea698cb1017fa48a3c0fc367e991
# -*- coding: utf-8 -*- __author__ = 'ooo' __date__ = '2018/12/15 12:17' import torch import shutil import os, time import math import numpy as np from datetime import datetime from collections import OrderedDict from torchvision import transforms from collections import namedtuple import torch.nn as nn class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class TopkAverageMeter(object): """Computes and stores the average and current value""" def __init__(self, k=5): self.k = k self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.topk = [0] def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count self.topk = sorted(record_topk_value(self.topk, val, self.k)) def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def save_checkpoint(state, is_best, filename='checkpoint.pth'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth') def adjust_learning_rate_org(optimizer, epoch, lr_start=0.01, decay_rate=0.1, decay_time=30): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = lr_start * (decay_rate ** (epoch // decay_time)) for param_group in optimizer.param_groups: param_group['lr'] = lr def adjust_learning_rate(optimizer, epoch, cfg=None): """ Policy1: 'regular': lr will decay *rate from lr_start, for every n epoch, when the epoch > start lr_start = 0.01 decay_policy = 'regular' decay_rate = 0.1 decay_time = n decay_start = start Policy2: 'appoint': lr will decay *rate from lr_start, for the epoch appointed in [(rate1, ep1), (rate2, ep2), ...] """ lr_start, lr_end, decay_policy, decay_rate, decay_time, decay_start, decay_appoint = \ cfg.lr_start, cfg.lr_end, cfg.lr_decay_policy, cfg.lr_decay_rate, cfg.lr_decay_time, cfg.lr_decay_start, cfg.lr_decay_appoint current_lr = optimizer.param_groups[0]['lr'] if decay_policy == 'regular': if epoch >= decay_start: current_lr = lr_start * (decay_rate ** ((epoch - decay_start) // decay_time + 1)) if current_lr <= lr_end: current_lr = lr_end for param_group in optimizer.param_groups: param_group['lr'] = current_lr return current_lr elif decay_policy == 'appoint': for ep, rate in decay_appoint: if epoch == ep: current_lr = current_lr * rate for param_group in optimizer.param_groups: param_group['lr'] = current_lr return current_lr elif decay_policy == 'original': start_epoch = 0 if cfg.start_epoch == 0 else 1 current_lr = lr_start * (decay_rate ** ((epoch - start_epoch) // decay_time)) if current_lr <= lr_end: current_lr = lr_end for param_group in optimizer.param_groups: param_group['lr'] = current_lr return current_lr else: raise NotImplementedError def adjust_batch_size(current_bsize, epoch, cfg): if cfg.bs_decay_policy == 'frozen': return current_bsize if cfg.bs_decay_policy == 'appoint': for ep, rate in cfg.bs_decay_appoint: if epoch == ep: current_bsize = current_bsize * rate return current_bsize if cfg.bs_decay_policy == 'regular': if epoch >= cfg.bs_decay_start: if current_bsize <= cfg.bsize_end: current_bsize = cfg.bsize_end else: decay_rate = cfg.bs_decay_rate ** ((epoch - cfg.bs_decay_start) // cfg.bs_decay_interval + 1) current_bsize = cfg.bsize_start * decay_rate return current_bsize def resume_from_ckpt(model, optimizer, resume): if os.path.isfile(resume): print("\nloading checkpoint file from %s ..." % (resume,)) checkpoint = torch.load(f=resume) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] + 1 best_prec1 = checkpoint['best_prec1'] print('loaded done at epoch {} ...\n'.format(start_epoch)) return start_epoch, best_prec1 else: raise FileNotFoundError('\ncan not find the ckpt file @ %s ...' % resume) def model_from_ckpt(model, ckpt): if os.path.isfile(ckpt): print("\nloading checkpoint file from %s ..." % (ckpt,)) checkpoint = torch.load(f=ckpt) try: model.load_state_dict(checkpoint['state_dict']) except KeyError: model.load_state_dict(checkpoint['model']) except: raise KeyError('check model KEY name in ckpt file.') return model else: raise FileNotFoundError('check ckpt file exist!') def calculate_params_scale(model, format=''): if isinstance(model, str) and model.endswith('.ckpt'): checkpoint = torch.load(model) try: model = checkpoint['state_dict'] except KeyError: model = checkpoint['model'] except: raise KeyError('Please check the model KEY in ckpt!') scale = 0 if isinstance(model, torch.nn.Module): # method 1 scale = sum([param.nelement() for param in model.parameters()]) # model_parameters = filter(lambda p: p.requires_grad, model.parameters()) # scale = sum([np.prod(p.size()) for p in model_parameters]) elif isinstance(model, OrderedDict): # method 3 for key, val in model.items(): if not isinstance(val, torch.Tensor): continue scale += val.numel() if format == 'million': # (百万) scale /= 1000000 print("\n*** Number of params: " + str(scale) + '\tmillion...\n') return scale else: print("\n*** Number of params: " + str(scale) + '\t...') return scale def calculate_FLOPs_scale(model, input_size, multiply_adds=False, use_gpu=False): """ forked from FishNet @ github https://www.zhihu.com/question/65305385/answer/256845252 https://blog.csdn.net/u011501388/article/details/81061024 https://blog.csdn.net/xidaoliang/article/details/88191910 no bias: K^2 * IO * HW multiply_adds : False in FishNet Paper, but True in DenseNet paper """ assert isinstance(model, torch.nn.Module) USE_GPU = use_gpu and torch.cuda.is_available() def conv_hook(self, input, output): batch_size, input_channels, input_height, input_width = input[0].size() output_channels, output_height, output_width = output[0].size() kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * ( 2 if multiply_adds else 1) bias_ops = 1 if self.bias is not None else 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_conv.append(flops) def deconv_hook(self, input, output): batch_size, input_channels, input_height, input_width = input[0].size() output_channels, output_height, output_width = output[0].size() kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * ( 2 if multiply_adds else 1) bias_ops = 1 if self.bias is not None else 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_deconv.append(flops) def linear_hook(self, input, output): batch_size = input[0].size(0) if input[0].dim() == 2 else 1 weight_ops = self.weight.nelement() * (2 if multiply_adds else 1) bias_ops = self.bias.nelement() flops = batch_size * (weight_ops + bias_ops) list_linear.append(flops) def bn_hook(self, input, output): list_bn.append(input[0].nelement()) def relu_hook(self, input, output): list_relu.append(input[0].nelement()) def pooling_hook(self, input, output): batch_size, input_channels, input_height, input_width = input[0].size() output_channels, output_height, output_width = output[0].size() kernel_ops = self.kernel_size * self.kernel_size bias_ops = 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_pooling.append(flops) def foo(net): childrens = list(net.children()) if not childrens: if isinstance(net, torch.nn.Conv2d): net.register_forward_hook(conv_hook) if isinstance(net, torch.nn.ConvTranspose2d): net.register_forward_hook(deconv_hook) if isinstance(net, torch.nn.Linear): net.register_forward_hook(linear_hook) if isinstance(net, torch.nn.BatchNorm2d): net.register_forward_hook(bn_hook) if isinstance(net, torch.nn.ReLU): net.register_forward_hook(relu_hook) if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d): net.register_forward_hook(pooling_hook) return for c in childrens: foo(c) multiply_adds = multiply_adds list_conv, list_deconv, list_bn, list_relu, list_linear, list_pooling = [], [], [], [], [], [] foo(model) input = torch.rand(2, 3, input_size, input_size) if USE_GPU: input = input.cuda() model = model.cuda() _ = model(input) total_flops = (sum(list_conv) + sum(list_deconv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling)) print(' + Number of FLOPs: %.5fG' % (total_flops / 1e9 / 2)) def calculate_layers_num(model, layers=('conv2d', 'classifier')): assert isinstance(model, torch.nn.Module) type_dict = {'conv2d': torch.nn.Conv2d, 'bnorm2d': torch.nn.BatchNorm2d, 'relu': torch.nn.ReLU, 'fc': torch.nn.Linear, 'classifier': torch.nn.Linear, 'linear': torch.nn.Linear, 'deconv2d': torch.nn.ConvTranspose2d} nums_list = [] def foo(net): childrens = list(net.children()) if not childrens: if isinstance(net, type_dict[layer]): pass return 1 count = 0 for c in childrens: count += foo(c) return count def foo2(net, layer): count = 0 for n, m in net.named_modules(): if isinstance(m, type_dict[layer]): count += 1 return count for layer in layers: # nums_list.append(foo(model)) nums_list.append(foo2(model, layer)) total = sum(nums_list) strtip = '' for layer, nums in zip(list(layers), nums_list): strtip += ', %s: %s' % (layer, nums) print('\n*** Number of layers: %s %s ...\n' % (total, strtip)) return total def calculate_time_cost(model, insize=32, toc=1, use_gpu=False, pritout=False): if not use_gpu: x = torch.randn(4, 3, insize, insize) tic, toc = time.time(), toc y = [model(x) for _ in range(toc)][0] toc = (time.time() - tic) / toc print('处理时间: %.5f 秒\t' % toc) if not isinstance(y, (list, tuple)): y = [y] if pritout: print('预测输出: %s 个xfc.' % len(y), [yy.max(1) for yy in y]) return y else: assert torch.cuda.is_available() x = torch.randn(4, 3, insize, insize) model, x = model.cuda(), x.cuda() tic, toc = time.time(), toc y = [model(x) for _ in range(toc)][0] toc = (time.time() - tic) / toc print('处理时间: %.5f 秒\t' % toc) if not isinstance(y, (list, tuple)): y = [y] if pritout: print('预测输出: %s 个xfc.' % len(y), [yy.max(1) for yy in y]) return y def get_model_summary(model, insize=224, item_length=26, verbose=False): """ forked from HRNet-cls """ summary = [] input_tensors = torch.rand((1, 3, insize, insize)) ModuleDetails = namedtuple("Layer", ["name", "input_size", "output_size", "num_parameters", "multiply_adds"]) hooks = [] layer_instances = {} def add_hooks(module): def hook(module, input, output): class_name = str(module.__class__.__name__) instance_index = 1 if class_name not in layer_instances: layer_instances[class_name] = instance_index else: instance_index = layer_instances[class_name] + 1 layer_instances[class_name] = instance_index layer_name = class_name + "_" + str(instance_index) params = 0 if class_name.find("Conv") != -1 or class_name.find("BatchNorm") != -1 or \ class_name.find("Linear") != -1: for param_ in module.parameters(): params += param_.view(-1).size(0) flops = "Not Available" if class_name.find("Conv") != -1 and hasattr(module, "weight"): flops = ( torch.prod( torch.LongTensor(list(module.weight.data.size()))) * torch.prod( torch.LongTensor(list(output.size())[2:]))).item() elif isinstance(module, nn.Linear): flops = (torch.prod(torch.LongTensor(list(output.size()))) \ * input[0].size(1)).item() if isinstance(input[0], list): input = input[0] if isinstance(output, list): output = output[0] summary.append( ModuleDetails( name=layer_name, input_size=list(input[0].size()), output_size=list(output.size()), num_parameters=params, multiply_adds=flops) ) if not isinstance(module, nn.ModuleList) \ and not isinstance(module, nn.Sequential) \ and module != model: hooks.append(module.register_forward_hook(hook)) model.eval() model.apply(add_hooks) space_len = item_length model(input_tensors) for hook in hooks: hook.remove() details = '' if verbose: details = "Model Summary" + \ os.linesep + \ "Name{}Input Size{}Output Size{}Parameters{}Multiply Adds (Flops){}".format( ' ' * (space_len - len("Name")), ' ' * (space_len - len("Input Size")), ' ' * (space_len - len("Output Size")), ' ' * (space_len - len("Parameters")), ' ' * (space_len - len("Multiply Adds (Flops)"))) \ + os.linesep + '-' * space_len * 5 + os.linesep params_sum = 0 flops_sum = 0 for layer in summary: params_sum += layer.num_parameters if layer.multiply_adds != "Not Available": flops_sum += layer.multiply_adds if verbose: details += "{}{}{}{}{}{}{}{}{}{}".format( layer.name, ' ' * (space_len - len(layer.name)), layer.input_size, ' ' * (space_len - len(str(layer.input_size))), layer.output_size, ' ' * (space_len - len(str(layer.output_size))), layer.num_parameters, ' ' * (space_len - len(str(layer.num_parameters))), layer.multiply_adds, ' ' * (space_len - len(str(layer.multiply_adds)))) \ + os.linesep + '-' * space_len * 5 + os.linesep details += os.linesep \ + "Total Parameters: {:,}".format(params_sum) \ + os.linesep + '-' * space_len * 5 + os.linesep details += "Total Multiply Adds (For Convolution and Linear Layers only): {:,} GFLOPs".format( flops_sum / (1024 ** 3)) \ + os.linesep + '-' * space_len * 5 + os.linesep details += "Number of Layers" + os.linesep for layer in layer_instances: details += "{} : {} layers ".format(layer, layer_instances[layer]) return details def tensorboard_add_model(model, x, comment=''): assert isinstance(model, torch.nn.Module) assert isinstance(x, torch.Tensor) from tensorboardX import SummaryWriter current_time = datetime.now().strftime('%b%d_%H:%M-graph--') log_dir = os.path.join('runs', current_time + model._get_name() + comment) writer = SummaryWriter(log_dir) writer.add_graph(model, x) print('\n*** Model has been add to tensorboardX graph dir: %s ...\n' % (log_dir,)) def find_max_index(dir, sign1='-exp', sign2='.ckpt'): files = list(os.walk(dir))[0][2] index = [0] for f in files: if sign1 in f and sign2 in f: f = f.split(sign1)[1].split(sign2)[0] index.append(int(f)) return max(index) def find_max_index2(dir, sign1='-exp'): print('\n*** try to find max exp index in dir: %s ***\n' % dir) files = list(os.walk(dir))[0][1] index = [0] for f in files: if sign1 in f: f = f.split(sign1)[1] index.append(int(f)) return max(index) def print_size(x, ok=True): if not ok: return if isinstance(x, torch.Tensor): print(x.size()) elif isinstance(x, (list, tuple)): for xx in x: if isinstance(xx, torch.Tensor): print(xx.size()) def record_topk_value(record, val, k=5): # record the max topk value assert isinstance(record, list) if len(record) < k: record.append(val) return record elif len(record) > k: record = sorted(record)[::-1] if min(record) > val: return record[:k] else: record = record[:k] record = record_topk_value(record, val, k) return record else: min_val = min(record) if min_val >= val: return record else: record.pop(record.index(min_val)) record.append(val) return record def plot_log(log_path='./logs/log.txt'): # forked from https://github.com/prlz77/ResNeXt.pytorch import re import matplotlib.pyplot as plt file = open(log_path, 'r') accuracy = [] epochs = [] loss = [] for line in file: test_accuracy = re.search('"test_accuracy": ([0]\.[0-9]+)*', line) if test_accuracy: accuracy.append(test_accuracy.group(1)) epoch = re.search('"epoch": ([0-9]+)*', line) if epoch: epochs.append(epoch.group(1)) train_loss = re.search('"train_loss": ([0-9]\.[0-9]+)*', line) if train_loss: loss.append(train_loss.group(1)) file.close() plt.figure('test_accuracy vs epochs') plt.xlabel('epoch') plt.ylabel('test_accuracy') plt.plot(epochs, accuracy, 'b*') plt.plot(epochs, accuracy, 'r') plt.grid(True) plt.figure('train_loss vs epochs') plt.xlabel('epoch') plt.ylabel('train_loss') plt.plot(epochs, loss, 'b*') plt.plot(epochs, loss, 'y') plt.grid(True) plt.show() def tensor_to_img(x, ishow=False, istrans=False, file_name='xxxx', save_dir=''): maxv, minv, meanv = x.max(), x.min(), x.mean() x = x[0, 0:3, :, :].squeeze(0) if istrans: x = ((x - minv) / (maxv - minv)) * 255 maxv, minv, meanv = x.max(), x.min(), x.mean() img = transforms.ToPILImage()(x) if ishow: img.show() if save_dir: file_name = file_name + '_' + str(time.time()).replace('.', '')[0:14] + '.png' file_path = os.path.join(save_dir, file_name) img.save(file_path) print('img has been saved at %s ' % file_path) def get_pretrained_path(model_dir, arch_name='resnet18'): """ :model_dir: 存放预训练模型的文件夹,将所有预训练模型集中存放在此文件夹内 :arch_name: 根据模型名称找到对应的路径 :noraise: 找不到时不提示错误 :return: the path of the pretrained model for torch.load(model_path) """ if os.path.isfile(model_dir): return model_dir elif '.pth' in arch_name or '.tar' in arch_name: model_path = os.path.join(model_dir, arch_name) if os.path.isfile(model_path): return model_path else: raise FileNotFoundError('%s' % model_path) arch_name_list = [ 'vgg11-bbd30ac9.pth', 'vgg19-dcbb9e9d.pth', 'resnet18-5c106cde.pth', 'resnet34-333f7ec4.pth', 'resnet50-19c8e357.pth', 'resnet101-5d3b4d8f.pth', 'resnet152-b121ed2d.pth', 'densenet121-a639ec97.pth', 'densenet169-b2777c0a.pth', 'densenet201-c1103571.pth', 'densenet161-8d451a50.pth', 'fishnet99_ckpt.tar', 'fishnet150_ckpt.tar', 'fishnet15x_ckpt_welltrain-==fishnet150.tar', 'mobilev3_y_large-657e7b3d.pth', 'mobilev3_y_small-c7eb32fe.pth', 'mobilev3_x_large.pth.tar', 'mobilev3_x_small.pth.tar', 'mobilev3_d_small.pth.tar', ] arch = arch_name arch_name = [name for name in arch_name_list if name.startswith(arch_name)] if len(arch_name) == 1: arch_name = arch_name[0] elif len(arch_name) > 1: raise Warning('too much choices for %s ... !' % arch) else: raise Warning('no checkpoint exist for %s... !' % arch) model_path = os.path.join(model_dir, arch_name) return model_path def load_ckpt_weights(model, ckptf, device='cpu', mgpus_to_sxpu='none', noload=False, strict=True): """ MultiGpu.ckpt/.model 与 SingleXpu.model/.ckpt 之间转换加载 m2s: MultiGpu.ckpt -> SingleXpu.model ; remove prefix 'module.' s2m: SingleXpu.ckpt -> MultiGpu.model ; add prefix 'module.' none: MultiGpu -> MultiGpu or SingleXpu -> SingleXpu ; 无需转换直接加载. auto: 轮流选择上述三种情况,直到加载成功 """ def remove_module_dot(old_state_dict): # remove the prefix 'module.' of nn.DataParallel state_dict = OrderedDict() for k, v in old_state_dict.items(): state_dict[k[7:]] = v return state_dict def add_module_dot(old_state_dict): # add the prefix 'module.' to nn.DataParallel state_dict = OrderedDict() for k, v in old_state_dict.items(): state_dict['module.' + k] = v return state_dict if isinstance(device, torch.device): pass elif device == 'cpu': device = torch.device(device) elif device == 'gpu': device = torch.device('cuda:0') elif device.startswith('cuda:'): device = torch.device(device) else: raise NotImplementedError model = model.to(device) if noload: return model print('\n=> loading model.pth from %s ' % ckptf) assert os.path.isfile(ckptf), '指定路径下的ckpt文件未找到. %s' % ckptf assert mgpus_to_sxpu in ['auto', 'm2s', 's2m', 'none'] ckpt = torch.load(f=ckptf, map_location=device) if 'state_dict' in ckpt.keys(): state_dict = ckpt['state_dict'] elif 'model' in ckpt.keys(): state_dict = ckpt['model'] else: # ckpt is jus the state_dict.pth! state_dict = ckpt if mgpus_to_sxpu == 'auto': try: model.load_state_dict(state_dict, strict) except: try: model.load_state_dict(remove_module_dot(state_dict), strict) except: try: model.load_state_dict(add_module_dot(state_dict), strict) except: print('\n=> Error: key-in-model and key-in-ckpt not match, ' 'not because of the prefrex "module." eg. "." cannot be exist in key.\n') model.load_state_dict(state_dict, strict) print('\nSuccess: loaded done from %s \n' % ckptf) return model elif mgpus_to_sxpu == 'm2s': state_dict = remove_module_dot(state_dict) elif mgpus_to_sxpu == 's2m': state_dict = add_module_dot(state_dict) elif mgpus_to_sxpu == 'none': state_dict = state_dict model.load_state_dict(state_dict, strict) print('\nSuccess: loaded done from %s \n' % ckptf) return model def linear_map(a, b, x): """ 线性映射x到区间[a, b] :return: """ assert max(x) != min(x) assert isinstance(x, np.ndarray) return (x - min(x)) / (max(x) - min(x)) * (b - a) + a def startwithxyz(it, xyz=()): # it startwith x or y or z ? assert isinstance(it, str) assert isinstance(xyz, (tuple, list)) isok = [it.startswith(x) for x in xyz] return bool(sum(isok)) class Curves(object): """ 为 weight-decay 提供取值曲线 """ def __init__(self, ep=None): self.ep = ep super(Curves, self).__init__() def func1(self, x): if self.ep is None: self.ep = 8 return round(x, self.ep) def func2(self, x): if self.ep is None: self.ep = 3 return x ** self.ep def func3(self, x): if self.ep is None: self.ep = 3 return x ** (1 / self.ep) def func4(self, x): return math.exp(x) def func5(self, x): return math.exp(-x) def func6(self, x): return 1 - math.exp(x) def GCU(m, n): # 欧几里得辗转相除法求最大公约数 # https://www.cnblogs.com/todayisafineday/p/6115852.html if not n: return m else: return GCU(n, m % n) def get_xfc_which(it, xfc_which): """ - it: 当前迭代次数 - xfc_which: {0 * BN: -1, 20 * BN: -2, 30 * BN: -3} """ if isinstance(xfc_which, int): return xfc_which elif isinstance(xfc_which, str): return xfc_which elif isinstance(xfc_which, dict): which = None for ite in sorted(xfc_which.keys())[::-1]: if it >= ite: which = xfc_which[ite] break if which is None: raise NotImplementedError return which else: raise NotImplementedError # 根据设备进行路径配置, 更换设备后直接在此配置即可 # including 预训练模型路径,数据路径,当前实验路径 def get_current_device(device=0): if isinstance(device, int): device_list = ['1080Ti', 'titan', 'mic251', 'dellcpu', 'new-device'] device = device_list[device] elif isinstance(device, str): device = device else: raise NotImplementedError return device def get_pretrained_models(): device = get_current_device() model_dir = {'1080Ti': '/datah/zhangjp/PreTrainedModels', 'titan': '/data/zhangjp/PreTrainedModels', 'mic251': '/DATA/251/jpzhang/Projects/PreTrainedModels', 'dellcpu': 'E://PreTrainedModels', 'new-device': ''} model_dir = model_dir[device] return model_dir def get_data_root(data='imagenet || cifar10 || cifar100 || svhn || ***'): device = get_current_device() class Dataset(object): imagenet = { '1080Ti': ['/ImageNet2012/', '/data0/ImageNet_ILSVRC2012'][0], 'titan': '/data/dataset/ImageNet2012', 'mic251': '/data1/jpzhang/datasets/imagenet/', 'new-device': '', } cifar10 = { '1080Ti': '/data0/cifar10/', 'titan': '/data/dataset/cifar-10-batches-py/', 'mic251': '/data1/jpzhang/datasets/cifar10/', 'new-device': '', } cifar100 = { '1080Ti': '/data0/cifar100/', 'titan': '/data/dataset/cifar-100-python/', 'mic251': '/data1/jpzhang/datasets/cifar100/', 'new-device': '', } svhn = { '1080Ti': '', 'titan': '', 'mic251': '', 'new-device': '', } data_root = getattr(Dataset(), data.lower())[device] return data_root def get_base_dir(k='ckpt || log'): device = get_current_device() assert k in ['ckpt', 'log'] ckpt_base_dir = {'local': '.', '1080Ti': '/data1/zhangjp/classify/checkpoints', 'titan': '/backup/zhangjp/classify/checkpoints', 'mic251': '/DATA/251/jpzhang/Projects/checkpoints', 'new-device': ''} log_base_dir = {'local': '.', '1080Ti': '/data1/zhangjp/classify/runs', 'titan': '/backup/zhangjp/classify/runs', 'mic251': '/DATA/251/jpzhang/Projects/runs', 'new-device': ''} if k == 'ckpt': return ckpt_base_dir[device] else: return log_base_dir[device] if __name__ == '__main__': import torchvision as tv from xmodels.scalenet import ScaleNet imgnet = {'stages': 3, 'depth': 22, 'branch': 3, 'rock': 'U', 'kldloss': False, 'layers': (3, 3, 3), 'blocks': ('D', 'D', 'S'), 'slink': ('A', 'A', 'A'), 'growth': (0, 0, 0), 'classify': (0, 0, 0), 'expand': (1 * 22, 2 * 22), 'dfunc': ('O', 'O'), 'dstyle': 'maxpool', 'fcboost': 'none', 'nclass': 1000, 'last_branch': 1, 'last_down': False, 'last_dfuc': 'D', 'last_expand': 32, 'summer': 'split', 'afisok': False, 'version': 2} model = tv.models.resnet18() x = torch.Tensor(1, 3, 224, 224) print(model._modules.keys()) v = model.layer1 pred = model(x) print(pred.max(1)) model = ScaleNet(**imgnet) x = torch.Tensor(1, 3, 256, 256) pred = model(x) pred = pred[0] print(pred.max(1)) print(model)