ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40e31e3b37779eab623097007c0799d66e9b735
#!/usr/bin/env python3 # also, use 'function(**kwargs)' like # function(name1 = value1, name2 = value2) # should be able to get named buttons from key/value print("Loading GpioZero..") from time import sleep from gpiozero import ButtonBoard, LED btns = ButtonBoard(17, 25, 24, 16) led = LED(4) print("Press any button, Led will flash times of buttons number.") print("And Ctrl-C to exit...") def flashTimes(times): x = 0 while x is not times: sleep(0.1) print(x + 1) led.on() sleep(0.2) led.off() x = x + 1 print("Press another...") while True: try: if btns[0].is_pressed: print("button 1 pressed") flashTimes(1) elif btns[1].is_pressed: print("button 2 pressed") flashTimes(2) elif btns[2].is_pressed: print("button 3 pressed") flashTimes(3) elif btns[3].is_pressed: print("button 4 pressed") flashTimes(4) except KeyboardInterrupt: print("\rExiting") exit(0)
py
b40e3205659854393a7190158567f0a8e29f7e5b
from django.contrib import admin from adminsortable.admin import SortableAdmin from seating_charts.models import Table, MealTime, SeatFiller, PinnedStudent, Layout, SeatingStudent, Ethnicity class SeatFillerInline(admin.TabularInline): model = SeatFiller extra = 0 class PinnedStudentInline(admin.TabularInline): model = PinnedStudent extra = 0 class TableAdmin(admin.ModelAdmin): filter_horizontal = ['for_meals'] inlines = [SeatFillerInline, PinnedStudentInline] class MealTimeAdmin(SortableAdmin): filter_horizontal = ['include_grades'] class SeatingStudentAdmin(admin.ModelAdmin): fields = ['enrollment', 'ethnicity', 'food_allergy'] readonly_fields = ['enrollment'] list_filter = ['enrollment__grade', 'enrollment__grade__school', 'ethnicity'] list_display = ['__str__', 'ethnicity', 'food_allergy'] list_editable = ['ethnicity', 'food_allergy'] def has_add_permission(request, *args, **kwargs): return False def has_delete_permission(request, obj=None, *args, **kwargs): return False admin.site.register(Table, TableAdmin) admin.site.register(MealTime, MealTimeAdmin) admin.site.register(Layout) admin.site.register(SeatingStudent, SeatingStudentAdmin) admin.site.register(Ethnicity)
py
b40e3218da1de5995a2d8bec5cf74e5f322e5f9d
#***************************************************** # * # Copyright 2018 Amazon.com, Inc. or its affiliates. * # All Rights Reserved. * # * #***************************************************** """ A sample lambda for face detection""" from threading import Thread, Event import os import json import numpy as np import awscam import cv2 import greengrasssdk class LocalDisplay(Thread): """ Class for facilitating the local display of inference results (as images). The class is designed to run on its own thread. In particular the class dumps the inference results into a FIFO located in the tmp directory (which lambda has access to). The results can be rendered using mplayer by typing: mplayer -demuxer lavf -lavfdopts format=mjpeg:probesize=32 /tmp/results.mjpeg """ def __init__(self, resolution): """ resolution - Desired resolution of the project stream """ # Initialize the base class, so that the object can run on its own # thread. super(LocalDisplay, self).__init__() # List of valid resolutions RESOLUTION = {'1080p' : (1920, 1080), '720p' : (1280, 720), '480p' : (858, 480)} if resolution not in RESOLUTION: raise Exception("Invalid resolution") self.resolution = RESOLUTION[resolution] # Initialize the default image to be a white canvas. Clients # will update the image when ready. self.frame = cv2.imencode('.jpg', 255*np.ones([640, 480, 3]))[1] self.stop_request = Event() def run(self): """ Overridden method that continually dumps images to the desired FIFO file. """ # Path to the FIFO file. The lambda only has permissions to the tmp # directory. Pointing to a FIFO file in another directory # will cause the lambda to crash. result_path = '/tmp/results.mjpeg' # Create the FIFO file if it doesn't exist. if not os.path.exists(result_path): os.mkfifo(result_path) # This call will block until a consumer is available with open(result_path, 'w') as fifo_file: while not self.stop_request.isSet(): try: # Write the data to the FIFO file. This call will block # meaning the code will come to a halt here until a consumer # is available. fifo_file.write(self.frame.tobytes()) except IOError: continue def set_frame_data(self, frame): """ Method updates the image data. This currently encodes the numpy array to jpg but can be modified to support other encodings. frame - Numpy array containing the image data tof the next frame in the project stream. """ ret, jpeg = cv2.imencode('.jpg', cv2.resize(frame, self.resolution)) if not ret: raise Exception('Failed to set frame data') self.frame = jpeg def join(self): self.stop_request.set() def infinite_infer_run(): """ Entry point of the lambda function""" try: # This face detection model is implemented as single shot detector (ssd). model_type = 'ssd' output_map = {1: 'face'} # Create an IoT client for sending to messages to the cloud. client = greengrasssdk.client('iot-data') iot_topic = '$aws/things/{}/infer'.format(os.environ['AWS_IOT_THING_NAME']) # Create a local display instance that will dump the image bytes to a FIFO # file that the image can be rendered locally. local_display = LocalDisplay('480p') local_display.start() # The sample projects come with optimized artifacts, hence only the artifact # path is required. model_path = '/opt/awscam/artifacts/mxnet_deploy_ssd_FP16_FUSED.xml' # Load the model onto the GPU. client.publish(topic=iot_topic, payload='Loading face detection model') model = awscam.Model(model_path, {'GPU': 1}) client.publish(topic=iot_topic, payload='Face detection model loaded') # Set the threshold for detection detection_threshold = 0.25 # The height and width of the training set images input_height = 300 input_width = 300 # Do inference until the lambda is killed. while True: # Get a frame from the video stream ret, frame = awscam.getLastFrame() if not ret: raise Exception('Failed to get frame from the stream') # Resize frame to the same size as the training set. frame_resize = cv2.resize(frame, (input_height, input_width)) # Run the images through the inference engine and parse the results using # the parser API, note it is possible to get the output of doInference # and do the parsing manually, but since it is a ssd model, # a simple API is provided. parsed_inference_results = model.parseResult(model_type, model.doInference(frame_resize)) # Compute the scale in order to draw bounding boxes on the full resolution # image. yscale = float(frame.shape[0]) / float(input_height) xscale = float(frame.shape[1]) / float(input_width) # Dictionary to be filled with labels and probabilities for MQTT cloud_output = {} # Get the detected faces and probabilities for obj in parsed_inference_results[model_type]: if obj['prob'] > detection_threshold: # Add bounding boxes to full resolution frame xmin = int(xscale * obj['xmin']) ymin = int(yscale * obj['ymin']) xmax = int(xscale * obj['xmax']) ymax = int(yscale * obj['ymax']) # See https://docs.opencv.org/3.4.1/d6/d6e/group__imgproc__draw.html # for more information about the cv2.rectangle method. # Method signature: image, point1, point2, color, and tickness. # cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255, 165, 20), 10) # Amount to offset the label/probability text above the bounding box. # text_offset = 15 # See https://docs.opencv.org/3.4.1/d6/d6e/group__imgproc__draw.html # for more information about the cv2.putText method. # Method signature: image, text, origin, font face, font scale, color, # and tickness # cv2.putText(frame, '{:.2f}%'.format(obj['prob'] * 100), # (xmin, ymin-text_offset), # cv2.FONT_HERSHEY_SIMPLEX, 2.5, (255, 165, 20), 6) # Store label and probability to send to cloud cloud_output[output_map[obj['label']]] = obj['prob'] frame[ymin:ymax,xmin:xmax,] = cv2.GaussianBlur(frame[ymin:ymax,xmin:xmax,],(19,19),0) # Set the next frame in the local display stream. local_display.set_frame_data(frame) # Send results to the cloud client.publish(topic=iot_topic, payload=json.dumps(cloud_output)) except Exception as ex: client.publish(topic=iot_topic, payload='Error in face detection lambda: {}'.format(ex)) infinite_infer_run()
py
b40e33a44d23461ac581a58eacba257b3028ba3b
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import datetime import gettext import iso8601 from unittest import mock from oslo_versionedobjects import base as object_base from oslo_versionedobjects import exception as object_exception from oslo_versionedobjects import fixture as object_fixture from watcher.common import context from watcher.objects import base from watcher.objects import fields from watcher.tests import base as test_base gettext.install('watcher') @base.WatcherObjectRegistry.register class MyObj(base.WatcherPersistentObject, base.WatcherObject, base.WatcherObjectDictCompat): VERSION = '1.5' fields = {'foo': fields.IntegerField(), 'bar': fields.StringField(), 'missing': fields.StringField()} def obj_load_attr(self, attrname): setattr(self, attrname, 'loaded!') @object_base.remotable_classmethod def query(cls, context): obj = cls(context) obj.foo = 1 obj.bar = 'bar' obj.obj_reset_changes() return obj @object_base.remotable def marco(self, context=None): return 'polo' @object_base.remotable def update_test(self, context=None): if context and context.user == 'alternate': self.bar = 'alternate-context' else: self.bar = 'updated' @object_base.remotable def save(self, context=None): self.obj_reset_changes() @object_base.remotable def refresh(self, context=None): self.foo = 321 self.bar = 'refreshed' self.obj_reset_changes() @object_base.remotable def modify_save_modify(self, context=None): self.bar = 'meow' self.save() self.foo = 42 class MyObj2(object): @classmethod def obj_name(cls): return 'MyObj' @object_base.remotable_classmethod def get(cls, *args, **kwargs): pass @base.WatcherObjectRegistry.register_if(False) class WatcherTestSubclassedObject(MyObj): fields = {'new_field': fields.StringField()} class _LocalTest(test_base.TestCase): def setUp(self): super(_LocalTest, self).setUp() # Just in case base.WatcherObject.indirection_api = None @contextlib.contextmanager def things_temporarily_local(): # Temporarily go non-remote so the conductor handles # this request directly _api = base.WatcherObject.indirection_api base.WatcherObject.indirection_api = None yield base.WatcherObject.indirection_api = _api class _TestObject(object): def test_hydration_type_error(self): primitive = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'watcher', 'watcher_object.version': '1.5', 'watcher_object.data': {'foo': 'a'}} self.assertRaises(ValueError, MyObj.obj_from_primitive, primitive) def test_hydration(self): primitive = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'watcher', 'watcher_object.version': '1.5', 'watcher_object.data': {'foo': 1}} obj = MyObj.obj_from_primitive(primitive) self.assertEqual(1, obj.foo) def test_hydration_bad_ns(self): primitive = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'foo', 'watcher_object.version': '1.5', 'watcher_object.data': {'foo': 1}} self.assertRaises(object_exception.UnsupportedObjectError, MyObj.obj_from_primitive, primitive) def test_dehydration(self): expected = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'watcher', 'watcher_object.version': '1.5', 'watcher_object.data': {'foo': 1}} obj = MyObj(self.context) obj.foo = 1 obj.obj_reset_changes() self.assertEqual(expected, obj.obj_to_primitive()) def test_get_updates(self): obj = MyObj(self.context) self.assertEqual({}, obj.obj_get_changes()) obj.foo = 123 self.assertEqual({'foo': 123}, obj.obj_get_changes()) obj.bar = 'test' self.assertEqual({'foo': 123, 'bar': 'test'}, obj.obj_get_changes()) obj.obj_reset_changes() self.assertEqual({}, obj.obj_get_changes()) def test_object_property(self): obj = MyObj(self.context, foo=1) self.assertEqual(1, obj.foo) def test_object_property_type_error(self): obj = MyObj(self.context) def fail(): obj.foo = 'a' self.assertRaises(ValueError, fail) def test_load(self): obj = MyObj(self.context) self.assertEqual('loaded!', obj.bar) def test_load_in_base(self): @base.WatcherObjectRegistry.register_if(False) class Foo(base.WatcherPersistentObject, base.WatcherObject, base.WatcherObjectDictCompat): fields = {'foobar': fields.IntegerField()} obj = Foo(self.context) self.assertRaisesRegex( NotImplementedError, "Cannot load 'foobar' in the base class", getattr, obj, 'foobar') def test_loaded_in_primitive(self): obj = MyObj(self.context) obj.foo = 1 obj.obj_reset_changes() self.assertEqual('loaded!', obj.bar) expected = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'watcher', 'watcher_object.version': '1.5', 'watcher_object.changes': ['bar'], 'watcher_object.data': {'foo': 1, 'bar': 'loaded!'}} self.assertEqual(expected, obj.obj_to_primitive()) def test_changes_in_primitive(self): obj = MyObj(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) primitive = obj.obj_to_primitive() self.assertIn('watcher_object.changes', primitive) obj2 = MyObj.obj_from_primitive(primitive) self.assertEqual(set(['foo']), obj2.obj_what_changed()) obj2.obj_reset_changes() self.assertEqual(set(), obj2.obj_what_changed()) def test_unknown_objtype(self): self.assertRaises(object_exception.UnsupportedObjectError, base.WatcherObject.obj_class_from_name, 'foo', '1.0') def test_with_alternate_context(self): ctxt1 = context.RequestContext('foo', 'foo') ctxt2 = context.RequestContext(user='alternate') obj = MyObj.query(ctxt1) obj.update_test(ctxt2) self.assertEqual('alternate-context', obj.bar) def test_orphaned_object(self): obj = MyObj.query(self.context) obj._context = None self.assertRaises(object_exception.OrphanedObjectError, obj.update_test) def test_changed_1(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.update_test(self.context) self.assertEqual(set(['foo', 'bar']), obj.obj_what_changed()) self.assertEqual(123, obj.foo) def test_changed_2(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.save() self.assertEqual(set([]), obj.obj_what_changed()) self.assertEqual(123, obj.foo) def test_changed_3(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.refresh() self.assertEqual(set([]), obj.obj_what_changed()) self.assertEqual(321, obj.foo) self.assertEqual('refreshed', obj.bar) def test_changed_4(self): obj = MyObj.query(self.context) obj.bar = 'something' self.assertEqual(set(['bar']), obj.obj_what_changed()) obj.modify_save_modify(self.context) self.assertEqual(set(['foo']), obj.obj_what_changed()) self.assertEqual(42, obj.foo) self.assertEqual('meow', obj.bar) def test_static_result(self): obj = MyObj.query(self.context) self.assertEqual('bar', obj.bar) result = obj.marco() self.assertEqual('polo', result) def test_updates(self): obj = MyObj.query(self.context) self.assertEqual(1, obj.foo) obj.update_test() self.assertEqual('updated', obj.bar) def test_base_attributes(self): dt = datetime.datetime(1955, 11, 5, 0, 0, tzinfo=iso8601.UTC) datatime = fields.DateTimeField() obj = MyObj(self.context) obj.created_at = dt obj.updated_at = dt expected = {'watcher_object.name': 'MyObj', 'watcher_object.namespace': 'watcher', 'watcher_object.version': '1.5', 'watcher_object.changes': ['created_at', 'updated_at'], 'watcher_object.data': {'created_at': datatime.stringify(dt), 'updated_at': datatime.stringify(dt), } } actual = obj.obj_to_primitive() # watcher_object.changes is built from a set and order is undefined self.assertEqual(sorted(expected['watcher_object.changes']), sorted(actual['watcher_object.changes'])) del expected[ 'watcher_object.changes'], actual['watcher_object.changes'] self.assertEqual(expected, actual) def test_contains(self): obj = MyObj(self.context) self.assertNotIn('foo', obj) obj.foo = 1 self.assertIn('foo', obj) self.assertNotIn('does_not_exist', obj) def test_obj_attr_is_set(self): obj = MyObj(self.context, foo=1) self.assertTrue(obj.obj_attr_is_set('foo')) self.assertFalse(obj.obj_attr_is_set('bar')) self.assertRaises(AttributeError, obj.obj_attr_is_set, 'bang') def test_get(self): obj = MyObj(self.context, foo=1) # Foo has value, should not get the default self.assertEqual(obj.get('foo', 2), 1) # Foo has value, should return the value without error self.assertEqual(obj.get('foo'), 1) # Bar is not loaded, so we should get the default self.assertEqual(obj.get('bar', 'not-loaded'), 'not-loaded') # Bar without a default should lazy-load self.assertEqual(obj.get('bar'), 'loaded!') # Bar now has a default, but loaded value should be returned self.assertEqual(obj.get('bar', 'not-loaded'), 'loaded!') # Invalid attribute should raise AttributeError self.assertRaises(AttributeError, obj.get, 'nothing') # ...even with a default self.assertRaises(AttributeError, obj.get, 'nothing', 3) def test_object_inheritance(self): base_fields = ( list(base.WatcherObject.fields) + list(base.WatcherPersistentObject.fields)) myobj_fields = ['foo', 'bar', 'missing'] + base_fields myobj3_fields = ['new_field'] self.assertTrue(issubclass(WatcherTestSubclassedObject, MyObj)) self.assertEqual(len(myobj_fields), len(MyObj.fields)) self.assertEqual(set(myobj_fields), set(MyObj.fields.keys())) self.assertEqual(len(myobj_fields) + len(myobj3_fields), len(WatcherTestSubclassedObject.fields)) self.assertEqual(set(myobj_fields) | set(myobj3_fields), set(WatcherTestSubclassedObject.fields.keys())) def test_get_changes(self): obj = MyObj(self.context) self.assertEqual({}, obj.obj_get_changes()) obj.foo = 123 self.assertEqual({'foo': 123}, obj.obj_get_changes()) obj.bar = 'test' self.assertEqual({'foo': 123, 'bar': 'test'}, obj.obj_get_changes()) obj.obj_reset_changes() self.assertEqual({}, obj.obj_get_changes()) def test_obj_fields(self): @base.WatcherObjectRegistry.register_if(False) class TestObj(base.WatcherPersistentObject, base.WatcherObject, base.WatcherObjectDictCompat): fields = {'foo': fields.IntegerField()} obj_extra_fields = ['bar'] @property def bar(self): return 'this is bar' obj = TestObj(self.context) self.assertEqual(set(['created_at', 'updated_at', 'deleted_at', 'foo', 'bar']), set(obj.obj_fields)) def test_refresh_object(self): @base.WatcherObjectRegistry.register_if(False) class TestObj(base.WatcherPersistentObject, base.WatcherObject, base.WatcherObjectDictCompat): fields = {'foo': fields.IntegerField(), 'bar': fields.StringField()} obj = TestObj(self.context) current_obj = TestObj(self.context) obj.foo = 10 obj.bar = 'obj.bar' current_obj.foo = 2 current_obj.bar = 'current.bar' obj.obj_refresh(current_obj) self.assertEqual(obj.foo, 2) self.assertEqual(obj.bar, 'current.bar') def test_obj_constructor(self): obj = MyObj(self.context, foo=123, bar='abc') self.assertEqual(123, obj.foo) self.assertEqual('abc', obj.bar) self.assertEqual(set(['foo', 'bar']), obj.obj_what_changed()) def test_assign_value_without_DictCompat(self): class TestObj(base.WatcherObject): fields = {'foo': fields.IntegerField(), 'bar': fields.StringField()} obj = TestObj(self.context) obj.foo = 10 err_message = '' try: obj['bar'] = 'value' except TypeError as e: err_message = str(e) finally: self.assertIn("'TestObj' object does not support item assignment", err_message) class TestObject(_LocalTest, _TestObject): pass # The hashes are help developers to check if the change of objects need a # version bump. It is md5 hash of object fields and remotable methods. # The fingerprint values should only be changed if there is a version bump. expected_object_fingerprints = { 'Goal': '1.0-93881622db05e7b67a65ca885b4a022e', 'Strategy': '1.1-73f164491bdd4c034f48083a51bdeb7b', 'AuditTemplate': '1.1-b291973ffc5efa2c61b24fe34fdccc0b', 'Audit': '1.7-19bc991c0b048263df021a36c8624f4d', 'ActionPlan': '2.2-3331270cb3666c93408934826d03c08d', 'Action': '2.0-1dd4959a7e7ac30c62ef170fe08dd935', 'EfficacyIndicator': '1.0-655b71234a82bc7478aff964639c4bb0', 'ScoringEngine': '1.0-4abbe833544000728e17bd9e83f97576', 'Service': '1.0-4b35b99ada9677a882c9de2b30212f35', 'MyObj': '1.5-23c516d1e842f365f694e688d34e47c3', 'ActionDescription': '1.0-5761a3d16651046e7a0c357b57a6583e' } def get_watcher_objects(): """Get Watcher versioned objects This returns a dict of versioned objects which are in the Watcher project namespace only. ie excludes objects from os-vif and other 3rd party modules :return: a dict mapping class names to lists of versioned objects """ all_classes = base.WatcherObjectRegistry.obj_classes() watcher_classes = {} for name in all_classes: objclasses = all_classes[name] if (objclasses[0].OBJ_PROJECT_NAMESPACE != base.WatcherObject.OBJ_PROJECT_NAMESPACE): continue watcher_classes[name] = objclasses return watcher_classes class TestObjectVersions(test_base.TestCase): def test_object_version_check(self): classes = base.WatcherObjectRegistry.obj_classes() checker = object_fixture.ObjectVersionChecker(obj_classes=classes) # Compute the difference between actual fingerprints and # expect fingerprints. expect = actual = {} if there is no change. expect, actual = checker.test_hashes(expected_object_fingerprints) self.assertEqual(expect, actual, "Some objects fields or remotable methods have been " "modified. Please make sure the version of those " "objects have been bumped and then update " "expected_object_fingerprints with the new hashes. ") class TestObjectSerializer(test_base.TestCase): def test_object_serialization(self): ser = base.WatcherObjectSerializer() obj = MyObj(self.context) primitive = ser.serialize_entity(self.context, obj) self.assertIn('watcher_object.name', primitive) obj2 = ser.deserialize_entity(self.context, primitive) self.assertIsInstance(obj2, MyObj) self.assertEqual(self.context, obj2._context) def test_object_serialization_iterables(self): ser = base.WatcherObjectSerializer() obj = MyObj(self.context) for iterable in (list, tuple, set): thing = iterable([obj]) primitive = ser.serialize_entity(self.context, thing) self.assertEqual(1, len(primitive)) for item in primitive: self.assertFalse(isinstance(item, base.WatcherObject)) thing2 = ser.deserialize_entity(self.context, primitive) self.assertEqual(1, len(thing2)) for item in thing2: self.assertIsInstance(item, MyObj) @mock.patch('watcher.objects.base.WatcherObject.indirection_api') def _test_deserialize_entity_newer(self, obj_version, backported_to, mock_indirection_api, my_version='1.6'): ser = base.WatcherObjectSerializer() mock_indirection_api.object_backport_versions.return_value \ = 'backported' @base.WatcherObjectRegistry.register class MyTestObj(MyObj): VERSION = my_version obj = MyTestObj(self.context) obj.VERSION = obj_version primitive = obj.obj_to_primitive() result = ser.deserialize_entity(self.context, primitive) if backported_to is None: self.assertFalse( mock_indirection_api.object_backport_versions.called) else: self.assertEqual('backported', result) versions = object_base.obj_tree_get_versions('MyTestObj') mock_indirection_api.object_backport_versions.assert_called_with( self.context, primitive, versions) def test_deserialize_entity_newer_version_backports(self): "Test object with unsupported (newer) version" self._test_deserialize_entity_newer('1.25', '1.6') def test_deserialize_entity_same_revision_does_not_backport(self): "Test object with supported revision" self._test_deserialize_entity_newer('1.6', None) def test_deserialize_entity_newer_revision_does_not_backport_zero(self): "Test object with supported revision" self._test_deserialize_entity_newer('1.6.0', None) def test_deserialize_entity_newer_revision_does_not_backport(self): "Test object with supported (newer) revision" self._test_deserialize_entity_newer('1.6.1', None) def test_deserialize_entity_newer_version_passes_revision(self): "Test object with unsupported (newer) version and revision" self._test_deserialize_entity_newer('1.7', '1.6.1', my_version='1.6.1') class TestRegistry(test_base.TestCase): @mock.patch('watcher.objects.base.objects') def test_hook_chooses_newer_properly(self, mock_objects): reg = base.WatcherObjectRegistry() reg.registration_hook(MyObj, 0) class MyNewerObj(object): VERSION = '1.123' @classmethod def obj_name(cls): return 'MyObj' self.assertEqual(MyObj, mock_objects.MyObj) reg.registration_hook(MyNewerObj, 0) self.assertEqual(MyNewerObj, mock_objects.MyObj) @mock.patch('watcher.objects.base.objects') def test_hook_keeps_newer_properly(self, mock_objects): reg = base.WatcherObjectRegistry() reg.registration_hook(MyObj, 0) class MyOlderObj(object): VERSION = '1.1' @classmethod def obj_name(cls): return 'MyObj' self.assertEqual(MyObj, mock_objects.MyObj) reg.registration_hook(MyOlderObj, 0) self.assertEqual(MyObj, mock_objects.MyObj)
py
b40e355d05a965481b941981cde093d79d24a19b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # stateflow documentation build configuration file, created by # sphinx-quickstart on Fri Jul 27 19:57:38 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # sys.path.insert(0, os.path.abspath('..')) path = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.join(path, '..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'stateflow' copyright = u'2018, Tomasz Łakota' author = u'Tomasz Łakota' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.1' # The full version, including alpha/beta/rc tags. release = '0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars # html_sidebars = { # '**': [ # 'about.html', # 'navigation.html', # 'relations.html', # needs 'show_related': True theme option to display # 'searchbox.html', # 'donate.html', # ] # } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'stateflowdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'stateflow.tex', 'stateflow Documentation', u'Tomasz Łakota', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'stateflow', 'stateflow Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'stateflow', 'stateflow Documentation', author, 'stateflow', 'One line description of project.', 'Miscellaneous'), ]
py
b40e35b00ea902311f95b26d98ee708f226934f9
import tensorflow.keras.backend as K import tensorflow as tf def mae(y_true, y_pred): """ Mean absolute error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: mean absolute error """ return K.mean(K.abs(y_pred - y_true), axis=-1) def mse(y_true, y_pred): """ Mean squared error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: mean squared error """ return K.mean(K.square(y_pred - y_true), axis=-1) def mape(y_true, y_pred): """ Mean absolute percentage error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: mean absolute percentage error """ diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None)) return 100. * K.mean(diff, axis=-1) def msle(y_true, y_pred): """ Mean squared logarithmic error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: mean squared logarithmic error """ first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.mean(K.square(first_log - second_log), axis=-1) def r2(y_true, y_pred): """ :math:`R^2` (coefficient of determination) regression score function. Best possible score is 1.0, lower values are worse. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: R2 """ SS_res = tf.reduce_sum(tf.square(y_true - y_pred), axis=-1) SS_tot = tf.reduce_sum(tf.square(y_true - tf.reduce_mean(y_true, axis=-1)), axis=-1) return (1 - SS_res/(SS_tot + tf.keras.backend.epsilon())) def adj_r2(y_true, y_pred): """ Adjusted R2 regression score function with default inputs. Best possible score is 1.0, lower values are worse. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: adjusted R2 """ SS_res = tf.reduce_sum(tf.square(y_true - y_pred), axis=-1) SS_tot = tf.reduce_sum(tf.square(y_true - tf.reduce_mean(y_true, axis=-1)), axis=-1) return (1 - SS_res/(SS_tot + tf.keras.backend.epsilon())) * (1 - (1 - r2(y_true, y_pred)) * (tf.cast(tf.size(y_true), tf.float32) - 1) / (tf.cast(tf.size(y_true), tf.float32) - tf.cast(tf.rank(y_true), tf.float32) - 1)) # SS_res = tf.reduce_sum(tf.square(y_true - y_pred), axis=-1) # SS_tot = tf.reduce_sum(tf.square(y_true - tf.reduce_mean(y_true, axis=-1)), axis=-1) # adj_SS_res = tf.cast(SS_res / (K.shape(y_true)[0] - 1), tf.int32) # adj_SS_tot = tf.cast(SS_tot / (K.shape(y_true)[0] - 1), tf.int32) # return (1 - adj_SS_res/(adj_SS_tot + tf.keras.backend.epsilon())) def rmsle(y_true, y_pred): """ Root Mean Squared Logarithm Error Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: root mean squared logarithm error """ first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.sqrt(K.mean(K.square(first_log - second_log), axis=-1)) def rmse(y_true, y_pred): """ Root Mean Squared Error Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: root mean squared error """ return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def smape(y_true, y_pred): """ Symmetric mean absolute percentage error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: symmetric mean absolute percentage error """ diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None)) return 100. * K.mean(K.mean(diff, axis=-1)) def smape_log(y_true, y_pred): """ Symmetric mean absolute percentage error regression loss. Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: symmetric mean absolute percentage error """ diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None)) return K.log(K.mean(K.mean(diff, axis=-1))) def nrmse(y_true, y_pred): """ Normalized Root Mean Squared Error Args: y_true ([np.array]): test samples y_pred ([np.array]): predicted samples Returns: [float]: normalized root mean squared error """ return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) / K.mean(K.abs(y_true), axis=-1)
py
b40e3603453e0c1f692595a09b56a43b21d1782d
#!python # raw2csv # Translates SPICE3 raw data into CSV file format. # Used, for example, in conjunction with ngSpice simulator output data. # # > raw2csv.py [-o <output_file.csv>] [-t] <input_raw_file> # # -o : output csv file. Default is "out.csv" in the current directory # -t : transpose output. By default data is aligned in column # <input_raw_file>: mandatory input file # # Under MIT License (MIT) # Copyright (C) 2021 Gabriele Bellini <Switzerland> import argparse import sys import os import time parser = argparse.ArgumentParser(description='Translate SPICE3 raw data into CSV file format') parser.add_argument('-t', action='store_true', dest='t', help='transpose data' ) parser.add_argument('-o', default='out.csv', dest='outfile', help='output CSV filename (default is out.csv)', type=str ) parser.add_argument('inputfile', help='input raw file (mandatory)', type=str ) args=parser.parse_args() transpose=args.t starttime = time.time() print('Input file : ' + args.inputfile) print('Output file : ' + args.outfile) result = [] result_line = [] line_splitted = [] f = open(args.inputfile, 'r') while True: currline = f.readline() if ("" == currline): break if (currline.find('No. Variables:') >= 0): # search for nb of variables line_splitted = currline.split(':') nb_variables = line_splitted[1].rstrip('\n') print('found '+nb_variables+' variables') break while True: currline = f.readline() if ("" == currline): break if (currline.find('Variables:') >= 0): #print('Variables') break for i in range(int(nb_variables)): currline = f.readline() if ("" == currline): break currline = currline.strip('\t') currline = currline.rstrip('\n') result_line = (currline.split('\t')) result.append(result_line) while True: currline = f.readline() if ("" == currline): break if (currline.find('Values:') >= 0): print('Processing values') break endoffile=0 while True: for i in range(int(nb_variables)): currline = f.readline() if ("" == currline): endoffile=1 break if len(currline.strip())>0: # ignore empty lines #print(currline) line_splitted = currline.split('\t') result[i].append(line_splitted[-1].rstrip('\n')) # take last/actual value and cleanup newline if (endoffile>0): break f.close() new_result=[] ############################## # Transpose ? if (transpose): new_result = [[result[j][i] for j in range(len(result))] for i in range(len(result[0]))] else: new_result = result ############################## # Write result to file f = open(args.outfile, 'w') for n in new_result: s=",".join(n) s=s+"\n" #print(s) f.write(s) f.close() #for n in new_result: # print(n) endtime = time.time() print('Execution time in seconds: ', (endtime-starttime))
py
b40e37204307bc2f548ea2e9999a811d6f0d715e
"""Pytest configuration module.""" from unittest.mock import patch import pytest from flake8_koles.checker import KolesChecker @pytest.fixture def koles_checker(): """Return clean KolesChecker instance.""" with patch('flake8_koles.checker.KolesChecker.__init__') as mock_init: mock_init.return_value = None koles_checker = KolesChecker('test_tree', 'test_filename') yield koles_checker
py
b40e3748ab96a64c069a1b046d22c44303ada73c
import math fileIn = "DieAssembly.xic" fileOut = "print.eps" size = 8*72 # Final size of postcript output page in pt psdigits = 10. ############################################### ## Determine scaling factor from bounding box ############################################### fxic = open(fileIn,"r") firstloop = True for line in fxic: args=line.rstrip().rstrip(';').split() #strip newline then split if args[0]=='P': # Extract coordinate pairs and scale coords = [] for i in range((len(args)-1)/2): coords.append((int(args[2*i+1]),int(args[2*i+2]))) # Find bounding box if firstloop: xboxmin = xboxmax = coords[0][0] yboxmin = yboxmax = coords[0][1] firstloop = False for x,y in coords: xboxmin = min(xboxmin,x) xboxmax = max(xboxmax,x) yboxmin = min(yboxmin,y) yboxmax = max(yboxmax,y) fxic.close() # Scale factor scale = psdigits*size/float(max(xboxmax-xboxmin,yboxmax-yboxmin)) ################################ ## Determine shared edges ################################ fxic = open(fileIn,"r") layer = 'none' edgeList = {} for line in fxic: args=line.rstrip().rstrip(';').split() #strip newline then split if args[0]=='L': layer = args[1] elif args[0]=='P': # Extract coordinate pairs and scale coords = [] for i in range((len(args)-1)/2): coords.append((int(scale*(int(args[2*i+1])-xboxmin)),int(scale*(int(args[2*i+2])-yboxmin)))) # Record all edges with their layer name. (xp,yp) = coords[len(coords)-1] for x,y in coords: key1 = (layer,xp,yp,x,y) key2 = (layer,x,y,xp,yp) if edgeList.has_key(key1): edgeList[key1] = 1 # Edge is shared elif edgeList.has_key(key2): edgeList[key2] = 1 else: edgeList[key1] = 0 # Create key xp = x yp = y fxic.close() ################################ ## Output geometry to postscript ################################ fxic = open(fileIn,"r") psfile = open(fileOut,"w") psfile.write("%!\n") psfile.write("%%%%BoundingBox: 0 0 %i %i\n" % (int((xboxmax-xboxmin)*scale/psdigits),int((yboxmax-yboxmin)*scale/psdigits))) psfile.write("1 setlinewidth\n") psfile.write("%f %f scale\n" % (1./psdigits, 1./psdigits)) layer = 'none' for line in fxic: args=line.rstrip().rstrip(';').split() #strip newline then split if args[0]=='L': layer = args[1] if layer=='MTL1': color = ( 140./255., 10./255., 10./255. ) # RGB fillpattern = 1 # 0-none, 1-lines fillcolor = ( 0.8, 0.37, 0.1 ) # RGB fillangle = -45 fillspace = 0.05*psdigits*72 elif layer=='MTL2': color = ( 30./255., 128./255., 46./255. ) # RGB fillpattern = 1 # 0-none, 1-lines fillcolor = ( 0.5, 0.8, 0 ) # RGB fillangle = 45 fillspace = 0.05*psdigits*72 elif layer=='OCUT': color = ( 46./255. , 30./255., 128./255. ) # RGB fillpattern = 1 # 0-none, 1-lines fillcolor = ( 0, 0.5, 0.8 ) # RGB fillangle = 45 fillspace = 0.025*psdigits*72 else: color = ( 0., 0., 0. ) # RGB fillpattern = 0 # 0-none, 1-lines psfile.write("%f %f %f setrgbcolor\n" % color) elif args[0]=='P': # Extract coordinate pairs and scale coords = [] for i in range((len(args)-1)/2): coords.append((int(scale*(int(args[2*i+1])-xboxmin)),int(scale*(int(args[2*i+2])-yboxmin)))) # Draw unshared boundary edges (xp,yp) = coords[len(coords)-1] for x,y in coords: key1 = (layer,xp,yp,x,y) key2 = (layer,x,y,xp,yp) if edgeList.has_key(key1) and edgeList[key1]==0: psfile.write("newpath %i %i moveto %i %i lineto stroke\n" \ % (xp,yp,x,y)) elif edgeList.has_key(key2) and edgeList[key2]==0: psfile.write("newpath %i %i moveto %i %i lineto stroke\n" \ % (xp,yp,x,y)) xp = x yp = y # Find bounding box for hatch fills xmin = xmax = coords[0][0] ymin = ymax = coords[0][1] for x,y in coords: xmin = min(xmin,x) xmax = max(xmax,x) ymin = min(ymin,y) ymax = max(ymax,y) # Draw hatching using a clipping path if fillpattern != 0: psfile.write("gsave %f %f %f setrgbcolor\n" % fillcolor) psfile.write("newpath %i %i moveto\n" % (coords[0][0], coords[0][1])) for x,y in coords[1:]: psfile.write("%i %i lineto\n" % (x, y)) psfile.write("closepath clip\n") if fillpattern==1 and fillangle==-45: imin = int(math.floor((xmin+ymin)/fillspace/math.sqrt(2))) imax = int(math.ceil((xmax+ymax)/fillspace/math.sqrt(2))) for i in range(imin,imax+1): xa = int(i*fillspace*math.sqrt(2))-ymin xb = xa-(ymax-ymin) psfile.write("newpath %i %i moveto %i %i lineto stroke\n" \ % (xa,ymin,xb,ymax)) elif fillpattern==1 and fillangle==45: imin = int(math.floor((xmin-ymax)/fillspace/math.sqrt(2))) imax = int(math.ceil((xmax-ymin)/fillspace/math.sqrt(2))) for i in range(imin,imax+1): xa = int(i*fillspace*math.sqrt(2))+ymax xb = xa-(ymax-ymin) psfile.write("newpath %i %i moveto %i %i lineto stroke\n" \ % (xa,ymax,xb,ymin)) if fillpattern != 0: psfile.write("grestore\n") fxic.close() psfile.close()
py
b40e376f4b8816f8af731886e7d994bb818134d8
from django.conf import settings from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters, permissions, viewsets from ..models import SoggettoFiscale from ..serializers import SoggettoFiscaleSerializer permission = permissions.AllowAny if settings.DEBUG else permissions.IsAuthenticated class SoggettoFiscaleViewSet(viewsets.ModelViewSet): permission_classes = [permission] queryset = SoggettoFiscale.objects.all() serializer_class = SoggettoFiscaleSerializer filter_backends = [filters.SearchFilter, DjangoFilterBackend] filterset_fields = ["utenti"] search_fields = [ "denominazione", "nome", "cognome", "id_fiscale_iva_codice", "codice_fiscale", ]
py
b40e379407834c2a22e3abbdd8ce6c05dab38956
from .app import App, mainApp from .entity import Entity from .tools import background, calcFunction def init(): global mainApp if not mainApp: mainApp = App() return mainApp
py
b40e383aa3db8a344801355c2b78cf08717fef71
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from cryptoapis.exceptions import ApiAttributeError def lazy_import(): from cryptoapis.model.get_transaction_details_by_transaction_idribsbsc_gas_price import GetTransactionDetailsByTransactionIDRIBSBSCGasPrice globals()['GetTransactionDetailsByTransactionIDRIBSBSCGasPrice'] = GetTransactionDetailsByTransactionIDRIBSBSCGasPrice class GetTransactionDetailsByTransactionIDRIBSBSC(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'contract': (str,), # noqa: E501 'gas_limit': (str,), # noqa: E501 'gas_price': (GetTransactionDetailsByTransactionIDRIBSBSCGasPrice,), # noqa: E501 'gas_used': (str,), # noqa: E501 'input_data': (str,), # noqa: E501 'nonce': (int,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'contract': 'contract', # noqa: E501 'gas_limit': 'gasLimit', # noqa: E501 'gas_price': 'gasPrice', # noqa: E501 'gas_used': 'gasUsed', # noqa: E501 'input_data': 'inputData', # noqa: E501 'nonce': 'nonce', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, contract, gas_limit, gas_price, gas_used, input_data, nonce, *args, **kwargs): # noqa: E501 """GetTransactionDetailsByTransactionIDRIBSBSC - a model defined in OpenAPI Args: contract (str): Represents the specific transaction contract gas_limit (str): Represents the amount of gas used by this specific transaction alone. gas_price (GetTransactionDetailsByTransactionIDRIBSBSCGasPrice): gas_used (str): Defines the unit of the gas price amount, e.g. BTC, ETH, XRP. input_data (str): Represents additional information that is required for the transaction. nonce (int): Represents the sequential running number for an address, starting from 0 for the first transaction. E.g., if the nonce of a transaction is 10, it would be the 11th transaction sent from the sender's address. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.contract = contract self.gas_limit = gas_limit self.gas_price = gas_price self.gas_used = gas_used self.input_data = input_data self.nonce = nonce for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, contract, gas_limit, gas_price, gas_used, input_data, nonce, *args, **kwargs): # noqa: E501 """GetTransactionDetailsByTransactionIDRIBSBSC - a model defined in OpenAPI Args: contract (str): Represents the specific transaction contract gas_limit (str): Represents the amount of gas used by this specific transaction alone. gas_price (GetTransactionDetailsByTransactionIDRIBSBSCGasPrice): gas_used (str): Defines the unit of the gas price amount, e.g. BTC, ETH, XRP. input_data (str): Represents additional information that is required for the transaction. nonce (int): Represents the sequential running number for an address, starting from 0 for the first transaction. E.g., if the nonce of a transaction is 10, it would be the 11th transaction sent from the sender's address. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.contract = contract self.gas_limit = gas_limit self.gas_price = gas_price self.gas_used = gas_used self.input_data = input_data self.nonce = nonce for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
b40e3905395ef71547f0e2df063ffe40db061eac
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Vendetta Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test behavior of headers messages to announce blocks. Setup: - Two nodes: - node0 is the node-under-test. We create two p2p connections to it. The first p2p connection is a control and should only ever receive inv's. The second p2p connection tests the headers sending logic. - node1 is used to create reorgs. test_null_locators ================== Sends two getheaders requests with null locator values. First request's hashstop value refers to validated block, while second request's hashstop value refers to a block which hasn't been validated. Verifies only the first request returns headers. test_nonnull_locators ===================== Part 1: No headers announcements before "sendheaders" a. node mines a block [expect: inv] send getdata for the block [expect: block] b. node mines another block [expect: inv] send getheaders and getdata [expect: headers, then block] c. node mines another block [expect: inv] peer mines a block, announces with header [expect: getdata] d. node mines another block [expect: inv] Part 2: After "sendheaders", headers announcements should generally work. a. peer sends sendheaders [expect: no response] peer sends getheaders with current tip [expect: no response] b. node mines a block [expect: tip header] c. for N in 1, ..., 10: * for announce-type in {inv, header} - peer mines N blocks, announces with announce-type [ expect: getheaders/getdata or getdata, deliver block(s) ] - node mines a block [ expect: 1 header ] Part 3: Headers announcements stop after large reorg and resume after getheaders or inv from peer. - For response-type in {inv, getheaders} * node mines a 7 block reorg [ expect: headers announcement of 8 blocks ] * node mines an 8-block reorg [ expect: inv at tip ] * peer responds with getblocks/getdata [expect: inv, blocks ] * node mines another block [ expect: inv at tip, peer sends getdata, expect: block ] * node mines another block at tip [ expect: inv ] * peer responds with getheaders with an old hashstop more than 8 blocks back [expect: headers] * peer requests block [ expect: block ] * node mines another block at tip [ expect: inv, peer sends getdata, expect: block ] * peer sends response-type [expect headers if getheaders, getheaders/getdata if mining new block] * node mines 1 block [expect: 1 header, peer responds with getdata] Part 4: Test direct fetch behavior a. Announce 2 old block headers. Expect: no getdata requests. b. Announce 3 new blocks via 1 headers message. Expect: one getdata request for all 3 blocks. (Send blocks.) c. Announce 1 header that forks off the last two blocks. Expect: no response. d. Announce 1 more header that builds on that fork. Expect: one getdata request for two blocks. e. Announce 16 more headers that build on that fork. Expect: getdata request for 14 more blocks. f. Announce 1 more header that builds on that fork. Expect: no response. Part 5: Test handling of headers that don't connect. a. Repeat 10 times: 1. Announce a header that doesn't connect. Expect: getheaders message 2. Send headers chain. Expect: getdata for the missing blocks, tip update. b. Then send 9 more headers that don't connect. Expect: getheaders message each time. c. Announce a header that does connect. Expect: no response. d. Announce 49 headers that don't connect. Expect: getheaders message each time. e. Announce one more that doesn't connect. Expect: disconnect. """ from test_framework.blocktools import create_block, create_coinbase from test_framework.messages import CInv from test_framework.mininode import ( CBlockHeader, NODE_WITNESS, P2PInterface, mininode_lock, msg_block, msg_getblocks, msg_getdata, msg_getheaders, msg_headers, msg_inv, msg_sendheaders, ) from test_framework.test_framework import VendettaTestFramework from test_framework.util import ( assert_equal, sync_blocks, wait_until, ) DIRECT_FETCH_RESPONSE_TIME = 0.05 class BaseNode(P2PInterface): def __init__(self): super().__init__() self.block_announced = False self.last_blockhash_announced = None self.recent_headers_announced = [] def send_get_data(self, block_hashes): """Request data for a list of block hashes.""" msg = msg_getdata() for x in block_hashes: msg.inv.append(CInv(2, x)) self.send_message(msg) def send_get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.send_message(msg) def send_block_inv(self, blockhash): msg = msg_inv() msg.inv = [CInv(2, blockhash)] self.send_message(msg) def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) def send_getblocks(self, locator): getblocks_message = msg_getblocks() getblocks_message.locator.vHave = locator self.send_message(getblocks_message) def wait_for_getdata(self, hash_list, timeout=60): if hash_list == []: return test_function = lambda: "getdata" in self.last_message and [x.hash for x in self.last_message["getdata"].inv] == hash_list wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_block_announcement(self, block_hash, timeout=60): test_function = lambda: self.last_blockhash_announced == block_hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def on_inv(self, message): self.block_announced = True self.last_blockhash_announced = message.inv[-1].hash def on_headers(self, message): if len(message.headers): self.block_announced = True for x in message.headers: x.calc_sha256() # append because headers may be announced over multiple messages. self.recent_headers_announced.append(x.sha256) self.last_blockhash_announced = message.headers[-1].sha256 def clear_block_announcements(self): with mininode_lock: self.block_announced = False self.last_message.pop("inv", None) self.last_message.pop("headers", None) self.recent_headers_announced = [] def check_last_headers_announcement(self, headers): """Test whether the last headers announcements received are right. Headers may be announced across more than one message.""" test_function = lambda: (len(self.recent_headers_announced) >= len(headers)) wait_until(test_function, timeout=60, lock=mininode_lock) with mininode_lock: assert_equal(self.recent_headers_announced, headers) self.block_announced = False self.last_message.pop("headers", None) self.recent_headers_announced = [] def check_last_inv_announcement(self, inv): """Test whether the last announcement received had the right inv. inv should be a list of block hashes.""" test_function = lambda: self.block_announced wait_until(test_function, timeout=60, lock=mininode_lock) with mininode_lock: compare_inv = [] if "inv" in self.last_message: compare_inv = [x.hash for x in self.last_message["inv"].inv] assert_equal(compare_inv, inv) self.block_announced = False self.last_message.pop("inv", None) class SendHeadersTest(VendettaTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def mine_blocks(self, count): """Mine count blocks and return the new tip.""" # Clear out block announcements from each p2p listener [x.clear_block_announcements() for x in self.nodes[0].p2ps] self.nodes[0].generate(count) return int(self.nodes[0].getbestblockhash(), 16) def mine_reorg(self, length): """Mine a reorg that invalidates length blocks (replacing them with # length+1 blocks). Note: we clear the state of our p2p connections after the to-be-reorged-out blocks are mined, so that we don't break later tests. return the list of block hashes newly mined.""" self.nodes[0].generate(length) # make sure all invalidated blocks are node0's sync_blocks(self.nodes, wait=0.1) for x in self.nodes[0].p2ps: x.wait_for_block_announcement(int(self.nodes[0].getbestblockhash(), 16)) x.clear_block_announcements() tip_height = self.nodes[1].getblockcount() hash_to_invalidate = self.nodes[1].getblockhash(tip_height - (length - 1)) self.nodes[1].invalidateblock(hash_to_invalidate) all_hashes = self.nodes[1].generate(length + 1) # Must be longer than the orig chain sync_blocks(self.nodes, wait=0.1) return [int(x, 16) for x in all_hashes] def run_test(self): # Setup the p2p connections inv_node = self.nodes[0].add_p2p_connection(BaseNode()) # Make sure NODE_NETWORK is not set for test_node, so no block download # will occur outside of direct fetching test_node = self.nodes[0].add_p2p_connection(BaseNode(), services=NODE_WITNESS) # Ensure verack's have been processed by our peer inv_node.sync_with_ping() test_node.sync_with_ping() self.test_null_locators(test_node, inv_node) self.test_nonnull_locators(test_node, inv_node) def test_null_locators(self, test_node, inv_node): tip = self.nodes[0].getblockheader(self.nodes[0].generate(1)[0]) tip_hash = int(tip["hash"], 16) inv_node.check_last_inv_announcement(inv=[tip_hash]) test_node.check_last_inv_announcement(inv=[tip_hash]) self.log.info("Verify getheaders with null locator and valid hashstop returns headers.") test_node.clear_block_announcements() test_node.send_get_headers(locator=[], hashstop=tip_hash) test_node.check_last_headers_announcement(headers=[tip_hash]) self.log.info("Verify getheaders with null locator and invalid hashstop does not return headers.") block = create_block(int(tip["hash"], 16), create_coinbase(tip["height"] + 1), tip["mediantime"] + 1) block.solve() test_node.send_header_for_blocks([block]) test_node.clear_block_announcements() test_node.send_get_headers(locator=[], hashstop=int(block.hash, 16)) test_node.sync_with_ping() assert_equal(test_node.block_announced, False) inv_node.clear_block_announcements() test_node.send_message(msg_block(block)) inv_node.check_last_inv_announcement(inv=[int(block.hash, 16)]) def test_nonnull_locators(self, test_node, inv_node): tip = int(self.nodes[0].getbestblockhash(), 16) # PART 1 # 1. Mine a block; expect inv announcements each time self.log.info("Part 1: headers don't start before sendheaders message...") for i in range(4): self.log.debug("Part 1.{}: starting...".format(i)) old_tip = tip tip = self.mine_blocks(1) inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_inv_announcement(inv=[tip]) # Try a few different responses; none should affect next announcement if i == 0: # first request the block test_node.send_get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # next try requesting header and block test_node.send_get_headers(locator=[old_tip], hashstop=tip) test_node.send_get_data([tip]) test_node.wait_for_block(tip) test_node.clear_block_announcements() # since we requested headers... elif i == 2: # this time announce own block via headers inv_node.clear_block_announcements() height = self.nodes[0].getblockcount() last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 new_block = create_block(tip, create_coinbase(height + 1), block_time) new_block.solve() test_node.send_header_for_blocks([new_block]) test_node.wait_for_getdata([new_block.sha256]) test_node.send_message(msg_block(new_block)) test_node.sync_with_ping() # make sure this block is processed wait_until(lambda: inv_node.block_announced, timeout=60, lock=mininode_lock) inv_node.clear_block_announcements() test_node.clear_block_announcements() self.log.info("Part 1: success!") self.log.info("Part 2: announce blocks with headers after sendheaders message...") # PART 2 # 2. Send a sendheaders message and test that headers announcements # commence and keep working. test_node.send_message(msg_sendheaders()) prev_tip = int(self.nodes[0].getbestblockhash(), 16) test_node.send_get_headers(locator=[prev_tip], hashstop=0) test_node.sync_with_ping() # Now that we've synced headers, headers announcements should work tip = self.mine_blocks(1) inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_headers_announcement(headers=[tip]) height = self.nodes[0].getblockcount() + 1 block_time += 10 # Advance far enough ahead for i in range(10): self.log.debug("Part 2.{}: starting...".format(i)) # Mine i blocks, and alternate announcing either via # inv (of tip) or via headers. After each, new blocks # mined by the node should successfully be announced # with block header, even though the blocks are never requested for j in range(2): self.log.debug("Part 2.{}.{}: starting...".format(i, j)) blocks = [] for b in range(i + 1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 if j == 0: # Announce via inv test_node.send_block_inv(tip) test_node.wait_for_getheaders() # Should have received a getheaders now test_node.send_header_for_blocks(blocks) # Test that duplicate inv's won't result in duplicate # getdata requests, or duplicate headers announcements [inv_node.send_block_inv(x.sha256) for x in blocks] test_node.wait_for_getdata([x.sha256 for x in blocks]) inv_node.sync_with_ping() else: # Announce via headers test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) # Test that duplicate headers won't result in duplicate # getdata requests (the check is further down) inv_node.send_header_for_blocks(blocks) inv_node.sync_with_ping() [test_node.send_message(msg_block(x)) for x in blocks] test_node.sync_with_ping() inv_node.sync_with_ping() # This block should not be announced to the inv node (since it also # broadcast it) assert "inv" not in inv_node.last_message assert "headers" not in inv_node.last_message tip = self.mine_blocks(1) inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_headers_announcement(headers=[tip]) height += 1 block_time += 1 self.log.info("Part 2: success!") self.log.info("Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer...") # PART 3. Headers announcements can stop after large reorg, and resume after # getheaders or inv from peer. for j in range(2): self.log.debug("Part 3.{}: starting...".format(j)) # First try mining a reorg that can propagate with header announcement new_block_hashes = self.mine_reorg(length=7) tip = new_block_hashes[-1] inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_headers_announcement(headers=new_block_hashes) block_time += 8 # Mine a too-large reorg, which should be announced with a single inv new_block_hashes = self.mine_reorg(length=8) tip = new_block_hashes[-1] inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_inv_announcement(inv=[tip]) block_time += 9 fork_point = self.nodes[0].getblock("%02x" % new_block_hashes[0])["previousblockhash"] fork_point = int(fork_point, 16) # Use getblocks/getdata test_node.send_getblocks(locator=[fork_point]) test_node.check_last_inv_announcement(inv=new_block_hashes) test_node.send_get_data(new_block_hashes) test_node.wait_for_block(new_block_hashes[-1]) for i in range(3): self.log.debug("Part 3.{}.{}: starting...".format(j, i)) # Mine another block, still should get only an inv tip = self.mine_blocks(1) inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_inv_announcement(inv=[tip]) if i == 0: # Just get the data -- shouldn't cause headers announcements to resume test_node.send_get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # Send a getheaders message that shouldn't trigger headers announcements # to resume (best header sent will be too old) test_node.send_get_headers(locator=[fork_point], hashstop=new_block_hashes[1]) test_node.send_get_data([tip]) test_node.wait_for_block(tip) elif i == 2: # This time, try sending either a getheaders to trigger resumption # of headers announcements, or mine a new block and inv it, also # triggering resumption of headers announcements. test_node.send_get_data([tip]) test_node.wait_for_block(tip) if j == 0: test_node.send_get_headers(locator=[tip], hashstop=0) test_node.sync_with_ping() else: test_node.send_block_inv(tip) test_node.sync_with_ping() # New blocks should now be announced with header tip = self.mine_blocks(1) inv_node.check_last_inv_announcement(inv=[tip]) test_node.check_last_headers_announcement(headers=[tip]) self.log.info("Part 3: success!") self.log.info("Part 4: Testing direct fetch behavior...") tip = self.mine_blocks(1) height = self.nodes[0].getblockcount() + 1 last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 # Create 2 blocks. Send the blocks, then send the headers. blocks = [] for b in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 inv_node.send_message(msg_block(blocks[-1])) inv_node.sync_with_ping() # Make sure blocks are processed test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() # should not have received any getdata messages with mininode_lock: assert "getdata" not in test_node.last_message # This time, direct fetch should work blocks = [] for b in range(3): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=DIRECT_FETCH_RESPONSE_TIME) [test_node.send_message(msg_block(x)) for x in blocks] test_node.sync_with_ping() # Now announce a header that forks the last two blocks tip = blocks[0].sha256 height -= 1 blocks = [] # Create extra blocks for later for b in range(20): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Announcing one block on fork should not trigger direct fetch # (less work than tip) test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks[0:1]) test_node.sync_with_ping() with mininode_lock: assert "getdata" not in test_node.last_message # Announcing one more block on fork should trigger direct fetch for # both blocks (same work as tip) test_node.send_header_for_blocks(blocks[1:2]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]], timeout=DIRECT_FETCH_RESPONSE_TIME) # Announcing 16 more headers should trigger direct fetch for 14 more # blocks test_node.send_header_for_blocks(blocks[2:18]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]], timeout=DIRECT_FETCH_RESPONSE_TIME) # Announcing 1 more header should not trigger any response test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks[18:19]) test_node.sync_with_ping() with mininode_lock: assert "getdata" not in test_node.last_message self.log.info("Part 4: success!") # Now deliver all those blocks we announced. [test_node.send_message(msg_block(x)) for x in blocks] self.log.info("Part 5: Testing handling of unconnecting headers") # First we test that receipt of an unconnecting header doesn't prevent # chain sync. for i in range(10): self.log.debug("Part 5.{}: starting...".format(i)) test_node.last_message.pop("getdata", None) blocks = [] # Create two more blocks. for j in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Send the header of the second block -> this won't connect. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[1]]) test_node.wait_for_getheaders() test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) [test_node.send_message(msg_block(x)) for x in blocks] test_node.sync_with_ping() assert_equal(int(self.nodes[0].getbestblockhash(), 16), blocks[1].sha256) blocks = [] # Now we test that if we repeatedly don't send connecting headers, we # don't go into an infinite loop trying to get them to connect. MAX_UNCONNECTING_HEADERS = 10 for j in range(MAX_UNCONNECTING_HEADERS + 1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 for i in range(1, MAX_UNCONNECTING_HEADERS): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[i]]) test_node.wait_for_getheaders() # Next header will connect, should re-set our count: test_node.send_header_for_blocks([blocks[0]]) # Remove the first two entries (blocks[1] would connect): blocks = blocks[2:] # Now try to see how many unconnecting headers we can send # before we get disconnected. Should be 5*MAX_UNCONNECTING_HEADERS for i in range(5 * MAX_UNCONNECTING_HEADERS - 1): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[i % len(blocks)]]) test_node.wait_for_getheaders() # Eventually this stops working. test_node.send_header_for_blocks([blocks[-1]]) # Should get disconnected test_node.wait_for_disconnect() self.log.info("Part 5: success!") # Finally, check that the inv node never received a getdata request, # throughout the test assert "getdata" not in inv_node.last_message if __name__ == '__main__': SendHeadersTest().main()
py
b40e3940afdb9074cad1b4e36977c2758298a3bf
from extended_euclidean import chineseremaindertheorem def openning_text(text_address): """Opens a text file""" with open(text_address, "r") as text_file: textr = text_file.readlines() result = list() for blocks in textr: blocks = blocks.replace("\n", "") blocks = blocks.split(" ") result.append(blocks) return result def getting_massage(code): """decrypting massage out of text file""" massage = '' for block in code: temp = '' for letters in block: temp += chr(int(letters) - 11) massage += temp if massage[-1] == "|": for i in range(len(massage)-1, 0, -1): if not massage[i] == "|": massage = massage[:i + 1] break return massage def decrypting_method(code, private_key): """Using decrypting method""" d, n, p, q, dp, dq, qinv = private_key d, n, p, q, dp, dq, qinv = int(d), int(n), int(p), int(q), int(dp), int(dq), int(qinv) decrypted_code = list() for blocks in code: temp = [] for codes in blocks: codes = int(codes) temp.append(str(chineseremaindertheorem(dq, dp, p, q, qinv, codes))) decrypted_code.append(temp) return decrypted_code def getting_private_key(): """making a private key""" text = openning_text("encrypted_text.txt") with open("private_key.txt", "r") as text_file: private_key = text_file.read() return private_key.split(), text private_key, encrypted_text = getting_private_key() text_code = decrypting_method(encrypted_text, private_key) text = getting_massage(text_code) with open("decrypted_text.txt", "w") as text_file: text_file.write(text)
py
b40e39d8572a3dea6c888821c47a9ff1cbd75569
# Copyright (c) 2021 Binbin Zhang([email protected]), Lucky Wong # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import copy import logging import os import sys import torch import yaml from torch.utils.data import DataLoader from wenet.dataset.dataset import Dataset from wenet.transformer.asr_model import init_asr_model from wenet.utils.checkpoint import load_checkpoint from wenet.utils.file_utils import read_symbol_table, read_non_lang_symbols from wenet.utils.config import override_config def get_args(): parser = argparse.ArgumentParser(description='Static quantize your model') parser.add_argument('--config', required=True, help='config file') parser.add_argument('--test_data', required=True, help='test data file') parser.add_argument('--checkpoint', required=True, help='checkpoint model') parser.add_argument('--num_workers', default=0, type=int, help='num of subprocess workers for reading') parser.add_argument('--pin_memory', action='store_true', default=False, help='Use pinned memory buffers used for reading') parser.add_argument('--prefetch', default=100, type=int, help='prefetch number') parser.add_argument('--script_model', required=True, help='output script model') parser.add_argument('--data_type', default='raw', choices=['raw', 'shard'], help='train and cv data type') parser.add_argument('--dict', required=True, help='dict file') parser.add_argument("--non_lang_syms", help="non-linguistic symbol file. One symbol per line.") parser.add_argument('--bpe_model', default=None, type=str, help='bpe model for english part') parser.add_argument('--override_config', action='append', default=[], help="override yaml config") args = parser.parse_args() print(args) return args def main(): args = get_args() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') os.environ['CUDA_VISIBLE_DEVICES'] = str("-1") with open(args.config, 'r') as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) if len(args.override_config) > 0: configs = override_config(configs, args.override_config) symbol_table = read_symbol_table(args.dict) test_conf = copy.deepcopy(configs['dataset_conf']) test_conf['filter_conf']['max_length'] = 102400 test_conf['filter_conf']['min_length'] = 0 test_conf['filter_conf']['token_max_length'] = 102400 test_conf['filter_conf']['token_min_length'] = 0 test_conf['filter_conf']['max_output_input_ratio'] = 102400 test_conf['filter_conf']['min_output_input_ratio'] = 0 test_conf['speed_perturb'] = False test_conf['spec_aug'] = False test_conf['shuffle'] = False test_conf['sort'] = False test_conf['fbank_conf']['dither'] = 0.0 test_conf['batch_conf']['batch_type'] = "static" test_conf['batch_conf']['batch_size'] = 1 non_lang_syms = read_non_lang_symbols(args.non_lang_syms) test_dataset = Dataset(args.data_type, args.test_data, symbol_table, test_conf, args.bpe_model, non_lang_syms, partition=False) test_data_loader = DataLoader(test_dataset, batch_size=None, pin_memory=args.pin_memory, num_workers=args.num_workers, prefetch_factor=args.prefetch) # Init asr model from configs model_fp32 = init_asr_model(configs) load_checkpoint(model_fp32, args.checkpoint) # model must be set to eval mode for static quantization logic to work model_fp32.eval() # Fuse the activations to preceding layers, where applicable. # This needs to be done manually depending on the model architecture. # Common fusions include `conv + relu` and `conv + batchnorm + relu` print('================ Float 32 ======================') print(model_fp32) # calibrate the prepared model to determine quantization parameters for # activations in a real world setting, the calibration would be done with # a representative dataset with torch.no_grad(): for batch_idx, batch in enumerate(test_data_loader): keys, feats, target, feats_lengths, target_lengths = batch model_fp32(feats, feats_lengths, target, target_lengths) if batch_idx % 100 == 0: print('Progress utts {}'.format(batch_idx)) sys.stdout.flush() # Convert the observed model to a quantized model. This does several things: # quantizes the weights, computes and stores the scale and bias value to be # used with each activation tensor, and replaces key operators with # quantized implementations. print('=================== int8 ======================') model_int8 = torch.quantization.convert(model_fp32) print(model_int8) print('================ int8(script) ==================') script_model = torch.jit.script(model_int8) script_model.save(args.script_model) print(script_model) if __name__ == '__main__': main()
py
b40e3a54eae7c1ee70a73884a147632cb2f78c3e
import argparse import h5py import multiprocessing as mp import numpy as np import os import sys import tensorflow as tf import time import julia backend = 'TkAgg' import matplotlib matplotlib.use(backend) import matplotlib.pyplot as plt matplotlib.use('TkAgg') from contexttimer import Timer import hgail.misc.utils import algorithms.utils from envs import hyperparams, utils, build_env from envs.utils import str2bool from utils.math_utils import classify_traj from algorithms.AGen import rls, validate_utils from preprocessing.clean_holo import clean_data, csv2txt, create_lane from preprocessing.extract_feature import extract_ngsim_features from src.trajdata import convert_raw_ngsim_to_trajdatas # import pdb import math import tqdm import torch plt.style.use("ggplot") N_ITERATION = 1 # the number of iterations of rls step N_VEH = 1 # the number of controlled vehicles for each simulation def online_adaption( env, policy, obs, mean, env_kwargs=dict(), lbd=0.99, adapt_steps=1, trajinfos=None): if len(obs.shape) == 2: obs = np.expand_dims(obs, axis=0) mean = np.expand_dims(mean, axis=0) assert trajinfos is not None policy_fc_weight = np.array(policy.mean_network.fc.weight.data.cpu()) policy_fc_bias = np.array(policy.mean_network.fc.bias.data.cpu()).reshape((2, 1)) new_theta = np.concatenate([policy_fc_weight, policy_fc_bias], axis=1) new_theta = np.mean(new_theta) # print("new theta: {}".format(new_theta)) ego_start_frame = trajinfos[env_kwargs['egoid']]['ts'] maxstep = trajinfos[env_kwargs['egoid']]['te'] - trajinfos[env_kwargs['egoid']]['ts'] - 52 env_kwargs['start'] = ego_start_frame + 2 x = env.reset(**env_kwargs) n_agents = x.shape[0] # print("Agent number: {}".format(n_agents)) dones = [True] * n_agents predicted_trajs, adapnets = [], [] policy.reset(dones) print("max steps") print(maxstep) mean = np.expand_dims(mean, axis=2) prev_hiddens = np.zeros([n_agents, 64]) param_length = 65 if adapt_steps == 1 else 195 for i in range(n_agents): adapnets.append(rls.rls(lbd, new_theta, param_length, 2)) lx = x error = [] # size is (maxstep, predict_span, n_agent) each element is a dict(dx: , dy: ,dist: ) curve_error = [] changeLane_error = [] straight_error = [] orig_traj_list = [] pred_traj_list = [] time_list = [] for step in tqdm.tqdm(range(ego_start_frame, maxstep + ego_start_frame - 1)): a, a_info, hidden_vec = policy.get_actions_with_prev(obs[:, step, :], mean[:, step, :], prev_hiddens) # print(hidden_vec) hidden_vec = np.random.randn(1, 64) if adapt_steps == 1: adap_vec = hidden_vec elif adapt_steps == 2: adap_vec = np.concatenate((hidden_vec, prev_hiddens, obs[:, step, :]), axis=1) else: print('Adapt steps can only be 1 and 2 for now.') exit(0) adap_vec = np.expand_dims(adap_vec, axis=1) for i in range(n_agents): for _ in range(N_ITERATION): adapnets[i].update(adap_vec[i], mean[i, step+1, :]) adapnets[i].draw.append(adapnets[i].theta[6, 1]) prev_actions, prev_hiddens = a, hidden_vec error_per_step, time_info, orig_traj, pred_traj = prediction(x, adapnets, env, policy, prev_hiddens, n_agents, adapt_steps) traj_cat = classify_traj(orig_traj) if traj_cat != "invalid": error.append(error_per_step) orig_traj_list.append(orig_traj) pred_traj_list.append(pred_traj) if traj_cat == "curve": curve_error.append(error_per_step) elif traj_cat == "changeLane": changeLane_error.append(error_per_step) elif traj_cat == "straight": straight_error.append(error_per_step) if "20" in time_info.keys() and "50" in time_info.keys(): time_list.append([time_info["20"], time_info["50"]]) d = np.stack([adapnets[i].draw for i in range(n_agents)]) env_kwargs['start'] += 1 lx = x x = env.reset(**env_kwargs) error_info = dict() error_info["overall"] = error error_info["curve"] = curve_error error_info["lane_change"] = changeLane_error error_info["straight"] = straight_error error_info["time_info"] = time_list error_info["orig_traj"] = orig_traj_list error_info["pred_traj"] = pred_traj_list print("\n\nVehicle id: {} Statistical Info:\n\n".format(env_kwargs['egoid'])) utils.print_error(error_info) return error_info def prediction(x, adapnets, env, policy, prev_hiddens, n_agents, adapt_steps): predict_span = 50 error_per_step = [] # size is (predict_span, n_agent) each element is a dict(dx: , dy: ,dist: ) valid_data = True hi_speed_limit = 40 lo_speed_limit = 10 orig_trajectory = [] pred_trajectory = [] start_time = time.time() time_info = {} for j in range(predict_span): # if j == 0: # print("feature {}".format(j), x) x[0][15] = 0 a, a_info, hidden_vec = policy.get_actions(x) # feature_array = np.concatenate([feature_array, np.array(x)], axis=0) hidden_vec = np.random.randn(1, 64) if adapt_steps == 1: adap_vec = hidden_vec else: adap_vec = np.concatenate((hidden_vec, prev_hiddens, x), axis=1) means = np.zeros([n_agents, 2]) log_std = np.zeros([n_agents, 2]) for i in range(x.shape[0]): means[i] = adapnets[i].predict(np.expand_dims(adap_vec[i], 0)) log_std[i] = np.log(np.std(adapnets[i].theta, axis=0)) prev_hiddens = hidden_vec # rnd = np.random.normal(size=means.shape) actions = means # print("random feature:", actions) # print("policy feature:", a) # print("predict step: {}".format(j+1)) nx, r, dones, e_info = env.step(actions) error_per_agent = [] # length is n_agent, each element is a dict(dx: , dy: ,dist: ) for i in range(n_agents): assert n_agents == 1 # print("orig x: ", e_info["orig_x"][i]) # print("orig y: ", e_info["orig_y"][i]) # print("orig v: ", e_info["orig_v"][i]) # print("predicted v:", e_info["v"][i]) # print("orig theta: ", e_info["orig_theta"][i]) # print("predicted x: ", e_info["x"][i]) # print("predicted y: ", e_info["y"][i]) dx = abs(e_info["orig_x"][i] - e_info["x"][i]) dy = abs(e_info["orig_y"][i] - e_info["y"][i]) dist = math.hypot(dx, dy) # print("dist: ", dist) if e_info["orig_v"][i] > hi_speed_limit or e_info["orig_v"][i] < lo_speed_limit: valid_data = False # print("{}-----> dx: {} dy: {} dist: {}".format(j, dx, dy, dist)) if valid_data: if dist > 140: exit(0) # this is for debugging error_per_agent.append(dist) orig_trajectory.append([e_info["orig_x"][i], e_info["orig_y"][i]]) pred_trajectory.append([e_info["x"][i], e_info["y"][i]]) if valid_data: error_per_step += error_per_agent if any(dones): break x = nx end_time = time.time() if j == 19: time_info["20"] = end_time - start_time elif j == 49: time_info["50"] = end_time - start_time return error_per_step, time_info, orig_trajectory, pred_trajectory def collect_trajectories( args, params, egoids, error_dict, pid, env_fn, policy_fn, use_hgail, random_seed, lbd, adapt_steps): print('env initialization args') print(args) env, trajinfos, _, _ = env_fn(args, n_veh=N_VEH, alpha=0.) # print(trajinfos[0]) args.policy_recurrent = True policy = policy_fn(args, env, mode=1) if torch.cuda.is_available(): policy = policy.cuda() with tf.Session() as sess: # initialize variables sess.run(tf.global_variables_initializer()) # then load parameters if use_hgail: for i, level in enumerate(policy): level.algo.policy.set_param_values(params[i]['policy']) policy = policy[0].algo.policy else: policy_param_path = "./data/experiments/NGSIM-gail/imitate/model/policy.pkl" policy.load_param(policy_param_path) print("load policy param from: {}".format(policy_param_path)) # policy.set_param_values(params['policy']) normalized_env = hgail.misc.utils.extract_normalizing_env(env) if normalized_env is not None: normalized_env._obs_mean = params['normalzing']['obs_mean'] normalized_env._obs_var = params['normalzing']['obs_var'] # collect trajectories egoids = np.unique(egoids) nids = len(egoids) veh_2_index = {} if args.env_multiagent: data, index = validate_utils.get_multiagent_ground_truth(args.ngsim_filename, args.h5_filename) for i, idx in enumerate(index): veh_2_index[idx] = i else: data = validate_utils.get_ground_truth(args.ngsim_filename, args.h5_filename) sample = np.random.choice(data['observations'].shape[0], 2) kwargs = dict() # print(('Loading obs data Running time: %s Seconds' % (end_time - start_time))) if args.env_multiagent: # I add not because single simulation has no orig_x etc. # egoid = random.choice(egoids) trajinfos = trajinfos[0] error = {"overall": [], "curve": [], "lane_change": [], "straight": [], "time_info": [], "orig_traj": [], "pred_traj": []} for veh_id in trajinfos.keys(): if trajinfos[veh_id]["te"] - trajinfos[veh_id]["ts"] <= 52: continue if random_seed: kwargs = dict(random_seed=random_seed + veh_id) print("egoid: {}, ts: {}, te: {}".format(veh_id, trajinfos[veh_id]["ts"], trajinfos[veh_id]["te"])) print("data index is {}".format(veh_2_index[veh_id])) kwargs['egoid'] = veh_id kwargs['traj_idx'] = 0 error_info = online_adaption( env, policy, obs=data['observations'][[veh_2_index[veh_id]], :, :], mean=data['actions'][[veh_2_index[veh_id]], :, :], env_kwargs=kwargs, lbd=lbd, adapt_steps=adapt_steps, trajinfos=trajinfos ) error["overall"] += error_info["overall"] error["curve"] += error_info["curve"] error["lane_change"] += error_info["lane_change"] error["straight"] += error_info["straight"] error["time_info"] += error_info["time_info"] error["orig_traj"] += error_info["orig_traj"] error["pred_traj"] += error_info["pred_traj"] error_dict.append(error) else: # for i in sample: for i, egoid in enumerate(egoids): sys.stdout.write('\rpid: {} traj: {} / {}\n'.format(pid, i, nids)) index = veh_2_index[egoid] traj = online_adaption( env, policy, obs=data['observations'][index, :, :], mean=data['actions'][index, :, :], env_kwargs=dict(egoid=egoid, traj_idx=[0]), lbd=lbd, adapt_steps=adapt_steps, ) return error_dict def parallel_collect_trajectories( args, params, egoids, n_proc, env_fn=build_env.build_ngsim_env, use_hgail=False, random_seed=None, lbd=0.99, adapt_steps=1): # build manager and dictionary mapping ego ids to list of trajectories tf_policy = False parallel = False # set policy function policy_fn = validate_utils.build_policy if tf_policy else algorithms.utils.build_policy # partition egoids proc_egoids = utils.partition_list(egoids, n_proc) if parallel: manager = mp.Manager() error_dict = manager.list() # pool of processes, each with a set of ego ids pool = mp.Pool(processes=n_proc) # print(('Creating parallel env Running time: %s Seconds' % (end_time - start_time))) # run collection results = [] for pid in range(n_proc): res = pool.apply_async( collect_trajectories, args=( args, params, proc_egoids[pid], error_dict, pid, env_fn, policy_fn, use_hgail, random_seed, lbd, adapt_steps ) ) results.append(res) [res.get() for res in results] pool.close() else: error_dict = [] error_dict = collect_trajectories( args, params, proc_egoids[0], error_dict, 0, env_fn, policy_fn, use_hgail, random_seed, lbd, adapt_steps ) # wait for the processes to finish # let the julia processes finish up time.sleep(10) return error_dict[0] def single_process_collect_trajectories( args, params, egoids, starts, n_proc, env_fn=build_env.build_ngsim_env, max_steps=200, use_hgail=False, random_seed=None): ''' This function for debugging purposes ''' # build list to be appended to trajlist = [] # set policy function policy_fn = build_env.build_hierarchy if use_hgail else validate_utils.build_policy tf.reset_default_graph() # collect trajectories in a single process collect_trajectories( args, params, egoids, starts, trajlist, n_proc, env_fn, policy_fn, max_steps, use_hgail, random_seed ) return trajlist def collect( egoids, args, exp_dir, use_hgail, params_filename, n_proc, collect_fn=parallel_collect_trajectories, random_seed=None, lbd = 0.99, adapt_steps=1): ''' Description: - prepare for running collection in parallel - multiagent note: egoids and starts are not currently used when running this with args.env_multiagent == True ''' # load information relevant to the experiment params_filepath = os.path.join(exp_dir, 'imitate/{}'.format(params_filename)) params = np.load(params_filepath)['params'].item() # validation setup validation_dir = os.path.join(exp_dir, 'imitate', 'test') utils.maybe_mkdir(validation_dir) with Timer(): error = collect_fn( args, params, egoids, n_proc, use_hgail=use_hgail, random_seed=random_seed, lbd=lbd, adapt_steps=adapt_steps ) return error # utils.write_trajectories(output_filepath, trajs) def load_egoids(filename, args, n_runs_per_ego_id=10, env_fn=build_env.build_ngsim_env): offset = args.env_H + args.env_primesteps basedir = os.path.expanduser('~/Autoenv/data/') # TODO: change the file path ids_filename = filename.replace('.txt', '-index-{}-ids.h5'.format(offset)) print("ids_filename") print(ids_filename) ids_filepath = os.path.join(basedir, ids_filename) print("Creating ids file") # this should create the ids file env_fn(args) if not os.path.exists(ids_filepath): raise ValueError('file unable to be created, check args') ids = np.array(h5py.File(ids_filepath, 'r')['ids'].value) print("Creating starts file") ids_file = h5py.File(ids_filepath, 'r') ts = ids_file['ts'].value te = ids_file['te'].value length = np.array([e - s for (s, e) in zip(ts, te)]) traj_num = length.sum() ids = np.tile(ids, n_runs_per_ego_id) return ids, traj_num if __name__ == '__main__': parser = argparse.ArgumentParser(description='validation settings') parser.add_argument('--n_proc', type=int, default=1) parser.add_argument('--exp_dir', type=str, default='./data/experiments/NGSIM-gail') parser.add_argument('--params_filename', type=str, default='itr_200.npz') parser.add_argument('--n_runs_per_ego_id', type=int, default=1) parser.add_argument('--use_hgail', type=str2bool, default=False) parser.add_argument('--use_multiagent', type=str2bool, default=False) parser.add_argument('--n_multiagent_trajs', type=int, default=10000) parser.add_argument('--debug', type=str2bool, default=False) parser.add_argument('--random_seed', type=int, default=None) parser.add_argument('--n_envs', type=int, default=None) parser.add_argument('--remove_ngsim_vehicles', type=str2bool, default=False) parser.add_argument('--lbd', type=float, default=0.99) parser.add_argument('--adapt_steps', type=int, default=1) run_args = parser.parse_args() j = julia.Julia() j.using("NGSIM") args_filepath = "./args/params.npz" if os.path.isfile(args_filepath): args = hyperparams.load_args(args_filepath) else: raise ValueError("No such params file") # if no such file, please run save_args.py if run_args.use_multiagent: args.env_multiagent = True args.remove_ngsim_vehicles = run_args.remove_ngsim_vehicles if run_args.debug: collect_fn = single_process_collect_trajectories else: collect_fn = parallel_collect_trajectories prev_lane_name = None # used to generate roadway information data_base_dir = "./preprocessing/data" # the directory we used to processing raw data total_error = { "overall": [], "curve": [], "lane_change": [], "straight": [], "time_info": [], "orig_traj": [], "pred_traj": [] } for dir_name in os.listdir(data_base_dir): if "downsampled" not in dir_name and os.path.isdir(os.path.join(data_base_dir, dir_name, "processed")): dir_error = { "overall": [], "curve": [], "lane_change": [], "straight": [], "time_info": [], "orig_traj": [], "pred_traj": [] } for file_name in os.listdir(os.path.join(data_base_dir, dir_name, "processed")): if "section" in file_name: orig_traj_file = os.path.join(dir_name, "processed", file_name) print("processing file {}".format(orig_traj_file)) else: print("lane file, skipping") continue lane_file = os.path.join(dir_name, "processed", '{}_lane'.format(orig_traj_file[:19])) processed_data_path = 'holo_{}_perfect_cleaned.csv'.format(orig_traj_file[5:19]) df_len = clean_data(orig_traj_file) # clean Holo data raw csv if df_len == 0: print("Invalid file, skipping") continue csv2txt(processed_data_path) if prev_lane_name != lane_file: create_lane(lane_file) else: print("Using same lane file, skipping generating a new one") print("Finish cleaning the original data") print("Start generating roadway") if prev_lane_name != lane_file: base_dir = os.path.expanduser('~/Autoenv/data/') j.write_roadways_to_dxf(base_dir) j.write_roadways_from_dxf(base_dir) prev_lane_name = lane_file print("Finish generating roadway") convert_raw_ngsim_to_trajdatas() print("Start feature extraction") extract_ngsim_features(output_filename="ngsim_holo_new.h5", n_expert_files=1) print("Finish converting and feature extraction") fn = "trajdata_holo_trajectories.txt" hn = './data/trajectories/ngsim_holo_new.h5' if run_args.n_envs: args.n_envs = run_args.n_envs # args.env_H should be 200 sys.stdout.write('{} vehicles with H = {}\n'.format(args.n_envs, args.env_H)) args.ngsim_filename = fn args.h5_filename = hn if args.env_multiagent: egoids, _ = load_egoids(fn, args, run_args.n_runs_per_ego_id) else: egoids, _ = load_egoids(fn, args, run_args.n_runs_per_ego_id) print("egoids") print(egoids) # print("starts") # print(starts) if len(egoids) == 0: print("No valid vehicles, skipping") continue error = collect( egoids, args, exp_dir=run_args.exp_dir, params_filename=run_args.params_filename, use_hgail=run_args.use_hgail, n_proc=run_args.n_proc, collect_fn=collect_fn, random_seed=run_args.random_seed, lbd=run_args.lbd, adapt_steps=run_args.adapt_steps ) print("\n\nDirectory: {}, file: {} Statistical Info:\n\n".format(dir_name, file_name)) utils.print_error(error) dir_error["overall"] += error["overall"] dir_error["curve"] += error["curve"] dir_error["lane_change"] += error["lane_change"] dir_error["straight"] += error["straight"] dir_error["time_info"] += error["time_info"] dir_error["orig_traj"] += error["orig_traj"] dir_error["pred_traj"] += error["pred_traj"] print("\n\nDirectory: {} Statistical Info:\n\n".format(dir_name)) utils.print_error(dir_error) total_error["overall"] += dir_error["overall"] total_error["curve"] += dir_error["curve"] total_error["lane_change"] += dir_error["lane_change"] total_error["straight"] += dir_error["straight"] total_error["time_info"] += dir_error["time_info"] total_error["orig_traj"] += dir_error["orig_traj"] total_error["pred_traj"] += dir_error["pred_traj"] print("\n\nOverall Statistical Info up to now:\n\n") utils.print_error(total_error)
py
b40e3b9106b0ee4d4e20fda72c5bb310ecaf0c0c
# sys imports import os,sys sys.path.append('/home/ryan/github/prosodic') import warnings warnings.filterwarnings('ignore') import prosodic as p from tqdm import tqdm import pandas as pd,numpy as np,random,json,pickle,shutil from collections import defaultdict,Counter import subprocess,multiprocessing as mp mp.set_start_method('fork') from pprint import pprint from itertools import product pd.options.display.max_columns=False import re,nltk from sqlitedict import SqliteDict import logging logging.Logger.manager.loggerDict['sqlitedict'].disabled=True from parmapper import parmap from functools import partial # constants ENGINE_PROSODIC='prosodic' ENGINE_CADENCE='cadence' ENGINE=ENGINE_PROSODIC MIN_WORDS_IN_PHRASE=2 DEFAULT_LANG='en' PATH_HERE=os.path.abspath(os.path.dirname(__file__)) PATH_CODE=PATH_HERE PATH_REPO=os.path.abspath(os.path.join(PATH_CODE,'..')) PATH_HOME=os.path.join(os.path.expanduser('~'),'.cadence') PATH_DATA=os.path.join(PATH_HOME,'data') # PATH_DATA=os.path.join(PATH_REPO,'data') DATA_URL='https://www.dropbox.com/s/fywmqrlpemjf43c/data_cadence.zip?dl=1' PATH_NOTEBOOKS=os.path.join(PATH_REPO,'notebooks') PATH_IPA_FEATS=os.path.join(PATH_DATA,'data.feats.ipa.csv') INCL_ALT=True DEFAULT_NUM_PROC=1 #mp.cpu_count()//2# - 1 KEEP_BEST=1 SBY=csby=['combo_i','word_i','syll_i'] PARSERANKCOL='parse_rank' LINEKEY=[ 'stanza_i', 'line_i', 'line_str', 'linepart_i',#'linepart_str', 'linepart_str', 'linepart_end_str', PARSERANKCOL, #'parse_str', 'is_troch', 'parse_i', 'parse', # 'combo_stress', 'parse_str', 'combo_stress', 'combo_ipa', 'combo_i', # 'combo_i','combo_stress','combo_ipa', 'parse_is_bounded','parse_bounded_by', 'parse_pos_i','parse_pos', 'word_i','word_str','word_ipa_i','word_ipa', 'syll_i','combo_syll_i','syll_str','syll_ipa','syll_stress','syll_weight', 'parse_syll_i','parse_syll', ] PARSELINEKEY = LINEKEY[:LINEKEY.index('parse_pos_i')] PARSESYLLKEY=LINEKEY TOTALCOL='*total' DEFAULT_CONSTRAINTS = { '*w/peak', '*w/stressed', # '*s/unstressed', '*f-res', '*w-res' } NUM_BOUNDED_TO_STORE = 10 constraint_names_in_prosodic = { '*f-res':'footmin-f-resolution', '*s/unstressed':'stress.s=>-u', '*w-res':'footmin-w-resolution', '*w/peak':'strength.w=>-p', '*w/stressed':'stress.w=>-p', '*s/trough':'strength.s=>-u', } constraint_names_from_prosodic = dict((v,k) for k,v in constraint_names_in_prosodic.items()) txt="""In Xanadu did Kubla Khan A stately pleasure-dome decree: Where Alph, the sacred river, ran Through caverns measureless to man Down to a sunless sea. """ line=txt.split('\n')[0] APPLY_POSTHOC_CONSTRAINTS=False # local imports from .tools import * from .langs import * from .constraints import * from .parsers import * from .cadence import * # check check_basic_config()
py
b40e3bd8c09d0960f9000716c8bbaaa80e1b0953
# -*- coding: utf-8 -*- """ External-IO connections based on asyncio The only 3 requirements for these connections is: (1) store Moler's connection inside self.moler_connection attribute (2) plugin into Moler's connection the way IO outputs data to external world: self.moler_connection.how2send = self.send (3) forward IO received data into self.moler_connection.data_received(data) """ __author__ = 'Grzegorz Latuszek' __copyright__ = 'Copyright (C) 2018, Nokia' __email__ = '[email protected]'
py
b40e3c147900fb0d0abe72989ea628ee9d6af5fa
#!/usr/bin/env python # -*- coding: utf-8 -*- # # pyMLP Molecular Lipophilic Potential evaluator # Copyright (c) 2006-2007 Julien Lefeuvre <[email protected]> # """pyMLP: Molecular Lipophilicity Potential evaluator""" # PLEASE DO NOT CHANGE FORMAT OF __version__ LINE (setup.py reads this) __author__ = "Julien Lefeuvre <[email protected]>" __version__ = "1.0" __date__ = "2007-03-28" __copyright__ = "Copyright (c) 2006-2007 %s. All rights reserved." % __author__ __licence__ = "BSD" import sys import os import shutil import time import numpy from optparse import OptionParser from pprint import pformat try: import psyco psyco.full() except ImportError: pass class Defaults(object): """Constants""" def __init__(self): self.gridmargin = 10.0 self.fidatadefault = { #Default fi table 'ALA': {'CB': '0.63', #fi : lipophilic atomic potential 'C': '-0.54', 'CA': '0.02', 'O': '-0.68', 'N': '-0.44'}, 'ARG': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '0.45', 'CG': '0.45', 'CZ': '-0.54', 'N': '-0.44', 'NE': '-0.55', 'NH1': '-0.11', 'NH2': '-0.83', 'O': '-0.68'}, 'ASN': {'C': '-0.54', 'CA': '0.02', 'CB': '0.02', 'CG': '0.45', 'N': '-0.44', 'ND2': '-0.11', 'O': '-0.68', 'OD1': '-0.68'}, 'ASP': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CG': '0.54', 'N': '-0.44', 'O': '-0.68', 'OD1': '-0.68', 'OD2': '0.53'}, 'CYS': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'N': '-0.44', 'O': '-0.68', 'SG': '0.27'}, 'GLN': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '-0.54', 'CG': '0.45', 'N': '-0.44', 'NE2': '-0.11', 'O': '-0.68', 'OE1': '-0.68'}, 'GLU': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '-0.54', 'CG': '0.45', 'N': '-0.44', 'O': '-0.68', 'OE1': '-0.68', 'OE2': '0.53'}, 'GLY': {'C': '-0.54', 'CA': '0.45', 'O': '-0.68', 'N': '-0.55'}, 'HIS': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD2': '0.31', 'CE1': '0.31', 'CG': '0.09', 'N': '-0.44', 'ND1': '-0.56', 'NE2': '-0.80', 'O': '-0.68'}, 'HYP': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD1': '0.45', 'CG': '0.02', 'N': '-0.92', 'O': '-0.68', 'OD2': '-0.93'}, 'ILE': {'C': '-0.54', 'CA': '0.02', 'CB': '0.02', 'CD': '0.63', 'CD1': '0.63', 'CG1': '0.45', 'CG2': '0.63', 'N': '-0.44', 'O': '-0.68'}, 'LEU': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD1': '0.63', 'CD2': '0.63', 'CG': '0.02', 'N': '-0.44', 'O': '-0.68'}, 'LYS': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '0.45', 'CE': '0.45', 'CG': '0.45', 'N': '-0.44', 'NZ': '-1.08', 'O': '-0.68'}, 'MET': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CE': '0.63', 'CG': '0.45', 'N': '-0.44', 'O': '-0.68', 'SD': '-0.30'}, 'PCA': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '-0.54', 'CG': '0.45', 'N': '1.52', 'O': '-0.68', 'OE': '-0.68'}, 'PHE': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD1': '0.31', 'CD2': '0.31', 'CE1': '0.31', 'CE2': '0.31', 'CG': '0.09', 'CZ': '0.31', 'N': '-0.44', 'O': '-0.68'}, 'PRO': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD': '0.45', 'CG': '0.45', 'N': '-0.92', 'O': '-0.68'}, 'SER': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'N': '-0.44', 'O': '-0.68', 'OG': '-0.99'}, 'THR': {'C': '-0.54', 'CA': '0.02', 'CB': '0.02', 'CG2': '0.63', 'N': '-0.44', 'O': '-0.68', 'OG1': '-0.93'}, 'TRP': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD1': '0.31', 'CD2': '0.24', 'CE2': '0.24', 'CE3': '0.31', 'CG': '0.09', 'CH2': '0.31', 'CZ2': '0.31', 'CZ3': '0.31', 'N': '-0.44', 'NE1': '-0.55', 'O': '-0.68'}, 'TYR': {'C': '-0.54', 'CA': '0.02', 'CB': '0.45', 'CD1': '0.31', 'CD2': '0.31', 'CE1': '0.31', 'CE2': '0.31', 'CG': '0.09', 'CZ': '0.09', 'N': '-0.44', 'O': '-0.68', 'OH': '-0.17'}, 'VAL': {'C': '-0.54', 'CA': '0.02', 'CB': '0.02', 'CG1': '0.63', 'CG2': '0.63', 'N': '-0.44', 'O': '-0.68'}} def _CLIparsing(): """Parsing of pyMLP command line""" usage='\n%%prog -i file.pdb\n\n%s' %__doc__ version="%%prog %s %s" %(__version__, __date__) CLparser = OptionParser(usage=usage, version=version) CLparser.add_option('-i', '--inpdb', dest='pdbfile', help='PDB file (input)', metavar='file.pdb') CLparser.add_option('-f', '--fipdb', dest='fipdbfile', help='PDB file with added fi (partial lipophilicity) (input/output)' ' (optional)', metavar='file_fi.pdb') CLparser.add_option('-t', '--fitab', dest='fitabfile', help='FI table used to convert file.pdb into file_fi.pdb ' '(input/output) (optional)', metavar='fi.tab') CLparser.add_option('-o', '--outdx', dest='dxfile', help='DX file (output) (optional)', metavar='file.dx') CLparser.add_option('-m', '--method', dest='method', help='Potential calculation method : ' 'dubost [1/(1+d)] ' 'fauchere [exp(-d)] (default) ' 'brasseur [exp(-d/3.1)] ' 'buckingham [1/d**n] ' 'type5 [exp(-sqrt(d))] ' 'none [no calculation]', metavar='fauchere') CLparser.add_option('-s', '--spacing', type="float", dest='spacing', help='Grid spacing (default = 1.0 Angstrom)', metavar='1.0') CLparser.add_option('-n', '--n_exp', type="float", dest='nexp', help='Exponent for the buckingham method (default = 3.0)', metavar='3.0') CLparser.add_option('-v', '--verbose', action='store_true', dest='verbose', help='make a lot of noise ...') CLparser.set_defaults(verbose=False, spacing=1.0, method='fauchere', nexp=3.0) (params, args) = CLparser.parse_args() #Checking if the input is valid if args or (not params.pdbfile and not params.fipdbfile): CLparser.error('This script require parameters ...\n' 'see help : pyMLP.py -h') methods=['dubost', 'fauchere', 'brasseur', 'buckingham', 'type5', 'none'] if params.method not in methods: CLparser.error('Please use a valid method ...\n' 'see help : pyMLP.py -h') return params def writefitab(fidata,fitabfile,verbose=False): """write fidata in the file fitabfile (to let the user modify it)""" try: fitabf = open(fitabfile,'w') fitabf.write('fidata = {\n '+pformat(fidata)[1:]) if verbose: sys.stdout.write("%s created with default values...\n" % fitabfile) except IOError: sys.stderr.write("Can't write file named : %s\n" % fitabfile) class Atom(object): """Atom properties needed for the calculation""" def __init__(self, x, y, z, fi): self.x = x self.y = y self.z = z self.fi = fi class Molecule(object): """Main class of pyMLP""" def __init__(self, verbose=False): self.verbose = verbose self.name = 'molecule' self.data = None self.pot = None self.griddim = None self.gridcoord = None self.spacing = None def parsepdb(self, pdbfile, checkforfi=False): """Parsing a PDB (Protein Data Bank) formated file""" if pdbfile[-4:].lower()=='.pdb': self.name = pdbfile[0:-4] else: self.name = pdbfile try: pdbtext = open(pdbfile) except IOError: if self.verbose: sys.stderr.write("Can't open %s ...\n" % pdbfile) sys.exit() self.data=[] for line in pdbtext: recordname=line[:6].strip() if recordname in ['MODEL', 'ENDMDL', 'TER', 'END']: atmnumber, atmname, altloc, resname = None, None, None, None chainid, resseq, icode = None, None, None atmx, atmy, atmz = None, None, None occupancy, tempfactor = None, None fi = None comments=line[6:] elif recordname in ['ATOM', 'HETATM']: try: atmnumber = int(line[6:11].strip()) atmname = line[12:16].strip() altloc = line[16].strip() resname = line[17:20].strip() chainid = line[21].strip() resseq = int(line[22:26].strip()) icode = line[26].strip() atmx = float(line[30:38].strip()) atmy = float(line[38:46].strip()) atmz = float(line[46:54].strip()) occupancy = float(line[54:60].strip()) tempfactor = float(line[60:66].strip()) if checkforfi: fi = float(line[66:72].strip()) comments = line[72:] else: fi = None comments = line[66:] except ValueError: if self.verbose: sys.stderr.write( "%s might not respect PDB standards\nor the fi " "parameters could have been misplaced\n" % pdbfile) continue else: continue pdbline={'recordname': recordname, 'atmnumber': atmnumber, 'atmname': atmname, 'altloc': altloc, 'resname': resname, 'chainid': chainid, 'resseq': resseq, 'icode': icode, 'atmx': atmx, 'atmy': atmy, 'atmz': atmz, 'occupancy': occupancy, 'tempfactor': tempfactor, 'fi': fi, 'comments': comments} self.data.append(pdbline) if self.verbose: sys.stdout.write( "\n%s was parsed ... %i lines were taken into " "account\n" % (pdbfile, len(self.data))) def assignfi(self, fidata): """assign fi parameters to each atom in the pdbfile""" for line in self.data: if line['resname'] in fidata: if not line['fi']: try: fi=float(fidata[line['resname']][line['atmname']]) line['fi']=fi except KeyError: if self.verbose: sys.stderr.write( "Atom Number %s is not defined in \nthe fi " "parameters (might be an H)\n" % line['atmnumber']) continue def writefipdb(self,fipdbfile): """write a fipdb file containing the data for the pdbfile and the fi parameters""" try: fipdbf = file(fipdbfile,'w') except IOError: if self.verbose: sys.stderr.write( "I am having difficulties writing on %s" % fipdbfile) for d in self.data: if d['fi']: header='%-6s%5i %-3s%1s%3s %1s%4i%1s ' % ( d['recordname'], d['atmnumber'], d['atmname'], d['altloc'], d['resname'], d['chainid'], d['resseq'], d['icode']) coord='%8.3f%8.3f%8.3f' % (d['atmx'], d['atmy'], d['atmz']) fi='%6.2f \n' % (d['fi']) fipdbf.write(header+coord+fi) if self.verbose: sys.stdout.write('%s was writen' % fipdbfile) def _griddimcalc(self, listcoord, spacing, gridmargin): """Determination of the grid dimension""" coordmin = min(listcoord) - gridmargin coordmax = max(listcoord) + gridmargin adjustment = ((spacing - (coordmax - coordmin)) % spacing) / 2. coordmin = coordmin - adjustment coordmax = coordmax + adjustment ngrid = int(round((coordmax - coordmin) / spacing)) return coordmin, coordmax, ngrid def _dubost(self, fi, d, n): return (100 * fi / (1 + d)).sum() def _fauchere(self, fi, d, n): return (100 * fi * numpy.exp(-d)).sum() def _brasseur(self, fi, d, n): #3.1 division is there to remove any units in the equation #3.1A is the average diameter of a water molecule (2.82 -> 3.2) return (100 * fi * numpy.exp(-d/3.1)).sum() def _buckingham(self, fi, d, n): return (100 * fi / (d**n)).sum() def _type5(self, fi, d, n): return (100 * fi * numpy.exp(-numpy.sqrt(d))).sum() def calculatefimap(self, method, spacing, nexp): """Calculation loop""" atoms=[] for d in self.data: if d['fi']: atoms.append(Atom(d['atmx'], d['atmy'], d['atmz'], d['fi'])) #grid settings in angstrom gridmargin = Defaults().gridmargin xmingrid, xmaxgrid, nxgrid = self._griddimcalc([a.x for a in atoms], spacing, gridmargin) ymingrid, ymaxgrid, nygrid = self._griddimcalc([a.y for a in atoms], spacing, gridmargin) zmingrid, zmaxgrid, nzgrid = self._griddimcalc([a.z for a in atoms], spacing, gridmargin) self.spacing = spacing self.griddim = (nxgrid+1, nygrid+1, nzgrid+1) self.gridcoord = [[xmingrid, xmaxgrid], [ymingrid, ymaxgrid], [zmingrid, zmaxgrid]] if self.verbose: sys.stdout.write( "\nGrid dimension (angstroms):\n" "coord : min max ngrid\n" " x : %8.4f %8.4f %8i\n" " y : %8.4f %8.4f %8i\n" " z : %8.4f %8.4f %8i\n\n" %(xmingrid, xmaxgrid, nxgrid, ymingrid, ymaxgrid, nygrid, zmingrid, zmaxgrid, nzgrid)) coordatms = numpy.zeros((len(atoms),3),float) fiatms = numpy.zeros((len(atoms)),float) for p in range(len(atoms)): coordatms[p] = [atoms[p].x, atoms[p].y, atoms[p].z] fiatms[p] = atoms[p].fi self.pot = numpy.zeros((nxgrid+1, nygrid+1, nzgrid+1), float) gridsize = (nxgrid+1) * (nygrid+1) * (nzgrid+1) coordgridpts = numpy.zeros((nxgrid+1, nygrid+1, nzgrid+1,3), float) for i in range(nxgrid+1): for j in range(nygrid+1): for k in range(nzgrid+1): xgrid = xmingrid + i * spacing ygrid = ymingrid + j * spacing zgrid = zmingrid + k * spacing coordgridpts[i,j,k]=[xgrid, ygrid, zgrid] if self.verbose: sys.stdout.write('\nGrid Points Coordinates evaluated\n\n') if method == 'dubost': computemethod = self._dubost elif method == 'fauchere': computemethod = self._fauchere elif method == 'brasseur': computemethod = self._brasseur elif method == 'buckingham': computemethod = self._buckingham elif method == 'type5': computemethod = self._type5 else: sys.stderr.write('You should never come here !\n') counter = 0. for i in range(nxgrid+1): for j in range(nygrid+1): for k in range(nzgrid+1): #Evaluation of the distance between th grid point and each atoms dist = numpy.sqrt(((coordgridpts[i,j,k,] - coordatms[:,])**2).sum(1)) self.pot[i,j,k] = computemethod(fiatms, dist, nexp) counter += 1. if self.verbose: sys.stdout.write('\rCalculation in progress :' ' %8.2f%%' % (counter*100/((nxgrid+1)*(nygrid+1)))) if self.verbose: sys.stdout.write('\n\nMLPmin = %8.3f | MLPmax = %8.3f | ' 'MLPmean = %8.3f\n\n' % (self.pot.min(), self.pot.max(), self.pot.mean())) def writedxfile(self, dxfile): """Write a dx (openDX) file""" if not self.pot.any(): sys.stderr.write('\nNo Data to write !\n\n') return try: dxf = file(dxfile,'w') dxf.write('#pyMLP output file\n' '# \n' '#A computer once beat me at chess, \n' '#but it was no match for me at kick boxing.\n' '# \n') dxf.write('object 1 class gridpositions counts ' '%i %i %i\n' % self.griddim) gridmin = tuple([xyzmin[0] for xyzmin in self.gridcoord]) dxf.write('origin %8.6e %8.6e %8.6e\n' % gridmin) dxf.write('delta %8.6e %8.6e %8.6e\n' % (self.spacing, 0., 0.)) dxf.write('delta %8.6e %8.6e %8.6e\n' % (0., self.spacing, 0.)) dxf.write('delta %8.6e %8.6e %8.6e\n' % (0., 0., self.spacing)) dxf.write('object 2 class gridconnections counts ' '%i %i %i\n' % self.griddim) nbtot = self.griddim[0]*self.griddim[1]*self.griddim[2] dxf.write('object 3 class array type double rank 0 items' ' %i data follows\n' % nbtot) self.pot = self.pot.reshape(nbtot) for m in range(0, nbtot-nbtot%3, 3): val = tuple(self.pot[m:m+3]) dxf.write('%8.6e %8.6e %8.6e\n' % val) if 0 < nbtot%3 < 3: for m in self.pot[nbtot-nbtot%3:nbtot]: dxf.write('%8.6e ' % m) dxf.write('\n') dxf.write('attribute "dep" string "positions"\n' 'object "regular positions regular connections" ' 'class field\n' 'component "positions" value 1\n' 'component "connections" value 2\n' 'component "data" value 3\n') except IOError: sys.stderr.write('\nI tried to prevent it ... but writing the .dx' 'file was not possible !') if self.verbose: sys.stdout.write('\nMolecular Lipophilic Potential Map ' 'saved in %s\n\nBye ...\n\n' % dxfile) def main(): """pyMLP main function""" p = _CLIparsing() #parsing the command line and getting options in p defaults = Defaults() fidata = defaults.fidatadefault if p.fitabfile: try: #import fidata if requested import imp fitabf = imp.load_source('fitabf', p.fitabfile) fidata = fitabf.fidata if p.verbose: sys.stdout.write("%s is compiled for internal use " "as %sc\n" % (p.fitabfile, p.fitabfile)) except IOError: #export fidata if requested if p.verbose: sys.stderr.write("Can't open %s ... " "using default values and creating a template\n" % p.fitabfile) writefitab(fidata, p.fitabfile, verbose=p.verbose) molec = Molecule(verbose=p.verbose) if p.pdbfile: if os.path.isfile(p.pdbfile): molec.parsepdb(p.pdbfile) molec.assignfi(fidata) if p.fipdbfile: if os.path.isfile(p.fipdbfile): if p.verbose: sys.stderr.write('%s already exists ' 'pyMLP will not overwrite it\n' % p.fipdbfile) pass else: molec.writefipdb(p.fipdbfile) else: if p.verbose: sys.stderr.write("Can't open %s ...\n" % p.pdbfile) sys.exit() elif p.fipdbfile: if os.path.isfile(p.fipdbfile): molec.parsepdb(p.fipdbfile, checkforfi=True) else: if p.verbose: sys.stderr.write("Can't open %s ...\n" % p.fipdbfile) sys.exit() else: sys.stderr.write('You should never come here !\n') if p.method != 'none': molec.calculatefimap(p.method, p.spacing, p.nexp) if p.dxfile: pass else: p.dxfile = molec.name+'.dx' if os.path.isfile(p.dxfile): timestamp = time.strftime('%Y-%m-%d_%H%M%S') bckpdxfile = p.dxfile+'.bckp_'+timestamp shutil.copy(p.dxfile, bckpdxfile) if p.verbose: sys.stdout.write('Old %s was backed up as %s\n' % ( p.dxfile, bckpdxfile)) molec.writedxfile(p.dxfile) else: if p.verbose: sys.stdout.write("pyMLP didn't calculate anything\n\n") if __name__ == '__main__': sys.exit(main())
py
b40e3c8d8f4c55ab4a703f9696ad1e51c604fa57
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_NV_viewport_array2' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_NV_viewport_array2',error_checker=_errors._error_checker)
py
b40e3d37a522141330e319b940f2b9abc968c444
import os class Program(): def __init__(self): self.content = "" self.in_text = [0] self.out_text = -2 def add_in(self, index): if index not in self.in_text: self.in_text.append(index) def add_content(self, line): self.content+=line.replace('HOOKED',"LUMA") def set_out(self, index): self.out_text = index class Parser(): def __init__(self, algo): self.texture_name_list = ["HOOKED", "LUMA"] self.prog_list = [] self.double = False self.highQ = False self.copy = False with open(os.path.dirname(os.path.realpath(__file__)) + '/' + algo, 'r') as fp: new_prog = False comment = False program = None for line in fp: if comment: if"*/" in line: comment = False continue if "/*" in line: comment = True continue # not really work in every case if line[:3] == "//!": tex_name = line.split()[1] if not new_prog: new_prog=True if program != None: self.prog_list.append(program) program = Program() if line[3:7] == "BIND": program.add_in(self.texture_name_list.index(tex_name)) elif line[3:7] == "HEIG": self.double = True elif line[3:7] == "QUAL": self.highQ = True elif line[3:7] == "COPY": self.copy = True elif line[3:7] == "SAVE": if tex_name not in self.texture_name_list: self.texture_name_list.append(tex_name) program.set_out(self.texture_name_list.index(tex_name)) else: new_prog = False if program: program.add_content(line) self.prog_list.append(program) for a in self.prog_list: a.in_text = list(set([k-1 if k>1 else 0 for k in a.in_text])) a.out_text = a.out_text-2 self.texture_name_list = self.texture_name_list[1:] self.prog_list[-1].set_out(len(self.texture_name_list)-1)
py
b40e3ea53bbba0daa3a933b89327f5785768fb4b
from collections import OrderedDict import os.path import shutil import pytest from edalize import get_edatool tests_dir = os.path.dirname(__file__) class TestFixture: """A fixture that makes an edalize backend with work_root directory Create this object using the make_edalize_test factory fixture. This passes through its `tool_name` and sets up a temporary directory for `work_root`, then passes its keyword arguments through to the TestFixture initializer. Args: tool_name: The name of the tool work_root: The directory to treat as a work root test_name: The name to call the backend. Defaults to `'test_<tool_name>_0'` param_types: A list of parameter types. Defaults to `['plusarg', 'vlogdefine', 'vlogparam']` (the parameter types supported by most simulators). files: A list of files to use. Defaults to `None`, which means to use :py:data:`FILES`. tool_options: Dictionary passed to _setup_backend. Defaults to `{}`. ref_dir: A reference directory relative to `test_<tool_name>`. Defaults to `'.'` use_vpi: If true, set up backend with definitions from :attr:`VPI`. Defaults to `False`. """ def __init__( self, tool_name, work_root, test_name=None, param_types=["plusarg", "vlogdefine", "vlogparam"], files=None, tool_options={}, ref_dir=".", use_vpi=False, toplevel="top_module", ): raw_ref_dir = os.path.join(tests_dir, "test_" + tool_name, ref_dir) self.test_name = ( "test_{}_0".format(tool_name) if test_name is None else test_name ) self.ref_dir = os.path.normpath(raw_ref_dir) self.work_root = work_root self.backend = _setup_backend( self.test_name, tool_name, param_types, files, tool_options, work_root, use_vpi, toplevel, ) def compare_files(self, files, ref_subdir="."): """Check some files in the work root match those in the ref directory The files argument gives the list of files to check. These are interpreted as paths relative to the work directory and relative to self.ref_dir / ref_subdir. This is a wrapper around edalize_common.compare_files: see its documentation for how to use the :envvar:`GOLDEN_RUN` environment variable to copy across a golden reference. """ ref_dir = os.path.normpath(os.path.join(self.ref_dir, ref_subdir)) return compare_files(ref_dir, self.work_root, files) def copy_to_work_root(self, path): shutil.copy( os.path.join(self.ref_dir, path), os.path.join(self.work_root, path) ) @pytest.fixture def make_edalize_test(monkeypatch, tmpdir): """A factory fixture to make an edalize backend with work_root directory The returned factory method takes a `tool_name` (the name of the tool) and the keyword arguments supported by :class:`TestFixture`. It returns a :class:`TestFixture` object, whose `work_root` is a temporary directory. """ # Prepend directory `mock_commands` to PATH environment variable monkeypatch.setenv("PATH", os.path.join(tests_dir, "mock_commands"), ":") created = [] def _fun(tool_name, **kwargs): work_root = tmpdir / str(len(created)) work_root.mkdir() fixture = TestFixture(tool_name, str(work_root), **kwargs) created.append(fixture) return fixture return _fun def compare_files(ref_dir, work_root, files): """Check that all *files* in *work_root* match those in *ref_dir*. If the environment variable :envvar:`GOLDEN_RUN` is set, the *files* in *work_root* are copied to *ref_dir* to become the new reference. """ for f in files: reference_file = os.path.join(ref_dir, f) generated_file = os.path.join(work_root, f) assert os.path.exists(generated_file) if "GOLDEN_RUN" in os.environ: shutil.copy(generated_file, reference_file) with open(reference_file) as fref, open(generated_file) as fgen: assert fref.read() == fgen.read(), f def param_gen(paramtypes): """Generate dictionary of definitions in *paramtypes* list.""" defs = OrderedDict() for paramtype in paramtypes: for datatype in ["bool", "int", "str"]: if datatype == "int": default = 42 elif datatype == "str": default = "hello" else: default = True defs[paramtype + "_" + datatype] = { "datatype": datatype, "default": default, "description": "", "paramtype": paramtype, } return defs def _setup_backend( name, tool, paramtypes, files, tool_options, work_root, use_vpi, toplevel ): """Set up a backend. The backend is called *name*, is set up for *tool* with *tool_options*, *paramtypes*, and, if *use_vpi* is ``True``, definitions from :attr:`VPI`. If *files* is None, files are taken from :attr:`FILES`. """ parameters = param_gen(paramtypes) _vpi = [] if use_vpi: _vpi = VPI for v in VPI: for f in v["src_files"]: _f = os.path.join(work_root, f) if not os.path.exists(os.path.dirname(_f)): os.makedirs(os.path.dirname(_f)) with open(_f, "a"): os.utime(_f, None) edam = { "name": name, "files": FILES if files is None else files, "parameters": parameters, "tool_options": {tool: tool_options}, "toplevel": toplevel, "vpi": _vpi, } return get_edatool(tool)(edam=edam, work_root=work_root) FILES = [ {"name": "qip_file.qip", "file_type": "QIP"}, {"name": "qsys_file", "file_type": "QSYS"}, {"name": "sdc_file", "file_type": "SDC"}, {"name": "bmm_file", "file_type": "BMM"}, {"name": "sv_file.sv", "file_type": "systemVerilogSource"}, {"name": "pcf_file.pcf", "file_type": "PCF"}, {"name": "ucf_file.ucf", "file_type": "UCF"}, {"name": "user_file", "file_type": "user"}, {"name": "tcl_file.tcl", "file_type": "tclSource"}, {"name": "waiver_file.waiver", "file_type": "waiver"}, {"name": "vlog_file.v", "file_type": "verilogSource"}, {"name": "vlog05_file.v", "file_type": "verilogSource-2005"}, {"name": "vlog_incfile", "file_type": "verilogSource", "is_include_file": True}, {"name": "vhdl_file.vhd", "file_type": "vhdlSource"}, {"name": "vhdl_lfile", "file_type": "vhdlSource", "logical_name": "libx"}, {"name": "vhdl2008_file", "file_type": "vhdlSource-2008"}, {"name": "xci_file.xci", "file_type": "xci"}, {"name": "xdc_file.xdc", "file_type": "xdc"}, {"name": "bootrom.mem", "file_type": "mem"}, {"name": "c_file.c", "file_type": "cSource"}, {"name": "cpp_file.cpp", "file_type": "cppSource"}, {"name": "c_header.h", "file_type": "cSource", "is_include_file": True}, {"name": "c_header.h", "file_type": "cppSource", "is_include_file": True}, {"name": "config.vbl", "file_type": "veribleLintRules"}, {"name": "verible_waiver.vbw", "file_type": "veribleLintWaiver"}, {"name": "verible_waiver2.vbw", "file_type": "veribleLintWaiver"}, {"name": "config.sby.j2", "file_type": "sbyConfigTemplate"}, {"name": "another_sv_file.sv", "file_type": "systemVerilogSource"}, {"name": "pdc_constraint_file.pdc", "file_type": "PDC"}, {"name": "pdc_floorplan_constraint_file.pdc", "file_type": "FPPDC"}, {"name": "lpf_file.lpf", "file_type": "LPF"}, ] """Files of all supported file types.""" VPI = [ { "src_files": ["src/vpi_1/f1", "src/vpi_1/f3"], "include_dirs": ["src/vpi_1/"], "libs": ["some_lib"], "name": "vpi1", }, {"src_files": ["src/vpi_2/f4"], "include_dirs": [], "libs": [], "name": "vpi2"}, ] """Predefined VPI modules to build."""
py
b40e3f3435f90430e0e0ea74c75b4ed9fe3ff135
#!/usr/bin/env python3 import torch from torch.autograd import Function, Variable from torch.nn.parameter import Parameter import torch.optim as optim import numpy as np import numpy.random as npr from mpc import mpc from mpc.mpc import GradMethods, QuadCost, LinDx import sys from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', color_scheme='Linux', call_pdb=1) import time import os import shutil import pickle as pkl import collections import argparse import setproctitle # import setGPU def main(): parser = argparse.ArgumentParser() parser.add_argument('--n_state', type=int, default=3) parser.add_argument('--n_ctrl', type=int, default=3) parser.add_argument('--T', type=int, default=5) parser.add_argument('--save', type=str) parser.add_argument('--work', type=str, default='work') parser.add_argument('--no-cuda', action='store_true') parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() t = '.'.join(["{}={}".format(x, getattr(args, x)) for x in ['n_state', 'n_ctrl', 'T']]) setproctitle.setproctitle('bamos.lqr.'+t+'.{}'.format(args.seed)) if args.save is None: args.save = os.path.join(args.work, t, str(args.seed)) if os.path.exists(args.save): shutil.rmtree(args.save) os.makedirs(args.save, exist_ok=True) device = 'cuda' if args.cuda else 'cpu' n_state, n_ctrl = args.n_state, args.n_ctrl n_sc = n_state+n_ctrl expert_seed = 42 assert expert_seed != args.seed torch.manual_seed(expert_seed) Q = torch.eye(n_sc) p = torch.randn(n_sc) alpha = 0.2 expert = dict( Q = torch.eye(n_sc).to(device), p = torch.randn(n_sc).to(device), A = (torch.eye(n_state) + alpha*torch.randn(n_state, n_state)).to(device), B = torch.randn(n_state, n_ctrl).to(device), ) fname = os.path.join(args.save, 'expert.pkl') with open(fname, 'wb') as f: pkl.dump(expert, f) torch.manual_seed(args.seed) A = (torch.eye(n_state) + alpha*torch.randn(n_state, n_state))\ .to(device).requires_grad_() B = torch.randn(n_state, n_ctrl).to(device).requires_grad_() # u_lower, u_upper = -10., 10. u_lower, u_upper = None, None delta = u_init = None fname = os.path.join(args.save, 'losses.csv') loss_f = open(fname, 'w') loss_f.write('im_loss,mse\n') loss_f.flush() def get_loss(x_init, _A, _B): F = torch.cat((expert['A'], expert['B']), dim=1) \ .unsqueeze(0).unsqueeze(0).repeat(args.T, n_batch, 1, 1) x_true, u_true, objs_true = mpc.MPC( n_state, n_ctrl, args.T, u_lower=u_lower, u_upper=u_upper, u_init=u_init, lqr_iter=100, verbose=-1, exit_unconverged=False, detach_unconverged=False, n_batch=n_batch, )(x_init, QuadCost(expert['Q'], expert['p']), LinDx(F)) F = torch.cat((_A, _B), dim=1) \ .unsqueeze(0).unsqueeze(0).repeat(args.T, n_batch, 1, 1) x_pred, u_pred, objs_pred = mpc.MPC( n_state, n_ctrl, args.T, u_lower=u_lower, u_upper=u_upper, u_init=u_init, lqr_iter=100, verbose=-1, exit_unconverged=False, detach_unconverged=False, n_batch=n_batch, )(x_init, QuadCost(expert['Q'], expert['p']), LinDx(F)) traj_loss = torch.mean((u_true - u_pred)**2) + \ torch.mean((x_true - x_pred)**2) return traj_loss opt = optim.RMSprop((A, B), lr=1e-2) n_batch = 128 for i in range(5000): x_init = torch.randn(n_batch,n_state).to(device) traj_loss = get_loss(x_init, A, B) opt.zero_grad() traj_loss.backward() opt.step() model_loss = torch.mean((A-expert['A'])**2) + \ torch.mean((B-expert['B'])**2) loss_f.write('{},{}\n'.format(traj_loss.item(), model_loss.item())) loss_f.flush() plot_interval = 100 if i % plot_interval == 0: os.system('./plot.py "{}" &'.format(args.save)) print(A, expert['A']) print('{:04d}: traj_loss: {:.4f} model_loss: {:.4f}'.format( i, traj_loss.item(), model_loss.item())) # except KeyboardInterrupt: TODO # raise # except Exception as e: # # print(e) # # pass # raise if __name__=='__main__': main()
py
b40e3f7adf55275f79fd337416fad530d8ab145d
import csv from PyQt5 import QtWidgets from pyqtgraph import PlotWidget, plot from PyQt5.QtGui import QColor, QPen import pyqtgraph as pg import sys # We need sys so that we can pass argv to QApplication import os filename = "btc.csv" x = [i for i in range(2, 4539)] y = [] with open(filename, 'r') as csvfile: next(csvfile) for elmt in csv.reader(csvfile): if elmt[68] == "": y.append(float(0)) else: y.append(float(elmt[68])) xN = [i for i in range(2, 4538)] dydx = [] for i in range(len(y) - 1): dydx.append((y[i + 1] - y[i])/(x[i + 1] - x[i])) class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.graphWidget = pg.PlotWidget() self.setCentralWidget(self.graphWidget) # plot data: x, y values self.graphWidget.setBackground('w') self.graphWidget.plot(x, y, pen=QPen(QColor(0, 0, 0))) self.graphWidget.plot(xN, dydx, pen=QPen(QColor(0, 0, 255))) def main(): app = QtWidgets.QApplication(sys.argv) main = MainWindow() main.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
py
b40e3f9159ba088cde15b527feb67c22b0ade4b8
# python3 # Copyright 2019 The gVisor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ABSL build benchmark.""" import re SAMPLE_BAZEL_OUTPUT = """Extracting Bazel installation... Starting local Bazel server and connecting to it... Loading: Loading: 0 packages loaded Loading: 0 packages loaded currently loading: absl/algorithm ... (11 packages) Analyzing: 241 targets (16 packages loaded, 0 targets configured) Analyzing: 241 targets (21 packages loaded, 617 targets configured) Analyzing: 241 targets (27 packages loaded, 687 targets configured) Analyzing: 241 targets (32 packages loaded, 1105 targets configured) Analyzing: 241 targets (32 packages loaded, 1294 targets configured) Analyzing: 241 targets (35 packages loaded, 1575 targets configured) Analyzing: 241 targets (35 packages loaded, 1575 targets configured) Analyzing: 241 targets (36 packages loaded, 1603 targets configured) Analyzing: 241 targets (36 packages loaded, 1603 targets configured) INFO: Analyzed 241 targets (37 packages loaded, 1864 targets configured). INFO: Found 241 targets... [0 / 5] [Prepa] BazelWorkspaceStatusAction stable-status.txt [16 / 50] [Analy] Compiling absl/base/dynamic_annotations.cc ... (20 actions, 10 running) [60 / 77] Compiling external/com_google_googletest/googletest/src/gtest.cc; 5s processwrapper-sandbox ... (12 actions, 11 running) [158 / 174] Compiling absl/container/internal/raw_hash_set_test.cc; 2s processwrapper-sandbox ... (12 actions, 11 running) [278 / 302] Compiling absl/container/internal/raw_hash_set_test.cc; 6s processwrapper-sandbox ... (12 actions, 11 running) [384 / 406] Compiling absl/container/internal/raw_hash_set_test.cc; 10s processwrapper-sandbox ... (12 actions, 11 running) [581 / 604] Compiling absl/container/flat_hash_set_test.cc; 11s processwrapper-sandbox ... (12 actions, 11 running) [722 / 745] Compiling absl/container/node_hash_set_test.cc; 9s processwrapper-sandbox ... (12 actions, 11 running) [846 / 867] Compiling absl/hash/hash_test.cc; 11s processwrapper-sandbox ... (12 actions, 11 running) INFO: From Compiling absl/debugging/symbolize_test.cc: /tmp/cclCVipU.s: Assembler messages: /tmp/cclCVipU.s:1662: Warning: ignoring changed section attributes for .text [999 / 1,022] Compiling absl/hash/hash_test.cc; 19s processwrapper-sandbox ... (12 actions, 11 running) [1,082 / 1,084] Compiling absl/container/flat_hash_map_test.cc; 7s processwrapper-sandbox INFO: Elapsed time: 81.861s, Critical Path: 23.81s INFO: 515 processes: 515 processwrapper-sandbox. INFO: Build completed successfully, 1084 total actions INFO: Build completed successfully, 1084 total actions""" def sample(): return SAMPLE_BAZEL_OUTPUT # pylint: disable=unused-argument def elapsed_time(data: str, **kwargs) -> float: """Returns the elapsed time for running an absl build.""" return float(re.compile(r"Elapsed time: (\d*.?\d*)s").search(data).group(1))
py
b40e406b4dc0bbd3ab0d2f3afc5be2b5b845e5ef
""" Django settings for digital_handwriting project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATES_DIR=os.path.join(BASE_DIR,'templates') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+%apmq2_-amk9pus39&90nl1%wdel*bzf81(m#pp6j595o2m%^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'handwriting', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'digital_handwriting.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATES_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'digital_handwriting.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
py
b40e407c39a2c64089e058e73909e9479d05eac0
import dataclasses from typing import List @dataclasses.dataclass class AverageableStack: ''' A stack of numbers with a O(1) average() operation. inv: self._total == sum(self._values) ''' _values: List[int] _total: int def __init__(self): self._values = [] self._total = 0 def push(self, val: int): ''' post: True ''' self._values.append(val) self._total += val def pop(self) -> int: ''' pre: self._values ''' val = self._values.pop() self._total -= val return val def average(self) -> float: ''' pre: self._values ''' return self._total / len(self._values)
py
b40e408b37e6dd8105bf43f4263baf3d47a2814b
from builder.laikago_task_bullet import LaikagoTaskBullet from builder.laikago_task import InitPose import math import random class LaikagoStandUpBulletBase(LaikagoTaskBullet): def __init__(self, reward_mode='with_shaping', run_mode='train', contact_buffer_length=5): super(LaikagoStandUpBulletBase, self).__init__(run_mode=run_mode, reward_mode=reward_mode, init_pose=InitPose.STAND, contact_buffer_length=contact_buffer_length) class LaikagoStandUpBulletPush(LaikagoStandUpBulletBase): def __init__(self, run_mode='train', reward_mode='with_shaping', force=True, max_force=300, force_delay_steps=10): super(LaikagoStandUpBulletPush, self).__init__(run_mode=run_mode, reward_mode=reward_mode) self.force = force self._get_force_ori() self.max_force = max_force self.force_delay_steps = force_delay_steps self.now_force = None return def _get_force_ori(self): self.force_ori = [] f_ori = [[1, 0, 0], [0, 1, 0], [-1, 0, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1]] for i in f_ori: for j in f_ori: ori = [o[0] + o[1] for o in zip(i, j)] self.force_ori.append(ori) def _give_force(self): if self.now_force is None or self.steps % self.force_delay_steps == 0: force_id = random.randint(0, len(self.force_ori) - 1) ori = self.force_ori[force_id] self.now_force = [f * random.random() * self.max_force for f in ori] return self.now_force def update(self): super(LaikagoStandUpBulletPush, self).update() if not self.force: return else: force = self._give_force() self._env.transfer.laikago.apply_force(force) class LaikagoStandUpBullet0(LaikagoStandUpBulletBase): def __init__(self, run_mode='train', reward_mode='with_shaping'): super(LaikagoStandUpBullet0, self).__init__(run_mode=run_mode, reward_mode=reward_mode) @property def is_healthy(self): return not (self.done_r_bullet(threshold=10) or self.done_p_bullet(threshold=10) or self.done_y_bullet(threshold=10) or self.done_height_bullet(threshold=0.25) or self.done_region_bullet(threshold=0.5) or self.done_toe_distance(threshold=0.1)) def cal_phi_function(self): sum = self.reward_r_bullet(threshold=10) + self.reward_p_bullet(threshold=10) + \ self.reward_y_bullet(threshold=10) + self.reward_height_bullet(threshold=0.25) + \ self.reward_region_bullet(threshold=0.5) + self.reward_toe_distance(threshold=0.1) return sum def update_reward(self): if self.is_healthy: self.add_reward(1, 1) class LaikagoStandUpBullet0_1(LaikagoStandUpBulletBase): def __init__(self, run_mode='train', reward_mode='with_shaping'): super(LaikagoStandUpBullet0_1, self).__init__(run_mode=run_mode, reward_mode=reward_mode) @property def is_healthy(self): return not (self.done_r_bullet(threshold=10) or self.done_p_bullet(threshold=10) or self.done_y_bullet(threshold=10) or self.done_height_bullet(threshold=0.25) or self.done_region_bullet(threshold=0.5) or self.done_toe_distance(threshold=0.1)) def cal_phi_function(self): sum = self.reward_r_bullet(threshold=5) + self.reward_p_bullet(threshold=5) + \ self.reward_y_bullet(threshold=5) + self.reward_height_bullet(threshold=0.4) + \ self.reward_region_bullet(threshold=0.1) + self.reward_toe_distance(threshold=0.1) return sum def update_reward(self): if self.is_healthy: self.add_reward(1, 1) class LaikagoStandUpBullet1(LaikagoStandUpBulletBase): def __init__(self, run_mode='train', reward_mode='with_shaping'): super(LaikagoStandUpBullet1, self).__init__(run_mode=run_mode, reward_mode=reward_mode, contact_buffer_length=2) @property def is_healthy(self): return not (self.done_r_bullet(threshold=30) or self.done_p_bullet(threshold=30) or self.done_height_bullet(threshold=0.25) or self.done_toe_distance(threshold=0.1) or self.done_toe_contact_long(threshold=7)) def cal_phi_function(self): sum = self.reward_r_bullet(threshold=30) + self.reward_p_bullet(threshold=30) + \ self.reward_height_bullet(threshold=0.25) + \ self.reward_toe_distance(threshold=0.1) + \ self.reward_toe_contact_long(threshold=7) return sum def update_reward(self): if self.is_healthy: self.add_reward(self.reward_energy(), 1) class LaikagoStandUpBullet2(LaikagoStandUpBulletBase): def __init__(self, run_mode='train', reward_mode='with_shaping'): super(LaikagoStandUpBullet2, self).__init__(run_mode=run_mode, reward_mode=reward_mode, contact_buffer_length=3) @property def is_healthy(self): return not (self.done_r_bullet(threshold=30) or self.done_p_bullet(threshold=30) or self.done_height_bullet(threshold=0.25) or self.done_toe_distance(threshold=0.1) or self.done_toe_contact_long(threshold=9)) def cal_phi_function(self): sum = self.reward_r_bullet(threshold=30) + self.reward_p_bullet(threshold=30) + \ self.reward_height_bullet(threshold=0.25) + \ self.reward_toe_distance(threshold=0.1) + \ self.reward_toe_contact_long(threshold=9) return sum def update_reward(self): if self.is_healthy: self.add_reward(self.reward_energy(), 1)
py
b40e40e3f20b0f503977d18c00835550f443be5f
#!/usr/bin/env python import sys import hub.lib.config as config from hub.lib.client import Client if __name__ == '__main__': with open(sys.argv[1]) as f: job = f.read() client = Client('localhost') response = client.create(job) print 'Successfully submitted job with job id: %s' % response print 'And body:' print job
py
b40e4114947de8ec9e78b3683b602a3c830cf1bc
import numpy as np from resnet3d import Resnet3DBuilder # pseudo volumetric data X_train = np.random.rand(10, 64, 64, 32, 1) labels = np.random.randint(0, 2, size=[10]) y_train = np.eye(2)[labels] # train model = Resnet3DBuilder.build_resnet_50((64, 64, 32, 1), 2, multilabel=True) model.compile(loss="categorical_crossentropy", optimizer="sgd") model.fit(X_train, y_train, batch_size=10)
py
b40e4155df4948f1b1220647772e463b689c20af
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Visitor restricting traversal to only the public tensorflow API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.python.util import tf_inspect class PublicAPIVisitor(object): """Visitor to use with `traverse` to visit exactly the public TF API.""" def __init__(self, visitor): """Constructor. `visitor` should be a callable suitable as a visitor for `traverse`. It will be called only for members of the public TensorFlow API. Args: visitor: A visitor to call for the public API. """ self._visitor = visitor self._root_name = 'tf' # Modules/classes we want to suppress entirely. self._private_map = { # Some implementations have this internal module that we shouldn't # expose. 'tf.flags': ['cpp_flags'], } # Modules/classes we do not want to descend into if we hit them. Usually, # system modules exposed through platforms for compatibility reasons. # Each entry maps a module path to a name to ignore in traversal. self._do_not_descend_map = { 'tf': [ 'compiler', 'core', 'examples', 'flags', # Don't add flags # TODO(drpng): This can be removed once sealed off. 'platform', # TODO(drpng): This can be removed once sealed. 'pywrap_tensorflow', # TODO(drpng): This can be removed once sealed. 'user_ops', 'python', 'tools', 'tensorboard', ], ## Everything below here is legitimate. # It'll stay, but it's not officially part of the API. 'tf.app': ['flags'], # Imported for compatibility between py2/3. 'tf.test': ['mock'], } @property def private_map(self): """A map from parents to symbols that should not be included at all. This map can be edited, but it should not be edited once traversal has begun. Returns: The map marking symbols to not include. """ return self._private_map @property def do_not_descend_map(self): """A map from parents to symbols that should not be descended into. This map can be edited, but it should not be edited once traversal has begun. Returns: The map marking symbols to not explore. """ return self._do_not_descend_map def set_root_name(self, root_name): """Override the default root name of 'tf'.""" self._root_name = root_name def _is_private(self, path, name): """Return whether a name is private.""" # TODO(wicke): Find out what names to exclude. return ((path in self._private_map and name in self._private_map[path]) or (name.startswith('_') and not re.match('__.*__$', name) or name in ['__base__', '__class__'])) def _do_not_descend(self, path, name): """Safely queries if a specific fully qualified name should be excluded.""" return (path in self._do_not_descend_map and name in self._do_not_descend_map[path]) def __call__(self, path, parent, children): """Visitor interface, see `traverse` for details.""" # Avoid long waits in cases of pretty unambiguous failure. if tf_inspect.ismodule(parent) and len(path.split('.')) > 10: raise RuntimeError('Modules nested too deep:\n%s.%s\n\nThis is likely a ' 'problem with an accidental public import.' % (self._root_name, path)) # Includes self._root_name full_path = '.'.join([self._root_name, path]) if path else self._root_name # Remove things that are not visible. for name, child in list(children): if self._is_private(full_path, name): children.remove((name, child)) self._visitor(path, parent, children) # Remove things that are visible, but which should not be descended into. for name, child in list(children): if self._do_not_descend(full_path, name): children.remove((name, child))
py
b40e41f2d55255446022283e4518c55c5a62fde3
import dataclasses from typing import List @dataclasses.dataclass(frozen=True) class ImportPath: names: List[str] def __post_init__(self): if any([name.find(".") >= 0 for name in self.names]): raise ValueError(f"An invalid name specified in `{self.names}`") def __add__(self, other: "ImportPath") -> "ImportPath": return ImportPath(names=self.names + other.names) def join(self, name: str) -> "ImportPath": """ パスを追加します :param name: :return: """ return ImportPath(names=self.names + [name]) @property def depth(self): return len(self.names) def path_in_depth(self, depth: int) -> "ImportPath": """ このパスを指定されたdepthだけ辿ったパスを新たに返します :param depth: :return: """ assert depth > 0 return ImportPath(names=self.names[:depth]) def belongs_to(self, other: "ImportPath") -> bool: """ パスがotherに含まれているかどうかを返します。 :param other: :return: """ if self.depth < other.depth: return False return all([p1 == p2 for p1, p2 in zip(self.names, other.names)]) def __str__(self) -> str: return ".".join(self.names) @classmethod def from_str(cls, path: str) -> "ImportPath": names = path.split(".") return cls(names=names) def match_module_names(self, module_names: List[str]) -> bool: return any( [self.match_module_name(module_name) for module_name in module_names] ) def match_module_name(self, module_name: str) -> bool: path_str = str(self) return path_str == module_name or path_str.startswith(module_name + ".")
py
b40e429a3b2b91cb1bac9410532972c35e6445b4
from .Grid import Grid
py
b40e429def6fffe7199a144201d5ec898aad75f1
# model settings model = dict( type="ImageClassifier", backbone=dict(type="TIMMBackbone", model_name="efficientnetv2_m", pretrained=False), neck=dict(type="GlobalAveragePooling"), head=dict( type="LinearClsHead", num_classes=10, in_channels=1280, loss=dict(type="CrossEntropyLoss", loss_weight=1.0), ), )
py
b40e429e5ef2e4f6d2cfbf539848285d6ef18523
import cv2 import numpy as np import os from pathlib import Path def draw_chessboard(row, col, size): img = np.zeros([(row+1)*size, (col+1)*size]) colors = [0, 255] for i in range(row+1): for j in range(col+1): img[i*size:(i+1)*size, j*size:(j+1)*size] = colors[j % 2] colors = colors[::-1] img = np.pad(img, ((120, 120), (150, 150)), constant_values=255) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows() def get_camera(): npzfile = np.load('calibrate.npz') camera_matrix = npzfile['mtx'] file = Path(file_to_store) if not file.is_dir(): file.mkdir(parents=True) camera_store_path = file / 'camera.txt' np.savetxt(str(camera_store_path), camera_matrix, fmt='%f', delimiter=' ') def set_params(capture): capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1080);#宽度 capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 960);#高度 capture.set(cv2.CAP_PROP_FPS, 30);#帧率 帧/秒 capture.set(cv2.CAP_PROP_BRIGHTNESS, -100);#亮度 capture.set(cv2.CAP_PROP_CONTRAST,10);#对比度 40 capture.set(cv2.CAP_PROP_SATURATION, 50);#饱和度 50 capture.set(cv2.CAP_PROP_HUE, 50)#色调 50 capture.set(cv2.CAP_PROP_EXPOSURE, 10);#曝光 50 获取摄像头参数 def reduce_highlights(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 先轉成灰階處理 ret, thresh = cv2.threshold(img_gray, 200, 255, 0) # 利用 threshold 過濾出高光的部分,目前設定高於 200 即為高光 contours, hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) img_zero = np.zeros(img.shape, dtype=np.uint8) for contour in contours: x, y, w, h = cv2.boundingRect(contour) img_zero[y:y+h, x:x+w] = 255 mask = img_zero print("Highlight part: ") # show_img(mask) # alpha,beta 共同決定高光消除後的模糊程度 # alpha: 亮度的缩放因子,默認是 0.2, 範圍[0, 2], 值越大,亮度越低 # beta: 亮度缩放後加上的参数,默認是 0.4, 範圍[0, 2],值越大,亮度越低 result = cv2.illuminationChange(img, mask, alpha=0.2, beta=0.4) # show_img(result) return result def get_calib_pic(size): cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # set_params(cap) count = 1 # count 用来标志成功检测到的棋盘格画面数量 NumberofCalibrationImages = 10 Nx_cor = size[0] Ny_cor = size[1] # W = 640 # H = 480 #360 # print(cap.set(cv2.CAP_PROP_FRAME_WIDTH, W)) # print(cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H)) print(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) print(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) while (True): ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # gray = cv2.resize(gray, (1920, 1080)) if cv2.waitKey(1) & 0xFF == ord(' '): # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (Nx_cor, Ny_cor), None) # Find the corners # If found, add object points, image points if ret == True: file_path =file_to_store + '/' + 'input{}.jpg'.format(count) cv2.imwrite(file_path, gray) print('Num of imgs {}/{}'.format(count, NumberofCalibrationImages)) count += 1 if count > NumberofCalibrationImages: break else: print('not find chessboard') print(type(corners)) # Display the resulting frame cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break def find_chessboard(img_path, size): assert os.path.exists(img_path) img = cv2.imread(str(img_path)) # img = cv2.resize(img, (1920, 1080)) # img = reduce_highlights(img) ok, corners = cv2.findChessboardCorners(img, size, None) # show the detected corners if ok: for pt in corners: point = pt[0] cv2.circle(img, center=(int(point[0]), int(point[1])), radius=10, color=(0, 0, 255), thickness=-1) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows() else: print ('cannot find chessboard points') # select select_input_index = [0, 50, 54] select_model_index = [50, 0, 4] # sort the results at the beginning of right bottom corners = corners.reshape(corners.shape[0], corners.shape[2]) if corners[0].sum() < corners[size[0]*size[1]-1].sum(): corners = corners[::-1, :] corners_select = corners[select_input_index, :] img_path = Path(img_path) file_name = img_path.stem file_path = file_to_store + '/' + file_name + '.txt' file_select_path = file_to_store + '/' + file_name + '_3p.txt' if file_name == 'model': corners = np.pad(corners, ((0, 0), (0, 1)), constant_values=0.0) corners = corners * 0.2745 corners_select = corners[select_model_index, :] np.savetxt(file_path, corners, fmt='%f', delimiter=' ') np.savetxt(file_select_path, corners_select, fmt='%f', delimiter=' ') def show_results(file_dir): mat_list = [] for file in file_dir.iterdir(): if file.stem[0:3] == 'mat': mat = np.loadtxt(file) mat = mat.reshape(-1)[9:13].tolist() # show the transformation matrix mat.append(float(file.stem[3:])) # average error if mat[3] < 0.7: mat_list.append(mat) mat = np.array(mat_list) np.set_printoptions(threshold=np.inf) np.set_printoptions(suppress=True) print(mat) if __name__ == '__main__': file_to_store = './data4' size = (5, 11) file_dir = Path(file_to_store) # get intrinsic parameters from .npz file get_camera() # get calibrate pictures get_calib_pic(size) for file in file_dir.iterdir(): if file.suffix == '.jpg': find_chessboard(file, size) # show the results of the combined pictures # show_results(file_dir)
py
b40e43d5db90d87bc2a360432c1ec8c794b6a526
#!/usr/bin/python ################################################################################## # VER 2.0 PR # # # # Permission is granted to anyone to use this software for any purpose, # # excluding commercial applications, and to alter it and redistribute it # # freely, subject to the following restrictions: # # # # 1. The origin of this software must not be misrepresented; you must not # # claim that you wrote the original software. If you use this software # # in a product, an acknowledgment in the product documentation is required. # # # # 2. Altered source versions must be plainly marked as such, and must not be # # misrepresented as being the original software. # # # # 3. This notice may not be removed or altered from any source # # distribution. # # # # # # ==Created by Colton (Brandon) S. (@Coltonton) for the OpenPilot Community=== # # === http://endoflinetech.com/eon-custom-themes === # # # # With a mission to rid all EONS of Comma.ai branding # # And give the people the freedom, knowlage, and power! # # & to make their EONS purdy! # # # # Grab life by the horns # # # # A very special thank you to @ShaneSmiskol for creating the theme picker # # for his tireless help, and donating the life of his LeEco EON # # to get the LeEco based EONs supported by this project # # Although revived least we forget..... # ################################################################################## # # # To Restore A Theme Backup: # # # # SSH into your EON: # # (https://medium.com/@jfrux/comma-eon-getting-connected-with-ssh-3ed6136e4a75) # # # # Type the following command if using the main project # # exec /data/eon-custom-themes/restore_theme.py # # # # Or if trying to use the included package with an OP Fork: # # cd /data/(your openpilot directory)/eon-custom-themes # # exec ./restore_theme.py # # # # Now follow the prompts and make your selections! # # Everything will be done automagically!!!!! # # # # Don't forget to tell your friends!! # # Love Cole (@Coltonton) # # # # Did you know that if you have a custom OP fork you can use this # # program to auto install your custom theme for your users automagiclly? # # And incorparate it into your OP Fork? See ./developer/DEVREADME # # # ################################################################################## import os import time from os import path from support.support_variables import BACKUPS_DIR, BACKUP_OPTIONS, CONTRIB_THEMES from support.support_functions import get_device_theme_data, get_user_backups, is_affirmative, make_backup_folder, mark_self_installed, print_text ##======================= CODE START ================================================================ os.chdir(os.path.dirname(os.path.realpath(__file__))) # __file__ is safer since it doesn't change based on where this file is called from print_text('restore') #Print welcome text with the flag for restore welcome text EON_TYPE, BOOT_LOGO_THEME_PATH, BOOT_LOGO_PATH, BOOT_LOGO_NAME = get_device_theme_data() # Get Perams based off detected device class ThemeRestorer: def __init__(self): # Init code runs once. sets up. self.backup_dir = make_backup_folder() # Create and get backup folder self.theme_restore_loop() # Start main loop def theme_restore_loop(self): # Theme_restorer! # Backup_restore Loop while 1: self.selected_backup = get_user_backups(self.backup_dir) if self.selected_backup is None: print('Didn\'t select a backup, exiting.') return if self.selected_backup == 'Comma-Default': self.restore_default_comma() self.backup_get_available_options() if self.backup_reinstall_function() == 'exit': return def backup_get_available_options(self): # Check what assets are available for the selected backup # Check if the selected backup has a APK asset #if os.path.exists('{}/{}/spinner'.format(BACKUPS_DIR, self.selected_backup)): # BACKUP_OPTIONS.append('APK') # Check if the selected backup has a boot logo asset if os.path.exists('{}/{}/{}'.format(BACKUPS_DIR, self.selected_backup, BOOT_LOGO_NAME)): BACKUP_OPTIONS.append('Boot Logo') # Check if the selected backup has a boot annimation asset if os.path.exists('{}/{}/bootanimation.zip'.format(BACKUPS_DIR, self.selected_backup)): BACKUP_OPTIONS.append('Boot Animation') # Check if the selected backup has a OpenPilot Spinner asset if os.path.exists('{}/{}/spinner'.format(BACKUPS_DIR, self.selected_backup)): BACKUP_OPTIONS.append('OpenPilot Spinner') # Check if the selected backup has a APK asset #if os.path.exists('{}/{}/spinner'.format(BACKUPS_DIR, self.selected_backup)): # BACKUP_OPTIONS.append('APK') # if os.path.exists('{}/{}/additional'.format(BACKUPS_DIR, self.selected_backup)): # todo disabled for now # self.BACKUP_OPTIONS.append('4. Additional Resources') BACKUP_OPTIONS.append('-Main Menu-') BACKUP_OPTIONS.append('-Reboot-') BACKUP_OPTIONS.append('-Quit-') def backup_reinstall_function(self): # Backuo re-installer program, prompts user on what they want to do while 1: options = list(BACKUP_OPTIONS) # this only contains available options from self.get_available_options if not len(options): print('The selected backup has no resources available for your device! Try another.') time.sleep(2) return print('What resources do you want to install for the {} backup?'.format(self.selected_backup)) for idx, theme in enumerate(options): print('{}. {}'.format(idx + 1, theme)) indexChoice = int(input("Enter Index Value: ")) indexChoice -= 1 selected_option = BACKUP_OPTIONS[indexChoice] # if selected_option == 'APK': # print('Selected to install the APK backup. Continue?') # if not is_affirmative(): # print('Not installing...') # time.sleep(1.5) # continue # os.system('cp /data/openpilot/apk/ai.comma.plus.offroad.apk {}'.format(self.backup_dir)) # Make Backup # os.system('dd if={}/{}/{} of={}'.format(BACKUPS_DIR, self.selected_backup, BOOT_LOGO_NAME, BOOT_LOGO_PATH)) # Replace # print('\nBoot Logo re-installed successfully! Original backed up to {}'.format(self.backup_dir)) # print('Press enter to continue!') # mark_self_installed() # Create flag in /sdcard so auto installer knows there is a self installation # input() # #Confirm user wants to install APK # print('Selected to install the {} APK backup. Continue?'.format(self.selected_theme)) # if not is_affirmative(): # print('Not installing...') # time.sleep(1.5) # continue # #Check if there was a backup already this session to prevent accidental overwrites # if path.exists('{}/spinner'.format(self.backup_dir)): # print('It appears you already made a APK install this session') # print('continuing will overwrite the last APK backup') # print('the program made this session already!!!') # print('Would you like to continue and overwrite previous?') # if not is_affirmative(): # print('Not installed, exiting session..... Please re-run program') # exit() #Exit program if user does not want to overwrite, so they can start a new session # else: # os.mkdir('{}/spinner'.format(self.backup_dir)) # #Ask user if their OP directory is custom (like arnepilot / dragonpilot) # print('Do you have an OP fork with a custom directory name? (ex. arnepilot, dragonpilot)') # Ask the user if their OP fork used a diffrent directory. # if is_affirmative(): # Yes there is a custom OP dir # print('What is the OP directory name? (case matters, not including /data/)') # opdir = '/data/{}'.format(input('> ').strip('/')) # get custom dir name, strip slashes for safety # print('Your openpilot directory is {}'.format(opdir)) # input('*** Please enter to continue, or Ctrl+C to abort if this is incorrect! ***') # else: # opdir = 'openpilot' #op directory is not custom so openpilot if selected_option == 'Boot Logo': print('Selected to install the Boot Logo backup. Continue?') if not is_affirmative(): print('Not installing...') time.sleep(1.5) continue os.system('cp {} {}'.format(BOOT_LOGO_PATH, self.backup_dir)) # Make Backup os.system('dd if={}/{}/{} of={}'.format(BACKUPS_DIR, self.selected_backup, BOOT_LOGO_NAME, BOOT_LOGO_PATH)) # Replace print('\nBoot Logo re-installed successfully! Original backed up to {}'.format(self.backup_dir)) print('Press enter to continue!') mark_self_installed() # Create flag in /sdcard so auto installer knows there is a self installation input() elif selected_option == 'Boot Animation': print('Selected to install the Boot Animation backup. Continue?') if not is_affirmative(): print('Not installing...') time.sleep(1.5) continue os.system('mount -o remount,rw /system') # /system read only, must mount as r/w os.system('mv /system/media/bootanimation.zip {}/bootanimation'.format(self.backup_dir)) # backup os.system('cp {}/{}/bootanimation/bootanimation.zip /system/media/bootanimation.zip'.format(BACKUPS_DIR, self.selected_backup)) # replace os.system('chmod 666 /system/media/bootanimation.zip') print('\nBoot Animation re-installed successfully! Original backed up to {}'.format(self.backup_dir)) print('Press enter to continue!') mark_self_installed() # Create flag in /sdcard so auto installer knows there is a self installation input() elif selected_option == 'OpenPilot Spinner': #Confirm user wants to install Spinner print('Selected to install the {} OP Spinner backup. Continue?'.format(self.selected_theme)) if not is_affirmative(): print('Not installing...') time.sleep(1.5) continue ##Check if there was a spinner backup already this session to prevent accidental overwrites #Returns false if okay to proceed. Gets self.backup_dir & asset type name if backup_overide_check(self.backup_dir, 'spinner') == True: exit() ##Ask user if their OP directory is custom (like arnepilot / dragonpilot) opdir = op_dir_finder() ##Backup & Copy in relevant files # Check if backup has a spinner logo if path.exists('{}/{}/spinner/img_spinner_comma.png'.format(CONTRIB_THEMES, self.selected_theme)): #Backup does haz os.system('mv /data/{}/selfdrive/assets/img_spinner_comma.png {}/spinner'.format(opdir, self.backup_dir)) #Backup logo os.system('cp {}/{}/spinner/img_spinner_comma.png /data/{}/selfdrive/assets'.format(BACKUPS_DIR, self.selected_backup, opdir)) #Replace logo # Check if backup has a spinner track if path.exists('{}/{}/spinner/img_spinner_track.png'.format(CONTRIB_THEMES, self.selected_theme)): #Backup does haz os.system('mv /data/{}/selfdrive/assets/img_spinner_track.png {}/spinner'.format(opdir, self.backup_dir)) #Backup sprinner track os.system('cp {}/{}/spinner/img_spinner_track.png /data/{}/selfdrive/assets'.format(BACKUPS_DIR, self.selected_backup, opdir)) #Replace spinner # Check if backup has a spinner.c elif path.exists('{}/{}/spinner/spinner.c'.format(CONTRIB_THEMES, self.selected_theme)) and raveRainbow == False: #Backup does haz os.system('mv /data/{}/selfdrive/common/spinner.c {}/spinner'.format(opdir, self.backup_dir)) #Backup spinner.c os.system('cp {}/{}/spinner/spinner.c /data/{}/selfdrive/common'.format(BACKUPS_DIR, self.selected_backup, opdir)) #Replace spinner.c #Final make new spinner & finish os.system('cd /data/{}/selfdrive/ui/spinner && make'.format(opdir)) print('\n{} spinner re-installed successfully! Original backed up to {}'.format(opdir, self.backup_dir)) print('Press enter to continue!') mark_self_installed() # Create flag in /sdcard so auto installer knows there is a self installation input() #elif selected_option == 'OpenPilot UI': # print('Additional Resources are not an active feature') # time.sleep(5) elif selected_option == '-Main Menu-' or selected_option is None: return elif selected_option == '-Reboot-': print('Rebooting.... Enjoy your old theme!!!') os.system('am start -a android.intent.action.REBOOT') #create an android action to reboot exit() elif selected_option == '-Quit-': print('Thank you come again! You will see your changes next reboot!') exit() def restore_default_comma(self): print('Selected to restore Comma-Default theme. Continue?') print('Process is fully automagic!') if not is_affirmative(): print('Not restoring...') time.sleep(1.5) self.backup_reinstaller_loop() os.system('cp {} {}'.format(BOOT_LOGO_PATH, self.backup_dir)) # Make Backup os.system('dd if=./{}/{}/{} of={}'.format(CONTRIB_THEMES, self.selected_backup, BOOT_LOGO_THEME_PATH, BOOT_LOGO_PATH)) # Replace print('Factory Boot Logo restored successfully! Custom file(s) backed up to {}\n'.format(self.backup_dir)) os.system('mount -o remount,rw /system') # /system read only, must mount as r/w os.system('mv /system/media/bootanimation.zip {}'.format(self.backup_dir)) # backup os.system('cp ./{}/{}/bootanimation.zip /system/media/bootanimation.zip'.format(CONTRIB_THEMES, self.selected_backup,)) # replace os.system('chmod 666 /system/media/bootanimation.zip') print('Factory Boot Animation restored successfully! Custom file(s) backed up to {}\n'.format(self.backup_dir)) print('Thank you come again!') exit() if __name__ == '__main__': bi = ThemeRestorer()
py
b40e44d016a89b3bbdefe330f33af22c33d5ad39
import re import pyblish.api import openpype.api from openpype.hosts.photoshop import api as photoshop class ValidateNamingRepair(pyblish.api.Action): """Repair the instance asset.""" label = "Repair" icon = "wrench" on = "failed" def process(self, context, plugin): # Get the errored instances failed = [] for result in context.data["results"]: if (result["error"] is not None and result["instance"] is not None and result["instance"] not in failed): failed.append(result["instance"]) invalid_chars, replace_char = plugin.get_replace_chars() self.log.info("{} --- {}".format(invalid_chars, replace_char)) # Apply pyblish.logic to get the instances for the plug-in instances = pyblish.api.instances_by_plugin(failed, plugin) stub = photoshop.stub() for instance in instances: self.log.info("validate_naming instance {}".format(instance)) metadata = stub.read(instance[0]) self.log.info("metadata instance {}".format(metadata)) layer_name = None if metadata.get("uuid"): layer_data = stub.get_layer(metadata["uuid"]) self.log.info("layer_data {}".format(layer_data)) if layer_data: layer_name = re.sub(invalid_chars, replace_char, layer_data.name) stub.rename_layer(instance.data["uuid"], layer_name) subset_name = re.sub(invalid_chars, replace_char, instance.data["name"]) instance[0].Name = layer_name or subset_name metadata["subset"] = subset_name stub.imprint(instance[0], metadata) return True class ValidateNaming(pyblish.api.InstancePlugin): """Validate the instance name. Spaces in names are not allowed. Will be replace with underscores. """ label = "Validate Naming" hosts = ["photoshop"] order = openpype.api.ValidateContentsOrder families = ["image"] actions = [ValidateNamingRepair] # configured by Settings invalid_chars = '' replace_char = '' def process(self, instance): help_msg = ' Use Repair action (A) in Pyblish to fix it.' msg = "Name \"{}\" is not allowed.{}".format(instance.data["name"], help_msg) assert not re.search(self.invalid_chars, instance.data["name"]), msg msg = "Subset \"{}\" is not allowed.{}".format(instance.data["subset"], help_msg) assert not re.search(self.invalid_chars, instance.data["subset"]), msg @classmethod def get_replace_chars(cls): """Pass values configured in Settings for Repair.""" return cls.invalid_chars, cls.replace_char
py
b40e46519fb99ec27ceb7d3da780fa9a0f87af32
import colorama import os, sys from . import config def clear(): if sys.platform == "win32": os.system("cls") else: os.system("clear") def resize(columns, rows): if sys.platform == "win32": os.system(f"mode con cols={columns} lines={rows}") else: os.system(f"echo '\033[8;{rows};{columns}t'") def print_banner(): copyright = f"( Flight v{config.VERSION} )" banner = f"""███████╗██╗ ██╗ ██████╗ ██╗ ██╗████████╗ ██╔════╝██║ ██║██╔════╝ ██║ ██║╚══██╔══╝ █████╗ ██║ ██║██║ ███╗███████║ ██║ ██╔══╝ ██║ ██║██║ ██║██╔══██║ ██║ ██║ ███████╗██║╚██████╔╝██║ ██║ ██║ ╚═╝ ╚══════╝╚═╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ """ print(f"{colorama.Fore.LIGHTRED_EX}{colorama.Style.BRIGHT}") for line in banner.splitlines(): print(f"{line}".center(os.get_terminal_size().columns)) print() print(f"————————————————————————————————————( Flight v{config.VERSION} )—————————————————————————————————————") print(f"{colorama.Style.RESET_ALL}") def print_color(color, text): print(color + text + colorama.Style.RESET_ALL) def print_cmd(text): print(f"{colorama.Fore.LIGHTBLUE_EX}{colorama.Style.BRIGHT}[COMMAND]{colorama.Style.RESET_ALL} {text}") def print_info(text): print(f"{colorama.Fore.LIGHTGREEN_EX}{colorama.Style.BRIGHT}[INFO]{colorama.Style.RESET_ALL} {text}") def print_error(text): print(f"{colorama.Fore.LIGHTRED_EX}{colorama.Style.BRIGHT}[ERROR]{colorama.Style.RESET_ALL} {text}") def print_warning(text): print(f"{colorama.Fore.LIGHTYELLOW_EX}{colorama.Style.BRIGHT}[WARNING]{colorama.Style.RESET_ALL} {text}") def print_cli(text): print(f"{colorama.Fore.LIGHTMAGENTA_EX}{colorama.Style.BRIGHT}[CLI]{colorama.Style.RESET_ALL} {text}")
py
b40e47681957eca54dbd00a0e62256d40e286a2b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Christian Heider Nielsen' __doc__ = r''' Created on 03-12-2020 ''' import torch import torchaudio from torchaudio.datasets import COMMONVOICE class CommonVoice(COMMONVOICE): def __init__(self, root: str): super().__init__(root, download=False) yesno_data = torchaudio.datasets.COMMONVOICE('.', download=True) data_loader = torch.utils.data.DataLoader(yesno_data, batch_size=1, shuffle=True, num_workers=args.nThreads)
py
b40e481778b7f9879bed73073a6cd54a8a0e260f
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from niapy.algorithms.modified import SelfAdaptiveDifferentialEvolution from niapy.task import Task from niapy.problems import Griewank # we will run jDE algorithm for 5 independent runs algo = SelfAdaptiveDifferentialEvolution(f_lower=0.0, f_upper=2.0, tao1=0.9, tao2=0.45, population_size=40, differential_weight=0.5, crossover_probability=0.5) for i in range(5): task = Task(problem=Griewank(dimension=10, lower=-600, upper=600), max_evals=10000, enable_logging=True) best = algo.run(task) print('%s -> %s' % (best[0], best[1])) print(algo.get_parameters())
py
b40e4847727edeab421454b3b468733d7b59f3ba
from unittest.mock import MagicMock import pytest from riotwatcher._apis.valorant import MatchApi @pytest.fixture(params=["12345"]) def match_id(request): return request.param @pytest.fixture(params=["queue420"]) def queue(request): return request.param @pytest.mark.unit @pytest.mark.val class TestMatchApi: def test_by_id(self, region, match_id): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return match = MatchApi(mock_base_api) ret = match.by_id(region, match_id) mock_base_api.raw_request.assert_called_once_with( MatchApi.__name__, match.by_id.__name__, region, f"https://{region}.api.riotgames.com/val/match/v1/matches/{match_id}", {}, ) assert ret == expected_return def test_matchlist_by_puuid(self, region, puuid): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return match = MatchApi(mock_base_api) ret = match.matchlist_by_puuid(region, puuid) mock_base_api.raw_request.assert_called_once_with( MatchApi.__name__, match.matchlist_by_puuid.__name__, region, f"https://{region}.api.riotgames.com/val/match/v1/matchlists/by-puuid/{puuid}", {}, ) assert ret == expected_return def test_recent_matches(self, region, queue): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return match = MatchApi(mock_base_api) ret = match.recent_matches(region, queue) mock_base_api.raw_request.assert_called_once_with( MatchApi.__name__, match.recent_matches.__name__, region, f"https://{region}.api.riotgames.com/val/match/v1/recent-matches/by-queue/{queue}", {}, ) assert ret == expected_return
py
b40e488e044e462b7706bdbb6aa6589c8226ec1f
from datetime import datetime from src.product import ProductBundleDiscount class Product(object): def __init__(self, name, sku, price, cost, stock_quantity, unit, bundle_discount=None): """ The product will contain it's name, price, cost, sku, and price history. >>> sweet_potato = Product(name='sweet_potato', sku='001', price=1.00, cost=0.50, stock_quantity=100, unit='Kg') >>> sweet_potato.name = 'sweet_potato' >>> sweet_potato.price = 1.00 >>> sweet_potato.cost = 0.50 >>> sweet_potato.sku = '001' >>> sweet_potato.stock_quantity = 100 >>> sweet_potato.unit = 'Kg' """ self._validate_values(name, sku, price, cost) self.name: str = name self.sku: str = sku self.price: float = float(price) self.cost: float = float(cost) self.price_history: [(float, datetime)] = self._create_price_history() self.stock_quantity: int = stock_quantity self.unit: str = unit self.bundle_discount: ProductBundleDiscount = bundle_discount @staticmethod def _validate_values(name: str, sku: str, price: float, cost: float): """ Validates the class initializer parameters :param name: name of the product :param sku: stock keeping unit code :param price: price that the consumer will pay for the product :param cost: cost that the owner paid for the product :raises TypeError: """ if not name or not isinstance(name, str): raise TypeError('A correct name must be provided') if not sku or not isinstance(sku, str): raise TypeError('SKU must be provided') if not price or not isinstance(price, (float, int)): raise TypeError('Price must be provided') if not cost or not isinstance(cost, (float, int)): raise TypeError('Cost must be provided') def _create_price_history(self): now = datetime.now().strftime("%d/%m/%Y %H:%M:%S") return [(self.price, now)] def __str__(self) -> str: return self.name
py
b40e48fb28d63900bbf983af459880db1a878bc0
def test_cli_template(): assert 1==1
py
b40e4964ccb60424a1ff0e3f967de7c47993bc53
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('league', '0012_auto_20150912_1135'), ] operations = [ migrations.AddField( model_name='match', name='league', field=models.ForeignKey(to='league.MeetupLeague', default=2, related_name='match_league'), preserve_default=False, ), ]
py
b40e49f8f375ca036cd9de61535b29eabea1a41a
# Author: Stan Fortoński # Date: 02.05.2020 # Tinder Bot import sys from time import sleep from random import randrange from tinder.config import Config import tinder.functions as fn from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import ElementClickInterceptedException class TinderBot: def __init__(self, driver): self.driver = driver self.__totalLikes = 0 self.__totalDislikes = 0 def perform(self, wait=True): if 'app/recs' in self.driver.current_url: try: self.__doOutOfLikesPopup() fn.waitForPeople(self.driver) chanceToLike = randrange(1, 100) if chanceToLike <= Config['chance_to_like']: self.like() else: self.dislike() if wait: fn.waitRandomTime() except: self.driver.get('https://tinder.com/app/recs') fn.waitRandomTime() def __doOutOfLikesPopup(self): driver = self.driver try: driver.find_element_by_xpath('/html/body/div[2]/div/div/div[1]/div[2]/div[1]/div/div[1]/div/div/span/div/div/div[1]/div') print('Sorry, you do not have any likes for now. Try later.') sys.exit() except NoSuchElementException: pass def like(self): success = None likesButtons = ['/html/body/div[1]/div/div[1]/div/main/div[1]/div/div/div[1]/div[1]/div/div[4]/div/div[4]/button', '/html/body/div[1]/div/div[1]/div/main/div[1]/div/div/div[1]/div[1]/div/div[5]/div/div[4]/button'] for button in likesButtons: try: self.driver.find_element_by_xpath(button).click() self.__totalLikes += 1 success = True break except (ElementClickInterceptedException, NoSuchElementException): continue if not success: self.solveProblems() sleep(2) def dislike(self): success = None dislikesButtons = ['/html/body/div[1]/div/div[1]/div/main/div[1]/div/div/div[1]/div[1]/div/div[4]/div/div[2]/button', '/html/body/div[1]/div/div[1]/div/main/div[1]/div/div/div[1]/div[1]/div/div[5]/div/div[2]/button'] for button in dislikesButtons: try: self.driver.find_element_by_xpath(button).click() self.__totalDislikes += 1 success = True break except (ElementClickInterceptedException, NoSuchElementException): continue if not success: self.solveProblems() sleep(2) def solveProblems(self): try: self.driver.find_element_by_xpath('/html/body/div[2]/div/div/div/div[3]/button[2]').click() except (ElementClickInterceptedException, NoSuchElementException): pass try: self.driver.find_element_by_xpath('/html/body/div[2]/div/div/button[2]').click() except (ElementClickInterceptedException, NoSuchElementException): pass try: self.driver.find_element_by_xpath('/html/body/div[1]/div/div[1]/div/main/div[2]/div/div/div[1]/div/div[4]/button').click() except (ElementClickInterceptedException, NoSuchElementException): pass def __str__(self): total = self.getTotalActions() return f'=== Tinder results ===\n* Total actions: {total}\n* Total likes: {self.__totalLikes}\n* Total disLikes: {self.__totalDislikes}' def getTotalActions(self): return self.__totalLikes + self.__totalDislikes def getTotalLikes(self): return self.__totalLikes def getTotalDislikes(self): return self.__totalDislikes
py
b40e4a5654e9cd27ea313d39f7b84e0b25233149
#!/usr/bin/env python3 #encoding: utf8 import sys,rospy,math from pimouse_ros.msg import MotorFreqs from geometry_msgs.msg import Twist from std_srvs.srv import Trigger,TriggerResponse from pimouse_ros.srv import TimedMotion class Motor(): def __init__(self): if not self.set_power(False): sys.exit(1) rospy.on_shutdown(self.set_power) self.sub_raw = rospy.Subscriber("motor_raw",MotorFreqs,self.callback_raw_freq) self.sub_cmd_vel = rospy.Subscriber("cmd_vel",Twist,self.callback_cmd_vel) self.srv_on = rospy.Service("motor_on",Trigger,self.callback_on) self.srv_off = rospy.Service("motor_off",Trigger,self.callback_off) self.srv_tm = rospy.Service("timed_motion",TimedMotion,self.callback_tm) self.last_time = rospy.Time.now() self.using_cmd_vel = False def set_power(self,onoff=False): en = "/dev/rtmotoren0" try: with open(en,"w") as f: f.write("1\n" if onoff else "0\n") self.is_on = onoff return True except: rospy.logger("cannot write to" + en) return False def set_raw_freq(self,left_hz,right_hz): if not self.is_on: rospy.logerr("not enpowerd") return try: with open("/dev/rtmotor_raw_l0","w") as lf ,open("/dev/rtmotor_raw_r0","w") as rf: lf.write(str(int(round(left_hz)))+"\n") rf.write(str(int(round(right_hz)))+"\n") except: rospy.logeer("cannot write to rtmotor_raw_*") def callback_raw_freq(self,message): self.set_raw_freq(message.left_hz,message.right_hz) def callback_cmd_vel(self,message): forward_hz = 80000.0*message.linear.x/(9*math.pi) rot_hz = 400.0*message.angular.z/math.pi self.set_raw_freq(forward_hz - rot_hz, forward_hz + rot_hz) self.using_cmd_vel = True self.last_time = rospy.Time.now() def onoff_response(self,onoff): d = TriggerResponse() d.success = self.set_power(onoff) d.message = "ON" if self.is_on else "OFF" return d def callback_on(self,message): return self.onoff_response(True) def callback_off(self,message): return self.onoff_response(False) def callback_tm(self,message): if not self.is_on: rospy.logerr("not enpowed") return False dev = "/dev/rtmotor0" try: with open(dev,"w") as f: f.write("%d %d %d\n" % (message.left_hz,message.right_hz,message.duration_ms)) except: rospy.logerr("cannot write to"+dev) return False return True if __name__ == "__main__": rospy.init_node("motors") m = Motor() rate = rospy.Rate(10) while not rospy.is_shutdown(): if m.using_cmd_vel and rospy.Time.now().to_set() - m.last_time.to_sec() >= 1.0: m.set_raw_freq(0,0) m.using_cmd_vel = False rate.sleep()
py
b40e4b41fde65f49ddeaafa2981e8141ef787fa7
#!/usr/bin/env python import rospy from std_msgs.msg import Bool from dbw_mkz_msgs.msg import ThrottleCmd, SteeringCmd, BrakeCmd, SteeringReport from geometry_msgs.msg import TwistStamped import math from twist_controller import Controller ''' You can build this node only after you have built (or partially built) the `waypoint_updater` node. You will subscribe to `/twist_cmd` message which provides the proposed linear and angular velocities. You can subscribe to any other message that you find important or refer to the document for list of messages subscribed to by the reference implementation of this node. One thing to keep in mind while building this node and the `twist_controller` class is the status of `dbw_enabled`. While in the simulator, its enabled all the time, in the real car, that will not be the case. This may cause your PID controller to accumulate error because the car could temporarily be driven by a human instead of your controller. We have provided two launch files with this node. Vehicle specific values (like vehicle_mass, wheel_base) etc should not be altered in these files. We have also provided some reference implementations for PID controller and other utility classes. You are free to use them or build your own. Once you have the proposed throttle, brake, and steer values, publish it on the various publishers that we have created in the `__init__` function. ''' class DBWNode(object): def __init__(self): rospy.init_node('dbw_node') vehicle_mass = rospy.get_param('~vehicle_mass', 1736.35) fuel_capacity = rospy.get_param('~fuel_capacity', 13.5) brake_deadband = rospy.get_param('~brake_deadband', .1) decel_limit = rospy.get_param('~decel_limit', -5) accel_limit = rospy.get_param('~accel_limit', 1.) wheel_radius = rospy.get_param('~wheel_radius', 0.2413) wheel_base = rospy.get_param('~wheel_base', 2.8498) steer_ratio = rospy.get_param('~steer_ratio', 14.8) max_lat_accel = rospy.get_param('~max_lat_accel', 3.) max_steer_angle = rospy.get_param('~max_steer_angle', 8.) self.steer_pub = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, queue_size=1) self.throttle_pub = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, queue_size=1) self.brake_pub = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, queue_size=1) self.controller = Controller(vehicle_mass=vehicle_mass, fuel_capacity=fuel_capacity, brake_deadband=brake_deadband, decel_limit=decel_limit, accel_limit=accel_limit, wheel_radius=wheel_radius, wheel_base=wheel_base, steer_ratio=steer_ratio, max_lat_accel=max_lat_accel, max_steer_angle=max_steer_angle) rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_enabled_cb, queue_size=1) rospy.Subscriber('/twist_cmd', TwistStamped, self.twist_cb, queue_size=2) rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb, queue_size=5) self.current_vel = None self.curr_ang_vel = None self.dbw_enabled = None self.linear_vel = None self.angular_vel = None self.throttle = self.steering = self.brake = 0 self.loop() def loop(self): rate = rospy.Rate(50) # 50Hz while not rospy.is_shutdown(): if not None in (self.current_vel, self.linear_vel, self.angular_vel): self.throttle, self.brake, self.steering = self.controller.control( self.current_vel, self.dbw_enabled, self.linear_vel, self.angular_vel) if self.dbw_enabled: self.publish(self.throttle, self.brake, self.steering) rate.sleep() def dbw_enabled_cb(self, msg): self.dbw_enabled = msg def twist_cb(self, msg): self.linear_vel = msg.twist.linear.x self.angular_vel = msg.twist.angular.z def velocity_cb(self, msg): self.current_vel = msg.twist.linear.x def publish(self, throttle, brake, steer): tcmd = ThrottleCmd() tcmd.enable = True tcmd.pedal_cmd_type = ThrottleCmd.CMD_PERCENT tcmd.pedal_cmd = throttle self.throttle_pub.publish(tcmd) scmd = SteeringCmd() scmd.enable = True scmd.steering_wheel_angle_cmd = steer self.steer_pub.publish(scmd) bcmd = BrakeCmd() bcmd.enable = True bcmd.pedal_cmd_type = BrakeCmd.CMD_TORQUE bcmd.pedal_cmd = brake self.brake_pub.publish(bcmd) if __name__ == '__main__': DBWNode()
py
b40e4b484cd8418bdea7e63856e4f89b67e7fc54
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. DEPS = [ 'recipe_engine/raw_io', 'repo', 'recipe_engine/step', ] REPO_LIST_OUTPUT = """\ src/foo : foo src/bar : bar badline """ def RunSteps(api): api.repo.init('http://manifest_url') api.repo.init('http://manifest_url/manifest', '-b', 'branch') api.repo.reset() api.repo.clean() api.repo.clean('-x') api.repo.sync() repos = api.repo.list() assert repos == [('src/foo', 'foo'), ('src/bar', 'bar')] api.step('repo list echo', ['echo', str(repos)]) def GenTests(api): yield (api.test('setup_repo') + api.step_data('repo list', api.raw_io.stream_output(REPO_LIST_OUTPUT)))
py
b40e4bf6d2da3c5ae69ed2432daf88985cd65fde
# -*- coding: utf-8 -*- # # Copyright 2020-2022 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Resources management functions """ import sys import bigml.api from bigmler.utils import (dated, get_url, log_message, check_resource, check_resource_error, log_created_resources) from bigmler.reports import report from bigmler.resourcesapi.common import set_basic_batch_args, map_fields, \ update_json_args from bigmler.resourcesapi.common import FULL_FORMAT def set_batch_topic_distribution_args( \ args, fields=None, dataset_fields=None): """Return batch topic distribution args dict """ batch_topic_distribution_args = set_basic_batch_args(args, args.name) if args.fields_map_ and fields is not None: if dataset_fields is None: dataset_fields = fields batch_topic_distribution_args.update({ "fields_map": map_fields(args.fields_map_, fields, dataset_fields)}) if args.prediction_info == FULL_FORMAT: batch_topic_distribution_args.update(all_fields=True) if args.prediction_fields: batch_topic_distribution_args.update(all_fields=False) prediction_fields = [] for field in args.prediction_fields.split(args.args_separator): field = field.strip() if not field in dataset_fields.fields: try: field = dataset_fields.field_id(field) except Exception as exc: sys.exit(exc) prediction_fields.append(field) batch_topic_distribution_args.update(output_fields=prediction_fields) if 'batch_topic_distribution' in args.json_args: update_json_args( batch_topic_distribution_args, args.json_args.get( \ 'batch_topic_distribution'), fields) return batch_topic_distribution_args def create_batch_topic_distribution(topic_model, test_dataset, batch_topic_distribution_args, args, api=None, session_file=None, path=None, log=None): """Creates remote batch topic distribution """ if api is None: api = bigml.api.BigML() message = dated("Creating batch topic distribution.\n") log_message(message, log_file=session_file, console=args.verbosity) batch_topic_distribution = api.create_batch_topic_distribution( \ topic_model, test_dataset, batch_topic_distribution_args, retries=None) log_created_resources( \ "batch_topic_distribution", path, bigml.api.get_batch_topic_distribution_id(batch_topic_distribution), mode='a') batch_topic_distribution_id = check_resource_error( batch_topic_distribution, "Failed to create batch topic distribution: ") try: batch_topic_distribution = check_resource( \ batch_topic_distribution, api.get_batch_topic_distribution, raise_on_error=True) except Exception as exception: sys.exit("Failed to get a finished batch topic distribution: %s" % str(exception)) message = dated("Batch topic distribution created: %s\n" % get_url(batch_topic_distribution)) log_message(message, log_file=session_file, console=args.verbosity) log_message("%s\n" % batch_topic_distribution_id, log_file=log) if args.reports: report(args.reports, path, batch_topic_distribution) return batch_topic_distribution
py
b40e4c738bfdb5650c59f35923da5df9157499ca
# Optimization tools import tensorflow as tf import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.callbacks import TensorBoard, Callback class MyTensorboard(TensorBoard): """ Tensorboard callback to store the learning rate at the end of each epoch. """ def __init__(self, **kwargs): kwargs['histogram_freq'] = 0 kwargs['write_graph'] = False kwargs['write_grads'] = False kwargs['write_images'] = False kwargs['embeddings_freq'] = 0 #kwargs['update_freq'] = 'epoch' super(MyTensorboard, self).__init__(**kwargs) def on_epoch_end(self, epoch, logs=None): lr = K.eval(self.model.optimizer.lr) lr_summary = tf.Summary( value=[tf.Summary.Value(tag='lr', simple_value=lr)]) self.writer.add_summary(lr_summary, epoch) self.writer.flush() super(MyTensorboard, self).on_epoch_end(epoch, logs) class MyLRScheduler(Callback): def __init__(self, schedule_type = 'constant', decay = 0, step = 1, step_epochs = 0, max_epochs = 100, lr_start = 0, lr_end = 0, verbose=0): super(MyLRScheduler, self).__init__() self.schedule_type = schedule_type self.decay = float(decay) self.step = step self.max_epochs = max_epochs if step_epochs == 0: self.step_epochs = np.arange(self.step, self.max_epochs, self.step) else: self.step_epochs = list(step_epochs) self.lr_start = float(lr_start) self.lr_end = float(lr_end) self.verbose = verbose def on_epoch_begin(self, epoch, logs=None): if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Optimizer must have a "lr" attribute.') lr = self.schedule(epoch) if not isinstance(lr, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nEpoch %05d: LearningRateScheduler reducing learning ' 'rate to %s.' % (epoch + 1, lr)) def schedule(self, epoch): """ Defines the learning rate schedule. This is called at the begin of each epoch through the LearningRateScheduler callback. Arguments: epoch -- integer, current epoch, [0, #epochs-1] Returns: rate -- calculated learning rate """ if self.schedule_type == 'constant': rate = self.lr_start elif self.schedule_type == 'decay' or self.schedule_type == 'step': i = np.searchsorted(self.step_epochs, epoch, side='right') rate = self.lr_start * (self.decay ** i) # elif self.schedule_type == 'step': # rate = self.lr_start * (self.decay ** np.floor(epoch / self.step)) elif self.schedule_type == 'anneal': rate = self.lr_start / (1 + self.decay * epoch) elif self.schedule_type == 'clr_triangular': e = epoch + self.step c = np.floor(1 + e / (2 * self.step)) x = np.abs(e / self.step - 2 * c + 1) rate = self.lr_end + (self.lr_start - self.lr_end) * \ np.maximum(0, (1 - x)) * float(self.decay**(c - 1)) elif self.schedule_type == 'clr_restarts': c = np.floor(epoch / self.step) x = 1 + np.cos((epoch % self.step) / self.step * np.pi) rate = self.lr_end + 0.5 * (self.lr_start - self.lr_end) * x * self.decay**c elif self.schedule_type == 'warmup': # rate = self.lr_start * np.min(np.pow(epoch, -0.5), epoch / self.step) if epoch <= self.step: rate = self.lr_start * epoch / self.step else: rate = self.lr_start * (self.decay ** (epoch - self.step)) else: raise ValueError('Not supported learning schedule.') return float(rate)
py
b40e4ce28431743162d5d76a3098b2b64eb02dfe
"""Import related views.""" import csv import io from reversion import revisions as reversion from django.contrib.auth.decorators import ( login_required, permission_required, user_passes_test ) from django.db import transaction from django.shortcuts import render from django.urls import reverse from django.utils.encoding import smart_text from django.utils.translation import ugettext as _ from modoboa.lib.exceptions import Conflict, ModoboaException from .. import signals from ..forms import ImportDataForm, ImportIdentitiesForm @reversion.create_revision() def importdata(request, formclass=ImportDataForm): """Generic import function As the process of importing data from a CSV file is the same whatever the type, we do a maximum of the work here. :param request: a ``Request`` instance :param typ: a string indicating the object type being imported :return: a ``Response`` instance """ error = None form = formclass(request.POST, request.FILES) if form.is_valid(): try: infile = io.TextIOWrapper( request.FILES["sourcefile"].file, encoding="utf8") reader = csv.reader(infile, delimiter=form.cleaned_data["sepchar"]) except csv.Error as inst: error = smart_text(inst) else: try: cpt = 0 for row in reader: if not row: continue fct = signals.import_object.send( sender="importdata", objtype=row[0].strip()) fct = [func for x_, func in fct if func is not None] if not fct: continue fct = fct[0] with transaction.atomic(): try: fct(request.user, row, form.cleaned_data) except Conflict: if form.cleaned_data["continue_if_exists"]: continue raise Conflict( _("Object already exists: %s" % form.cleaned_data["sepchar"].join(row[:2])) ) cpt += 1 msg = _("%d objects imported successfully" % cpt) return render(request, "admin/import_done.html", { "status": "ok", "msg": msg }) except (ModoboaException) as e: error = str(e) return render(request, "admin/import_done.html", { "status": "ko", "msg": error }) @login_required @permission_required("admin.add_domain") def import_domains(request): if request.method == "POST": return importdata(request) ctx = { "title": _("Import domains"), "action_label": _("Import"), "action_classes": "submit", "action": reverse("admin:domain_import"), "formid": "importform", "enctype": "multipart/form-data", "target": "import_target", "form": ImportDataForm(), } return render(request, "admin/import_domains_form.html", ctx) @login_required @user_passes_test( lambda u: u.has_perm("core.add_user") or u.has_perm("admin.add_alias") ) def import_identities(request): if request.method == "POST": return importdata(request, ImportIdentitiesForm) ctx = { "title": _("Import identities"), "action_label": _("Import"), "action_classes": "submit", "action": reverse("admin:identity_import"), "formid": "importform", "enctype": "multipart/form-data", "target": "import_target", "form": ImportIdentitiesForm() } return render(request, "admin/import_identities_form.html", ctx)
py
b40e4d0b039e710c03d5c5f75536f841525a2d29
from __future__ import annotations import inspect import tokenize from textwrap import dedent from typing import Callable, List TokensType = List[tokenize.TokenInfo] processors = [] def processor(func: Callable[[TokensType], TokensType]) -> Callable[[TokensType], TokensType]: processors.append(func) return func def get_validator_source(validator) -> str: # get source code if not hasattr(validator, '__code__'): return '' try: lines, _ = inspect.getsourcelines(validator.__code__) except OSError: return '' lines = dedent('\n'.join(lines)).split('\n') # tokenize tokens: TokensType try: tokens = _get_tokens(lines) except tokenize.TokenError: lines = _clear_lines(lines) tokens = _get_tokens(lines) # drop junk for processor in processors: tokens = processor(tokens) # transform back to text lines = tokenize.untokenize(tokens).split('\n') lines = _clear_lines(lines) if len(lines) > 1: return '' return ' '.join(lines).replace('_.', '').lstrip() def _clear_lines(lines: list[str]) -> list[str]: lines = [line.rstrip() for line in lines] lines = [line for line in lines if line] # drop trailing comma if lines[-1] and lines[-1][-1] == ',': lines[-1] = lines[-1][:-1] return lines def _get_tokens(lines: list[str]) -> list[tokenize.TokenInfo]: tokens = tokenize.generate_tokens(iter(lines).__next__) exclude = {tokenize.INDENT, tokenize.DEDENT, tokenize.ENDMARKER} return [token for token in tokens if token.type not in exclude] @processor def _extract_def_name(tokens: TokensType) -> TokensType: for token, next_token in zip(tokens, tokens[1:]): if token.string == 'lambda': return tokens if token.string == '@': return tokens if token.string == 'def': return [next_token] if token.string == 'class': return [next_token] return tokens @processor def _drop_comments(tokens: TokensType) -> TokensType: return [token for token in tokens if token.type != tokenize.COMMENT] @processor def _extract_decorator_args(tokens: TokensType) -> TokensType: if not tokens: return tokens # drop decorator symbol if tokens[0].string == '@': tokens = tokens[1:] # proceed only if is call of a deal decorator if tokens[0].string != 'deal' or tokens[1].string != '.': return tokens # find where decorator starts start = 0 for index, token in enumerate(tokens): if token.string == '(': start = index break else: return tokens start += 1 end = 0 for index, token in enumerate(tokens): if token.string == ')': end = index return tokens[start:end] @processor def _extract_assignment(tokens: TokensType) -> TokensType: start = 0 for index, token in enumerate(tokens): if token.type == tokenize.OP and '=' in token.string: start = index break if token.type not in (tokenize.NAME, tokenize.DOT, tokenize.NEWLINE): return tokens else: return tokens start += 1 return tokens[start:] @processor def _extract_lambda(tokens: TokensType) -> TokensType: start = 0 for index, (token1, token2) in enumerate(zip(tokens, tokens[1:])): if token1.string != '(': continue if token2.string != 'lambda': continue start = index + 1 break else: return tokens end = 0 for index, token in enumerate(tokens[start:], start=start): if token.string == ')': end = index return tokens[start:end] @processor def _extract_lambda_body(tokens: TokensType) -> TokensType: # find where lambda starts start = 0 for index, token in enumerate(tokens): if token.string == 'lambda': start = index + 1 break else: return tokens # find where lambda body starts for index, token in enumerate(tokens[start:], start=start): if token.type == tokenize.OP and ':' in token.string: start = index break else: return tokens start += 1 return tokens[start:] @processor def _fix_line_numbers(tokens: TokensType) -> TokensType: if not tokens: return tokens diff = tokens[0].start[0] - 1 new_tokens = [] for token in tokens: token = token._replace( start=(token.start[0] - diff, token.start[1]), end=(token.end[0] - diff, token.end[1]), ) new_tokens.append(token) return new_tokens
py
b40e4d117dd629c54f20ac9dc4a0fe9bd9cb7613
import numpy import time import ctypes from ..kdtree import kdtree from . import expr __all__ = [ 'Points', 'points', 'zeros', 'ones', 'empty', 'zeros_like', 'ones_like', 'empty_like', 'rand', 'load' ] class Final(type): # copied from https://stackoverflow.com/questions/16056574 def __new__(cls, name, bases, classdict): for b in bases: if isinstance(b, Final): raise TypeError("type " + b.__name__ + " is not an acceptable base type") return type.__new__(cls, name, bases, dict(classdict)) def _memaddr(obj): return obj.ctypes.get_data() def points(object, dtype=None, copy=True): if not copy and isinstance(object, numpy.ndarray) \ and (dtype is None or dtype == object.dtype): ret = object.view(Points) else: temp = numpy.array(object, dtype=dtype, copy=False) ret = empty_like(temp) ret[:] = temp return ret def zeros(shape, dtype=float): ret = Points(shape=shape, dtype=dtype) ret[:] = 0 return ret def ones(shape, dtype=float): ret = Points(shape=shape, dtype=dtype) ret[:] = 1 return ret def empty(shape, dtype=float): return Points(shape=shape, dtype=dtype) def zeros_like(a, dtype=None): return zeros(a.shape, dtype=(a.dtype if dtype is None else dtype)) def ones_like(a, dtype=None): return zeros(a.shape, dtype=(a.dtype if dtype is None else dtype)) def empty_like(a, dtype=None): return zeros(a.shape, dtype=(a.dtype if dtype is None else dtype)) def rand(*dims): ret = empty(shape=dims, dtype=float) ret[:] = numpy.random.rand(*dims) return ret def load(file, **kwargs): # wrapper around numpy.load # TODO: this copies to numpy array, then to a Points object; # find way to avoid this extra copy return points(numpy.load(file, **kwargs)) class Points (numpy.ndarray): _last_modified = dict() # make Points non subclass-able to simplify write control # TODO: are there any use cases for subclassing Points? __metaclass__ = Final def __new__(cls, *args, **kwargs): return super(Points, cls).__new__(cls, *args, **kwargs) def __array_finalize__(self, obj): self._last_updated = None self._tree = None if obj is not None and not isinstance(obj, Points): # arrived at here via view() of a non-Points object raise TypeError('Detected attempt at creating Points-type ' 'view on non-Points object.') if obj is None and not self.flags.owndata: raise TypeError('Detected attempt at creating Points-type ' 'view on buffer object via __new__(buffer=...)') if obj is None: # arrived at here via __new__ self._memsize = self.size * self.dtype.itemsize self._memloc = _memaddr(self) elif _memaddr(self) < obj._memloc or \ _memaddr(self) >= obj._memloc + obj._memsize: # arrived at here via copy() self._memsize = self.size * self.dtype.itemsize self._memloc = _memaddr(self) else: # arrived at here via slicing/indexing # or view() of a Points object self._memsize = obj._memsize self._memloc = obj._memloc # cannot set writeable flag to False here, # because copy() performs assignment after __array_finalize__ def __init__(self, *args, **kwargs): self.flags.writeable = False def copy(self): x = super(Points, self).copy() x.flags.writeable = False return x def _record_modify_time(self): Points._last_modified[self._memloc] = time.time() def _update_kd_tree(self): # if there is no recorded last modify time for self._memloc, # then self has either not been modified yet since creation, # or _last_modified dictionary has been cleared. Either way, # the k-d tree needs updating; we set the last modify time to # the current time to trigger this. if Points._last_modified.get(self._memloc) is None: Points._last_modified[self._memloc] = time.time() # note: None < x, for any number x build_time = None if self._last_updated is None \ or self._last_updated <= Points._last_modified[self._memloc]: # note: do not need to explicitly call __del__() # as it is automatically called when overwritten build_time = time.time() self._tree = kdtree._build(self) build_time = time.time() - build_time self._last_updated = time.time() # record time *after* build return build_time def nbhds(self, queries=None, k=1, r=None, verbose=False): self._update_kd_tree() return kdtree._query(self._tree, queries=queries, k=k, dmax=r) def NBHDS(self, queries=None, k=1, r=None, verbose=False): return expr.nbhds_op(self, queries, k, r) def _guard(self, f): def f_guarded(*args, **kwargs): if self.base is not None: self.base.flags.writeable = True self.flags.writeable = True ret = None try: ret = f(*args, **kwargs) finally: self.flags.writeable = False if self.base is not None: self.base.flags.writeable = False self._record_modify_time() # record time *after* computation return ret return f_guarded # override methods that modify object content to # record timestamp, signalling need for k-d tree update # inplace arithmetic methods # e.g. +=, -=, *=, /=, //=, %=, **=, <<=, >>=, &=, ^=, |= def __iadd__(self, other): return self._guard(super(Points, self).__iadd__)(other) def __isub__(self, other): return self._guard(super(Points, self).__isub__)(other) def __imul__(self, other): return self._guard(super(Points, self).__imul__)(other) def __idiv__(self, other): return self._guard(super(Points, self).__idiv__)(other) def __itruediv__(self, other): return self._guard(super(Points, self).__itruediv__)(other) def __ifloordiv__(self, other): return self._guard(super(Points, self).__ifloordiv__)(other) def __imod__(self, other): return self._guard(super(Points, self).__imod__)(other) def __ipow__(self, other): return self._guard(super(Points, self).__ipow__)(other) def __ilshift__(self, other): return self._guard(super(Points, self).__ilshift__)(other) def __irshift__(self, other): return self._guard(super(Points, self).__irshift__)(other) def __iand__(self, other): return self._guard(super(Points, self).__iand__)(other) def __ixor__(self, other): return self._guard(super(Points, self).__ixor__)(other) def __ior__(self, other): return self._guard(super(Points, self).__ior__)(other) # indexing and slicing operator def __setslice__(self, i, j, sequence): return self._guard(super(Points, self).__setslice__)(i, j, sequence) def __delslice__(self, i, j): return self._guard(super(Points, self).__delslice__)(i, j) def __getslice__(self, i, j): return super(Points, self).__getslice__(i, j) def __setitem__(self, key, value): return self._guard(super(Points, self).__setitem__)(key, value) def __delitem__(self, key): return self._guard(super(Points, self).__delitem__)(key) def __getitem__(self, key): if isinstance(key, expr.expression): return expr.index_op( expr._make_expression(self), key, slice(None, None, None)) elif (isinstance(key, tuple) or isinstance(key, list)) \ and any([isinstance(x, expr.expression) for x in key]): # key is a sequence containing at least one expression object if len(key) == 2 and ( isinstance(key[0], expr.expression) and isinstance(key[1], slice) or isinstance(key[0], slice) and isinstance(key[1], expr.expression)): return expr.index_op( expr._make_expression(self), key[0], key[1]) else: raise TypeError( 'unsupported combination of types in index tuple: %s' % repr((type(x) for x in key))) else: return super(Points, self).__getitem__(key)
py
b40e4efd1eb8bd51d7ddfb07ce58e343d1adc8d3
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """Defines helpful model wrapper and utils for implicitly rewrapping the model to conform to explainer contracts.""" import logging import warnings import numpy as np import pandas as pd from sklearn.linear_model import SGDClassifier from .constants import ModelTask, SKLearn with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'Starting from version 2.2.1', UserWarning) module_logger = logging.getLogger(__name__) module_logger.setLevel(logging.INFO) try: import torch import torch.nn as nn except ImportError: module_logger.debug('Could not import torch, required if using a PyTorch model') class _FunctionWrapper(object): """Wraps a function to reshape the input and output data. :param function: The prediction function to evaluate on the examples. :type function: function """ def __init__(self, function): """Wraps a function to reshape the input and output data. :param function: The prediction function to evaluate on the examples. :type function: function """ self._function = function def _function_input_1D_wrapper(self, dataset): """Wraps a function that reshapes the input dataset to be 2D from 1D. :param dataset: The model evaluation examples. :type dataset: numpy.array :return: A wrapped function. :rtype: function """ if len(dataset.shape) == 1: dataset = dataset.reshape(1, -1) return self._function(dataset) def _function_flatten(self, dataset): """Wraps a function that flattens the input dataset from 2D to 1D. :param dataset: The model evaluation examples. :type dataset: numpy.array :return: A wrapped function. :rtype: function """ return self._function(dataset).flatten() def _function_2D_two_cols_wrapper_2D_result(self, dataset): """Wraps a function that creates two columns, [1-p, p], from 2D array of one column evaluation result. :param dataset: The model evaluation examples. :type dataset: numpy.array :return: A wrapped function. :rtype: function """ result = self._function(dataset)[:, 0] return np.stack([1 - result, result], axis=-1) def _function_2D_two_cols_wrapper_1D_result(self, dataset): """Wraps a function that creates two columns, [1-p, p], from evaluation result that is a 1D array. :param dataset: The model evaluation examples. :type dataset: numpy.array :return: A wrapped function. :rtype: function """ result = self._function(dataset) return np.stack([1 - result, result], axis=-1) def _function_2D_one_col_wrapper(self, dataset): """Wraps a function that creates one column in rare edge case scenario for multiclass one-class result. :param dataset: The model evaluation examples. :type dataset: numpy.array :return: A wrapped function. :rtype: function """ result = self._function(dataset) return result.reshape(result.shape[0], 1) def _convert_to_two_cols(function, examples): """In classification case, convert the function's output to two columns if it outputs one column. :param function: The prediction function to evaluate on the examples. :type function: function :param examples: The model evaluation examples. :type examples: numpy.array or list :return: The function chosen from given model and classification domain. :rtype: (function, str) """ # Add wrapper function to convert output to 2D array, check values to decide on whether # to throw, or create two columns [1-p, p], or leave just one in multiclass one-class edge-case result = function(examples) # If the function gives a 2D array of one column, we will need to reshape it prior to concat is_2d_result = len(result.shape) == 2 convert_to_two_cols = False for value in result: if value < 0 or value > 1: raise Exception("Probability values outside of valid range: " + str(value)) if value < 1: convert_to_two_cols = True wrapper = _FunctionWrapper(function) if convert_to_two_cols: # Create two cols, [1-p, p], from evaluation result if is_2d_result: return (wrapper._function_2D_two_cols_wrapper_2D_result, ModelTask.Classification) else: return (wrapper._function_2D_two_cols_wrapper_1D_result, ModelTask.Classification) else: if is_2d_result: return (function, ModelTask.Classification) else: return (wrapper._function_2D_one_col_wrapper, ModelTask.Classification) class WrappedPytorchModel(object): """A class for wrapping a PyTorch model in the scikit-learn specification.""" def __init__(self, model): """Initialize the PytorchModelWrapper with the model and evaluation function.""" self._model = model # Set eval automatically for user for batchnorm and dropout layers self._model.eval() def predict(self, dataset): """Predict the output using the wrapped PyTorch model. :param dataset: The dataset to predict on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ # Convert the data to pytorch Variable if isinstance(dataset, pd.DataFrame): dataset = dataset.values wrapped_dataset = torch.Tensor(dataset) with torch.no_grad(): result = self._model(wrapped_dataset).numpy() # Reshape to 2D if output is 1D and input has one row if len(dataset.shape) == 1: result = result.reshape(1, -1) return result def predict_classes(self, dataset): """Predict the class using the wrapped PyTorch model. :param dataset: The dataset to predict on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ # Convert the data to pytorch Variable if isinstance(dataset, pd.DataFrame): dataset = dataset.values wrapped_dataset = torch.Tensor(dataset) with torch.no_grad(): result = self._model(wrapped_dataset) result_len = len(result.shape) if result_len == 1 or (result_len > 1 and result.shape[1] == 1): result = np.where(result.numpy() > 0.5, 1, 0) else: result = torch.max(result, 1)[1].numpy() # Reshape to 2D if output is 1D and input has one row if len(dataset.shape) == 1: result = result.reshape(1, -1) return result def predict_proba(self, dataset): """Predict the output probability using the wrapped PyTorch model. :param dataset: The dataset to predict_proba on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ return self.predict(dataset) class BaseWrappedModel(object): """A base class for WrappedClassificationModel and WrappedRegressionModel.""" def __init__(self, model, eval_function, examples, model_task): """Initialize the WrappedClassificationModel with the model and evaluation function.""" self._eval_function = eval_function self._model = model self._examples = examples self._model_task = model_task def __getstate__(self): """Influence how BaseWrappedModel is pickled. Removes _eval_function which may not be serializable. :return state: The state to be pickled, with _eval_function removed. :rtype: dict """ odict = self.__dict__.copy() if self._examples is not None: del odict['_eval_function'] return odict def __setstate__(self, state): """Influence how BaseWrappedModel is unpickled. Re-adds _eval_function which may not be serializable. :param dict: A dictionary of deserialized state. :type dict: dict """ self.__dict__.update(state) if self._examples is not None: eval_function, _ = _eval_model(self._model, self._examples, self._model_task) self._eval_function = eval_function class WrappedClassificationModel(BaseWrappedModel): """A class for wrapping a classification model.""" def __init__(self, model, eval_function, examples=None): """Initialize the WrappedClassificationModel with the model and evaluation function.""" super(WrappedClassificationModel, self).__init__(model, eval_function, examples, ModelTask.Classification) def predict(self, dataset): """Predict the output using the wrapped classification model. :param dataset: The dataset to predict on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ is_sequential = str(type(self._model)).endswith("tensorflow.python.keras.engine.sequential.Sequential'>") if is_sequential or isinstance(self._model, WrappedPytorchModel): return self._model.predict_classes(dataset).flatten() preds = self._model.predict(dataset) if isinstance(preds, pd.DataFrame): preds = preds.values.ravel() # Handle possible case where the model has only a predict function and it outputs probabilities # Note this is different from WrappedClassificationWithoutProbaModel where there is no predict_proba # method but the predict method outputs classes has_predict_proba = hasattr(self._model, SKLearn.PREDICT_PROBA) if not has_predict_proba: if len(preds.shape) == 1: return np.argmax(preds) else: return np.argmax(preds, axis=1) return preds def predict_proba(self, dataset): """Predict the output probability using the wrapped model. :param dataset: The dataset to predict_proba on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ proba_preds = self._eval_function(dataset) if isinstance(proba_preds, pd.DataFrame): proba_preds = proba_preds.values return proba_preds class WrappedRegressionModel(BaseWrappedModel): """A class for wrapping a regression model.""" def __init__(self, model, eval_function, examples=None): """Initialize the WrappedRegressionModel with the model and evaluation function.""" super(WrappedRegressionModel, self).__init__(model, eval_function, examples, ModelTask.Regression) def predict(self, dataset): """Predict the output using the wrapped regression model. :param dataset: The dataset to predict on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ preds = self._eval_function(dataset) if isinstance(preds, pd.DataFrame): preds = preds.values.ravel() return preds class WrappedClassificationWithoutProbaModel(object): """A class for wrapping a classifier without a predict_proba method. Note: the classifier may not output numeric values for its predictions. We generate a trival boolean version of predict_proba """ def __init__(self, model): """Initialize the WrappedClassificationWithoutProbaModel with the model.""" self._model = model # Create a map from classes to index self._classes_to_index = {} for index, i in enumerate(self._model.classes_): self._classes_to_index[i] = index self._num_classes = len(self._model.classes_) def predict(self, dataset): """Predict the output using the wrapped regression model. :param dataset: The dataset to predict on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ return self._model.predict(dataset) def predict_proba(self, dataset): """Predict the output probability using the wrapped model. :param dataset: The dataset to predict_proba on. :type dataset: interpret_community.dataset.dataset_wrapper.DatasetWrapper """ predictions = self.predict(dataset) # Generate trivial boolean array for predictions probabilities = np.zeros((predictions.shape[0], self._num_classes)) for row_idx, pred_class in enumerate(predictions): class_index = self._classes_to_index[pred_class] probabilities[row_idx, class_index] = 1 return probabilities def wrap_model(model, examples, model_task): """If needed, wraps the model in a common API based on model task and prediction function contract. :param model: The model to evaluate on the examples. :type model: model with a predict or predict_proba function. :param examples: The model evaluation examples. :type examples: interpret_community.dataset.dataset_wrapper.DatasetWrapper :param model_task: Optional parameter to specify whether the model is a classification or regression model. In most cases, the type of the model can be inferred based on the shape of the output, where a classifier has a predict_proba method and outputs a 2 dimensional array, while a regressor has a predict method and outputs a 1 dimensional array. :type model_task: str :return: The wrapper model. :rtype: model """ return _wrap_model(model, examples, model_task, False)[0] def _wrap_model(model, examples, model_task, is_function): """If needed, wraps the model or function in a common API based on model task and prediction function contract. :param model: The model or function to evaluate on the examples. :type model: function or model with a predict or predict_proba function :param examples: The model evaluation examples. :type examples: interpret_community.dataset.dataset_wrapper.DatasetWrapper :param model_task: Optional parameter to specify whether the model is a classification or regression model. In most cases, the type of the model can be inferred based on the shape of the output, where a classifier has a predict_proba method and outputs a 2 dimensional array, while a regressor has a predict method and outputs a 1 dimensional array. :type model_task: str :return: The function chosen from given model and chosen domain, or model wrapping the function and chosen domain. :rtype: (function, str) or (model, str) """ if is_function: return _eval_function(model, examples, model_task) else: try: if isinstance(model, nn.Module): # Wrap the model in an extra layer that converts the numpy array # to pytorch Variable and adds predict and predict_proba functions model = WrappedPytorchModel(model) except (NameError, AttributeError): module_logger.debug('Could not import torch, required if using a pytorch model') if _classifier_without_proba(model): model = WrappedClassificationWithoutProbaModel(model) eval_function, eval_ml_domain = _eval_model(model, examples, model_task) if eval_ml_domain == ModelTask.Classification: return WrappedClassificationModel(model, eval_function, examples), eval_ml_domain else: return WrappedRegressionModel(model, eval_function, examples), eval_ml_domain def _classifier_without_proba(model): """Returns True if the given model is a classifier without predict_proba, eg SGDClassifier. :param model: The model to evaluate on the examples. :type model: model with a predict or predict_proba function :return: True if the given model is a classifier without predict_proba. :rtype: bool """ return isinstance(model, SGDClassifier) and not hasattr(model, SKLearn.PREDICT_PROBA) def _eval_model(model, examples, model_task): """Return function from model and specify the ML Domain using model evaluation on examples. :param model: The model to evaluate on the examples. :type model: model with a predict or predict_proba function :param examples: The model evaluation examples. :type examples: interpret_community.dataset.dataset_wrapper.DatasetWrapper :param model_task: Optional parameter to specify whether the model is a classification or regression model. In most cases, the type of the model can be inferred based on the shape of the output, where a classifier has a predict_proba method and outputs a 2 dimensional array, while a regressor has a predict method and outputs a 1 dimensional array. :type model_task: str :return: The function chosen from given model and chosen domain. :rtype: (function, str) """ # TODO: Add more model types here is_sequential = str(type(model)).endswith("tensorflow.python.keras.engine.sequential.Sequential'>") if is_sequential or isinstance(model, WrappedPytorchModel): if model_task == ModelTask.Regression: return _eval_function(model.predict, examples, ModelTask.Regression) result = model.predict_proba(examples.typed_wrapper_func(examples.dataset[0:1])) if result.shape[1] == 1 and model_task == ModelTask.Unknown: raise Exception("Please specify model_task to disambiguate model type since " "result of calling function is 2D array of one column.") else: return _eval_function(model.predict_proba, examples, ModelTask.Classification) else: has_predict_proba = hasattr(model, SKLearn.PREDICT_PROBA) # Note: Allow user to override default to use predict method for regressor if has_predict_proba and model_task != ModelTask.Regression: return _eval_function(model.predict_proba, examples, model_task) else: return _eval_function(model.predict, examples, model_task) def _eval_function(function, examples, model_task, wrapped=False): """Return function and specify the ML Domain using function evaluation on examples. :param function: The prediction function to evaluate on the examples. :type function: function :param examples: The model evaluation examples. :type examples: interpret_community.dataset.dataset_wrapper.DatasetWrapper :param model_task: Optional parameter to specify whether the model is a classification or regression model. In most cases, the type of the model can be inferred based on the shape of the output, where a classifier has a predict_proba method and outputs a 2 dimensional array, while a regressor has a predict method and outputs a 1 dimensional array. :type model_task: str :param wrapped: Indicates if function has already been wrapped. :type wrapped: bool :return: The function chosen from given model and chosen domain. :rtype: (function, str) """ # Try to run the function on a single example - if it doesn't work wrap # it in a function that converts a 1D array to 2D for those functions # that only support 2D arrays as input examples_dataset = examples.dataset if str(type(examples_dataset)).endswith(".DenseData'>"): examples_dataset = examples_dataset.data try: result = function(examples.typed_wrapper_func(examples_dataset[0])) if result is None: raise Exception("Wrapped function returned None in model wrapper when called on dataset") except Exception as ex: # If function has already been wrapped, re-throw error to prevent stack overflow if wrapped: raise ex wrapper = _FunctionWrapper(function) return _eval_function(wrapper._function_input_1D_wrapper, examples, model_task, wrapped=True) if len(result.shape) == 2: # If the result of evaluation the function is a 2D array of 1 column, # and they did not specify classifier or regressor, throw exception # to force the user to disambiguate the results. if result.shape[1] == 1: if model_task == ModelTask.Unknown: if isinstance(result, pd.DataFrame): return (function, ModelTask.Regression) raise Exception("Please specify model_task to disambiguate model type since " "result of calling function is 2D array of one column.") elif model_task == ModelTask.Classification: return _convert_to_two_cols(function, examples_dataset) else: # model_task == ModelTask.Regression # In case user specified a regressor but we have a 2D output with one column, # we want to flatten the function to 1D wrapper = _FunctionWrapper(function) return (wrapper._function_flatten, model_task) else: if model_task == ModelTask.Unknown or model_task == ModelTask.Classification: return (function, ModelTask.Classification) else: raise Exception("Invalid shape for prediction: " "Regression function cannot output 2D array with multiple columns") elif len(result.shape) == 1: if model_task == ModelTask.Unknown: return (function, ModelTask.Regression) elif model_task == ModelTask.Classification: return _convert_to_two_cols(function, examples_dataset) return (function, model_task) elif len(result.shape) == 0: # single value returned, flatten output array wrapper = _FunctionWrapper(function) return (wrapper._function_flatten, model_task) raise Exception("Failed to wrap function, may require custom wrapper for input function or model")
py
b40e4f77f1bf0fc756cd1f58d68fe660915107cf
# -*- coding: utf-8 -*- r""" malgan.detector ~~~~~~~~~~~~ Black box malware detector. Based on the paper: "Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN" By Weiwei Hu and Ying Tan. :copyright: (c) 2019 by Zayd Hammoudeh. :license: MIT, see LICENSE for more details. """ from enum import Enum from typing import Union import numpy as np import sklearn from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC import torch TorchOrNumpy = Union[np.ndarray, torch.Tensor] # noinspection PyPep8Naming class BlackBoxDetector: r""" Black box detector that intends to mimic an antivirus/anti-Malware program that detects whether a specific program is either malware or benign. """ class Type(Enum): r""" Learner algorithm to be used by the black-box detector """ DecisionTree = DecisionTreeClassifier() LogisticRegression = LogisticRegression(solver='lbfgs', max_iter=int(1e6)) MultiLayerPerceptron = MLPClassifier() RandomForest = RandomForestClassifier(n_estimators=100) SVM = SVC(gamma="auto") @staticmethod def names(): r""" Builds the list of all enum names """ return [c.name for c in BlackBoxDetector.Type] @staticmethod def get_from_name(name): r""" Gets the enum item from the specified name :param name: Name of the enum object :return: Enum item associated with the specified name """ for c in BlackBoxDetector.Type: if c.name == name: return c raise ValueError("Unknown enum \"%s\" for class \"%s\"", name, __class__.name) def __init__(self, learner_type: 'BlackBoxDetector.Type'): self.type = learner_type # noinspection PyCallingNonCallable self._model = sklearn.clone(self.type.value) self.training = True def fit(self, X: TorchOrNumpy, y: TorchOrNumpy): r""" Fits the learner. Supports NumPy and PyTorch arrays as input. Returns a torch tensor as output. :param X: Examples upon which to train :param y: Labels for the examples """ if isinstance(X, torch.Tensor): X = X.numpy() if isinstance(y, torch.Tensor): y = y.numpy() self._model.fit(X, y) self.training = False def predict(self, X: TorchOrNumpy) -> torch.tensor: r""" Predict the labels for \p X :param X: Set of examples for which label probabilities should be predicted :return: Predicted value for \p X """ if self.training: raise ValueError("Detector does not appear to be trained but trying to predict") if torch.cuda.is_available(): X = X.cpu() if isinstance(X, torch.Tensor): X = X.numpy() y = torch.from_numpy(self._model.predict(X)).float() return y.cuda() if torch.cuda.is_available() else y
py
b40e4f7e84bc53160bafd291d5c8ea6b4b1f43bd
from Kaspa.modules.abstract_modules.abstractSubmodule import AbstractSubmodule from Kaspa.modules.exceptions.impossibleActionError import ImpossibleActionError from Kaspa.config import Config class SpotifyModuleEn(AbstractSubmodule): module_name = "Spotify" language = "en" key_regexes = dict() def __init__(self): self.key_regexes = {'(?i).*?(?=continue)+.+?(?=playback)+.': self.action_continue_playback, '(?i).*?(?=pause)+.': self.action_play, '(?i).*?(?=play)+.': self.action_play, '(?i).*?(?=next)+.': self.action_next, '(?i).*?(?=stop)+.': self.action_pause, '(?i).*?(?=what)+.+?(?=song)+.': self.action_song_info} def action_continue_playback(self, query): communicator = query.get_communicator() self.main_module.continue_playback() communicator.say("I am now continuing your music playback.") return def action_pause(self, query): communicator = query.get_communicator() self.main_module.pause() communicator.say("Music paused.") return def action_play(self, query): communicator = query.get_communicator() text = query.get_text() try: self.action_continue_playback(query) return except ImpossibleActionError: pass if self.main_module.current_song() is None: self.main_module.play_saved() communicator.say("Okay, playing your last added songs.") return # fetch all playlist macros from config file and search for matches in the query playlists = Config.get_instance().get_section_content('playlists') for playlist in playlists: if playlist[0].lower() in text.lower(): self.main_module.play_playlist(playlist[1]) communicator.say("Okay, I'll now play the playlist" + playlist[0] + ".") return self.main_module.play() communicator.say("Okay") return def action_next(self, query): communicator = query.get_communicator() self.main_module.next() communicator.say("Okay") return def action_song_info(self, query): communicator = query.get_communicator() if self.main_module.current_song(): title, artist = self.main_module.current_song() communicator.say("The song is " + title + " by " + artist + ".") else: communicator.say("There is no music loaded right now.")
py
b40e4fe16af0e0bb85b223583775529c7f1f32a3
from django.contrib import admin from .models import Comments, Profile,Image # Register your models here. admin.site.register(Profile) admin.site.register(Image) admin.site.register(Comments)
py
b40e501e0578830eb8ce16f4c59b15626a298d58
# tested def Main(j): if j == 4: raise Exception('hello') return True
py
b40e51ea73931f499f7c27572eb42af13060e381
#!/usr/bin/env python """ @author: Rohini Joshi """ import sys import time from DIRAC.Core.Base import Script Script.parseCommandLine() from DIRAC.Core.Security.ProxyInfo import getProxyInfo from DIRAC.Interfaces.API.Dirac import Dirac # TODO Use DIRAC python API to construct job jdl = '' jdl += 'JobName = "SKA SRC test payload";\n' # TODO Use DIRAC API to get available sites instead of hard-coded list jdl += """Parameters = {"LCG.UKI-NORTHGRID-MAN-HEP.uk", "LCG.UKI-LT2-IC-HEP.uk", "LCG.UKI-LT2-QMUL.uk", "LCG.UKI-NORTHGRID-LANCS-HEP.uk", "CLOUD.CERN-PROD.ch", "CLOUD.RAL-LCG2.uk", "CLOUD.UK-CAM-CUMULUS.uk", "VAC.UKI-LT2-UCL-HEP.uk", "VAC.UKI-NORTHGRID-MAN-HEP.uk", "VAC.UKI-NORTHGRID-LIV-HEP.uk", "VAC.UKI-SCOTGRID-GLASGOW.uk"};\n""" jdl += 'Site = "%s";\n' jdl += 'Platform = "EL7";\n' jdl += 'Executable = "TestPayload.sh";\n' jdl += 'InputSandbox = "TestPayload.sh";\n' jdl += 'StdOutput = "StdOut";\n' jdl += 'StdError = "StdErr";\n' jdl += 'OutputSandbox = {"StdOut", "StdErr"};\n' # Create a unique Job Group for this set of jobs try: diracUsername = getProxyInfo()['Value']['username'] except: print 'Failed to get DIRAC username. No proxy set up?' sys.exit(1) jobGroup = diracUsername + time.strftime('.%Y%m%d%H%M%S') jdl += 'JobGroup = "' + jobGroup + '";\n' print 'Will submit this DIRAC JDL:' print '=====' print jdl print '=====' print # Submit the job(s) print 'Attempting to submit job(s) in JobGroup ' + jobGroup print dirac = Dirac() result = dirac.submitJob(jdl) print '=====' print 'Submission Result: ',result print '=====' if result['OK']: print 'Retrieve output with dirac-wms-job-get-output --JobGroup ' + jobGroup else: print 'There was a problem submitting your job(s) - see above!!!' print
py
b40e53901a49b5a460acc0594d2e40eb5958ac3a
from random import expovariate Avg_IAT = 2.0 # Average IAT Sim_Time = 100 # Total simulation time N = 0 # Count number of arrivals clock = 0 # Simulation time while clock <= Sim_Time: N = N + 1 # Advance simulation clock clock = clock + expovariate(1/Avg_IAT) print('Total Number of Arrivals = ', N)
py
b40e53ce8037bfa8fc74ddfad5657d9fea351d1d
# Copyright 2013 Devsim LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #### circ4.tcl #### #### copy of circ1.tcl using a voltage source import devsim import test_common devices=("MyDevice1", "MyDevice2") region="MyRegion" #### #### Meshing #### test_common.CreateSimpleMesh(device=devices[0], region=region) devsim.create_device(mesh="dog", device=devices[1]) for device in devices: test_common.SetupResistorConstants(device=device, region="") test_common.SetupInitialResistorSystem(device, region) devsim.add_circuit_node(name="cnode0", variable_update="default") devsim.add_circuit_node(name="cnode1", variable_update="default") devsim.circuit_element(name="R1", n1="cnode1", n2=0, value=1e15) devsim.circuit_element(name="V1", n1="cnode0", n2=0, value=0.0) test_common.SetupInitialResistorContact(device="MyDevice1", contact="top", use_circuit_bias=True, circuit_node="MyDevice1_top") test_common.SetupInitialResistorContact(device="MyDevice1", contact="bot", use_circuit_bias=True, circuit_node="MyDevice1_bot") test_common.SetupInitialResistorContact(device="MyDevice2", contact="top", use_circuit_bias=True, circuit_node="MyDevice2_top") test_common.SetupInitialResistorContact(device="MyDevice2", contact="bot", use_circuit_bias=True, circuit_node="MyDevice2_bot") devsim.circuit_node_alias(node="cnode0", alias="MyDevice1_top") devsim.circuit_node_alias(node="cnode1", alias="MyDevice2_top") devsim.circuit_node_alias(node="cnode1", alias="MyDevice1_bot") devsim.circuit_node_alias(node="GND", alias="MyDevice2_bot") devsim.solve(type="dc", absolute_error=1.0, relative_error=1e-14, maximum_iterations=30) for device in devices: print(device) for name in ("Potential", "IntrinsicElectrons"): devsim.print_node_values(device=device, region=region, name=name) for device in devices: test_common.SetupCarrierResistorSystem(device=device, region=region) test_common.SetupCarrierResistorContact(device="MyDevice1", contact="top", use_circuit_bias=True, circuit_node="MyDevice1_top") test_common.SetupCarrierResistorContact(device="MyDevice1", contact="bot", use_circuit_bias=True, circuit_node="MyDevice1_bot") test_common.SetupCarrierResistorContact(device="MyDevice2", contact="top", use_circuit_bias=True, circuit_node="MyDevice2_top") test_common.SetupCarrierResistorContact(device="MyDevice2", contact="bot", use_circuit_bias=True, circuit_node="MyDevice2_bot") for v in (0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10): devsim.circuit_alter(name="V1", value=v) devsim.solve(type="dc", absolute_error=1.0, relative_error=1e-9, maximum_iterations=30) for device in devices: test_common.printResistorCurrent(device=device, contact="top") test_common.printResistorCurrent(device=device, contact="bot")
py
b40e550251748df8bc9ccd41d69e1a7b000b26bc
"""SCons.Tool.Packaging.tarbz2 The tarbz2 SRC packager. """ # # Copyright (c) 2001 - 2017 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/packaging/src_tarbz2.py rel_3.0.0:4395:8972f6a2f699 2017/09/18 12:59:24 bdbaddog" from SCons.Tool.packaging import putintopackageroot def package(env, target, source, PACKAGEROOT, **kw): bld = env['BUILDERS']['Tar'] bld.set_suffix('.tar.bz2') target, source = putintopackageroot(target, source, env, PACKAGEROOT, honor_install_location=0) return bld(env, target, source, TARFLAGS='-jc') # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
py
b40e55454639fdf541783dc87b8cbd28014d9b56
# Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import cuxfilter from cuxfilter.layouts import feature_and_double_base from clx.eda.summary_stats import SummaryStatistics class EDA: """An EDA (Exploratory Data Analysis) Object. EDA is used to explore different features of a given dataframe. :param dataframe: Dataframe to be used for analysis :type dataframe: cudf.DataFrame Examples -------- >>> from clx.eda import EDA >>> import cudf >>> import pandas as pd >>> df = cudf.DataFrame() >>> df['a'] = [1,2,3,4] >>> df['b'] = ['a','b','c','c'] >>> df['c'] = [True, False, True, True] >>> df['d'] = cudf.Series(pd.date_range("2000-01-01", periods=3,freq="m")) >>> eda = EDA(df) >>> eda { "SummaryStatistics": { "a": { "dtype": "int64", "summary": { "unique": "4", "total": "4" } }, "b": { "dtype": "object", "summary": { "unique": "3", "total": "4" } }, "c": { "dtype": "bool", "summary": { "true_percent": "0.75" } }, "d": { "dtype": "datetime64[ns]", "summary": { "timespan": "60 days, 2880 hours, 0 minutes, 0 seconds" } } } } """ eda_modules = {"SummaryStatistics": SummaryStatistics} def __init__(self, dataframe): self.__dataframe = dataframe self.__analysis, self.__module_ref = self.__generate_analysis(dataframe) @property def analysis(self): """ Analysis results as a `dict` """ return self.__analysis @property def dataframe(self): """ Dataframe used for analysis """ return self.__dataframe def __repr__(self): return json.dumps(self.analysis, indent=2) def __generate_analysis(self, dataframe): """For each of the modules, generate the analysis""" module_ref = {} analysis_results = {} for key, eda_module in self.eda_modules.items(): eda_module_obj = eda_module(dataframe) module_ref[key] = eda_module_obj analysis_results[key] = eda_module_obj.analysis return analysis_results, module_ref def save_analysis(self, dirpath): """Save analysis output to directory path. :param dirpath: Directory path to save analysis output. :type dirpath: str """ for key, analysis in self.__module_ref.items(): if os.path.isdir(dirpath): output_file = dirpath + "/" + key analysis.save_analysis(output_file) def cuxfilter_dashboard(self): """Create cuxfilter dashboard for Exploratory Data Analysis. :return: cuxfilter dashboard with populated with data and charts. :rtype: cuxfilter.DashBoard """ for module in self.__module_ref.values(): charts = module.charts cux_df = cuxfilter.DataFrame.from_dataframe(self.__dataframe) return cux_df.dashboard( charts, layout=feature_and_double_base, theme=cuxfilter.themes.light, title="Exploratory Data Analysis", )
py
b40e55568ed8b178147621fc15e843737a350b84
import urllib.parse from . import zeep __all__ = ("AsyncNetSuiteTransport",) # TODO: ASYNC! Maybe remove this custom transport?!?! class AsyncNetSuiteTransport(zeep.transports.AsyncTransport): """ NetSuite company-specific domain wrapper for zeep.transports.transport Latest NetSuite WSDL now uses relative definition addresses zeep maps reflective remote calls to the base WSDL address, rather than the dynamic subscriber domain Wrap the zeep transports service with our address modifications """ def __init__(self, wsdl_url, *args, **kwargs): parsed = urllib.parse.urlparse(wsdl_url) self._netsuite_base_url = f"{parsed.scheme}://{parsed.netloc}" super().__init__(*args, **kwargs) def _fix_address(self, address): """Munge the address to the company-specific domain, not the default""" idx = address.index("/", 8) path = address[idx:] return f"{self._netsuite_base_url}{path}" async def get(self, address, params, headers): return await super().get(self._fix_address(address), params, headers) async def post(self, address, message, headers): return await super().post(self._fix_address(address), message, headers)
py
b40e55d363dac86a5dbcc7442fac3ea75ebe9026
# Create a queue, using just stacks class Stack: def __init__(self): self.items = [] def size(self): return len(self.items) def push(self, item): self.items.append(item) def pop(self): if self.size() == 0: return None else: return self.items.pop() class Queue: def __init__(self): self.instorage = Stack() self.outstorage = Stack() def size(self): return self.outstorage.size() + self.instorage.size() def enqueue(self, item): self.instorage.push(item) def dequeue(self): if not self.outstorage.items: while self.instorage.items: self.outstorage.push(self.instorage.pop()) return self.outstorage.pop() # Setup q = Queue() q.enqueue(1) q.enqueue(2) q.enqueue(3) # Test size print("Pass" if (q.size() == 3) else "Fail") # Test dequeue print("Pass" if (q.dequeue() == 1) else "Fail") # Test enqueue q.enqueue(4) print("Pass" if (q.dequeue() == 2) else "Fail") print("Pass" if (q.dequeue() == 3) else "Fail") print("Pass" if (q.dequeue() == 4) else "Fail") q.enqueue(5) print("Pass" if (q.size() == 1) else "Fail")
py
b40e55d6ce716c69d74c62153b0c8870829d0ddf
#!/usr/bin/env python ''' This python script will be used to detect the colour of packages using QR code detection. ''' import sys import rospy from std_msgs.msg import String from std_srvs.srv import Empty from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError from pkg_task5.srv import camera_packages from pkg_task5.srv import camera_packagesResponse import actionlib from pkg_ros_iot_bridge.msg import msgRosIotAction # Message Class that is used by ROS Actions internally from pkg_ros_iot_bridge.msg import msgRosIotGoal # Message Class that is used for Action Goal Messages from pkg_ros_iot_bridge.msg import msgRosIotResult # Message Class that is used for Action Result Messages from pkg_ros_iot_bridge.msg import msgRosIotFeedback # Message Class that is used for Action Feedback Messages from pkg_ros_iot_bridge.msg import msgMqttSub # Message Class for MQTT Subscription Messages from pyzbar.pyzbar import decode import cv2 ''' This class will initialize the 2D camera. ''' class Camera1: def __init__(self): self.bridge = CvBridge() self.image_sub = rospy.Subscriber("/eyrc/vb/camera_1/image_raw", Image, self.camera1_callback) ## MQTT Client # Initialize Action Client self._ac = actionlib.ActionClient('/action_ros_iot', msgRosIotAction) param_config_iot = rospy.get_param('config_pyiot') # Store the ROS Topic to get the start message from bridge action server self._config_mqtt_pub_topic = param_config_iot['mqtt']['topic_pub'] # Dictionary to Store all the goal handels self._goal_handles = {} # Wait for Action Server that will use the action - '/action_iot_ros' to start self._ac.wait_for_server() rospy.loginfo("Action server up, we can send goals.") self.image_captured_flag = False ''' Scanning the QR code of each package. ''' def get_qr_data(self,image): packages_locations = [[305, 415,118, 228],[305, 415,305,415], [305, 415,500,595], [487, 597, 118, 228], [487, 597,305, 415],[487, 597,495, 605], [635, 742, 118, 228], [635, 742, 305, 415], [635, 742,495, 605], [785, 895, 118, 228],[785, 895, 310, 410], [785, 895,495, 605]] packages = ['packagen00', 'packagen01', 'packagen02', 'packagen10', 'packagen11', 'packagen12', 'packagen20', 'packagen21', 'packagen22', 'packagen30', 'packagen31', 'packagen32'] colours = {} for i in range(len(packages)): start_x = packages_locations[i][0] end_x = packages_locations[i][1] start_y = packages_locations[i][2] end_y = packages_locations[i][3] cropped_image = image[start_x:end_x, start_y: end_y] pack = packages[i] qr_result = decode(cropped_image) if len(qr_result)>0: colours[pack] = qr_result[0].data else: continue self._pc = colours print 'Packages Detected = ' + str(len(self._pc)) ''' Function to enhance the image. ''' def camera1_callback(self, data): if not self.image_captured_flag: try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: rospy.logerr(e) self.get_qr_data(cv_image) self.image_captured_flag = True ''' Service to send package postion and it's colour. ''' def callback_service_on_request(self, req): if req.get_package_type == True: self.pack = str(self._pc) return camera_packagesResponse(self.pack) else: rospy.loginfo_once("Package not found") return camera_packagesResponse("") ''' This function will be called when there is a change of state in the Action Client State Machine. ''' def on_transition(self, goal_handle): # from on_goal() to on_transition(). goal_handle generated by send_goal() is used here. result = msgRosIotResult() index = 0 for i in self._goal_handles: if self._goal_handles[i] == goal_handle: index = i break rospy.loginfo("Transition Callback. Client Goal Handle #: " + str(index)) rospy.loginfo("Comm. State: " + str(goal_handle.get_comm_state())) rospy.loginfo("Goal Status: " + str(goal_handle.get_goal_status())) # Comm State - Monitors the State Machine of the Client which is different from Server's # Comm State = 2 -> Active # Comm State = 3 -> Wating for Result # Comm State = 7 -> Done # if (Comm State == ACTIVE) if goal_handle.get_comm_state() == 2: rospy.loginfo(str(index) + ": Goal just went active.") # if (Comm State == DONE) if goal_handle.get_comm_state() == 7: rospy.loginfo(str(index) + ": Goal is DONE") rospy.loginfo(goal_handle.get_terminal_state()) # get_result() gets the result produced by the Action Server result = goal_handle.get_result() rospy.loginfo(result.flag_success) if result.flag_success == True: rospy.loginfo("Goal successfully completed. Client Goal Handle #: " + str(index)) else: rospy.loginfo("Goal failed. Client Goal Handle #: " + str(index)) ''' This function is used to send Goals to MQtt client. ''' def send_goal_to_mqtt_client(self, arg_protocol, arg_mode, arg_topic, arg_message): # Create a Goal Message object goal = msgRosIotGoal() goal.protocol = arg_protocol goal.mode = arg_mode goal.topic = arg_topic goal.message = arg_message rospy.loginfo("Sending to mqtt client") # self.on_transition - It is a function pointer to a function which will be called when # there is a change of state in the Action Client State Machine goal_handle = self._ac.send_goal(goal, self.on_transition, None) return goal_handle ''' Main Function. ''' def main(): rospy.init_node('node_t5_qr_decode_service', anonymous=True) rospy.sleep(6) cam = Camera1() # wait for process to finish rospy.sleep(4) packages = str(cam._pc) print 'Packages Detected = '+ str(len(cam._pc)) rospy.loginfo_once(cam._pc) s = rospy.Service('/2Dcamera_packages_type', camera_packages, cam.callback_service_on_request) pkg = {'red':['R', 'HP', 'Medicine', '450'], 'green':['G', 'LP', 'Clothes', '150'], 'yellow':['Y', 'MP', 'Food', '250']} count = 0 for i in cam._pc.keys(): count += 1 pkg_location = i[-2:] colour = cam._pc[i] pkg_sku = pkg[colour][0] + pkg_location + '0121' pkg_item = pkg[colour][2] pkg_priority = pkg[colour][1] pkg_storage = 'R'+ pkg_location[0] +' C' + pkg_location[1] pkg_cost = pkg[colour][3] info = {'id':'Inventory', 'Team Id':'VB#693', 'Unique Id':'RRCneYRC', 'SKU':pkg_sku, 'Item':pkg_item, 'Priority':pkg_priority, 'Storage Number':pkg_storage, 'Cost':pkg_cost, 'Quantity':'1'} message = str(info) goal_handle = cam.send_goal_to_mqtt_client("spreadsheet", "pub", cam._config_mqtt_pub_topic, message) cam._goal_handles['Inventory:' + str(count)] = goal_handle rospy.sleep(1) rospy.loginfo("Goal Sent") rospy.spin() if __name__ == '__main__': main()
py
b40e56999bb3dcb9ef356749daa7a5d3e4f95aa0
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['UserArgs', 'User'] @pulumi.input_type class UserArgs: def __init__(__self__, *, access_string: pulumi.Input[str], engine: pulumi.Input[str], user_id: pulumi.Input[str], user_name: pulumi.Input[str], arn: Optional[pulumi.Input[str]] = None, no_password_required: Optional[pulumi.Input[bool]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a User resource. :param pulumi.Input[str] access_string: Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. :param pulumi.Input[str] engine: The current supported value is `REDIS`. :param pulumi.Input[str] user_id: The ID of the user. :param pulumi.Input[str] user_name: The username of the user. :param pulumi.Input[str] arn: The ARN of the created ElastiCache User. :param pulumi.Input[bool] no_password_required: Indicates a password is not required for this user. :param pulumi.Input[Sequence[pulumi.Input[str]]] passwords: Passwords used for this user. You can create up to two passwords for each user. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A list of tags to be added to this resource. A tag is a key-value pair. """ pulumi.set(__self__, "access_string", access_string) pulumi.set(__self__, "engine", engine) pulumi.set(__self__, "user_id", user_id) pulumi.set(__self__, "user_name", user_name) if arn is not None: pulumi.set(__self__, "arn", arn) if no_password_required is not None: pulumi.set(__self__, "no_password_required", no_password_required) if passwords is not None: pulumi.set(__self__, "passwords", passwords) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="accessString") def access_string(self) -> pulumi.Input[str]: """ Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. """ return pulumi.get(self, "access_string") @access_string.setter def access_string(self, value: pulumi.Input[str]): pulumi.set(self, "access_string", value) @property @pulumi.getter def engine(self) -> pulumi.Input[str]: """ The current supported value is `REDIS`. """ return pulumi.get(self, "engine") @engine.setter def engine(self, value: pulumi.Input[str]): pulumi.set(self, "engine", value) @property @pulumi.getter(name="userId") def user_id(self) -> pulumi.Input[str]: """ The ID of the user. """ return pulumi.get(self, "user_id") @user_id.setter def user_id(self, value: pulumi.Input[str]): pulumi.set(self, "user_id", value) @property @pulumi.getter(name="userName") def user_name(self) -> pulumi.Input[str]: """ The username of the user. """ return pulumi.get(self, "user_name") @user_name.setter def user_name(self, value: pulumi.Input[str]): pulumi.set(self, "user_name", value) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ The ARN of the created ElastiCache User. """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter(name="noPasswordRequired") def no_password_required(self) -> Optional[pulumi.Input[bool]]: """ Indicates a password is not required for this user. """ return pulumi.get(self, "no_password_required") @no_password_required.setter def no_password_required(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "no_password_required", value) @property @pulumi.getter def passwords(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Passwords used for this user. You can create up to two passwords for each user. """ return pulumi.get(self, "passwords") @passwords.setter def passwords(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "passwords", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A list of tags to be added to this resource. A tag is a key-value pair. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @pulumi.input_type class _UserState: def __init__(__self__, *, access_string: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, engine: Optional[pulumi.Input[str]] = None, no_password_required: Optional[pulumi.Input[bool]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_id: Optional[pulumi.Input[str]] = None, user_name: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering User resources. :param pulumi.Input[str] access_string: Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. :param pulumi.Input[str] arn: The ARN of the created ElastiCache User. :param pulumi.Input[str] engine: The current supported value is `REDIS`. :param pulumi.Input[bool] no_password_required: Indicates a password is not required for this user. :param pulumi.Input[Sequence[pulumi.Input[str]]] passwords: Passwords used for this user. You can create up to two passwords for each user. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A list of tags to be added to this resource. A tag is a key-value pair. :param pulumi.Input[str] user_id: The ID of the user. :param pulumi.Input[str] user_name: The username of the user. """ if access_string is not None: pulumi.set(__self__, "access_string", access_string) if arn is not None: pulumi.set(__self__, "arn", arn) if engine is not None: pulumi.set(__self__, "engine", engine) if no_password_required is not None: pulumi.set(__self__, "no_password_required", no_password_required) if passwords is not None: pulumi.set(__self__, "passwords", passwords) if tags is not None: pulumi.set(__self__, "tags", tags) if tags_all is not None: pulumi.set(__self__, "tags_all", tags_all) if user_id is not None: pulumi.set(__self__, "user_id", user_id) if user_name is not None: pulumi.set(__self__, "user_name", user_name) @property @pulumi.getter(name="accessString") def access_string(self) -> Optional[pulumi.Input[str]]: """ Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. """ return pulumi.get(self, "access_string") @access_string.setter def access_string(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "access_string", value) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ The ARN of the created ElastiCache User. """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter def engine(self) -> Optional[pulumi.Input[str]]: """ The current supported value is `REDIS`. """ return pulumi.get(self, "engine") @engine.setter def engine(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "engine", value) @property @pulumi.getter(name="noPasswordRequired") def no_password_required(self) -> Optional[pulumi.Input[bool]]: """ Indicates a password is not required for this user. """ return pulumi.get(self, "no_password_required") @no_password_required.setter def no_password_required(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "no_password_required", value) @property @pulumi.getter def passwords(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Passwords used for this user. You can create up to two passwords for each user. """ return pulumi.get(self, "passwords") @passwords.setter def passwords(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "passwords", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A list of tags to be added to this resource. A tag is a key-value pair. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tagsAll") def tags_all(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: return pulumi.get(self, "tags_all") @tags_all.setter def tags_all(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags_all", value) @property @pulumi.getter(name="userId") def user_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the user. """ return pulumi.get(self, "user_id") @user_id.setter def user_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_id", value) @property @pulumi.getter(name="userName") def user_name(self) -> Optional[pulumi.Input[str]]: """ The username of the user. """ return pulumi.get(self, "user_name") @user_name.setter def user_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_name", value) class User(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access_string: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, engine: Optional[pulumi.Input[str]] = None, no_password_required: Optional[pulumi.Input[bool]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_id: Optional[pulumi.Input[str]] = None, user_name: Optional[pulumi.Input[str]] = None, __props__=None): """ ## Import ElastiCache users can be imported using the `user_id`, e.g. ```sh $ pulumi import aws:elasticache/user:User my_user userId1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] access_string: Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. :param pulumi.Input[str] arn: The ARN of the created ElastiCache User. :param pulumi.Input[str] engine: The current supported value is `REDIS`. :param pulumi.Input[bool] no_password_required: Indicates a password is not required for this user. :param pulumi.Input[Sequence[pulumi.Input[str]]] passwords: Passwords used for this user. You can create up to two passwords for each user. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A list of tags to be added to this resource. A tag is a key-value pair. :param pulumi.Input[str] user_id: The ID of the user. :param pulumi.Input[str] user_name: The username of the user. """ ... @overload def __init__(__self__, resource_name: str, args: UserArgs, opts: Optional[pulumi.ResourceOptions] = None): """ ## Import ElastiCache users can be imported using the `user_id`, e.g. ```sh $ pulumi import aws:elasticache/user:User my_user userId1 ``` :param str resource_name: The name of the resource. :param UserArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(UserArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access_string: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, engine: Optional[pulumi.Input[str]] = None, no_password_required: Optional[pulumi.Input[bool]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_id: Optional[pulumi.Input[str]] = None, user_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = UserArgs.__new__(UserArgs) if access_string is None and not opts.urn: raise TypeError("Missing required property 'access_string'") __props__.__dict__["access_string"] = access_string __props__.__dict__["arn"] = arn if engine is None and not opts.urn: raise TypeError("Missing required property 'engine'") __props__.__dict__["engine"] = engine __props__.__dict__["no_password_required"] = no_password_required __props__.__dict__["passwords"] = passwords __props__.__dict__["tags"] = tags if user_id is None and not opts.urn: raise TypeError("Missing required property 'user_id'") __props__.__dict__["user_id"] = user_id if user_name is None and not opts.urn: raise TypeError("Missing required property 'user_name'") __props__.__dict__["user_name"] = user_name __props__.__dict__["tags_all"] = None super(User, __self__).__init__( 'aws:elasticache/user:User', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, access_string: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, engine: Optional[pulumi.Input[str]] = None, no_password_required: Optional[pulumi.Input[bool]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_id: Optional[pulumi.Input[str]] = None, user_name: Optional[pulumi.Input[str]] = None) -> 'User': """ Get an existing User resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] access_string: Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. :param pulumi.Input[str] arn: The ARN of the created ElastiCache User. :param pulumi.Input[str] engine: The current supported value is `REDIS`. :param pulumi.Input[bool] no_password_required: Indicates a password is not required for this user. :param pulumi.Input[Sequence[pulumi.Input[str]]] passwords: Passwords used for this user. You can create up to two passwords for each user. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A list of tags to be added to this resource. A tag is a key-value pair. :param pulumi.Input[str] user_id: The ID of the user. :param pulumi.Input[str] user_name: The username of the user. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _UserState.__new__(_UserState) __props__.__dict__["access_string"] = access_string __props__.__dict__["arn"] = arn __props__.__dict__["engine"] = engine __props__.__dict__["no_password_required"] = no_password_required __props__.__dict__["passwords"] = passwords __props__.__dict__["tags"] = tags __props__.__dict__["tags_all"] = tags_all __props__.__dict__["user_id"] = user_id __props__.__dict__["user_name"] = user_name return User(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="accessString") def access_string(self) -> pulumi.Output[str]: """ Access permissions string used for this user. See [Specifying Permissions Using an Access String](https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html#Access-string) for more details. """ return pulumi.get(self, "access_string") @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The ARN of the created ElastiCache User. """ return pulumi.get(self, "arn") @property @pulumi.getter def engine(self) -> pulumi.Output[str]: """ The current supported value is `REDIS`. """ return pulumi.get(self, "engine") @property @pulumi.getter(name="noPasswordRequired") def no_password_required(self) -> pulumi.Output[Optional[bool]]: """ Indicates a password is not required for this user. """ return pulumi.get(self, "no_password_required") @property @pulumi.getter def passwords(self) -> pulumi.Output[Optional[Sequence[str]]]: """ Passwords used for this user. You can create up to two passwords for each user. """ return pulumi.get(self, "passwords") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A list of tags to be added to this resource. A tag is a key-value pair. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tagsAll") def tags_all(self) -> pulumi.Output[Mapping[str, str]]: return pulumi.get(self, "tags_all") @property @pulumi.getter(name="userId") def user_id(self) -> pulumi.Output[str]: """ The ID of the user. """ return pulumi.get(self, "user_id") @property @pulumi.getter(name="userName") def user_name(self) -> pulumi.Output[str]: """ The username of the user. """ return pulumi.get(self, "user_name")
py
b40e57fceee26cfe840bc362bf2decedf56528c0
'''DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering. Copyright 2015 Massachusetts Institute of Technology. The software/firmware is provided to you on an As-Is basis Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work. ''' import base64 import binascii import configparser import distutils.spawn import hashlib import os import re import sys import tempfile import threading import time import zlib import yaml import codecs from distutils.version import LooseVersion, StrictVersion try: from yaml import CSafeLoader as SafeLoader, CSafeDumper as SafeDumper except ImportError: from yaml import SafeLoader as SafeLoader, SafeDumper as SafeDumper try: import simplejson as json except ImportError: raise("Simplejson is mandatory, please install") import M2Crypto from M2Crypto import m2 from keylime import cmd_exec from keylime import common from keylime import keylime_logging from keylime import secure_mount from keylime import tpm_abstract from keylime import tpm_ek_ca logger = keylime_logging.init_logging('tpm2') # Read the config file config = configparser.RawConfigParser() config.read(common.CONFIG_FILE) class tpm2(tpm_abstract.AbstractTPM): def __init__(self, need_hw_tpm=False): tpm_abstract.AbstractTPM.__init__(self, need_hw_tpm) # Shared lock to serialize access to tools self.tpmutilLock = threading.Lock() self.__get_tpm2_tools() # We don't know which algs the TPM supports yet self.supported['encrypt'] = set() self.supported['hash'] = set() self.supported['sign'] = set() # Grab which default algs the config requested defaultHash = config.get('cloud_agent', "tpm_hash_alg") defaultEncrypt = config.get('cloud_agent', "tpm_encryption_alg") defaultSign = config.get('cloud_agent', "tpm_signing_alg") if self.need_hw_tpm: # Start up the TPM self.__startup_tpm() # Figure out which algorithms the TPM supports self.__get_tpm_algorithms() # Ensure TPM supports the defaults requested if defaultHash not in self.supported['hash']: raise Exception('Unsupported hash algorithm specified: %s!'%(defaultHash)) if defaultEncrypt not in self.supported['encrypt']: raise Exception('Unsupported encryption algorithm specified: %s!'%(defaultEncrypt)) if defaultSign not in self.supported['sign']: raise Exception('Unsupported signing algorithm specified: %s!'%(defaultSign)) else: # Assume their defaults are sane? pass self.defaults['hash'] = defaultHash self.defaults['encrypt'] = defaultEncrypt self.defaults['sign'] = defaultSign def get_tpm_version(self): return 2 def __get_tpm2_tools(self): global tools_version retDict = self.__run("tpm2_startup --version") code = retDict['code'] output = ''.join(common.list_convert(retDict['retout'])) errout = ''.join(common.list_convert(retDict['reterr'])) if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("Error establishing tpm2-tools version using TPM2_Startup: %s"+str(code)+": "+str(errout)) # Extract the `version="x.x.x"` from tools version_str = re.search(r'version="([^"]+)"', output).group(1) # Extract the full semver release number. tools_version = version_str.split("-") if StrictVersion(tools_version[0]) >= StrictVersion("4.0.0"): logger.info(f"TPM2-TOOLS Version: {tools_version[0]}") tools_version = "4.0" elif StrictVersion(tools_version[0]) >= StrictVersion("3.2.0"): logger.info(f"TPM2-TOOLS Version: {tools_version[0]}") tools_version = "3.2" else: logger.error(f"TPM2-TOOLS Version {tools_version[0]} is not supported.") exit() def __get_tpm_algorithms(self): vendorStr = None if tools_version == "3.2": retDict = self.__run("tpm2_getcap -c algorithms") elif tools_version == "4.0": retDict = self.__run("tpm2_getcap algorithms") output = common.list_convert(retDict['retout']) errout = common.list_convert(retDict['reterr']) code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("get_tpm_algorithms failed with code "+str(code)+": "+str(errout)) if tools_version == "3.2": # output, human-readable -> json output = "".join(output) output = re.sub(r'TPMA_ALGORITHM for ALG_ID: 0x[0-9a-f]+\s+-\s+([a-z0-9_]+)', r'\1:', output) output = output.replace("set", "1") output = output.replace("clear", "0") output = [output] retyaml = common.yaml_to_dict(output) for algorithm,details in retyaml.items(): if details["asymmetric"] == 1 and details["object"] == 1 and tpm_abstract.Encrypt_Algorithms.is_recognized(algorithm): self.supported['encrypt'].add(algorithm) elif details["hash"] == 1 and tpm_abstract.Hash_Algorithms.is_recognized(algorithm): self.supported['hash'].add(algorithm) elif details["asymmetric"] == 1 and details["signing"] == 1 and tpm_abstract.Sign_Algorithms.is_recognized(algorithm): self.supported['sign'].add(algorithm) #tpm_exec @staticmethod def __fingerprint(cmd): # Creates a unique-enough ID from the given command fprt = cmd.split()[0] if fprt == 'tpm2_nvread': if '0x1c00002' in cmd: # read_ekcert_nvram fprt += '-ekcert' else: # read_key_nvram fprt += '-key' elif fprt == "tpm2_getcap": if 'handles-persistent' in cmd: fprt += '-handles' elif 'properties-fixed' in cmd: fprt += '-props' else: # other commands are already unique pass return fprt def __run(self, cmd, expectedcode=tpm_abstract.AbstractTPM.EXIT_SUCESS, raiseOnError=True, lock=True, outputpaths=None): env = os.environ.copy() lib_path = "" if 'LD_LIBRARY_PATH' in env: lib_path = env['LD_LIBRARY_PATH'] if 'TPM2TOOLS_TCTI' not in env: # Don't clobber existing setting (if present) env['TPM2TOOLS_TCTI'] = 'tabrmd:bus_name=com.intel.tss2.Tabrmd' # Other (not recommended) options are direct emulator and chardev communications: #env['TPM2TOOLS_TCTI'] = 'mssim:port=2321' #env['TPM2TOOLS_TCTI'] = 'device:/dev/tpm0' env['PATH'] = env['PATH']+":%s"%common.TPM_TOOLS_PATH env['LD_LIBRARY_PATH'] = lib_path+":%s"%common.TPM_LIBS_PATH # Convert single outputpath to list if isinstance(outputpaths, str): outputpaths = [outputpaths] # Handle stubbing the TPM out fprt = tpm2.__fingerprint(cmd) if common.STUB_TPM and common.TPM_CANNED_VALUES is not None: # Use canned values for stubbing jsonIn = common.TPM_CANNED_VALUES if fprt in jsonIn: # The value we're looking for has been canned! thisTiming = jsonIn[fprt]['timing'] thisRetout = jsonIn[fprt]['retout'] thisCode = jsonIn[fprt]['code'] thisFileout = jsonIn[fprt]['fileout'] fileoutEncoded = {} # Decode files that are supplied (and requested) if outputpaths is not None and len(outputpaths) > 0: if len(thisFileout) == 1 and len(outputpaths) == 1: #fileoutEncoded[outputpaths[0]] = base64.b64decode(next(iter(thisFileout.values()))).decode("zlib") fileoutEncoded[outputpaths[0]] = zlib.decompress(base64.b64decode(next(iter(thisFileout.values())))) elif fprt == "tpm2_deluxequote": # quotes need 3 outputs, so we need a consistent way to match them back up when reading quote_msg = "" match = re.search("-m ([^\s]+)", cmd) if match: quote_msg = match.group(1) if "file://quoteMessage" in thisFileout: #fileoutEncoded[quote_msg] = base64.b64decode(thisFileout["file://quoteMessage"]).decode("zlib") fileoutEncoded[quote_msg] = zlib.decompress(base64.b64decode(thisFileout["file://quoteMessage"])) quote_sig = "" match = re.search("-s ([^\s]+)", cmd) if match: quote_sig = match.group(1) if "file://quoteSignature" in thisFileout: #fileoutEncoded[quote_sig] = base64.b64decode(thisFileout["file://quoteSignature"]).decode("zlib") fileoutEncoded[quote_sig] = zlib.decompress(base64.b64decode(thisFileout["file://quoteSignature"])) quote_pcr = "" match = re.search("-p ([^\s]+)", cmd) if match: quote_pcr = match.group(1) if "file://quotePCR" in thisFileout: #fileoutEncoded[quote_pcr] = base64.b64decode(thisFileout["file://quotePCR"]).decode("zlib") fileoutEncoded[quote_pcr] = zlib.decompress(base64.b64decode(thisFileout["file://quotePCR"])) else: raise Exception("Command %s is using multiple files unexpectedly!"%(fprt)) logger.debug("TPM call '%s' was stubbed out, with a simulated delay of %f sec"%(fprt, thisTiming)) time.sleep(thisTiming) # Package for return returnDict = { 'retout': thisRetout, 'reterr': [], 'code': thisCode, 'fileouts': fileoutEncoded, 'timing': thisTiming, } return returnDict elif not lock: # non-lock calls don't go to the TPM (just let it pass through) pass else: # Our command hasn't been canned! raise Exception("Command %s not found in canned YAML!"%(fprt)) numtries = 0 while True: if lock: with self.tpmutilLock: retDict = cmd_exec.run(cmd=cmd, expectedcode=expectedcode, raiseOnError=False, lock=lock, outputpaths=outputpaths, env=env) else: retDict = cmd_exec.run(cmd=cmd, expectedcode=expectedcode, raiseOnError=False, lock=lock, outputpaths=outputpaths, env=env) t0 = retDict['timing']['t0'] t1 = retDict['timing']['t1'] code = retDict['code'] retout = retDict['retout'] reterr = retDict['reterr'] fileouts = retDict['fileouts'] # keep trying to get quote if a PCR race condition occurred in deluxe quote if fprt == "tpm2_quote" and "Error validating calculated PCR composite with quote" in reterr: numtries += 1 maxr = self.config.getint('cloud_agent', 'max_retries') if numtries >= maxr: logger.error("Agent did not return proper quote due to PCR race condition.") break retry = self.config.getfloat('cloud_agent', 'retry_interval') logger.info("Failed to get quote %d/%d times, trying again in %f seconds..."%(numtries, maxr, retry)) time.sleep(retry) continue else: break # Don't bother continuing if TPM call failed and we're raising on error if code != expectedcode and raiseOnError: raise Exception("Command: %s returned %d, expected %d, output %s, stderr %s"%(cmd, code, expectedcode, retout, reterr)) # Metric output if lock or self.tpmutilLock.locked(): pad = "" if len(fprt) < 8: pad += "\t" if len(fprt) < 16: pad += "\t" if len(fprt) < 24: pad += "\t" filelen = 0 if fileouts is not None: filelen = len(fileouts) # Print out benchmarking information for TPM (if requested) #print "\033[95mTIMING: %s%s\t:%f\toutlines:%d\tfilelines:%d\t%s\033[0m" % (fprt, pad, t1-t0, len(retout), filelen, cmd) if common.TPM_BENCHMARK_PATH is not None: with open(common.TPM_BENCHMARK_PATH, "ab") as f: f.write("TIMING: %s%s\t:%f\toutlines:%d\tfilelines:%d\t%s\n" % (fprt, pad, t1-t0, len(retout), filelen, cmd)) # Print out YAML canned values (if requested) # NOTE: resulting file will be missing the surrounding braces! (must add '{' and '}' for reading) if common.TPM_CANNED_VALUES_PATH is not None: with open(common.TPM_CANNED_VALUES_PATH, "ab") as can: fileoutEncoded = {} # Process files if outputpaths is not None and len(outputpaths) > 0: if len(fileouts) == 1 and len(outputpaths) == 1: #fileoutEncoded[outputpaths[0]] = base64.b64encode(iter(fileouts.values()).next().encode("zlib")) fileoutEncoded[outputpaths[0]] = zlib.compress(base64.b64decode(iter(fileouts.values()).next())) elif fprt == "tpm2_deluxequote": # quotes need 3 outputs, so we need a consistent way to match them back up when reading quote_msg = "" match = re.search("-m ([^\s]+)", cmd) if match: quote_msg = match.group(1) if quote_msg in fileouts: # fileoutEncoded["file://quoteMessage"] = base64.b64encode(fileouts[quote_msg].encode("zlib")) fileoutEncoded["file://quoteMessage"] = zlib.compress(base64.b64decode(fileouts[quote_msg])) quote_sig = "" match = re.search("-s ([^\s]+)", cmd) if match: quote_sig = match.group(1) if quote_sig in fileouts: # fileoutEncoded["file://quoteSignature"] = base64.b64encode(fileouts[quote_sig].encode("zlib")) fileoutEncoded["file://quoteSignature"] = zlib.compress(base64.b64decode(fileouts[quote_sig])) quote_pcr = "" match = re.search("-p ([^\s]+)", cmd) if match: quote_pcr = match.group(1) if quote_pcr in fileouts: # fileoutEncoded["file://quotePCR"] = base64.b64encode(fileouts[quote_pcr].encode("zlib")) fileoutEncoded["file://quotePCR"] = zlib.compress(base64.b64decode(fileouts[quote_pcr])) else: raise Exception("Command %s is using multiple files unexpectedly!"%(fprt)) # tpm_cexec will need to know the nonce nonce = "" match = re.search("-q ([\w]+)", cmd) if match: nonce = binascii.a2b_hex(match.group(1)) jsonObj = {'type':fprt, 'retout':retout, 'fileout':fileoutEncoded, 'cmd':cmd, 'timing':t1-t0, 'code':code, 'nonce':nonce} can.write("\"%s\": %s,\n"%(fprt, json.dumps(jsonObj, indent=4, sort_keys=True))) return retDict #tpm_initialize def __startup_tpm(self): retDict = self.__run("tpm2_startup -c") output = common.list_convert(retDict['retout']) errout = common.list_convert(retDict['reterr']) code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("Error initializing emulated TPM with TPM2_Startup: %s"+str(code)+": "+str(errout)) def __create_ek(self, asym_alg=None): # this function is intended to be idempotent if asym_alg is None: asym_alg = self.defaults['encrypt'] current_handle = self.get_tpm_metadata("ek_handle") owner_pw = self.get_tpm_metadata("owner_pw") # clear out old handle before starting again (give idempotence) if current_handle is not None and owner_pw is not None: logger.info("Flushing old ek handle: %s"%hex(current_handle)) if tools_version == "3.2": retDict = self.__run("tpm2_getcap -c handles-persistent", raiseOnError=False) elif tools_version == "4.0": retDict = self.__run("tpm2_getcap handles-persistent", raiseOnError=False) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_getcap failed with code "+str(code)+": "+str(reterr)) outjson = common.yaml_to_dict(output) if outjson is not None and current_handle in outjson: if tools_version == "3.2": retDict = self.__run("tpm2_evictcontrol -A o -c %s -P %s"%(hex(current_handle), owner_pw), raiseOnError=False) else: retDict = self.__run("tpm2_evictcontrol -C o -c %s -P %s"%(hex(current_handle), owner_pw), raiseOnError=False) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: logger.info("Failed to flush old ek handle: %s. Code %s"%(hex(current_handle), str(code)+": "+str(reterr))) self._set_tpm_metadata('ek_handle', None) self._set_tpm_metadata('ek_pw', None) # make sure an ownership pw is set if owner_pw is None: owner_pw = tpm_abstract.TPM_Utilities.random_password(20) self._set_tpm_metadata('owner_pw', owner_pw) ek_pw = tpm_abstract.TPM_Utilities.random_password(20) # create a new ek with tempfile.NamedTemporaryFile() as tmppath: cmdargs = { 'asymalg': asym_alg, 'ekpubfile': tmppath.name, 'ekpw': ek_pw, 'opw': owner_pw, 'epw': owner_pw } if tools_version == "3.2": command = "tpm2_getpubek -H 0x81010007 -g {asymalg} -f {ekpubfile} -P {ekpw} -o {opw} -e {epw}".format(**cmdargs) elif tools_version == "4.0": command = "tpm2_createek -c - -G {asymalg} -u {ekpubfile} -p {ekpw} -w {opw} -P {epw}".format(**cmdargs) retDict = self.__run(command, raiseOnError=False, outputpaths=tmppath.name) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] ek_tpm = retDict['fileouts'][tmppath.name] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("createek failed with code "+str(code)+": "+str(reterr)) if tools_version == "3.2": handle = int(0x81010007) else: handle = None retyaml = common.yaml_to_dict(output) if "persistent-handle" in retyaml: handle = retyaml["persistent-handle"] self._set_tpm_metadata('ek_handle', handle) self._set_tpm_metadata('ek_pw', ek_pw) self._set_tpm_metadata('ek_tpm', base64.b64encode(ek_tpm)) return def __take_ownership(self, config_pw): # if no ownerpassword if config_pw == 'generate': logger.info("Generating random TPM owner password") owner_pw = tpm_abstract.TPM_Utilities.random_password(20) else: logger.info("Taking ownership with config provided TPM owner password: %s"%config_pw) owner_pw = config_pw if tools_version == "3.2": retDict = self.__run("tpm2_takeownership -c", raiseOnError=False) retDict = self.__run("tpm2_takeownership -o %s -e %s"%(owner_pw, owner_pw), raiseOnError=False) elif tools_version == "4.0": retDict = self.__run("tpm2_changeauth -c o %s"%(owner_pw), raiseOnError=False) retDict = self.__run("tpm2_changeauth -c e %s"%(owner_pw), raiseOnError=False) output = retDict['retout'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: # if we fail, see if already owned with this pw if tools_version == "3.2": retDict = self.__run("tpm2_takeownership -o %s -e %s -O %s -E %s"%(owner_pw, owner_pw, owner_pw, owner_pw), raiseOnError=False) elif tools_version == "4.0": retDict = self.__run("tpm2_changeauth -c o -p %s %s"%(owner_pw, owner_pw), raiseOnError=False) retDict = self.__run("tpm2_changeauth -c e -p %s %s"%(owner_pw, owner_pw), raiseOnError=False) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: # ut-oh, already owned but not with provided pw! raise Exception("Owner password unknown, TPM reset required. Code %s"+str(code)+": "+str(reterr)) self._set_tpm_metadata('owner_pw', owner_pw) logger.info("TPM Owner password confirmed: %s"%owner_pw) def __get_pub_ek(self): # assumes that owner_pw is correct at this point handle = self.get_tpm_metadata('ek_handle') if handle is None: raise Exception("create_ek has not been run yet?") #make a temp file for the output with tempfile.NamedTemporaryFile() as tmppath: # generates pubek.pem if tools_version == "3.2": retDict = self.__run("tpm2_readpublic -H %s -o %s -f pem"%(hex(handle), tmppath.name), raiseOnError=False, outputpaths=tmppath.name) else: retDict = self.__run("tpm2_readpublic -c %s -o %s -f pem"%(hex(handle), tmppath.name), raiseOnError=False, outputpaths=tmppath.name) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] ek = retDict['fileouts'][tmppath.name] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_readpublic failed with code "+str(code)+": "+str(reterr)) self._set_tpm_metadata('ek', ek) def __get_pub_aik(self): """Retrieves the PEM version of the public AIK. Helper function for '__create_aik', required for legacy (v3) of tpm2-tools since tpm2_getpubak does not support outputting public AIK in the required PEM format. Note that 'aik_handle' metadata must have been set before running this function. Function sets the 'aik' metadata. """ if not tools_version == "3.2": logger.error("The get_pub_aik method does not apply to modern tpm2-tools!") return handle = self.get_tpm_metadata('aik_handle') if handle is None: raise Exception("tpm2_getpubak has not been run yet?") #make a temp file for the output with tempfile.NamedTemporaryFile() as akpubfile: # generates pubak.pem retDict = self.__run("tpm2_readpublic -H %s -o %s -f pem"%(hex(handle), akpubfile.name), raiseOnError=False, outputpaths=akpubfile.name) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] pem = retDict['fileouts'][akpubfile.name] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_readpublic failed with code "+str(code)+": "+str(reterr)) if pem == "": raise Exception("unable to read public aik from create identity. Is your tpm2-tools installation up to date?") self._set_tpm_metadata('aik', pem) def __create_aik(self, activate, asym_alg=None, hash_alg=None, sign_alg=None): if hash_alg is None: hash_alg = self.defaults['hash'] if asym_alg is None: asym_alg = self.defaults['encrypt'] if sign_alg is None: sign_alg = self.defaults['sign'] owner_pw = self.get_tpm_metadata('owner_pw') # clear out old handle before starting again (give idempotence) if self.get_tpm_metadata('aik') is not None and self.get_tpm_metadata('aik_name') is not None: aik_handle = self.get_tpm_metadata('aik_handle') if tools_version == "3.2": logger.info("Flushing old ak handle: %s"%hex(aik_handle)) retDict = self.__run("tpm2_getcap -c handles-persistent", raiseOnError=False) elif tools_version == "4.0": logger.info("Flushing old ak handle: %s"%aik_handle) retDict = self.__run("tpm2_getcap handles-persistent", raiseOnError=False) output = common.list_convert(retDict['retout']) errout = common.list_convert(retDict['reterr']) code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_getcap failed with code "+str(code)+": "+str(errout)) if tools_version == "3.2": # output, human-readable -> json output = "".join(output) output = output.replace("0x", " - 0x") output = [output] outjson = common.yaml_to_dict(output) if outjson is not None and aik_handle in outjson: if tools_version == "3.2": retDict = self.__run("tpm2_evictcontrol -A o -c %s -P %s"%(hex(aik_handle), owner_pw), raiseOnError=False) else: retDict = self.__run("tpm2_evictcontrol -C o -c %s -P %s"%(aik_handle, owner_pw), raiseOnError=False) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: if tools_version == "3.2": logger.info("Failed to flush old ak handle: %s. Code %s"%(hex(aik_handle), str(code)+": "+str(reterr))) elif tools_version == "4.0": logger.info("Failed to flush old ak handle: %s. Code %s"%(aik_handle, str(code)+": "+str(reterr))) self._set_tpm_metadata('aik', None) self._set_tpm_metadata('aik_name', None) self._set_tpm_metadata('aik_pw', None) self._set_tpm_metadata('aik_handle', None) logger.debug("Creating a new AIK identity") # We need an ek handle to make an aik ek_handle = self.get_tpm_metadata("ek_handle") if ek_handle is None: raise Exception("Failed to create AIK, since EK has not yet been created!") aik_pw = tpm_abstract.TPM_Utilities.random_password(20) #make a temp file for the output with tempfile.NamedTemporaryFile() as akpubfile: secpath = "" if tools_version == "4.0": # ok lets write out the key now secdir = secure_mount.mount() # confirm that storage is still securely mounted secfd, secpath = tempfile.mkstemp(dir=secdir) cmdargs = { 'ekhandle': hex(ek_handle), 'aksession': secpath, 'akpubfile': akpubfile.name, 'asymalg': asym_alg, 'hashalg': hash_alg, 'signalg': sign_alg, 'epw': owner_pw, 'opw': owner_pw, 'apw': aik_pw } if tools_version == "3.2": command = "tpm2_getpubak -E {ekhandle} -k 0x81010008 -g {asymalg} -D {hashalg} -s {signalg} -f {akpubfile} -e {epw} -P {apw} -o {opw}".format(**cmdargs) elif tools_version == "4.0": command = "tpm2_createak -C {ekhandle} -c {aksession} -G {asymalg} -g {hashalg} -s {signalg} -u {akpubfile} -f pem -p {apw} -P {epw}".format(**cmdargs) retDict = self.__run(command, outputpaths=akpubfile.name) retout = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_createak failed with code "+str(code)+": "+str(reterr)) jsonout = common.yaml_to_dict(retout) akname = jsonout['loaded-key']['name'] if tools_version == "3.2": if 'loaded-key' not in jsonout or 'name' not in jsonout['loaded-key']: raise Exception("tpm2_createak failed to create aik: return "+str(reterr)) handle = int(0x81010008) # get and persist the pem (not returned by tpm2_getpubak) self._set_tpm_metadata('aik_handle', handle) self.__get_pub_aik() else: if 'loaded-key' not in jsonout: raise Exception("tpm2_createak failed to create aik: return "+str(reterr)) handle = secpath pem = retDict['fileouts'][akpubfile.name] if pem == "": raise Exception("unable to read public aik from create identity. Is your tpm2-tools installation up to date?") # persist the pem self._set_tpm_metadata('aik_handle', handle) self._set_tpm_metadata('aik', pem) # persist common results self._set_tpm_metadata('aik_name', akname) self._set_tpm_metadata('aik_pw', aik_pw) def flush_keys(self): logger.debug("Flushing keys from TPM...") if tools_version == "3.2": retDict = self.__run("tpm2_getcap -c handles-persistent") elif tools_version == "4.0": retDict = self.__run("tpm2_getcap handles-persistent") # retout = retDict['retout'] retout = common.list_convert(retDict['retout']) errout = common.list_convert(retDict['reterr']) code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: logger.debug("tpm2_getcap failed with code "+str(code)+": "+str(errout)) if tools_version == "3.2": # output, human-readable -> json retout = "".join(retout) retout = retout.replace("0x", " - 0x") retout = [retout] owner_pw = self.get_tpm_metadata("owner_pw") jsonout = common.yaml_to_dict(retout) for key in jsonout: logger.debug("Flushing key handle %s"%hex(key)) if tools_version == "3.2": self.__run("tpm2_evictcontrol -A o -c %s -P %s"%(hex(key), owner_pw), raiseOnError=False) else: self.__run("tpm2_evictcontrol -C o -c %s -P %s"%(hex(key), owner_pw), raiseOnError=False) def encryptAIK(self, uuid, pubaik, pubek, ek_tpm, aik_name): pubaikFile = None pubekFile = None challengeFile = None keyblob = None blobpath = None if ek_tpm is None or aik_name is None: logger.error("Missing parameters for encryptAIK") return None try: # write out the public EK efd, etemp = tempfile.mkstemp() pubekFile = open(etemp, "wb") pubekFile.write(base64.b64decode(ek_tpm)) pubekFile.close() os.close(efd) # write out the challenge challenge = tpm_abstract.TPM_Utilities.random_password(32) challenge = challenge.encode() keyfd, keypath = tempfile.mkstemp() challengeFile = open(keypath, "wb") challengeFile.write(challenge) challengeFile.close() os.close(keyfd) # create temp file for the blob blobfd, blobpath = tempfile.mkstemp() cmdargs = { 'akname': aik_name, 'ekpub': pubekFile.name, 'blobout': blobpath, 'challenge': challengeFile.name } if tools_version == "3.2": command = "tpm2_makecredential -T none -e {ekpub} -s {challenge} -n {akname} -o {blobout}".format(**cmdargs) else: command = "tpm2_makecredential -T none -e {ekpub} -s {challenge} -n {akname} -o {blobout}".format(**cmdargs) self.__run(command, lock=False) logger.info("Encrypting AIK for UUID %s"%uuid) # read in the blob f = open(blobpath, "rb") keyblob = base64.b64encode(f.read()) f.close() os.close(blobfd) # read in the aes key key = base64.b64encode(challenge) except Exception as e: logger.error("Error encrypting AIK: "+str(e)) logger.exception(e) return None finally: if pubekFile is not None: os.remove(pubekFile.name) if challengeFile is not None: os.remove(challengeFile.name) if blobpath is not None: os.remove(blobpath) return (keyblob, key) def activate_identity(self, keyblob): owner_pw = self.get_tpm_metadata('owner_pw') aik_keyhandle = self.get_tpm_metadata('aik_handle') ek_keyhandle = self.get_tpm_metadata('ek_handle') keyblobFile = None secpath = None sesspath = None try: # write out key blob kfd, ktemp = tempfile.mkstemp() keyblobFile = open(ktemp, "wb") # the below is a coroutine? keyblobFile.write(base64.b64decode(keyblob)) keyblobFile.close() os.close(kfd) # ok lets write out the key now secdir = secure_mount.mount() # confirm that storage is still securely mounted secfd, secpath = tempfile.mkstemp(dir=secdir) sessfd, sesspath = tempfile.mkstemp(dir=secdir) if tools_version == "3.2": cmdargs = { 'akhandle': hex(aik_keyhandle), 'ekhandle': hex(ek_keyhandle), 'keyblobfile': keyblobFile.name, 'credfile': secpath, 'apw': self.get_tpm_metadata('aik_pw'), 'epw': owner_pw } command = "tpm2_activatecredential -H {akhandle} -k {ekhandle} -f {keyblobfile} -o {credfile} -P {apw} -e {epw}".format(**cmdargs) retDict = self.__run(command, outputpaths=secpath) else: cmdargs = { 'akhandle': aik_keyhandle, 'ekhandle': hex(ek_keyhandle), 'keyblobfile': keyblobFile.name, 'sessfile': sesspath, 'credfile': secpath, 'apw': self.get_tpm_metadata('aik_pw'), 'epw': owner_pw } self.__run("tpm2_startauthsession --policy-session -S {sessfile}".format(**cmdargs)) self.__run("tpm2_policysecret -S {sessfile} -c 0x4000000B {epw}".format(**cmdargs)) command = "tpm2_activatecredential -c {akhandle} -C {ekhandle} -i {keyblobfile} -o {credfile} -p {apw} -P \"session:{sessfile}\"".format(**cmdargs) retDict = self.__run(command, outputpaths=secpath) self.__run("tpm2_flushcontext {sessfile}".format(**cmdargs)) retout = retDict['retout'] code = retDict['code'] fileout = retDict['fileouts'][secpath] logger.info("AIK activated.") key = base64.b64encode(fileout) os.close(secfd) os.remove(secpath) except Exception as e: logger.error("Error decrypting AIK: "+str(e)) logger.exception(e) return False finally: if keyblobFile is not None: os.remove(keyblobFile.name) if secpath is not None and os.path.exists(secpath): os.remove(secpath) if sesspath is not None and os.path.exists(sesspath): os.remove(sesspath) return key def verify_ek(self, ekcert, ekpem): """Verify that the provided EK certificate is signed by a trusted root :param ekcert: The Endorsement Key certificate in DER format :param ekpem: the endorsement public key in PEM format :returns: True if the certificate can be verified, false otherwise """ #openssl x509 -inform der -in certificate.cer -out certificate.pem try: ek509 = M2Crypto.X509.load_cert_der_string(ekcert) ekcertpem = ek509.get_pubkey().get_rsa().as_pem(cipher=None).decode('utf-8') # Make sure given ekcert is for their ek if str(ekpem) != str(ekcertpem): logger.error("Public EK does not match EK certificate") return False trusted_certs = tpm_ek_ca.cert_loader() for cert in trusted_certs: signcert = M2Crypto.X509.load_cert_string(cert) signkey = signcert.get_pubkey() if ek509.verify(signkey) == 1: logger.debug(f"EK cert matched cert: {cert}") return True except Exception as e: # Log the exception so we don't lose the raw message logger.exception(e) raise Exception("Error processing ek/ekcert. Does this TPM have a valid EK?").with_traceback(sys.exc_info()[2]) logger.error(f"No Root CA matched EK Certificate") return False def get_tpm_manufacturer(self): vendorStr = None if tools_version == "3.2": retDict = self.__run("tpm2_getcap -c properties-fixed") elif tools_version == "4.0": retDict = self.__run("tpm2_getcap properties-fixed") output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("get_tpm_manufacturer failed with code "+str(code)+": "+str(reterr)) # Clean up TPM manufacturer information (strip control characters) # These strings are supposed to be printable ASCII characters, but # some TPM manufacturers put control characters in here for i, s in enumerate(output): output[i] = re.sub(r"[\x01-\x1F\x7F]", "", s.decode('utf-8')).encode('utf-8') retyaml = common.yaml_to_dict(output) if "TPM2_PT_VENDOR_STRING_1" in retyaml: vendorStr = retyaml["TPM2_PT_VENDOR_STRING_1"]["value"] elif "TPM_PT_VENDOR_STRING_1" in retyaml: vendorStr = retyaml["TPM_PT_VENDOR_STRING_1"]["as string"].strip() return vendorStr def is_emulator(self): return self.get_tpm_manufacturer() == 'SW' def is_vtpm(self): return False def tpm_init(self, self_activate=False, config_pw=None): # this was called tpm_initialize.init before self.warn_emulator() self.__take_ownership(config_pw) self.__create_ek() self.__get_pub_ek() ekcert = self.read_ekcert_nvram() self._set_tpm_metadata('ekcert', ekcert) # if no AIK created, then create one self.__create_aik(self_activate) return self.get_tpm_metadata('ek'), self.get_tpm_metadata('ekcert'), self.get_tpm_metadata('aik'), self.get_tpm_metadata('ek_tpm'), self.get_tpm_metadata('aik_name') #tpm_quote def __pcr_mask_to_list(self, mask, hash_alg): pcr_list = [] ima_appended = "" for pcr in range(24): if tpm_abstract.TPM_Utilities.check_mask(mask, pcr): if hash_alg != tpm_abstract.Hash_Algorithms.SHA1 and pcr == common.IMA_PCR: # IMA is only in SHA1 format ima_appended = "+sha1:"+str(pcr) else: pcr_list.append(str(pcr)) return ",".join(pcr_list)+ima_appended def create_deep_quote(self, nonce, data=None, vpcrmask=tpm_abstract.AbstractTPM.EMPTYMASK, pcrmask=tpm_abstract.AbstractTPM.EMPTYMASK): raise Exception("vTPM support and deep quotes not yet implemented with TPM 2.0!") def create_quote(self, nonce, data=None, pcrmask=tpm_abstract.AbstractTPM.EMPTYMASK, hash_alg=None): if hash_alg is None: hash_alg = self.defaults['hash'] quote = "" with tempfile.NamedTemporaryFile() as quotepath: with tempfile.NamedTemporaryFile() as sigpath: with tempfile.NamedTemporaryFile() as pcrpath: keyhandle = self.get_tpm_metadata('aik_handle') aik_pw = self.get_tpm_metadata('aik_pw') if pcrmask is None: pcrmask = tpm_abstract.AbstractTPM.EMPTYMASK # add PCR 16 to pcrmask pcrmask = "0x%X"%(int(pcrmask,0) + (1 << common.TPM_DATA_PCR)) pcrlist = self.__pcr_mask_to_list(pcrmask, hash_alg) with self.tpmutilLock: if data is not None: self.__run("tpm2_pcrreset %d"%common.TPM_DATA_PCR, lock=False) self.extendPCR(pcrval=common.TPM_DATA_PCR, hashval=self.hashdigest(data), lock=False) if tools_version == "3.2": cmdargs = { 'aik_handle': hex(keyhandle), 'hashalg' : hash_alg, 'pcrlist': pcrlist, 'nonce': bytes(nonce, encoding="utf8").hex(), 'outquote': quotepath.name, 'outsig': sigpath.name, 'outpcr': pcrpath.name, 'akpw': aik_pw } command = "tpm2_quote -k {aik_handle} -L {hashalg}:{pcrlist} -q {nonce} -m {outquote} -s {outsig} -p {outpcr} -G {hashalg} -P {akpw}".format(**cmdargs) else: cmdargs = { 'aik_handle': keyhandle, 'hashalg' : hash_alg, 'pcrlist': pcrlist, 'nonce': bytes(nonce, encoding="utf8").hex(), 'outquote': quotepath.name, 'outsig': sigpath.name, 'outpcr': pcrpath.name, 'akpw': aik_pw } command = "tpm2_quote -c {aik_handle} -l {hashalg}:{pcrlist} -q {nonce} -m {outquote} -s {outsig} -o {outpcr} -g {hashalg} -p {akpw}".format(**cmdargs) retDict = self.__run(command, lock=False, outputpaths=[quotepath.name, sigpath.name, pcrpath.name]) retout = retDict['retout'] code = retDict['code'] quoteraw = retDict['fileouts'][quotepath.name] quote_b64encode = base64.b64encode(zlib.compress(quoteraw)) sigraw = retDict['fileouts'][sigpath.name] sigraw_b64encode = base64.b64encode(zlib.compress(sigraw)) pcrraw = retDict['fileouts'][pcrpath.name] pcrraw_b64encode = base64.b64encode(zlib.compress(pcrraw)) quote = quote_b64encode.decode('utf-8')+":"+sigraw_b64encode.decode('utf-8')+":"+pcrraw_b64encode.decode('utf-8') return 'r'+quote def __checkdeepquote_c(self, hAIK, vAIK, deepquoteFile, nonce): raise Exception("vTPM support and deep quotes not yet implemented with TPM 2.0!") def check_deep_quote(self, agent_id, nonce, data, quote, vAIK, hAIK, vtpm_policy={}, tpm_policy={}, ima_measurement_list=None, ima_whitelist={}): raise Exception("vTPM support and deep quotes not yet implemented with TPM 2.0!") def __check_quote_c(self, pubaik, nonce, quoteFile, sigFile, pcrFile, hash_alg): if common.STUB_TPM and common.TPM_CANNED_VALUES is not None: jsonIn = common.TPM_CANNED_VALUES if 'tpm2_deluxequote' in jsonIn and 'nonce' in jsonIn['tpm2_deluxequote']: # YAML unicode-ifies strings, and C calls require byte strings (str) nonce = str(jsonIn['tpm2_deluxequote']['nonce']) else: raise Exception("Could not get quote nonce from canned JSON!") cmdargs = { 'pubak': pubaik, 'quotefile' : quoteFile, 'sigfile': sigFile, 'pcrfile': pcrFile, 'hashalg': hash_alg, 'nonce': bytes(nonce, encoding="utf8").hex() } if tools_version == "3.2": command = "tpm2_checkquote -c {pubak} -m {quotefile} -s {sigfile} -p {pcrfile} -G {hashalg} -q {nonce}" else: command = "tpm2_checkquote -u {pubak} -m {quotefile} -s {sigfile} -f {pcrfile} -g {hashalg} -q {nonce}" retDict = self.__run(command.format(**cmdargs), lock=False) return retDict def check_quote(self, agent_id, nonce, data, quote, aikFromRegistrar, tpm_policy={}, ima_measurement_list=None, ima_whitelist={}, hash_alg=None): if hash_alg is None: hash_alg = self.defaults['hash'] quoteFile = None aikFile = None sigFile = None pcrFile = None if quote[0] != 'r': raise Exception("Invalid quote type %s"%quote[0]) quote = quote[1:] quote_tokens = quote.split(":") if len(quote_tokens) < 3: raise Exception("Quote is not compound! %s"%quote) quoteblob = zlib.decompress(base64.b64decode(quote_tokens[0])) sigblob = zlib.decompress(base64.b64decode(quote_tokens[1])) pcrblob = zlib.decompress(base64.b64decode(quote_tokens[2])) try: # write out quote qfd, qtemp = tempfile.mkstemp() quoteFile = open(qtemp, "wb") quoteFile.write(quoteblob) quoteFile.close() os.close(qfd) # write out sig sfd, stemp = tempfile.mkstemp() sigFile = open(stemp, "wb") sigFile.write(sigblob) sigFile.close() os.close(sfd) # write out pcr pfd, ptemp = tempfile.mkstemp() pcrFile = open(ptemp, "wb") pcrFile.write(pcrblob) pcrFile.close() os.close(pfd) afd, atemp = tempfile.mkstemp() aikFile = open(atemp, "wb") aikFile.write(aikFromRegistrar.encode('utf-8')) aikFile.close() os.close(afd) retDict = self.__check_quote_c(aikFile.name, nonce, quoteFile.name, sigFile.name, pcrFile.name, hash_alg) retout = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] except Exception as e: logger.error("Error verifying quote: "+str(e)) logger.exception(e) return False finally: if aikFile is not None: os.remove(aikFile.name) if quoteFile is not None: os.remove(quoteFile.name) if sigFile is not None: os.remove(sigFile.name) if pcrFile is not None: os.remove(pcrFile.name) if len(retout) < 1 or code != tpm_abstract.AbstractTPM.EXIT_SUCESS: logger.error("Failed to validate signature, output: %s"%reterr) return False pcrs = [] jsonout = common.yaml_to_dict(retout) if "pcrs" in jsonout: if hash_alg in jsonout["pcrs"]: alg_size = tpm_abstract.Hash_Algorithms.get_hash_size(hash_alg) // 4 for pcrval, hashval in jsonout["pcrs"][hash_alg].items(): pcrs.append("PCR " + str(pcrval) + " " + '{0:0{1}x}'.format(hashval, alg_size)) # IMA is always in SHA1 format, so don't leave it behind! if hash_alg != tpm_abstract.Hash_Algorithms.SHA1: if tpm_abstract.Hash_Algorithms.SHA1 in jsonout["pcrs"] and common.IMA_PCR in jsonout["pcrs"][tpm_abstract.Hash_Algorithms.SHA1]: sha1_size = tpm_abstract.Hash_Algorithms.get_hash_size(tpm_abstract.Hash_Algorithms.SHA1) // 4 ima_val = jsonout["pcrs"][tpm_abstract.Hash_Algorithms.SHA1][common.IMA_PCR] pcrs.append("PCR " + str(common.IMA_PCR) + " " + '{0:0{1}x}'.format(ima_val, sha1_size)) if len(pcrs) == 0: pcrs = None return self.check_pcrs(agent_id, tpm_policy, pcrs, data, False, ima_measurement_list, ima_whitelist) def sim_extend(self,hashval_1,hashval_0=None): # simulate extending a PCR value by performing TPM-specific extend procedure if hashval_0 is None: hashval_0 = self.START_HASH() # compute expected value H(0|H(data)) extendedval = self.hashdigest(codecs.decode(hashval_0,'hex_codec')+codecs.decode(self.hashdigest(hashval_1.encode('utf-8')),'hex_codec')).lower() return extendedval def extendPCR(self, pcrval, hashval, hash_alg=None, lock=True): if hash_alg is None: hash_alg = self.defaults['hash'] self.__run("tpm2_pcrextend %d:%s=%s"%(pcrval, hash_alg, hashval), lock=lock) def readPCR(self, pcrval, hash_alg=None): if hash_alg is None: hash_alg = self.defaults['hash'] if tools_version == "3.2": output = common.list_convert(self.__run("tpm2_pcrlist")['retout']) elif tools_version == "4.0": output = common.list_convert(self.__run("tpm2_pcrread")['retout']) jsonout = common.yaml_to_dict(output) if hash_alg not in jsonout: raise Exception("Invalid hashing algorithm '%s' for reading PCR number %d."%(hash_alg, pcrval)) # alg_size = Hash_Algorithms.get_hash_size(hash_alg)/4 alg_size = tpm_abstract.Hash_Algorithms.get_hash_size(hash_alg) // 4 return '{0:0{1}x}'.format(jsonout[hash_alg][pcrval], alg_size) #tpm_random def _get_tpm_rand_block(self, size=32): #make a temp file for the output rand = None with tempfile.NamedTemporaryFile() as randpath: try: command = "tpm2_getrandom -o %s %d" % (randpath.name, size) retDict = self.__run(command, outputpaths=randpath.name) retout = retDict['retout'] code = retDict['code'] rand = retDict['fileouts'][randpath.name] except Exception as e: if not self.tpmrand_warned: logger.warn("TPM randomness not available: %s"%e) self.tpmrand_warned = True return None return rand #tpm_nvram def write_key_nvram(self, key): owner_pw = self.get_tpm_metadata('owner_pw') # write out quote with tempfile.NamedTemporaryFile() as keyFile: keyFile.write(key) keyFile.flush() attrs = "ownerread|ownerwrite" if tools_version == "3.2": self.__run("tpm2_nvdefine -x 0x1500018 -a 0x40000001 -s %s -t \"%s\" -I %s -P %s"%(common.BOOTSTRAP_KEY_SIZE, attrs, owner_pw, owner_pw), raiseOnError=False) self.__run("tpm2_nvwrite -x 0x1500018 -a 0x40000001 -P %s %s"%(owner_pw, keyFile.name), raiseOnError=False) else: self.__run("tpm2_nvdefine 0x1500018 -C 0x40000001 -s %s -a \"%s\" -p %s -P %s"%(common.BOOTSTRAP_KEY_SIZE, attrs, owner_pw, owner_pw), raiseOnError=False) self.__run("tpm2_nvwrite 0x1500018 -C 0x40000001 -P %s -i %s"%(owner_pw, keyFile.name), raiseOnError=False) return def read_ekcert_nvram(self): #make a temp file for the quote with tempfile.NamedTemporaryFile() as nvpath: # Check for RSA EK cert in NVRAM (and get length) if tools_version == "3.2": retDict = self.__run("tpm2_nvlist", raiseOnError=False) elif tools_version == "4.0": retDict = self.__run("tpm2_nvreadpublic", raiseOnError=False) output = retDict['retout'] reterr = retDict['reterr'] code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: if tools_version == "3.2": raise Exception("tpm2_nvlist for ekcert failed with code "+str(code)+": "+str(reterr)) elif tools_version == "4.0": raise Exception("tpm2_nvreadpublic for ekcert failed with code "+str(code)+": "+str(reterr)) outjson = common.yaml_to_dict(output) if outjson is None or 0x1c00002 not in outjson or "size" not in outjson[0x1c00002]: logger.warn("No EK certificate found in TPM NVRAM") return None ekcert_size = outjson[0x1c00002]["size"] # Read the RSA EK cert from NVRAM (DER format) if tools_version == "3.2": retDict = self.__run("tpm2_nvread -x 0x1c00002 -s %s -f %s -a 0x01c00002"%(ekcert_size, nvpath.name), raiseOnError=False, outputpaths=nvpath.name) elif tools_version == "4.0": retDict = self.__run("tpm2_nvread 0x1c00002 -s %s -o %s"%(ekcert_size, nvpath.name), raiseOnError=False, outputpaths=nvpath.name) output = common.list_convert(retDict['retout']) errout = common.list_convert(retDict['reterr']) code = retDict['code'] ekcert = retDict['fileouts'][nvpath.name] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: raise Exception("tpm2_nvread for ekcert failed with code "+str(code)+": "+str(errout)) return base64.b64encode(ekcert) def read_key_nvram(self): owner_pw = self.get_tpm_metadata('owner_pw') if tools_version == "3.2": retDict = self.__run("tpm2_nvread -x 0x1500018 -a 0x40000001 -s %s -P %s"%(common.BOOTSTRAP_KEY_SIZE, owner_pw), raiseOnError=False) else: retDict = self.__run("tpm2_nvread 0x1500018 -C 0x40000001 -s %s -P %s"%(common.BOOTSTRAP_KEY_SIZE, owner_pw), raiseOnError=False) output = retDict['retout'] errout = common.list_convert(retDict['reterr']) code = retDict['code'] if code != tpm_abstract.AbstractTPM.EXIT_SUCESS: if len(errout) > 0 and "handle does not exist" in "\n".join(errout): logger.debug("No stored U in TPM NVRAM") return None elif len(errout) > 0 and "ERROR: Failed to read NVRAM public area at index" in "\n".join(errout): logger.debug("No stored U in TPM NVRAM") return None else: raise Exception("nv_readvalue failed with code "+str(code)+": "+str(errout)) if len(output) != common.BOOTSTRAP_KEY_SIZE: logger.debug("Invalid key length from NVRAM: %d"%(len(output))) return None return output
py
b40e58ebad2c256b5b18f1b0c9746ae6d7fb0464
# -*- coding: utf-8 -*- """ A dataset containing 50k reactions of 10 types from USPTO data. It is commonly used in papers. """ import logging import os import pandas as pd from tqdm import tqdm from src import DATA_DIR from src.datasets import Dataset from src.utils import complete_mappings logger = logging.getLogger(__name__) REACTION_TYPES = { 1: 'heteroatom alkylation and arylation', 2: 'acylation and related processes', 3: 'C-C bond formation', 4: 'heterocycle formation', 5: 'protections', 6: 'deprotections', 7: 'reductions', 8: 'oxidations', 9: 'functional group interconversion (FGI)', 10: 'functional group addition (FGA)' } class Uspto50k(Dataset): def __init__(self): super(Uspto50k, self).__init__() self.raw_data_path = os.path.join(self.feat_dir, 'data_processed.csv') @property def meta_info(self) -> dict: return {'reaction_types': REACTION_TYPES, 'max_n_nodes': 100} @property def key(self) -> str: return 'uspto_50k' def acquire(self): x = { 'product': [], 'substrates': [] } split = { 'train': [], 'valid': [], 'test': [] } meta = { 'reaction_type_id': [], 'id': [] } curr_id = 0 # minhtoo add for split_key, filename in (('train', 'raw_train.csv'), ('valid', 'raw_val.csv'), ('test', 'raw_test.csv')): data_path = os.path.join(DATA_DIR, f'uspto_50k/{filename}') if not os.path.exists(data_path): raise FileNotFoundError( f'File not found at: {data_path}. Please download data manually from ' 'https://www.dropbox.com/sh/6ideflxcakrak10/AAAESdZq7Y0aNGWQmqCEMlcza/typed_schneider50k ' 'and extract to the required location.') data_df = pd.read_csv(data_path) ids = [] # minhtoo add # data_df['reactants>reagents>production'] for reaction_smiles in tqdm(data_df['rxn_smiles'], total=len(data_df), desc="generating product/substrates SMILES'"): subs, prod = tuple(reaction_smiles.split('>>')) subs, prod = complete_mappings(subs, prod) x['substrates'].append(subs) x['product'].append(prod) curr_id += 1 ids.append(curr_id) for split_key2 in ['train', 'valid', 'test']: if split_key == split_key2: split[split_key2] += [1 for _ in range(len(data_df))] else: split[split_key2] += [0 for _ in range(len(data_df))] # meta['reaction_type_id'] += data_df['class'].tolist() meta['reaction_type_id'] += [0] * len(ids) # minhtoo add meta['id'] += ids # minhtoo add # meta['id'] += data_df['id'].tolist() logger.info(f"Saving 'x' to {self.x_path}") pd.DataFrame(x).to_csv(self.x_path, sep='\t') logger.info(f"Saving {self.metadata_path}") pd.DataFrame(meta).to_csv(self.metadata_path, sep='\t') split_path = os.path.join(self.dir, 'default_split.csv') logger.info(f"Saving default split to {split_path}") pd.DataFrame(split).to_csv(split_path)
py
b40e5990ff0945242ad4e30701545cef558654eb
"""Empty init file to ensure documentation for multi-agent envs is created.""" from flow.envs.multiagent.base import MultiEnv from flow.envs.multiagent.ring.wave_attenuation import \ MultiWaveAttenuationPOEnv from flow.envs.multiagent.ring.accel import MultiAgentAccelEnv from flow.envs.multiagent.traffic_light_grid import MultiTrafficLightGridPOEnv from flow.envs.multiagent.highway import MultiAgentHighwayPOEnv from flow.envs.multiagent.bayesian_0_no_grid_env import Bayesian0NoGridEnv from flow.envs.multiagent.bayesian_1_inference_env import Bayesian1InferenceEnv from flow.envs.multiagent.bayesian_l2_cooperative_env import BayesianL2CooperativeEnv, BayesianL2CooperativeEnvWithQueryEnv __all__ = ['MultiEnv', 'MultiAgentAccelEnv', 'MultiWaveAttenuationPOEnv', 'MultiTrafficLightGridPOEnv', 'MultiAgentHighwayPOEnv', 'Bayesian0NoGridEnv', 'Bayesian1InferenceEnv', "BayesianL2CooperativeEnv", "BayesianL2CooperativeEnvWithQueryEnv"]
py
b40e5a7d0f13eb6d6e0729153f40ddf5ef84476e
"""Write Word This program uses :py:mod:`docx` to write Word documents. Note: * Example files can be downloaded from http://nostarch.com/automatestuff/ """ def main(): import docx # Changing Run Attributes doc = docx.Document("demo.docx") print(doc.paragraphs[0].text) print(doc.paragraphs[0].style) doc.paragraphs[0].style = "Normal" print(doc.paragraphs[1].text) print((doc.paragraphs[1].runs[0].text, doc.paragraphs[1].runs[1].text, doc.paragraphs[1].runs[2].text, doc.paragraphs[1].runs[3].text)) doc.paragraphs[1].runs[0].style = "Quote Char" doc.paragraphs[1].runs[1].underline = True doc.paragraphs[1].runs[3].underline = True doc.save("restyled.docx") # Writing Word Documents doc = docx.Document() print(doc.add_paragraph("Hello world!")) doc.save("helloworld.docx") doc = docx.Document() print(doc.add_paragraph("Hello world!")) paraObj1 = doc.add_paragraph("This is a second paragraph.") paraObj2 = doc.add_paragraph("This is yet another paragraph.") print(paraObj1.add_run(" This text is being added to the second paragraph.")) print(doc.add_paragraph("Hello world!", "Title")) doc.save("multipleParagraphs.docx") # Adding Headings doc = docx.Document() doc.add_heading("Header 0", 0) doc.add_heading("Header 1", 1) doc.add_heading("Header 2", 2) doc.add_heading("Header 3", 3) doc.add_heading("Header 4", 4) doc.save("headings.docx") # Adding Line and Page Breaks doc = docx.Document() doc.add_paragraph("This is on the first page!") doc.paragraphs[0].runs[0].add_break(docx.enum.text.WD_BREAK.PAGE) doc.add_paragraph("This is on the second page!") doc.save("twoPage.docx") # Adding Pictures doc = docx.Document() doc.add_picture("zophie.png", width=docx.shared.Inches(1), height=docx.shared.Cm(4)) doc.save("picture.docx") if __name__ == '__main__': main()
py
b40e5ab5a2fc6916676e276525c68619b8b8b8b5
import json import os import re import time import boto3 def execute_notebook( *, image, input_path, output_prefix, notebook, parameters, role, instance_type, rule_name, extra_args, ): session = ensure_session() region = session.region_name account = session.client("sts").get_caller_identity()["Account"] if not image: image = "notebook-runner" if "/" not in image: image = f"{account}.dkr.ecr.{region}.amazonaws.com/{image}" if ":" not in image: image = image + ":latest" if not role: role = f"BasicExecuteNotebookRole-{region}" if "/" not in role: role = f"arn:aws:iam::{account}:role/{role}" if output_prefix is None: output_prefix = os.path.dirname(input_path) if notebook == None: notebook = input_path base = os.path.basename(notebook) nb_name, nb_ext = os.path.splitext(base) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) job_name = ( ("papermill-" + re.sub(r"[^-a-zA-Z0-9]", "-", nb_name))[: 62 - len(timestamp)] + "-" + timestamp ) input_directory = "/opt/ml/processing/input/" local_input = input_directory + os.path.basename(input_path) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) local_output = "/opt/ml/processing/output/" api_args = { "ProcessingInputs": [ { "InputName": "notebook", "S3Input": { "S3Uri": input_path, "LocalPath": input_directory, "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", }, }, ], "ProcessingOutputConfig": { "Outputs": [ { "OutputName": "result", "S3Output": { "S3Uri": output_prefix, "LocalPath": local_output, "S3UploadMode": "EndOfJob", }, }, ], }, "ProcessingJobName": job_name, "ProcessingResources": { "ClusterConfig": { "InstanceCount": 1, "InstanceType": instance_type, "VolumeSizeInGB": 40, } }, "StoppingCondition": {"MaxRuntimeInSeconds": 7200}, "AppSpecification": { "ImageUri": image, "ContainerArguments": ["run_notebook",], }, "RoleArn": role, "Environment": {}, } if extra_args is not None: api_args = merge_extra(api_args, extra_args) api_args["Environment"]["PAPERMILL_INPUT"] = local_input api_args["Environment"]["PAPERMILL_OUTPUT"] = local_output + result if os.environ.get("AWS_DEFAULT_REGION") != None: api_args["Environment"]["AWS_DEFAULT_REGION"] = os.environ["AWS_DEFAULT_REGION"] api_args["Environment"]["PAPERMILL_PARAMS"] = json.dumps(parameters) api_args["Environment"]["PAPERMILL_NOTEBOOK_NAME"] = base if rule_name is not None: api_args["Environment"]["AWS_EVENTBRIDGE_RULE"] = rule_name client = boto3.client("sagemaker") result = client.create_processing_job(**api_args) job_arn = result["ProcessingJobArn"] job = re.sub("^.*/", "", job_arn) return job def merge_extra(orig, extra): result = dict(orig) result["ProcessingInputs"].extend(extra.get("ProcessingInputs", [])) result["ProcessingOutputConfig"]["Outputs"].extend( extra.get("ProcessingOutputConfig", {}).get("Outputs", []) ) if "KmsKeyId" in extra.get("ProcessingOutputConfig", {}): result["ProcessingOutputConfig"]["KmsKeyId"] = extra["ProcessingOutputConfig"][ "KmsKeyId" ] result["ProcessingResources"]["ClusterConfig"] = { **result["ProcessingResources"]["ClusterConfig"], **extra.get("ProcessingResources", {}).get("ClusterConfig", {}), } result = { **result, **{ k: v for k, v in extra.items() if k in ["ExperimentConfig", "NetworkConfig", "StoppingCondition", "Tags"] }, } return result def ensure_session(session=None): """If session is None, create a default session and return it. Otherwise return the session passed in""" if session is None: session = boto3.session.Session() return session def lambda_handler(event, context): job = execute_notebook( image=event.get("image"), input_path=event["input_path"], output_prefix=event.get("output_prefix"), notebook=event.get("notebook"), parameters=event.get("parameters", dict()), role=event.get("role"), instance_type=event.get("instance_type", "ml.m5.large"), rule_name=event.get("rule_name"), extra_args=event.get("extra_args"), ) return {"job_name": job}
py
b40e5bd757c28f11d50ff264cf62e2988b300dee
import unittest import sys sys.path.append(".") from app.models import Article class ArticleTest(unittest.TestCase): ''' Test Class to test the behaviour of the News class ''' def setUp(self): ''' Set up method that will run before every Test ''' # self,,,,,source,,,urlToImage self.new_news = Article( url='https://image.tmdb.org/t/p/w500/khsjha27hbs', author='Kingkrusha', content='Python Must Be Crazy', description='A thrilling new Python Series', publishedAt=129993, source='fox', title='Python Must Be Crazy', urlToImage='https://image.tmdb.org/t/p/w500/khsjha27hbs') def test_instance(self): self.assertTrue(isinstance(self.new_news,Article)) def test_author(self): author_var = self.new_news.author self.assertTrue(author_var == "Kingkrusha") def test_content(self): content_var = self.new_news.content self.assertTrue(content_var == "Python Must Be Crazy") def test_description(self): description_var = self.new_news.description self.assertTrue(description_var == "A thrilling new Python Series") def test_publishedAt(self): publishedAt_int = self.new_news.publishedAt self.assertTrue(publishedAt_int == 129993) def test_url(self): url_var = self.new_news.url self.assertTrue(url_var == "https://image.tmdb.org/t/p/w500/khsjha27hbs") def test_title(self): title_var = self.new_news.title self.assertTrue(title_var == "Python Must Be Crazy") def test_source(self): source_var = self.new_news.source self.assertTrue(source_var == "fox") def test_urlToImage(self): urlToImage_var = self.new_news.urlToImage self.assertTrue(urlToImage_var == "https://image.tmdb.org/t/p/w500/khsjha27hbs") if __name__ == '__main__': unittest.main()
py
b40e5d71ef6f4988ed036fa4f816bfafd3d5a483
""" Test file for everything IPC socket related """ import pytest from osbrain import run_agent from osbrain import run_nameserver from osbrain.helper import agent_dies from osbrain.helper import wait_condition from common import nsproxy # noqa: F401 from common import skip_windows_ipc pytestmark = skip_windows_ipc def test_agent_close_ipc_socket_agent_shutdown(nsproxy): """ Check that the socket is closed and the socket file removed after the agent is shut down. """ agent = run_agent('name') address = agent.bind('PUSH') agent.shutdown() assert agent_dies('name', nsproxy) assert wait_condition(address.address.exists, negate=True) def test_agent_close_ipc_socket_agent_kill(nsproxy): """ Check that the socket is closed and the socket file removed after the agent is killed. """ agent = run_agent('name') address = agent.bind('PUSH') agent.oneway.kill() assert agent_dies('name', nsproxy) assert wait_condition(address.address.exists, negate=True) def test_agent_close_ipc_socket_agent_blocked_nameserver_shutdown(): """ Check that the socket is closed and the socket file removed when the name server is shut down having a blocked agent. """ def block(agent): agent.send('out', 'blocking...') ns = run_nameserver() blocker = run_agent('blocker') blocker.set_method(block) addr = blocker.bind('PUSH', alias='out') blocker.after(0, 'block') ns.shutdown(timeout=1.) assert wait_condition(addr.address.exists, negate=True) def test_agent_close_ipc_socket_agent_crash_nameserver_shutdown(): """ Check that the socket is closed and the socket file removed after the agent crashes and the name server calls for shutdown. """ ns = run_nameserver() agent = run_agent('agent') addr = agent.bind('PUSH', 'main') with pytest.raises(RuntimeError): agent.raise_exception() ns.shutdown() assert wait_condition(addr.address.exists, negate=True) def test_agent_close_ipc_socket_nameserver_shutdown(): """ Check that the socket is closed and the socket file removed after the name server is shut down. """ ns = run_nameserver() agent = run_agent('agent') addr = agent.bind('PUSH', 'main') ns.shutdown() assert wait_condition(addr.address.exists, negate=True)
py
b40e5e1791e27297951893a5de4f5320368b9abf
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Jax recurrent layer implementation. The main interface of this module is recurrent_func(). This expects the caller to describe the recurrent neural net by specifying: - theta: the "weights" each RNN uses. - states_0: the initial state of each RNN. - cell_fn: A python function describing RNN cell. It must have the following signature:: cell_fn: (theta, states_0, inputs) -> states_1 states_1 is the next RNN state. recurrent_func computes, roughly:: state = states_0 t = 0 while t < seq_length: state = cell_fn(theta, state, inputs[t, :]) accumulate_state[t, :] = state t += 1 return accumulate_state, state """ import enum import functools from typing import Callable, Optional, Tuple import jax from jax import ad_checkpoint from jax import numpy as jnp from lingvo.jax import base_layer from lingvo.jax import py_utils from lingvo.jax import pytypes import tensorflow.compat.v2 as tf NestedMap = py_utils.NestedMap WeightInit = py_utils.WeightInit WeightParams = py_utils.WeightParams ParamsT = pytypes.ParamsT JTensor = pytypes.JTensor CallableOrNone = Optional[Callable] NestedMapOrNone = Optional[NestedMap] @enum.unique class AutodiffCheckpointType(str, enum.Enum): """jax.checkpoint policy types.""" SAVE_EVERYTHING = 'save_everything' SAVE_NOTHING = 'save_nothing' SAVE_DOT_ONLY = 'save_dot_only' SAVE_DOT_WITH_NO_BATCH_DIM = 'save_dot_with_no_batch_dims' SAVE_DOT_FOR_MLPERF_200B = 'save_dot_for_mlperf_200b' def recurrent_func(theta: NestedMap, states_0: NestedMap, inputs: NestedMap, cell_fn: Callable[[NestedMap, NestedMap, NestedMap], NestedMap]): """Computes a recurrent neural net. Args: theta: weights. A `.NestedMap`. states_0: initial state. A `.NestedMap`. inputs: inputs. A `.NestedMap`. cell_fn: A python function which computes:: states_1 = cell_fn(theta, states_0, inputs[t, :]) Returns: `accumulate_state` and the final state. """ input_seq_len = inputs.Flatten()[0].shape[0] def assert_not_none(x): assert x is not None tf.nest.map_structure(assert_not_none, states_0) tf.nest.map_structure(assert_not_none, inputs) tf.nest.map_structure(assert_not_none, theta) def new_cum_state(x): x1 = jnp.expand_dims(x, 0) # +1 so that we can store initial_states at position 0. return jnp.tile(x1, [input_seq_len + 1] + [1] * x.ndim) cumulative_states = states_0.Transform(new_cum_state) prng_key = base_layer.NextPrngKey() global_step = base_layer.CurGlobalStep() start_time = jnp.array(0, dtype=jnp.uint32) fwd_initial_loop_vars = NestedMap( cur_time=start_time, theta=theta, states_0=states_0, cumulative_states=cumulative_states, inputs=inputs) def same_type_shape(x, y): assert x.dtype == y.dtype, (x.dtype, y.dtype) assert x.shape == y.shape, (x.shape, y.shape) def wrapped_cell_fn(fn_in): # fn_in is NestedMap containing the following elements: # - t # - theta # - states_0 # - inputs_t # Start a chain of prng key that also takes into account of time steps. t = fn_in.t theta = fn_in.theta states_0 = fn_in.states_0 inputs_t = fn_in.inputs_t with base_layer.JaxContext.NewContext( prng_key=jax.random.fold_in(prng_key, t), global_step=global_step): states_1 = cell_fn(theta, states_0, inputs_t) tf.nest.assert_same_structure(states_0, states_1) tf.nest.map_structure(same_type_shape, states_0, states_1) return states_1 def wrapped_cell_fn_grad(fn_in, d_fn_out): # This is roughly the following: # # fn_out = wrapped_cell_fn(fn_in) # d_fn_in = tf.gradient(fn_out, fn_in, d_fn_out) # return d_fn_in # assert isinstance(fn_in, NestedMap) fn_out, vjp_fn = jax.vjp(wrapped_cell_fn, fn_in) del fn_out d_fn_in = vjp_fn(d_fn_out) assert isinstance(d_fn_in, tuple) assert len(d_fn_in) == 1 d_fn_in_0 = d_fn_in[0] # Over-write gradient for t, the time step. d_fn_in_0.t = jnp.zeros_like(fn_in.t) tf.nest.assert_same_structure(fn_in, d_fn_in_0) tf.nest.map_structure(same_type_shape, fn_in, d_fn_in_0) return d_fn_in_0 def fwd_comp_fn(loop_vars): # loop_vars is a NestedMap containing the following elements: # - cur_time # - theta # - inputs # - cumulative_states # - states_0 t = loop_vars.cur_time theta = loop_vars.theta inputs = loop_vars.inputs cumulative_states = loop_vars.cumulative_states states_0 = loop_vars.states_0 inputs_t = inputs.Transform(lambda x: x[t]) states_1 = wrapped_cell_fn( NestedMap(t=t, theta=theta, states_0=states_0, inputs_t=inputs_t)) def set_t(x, x_t): return x.at[t + 1].set(x_t) cumulative_states = tf.nest.map_structure(set_t, cumulative_states, states_1) loop_out = NestedMap( cur_time=t + 1, theta=theta, inputs=inputs, states_0=states_1, cumulative_states=cumulative_states) return loop_out def fwd_continue_fn(loop_vars): return loop_vars.cur_time < input_seq_len # This custom_vjp implementation follows examples here: # https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html @jax.custom_vjp def fwd_loop(loop_vars): final_loop_vars = jax.lax.while_loop(fwd_continue_fn, fwd_comp_fn, loop_vars) return NestedMap( final_states=final_loop_vars.states_0, cumulative_states=final_loop_vars.cumulative_states) def loop_fn_vjp_fwd(loop_vars): loop_fn_out = fwd_loop(loop_vars) return loop_fn_out, (loop_vars, loop_fn_out.cumulative_states) def loop_fn_vjp_bwd(res, d_out): fwd_loop_vars, cumulative_states = res d_final_states = d_out.final_states d_cumulative_states = d_out.cumulative_states start_time = input_seq_len - 1 d_states_1 = tf.nest.map_structure(lambda x, y: x[start_time + 1] + y, d_cumulative_states, d_final_states) bwd_loop_vars = NestedMap( cur_time=start_time, theta=fwd_loop_vars.theta, inputs=fwd_loop_vars.inputs, cumulative_states=cumulative_states, d_cumulative_states=d_cumulative_states, d_theta=fwd_loop_vars.theta.Transform(jnp.zeros_like), d_inputs=fwd_loop_vars.inputs.Transform(jnp.zeros_like), d_states_1=d_states_1) def bwd_comp_fn(loop_vars): t = loop_vars.cur_time inputs = loop_vars.inputs inputs_t = inputs.Transform(lambda x: x[t]) states_0 = loop_vars.cumulative_states.Transform(lambda x: x[t]) d_cell_in = wrapped_cell_fn_grad( NestedMap( t=t, theta=loop_vars.theta, states_0=states_0, inputs_t=inputs_t), loop_vars.d_states_1) d_theta = tf.nest.map_structure(lambda x, y: x + y, loop_vars.d_theta, d_cell_in.theta) d_states_0 = tf.nest.map_structure(lambda x, y: x + y[t], d_cell_in.states_0, loop_vars.d_cumulative_states) def set_t(x, x_t): return x.at[t].set(x_t) d_inputs = tf.nest.map_structure(set_t, loop_vars.d_inputs, d_cell_in.inputs_t) loop_vars_out = loop_vars.Transform(lambda x: x) loop_vars_out.d_inputs = d_inputs loop_vars_out.d_states_1 = d_states_0 loop_vars_out.d_theta = d_theta loop_vars_out.cur_time = t - 1 return loop_vars_out def bwd_continue_fn(loop_vars): return loop_vars.cur_time >= 0 bwd_final_loop_vars = jax.lax.while_loop(bwd_continue_fn, bwd_comp_fn, bwd_loop_vars) d_out = fwd_loop_vars.Transform(jnp.zeros_like) tf.nest.map_structure(same_type_shape, d_out.states_0, bwd_final_loop_vars.d_states_1) tf.nest.map_structure(same_type_shape, d_out.theta, bwd_final_loop_vars.d_theta) tf.nest.map_structure(same_type_shape, d_out.inputs, bwd_final_loop_vars.d_inputs) d_out.states_0 = bwd_final_loop_vars.d_states_1 d_out.theta = bwd_final_loop_vars.d_theta d_out.inputs = bwd_final_loop_vars.d_inputs return (d_out,) fwd_loop.defvjp(loop_fn_vjp_fwd, loop_fn_vjp_bwd) # Finally, let's simply run the forward loop fn. fwd_final_loop_vars = fwd_loop(fwd_initial_loop_vars) fwd_cumulative_states = fwd_final_loop_vars.cumulative_states.Transform( lambda x: x[1:]) return fwd_final_loop_vars.final_states, fwd_cumulative_states def recurrent_static(theta: NestedMap, states_0: NestedMap, inputs: NestedMap, cell_fn: Callable[[NestedMap, NestedMap, NestedMap], NestedMap], root_layer: Optional[base_layer.BaseLayer] = None): """A simpler form of Recurrent where num of steps is known statically. Back-prop is availale through auto-diff. 'padding' in inputs is used to skip certain steps dynamically. If the 'padding' tensor exists, it is expected of a binary 0/1 tensor. Args: theta: weights. A `.NestedMap`. states_0: initial state. A `.NestedMap`. inputs: inputs. A `.NestedMap`. All inputs in time-major. cell_fn: A python function which computes:: states_1 = cell_fn(theta, states_0, inputs[t, :]) root_layer: The root layer within which this recurrent_static recurrent loop is carried out. Returns: `accumulate_state` and the final state. """ assert 'time_step' not in states_0 # The initial time step. time_step = jnp.array(0, dtype=jnp.uint32) # Make a copy of states_0 structure. states_0 = tf.nest.map_structure(lambda x: x, states_0) states_0.time_step = time_step prng_key = base_layer.NextPrngKey() global_step = base_layer.CurGlobalStep() # TODO(zhangqiaorjc): Switch to ad_checkpoint.checkpoint after mattjj bug fix. @jax.checkpoint def comp_fn(states_0, inputs_t): # Start a new prng_key branch that also depends on the time step. if root_layer is not None: forward_updated_vars_before = tf.nest.map_structure( lambda x: x, root_layer.forward_updated_vars) prng_key_t = jax.random.fold_in(prng_key, states_0.time_step) with base_layer.JaxContext.NewContext( prng_key=prng_key_t, global_step=global_step): # Whether or not we should skip this time step. if 'padding' in inputs_t: # We skip if all are padded steps. skip = jnp.all(inputs_t.padding > 0.5) else: skip = jnp.array(False) def carry_over(args): states_0, inputs_t = args del inputs_t # We simply carry over the states for this time step. states_1 = tf.nest.map_structure(lambda x: x, states_0) states_1.time_step = states_0.time_step + 1 return states_1 def do_compute(args): states_0, inputs_t = args # Actually carry out the computation. states_1 = cell_fn(theta, states_0, inputs_t) states_1.time_step = states_0.time_step + 1 return states_1 if 'padding' in inputs_t: states_1 = jax.lax.cond(skip, carry_over, do_compute, (states_0, inputs_t)) else: states_1 = do_compute((states_0, inputs_t)) tf.nest.assert_same_structure(states_0, states_1) if root_layer is not None: forward_updated_vars_after = tf.nest.map_structure( lambda x: x, root_layer.forward_updated_vars) def assert_no_change(x, y): assert (x is None and y is None) or (x is not None and y is not None) tf.nest.map_structure(assert_no_change, forward_updated_vars_before, forward_updated_vars_after) return states_1, states_1 final_states, cumulative_states = jax.lax.scan(comp_fn, states_0, inputs) del final_states.time_step del cumulative_states.time_step return final_states, cumulative_states def scan(carry_init: NestedMap, xs: NestedMap, fn: Callable[[NestedMap, NestedMap], Tuple[NestedMap, NestedMap]], root_layer: Optional[base_layer.BaseLayer] = None, checkpoint_policy: AutodiffCheckpointType = AutodiffCheckpointType .SAVE_NOTHING): """A simple wrap around jax.lax.scan. Back-prop is availale through auto-diff. Args: carry_init: initial state. A `.NestedMap`. xs: inputs. A `.NestedMap`. All inputs in time-major. fn: A python function which computes: carry, ys[t] = fn(carry, xs[t, :]) root_layer: The root layer within which this jax.lax.scan based while_loop is carried out. If root_layer is provided, some basic-effort check is performed to make sure fn is side-effect free. Otherwise, no such checks are performed. checkpoint_policy: A AutodiffCheckpointType. How to checkpoint for BProp: SAVE_NOTHING, SAVE_DOT_ONLY, SAVE_DOT_WITH_NO_BATCH_DIM. Returns: final 'carry' as well as 'ys'. """ assert isinstance(carry_init, py_utils.NestedMap) assert isinstance(xs, py_utils.NestedMap) # Make a copy of carry_init structure. carry_init = tf.nest.map_structure(lambda x: x, carry_init) # "carry" will be augmented with the following three tensors, so make sure # they don't already exist in the NestedMap. assert 'time_step' not in carry_init assert 'prng_key' not in carry_init assert 'global_step' not in carry_init def custom_policy(checkpoint_policy: AutodiffCheckpointType): if checkpoint_policy == AutodiffCheckpointType.SAVE_EVERYTHING: return jax.checkpoint_policies.everything_saveable if checkpoint_policy == AutodiffCheckpointType.SAVE_DOT_ONLY: return jax.checkpoint_policies.checkpoint_dots if checkpoint_policy == AutodiffCheckpointType.SAVE_DOT_WITH_NO_BATCH_DIM: return jax.checkpoint_policies.checkpoint_dots_with_no_batch_dims # TODO(zhangqiaorjc): Configure custom checkpoint policy in expt config # without introducing enum. if checkpoint_policy == AutodiffCheckpointType.SAVE_DOT_FOR_MLPERF_200B: return jax.checkpoint_policies.save_only_these_names( 'combined_qkv_proj', 'query_proj', 'value_proj', 'key_proj', 'context', 'out_proj') assert checkpoint_policy == AutodiffCheckpointType.SAVE_NOTHING return jax.checkpoint_policies.nothing_saveable @functools.partial( ad_checkpoint.checkpoint, prevent_cse=False, policy=custom_policy(checkpoint_policy)) def fn_wrap(carry, xs_t): # carry is augmented with time_step, prng_key, global_step three additional # tensors to make fn_wrap fully functional. if root_layer is not None: forward_updated_vars_before = tf.nest.map_structure( lambda x: x, root_layer.forward_updated_vars) # Start a new prng_key branch that also depends on the time step. prng_key_t = jax.random.fold_in(carry.prng_key, carry.time_step) with base_layer.JaxContext.NewContext( prng_key=prng_key_t, global_step=carry.global_step): carry_new, ys_t = fn(carry, xs_t) carry_new.time_step = carry.time_step + 1 # copy over prng_key and global_step carry_new.prng_key = carry.prng_key carry_new.global_step = carry.global_step tf.nest.assert_same_structure(carry_new, carry) if root_layer is not None: forward_updated_vars_after = tf.nest.map_structure( lambda x: x, root_layer.forward_updated_vars) def assert_no_change(x, y): assert (x is None and y is None) or (x is not None and y is not None) # Make sure fn doesn't have side-effect, in particular it doesn't # update any forward-vars. tf.nest.map_structure(assert_no_change, forward_updated_vars_before, forward_updated_vars_after) return carry_new, ys_t # The initial time step. time_step = jnp.array(0, dtype=jnp.uint32) prng_key = base_layer.NextPrngKey() global_step = base_layer.CurGlobalStep() carry_init.time_step = time_step carry_init.prng_key = prng_key carry_init.global_step = global_step carry_final, ys = jax.lax.scan(fn_wrap, carry_init, xs) del carry_final.time_step del carry_final.global_step del carry_final.prng_key return carry_final, ys
py
b40e5e2c190a92cda19faafdd910d2171fbe835a
#!/usr/bin/env python import Tkinter import time import threading import random import Queue import numpy as np import socket import sys import json from PIL import Image, ImageTk import traceback import struct CONFIG_FILE = './asi_client.conf' # ASI config ASI_ADDRESS = 'localhost' ASI_PORT = 10001 ASI_X = 1280 ASI_Y = 960 ASI_IMG_SIZE = ASI_X * ASI_Y # millisec MIN_EXP_TIME = 1 MAX_EXP_TIME = 15000 DEFAULT_EXP_TIME = 20 SOCKET_TIMEOUT = 20 class GuiPart: def __init__(self, master, queue, endCommand): with open(CONFIG_FILE) as f: self.config = json.load(f) self.master = master self.queue = queue self.master.title("ASI client") self.master.geometry("630x600") self.master.protocol("WM_DELETE_WINDOW", endCommand) self.frame_img = Tkinter.Frame(self.master) self.frame_img.grid(row=0, column=0) self.canvas = Tkinter.Canvas(self.frame_img, width=600, height=450) self.canvas.grid(row=0, column=0, rowspan=2, sticky="N") self.slider_exp = Tkinter.Scale(self.frame_img, from_=MIN_EXP_TIME, to=MAX_EXP_TIME, resolution=10, length=580, orient=Tkinter.HORIZONTAL, variable=exp_time, label='Exp time (ms)') self.slider_exp.set(DEFAULT_EXP_TIME) self.slider_exp.grid(row=1, column=0) self.slider_gain = Tkinter.Scale(self.frame_img, from_=0, to=300, length=580, orient=Tkinter.HORIZONTAL, variable=gain, label='Gain') self.slider_gain.set(150) self.slider_gain.grid(row=2, column=0) self.frame_ch = Tkinter.Frame(self.frame_img) self.frame_ch.grid(row=3, column=0) self.crosshair_x_label = Tkinter.Label(self.frame_ch, text='Crosshair: x') self.crosshair_x_label.grid(row=0, column=0, sticky="W") self.crosshair_x = Tkinter.Entry(self.frame_ch) self.crosshair_x.insert(0, self.config['crosshair'][0]) self.crosshair_x.grid(row=0, column=1, sticky="W") self.crosshair_y_label = Tkinter.Label(self.frame_ch, text='y') self.crosshair_y_label.grid(row=0, column=2, sticky="W") self.crosshair_y = Tkinter.Entry(self.frame_ch) self.crosshair_y.insert(0, self.config['crosshair'][1]) self.crosshair_y.grid(row=0, column=3, sticky="W") self.canvas_image = None def processIncomingImage(self, msg): data = msg['image'] if self.canvas_image is not None: self.canvas.delete(self.canvas_image) self.im = Image.frombytes('L', (data.shape[1],data.shape[0]), data.astype('b').tostring()).resize((853,640)) self.photo = ImageTk.PhotoImage(image=self.im) self.canvas.delete('all') self.canvas_image = self.canvas.create_image(0,0,image=self.photo,anchor=Tkinter.NW) # draw crosshair try: x = int(self.crosshair_x.get()) except ValueError: x = 0 try: y = int(self.crosshair_y.get()) except ValueError: y = 0 self.canvas.create_line(x, 0, x, y-10, fill='red', width=1) self.canvas.create_line(x, y+10, x, 640, fill='red', width=1) self.canvas.create_line(0, y, x-10, y, fill='red', width=1) self.canvas.create_line(x+10, y, 853, y, fill='red', width=1) self.config['crosshair'][0] = self.crosshair_x.get() self.config['crosshair'][1] = self.crosshair_y.get() with open(CONFIG_FILE, 'w') as f: json.dump(self.config, f) def processIncoming(self): while self.queue.qsize(): try: self.msg = self.queue.get(0) if self.msg['type'] == 'image': self.processIncomingImage(self.msg) except Queue.Empty: pass class ThreadedClient: def __init__(self, master): self.master = master self.queue = Queue.Queue() self.gui = GuiPart(master, self.queue, self.endApplication) self.running = 1 self.thread_img = threading.Thread(target=self.getRemoteImage) self.thread_img.start() self.periodicCall() def periodicCall(self): self.gui.processIncoming() if not self.running: sys.exit(1) self.master.after(100, self.periodicCall) def getRemoteImage(self): while self.running: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1) sock.connect((ASI_ADDRESS, ASI_PORT)) # send capture parameters params = {} params['exp_time'] = 1000*exp_time.get() params['gain'] = gain.get() sock.sendall(json.dumps(params)) # receive capture arr = b'' time_start = time.time() try: while len(arr) < ASI_IMG_SIZE: now = time.time() if (now - time_start) > SOCKET_TIMEOUT: break data = sock.recv(2**16) if data: arr += data image_array = np.frombuffer(arr, dtype=np.dtype(np.uint8)).reshape((ASI_Y, ASI_X)) sock.close() msg = {'type':'image', 'image':image_array} self.queue.put(msg) except: traceback.print_exc() pass def endApplication(self): self.running = 0 root = Tkinter.Tk() exp_time = Tkinter.IntVar() gain = Tkinter.IntVar() client = ThreadedClient(root) root.mainloop()
py
b40e5eeb9c8e4f599f6778798309339190014700
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['Checkpoint'] import glob import os from typing import Callable, Optional from objax.io.ops import load_var_collection, save_var_collection from objax.typing import FileOrStr from objax.variable import VarCollection class Checkpoint: """Helper class which performs saving and restoring of the variables. Variables are stored in the checkpoint files. One checkpoint file stores a single snapshot of the variables. Different checkpoint files store different snapshots of the variables (for example at different training step). Each checkpoint has associated index, which is used to identify time when snapshot of the variables was made. Typically training step or training epoch are used as an index. """ DIR_NAME: str = 'ckpt' """Name of the subdirectory of model directory where checkpoints will be saved.""" FILE_MATCH: str = '*.npz' """File pattern which is used to search for checkpoint files.""" FILE_FORMAT: str = '%010d.npz' """Format of the filename of one checkpoint file.""" LOAD_FN: Callable[[FileOrStr, VarCollection], None] = staticmethod(load_var_collection) """Load function, which loads variables collection from given file.""" SAVE_FN: Callable[[FileOrStr, VarCollection], None] = staticmethod(save_var_collection) """Save function, which saves variables collection into given file.""" def __init__(self, logdir: str, keep_ckpts: int, makedir: bool = True, verbose: bool = True): """Creates instance of the Checkpoint class. Args: logdir: model directory. Checkpoints will be saved in the subdirectory of model directory. keep_ckpts: maximum number of checkpoints to keep. makedir: if True then directory for checkpoints will be created, otherwise it's expected that directory already exists. verbose: if True then print when data is restored from checkpoint. """ self.logdir = logdir self.keep_ckpts = keep_ckpts self.verbose = verbose if makedir: os.makedirs(os.path.join(logdir, self.DIR_NAME), exist_ok=True) @staticmethod def checkpoint_idx(filename: str): """Returns index of checkpoint from given checkpoint filename. Args: filename: checkpoint filename. Returns: checkpoint index. """ return int(os.path.basename(filename).split('.')[0]) def restore(self, vc: VarCollection, idx: Optional[int] = None): """Restores values of all variables of given variables collection from the checkpoint. Old values from the variables collection will be replaced with the new values read from checkpoint. If variable does not exist in the variables collection, it won't be restored from checkpoint. Args: vc: variables collection to restore. idx: if provided then checkpoint index to use, if None then latest checkpoint will be restored. Returns: idx: index of the restored checkpoint. ckpt: full path to the restored checkpoint. """ if idx is None: all_ckpts = glob.glob(os.path.join(self.logdir, self.DIR_NAME, self.FILE_MATCH)) if not all_ckpts: return 0, '' idx = self.checkpoint_idx(max(all_ckpts)) ckpt = os.path.join(self.logdir, self.DIR_NAME, self.FILE_FORMAT % idx) if self.verbose: print('Resuming from', ckpt) self.LOAD_FN(ckpt, vc) return idx, ckpt def save(self, vc: VarCollection, idx: int): """Saves variables collection to checkpoint with given index. Args: vc: variables collection to save. idx: index of the new checkpoint where variables should be saved. """ self.SAVE_FN(os.path.join(self.logdir, self.DIR_NAME, self.FILE_FORMAT % idx), vc) for ckpt in sorted(glob.glob(os.path.join(self.logdir, self.DIR_NAME, self.FILE_MATCH)))[:-self.keep_ckpts]: os.remove(ckpt)
py
b40e5ef3f2bf0f9475815e49ee978f7e9dce80be
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Init module for TensorFlow Model Analysis addons fairness view.""" from tensorflow_model_analysis.addons.fairness.view import widget_view
py
b40e609e633cdbb85941f2f2e922349c081fd288
import json def analytics_allowed(request): cookie_policy = request.cookies.get('ons_cookie_policy') if cookie_policy: return json.loads(cookie_policy.replace("'", '"'))['usage'] return False
py
b40e61ed82489a600b225a3aece8b7b78d548e8c
# -*- coding: utf-8 -*- # Copyright 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from operator import attrgetter from operator import itemgetter import re from netaddr import IPRange from nailgun.consts import OVS_BOND_MODES from nailgun.db.sqlalchemy.models import Cluster from nailgun.db.sqlalchemy.models import NetworkGroup from nailgun.db.sqlalchemy.models import Node from nailgun.openstack.common import jsonutils from nailgun.orchestrator.deployment_serializers import\ create_serializer from nailgun.orchestrator.deployment_serializers import\ DeploymentHASerializer from nailgun.orchestrator.deployment_serializers import\ DeploymentHASerializer51 from nailgun.orchestrator.deployment_serializers import\ DeploymentMultinodeSerializer from nailgun.orchestrator.priority_serializers import\ PriorityHASerializer50 from nailgun.orchestrator.priority_serializers import\ PriorityHASerializer51 from nailgun.orchestrator.priority_serializers import\ PriorityHASerializerPatching from nailgun.orchestrator.priority_serializers import\ PriorityMultinodeSerializer50 from nailgun.db.sqlalchemy import models from nailgun import objects from nailgun.settings import settings from nailgun.test.base import BaseIntegrationTest from nailgun.test.base import reverse from nailgun.volumes import manager class OrchestratorSerializerTestBase(BaseIntegrationTest): """Class containts helpers.""" def filter_by_role(self, nodes, role): return filter(lambda node: role in node['role'], nodes) def filter_by_uid(self, nodes, uid): return filter(lambda node: node['uid'] == uid, nodes) def assert_nodes_with_role(self, nodes, role, count): self.assertEqual(len(self.filter_by_role(nodes, role)), count) def get_controllers(self, cluster_id): return self.db.query(Node).\ filter_by(cluster_id=cluster_id, pending_deletion=False).\ filter(Node.role_list.any(name='controller')).\ order_by(Node.id) @property def serializer(self): return DeploymentHASerializer(PriorityHASerializer50()) def serialize(self, cluster): objects.NodeCollection.prepare_for_deployment(cluster.nodes) return self.serializer.serialize(cluster, cluster.nodes) def _make_data_copy(self, data_to_copy): '''Sqalchemy doesn't track change on composite attribute so we need to create fresh copy of it which will take all needed modifications and will be assigned as new value for that attribute ''' return copy.deepcopy(data_to_copy) # TODO(awoodward): multinode deprecation: probably has duplicates class TestNovaOrchestratorSerializer(OrchestratorSerializerTestBase): def setUp(self): super(TestNovaOrchestratorSerializer, self).setUp() self.cluster = self.create_env('ha_compact') objects.Cluster.set_primary_roles(self.cluster, self.cluster.nodes) def create_env(self, mode, network_manager='FlatDHCPManager'): node_args = [ {'roles': ['controller', 'cinder'], 'pending_addition': True}, {'roles': ['compute', 'cinder'], 'pending_addition': True}, {'roles': ['compute'], 'pending_addition': True}, {'roles': ['mongo'], 'pending_addition': True}, {'roles': [], 'pending_roles': ['cinder'], 'pending_addition': True}] cluster = self.env.create( cluster_kwargs={ 'mode': mode, 'net_manager': network_manager}, nodes_kwargs=node_args) cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) self.db.flush() return cluster_db def assert_roles_flattened(self, nodes): self.assertEqual(len(nodes), 7) self.assert_nodes_with_role(nodes, 'controller', 1) self.assert_nodes_with_role(nodes, 'compute', 2) self.assert_nodes_with_role(nodes, 'cinder', 3) self.assert_nodes_with_role(nodes, 'mongo', 1) def test_serialize_nodes(self): serialized_nodes = self.serializer.serialize_nodes(self.cluster.nodes) self.assert_roles_flattened(serialized_nodes) # Each not should be same as result of # serialize_node function for serialized_node in serialized_nodes: node_db = self.db.query(Node).get(int(serialized_node['uid'])) expected_node = self.serializer.serialize_node( node_db, serialized_node['role']) self.assertEqual(serialized_node, expected_node) def test_serialize_node(self): node = self.env.create_node( api=True, cluster_id=self.cluster.id, pending_addition=True) objects.NodeCollection.prepare_for_deployment(self.cluster.nodes) self.db.flush() node_db = self.db.query(Node).get(node['id']) serialized_data = self.serializer.serialize_node(node_db, 'controller') self.assertEqual(serialized_data['role'], 'controller') self.assertEqual(serialized_data['uid'], str(node_db.id)) self.assertEqual(serialized_data['status'], node_db.status) self.assertEqual(serialized_data['online'], node_db.online) self.assertEqual(serialized_data['fqdn'], 'node-%d.%s' % (node_db.id, settings.DNS_DOMAIN)) self.assertEqual( serialized_data['glance'], {'image_cache_max_size': manager.calc_glance_cache_size( node_db.attributes.volumes)}) def test_node_list(self): node_list = self.serializer.get_common_attrs(self.cluster)['nodes'] # Check right nodes count with right roles self.assert_roles_flattened(node_list) # Check common attrs for node in node_list: node_db = self.db.query(Node).get(int(node['uid'])) self.assertEqual(node['public_netmask'], '255.255.255.0') self.assertEqual(node['internal_netmask'], '255.255.255.0') self.assertEqual(node['storage_netmask'], '255.255.255.0') self.assertEqual(node['uid'], str(node_db.id)) self.assertEqual(node['name'], 'node-%d' % node_db.id) self.assertEqual(node['fqdn'], 'node-%d.%s' % (node_db.id, settings.DNS_DOMAIN)) # Check uncommon attrs node_uids = sorted(set([n['uid'] for n in node_list])) man_ip = [str(ip) for ip in IPRange('192.168.0.1', '192.168.0.5')] pub_ip = [str(ip) for ip in IPRange('172.16.0.2', '172.16.0.6')] sto_ip = [str(ip) for ip in IPRange('192.168.1.1', '192.168.1.5')] expected_list = [ {'roles': ['controller', 'cinder']}, {'roles': ['compute', 'cinder']}, {'roles': ['compute']}, {'roles': ['mongo']}, {'roles': ['cinder']}] for i in range(len(expected_list)): expected_list[i]['attrs'] = {'uid': node_uids[i]} used_man_ip = [] used_pub_ip = [] used_sto_ip = [] for expected in expected_list: attrs = expected['attrs'] ref_node = self.filter_by_uid(node_list, attrs['uid'])[0] self.assertTrue(ref_node['internal_address'] in man_ip) self.assertTrue(ref_node['public_address'] in pub_ip) self.assertTrue(ref_node['storage_address'] in sto_ip) self.assertFalse(ref_node['internal_address'] in used_man_ip) self.assertFalse(ref_node['public_address'] in used_pub_ip) self.assertFalse(ref_node['storage_address'] in used_sto_ip) used_man_ip.append(ref_node['internal_address']) used_pub_ip.append(ref_node['public_address']) used_sto_ip.append(ref_node['storage_address']) for role in expected['roles']: nodes = self.filter_by_role(node_list, role) node = self.filter_by_uid(nodes, attrs['uid'])[0] self.assertEqual(node['public_address'], ref_node['public_address']) self.assertEqual(node['storage_address'], ref_node['storage_address']) self.assertEqual(node['internal_address'], ref_node['internal_address']) def test_flatdhcp_manager(self): cluster = self.create_env('ha_compact') facts = self.serializer.serialize(cluster, cluster.nodes) for fact in facts: self.assertEqual( fact['novanetwork_parameters']['network_manager'], 'FlatDHCPManager') self.assertEqual( fact['novanetwork_parameters']['num_networks'], 1) self.assertEqual( fact['novanetwork_parameters']['network_size'], 65536) def test_vlan_manager(self): cluster = self.create_env('ha_compact') data = {'networking_parameters': {'net_manager': 'VlanManager'}} url = reverse('NovaNetworkConfigurationHandler', kwargs={'cluster_id': cluster.id}) self.app.put(url, jsonutils.dumps(data), headers=self.default_headers, expect_errors=False) facts = self.serializer.serialize(cluster, cluster.nodes) for fact in facts: self.assertEqual(fact['vlan_interface'], 'eth0') self.assertEqual(fact['fixed_interface'], 'eth0') self.assertEqual( fact['novanetwork_parameters']['network_manager'], 'VlanManager') self.assertEqual( fact['novanetwork_parameters']['num_networks'], 1) self.assertEqual( fact['novanetwork_parameters']['vlan_start'], 103) self.assertEqual( fact['novanetwork_parameters']['network_size'], 256) def test_floating_ranges_generation(self): # Set ip ranges for floating ips ranges = [['172.16.0.2', '172.16.0.4'], ['172.16.0.3', '172.16.0.5'], ['172.16.0.10', '172.16.0.12']] self.cluster.network_config.floating_ranges = ranges self.db.commit() facts = self.serializer.serialize(self.cluster, self.cluster.nodes) for fact in facts: self.assertEqual( fact['floating_network_range'], ['172.16.0.2-172.16.0.4', '172.16.0.3-172.16.0.5', '172.16.0.10-172.16.0.12']) def test_configure_interfaces_untagged_network(self): for network in self.db.query(NetworkGroup).all(): network.vlan_start = None self.cluster.network_config.fixed_networks_vlan_start = None self.db.commit() node_db = sorted(self.cluster.nodes, key=lambda n: n.id)[0] from nailgun.orchestrator.deployment_serializers \ import NovaNetworkDeploymentSerializer interfaces = NovaNetworkDeploymentSerializer.\ configure_interfaces(node_db) expected_interfaces = { 'lo': { 'interface': 'lo', 'ipaddr': ['127.0.0.1/8'] }, 'eth1': { 'interface': 'eth1', 'ipaddr': ['10.20.0.129/24'] }, 'eth0': { 'interface': 'eth0', 'ipaddr': ['172.16.0.2/24', '192.168.0.1/24', '192.168.1.1/24'], 'gateway': '172.16.0.1', 'default_gateway': True } } self.datadiff(expected_interfaces, interfaces, ignore_keys=['ipaddr']) def test_set_deployment_priorities(self): nodes = [ {'role': 'mongo'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] serializer = DeploymentMultinodeSerializer( PriorityMultinodeSerializer50()) serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'mongo', 'priority': 100}, {'role': 'mongo', 'priority': 200}, {'role': 'primary-mongo', 'priority': 300}, {'role': 'controller', 'priority': 400}, {'role': 'ceph-osd', 'priority': 500}, {'role': 'other', 'priority': 500} ] self.assertEqual(expected_priorities, nodes) def test_set_critital_node(self): nodes = [ {'role': 'mongo'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] serializer = DeploymentMultinodeSerializer( PriorityMultinodeSerializer50()) serializer.set_critical_nodes(nodes) expected_ciritial_roles = [ {'role': 'mongo', 'fail_if_error': False}, {'role': 'mongo', 'fail_if_error': False}, {'role': 'primary-mongo', 'fail_if_error': True}, {'role': 'controller', 'fail_if_error': True}, {'role': 'ceph-osd', 'fail_if_error': True}, {'role': 'other', 'fail_if_error': False} ] self.assertEqual(expected_ciritial_roles, nodes) class TestNovaOrchestratorHASerializer(OrchestratorSerializerTestBase): def setUp(self): super(TestNovaOrchestratorHASerializer, self).setUp() self.cluster = self.create_env('ha_compact') objects.Cluster.set_primary_roles(self.cluster, self.cluster.nodes) def create_env(self, mode): cluster = self.env.create( cluster_kwargs={ 'mode': mode, }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True}, {'roles': ['controller'], 'pending_addition': True}, {'roles': ['controller', 'cinder'], 'pending_addition': True}, {'roles': ['compute', 'cinder'], 'pending_addition': True}, {'roles': ['compute'], 'pending_addition': True}, {'roles': ['mongo'], 'pending_addition': True}, {'roles': ['cinder'], 'pending_addition': True}]) cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) return cluster_db @property def serializer(self): return DeploymentHASerializer(PriorityHASerializer50()) def test_set_deployment_priorities(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 900}, {'role': 'ceph-osd', 'priority': 1000}, {'role': 'other', 'priority': 1000} ] self.assertEqual(expected_priorities, nodes) def test_set_deployment_priorities_many_cntrls(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 900}, {'role': 'controller', 'priority': 1000}, {'role': 'controller', 'priority': 1100}, {'role': 'controller', 'priority': 1200}, {'role': 'controller', 'priority': 1300}, {'role': 'controller', 'priority': 1400}, {'role': 'controller', 'priority': 1500}, {'role': 'ceph-osd', 'priority': 1600}, {'role': 'other', 'priority': 1600} ] self.assertEqual(expected_priorities, nodes) def test_set_critital_node(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_critical_nodes(nodes) expected_ciritial_roles = [ {'role': 'zabbix-server', 'fail_if_error': False}, {'role': 'primary-swift-proxy', 'fail_if_error': True}, {'role': 'swift-proxy', 'fail_if_error': False}, {'role': 'storage', 'fail_if_error': False}, {'role': 'mongo', 'fail_if_error': False}, {'role': 'primary-mongo', 'fail_if_error': True}, {'role': 'primary-controller', 'fail_if_error': True}, {'role': 'controller', 'fail_if_error': False}, {'role': 'controller', 'fail_if_error': False}, {'role': 'ceph-osd', 'fail_if_error': True}, {'role': 'other', 'fail_if_error': False} ] self.assertEqual(expected_ciritial_roles, nodes) def test_set_primary_controller_priority_not_depend_on_nodes_order(self): controllers = filter(lambda n: 'controller' in n.roles, self.env.nodes) expected_primary_controller = sorted( controllers, key=attrgetter('id'))[0] reverse_sorted_controllers = sorted( controllers, key=attrgetter('id'), reverse=True) result_nodes = self.serializer.serialize( self.cluster, reverse_sorted_controllers) high_priority = sorted(result_nodes, key=itemgetter('priority'))[0] self.assertEqual(high_priority['role'], 'primary-controller') self.assertEqual( int(high_priority['uid']), expected_primary_controller.id) def test_node_list(self): serialized_nodes = self.serializer.node_list(self.cluster.nodes) for node in serialized_nodes: # Each node has swift_zone self.assertEqual(node['swift_zone'], node['uid']) def test_get_common_attrs(self): attrs = self.serializer.get_common_attrs(self.cluster) # vips self.assertEqual(attrs['management_vip'], '192.168.0.8') self.assertEqual(attrs['public_vip'], '172.16.0.9') # last_contrller controllers = self.get_controllers(self.cluster.id) self.assertEqual(attrs['last_controller'], 'node-%d' % controllers[-1].id) # primary_controller controllers = self.filter_by_role(attrs['nodes'], 'primary-controller') self.assertEqual(controllers[0]['role'], 'primary-controller') # primary_mongo mongo_nodes = self.filter_by_role(attrs['nodes'], 'primary-mongo') self.assertEqual(mongo_nodes[-1]['role'], 'primary-mongo') # mountpoints and mp attrs self.assertEqual( attrs['mp'], [{'point': '1', 'weight': '1'}, {'point': '2', 'weight': '2'}]) class TestNovaOrchestratorHASerializer51(TestNovaOrchestratorHASerializer): @property def serializer(self): return DeploymentHASerializer51(PriorityHASerializer51()) def test_set_deployment_priorities(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'ceph-osd', 'priority': 900}, {'role': 'other', 'priority': 900} ] self.assertEqual(expected_priorities, nodes) def test_set_deployment_priorities_many_cntrls(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 900}, {'role': 'controller', 'priority': 900}, {'role': 'ceph-osd', 'priority': 1000}, {'role': 'other', 'priority': 1000} ] self.assertEqual(expected_priorities, nodes) class TestHASerializerPatching(TestNovaOrchestratorHASerializer): @property def serializer(self): return DeploymentHASerializer(PriorityHASerializerPatching()) def test_set_deployment_priorities(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'}, {'role': 'other'}, {'role': 'other'}, ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 900}, {'role': 'ceph-osd', 'priority': 1000}, {'role': 'other', 'priority': 1100}, {'role': 'other', 'priority': 1200}, {'role': 'other', 'priority': 1300}, ] self.assertEqual(expected_priorities, nodes) def test_set_deployment_priorities_many_cntrls(self): nodes = [ {'role': 'zabbix-server'}, {'role': 'primary-swift-proxy'}, {'role': 'swift-proxy'}, {'role': 'storage'}, {'role': 'mongo'}, {'role': 'primary-mongo'}, {'role': 'primary-controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'controller'}, {'role': 'ceph-osd'}, {'role': 'other'} ] self.serializer.set_deployment_priorities(nodes) expected_priorities = [ {'role': 'zabbix-server', 'priority': 100}, {'role': 'primary-swift-proxy', 'priority': 200}, {'role': 'swift-proxy', 'priority': 300}, {'role': 'storage', 'priority': 400}, {'role': 'mongo', 'priority': 500}, {'role': 'primary-mongo', 'priority': 600}, {'role': 'primary-controller', 'priority': 700}, {'role': 'controller', 'priority': 800}, {'role': 'controller', 'priority': 900}, {'role': 'controller', 'priority': 1000}, {'role': 'controller', 'priority': 1100}, {'role': 'controller', 'priority': 1200}, {'role': 'controller', 'priority': 1300}, {'role': 'controller', 'priority': 1400}, {'role': 'controller', 'priority': 1500}, {'role': 'ceph-osd', 'priority': 1600}, {'role': 'other', 'priority': 1700} ] self.assertEqual(expected_priorities, nodes) # TODO(awoodward): multinode deprecation: probably has duplicates class TestNeutronOrchestratorSerializer(OrchestratorSerializerTestBase): def setUp(self): super(TestNeutronOrchestratorSerializer, self).setUp() self.new_env_release_version = None self.cluster = self.create_env('ha_compact') objects.Cluster.set_primary_roles(self.cluster, self.cluster.nodes) def create_env(self, mode, segment_type='vlan'): release_kwargs = {} if self.new_env_release_version: release_kwargs['version'] = self.new_env_release_version cluster = self.env.create( release_kwargs=release_kwargs, cluster_kwargs={ 'mode': mode, 'net_provider': 'neutron', 'net_segment_type': segment_type }, nodes_kwargs=[ {'roles': ['controller', 'cinder'], 'pending_addition': True}, {'roles': ['compute', 'cinder'], 'pending_addition': True}, {'roles': ['compute'], 'pending_addition': True}, {'roles': [], 'pending_roles': ['cinder'], 'pending_addition': True}]) cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) return cluster_db def serialize_env_w_version(self, version): self.new_env_release_version = version cluster = self.create_env(mode='ha_compact') return create_serializer(cluster).serialize(cluster, cluster.nodes) def assert_roles_flattened(self, nodes): self.assertEqual(len(nodes), 6) self.assert_nodes_with_role(nodes, 'controller', 1) self.assert_nodes_with_role(nodes, 'compute', 2) self.assert_nodes_with_role(nodes, 'cinder', 3) def set_assign_public_to_all_nodes(self, cluster_db, value): attrs = cluster_db.attributes.editable attrs['public_network_assignment']['assign_to_all_nodes']['value'] = \ value resp = self.app.patch( reverse( 'ClusterAttributesHandler', kwargs={'cluster_id': cluster_db.id}), params=jsonutils.dumps({'editable': attrs}), headers=self.default_headers ) self.assertEqual(200, resp.status_code) self.assertEqual( attrs['public_network_assignment']['assign_to_all_nodes']['value'], value ) def test_serialize_nodes(self): serialized_nodes = self.serializer.serialize_nodes(self.cluster.nodes) self.assert_roles_flattened(serialized_nodes) # Each not should be same as result of # serialize_node function for serialized_node in serialized_nodes: node_db = self.db.query(Node).get(int(serialized_node['uid'])) expected_node = self.serializer.serialize_node( node_db, serialized_node['role']) self.assertEqual(serialized_node, expected_node) def test_neutron_vlan_ids_tag_present_on_6_0_env(self): serialized_nodes = self.serialize_env_w_version('2014.2-6.0') for node in serialized_nodes: for item in node['network_scheme']['transformations']: if 'tags' in item: self.assertEqual(item['tags'], item['vlan_ids']) def check_5x_60_neutron_attrs(self, version): serialized_nodes = self.serialize_env_w_version(version) for node in serialized_nodes: self.assertEqual( { "network_type": "local", "segment_id": None, "router_ext": True, "physnet": None }, node['quantum_settings']['predefined_networks'][ 'net04_ext']['L2'] ) self.assertFalse( 'physnet1' in node['quantum_settings']['L2']['phys_nets'] ) def test_serialize_neutron_attrs_on_6_0_env(self): self.check_5x_60_neutron_attrs("2014.2-6.0") def test_serialize_neutron_attrs_on_5_1_env(self): self.check_5x_60_neutron_attrs("2014.1.1-5.1") def check_50x_neutron_attrs(self, version): serialized_nodes = self.serialize_env_w_version(version) for node in serialized_nodes: self.assertEqual( { "network_type": "flat", "segment_id": None, "router_ext": True, "physnet": "physnet1" }, node['quantum_settings']['predefined_networks'][ 'net04_ext']['L2'] ) self.assertEqual( { "bridge": "br-ex", "vlan_range": None }, node['quantum_settings']['L2']['phys_nets']['physnet1'] ) def test_serialize_neutron_attrs_on_5_0_2_env(self): self.check_50x_neutron_attrs("2014.1.1-5.0.2") def test_serialize_neutron_attrs_on_5_0_1_env(self): self.check_50x_neutron_attrs("2014.1.1-5.0.1") def test_serialize_neutron_attrs_on_5_0_env(self): self.check_50x_neutron_attrs("2014.1") def test_serialize_node(self): node = self.env.create_node( api=True, cluster_id=self.cluster.id, pending_addition=True) objects.NodeCollection.prepare_for_deployment(self.cluster.nodes) node_db = self.db.query(Node).get(node['id']) serialized_data = self.serializer.serialize_node(node_db, 'controller') self.assertEqual(serialized_data['role'], 'controller') self.assertEqual(serialized_data['uid'], str(node_db.id)) self.assertEqual(serialized_data['status'], node_db.status) self.assertEqual(serialized_data['online'], node_db.online) self.assertEqual(serialized_data['fqdn'], 'node-%d.%s' % (node_db.id, settings.DNS_DOMAIN)) def test_node_list(self): assign_public_options = (False, True) for assign in assign_public_options: self.set_assign_public_to_all_nodes(self.cluster, assign) # Clear IPs for ip in self.db.query(models.IPAddr): self.db.delete(ip) self.db.flush() objects.NodeCollection.prepare_for_deployment(self.cluster.nodes) node_list = self.serializer.get_common_attrs(self.cluster)['nodes'] roles_w_public_count = 0 # Check right nodes count with right roles self.assert_roles_flattened(node_list) # Check common attrs for node in node_list: node_db = self.db.query(Node).get(int(node['uid'])) is_public = objects.Node.should_have_public(node_db) if is_public: self.assertEqual(node['public_netmask'], '255.255.255.0') roles_w_public_count += 1 else: self.assertFalse('public_netmask' in node) self.assertEqual(node['internal_netmask'], '255.255.255.0') self.assertEqual(node['storage_netmask'], '255.255.255.0') self.assertEqual(node['uid'], str(node_db.id)) self.assertEqual(node['name'], 'node-%d' % node_db.id) self.assertEqual( node['fqdn'], 'node-%d.%s' % (node_db.id, settings.DNS_DOMAIN)) # We have 6 roles on 4 nodes summarily. # Only 1 node w 2 roles (controller+cinder) will have public # when 'assign_to_all_nodes' option is switched off self.assertEqual(roles_w_public_count, 6 if assign else 2) # Check uncommon attrs node_uids = sorted(set([n['uid'] for n in node_list])) man_ip = [str(ip) for ip in IPRange('192.168.0.1', '192.168.0.4')] pub_ip = [str(ip) for ip in IPRange('172.16.0.2', '172.16.0.5')] sto_ip = [str(ip) for ip in IPRange('192.168.1.1', '192.168.1.4')] expected_list = [ {'roles': ['controller', 'cinder']}, {'roles': ['compute', 'cinder']}, {'roles': ['compute']}, {'roles': ['cinder']}] for i in range(len(expected_list)): expected_list[i]['attrs'] = {'uid': node_uids[i]} if assign: expected_list[i]['attrs']['public_address'] = pub_ip[i] if not assign: expected_list[0]['attrs']['public_address'] = pub_ip[0] # Check if ips are unique for node and # they are the same for all nodes roles used_man_ip, used_pub_ip, used_sto_ip = [], [], [] for expected in expected_list: attrs = expected['attrs'] ref_node = self.filter_by_uid(node_list, attrs['uid'])[0] is_public = objects.Node.should_have_public( objects.Node.get_by_mac_or_uid(node_uid=attrs['uid'])) self.assertTrue(ref_node['internal_address'] in man_ip) self.assertTrue(ref_node['storage_address'] in sto_ip) self.assertFalse(ref_node['internal_address'] in used_man_ip) self.assertFalse(ref_node['storage_address'] in used_sto_ip) used_man_ip.append(ref_node['internal_address']) used_sto_ip.append(ref_node['storage_address']) # Check if pubclic ip field exists if is_public: self.assertTrue(ref_node['public_address'] in pub_ip) self.assertFalse(ref_node['public_address'] in used_pub_ip) used_pub_ip.append(ref_node['public_address']) for role in expected['roles']: nodes = self.filter_by_role(node_list, role) node = self.filter_by_uid(nodes, attrs['uid'])[0] if is_public: self.assertEqual(node['public_address'], ref_node['public_address']) else: self.assertFalse('public_address' in node) self.assertEqual(node['storage_address'], ref_node['storage_address']) self.assertEqual(node['internal_address'], ref_node['internal_address']) def test_public_serialization_for_different_roles(self): assign_public_options = (False, True) for assign in assign_public_options: self.set_assign_public_to_all_nodes(self.cluster, assign) objects.NodeCollection.prepare_for_deployment(self.cluster.nodes) serialized_nodes = self.serializer.serialize(self.cluster, self.cluster.nodes) need_public_nodes_count = set() for node in serialized_nodes: node_db = self.db.query(Node).get(int(node['uid'])) is_public = objects.Node.should_have_public(node_db) if is_public: need_public_nodes_count.add(int(node['uid'])) net_man = objects.Node.get_network_manager(node_db) self.assertEqual( net_man._get_ip_by_network_name( node_db, 'public') is not None, is_public ) for node_attrs in node['nodes']: is_public_for_role = objects.Node.should_have_public( objects.Node.get_by_mac_or_uid( node_uid=int(node_attrs['uid']))) self.assertEqual('public_address' in node_attrs, is_public_for_role) self.assertEqual('public_netmask' in node_attrs, is_public_for_role) self.assertEqual( { 'action': 'add-br', 'name': 'br-ex' } in node['network_scheme']['transformations'], is_public ) self.assertEqual( { 'action': 'add-patch', 'bridges': ['br-eth0', 'br-ex'], 'trunks': [0] } in node['network_scheme']['transformations'], is_public ) self.assertEqual( 'ex' in node['network_scheme']['roles'], is_public ) self.assertEqual( 'br-ex' in node['network_scheme']['endpoints'], is_public ) self.assertEqual(len(need_public_nodes_count), 4 if assign else 1) def test_neutron_l3_gateway(self): cluster = self.create_env('ha_compact', 'gre') test_gateway = "192.168.111.255" public_ng = self.db.query(NetworkGroup).filter( NetworkGroup.name == 'public' ).filter( NetworkGroup.group_id == objects.Cluster.get_default_group(cluster).id ).first() public_ng.gateway = test_gateway self.db.add(public_ng) self.db.commit() facts = self.serializer.serialize(cluster, cluster.nodes) pd_nets = facts[0]["quantum_settings"]["predefined_networks"] self.assertEqual( pd_nets["net04_ext"]["L3"]["gateway"], test_gateway ) def test_gre_segmentation(self): cluster = self.create_env('ha_compact', 'gre') facts = self.serializer.serialize(cluster, cluster.nodes) for fact in facts: self.assertEqual( fact['quantum_settings']['L2']['segmentation_type'], 'gre') self.assertEqual( 'br-prv' in fact['network_scheme']['endpoints'], False) self.assertEqual( 'private' in (fact['network_scheme']['roles']), False) def _create_cluster_for_vlan_splinters(self, segment_type='gre'): meta = { 'interfaces': [ {'name': 'eth0', 'mac': self.env.generate_random_mac()}, {'name': 'eth1', 'mac': self.env.generate_random_mac()}, {'name': 'eth2', 'mac': self.env.generate_random_mac()}, {'name': 'eth3', 'mac': self.env.generate_random_mac()}, {'name': 'eth4', 'mac': self.env.generate_random_mac()} ] } cluster = self.env.create( cluster_kwargs={ 'net_provider': 'neutron', 'net_segment_type': segment_type }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True, 'meta': meta} ] ) cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) return cluster_db def test_vlan_splinters_disabled(self): cluster = self._create_cluster_for_vlan_splinters() cluster_id = cluster.id editable_attrs = self._make_data_copy(cluster.attributes.editable) # Remove 'vlan_splinters' attribute and check results. editable_attrs.pop('vlan_splinters', None) cluster.attributes.editable = editable_attrs self.db.commit() cluster = self.db.query(Cluster).get(cluster_id) self.assertNotIn('vlan_splinters', editable_attrs) node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'off') self.assertNotIn('trunks', L2_attrs) # Set 'vlan_splinters' to 'some_text' and check results. editable_attrs = self._make_data_copy(cluster.attributes.editable) editable_attrs['vlan_splinters'] = {'vswitch': {'value': 'some_text'}} editable_attrs['vlan_splinters']['metadata'] = {'enabled': True} cluster.attributes.editable = editable_attrs self.db.commit() cluster = self.db.query(Cluster).get(cluster_id) editable_attrs = cluster.attributes.editable self.assertEqual(editable_attrs['vlan_splinters']['vswitch']['value'], 'some_text') node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertNotIn('vlan_splinters', L2_attrs) self.assertNotIn('trunks', L2_attrs) # Set 'vlan_splinters' to 'disabled' and check results. editable_attrs['vlan_splinters']['metadata']['enabled'] = False cluster.attributes.editable = editable_attrs self.db.commit() cluster = self.db.query(Cluster).get(cluster_id) editable_attrs = cluster.attributes.editable self.assertEqual( editable_attrs['vlan_splinters']['metadata']['enabled'], False ) node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'off') self.assertNotIn('trunks', L2_attrs) def test_kernel_lt_vlan_splinters(self): cluster = self._create_cluster_for_vlan_splinters() cluster_id = cluster.id editable_attrs = self._make_data_copy(cluster.attributes.editable) # value of kernel-ml should end up with vlan_splinters = off editable_attrs['vlan_splinters']['metadata']['enabled'] = True editable_attrs['vlan_splinters']['vswitch']['value'] = 'kernel_lt' cluster.attributes.editable = editable_attrs self.db.commit() cluster = self.db.query(Cluster).get(cluster_id) editable_attrs = cluster.attributes.editable self.assertEqual(editable_attrs['vlan_splinters']['vswitch']['value'], 'kernel_lt') node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'off') self.assertNotIn('trunks', L2_attrs) def test_hard_vlan_splinters_in_gre(self): cluster = self._create_cluster_for_vlan_splinters('gre') editable_attrs = self._make_data_copy(cluster.attributes.editable) editable_attrs['vlan_splinters']['metadata']['enabled'] = True editable_attrs['vlan_splinters']['vswitch']['value'] = 'hard' cluster.attributes.editable = editable_attrs self.db.commit() vlan_set = set( [ng.vlan_start for ng in cluster.network_groups if ng.vlan_start] ) node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'auto') self.assertIn('trunks', L2_attrs) self.assertIn(0, L2_attrs['trunks']) map( lambda n: vlan_set.remove(n) if n else None, L2_attrs['trunks'] ) self.assertEqual(len(vlan_set), 0) def test_hard_vlan_splinters_in_vlan(self): cluster = self._create_cluster_for_vlan_splinters('vlan') editable_attrs = self._make_data_copy(cluster.attributes.editable) editable_attrs['vlan_splinters']['metadata']['enabled'] = True editable_attrs['vlan_splinters']['vswitch']['value'] = 'hard' cluster.attributes.editable = editable_attrs self.db.commit() vlan_set = set( [ng.vlan_start for ng in cluster.network_groups if ng.vlan_start] ) private_vlan_range = cluster.network_config["vlan_range"] vlan_set.update(xrange(*private_vlan_range)) vlan_set.add(private_vlan_range[1]) node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'auto') self.assertIn('trunks', L2_attrs) self.assertIn(0, L2_attrs['trunks']) map( lambda n: vlan_set.remove(n) if n else None, L2_attrs['trunks'] ) self.assertEqual(len(vlan_set), 0) def test_soft_vlan_splinters_in_vlan(self): cluster = self._create_cluster_for_vlan_splinters('vlan') editable_attrs = self._make_data_copy(cluster.attributes.editable) editable_attrs['vlan_splinters']['metadata']['enabled'] = True editable_attrs['vlan_splinters']['vswitch']['value'] = 'soft' cluster.attributes.editable = editable_attrs self.db.commit() node = self.serializer.serialize(cluster, cluster.nodes)[0] interfaces = node['network_scheme']['interfaces'] for iface_attrs in interfaces.itervalues(): self.assertIn('L2', iface_attrs) L2_attrs = iface_attrs['L2'] self.assertIn('vlan_splinters', L2_attrs) self.assertEqual(L2_attrs['vlan_splinters'], 'auto') self.assertIn('trunks', L2_attrs) self.assertEqual(L2_attrs['trunks'], [0]) class TestNeutronOrchestratorHASerializer(OrchestratorSerializerTestBase): def setUp(self): super(TestNeutronOrchestratorHASerializer, self).setUp() self.cluster = self.create_env('ha_compact') objects.Cluster.set_primary_roles(self.cluster, self.cluster.nodes) def create_env(self, mode): cluster = self.env.create( cluster_kwargs={ 'mode': mode, 'net_provider': 'neutron', 'net_segment_type': 'vlan' }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True}, {'roles': ['controller'], 'pending_addition': True}, {'roles': ['controller', 'cinder'], 'pending_addition': True}, {'roles': ['compute', 'cinder'], 'pending_addition': True}, {'roles': ['compute'], 'pending_addition': True}, {'roles': ['cinder'], 'pending_addition': True} ] ) cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) return cluster_db @property def serializer(self): return DeploymentHASerializer(PriorityHASerializer50()) def test_node_list(self): serialized_nodes = self.serializer.node_list(self.cluster.nodes) for node in serialized_nodes: # Each node has swift_zone self.assertEqual(node['swift_zone'], node['uid']) def test_get_common_attrs(self): attrs = self.serializer.get_common_attrs(self.cluster) # vips self.assertEqual(attrs['management_vip'], '192.168.0.7') self.assertTrue( re.compile('172.16.0.[1-9]').match(attrs['public_vip'])) # last_contrller controllers = self.get_controllers(self.cluster.id) self.assertEqual(attrs['last_controller'], 'node-%d' % controllers[-1].id) # primary_controller controllers = self.filter_by_role(attrs['nodes'], 'primary-controller') self.assertEqual(controllers[0]['role'], 'primary-controller') # mountpoints and mp attrs self.assertEqual( attrs['mp'], [{'point': '1', 'weight': '1'}, {'point': '2', 'weight': '2'}]) class TestNeutronOrchestratorSerializerBonds(OrchestratorSerializerTestBase): def create_env(self, nodes_count=2, nic_count=3, segment_type='vlan'): cluster = self.env.create_cluster( net_provider='neutron', net_segment_type=segment_type) self.env.create_nodes_w_interfaces_count( nodes_count=1, if_count=nic_count, roles=['controller', 'cinder'], pending_addition=True, cluster_id=cluster['id']) self.env.create_nodes_w_interfaces_count( nodes_count=nodes_count - 1, if_count=nic_count, roles=['compute'], pending_addition=True, cluster_id=cluster['id']) cluster_db = self.db.query(Cluster).get(cluster['id']) return cluster_db def check_add_bond_msg_lacp(self, msg): self.assertEqual( msg, { 'action': 'add-bond', 'bridge': 'br-ovsbond0', 'interfaces': ['eth1', 'eth2'], 'name': 'ovsbond0', 'properties': ['lacp=active', 'bond_mode=balance-tcp'] }) def check_add_bond_msg_non_lacp(self, msg, mode): self.assertEqual( msg, { 'action': 'add-bond', 'bridge': 'br-ovsbond0', 'interfaces': ['eth1', 'eth2'], 'name': 'ovsbond0', 'properties': ['bond_mode={0}'.format(mode)] }) def check_bond_with_mode(self, mode): cluster = self.create_env() for node in cluster.nodes: self.env.make_bond_via_api('ovsbond0', mode, ['eth1', 'eth2'], node.id) facts = self.serialize(cluster) for node in facts: transforms = node['network_scheme']['transformations'] bonds = filter(lambda t: t['action'] == 'add-bond', transforms) self.assertEqual(len(bonds), 1) if mode == OVS_BOND_MODES.lacp_balance_tcp: self.check_add_bond_msg_lacp(bonds[0]) else: self.check_add_bond_msg_non_lacp(bonds[0], mode) def test_bonds_serialization(self): for mode in OVS_BOND_MODES: self.check_bond_with_mode(mode) class TestCephOsdImageOrchestratorSerialize(OrchestratorSerializerTestBase): def setUp(self): super(TestCephOsdImageOrchestratorSerialize, self).setUp() cluster = self.env.create( cluster_kwargs={ 'mode': 'multinode'}, nodes_kwargs=[ {'roles': ['controller', 'ceph-osd']}]) self.app.patch( reverse( 'ClusterAttributesHandler', kwargs={'cluster_id': cluster['id']}), params=jsonutils.dumps({ 'editable': {'storage': {'images_ceph': {'value': True}}}}), headers=self.default_headers) self.cluster = self.db.query(Cluster).get(cluster['id']) def test_glance_image_cache_max_size(self): data = self.serialize(self.cluster) self.assertEqual(len(data), 2) # one node - 2 roles self.assertEqual(data[0]['uid'], data[1]['uid']) self.assertEqual(data[0]['glance']['image_cache_max_size'], '0') self.assertEqual(data[1]['glance']['image_cache_max_size'], '0') class TestCephPgNumOrchestratorSerialize(OrchestratorSerializerTestBase): def create_env(self, nodes, osd_pool_size='2'): cluster = self.env.create( cluster_kwargs={ 'mode': 'multinode'}, nodes_kwargs=nodes) self.app.patch( reverse( 'ClusterAttributesHandler', kwargs={'cluster_id': cluster['id']}), params=jsonutils.dumps( {'editable': { 'storage': { 'osd_pool_size': {'value': osd_pool_size}}}}), headers=self.default_headers) return self.db.query(Cluster).get(cluster['id']) def test_pg_num_no_osd_nodes(self): cluster = self.create_env([ {'roles': ['controller']}]) data = self.serialize(cluster) self.assertEqual(data[0]['storage']['pg_num'], 128) def test_pg_num_1_osd_node(self): cluster = self.create_env([ {'roles': ['controller', 'ceph-osd']}]) data = self.serialize(cluster) self.assertEqual(data[0]['storage']['pg_num'], 256) def test_pg_num_1_osd_node_repl_4(self): cluster = self.create_env( [{'roles': ['controller', 'ceph-osd']}], '4') data = self.serialize(cluster) self.assertEqual(data[0]['storage']['pg_num'], 128) def test_pg_num_3_osd_nodes(self): cluster = self.create_env([ {'roles': ['controller', 'ceph-osd']}, {'roles': ['compute', 'ceph-osd']}, {'roles': ['compute', 'ceph-osd']}]) data = self.serialize(cluster) self.assertEqual(data[0]['storage']['pg_num'], 512) class TestMongoNodesSerialization(OrchestratorSerializerTestBase): def create_env(self): cluster = self.env.create( cluster_kwargs={ 'mode': 'ha_compact', 'network_manager': 'FlatDHCPManager' }, nodes_kwargs=[ {'roles': ['mongo'], 'pending_addition': True}, {'roles': ['mongo'], 'pending_addition': True}, {'roles': ['mongo'], 'pending_addition': True} ] ) cluster = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster.nodes) return cluster @property def serializer_ha(self): return DeploymentHASerializer(PriorityHASerializer50()) @property def serializer_mn(self): return DeploymentMultinodeSerializer(PriorityMultinodeSerializer50()) def test_mongo_roles_equals_in_defferent_modes(self): cluster = self.create_env() ha_nodes = self.serializer_ha.serialize_nodes(cluster.nodes) mn_nodes = self.serializer_mn.serialize_nodes(cluster.nodes) self.assertEqual(mn_nodes, ha_nodes) def test_primary_node_selected(self): cluster = self.create_env() ha_nodes = self.serializer_ha.serialize_nodes(cluster.nodes) mn_nodes = self.serializer_mn.serialize_nodes(cluster.nodes) def primary_nodes_count(nodes): return len(filter(lambda x: x['role'] == 'primary-mongo', nodes)) self.assertEqual(1, primary_nodes_count(ha_nodes)) self.assertEqual(1, primary_nodes_count(mn_nodes)) class TestRepoAndPuppetDataSerialization(OrchestratorSerializerTestBase): orch_data = { "repo_metadata": { "nailgun": "http://10.20.0.2:8080/centos-5.0/centos/x86_64/" }, "puppet_modules_source": "rsync://10.20.0.2/puppet/release/5.0/modules", "puppet_manifests_source": "rsync://10.20.0.2/puppet/release/5.0/manifests" } def test_repo_and_puppet_data_w_orch_data(self): release_id = self.env.create_release().id resp = self.app.put( reverse('ReleaseHandler', kwargs={'obj_id': release_id}), params=jsonutils.dumps( { "orchestrator_data": self.orch_data } ), headers=self.default_headers, expect_errors=True ) self.assertEqual(200, resp.status_code) cluster_id = self.env.create( cluster_kwargs={ 'release_id': release_id }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True} ] )["id"] cluster = self.db.query(Cluster).get(cluster_id) objects.NodeCollection.prepare_for_deployment(cluster.nodes) facts = self.serializer.serialize(cluster, cluster.nodes) self.assertEqual(1, len(facts)) fact = facts[0] self.assertEqual( fact['repo_metadata'], { 'nailgun': 'http://10.20.0.2:8080' '/centos-5.0/centos/x86_64/' } ) self.assertEqual( fact['puppet_modules_source'], 'rsync://10.20.0.2/puppet/release/5.0/modules' ) self.assertEqual( fact['puppet_manifests_source'], 'rsync://10.20.0.2/puppet/release/5.0/manifests' ) def test_repo_and_puppet_data_wo_orch_data(self): release_id = self.env.create_release().id cluster_id = self.env.create( cluster_kwargs={ 'release_id': release_id }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True} ] )["id"] cluster = self.db.query(Cluster).get(cluster_id) objects.NodeCollection.prepare_for_deployment(cluster.nodes) facts = self.serializer.serialize(cluster, cluster.nodes) self.assertEqual(1, len(facts)) fact = facts[0] self.assertEqual( fact['repo_metadata'], { '2014.2-6.0': 'http://127.0.0.1:8080/2014.2-6.0/centos/x86_64' } ) self.assertEqual( fact['puppet_modules_source'], 'rsync://127.0.0.1:/puppet/2014.2-6.0/modules/' ) self.assertEqual( fact['puppet_manifests_source'], 'rsync://127.0.0.1:/puppet/2014.2-6.0/manifests/' ) def test_orch_data_w_replaced_deployment_info(self): replaced_deployment_info = [{'repo_metadata': 'custom_stuff'}] release = self.env.create_release() self.env.create( cluster_kwargs={'release_id': release.id}, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True} ]) objects.Release.update_orchestrator_data(release, self.orch_data) self.db.flush() self.db.refresh(release) self.env.nodes[0].replaced_deployment_info = replaced_deployment_info facts = self.serializer.serialize( self.env.clusters[0], self.env.nodes) self.assertEqual(facts[0]['repo_metadata'], self.orch_data['repo_metadata']) self.assertEqual(facts[0]['puppet_modules_source'], self.orch_data['puppet_modules_source']) self.assertEqual(facts[0]['puppet_manifests_source'], self.orch_data['puppet_manifests_source']) class TestNSXOrchestratorSerializer(OrchestratorSerializerTestBase): def setUp(self): super(TestNSXOrchestratorSerializer, self).setUp() self.cluster = self.create_env('ha_compact') def create_env(self, mode, segment_type='gre'): cluster = self.env.create( cluster_kwargs={ 'mode': mode, 'net_provider': 'neutron', 'net_segment_type': segment_type }, nodes_kwargs=[ {'roles': ['controller'], 'pending_addition': True}, {'roles': ['compute'], 'pending_addition': True}, ] ) cluster_db = self.db.query(Cluster).get(cluster['id']) editable_attrs = self._make_data_copy(cluster_db.attributes.editable) nsx_attrs = editable_attrs.setdefault('nsx_plugin', {}) nsx_attrs.setdefault('metadata', {})['enabled'] = True cluster_db.attributes.editable = editable_attrs self.db.commit() cluster_db = self.db.query(Cluster).get(cluster['id']) objects.NodeCollection.prepare_for_deployment(cluster_db.nodes) return cluster_db def test_serialize_node(self): serialized_data = self.serializer.serialize(self.cluster, self.cluster.nodes)[0] q_settings = serialized_data['quantum_settings'] self.assertIn('L2', q_settings) self.assertIn('provider', q_settings['L2']) self.assertEqual(q_settings['L2']['provider'], 'nsx') l3_settings = q_settings['L3'] self.assertIn('dhcp_agent', l3_settings) self.assertIn('enable_isolated_metadata', l3_settings['dhcp_agent']) self.assertEqual(l3_settings['dhcp_agent']['enable_isolated_metadata'], True) self.assertIn('enable_metadata_network', l3_settings['dhcp_agent']) self.assertEqual(l3_settings['dhcp_agent']['enable_metadata_network'], True)
py
b40e63747e90e37223f74d599d20511e6db40305
# test_ioa_exclusions.py # This class tests the ioa_exclusions service class import os import sys # Authentication via test_authorization.py from tests import test_authorization as Authorization # Import our sibling src folder into the path sys.path.append(os.path.abspath('src')) # Classes to test - manually imported from sibling folder from falconpy.ioa_exclusions import IOA_Exclusions as FalconIOAE auth = Authorization.TestAuthorization() auth.getConfig() falcon = FalconIOAE(creds={"client_id": auth.config["falcon_client_id"], "client_secret": auth.config["falcon_client_secret"] }) AllowedResponses = [200, 429] # Adding rate-limiting as an allowed response for now class TestIOAExclusions: def serviceIOAE_ListExclusions(self): returned = False if falcon.queryIOAExclusionsV1(limit=1, offset=2, pizza="IsDelicious")["status_code"] in AllowedResponses: returned = True return returned def serviceIOAE_GenerateErrors(self): falcon.base_url = "nowhere" errorChecks = True commandList = [ ["getIOAExclusionsV1", "ids='12345678'"], ["createIOAExclusionsV1", "body={}"], ["updateIOAExclusionsV1", "body={}"], ["deleteIOAExclusionsV1", "ids='12345678'"] ] for cmd in commandList: if eval("falcon.{}({})['status_code']".format(cmd[0], cmd[1])) != 500: errorChecks = False return errorChecks def test_Find(self): assert self.serviceIOAE_ListExclusions() is True def test_Errors(self): assert self.serviceIOAE_GenerateErrors() is True
py
b40e6505ae72aacf5675bd92b42f35a975356539
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.platform import googletest from tensorflow.python.platform import tf_logging as logging class EventLoaderTest(googletest.TestCase): def test_log(self): # Just check that logging works without raising an exception. logging.error("test log message") if __name__ == "__main__": googletest.main()
py
b40e651beaca5928f6ec28378d072b56578206f2
#!/usr/bin/env python # # Use the raw transactions API to spend IONs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a iond or ion-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the ioncoin data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/ioncoin/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "ioncoin") return os.path.expanduser("~/.ioncoin") def read_bitcoin_config(dbdir): """Read the ioncoin.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "ioncoin.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a ion JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 51475 if testnet else 51473 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the iond we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(iond): info = iond.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") iond.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = iond.getinfo() return int(info['unlocked_until']) > time.time() def list_available(iond): address_summary = dict() address_to_account = dict() for info in iond.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = iond.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = iond.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-ion-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(iond, fromaddresses, toaddress, amount, fee): all_coins = list_available(iond) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to iond. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = iond.createrawtransaction(inputs, outputs) signed_rawtx = iond.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(iond, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = iond.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(iond, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = iond.decoderawtransaction(txdata_hex) total_in = compute_amount_in(iond, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get IONs from") parser.add_option("--to", dest="to", default=None, help="address to get send IONs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of ioncoin.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True iond = connect_JSON(config) if options.amount is None: address_summary = list_available(iond) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(iond) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(iond, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(iond, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = iond.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
py
b40e65ee3921f967b9f2aa4d5ce34470e13ff2df
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Memtester(MakefilePackage): """A userspace utility for testing the memory subsystem for faults.""" homepage = "http://pyropus.ca/software/memtester/" url = "http://pyropus.ca/software/memtester/old-versions/memtester-4.3.0.tar.gz" version('4.3.0', sha256='f9dfe2fd737c38fad6535bbab327da9a21f7ce4ea6f18c7b3339adef6bf5fd88') version('4.2.2', sha256='a494569d58d642c796332a1b7f3b4b86845b52da66c15c96fbeecd74e48dae8e') version('4.2.1', sha256='3433e1c757e56457610f5a97bf1a2d612c609290eba5183dd273e070134a21d2') version('4.2.0', sha256='cb9d5437a0c429d18500bddef93084bb2fead0d5ccfedfd00ee28ff118e52695') version('4.1.3', sha256='ac56f0b6d6d6e58bcf2a3fa7f2c9b29894f5177871f21115a1906c535106acf6') def edit(self, spec, prefix): makefile = FileFilter("Makefile") makefile.filter("INSTALLPATH\t= /usr/local", "INSTALLPATH\t= {0}".format(self.prefix))
py
b40e68431fb6363569da1c909a9fcdf0f6a99f43
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch import warnings from abc import abstractmethod class BasePoints(object): """Base class for Points. Args: tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix. points_dim (int): Number of the dimension of a point. Each row is (x, y, z). Default to 3. attribute_dims (dict): Dictionary to indicate the meaning of extra dimension. Default to None. Attributes: tensor (torch.Tensor): Float matrix of N x points_dim. points_dim (int): Integer indicating the dimension of a point. Each row is (x, y, z, ...). attribute_dims (bool): Dictionary to indicate the meaning of extra dimension. Default to None. rotation_axis (int): Default rotation axis for points rotation. """ def __init__(self, tensor, points_dim=3, attribute_dims=None): if isinstance(tensor, torch.Tensor): device = tensor.device else: device = torch.device('cpu') tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that # does not depend on the inputs (and consequently confuses jit) tensor = tensor.reshape((0, points_dim)).to( dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == \ points_dim, tensor.size() self.tensor = tensor self.points_dim = points_dim self.attribute_dims = attribute_dims self.rotation_axis = 0 @property def coord(self): """torch.Tensor: Coordinates of each point with size (N, 3).""" return self.tensor[:, :3] @coord.setter def coord(self, tensor): """Set the coordinates of each point.""" try: tensor = tensor.reshape(self.shape[0], 3) except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray raise ValueError(f'got unexpected shape {tensor.shape}') if not isinstance(tensor, torch.Tensor): tensor = self.tensor.new_tensor(tensor) self.tensor[:, :3] = tensor @property def height(self): """torch.Tensor: A vector with height of each point.""" if self.attribute_dims is not None and \ 'height' in self.attribute_dims.keys(): return self.tensor[:, self.attribute_dims['height']] else: return None @height.setter def height(self, tensor): """Set the height of each point.""" try: tensor = tensor.reshape(self.shape[0]) except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray raise ValueError(f'got unexpected shape {tensor.shape}') if not isinstance(tensor, torch.Tensor): tensor = self.tensor.new_tensor(tensor) if self.attribute_dims is not None and \ 'height' in self.attribute_dims.keys(): self.tensor[:, self.attribute_dims['height']] = tensor else: # add height attribute if self.attribute_dims is None: self.attribute_dims = dict() attr_dim = self.shape[1] self.tensor = torch.cat([self.tensor, tensor.unsqueeze(1)], dim=1) self.attribute_dims.update(dict(height=attr_dim)) self.points_dim += 1 @property def color(self): """torch.Tensor: A vector with color of each point.""" if self.attribute_dims is not None and \ 'color' in self.attribute_dims.keys(): return self.tensor[:, self.attribute_dims['color']] else: return None @color.setter def color(self, tensor): """Set the color of each point.""" try: tensor = tensor.reshape(self.shape[0], 3) except (RuntimeError, ValueError): # for torch.Tensor and np.ndarray raise ValueError(f'got unexpected shape {tensor.shape}') if tensor.max() >= 256 or tensor.min() < 0: warnings.warn('point got color value beyond [0, 255]') if not isinstance(tensor, torch.Tensor): tensor = self.tensor.new_tensor(tensor) if self.attribute_dims is not None and \ 'color' in self.attribute_dims.keys(): self.tensor[:, self.attribute_dims['color']] = tensor else: # add color attribute if self.attribute_dims is None: self.attribute_dims = dict() attr_dim = self.shape[1] self.tensor = torch.cat([self.tensor, tensor], dim=1) self.attribute_dims.update( dict(color=[attr_dim, attr_dim + 1, attr_dim + 2])) self.points_dim += 3 @property def shape(self): """torch.Shape: Shape of points.""" return self.tensor.shape def shuffle(self): """Shuffle the points. Returns: torch.Tensor: The shuffled index. """ idx = torch.randperm(self.__len__(), device=self.tensor.device) self.tensor = self.tensor[idx] return idx def rotate(self, rotation, axis=None): """Rotate points with the given rotation matrix or angle. Args: rotation (float, np.ndarray, torch.Tensor): Rotation matrix or angle. axis (int): Axis to rotate at. Defaults to None. """ if not isinstance(rotation, torch.Tensor): rotation = self.tensor.new_tensor(rotation) assert rotation.shape == torch.Size([3, 3]) or \ rotation.numel() == 1, f'invalid rotation shape {rotation.shape}' if axis is None: axis = self.rotation_axis if rotation.numel() == 1: rot_sin = torch.sin(rotation) rot_cos = torch.cos(rotation) if axis == 1: rot_mat_T = rotation.new_tensor([[rot_cos, 0, -rot_sin], [0, 1, 0], [rot_sin, 0, rot_cos]]) elif axis == 2 or axis == -1: rot_mat_T = rotation.new_tensor([[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]]) elif axis == 0: rot_mat_T = rotation.new_tensor([[1, 0, 0], [0, rot_cos, -rot_sin], [0, rot_sin, rot_cos]]) else: raise ValueError('axis should in range') rot_mat_T = rot_mat_T.T elif rotation.numel() == 9: rot_mat_T = rotation else: raise NotImplementedError self.tensor[:, :3] = self.tensor[:, :3] @ rot_mat_T return rot_mat_T @abstractmethod def flip(self, bev_direction='horizontal'): """Flip the points in BEV along given BEV direction.""" pass def translate(self, trans_vector): """Translate points with the given translation vector. Args: trans_vector (np.ndarray, torch.Tensor): Translation vector of size 3 or nx3. """ if not isinstance(trans_vector, torch.Tensor): trans_vector = self.tensor.new_tensor(trans_vector) trans_vector = trans_vector.squeeze(0) if trans_vector.dim() == 1: assert trans_vector.shape[0] == 3 elif trans_vector.dim() == 2: assert trans_vector.shape[0] == self.tensor.shape[0] and \ trans_vector.shape[1] == 3 else: raise NotImplementedError( f'Unsupported translation vector of shape {trans_vector.shape}' ) self.tensor[:, :3] += trans_vector def in_range_3d(self, point_range): """Check whether the points are in the given range. Args: point_range (list | torch.Tensor): The range of point (x_min, y_min, z_min, x_max, y_max, z_max) Note: In the original implementation of SECOND, checking whether a box in the range checks whether the points are in a convex polygon, we try to reduce the burden for simpler cases. Returns: torch.Tensor: A binary vector indicating whether each point is \ inside the reference range. """ in_range_flags = ((self.tensor[:, 0] > point_range[0]) & (self.tensor[:, 1] > point_range[1]) & (self.tensor[:, 2] > point_range[2]) & (self.tensor[:, 0] < point_range[3]) & (self.tensor[:, 1] < point_range[4]) & (self.tensor[:, 2] < point_range[5])) return in_range_flags @abstractmethod def in_range_bev(self, point_range): """Check whether the points are in the given range. Args: point_range (list | torch.Tensor): The range of point in order of (x_min, y_min, x_max, y_max). Returns: torch.Tensor: Indicating whether each point is inside \ the reference range. """ pass @abstractmethod def convert_to(self, dst, rt_mat=None): """Convert self to ``dst`` mode. Args: dst (:obj:`CoordMode`): The target Box mode. rt_mat (np.ndarray | torch.Tensor): The rotation and translation matrix between different coordinates. Defaults to None. The conversion from `src` coordinates to `dst` coordinates usually comes along the change of sensors, e.g., from camera to LiDAR. This requires a transformation matrix. Returns: :obj:`BasePoints`: The converted box of the same type \ in the `dst` mode. """ pass def scale(self, scale_factor): """Scale the points with horizontal and vertical scaling factors. Args: scale_factors (float): Scale factors to scale the points. """ self.tensor[:, :3] *= scale_factor def __getitem__(self, item): """ Note: The following usage are allowed: 1. `new_points = points[3]`: return a `Points` that contains only one point. 2. `new_points = points[2:10]`: return a slice of points. 3. `new_points = points[vector]`: where vector is a torch.BoolTensor with `length = len(points)`. Nonzero elements in the vector will be selected. 4. `new_points = points[3:11, vector]`: return a slice of points and attribute dims. 5. `new_points = points[4:12, 2]`: return a slice of points with single attribute. Note that the returned Points might share storage with this Points, subject to Pytorch's indexing semantics. Returns: :obj:`BasePoints`: A new object of \ :class:`BasePoints` after indexing. """ original_type = type(self) if isinstance(item, int): return original_type( self.tensor[item].view(1, -1), points_dim=self.points_dim, attribute_dims=self.attribute_dims) elif isinstance(item, tuple) and len(item) == 2: if isinstance(item[1], slice): start = 0 if item[1].start is None else item[1].start stop = self.tensor.shape[1] if \ item[1].stop is None else item[1].stop step = 1 if item[1].step is None else item[1].step item = list(item) item[1] = list(range(start, stop, step)) item = tuple(item) elif isinstance(item[1], int): item = list(item) item[1] = [item[1]] item = tuple(item) p = self.tensor[item[0], item[1]] keep_dims = list( set(item[1]).intersection(set(range(3, self.tensor.shape[1])))) if self.attribute_dims is not None: attribute_dims = self.attribute_dims.copy() for key in self.attribute_dims.keys(): cur_attribute_dims = attribute_dims[key] if isinstance(cur_attribute_dims, int): cur_attribute_dims = [cur_attribute_dims] intersect_attr = list( set(cur_attribute_dims).intersection(set(keep_dims))) if len(intersect_attr) == 1: attribute_dims[key] = intersect_attr[0] elif len(intersect_attr) > 1: attribute_dims[key] = intersect_attr else: attribute_dims.pop(key) else: attribute_dims = None elif isinstance(item, (slice, np.ndarray, torch.Tensor)): p = self.tensor[item] attribute_dims = self.attribute_dims else: raise NotImplementedError(f'Invalid slice {item}!') assert p.dim() == 2, \ f'Indexing on Points with {item} failed to return a matrix!' return original_type( p, points_dim=p.shape[1], attribute_dims=attribute_dims) def __len__(self): """int: Number of points in the current object.""" return self.tensor.shape[0] def __repr__(self): """str: Return a strings that describes the object.""" return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')' @classmethod def cat(cls, points_list): """Concatenate a list of Points into a single Points. Args: points_list (list[:obj:`BasePoints`]): List of points. Returns: :obj:`BasePoints`: The concatenated Points. """ assert isinstance(points_list, (list, tuple)) if len(points_list) == 0: return cls(torch.empty(0)) assert all(isinstance(points, cls) for points in points_list) # use torch.cat (v.s. layers.cat) # so the returned points never share storage with input cat_points = cls( torch.cat([p.tensor for p in points_list], dim=0), points_dim=points_list[0].tensor.shape[1], attribute_dims=points_list[0].attribute_dims) return cat_points def to(self, device): """Convert current points to a specific device. Args: device (str | :obj:`torch.device`): The name of the device. Returns: :obj:`BasePoints`: A new boxes object on the \ specific device. """ original_type = type(self) return original_type( self.tensor.to(device), points_dim=self.points_dim, attribute_dims=self.attribute_dims) def clone(self): """Clone the Points. Returns: :obj:`BasePoints`: Box object with the same properties \ as self. """ original_type = type(self) return original_type( self.tensor.clone(), points_dim=self.points_dim, attribute_dims=self.attribute_dims) @property def device(self): """str: The device of the points are on.""" return self.tensor.device def __iter__(self): """Yield a point as a Tensor of shape (4,) at a time. Returns: torch.Tensor: A point of shape (4,). """ yield from self.tensor def new_point(self, data): """Create a new point object with data. The new point and its tensor has the similar properties \ as self and self.tensor, respectively. Args: data (torch.Tensor | numpy.array | list): Data to be copied. Returns: :obj:`BasePoints`: A new point object with ``data``, \ the object's other properties are similar to ``self``. """ new_tensor = self.tensor.new_tensor(data) \ if not isinstance(data, torch.Tensor) else data.to(self.device) original_type = type(self) return original_type( new_tensor, points_dim=self.points_dim, attribute_dims=self.attribute_dims)
py
b40e687386e3f9f2f09d6494eba26494e94af8ef
def compute() -> int: months = [31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] day = 2 result = 0 for year in range(1_901, 2_001): months[1] = 28 + year % 4 == 0 and (year % 100 != 0 or year % 400 == 0) for month in range(12): day += months[month] % 7 if day % 7 == 0: result += 1 return result
py
b40e68f90e8e5c3188502e20f4e33421307bd68c
""" WSGI config for {{project_name}} project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{project_name}}.settings") application = get_wsgi_application()
py
b40e6a02bff587f9f4c624e3ccfe6ba0f023c3ba
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange import tensorflow as tf from tensorforce import util, TensorForceError from tensorforce.models import QModel from tensorforce.core.networks import Linear class QNAFModel(QModel): """ Implements normalized advantage functions (NAF), somtimes also called continuous Q-learning. """ def __init__( self, states, actions, scope, device, saver, summarizer, execution, batching_capacity, variable_noise, states_preprocessing, actions_exploration, reward_preprocessing, update_mode, memory, optimizer, discount, network, distributions, entropy_regularization, target_sync_frequency, target_update_weight, double_q_model, huber_loss ): if any(action['type'] != 'float' or 'min_value' in action or 'max_value' in action for action in actions.values()): raise TensorForceError("Only unconstrained float actions valid for NAFModel.") super(QNAFModel, self).__init__( states=states, actions=actions, scope=scope, device=device, saver=saver, summarizer=summarizer, execution=execution, batching_capacity=batching_capacity, variable_noise=variable_noise, states_preprocessing=states_preprocessing, actions_exploration=actions_exploration, reward_preprocessing=reward_preprocessing, update_mode=update_mode, memory=memory, optimizer=optimizer, discount=discount, network=network, distributions=distributions, entropy_regularization=entropy_regularization, target_sync_frequency=target_sync_frequency, target_update_weight=target_update_weight, double_q_model=double_q_model, huber_loss=huber_loss ) def setup_components_and_tf_funcs(self, custom_getter=None): super(QNAFModel, self).setup_components_and_tf_funcs(custom_getter) self.state_values = dict() self.l_entries = dict() for name, action in self.actions_spec.items(): num_action = util.prod(action['shape']) self.state_values[name] = Linear(size=num_action, scope='state-value') self.l_entries[name] = Linear(size=(num_action * (num_action - 1) // 2), scope='l-entries') def tf_q_value(self, embedding, distr_params, action, name): num_action = util.prod(self.actions_spec[name]['shape']) mean, stddev, _ = distr_params flat_mean = tf.reshape(tensor=mean, shape=(-1, num_action)) flat_stddev = tf.reshape(tensor=stddev, shape=(-1, num_action)) # Advantage computation # Network outputs entries of lower triangular matrix L if self.l_entries[name] is None: l_matrix = flat_stddev l_matrix = tf.exp(l_matrix) else: l_matrix = tf.map_fn(fn=tf.diag, elems=flat_stddev) l_entries = self.l_entries[name].apply(x=embedding) l_entries = tf.exp(l_entries) offset = 0 columns = list() for zeros, size in enumerate(xrange(num_action - 1, -1, -1), 1): column = tf.pad(tensor=l_entries[:, offset: offset + size], paddings=((0, 0), (zeros, 0))) columns.append(column) offset += size l_matrix += tf.stack(values=columns, axis=1) # P = LL^T p_matrix = tf.matmul(a=l_matrix, b=tf.transpose(a=l_matrix, perm=(0, 2, 1))) # A = -0.5 (a - mean)P(a - mean) flat_action = tf.reshape(tensor=action, shape=(-1, num_action)) difference = flat_action - flat_mean advantage = tf.matmul(a=p_matrix, b=tf.expand_dims(input=difference, axis=2)) advantage = tf.matmul(a=tf.expand_dims(input=difference, axis=1), b=advantage) advantage = tf.squeeze(input=(-advantage / 2.0), axis=2) # Q = A + V # State-value function state_value = self.state_values[name].apply(x=embedding) q_value = state_value + advantage return tf.reshape(tensor=q_value, shape=((-1,) + self.actions_spec[name]['shape'])) def tf_loss_per_instance(self, states, internals, actions, terminal, reward, next_states, next_internals, update, reference=None): # Michael: doubling this function because NAF needs V'(s) not Q'(s), see comment below embedding = self.network.apply(x=states, internals=internals, update=update) # Both networks can use the same internals, could that be a problem? # Otherwise need to handle internals indices correctly everywhere target_embedding = self.target_network.apply( x=next_states, internals=next_internals, update=update ) deltas = list() for name, distribution in self.distributions.items(): target_distribution = self.target_distributions[name] distr_params = distribution.parameterize(x=embedding) target_distr_params = target_distribution.parameterize(x=target_embedding) q_value = self.tf_q_value(embedding=embedding, distr_params=distr_params, action=actions[name], name=name) # Notice, this is V', not Q' because NAF outputs V(s) separately next_state_value = target_distribution.state_value(distr_params=target_distr_params) delta = self.tf_q_delta(q_value=q_value, next_q_value=next_state_value, terminal=terminal, reward=reward) collapsed_size = util.prod(util.shape(delta)[1:]) delta = tf.reshape(tensor=delta, shape=(-1, collapsed_size)) deltas.append(delta) # Surrogate loss as the mean squared error between actual observed rewards and expected rewards loss_per_instance = tf.reduce_mean(input_tensor=tf.concat(values=deltas, axis=1), axis=1) if self.huber_loss is not None and self.huber_loss > 0.0: return tf.where( condition=(tf.abs(x=loss_per_instance) <= self.huber_loss), x=(0.5 * tf.square(x=loss_per_instance)), y=(self.huber_loss * (tf.abs(x=loss_per_instance) - 0.5 * self.huber_loss)) ) else: return tf.square(x=loss_per_instance) def tf_regularization_losses(self, states, internals, update): losses = super(QNAFModel, self).tf_regularization_losses( states=states, internals=internals, update=update ) for state_value in self.state_values.values(): regularization_loss = state_value.regularization_loss() if regularization_loss is not None: if 'state-values' in losses: losses['state-values'] += regularization_loss else: losses['state-values'] = regularization_loss for l_entries in self.l_entries.values(): regularization_loss = l_entries.regularization_loss() if regularization_loss is not None: if 'l-entries' in losses: losses['l-entries'] += regularization_loss else: losses['l-entries'] = regularization_loss return losses def get_variables(self, include_submodules=False, include_nontrainable=False): model_variables = super(QNAFModel, self).get_variables( include_submodules=include_submodules, include_nontrainable=include_nontrainable ) state_values_variables = [ variable for name in sorted(self.state_values) for variable in self.state_values[name].get_variables() ] model_variables += state_values_variables l_entries_variables = [ variable for name in sorted(self.l_entries) for variable in self.l_entries[name].get_variables() ] model_variables += l_entries_variables return model_variables
py
b40e6a428edfb25c7f962f91c4bb829e41ba8fac
from rootpy.io import File from rootpy import asrootpy # Most verbose log level # import matplotlib # matplotlib.use('AGG') import rootpy.plotting.root2matplotlib as rplt from rootpy import ROOTError import matplotlib.pyplot as plt # from matplotlib.ticker import AutoMinorLocator # import config.summations as summations from ROOT import TGraphAsymmErrors, TF1, TLegend, TLatex from array import array from config import CMS from tools.ROOT_utils import set_root_defaults import matplotlib.cm as cm from matplotlib.ticker import FormatStrFormatter import numpy from numpy import frompyfunc from pylab import plot from matplotlib import rc rc('text', usetex=True) def make_jet_response_plot(input_file, response): global output_folder, output_formats, suffix jet_response_plot = asrootpy(input_file.Get(response)) x_limits = [0, 200] y_limits = [0.8, 1.2] if '_eta' in response: x_limits = [-3, 3] x_title = '$\eta$(reco jet)' else: x_title = '$p_{\mathrm{T}}$(reco jet) [GeV]' y_title = '$p_{\mathrm{T}}$(reco jet)/$p_{\mathrm{T}}$(HLT jet)' save_as_name = response plt.figure(figsize=(20, 16), dpi=200, facecolor='white') ax0 = plt.axes() ax0.minorticks_on() ax0.grid(True, 'major', linewidth=2) ax0.grid(True, 'minor') plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) ax0.xaxis.set_major_formatter(FormatStrFormatter('%d')) ax0.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax0.xaxis.labelpad = 12 ax0.yaxis.labelpad = 12 if '_prof' in response: rplt.errorbar(jet_response_plot, xerr=True, emptybins=True, axes=ax0, marker = 'o', ms = 15, mew=3, lw = 2) else: im = rplt.imshow(jet_response_plot, axes=ax0, cmap = cm.Blues) #plt.colorbar(im) ax0.set_xlim(x_limits) ax0.set_ylim(y_limits) plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) plt.xlabel(x_title, CMS.x_axis_title) plt.ylabel(y_title, CMS.y_axis_title) plt.title(r'e+jets, CMS Preliminary, $\sqrt{s}$ = 8 TeV', CMS.title) if '_prof' in response: plt.legend(['data'], numpoints=1, loc='lower right', prop=CMS.legend_properties) plt.tight_layout() for output_format in output_formats: plt.savefig(output_folder + save_as_name + '_' + suffix + '.' + output_format) def make_jet_response_comparison_plot(input_files, response): global output_folder, output_formats, suffix if not '_prof' in response: print 'Can\'t make comparison scatter plots!' return jet_responses = {} for jet_response_name, file_name in input_files.iteritems(): jet_responses.update({jet_response_name : asrootpy(file_name.Get(response))}) x_limits = [0, 200] y_limits = [0.7, 1.3] if '_eta' in response: x_limits = [-3, 3] x_title = '$\eta$(reco jet)' else: x_title = '$p_{\mathrm{T}}$(reco jet) [GeV]' y_title = '$p_{\mathrm{T}}$(reco jet)/$p_{\mathrm{T}}$(HLT jet)' save_as_name = response plt.figure(figsize=(20, 16), dpi=200, facecolor='white') ax0 = plt.axes() ax0.minorticks_on() ax0.grid(True, 'major', linewidth=2) ax0.grid(True, 'minor') plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) ax0.xaxis.set_major_formatter(FormatStrFormatter('%d')) ax0.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax0.xaxis.labelpad = 12 ax0.yaxis.labelpad = 12 jet_response_name_list = [] marker_face_colours = { 0 : 'black', 1 : 'red', 2 : 'blue', 3 : 'none', 4 : 'yellow' } marker_edge_colours = { 0 : 'black', 1 : 'red', 2 : 'blue', 3 : 'green', 4 : 'yellow' } markers = { 0 : 'o', 1 : 'v', 2 : '^', 3 : 's', 4 : '*' } fill_styles = { 0 : 'full', 1 : 'full', 2 : 'full', 3 : 'none', 4 : 'full' } counter = 0 for jet_response_name, jet_response in sorted(jet_responses.iteritems()): rplt.errorbar(jet_response, xerr=False, emptybins=True, axes=ax0, marker = markers[counter], fillstyle = fill_styles[counter], markerfacecolor = marker_face_colours[counter], markeredgecolor = marker_edge_colours[counter], ecolor = marker_edge_colours[counter], ms=15, mew=3, lw = 2) jet_response_name_list.append(jet_response_name) counter += 1 ax0.set_xlim(x_limits) ax0.set_ylim(y_limits) plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) plt.xlabel(x_title, CMS.x_axis_title) plt.ylabel(y_title, CMS.y_axis_title) plt.title(r'e+jets, CMS Preliminary, $\sqrt{s}$ = 8 TeV', CMS.title) plt.legend(jet_response_name_list, numpoints=1, loc='lower right', prop=CMS.legend_properties) plt.tight_layout() for output_format in output_formats: plt.savefig(output_folder + save_as_name + '_' + suffix + '.' + output_format) def make_single_efficiency_plot(hist_passed, hist_total, efficiency): global output_folder, output_formats, suffix x_limits, x_title, y_title, fit_function, fit_range = get_parameters(efficiency) plot_efficiency = asrootpy(TGraphAsymmErrors()) plot_efficiency.Divide(hist_passed, hist_total, "cl=0.683 b(1,1) mode") fit_data = TF1("fit_data", fit_function, fit_range[0], fit_range[1]) set_parameter_limits(efficiency, fit_data) try: plot_efficiency.Fit(fit_data, 'FECQ') except ROOTError, e: print e.msg pass plot_efficiency.SetMarkerSize(2) save_as_name = efficiency # plot with matplotlib plt.figure(figsize=(20, 16), dpi=200, facecolor='white') ax0 = plt.axes() ax0.minorticks_on() ax0.grid(True, 'major', linewidth=2) ax0.grid(True, 'minor') plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) ax0.xaxis.set_major_formatter(FormatStrFormatter('%d')) ax0.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax0.xaxis.labelpad = 11 #ax0.yaxis.labelpad = 20 rplt.errorbar(plot_efficiency, xerr=True, emptybins=True, axes=ax0, marker = 'o', ms = 15, mew=3, lw = 2) ax0.set_xlim(x_limits) ax0.set_ylim([0.0,1.1]) #add fits x = numpy.linspace(fit_data.GetXmin(), fit_data.GetXmax(), fit_data.GetNpx()) function_data = frompyfunc(fit_data.Eval, 1, 1) plot(x, function_data(x), axes=ax0, color = 'red', linewidth = 2) plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) plt.xlabel(x_title, CMS.x_axis_title) plt.ylabel(y_title, CMS.y_axis_title) plt.title(r'e+jets, CMS Preliminary, $\sqrt{s}$ = 8 TeV', CMS.title) plt.legend(['data', 'fit'], numpoints=1, loc='lower right', prop=CMS.legend_properties) #add fit formulas ax0.text(0.2, 0.15, '$\epsilon$ = ' + get_fitted_function_str(fit_data, fit_function), verticalalignment='bottom', horizontalalignment='left', transform=ax0.transAxes, color='red', fontsize=60, bbox = dict(facecolor = 'white', edgecolor = 'none', alpha = 0.5)) plt.tight_layout() for output_format in output_formats: plt.savefig(output_folder + save_as_name + '_' + suffix + '.' + output_format) def get_parameters(trigger_under_study): x_limits = [10, 100] x_title = '$p_{\mathrm{T}}$(jet) [GeV]' #y_title = '$\epsilon$' y_title = 'Efficiency' fit_function = '' fit_range = [-9999, 9999] if '_pt' in trigger_under_study: x_limits = [20, 100] x_title = '$p_{\mathrm{T}}$(jet) [GeV]' fit_function = "[0]*exp([1]*exp([2]*x))" fit_range = [27, 100] elif '_eta' in trigger_under_study: x_limits = [-3, 3] x_title = '$\eta$(jet)' fit_function = '[0]*x*x + [1]*x + [2]' #fit_function = '[2]' fit_range = [-3, 3] elif '_phi' in trigger_under_study: x_limits = [-4., 4.] x_title = '$\phi$(jet)' fit_function = '[0]' fit_range = [-3.1, 3.1] return x_limits, x_title, y_title, fit_function, fit_range def set_plot_styles(data_plot, mc_plot): mc_plot.SetMarkerColor(2) mc_plot.SetMarkerStyle(22) mc_plot.SetMarkerSize(3) mc_plot.SetLineWidth(6) mc_plot.SetLineColor(2) data_plot.SetMarkerSize(3) def set_parameter_limits(trigger_under_study, fit): if '_pt' in trigger_under_study: fit.SetParLimits(0, 0.0, 1.0) fit.SetParLimits(1, -100000.0, -1.0) fit.SetParLimits(2, -2.0, -0.01) if '_eta' in trigger_under_study: fit.SetParLimits(0, -0.2, 0.0) fit.SetParLimits(1, -1.0, -1.0) fit.SetParLimits(2, 0.2, 1.1) def get_binning(trigger_under_study): bin_edges = [0, 30, 35, 40, 45, 50, 70, 100] if '_pt' in trigger_under_study: bin_edges = [0, 30, 35, 40, 45, 50, 70, 100] elif '_eta' in trigger_under_study: bin_edges = [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3] bin_edges = [-3, -2, -1, 0, 1, 2, 3] bin_edges = [-3, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 3] elif '_phi' in trigger_under_study: bin_edges = [-3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5] bin_edge_array = array('d', bin_edges) return bin_edge_array def get_fitted_function_str(fit, fit_function): decimals = 3 function_str = fit_function function_str = function_str.replace('x*x', 'x^{2}') function_str = function_str.replace('[0]', str('%.2g' % fit.GetParameter(0))) #function_str = function_str.replace('[1]', str(round(fit.GetParameter(1), decimals))) function_str = function_str.replace('[1]', str('%.2g' % fit.GetParameter(1))) function_str = function_str.replace('[2]', str('%.2g' % fit.GetParameter(2))) function_str = function_str.replace('[3]', str('%.2g' % fit.GetParameter(3))) function_str = function_str.replace('[4]', str('%.2g' % fit.GetParameter(4))) print function_str function_str = function_str.replace('*', ' \\times ') function_str = function_str.replace('0 \\times x^{2}', '') function_str = function_str.replace('0 \\times x', '') function_str = function_str.strip()#remove whitespace function_str = function_str.replace('+ -', '-') function_str = function_str.replace('- +', '-') function_str = function_str.replace('- -', '+') function_str = function_str.replace('+ +', '+') function_str = function_str.replace('1 \\times', '1.0 \\times') function_str = function_str.replace('e+0', '\\times 10^') function_str = function_str.replace('(1\\times', '(') function_str = function_str.replace('(-1\\times', '(-') if function_str.startswith('+'): function_str = function_str[1:] if 'exp' in function_str: function_str = function_str.replace('exp(', 'e^{\left(') function_str = function_str.replace(')', '\\right)}') function_str = '$' + function_str + '$' print function_str return function_str def get_input_efficiency(file, efficiency_instance): efficiency = file.Get(efficiency_instance) hist_passed = efficiency.GetPassedHistogram() hist_total = efficiency.GetTotalHistogram() bin_edge_array = get_binning(efficiency_instance) n_bins = len(bin_edge_array) - 1 #hist_passed = asrootpy(hist_passed.Rebin(n_bins, 'truth', bin_edge_array)) #hist_total = asrootpy(hist_total.Rebin(n_bins, 'truth', bin_edge_array)) hist_passed = asrootpy(hist_passed) hist_total = asrootpy(hist_total) return hist_passed, hist_total if __name__ == '__main__': set_root_defaults() CMS.title['fontsize'] = 40 CMS.x_axis_title['fontsize'] = 50 CMS.y_axis_title['fontsize'] = 50 CMS.axis_label_major['labelsize'] = 40 CMS.axis_label_minor['labelsize'] = 40 CMS.legend_properties['size'] = 40 output_formats = ['pdf'] output_folder = './HLT_plots/' histFile = 'hists_JEC_3rd_jet_30.root' #histFile = 'hists_JEC_4th_jet_30.root' #histFile = 'hists_JEC_3rd_jet_45.root' #histFile = 'hists_uncorr_3rd_jet_30.root' #histFile = 'hists_uncorr_4th_jet_30.root' #histFile = 'hists_uncorr_3rd_jet_45.root' #histFile = 'hists_JEC_PFnoPU_3rd_jet_30.root' #histFile = 'hists_JEC_PFnoPU_4th_jet_30.root' #histFile = 'hists_JEC_PFnoPU_3rd_jet_45.root' suffix = 'JEC_3rd_30' input_file = File(histFile) efficiencyPlots = ['trigger_eff_pt', 'trigger_eff_eta'] for efficiency in efficiencyPlots: hist_passed, hist_total = get_input_efficiency(input_file, efficiency) make_single_efficiency_plot(hist_passed, hist_total, efficiency) #ptRatioPlots = ['ptRatio_eta_prof'] #, 'ptRatio_pt_prof'] #, 'ptRatio_eta', 'ptRatio_pt'] #for ptRatio in ptRatioPlots: #make_jet_response_plot(input_file, ptRatio) #make_jet_response_comparison_plot(input_files, ptRatio)
py
b40e6a9b32883449c2152457d1af93bfe65d838d
from flask import Flask from flask.ext.bcrypt import Bcrypt from flask.ext.login import LoginManager from flask.ext.sqlalchemy import SQLAlchemy app = Flask(__name__) # password hashing bcrypt = Bcrypt(app) # manage logins lm = LoginManager() lm.init_app(app) lm.login_view = 'login' # SQL app.config.from_object('config') db = SQLAlchemy(app) # now load the app. Done last to avoid self-referencing from app import views, models
py
b40e6aafe4d782b391652b344f0535ee24e797c9
#!/usr/bin/env python import sys # get all lines from stdin for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() line = line.lower() # split the line into words; splits on any whitespace words = line.split() #set stopwords stopwords = set(['the','and','I','an','a','in','t','my','of','is','s','am','or']) # output tuples (word, 1) in tab-delimited format for word in words: if word not in stopwords: print '%s\t%s' % (word, "1")
py
b40e6b52ad88976622f0534d8360475a71e54171
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Import encoders so that decorated encoders are added to registry.""" # pylint: disable=unused-import from language.mentionmemory.encoders import bert_encoder from language.mentionmemory.encoders import eae_encoder from language.mentionmemory.encoders import mauto_encoder from language.mentionmemory.encoders import mention_memory_encoder from language.mentionmemory.encoders import readtwice_encoder # pylint: enable=unused-import
py
b40e6b7e9a08a72fed6d39937325e2930ca214c9
import wx import os class Window(wx.Frame): def __init__(self, parent, title): wx.Frame.__init__(self, parent, title = title, size = (640, 480)) self.Modify = False self.LastSave = "" self.replace = False self.SetIcon(wx.Icon('note.ico', wx.BITMAP_TYPE_ICO)) self.TextField = wx.TextCtrl(self, style = wx.TE_MULTILINE | wx.TE_PROCESS_ENTER) self.TextField.SetFocus() self.Show(True) #--------------------------------------------------------------------------------------------# File = wx.Menu() newItem = wx.MenuItem(File, wx.ID_NEW, "New", "Push the button to create new file") File.Append(newItem) File.AppendSeparator() openItem = wx.MenuItem(File, wx.ID_OPEN, "Open", "Push the button to open file") File.Append(openItem) saveItem = wx.MenuItem(File, wx.ID_SAVE, "Save", "Push the button to save file") File.Append(saveItem) saveAsItem = wx.MenuItem(File, wx.ID_SAVEAS, "Save As", "Push the button to save file as") File.Append(saveAsItem) File.AppendSeparator() exitItem = wx.MenuItem(File, wx.ID_EXIT, "Exit", "Push the button to leave this application") File.Append(exitItem) #--------------------------------------------------------------------------------------------# Edit = wx.Menu() undoItem = wx.MenuItem(Edit, wx.ID_UNDO, "Undo", "Push the button to return back on text") Edit.Append(undoItem) Edit.AppendSeparator() cutItem = wx.MenuItem(Edit, wx.ID_CUT, "Cut", "Puch the button to cut text") Edit.Append(cutItem) copyItem = wx.MenuItem(Edit, wx.ID_COPY, "Copy", "Puch the button to copy text") Edit.Append(copyItem) pasteItem = wx.MenuItem(Edit, wx.ID_PASTE, "Paste", "Puch the button to paste text") Edit.Append(pasteItem) deleteItem = wx.MenuItem(Edit, wx.ID_DELETE, "Delete", "Puch the button to delete text") Edit.Append(deleteItem) Edit.AppendSeparator() selectAllItem = wx.MenuItem(Edit, wx.ID_SELECTALL, "Select All", "Push the button to select all the text") Edit.Append(selectAllItem) #--------------------------------------------------------------------------------------------# Format = wx.Menu() chooseColorItem = wx.MenuItem(Format, wx.ID_ANY, "Choose Color", "Push the button to choose color") Format.Append(chooseColorItem) Format.AppendSeparator() chooseFontItem = wx.MenuItem(Format, wx.ID_ANY, "Choose Font", "Push the button to choose font") Format.Append(chooseFontItem) #--------------------------------------------------------------------------------------------# View = wx.Menu() statusBarItem = wx.MenuItem(View, wx.ID_ANY, "Status Bat", "Show Status Bar") View.Append(statusBarItem) #--------------------------------------------------------------------------------------------# Help = wx.Menu() aboutItem = wx.MenuItem(Help, wx.ID_ABOUT, "About", "Push the button to get an information about this application") Help.Append(aboutItem) #--------------------------------------------------------------------------------------------# MenuBar = wx.MenuBar() MenuBar.Append(File, 'File') MenuBar.Append(Edit, 'Edit') MenuBar.Append(Format, 'Format') MenuBar.Append(View, 'View') MenuBar.Append(Help, 'Help') self.SetMenuBar(MenuBar) #--------------------------------------------------------------------------------------------# self.Bind(wx.EVT_MENU, self.OnNew, newItem) self.Bind(wx.EVT_MENU, self.OnOpen, openItem) self.Bind(wx.EVT_MENU, self.OnSave, saveItem) self.Bind(wx.EVT_MENU, self.OnSaveAs, saveAsItem) self.Bind(wx.EVT_MENU, self.OnExit, exitItem) self.Bind(wx.EVT_MENU, self.OnUndo, undoItem) self.Bind(wx.EVT_MENU, self.OnCut, cutItem) self.Bind(wx.EVT_MENU, self.OnCopy, copyItem) self.Bind(wx.EVT_MENU, self.OnPaste, pasteItem) self.Bind(wx.EVT_MENU, self.OnDelete, deleteItem) self.Bind(wx.EVT_MENU, self.OnSelectAll, selectAllItem) self.Bind(wx.EVT_MENU, self.OnChooseColor, chooseColorItem) self.Bind(wx.EVT_MENU, self.OnChooseFont, chooseFontItem) self.Bind(wx.EVT_MENU, self.OnStatusBar, statusBarItem) self.Bind(wx.EVT_MENU, self.OnAbout, aboutItem) self.TextField.Bind(wx.EVT_TEXT, self.OnTextChanged) self.TextField.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown) self.Bind(wx.EVT_CLOSE, self.OnExit) self.StatusBar() #--------------------------------------------------------------------------------------------# def OnNew(self, event): if self.Modify: QuestionDialog = wx.MessageDialog(self, 'Save before create new file?', '', wx.YES_NO | wx.YES_DEFAULT | wx.ICON_QUESTION) Answer = QuestionDialog.ShowModal() if Answer == wx.ID_YES: self.OnSave(event) self.TextField.SetValue("") if not self.Modify: self.TextField.SetValue("") else: self.TextField.SetValue("") else: self.TextField.SetValue("") window.SetTitle("Untitled" + " - PyNote") def OnOpen(self, event): FName = os.path.basename(self.LastSave) if self.Modify: QuestionDialog = wx.MessageDialog(self, "Save changes?", "", wx.YES_NO | wx.YES_DEFAULT | wx.CANCEL | wx.ICON_QUESTION) Answer = QuestionDialog.ShowModal() if Answer == wx.ID_YES: self.OnSave(event) self.DoOpen() elif Answer == wx.ID_CANCEL: QuestionDialog.Destroy() else: self.DoOpen() else: self.DoOpen() def DoOpen(self): self.dirname = " " openDialog = wx.FileDialog(self, "Choose a file to open", self.dirname, " ", "*.*", wx.FD_OPEN) if openDialog.ShowModal() == wx.ID_OK: #path = openDialog.GetPath() try: '''file = open(path, 'r') text = file.read() file.close() self.TextField.WriteText(text) self.LastSave = path self.Modify = False''' self.filename = openDialog.GetFilename() self.dirname = openDialog.GetDirectory() file = open(os.path.join(self.dirname, self.filename), "r") self.TextField.SetValue(file.read()) file.close() window.SetTitle(self.filename + " - PyNote") except IOError: ErrorDialog = wx.MessageDialog(self, "Error opening file\n" + str(IOError)) ErrorDialog.ShowModal() except UnicodeDecodeError: ErrorDialog = wx.MessageDialog(self, "Error Opening file\n" + str(UnicodeDecodeError)) ErrorDialog.ShowModal() openDialog.Destroy() def OnSave(self, event): if self.LastSave: try: file = open(self.LastSave, 'w') text = self.TextField.GetValue() file.write(text) file.close() self.Modify = False except IOError: ErrorDialog = wx.MessageDialog(self, "Error saving file\n" + str(IOError)) ErrorDialog.ShowModal() else: self.OnSaveAs(event) def OnSaveAs(self, event): saveDialog = wx.FileDialog(self, "Save file as...", " ", " ", "*.*", wx.FD_SAVE) if saveDialog.ShowModal() == wx.ID_OK: #path = saveDialog.GetPath() try: '''file = open(path, 'w') text = self.TextField.GetValue() file.write(text) file.close() self.LastSave = os.path.basename(path) self.Modify = False''' text = self.TextField.GetValue() self.filename = saveDialog.GetFilename() self.dirname = saveDialog.GetDirectory() file = open(os.path.join(self.dirname, self.filename), 'w') file.write(text) file.close() self.LastSave = os.path.basename(os.path.join(self.dirname, self.filename)) self.Modify = False window.SetTitle(self.filename + " - PyNote") except: ErrorDialog = wx.MessageDialog(self, "Error saving file\n" + str(IOError)) ErrorDialog.ShowModal() saveDialog.Destroy() def OnTextChanged(self, event): self.Modify = True event.Skip() def OnExit(self, event): if self.Modify: QuestionDialog = wx.MessageDialog(self, 'Save before Exit?', '', wx.YES_NO | wx.YES_DEFAULT | wx.CANCEL | wx.ICON_QUESTION) Answer = QuestionDialog.ShowModal() if Answer == wx.ID_YES: self.OnSave(event) if not self.Modify: wx.Exit() elif Answer == wx.ID_CANCEL: QuestionDialog.Destroy() else: self.Destroy() else: self.Destroy() #--------------------------------------------------------------------------------------------# def OnUndo(self, event): pass def OnCut(self, event): self.TextField.Cut() def OnCopy(self, event): self.TextField.Copy() def OnPaste(self, event): self.TextField.Paste() def OnDelete(self, event): textRemove, to = self.TextField.GetSelection() self.TextField.Remove(textRemove, to) def OnSelectAll(self, event): self.TextField.SelectAll() #--------------------------------------------------------------------------------------------# def OnChooseColor(self, event): pass def OnChooseFont(self, event): pass #--------------------------------------------------------------------------------------------# def OnStatusBar(self, event): if self.statusbar.IsShown(): self.statusbar.Hide() else: self.statusbar.Show() def StatusBar(self): self.statusbar = self.CreateStatusBar() self.statusbar.SetFieldsCount(3) self.statusbar.SetStatusWidths([-5, -2, -1]) #--------------------------------------------------------------------------------------------# def OnAbout(self, event): aboutDialog = wx.MessageDialog(self, "PyNote\t\n Version:\t\t 1.19.08 \nDenis Ostrovsky 2017", "About PyNote", wx.OK) aboutDialog.ShowModal() #--------------------------------------------------------------------------------------------# def OnKeyDown(self, event): keyCode = event.GetKeyCode() if keyCode == wx.WXK_INSERT: if not self.replace: self.replace = True else: self.replace = False event.Skip() app = wx.App() window = Window(None, "Untitled" + " - PyNote") app.MainLoop()
py
b40e6c2978e0ce58bea1ee5137c6090305812c23
import numpy as np from scipy.linalg import sqrtm import math import time import datetime from util_functions import vectorize, matrixize from Recommendation import Recommendation from BaseAlg import BaseAlg import warnings class CoLinUCBUserSharedStruct(object): def __init__(self, featureDimension, lambda_, userNum, W): self.currentW = np.identity(n = userNum) self.W = W print "W: ", self.W self.userNum = userNum self.A = lambda_*np.identity(n = featureDimension*userNum) self.b = np.zeros(featureDimension*userNum) self.AInv = np.linalg.inv(self.A) self.UserTheta = np.zeros(shape = (featureDimension, userNum)) self.CoTheta = np.zeros(shape = (featureDimension, userNum)) self.BigW = np.kron(np.transpose(W), np.identity(n=featureDimension)) print "Big W: ", self.BigW self.CCA = np.dot(np.dot(self.BigW , self.AInv), np.transpose(self.BigW)) self.alpha_t = 0.0 self.sigma = 1.e-200 #Used in the high probability bound, i.e, with probability at least (1 - sigma) the confidence bound. So sigma should be very small self.lambda_ = lambda_ def updateParameters(self, articlePicked, click, userID, update='Inv'): X = vectorize(np.outer(articlePicked.contextFeatureVector, self.W.T[userID])) #print "X: " + str(X) change = np.outer(X, X) self.A += change self.b += click*X if update == 'Inv': self.AInv = np.linalg.inv(self.A) else: self.AInv = self.AInv - float(np.dot(self.AInv, np.dot(outer, self.AInv)))/(1.0+np.dot(np.transpose(X), np.dot(self.AInv, X) )) self.UserTheta = matrixize(np.dot(self.AInv, self.b), len(articlePicked.contextFeatureVector)) self.CoTheta = np.dot(self.UserTheta, self.W) self.CCA = np.dot(np.dot(self.BigW , self.AInv), np.transpose(self.BigW)) def getProb(self, alpha, article, userID): warnings.filterwarnings('error') TempFeatureM = np.zeros(shape =(len(article.contextFeatureVector), self.userNum)) TempFeatureM.T[userID] = article.contextFeatureVector TempFeatureV = vectorize(TempFeatureM) mean = np.dot(self.CoTheta.T[userID], article.contextFeatureVector) var = np.sqrt(np.dot(np.dot(TempFeatureV, self.CCA), TempFeatureV)) #self.alpha_t = 0.01*np.sqrt(np.log(np.linalg.det(self.A)/float(self.sigma * self.lambda_) )) + np.sqrt(self.lambda_) try: self.alpha_t = 0.01*np.sqrt(np.log(np.linalg.det(self.A)/float(self.sigma * self.lambda_) )) + np.sqrt(self.lambda_) except: self.alpha_t = 0.0 #pta = mean + alpha * var # use emprically tuned alpha pta = mean + self.alpha_t *var # use the theoretically computed alpha_t return pta def getUserCoTheta(self, userID): return self.CoTheta.T[userID] def getCCA(self): return self.CCA def calculateAlphaT(self): warnings.filterwarnings('error') try: self.alpha_t = 0.01*np.sqrt(np.log(np.linalg.det(self.A)/float(self.sigma * self.lambda_) )) + np.sqrt(self.lambda_) except: self.alpha_t = 0.0 return self.alpha_t #---------------CoLinUCB(fixed user order) algorithms: Asynisized version and Synchorized version class CoLinUCBAlgorithm(BaseAlg): def __init__(self, arg_dict, update='inv'): # n is number of users BaseAlg.__init__(self, arg_dict) self.update = update #default is inverse. Could be 'rankone' instead. self.USERS = CoLinUCBUserSharedStruct(arg_dict['dimension'], arg_dict['lambda_'], arg_dict['n_users'], arg_dict['W']) def decide_old(self, pool_articles, userID, exclude = []): maxPTA = float('-inf') articlePicked = None for x in pool_articles: x_pta = self.USERS.getProb(self.alpha, x, userID) # pick article with highest Prob if maxPTA < x_pta: articlePicked = x maxPTA = x_pta return [articlePicked] def decide(self, pool_articles, userID, k = 1): # MEAN art_features = np.empty([len(pool_articles), len(pool_articles[0].contextFeatureVector)]) for i in range(len(pool_articles)): art_features[i, :] = pool_articles[i].contextFeatureVector user_features = self.USERS.CoTheta.T[userID] mean_matrix = np.dot(art_features, user_features) # VARIANCE art_temp_features = np.empty([len(pool_articles), len(pool_articles[0].contextFeatureVector)*self.n_users]) for i in range(len(pool_articles)): TempFeatureM = np.zeros(shape =(len(pool_articles[0].contextFeatureVector), self.n_users)) TempFeatureM.T[userID] = pool_articles[i].contextFeatureVector art_temp_features[i, :] = vectorize(TempFeatureM) var_matrix = np.sqrt(np.dot(np.dot(art_temp_features, self.USERS.CCA), art_temp_features.T)) #self.USERS.calculateAlphaT() if self.use_alpha_t: self.USERS.calculateAlphaT() pta_matrix = mean_matrix + self.USERS.alpha_t*np.diag(var_matrix) else: pta_matrix = mean_matrix + self.alpha*np.diag(var_matrix) pool_positions = np.argsort(pta_matrix)[(k*-1):] articles = [] for i in range(k): articles.append(pool_articles[pool_positions[i]]) return articles #return pool_articles[pool_position] def updateParameters(self, articlePicked, click, userID, update='Inv'): self.USERS.updateParameters(articlePicked, click, userID, update) def getLearntParameters(self, userID): return self.USERS.UserTheta.T[userID] def getTheta(self, userID): return self.USERS.UserTheta.T[userID] def getCoTheta(self, userID): return self.USERS.CoTheta.T[userID] def getA(self): return self.USERS.A def getW(self, userID): return self.USERS.W
py
b40e6d2ef8f49034342c74a312419189000c267e
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import optparse import subprocess import sys import threading import time from git_common import GIT_EXE, GIT_TRANSIENT_ERRORS_RE class TeeThread(threading.Thread): def __init__(self, fd, out_fd, name): super(TeeThread, self).__init__(name='git-retry.tee.%s' % (name,)) self.data = None self.fd = fd self.out_fd = out_fd def run(self): chunks = [] for line in self.fd: chunks.append(line) self.out_fd.write(line) self.data = ''.join(chunks) class GitRetry(object): logger = logging.getLogger('git-retry') DEFAULT_DELAY_SECS = 3.0 DEFAULT_RETRY_COUNT = 5 def __init__(self, retry_count=None, delay=None, delay_factor=None): self.retry_count = retry_count or self.DEFAULT_RETRY_COUNT self.delay = max(delay, 0) if delay else 0 self.delay_factor = max(delay_factor, 0) if delay_factor else 0 def shouldRetry(self, stderr): m = GIT_TRANSIENT_ERRORS_RE.search(stderr) if not m: return False self.logger.info("Encountered known transient error: [%s]", stderr[m.start(): m.end()]) return True @staticmethod def execute(*args): args = (GIT_EXE,) + args proc = subprocess.Popen( args, stderr=subprocess.PIPE, ) stderr_tee = TeeThread(proc.stderr, sys.stderr, 'stderr') # Start our process. Collect/tee 'stdout' and 'stderr'. stderr_tee.start() try: proc.wait() except KeyboardInterrupt: proc.kill() raise finally: stderr_tee.join() return proc.returncode, None, stderr_tee.data def computeDelay(self, iteration): """Returns: the delay (in seconds) for a given iteration The first iteration has a delay of '0'. Args: iteration: (int) The iteration index (starting with zero as the first iteration) """ if (not self.delay) or (iteration == 0): return 0 if self.delay_factor == 0: # Linear delay return iteration * self.delay # Exponential delay return (self.delay_factor ** (iteration - 1)) * self.delay def __call__(self, *args): returncode = 0 for i in xrange(self.retry_count): # If the previous run failed and a delay is configured, delay before the # next run. delay = self.computeDelay(i) if delay > 0: self.logger.info("Delaying for [%s second(s)] until next retry", delay) time.sleep(delay) self.logger.debug("Executing subprocess (%d/%d) with arguments: %s", (i+1), self.retry_count, args) returncode, _, stderr = self.execute(*args) self.logger.debug("Process terminated with return code: %d", returncode) if returncode == 0: break if not self.shouldRetry(stderr): self.logger.error("Process failure was not known to be transient; " "terminating with return code %d", returncode) break return returncode def main(args): parser = optparse.OptionParser() parser.disable_interspersed_args() parser.add_option('-v', '--verbose', action='count', default=0, help="Increase verbosity; can be specified multiple times") parser.add_option('-c', '--retry-count', metavar='COUNT', type=int, default=GitRetry.DEFAULT_RETRY_COUNT, help="Number of times to retry (default=%default)") parser.add_option('-d', '--delay', metavar='SECONDS', type=float, default=GitRetry.DEFAULT_DELAY_SECS, help="Specifies the amount of time (in seconds) to wait " "between successive retries (default=%default). This " "can be zero.") parser.add_option('-D', '--delay-factor', metavar='FACTOR', type=int, default=2, help="The exponential factor to apply to delays in between " "successive failures (default=%default). If this is " "zero, delays will increase linearly. Set this to " "one to have a constant (non-increasing) delay.") opts, args = parser.parse_args(args) # Configure logging verbosity if opts.verbose == 0: logging.getLogger().setLevel(logging.WARNING) elif opts.verbose == 1: logging.getLogger().setLevel(logging.INFO) else: logging.getLogger().setLevel(logging.DEBUG) # Execute retries retry = GitRetry( retry_count=opts.retry_count, delay=opts.delay, delay_factor=opts.delay_factor, ) return retry(*args) if __name__ == '__main__': logging.basicConfig() logging.getLogger().setLevel(logging.WARNING) sys.exit(main(sys.argv[2:]))
py
b40e6efb14cb3440c3862e4f4dacb83c885286da
from dash import dcc, html from dash.dependencies import Input, Output from app import app layout = html.Div([ dcc.RangeSlider( id='my-range-slider', min=0, max=20, step=0.5, value=[5, 15] ), html.Div(id='output-container-range-slider') ]) @app.callback( Output('output-container-range-slider', 'children'), [Input('my-range-slider', 'value')]) def update_output(value): return f'你选择了 "{value}"'
py
b40e6fb41edfd1b0bd8ecd7aea31e21f815d0f8a
from pyfirmata import Arduino PORT = '/dev/cu.usbmodem1421' DELAY = .5 board = Arduino(PORT) def blink(pin): board.digital[pin].write(1) board.pass_time(DELAY) board.digital[pin].write(0) board.pass_time(DELAY) while True: blink(13) blink(11) blink(9) blink(7)
py
b40e7000a75080d12628b9fedd036b2faf7ed781
# Copyright (C) 2018 Verizon. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rest_framework import serializers class OperateVnfRequestSerializer(serializers.Serializer): changeStateTo = serializers.ChoiceField( help_text="The desired operational state (i.e. started or stopped) to change the VNF to.", choices=["STARTED", "STOPPED"], required=True) stopType = serializers.ChoiceField( help_text="It signals whether forceful or graceful stop is requested.", choices=["FORCEFUL", "GRACEFUL"], required=False) gracefulStopTimeout = serializers.IntegerField( help_text="The time interval to wait for the VNF to be taken out of service during graceful stop.", required=False) additionalParams = serializers.DictField( help_text="Additional input parameters for the operate process, \ specific to the VNF being operated, \ as declared in the VNFD as part of OperateVnfOpConfig.", child=serializers.CharField(help_text="KeyValue Pairs", allow_blank=True), required=False, allow_null=True)
py
b40e70347d4b3e258db69d3d775ab68d0bb8ce6c
''' Modifying and extending Named Tuples Named tuples are immutable How we can change values inside the tuple Just like with strings, we have to create a new tuple, with the modified values Point2D = namedtuple('Point2D', 'x y') pt = Point2D(0, 0) # will not work Suppose we need to change the value of the x coordinate: Simple approach: pt = Point2P(100, pt.y) Note: the memory address of pt has now changed This approach can work well, but it has a major drawback Stock = namedtuple('Stock", 'symbol year month day open high low close') djia - Stock('DJIA', 2021, 7, 23, 26313, 26458, 26260, 26393) Maybe slicing or unpacking? djia - Stock('DJIA', 2021, 7, 23, 26313, 26458, 26260, 26393) current = djia[:7] current -> djia - Stock('DJIA', 2021, 7, 23, 26313, 26458, 26260) *current, _ = djia djia - Stock['DJIA', 2021, 7, 23, 26313, 26458, 26260] djia = Stock(*current, 26394) I can also use the _make class method - but we need to create an iterable that contains all the values first: new_values = current + (26394,) new_values = current.append(26394) new_ values -> 'DJIA', 2021, 7, 23, 26313, 26458, 26260, 26393, 26394 djia = stock._make() '''
py
b40e703c490cd2b9812938404bd364348d492214
# Lint as: python3 # Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests `utils.py`.""" import csv import functools import os import tempfile import unittest import mock import pandas as pd from pandas import testing as pdt import tensorflow as tf from tfrecorder import beam_image from tfrecorder import constants from tfrecorder import dataset_loader from tfrecorder import input_schema from tfrecorder import test_utils from tfrecorder import utils # pylint: disable=protected-access class CheckTFRecordsTest(unittest.TestCase): """Tests `check_tfrecords`.""" def setUp(self): """Test setup.""" image_height = 40 image_width = 30 image_channels = 3 image_fn = functools.partial( test_utils.make_random_image, image_height, image_width, image_channels) data = test_utils.get_test_data() schema = input_schema.IMAGE_CSV_SCHEMA image_uri_key = schema.image_uri_key num_records = len(data[image_uri_key]) image_uris = data.pop(image_uri_key) data['image_name'] = [os.path.split(uri)[-1] for uri in image_uris] data.update({ 'image': [beam_image.encode(image_fn()) for _ in range(num_records)], 'image_height': [image_height] * num_records, 'image_width': [image_width] * num_records, 'image_channels': [image_channels] * num_records, }) self.tfrecord_dir = 'gs://path/to/tfrecords/dir' self.split = 'train' self.num_records = num_records self.data = data self.dataset = tf.data.Dataset.from_tensor_slices(self.data) @mock.patch.object(dataset_loader, 'load', autospec=True) def test_valid_records(self, mock_fn): """Tests valid case on reading multiple records.""" mock_fn.return_value = {self.split: self.dataset} num_records = len(self.data['image']) with tempfile.TemporaryDirectory() as dir_: actual_dir = utils.inspect( self.tfrecord_dir, split=self.split, num_records=num_records, output_dir=dir_) self.assertTrue('check-tfrecords-' in actual_dir) actual_csv = os.path.join(actual_dir, 'data.csv') self.assertTrue(os.path.exists(actual_csv)) _ = self.data.pop('image') # Check output CSV actual_df = pd.read_csv(actual_csv) exp_df = pd.DataFrame(self.data) pdt.assert_frame_equal(actual_df, exp_df) # Check output images actual_image_files = [ f for f in os.listdir(actual_dir) if f.endswith('.jpg')] expected_image_files = self.data['image_name'] self.assertCountEqual(actual_image_files, expected_image_files) @mock.patch.object(dataset_loader, 'load', autospec=True) def test_no_data_for_split(self, mock_fn): """Check exception raised when data could not be loaded given `split`.""" mock_fn.return_value = {} with self.assertRaisesRegex(ValueError, 'Could not load data for'): utils.inspect(self.tfrecord_dir, split='UNSUPPORTED') if __name__ == '__main__': unittest.main() class CopyLogTest(unittest.TestCase): """Misc tests for _copy_logfile_to_gcs.""" def test_valid_copy(self): """Test valid file copy.""" with tempfile.TemporaryDirectory() as tmpdirname: text = 'log test log test' infile = os.path.join(tmpdirname, 'foo.log') with open(infile, 'w') as f: f.write(text) utils.copy_logfile_to_gcs(infile, tmpdirname) outfile = os.path.join(tmpdirname, constants.LOGFILE) with open(outfile, 'r') as f: data = f.read() self.assertEqual(text, data) def test_invalid_copy(self): """Test invalid file copy.""" with tempfile.TemporaryDirectory() as tmpdirname: infile = os.path.join(tmpdirname, 'foo.txt') with self.assertRaises(FileNotFoundError): utils.copy_logfile_to_gcs(infile, tmpdirname) class PathSplitTest(unittest.TestCase): """Tests `_path_split`.""" def test_local_and_gcs(self): """Tests both local and GCS paths.""" filename = 'image_file.jpg' dirpaths = ['/path/to/image/dir/', 'gs://path/to/image/dir/'] for dir_ in dirpaths: filepath = os.path.join(dir_, filename) act_dirpath, act_filename = utils._path_split(filepath) self.assertEqual(act_dirpath, dir_.rsplit('/', 1)[0]) self.assertEqual(act_filename, filename) class ReadImageDirectoryTest(unittest.TestCase): """Tests `read_image_directory`.""" def setUp(self): self.image_data = test_utils.get_test_df() self.tempfiles = [] self.tempdir = None self.schema = input_schema.Schema( input_schema.IMAGE_CSV_SCHEMA.input_schema_map) def tearDown(self): for fp in self.tempfiles: fp.close() self.tempdir.cleanup() def test_normal(self): """Tests conversion of expected directory structure on local machine.""" g = self.image_data.groupby([self.schema.split_key, self.schema.label_key]) self.tempdir = tempfile.TemporaryDirectory() rows = [] for (split, label), indices in g.groups.items(): dir_ = os.path.join(self.tempdir.name, split, label) os.makedirs(dir_) for f in list(self.image_data.loc[indices, self.schema.image_uri_key]): _, name = os.path.split(f) fp = tempfile.NamedTemporaryFile( dir=dir_, suffix='.jpg', prefix=name) self.tempfiles.append(fp) rows.append([split, fp.name, label]) columns = list(input_schema.IMAGE_CSV_SCHEMA.get_input_keys()) actual = utils.read_image_directory(self.tempdir.name) actual.sort_values(by=columns, inplace=True) actual.reset_index(drop=True, inplace=True) expected = pd.DataFrame(rows, columns=columns) expected.sort_values(by=columns, inplace=True) expected.reset_index(drop=True, inplace=True) pd.testing.assert_frame_equal(actual, expected) class CreateImageCSVTest(unittest.TestCase): """Tests `create_image_csv`.""" @mock.patch.object(utils, 'read_image_directory', autospec=True) def test_normal(self, mock_fn): """Tests normal case.""" exp_df = test_utils.get_test_df() mock_fn.return_value = exp_df image_dir = 'path/to/image/dir' with tempfile.NamedTemporaryFile( mode='w+', prefix='image', suffix='.csv') as f: utils.create_image_csv(image_dir, f.name) # CSV should not have an index column reader = csv.reader(f, delimiter=',') row = next(reader) exp_columns = exp_df.columns self.assertEqual(len(row), len(exp_columns)) # CSV should match input data actual = pd.read_csv(f.name, names=exp_columns) pd.testing.assert_frame_equal(actual, exp_df)