ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b412caa12f63ba4936dbceafa8bba82102078793
# orm/query.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """The Query class and support. Defines the :class:`_query.Query` class, the central construct used by the ORM to construct database queries. The :class:`_query.Query` class should not be confused with the :class:`_expression.Select` class, which defines database SELECT operations at the SQL (non-ORM) level. ``Query`` differs from ``Select`` in that it returns ORM-mapped objects and interacts with an ORM session, whereas the ``Select`` construct interacts directly with the database to return iterable result sets. """ import itertools import operator import types from . import exc as orm_exc from . import interfaces from . import loading from . import util as orm_util from .base import _assertions from .context import _column_descriptions from .context import _legacy_determine_last_joined_entity from .context import _legacy_filter_by_entity_zero from .context import LABEL_STYLE_LEGACY_ORM from .context import ORMCompileState from .context import ORMFromStatementCompileState from .context import QueryContext from .interfaces import ORMColumnsClauseRole from .util import aliased from .util import AliasedClass from .util import object_mapper from .util import with_parent from .util import with_polymorphic from .. import exc as sa_exc from .. import inspect from .. import inspection from .. import log from .. import sql from .. import util from ..sql import coercions from ..sql import elements from ..sql import expression from ..sql import roles from ..sql import Select from ..sql import util as sql_util from ..sql import visitors from ..sql.annotation import SupportsCloneAnnotations from ..sql.base import _entity_namespace_key from ..sql.base import _generative from ..sql.base import Executable from ..sql.selectable import _MemoizedSelectEntities from ..sql.selectable import _SelectFromElements from ..sql.selectable import ForUpdateArg from ..sql.selectable import GroupedElement from ..sql.selectable import HasHints from ..sql.selectable import HasPrefixes from ..sql.selectable import HasSuffixes from ..sql.selectable import LABEL_STYLE_TABLENAME_PLUS_COL from ..sql.selectable import SelectBase from ..sql.selectable import SelectStatementGrouping from ..sql.visitors import InternalTraversal from ..util import collections_abc __all__ = ["Query", "QueryContext", "aliased"] @inspection._self_inspects @log.class_logger class Query( _SelectFromElements, SupportsCloneAnnotations, HasPrefixes, HasSuffixes, HasHints, Executable, ): """ORM-level SQL construction object. :class:`_query.Query` is the source of all SELECT statements generated by the ORM, both those formulated by end-user query operations as well as by high level internal operations such as related collection loading. It features a generative interface whereby successive calls return a new :class:`_query.Query` object, a copy of the former with additional criteria and options associated with it. :class:`_query.Query` objects are normally initially generated using the :meth:`~.Session.query` method of :class:`.Session`, and in less common cases by instantiating the :class:`_query.Query` directly and associating with a :class:`.Session` using the :meth:`_query.Query.with_session` method. For a full walk through of :class:`_query.Query` usage, see the :ref:`ormtutorial_toplevel`. """ # elements that are in Core and can be cached in the same way _where_criteria = () _having_criteria = () _order_by_clauses = () _group_by_clauses = () _limit_clause = None _offset_clause = None _distinct = False _distinct_on = () _for_update_arg = None _correlate = () _auto_correlate = True _from_obj = () _setup_joins = () _legacy_setup_joins = () _label_style = LABEL_STYLE_LEGACY_ORM _memoized_select_entities = () _compile_options = ORMCompileState.default_compile_options load_options = QueryContext.default_load_options + { "_legacy_uniquing": True } _params = util.EMPTY_DICT # local Query builder state, not needed for # compilation or execution _aliased_generation = None _enable_assertions = True _last_joined_entity = None _statement = None # mirrors that of ClauseElement, used to propagate the "orm" # plugin as well as the "subject" of the plugin, e.g. the mapper # we are querying against. _propagate_attrs = util.immutabledict() def __init__(self, entities, session=None): """Construct a :class:`_query.Query` directly. E.g.:: q = Query([User, Address], session=some_session) The above is equivalent to:: q = some_session.query(User, Address) :param entities: a sequence of entities and/or SQL expressions. :param session: a :class:`.Session` with which the :class:`_query.Query` will be associated. Optional; a :class:`_query.Query` can be associated with a :class:`.Session` generatively via the :meth:`_query.Query.with_session` method as well. .. seealso:: :meth:`.Session.query` :meth:`_query.Query.with_session` """ self.session = session self._set_entities(entities) def _set_propagate_attrs(self, values): self._propagate_attrs = util.immutabledict(values) return self def _set_entities(self, entities): self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self, post_inspect=True, ) for ent in util.to_list(entities) ] def _entity_from_pre_ent_zero(self): if not self._raw_columns: return None ent = self._raw_columns[0] if "parententity" in ent._annotations: return ent._annotations["parententity"] elif isinstance(ent, ORMColumnsClauseRole): return ent.entity elif "bundle" in ent._annotations: return ent._annotations["bundle"] else: # label, other SQL expression for element in visitors.iterate(ent): if "parententity" in element._annotations: return element._annotations["parententity"] else: return None def _only_full_mapper_zero(self, methname): if ( len(self._raw_columns) != 1 or "parententity" not in self._raw_columns[0]._annotations or not self._raw_columns[0].is_selectable ): raise sa_exc.InvalidRequestError( "%s() can only be used against " "a single mapped class." % methname ) return self._raw_columns[0]._annotations["parententity"] def _set_select_from(self, obj, set_base_alias): fa = [ coercions.expect( roles.StrictFromClauseRole, elem, allow_select=True, apply_propagate_attrs=self, ) for elem in obj ] self._compile_options += {"_set_base_alias": set_base_alias} self._from_obj = tuple(fa) @_generative def _set_lazyload_from(self, state): self.load_options += {"_lazy_loaded_from": state} def _get_condition(self): return self._no_criterion_condition( "get", order_by=False, distinct=False ) def _get_existing_condition(self): self._no_criterion_assertion("get", order_by=False, distinct=False) def _no_criterion_assertion(self, meth, order_by=True, distinct=True): if not self._enable_assertions: return if ( self._where_criteria or self._statement is not None or self._from_obj or self._legacy_setup_joins or self._limit_clause is not None or self._offset_clause is not None or self._group_by_clauses or (order_by and self._order_by_clauses) or (distinct and self._distinct) ): raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth ) def _no_criterion_condition(self, meth, order_by=True, distinct=True): self._no_criterion_assertion(meth, order_by, distinct) self._from_obj = self._legacy_setup_joins = () if self._statement is not None: self._compile_options += {"_statement": None} self._where_criteria = () self._distinct = False self._order_by_clauses = self._group_by_clauses = () def _no_clauseelement_condition(self, meth): if not self._enable_assertions: return if self._order_by_clauses: raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth ) self._no_criterion_condition(meth) def _no_statement_condition(self, meth): if not self._enable_assertions: return if self._statement is not None: raise sa_exc.InvalidRequestError( ( "Query.%s() being called on a Query with an existing full " "statement - can't apply criterion." ) % meth ) def _no_limit_offset(self, meth): if not self._enable_assertions: return if self._limit_clause is not None or self._offset_clause is not None: raise sa_exc.InvalidRequestError( "Query.%s() being called on a Query which already has LIMIT " "or OFFSET applied. Call %s() before limit() or offset() " "are applied." % (meth, meth) ) @property def _has_row_limiting_clause(self): return ( self._limit_clause is not None or self._offset_clause is not None ) def _get_options( self, populate_existing=None, version_check=None, only_load_props=None, refresh_state=None, identity_token=None, ): load_options = {} compile_options = {} if version_check: load_options["_version_check"] = version_check if populate_existing: load_options["_populate_existing"] = populate_existing if refresh_state: load_options["_refresh_state"] = refresh_state compile_options["_for_refresh_state"] = True if only_load_props: compile_options["_only_load_props"] = frozenset(only_load_props) if identity_token: load_options["_refresh_identity_token"] = identity_token if load_options: self.load_options += load_options if compile_options: self._compile_options += compile_options return self def _clone(self): return self._generate() @property def statement(self): """The full SELECT statement represented by this Query. The statement by default will not have disambiguating labels applied to the construct unless with_labels(True) is called first. """ # .statement can return the direct future.Select() construct here, as # long as we are not using subsequent adaption features that # are made against raw entities, e.g. from_self(), with_polymorphic(), # select_entity_from(). If these features are being used, then # the Select() we return will not have the correct .selected_columns # collection and will not embed in subsequent queries correctly. # We could find a way to make this collection "correct", however # this would not be too different from doing the full compile as # we are doing in any case, the Select() would still not have the # proper state for other attributes like whereclause, order_by, # and these features are all deprecated in any case. # # for these reasons, Query is not a Select, it remains an ORM # object for which __clause_element__() must be called in order for # it to provide a real expression object. # # from there, it starts to look much like Query itself won't be # passed into the execute process and wont generate its own cache # key; this will all occur in terms of the ORM-enabled Select. if ( not self._compile_options._set_base_alias and not self._compile_options._with_polymorphic_adapt_map ): # if we don't have legacy top level aliasing features in use # then convert to a future select() directly stmt = self._statement_20(for_statement=True) else: stmt = self._compile_state(for_statement=True).statement if self._params: stmt = stmt.params(self._params) return stmt def _final_statement(self, legacy_query_style=True): """Return the 'final' SELECT statement for this :class:`.Query`. This is the Core-only select() that will be rendered by a complete compilation of this query, and is what .statement used to return in 1.3. This method creates a complete compile state so is fairly expensive. """ q = self._clone() return q._compile_state( use_legacy_query_style=legacy_query_style ).statement def _statement_20(self, for_statement=False, use_legacy_query_style=True): # TODO: this event needs to be deprecated, as it currently applies # only to ORM query and occurs at this spot that is now more # or less an artificial spot if self.dispatch.before_compile: for fn in self.dispatch.before_compile: new_query = fn(self) if new_query is not None and new_query is not self: self = new_query if not fn._bake_ok: self._compile_options += {"_bake_ok": False} compile_options = self._compile_options compile_options += { "_for_statement": for_statement, "_use_legacy_query_style": use_legacy_query_style, } if self._statement is not None: stmt = FromStatement(self._raw_columns, self._statement) stmt.__dict__.update( _with_options=self._with_options, _with_context_options=self._with_context_options, _compile_options=compile_options, _execution_options=self._execution_options, _propagate_attrs=self._propagate_attrs, ) else: # Query / select() internal attributes are 99% cross-compatible stmt = Select._create_raw_select(**self.__dict__) stmt.__dict__.update( _label_style=self._label_style, _compile_options=compile_options, _propagate_attrs=self._propagate_attrs, ) stmt.__dict__.pop("session", None) # ensure the ORM context is used to compile the statement, even # if it has no ORM entities. This is so ORM-only things like # _legacy_joins are picked up that wouldn't be picked up by the # Core statement context if "compile_state_plugin" not in stmt._propagate_attrs: stmt._propagate_attrs = stmt._propagate_attrs.union( {"compile_state_plugin": "orm", "plugin_subject": None} ) return stmt def subquery( self, name=None, with_labels=False, reduce_columns=False, ): """Return the full SELECT statement represented by this :class:`_query.Query`, embedded within an :class:`_expression.Alias`. Eager JOIN generation within the query is disabled. :param name: string name to be assigned as the alias; this is passed through to :meth:`_expression.FromClause.alias`. If ``None``, a name will be deterministically generated at compile time. :param with_labels: if True, :meth:`.with_labels` will be called on the :class:`_query.Query` first to apply table-qualified labels to all columns. :param reduce_columns: if True, :meth:`_expression.Select.reduce_columns` will be called on the resulting :func:`_expression.select` construct, to remove same-named columns where one also refers to the other via foreign key or WHERE clause equivalence. """ q = self.enable_eagerloads(False) if with_labels: q = q.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) q = q.statement if reduce_columns: q = q.reduce_columns() return q.alias(name=name) def cte(self, name=None, recursive=False, nesting=False): r"""Return the full SELECT statement represented by this :class:`_query.Query` represented as a common table expression (CTE). Parameters and usage are the same as those of the :meth:`_expression.SelectBase.cte` method; see that method for further details. Here is the `PostgreSQL WITH RECURSIVE example <https://www.postgresql.org/docs/8.4/static/queries-with.html>`_. Note that, in this example, the ``included_parts`` cte and the ``incl_alias`` alias of it are Core selectables, which means the columns are accessed via the ``.c.`` attribute. The ``parts_alias`` object is an :func:`_orm.aliased` instance of the ``Part`` entity, so column-mapped attributes are available directly:: from sqlalchemy.orm import aliased class Part(Base): __tablename__ = 'part' part = Column(String, primary_key=True) sub_part = Column(String, primary_key=True) quantity = Column(Integer) included_parts = session.query( Part.sub_part, Part.part, Part.quantity).\ filter(Part.part=="our part").\ cte(name="included_parts", recursive=True) incl_alias = aliased(included_parts, name="pr") parts_alias = aliased(Part, name="p") included_parts = included_parts.union_all( session.query( parts_alias.sub_part, parts_alias.part, parts_alias.quantity).\ filter(parts_alias.part==incl_alias.c.sub_part) ) q = session.query( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\ group_by(included_parts.c.sub_part) .. seealso:: :meth:`_expression.HasCTE.cte` """ return self.enable_eagerloads(False).statement.cte( name=name, recursive=recursive, nesting=nesting ) def label(self, name): """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery with a label of the given name. Analogous to :meth:`sqlalchemy.sql.expression.SelectBase.label`. """ return self.enable_eagerloads(False).statement.label(name) @util.deprecated( "1.4", "The :meth:`_query.Query.as_scalar` method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`_query.Query.scalar_subquery`.", ) def as_scalar(self): """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery. """ return self.scalar_subquery() def scalar_subquery(self): """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery. Analogous to :meth:`sqlalchemy.sql.expression.SelectBase.scalar_subquery`. .. versionchanged:: 1.4 The :meth:`_query.Query.scalar_subquery` method replaces the :meth:`_query.Query.as_scalar` method. """ return self.enable_eagerloads(False).statement.scalar_subquery() @property def selectable(self): """Return the :class:`_expression.Select` object emitted by this :class:`_query.Query`. Used for :func:`_sa.inspect` compatibility, this is equivalent to:: query.enable_eagerloads(False).with_labels().statement """ return self.__clause_element__() def __clause_element__(self): return ( self._with_compile_options( _enable_eagerloads=False, _render_for_subquery=True ) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .statement ) @_generative def only_return_tuples(self, value): """When set to True, the query results will always be a tuple. This is specifically for single element queries. The default is False. .. versionadded:: 1.2.5 .. seealso:: :meth:`_query.Query.is_single_entity` """ self.load_options += dict(_only_return_tuples=value) @property def is_single_entity(self): """Indicates if this :class:`_query.Query` returns tuples or single entities. Returns True if this query returns a single entity for each instance in its result list, and False if this query returns a tuple of entities for each result. .. versionadded:: 1.3.11 .. seealso:: :meth:`_query.Query.only_return_tuples` """ return ( not self.load_options._only_return_tuples and len(self._raw_columns) == 1 and "parententity" in self._raw_columns[0]._annotations and isinstance( self._raw_columns[0]._annotations["parententity"], ORMColumnsClauseRole, ) ) @_generative def enable_eagerloads(self, value): """Control whether or not eager joins and subqueries are rendered. When set to False, the returned Query will not render eager joins regardless of :func:`~sqlalchemy.orm.joinedload`, :func:`~sqlalchemy.orm.subqueryload` options or mapper-level ``lazy='joined'``/``lazy='subquery'`` configurations. This is used primarily when nesting the Query's statement into a subquery or other selectable, or when using :meth:`_query.Query.yield_per`. """ self._compile_options += {"_enable_eagerloads": value} @_generative def _with_compile_options(self, **opt): self._compile_options += opt @util.deprecated_20( ":meth:`_orm.Query.with_labels` and :meth:`_orm.Query.apply_labels`", alternative="Use set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) " "instead.", ) def with_labels(self): return self.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) apply_labels = with_labels @property def get_label_style(self): """ Retrieve the current label style. .. versionadded:: 1.4 """ return self._label_style def set_label_style(self, style): """Apply column labels to the return value of Query.statement. Indicates that this Query's `statement` accessor should return a SELECT statement that applies labels to all columns in the form <tablename>_<columnname>; this is commonly used to disambiguate columns from multiple tables which have the same name. When the `Query` actually issues SQL to load rows, it always uses column labeling. .. note:: The :meth:`_query.Query.set_label_style` method *only* applies the output of :attr:`_query.Query.statement`, and *not* to any of the result-row invoking systems of :class:`_query.Query` itself, e.g. :meth:`_query.Query.first`, :meth:`_query.Query.all`, etc. To execute a query using :meth:`_query.Query.set_label_style`, invoke the :attr:`_query.Query.statement` using :meth:`.Session.execute`:: result = session.execute( query .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .statement ) .. versionadded:: 1.4 """ # noqa if self._label_style is not style: self = self._generate() self._label_style = style return self @_generative def enable_assertions(self, value): """Control whether assertions are generated. When set to False, the returned Query will not assert its state before certain operations, including that LIMIT/OFFSET has not been applied when filter() is called, no criterion exists when get() is called, and no "from_statement()" exists when filter()/order_by()/group_by() etc. is called. This more permissive mode is used by custom Query subclasses to specify criterion or other modifiers outside of the usual usage patterns. Care should be taken to ensure that the usage pattern is even possible. A statement applied by from_statement() will override any criterion set by filter() or order_by(), for example. """ self._enable_assertions = value @property def whereclause(self): """A readonly attribute which returns the current WHERE criterion for this Query. This returned value is a SQL expression construct, or ``None`` if no criterion has been established. """ return sql.elements.BooleanClauseList._construct_for_whereclause( self._where_criteria ) @_generative def _with_current_path(self, path): """indicate that this query applies to objects loaded within a certain path. Used by deferred loaders (see strategies.py) which transfer query options from an originating query to a newly generated query intended for the deferred load. """ self._compile_options += {"_current_path": path} @_generative @_assertions(_no_clauseelement_condition) @util.deprecated_20( ":meth:`_orm.Query.with_polymorphic`", alternative="Use the orm.with_polymorphic() standalone function", ) def with_polymorphic( self, cls_or_mappers, selectable=None, polymorphic_on=None ): """Load columns for inheriting classes. This is a legacy method which is replaced by the :func:`_orm.with_polymorphic` function. .. warning:: The :meth:`_orm.Query.with_polymorphic` method does **not** support 1.4/2.0 style features including :func:`_orm.with_loader_criteria`. Please migrate code to use :func:`_orm.with_polymorphic`. :meth:`_query.Query.with_polymorphic` applies transformations to the "main" mapped class represented by this :class:`_query.Query`. The "main" mapped class here means the :class:`_query.Query` object's first argument is a full class, i.e. ``session.query(SomeClass)``. These transformations allow additional tables to be present in the FROM clause so that columns for a joined-inheritance subclass are available in the query, both for the purposes of load-time efficiency as well as the ability to use these columns at query time. .. seealso:: :ref:`with_polymorphic` - illustrates current patterns """ entity = _legacy_filter_by_entity_zero(self) wp = with_polymorphic( entity, cls_or_mappers, selectable=selectable, polymorphic_on=polymorphic_on, ) self._compile_options = self._compile_options.add_to_element( "_with_polymorphic_adapt_map", ((entity, inspect(wp)),) ) @_generative def yield_per(self, count): r"""Yield only ``count`` rows at a time. The purpose of this method is when fetching very large result sets (> 10K rows), to batch results in sub-collections and yield them out partially, so that the Python interpreter doesn't need to declare very large areas of memory which is both time consuming and leads to excessive memory use. The performance from fetching hundreds of thousands of rows can often double when a suitable yield-per setting (e.g. approximately 1000) is used, even with DBAPIs that buffer rows (which are most). As of SQLAlchemy 1.4, the :meth:`_orm.Query.yield_per` method is equivalent to using the ``yield_per`` execution option at the ORM level. See the section :ref:`orm_queryguide_yield_per` for further background on this option. """ self.load_options += {"_yield_per": count} @util.deprecated_20( ":meth:`_orm.Query.get`", alternative="The method is now available as :meth:`_orm.Session.get`", becomes_legacy=True, ) def get(self, ident): """Return an instance based on the given primary key identifier, or ``None`` if not found. E.g.:: my_user = session.query(User).get(5) some_object = session.query(VersionedFoo).get((5, 10)) some_object = session.query(VersionedFoo).get( {"id": 5, "version_id": 10}) :meth:`_query.Query.get` is special in that it provides direct access to the identity map of the owning :class:`.Session`. If the given primary key identifier is present in the local identity map, the object is returned directly from this collection and no SQL is emitted, unless the object has been marked fully expired. If not present, a SELECT is performed in order to locate the object. :meth:`_query.Query.get` also will perform a check if the object is present in the identity map and marked as expired - a SELECT is emitted to refresh the object as well as to ensure that the row is still present. If not, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. :meth:`_query.Query.get` is only used to return a single mapped instance, not multiple instances or individual column constructs, and strictly on a single primary key value. The originating :class:`_query.Query` must be constructed in this way, i.e. against a single mapped entity, with no additional filtering criterion. Loading options via :meth:`_query.Query.options` may be applied however, and will be used if the object is not yet locally present. :param ident: A scalar, tuple, or dictionary representing the primary key. For a composite (e.g. multiple column) primary key, a tuple or dictionary should be passed. For a single-column primary key, the scalar calling form is typically the most expedient. If the primary key of a row is the value "5", the call looks like:: my_object = query.get(5) The tuple form contains primary key values typically in the order in which they correspond to the mapped :class:`_schema.Table` object's primary key columns, or if the :paramref:`_orm.Mapper.primary_key` configuration parameter were used, in the order used for that parameter. For example, if the primary key of a row is represented by the integer digits "5, 10" the call would look like:: my_object = query.get((5, 10)) The dictionary form should include as keys the mapped attribute names corresponding to each element of the primary key. If the mapped class has the attributes ``id``, ``version_id`` as the attributes which store the object's primary key value, the call would look like:: my_object = query.get({"id": 5, "version_id": 10}) .. versionadded:: 1.3 the :meth:`_query.Query.get` method now optionally accepts a dictionary of attribute names to values in order to indicate a primary key identifier. :return: The object instance, or ``None``. """ self._no_criterion_assertion("get", order_by=False, distinct=False) # we still implement _get_impl() so that baked query can override # it return self._get_impl(ident, loading.load_on_pk_identity) def _get_impl(self, primary_key_identity, db_load_fn, identity_token=None): mapper = self._only_full_mapper_zero("get") return self.session._get_impl( mapper, primary_key_identity, db_load_fn, populate_existing=self.load_options._populate_existing, with_for_update=self._for_update_arg, options=self._with_options, identity_token=identity_token, execution_options=self._execution_options, ) @property def lazy_loaded_from(self): """An :class:`.InstanceState` that is using this :class:`_query.Query` for a lazy load operation. .. deprecated:: 1.4 This attribute should be viewed via the :attr:`.ORMExecuteState.lazy_loaded_from` attribute, within the context of the :meth:`.SessionEvents.do_orm_execute` event. .. seealso:: :attr:`.ORMExecuteState.lazy_loaded_from` """ return self.load_options._lazy_loaded_from @property def _current_path(self): return self._compile_options._current_path @_generative def correlate(self, *fromclauses): """Return a :class:`.Query` construct which will correlate the given FROM clauses to that of an enclosing :class:`.Query` or :func:`~.expression.select`. The method here accepts mapped classes, :func:`.aliased` constructs, and :func:`.mapper` constructs as arguments, which are resolved into expression constructs, in addition to appropriate expression constructs. The correlation arguments are ultimately passed to :meth:`_expression.Select.correlate` after coercion to expression constructs. The correlation arguments take effect in such cases as when :meth:`_query.Query.from_self` is used, or when a subquery as returned by :meth:`_query.Query.subquery` is embedded in another :func:`_expression.select` construct. """ self._auto_correlate = False if fromclauses and fromclauses[0] in {None, False}: self._correlate = () else: self._correlate = set(self._correlate).union( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) @_generative def autoflush(self, setting): """Return a Query with a specific 'autoflush' setting. As of SQLAlchemy 1.4, the :meth:`_orm.Query.autoflush` method is equivalent to using the ``autoflush`` execution option at the ORM level. See the section :ref:`orm_queryguide_autoflush` for further background on this option. """ self.load_options += {"_autoflush": setting} @_generative def populate_existing(self): """Return a :class:`_query.Query` that will expire and refresh all instances as they are loaded, or reused from the current :class:`.Session`. As of SQLAlchemy 1.4, the :meth:`_orm.Query.populate_existing` method is equivalent to using the ``populate_existing`` execution option at the ORM level. See the section :ref:`orm_queryguide_populate_existing` for further background on this option. """ self.load_options += {"_populate_existing": True} @_generative def _with_invoke_all_eagers(self, value): """Set the 'invoke all eagers' flag which causes joined- and subquery loaders to traverse into already-loaded related objects and collections. Default is that of :attr:`_query.Query._invoke_all_eagers`. """ self.load_options += {"_invoke_all_eagers": value} @util.deprecated_20( ":meth:`_orm.Query.with_parent`", alternative="Use the :func:`_orm.with_parent` standalone construct.", becomes_legacy=True, ) @util.preload_module("sqlalchemy.orm.relationships") def with_parent(self, instance, property=None, from_entity=None): # noqa """Add filtering criterion that relates the given instance to a child object or collection, using its attribute state as well as an established :func:`_orm.relationship()` configuration. The method uses the :func:`.with_parent` function to generate the clause, the result of which is passed to :meth:`_query.Query.filter`. Parameters are the same as :func:`.with_parent`, with the exception that the given property can be None, in which case a search is performed against this :class:`_query.Query` object's target mapper. :param instance: An instance which has some :func:`_orm.relationship`. :param property: String property name, or class-bound attribute, which indicates what relationship from the instance should be used to reconcile the parent/child relationship. :param from_entity: Entity in which to consider as the left side. This defaults to the "zero" entity of the :class:`_query.Query` itself. """ relationships = util.preloaded.orm_relationships if from_entity: entity_zero = inspect(from_entity) else: entity_zero = _legacy_filter_by_entity_zero(self) if property is None: # TODO: deprecate, property has to be supplied mapper = object_mapper(instance) for prop in mapper.iterate_properties: if ( isinstance(prop, relationships.RelationshipProperty) and prop.mapper is entity_zero.mapper ): property = prop # noqa break else: raise sa_exc.InvalidRequestError( "Could not locate a property which relates instances " "of class '%s' to instances of class '%s'" % ( entity_zero.mapper.class_.__name__, instance.__class__.__name__, ) ) return self.filter(with_parent(instance, property, entity_zero.entity)) @_generative def add_entity(self, entity, alias=None): """add a mapped entity to the list of result columns to be returned.""" if alias is not None: # TODO: deprecate entity = aliased(entity, alias) self._raw_columns = list(self._raw_columns) self._raw_columns.append( coercions.expect( roles.ColumnsClauseRole, entity, apply_propagate_attrs=self ) ) @_generative def with_session(self, session): """Return a :class:`_query.Query` that will use the given :class:`.Session`. While the :class:`_query.Query` object is normally instantiated using the :meth:`.Session.query` method, it is legal to build the :class:`_query.Query` directly without necessarily using a :class:`.Session`. Such a :class:`_query.Query` object, or any :class:`_query.Query` already associated with a different :class:`.Session`, can produce a new :class:`_query.Query` object associated with a target session using this method:: from sqlalchemy.orm import Query query = Query([MyClass]).filter(MyClass.id == 5) result = query.with_session(my_session).one() """ self.session = session @util.deprecated_20( ":meth:`_query.Query.from_self`", alternative="The new approach is to use the :func:`.orm.aliased` " "construct in conjunction with a subquery. See the section " ":ref:`Selecting from the query itself as a subquery " "<migration_20_query_from_self>` in the 2.0 migration notes for an " "example.", ) def from_self(self, *entities): r"""return a Query that selects from this Query's SELECT statement. :meth:`_query.Query.from_self` essentially turns the SELECT statement into a SELECT of itself. Given a query such as:: q = session.query(User).filter(User.name.like('e%')) Given the :meth:`_query.Query.from_self` version:: q = session.query(User).filter(User.name.like('e%')).from_self() This query renders as: .. sourcecode:: sql SELECT anon_1.user_id AS anon_1_user_id, anon_1.user_name AS anon_1_user_name FROM (SELECT "user".id AS user_id, "user".name AS user_name FROM "user" WHERE "user".name LIKE :name_1) AS anon_1 There are lots of cases where :meth:`_query.Query.from_self` may be useful. A simple one is where above, we may want to apply a row LIMIT to the set of user objects we query against, and then apply additional joins against that row-limited set:: q = session.query(User).filter(User.name.like('e%')).\ limit(5).from_self().\ join(User.addresses).filter(Address.email.like('q%')) The above query joins to the ``Address`` entity but only against the first five results of the ``User`` query: .. sourcecode:: sql SELECT anon_1.user_id AS anon_1_user_id, anon_1.user_name AS anon_1_user_name FROM (SELECT "user".id AS user_id, "user".name AS user_name FROM "user" WHERE "user".name LIKE :name_1 LIMIT :param_1) AS anon_1 JOIN address ON anon_1.user_id = address.user_id WHERE address.email LIKE :email_1 **Automatic Aliasing** Another key behavior of :meth:`_query.Query.from_self` is that it applies **automatic aliasing** to the entities inside the subquery, when they are referenced on the outside. Above, if we continue to refer to the ``User`` entity without any additional aliasing applied to it, those references will be in terms of the subquery:: q = session.query(User).filter(User.name.like('e%')).\ limit(5).from_self().\ join(User.addresses).filter(Address.email.like('q%')).\ order_by(User.name) The ORDER BY against ``User.name`` is aliased to be in terms of the inner subquery: .. sourcecode:: sql SELECT anon_1.user_id AS anon_1_user_id, anon_1.user_name AS anon_1_user_name FROM (SELECT "user".id AS user_id, "user".name AS user_name FROM "user" WHERE "user".name LIKE :name_1 LIMIT :param_1) AS anon_1 JOIN address ON anon_1.user_id = address.user_id WHERE address.email LIKE :email_1 ORDER BY anon_1.user_name The automatic aliasing feature only works in a **limited** way, for simple filters and orderings. More ambitious constructions such as referring to the entity in joins should prefer to use explicit subquery objects, typically making use of the :meth:`_query.Query.subquery` method to produce an explicit subquery object. Always test the structure of queries by viewing the SQL to ensure a particular structure does what's expected! **Changing the Entities** :meth:`_query.Query.from_self` also includes the ability to modify what columns are being queried. In our example, we want ``User.id`` to be queried by the inner query, so that we can join to the ``Address`` entity on the outside, but we only wanted the outer query to return the ``Address.email`` column:: q = session.query(User).filter(User.name.like('e%')).\ limit(5).from_self(Address.email).\ join(User.addresses).filter(Address.email.like('q%')) yielding: .. sourcecode:: sql SELECT address.email AS address_email FROM (SELECT "user".id AS user_id, "user".name AS user_name FROM "user" WHERE "user".name LIKE :name_1 LIMIT :param_1) AS anon_1 JOIN address ON anon_1.user_id = address.user_id WHERE address.email LIKE :email_1 **Looking out for Inner / Outer Columns** Keep in mind that when referring to columns that originate from inside the subquery, we need to ensure they are present in the columns clause of the subquery itself; this is an ordinary aspect of SQL. For example, if we wanted to load from a joined entity inside the subquery using :func:`.contains_eager`, we need to add those columns. Below illustrates a join of ``Address`` to ``User``, then a subquery, and then we'd like :func:`.contains_eager` to access the ``User`` columns:: q = session.query(Address).join(Address.user).\ filter(User.name.like('e%')) q = q.add_entity(User).from_self().\ options(contains_eager(Address.user)) We use :meth:`_query.Query.add_entity` above **before** we call :meth:`_query.Query.from_self` so that the ``User`` columns are present in the inner subquery, so that they are available to the :func:`.contains_eager` modifier we are using on the outside, producing: .. sourcecode:: sql SELECT anon_1.address_id AS anon_1_address_id, anon_1.address_email AS anon_1_address_email, anon_1.address_user_id AS anon_1_address_user_id, anon_1.user_id AS anon_1_user_id, anon_1.user_name AS anon_1_user_name FROM ( SELECT address.id AS address_id, address.email AS address_email, address.user_id AS address_user_id, "user".id AS user_id, "user".name AS user_name FROM address JOIN "user" ON "user".id = address.user_id WHERE "user".name LIKE :name_1) AS anon_1 If we didn't call ``add_entity(User)``, but still asked :func:`.contains_eager` to load the ``User`` entity, it would be forced to add the table on the outside without the correct join criteria - note the ``anon1, "user"`` phrase at the end: .. sourcecode:: sql -- incorrect query SELECT anon_1.address_id AS anon_1_address_id, anon_1.address_email AS anon_1_address_email, anon_1.address_user_id AS anon_1_address_user_id, "user".id AS user_id, "user".name AS user_name FROM ( SELECT address.id AS address_id, address.email AS address_email, address.user_id AS address_user_id FROM address JOIN "user" ON "user".id = address.user_id WHERE "user".name LIKE :name_1) AS anon_1, "user" :param \*entities: optional list of entities which will replace those being selected. """ return self._from_self(*entities) def _from_self(self, *entities): fromclause = ( self.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .correlate(None) .subquery() ._anonymous_fromclause() ) q = self._from_selectable(fromclause) if entities: q._set_entities(entities) return q @_generative def _set_enable_single_crit(self, val): self._compile_options += {"_enable_single_crit": val} @_generative def _from_selectable(self, fromclause, set_entity_from=True): for attr in ( "_where_criteria", "_order_by_clauses", "_group_by_clauses", "_limit_clause", "_offset_clause", "_last_joined_entity", "_legacy_setup_joins", "_memoized_select_entities", "_distinct", "_distinct_on", "_having_criteria", "_prefixes", "_suffixes", ): self.__dict__.pop(attr, None) self._set_select_from([fromclause], set_entity_from) self._compile_options += { "_enable_single_crit": False, } # this enables clause adaptation for non-ORM # expressions. # legacy. see test/orm/test_froms.py for various # "oldstyle" tests that rely on this and the corresponding # "newtyle" that do not. self._compile_options += {"_orm_only_from_obj_alias": False} @util.deprecated( "1.4", ":meth:`_query.Query.values` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.with_entities`", ) def values(self, *columns): """Return an iterator yielding result tuples corresponding to the given list of columns """ if not columns: return iter(()) q = self._clone().enable_eagerloads(False) q._set_entities(columns) if not q.load_options._yield_per: q.load_options += {"_yield_per": 10} return iter(q) _values = values @util.deprecated( "1.4", ":meth:`_query.Query.value` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.with_entities` " "in combination with :meth:`_query.Query.scalar`", ) def value(self, column): """Return a scalar result corresponding to the given column expression. """ try: return next(self.values(column))[0] except StopIteration: return None @_generative def with_entities(self, *entities): r"""Return a new :class:`_query.Query` replacing the SELECT list with the given entities. e.g.:: # Users, filtered on some arbitrary criterion # and then ordered by related email address q = session.query(User).\ join(User.address).\ filter(User.name.like('%ed%')).\ order_by(Address.email) # given *only* User.id==5, Address.email, and 'q', what # would the *next* User in the result be ? subq = q.with_entities(Address.email).\ order_by(None).\ filter(User.id==5).\ subquery() q = q.join((subq, subq.c.email < Address.email)).\ limit(1) """ _MemoizedSelectEntities._generate_for_statement(self) self._set_entities(entities) @_generative def add_columns(self, *column): """Add one or more column expressions to the list of result columns to be returned.""" self._raw_columns = list(self._raw_columns) self._raw_columns.extend( coercions.expect( roles.ColumnsClauseRole, c, apply_propagate_attrs=self, post_inspect=True, ) for c in column ) @util.deprecated( "1.4", ":meth:`_query.Query.add_column` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.add_columns`", ) def add_column(self, column): """Add a column expression to the list of result columns to be returned. """ return self.add_columns(column) @_generative def options(self, *args): """Return a new :class:`_query.Query` object, applying the given list of mapper options. Most supplied options regard changing how column- and relationship-mapped attributes are loaded. .. seealso:: :ref:`deferred_options` :ref:`relationship_loader_options` """ opts = tuple(util.flatten_iterator(args)) if self._compile_options._current_path: for opt in opts: if opt._is_legacy_option: opt.process_query_conditionally(self) else: for opt in opts: if opt._is_legacy_option: opt.process_query(self) self._with_options += opts def with_transformation(self, fn): """Return a new :class:`_query.Query` object transformed by the given function. E.g.:: def filter_something(criterion): def transform(q): return q.filter(criterion) return transform q = q.with_transformation(filter_something(x==5)) This allows ad-hoc recipes to be created for :class:`_query.Query` objects. See the example at :ref:`hybrid_transformers`. """ return fn(self) def get_execution_options(self): """Get the non-SQL options which will take effect during execution. .. versionadded:: 1.3 .. seealso:: :meth:`_query.Query.execution_options` """ return self._execution_options @_generative def execution_options(self, **kwargs): """Set non-SQL options which take effect during execution. Options allowed here include all of those accepted by :meth:`_engine.Connection.execution_options`, as well as a series of ORM specific options: ``populate_existing=True`` - equivalent to using :meth:`_orm.Query.populate_existing` ``autoflush=True|False`` - equivalent to using :meth:`_orm.Query.autoflush` ``yield_per=<value>`` - equivalent to using :meth:`_orm.Query.yield_per` Note that the ``stream_results`` execution option is enabled automatically if the :meth:`~sqlalchemy.orm.query.Query.yield_per()` method or execution option is used. The execution options may also be specified on a per execution basis when using :term:`2.0 style` queries via the :paramref:`_orm.Session.execution_options` parameter. .. versionadded:: 1.4 - added ORM options to :meth:`_orm.Query.execution_options` .. seealso:: :ref:`engine_stream_results` :meth:`_query.Query.get_execution_options` """ self._execution_options = self._execution_options.union(kwargs) @_generative def with_for_update( self, read=False, nowait=False, of=None, skip_locked=False, key_share=False, ): """return a new :class:`_query.Query` with the specified options for the ``FOR UPDATE`` clause. The behavior of this method is identical to that of :meth:`_expression.GenerativeSelect.with_for_update`. When called with no arguments, the resulting ``SELECT`` statement will have a ``FOR UPDATE`` clause appended. When additional arguments are specified, backend-specific options such as ``FOR UPDATE NOWAIT`` or ``LOCK IN SHARE MODE`` can take effect. E.g.:: q = sess.query(User).populate_existing().with_for_update(nowait=True, of=User) The above query on a PostgreSQL backend will render like:: SELECT users.id AS users_id FROM users FOR UPDATE OF users NOWAIT .. warning:: Using ``with_for_update`` in the context of eager loading relationships is not officially supported or recommended by SQLAlchemy and may not work with certain queries on various database backends. When ``with_for_update`` is successfully used with a query that involves :func:`_orm.joinedload`, SQLAlchemy will attempt to emit SQL that locks all involved tables. .. note:: It is generally a good idea to combine the use of the :meth:`_orm.Query.populate_existing` method when using the :meth:`_orm.Query.with_for_update` method. The purpose of :meth:`_orm.Query.populate_existing` is to force all the data read from the SELECT to be populated into the ORM objects returned, even if these objects are already in the :term:`identity map`. .. seealso:: :meth:`_expression.GenerativeSelect.with_for_update` - Core level method with full argument and behavioral description. :meth:`_orm.Query.populate_existing` - overwrites attributes of objects already loaded in the identity map. """ # noqa: E501 self._for_update_arg = ForUpdateArg( read=read, nowait=nowait, of=of, skip_locked=skip_locked, key_share=key_share, ) @_generative def params(self, *args, **kwargs): r"""Add values for bind parameters which may have been specified in filter(). Parameters may be specified using \**kwargs, or optionally a single dictionary as the first positional argument. The reason for both is that \**kwargs is convenient, however some parameter dictionaries contain unicode keys in which case \**kwargs cannot be used. """ if len(args) == 1: kwargs.update(args[0]) elif len(args) > 0: raise sa_exc.ArgumentError( "params() takes zero or one positional argument, " "which is a dictionary." ) self._params = self._params.union(kwargs) def where(self, *criterion): """A synonym for :meth:`.Query.filter`. .. versionadded:: 1.4 """ return self.filter(*criterion) @_generative @_assertions(_no_statement_condition, _no_limit_offset) def filter(self, *criterion): r"""Apply the given filtering criterion to a copy of this :class:`_query.Query`, using SQL expressions. e.g.:: session.query(MyClass).filter(MyClass.name == 'some name') Multiple criteria may be specified as comma separated; the effect is that they will be joined together using the :func:`.and_` function:: session.query(MyClass).\ filter(MyClass.name == 'some name', MyClass.id > 5) The criterion is any SQL expression object applicable to the WHERE clause of a select. String expressions are coerced into SQL expression constructs via the :func:`_expression.text` construct. .. seealso:: :meth:`_query.Query.filter_by` - filter on keyword expressions. """ for criterion in list(criterion): criterion = coercions.expect( roles.WhereHavingRole, criterion, apply_propagate_attrs=self ) # legacy vvvvvvvvvvvvvvvvvvvvvvvvvvv if self._aliased_generation: criterion = sql_util._deep_annotate( criterion, {"aliased_generation": self._aliased_generation} ) # legacy ^^^^^^^^^^^^^^^^^^^^^^^^^^^ self._where_criteria += (criterion,) @util.memoized_property def _last_joined_entity(self): if self._legacy_setup_joins: return _legacy_determine_last_joined_entity( self._legacy_setup_joins, self._entity_from_pre_ent_zero() ) else: return None def _filter_by_zero(self): """for the filter_by() method, return the target entity for which we will attempt to derive an expression from based on string name. """ if self._legacy_setup_joins: _last_joined_entity = self._last_joined_entity if _last_joined_entity is not None: return _last_joined_entity # discussion related to #7239 # special check determines if we should try to derive attributes # for filter_by() from the "from object", i.e., if the user # called query.select_from(some selectable).filter_by(some_attr=value). # We don't want to do that in the case that methods like # from_self(), select_entity_from(), or a set op like union() were # called; while these methods also place a # selectable in the _from_obj collection, they also set up # the _set_base_alias boolean which turns on the whole "adapt the # entity to this selectable" thing, meaning the query still continues # to construct itself in terms of the lead entity that was passed # to query(), e.g. query(User).from_self() is still in terms of User, # and not the subquery that from_self() created. This feature of # "implicitly adapt all occurrences of entity X to some arbitrary # subquery" is the main thing I am trying to do away with in 2.0 as # users should now used aliased() for that, but I can't entirely get # rid of it due to query.union() and other set ops relying upon it. # # compare this to the base Select()._filter_by_zero() which can # just return self._from_obj[0] if present, because there is no # "_set_base_alias" feature. # # IOW, this conditional essentially detects if # "select_from(some_selectable)" has been called, as opposed to # "select_entity_from()", "from_self()" # or "union() / some_set_op()". if self._from_obj and not self._compile_options._set_base_alias: return self._from_obj[0] return self._raw_columns[0] def filter_by(self, **kwargs): r"""Apply the given filtering criterion to a copy of this :class:`_query.Query`, using keyword expressions. e.g.:: session.query(MyClass).filter_by(name = 'some name') Multiple criteria may be specified as comma separated; the effect is that they will be joined together using the :func:`.and_` function:: session.query(MyClass).\ filter_by(name = 'some name', id = 5) The keyword expressions are extracted from the primary entity of the query, or the last entity that was the target of a call to :meth:`_query.Query.join`. .. seealso:: :meth:`_query.Query.filter` - filter on SQL expressions. """ from_entity = self._filter_by_zero() if from_entity is None: raise sa_exc.InvalidRequestError( "Can't use filter_by when the first entity '%s' of a query " "is not a mapped class. Please use the filter method instead, " "or change the order of the entities in the query" % self._query_entity_zero() ) clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @_generative @_assertions(_no_statement_condition, _no_limit_offset) def order_by(self, *clauses): """Apply one or more ORDER BY criteria to the query and return the newly resulting :class:`_query.Query`. e.g.:: q = session.query(Entity).order_by(Entity.id, Entity.name) All existing ORDER BY criteria may be cancelled by passing ``None`` by itself. New ORDER BY criteria may then be added by invoking :meth:`_orm.Query.order_by` again, e.g.:: # will erase all ORDER BY and ORDER BY new_col alone q = q.order_by(None).order_by(new_col) .. seealso:: These sections describe ORDER BY in terms of :term:`2.0 style` invocation but apply to :class:`_orm.Query` as well: :ref:`tutorial_order_by` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if len(clauses) == 1 and (clauses[0] is None or clauses[0] is False): self._order_by_clauses = () else: criterion = tuple( coercions.expect(roles.OrderByRole, clause) for clause in clauses ) # legacy vvvvvvvvvvvvvvvvvvvvvvvvvvv if self._aliased_generation: criterion = tuple( [ sql_util._deep_annotate( o, {"aliased_generation": self._aliased_generation} ) for o in criterion ] ) # legacy ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self._order_by_clauses += criterion @_generative @_assertions(_no_statement_condition, _no_limit_offset) def group_by(self, *clauses): """Apply one or more GROUP BY criterion to the query and return the newly resulting :class:`_query.Query`. All existing GROUP BY settings can be suppressed by passing ``None`` - this will suppress any GROUP BY configured on mappers as well. .. seealso:: These sections describe GROUP BY in terms of :term:`2.0 style` invocation but apply to :class:`_orm.Query` as well: :ref:`tutorial_group_by_w_aggregates` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if len(clauses) == 1 and (clauses[0] is None or clauses[0] is False): self._group_by_clauses = () else: criterion = tuple( coercions.expect(roles.GroupByRole, clause) for clause in clauses ) # legacy vvvvvvvvvvvvvvvvvvvvvvvvvvv if self._aliased_generation: criterion = tuple( [ sql_util._deep_annotate( o, {"aliased_generation": self._aliased_generation} ) for o in criterion ] ) # legacy ^^^^^^^^^^^^^^^^^^^^^^^^^^ self._group_by_clauses += criterion @_generative @_assertions(_no_statement_condition, _no_limit_offset) def having(self, criterion): r"""Apply a HAVING criterion to the query and return the newly resulting :class:`_query.Query`. :meth:`_query.Query.having` is used in conjunction with :meth:`_query.Query.group_by`. HAVING criterion makes it possible to use filters on aggregate functions like COUNT, SUM, AVG, MAX, and MIN, eg.:: q = session.query(User.id).\ join(User.addresses).\ group_by(User.id).\ having(func.count(Address.id) > 2) """ self._having_criteria += ( coercions.expect( roles.WhereHavingRole, criterion, apply_propagate_attrs=self ), ) def _set_op(self, expr_fn, *q): return self._from_selectable(expr_fn(*([self] + list(q))).subquery()) def union(self, *q): """Produce a UNION of this Query against one or more queries. e.g.:: q1 = sess.query(SomeClass).filter(SomeClass.foo=='bar') q2 = sess.query(SomeClass).filter(SomeClass.bar=='foo') q3 = q1.union(q2) The method accepts multiple Query objects so as to control the level of nesting. A series of ``union()`` calls such as:: x.union(y).union(z).all() will nest on each ``union()``, and produces:: SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y) UNION SELECT * FROM Z) Whereas:: x.union(y, z).all() produces:: SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION SELECT * FROM Z) Note that many database backends do not allow ORDER BY to be rendered on a query called within UNION, EXCEPT, etc. To disable all ORDER BY clauses including those configured on mappers, issue ``query.order_by(None)`` - the resulting :class:`_query.Query` object will not render ORDER BY within its SELECT statement. """ return self._set_op(expression.union, *q) def union_all(self, *q): """Produce a UNION ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._set_op(expression.union_all, *q) def intersect(self, *q): """Produce an INTERSECT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._set_op(expression.intersect, *q) def intersect_all(self, *q): """Produce an INTERSECT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._set_op(expression.intersect_all, *q) def except_(self, *q): """Produce an EXCEPT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._set_op(expression.except_, *q) def except_all(self, *q): """Produce an EXCEPT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._set_op(expression.except_all, *q) def _next_aliased_generation(self): if "_aliased_generation_counter" not in self.__dict__: self._aliased_generation_counter = 0 self._aliased_generation_counter += 1 return self._aliased_generation_counter @_generative @_assertions(_no_statement_condition, _no_limit_offset) def join(self, target, *props, **kwargs): r"""Create a SQL JOIN against this :class:`_query.Query` object's criterion and apply generatively, returning the newly resulting :class:`_query.Query`. **Simple Relationship Joins** Consider a mapping between two classes ``User`` and ``Address``, with a relationship ``User.addresses`` representing a collection of ``Address`` objects associated with each ``User``. The most common usage of :meth:`_query.Query.join` is to create a JOIN along this relationship, using the ``User.addresses`` attribute as an indicator for how this should occur:: q = session.query(User).join(User.addresses) Where above, the call to :meth:`_query.Query.join` along ``User.addresses`` will result in SQL approximately equivalent to:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id In the above example we refer to ``User.addresses`` as passed to :meth:`_query.Query.join` as the "on clause", that is, it indicates how the "ON" portion of the JOIN should be constructed. To construct a chain of joins, multiple :meth:`_query.Query.join` calls may be used. The relationship-bound attribute implies both the left and right side of the join at once:: q = session.query(User).\ join(User.orders).\ join(Order.items).\ join(Item.keywords) .. note:: as seen in the above example, **the order in which each call to the join() method occurs is important**. Query would not, for example, know how to join correctly if we were to specify ``User``, then ``Item``, then ``Order``, in our chain of joins; in such a case, depending on the arguments passed, it may raise an error that it doesn't know how to join, or it may produce invalid SQL in which case the database will raise an error. In correct practice, the :meth:`_query.Query.join` method is invoked in such a way that lines up with how we would want the JOIN clauses in SQL to be rendered, and each call should represent a clear link from what precedes it. **Joins to a Target Entity or Selectable** A second form of :meth:`_query.Query.join` allows any mapped entity or core selectable construct as a target. In this usage, :meth:`_query.Query.join` will attempt to create a JOIN along the natural foreign key relationship between two entities:: q = session.query(User).join(Address) In the above calling form, :meth:`_query.Query.join` is called upon to create the "on clause" automatically for us. This calling form will ultimately raise an error if either there are no foreign keys between the two entities, or if there are multiple foreign key linkages between the target entity and the entity or entities already present on the left side such that creating a join requires more information. Note that when indicating a join to a target without any ON clause, ORM configured relationships are not taken into account. **Joins to a Target with an ON Clause** The third calling form allows both the target entity as well as the ON clause to be passed explicitly. A example that includes a SQL expression as the ON clause is as follows:: q = session.query(User).join(Address, User.id==Address.user_id) The above form may also use a relationship-bound attribute as the ON clause as well:: q = session.query(User).join(Address, User.addresses) The above syntax can be useful for the case where we wish to join to an alias of a particular target entity. If we wanted to join to ``Address`` twice, it could be achieved using two aliases set up using the :func:`~sqlalchemy.orm.aliased` function:: a1 = aliased(Address) a2 = aliased(Address) q = session.query(User).\ join(a1, User.addresses).\ join(a2, User.addresses).\ filter(a1.email_address=='[email protected]').\ filter(a2.email_address=='[email protected]') The relationship-bound calling form can also specify a target entity using the :meth:`_orm.PropComparator.of_type` method; a query equivalent to the one above would be:: a1 = aliased(Address) a2 = aliased(Address) q = session.query(User).\ join(User.addresses.of_type(a1)).\ join(User.addresses.of_type(a2)).\ filter(a1.email_address == '[email protected]').\ filter(a2.email_address == '[email protected]') **Augmenting Built-in ON Clauses** As a substitute for providing a full custom ON condition for an existing relationship, the :meth:`_orm.PropComparator.and_` function may be applied to a relationship attribute to augment additional criteria into the ON clause; the additional criteria will be combined with the default criteria using AND:: q = session.query(User).join( User.addresses.and_(Address.email_address != '[email protected]') ) .. versionadded:: 1.4 **Joining to Tables and Subqueries** The target of a join may also be any table or SELECT statement, which may be related to a target entity or not. Use the appropriate ``.subquery()`` method in order to make a subquery out of a query:: subq = session.query(Address).\ filter(Address.email_address == '[email protected]').\ subquery() q = session.query(User).join( subq, User.id == subq.c.user_id ) Joining to a subquery in terms of a specific relationship and/or target entity may be achieved by linking the subquery to the entity using :func:`_orm.aliased`:: subq = session.query(Address).\ filter(Address.email_address == '[email protected]').\ subquery() address_subq = aliased(Address, subq) q = session.query(User).join( User.addresses.of_type(address_subq) ) **Controlling what to Join From** In cases where the left side of the current state of :class:`_query.Query` is not in line with what we want to join from, the :meth:`_query.Query.select_from` method may be used:: q = session.query(Address).select_from(User).\ join(User.addresses).\ filter(User.name == 'ed') Which will produce SQL similar to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 **Legacy Features of Query.join()** .. deprecated:: 1.4 The following features are deprecated and will be removed in SQLAlchemy 2.0. The :meth:`_query.Query.join` method currently supports several usage patterns and arguments that are considered to be legacy as of SQLAlchemy 1.3. A deprecation path will follow in the 1.4 series for the following features: * Joining on relationship names rather than attributes:: session.query(User).join("addresses") **Why it's legacy**: the string name does not provide enough context for :meth:`_query.Query.join` to always know what is desired, notably in that there is no indication of what the left side of the join should be. This gives rise to flags like ``from_joinpoint`` as well as the ability to place several join clauses in a single :meth:`_query.Query.join` call which don't solve the problem fully while also adding new calling styles that are unnecessary and expensive to accommodate internally. **Modern calling pattern**: Use the actual relationship, e.g. ``User.addresses`` in the above case:: session.query(User).join(User.addresses) * Automatic aliasing with the ``aliased=True`` flag:: session.query(Node).join(Node.children, aliased=True).\ filter(Node.name == 'some name') **Why it's legacy**: the automatic aliasing feature of :class:`_query.Query` is intensely complicated, both in its internal implementation as well as in its observed behavior, and is almost never used. It is difficult to know upon inspection where and when its aliasing of a target entity, ``Node`` in the above case, will be applied and when it won't, and additionally the feature has to use very elaborate heuristics to achieve this implicit behavior. **Modern calling pattern**: Use the :func:`_orm.aliased` construct explicitly:: from sqlalchemy.orm import aliased n1 = aliased(Node) session.query(Node).join(Node.children.of_type(n1)).\ filter(n1.name == 'some name') * Multiple joins in one call:: session.query(User).join("orders", "items") session.query(User).join(User.orders, Order.items) session.query(User).join( (Order, User.orders), (Item, Item.order_id == Order.id) ) session.query(User).join(Order, Item) # ... and several more forms actually **Why it's legacy**: being able to chain multiple ON clauses in one call to :meth:`_query.Query.join` is yet another attempt to solve the problem of being able to specify what entity to join from, and is the source of a large variety of potential calling patterns that are internally expensive and complicated to parse and accommodate. **Modern calling pattern**: Use relationship-bound attributes or SQL-oriented ON clauses within separate calls, so that each call to :meth:`_query.Query.join` knows what the left side should be:: session.query(User).join(User.orders).join( Item, Item.order_id == Order.id) :param \*props: Incoming arguments for :meth:`_query.Query.join`, the props collection in modern use should be considered to be a one or two argument form, either as a single "target" entity or ORM attribute-bound relationship, or as a target entity plus an "on clause" which may be a SQL expression or ORM attribute-bound relationship. :param isouter=False: If True, the join used will be a left outer join, just as if the :meth:`_query.Query.outerjoin` method were called. :param full=False: render FULL OUTER JOIN; implies ``isouter``. .. versionadded:: 1.1 :param from_joinpoint=False: When using ``aliased=True``, a setting of True here will cause the join to be from the most recent joined target, rather than starting back from the original FROM clauses of the query. .. note:: This flag is considered legacy. :param aliased=False: If True, indicate that the JOIN target should be anonymously aliased. Subsequent calls to :meth:`_query.Query.filter` and similar will adapt the incoming criterion to the target alias, until :meth:`_query.Query.reset_joinpoint` is called. .. note:: This flag is considered legacy. .. seealso:: :ref:`ormtutorial_joins` in the ORM tutorial. :ref:`inheritance_toplevel` for details on how :meth:`_query.Query.join` is used for inheritance relationships. :func:`_orm.join` - a standalone ORM-level join function, used internally by :meth:`_query.Query.join`, which in previous SQLAlchemy versions was the primary ORM-level joining interface. """ aliased, from_joinpoint, isouter, full = ( kwargs.pop("aliased", False), kwargs.pop("from_joinpoint", False), kwargs.pop("isouter", False), kwargs.pop("full", False), ) if aliased or from_joinpoint: util.warn_deprecated_20( "The ``aliased`` and ``from_joinpoint`` keyword arguments " "to Query.join() are deprecated and will be removed " "in SQLAlchemy 2.0." ) if kwargs: raise TypeError( "unknown arguments: %s" % ", ".join(sorted(kwargs)) ) # legacy vvvvvvvvvvvvvvvvvvvvvvvvvvv if not from_joinpoint: self._last_joined_entity = None self._aliased_generation = None # legacy ^^^^^^^^^^^^^^^^^^^^^^^^^^^ if props: onclause, legacy = props[0], props[1:] else: onclause = legacy = None if not legacy and onclause is None and not isinstance(target, tuple): # non legacy argument form _props = [(target,)] elif ( not legacy and isinstance( target, ( expression.Selectable, type, AliasedClass, types.FunctionType, ), ) and isinstance( onclause, ( elements.ColumnElement, str, interfaces.PropComparator, types.FunctionType, ), ) ): # non legacy argument form _props = [(target, onclause)] else: # legacy forms. more time consuming :) _props = [] _single = [] for prop in (target,) + props: if isinstance(prop, tuple): util.warn_deprecated_20( "Query.join() will no longer accept tuples as " "arguments in SQLAlchemy 2.0." ) if _single: _props.extend((_s,) for _s in _single) _single = [] # this checks for an extremely ancient calling form of # reversed tuples. if isinstance(prop[0], (str, interfaces.PropComparator)): prop = (prop[1], prop[0]) _props.append(prop) else: _single.append(prop) if _single: _props.extend((_s,) for _s in _single) # legacy vvvvvvvvvvvvvvvvvvvvvvvvvvv if aliased: self._aliased_generation = self._next_aliased_generation() if self._aliased_generation: _props = [ ( prop[0], sql_util._deep_annotate( prop[1], {"aliased_generation": self._aliased_generation}, ) if isinstance(prop[1], expression.ClauseElement) else prop[1], ) if len(prop) == 2 else prop for prop in _props ] # legacy ^^^^^^^^^^^^^^^^^^^^^^^^^^^ joins_to_add = tuple( ( coercions.expect( roles.JoinTargetRole, prop[0], legacy=True, apply_propagate_attrs=self, ), ( coercions.expect(roles.OnClauseRole, prop[1], legacy=True) # if not isinstance(prop[1], str) # else prop[1] ) if len(prop) == 2 else None, None, { "isouter": isouter, "aliased": aliased, "from_joinpoint": True if i > 0 else from_joinpoint, "full": full, "aliased_generation": self._aliased_generation, }, ) for i, prop in enumerate(_props) ) if len(joins_to_add) > 1: util.warn_deprecated_20( "Passing a chain of multiple join conditions to Query.join() " "is deprecated and will be removed in SQLAlchemy 2.0. " "Please use individual join() calls per relationship." ) self._legacy_setup_joins += joins_to_add self.__dict__.pop("_last_joined_entity", None) def outerjoin(self, target, *props, **kwargs): """Create a left outer join against this ``Query`` object's criterion and apply generatively, returning the newly resulting ``Query``. Usage is the same as the ``join()`` method. """ kwargs["isouter"] = True return self.join(target, *props, **kwargs) @_generative @_assertions(_no_statement_condition) def reset_joinpoint(self): """Return a new :class:`.Query`, where the "join point" has been reset back to the base FROM entities of the query. This method is usually used in conjunction with the ``aliased=True`` feature of the :meth:`~.Query.join` method. See the example in :meth:`~.Query.join` for how this is used. """ self._last_joined_entity = None self._aliased_generation = None @_generative @_assertions(_no_clauseelement_condition) def select_from(self, *from_obj): r"""Set the FROM clause of this :class:`.Query` explicitly. :meth:`.Query.select_from` is often used in conjunction with :meth:`.Query.join` in order to control which entity is selected from on the "left" side of the join. The entity or selectable object here effectively replaces the "left edge" of any calls to :meth:`~.Query.join`, when no joinpoint is otherwise established - usually, the default "join point" is the leftmost entity in the :class:`~.Query` object's list of entities to be selected. A typical example:: q = session.query(Address).select_from(User).\ join(User.addresses).\ filter(User.name == 'ed') Which produces SQL equivalent to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 :param \*from_obj: collection of one or more entities to apply to the FROM clause. Entities can be mapped classes, :class:`.AliasedClass` objects, :class:`.Mapper` objects as well as core :class:`.FromClause` elements like subqueries. .. versionchanged:: 0.9 This method no longer applies the given FROM object to be the selectable from which matching entities select from; the :meth:`.select_entity_from` method now accomplishes this. See that method for a description of this behavior. .. seealso:: :meth:`~.Query.join` :meth:`.Query.select_entity_from` """ self._set_select_from(from_obj, False) @util.deprecated_20( ":meth:`_orm.Query.select_entity_from`", alternative="Use the :func:`_orm.aliased` construct instead", ) @_generative @_assertions(_no_clauseelement_condition) def select_entity_from(self, from_obj): r"""Set the FROM clause of this :class:`_query.Query` to a core selectable, applying it as a replacement FROM clause for corresponding mapped entities. The :meth:`_query.Query.select_entity_from` method supplies an alternative approach to the use case of applying an :func:`.aliased` construct explicitly throughout a query. Instead of referring to the :func:`.aliased` construct explicitly, :meth:`_query.Query.select_entity_from` automatically *adapts* all occurrences of the entity to the target selectable. Given a case for :func:`.aliased` such as selecting ``User`` objects from a SELECT statement:: select_stmt = select(User).where(User.id == 7) user_alias = aliased(User, select_stmt) q = session.query(user_alias).\ filter(user_alias.name == 'ed') Above, we apply the ``user_alias`` object explicitly throughout the query. When it's not feasible for ``user_alias`` to be referenced explicitly in many places, :meth:`_query.Query.select_entity_from` may be used at the start of the query to adapt the existing ``User`` entity:: q = session.query(User).\ select_entity_from(select_stmt.subquery()).\ filter(User.name == 'ed') Above, the generated SQL will show that the ``User`` entity is adapted to our statement, even in the case of the WHERE clause: .. sourcecode:: sql SELECT anon_1.id AS anon_1_id, anon_1.name AS anon_1_name FROM (SELECT "user".id AS id, "user".name AS name FROM "user" WHERE "user".id = :id_1) AS anon_1 WHERE anon_1.name = :name_1 The :meth:`_query.Query.select_entity_from` method is similar to the :meth:`_query.Query.select_from` method, in that it sets the FROM clause of the query. The difference is that it additionally applies adaptation to the other parts of the query that refer to the primary entity. If above we had used :meth:`_query.Query.select_from` instead, the SQL generated would have been: .. sourcecode:: sql -- uses plain select_from(), not select_entity_from() SELECT "user".id AS user_id, "user".name AS user_name FROM "user", (SELECT "user".id AS id, "user".name AS name FROM "user" WHERE "user".id = :id_1) AS anon_1 WHERE "user".name = :name_1 To supply textual SQL to the :meth:`_query.Query.select_entity_from` method, we can make use of the :func:`_expression.text` construct. However, the :func:`_expression.text` construct needs to be aligned with the columns of our entity, which is achieved by making use of the :meth:`_expression.TextClause.columns` method:: text_stmt = text("select id, name from user").columns( User.id, User.name).subquery() q = session.query(User).select_entity_from(text_stmt) :meth:`_query.Query.select_entity_from` itself accepts an :func:`.aliased` object, so that the special options of :func:`.aliased` such as :paramref:`.aliased.adapt_on_names` may be used within the scope of the :meth:`_query.Query.select_entity_from` method's adaptation services. Suppose a view ``user_view`` also returns rows from ``user``. If we reflect this view into a :class:`_schema.Table`, this view has no relationship to the :class:`_schema.Table` to which we are mapped, however we can use name matching to select from it:: user_view = Table('user_view', metadata, autoload_with=engine) user_view_alias = aliased( User, user_view, adapt_on_names=True) q = session.query(User).\ select_entity_from(user_view_alias).\ order_by(User.name) .. versionchanged:: 1.1.7 The :meth:`_query.Query.select_entity_from` method now accepts an :func:`.aliased` object as an alternative to a :class:`_expression.FromClause` object. :param from_obj: a :class:`_expression.FromClause` object that will replace the FROM clause of this :class:`_query.Query`. It also may be an instance of :func:`.aliased`. .. seealso:: :meth:`_query.Query.select_from` """ self._set_select_from([from_obj], True) self._compile_options += {"_enable_single_crit": False} def __getitem__(self, item): return orm_util._getitem( self, item, allow_negative=not self.session or not self.session.future, ) @_generative @_assertions(_no_statement_condition) def slice(self, start, stop): """Computes the "slice" of the :class:`_query.Query` represented by the given indices and returns the resulting :class:`_query.Query`. The start and stop indices behave like the argument to Python's built-in :func:`range` function. This method provides an alternative to using ``LIMIT``/``OFFSET`` to get a slice of the query. For example, :: session.query(User).order_by(User.id).slice(1, 3) renders as .. sourcecode:: sql SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id LIMIT ? OFFSET ? (2, 1) .. seealso:: :meth:`_query.Query.limit` :meth:`_query.Query.offset` """ self._limit_clause, self._offset_clause = sql_util._make_slice( self._limit_clause, self._offset_clause, start, stop ) @_generative @_assertions(_no_statement_condition) def limit(self, limit): """Apply a ``LIMIT`` to the query and return the newly resulting ``Query``. """ self._limit_clause = sql_util._offset_or_limit_clause(limit) @_generative @_assertions(_no_statement_condition) def offset(self, offset): """Apply an ``OFFSET`` to the query and return the newly resulting ``Query``. """ self._offset_clause = sql_util._offset_or_limit_clause(offset) @_generative @_assertions(_no_statement_condition) def distinct(self, *expr): r"""Apply a ``DISTINCT`` to the query and return the newly resulting ``Query``. .. note:: The ORM-level :meth:`.distinct` call includes logic that will automatically add columns from the ORDER BY of the query to the columns clause of the SELECT statement, to satisfy the common need of the database backend that ORDER BY columns be part of the SELECT list when DISTINCT is used. These columns *are not* added to the list of columns actually fetched by the :class:`_query.Query`, however, so would not affect results. The columns are passed through when using the :attr:`_query.Query.statement` accessor, however. .. deprecated:: 2.0 This logic is deprecated and will be removed in SQLAlchemy 2.0. See :ref:`migration_20_query_distinct` for a description of this use case in 2.0. :param \*expr: optional column expressions. When present, the PostgreSQL dialect will render a ``DISTINCT ON (<expressions>)`` construct. .. deprecated:: 1.4 Using \*expr in other dialects is deprecated and will raise :class:`_exc.CompileError` in a future version. """ if expr: self._distinct = True self._distinct_on = self._distinct_on + tuple( coercions.expect(roles.ByOfRole, e) for e in expr ) else: self._distinct = True def all(self): """Return the results represented by this :class:`_query.Query` as a list. This results in an execution of the underlying SQL statement. .. warning:: The :class:`_query.Query` object, when asked to return either a sequence or iterator that consists of full ORM-mapped entities, will **deduplicate entries based on primary key**. See the FAQ for more details. .. seealso:: :ref:`faq_query_deduplicating` """ return self._iter().all() @_generative @_assertions(_no_clauseelement_condition) def from_statement(self, statement): """Execute the given SELECT statement and return results. This method bypasses all internal statement compilation, and the statement is executed without modification. The statement is typically either a :func:`_expression.text` or :func:`_expression.select` construct, and should return the set of columns appropriate to the entity class represented by this :class:`_query.Query`. .. seealso:: :ref:`orm_tutorial_literal_sql` - usage examples in the ORM tutorial """ statement = coercions.expect( roles.SelectStatementRole, statement, apply_propagate_attrs=self ) self._statement = statement def first(self): """Return the first result of this ``Query`` or None if the result doesn't contain any row. first() applies a limit of one within the generated SQL, so that only one primary entity row is generated on the server side (note this may consist of multiple result rows if join-loaded collections are present). Calling :meth:`_query.Query.first` results in an execution of the underlying query. .. seealso:: :meth:`_query.Query.one` :meth:`_query.Query.one_or_none` """ # replicates limit(1) behavior if self._statement is not None: return self._iter().first() else: return self.limit(1)._iter().first() def one_or_none(self): """Return at most one result or raise an exception. Returns ``None`` if the query selects no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound`` if multiple object identities are returned, or if multiple rows are returned for a query that returns only scalar values as opposed to full identity-mapped entities. Calling :meth:`_query.Query.one_or_none` results in an execution of the underlying query. .. versionadded:: 1.0.9 Added :meth:`_query.Query.one_or_none` .. seealso:: :meth:`_query.Query.first` :meth:`_query.Query.one` """ return self._iter().one_or_none() def one(self): """Return exactly one result or raise an exception. Raises ``sqlalchemy.orm.exc.NoResultFound`` if the query selects no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound`` if multiple object identities are returned, or if multiple rows are returned for a query that returns only scalar values as opposed to full identity-mapped entities. Calling :meth:`.one` results in an execution of the underlying query. .. seealso:: :meth:`_query.Query.first` :meth:`_query.Query.one_or_none` """ return self._iter().one() def scalar(self): """Return the first element of the first result or None if no rows present. If multiple rows are returned, raises MultipleResultsFound. >>> session.query(Item).scalar() <Item> >>> session.query(Item.id).scalar() 1 >>> session.query(Item.id).filter(Item.id < 0).scalar() None >>> session.query(Item.id, Item.name).scalar() 1 >>> session.query(func.count(Parent.id)).scalar() 20 This results in an execution of the underlying query. """ # TODO: not sure why we can't use result.scalar() here try: ret = self.one() if not isinstance(ret, collections_abc.Sequence): return ret return ret[0] except orm_exc.NoResultFound: return None def __iter__(self): return self._iter().__iter__() def _iter(self): # new style execution. params = self._params statement = self._statement_20() result = self.session.execute( statement, params, execution_options={"_sa_orm_load_options": self.load_options}, ) # legacy: automatically set scalars, unique if result._attributes.get("is_single_entity", False): result = result.scalars() if ( result._attributes.get("filtered", False) and not self.load_options._yield_per ): result = result.unique() return result def __str__(self): statement = self._statement_20() try: bind = ( self._get_bind_args(statement, self.session.get_bind) if self.session else None ) except sa_exc.UnboundExecutionError: bind = None return str(statement.compile(bind)) def _get_bind_args(self, statement, fn, **kw): return fn(clause=statement, **kw) @property def column_descriptions(self): """Return metadata about the columns which would be returned by this :class:`_query.Query`. Format is a list of dictionaries:: user_alias = aliased(User, name='user2') q = sess.query(User, User.id, user_alias) # this expression: q.column_descriptions # would return: [ { 'name':'User', 'type':User, 'aliased':False, 'expr':User, 'entity': User }, { 'name':'id', 'type':Integer(), 'aliased':False, 'expr':User.id, 'entity': User }, { 'name':'user2', 'type':User, 'aliased':True, 'expr':user_alias, 'entity': user_alias } ] """ return _column_descriptions(self, legacy=True) def instances(self, result_proxy, context=None): """Return an ORM result given a :class:`_engine.CursorResult` and :class:`.QueryContext`. """ if context is None: util.warn_deprecated( "Using the Query.instances() method without a context " "is deprecated and will be disallowed in a future release. " "Please make use of :meth:`_query.Query.from_statement` " "for linking ORM results to arbitrary select constructs.", version="1.4", ) compile_state = self._compile_state(for_statement=False) context = QueryContext( compile_state, compile_state.statement, self._params, self.session, self.load_options, ) result = loading.instances(result_proxy, context) # legacy: automatically set scalars, unique if result._attributes.get("is_single_entity", False): result = result.scalars() if result._attributes.get("filtered", False): result = result.unique() return result @util.deprecated_20( ":meth:`_orm.Query.merge_result`", alternative="The method is superseded by the " ":func:`_orm.merge_frozen_result` function.", becomes_legacy=True, enable_warnings=False, # warnings occur via loading.merge_result ) def merge_result(self, iterator, load=True): """Merge a result into this :class:`_query.Query` object's Session. Given an iterator returned by a :class:`_query.Query` of the same structure as this one, return an identical iterator of results, with all mapped instances merged into the session using :meth:`.Session.merge`. This is an optimized method which will merge all mapped instances, preserving the structure of the result rows and unmapped columns with less method overhead than that of calling :meth:`.Session.merge` explicitly for each value. The structure of the results is determined based on the column list of this :class:`_query.Query` - if these do not correspond, unchecked errors will occur. The 'load' argument is the same as that of :meth:`.Session.merge`. For an example of how :meth:`_query.Query.merge_result` is used, see the source code for the example :ref:`examples_caching`, where :meth:`_query.Query.merge_result` is used to efficiently restore state from a cache back into a target :class:`.Session`. """ return loading.merge_result(self, iterator, load) def exists(self): """A convenience method that turns a query into an EXISTS subquery of the form EXISTS (SELECT 1 FROM ... WHERE ...). e.g.:: q = session.query(User).filter(User.name == 'fred') session.query(q.exists()) Producing SQL similar to:: SELECT EXISTS ( SELECT 1 FROM users WHERE users.name = :name_1 ) AS anon_1 The EXISTS construct is usually used in the WHERE clause:: session.query(User.id).filter(q.exists()).scalar() Note that some databases such as SQL Server don't allow an EXISTS expression to be present in the columns clause of a SELECT. To select a simple boolean value based on the exists as a WHERE, use :func:`.literal`:: from sqlalchemy import literal session.query(literal(True)).filter(q.exists()).scalar() """ # .add_columns() for the case that we are a query().select_from(X), # so that ".statement" can be produced (#2995) but also without # omitting the FROM clause from a query(X) (#2818); # .with_only_columns() after we have a core select() so that # we get just "SELECT 1" without any entities. inner = ( self.enable_eagerloads(False) .add_columns(sql.literal_column("1")) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .statement.with_only_columns(1) ) ezero = self._entity_from_pre_ent_zero() if ezero is not None: inner = inner.select_from(ezero) return sql.exists(inner) def count(self): r"""Return a count of rows this the SQL formed by this :class:`Query` would return. This generates the SQL for this Query as follows:: SELECT count(1) AS count_1 FROM ( SELECT <rest of query follows...> ) AS anon_1 The above SQL returns a single row, which is the aggregate value of the count function; the :meth:`_query.Query.count` method then returns that single integer value. .. warning:: It is important to note that the value returned by count() is **not the same as the number of ORM objects that this Query would return from a method such as the .all() method**. The :class:`_query.Query` object, when asked to return full entities, will **deduplicate entries based on primary key**, meaning if the same primary key value would appear in the results more than once, only one object of that primary key would be present. This does not apply to a query that is against individual columns. .. seealso:: :ref:`faq_query_deduplicating` :ref:`orm_tutorial_query_returning` For fine grained control over specific columns to count, to skip the usage of a subquery or otherwise control of the FROM clause, or to use other aggregate functions, use :attr:`~sqlalchemy.sql.expression.func` expressions in conjunction with :meth:`~.Session.query`, i.e.:: from sqlalchemy import func # count User records, without # using a subquery. session.query(func.count(User.id)) # return count of user "id" grouped # by "name" session.query(func.count(User.id)).\ group_by(User.name) from sqlalchemy import distinct # count distinct "name" values session.query(func.count(distinct(User.name))) """ col = sql.func.count(sql.literal_column("*")) return self._from_self(col).enable_eagerloads(False).scalar() def delete(self, synchronize_session="evaluate"): r"""Perform a DELETE with an arbitrary WHERE clause. Deletes rows matched by this query from the database. E.g.:: sess.query(User).filter(User.age == 25).\ delete(synchronize_session=False) sess.query(User).filter(User.age == 25).\ delete(synchronize_session='evaluate') .. warning:: See the section :ref:`orm_expression_update_delete` for important caveats and warnings, including limitations when using bulk UPDATE and DELETE with mapper inheritance configurations. :param synchronize_session: chooses the strategy to update the attributes on objects in the session. See the section :ref:`orm_expression_update_delete` for a discussion of these strategies. :return: the count of rows matched as returned by the database's "row count" feature. .. seealso:: :ref:`orm_expression_update_delete` """ bulk_del = BulkDelete(self) if self.dispatch.before_compile_delete: for fn in self.dispatch.before_compile_delete: new_query = fn(bulk_del.query, bulk_del) if new_query is not None: bulk_del.query = new_query self = bulk_del.query delete_ = sql.delete(*self._raw_columns) delete_._where_criteria = self._where_criteria result = self.session.execute( delete_, self._params, execution_options={"synchronize_session": synchronize_session}, ) bulk_del.result = result self.session.dispatch.after_bulk_delete(bulk_del) result.close() return result.rowcount def update(self, values, synchronize_session="evaluate", update_args=None): r"""Perform an UPDATE with an arbitrary WHERE clause. Updates rows matched by this query in the database. E.g.:: sess.query(User).filter(User.age == 25).\ update({User.age: User.age - 10}, synchronize_session=False) sess.query(User).filter(User.age == 25).\ update({"age": User.age - 10}, synchronize_session='evaluate') .. warning:: See the section :ref:`orm_expression_update_delete` for important caveats and warnings, including limitations when using arbitrary UPDATE and DELETE with mapper inheritance configurations. :param values: a dictionary with attributes names, or alternatively mapped attributes or SQL expressions, as keys, and literal values or sql expressions as values. If :ref:`parameter-ordered mode <updates_order_parameters>` is desired, the values can be passed as a list of 2-tuples; this requires that the :paramref:`~sqlalchemy.sql.expression.update.preserve_parameter_order` flag is passed to the :paramref:`.Query.update.update_args` dictionary as well. :param synchronize_session: chooses the strategy to update the attributes on objects in the session. See the section :ref:`orm_expression_update_delete` for a discussion of these strategies. :param update_args: Optional dictionary, if present will be passed to the underlying :func:`_expression.update` construct as the ``**kw`` for the object. May be used to pass dialect-specific arguments such as ``mysql_limit``, as well as other special arguments such as :paramref:`~sqlalchemy.sql.expression.update.preserve_parameter_order`. :return: the count of rows matched as returned by the database's "row count" feature. .. seealso:: :ref:`orm_expression_update_delete` """ update_args = update_args or {} bulk_ud = BulkUpdate(self, values, update_args) if self.dispatch.before_compile_update: for fn in self.dispatch.before_compile_update: new_query = fn(bulk_ud.query, bulk_ud) if new_query is not None: bulk_ud.query = new_query self = bulk_ud.query upd = sql.update(*self._raw_columns) ppo = update_args.pop("preserve_parameter_order", False) if ppo: upd = upd.ordered_values(*values) else: upd = upd.values(values) if update_args: upd = upd.with_dialect_options(**update_args) upd._where_criteria = self._where_criteria result = self.session.execute( upd, self._params, execution_options={"synchronize_session": synchronize_session}, ) bulk_ud.result = result self.session.dispatch.after_bulk_update(bulk_ud) result.close() return result.rowcount def _compile_state(self, for_statement=False, **kw): """Create an out-of-compiler ORMCompileState object. The ORMCompileState object is normally created directly as a result of the SQLCompiler.process() method being handed a Select() or FromStatement() object that uses the "orm" plugin. This method provides a means of creating this ORMCompileState object directly without using the compiler. This method is used only for deprecated cases, which include the .from_self() method for a Query that has multiple levels of .from_self() in use, as well as the instances() method. It is also used within the test suite to generate ORMCompileState objects for test purposes. """ stmt = self._statement_20(for_statement=for_statement, **kw) assert for_statement == stmt._compile_options._for_statement # this chooses between ORMFromStatementCompileState and # ORMSelectCompileState. We could also base this on # query._statement is not None as we have the ORM Query here # however this is the more general path. compile_state_cls = ORMCompileState._get_plugin_class_for_plugin( stmt, "orm" ) return compile_state_cls.create_for_statement(stmt, None) def _compile_context(self, for_statement=False): compile_state = self._compile_state(for_statement=for_statement) context = QueryContext( compile_state, compile_state.statement, self._params, self.session, self.load_options, ) return context class FromStatement(GroupedElement, SelectBase, Executable): """Core construct that represents a load of ORM objects from a finished select or text construct. """ __visit_name__ = "orm_from_statement" _compile_options = ORMFromStatementCompileState.default_compile_options _compile_state_factory = ORMFromStatementCompileState.create_for_statement _for_update_arg = None _traverse_internals = [ ("_raw_columns", InternalTraversal.dp_clauseelement_list), ("element", InternalTraversal.dp_clauseelement), ] + Executable._executable_traverse_internals _cache_key_traversal = _traverse_internals + [ ("_compile_options", InternalTraversal.dp_has_cache_key) ] def __init__(self, entities, element): self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self, post_inspect=True, ) for ent in util.to_list(entities) ] self.element = element def get_label_style(self): return self._label_style def set_label_style(self, label_style): return SelectStatementGrouping( self.element.set_label_style(label_style) ) @property def _label_style(self): return self.element._label_style def _compiler_dispatch(self, compiler, **kw): """provide a fixed _compiler_dispatch method. This is roughly similar to using the sqlalchemy.ext.compiler ``@compiles`` extension. """ compile_state = self._compile_state_factory(self, compiler, **kw) toplevel = not compiler.stack if toplevel: compiler.compile_state = compile_state return compiler.process(compile_state.statement, **kw) def _ensure_disambiguated_names(self): return self def get_children(self, **kw): for elem in itertools.chain.from_iterable( element._from_objects for element in self._raw_columns ): yield elem for elem in super(FromStatement, self).get_children(**kw): yield elem @property def _returning(self): return self.element._returning if self.element.is_dml else None @property def _inline(self): return self.element._inline if self.element.is_dml else None class AliasOption(interfaces.LoaderOption): @util.deprecated( "1.4", "The :class:`.AliasOption` is not necessary " "for entities to be matched up to a query that is established " "via :meth:`.Query.from_statement` and now does nothing.", ) def __init__(self, alias): r"""Return a :class:`.MapperOption` that will indicate to the :class:`_query.Query` that the main table has been aliased. """ inherit_cache = False def process_compile_state(self, compile_state): pass class BulkUD(object): """State used for the orm.Query version of update() / delete(). This object is now specific to Query only. """ def __init__(self, query): self.query = query.enable_eagerloads(False) self._validate_query_state() self.mapper = self.query._entity_from_pre_ent_zero() def _validate_query_state(self): for attr, methname, notset, op in ( ("_limit_clause", "limit()", None, operator.is_), ("_offset_clause", "offset()", None, operator.is_), ("_order_by_clauses", "order_by()", (), operator.eq), ("_group_by_clauses", "group_by()", (), operator.eq), ("_distinct", "distinct()", False, operator.is_), ( "_from_obj", "join(), outerjoin(), select_from(), or from_self()", (), operator.eq, ), ( "_legacy_setup_joins", "join(), outerjoin(), select_from(), or from_self()", (), operator.eq, ), ): if not op(getattr(self.query, attr), notset): raise sa_exc.InvalidRequestError( "Can't call Query.update() or Query.delete() " "when %s has been called" % (methname,) ) @property def session(self): return self.query.session class BulkUpdate(BulkUD): """BulkUD which handles UPDATEs.""" def __init__(self, query, values, update_kwargs): super(BulkUpdate, self).__init__(query) self.values = values self.update_kwargs = update_kwargs class BulkDelete(BulkUD): """BulkUD which handles DELETEs."""
py
b412caf53f788aa59621c07cf5b766a8c2a478df
from .core.problem import Problem
py
b412cb8fd690e251bda1130715c769f7a0f4cdcc
from conf.db import host,user,port import os print(host) base_dir = str(os.path.dirname(os.path.dirname(__file__))) base_dir = base_dir.replace('\\', '/') file_path = base_dir + "/Config/DbConfig.ini" print(type(base_dir))
py
b412cc83133512116652f4538e527f25fcdf1df1
#!/usr/bin/env python # # Copyright 2009 Todd Whiteman # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # pass
py
b412ccac0d98d14640e5811014917f51380b764d
# MIT License # Copyright (c) 2018 Nathan Letwory , Joel Putnam # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. bl_info = { "name": "Import Rhinoceros 3D", "author": "jesterKing, Joel Putnam", "version": (0, 0, 2), "blender": (2, 80, 0), "location": "File > Import > Rhinoceros 3D (.3dm)", "description": "This addon lets you import Rhinoceros 3dm files", "warning": "The importer doesn't handle all data in 3dm files yet", "wiki_url": "https://github.com/jesterKing/import_3dm", "category": "Import-Export", } import bpy # ImportHelper is a helper class, defines filename and # invoke() function which calls the file selector. from bpy_extras.io_utils import ImportHelper from bpy.props import StringProperty, BoolProperty, EnumProperty from bpy.types import Operator import rhino3dm as r3d from .read3dm import read_3dm class Import3dm(Operator, ImportHelper): """Import Rhinoceros 3D files (.3dm). Currently does render meshes only, more geometry and data to follow soon.""" bl_idname = "import_3dm.some_data" # important since its how bpy.ops.import_3dm.some_data is constructed bl_label = "Import Rhinoceros 3D file" # ImportHelper mixin class uses this filename_ext = ".3dm" filter_glob: StringProperty( default="*.3dm", options={'HIDDEN'}, maxlen=1024, # Max internal buffer length, longer would be clamped. ) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. import_hidden: BoolProperty( name="Import Hidden Geometry", description="Import Hidden Geometry", default=True, ) # type: EnumProperty( # name="Example Enum", # description="Choose between two items", # items=( # ('OPT_A', "First Option", "Description one"), # ('OPT_B', "Second Option", "Description two"), # ), # default='OPT_A', # ) def execute(self, context): return read_3dm(context, self.filepath, self.import_hidden) # Only needed if you want to add into a dynamic menu def menu_func_import(self, context): self.layout.operator(Import3dm.bl_idname, text="Rhinoceros 3D (.3dm)") def register(): bpy.utils.register_class(Import3dm) bpy.types.TOPBAR_MT_file_import.append(menu_func_import) def unregister(): bpy.utils.unregister_class(Import3dm) bpy.types.TOPBAR_MT_file_import.remove(menu_func_import) if __name__ == "__main__": register() # test call bpy.ops.import_3dm.some_data('INVOKE_DEFAULT')
py
b412ccd7add6b7ef5b083ce6d4177c9b19c95f25
from multiprocessing import Process, process from Simulation.Process.Commons import developerUploadCommand,coordinatorPORT,developerInitCommand,developerCheckRoundCommand,developerCheckModelCommand import time from fabric import Connection # rm -f pythonfunc.zip; # 7z a -tzip pythonfunc.zip *; # HOST=$(curl --data-binary @pythonfunc.zip $master:$master_port/function | awk '{ print $3 }'); # curl --resolve $HOST:$master_port:$master http://$HOST:$master_port/init import os import shutil class Developer(Process): def __init__(self,projectDir,expNum,ip,connect_kwargs,developerType,hostIP): super(Developer, self).__init__() self.projectDir = projectDir self.ip = ip self.connect_kwargs = connect_kwargs self.connection = Connection(ip,connect_kwargs=connect_kwargs) self.experimentNumber = expNum self.developerType =developerType self.processId = ip[ip.find("linux-",2)+6:ip.find(".")] self.developerFileDir = os.path.join("src","Simulation",f"developer_{self.developerType}") self.developerDir = os.path.join(projectDir,"TempDeveloper",f"TempDeveloper_{self.processId}") self.hostIP = hostIP def run(self,): print("Run Developer") self.task() time.sleep(2) print('Run Check') self.check() def reconnect(self): self.connection = Connection(self.ip,connect_kwargs=self.connect_kwargs) def setup(self): print("Setup Developer...") def createStorage(): print("Clean Previous Developer File") if os.path.exists(f"TempDeveloper/TempDeveloper_{self.processId}"): shutil.rmtree(f"TempDeveloper/TempDeveloper_{self.processId}") os.mkdir(f"TempDeveloper/TempDeveloper_{self.processId}") def copyClientFile(): shutil.copytree(src=self.developerFileDir,dst=f"TempDeveloper/TempDeveloper_{self.processId}/pyFiles") def zipClientFolder(): shutil.make_archive(f"TempDeveloper/TempDeveloper_{self.processId}/pythonfunc", 'zip', f"TempDeveloper/TempDeveloper_{self.processId}/pyFiles") createStorage() copyClientFile() zipClientFolder() print(self.developerDir) self.reconnect() with self.connection.cd(self.developerDir): print('Entered') command = developerUploadCommand.format(ip=self.hostIP,port=coordinatorPORT,experimentNum=self.experimentNumber,workerId = self.processId) # command = 'pwd' # print(command) result = self.connection.run(command, hide=True) msg = "Ran {0.command!r} on {0.connection.host}, got stdout:\n{0.stdout}" print(msg.format(result)) self.functionId = result.stdout[result.stdout.find("=> ")+3:].strip() print(self.functionId) return self.functionId def task(self,): self.reconnect() with self.connection.cd(self.developerDir): command = developerInitCommand.format(ip=self.hostIP,port=coordinatorPORT,functionId = self.functionId,experimentNum=self.experimentNumber,workerId = self.processId) # command = 'pwd' print(command) result = self.connection.run(command, hide=True) msg = "Ran {0.command!r} on {0.connection.host}, got stdout:\n{0.stdout}" print(msg.format(result)) # self.functionId = result.stdout[result.stdout.find("=> ")+3:].strip() # print(self.functionId) def check(self,): def checkRound(): self.reconnect() with self.connection.cd(self.developerDir): command = developerCheckRoundCommand.format(ip=self.hostIP,port=coordinatorPORT,functionId = self.functionId,experimentNum=self.experimentNumber,workerId = self.processId) # command = 'pwd' # print(command) result = self.connection.run(command, hide=True) msg = "Ran {0.command!r} on {0.connection.host}, got stdout:\n{0.stdout}" print(msg.format(result)) # self.functionId = result.stdout[result.stdout.find("=> ")+3:].strip() def checkModel(): self.reconnect() with self.connection.cd(self.developerDir): command = developerCheckModelCommand.format(ip=self.hostIP,port=coordinatorPORT,functionId = self.functionId,experimentNum=self.experimentNumber,workerId = self.processId) print(command) result = self.connection.run(command,hide=True ) msg = "Ran {0.command!r} on {0.connection.host}, got stdout:\n{0.stdout}" print(msg.format(result)) # self.functionId = result.stdout[result.stdout.find("=> ")+3:].strip() # print(self.functionId) checkRound() checkModel()
py
b412cd84e5eae62298b7139309188332e8c87221
"""Serve files directly from the ContentsManager.""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import mimetypes import json from base64 import decodebytes from tornado import gen, web from notebook.base.handlers import IPythonHandler from notebook.utils import maybe_future class FilesHandler(IPythonHandler): """serve files via ContentsManager Normally used when ContentsManager is not a FileContentsManager. FileContentsManager subclasses use AuthenticatedFilesHandler by default, a subclass of StaticFileHandler. """ @property def content_security_policy(self): # In case we're serving HTML/SVG, confine any Javascript to a unique # origin so it can't interact with the notebook server. return super().content_security_policy + "; sandbox allow-scripts" @web.authenticated def head(self, path): self.check_xsrf_cookie() return self.get(path, include_body=False) @web.authenticated @gen.coroutine def get(self, path, include_body=True): # /files/ requests must originate from the same site self.check_xsrf_cookie() cm = self.contents_manager if cm.is_hidden(path) and not cm.allow_hidden: self.log.info("Refusing to serve hidden file, via 404 Error") raise web.HTTPError(404) path = path.strip('/') if '/' in path: _, name = path.rsplit('/', 1) else: name = path model = yield maybe_future(cm.get(path, type='file', content=include_body)) if self.get_argument("download", False): self.set_attachment_header(name) # get mimetype from filename if name.lower().endswith('.ipynb'): self.set_header('Content-Type', 'application/x-ipynb+json') else: cur_mime = mimetypes.guess_type(name)[0] if cur_mime == 'text/plain': self.set_header('Content-Type', 'text/plain; charset=UTF-8') elif cur_mime is not None: self.set_header('Content-Type', cur_mime) else: if model['format'] == 'base64': self.set_header('Content-Type', 'application/octet-stream') else: self.set_header('Content-Type', 'text/plain; charset=UTF-8') if include_body: if model['format'] == 'base64': b64_bytes = model['content'].encode('ascii') self.write(decodebytes(b64_bytes)) elif model['format'] == 'json': self.write(json.dumps(model['content'])) else: self.write(model['content']) self.flush() default_handlers = []
py
b412cd9ac43a3fdf9483659aeb4cb4abf8f9a7a8
""" This plugin allows you to quote messages easily. Usage ----- .. glossary:: /quote **Usage:** ``/quote <message>`` The message must exist. You can use autocompletion to get the message you want to quote easily. Example: .. code-block:: none /quote "Pouet" If the message "Pouet" exists, it will be put in the input. If not you will get a warning. Options ------- .. glossary:: :sorted: before_quote **Default value:** ``[empty]`` Text to insert before the quote. ``%(nick)s`` and ``%(time)s`` can be used to insert the nick of the user who sent the message or the time of the message. after_quote **Default value:** ``[empty]`` Text to insert after the quote. ``%(nick)s`` and ``%(time)s`` can be used to insert the nick of the user who sent the message or the time of the message. """ from poezio.core.structs import Completion from poezio.plugin import BasePlugin from poezio.xhtml import clean_text from poezio import common from poezio import tabs import logging log = logging.getLogger(__name__) class Plugin(BasePlugin): def init(self): for _class in (tabs.MucTab, tabs.ConversationTab, tabs.PrivateTab): self.api.add_tab_command( _class, 'quote', self.command_quote, usage='<message>', help='Quote the message you typed if it exists.', short='Quote a message.', completion=self.completion_quote) def command_quote(self, args): args = common.shell_split(args) if len(args) == 1: message = args[-1] else: return self.api.run_command('/help quote') message = self.find_message(message) if message: before = self.config.get('before_quote', '') % { 'nick': message.nickname or '', 'time': message.str_time } after = self.config.get('after_quote', '') % { 'nick': message.nickname or '', 'time': message.str_time } self.core.insert_input_text( '%(before)s%(quote)s%(after)s' % { 'before': before.replace('\\n', '\n').replace('[SP]', ' '), 'quote': clean_text(message.txt), 'after': after.replace('\\n', '\n').replace('[SP]', ' ') }) else: self.api.information('No message found', 'Warning') def find_message(self, txt): messages = self.api.get_conversation_messages() if not messages: return None for message in messages[::-1]: if clean_text(message.txt) == txt: return message return None def completion_quote(self, the_input): def message_match(msg): return input_message.lower() in clean_text(msg.txt).lower() messages = self.api.get_conversation_messages() if not messages: return text = the_input.get_text() args = common.shell_split(text) if not text.endswith(' '): input_message = args[-1] messages = list(filter(message_match, messages)) elif len(args) > 1: return False return Completion(the_input.auto_completion, [clean_text(msg.txt) for msg in messages[::-1]], '')
py
b412ce61c19c1ae2ea6d54ece0c63f417d3ddfcd
# Copyright (C) 2009 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import webkitpy.thirdparty.unittest2 as unittest from webkitpy.common.net.layouttestresults import LayoutTestResults from webkitpy.common.net.buildbot import BuildBot, Builder, Build from webkitpy.layout_tests.models import test_results from webkitpy.layout_tests.models import test_failures from webkitpy.thirdparty.BeautifulSoup import BeautifulSoup class BuilderTest(unittest.TestCase): def _mock_test_result(self, testname): return test_results.TestResult(testname, [test_failures.FailureTextMismatch()]) def _install_fetch_build(self, failure): def _mock_fetch_build(build_number): build = Build( builder=self.builder, build_number=build_number, revision=build_number + 1000, is_green=build_number < 4 ) return build self.builder._fetch_build = _mock_fetch_build def setUp(self): self.buildbot = BuildBot() self.builder = Builder(u"Test Builder \u2661", self.buildbot) self._install_fetch_build(lambda build_number: ["test1", "test2"]) def test_latest_layout_test_results(self): self.builder.fetch_layout_test_results = lambda results_url: LayoutTestResults(None) self.builder.accumulated_results_url = lambda: "http://dummy_url.org" self.assertTrue(self.builder.latest_layout_test_results()) def test_build_caching(self): self.assertEqual(self.builder.build(10), self.builder.build(10)) def test_build_and_revision_for_filename(self): expectations = { "r47483 (1)/" : (47483, 1), "r47483 (1).zip" : (47483, 1), "random junk": None, } for filename, revision_and_build in expectations.items(): self.assertEqual(self.builder._revision_and_build_for_filename(filename), revision_and_build) def test_file_info_list_to_revision_to_build_list(self): file_info_list = [ {"filename": "r47483 (1)/"}, {"filename": "r47483 (1).zip"}, {"filename": "random junk"}, ] builds_and_revisions_list = [(47483, 1), (47483, 1)] self.assertEqual(self.builder._file_info_list_to_revision_to_build_list(file_info_list), builds_and_revisions_list) def test_fetch_build(self): buildbot = BuildBot() builder = Builder(u"Test Builder \u2661", buildbot) def mock_fetch_build_dictionary(self, build_number): build_dictionary = { "sourceStamp": { "revision": None, # revision=None means a trunk build started from the force-build button on the builder page. }, "number": int(build_number), # Intentionally missing the 'results' key, meaning it's a "pass" build. } return build_dictionary buildbot._fetch_build_dictionary = mock_fetch_build_dictionary self.assertIsNotNone(builder._fetch_build(1)) class BuildBotTest(unittest.TestCase): _example_one_box_status = ''' <table> <tr> <td class="box"><a href="builders/Windows%20Debug%20%28Tests%29">Windows Debug (Tests)</a></td> <td align="center" class="LastBuild box success"><a href="builders/Windows%20Debug%20%28Tests%29/builds/3693">47380</a><br />build<br />successful</td> <td align="center" class="Activity building">building<br />ETA in<br />~ 14 mins<br />at 13:40</td> <tr> <td class="box"><a href="builders/SnowLeopard%20Intel%20Release">SnowLeopard Intel Release</a></td> <td class="LastBuild box" >no build</td> <td align="center" class="Activity building">building<br />< 1 min</td> <tr> <td class="box"><a href="builders/Qt%20Linux%20Release">Qt Linux Release</a></td> <td align="center" class="LastBuild box failure"><a href="builders/Qt%20Linux%20Release/builds/654">47383</a><br />failed<br />compile-webkit</td> <td align="center" class="Activity idle">idle<br />3 pending</td> <tr> <td class="box"><a href="builders/Qt%20Windows%2032-bit%20Debug">Qt Windows 32-bit Debug</a></td> <td align="center" class="LastBuild box failure"><a href="builders/Qt%20Windows%2032-bit%20Debug/builds/2090">60563</a><br />failed<br />failed<br />slave<br />lost</td> <td align="center" class="Activity building">building<br />ETA in<br />~ 5 mins<br />at 08:25</td> </table> ''' _expected_example_one_box_parsings = [ { 'is_green': True, 'build_number' : 3693, 'name': u'Windows Debug (Tests)', 'built_revision': 47380, 'activity': 'building', 'pending_builds': 0, }, { 'is_green': False, 'build_number' : None, 'name': u'SnowLeopard Intel Release', 'built_revision': None, 'activity': 'building', 'pending_builds': 0, }, { 'is_green': False, 'build_number' : 654, 'name': u'Qt Linux Release', 'built_revision': 47383, 'activity': 'idle', 'pending_builds': 3, }, { 'is_green': True, 'build_number' : 2090, 'name': u'Qt Windows 32-bit Debug', 'built_revision': 60563, 'activity': 'building', 'pending_builds': 0, }, ] def test_status_parsing(self): buildbot = BuildBot() soup = BeautifulSoup(self._example_one_box_status) status_table = soup.find("table") input_rows = status_table.findAll('tr') for x in range(len(input_rows)): status_row = input_rows[x] expected_parsing = self._expected_example_one_box_parsings[x] builder = buildbot._parse_builder_status_from_row(status_row) # Make sure we aren't parsing more or less than we expect self.assertEqual(builder.keys(), expected_parsing.keys()) for key, expected_value in expected_parsing.items(): self.assertEqual(builder[key], expected_value, ("Builder %d parse failure for key: %s: Actual='%s' Expected='%s'" % (x, key, builder[key], expected_value))) def test_builder_with_name(self): buildbot = BuildBot() builder = buildbot.builder_with_name("Test Builder") self.assertEqual(builder.name(), "Test Builder") self.assertEqual(builder.url(), "http://build.webkit.org/builders/Test%20Builder") self.assertEqual(builder.url_encoded_name(), "Test%20Builder") self.assertEqual(builder.results_url(), "http://build.webkit.org/results/Test%20Builder") # Override _fetch_build_dictionary function to not touch the network. def mock_fetch_build_dictionary(self, build_number): build_dictionary = { "sourceStamp": { "revision" : 2 * build_number, }, "number" : int(build_number), "results" : build_number % 2, # 0 means pass } return build_dictionary buildbot._fetch_build_dictionary = mock_fetch_build_dictionary build = builder.build(10) self.assertEqual(build.builder(), builder) self.assertEqual(build.url(), "http://build.webkit.org/builders/Test%20Builder/builds/10") self.assertEqual(build.results_url(), "http://build.webkit.org/results/Test%20Builder/r20%20%2810%29") self.assertEqual(build.revision(), 20) self.assertTrue(build.is_green()) build = build.previous_build() self.assertEqual(build.builder(), builder) self.assertEqual(build.url(), "http://build.webkit.org/builders/Test%20Builder/builds/9") self.assertEqual(build.results_url(), "http://build.webkit.org/results/Test%20Builder/r18%20%289%29") self.assertEqual(build.revision(), 18) self.assertFalse(build.is_green()) self.assertIsNone(builder.build(None)) _example_directory_listing = ''' <h1>Directory listing for /results/SnowLeopard Intel Leaks/</h1> <table> <tr class="alt"> <th>Filename</th> <th>Size</th> <th>Content type</th> <th>Content encoding</th> </tr> <tr class="directory "> <td><a href="r47483%20%281%29/"><b>r47483 (1)/</b></a></td> <td><b></b></td> <td><b>[Directory]</b></td> <td><b></b></td> </tr> <tr class="file alt"> <td><a href="r47484%20%282%29.zip">r47484 (2).zip</a></td> <td>89K</td> <td>[application/zip]</td> <td></td> </tr> ''' _expected_files = [ { "filename" : "r47483 (1)/", "size" : "", "type" : "[Directory]", "encoding" : "", }, { "filename" : "r47484 (2).zip", "size" : "89K", "type" : "[application/zip]", "encoding" : "", }, ] def test_parse_build_to_revision_map(self): buildbot = BuildBot() files = buildbot._parse_twisted_directory_listing(self._example_directory_listing) self.assertEqual(self._expected_files, files) _fake_builder_page = ''' <body> <div class="content"> <h1>Some Builder</h1> <p>(<a href="../waterfall?show=Some Builder">view in waterfall</a>)</p> <div class="column"> <h2>Recent Builds:</h2> <table class="info"> <tr> <th>Time</th> <th>Revision</th> <th>Result</th> <th>Build #</th> <th>Info</th> </tr> <tr class="alt"> <td>Jan 10 15:49</td> <td><span class="revision" title="Revision 104643"><a href="http://trac.webkit.org/changeset/104643">104643</a></span></td> <td class="success">failure</td> <td><a href=".../37604">#37604</a></td> <td class="left">Build successful</td> </tr> <tr class=""> <td>Jan 10 15:32</td> <td><span class="revision" title="Revision 104636"><a href="http://trac.webkit.org/changeset/104636">104636</a></span></td> <td class="success">failure</td> <td><a href=".../37603">#37603</a></td> <td class="left">Build successful</td> </tr> <tr class="alt"> <td>Jan 10 15:18</td> <td><span class="revision" title="Revision 104635"><a href="http://trac.webkit.org/changeset/104635">104635</a></span></td> <td class="success">success</td> <td><a href=".../37602">#37602</a></td> <td class="left">Build successful</td> </tr> <tr class=""> <td>Jan 10 14:51</td> <td><span class="revision" title="Revision 104633"><a href="http://trac.webkit.org/changeset/104633">104633</a></span></td> <td class="failure">failure</td> <td><a href=".../37601">#37601</a></td> <td class="left">Failed compile-webkit</td> </tr> </table> </body>''' _fake_builder_page_without_success = ''' <body> <table> <tr class="alt"> <td>Jan 10 15:49</td> <td><span class="revision" title="Revision 104643"><a href="http://trac.webkit.org/changeset/104643">104643</a></span></td> <td class="success">failure</td> </tr> <tr class=""> <td>Jan 10 15:32</td> <td><span class="revision" title="Revision 104636"><a href="http://trac.webkit.org/changeset/104636">104636</a></span></td> <td class="success">failure</td> </tr> <tr class="alt"> <td>Jan 10 15:18</td> <td><span class="revision" title="Revision 104635"><a href="http://trac.webkit.org/changeset/104635">104635</a></span></td> <td class="success">failure</td> </tr> <tr class=""> <td>Jan 10 11:58</td> <td><span class="revision" title="Revision ??"><a href="http://trac.webkit.org/changeset/%3F%3F">??</a></span></td> <td class="retry">retry</td> </tr> <tr class=""> <td>Jan 10 14:51</td> <td><span class="revision" title="Revision 104633"><a href="http://trac.webkit.org/changeset/104633">104633</a></span></td> <td class="failure">failure</td> </tr> </table> </body>''' def test_revisions_for_builder(self): buildbot = BuildBot() buildbot._fetch_builder_page = lambda builder: builder.page builder_with_success = Builder('Some builder', None) builder_with_success.page = self._fake_builder_page self.assertEqual(buildbot._revisions_for_builder(builder_with_success), [(104643, False), (104636, False), (104635, True), (104633, False)]) builder_without_success = Builder('Some builder', None) builder_without_success.page = self._fake_builder_page_without_success self.assertEqual(buildbot._revisions_for_builder(builder_without_success), [(104643, False), (104636, False), (104635, False), (104633, False)]) def test_find_green_revision(self): buildbot = BuildBot() self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (3, True)], 'Builder 2': [(1, True), (3, False)], 'Builder 3': [(1, True), (3, True)], }), 1) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, False), (3, True)], 'Builder 2': [(1, True), (3, True)], 'Builder 3': [(1, True), (3, True)], }), 3) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (2, True)], 'Builder 2': [(1, False), (2, True), (3, True)], 'Builder 3': [(1, True), (3, True)], }), None) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (2, True)], 'Builder 2': [(1, True), (2, True), (3, True)], 'Builder 3': [(1, True), (3, True)], }), 2) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, False), (2, True)], 'Builder 2': [(1, True), (3, True)], 'Builder 3': [(1, True), (3, True)], }), None) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (3, True)], 'Builder 2': [(1, False), (2, True), (3, True), (4, True)], 'Builder 3': [(2, True), (4, True)], }), 3) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (3, True)], 'Builder 2': [(1, False), (2, True), (3, True), (4, False)], 'Builder 3': [(2, True), (4, True)], }), None) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (3, True)], 'Builder 2': [(1, False), (2, True), (3, True), (4, False)], 'Builder 3': [(2, True), (3, True), (4, True)], }), 3) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (2, True)], 'Builder 2': [], 'Builder 3': [(1, True), (2, True)], }), None) self.assertEqual(buildbot._find_green_revision({ 'Builder 1': [(1, True), (3, False), (5, True), (10, True), (12, False)], 'Builder 2': [(1, True), (3, False), (7, True), (9, True), (12, False)], 'Builder 3': [(1, True), (3, True), (7, True), (11, False), (12, True)], }), 7) def _fetch_build(self, build_number): if build_number == 5: return "correct build" return "wrong build" def _fetch_revision_to_build_map(self): return {'r5': 5, 'r2': 2, 'r3': 3} def test_latest_cached_build(self): b = Builder('builder', BuildBot()) b._fetch_build = self._fetch_build b._fetch_revision_to_build_map = self._fetch_revision_to_build_map self.assertEqual("correct build", b.latest_cached_build()) def results_url(self): return "some-url" def test_results_zip_url(self): b = Build(None, 123, 123, False) b.results_url = self.results_url self.assertEqual("some-url.zip", b.results_zip_url())
py
b412cf4bb22215e9137a7dd168681df9d418f652
from imutils.video import VideoStream from imutils.video import FPS import numpy as np import argparse import imutils import pickle import time import cv2 import os import pyfakewebcam import sys def run(): args = {"detector": "face_detection_model", "embedding_model": "openface_nn4.small2.v1.t7", "recognizer": "output/recognizer.pickle", "le": "output/le.pickle", "confidence": 0.5, } protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"]) modelPath = os.path.sep.join([args["detector"], "res10_300x300_ssd_iter_140000.caffemodel"]) detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath) embedder = cv2.dnn.readNetFromTorch(args["embedding_model"]) recognizer = pickle.loads(open(args["recognizer"], "rb").read()) le = pickle.loads(open(args["le"], "rb").read()) camera = pyfakewebcam.FakeWebcam('/dev/video1', 300, 300) vs = VideoStream(src=0).start() time.sleep(2.0) verifications = {} while True: frame = vs.read() frame = imutils.resize(frame, width=600) (h, w) = frame.shape[:2] imageBlob = cv2.dnn.blobFromImage( cv2.resize(frame, (100, 100)), 1.0, (100, 100), (104.0, 177.0, 123.0), swapRB=False, crop=False) detector.setInput(imageBlob) detections = detector.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > args["confidence"]: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") face = frame[startY:endY, startX:endX] (fH, fW) = face.shape[:2] if fW < 20 or fH < 20: continue faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False) embedder.setInput(faceBlob) vec = embedder.forward() preds = recognizer.predict_proba(vec)[0] j = np.argmax(preds) proba = preds[j] name = le.classes_[j] if name in verifications: verifications[name] += 1 else: verifications[name] = 0 return name
py
b412cf5987d22d2308cc1746ddfc79c040ffe295
""" Return the sum of the numbers in the array, except ignore sections of numbers starting with a 6 and extending to the next 7 (every 6 will be followed by at least one 7). Return 0 for no numbers. sum67([1, 2, 2]) → 5 sum67([1, 2, 2, 6, 99, 99, 7]) → 5 sum67([1, 1, 6, 7, 2]) → 4 @author unobatbayar This was much harder than it looks, excuse my bad code, did it to finish everything fast. Improvement coming soon. """ def sum67(nums): sum = 0 canAdd = True foundSix = False for num in nums: if num == 6: canAdd = False foundSix = True elif num == 7: canAdd = True if foundSix == False: sum = sum + num else: foundSix = False else: if canAdd == True: sum = sum + num return sum
py
b412cf5b5d47bced080e751a58269a1c69d1efd0
from qtpy import QtWidgets from qtpy import QtCore class IControlPanel(QtWidgets.QWidget): """ Abstract base class for control panels. (though no abstract methods; GenericControlPanel is direct impl.) Include widgets for modifying settings that are likely common to ALL renderers. Note that some of these common widgets can be disabled if the renderer doesn't have the required variable (e.g. color_sets = None). For settings that are specific to individual renderers, subclass this and create custom control panels. """ def __init__(self, renderer, name="ControlPanel", *args, **kwargs): self._last_row = -1 super().__init__(*args, **kwargs) self.setSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.MinimumExpanding) self.setObjectName(name) self.setLayout(QtWidgets.QGridLayout()) # self._renderer = None # Will be set in reset_widgets self._init_widgets() renderer.chan_states_changed.connect(self.reset_widgets) self.reset_widgets(renderer) def _init_widgets(self): # Create grid of widgets for renderer/config settings # This widget assumes the passed in renderer is a TimeSeriesRenderer, # and thus it has specific attributes and slots. row_ix = -1 # All renderers are multi-channel # Channel tree widget: row_ix += 1 _tree = QtWidgets.QTreeWidget(parent=self) _tree.setObjectName("Chans_TreeWidget") _tree.setHeaderHidden(True) _tree.setFrameShape(QtWidgets.QFrame.NoFrame) _tree.viewport().setAutoFillBackground(False) tli = QtWidgets.QTreeWidgetItem(_tree) tli.setText(0, "View Channels") tli.setExpanded(False) # Start collapsed because list of channels may be very long. _tree.addTopLevelItem(tli) self.layout().addWidget(_tree, row_ix, 0, 1, 2) # show names checkbox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Show Names"), row_ix, 0, 1, 1) _checkbox = QtWidgets.QCheckBox() _checkbox.setObjectName("ShowNames_CheckBox") self.layout().addWidget(_checkbox, row_ix, 1, 1, 1) # Colors ComboBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Colors"), row_ix, 0, 1, 1) _combo = QtWidgets.QComboBox() _combo.setObjectName("Colors_ComboBox") self.layout().itemAtPosition(row_ix, 0).widget().setVisible(False) # Hide label by default _combo.setVisible(False) self.layout().addWidget(_combo, row_ix, 1, 1, 1) # Background ComboBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Background"), row_ix, 0, 1, 1) _combo = QtWidgets.QComboBox() _combo.setObjectName("Background_ComboBox") self.layout().itemAtPosition(row_ix, 0).widget().setVisible(False) # Hide label by default _combo.setVisible(False) self.layout().addWidget(_combo, row_ix, 1, 1, 1) # Lower Limit SpinBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Lower Limit"), row_ix, 0, 1, 1) _spinbox = QtWidgets.QDoubleSpinBox() _spinbox.setObjectName("LL_SpinBox") _spinbox.setMinimum(-10000000.0) _spinbox.setMaximum(10000000.0) _spinbox.setSingleStep(1.0) self.layout().addWidget(_spinbox, row_ix, 1, 1, 1) # Upper Limit SpinBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Upper Limit"), row_ix, 0, 1, 1) _spinbox = QtWidgets.QDoubleSpinBox() _spinbox.setObjectName("UL_SpinBox") _spinbox.setMinimum(-10000000.0) _spinbox.setMaximum(10000000.0) _spinbox.setSingleStep(1.0) self.layout().addWidget(_spinbox, row_ix, 1, 1, 1) # Highpass Cutoff SpinBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Highpass Cutoff"), row_ix, 0, 1, 1) _spinbox = QtWidgets.QDoubleSpinBox() _spinbox.setObjectName("HP_SpinBox") _spinbox.setMinimum(0.0) _spinbox.setMaximum(10000000.0) _spinbox.setSingleStep(0.1) self.layout().addWidget(_spinbox, row_ix, 1, 1, 1) self._last_row = row_ix def reset_widgets(self, renderer): # self._renderer = renderer _tree = self.findChild(QtWidgets.QTreeWidget, name="Chans_TreeWidget") try: _tree.itemChanged.disconnect() except TypeError: pass if len(renderer.chan_states) > 0: tli = _tree.topLevelItem(0) _ = tli.takeChildren() for label, vis in renderer.chan_states[['name', 'vis']].values: chstate_item = QtWidgets.QTreeWidgetItem(tli) chstate_item.setText(0, label) chstate_item.setCheckState(0, QtCore.Qt.Checked if vis else QtCore.Qt.Unchecked) _tree.itemChanged.connect(renderer.chantree_itemChanged) # show names checkbox _checkbox = self.findChild(QtWidgets.QCheckBox, name="ShowNames_CheckBox") try: _checkbox.stateChanged.disconnect() except TypeError: pass _checkbox.setChecked(renderer.show_chan_labels) _checkbox.stateChanged.connect(renderer.labelvis_stateChanged) # Colors ComboBox if renderer.color_sets is not None: _combo = self.findChild(QtWidgets.QComboBox, name="Colors_ComboBox") try: _combo.currentTextChanged.disconnect() except TypeError: pass _combo.setVisible(True) row_ix = self.layout().getItemPosition(self.layout().indexOf(_combo))[0] self.layout().itemAtPosition(row_ix, 0).widget().setVisible(True) _items = renderer.color_sets _combo.clear() _combo.addItems(_items) _combo.setCurrentText(renderer.color_set) _combo.currentTextChanged.connect(renderer.colors_currentTextChanged) # Background ComboBox if renderer.bg_colors is not None: _combo = self.findChild(QtWidgets.QComboBox, name="Background_ComboBox") try: _combo.currentTextChanged.disconnect() except TypeError: pass _combo.setVisible(True) row_ix = self.layout().getItemPosition(self.layout().indexOf(_combo))[0] self.layout().itemAtPosition(row_ix, 0).widget().setVisible(True) _combo.clear() _combo.addItems(renderer.bg_colors) _combo.setCurrentText(str(renderer.bg_color)) _combo.currentTextChanged.connect(renderer.background_currentTextChanged) # Lower Limit SpinBox _spinbox = self.findChild(QtWidgets.QDoubleSpinBox, name="LL_SpinBox") try: _spinbox.valueChanged.disconnect() except TypeError: pass _spinbox.setValue(renderer.lower_limit) _spinbox.valueChanged.connect(renderer.lower_limit_valueChanged) # Upper Limit spinbox _spinbox = self.findChild(QtWidgets.QDoubleSpinBox, name="UL_SpinBox") try: _spinbox.valueChanged.disconnect() except TypeError: pass _spinbox.setValue(renderer.upper_limit) _spinbox.valueChanged.connect(renderer.upper_limit_valueChanged) # Highpass spinbox _spinbox = self.findChild(QtWidgets.QDoubleSpinBox, name="HP_SpinBox") try: _spinbox.valueChanged.disconnect() except TypeError: pass _spinbox.setValue(renderer.highpass_cutoff) _spinbox.valueChanged.connect(renderer.highpass_cutoff_valueChanged)
py
b412cfe3f4e0f48b326aee1a9830840448ae1aa5
from app.main import main from flask import g, url_for, render_template, redirect, request from flask_babel import lazy_gettext from app import db from app.models import Registrant, Clerk from app.decorators import InSession from app.services import SessionManager from app.services.nvris_client import NVRISClient from app.services.county_mailer import CountyMailer from app.services.id_action_mailer import IdActionMailer from app.services.steps import Step_AB_7 from app.main.forms import FormAB7, CountyPicker from datetime import datetime @main.route('/ab/affirmation', methods=["GET", "POST"]) @InSession def ab7_affirmation(): reg = g.registrant form = FormAB7() clerk = reg.try_clerk() county_picker = CountyPicker() # if we don't have a signed AB form to affirm, redirect if not reg.try_value('ab_forms', False): if not reg.try_value('signature_string', False): return redirect(url_for('main.index')) else: return redirect(url_for('main.ab6_preview_sign')) ab_forms = reg.try_value('ab_forms') if request.method == "POST" and form.validate_on_submit(): step = Step_AB_7(form.data) if step.run(): reg.update(form.data) reg.save(db.session) mailer = CountyMailer(reg, clerk, 'ab_forms') r = mailer.send() # if there was no ID string defined, send the action-needed email if not reg.ab_permanent and not reg.try_value('ab_identification'): id_action_mailer = IdActionMailer(reg, clerk) resp = id_action_mailer.send() reg.update({'ab_id_action_email_sent': resp['MessageId']}) # any error gets a special page for k in ['clerk', 'receipt']: if k not in r or 'MessageId' not in r[k] or not r[k]['MessageId']: # TODO log New Relic event return render_template('email_error.html', clerk=clerk) reg.update({'ab_forms_message_id': r['clerk']['MessageId']}) reg.ab_completed_at = datetime.utcnow() reg.save(db.session) session_manager = SessionManager(reg, step) return redirect(session_manager.get_redirect_url()) return render_template('ab/affirmation.html', preview_imgs=ab_forms, form=form, clerk=clerk, county_picker=county_picker)
py
b412cfe6867ade81e050a32a998a411f5f70cb23
#!/usr/bin/env python # coding: utf-8 # Noise model selection on NANOGrav pulsars import json, pickle, copy import logging import numpy as np from enterprise_extensions.models import model_singlepsr_noise from enterprise_extensions.hypermodel import HyperModel from enterprise.signals import parameter, gp_signals, deterministic_signals from enterprise.signals import signal_base from enterprise_extensions import gp_kernels as gpk from enterprise_extensions.blocks import chromatic_noise_block from enterprise_extensions.blocks import common_red_noise_block, red_noise_block import pta_sim.parse_sim as parse_sim args = parse_sim.arguments() logging.basicConfig(level=logging.WARNING) with open(args.pickle, 'rb') as fin: psr = pickle.load(fin) with open(args.model_kwargs_path, 'r') as fin: model_kwargs = json.load(fin) # Add to exponential dips for J1713+0747 #Model, kernel, extra DMGP, Chrom Kernel, Chrom Quad, Index, GWB model_labels = [['A', 'periodic', True, True, 'sq_exp', False, 4, False], ['B', 'periodic', True, True, 'sq_exp', False, 4, True], ] ptas = {} all_kwargs = {} # Periodic GP kernel for DM log10_sigma = parameter.Uniform(-10, -4.8) log10_ell = parameter.Uniform(1, 2.4) log10_p = parameter.Uniform(-2, -1) log10_gam_p = parameter.Uniform(-2, 2) dm_basis = gpk.linear_interp_basis_dm(dt=3*86400) dm_prior = gpk.periodic_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p) dmgp = gp_signals.BasisGP(dm_prior, dm_basis, name='dm_gp1') # Periodic GP kernel for DM log10_sigma2 = parameter.Uniform(-4.8, -3) log10_ell2 = parameter.Uniform(2.4, 5) log10_p2 = parameter.Uniform(-2, 2) log10_gam_p2 = parameter.Uniform(-2, 2) dm_basis2 = gpk.linear_interp_basis_dm(dt=3*86400) dm_prior2 = gpk.periodic_kernel(log10_sigma=log10_sigma2, log10_ell=log10_ell2, log10_gam_p=log10_gam_p2, log10_p=log10_p2) dmgp2 = gp_signals.BasisGP(dm_prior2, dm_basis2, name='dm_gp2') ch_log10_sigma = parameter.Uniform(-10, -3.5) ch_log10_ell = parameter.Uniform(1, 6) chm_basis = gpk.linear_interp_basis_chromatic(dt=3*86400, idx=4) chm_prior = gpk.se_dm_kernel(log10_sigma=ch_log10_sigma, log10_ell=ch_log10_ell) chromgp = gp_signals.BasisGP(chm_prior, chm_basis, name='chrom_gp') # # chromgp = chromatic_noise_block(nondiag_kernel='sq_exp') @signal_base.function def chromatic_quad(toas, freqs, quad_coeff=np.ones(3)*1e-10, idx=4): """ Basis for chromatic quadratic function. :param idx: index of chromatic dependence :return ret: normalized quadratic basis matrix [Ntoa, 3] """ t0 = (toas.max() + toas.min()) / 2 a, b, c = 10**quad_coeff[0], 10**quad_coeff[1], 10**quad_coeff[2] quad = (a*(toas-t0)**2 + b*(toas-t0) + c)* (1400/freqs) ** idx return quad quad_coeff = parameter.Uniform(-10, -4, size=3) deter_chrom = chromatic_quad(quad_coeff=quad_coeff) chrom_quad = deterministic_signals.Deterministic(deter_chrom, name='deter_chrom_quad') for ii, ent in enumerate(model_labels): if ent[2] and ent[5]: extra = dmgp + dmgp2 + chromgp + chrom_quad elif ent[2]: extra = dmgp + dmgp2 + chromgp elif ent[5]: extra = dmgp + chromgp + chrom_quad else: extra = dmgp + chromgp Tspan = 407576851.48121357 rn = red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=Tspan, components=30, gamma_val=None) if ent[7]: gw = common_red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=Tspan, components=5, gamma_val=4.3333) sig = rn + gw else: sig = rn extra += sig new_kwargs = {'dm_nondiag_kernel':ent[1], 'dm_var':False, 'chrom_gp': ent[3], 'chrom_gp_kernel':'nondiag', 'chrom_idx':ent[6], 'chrom_kernel':ent[4], 'chrom_dt':14, 'red_var':False, 'dm_expdip':False, 'extra_sigs':extra, } kwargs = copy.deepcopy(model_kwargs['5']) kwargs.update(new_kwargs) ptas[ii] = model_singlepsr_noise(psr, **kwargs) all_kwargs[ii] = kwargs super_model = HyperModel(ptas) sampler = super_model.setup_sampler(resume=True, outdir=args.outdir, empirical_distr=args.emp_distr) model_params = {} for ky, pta in ptas.items(): model_params.update({str(ky): pta.param_names}) with open(args.outdir + '/model_params.json', 'w') as fout: json.dump(model_params, fout, sort_keys=True, indent=4, separators=(',', ': ')) kwargs_out = copy.deepcopy(all_kwargs) kys = list(kwargs_out.keys()) kwargs_out[kys[0]]['extra_sigs'] = str('dm_gp + dm_gp2 + chrom_gp') kwargs_out[kys[1]]['extra_sigs'] = str('dm_gp + dm_gp2 + chrom_gp + gwb') # kwargs_out[kys[2]]['extra_sigs'] = str('chrom_quad') # kwargs_out[kys[3]]['extra_sigs'] = str('dm_gp2 + chrom_quad') with open(args.outdir + '/model_kwargs.json', 'w') as fout: json.dump(kwargs_out, fout, sort_keys=True, indent=4, separators=(',', ': ')) with open(args.outdir + '/model_labels.json', 'w') as fout: json.dump(model_labels, fout, sort_keys=True, indent=4, separators=(',', ': ')) # sampler for N steps N = args.niter x0 = super_model.initial_sample() sampler.sample(x0, N, SCAMweight=30, AMweight=15, DEweight=50, burn=500000, writeHotChains=args.writeHotChains, hotChain=args.hot_chain)
py
b412d0b878f82efccc98b97d8e28bd1bdc2151aa
import os import torch import numpy as np import numpy.random as rd class ReplayBuffer: def __init__(self, max_len, state_dim, action_dim, cd2_dim, if_use_per, gpu_id=0, state_type=torch.float32): """Experience Replay Buffer save environment transition in a continuous RAM for high performance training we save trajectory in order and save state and other (action, reward, mask, ...) separately. `int max_len` the maximum capacity of ReplayBuffer. First In First Out `int state_dim` the dimension of state `int action_dim` the dimension of action (action_dim==1 for discrete action) `bool if_on_policy` on-policy or off-policy `bool if_gpu` create buffer space on CPU RAM or GPU `bool if_per` Prioritized Experience Replay for sparse reward """ self.now_len = 0 self.next_id = 0 self.if_full = False self.max_len = max_len self.data_type = torch.float32 self.action_dim = action_dim self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu") self.cd2_dim = cd2_dim self.per_tree = BinarySearchTree(max_len) if if_use_per else None other_dim = 1 + 1 + self.action_dim self.buf_other = torch.empty((max_len, other_dim), dtype=torch.float32, device=self.device) buf_state_shape = (max_len, state_dim, cd2_dim, 1, 1) if isinstance(state_dim, int) else (max_len, *state_dim) self.buf_state = torch.empty(buf_state_shape, dtype=state_type, device=self.device) def append_buffer(self, state, other): # CPU array to CPU array self.buf_state[self.next_id] = state self.buf_other[self.next_id] = other if self.per_tree: self.per_tree.update_id(self.next_id) self.next_id += 1 if self.next_id >= self.max_len: self.if_full = True self.next_id = 0 def extend_buffer(self, state, other): size = len(other) next_idx = self.next_id + size if self.per_tree: self.per_tree.update_ids(data_ids=np.arange(self.next_id, next_idx) % self.max_len) if next_idx > self.max_len: self.buf_state[self.next_id:self.max_len] = state[:self.max_len - self.next_id] self.buf_other[self.next_id:self.max_len] = other[:self.max_len - self.next_id] self.if_full = True next_idx = next_idx - self.max_len self.buf_state[0:next_idx] = state[-next_idx:] self.buf_other[0:next_idx] = other[-next_idx:] else: self.buf_state[self.next_id:next_idx] = state self.buf_other[self.next_id:next_idx] = other self.next_id = next_idx def sample_batch(self, batch_size) -> tuple: """randomly sample a batch of data for training :int batch_size: the number of data in a batch for Stochastic Gradient Descent :return torch.Tensor reward: reward.shape==(now_len, 1) :return torch.Tensor mask: mask.shape ==(now_len, 1), mask = 0.0 if done else gamma :return torch.Tensor action: action.shape==(now_len, action_dim) :return torch.Tensor state: state.shape ==(now_len, state_dim) :return torch.Tensor state: state.shape ==(now_len, state_dim), next state """ if self.per_tree: beg = -self.max_len end = (self.now_len - self.max_len) if (self.now_len < self.max_len) else None indices, is_weights = self.per_tree.get_indices_is_weights(batch_size, beg, end) r_m_a = self.buf_other[indices] return (r_m_a[:, 0:1].type(torch.float32), # reward r_m_a[:, 1:2].type(torch.float32), # mask r_m_a[:, 2:].type(torch.float32), # action self.buf_state[indices].type(torch.float32), # state self.buf_state[indices + 1].type(torch.float32), # next state torch.as_tensor(is_weights, dtype=torch.float32, device=self.device)) # important sampling weights else: indices = rd.randint(self.now_len - 1, size=batch_size) r_m_a = self.buf_other[indices] return (r_m_a[:, 0:1], # reward r_m_a[:, 1:2], # mask r_m_a[:, 2:], # action self.buf_state[indices], self.buf_state[indices + 1]) def sample_batch_one_step(self, batch_size) -> tuple: if self.per_tree: beg = -self.max_len end = (self.now_len - self.max_len) if (self.now_len < self.max_len) else None indices, is_weights = self.per_tree.get_indices_is_weights(batch_size, beg, end) r_m_a = self.buf_other[indices] return (r_m_a[:, 0:1].type(torch.float32), # reward r_m_a[:, 2:].type(torch.float32), # action self.buf_state[indices].type(torch.float32), # state torch.as_tensor(is_weights, dtype=torch.float32, device=self.device)) # important sampling weights else: indices = rd.randint(self.now_len - 1, size=batch_size) r_m_a = self.buf_other[indices] return (r_m_a[:, 0:1], # reward r_m_a[:, 2:], # action self.buf_state[indices],) def update_now_len(self): """update the a pointer `now_len`, which is the current data number of ReplayBuffer """ self.now_len = self.max_len if self.if_full else self.next_id def print_state_norm(self, neg_avg=None, div_std=None): # non-essential """print the state norm information: state_avg, state_std We don't suggest to use running stat state. We directly do normalization on state using the historical avg and std eg. `state = (state + self.neg_state_avg) * self.div_state_std` in `PreprocessEnv.step_norm()` neg_avg = -states.mean() div_std = 1/(states.std()+1e-5) or 6/(states.max()-states.min()) :array neg_avg: neg_avg.shape=(state_dim) :array div_std: div_std.shape=(state_dim) """ max_sample_size = 2 ** 14 '''check if pass''' state_shape = self.buf_state.shape if len(state_shape) > 2 or state_shape[1] > 64: print(f"| print_state_norm(): state_dim: {state_shape} is too large to print its norm. ") return None '''sample state''' indices = np.arange(self.now_len) rd.shuffle(indices) indices = indices[:max_sample_size] # len(indices) = min(self.now_len, max_sample_size) batch_state = self.buf_state[indices] '''compute state norm''' if isinstance(batch_state, torch.Tensor): batch_state = batch_state.cpu().data.numpy() assert isinstance(batch_state, np.ndarray) if batch_state.shape[1] > 64: print(f"| _print_norm(): state_dim: {batch_state.shape[1]:.0f} is too large to print its norm. ") return None if np.isnan(batch_state).any(): # 2020-12-12 batch_state = np.nan_to_num(batch_state) # nan to 0 ary_avg = batch_state.mean(axis=0) ary_std = batch_state.std(axis=0) fix_std = ((np.max(batch_state, axis=0) - np.min(batch_state, axis=0)) / 6 + ary_std) / 2 if neg_avg is not None: # norm transfer ary_avg = ary_avg - neg_avg / div_std ary_std = fix_std / div_std print(f"print_state_norm: state_avg, state_std (fixed)") print(f"avg = np.{repr(ary_avg).replace('=float32', '=np.float32')}") print(f"std = np.{repr(ary_std).replace('=float32', '=np.float32')}") def td_error_update(self, td_error): self.per_tree.td_error_update(td_error) def save_or_load_history(self, cwd, if_save, buffer_id=0): # [ElegantRL.2021.11.11] save_path = f"{cwd}/buffer_{buffer_id}.npz" if_load = None if if_save: self.update_now_len() state_dim = self.buf_state.shape[1] other_dim = self.buf_other.shape[1] buf_state_data_type = np.float16 \ if self.buf_state.dtype in {np.float, np.float64, np.float32} \ else np.uint8 buf_state = np.empty((self.now_len, state_dim), dtype=buf_state_data_type) buf_other = np.empty((self.now_len, other_dim), dtype=np.float16) temp_len = self.now_len - self.next_id buf_state[0:temp_len] = self.buf_state[self.next_id:self.now_len].cpu().numpy() buf_other[0:temp_len] = self.buf_other[self.next_id:self.now_len].cpu().numpy() buf_state[temp_len:] = self.buf_state[:self.next_id].detach().cpu().numpy() buf_other[temp_len:] = self.buf_other[:self.next_id].detach().cpu().numpy() np.savez_compressed(save_path, buf_state=buf_state, buf_other=buf_other) print(f"| ReplayBuffer save in: {save_path}") elif os.path.isfile(save_path): buf_dict = np.load(save_path) buf_state = buf_dict['buf_state'] buf_other = buf_dict['buf_other'] bs = 512 for i in range(0, buf_state.shape[0], bs): tmp_state = torch.as_tensor(buf_state[i:i + bs], dtype=torch.float32, device=self.device) tmp_other = torch.as_tensor(buf_other[i:i + bs], dtype=torch.float32, device=self.device) self.extend_buffer(tmp_state, tmp_other) self.update_now_len() print(f"| ReplayBuffer load: {save_path}") if_load = True else: # print(f"| ReplayBuffer FileNotFound: {save_path}") if_load = False return if_load class ReplayBufferMP: def __init__(self, state_dim, action_dim, max_len, if_use_per, buffer_num, gpu_id): """Experience Replay Buffer for Multiple Processing `int max_len` the max_len of ReplayBuffer, not the total len of ReplayBufferMP `int worker_num` the rollout workers number """ self.now_len = 0 self.max_len = max_len self.worker_num = buffer_num buf_max_len = max_len // buffer_num self.buffers = [ReplayBuffer(max_len=buf_max_len, state_dim=state_dim, action_dim=action_dim, if_use_per=if_use_per, gpu_id=gpu_id) for _ in range(buffer_num)] def sample_batch(self, batch_size) -> list: bs = batch_size // self.worker_num list_items = [self.buffers[i].sample_batch(bs) for i in range(self.worker_num)] # list_items of reward, mask, action, state, next_state # list_items of reward, mask, action, state, next_state, is_weights (PER) list_items = list(map(list, zip(*list_items))) # 2D-list transpose return [torch.cat(item, dim=0) for item in list_items] def sample_batch_one_step(self, batch_size) -> list: bs = batch_size // self.worker_num list_items = [self.buffers[i].sample_batch_one_step(bs) for i in range(self.worker_num)] # list_items of reward, mask, action, state, next_state # list_items of reward, mask, action, state, next_state, is_weights (PER) list_items = list(map(list, zip(*list_items))) # 2D-list transpose return [torch.cat(item, dim=0) for item in list_items] def update_now_len(self): self.now_len = 0 for buffer in self.buffers: buffer.update_now_len() self.now_len += buffer.now_len def print_state_norm(self, neg_avg=None, div_std=None): # non-essential # for buffer in self.l_buffer: self.buffers[0].print_state_norm(neg_avg, div_std) def td_error_update(self, td_error): td_errors = td_error.view(self.worker_num, -1, 1) for i in range(self.worker_num): self.buffers[i].per_tree.td_error_update(td_errors[i]) def save_or_load_history(self, cwd, if_save): for i in range(self.worker_num): self.buffers[i].save_or_load_history(cwd, if_save, buffer_id=i) class SharedReplayBuffer(object): """ Buffer to store training data. :param args: (argparse.Namespace) arguments containing relevant model, policy, and env information. :param num_agents: (int) number of agents in the env. :param obs_space: (gym.Space) observation space of agents. :param cent_obs_space: (gym.Space) centralized observation space of agents. :param act_space: (gym.Space) action space for agents. """ def __init__(self, args, num_agents, obs_space, cent_obs_space, act_space): self.episode_length = args.episode_length self.n_rollout_threads = args.n_rollout_threads self.hidden_size = args.hidden_size self.recurrent_N = args.recurrent_N self.gamma = args.gamma self.gae_lambda = args.gae_lambda self._use_gae = args.use_gae self._use_popart = args.use_popart self._use_valuenorm = args.use_valuenorm self._use_proper_time_limits = args.use_proper_time_limits obs_shape = get_shape_from_obs_space(obs_space) share_obs_shape = get_shape_from_obs_space(cent_obs_space) if type(obs_shape[-1]) == list: obs_shape = obs_shape[:1] if type(share_obs_shape[-1]) == list: share_obs_shape = share_obs_shape[:1] self.share_obs = np.zeros((self.episode_length + 1, self.n_rollout_threads, num_agents, *share_obs_shape), dtype=np.float32) self.obs = np.zeros((self.episode_length + 1, self.n_rollout_threads, num_agents, *obs_shape), dtype=np.float32) self.rnn_states = np.zeros( (self.episode_length + 1, self.n_rollout_threads, num_agents, self.recurrent_N, self.hidden_size), dtype=np.float32) self.rnn_states_critic = np.zeros_like(self.rnn_states) self.value_preds = np.zeros( (self.episode_length + 1, self.n_rollout_threads, num_agents, 1), dtype=np.float32) self.returns = np.zeros_like(self.value_preds) if act_space.__class__.__name__ == 'Discrete': self.available_actions = np.ones((self.episode_length + 1, self.n_rollout_threads, num_agents, act_space.n), dtype=np.float32) else: self.available_actions = None act_shape = get_shape_from_act_space(act_space) self.actions = np.zeros( (self.episode_length, self.n_rollout_threads, num_agents, act_shape), dtype=np.float32) self.action_log_probs = np.zeros( (self.episode_length, self.n_rollout_threads, num_agents, act_shape), dtype=np.float32) self.rewards = np.zeros( (self.episode_length, self.n_rollout_threads, num_agents, 1), dtype=np.float32) self.masks = np.ones((self.episode_length + 1, self.n_rollout_threads, num_agents, 1), dtype=np.float32) self.bad_masks = np.ones_like(self.masks) self.active_masks = np.ones_like(self.masks) self.step = 0 def insert(self, share_obs, obs, rnn_states_actor, rnn_states_critic, actions, action_log_probs, value_preds, rewards, masks, bad_masks=None, active_masks=None, available_actions=None): """ Insert data into the buffer. :param share_obs: (argparse.Namespace) arguments containing relevant model, policy, and env information. :param obs: (np.ndarray) local agent observations. :param rnn_states_actor: (np.ndarray) RNN states for actor network. :param rnn_states_critic: (np.ndarray) RNN states for critic network. :param actions:(np.ndarray) actions taken by agents. :param action_log_probs:(np.ndarray) log probs of actions taken by agents :param value_preds: (np.ndarray) value function prediction at each step. :param rewards: (np.ndarray) reward collected at each step. :param masks: (np.ndarray) denotes whether the environment has terminated or not. :param bad_masks: (np.ndarray) action space for agents. :param active_masks: (np.ndarray) denotes whether an agent is active or dead in the env. :param available_actions: (np.ndarray) actions available to each agent. If None, all actions are available. """ self.share_obs[self.step + 1] = share_obs.copy() self.obs[self.step + 1] = obs.copy() self.rnn_states[self.step + 1] = rnn_states_actor.copy() self.rnn_states_critic[self.step + 1] = rnn_states_critic.copy() self.actions[self.step] = actions.copy() self.action_log_probs[self.step] = action_log_probs.copy() self.value_preds[self.step] = value_preds.copy() self.rewards[self.step] = rewards.copy() self.masks[self.step + 1] = masks.copy() if bad_masks is not None: self.bad_masks[self.step + 1] = bad_masks.copy() if active_masks is not None: self.active_masks[self.step + 1] = active_masks.copy() if available_actions is not None: self.available_actions[self.step + 1] = available_actions.copy() self.step = (self.step + 1) % self.episode_length def chooseinsert(self, share_obs, obs, rnn_states, rnn_states_critic, actions, action_log_probs, value_preds, rewards, masks, bad_masks=None, active_masks=None, available_actions=None): """ Insert data into the buffer. This insert function is used specifically for Hanabi, which is turn based. :param share_obs: (argparse.Namespace) arguments containing relevant model, policy, and env information. :param obs: (np.ndarray) local agent observations. :param rnn_states_actor: (np.ndarray) RNN states for actor network. :param rnn_states_critic: (np.ndarray) RNN states for critic network. :param actions:(np.ndarray) actions taken by agents. :param action_log_probs:(np.ndarray) log probs of actions taken by agents :param value_preds: (np.ndarray) value function prediction at each step. :param rewards: (np.ndarray) reward collected at each step. :param masks: (np.ndarray) denotes whether the environment has terminated or not. :param bad_masks: (np.ndarray) denotes indicate whether whether true terminal state or due to episode limit :param active_masks: (np.ndarray) denotes whether an agent is active or dead in the env. :param available_actions: (np.ndarray) actions available to each agent. If None, all actions are available. """ self.share_obs[self.step] = share_obs.copy() self.obs[self.step] = obs.copy() self.rnn_states[self.step + 1] = rnn_states.copy() self.rnn_states_critic[self.step + 1] = rnn_states_critic.copy() self.actions[self.step] = actions.copy() self.action_log_probs[self.step] = action_log_probs.copy() self.value_preds[self.step] = value_preds.copy() self.rewards[self.step] = rewards.copy() self.masks[self.step + 1] = masks.copy() if bad_masks is not None: self.bad_masks[self.step + 1] = bad_masks.copy() if active_masks is not None: self.active_masks[self.step] = active_masks.copy() if available_actions is not None: self.available_actions[self.step] = available_actions.copy() self.step = (self.step + 1) % self.episode_length def after_update(self): """Copy last timestep data to first index. Called after update to model.""" self.share_obs[0] = self.share_obs[-1].copy() self.obs[0] = self.obs[-1].copy() self.rnn_states[0] = self.rnn_states[-1].copy() self.rnn_states_critic[0] = self.rnn_states_critic[-1].copy() self.masks[0] = self.masks[-1].copy() self.bad_masks[0] = self.bad_masks[-1].copy() self.active_masks[0] = self.active_masks[-1].copy() if self.available_actions is not None: self.available_actions[0] = self.available_actions[-1].copy() def chooseafter_update(self): """Copy last timestep data to first index. This method is used for Hanabi.""" self.rnn_states[0] = self.rnn_states[-1].copy() self.rnn_states_critic[0] = self.rnn_states_critic[-1].copy() self.masks[0] = self.masks[-1].copy() self.bad_masks[0] = self.bad_masks[-1].copy() def compute_returns(self, next_value, value_normalizer=None): """ Compute returns either as discounted sum of rewards, or using GAE. :param next_value: (np.ndarray) value predictions for the step after the last episode step. :param value_normalizer: (PopArt) If not None, PopArt value normalizer instance. """ if self._use_proper_time_limits: if self._use_gae: self.value_preds[-1] = next_value gae = 0 for step in reversed(range(self.rewards.shape[0])): if self._use_popart or self._use_valuenorm: # step + 1 delta = self.rewards[step] + self.gamma * value_normalizer.denormalize( self.value_preds[step + 1]) * self.masks[step + 1] \ - value_normalizer.denormalize(self.value_preds[step]) gae = delta + self.gamma * self.gae_lambda * gae * self.masks[step + 1] gae = gae * self.bad_masks[step + 1] self.returns[step] = gae + value_normalizer.denormalize(self.value_preds[step]) else: delta = self.rewards[step] + self.gamma * self.value_preds[step + 1] * self.masks[step + 1] - \ self.value_preds[step] gae = delta + self.gamma * self.gae_lambda * self.masks[step + 1] * gae gae = gae * self.bad_masks[step + 1] self.returns[step] = gae + self.value_preds[step] else: self.returns[-1] = next_value for step in reversed(range(self.rewards.shape[0])): if self._use_popart or self._use_valuenorm: self.returns[step] = (self.returns[step + 1] * self.gamma * self.masks[step + 1] + self.rewards[ step]) * self.bad_masks[step + 1] \ + (1 - self.bad_masks[step + 1]) * value_normalizer.denormalize( self.value_preds[step]) else: self.returns[step] = (self.returns[step + 1] * self.gamma * self.masks[step + 1] + self.rewards[ step]) * self.bad_masks[step + 1] \ + (1 - self.bad_masks[step + 1]) * self.value_preds[step] else: if self._use_gae: self.value_preds[-1] = next_value gae = 0 for step in reversed(range(self.rewards.shape[0])): if self._use_popart or self._use_valuenorm: delta = self.rewards[step] + self.gamma * value_normalizer.denormalize( self.value_preds[step + 1]) * self.masks[step + 1] \ - value_normalizer.denormalize(self.value_preds[step]) gae = delta + self.gamma * self.gae_lambda * self.masks[step + 1] * gae self.returns[step] = gae + value_normalizer.denormalize(self.value_preds[step]) else: delta = self.rewards[step] + self.gamma * self.value_preds[step + 1] * self.masks[step + 1] - \ self.value_preds[step] gae = delta + self.gamma * self.gae_lambda * self.masks[step + 1] * gae self.returns[step] = gae + self.value_preds[step] else: self.returns[-1] = next_value for step in reversed(range(self.rewards.shape[0])): self.returns[step] = self.returns[step + 1] * self.gamma * self.masks[step + 1] + self.rewards[step] def feed_forward_generator(self, advantages, num_mini_batch=None, mini_batch_size=None): """ Yield training data for MLP policies. :param advantages: (np.ndarray) advantage estimates. :param num_mini_batch: (int) number of minibatches to split the batch into. :param mini_batch_size: (int) number of samples in each minibatch. """ episode_length, n_rollout_threads, num_agents = self.rewards.shape[0:3] batch_size = n_rollout_threads * episode_length * num_agents if mini_batch_size is None: assert batch_size >= num_mini_batch, ( "PPO requires the number of processes ({}) " "* number of steps ({}) * number of agents ({}) = {} " "to be greater than or equal to the number of PPO mini batches ({})." "".format(n_rollout_threads, episode_length, num_agents, n_rollout_threads * episode_length * num_agents, num_mini_batch)) mini_batch_size = batch_size // num_mini_batch rand = torch.randperm(batch_size).numpy() sampler = [rand[i * mini_batch_size:(i + 1) * mini_batch_size] for i in range(num_mini_batch)] share_obs = self.share_obs[:-1].reshape(-1, *self.share_obs.shape[3:]) obs = self.obs[:-1].reshape(-1, *self.obs.shape[3:]) rnn_states = self.rnn_states[:-1].reshape(-1, *self.rnn_states.shape[3:]) rnn_states_critic = self.rnn_states_critic[:-1].reshape(-1, *self.rnn_states_critic.shape[3:]) actions = self.actions.reshape(-1, self.actions.shape[-1]) if self.available_actions is not None: available_actions = self.available_actions[:-1].reshape(-1, self.available_actions.shape[-1]) value_preds = self.value_preds[:-1].reshape(-1, 1) returns = self.returns[:-1].reshape(-1, 1) masks = self.masks[:-1].reshape(-1, 1) active_masks = self.active_masks[:-1].reshape(-1, 1) action_log_probs = self.action_log_probs.reshape(-1, self.action_log_probs.shape[-1]) advantages = advantages.reshape(-1, 1) for indices in sampler: # obs size [T+1 N M Dim]-->[T N M Dim]-->[T*N*M,Dim]-->[index,Dim] share_obs_batch = share_obs[indices] obs_batch = obs[indices] rnn_states_batch = rnn_states[indices] rnn_states_critic_batch = rnn_states_critic[indices] actions_batch = actions[indices] if self.available_actions is not None: available_actions_batch = available_actions[indices] else: available_actions_batch = None value_preds_batch = value_preds[indices] return_batch = returns[indices] masks_batch = masks[indices] active_masks_batch = active_masks[indices] old_action_log_probs_batch = action_log_probs[indices] if advantages is None: adv_targ = None else: adv_targ = advantages[indices] yield share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch,\ value_preds_batch, return_batch, masks_batch, active_masks_batch, old_action_log_probs_batch,\ adv_targ, available_actions_batch def naive_recurrent_generator(self, advantages, num_mini_batch): """ Yield training data for non-chunked RNN training. :param advantages: (np.ndarray) advantage estimates. :param num_mini_batch: (int) number of minibatches to split the batch into. """ episode_length, n_rollout_threads, num_agents = self.rewards.shape[0:3] batch_size = n_rollout_threads * num_agents assert n_rollout_threads * num_agents >= num_mini_batch, ( "PPO requires the number of processes ({})* number of agents ({}) " "to be greater than or equal to the number of " "PPO mini batches ({}).".format(n_rollout_threads, num_agents, num_mini_batch)) num_envs_per_batch = batch_size // num_mini_batch perm = torch.randperm(batch_size).numpy() share_obs = self.share_obs.reshape(-1, batch_size, *self.share_obs.shape[3:]) obs = self.obs.reshape(-1, batch_size, *self.obs.shape[3:]) rnn_states = self.rnn_states.reshape(-1, batch_size, *self.rnn_states.shape[3:]) rnn_states_critic = self.rnn_states_critic.reshape(-1, batch_size, *self.rnn_states_critic.shape[3:]) actions = self.actions.reshape(-1, batch_size, self.actions.shape[-1]) if self.available_actions is not None: available_actions = self.available_actions.reshape(-1, batch_size, self.available_actions.shape[-1]) value_preds = self.value_preds.reshape(-1, batch_size, 1) returns = self.returns.reshape(-1, batch_size, 1) masks = self.masks.reshape(-1, batch_size, 1) active_masks = self.active_masks.reshape(-1, batch_size, 1) action_log_probs = self.action_log_probs.reshape(-1, batch_size, self.action_log_probs.shape[-1]) advantages = advantages.reshape(-1, batch_size, 1) for start_ind in range(0, batch_size, num_envs_per_batch): share_obs_batch = [] obs_batch = [] rnn_states_batch = [] rnn_states_critic_batch = [] actions_batch = [] available_actions_batch = [] value_preds_batch = [] return_batch = [] masks_batch = [] active_masks_batch = [] old_action_log_probs_batch = [] adv_targ = [] for offset in range(num_envs_per_batch): ind = perm[start_ind + offset] share_obs_batch.append(share_obs[:-1, ind]) obs_batch.append(obs[:-1, ind]) rnn_states_batch.append(rnn_states[0:1, ind]) rnn_states_critic_batch.append(rnn_states_critic[0:1, ind]) actions_batch.append(actions[:, ind]) if self.available_actions is not None: available_actions_batch.append(available_actions[:-1, ind]) value_preds_batch.append(value_preds[:-1, ind]) return_batch.append(returns[:-1, ind]) masks_batch.append(masks[:-1, ind]) active_masks_batch.append(active_masks[:-1, ind]) old_action_log_probs_batch.append(action_log_probs[:, ind]) adv_targ.append(advantages[:, ind]) # [N[T, dim]] T, N = self.episode_length, num_envs_per_batch # These are all from_numpys of size (T, N, -1) share_obs_batch = np.stack(share_obs_batch, 1) obs_batch = np.stack(obs_batch, 1) actions_batch = np.stack(actions_batch, 1) if self.available_actions is not None: available_actions_batch = np.stack(available_actions_batch, 1) value_preds_batch = np.stack(value_preds_batch, 1) return_batch = np.stack(return_batch, 1) masks_batch = np.stack(masks_batch, 1) active_masks_batch = np.stack(active_masks_batch, 1) old_action_log_probs_batch = np.stack(old_action_log_probs_batch, 1) adv_targ = np.stack(adv_targ, 1) # States is just a (N, dim) from_numpy [N[1,dim]] rnn_states_batch = np.stack(rnn_states_batch).reshape(N, *self.rnn_states.shape[3:]) rnn_states_critic_batch = np.stack(rnn_states_critic_batch).reshape(N, *self.rnn_states_critic.shape[3:]) # Flatten the (T, N, ...) from_numpys to (T * N, ...) share_obs_batch = _flatten(T, N, share_obs_batch) obs_batch = _flatten(T, N, obs_batch) actions_batch = _flatten(T, N, actions_batch) if self.available_actions is not None: available_actions_batch = _flatten(T, N, available_actions_batch) else: available_actions_batch = None value_preds_batch = _flatten(T, N, value_preds_batch) return_batch = _flatten(T, N, return_batch) masks_batch = _flatten(T, N, masks_batch) active_masks_batch = _flatten(T, N, active_masks_batch) old_action_log_probs_batch = _flatten(T, N, old_action_log_probs_batch) adv_targ = _flatten(T, N, adv_targ) yield share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch,\ value_preds_batch, return_batch, masks_batch, active_masks_batch, old_action_log_probs_batch,\ adv_targ, available_actions_batch def recurrent_generator(self, advantages, num_mini_batch, data_chunk_length): """ Yield training data for chunked RNN training. :param advantages: (np.ndarray) advantage estimates. :param num_mini_batch: (int) number of minibatches to split the batch into. :param data_chunk_length: (int) length of sequence chunks with which to train RNN. """ episode_length, n_rollout_threads, num_agents = self.rewards.shape[0:3] batch_size = n_rollout_threads * episode_length * num_agents data_chunks = batch_size // data_chunk_length # [C=r*T*M/L] mini_batch_size = data_chunks // num_mini_batch rand = torch.randperm(data_chunks).numpy() sampler = [rand[i * mini_batch_size:(i + 1) * mini_batch_size] for i in range(num_mini_batch)] if len(self.share_obs.shape) > 4: share_obs = self.share_obs[:-1].transpose(1, 2, 0, 3, 4, 5).reshape(-1, *self.share_obs.shape[3:]) obs = self.obs[:-1].transpose(1, 2, 0, 3, 4, 5).reshape(-1, *self.obs.shape[3:]) else: share_obs = _cast(self.share_obs[:-1]) obs = _cast(self.obs[:-1]) actions = _cast(self.actions) action_log_probs = _cast(self.action_log_probs) advantages = _cast(advantages) value_preds = _cast(self.value_preds[:-1]) returns = _cast(self.returns[:-1]) masks = _cast(self.masks[:-1]) active_masks = _cast(self.active_masks[:-1]) # rnn_states = _cast(self.rnn_states[:-1]) # rnn_states_critic = _cast(self.rnn_states_critic[:-1]) rnn_states = self.rnn_states[:-1].transpose(1, 2, 0, 3, 4).reshape(-1, *self.rnn_states.shape[3:]) rnn_states_critic = self.rnn_states_critic[:-1].transpose(1, 2, 0, 3, 4).reshape(-1, *self.rnn_states_critic.shape[ 3:]) if self.available_actions is not None: available_actions = _cast(self.available_actions[:-1]) for indices in sampler: share_obs_batch = [] obs_batch = [] rnn_states_batch = [] rnn_states_critic_batch = [] actions_batch = [] available_actions_batch = [] value_preds_batch = [] return_batch = [] masks_batch = [] active_masks_batch = [] old_action_log_probs_batch = [] adv_targ = [] for index in indices: ind = index * data_chunk_length # size [T+1 N M Dim]-->[T N M Dim]-->[N,M,T,Dim]-->[N*M*T,Dim]-->[L,Dim] share_obs_batch.append(share_obs[ind:ind + data_chunk_length]) obs_batch.append(obs[ind:ind + data_chunk_length]) actions_batch.append(actions[ind:ind + data_chunk_length]) if self.available_actions is not None: available_actions_batch.append(available_actions[ind:ind + data_chunk_length]) value_preds_batch.append(value_preds[ind:ind + data_chunk_length]) return_batch.append(returns[ind:ind + data_chunk_length]) masks_batch.append(masks[ind:ind + data_chunk_length]) active_masks_batch.append(active_masks[ind:ind + data_chunk_length]) old_action_log_probs_batch.append(action_log_probs[ind:ind + data_chunk_length]) adv_targ.append(advantages[ind:ind + data_chunk_length]) # size [T+1 N M Dim]-->[T N M Dim]-->[N M T Dim]-->[N*M*T,Dim]-->[1,Dim] rnn_states_batch.append(rnn_states[ind]) rnn_states_critic_batch.append(rnn_states_critic[ind]) L, N = data_chunk_length, mini_batch_size # These are all from_numpys of size (L, N, Dim) share_obs_batch = np.stack(share_obs_batch, axis=1) obs_batch = np.stack(obs_batch, axis=1) actions_batch = np.stack(actions_batch, axis=1) if self.available_actions is not None: available_actions_batch = np.stack(available_actions_batch, axis=1) value_preds_batch = np.stack(value_preds_batch, axis=1) return_batch = np.stack(return_batch, axis=1) masks_batch = np.stack(masks_batch, axis=1) active_masks_batch = np.stack(active_masks_batch, axis=1) old_action_log_probs_batch = np.stack(old_action_log_probs_batch, axis=1) adv_targ = np.stack(adv_targ, axis=1) # States is just a (N, -1) from_numpy rnn_states_batch = np.stack(rnn_states_batch).reshape(N, *self.rnn_states.shape[3:]) rnn_states_critic_batch = np.stack(rnn_states_critic_batch).reshape(N, *self.rnn_states_critic.shape[3:]) # Flatten the (L, N, ...) from_numpys to (L * N, ...) share_obs_batch = _flatten(L, N, share_obs_batch) obs_batch = _flatten(L, N, obs_batch) actions_batch = _flatten(L, N, actions_batch) if self.available_actions is not None: available_actions_batch = _flatten(L, N, available_actions_batch) else: available_actions_batch = None value_preds_batch = _flatten(L, N, value_preds_batch) return_batch = _flatten(L, N, return_batch) masks_batch = _flatten(L, N, masks_batch) active_masks_batch = _flatten(L, N, active_masks_batch) old_action_log_probs_batch = _flatten(L, N, old_action_log_probs_batch) adv_targ = _flatten(L, N, adv_targ) yield share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch,\ value_preds_batch, return_batch, masks_batch, active_masks_batch, old_action_log_probs_batch,\ adv_targ, available_actions_batch class BinarySearchTree: """Binary Search Tree for PER Contributor: Github GyChou, Github mississippiu Reference: https://github.com/kaixindelele/DRLib/tree/main/algos/pytorch/td3_sp Reference: https://github.com/jaromiru/AI-blog/blob/master/SumTree.py """ def __init__(self, memo_len): self.memo_len = memo_len # replay buffer len self.prob_ary = np.zeros((memo_len - 1) + memo_len) # parent_nodes_num + leaf_nodes_num self.max_len = len(self.prob_ary) self.now_len = self.memo_len - 1 # pointer self.indices = None self.depth = int(np.log2(self.max_len)) # PER. Prioritized Experience Replay. Section 4 # alpha, beta = 0.7, 0.5 for rank-based variant # alpha, beta = 0.6, 0.4 for proportional variant self.per_alpha = 0.6 # alpha = (Uniform:0, Greedy:1) self.per_beta = 0.4 # beta = (PER:0, NotPER:1) def update_id(self, data_id, prob=10): # 10 is max_prob tree_id = data_id + self.memo_len - 1 if self.now_len == tree_id: self.now_len += 1 delta = prob - self.prob_ary[tree_id] self.prob_ary[tree_id] = prob while tree_id != 0: # propagate the change through tree tree_id = (tree_id - 1) // 2 # faster than the recursive loop self.prob_ary[tree_id] += delta def update_ids(self, data_ids, prob=10): # 10 is max_prob ids = data_ids + self.memo_len - 1 self.now_len += (ids >= self.now_len).sum() upper_step = self.depth - 1 self.prob_ary[ids] = prob # here, ids means the indices of given children (maybe the right ones or left ones) p_ids = (ids - 1) // 2 while upper_step: # propagate the change through tree ids = p_ids * 2 + 1 # in this while loop, ids means the indices of the left children self.prob_ary[p_ids] = self.prob_ary[ids] + self.prob_ary[ids + 1] p_ids = (p_ids - 1) // 2 upper_step -= 1 self.prob_ary[0] = self.prob_ary[1] + self.prob_ary[2] # because we take depth-1 upper steps, ps_tree[0] need to be updated alone def get_leaf_id(self, v): """Tree structure and array storage: Tree index: 0 -> storing priority sum | | 1 2 | | | | 3 4 5 6 -> storing priority for transitions Array type for storing: [0, 1, 2, 3, 4, 5, 6] """ parent_idx = 0 while True: l_idx = 2 * parent_idx + 1 # the leaf's left node r_idx = l_idx + 1 # the leaf's right node if l_idx >= (len(self.prob_ary)): # reach bottom, end search leaf_idx = parent_idx break else: # downward search, always search for a higher priority node if v <= self.prob_ary[l_idx]: parent_idx = l_idx else: v -= self.prob_ary[l_idx] parent_idx = r_idx return min(leaf_idx, self.now_len - 2) # leaf_idx def get_indices_is_weights(self, batch_size, beg, end): self.per_beta = min(1., self.per_beta + 0.001) # get random values for searching indices with proportional prioritization values = (rd.rand(batch_size) + np.arange(batch_size)) * (self.prob_ary[0] / batch_size) # get proportional prioritization leaf_ids = np.array([self.get_leaf_id(v) for v in values]) self.indices = leaf_ids - (self.memo_len - 1) prob_ary = self.prob_ary[leaf_ids] / self.prob_ary[beg:end].min() is_weights = np.power(prob_ary, -self.per_beta) # important sampling weights return self.indices, is_weights def td_error_update(self, td_error): # td_error = (q-q).detach_().abs() prob = td_error.squeeze().clamp(1e-6, 10).pow(self.per_alpha) prob = prob.cpu().numpy() self.update_ids(self.indices, prob)
py
b412d0d40844e0f65b04d2351e79233c77096589
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import pytest import mxnet as mx import numpy as np import numpy.testing as npt from mxfusion.components.variables.var_trans import PositiveTransformation, Logistic @pytest.mark.usefixtures("set_seed") class TestVariableTransformation(object): """ Tests the MXFusion.core.var_trans file for variable transformations """ def test_softplus(self): v_orig = mx.nd.array([-10.], dtype=np.float64) p = PositiveTransformation() v_pos = p.transform(v_orig) v_inv_trans = p.inverseTransform(v_pos) assert v_orig.asnumpy()[0] < 0 assert v_pos.asnumpy()[0] > 0 assert v_inv_trans.asnumpy()[0] < 0 npt.assert_allclose(v_inv_trans.asnumpy()[0], v_orig.asnumpy()[0], rtol=1e-7, atol=1e-10) @pytest.mark.parametrize("x, rtol, atol", [ (mx.nd.array([10], dtype=np.float64), 1e-7, 1e-10), (mx.nd.array([1e-30], dtype=np.float64), 1e-7, 1e-10), (mx.nd.array([5], dtype=np.float32), 1e-4, 1e-5), (mx.nd.array([1e-6], dtype=np.float32), 1e-4, 1e-5) ]) def test_softplus_numerical(self, x, rtol, atol): p = PositiveTransformation() mf_pos = p.transform(x) mf_inv = p.inverseTransform(mf_pos) np_pos = np.log1p(np.exp(x.asnumpy())) np_inv = np.log(np.expm1(np_pos)) npt.assert_allclose(mf_pos.asnumpy(), np_pos, rtol=rtol, atol=atol) npt.assert_allclose(mf_inv.asnumpy(), np_inv, rtol=rtol, atol=atol) npt.assert_allclose(mf_inv.asnumpy(), x.asnumpy(), rtol=rtol, atol=atol) @pytest.mark.parametrize("x, upper, lower, rtol, atol", [ (mx.nd.array([10], dtype=np.float64), 2, 20, 1e-7, 1e-10), (mx.nd.array([1e-3], dtype=np.float64), 1e-6, 1e-2, 1e-7, 1e-10), (mx.nd.array([1], dtype=np.float32), 1, 200000, 1e-4, 1e-5), (mx.nd.array([5], dtype=np.float32), 2, 10000, 1e-4, 1e-5) ]) def test_logistic(self, x, upper, lower, rtol, atol): transform = Logistic(upper, lower) x_trans = transform.transform(x) x_inversed = transform.inverseTransform(x_trans) assert x_inversed.dtype == x.dtype assert np.isclose(x.asnumpy(), x_inversed.asnumpy(), rtol=rtol, atol=atol)
py
b412d1370195caa99308a70cbafb5aaff5eb234f
from virgil_crypto._libs import LowLevelLibs from ctypes import Structure, POINTER, c_int, c_size_t from virgil_crypto.common._c_bridge import vsc_data_t, vsc_buffer_t class vsce_phe_cipher_t(Structure): pass class VscePheCipher(object): def __init__(self): self._ll = LowLevelLibs() self._lib_common = self._ll.common self._lib_foundation = self._ll.foundation self._lib = self._ll.phe def vsce_phe_cipher_new(self): vsce_phe_cipher_new = self._lib.vsce_phe_cipher_new vsce_phe_cipher_new.argtypes = [] vsce_phe_cipher_new.restype = POINTER(vsce_phe_cipher_t) return vsce_phe_cipher_new() def vsce_phe_cipher_setup_defaults(self, cipher): vsce_phe_cipher_setup_defaults = self._lib.vsce_phe_cipher_setup_defaults vsce_phe_cipher_setup_defaults.argtypes = [POINTER(vsce_phe_cipher_t)] vsce_phe_cipher_setup_defaults.restype = None return vsce_phe_cipher_setup_defaults(cipher) def vsce_phe_cipher_delete(self, phe_cipher): vsce_phe_cipher_delete = self._lib.vsce_phe_cipher_delete vsce_phe_cipher_delete.argtypes = [POINTER(vsce_phe_cipher_t)] vsce_phe_cipher_delete.restype = None return vsce_phe_cipher_delete(phe_cipher) def vsce_phe_cipher_encrypt_len(self, cipher, data_len): vsce_phe_cipher_encrypt_len = self._lib.vsce_phe_cipher_encrypt_len vsce_phe_cipher_encrypt_len.argtypes = [POINTER(vsce_phe_cipher_t), c_size_t] vsce_phe_cipher_encrypt_len.restype = c_size_t return vsce_phe_cipher_encrypt_len(cipher, data_len) def vsce_phe_cipher_encrypt(self, phe_cipher, data, account_key, encrypted_data): vsce_phe_cipher_encrypt = self._lib.vsce_phe_cipher_encrypt vsce_phe_cipher_encrypt.argtypes = [POINTER(vsce_phe_cipher_t), vsc_data_t, vsc_data_t, POINTER(vsc_buffer_t)] vsce_phe_cipher_encrypt.restype = c_int return vsce_phe_cipher_encrypt(phe_cipher, data, account_key, encrypted_data) def vsce_phe_cipher_decrypt_len(self, cipher, encrypted_data_len): vsce_phe_cipher_decrypt_len = self._lib.vsce_phe_cipher_decrypt_len vsce_phe_cipher_decrypt_len.argtypes = [POINTER(vsce_phe_cipher_t), c_size_t] vsce_phe_cipher_decrypt_len.restype = c_size_t return vsce_phe_cipher_decrypt_len(cipher, encrypted_data_len) def vsce_phe_cipher_decrypt(self, phe_cipher, encrypted_data, account_key, data): vsce_phe_cipher_decrypt = self._lib.vsce_phe_cipher_decrypt vsce_phe_cipher_decrypt.argtypes = [POINTER(vsce_phe_cipher_t), vsc_data_t, vsc_data_t, POINTER(vsc_buffer_t)] vsce_phe_cipher_decrypt.restype = c_int return vsce_phe_cipher_decrypt(phe_cipher, encrypted_data, account_key, data)
py
b412d1e5a9d1e1bc4ae53d064ec6d2eb17c75efd
import sys from ncc.data.constants import ( PAD, SBT_LEFT_PARENTHESE, SBT_RIGHT_PARENTHESE, ) from ncc.data import tokenizer_funcs from ..constants import ( RECURSION_DEPTH, MAX_SUBTOKEN_LEN, NODE_TMP, ) from copy import deepcopy # ignore those ast whose size is too large. Therefore set it as a small number sys.setrecursionlimit(RECURSION_DEPTH) # recursion depth def child_value2child_only(ast): """node['value'] => node['children']""" for idx, node in ast.items(): value = node.get('value', None) if value: node.pop('value') node['children'] = [value] return ast def pad_leaf_nodes(ast, max_len=MAX_SUBTOKEN_LEN): ''' pad leaf node's child into [XX, [XX, ...]] split token and pad it with PAD_TOKEN till reach MAX_TOKEN_LIST_LEN e.g. VariableName -> [VariableName, [Variable, Name, PAD_TOKEN, PAD_TOKEN, ...]] ''' for idx, node in ast.items(): if len(node['children']) == 1 and isinstance(node['children'][0], str): subtokens = tokenizer_funcs._space_dpu_sub_tokenizer(node['children'][0])[:max_len] subtokens.extend([PAD] * (max_len - len(subtokens))) node['children'].append(subtokens) return ast def ast2sbt(ast, idx): ''' build structure-based traversal SBT tree ref: Deep Code Comment Generation ''' if len(ast[idx]['children']) == 2 and type(ast[idx]['children'][1]) == list: token = ast[idx]['type'] + '_' + ast[idx]['children'][0] seq = [SBT_LEFT_PARENTHESE, token, SBT_RIGHT_PARENTHESE, token] else: token = ast[idx]['type'] seq = [SBT_LEFT_PARENTHESE, token] for child_idx in ast[idx]['children']: seq += ast2sbt(ast, str(child_idx)) seq += [SBT_RIGHT_PARENTHESE, token] return seq def get_root(ast): """get root node index""" for idx, node in ast.items(): if node['parent'] is None: return idx def delete_root_with_unichild(ast): """ delete root node with only a child because in such way, head node might be Program/Function/Error and its child is the code's AST """ for idx in sorted([idx for idx in ast.keys()], key=int): if (ast[idx]['parent'] is None) and len(ast[idx]['children']) == 1: child_idx = ast[idx]['children'][0] ast[str(child_idx)]['parent'] = None ast.pop(idx) else: break return ast def delete_nodes_with_unichild(ast): ''' delete nodes with single child node e.g. [1*NODEFIX1] -> [1*NODEFIX2] -> ['void'] => [1*NODEFIX1] -> ['void'] ''' def _dfs(idx): node = ast[idx] # get current node's children indices, if it's leaf node, ignore. if not (len(node['children']) == 1 and isinstance(node['children'][0], str)): child_ids = node['children'] else: return # move to leaf node, return # each ast tree generally is parsed from a method, so it has a "program" root node and a "method" node # therefore, if current node is the root node with single child, we do not delete it while (len(child_ids) == 1) and (node['parent'] is not None): # update its parent's children parent_node = ast[str(node['parent'])] del_idx = parent_node['children'].index(int(idx)) parent_node['children'].pop(del_idx) child_idx = child_ids[0] # update its children's parent to its parent ast[str(child_idx)]['parent'] = node['parent'] # update its parent's children parent_node['children'].insert(del_idx, child_idx) # delete itself ast.pop(idx) # update current info idx = str(child_idx) node = ast[idx] # get current node's children indices, if it's leaf node, ignore. if not (len(node['children']) == 1 and isinstance(node['children'][0], str)): child_ids = node['children'] else: return # move to leaf node, return for idx in child_ids: _dfs(str(idx)) idx = get_root(ast) _dfs(idx) return ast def ast2bin_ast(ast): '''ast tree -> binary ast tree''' last_node_idx = sorted(ast.keys(), key=int)[-1] def _dfs(idx): node = ast[idx] # get current node's children indices, if it's leaf node, ignore. if not (len(node['children']) == 1 and isinstance(node['children'][0], str)): child_ids = node['children'] else: return # move to leaf node, return if len(child_ids) > 2: # add new node nonlocal last_node_idx last_node_idx = str(int(last_node_idx) + 1) ast[last_node_idx] = {'type': NODE_TMP, 'parent': idx, 'children': child_ids[1:]} # update node's children info node['children'] = [child_ids[0], int(last_node_idx)] # update other childen nodes' parent info for child_idx in child_ids[1:]: ast[str(child_idx)]['parent'] = last_node_idx # update current node's children info # get current node's children indices, if it's leaf node, ignore. if not (len(node['children']) == 1 and isinstance(node['children'][0], str)): child_ids = node['children'] else: return # move to leaf node, return for idx in child_ids: _dfs(str(idx)) idx = get_root(ast) _dfs(idx) return ast def reset_indices(ast): '''rename ast tree's node indices with consecutive indices''' if sorted(list(ast.keys())) == list(range(len(ast))): return ast # firstly, resort node index with a prefix "_", e.g. 0 => "_0" _idx = 0 def _dfs(idx, _parent_idx): nonlocal _idx _new_idx, _idx = f'_{_idx}', _idx + 1 # update for next node node = ast.pop(str(idx)) ast[_new_idx] = node # update its parent's children if node['parent'] is None: pass # current node is root node, no need for update its children else: parent_node = ast[_parent_idx] # update its index in its parent node parent_node['children'][parent_node['children'].index(idx)] = _new_idx # update parent index node['parent'] = _parent_idx if isinstance(node['children'][0], int): # non-leaf nodes, traverse its children nodes # update its children nodes' parent for child_idx in node['children']: _dfs(child_idx, _parent_idx=_new_idx) else: return root_idx = get_root(ast) _dfs(root_idx, _parent_idx=None) # recover name: from _* => * node_ids = deepcopy(list(ast.keys())) for idx in node_ids: node = ast.pop(idx) # update children index if len(node['children']) > 1: node['children'] = [int(child_idx[1:]) for child_idx in node['children']] # update parent index if node['parent'] == None: pass else: node['parent'] = int(node['parent'][1:]) ast[int(idx[1:])] = node # _idx => idx return ast
py
b412d2a36304482756320c40eea6d6f073b84e98
import sys meu_nome = "joao" def hello(meu_nome): print ("OLá",meu_nome) return print ("teste") hello(meu_nome) print ("Referência: ", w) print ("") print ("A temperatura em Barueri é de: ",temperature) print ("") #Quando eu passo o str(wind.get("speed"), eu pego o valor dentro da key do JSON #:4 eu pego apenas 4 posições do valor print ("Está ventando a ", str(wind.get("speed")*1.60934)[:4], " Km/h") #print (len(wind)) #quando eu forneço um FOR com uma variável (nesse caso, o objeto do wind) ele retorna o nome da chave, e o wind.get(str(j)) me retorna o valor desse objeto for j in wind: print("item: ", j, " / ", wind.get(str(j))) print ("") print ("Amanhã: ", tomorrow) #to_JSON() faz com que ele exiba todos os valores do JSON print(w.to_JSON()) #Prints print ("A temperatura em Barueri é de",str(temperature.get('temp')),"ºC") print ("Está ventando a ", str(wind.get("speed")*1.60934)[:4], " Km/h") print ("A temperatura em Barueri é de",str(temperature.get('temp')),"ºC") print ("Está ventando a ", str(wind.get("speed")*1.60934)[:4], " Km/h") print (status.title()) # Log hoje = "%s" % (time.strftime("%Y_%m_%d")) arquivo = open("log.%s.txt" % (date), "a") if temperatureC != temperature: arquivo.write("mudou") temperatureC = temperature arquivo.write("[%s]" % (hoje)) arquivo.write("[%s]" % (temperature.get('temp'))) arquivo.write("[%s]\n" % str(wind.get("speed")*1.60934)[:4]) arquivo.close() from tkinter import * class Application(Frame): def say_hi(self): print ("hi there, everyone!") def createWidgets(self): self.QUIT = Button(self) self.QUIT["text"] = "QUIT" self.QUIT["fg"] = "green" self.QUIT["bg"] = "black" self.QUIT["height"] = "10" self.QUIT["width"] = "10" self.QUIT["command"] = self.quit self.QUIT.pack({"side": "left"}) self.hi_there = Button(self) self.hi_there["text"] = "Hello", self.hi_there["command"] = self.say_hi self.hi_there.pack({"side": "left"}) def __init__(self, master=None): Frame.__init__(self, master) self.pack() self.createWidgets() root = Tk() app = Application(master=root) app.mainloop() root.destroy() #tkinter from tkinter import * root = Tk() var = StringVar() label = Label( root, textvariable=var, relief=RAISED ) var.set("Hey!? How are you doing?") label.pack() root.mainloop()
py
b412d3533d15a0ec9764bb14184bc51c9bf18be0
# # # # # # base URL for all Twitch API v3 request BASE_URL = 'https://api.twitch.tv/kraken/'
py
b412d425a8fec0611d294c0391561be3dd9fd872
def load(h): return ({'abbr': 'avg', 'code': 0, 'title': 'Average'}, {'abbr': 'accum', 'code': 1, 'title': 'Accumulation'}, {'abbr': 'max', 'code': 2, 'title': 'Maximum'}, {'abbr': 'min', 'code': 3, 'title': 'Minimum'}, {'abbr': 'diff', 'code': 4, 'title': 'Difference', 'units': 'value at the end of time range minus value at the beginning'}, {'abbr': 'rms', 'code': 5, 'title': 'Root mean square'}, {'abbr': 'sd', 'code': 6, 'title': 'Standard deviation'}, {'abbr': 'cov', 'code': 7, 'title': 'Covariance', 'units': 'temporal variance'}, {'abbr': 8, 'code': 8, 'title': 'Difference', 'units': 'value at the start of time range minus value at the end'}, {'abbr': 'ratio', 'code': 9, 'title': 'Ratio'}, {'abbr': 'missing', 'code': 255, 'title': 'Missing'})
py
b412d4b441a9270584b981e2e6e3fe74a658d03e
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .azure_workload_sap_hana_restore_request_py3 import AzureWorkloadSAPHanaRestoreRequest class AzureWorkloadSAPHanaPointInTimeRestoreRequest(AzureWorkloadSAPHanaRestoreRequest): """AzureWorkload SAP Hana -specific restore. Specifically for PointInTime/Log restore. All required parameters must be populated in order to send to Azure. :param object_type: Required. Constant filled by server. :type object_type: str :param target_info: Details of target database :type target_info: ~azure.mgmt.recoveryservicesbackup.models.TargetRestoreInfo :param recovery_type: OLR/ALR, RestoreDisks is invalid option. Possible values include: 'Invalid', 'OriginalLocation', 'AlternateLocation', 'RestoreDisks' :type recovery_type: str or ~azure.mgmt.recoveryservicesbackup.models.RecoveryType :param source_resource_id: Fully qualified ARM ID of the VM on which workload that was running is being recovered. :type source_resource_id: str :param property_bag: Workload specific property bag. :type property_bag: dict[str, str] :param point_in_time: PointInTime value :type point_in_time: datetime """ _validation = { 'object_type': {'required': True}, } _attribute_map = { 'object_type': {'key': 'objectType', 'type': 'str'}, 'target_info': {'key': 'targetInfo', 'type': 'TargetRestoreInfo'}, 'recovery_type': {'key': 'recoveryType', 'type': 'str'}, 'source_resource_id': {'key': 'sourceResourceId', 'type': 'str'}, 'property_bag': {'key': 'propertyBag', 'type': '{str}'}, 'point_in_time': {'key': 'pointInTime', 'type': 'iso-8601'}, } def __init__(self, *, target_info=None, recovery_type=None, source_resource_id: str=None, property_bag=None, point_in_time=None, **kwargs) -> None: super(AzureWorkloadSAPHanaPointInTimeRestoreRequest, self).__init__(target_info=target_info, recovery_type=recovery_type, source_resource_id=source_resource_id, property_bag=property_bag, **kwargs) self.point_in_time = point_in_time self.object_type = 'AzureWorkloadSAPHanaPointInTimeRestoreRequest'
py
b412d62ec4bbb72f67d6903af3dfd17fce644db0
# coding: utf-8 # In[1]: from jove.SystemImports import * from jove.TransitionSelectors import * from jove.DotBashers import chk_consistent_pda # # Pushdown Automata (PDA) # # ## Basic Definitions # # Pushdown Automata are structures # # $(Q, Sigma, Gamma, Delta, q0, z0, F)$ # # where # # * $Q$ : Finite non-empty set of states # # * $Sigma$ : Finite non-empty input alphabet # # * $Gamma$ : Finite non-empty stack alphabet (usually subsumes Sigma) # # * $Delta$ : A transition function # # and $Delta$'s signature is # # $(Q \times (Sigma \cup \{\varepsilon\}) \times (Gamma\cup\{\varepsilon\}) \rightarrow (Q \times Gamma^*)$ # # ## Example # # We model Delta as a mapping of this form # # (q, a, b) -> { (q1,G1s), (q2,G2s), ... } # # where # a gets read # b gets popped, if non-empty # Gis gets pushed # qi becomes the next state # # * q0 : Starting state # # * z0 : Initial stack's lone contents # # - prevents an "accept by # empty stack" PDA from accepting as soon as it is # switched on # # * F : Finite, possibly empty set of final states # # We will define acceptance by final state _or_ empty stack, as will be detailed in this sequel. # # ## Instantaneous Description # # An instantaneous description (ID) of a PDA is a triple (p, aI, bS). # # Now, ID (p, aI, bS) evolves to an ID (q, I, GS) # # written # # (p, aI, bS) $\vdash$ (q, I, GS) # # # if Delta(p,a,b) contains (q,G) # # A PDA accepts by final state if its ID is of the form (p, "", S) # where p in F. # # That is, the input is fully consumed # and control resides within F. Note that S is arbitrary. # # A PDA accepts by empty stack if its ID is of the form (p, "", "") # at any point (for any p). # # ## Design Details of a PDA # # To __prevent__ a PDA P whose acceptance is defined via an empty stack # from accepting "as soon as it is turned on", we put in an # initial stack letter denoted by P["z0"]. # # * As of now, P["z0"] is the hash mark, # # # - It does not matter what this character it is # # - With markdowns, the initial stack contents is always # # # * Note that this is only to help-out the user. The user may decide to start with # an empty stack, which is fine. # # * Our preferred initial stack symbol is "z" (lower-case z). # # # # Our coding decisions wrt acceptance # # In our coding, # # * For PDA, we will require there to be an initial stack symbol # # * We will permit acceptance either by final state or empty stack (this will be a # parameter given to the run_pda function) # # * We will require that a PDA always pop something from the stack (but allow zero or more things to be pushed). This way ("zero or more"), emptying the stack becomes possible. # # * When we encounter an ID for which acceptance has been noted, that ID will still be expanded if there are moves leading out of it. # # # Routines to run PDA # # We now devise a routine to run a PDA according to either the "accept by final state" criterion or "accept by empty stack" criterion. We call these "ACCEPT_F" and "ACCEPT_S" with the default being ACCEPT_F. The main difference is that the "final" configurations are collected differently. # In[2]: def explore_pda(inp, P, acceptance = 'ACCEPT_F', STKMAX=0, chatty=False): """A handy routine to print the result of run_pda plus making future extensions to explore run-results. """ chk_consistent_pda(P) (term, final, visited) = run_pda(inp, P, acceptance, STKMAX=STKMAX, chatty=chatty) if (final == []): print("String " + inp + " rejected by your PDA :-(") print("Visited states are:") print(visited) else: print("String " + inp + " accepted by your PDA in " + str(len(final)) + " ways :-) ") print("Here are the ways: ") for fin_path in final: (fin, path) = fin_path print("Final state ", fin) print("Reached as follows:") for p in path: print("-> ", p) print("-> ", fin, ".") # In[3]: def run_pda(str, P, acceptance = 'ACCEPT_F', STKMAX=0, chatty=False): """Helper for explore_pda --- Input: An initial string str. A PDA P The acceptance criterion (default is "by final state" encoded as ACCEPT_F. The alternative is ACCEPT_S that stands for "acceptance by empty stack"). Output: (l_term_id_path, l_final_id_path, s_visited_id) Thus, an external routine can probe and determine * terminal IDs * acceptance configurations * visited IDs """ chk_consistent_pda(P) init_id = (P["q0"], str, P["z0"]) # Initial ID init_l_id_path = [(init_id, [])] # [(Initial ID, empty path)] s_visited_id = set({}) # Nothing visited yet (l_surv, l_term, l_final) = classify_l_id_path(init_l_id_path, s_visited_id, P, acceptance, STKMAX=STKMAX) rslt = h_run_pda(l_id_path = l_surv, l_term_id_path = l_term, l_final_id_path = l_final, s_visited_id = s_visited_id, pda = P, acceptance = acceptance, # Acceptance criterion STKMAX = STKMAX ) (terminal_id_path, final_id_path, visited_ids) = rslt if chatty: print("terminal_id_path = ", terminal_id_path) print("final_id_path = ", final_id_path) print("visited_ids = ", visited_ids) return rslt # In[4]: def classify_l_id_path(l_id_path, s_visited_id, P, acceptance, STKMAX): """Helper for run_pda --- Given a list l_id_path of id_path pairs, a list s_visited_id of visited IDs, a PDA P, and the acceptance criterion, classify the contents of id_path into survivors, terminals, and finals. """ #print("---") #print("classify_l_id_path >> ") #print("l_id_path = ", l_id_path) #print("s_visited_id = ", s_visited_id) surv_pool = list(map(survivor_id(s_visited_id, P, STKMAX=STKMAX), l_id_path)) term_pool = list(map(term_id(s_visited_id, P, STKMAX=STKMAX), l_id_path)) final_pool = list(map(final_id(P, acceptance), l_id_path)) l_surv = list(map(lambda x: x[1], filter(lambda x: x[0]=="surv", surv_pool))) l_term = list(map(lambda x: x[1], filter(lambda x: x[0]=="term", term_pool))) l_final = list(map(lambda x: x[1], filter(lambda x: x[0]=="final", final_pool))) #print("classify_l_id_path << ") #print("l_surv = ", l_surv) #print("l_term = ", l_term) #print("l_final = ", l_final) #print("---") return (l_surv, l_term, l_final) # In[5]: def h_run_pda(l_id_path, l_term_id_path, l_final_id_path, s_visited_id, pda, acceptance, STKMAX): """Helper for run_pda --- Input: A list of id_path, all of which are surviving i.e. not "term" or terminal. This invariant is maintained. A list of terminal id_path (terminal in that there is no point pushing on them; stuck or loopy). A list of final id_path: whenever we meet the acceptance condition, we record that configuration; A list of visited id. This will help determine if terminal or not. Detects looping as well. A PDA. Output: (l_term_id_path, l_final_id_path, s_visited_id) Thus, an external routine can probe and determine * terminal IDs * acceptance configurations * visited IDs """ while (l_id_path != []): id_path0 = l_id_path[0] (id0,path0) = id_path0 # separate out the id and path # First, record the current id0 in s_visited_id s_visited_id = {id0} | s_visited_id # Then obtain (ID, path) pairs generated by # taking all possible one-step moves out of id0. # We also record the extension of path0 in each such # reached new ID. nl_id_path0 = step_pda(id0, path0, pda) if nl_id_path0 == []: # Nothing gen by firing id0; recurse on rest l_id_path = l_id_path[1:] else: # Classify the progenies of id0 in nl_id_path0 (l_surv, l_term, l_final) = classify_l_id_path(nl_id_path0, s_visited_id, pda, acceptance, STKMAX) l_id_path = l_id_path[1:] + l_surv l_term_id_path = l_term_id_path + l_term l_final_id_path = l_final_id_path + l_final return (l_term_id_path, l_final_id_path, s_visited_id) # In[6]: def interpret_w_eps(q_inp_stk, pda): """Helper for step_pda --- Produce the most liberal interpretation of q_inp_stk for pda i.e. in (q, inp_str, stk_str), we can ignore inp_str or stk_str. E.g. if inp_str is "ab", we can consider it to be "" or "a". The rest of the string will then be "ab" or "b" respectively. This is done if a move in Delta can process that option. """ (q, inp_str, stk_str) = q_inp_stk inp_interps = cvt_str_to_sym(inp_str) # Diverse interpretations of input stk_interps = cvt_str_to_sym(stk_str) # and stack strings. # A list of the form [ ((if, ir), (sf, sr)), ... ] pairs where # ifst is the first of the input and sfst is the first of the stack # irst is the rest of the input and srst is the rest of the stack i_s_interps = list(product(inp_interps, stk_interps)) pda_delta = pda["Delta"] key_list = list(pda_delta.keys()) # Form a dictionary i_s_interp_dict of { i_s_interp : delta-codom-pt-set } i_s_interp_dict = dict({}) for i_s_interp in i_s_interps: # Each i_s_interp is ((ifst, irst), (sfst, srst)) (inp_interp, stk_interp) = i_s_interp (ifst, irst) = inp_interp (sfst, srst) = stk_interp # Now form all possible transitions under each interpretation key_sought = (q, ifst, sfst) if key_sought in key_list: # Transition as per that, recording the irst, srst also i_s_interp_dict.update({i_s_interp : pda_delta[key_sought]}) return i_s_interp_dict # In[7]: def step_pda(q_inp_stk, path, pda): """Inputs: An ID q_inp_stk = (q, inp_str, stk_str) A path reaching this ID. path is a list of Delta's domain triples via which the firings occurred. A pda (Q, Sigma, Gamma, Delta, q0, z0, F) Output: Let inp_sym and stk_sym be the symbols in the input/stack. In case (q,inp_sym, stk_sym) is not in the domain of pda's TRel, return [], i.e. empty list. Else return the list [ (q_inp_stk_i, path_i), ... ] where ID q_inp_stk_i can be reached via path_i, and path_i is obtained by extending path with the domain triple that fired. For instance, if path_list is [p1,p2,p3] and the transition at domain point (q,c,s) fired from (q,inp,stk), and the codomain has its third entry as (q3,inp3,stk3), then q_inp_stk_i will be (q3,inp3,stk3) and path_i will be [p1,p2,p3, (q,c,s)]. """ i_s_interp_dict = interpret_w_eps(q_inp_stk, pda) nxt_id_path_l = [] extpath = path + [ q_inp_stk ] for i_s_interp_item in i_s_interp_dict.items(): (((ifst, irst), # extract input fst,rst (sfst, srst)), # and stack fst,rst codom_set # and codom_set ) = i_s_interp_item for codom_pt in codom_set: (nxt_st, str_psh) = codom_pt nxt_id_path_l += [((nxt_st, irst, str_psh+srst), extpath)] return nxt_id_path_l # In[8]: def survivor_id(s_visited_id, pda, STKMAX): """Helper for classify_l_id_path --- Classify s_visited_id using is_surv_id to tag its entries 'surv' or 'not_surv'. """ return (lambda id_path: (("surv", id_path) if is_surv_id(id_path, s_visited_id, pda, STKMAX=STKMAX) else ("not_surv", id_path))) def term_id(s_visited_id, pda, STKMAX): """Helper for classify_l_id_path --- Classify s_visited_id using is_term_id to tag its entries 'term' or 'not_term'. """ return (lambda id_path: (("term", id_path) if is_term_id(id_path, s_visited_id, pda, STKMAX=STKMAX) else ("not_term", id_path))) def final_id(pda, acceptance): """Helper for classify_l_id_path --- Classify s_visited_id using is_final_id to tag its entries 'final' or 'not_final'. """ return (lambda id_path: (("final", id_path) if is_final_id(id_path, pda, acceptance) else ("not_final", id_path))) # In[9]: def cvt_str_to_sym(str): """Helper for interpret_w_eps --- Given a string, interpret it in all possible ways and return a set of pairs of (first, rest). E.g. "ab" interpreted as ("", "ab") as well as ("a", "b"). However, "" interpreted only as ("", ""). """ if str == "": return [("", "")] else: return [("", str), (str[0], str[1:])] # In[10]: def is_surv_id(id_path, s_visited_id, pda, STKMAX): """Helper for survivor_id --- If there is any move out of the id of id_path, and the id is not subsumed by s_visited_id, then it is "surv"; else not. """ #print("--is_surv_id--") (id, path) = id_path S = subsumed(id, s_visited_id, STKMAX=STKMAX) #print("not S = ", (not S)) return (not S) from functools import reduce def subsumed(id, s_visited_id, STKMAX): """Helper for is_term_id and is_surv_id --- If id is (q,in_str,stk_str) and exists a member (q1,in_str1,stk_str1) in s_visited_id then subsumed is True if q==q1, in_str==in_str1 and stk_str1 starts with stk_str. This "starts with" test models stk_str being on top of the stack. """ #print(" ~~~") #print(" subsumed >>>") #print("id",id) #print("s_visited_id",s_visited_id) (q, inp_str, stk_str) = id for (q1, inp_str1, stk_str1) in s_visited_id: if ((q==q1) and (inp_str == inp_str1) and (stk_str.startswith(stk_str1) or (len(stk_str) - len(stk_str1)) >= STKMAX)): return True return False def is_term_id(id_path, s_visited_id, pda, STKMAX): """Helper for term_id --- If the id of id_path is subsumed by s_visited_id, then it is "term"; else not. """ #print("--is_term_id--") (id, path) = id_path #print("id = ", id) #print("s_visited_id = ", s_visited_id) S = subsumed(id, s_visited_id, STKMAX=STKMAX) #print("subsumed(..) = ", S) return S def is_final_id(id_path, pda, acceptance): """Helper for final_id --- If the id of id_path meets the acceptance criterion that is passed in, then it is "final"; else not. """ (id, path) = id_path (q, inp_str, stk_str) = id if (acceptance == "ACCEPT_F"): return (inp_str=="" and q in pda["F"]) else: assert(acceptance == "ACCEPT_S") return (inp_str=="" and stk_str=="") # Now for the functions in this file # In[11]: print('''You may use any of these help commands: help(explore_pda) help(run_pda) help(classify_l_id_path) help(h_run_pda) help(interpret_w_eps) help(step_pda) help(suvivor_id) help(term_id) help(final_id) help(cvt_str_to_sym) help(is_surv_id) help(subsumed) help(is_term_id) help(is_final_id) ''')
py
b412d667a3b3debafb31483ab423150cd7a0cbbd
from .protocol import Response from .sessions import Session from .typing import Any, List, Callable import mdpopups import sublime class MessageRequestHandler(): def __init__(self, view: sublime.View, session: Session, request_id: Any, params: dict, source: str) -> None: self.session = session self.request_id = request_id self.request_sent = False self.view = view self.actions = params.get("actions", []) self.titles = list(action.get("title") for action in self.actions) self.message = params.get('message', '') self.message_type = params.get('type', 4) self.source = source def _send_user_choice(self, href: int = -1) -> None: if not self.request_sent: self.request_sent = True self.view.hide_popup() # when noop; nothing was selected e.g. the user pressed escape param = None index = int(href) if index != -1: param = self.actions[index] response = Response(self.request_id, param) self.session.send_response(response) def show(self) -> None: show_notification( self.view, self.source, self.message_type, self.message, self.titles, self._send_user_choice, self._send_user_choice ) def message_content(source: str, message_type: int, message: str, titles: List[str]) -> str: formatted = [] icons = { 1: '❗', 2: '⚠️', 3: 'ℹ️', 4: '📝' } icon = icons.get(message_type, '') formatted.append("<h2>{}</h2>".format(source)) formatted.append("<p class='message'>{} {}</p>".format(icon, message)) buttons = [] for idx, title in enumerate(titles): buttons.append("<a href='{}'>{}</a>".format(idx, title)) formatted.append("<p class='actions'>" + " ".join(buttons) + "</p>") return "".join(formatted) def show_notification(view: sublime.View, source: str, message_type: int, message: str, titles: List[str], on_navigate: Callable, on_hide: Callable) -> None: stylesheet = sublime.load_resource("Packages/LSP/notification.css") contents = message_content(source, message_type, message, titles) mdpopups.show_popup( view, contents, css=stylesheet, md=False, location=-1, wrapper_class='notification', max_width=800, max_height=800, on_navigate=on_navigate, on_hide=on_hide )
py
b412d68acc41d3a8abfb0e786f76055b2a896ae6
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE from __future__ import absolute_import import re import sys import os import warnings try: from collections.abc import Mapping from collections.abc import MutableMapping except ImportError: from collections import Mapping from collections import MutableMapping import awkward as ak np = ak.nplike.NumpyMetadata.instance() py27 = sys.version_info[0] < 3 py35 = sys.version_info[0] == 3 and sys.version_info[1] <= 5 win = os.name == "nt" # to silence flake8 F821 errors if py27: unicode = eval("unicode") else: unicode = None def exception_suffix(filename): line = "" if hasattr(sys, "_getframe"): line = "#L" + str(sys._getframe(1).f_lineno) filename = filename.replace("\\", "/") filename = "/src/awkward/" + filename.split("awkward/")[1] return ( "\n\n(https://github.com/scikit-hep/awkward-1.0/blob/" + ak.__version__ + filename + line + ")" ) def deprecate(exception, version, date=None): if ak.deprecations_as_errors: raise exception else: if date is None: date = "" else: date = " (target date: " + date + ")" message = """In version {0}{1}, this will be an error. (Set ak.deprecations_as_errors = True to get a stack trace now.) {2}: {3}""".format( version, date, type(exception).__name__, str(exception) ) warnings.warn(message, DeprecationWarning) virtualtypes = (ak.layout.VirtualArray,) unknowntypes = (ak.layout.EmptyArray,) indexedtypes = ( ak.layout.IndexedArray32, ak.layout.IndexedArrayU32, ak.layout.IndexedArray64, ) uniontypes = ( ak.layout.UnionArray8_32, ak.layout.UnionArray8_U32, ak.layout.UnionArray8_64, ) indexedoptiontypes = ( ak.layout.IndexedOptionArray32, ak.layout.IndexedOptionArray64, ) optiontypes = ( ak.layout.IndexedOptionArray32, ak.layout.IndexedOptionArray64, ak.layout.ByteMaskedArray, ak.layout.BitMaskedArray, ak.layout.UnmaskedArray, ) listtypes = ( ak.layout.RegularArray, ak.layout.ListArray32, ak.layout.ListArrayU32, ak.layout.ListArray64, ak.layout.ListOffsetArray32, ak.layout.ListOffsetArrayU32, ak.layout.ListOffsetArray64, ) recordtypes = (ak.layout.RecordArray,) class Behavior(Mapping): def __init__(self, defaults, overrides): self.defaults = defaults if overrides is None: self.overrides = {} else: self.overrides = overrides def __getitem__(self, where): try: return self.overrides[where] except KeyError: try: return self.defaults[where] except KeyError: return None def items(self): for n, x in self.overrides.items(): yield n, x for n, x in self.defaults.items(): if n not in self.overrides: yield n, x def __iter__(self): for n, x in self.items(): yield n def __len__(self): return len(set(self.defaults) | set(self.overrides)) def arrayclass(layout, behavior): layout = ak.partition.first(layout) behavior = Behavior(ak.behavior, behavior) arr = layout.parameter("__array__") if isinstance(arr, str) or (py27 and isinstance(arr, unicode)): cls = behavior[arr] if isinstance(cls, type) and issubclass(cls, ak.highlevel.Array): return cls rec = layout.parameter("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): cls = behavior[".", rec] if isinstance(cls, type) and issubclass(cls, ak.highlevel.Array): return cls deeprec = layout.purelist_parameter("__record__") if isinstance(deeprec, str) or (py27 and isinstance(deeprec, unicode)): cls = behavior["*", deeprec] if isinstance(cls, type) and issubclass(cls, ak.highlevel.Array): return cls return ak.highlevel.Array def custom_broadcast(layout, behavior): layout = ak.partition.first(layout) behavior = Behavior(ak.behavior, behavior) custom = layout.parameter("__array__") if not (isinstance(custom, str) or (py27 and isinstance(custom, unicode))): custom = layout.parameter("__record__") if not (isinstance(custom, str) or (py27 and isinstance(custom, unicode))): custom = layout.purelist_parameter("__record__") if isinstance(custom, str) or (py27 and isinstance(custom, unicode)): for key, fcn in behavior.items(): if ( isinstance(key, tuple) and len(key) == 2 and key[0] == "__broadcast__" and key[1] == custom ): return fcn return None def numba_array_typer(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) arr = layouttype.parameters.get("__array__") if isinstance(arr, str) or (py27 and isinstance(arr, unicode)): typer = behavior["__numba_typer__", arr] if callable(typer): return typer rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): typer = behavior["__numba_typer__", ".", rec] if callable(typer): return typer deeprec = layouttype.parameters.get("__record__") if isinstance(deeprec, str) or (py27 and isinstance(deeprec, unicode)): typer = behavior["__numba_typer__", "*", deeprec] if callable(typer): return typer return None def numba_array_lower(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) arr = layouttype.parameters.get("__array__") if isinstance(arr, str) or (py27 and isinstance(arr, unicode)): lower = behavior["__numba_lower__", arr] if callable(lower): return lower rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): lower = behavior["__numba_lower__", ".", rec] if callable(lower): return lower deeprec = layouttype.parameters.get("__record__") if isinstance(deeprec, str) or (py27 and isinstance(deeprec, unicode)): lower = behavior["__numba_lower__", "*", deeprec] if callable(lower): return lower return None def recordclass(layout, behavior): layout = ak.partition.first(layout) behavior = Behavior(ak.behavior, behavior) rec = layout.parameter("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): cls = behavior[rec] if isinstance(cls, type) and issubclass(cls, ak.highlevel.Record): return cls return ak.highlevel.Record def typestrs(behavior): behavior = Behavior(ak.behavior, behavior) out = {} for key, typestr in behavior.items(): if ( isinstance(key, tuple) and len(key) == 2 and key[0] == "__typestr__" and (isinstance(key[1], str) or (py27 and isinstance(key[1], unicode))) and (isinstance(typestr, str) or (py27 and isinstance(typestr, unicode))) ): out[key[1]] = typestr return out def numba_record_typer(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): typer = behavior["__numba_typer__", rec] if callable(typer): return typer return None def numba_record_lower(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): lower = behavior["__numba_lower__", rec] if callable(lower): return lower return None def overload(behavior, signature): if not any(s is None for s in signature): behavior = Behavior(ak.behavior, behavior) for key, custom in behavior.items(): if ( isinstance(key, tuple) and len(key) == len(signature) and key[0] == signature[0] and all( k == s or ( isinstance(k, type) and isinstance(s, type) and issubclass(s, k) ) for k, s in zip(key[1:], signature[1:]) ) ): return custom def numba_attrs(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): for key, typer in behavior.items(): if ( isinstance(key, tuple) and len(key) == 3 and key[0] == "__numba_typer__" and key[1] == rec ): lower = behavior["__numba_lower__", key[1], key[2]] yield key[2], typer, lower def numba_methods(layouttype, behavior): behavior = Behavior(ak.behavior, behavior) rec = layouttype.parameters.get("__record__") if isinstance(rec, str) or (py27 and isinstance(rec, unicode)): for key, typer in behavior.items(): if ( isinstance(key, tuple) and len(key) == 4 and key[0] == "__numba_typer__" and key[1] == rec and key[3] == () ): lower = behavior["__numba_lower__", key[1], key[2], ()] yield key[2], typer, lower def numba_unaryops(unaryop, left, behavior): behavior = Behavior(ak.behavior, behavior) done = False if isinstance(left, ak._connect._numba.layout.ContentType): left = left.parameters.get("__record__") if not (isinstance(left, str) or (py27 and isinstance(left, unicode))): done = True if not done: for key, typer in behavior.items(): if ( isinstance(key, tuple) and len(key) == 3 and key[0] == "__numba_typer__" and key[1] == unaryop and key[2] == left ): lower = behavior["__numba_lower__", key[1], key[2]] yield typer, lower def numba_binops(binop, left, right, behavior): behavior = Behavior(ak.behavior, behavior) done = False if isinstance(left, ak._connect._numba.layout.ContentType): left = left.parameters.get("__record__") if not (isinstance(left, str) or (py27 and isinstance(left, unicode))): done = True if isinstance(right, ak._connect._numba.layout.ContentType): right = right.parameters.get("__record__") if not isinstance(right, str) and not (py27 and isinstance(right, unicode)): done = True if not done: for key, typer in behavior.items(): if ( isinstance(key, tuple) and len(key) == 4 and key[0] == "__numba_typer__" and key[1] == left and key[2] == binop and key[3] == right ): lower = behavior["__numba_lower__", key[1], key[2], key[3]] yield typer, lower def behaviorof(*arrays): behavior = None for x in arrays[::-1]: if ( isinstance( x, (ak.highlevel.Array, ak.highlevel.Record, ak.highlevel.ArrayBuilder,), ) and x.behavior is not None ): if behavior is None: behavior = dict(x.behavior) else: behavior.update(x.behavior) return behavior def wrap(content, behavior): if isinstance(content, (ak.layout.Content, ak.partition.PartitionedArray)): return ak.highlevel.Array(content, behavior=behavior, kernels=None) elif isinstance(content, ak.layout.Record): return ak.highlevel.Record(content, behavior=behavior, kernels=None) else: return content def extra(args, kwargs, defaults): out = [] for i in range(len(defaults)): name, default = defaults[i] if i < len(args): out.append(args[i]) elif name in kwargs: out.append(kwargs[name]) else: out.append(default) return out def key2index(keys, key): if keys is None: attempt = None else: try: attempt = keys.index(key) except ValueError: attempt = None if attempt is None: m = key2index._pattern.match(key) if m is not None: attempt = m.group(0) if attempt is None: raise ValueError( "key {0} not found in record".format(repr(key)) + exception_suffix(__file__) ) else: return attempt key2index._pattern = re.compile(r"^[1-9][0-9]*$") def completely_flatten(array): if isinstance(array, ak.partition.PartitionedArray): out = [] for partition in array.partitions: for outi in completely_flatten(partition): out.append(outi) return tuple(out) elif isinstance(array, virtualtypes): return completely_flatten(array.array) elif isinstance(array, unknowntypes): return (ak.nplike.of(array).array([], dtype=np.bool_),) elif isinstance(array, indexedtypes): return completely_flatten(array.project()) elif isinstance(array, uniontypes): out = [] for i in range(array.numcontents): out.append(completely_flatten(array.project(i))) return tuple(out) elif isinstance(array, optiontypes): return completely_flatten(array.project()) elif isinstance(array, listtypes): return completely_flatten(array.flatten(axis=1)) elif isinstance(array, recordtypes): out = [] for i in range(array.numfields): out.extend(completely_flatten(array.field(i))) return tuple(out) elif isinstance(array, ak.layout.NumpyArray): return (ak.nplike.of(array).asarray(array),) else: raise RuntimeError( "cannot completely flatten: {0}".format(type(array)) + exception_suffix(__file__) ) def broadcast_and_apply( # noqa: C901 inputs, getfunction, behavior, allow_records=True, pass_depth=True, pass_user=False, user=None, left_broadcast=True, right_broadcast=True, numpy_to_regular=False, ): def checklength(inputs): length = len(inputs[0]) for x in inputs[1:]: if len(x) != length: raise ValueError( "cannot broadcast {0} of length {1} with {2} of " "length {3}".format( type(inputs[0]).__name__, length, type(x).__name__, len(x) ) + exception_suffix(__file__) ) def all_same_offsets(nplike, inputs): offsets = None for x in inputs: if isinstance( x, ( ak.layout.ListOffsetArray32, ak.layout.ListOffsetArrayU32, ak.layout.ListOffsetArray64, ), ): if offsets is None: offsets = nplike.asarray(x.offsets) elif not nplike.array_equal(offsets, nplike.asarray(x.offsets)): return False elif isinstance( x, (ak.layout.ListArray32, ak.layout.ListArrayU32, ak.layout.ListArray64,), ): starts = nplike.asarray(x.starts) stops = nplike.asarray(x.stops) if not nplike.array_equal(starts[1:], stops[:-1]): return False if offsets is None: offsets = nplike.empty(len(starts) + 1, dtype=starts.dtype) if len(offsets) == 1: offsets[0] = 0 else: offsets[:-1] = starts offsets[-1] = stops[-1] elif not nplike.array_equal(offsets[:-1], starts) or ( len(stops) != 0 and offsets[-1] != stops[-1] ): return False elif isinstance(x, ak.layout.RegularArray): my_offsets = nplike.arange(0, len(x.content), x.size) if offsets is None: offsets = my_offsets elif not nplike.array_equal(offsets, my_offsets): return False elif isinstance(x, ak.layout.Content): return False else: return True def apply(inputs, depth, user): nplike = ak.nplike.of(*inputs) if numpy_to_regular: inputs = [ x.toRegularArray() if isinstance(x, ak.layout.NumpyArray) else x for x in inputs ] # handle implicit right-broadcasting (i.e. NumPy-like) if right_broadcast and any(isinstance(x, listtypes) for x in inputs): maxdepth = max( x.purelist_depth for x in inputs if isinstance(x, ak.layout.Content) ) if maxdepth > 0 and all( x.purelist_isregular for x in inputs if isinstance(x, ak.layout.Content) ): nextinputs = [] for obj in inputs: if isinstance(obj, ak.layout.Content): while obj.purelist_depth < maxdepth: obj = ak.layout.RegularArray(obj, 1) nextinputs.append(obj) if any(x is not y for x, y in zip(inputs, nextinputs)): return apply(nextinputs, depth, user) # now all lengths must agree checklength([x for x in inputs if isinstance(x, ak.layout.Content)]) args = () if pass_depth: args = args + (depth,) if pass_user: args = args + (user,) custom = getfunction(inputs, *args) if callable(custom): return custom() else: user = custom # the rest of this is one switch statement if any(isinstance(x, virtualtypes) for x in inputs): nextinputs = [] for x in inputs: if isinstance(x, virtualtypes): nextinputs.append(x.array) else: nextinputs.append(x) return apply(nextinputs, depth, user) elif any(isinstance(x, unknowntypes) for x in inputs): nextinputs = [] for x in inputs: if isinstance(x, unknowntypes): nextinputs.append( ak.layout.NumpyArray(nplike.array([], dtype=np.bool_)) ) else: nextinputs.append(x) return apply(nextinputs, depth, user) elif any(isinstance(x, ak.layout.NumpyArray) and x.ndim > 1 for x in inputs): nextinputs = [] for x in inputs: if isinstance(x, ak.layout.NumpyArray) and x.ndim > 1: nextinputs.append(x.toRegularArray()) else: nextinputs.append(x) return apply(nextinputs, depth, user) elif any(isinstance(x, indexedtypes) for x in inputs): nextinputs = [] for x in inputs: if isinstance(x, indexedtypes): nextinputs.append(x.project()) else: nextinputs.append(x) return apply(nextinputs, depth, user) elif any(isinstance(x, uniontypes) for x in inputs): tagslist = [] length = None for x in inputs: if isinstance(x, uniontypes): tagslist.append(nplike.asarray(x.tags)) if length is None: length = len(tagslist[-1]) elif length != len(tagslist[-1]): raise ValueError( "cannot broadcast UnionArray of length {0} " "with UnionArray of length {1}".format( length, len(tagslist[-1]) ) + exception_suffix(__file__) ) combos = nplike.stack(tagslist, axis=-1) combos = combos.view( [(str(i), combos.dtype) for i in range(len(tagslist))] ).reshape(length) tags = nplike.empty(length, dtype=np.int8) index = nplike.empty(length, dtype=np.int64) outcontents = [] for tag, combo in enumerate(nplike.unique(combos)): mask = combos == combo tags[mask] = tag index[mask] = nplike.arange(nplike.count_nonzero(mask)) nextinputs = [] numoutputs = None i = 0 for x in inputs: if isinstance(x, uniontypes): nextinputs.append(x[mask].project(combo[str(i)])) i += 1 elif isinstance(x, ak.layout.Content): nextinputs.append(x[mask]) else: nextinputs.append(x) outcontents.append(apply(nextinputs, depth, user)) assert isinstance(outcontents[-1], tuple) if numoutputs is not None: assert numoutputs == len(outcontents[-1]) numoutputs = len(outcontents[-1]) tags = ak.layout.Index8(tags) index = ak.layout.Index64(index) return tuple( ak.layout.UnionArray8_64( tags, index, [x[i] for x in outcontents] ).simplify() for i in range(numoutputs) ) elif any(isinstance(x, optiontypes) for x in inputs): mask = None for x in inputs: if isinstance(x, optiontypes): m = nplike.asarray(x.bytemask()).view(np.bool_) if mask is None: mask = m else: nplike.bitwise_or(mask, m, out=mask) nextmask = ak.layout.Index8(mask.view(np.int8)) index = nplike.full(len(mask), -1, dtype=np.int64) index[~mask] = nplike.arange( len(mask) - nplike.count_nonzero(mask), dtype=np.int64 ) index = ak.layout.Index64(index) if any(not isinstance(x, optiontypes) for x in inputs): nextindex = nplike.arange(len(mask), dtype=np.int64) nextindex[mask] = -1 nextindex = ak.layout.Index64(nextindex) nextinputs = [] for x in inputs: if isinstance(x, optiontypes): nextinputs.append(x.project(nextmask)) elif isinstance(x, ak.layout.Content): nextinputs.append( ak.layout.IndexedOptionArray64(nextindex, x).project(nextmask) ) else: nextinputs.append(x) outcontent = apply(nextinputs, depth, user) assert isinstance(outcontent, tuple) return tuple( ak.layout.IndexedOptionArray64(index, x).simplify() for x in outcontent ) elif any(isinstance(x, listtypes) for x in inputs): if all( isinstance(x, ak.layout.RegularArray) or not isinstance(x, listtypes) for x in inputs ): maxsize = max( [x.size for x in inputs if isinstance(x, ak.layout.RegularArray)] ) for x in inputs: if isinstance(x, ak.layout.RegularArray): if maxsize > 1 and x.size == 1: tmpindex = ak.layout.Index64( nplike.repeat( nplike.arange(len(x), dtype=np.int64), maxsize ) ) nextinputs = [] for x in inputs: if isinstance(x, ak.layout.RegularArray): if maxsize > 1 and x.size == 1: nextinputs.append( ak.layout.IndexedArray64( tmpindex, x.content[: len(x) * x.size] ).project() ) elif x.size == maxsize: nextinputs.append(x.content[: len(x) * x.size]) else: raise ValueError( "cannot broadcast RegularArray of size " "{0} with RegularArray of size {1}".format( x.size, maxsize ) + exception_suffix(__file__) ) else: nextinputs.append(x) outcontent = apply(nextinputs, depth + 1, user) assert isinstance(outcontent, tuple) return tuple(ak.layout.RegularArray(x, maxsize) for x in outcontent) elif not all_same_offsets(nplike, inputs): fcns = [ custom_broadcast(x, behavior) if isinstance(x, ak.layout.Content) else None for x in inputs ] first, secondround = None, False for x, fcn in zip(inputs, fcns): if ( isinstance(x, listtypes) and not isinstance(x, ak.layout.RegularArray) and fcn is None ): first = x break if first is None: secondround = True for x in inputs: if isinstance(x, listtypes) and not isinstance( x, ak.layout.RegularArray ): first = x break offsets = first.compact_offsets64(True) nextinputs = [] for x, fcn in zip(inputs, fcns): if callable(fcn) and not secondround: nextinputs.append(fcn(x, offsets)) elif isinstance(x, listtypes): nextinputs.append(x.broadcast_tooffsets64(offsets).content) # handle implicit left-broadcasting (unlike NumPy) elif left_broadcast and isinstance(x, ak.layout.Content): nextinputs.append( ak.layout.RegularArray(x, 1) .broadcast_tooffsets64(offsets) .content ) else: nextinputs.append(x) outcontent = apply(nextinputs, depth + 1, user) assert isinstance(outcontent, tuple) return tuple( ak.layout.ListOffsetArray64(offsets, x) for x in outcontent ) else: lencontent, offsets, starts, stops = None, None, None, None nextinputs = [] for x in inputs: if isinstance( x, ( ak.layout.ListOffsetArray32, ak.layout.ListOffsetArrayU32, ak.layout.ListOffsetArray64, ), ): offsets = x.offsets lencontent = offsets[-1] nextinputs.append(x.content[:lencontent]) elif isinstance( x, ( ak.layout.ListArray32, ak.layout.ListArrayU32, ak.layout.ListArray64, ), ): starts, stops = x.starts, x.stops if len(starts) == 0 or len(stops) == 0: nextinputs.append(x.content[:0]) else: lencontent = nplike.max(stops) nextinputs.append(x.content[:lencontent]) else: nextinputs.append(x) outcontent = apply(nextinputs, depth + 1, user) if isinstance(offsets, ak.layout.Index32): return tuple( ak.layout.ListOffsetArray32(offsets, x) for x in outcontent ) elif isinstance(offsets, ak.layout.IndexU32): return tuple( ak.layout.ListOffsetArrayU32(offsets, x) for x in outcontent ) elif isinstance(offsets, ak.layout.Index64): return tuple( ak.layout.ListOffsetArray64(offsets, x) for x in outcontent ) elif isinstance(starts, ak.layout.Index32): return tuple( ak.layout.ListArray32(starts, stops, x) for x in outcontent ) elif isinstance(starts, ak.layout.IndexU32): return tuple( ak.layout.ListArrayU32(starts, stops, x) for x in outcontent ) elif isinstance(starts, ak.layout.Index64): return tuple( ak.layout.ListArray64(starts, stops, x) for x in outcontent ) else: raise AssertionError( "unexpected offsets, starts: {0} {1}".format( type(offsets), type(starts) ) + exception_suffix(__file__) ) elif any(isinstance(x, recordtypes) for x in inputs): if not allow_records: raise ValueError( "cannot broadcast: {0}".format( ", ".join(repr(type(x)) for x in inputs) ) + exception_suffix(__file__) ) keys = None length = None istuple = True for x in inputs: if isinstance(x, recordtypes): if keys is None: keys = x.keys() elif set(keys) != set(x.keys()): raise ValueError( "cannot broadcast records because keys don't " "match:\n {0}\n {1}".format( ", ".join(sorted(keys)), ", ".join(sorted(x.keys())) ) + exception_suffix(__file__) ) if length is None: length = len(x) elif length != len(x): raise ValueError( "cannot broadcast RecordArray of length {0} " "with RecordArray of length {1}".format(length, len(x)) + exception_suffix(__file__) ) if not x.istuple: istuple = False outcontents = [] numoutputs = None for key in keys: outcontents.append( apply( [ x if not isinstance(x, recordtypes) else x[key] for x in inputs ], depth, user, ) ) assert isinstance(outcontents[-1], tuple) if numoutputs is not None: assert numoutputs == len(outcontents[-1]) numoutputs = len(outcontents[-1]) return tuple( ak.layout.RecordArray( [x[i] for x in outcontents], None if istuple else keys, length ) for i in range(numoutputs) ) else: raise ValueError( "cannot broadcast: {0}".format(", ".join(repr(type(x)) for x in inputs)) + exception_suffix(__file__) ) if any(isinstance(x, ak.partition.PartitionedArray) for x in inputs): purelist_isregular = True purelist_depths = set() for x in inputs: if isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)): if not x.purelist_isregular: purelist_isregular = False break purelist_depths.add(x.purelist_depth) if purelist_isregular and len(purelist_depths) > 1: nextinputs = [] for x in inputs: if isinstance(x, ak.partition.PartitionedArray): nextinputs.append(x.toContent()) else: nextinputs.append(x) isscalar = [] out = apply(broadcast_pack(nextinputs, isscalar), 0, None) assert isinstance(out, tuple) return tuple(broadcast_unpack(x, isscalar) for x in out) else: sample = None for x in inputs: if isinstance(x, ak.partition.PartitionedArray): sample = x break nextinputs = ak.partition.partition_as(sample, inputs) outputs = [] for part_inputs in ak.partition.iterate(sample.numpartitions, nextinputs): isscalar = [] part = apply(broadcast_pack(part_inputs, isscalar), 0, None) assert isinstance(part, tuple) outputs.append(tuple(broadcast_unpack(x, isscalar) for x in part)) out = () for i in range(len(part)): out = out + ( ak.partition.IrregularlyPartitionedArray([x[i] for x in outputs]), ) return out else: isscalar = [] out = apply(broadcast_pack(inputs, isscalar), 0, user) assert isinstance(out, tuple) return tuple(broadcast_unpack(x, isscalar) for x in out) def broadcast_pack(inputs, isscalar): maxlen = -1 for x in inputs: if isinstance(x, ak.layout.Content): maxlen = max(maxlen, len(x)) if maxlen < 0: maxlen = 1 nextinputs = [] for x in inputs: if isinstance(x, ak.layout.Record): index = ak.nplike.of(*inputs).full(maxlen, x.at, dtype=np.int64) nextinputs.append(ak.layout.RegularArray(x.array[index], maxlen)) isscalar.append(True) elif isinstance(x, ak.layout.Content): nextinputs.append(ak.layout.RegularArray(x, len(x))) isscalar.append(False) else: nextinputs.append(x) isscalar.append(True) return nextinputs def broadcast_unpack(x, isscalar): if all(isscalar): if len(x) == 0: return x.getitem_nothing().getitem_nothing() else: return x[0][0] else: if len(x) == 0: return x.getitem_nothing() else: return x[0] def recursively_apply( layout, getfunction, pass_depth=True, pass_user=False, user=None, keep_parameters=True, numpy_to_regular=False, ): def apply(layout, depth, user): if numpy_to_regular and isinstance(layout, ak.layout.NumpyArray): layout = layout.toRegularArray() args = () if pass_depth: args = args + (depth,) if pass_user: args = args + (user,) custom = getfunction(layout, *args) if callable(custom): return custom() else: user = custom # the rest of this is one switch statement if isinstance(layout, ak.partition.PartitionedArray): return ak.partition.IrregularlyPartitionedArray( [apply(x, depth, user) for x in layout.partitions] ) elif isinstance(layout, ak.layout.NumpyArray): if keep_parameters: return layout else: return ak.layout.NumpyArray( ak.nplike.of(layout).asarray(layout), layout.identities, None ) elif isinstance(layout, ak.layout.EmptyArray): if keep_parameters: return layout else: return ak.layout.EmptyArray(layout.identities, None) elif isinstance(layout, ak.layout.RegularArray): return ak.layout.RegularArray( apply(layout.content, depth + 1, user), layout.size, layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListArray32): return ak.layout.ListArray32( layout.starts, layout.stops, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListArrayU32): return ak.layout.ListArrayU32( layout.starts, layout.stops, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListArray64): return ak.layout.ListArray64( layout.starts, layout.stops, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListOffsetArray32): return ak.layout.ListOffsetArray32( layout.offsets, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListOffsetArrayU32): return ak.layout.ListOffsetArrayU32( layout.offsets, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ListOffsetArray64): return ak.layout.ListOffsetArray64( layout.offsets, apply(layout.content, depth + 1, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.IndexedArray32): return ak.layout.IndexedArray32( layout.index, apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.IndexedArrayU32): return ak.layout.IndexedArrayU32( layout.index, apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.IndexedArray64): return ak.layout.IndexedArray64( layout.index, apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.IndexedOptionArray32): return ak.layout.IndexedOptionArray32( layout.index, apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.IndexedOptionArray64): return ak.layout.IndexedOptionArray64( layout.index, apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.ByteMaskedArray): return ak.layout.ByteMaskedArray( layout.mask, apply(layout.content, depth, user), layout.valid_when, layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.BitMaskedArray): return ak.layout.BitMaskedArray( layout.mask, apply(layout.content, depth, user), layout.valid_when, len(layout), layout.lsb_order, layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.UnmaskedArray): return ak.layout.UnmaskedArray( apply(layout.content, depth, user), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.RecordArray): return ak.layout.RecordArray( [apply(x, depth, user) for x in layout.contents], layout.recordlookup, len(layout), layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.Record): return ak.layout.Record(apply(layout.array, depth, user), layout.at,) elif isinstance(layout, ak.layout.UnionArray8_32): return ak.layout.UnionArray8_32( layout.tags, layout.index, [apply(x, depth, user) for x in layout.contents], layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.UnionArray8_U32): return ak.layout.UnionArray8_U32( layout.tags, layout.index, [apply(x, depth, user) for x in layout.contents], layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.UnionArray8_64): return ak.layout.UnionArray8_64( layout.tags, layout.index, [apply(x, depth, user) for x in layout.contents], layout.identities, layout.parameters if keep_parameters else None, ) elif isinstance(layout, ak.layout.VirtualArray): return apply(layout.array, depth, user) else: raise AssertionError( "unrecognized Content type: {0}".format(type(layout)) + exception_suffix(__file__) ) return apply(layout, 1, user) def recursive_walk(layout, apply, args=(), depth=1, materialize=False): apply(layout, depth, *args) if isinstance(layout, ak.partition.PartitionedArray): for x in layout.partitions: recursive_walk(x, apply, args, depth, materialize) elif isinstance(layout, ak.layout.NumpyArray): pass elif isinstance(layout, ak.layout.EmptyArray): pass elif isinstance( layout, ( ak.layout.RegularArray, ak.layout.ListArray32, ak.layout.ListArrayU32, ak.layout.ListArray64, ak.layout.ListOffsetArray32, ak.layout.ListOffsetArrayU32, ak.layout.ListOffsetArray64, ), ): recursive_walk(layout.content, apply, args, depth + 1, materialize) elif isinstance( layout, ( ak.layout.IndexedArray32, ak.layout.IndexedArrayU32, ak.layout.IndexedArray64, ak.layout.IndexedOptionArray32, ak.layout.IndexedOptionArray64, ak.layout.ByteMaskedArray, ak.layout.BitMaskedArray, ak.layout.UnmaskedArray, ), ): recursive_walk(layout.content, apply, args, depth, materialize) elif isinstance( layout, ( ak.layout.RecordArray, ak.layout.UnionArray8_32, ak.layout.UnionArray8_U32, ak.layout.UnionArray8_64, ), ): for x in layout.contents: recursive_walk(x, apply, args, depth, materialize) elif isinstance(layout, ak.layout.Record): recursive_walk(layout.array, apply, args, depth, materialize) elif isinstance(layout, ak.layout.VirtualArray): if materialize: recursive_walk(layout.array, apply, args, depth, materialize) else: raise AssertionError( "unrecognized Content type: {0}".format(type(layout)) + exception_suffix(__file__) ) def find_caches(layout): if isinstance(layout, ak.partition.PartitionedArray): seen = set() mutablemappings = [] for partition in layout.partitions: for cache in partition.caches: x = cache.mutablemapping if id(x) not in seen: seen.add(id(x)) mutablemappings.append(x) else: mutablemappings = [] for cache in layout.caches: x = cache.mutablemapping for y in mutablemappings: if x is y: break else: mutablemappings.append(x) return tuple(mutablemappings) def highlevel_type(layout, behavior, isarray): if isarray: return ak.types.ArrayType(layout.type(typestrs(behavior)), len(layout)) else: return layout.type(typestrs(behavior)) _is_identifier = re.compile(r"^[A-Za-z_][A-Za-z_0-9]*$") def minimally_touching_string(limit_length, layout, behavior): if isinstance(layout, ak.layout.Record): layout = layout.array[layout.at : layout.at + 1] if len(layout) == 0: return "[]" def forward(x, space, brackets=True, wrap=True, stop=None): done = False if wrap and isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)): cls = arrayclass(x, behavior) if cls is not ak.highlevel.Array: y = cls(x, behavior=behavior) if "__repr__" in type(y).__dict__: yield space + repr(y) done = True if wrap and isinstance(x, ak.layout.Record): cls = recordclass(x, behavior) if cls is not ak.highlevel.Record: y = cls(x, behavior=behavior) if "__repr__" in type(y).__dict__: yield space + repr(y) done = True if not done: if isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)): if brackets: yield space + "[" sp = "" for i in range(len(x) if stop is None else stop): for token in forward(x[i], sp): yield token sp = ", " if brackets: yield "]" elif isinstance(x, ak.layout.Record) and x.istuple: yield space + "(" sp = "" for i in range(x.numfields): key = sp for token in forward(x[str(i)], ""): yield key + token key = "" sp = ", " yield ")" elif isinstance(x, ak.layout.Record): yield space + "{" sp = "" for k in x.keys(): if _is_identifier.match(k) is None: kk = repr(k) if kk.startswith("u"): kk = kk[1:] else: kk = k key = sp + kk + ": " for token in forward(x[k], ""): yield key + token key = "" sp = ", " yield "}" elif isinstance(x, (float, np.floating)): yield space + "{0:.3g}".format(x) else: yield space + repr(x) def backward(x, space, brackets=True, wrap=True, stop=-1): done = False if wrap and isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)): cls = arrayclass(x, behavior) if cls is not ak.highlevel.Array: y = cls(x, behavior=behavior) if "__repr__" in type(y).__dict__: yield repr(y) + space done = True if wrap and isinstance(x, ak.layout.Record): cls = recordclass(x, behavior) if cls is not ak.highlevel.Record: y = cls(x, behavior=behavior) if "__repr__" in type(y).__dict__: yield repr(y) + space done = True if not done: if isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)): if brackets: yield "]" + space sp = "" for i in range(len(x) - 1, stop, -1): for token in backward(x[i], sp): yield token sp = ", " if brackets: yield "[" elif isinstance(x, ak.layout.Record) and x.istuple: yield ")" + space for i in range(x.numfields - 1, -1, -1): last = None for token in backward(x[str(i)], ""): if last is not None: yield last last = token if last is not None: yield last if i != 0: yield ", " yield "(" elif isinstance(x, ak.layout.Record): yield "}" + space keys = x.keys() for i in range(len(keys) - 1, -1, -1): last = None for token in backward(x[keys[i]], ""): if last is not None: yield last last = token if _is_identifier.match(keys[i]) is None: kk = repr(keys[i]) if kk.startswith("u"): kk = kk[1:] else: kk = keys[i] if last is not None: yield kk + ": " + last if i != 0: yield ", " yield "{" elif isinstance(x, (float, np.floating)): yield "{0:.3g}".format(x) + space else: yield repr(x) + space def forever(iterable): for token in iterable: yield token while True: yield None halfway = len(layout) // 2 left, right = ["["], ["]"] leftlen, rightlen = 1, 1 leftgen = forever(forward(layout, "", brackets=False, wrap=False, stop=halfway)) rightgen = forever( backward(layout, "", brackets=False, wrap=False, stop=halfway - 1) ) while True: lft = next(leftgen) rgt = next(rightgen) if lft is not None: if ( leftlen + rightlen + len(lft) + (2 if lft is None and rgt is None else 6) > limit_length ): break left.append(lft) leftlen += len(lft) if rgt is not None: if ( leftlen + rightlen + len(rgt) + (2 if lft is None and rgt is None else 6) > limit_length ): break right.append(rgt) rightlen += len(rgt) if lft is None and rgt is None: break while len(left) > 1 and ( left[-1] == "[" or left[-1] == ", [" or left[-1] == "{" or left[-1] == ", {" or left[-1] == ", " ): left.pop() lft = "" while len(right) > 1 and ( right[-1] == "]" or right[-1] == "], " or right[-1] == "}" or right[-1] == "}, " or right[-1] == ", " ): right.pop() rgt = "" if lft is None and rgt is None: if left == ["["]: return "[" + "".join(reversed(right)).lstrip(" ") else: return ( "".join(left).rstrip(" ") + ", " + "".join(reversed(right)).lstrip(" ") ) else: if left == ["["] and right == ["]"]: return "[...]" elif left == ["["]: return "[... " + "".join(reversed(right)).lstrip(" ") else: return ( "".join(left).rstrip(" ") + ", ... " + "".join(reversed(right)).lstrip(" ") ) class MappingProxy(MutableMapping): """ A type suitable for use with layout.ArrayCache. This can be used to wrap plain dict instances if need be, since they are not able to be weak referenced. """ @classmethod def maybe_wrap(cls, mapping): if type(mapping) is dict: return cls(mapping) return mapping def __init__(self, base): self.base = base def __repr__(self): return repr(self.base) def __getitem__(self, key): return self.base[key] def __setitem__(self, key, value): self.base[key] = value def __delitem__(self, key): del self.base[key] def __iter__(self): return iter(self.base) def __len__(self): return len(self.base) def make_union(tags, index, contents, identities, parameters): if isinstance(index, ak.layout.Index32): return ak.layout.UnionArray8_32(tags, index, contents, identities, parameters) elif isinstance(index, ak.layout.IndexU32): return ak.layout.UnionArray8_U32(tags, index, contents, identities, parameters) elif isinstance(index, ak.layout.Index64): return ak.layout.UnionArray8_64(tags, index, contents, identities, parameters) else: raise AssertionError(index) def union_to_record(unionarray, anonymous): nplike = ak.nplike.of(unionarray) contents = [] for layout in unionarray.contents: if isinstance(layout, virtualtypes): contents.append(layout.array) elif isinstance(layout, indexedtypes): contents.append(layout.project()) elif isinstance(layout, uniontypes): contents.append(union_to_record(layout, anonymous)) elif isinstance(layout, optiontypes): contents.append( ak.operations.structure.fill_none(layout, np.nan, highlevel=False) ) else: contents.append(layout) if not any(isinstance(x, ak.layout.RecordArray) for x in contents): return make_union( unionarray.tags, unionarray.index, contents, unionarray.identities, unionarray.parameters, ) else: seen = set() all_names = [] for layout in contents: if isinstance(layout, ak.layout.RecordArray): for key in layout.keys(): if key not in seen: seen.add(key) all_names.append(key) else: if anonymous not in seen: seen.add(anonymous) all_names.append(anonymous) missingarray = ak.layout.IndexedOptionArray64( ak.layout.Index64(nplike.full(len(unionarray), -1, dtype=np.int64)), ak.layout.EmptyArray(), ) all_fields = [] for name in all_names: union_contents = [] for layout in contents: if isinstance(layout, ak.layout.RecordArray): for key in layout.keys(): if name == key: union_contents.append(layout.field(key)) break else: union_contents.append(missingarray) else: if name == anonymous: union_contents.append(layout) else: union_contents.append(missingarray) all_fields.append( make_union( unionarray.tags, unionarray.index, union_contents, unionarray.identities, unionarray.parameters, ).simplify() ) return ak.layout.RecordArray(all_fields, all_names, len(unionarray))
py
b412d68dc455124b2091cae837c1f1d24047f9f9
import numpy as np import pandas as pd from keras import models, layers, Input import matplotlib.pyplot as plt import keras ################################################ Data process #################### standardization path = "./features.xlsx" out = pd.read_excel(path,index_col=0) Max_out = np.max(out.values) Min_out = np.min(out.values) range_out = Max_out - Min_out out_standard = out / range_out print(Max_out,Min_out) #################### hyperparameter intervals = out.shape[0] # 6640 days # 12intervals begin = 13 # start from 14th interval_batch=35 # batch_size n = 118 # number of stations pre_sr = 12 #################### samples and labels labels = [] samples_sr = [] for i in range(begin*interval_batch,intervals): label = out_standard['坪洲'].values[i] sample_sr = out_standard.values[i-pre_sr:i] samples_sr.append(sample_sr) labels.append(label) num_samples = len(labels) samples_sr = np.reshape(np.array(samples_sr),(num_samples,118,pre_sr)) labels = np.array(labels) print(samples_sr.shape) print(labels.shape) #################### adjacency matrix path ="./near matrix.xlsx" dataset= pd.read_excel(path,index_col=0).values adjacencys_near = [] for i in range(num_samples): adjacencys_near.append(dataset) adjacencys_near = np.array(adjacencys_near) print(adjacencys_near.shape) path ="./middle matrix.xlsx" dataset= pd.read_excel(path,index_col=0).values adjacencys_middle = [] for i in range(num_samples): adjacencys_middle.append(dataset) adjacencys_middle = np.array(adjacencys_middle) print(adjacencys_middle.shape) path ="./distant matrix.xlsx" dataset= pd.read_excel(path,index_col=0).values adjacencys_distant = [] for i in range(num_samples): adjacencys_distant.append(dataset) adjacencys_distant = np.array(adjacencys_distant) print(adjacencys_distant.shape) #################### train and test split x_train_sr = samples_sr[:4000] adjacency_train_near = adjacencys_near[:4000] adjacency_train_middle = adjacencys_middle[:4000] adjacency_train_distant = adjacencys_distant[:4000] y_train = labels[:4000] x_test_sr = samples_sr[4000:] adjacency_test_near = adjacencys_near[4000:] adjacency_test_middle = adjacencys_middle[4000:] adjacency_test_distant = adjacencys_distant[4000:] y_test = labels[4000:] print(x_train_sr.shape,y_train.shape,adjacency_train_near.shape,adjacency_train_middle.shape,adjacency_train_distant.shape) print(x_test_sr.shape,y_test.shape,adjacency_test_near.shape,adjacency_test_middle.shape,adjacency_test_distant.shape) plt.figure(figsize=(20,10)) plt.plot(y_test,'r') ################################################ Model: Multi-STGCnet-SR # input features = Input(shape=(n,pre_sr)) adjacency_near = Input(shape=(n,n)) adjacency_middle = Input(shape=(n,n)) adjacency_distant = Input(shape=(n,n)) # near # GCN layer output_near_start = layers.Dot(axes=1)([adjacency_near, features]) output = layers.Dense(n,activation='relu')(output_near_start) # GCN layer output = layers.Dot(axes=1)([adjacency_near, output]) output = layers.Dense(n,activation='relu')(output) output = layers.Permute((2,1))(output) output = layers.LSTM(32,return_sequences=True)(output) output = layers.LSTM(12,kernel_initializer='random_normal')(output) output_near_end = layers.Dense(1,activation='relu',kernel_initializer='random_normal')(output) # middle # GCN layer output_middle_start = layers.Dot(axes=1)([adjacency_middle, features]) output = layers.Dense(n,activation='relu')(output_middle_start) # GCN layer output = layers.Dot(axes=1)([adjacency_middle, output]) output = layers.Dense(n,activation='relu')(output) output = layers.Permute((2,1))(output) output = layers.LSTM(32,return_sequences=True)(output) output = layers.LSTM(12,kernel_initializer='random_normal')(output) output_middle_end = layers.Dense(1,activation='relu',kernel_initializer='random_normal')(output) # distant # GCN layer output_distant_start = layers.Dot(axes=1)([adjacency_distant, features]) output = layers.Dense(n,activation='relu')(output_distant_start) # GCN layer output = layers.Dot(axes=1)([adjacency_distant, output]) output = layers.Dense(n,activation='relu')(output) output = layers.Permute((2,1))(output) output = layers.LSTM(32,return_sequences=True)(output) output = layers.LSTM(12,kernel_initializer='random_normal')(output) output_distant_end = layers.Dense(1,activation='relu',kernel_initializer='random_normal')(output) # merge merge = layers.concatenate([output_near_end, output_middle_end ,output_distant_end],axis=-1) temp = layers.Dense(35,activation='relu',kernel_initializer='random_normal')(merge) output_end = layers.Dense(1,activation='relu',kernel_initializer='random_normal')(temp) # model model = models.Model(inputs=[features,adjacency_near,adjacency_middle,adjacency_distant],outputs=[output_end]) model.summary() model.compile(optimizer='rmsprop',loss='mae',metrics=['mae','mse','mape']) callbacks_list = [ keras.callbacks.ModelCheckpoint(filepath='SR.h5', monitor='val_loss', save_best_only=True,) ] ################################################ Model training epochs = 1000 H = model.fit([x_train_sr,adjacency_train_near,adjacency_train_middle,adjacency_train_distant], y_train,callbacks=callbacks_list,batch_size=interval_batch,epochs=epochs,validation_data=([x_test_sr,adjacency_test_near,adjacency_test_middle,adjacency_test_distant],y_test)) ################################################ Loss train_loss = H.history['loss'] test_loss = H.history['val_loss'] iterations = [i for i in range(epochs)] plt.plot(iterations, train_loss,'b-',label='train_mae') plt.plot(iterations, test_loss,'r-',label='test_mae') plt.legend() plt.title('Train_mae VS Test_mae') ################################################ predict path="./SR.h5" model_best = models.load_model(path) predict_best = model_best.predict([x_test_sr,adjacency_test_near,adjacency_test_middle,adjacency_test_distant]) plt.figure(figsize=(20,10)) plt.plot(y_test,'r') plt.plot(predict_best,'g')
py
b412d73545e11b027adb89e579c254a9dd26c2a8
"""Training file for SMP-CAIL2020-Argmine. Author: Tsinghuaboy [email protected] Usage: python -m torch.distributed.launch train.py \ --config_file 'config/bert_config.json' CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch train.py \ --config_file 'config/rnn_config.json' """ from typing import Dict import argparse import json import os from copy import deepcopy from types import SimpleNamespace import torch from torch import nn from torch.optim import Adam from torch.utils.data import DataLoader, RandomSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers.optimization import ( AdamW, get_linear_schedule_with_warmup, get_constant_schedule) from data import Data from evaluate import evaluate, calculate_accuracy_f1, get_labels_from_file from model import BertForClassification,RnnForSentencePairClassification from utils import get_csv_logger, get_path from vocab import build_vocab MODEL_MAP = { 'bert': BertForClassification, 'rnn': RnnForSentencePairClassification } class Trainer: """Trainer for SMP-CAIL2020-Argmine. """ def __init__(self, model, data_loader: Dict[str, DataLoader], device, config): """Initialize trainer with model, data, device, and config. Initialize optimizer, scheduler, criterion. Args: model: model to be evaluated data_loader: dict of torch.utils.data.DataLoader device: torch.device('cuda') or torch.device('cpu') config: config.experiment_name: experiment name config.model_type: 'bert' or 'rnn' config.lr: learning rate for optimizer config.num_epoch: epoch number config.num_warmup_steps: warm-up steps number config.gradient_accumulation_steps: gradient accumulation steps config.max_grad_norm: max gradient norm """ self.model = model self.device = device self.config = config self.data_loader = data_loader self.config.num_training_steps = config.num_epoch * ( len(data_loader['train']) // config.batch_size) self.optimizer = self._get_optimizer() self.scheduler = self._get_scheduler() self.criterion = nn.BCEWithLogitsLoss(reduction='mean') def _get_optimizer(self): """Get optimizer for different models. Returns: optimizer """ if self.config.model_type == 'bert': no_decay = ['bias', 'gamma', 'beta'] optimizer_parameters = [ {'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, {'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}] optimizer = AdamW( optimizer_parameters, lr=self.config.lr, betas=(0.9, 0.999), weight_decay=1e-8, correct_bias=False) else: # rnn optimizer = Adam(self.model.parameters(), lr=self.config.lr) return optimizer def _get_scheduler(self): """Get scheduler for different models. Returns: scheduler """ if self.config.model_type == 'bert': scheduler = get_linear_schedule_with_warmup( self.optimizer, num_warmup_steps=self.config.num_warmup_steps, num_training_steps=self.config.num_training_steps) else: # rnn scheduler = get_constant_schedule(self.optimizer) return scheduler def _evaluate_for_train_valid(self): """Evaluate model on train and valid set and get acc and f1 score. Returns: train_acc, train_f1, valid_acc, valid_f1 """ train_predictions = evaluate( model=self.model, data_loader=self.data_loader['valid_train'], device=self.device) valid_predictions = evaluate( model=self.model, data_loader=self.data_loader['valid_valid'], device=self.device) train_answers = get_labels_from_file(self.config.train_file_path) valid_answers = get_labels_from_file(self.config.valid_file_path) train_acc, train_f1 = calculate_accuracy_f1( train_answers, train_predictions) valid_acc, valid_f1 = calculate_accuracy_f1( valid_answers, valid_predictions) return train_acc, train_f1, valid_acc, valid_f1 def get_score(self, answerid_list, paraid_list): token_list = [] for line in answerid_list: tokens = self.tokenizer.decode(line) token_list.append(tokens) # # 4. Write answers to file summary_dict = dict(zip(set(paraid_list), [""] * len(set(paraid_list)))) for i in range(len(paraid_list)): summary_dict[paraid_list[i]] += token_list[i] def _epoch_evaluate_update_description_log( self, tqdm_obj, logger, epoch): """Evaluate model and update logs for epoch. Args: tqdm_obj: tqdm/trange object with description to be updated logger: logging.logger epoch: int Return: train_acc, train_f1, valid_acc, valid_f1 """ # Evaluate model for train and valid set results = self._evaluate_for_train_valid() train_acc, train_f1, valid_acc, valid_f1 = results # Update tqdm description for command line tqdm_obj.set_description( 'Epoch: {:d}, train_acc: {:.6f}, train_f1: {:.6f}, ' 'valid_acc: {:.6f}, valid_f1: {:.6f}, '.format( epoch, train_acc, train_f1, valid_acc, valid_f1)) # Logging logger.info(','.join([str(epoch)] + [str(s) for s in results])) return train_acc, train_f1, valid_acc, valid_f1 def save_model(self, filename): """Save model to file. Args: filename: file name """ torch.save(self.model.state_dict(), filename) def train(self): """Train model on train set and evaluate on train and valid set. Returns: state dict of the best model with highest valid f1 score """ epoch_logger = get_csv_logger( os.path.join(self.config.log_path, self.config.experiment_name + '-epoch.csv'), title='epoch,train_acc,train_f1,valid_acc,valid_f1') step_logger = get_csv_logger( os.path.join(self.config.log_path, self.config.experiment_name + '-step.csv'), title='step,loss') trange_obj = trange(self.config.num_epoch, desc='Epoch', ncols=120) # self._epoch_evaluate_update_description_log( # tqdm_obj=trange_obj, logger=epoch_logger, epoch=0) best_model_state_dict, best_train_f1, global_step = None, 0, 0 for epoch, _ in enumerate(trange_obj): self.model.train() tqdm_obj = tqdm(self.data_loader['train'], ncols=80) for step, batch in enumerate(tqdm_obj): batch = tuple(t.to(self.device) for t in batch) logits = self.model(*batch[:-1]) # the last one is label loss = self.criterion(logits, batch[-1]) # if self.config.gradient_accumulation_steps > 1: # loss = loss / self.config.gradient_accumulation_steps # self.optimizer.zero_grad() loss.backward() if (step + 1) % self.config.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( self.model.parameters(), self.config.max_grad_norm) #after 梯度累加的基本思想在于,在优化器更新参数前,也就是执行 optimizer.step() 前,进行多次反向传播,是的梯度累计值自动保存在 parameter.grad 中,最后使用累加的梯度进行参数更新。 self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() global_step += 1 tqdm_obj.set_description('loss: {:.6f}'.format(loss.item())) step_logger.info(str(global_step) + ',' + str(loss.item())) # if epoch >= 2: # results = self._epoch_evaluate_update_description_log( # tqdm_obj=trange_obj, logger=epoch_logger, epoch=epoch + 1) self.save_model(os.path.join( self.config.model_path, self.config.experiment_name, self.config.model_type + '-' + str(epoch + 1) + '.bin')) # if results[-3] > best_train_f1: # best_model_state_dict = deepcopy(self.model.state_dict()) # best_train_f1 = results[-3] return best_model_state_dict def main(config_file='config/bert_config.json'): """Main method for training. Args: config_file: in config dir """ # 0. Load config and mkdir with open(config_file) as fin: config = json.load(fin, object_hook=lambda d: SimpleNamespace(**d)) get_path(os.path.join(config.model_path, config.experiment_name)) get_path(config.log_path) if config.model_type == 'rnn': # build vocab for rnn build_vocab(file_in=config.all_train_file_path, file_out=os.path.join(config.model_path, 'vocab.txt')) # 1. Load data data = Data(vocab_file=os.path.join(config.model_path, 'vocab.txt'), max_seq_len=config.max_seq_len, model_type=config.model_type, config=config) datasets = data.load_train_and_valid_files( train_file=config.train_file_path, valid_file=config.valid_file_path) train_set, valid_set_train, valid_set_valid = datasets if torch.cuda.is_available(): device = torch.device('cuda') # device = torch.device('cpu') # torch.distributed.init_process_group(backend="nccl") # sampler_train = DistributedSampler(train_set) sampler_train = RandomSampler(train_set) else: device = torch.device('cpu') sampler_train = RandomSampler(train_set) data_loader = { 'train': DataLoader( train_set, sampler=sampler_train, batch_size=config.batch_size), 'valid_train': DataLoader( valid_set_train, batch_size=config.batch_size, shuffle=False), 'valid_valid': DataLoader( valid_set_valid, batch_size=config.batch_size, shuffle=False)} # 2. Build model model = MODEL_MAP[config.model_type](config) #load model states. if config.trained_weight: model.load_state_dict(torch.load(config.trained_weight)) model.to(device) if torch.cuda.is_available(): model = model # model = torch.nn.parallel.DistributedDataParallel( # model, find_unused_parameters=True) # 3. Train trainer = Trainer(model=model, data_loader=data_loader, device=device, config=config) best_model_state_dict = trainer.train() # 4. Save model torch.save(best_model_state_dict, os.path.join(config.model_path, 'model.bin')) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-c', '--config_file', default='config/bert_config.json', help='model config file') parser.add_argument( '--local_rank', default=0, help='used for distributed parallel') args = parser.parse_args() main(args.config_file)
py
b412d7c37cf59859187601d9cc20ed4f8c898f6b
import pytest from .env import H2Conf class TestStore: @pytest.fixture(autouse=True, scope='class') def _class_scope(self, env): H2Conf(env).add_vhost_cgi().install() assert env.apache_restart() == 0 # let the hecho.py CGI echo chars < 0x20 in field name # for almost all such characters, the stream gets aborted with a h2 error and # there will be no http status, cr and lf are handled special def test_h2_200_01(self, env): url = env.mkurl("https", "cgi", "/hecho.py") for x in range(1, 32): r = env.curl_post_data(url, "name=x%%%02xx&value=yz" % x) if x in [10]: assert 0 == r.exit_code, "unexpected exit code for char 0x%02x" % x assert 500 == r.response["status"], "unexpected status for char 0x%02x" % x elif x in [13]: assert 0 == r.exit_code, "unexpected exit code for char 0x%02x" % x assert 200 == r.response["status"], "unexpected status for char 0x%02x" % x else: assert 0 != r.exit_code, "unexpected exit code for char 0x%02x" % x # let the hecho.py CGI echo chars < 0x20 in field value # for almost all such characters, the stream gets aborted with a h2 error and # there will be no http status, cr and lf are handled special def test_h2_200_02(self, env): url = env.mkurl("https", "cgi", "/hecho.py") for x in range(1, 32): if 9 != x: r = env.curl_post_data(url, "name=x&value=y%%%02x" % x) if x in [10, 13]: assert 0 == r.exit_code, "unexpected exit code for char 0x%02x" % x assert 200 == r.response["status"], "unexpected status for char 0x%02x" % x else: assert 0 != r.exit_code, "unexpected exit code for char 0x%02x" % x # let the hecho.py CGI echo 0x10 and 0x7f in field name and value def test_h2_200_03(self, env): url = env.mkurl("https", "cgi", "/hecho.py") for h in ["10", "7f"]: r = env.curl_post_data(url, "name=x%%%s&value=yz" % h) assert 0 != r.exit_code r = env.curl_post_data(url, "name=x&value=y%%%sz" % h) assert 0 != r.exit_code # test header field lengths check, LimitRequestLine (default 8190) def test_h2_200_10(self, env): url = env.mkurl("https", "cgi", "/") val = "1234567890" # 10 chars for i in range(3): # make a 10000 char string val = "%s%s%s%s%s%s%s%s%s%s" % (val, val, val, val, val, val, val, val, val, val) # LimitRequestLine 8190 ok, one more char -> 431 r = env.curl_get(url, options=["-H", "x: %s" % (val[:8187])]) assert 200 == r.response["status"] r = env.curl_get(url, options=["-H", "x: %sx" % (val[:8188])]) assert 431 == r.response["status"] # same with field name r = env.curl_get(url, options=["-H", "y%s: 1" % (val[:8186])]) assert 200 == r.response["status"] r = env.curl_get(url, options=["-H", "y%s: 1" % (val[:8188])]) assert 431 == r.response["status"] # test header field lengths check, LimitRequestFieldSize (default 8190) def test_h2_200_11(self, env): url = env.mkurl("https", "cgi", "/") val = "1234567890" # 10 chars for i in range(3): # make a 10000 char string val = "%s%s%s%s%s%s%s%s%s%s" % (val, val, val, val, val, val, val, val, val, val) # LimitRequestFieldSize 8190 ok, one more char -> 400 in HTTP/1.1 # (we send 4000+4185 since they are concatenated by ", " and start with "x: " r = env.curl_get(url, options=["-H", "x: %s" % (val[:4000]), "-H", "x: %s" % (val[:4185])]) assert 200 == r.response["status"] r = env.curl_get(url, options=["--http1.1", "-H", "x: %s" % (val[:4000]), "-H", "x: %s" % (val[:4189])]) assert 400 == r.response["status"] r = env.curl_get(url, options=["-H", "x: %s" % (val[:4000]), "-H", "x: %s" % (val[:4191])]) assert 431 == r.response["status"] # test header field count, LimitRequestFields (default 100) # see #201: several headers with same name are mered and count only once def test_h2_200_12(self, env): url = env.mkurl("https", "cgi", "/") opt = [] for i in range(98): # curl sends 2 headers itself (user-agent and accept) opt += ["-H", "x: 1"] r = env.curl_get(url, options=opt) assert 200 == r.response["status"] r = env.curl_get(url, options=(opt + ["-H", "y: 2"])) assert 200 == r.response["status"] # test header field count, LimitRequestFields (default 100) # different header names count each def test_h2_200_13(self, env): url = env.mkurl("https", "cgi", "/") opt = [] for i in range(98): # curl sends 2 headers itself (user-agent and accept) opt += ["-H", "x{0}: 1".format(i)] r = env.curl_get(url, options=opt) assert 200 == r.response["status"] r = env.curl_get(url, options=(opt + ["-H", "y: 2"])) assert 431 == r.response["status"] # test "LimitRequestFields 0" setting, see #200 def test_h2_200_14(self, env): conf = H2Conf(env) conf.add(""" LimitRequestFields 20 """) conf.add_vhost_cgi() conf.install() assert env.apache_restart() == 0 url = env.mkurl("https", "cgi", "/") opt = [] for i in range(21): opt += ["-H", "x{0}: 1".format(i)] r = env.curl_get(url, options=opt) assert 431 == r.response["status"] conf = H2Conf(env) conf.add(""" LimitRequestFields 0 """) conf.add_vhost_cgi() conf.install() assert env.apache_restart() == 0 url = env.mkurl("https", "cgi", "/") opt = [] for i in range(100): opt += ["-H", "x{0}: 1".format(i)] r = env.curl_get(url, options=opt) assert 200 == r.response["status"] # the uri limits def test_h2_200_15(self, env): conf = H2Conf(env) conf.add(""" LimitRequestLine 48 """) conf.add_vhost_cgi() conf.install() assert env.apache_restart() == 0 url = env.mkurl("https", "cgi", "/") r = env.curl_get(url) assert 200 == r.response["status"] url = env.mkurl("https", "cgi", "/" + (48*"x")) r = env.curl_get(url) assert 414 == r.response["status"] # nghttp sends the :method: header first (so far) # trigger a too long request line on it # the stream will RST and we get no response url = env.mkurl("https", "cgi", "/") opt = ["-H:method: {0}".format(100*"x")] r = env.nghttp().get(url, options=opt) assert r.exit_code == 0, r assert not r.response # invalid chars in method def test_h2_200_16(self, env): conf = H2Conf(env) conf.add_vhost_cgi() conf.install() assert env.apache_restart() == 0 url = env.mkurl("https", "cgi", "/hello.py") opt = ["-H:method: GET /hello.py"] r = env.nghttp().get(url, options=opt) assert r.exit_code == 0, r # nghttp version >= 1.45.0 check pseudo headers and RST streams, # which means we see no response. if r.response is not None: assert r.response["status"] == 400 url = env.mkurl("https", "cgi", "/proxy/hello.py") r = env.nghttp().get(url, options=opt) assert r.exit_code == 0, r if r.response is not None: assert r.response["status"] == 400
py
b412d7ca27a2ba608a8ccae93d57b04d9f522d08
import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import args_file import json from utils import Logger from models.build_model import build_model model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) best_acc1 = 0 def main(): args = args_file.parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu if not os.path.exists(args.result_path): os.makedirs(args.result_path) if not args.evaluate: if args.resume: with open(os.path.join(args.result_path, 'resume_args.json'), 'a') as f: json.dump(vars(args), f) else: with open(os.path.join(args.result_path, 'args.json'), 'w') as f: json.dump(vars(args), f) if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model ''' if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() ''' model = build_model(args) print(model) print(args) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int(args.workers / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov) if args.lr_scheduler == 'MultiStepLR': print("using MultiStepLR with steps: ", args.lr_steps) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_steps, gamma=args.lr_reduce_factor) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) if args.lr_scheduler == 'MultiStepLR': print("usingMultiStepLR with steps: ", args.lr_steps) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_steps, gamma=args.lr_reduce_factor, last_epoch=(checkpoint['epoch'] - 1)) print("last_epoch: ", scheduler.last_epoch) if args.start_epoch == 0: args.start_epoch = checkpoint['epoch'] else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_trans = [ transforms.RandomResizedCrop(args.train_crop_size), # transforms.RandomResizedCrop(224) transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] train_dataset = datasets.ImageFolder( traindir, transforms.Compose(train_trans)) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(args.val_resize),#transforms.Resize(256) transforms.CenterCrop(args.val_crop_size),#transforms.CenterCrop(224) transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion, args) return if args.resume: mode = 'a' else: mode = 'w' train_logger = Logger(os.path.join(args.result_path, 'train.log'), ['epoch', 'loss', 'acc1', 'acc5', 'lr'], mode=mode) val_logger = Logger(os.path.join(args.result_path, 'val.log'), ['epoch', 'loss', 'acc1', 'acc5'], mode=mode) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) if args.lr_scheduler == 'MultiStepLR': scheduler.step() else: adjust_learning_rate(optimizer, epoch, args) # train for one epoch train_acc1, train_acc5, train_loss = \ train(train_loader, model, criterion, optimizer, epoch, args) train_logger.log({ 'epoch': epoch+1, 'loss': '{:.4f}'.format(train_loss), 'acc1': '{:.2f}'.format(train_acc1.item()), 'acc5': '{:.2f}'.format(train_acc5.item()), 'lr': '{:.6f}'.format(optimizer.param_groups[0]['lr']) }) # evaluate on validation set val_acc1, val_acc5, val_loss = validate(val_loader, model, criterion, args) val_logger.log({ 'epoch': epoch+1, 'loss': '{:.4f}'.format(val_loss), 'acc1': '{:.2f}'.format(val_acc1.item()), 'acc5': '{:.2f}'.format(val_acc5.item()) }) # remember best acc@1 and save checkpoint is_best = val_acc1 > best_acc1 best_acc1 = max(val_acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'val_acc1': val_acc1, 'optimizer': optimizer.state_dict(), }, is_best, args.result_path + '/') def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1, top5, prefix="Epoch: [{}]".format(epoch+1)) # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: input = input.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.print(i) return top1.avg, top5.avg, losses.avg def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5, prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (input, target) in enumerate(val_loader): if args.gpu is not None: input = input.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.print(i) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg, top5.avg, losses.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename + 'checkpoint.pth.tar') if is_best: shutil.copyfile(filename + 'checkpoint.pth.tar', filename + 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, *meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def print(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
py
b412d82c4d9e3c6c8e342fc4b9e285fedc364f29
#def main(): # print('MCA') #main() #print("test") #def display(a): # print('my neme',a) def main(): print('mca') if __name__ == '__main__' : main()
py
b412d8aa69db84d3b12293b8e93533be103623bd
""" .. codeauthor:: David Zwicker <[email protected]> """ import itertools import numpy as np import pytest from pde import ScalarField, UnitGrid from pde.grids.boundaries.axes import Boundaries from pde.grids.boundaries.axis import BoundaryPair, BoundaryPeriodic, get_boundary_axis def test_boundaries(): """ test setting boundaries for multiple systems """ b = ["periodic", "value", {"type": "derivative", "value": 1}] for bx, by in itertools.product(b, b): g = UnitGrid([2, 2], periodic=[b == "periodic" for b in (bx, by)]) bcs = Boundaries.from_data(g, [bx, by]) bc_x = get_boundary_axis(g, 0, bx) bc_y = get_boundary_axis(g, 1, by) assert bcs.grid.num_axes == 2 assert bcs[0] == bc_x assert bcs[1] == bc_y assert bcs == Boundaries.from_data(g, [bc_x, bc_y]) if bx == by: assert bcs == Boundaries.from_data(g, bx) bc2 = bcs.copy() assert bcs == bc2 assert bcs is not bc2 b1 = Boundaries.from_data(UnitGrid([2, 2]), "natural") b2 = Boundaries.from_data(UnitGrid([3, 3]), "natural") assert b1 != b2 def test_boundary_specifications(): """ test different ways of specifying boundary conditions """ g = UnitGrid([2]) bc1 = Boundaries.from_data( g, [{"type": "derivative", "value": 0}, {"type": "value", "value": 0}] ) assert bc1 == Boundaries.from_data(g, [{"type": "derivative"}, {"type": "value"}]) assert bc1 == Boundaries.from_data(g, [{"derivative": 0}, {"value": 0}]) assert bc1 == Boundaries.from_data(g, ["neumann", "dirichlet"]) def test_mixed_boundary_condition(): """ test limiting cases of the mixed boundary condition """ g = UnitGrid([2]) d = np.random.random(2) g1 = g.get_operator("gradient", bc=[{"mixed": 0}, {"mixed": np.inf}]) g2 = g.get_operator("gradient", bc=["derivative", "value"]) np.testing.assert_allclose(g1(d), g2(d)) @pytest.mark.parametrize( "cond,is_value", [ ("natural", False), ("auto_periodic_neumann", False), ("auto_periodic_dirichlet", True), ], ) def test_natural_boundary_conditions(cond, is_value): """ test special automatic boundary conditions """ g = UnitGrid([2, 2], periodic=[True, False]) for bc in [ Boundaries.from_data(g, cond), Boundaries.from_data(g, ["periodic", cond]), ]: assert isinstance(bc[0], BoundaryPeriodic) if is_value: assert bc[1] == BoundaryPair.from_data(g, 1, "value") else: assert bc[1] == BoundaryPair.from_data(g, 1, "derivative") def test_special_cases(): """ test some special boundary conditions """ g = UnitGrid([5]) s = ScalarField(g, np.arange(5)) for bc in ["extrapolate", {"curvature": 0}]: np.testing.assert_allclose(s.laplace(bc).data, 0) def test_bc_values(): """ test setting the values of boundary conditions """ g = UnitGrid([5]) bc = g.get_boundary_conditions([{"value": 2}, {"derivative": 3}]) assert bc[0].low.value == 2 and bc[0].high.value == 3 bc.scale_value(5) assert bc[0].low.value == 10 and bc[0].high.value == 15 bc.set_value(7) assert bc[0].low.value == bc[0].high.value == 7
py
b412da4bc8b76285ce4b548a6c43f312759e039d
from unittest import TestCase import jax.numpy as jnp import tensorflow.keras as tfk import elegy from elegy.testing_utils import transform_and_run class BinaryCrossentropyTest(TestCase): @transform_and_run def test_basic(self): # Input: true (y_true) and predicted (y_pred) tensors y_true = jnp.array([[0.0, 1.0], [0.0, 0.0]]) y_pred = jnp.array([[0.6, 0.4], [0.4, 0.6]]) # Standard BCE, considering prediction tensor as probabilities bce = elegy.metrics.BinaryCrossentropy() result = bce( y_true=y_true, y_pred=y_pred, ) assert jnp.isclose(result, 0.815, rtol=0.01) # Standard BCE, considering prediction tensor as logits y_logits = jnp.log(y_pred) - jnp.log(1 - y_pred) bce = elegy.metrics.BinaryCrossentropy(from_logits=True) result_from_logits = bce(y_true, y_logits) assert jnp.isclose(result_from_logits, 0.815, rtol=0.01) assert jnp.isclose(result_from_logits, result, rtol=0.01) # BCE using sample_weight bce = elegy.metrics.BinaryCrossentropy() result = bce(y_true, y_pred, sample_weight=jnp.array([1.0, 0.0])) assert jnp.isclose(result, 0.916, rtol=0.01) @transform_and_run def test_compatibility(self): # Input: true (y_true) and predicted (y_pred) tensors y_true = jnp.array([[0.0, 1.0], [0.0, 0.0]]) y_pred = jnp.array([[0.6, 0.4], [0.4, 0.6]]) # Standard BCE, considering prediction tensor as probabilities bce_elegy = elegy.metrics.BinaryCrossentropy() bce_tfk = tfk.metrics.BinaryCrossentropy() assert jnp.isclose( bce_elegy(y_true, y_pred), bce_tfk(y_true, y_pred), rtol=0.0001 ) # Standard BCE, considering prediction tensor as logits y_logits = jnp.log(y_pred) - jnp.log(1 - y_pred) bce_elegy = elegy.metrics.BinaryCrossentropy(from_logits=True) bce_tfk = tfk.metrics.BinaryCrossentropy(from_logits=True) assert jnp.isclose( bce_elegy(y_true, y_logits), bce_tfk(y_true, y_logits), rtol=0.0001 ) # BCE using sample_weight bce_elegy = elegy.metrics.BinaryCrossentropy() bce_tfk = tfk.metrics.BinaryCrossentropy() assert jnp.isclose( bce_elegy(y_true, y_pred, sample_weight=jnp.array([1, 0])), bce_tfk(y_true, y_pred, sample_weight=jnp.array([1, 0])), rtol=0.0001, )
py
b412da63f9958eeb043d3284f96309864b45fd55
import sys if sys.platform == 'cli': import clr clr.AddReference('integrate') from scipy__integrate___odepack import *
py
b412dc6d42cdcb5a4eff3808677bbb99f8802e97
from unittest.mock import patch from nose.tools import assert_equal from pyecharts import options as opts from pyecharts.charts import Sankey @patch("pyecharts.render.engine.write_utf8_html_file") def test_sankey_base(fake_writer): nodes = [{"name": "category1"}, {"name": "category2"}, {"name": "category3"}] links = [ {"source": "category1", "target": "category2", "value": 10}, {"source": "category2", "target": "category3", "value": 15}, ] c = Sankey().add( "sankey", nodes, links, linestyle_opt=opts.LineStyleOpts(opacity=0.2, curve=0.5, color="source"), label_opts=opts.LabelOpts(position="right"), ) c.render() _, content = fake_writer.call_args[0] assert_equal(c.theme, "white") assert_equal(c.renderer, "canvas")
py
b412dece92fe5470f60e4bd3e7157eea762d275a
import pandas as pd import numpy as np from torch.utils.data import Dataset import os from PIL import Image class CXRDataset(Dataset): def __init__( self, path_to_images, fold, transform=None, sample=0, finding="any", starter_images=False): self.transform = transform self.path_to_images = path_to_images self.df = pd.read_csv("nih_labels_modified.csv") self.df = self.df[self.df['fold'] == fold] if(starter_images): starter_images = pd.read_csv("starter_images.csv") self.df=pd.merge(left=self.df,right=starter_images, how="inner",on="Image Index") # can limit to sample, useful for testing # if fold == "train" or fold =="val": sample=500 if(sample > 0 and sample < len(self.df)): self.df = self.df.sample(sample) if not finding == "any": # can filter for positive findings of the kind described; useful for evaluation if finding in self.df.columns: if len(self.df[self.df[finding] == 1]) > 0: self.df = self.df[self.df[finding] == 1] else: print("No positive cases exist for "+LABEL+", returning all unfiltered cases") else: print("cannot filter on finding " + finding + " as not in data - please check spelling") self.df = self.df.set_index("Image Index") self.PRED_LABEL = [ 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural_Thickening', 'Hernia', 'Covid'] RESULT_PATH = "results/" def __len__(self): return len(self.df) def __getitem__(self, idx): image = Image.open( os.path.join( self.path_to_images, self.df.index[idx])) image = image.convert('RGB') label = np.zeros(len(self.PRED_LABEL), dtype=int) for i in range(0, len(self.PRED_LABEL)): # can leave zero if zero, else make one if(self.df[self.PRED_LABEL[i].strip()].iloc[idx].astype('int') > 0): label[i] = self.df[self.PRED_LABEL[i].strip() ].iloc[idx].astype('int') if self.transform: image = self.transform(image) return (image, label,self.df.index[idx])
py
b412e034a38b16eaaae0861574862bfb72f0d70f
#!/usr/bin/env python3 """ Author: Diego Maldonado (@dmnunez1993) Maintainer: Emiliano Borghi (@eborghi10) """ import os import subprocess from subprocess import PIPE KNOWN_NVIDIA_ERRORS = [ ("Failed to initialize NVML: Driver/library version mismatch"), ("NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. " "Make sure that the latest NVIDIA driver is installed and running."), ] def is_nvidia(): try: everything, _ = subprocess.Popen(["nvidia-smi", "--query-gpu=driver_version", "--format=noheader,csv"], stdout=PIPE, stderr=PIPE).communicate() return (False if everything.strip() in KNOWN_NVIDIA_ERRORS else True) except OSError: return False return False def run_command(command): subprocess.call(command, shell=True) def get_repo_root(): return subprocess.check_output('git rev-parse --show-toplevel'.split()).strip().decode() def get_uid(): return os.getuid() def get_user(): return os.getlogin() def create_directory(directory): run_command("mkdir -p {}".format(directory)) run_command("sudo chown {0}:{0} {1}".format(get_user(), directory))
py
b412e0bd81e96e819eff4579aa796c1484822f8b
""" Redshift connector module. Extends BaseConnector. """ from typing import Dict import sqlalchemy from dbt_sugar.core.connectors.base import BaseConnector class RedshiftConnector(BaseConnector): """ Connection class for Redshift databases. Extends BaseConnector. """ def __init__( self, connection_params: Dict[str, str], ) -> None: """ Creates the URL and the Engine for future connections. Args: connection_params (Dict[str, str]): Dict containing database connection parameters and credentials. """ self.connection_url = sqlalchemy.engine.url.URL( drivername="redshift+psycopg2", host=connection_params.get("host", str()), username=connection_params.get("user", str()), password=connection_params.get("password", str()), database=connection_params.get("database", str()), port=connection_params.get("port", str()), ) self.engine = sqlalchemy.create_engine( self.connection_url, connect_args={"sslmode": "prefer"} )
py
b412e0d7c5f214180d3b058b40ee007c8467925a
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SnapshotArgs', 'Snapshot'] @pulumi.input_type class SnapshotArgs: def __init__(__self__, *, creation_data: pulumi.Input['CreationDataArgs'], resource_group_name: pulumi.Input[str], disk_size_gb: Optional[pulumi.Input[int]] = None, encryption_settings: Optional[pulumi.Input['EncryptionSettingsArgs']] = None, location: Optional[pulumi.Input[str]] = None, os_type: Optional[pulumi.Input['OperatingSystemTypes']] = None, sku: Optional[pulumi.Input['DiskSkuArgs']] = None, snapshot_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a Snapshot resource. :param pulumi.Input['CreationDataArgs'] creation_data: Disk source information. CreationData information cannot be changed after the disk has been created. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[int] disk_size_gb: If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. :param pulumi.Input['EncryptionSettingsArgs'] encryption_settings: Encryption settings for disk or snapshot :param pulumi.Input[str] location: Resource location :param pulumi.Input['OperatingSystemTypes'] os_type: The Operating System type. :param pulumi.Input['DiskSkuArgs'] sku: The disks and snapshots sku name. Can be Standard_LRS or Premium_LRS. :param pulumi.Input[str] snapshot_name: The name of the snapshot that is being created. The name can't be changed after the snapshot is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The max name length is 80 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ pulumi.set(__self__, "creation_data", creation_data) pulumi.set(__self__, "resource_group_name", resource_group_name) if disk_size_gb is not None: pulumi.set(__self__, "disk_size_gb", disk_size_gb) if encryption_settings is not None: pulumi.set(__self__, "encryption_settings", encryption_settings) if location is not None: pulumi.set(__self__, "location", location) if os_type is not None: pulumi.set(__self__, "os_type", os_type) if sku is not None: pulumi.set(__self__, "sku", sku) if snapshot_name is not None: pulumi.set(__self__, "snapshot_name", snapshot_name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="creationData") def creation_data(self) -> pulumi.Input['CreationDataArgs']: """ Disk source information. CreationData information cannot be changed after the disk has been created. """ return pulumi.get(self, "creation_data") @creation_data.setter def creation_data(self, value: pulumi.Input['CreationDataArgs']): pulumi.set(self, "creation_data", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="diskSizeGB") def disk_size_gb(self) -> Optional[pulumi.Input[int]]: """ If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. """ return pulumi.get(self, "disk_size_gb") @disk_size_gb.setter def disk_size_gb(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "disk_size_gb", value) @property @pulumi.getter(name="encryptionSettings") def encryption_settings(self) -> Optional[pulumi.Input['EncryptionSettingsArgs']]: """ Encryption settings for disk or snapshot """ return pulumi.get(self, "encryption_settings") @encryption_settings.setter def encryption_settings(self, value: Optional[pulumi.Input['EncryptionSettingsArgs']]): pulumi.set(self, "encryption_settings", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="osType") def os_type(self) -> Optional[pulumi.Input['OperatingSystemTypes']]: """ The Operating System type. """ return pulumi.get(self, "os_type") @os_type.setter def os_type(self, value: Optional[pulumi.Input['OperatingSystemTypes']]): pulumi.set(self, "os_type", value) @property @pulumi.getter def sku(self) -> Optional[pulumi.Input['DiskSkuArgs']]: """ The disks and snapshots sku name. Can be Standard_LRS or Premium_LRS. """ return pulumi.get(self, "sku") @sku.setter def sku(self, value: Optional[pulumi.Input['DiskSkuArgs']]): pulumi.set(self, "sku", value) @property @pulumi.getter(name="snapshotName") def snapshot_name(self) -> Optional[pulumi.Input[str]]: """ The name of the snapshot that is being created. The name can't be changed after the snapshot is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The max name length is 80 characters. """ return pulumi.get(self, "snapshot_name") @snapshot_name.setter def snapshot_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "snapshot_name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class Snapshot(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, creation_data: Optional[pulumi.Input[pulumi.InputType['CreationDataArgs']]] = None, disk_size_gb: Optional[pulumi.Input[int]] = None, encryption_settings: Optional[pulumi.Input[pulumi.InputType['EncryptionSettingsArgs']]] = None, location: Optional[pulumi.Input[str]] = None, os_type: Optional[pulumi.Input['OperatingSystemTypes']] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['DiskSkuArgs']]] = None, snapshot_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Snapshot resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['CreationDataArgs']] creation_data: Disk source information. CreationData information cannot be changed after the disk has been created. :param pulumi.Input[int] disk_size_gb: If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. :param pulumi.Input[pulumi.InputType['EncryptionSettingsArgs']] encryption_settings: Encryption settings for disk or snapshot :param pulumi.Input[str] location: Resource location :param pulumi.Input['OperatingSystemTypes'] os_type: The Operating System type. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[pulumi.InputType['DiskSkuArgs']] sku: The disks and snapshots sku name. Can be Standard_LRS or Premium_LRS. :param pulumi.Input[str] snapshot_name: The name of the snapshot that is being created. The name can't be changed after the snapshot is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The max name length is 80 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ ... @overload def __init__(__self__, resource_name: str, args: SnapshotArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Snapshot resource. :param str resource_name: The name of the resource. :param SnapshotArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SnapshotArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, creation_data: Optional[pulumi.Input[pulumi.InputType['CreationDataArgs']]] = None, disk_size_gb: Optional[pulumi.Input[int]] = None, encryption_settings: Optional[pulumi.Input[pulumi.InputType['EncryptionSettingsArgs']]] = None, location: Optional[pulumi.Input[str]] = None, os_type: Optional[pulumi.Input['OperatingSystemTypes']] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['DiskSkuArgs']]] = None, snapshot_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SnapshotArgs.__new__(SnapshotArgs) if creation_data is None and not opts.urn: raise TypeError("Missing required property 'creation_data'") __props__.__dict__["creation_data"] = creation_data __props__.__dict__["disk_size_gb"] = disk_size_gb __props__.__dict__["encryption_settings"] = encryption_settings __props__.__dict__["location"] = location __props__.__dict__["os_type"] = os_type if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["sku"] = sku __props__.__dict__["snapshot_name"] = snapshot_name __props__.__dict__["tags"] = tags __props__.__dict__["managed_by"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["time_created"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:compute/v20170330:Snapshot"), pulumi.Alias(type_="azure-native:compute:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20160430preview:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20160430preview:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20180401:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20180401:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20180601:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20180601:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20180930:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20180930:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20190301:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20190301:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20190701:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20190701:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20191101:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20191101:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20200501:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20200501:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20200630:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20200630:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20200930:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20200930:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20201201:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20201201:Snapshot"), pulumi.Alias(type_="azure-native:compute/v20210401:Snapshot"), pulumi.Alias(type_="azure-nextgen:compute/v20210401:Snapshot")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Snapshot, __self__).__init__( 'azure-native:compute/v20170330:Snapshot', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Snapshot': """ Get an existing Snapshot resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SnapshotArgs.__new__(SnapshotArgs) __props__.__dict__["creation_data"] = None __props__.__dict__["disk_size_gb"] = None __props__.__dict__["encryption_settings"] = None __props__.__dict__["location"] = None __props__.__dict__["managed_by"] = None __props__.__dict__["name"] = None __props__.__dict__["os_type"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["time_created"] = None __props__.__dict__["type"] = None return Snapshot(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="creationData") def creation_data(self) -> pulumi.Output['outputs.CreationDataResponse']: """ Disk source information. CreationData information cannot be changed after the disk has been created. """ return pulumi.get(self, "creation_data") @property @pulumi.getter(name="diskSizeGB") def disk_size_gb(self) -> pulumi.Output[Optional[int]]: """ If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. """ return pulumi.get(self, "disk_size_gb") @property @pulumi.getter(name="encryptionSettings") def encryption_settings(self) -> pulumi.Output[Optional['outputs.EncryptionSettingsResponse']]: """ Encryption settings for disk or snapshot """ return pulumi.get(self, "encryption_settings") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter(name="managedBy") def managed_by(self) -> pulumi.Output[str]: """ Unused. Always Null. """ return pulumi.get(self, "managed_by") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="osType") def os_type(self) -> pulumi.Output[Optional[str]]: """ The Operating System type. """ return pulumi.get(self, "os_type") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The disk provisioning state. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.DiskSkuResponse']]: """ The disks and snapshots sku name. Can be Standard_LRS or Premium_LRS. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter(name="timeCreated") def time_created(self) -> pulumi.Output[str]: """ The time when the disk was created. """ return pulumi.get(self, "time_created") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type")
py
b412e13fc8fc5fffe106f78a3ff45561dc27c9f5
#!/usr/bin/python # # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for looking up symbolic debugging information. The information can include symbol names, offsets, and source locations. """ import glob import itertools import os import re import subprocess import zipfile CHROME_SRC = os.path.join(os.path.realpath(os.path.dirname(__file__)), os.pardir, os.pardir, os.pardir, os.pardir) ANDROID_BUILD_TOP = CHROME_SRC SYMBOLS_DIR = CHROME_SRC CHROME_SYMBOLS_DIR = CHROME_SRC ARCH = "arm" TOOLCHAIN_INFO = None def Uname(): """'uname' for constructing prebuilt/<...> and out/host/<...> paths.""" uname = os.uname()[0] if uname == "Darwin": proc = os.uname()[-1] if proc == "i386" or proc == "x86_64": return "darwin-x86" return "darwin-ppc" if uname == "Linux": return "linux-x86" return uname def ToolPath(tool, toolchain_info=None): """Return a full qualified path to the specified tool""" # ToolPath looks for the tools in the completely incorrect directory. # This looks in the checked in android_tools. if ARCH == "arm": toolchain_source = "arm-linux-androideabi-4.9" toolchain_prefix = "arm-linux-androideabi" ndk = "ndk" elif ARCH == "arm64": toolchain_source = "aarch64-linux-android-4.9" toolchain_prefix = "aarch64-linux-android" ndk = "ndk" elif ARCH == "x86": toolchain_source = "x86-4.9" toolchain_prefix = "i686-linux-android" ndk = "ndk" elif ARCH == "x86_64" or ARCH == "x64": toolchain_source = "x86_64-4.9" toolchain_prefix = "x86_64-linux-android" ndk = "ndk" elif ARCH == "mips": toolchain_source = "mipsel-linux-android-4.9" toolchain_prefix = "mipsel-linux-android" ndk = "ndk" else: raise Exception("Could not find tool chain") toolchain_subdir = ( "third_party/android_tools/%s/toolchains/%s/prebuilt/linux-x86_64/bin" % (ndk, toolchain_source)) return os.path.join(CHROME_SRC, toolchain_subdir, toolchain_prefix + "-" + tool) def FindToolchain(): """Look for the latest available toolchain Args: None Returns: A pair of strings containing toolchain label and target prefix. """ global TOOLCHAIN_INFO if TOOLCHAIN_INFO is not None: return TOOLCHAIN_INFO ## Known toolchains, newer ones in the front. gcc_version = "4.9" if ARCH == "arm64": known_toolchains = [ ("aarch64-linux-android-" + gcc_version, "aarch64", "aarch64-linux-android") ] elif ARCH == "arm": known_toolchains = [ ("arm-linux-androideabi-" + gcc_version, "arm", "arm-linux-androideabi") ] elif ARCH =="x86": known_toolchains = [ ("x86-" + gcc_version, "x86", "i686-linux-android") ] elif ARCH =="x86_64" or ARCH =="x64": known_toolchains = [ ("x86_64-" + gcc_version, "x86_64", "x86_64-linux-android") ] elif ARCH == "mips": known_toolchains = [ ("mipsel-linux-android-" + gcc_version, "mips", "mipsel-linux-android") ] else: known_toolchains = [] # Look for addr2line to check for valid toolchain path. for (label, platform, target) in known_toolchains: toolchain_info = (label, platform, target); if os.path.exists(ToolPath("addr2line", toolchain_info)): TOOLCHAIN_INFO = toolchain_info print "Using toolchain from :" + ToolPath("", TOOLCHAIN_INFO) return toolchain_info raise Exception("Could not find tool chain") def GetAapt(): """Returns the path to aapt. Args: None Returns: the pathname of the 'aapt' executable. """ sdk_home = os.path.join('third_party', 'android_tools', 'sdk') sdk_home = os.environ.get('SDK_HOME', sdk_home) aapt_exe = glob.glob(os.path.join(sdk_home, 'build-tools', '*', 'aapt')) if not aapt_exe: return None return sorted(aapt_exe, key=os.path.getmtime, reverse=True)[0] def ApkMatchPackageName(aapt, apk_path, package_name): """Returns true the APK's package name matches package_name. Args: aapt: pathname for the 'aapt' executable. apk_path: pathname of the APK file. package_name: package name to match. Returns: True if the package name matches or aapt is None, False otherwise. """ if not aapt: # Allow false positives return True aapt_output = subprocess.check_output( [aapt, 'dump', 'badging', apk_path]).split('\n') package_name_re = re.compile(r'package: .*name=\'(\S*)\'') for line in aapt_output: match = package_name_re.match(line) if match: return package_name == match.group(1) return False def PathListJoin(prefix_list, suffix_list): """Returns each prefix in prefix_list joined with each suffix in suffix list. Args: prefix_list: list of path prefixes. suffix_list: list of path suffixes. Returns: List of paths each of which joins a prefix with a suffix. """ return [ os.path.join(prefix, suffix) for prefix in prefix_list for suffix in suffix_list ] def GetCandidates(dirs, filepart, candidate_fun): """Returns a list of candidate filenames. Args: dirs: a list of the directory part of the pathname. filepart: the file part of the pathname. candidate_fun: a function to apply to each candidate, returns a list. Returns: A list of candidate files ordered by modification time, newest first. """ out_dir = os.environ.get('CHROMIUM_OUT_DIR', 'out') out_dir = os.path.join(CHROME_SYMBOLS_DIR, out_dir) buildtype = os.environ.get('BUILDTYPE') if buildtype: buildtype_list = [ buildtype ] else: buildtype_list = [ 'Debug', 'Release' ] candidates = PathListJoin([out_dir], buildtype_list) + [CHROME_SYMBOLS_DIR] candidates = PathListJoin(candidates, dirs) candidates = PathListJoin(candidates, [filepart]) candidates = list( itertools.chain.from_iterable(map(candidate_fun, candidates))) candidates = sorted(candidates, key=os.path.getmtime, reverse=True) return candidates def GetCandidateApks(): """Returns a list of APKs which could contain the library. Args: None Returns: list of APK filename which could contain the library. """ return GetCandidates(['apks'], '*.apk', glob.glob) def GetCrazyLib(apk_filename): """Returns the name of the first crazy library from this APK. Args: apk_filename: name of an APK file. Returns: Name of the first library which would be crazy loaded from this APK. """ zip_file = zipfile.ZipFile(apk_filename, 'r') for filename in zip_file.namelist(): match = re.match('lib/[^/]*/crazy.(lib.*[.]so)', filename) if match: return match.group(1) def GetMatchingApks(device_apk_name): """Find any APKs which match the package indicated by the device_apk_name. Args: device_apk_name: name of the APK on the device. Returns: A list of APK filenames which could contain the desired library. """ match = re.match('(.*)-[0-9]+[.]apk$', device_apk_name) if not match: return None package_name = match.group(1) return filter( lambda candidate_apk: ApkMatchPackageName(GetAapt(), candidate_apk, package_name), GetCandidateApks()) def MapDeviceApkToLibrary(device_apk_name): """Provide a library name which corresponds with device_apk_name. Args: device_apk_name: name of the APK on the device. Returns: Name of the library which corresponds to that APK. """ matching_apks = GetMatchingApks(device_apk_name) for matching_apk in matching_apks: crazy_lib = GetCrazyLib(matching_apk) if crazy_lib: return crazy_lib def GetCandidateLibraries(library_name): """Returns a list of candidate library filenames. Args: library_name: basename of the library to match. Returns: A list of matching library filenames for library_name. """ return GetCandidates( ['lib', 'lib.target'], library_name, lambda filename: filter(os.path.exists, [filename])) def TranslateLibPath(lib): # SymbolInformation(lib, addr) receives lib as the path from symbols # root to the symbols file. This needs to be translated to point to the # correct .so path. If the user doesn't explicitly specify which directory to # use, then use the most recently updated one in one of the known directories. # If the .so is not found somewhere in CHROME_SYMBOLS_DIR, leave it # untranslated in case it is an Android symbol in SYMBOLS_DIR. library_name = os.path.basename(lib) # The filename in the stack trace maybe an APK name rather than a library # name. This happens when the library was loaded directly from inside the # APK. If this is the case we try to figure out the library name by looking # for a matching APK file and finding the name of the library in contains. # The name of the APK file on the device is of the form # <package_name>-<number>.apk. The APK file on the host may have any name # so we look at the APK badging to see if the package name matches. if re.search('-[0-9]+[.]apk$', library_name): mapping = MapDeviceApkToLibrary(library_name) if mapping: library_name = mapping candidate_libraries = GetCandidateLibraries(library_name) if not candidate_libraries: return lib library_path = os.path.relpath(candidate_libraries[0], SYMBOLS_DIR) return '/' + library_path def SymbolInformation(lib, addr, get_detailed_info): """Look up symbol information about an address. Args: lib: library (or executable) pathname containing symbols addr: string hexidecimal address Returns: A list of the form [(source_symbol, source_location, object_symbol_with_offset)]. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ lib = TranslateLibPath(lib) info = SymbolInformationForSet(lib, set([addr]), get_detailed_info) return (info and info.get(addr)) or [(None, None, None)] def SymbolInformationForSet(lib, unique_addrs, get_detailed_info): """Look up symbol information for a set of addresses from the given library. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of hexidecimal addresses Returns: A dictionary of the form {addr: [(source_symbol, source_location, object_symbol_with_offset)]} where each address has a list of associated symbols and locations. The list is always non-empty. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ if not lib: return None addr_to_line = CallAddr2LineForSet(lib, unique_addrs) if not addr_to_line: return None if get_detailed_info: addr_to_objdump = CallObjdumpForSet(lib, unique_addrs) if not addr_to_objdump: return None else: addr_to_objdump = dict((addr, ("", 0)) for addr in unique_addrs) result = {} for addr in unique_addrs: source_info = addr_to_line.get(addr) if not source_info: source_info = [(None, None)] if addr in addr_to_objdump: (object_symbol, object_offset) = addr_to_objdump.get(addr) object_symbol_with_offset = FormatSymbolWithOffset(object_symbol, object_offset) else: object_symbol_with_offset = None result[addr] = [(source_symbol, source_location, object_symbol_with_offset) for (source_symbol, source_location) in source_info] return result class MemoizedForSet(object): def __init__(self, fn): self.fn = fn self.cache = {} def __call__(self, lib, unique_addrs): lib_cache = self.cache.setdefault(lib, {}) no_cache = filter(lambda x: x not in lib_cache, unique_addrs) if no_cache: lib_cache.update((k, None) for k in no_cache) result = self.fn(lib, no_cache) if result: lib_cache.update(result) return dict((k, lib_cache[k]) for k in unique_addrs if lib_cache[k]) @MemoizedForSet def CallAddr2LineForSet(lib, unique_addrs): """Look up line and symbol information for a set of addresses. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses look up. Returns: A dictionary of the form {addr: [(symbol, file:line)]} where each address has a list of associated symbols and locations or an empty list if no symbol information was found. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. """ if not lib: return None symbols = SYMBOLS_DIR + lib if not os.path.isfile(symbols): return None (label, platform, target) = FindToolchain() cmd = [ToolPath("addr2line"), "--functions", "--inlines", "--demangle", "--exe=" + symbols] child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) result = {} addrs = sorted(unique_addrs) for addr in addrs: child.stdin.write("0x%s\n" % addr) child.stdin.flush() records = [] first = True while True: symbol = child.stdout.readline().strip() if symbol == "??": symbol = None location = child.stdout.readline().strip() if location == "??:0": location = None if symbol is None and location is None: break records.append((symbol, location)) if first: # Write a blank line as a sentinel so we know when to stop # reading inlines from the output. # The blank line will cause addr2line to emit "??\n??:0\n". child.stdin.write("\n") first = False result[addr] = records child.stdin.close() child.stdout.close() return result def StripPC(addr): """Strips the Thumb bit a program counter address when appropriate. Args: addr: the program counter address Returns: The stripped program counter address. """ global ARCH if ARCH == "arm": return addr & ~1 return addr @MemoizedForSet def CallObjdumpForSet(lib, unique_addrs): """Use objdump to find out the names of the containing functions. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses to find the functions for. Returns: A dictionary of the form {addr: (string symbol, offset)}. """ if not lib: return None symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): return None symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): return None result = {} # Function lines look like: # 000177b0 <android::IBinder::~IBinder()+0x2c>: # We pull out the address and function first. Then we check for an optional # offset. This is tricky due to functions that look like "operator+(..)+0x2c" func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$") offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)") # A disassembly line looks like: # 177b2: b510 push {r4, lr} asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$") for target_addr in unique_addrs: start_addr_dec = str(StripPC(int(target_addr, 16))) stop_addr_dec = str(StripPC(int(target_addr, 16)) + 8) cmd = [ToolPath("objdump"), "--section=.text", "--demangle", "--disassemble", "--start-address=" + start_addr_dec, "--stop-address=" + stop_addr_dec, symbols] current_symbol = None # The current function symbol in the disassembly. current_symbol_addr = 0 # The address of the current function. stream = subprocess.Popen(cmd, stdout=subprocess.PIPE).stdout for line in stream: # Is it a function line like: # 000177b0 <android::IBinder::~IBinder()>: components = func_regexp.match(line) if components: # This is a new function, so record the current function and its address. current_symbol_addr = int(components.group(1), 16) current_symbol = components.group(2) # Does it have an optional offset like: "foo(..)+0x2c"? components = offset_regexp.match(current_symbol) if components: current_symbol = components.group(1) offset = components.group(2) if offset: current_symbol_addr -= int(offset, 16) # Is it an disassembly line like: # 177b2: b510 push {r4, lr} components = asm_regexp.match(line) if components: addr = components.group(1) i_addr = int(addr, 16) i_target = StripPC(int(target_addr, 16)) if i_addr == i_target: result[target_addr] = (current_symbol, i_target - current_symbol_addr) stream.close() return result def CallCppFilt(mangled_symbol): cmd = [ToolPath("c++filt")] process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) process.stdin.write(mangled_symbol) process.stdin.write("\n") process.stdin.close() demangled_symbol = process.stdout.readline().strip() process.stdout.close() return demangled_symbol def FormatSymbolWithOffset(symbol, offset): if offset == 0: return symbol return "%s+%d" % (symbol, offset)
py
b412e1d77f59ae8785fc128202020b478df7af44
import factory from ..models import User class UserFactory(factory.django.DjangoModelFactory): username = factory.Sequence(lambda n: 'user-{0}'.format(n)) email = factory.Sequence(lambda n: 'user-{0}@example.com'.format(n)) password = factory.PostGenerationMethodCall('set_password', 'password') class Meta: model = User django_get_or_create = ('username', )
py
b412e21cedc58bcde94cf299a15b9caf47a4e8f2
# -*- coding: utf-8 -*- """This module contains basic data cleaning functions""" from typing import Union import pandas as pd def drop_duplicated_indices(df: Union[pd.Series, pd.DataFrame]) -> Union[pd.Series, pd.DataFrame]: """If one concatenates dataframes there might be duplicated indices. This can lead to problems, e.g., in interpolation steps. One easy solution can be to just drop the duplicated row Args: df (Union[pd.Series, pd.DataFrame]): Input data Returns: Union[pd.Series, pd.DataFrame]: Data without duplicated indices """ return df[~df.index.duplicated()]
py
b412e4194529084120e20ae7e275ed82b0c47a69
from submission import Submission class MathieuSubmission(Submission): def run(self, s): steps = list(map(int, s.split("\n"))) n = len(steps) i = 0 step_nb = 0 while 0 <= i < n: new_i = steps[i] + i if steps[i]>2: steps[i] -= 1 else: steps[i]+=1 step_nb += 1 i = new_i return step_nb
py
b412e44735d7cb84063f24c064b68d2995accbab
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ShowPartitionEndMessageResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'topic': 'str', 'partition': 'int', 'message_offset': 'int', 'timestamp': 'int' } attribute_map = { 'topic': 'topic', 'partition': 'partition', 'message_offset': 'message_offset', 'timestamp': 'timestamp' } def __init__(self, topic=None, partition=None, message_offset=None, timestamp=None): """ShowPartitionEndMessageResponse - a model defined in huaweicloud sdk""" super().__init__() self._topic = None self._partition = None self._message_offset = None self._timestamp = None self.discriminator = None if topic is not None: self.topic = topic if partition is not None: self.partition = partition if message_offset is not None: self.message_offset = message_offset if timestamp is not None: self.timestamp = timestamp @property def topic(self): """Gets the topic of this ShowPartitionEndMessageResponse. Topic名称。 :return: The topic of this ShowPartitionEndMessageResponse. :rtype: str """ return self._topic @topic.setter def topic(self, topic): """Sets the topic of this ShowPartitionEndMessageResponse. Topic名称。 :param topic: The topic of this ShowPartitionEndMessageResponse. :type: str """ self._topic = topic @property def partition(self): """Gets the partition of this ShowPartitionEndMessageResponse. 分区编号。 :return: The partition of this ShowPartitionEndMessageResponse. :rtype: int """ return self._partition @partition.setter def partition(self, partition): """Sets the partition of this ShowPartitionEndMessageResponse. 分区编号。 :param partition: The partition of this ShowPartitionEndMessageResponse. :type: int """ self._partition = partition @property def message_offset(self): """Gets the message_offset of this ShowPartitionEndMessageResponse. 最新消息位置。 :return: The message_offset of this ShowPartitionEndMessageResponse. :rtype: int """ return self._message_offset @message_offset.setter def message_offset(self, message_offset): """Sets the message_offset of this ShowPartitionEndMessageResponse. 最新消息位置。 :param message_offset: The message_offset of this ShowPartitionEndMessageResponse. :type: int """ self._message_offset = message_offset @property def timestamp(self): """Gets the timestamp of this ShowPartitionEndMessageResponse. 最新消息时间戳。 :return: The timestamp of this ShowPartitionEndMessageResponse. :rtype: int """ return self._timestamp @timestamp.setter def timestamp(self, timestamp): """Sets the timestamp of this ShowPartitionEndMessageResponse. 最新消息时间戳。 :param timestamp: The timestamp of this ShowPartitionEndMessageResponse. :type: int """ self._timestamp = timestamp def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowPartitionEndMessageResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b412e4548d9c09c6ffb80512e8df01197b5fcf4b
""" This module helps to navigate inside json file. """ import json # import pprint def read_file(path: str): ''' This function reads json file. ''' json_file = open(path, encoding="utf-8") return json.load(json_file) def navigate(data: str): ''' This function navigates in json file via command line. ''' if isinstance(data, list): print("♥ ♥ ♥ ♥ ♥") print(f"Enter the value from indexes in range 0 to {len(data) - 1}") # print("♥ ♥ ♥ ♥ ♥") while True: print("♥ ♥ ♥ ♥ ♥") print(f"Available indexes {[ind for ind in range(len(data) - 1)]}") print("♥ ♥ ♥ ♥ ♥") user_key = input("Make your choice: ") if user_key in [str(ind) for ind in range(len(data) - 1)]: return navigate(data[int(user_key)]) else: continue return navigate(data[int(user_key)]) if isinstance(data, dict): keys_base = list(data.keys()) print("♥ ♥ ♥ ♥ ♥") print("Enter the value from keys:") while True: print("♥ ♥ ♥ ♥ ♥") for key in keys_base: print(f"- {key}") print("♥ ♥ ♥ ♥ ♥") user_key = input("Make your choice: ") if user_key in keys_base: return navigate(data[user_key]) else: continue return data if __name__ == "__main__": json_data = read_file("example_2.json") print(navigate(json_data)) # print() print("♥ ♥ ♥ ♥ ♥") print('Thanks for using this program :)') print("♥ ♥ ♥ ♥ ♥")
py
b412e4d10f47c81097051e2606ea86ee08b389fb
""" tests.unit.utils.markers.test_skip_if_binaries_missing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Test the "skip_if_binaries_missing" marker helper """ import saltfactories.utils.markers as markers def test_single_existing(): assert markers.skip_if_binaries_missing(["python"]) is None def test_multiple_existing(): assert markers.skip_if_binaries_missing(["python", "pip"]) is None def test_single_non_existing_with_message(): reason = markers.skip_if_binaries_missing(["python9"], message="Dam!") assert reason is not None assert reason == "Dam! The 'python9' binary was not found" def test_multiple_one_missing(): reason = markers.skip_if_binaries_missing(["python", "pip9"]) assert reason is not None assert reason == "The 'pip9' binary was not found" def test_multiple_all_missing(): reason = markers.skip_if_binaries_missing(["python9", "pip9"]) assert reason is not None assert reason == "The 'python9' binary was not found" def test_multiple_one_missing_check_all_false(): reason = markers.skip_if_binaries_missing(["python", "pip9"], check_all=False) # We should get no message back because the python binary is found assert reason is None, reason reason = markers.skip_if_binaries_missing(["python9", "pip"], check_all=False) # We should get no message back because the pip binary is found assert reason is None, reason def test_multiple_one_missing_check_all_false_with_message(): reason = markers.skip_if_binaries_missing(["python", "pip9"], message="Dam!", check_all=False) # We should get no message back because the python binary is found assert reason is None def test_multiple_missing_check_all_false(): reason = markers.skip_if_binaries_missing(["python9", "pip9"], check_all=False) assert reason is not None assert reason == "None of the following binaries was found: python9, pip9" def test_multiple_missing_check_all_false_with_message(): reason = markers.skip_if_binaries_missing(["python9", "pip9"], message="Dam!", check_all=False) assert reason is not None assert reason == "Dam! None of the following binaries was found: python9, pip9"
py
b412e6354fe826705863a23cfd3d863583025fcb
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class InboundSecurityRuleOperations(object): """InboundSecurityRuleOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _create_or_update_initial( self, resource_group_name, # type: str network_virtual_appliance_name, # type: str rule_collection_name, # type: str parameters, # type: "_models.InboundSecurityRule" **kwargs # type: Any ): # type: (...) -> "_models.InboundSecurityRule" cls = kwargs.pop('cls', None) # type: ClsType["_models.InboundSecurityRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'ruleCollectionName': self._serialize.url("rule_collection_name", rule_collection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'InboundSecurityRule') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('InboundSecurityRule', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('InboundSecurityRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/inboundSecurityRules/{ruleCollectionName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str network_virtual_appliance_name, # type: str rule_collection_name, # type: str parameters, # type: "_models.InboundSecurityRule" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.InboundSecurityRule"] """Creates or updates the specified Network Virtual Appliance Inbound Security Rules. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_virtual_appliance_name: The name of the Network Virtual Appliance. :type network_virtual_appliance_name: str :param rule_collection_name: The name of security rule collection. :type rule_collection_name: str :param parameters: Parameters supplied to the create or update Network Virtual Appliance Inbound Security Rules operation. :type parameters: ~azure.mgmt.network.v2020_11_01.models.InboundSecurityRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the ARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either InboundSecurityRule or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_11_01.models.InboundSecurityRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.InboundSecurityRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, network_virtual_appliance_name=network_virtual_appliance_name, rule_collection_name=rule_collection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('InboundSecurityRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'ruleCollectionName': self._serialize.url("rule_collection_name", rule_collection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/inboundSecurityRules/{ruleCollectionName}'} # type: ignore
py
b412e69a12ad8cbbf6f022f4c2c7a49a5e364945
import time import os import struct import sys import numpy import scipy file_path = os.path.dirname(os.path.abspath(__file__)) pyspace_path = file_path[:file_path.rfind('pySPACE')-1] if not pyspace_path in sys.path: sys.path.append(pyspace_path) import pySPACE from pySPACE.missions.support.WindowerInterface import AbstractStreamReader header_mrk = "Brain Vision Data Exchange Marker File, Version 1.0\n\ ; Data written by the recorder script.\n\ [Common Infos]\n\ Codepage=UTF-8\n\ DataFile=%s\n\ \n\ [Marker Infos]\n\ ; Each entry: Mk<Marker number>=<Type>,<Description>,<Position in data points>,\n\ ; <Size in data points>, <Channel number (0 = marker is related to all channels)>\n\ ; Fields are delimited by commas, some fields might be omitted (empty).\n\ ; Commas in type or description text are coded as \"\\1\".\n\ Mk1=New Segment,,1,1,0,%s\n" header_hdr = "Brain Vision Data Exchange Header File Version 1.0\n\ ; Data written by the recorder script.\n\ \n\ [Common Infos]\n\ Codepage=UTF-8\n\ DataFile=%s\n\ MarkerFile=%s\n\ DataFormat=BINARY\n\ ; Data orientation: MULTIPLEXED=ch1,pt1, ch2,pt1 ...\n\ DataOrientation=MULTIPLEXED\n\ NumberOfChannels=%d\n\ ; Sampling interval in microseconds\n\ SamplingInterval=%d\n\ \n\ [Binary Infos]\n\ BinaryFormat=INT_16\n\ \n\ [Channel Infos]\n\ ; Each entry: Ch<Channel number>=<Name>,<Reference channel name>,\n\ ; <Resolution in \"Unit\">,<Unit>, Future extensions..\n\ ; Fields are delimited by commas, some fields might be omitted (empty).\n\ ; Commas in channel names are coded as \"\1\".\n" class Recorder(object): def __init__(self, client=None, folder=None, subject=None, task="pySPACE", online=False, **kwargs): super(Recorder, self).__init__(**kwargs) if folder is None: folder = pySPACE.configuration.storage self.folder = folder self.subject = str(subject) self.task = task self.date = time.strftime("%Y%m%d") # append %H%M%S for time self.set_no = self.find_next_set() if not os.path.exists(self.folder): os.makedirs(self.folder) assert os.path.exists(self.folder), "Could not create Directory!" self.eeg_filename = str("%s_r_%s_%s_%sSet%d.eeg" % (self.date, self.subject, self.task, "_online_" if online else "", self.set_no)) self.vhdr_filename = str("%s_r_%s_%s_%sSet%d.vhdr" % (self.date, self.subject, self.task, "_online_" if online else "", self.set_no)) self.vmrk_filename = str("%s_r_%s_%s_%sSet%d.vmrk" % (self.date, self.subject, self.task, "_online_" if online else "", self.set_no)) self.eeg = open(os.path.join(self.folder, self.eeg_filename), "w") self.vhdr = open(os.path.join(self.folder, self.vhdr_filename), "w") self.vmrk = open(os.path.join(self.folder, self.vmrk_filename), "w") self.client = client if client is not None: self.set_eeg_client(client) self.datapoint = 0 self.markerno = 2 def set_eeg_client(self, client): if not isinstance(client, AbstractStreamReader): raise IOError, "No AbstractStreamReader compatible data-source!" self.client = client self.write_header() self.client.regcallback(self.write_data) def has_client(self): return (self.client is not None) def find_next_set(self): set_no = 1 while True: filename = str("%s_r_%s_%s_Set%d.eeg" % (self.date, self.subject, self.task, set_no)) abs_filename = os.path.join(self.folder, filename) if not os.path.isfile(abs_filename): break set_no += 1 return set_no def write_header(self): self.vhdr.write(header_hdr % (self.eeg_filename, self.vmrk_filename, self.client.nChannels, 1000000/self.client.dSamplingInterval)) for i in range(self.client.nChannels): self.vhdr.write(str("Ch%d=%s,,100,nV\n" % (i+1,self.client.channelNames[i]))) self.vhdr.flush() self.vmrk.write(header_mrk % (self.eeg_filename, time.strftime("%Y%m%d%H%M%S"))) self.vmrk.flush() def write_data(self, data, marker): if isinstance(data, numpy.ndarray): data_ = data.astype(numpy.int16) data_ = scipy.transpose(data_) buf = struct.pack("%dh"%len(data.flatten()), *data_.flatten()) else: buf = struct.pack('%dh'%len(data), *data) self.eeg.write(buf) self.eeg.flush() for i,m in enumerate(marker): if m != -1: self.vmrk.write(str("Mk%d=Stimulus,%s,%d,1,0\n" % (self.markerno,self.client.markerNames[m],self.datapoint+i))) self.markerno += 1 self.datapoint += len(marker) self.vmrk.flush()
py
b412e85688be6ee9ad81e4f86b053c97551b0778
#!/usr/bin/env python3 # Copyright (c) 2009-2019 The Bitcoin Core developers # Copyright (c) 2014-2019 The BitsCoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test bitscoind with different proxy configuration. Test plan: - Start bitscoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on bitscoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create bitscoinds that connect to them - Manipulate the bitscoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import BitsCoinTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(BitsCoinTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitscoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitscoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("bitscoinostk4e4re.onion:8333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"bitscoinostk4e4re.onion") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
py
b412e8595c874f08263b85aa2a071208a1131378
import logging import os from telegram.ext import Updater, CommandHandler, MessageHandler, Filters def start(bot, update): update.effective_message.reply_text("Hi!") def echo(bot, update): update.effective_message.reply_text(update.effective_message.text) def error(bot, update, error): logger.warning('Update "%s" caused error "%s"', update, error) if __name__ == "__main__": # Set these variable to the appropriate values TOKEN = '545193892:AAF-i-kxjJBeEiVXL1PokHCCEGNnQ1sOXFo' NAME = 'shayantt' # Same FQDN used when generating SSL Cert PORT = 8443 print("SSS"); # Enable logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) # Set up the Updater updater = Updater(TOKEN) dp = updater.dispatcher # Add handlers dp.add_handler(CommandHandler('start', start)) dp.add_handler(MessageHandler(Filters.text, echo)) dp.add_error_handler(error) updater.start_polling() # Start the webhook #updater.start_webhook(listen="0.0.0.0", # port=int(PORT), # url_path=TOKEN) #updater.bot.setWebhook("https://{}.herokuapp.com/{}".format(NAME, TOKEN)) #print("SSS"); #updater.idle()
py
b412e8f469bce1c487e2ef993430f8ee68b74ed3
import unittest from consecutive_prime_sums import * class ConsecutivePrimeSumsTest(unittest.TestCase): def test_consecutive_prime_sums(self): self.assertEqual(consecutive_prime_sum_less_than(100), 41) self.assertEqual(consecutive_prime_sum_less_than(1000), 953) self.assertEqual(consecutive_prime_sum_less_than(10000), 9521) self.assertEqual(consecutive_prime_sum_less_than(100000), 92951) @unittest.skip("A little bit slow to run all the time") def test_project_euler(self): self.assertEqual(consecutive_prime_sum_less_than(1000000), 997651) if __name__ == '__main__': unittest.main()
py
b412e92c5ce11a5cbc4c299854235042eb9699c1
# Created by Martin Strohalm, Thermo Fisher Scientific # import modules import xml.etree.cElementTree as etree from .converter import register, ValueConverter @register("ED0FB1D9-4E07-47E1-B96C-4013B9AFE534") class MassSpectrumConverter(ValueConverter): """ The pyeds.MassSpectrumConverter is used to convert mass spectrum data from original binary format into pyeds.MassSpectrum. """ def Convert(self, value): """ Converts binary spectrum data. Args: value: pyeds.Binary Binary data as stored in result file. Returns: pyeds.MassSpectrum or None Parsed spectrum. """ # check value if not value: return None # parse data return MassSpectrumParser().parse(value.Unzip()) class MassSpectrumParser(object): """ The pyeds.MassSpectrumParser is used to parse mass spectrum data from original binary format into pyeds.MassSpectrum. """ def parse(self, xml): """ Parses given pattern XML. Args: xml: str Spectrum XML. Returns: pyeds.MassSpectrum Mass spectrum. """ # parse XML tree = etree.fromstring(xml) # retrieve spectrum header header_elm = tree.find('Header') header = self._retrieve_header(header_elm) # retrieve scan event event_elm = tree.find('ScanEvent') event = self._retrieve_event(event_elm) # retrieve precursor info precursor_elm = tree.find('PrecursorInfo') precursor = self._retrieve_precursor(precursor_elm) # retrieve centroids data peaks_elm = tree.find('PeakCentroids') centroids = self._retrieve_centroids(peaks_elm) # retrieve profile data points_elm = tree.find('ProfilePoints') profile = self._retrieve_profile(points_elm) # free memory tree.clear() # create spectrum spectrum = MassSpectrum() spectrum.Header = header spectrum.Event = event spectrum.Precursor = precursor spectrum.Centroids = centroids spectrum.Profile = profile return spectrum def _retrieve_header(self, header_elm): """Retrieves spectrum header.""" # init header header = ScanHeader() # get header data if header_elm is not None: elm = header_elm.find('SpectrumID') if elm is not None and elm.text: header.SpectrumID = int(elm.text) elm = header_elm.find('InstrumentName') if elm is not None: header.InstrumentName = elm.text elm = header_elm.find('DataType') if elm is not None: header.DataType = elm.text elm = header_elm.find('LowPosition') if elm is not None and elm.text: header.LowPosition = float(elm.text) elm = header_elm.find('HighPosition') if elm is not None and elm.text: header.HighPosition = float(elm.text) elm = header_elm.find('BasePeakPosition') if elm is not None and elm.text: header.BasePeakPosition = float(elm.text) elm = header_elm.find('BasePeakIntensity') if elm is not None and elm.text: header.BasePeakIntensity = float(elm.text) elm = header_elm.find('TotalIntensity') if elm is not None and elm.text: header.TotalIntensity = float(elm.text) # retrieve identifiers identifiers_elm = header_elm.find('SpectrumIdentifiers') if identifiers_elm: for identifier_elm in identifiers_elm.iter('SpectrumIdentifier'): identifier = ScanIdentifier() attr = identifier_elm.get('FileID', None) if attr is not None and attr != "-1" and attr != "": identifier.FileID = int(attr) attr = identifier_elm.get('ScanNumber', None) if attr is not None and attr != "": identifier.ScanNumber = int(attr) attr = identifier_elm.get('MasterScanNumber', None) if attr is not None and attr != "-1" and attr != "": identifier.MasterScanNumber = int(attr) attr = identifier_elm.get('RetentionTime', None) if attr is not None and attr != "": identifier.RetentionTime = float(attr) # add to header header.SpectrumIdentifiers.append(identifier) return header def _retrieve_event(self, event_elm): """Retrieves event data.""" # init event event = ScanEvent() # get scan event data if event_elm is not None: elm = event_elm.find('ActivationTypes') if elm is not None: event.ActivationTypes = elm.text energies_elm = event_elm.find('ActivationEnergies') if energies_elm is not None: event.ActivationEnergies = [] for elm in energies_elm.iter('double'): event.ActivationEnergies.append(float(elm.text)) elm = event_elm.find('CompensationVoltage') if elm is not None and elm.text: event.CompensationVoltage = float(elm.text) elm = event_elm.find('IonizationSource') if elm is not None and elm.text: event.IonizationSource = elm.text elm = event_elm.find('IsMultiplexed') if elm is not None: event.IsMultiplexed = elm.text == 'true' elm = event_elm.find('IsolationMass') if elm is not None and elm.text: event.IsolationMass = float(elm.text) elm = event_elm.find('IsolationWidth') if elm is not None and elm.text: event.IsolationWidth = float(elm.text) elm = event_elm.find('IsolationOffset') if elm is not None and elm.text: event.IsolationOffset = float(elm.text) elm = event_elm.find('MassAnalyzer') if elm is not None: event.MassAnalyzer = elm.text elm = event_elm.find('MSOrder') if elm is not None: event.MSOrder = elm.text elm = event_elm.find('Polarity') if elm is not None: event.Polarity = elm.text elm = event_elm.find('ResolutionAtMass200') if elm is not None and elm.text: event.ResolutionAtMass200 = int(elm.text) elm = event_elm.find('ScanRate') if elm is not None: event.ScanRate = elm.text elm = event_elm.find('ScanType') if elm is not None: event.ScanType = elm.text return event def _retrieve_precursor(self, precursor_elm): """Retrieves precursor data.""" # init precursor precursor = PrecursorInfo() # get precursor data if precursor_elm is not None: attr = precursor_elm.get('Charge', None) if attr is not None and attr != "": precursor.Charge = int(attr) attr = precursor_elm.get('Intensity', None) if attr is not None and attr != "": precursor.Intensity = float(attr) attr = precursor_elm.get('InstrumentDeterminedCharge', None) if attr is not None and attr != "": precursor.InstrumentDeterminedCharge = int(attr) attr = precursor_elm.get('InstrumentDeterminedMonoisotopicMass', None) if attr is not None and attr != "": precursor.InstrumentDeterminedMonoisotopicMass = float(attr) attr = precursor_elm.get('IonInjectTime', None) if attr is not None and attr != "": precursor.IonInjectTime = float(attr) attr = precursor_elm.get('IsolationMass', None) if attr is not None and attr != "": precursor.IsolationMass = float(attr) attr = precursor_elm.get('IsolationOffset', None) if attr is not None and attr != "": precursor.IsolationOffset = float(attr) attr = precursor_elm.get('IsolationWidth', None) if attr is not None and attr != "": precursor.IsolationWidth = float(attr) attr = precursor_elm.get('PercentIsolationInterference', None) if attr is not None and attr != "": precursor.PrecursorInterference = float(attr) attr = precursor_elm.get('PrecursorMassOrigin', None) if attr is not None and attr != "": precursor.PrecursorMassOrigin = str(attr) attr = precursor_elm.get('Resolution', None) if attr is not None and attr != "": precursor.Resolution = int(attr) attr = precursor_elm.get('SignalToNoise', None) if attr is not None and attr != "": precursor.SignalToNoise = float(attr) attr = precursor_elm.get('SinglyChargedMass', None) if attr is not None and attr != "": precursor.SinglyChargedMass = float(attr) attr = precursor_elm.get('SpectrumNumber', None) if attr is not None and attr != "": precursor.SpectrumNumber = int(attr) # get spectrum header header_elm = precursor_elm.find('SpectrumHeader') precursor.Header = self._retrieve_header(header_elm) # get scan event event_elm = precursor_elm.find('ScanEvent') precursor.Event = self._retrieve_event(event_elm) # get mono centroids peaks_elm = precursor_elm.find('MonoisotopicPeakCentroids') precursor.MonoisotopicPeakCentroids = self._retrieve_centroids(peaks_elm) # get measured centroids peaks_elm = precursor_elm.find('MeasuredMonoisotopicPeakCentroids') precursor.MeasuredMonoisotopicPeakCentroids = self._retrieve_centroids(peaks_elm) # get cluster centroids peaks_elm = precursor_elm.find('IsotopeClusterPeakCentroids') precursor.IsotopeClusterPeakCentroids = self._retrieve_centroids(peaks_elm) return precursor def _retrieve_centroids(self, peaks_elm): """Retrieves centroids data.""" # init centroids centroids = [] # retrieve centroids if peaks_elm is not None: for peak_elm in peaks_elm.iter('Peak'): centroid = Centroid() centroid.MZ = float(peak_elm.get('X', 0)) centroid.Intensity = float(peak_elm.get('Y', 0)) centroid.Charge = int(peak_elm.get('Z', None)) centroid.SN = float(peak_elm.get('SN', None)) centroid.Resolution = float(peak_elm.get('R', None)) centroids.append(centroid) return tuple(centroids) def _retrieve_profile(self, points_elm): """Retrieves profile data.""" # init profile profile = [] # retrieve profile if points_elm is not None: for point_elm in points_elm.iter('Pt'): mz = float(point_elm.get('X', 0)) ai = float(point_elm.get('Y', 0)) profile.append((mz, ai)) return tuple(profile) class MassSpectrum(object): """ The pyeds.MassSpectrum is used to hold information about mass spectrum. Attributes: Header: pyeds.ScanHeader Contains the spectrum header information. Event: pyeds.ScanEvent Contains the scan event information. Precursor: pyeds.PrecursorInfo Contains the precursor information. Centroids: (pyeds.Centroid,) Collection of spectrum centroids. Profile: ((float, float),) Collection of profile points as ((mz, intensity),) """ def __init__(self): """Initializes a new instance of MassSpectrum.""" self.Header = None self.Event = None self.Precursor = None self.Centroids = None self.Profile = None def __str__(self): """Gets standard string representation.""" return "%s %s" % (self.Header, self.Event) def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__()) def __getattr__(self, name): """Tries to get unknown attribute from header or event.""" if self.Header is not None and hasattr(self.Header, name): return getattr(self.Header, name) if self.Event is not None and hasattr(self.Event, name): return getattr(self.Event, name) raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) class ScanHeader(object): """ The pyeds.ScanHeader is used to hold information from mass spectrum header. """ def __init__(self): """Initializes a new instance of ScanHeader.""" self.BasePeakIntensity = None self.BasePeakPosition = None self.DataType = None self.HighPosition = None self.InstrumentName = None self.LowPosition = None self.SpectrumID = None self.SpectrumIdentifiers = [] self.TotalIntensity = None def __str__(self): """Gets standard string representation.""" data = "#%s" % self.ScanNumber if self.MasterScanNumber is not None: data += "-#%s" % self.MasterScanNumber if self.RetentionTime is not None: rts = self.RetentionTime if isinstance(rts, float): rts = [rts] rts = ", ".join("%.3f" % rt for rt in rts if rt is not None) data += " RT:%s min" % rts if self.LowPosition is not None and self.HighPosition is not None: data += " [%.4f-%.4f]" % (self.LowPosition, self.HighPosition) return data def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__()) @property def FileID(self): """Gets FileID (if single value, otherwise None).""" values = set(i.FileID for i in self.SpectrumIdentifiers) return values.pop() if len(values) == 1 else None @property def ScanNumber(self): """Gets scan number (if single value, otherwise None).""" values = self.ScanNumbers return values[0] if len(values) == 1 else None @property def ScanNumbers(self): """Gets scan numbers.""" return tuple(s.ScanNumber for s in self.SpectrumIdentifiers) @property def MasterScanNumber(self): """Gets master scan number (if single value, otherwise None).""" values = self.MasterScanNumbers return values[0] if len(values) == 1 else None @property def MasterScanNumbers(self): """Gets master scan numbers.""" return tuple(s.MasterScanNumber for s in self.SpectrumIdentifiers) @property def RetentionTime(self): """Gets retention time (center if multiple values).""" values = self.RetentionTimes return 0.5*(min(values) + max(values)) if len(values) else None @property def RetentionTimes(self): """Gets retention times.""" return tuple(s.RetentionTime for s in self.SpectrumIdentifiers) class ScanIdentifier(object): """ The pyeds.ScanIdentifier is used to hold information from mass spectrum identifier. """ def __init__(self): """Initializes a new instance of ScanIdentifier.""" self.FileID = None self.MasterScanNumber = None self.RetentionTime = None self.ScanNumber = None def __str__(self): """Gets standard string representation.""" data = "#%s" % self.ScanNumber if self.MasterScanNumber is not None: data += "-#%s" % self.MasterScanNumber if self.RetentionTime is not None: data += " RT:%.3f min" % self.RetentionTime if self.FileID is not None: data += " FileID:%s" % self.FileID return data def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__()) class ScanEvent(object): """ The pyeds.ScanEvent is used to hold information from scan event. """ def __init__(self): """Initializes a new instance of ScanEvent.""" self.ActivationEnergies = None self.ActivationTypes = None self.CompensationVoltage = None self.IonizationSource = None self.IsMultiplexed = None self.IsolationMass = None self.IsolationWidth = None self.IsolationOffset = None self.MassAnalyzer = None self.MSOrder = None self.Polarity = None self.ResolutionAtMass200 = None self.ScanRate = None self.ScanType = None def __str__(self): """Gets standard string representation.""" data = "" if self.MSOrder is not None: data += "%s" % self.MSOrder if self.Polarity == 'Positive': data += " (+)" elif self.Polarity == 'Negative': data += " (-)" if self.MassAnalyzer is not None: data += " %s" % self.MassAnalyzer if self.ActivationTypes is not None: data += " %s" % self.ActivationTypes if self.ActivationEnergies is not None: items = ("%.2f" % x for x in self.ActivationEnergies) data += ":"+",".join(items) if self.IsolationMass is not None: data += " P:%.4f" % self.IsolationMass if self.IsolationWidth is not None: data += " [%.4f-%.4f]" % (self.IsolationLowMass, self.IsolationHighMass) if self.CompensationVoltage is not None: data += " CV:%s" % self.CompensationVoltage return data def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__()) @property def IsolationLowMass(self): """Gets low isolation mass.""" if self.IsolationMass is None or self.IsolationWidth is None: return None return self.IsolationMass - .5*self.IsolationWidth + (self.IsolationOffset or 0) @property def IsolationHighMass(self): """Gets high isolation mass.""" if self.IsolationMass is None or self.IsolationWidth is None: return None return self.IsolationMass + .5*self.IsolationWidth + (self.IsolationOffset or 0) class PrecursorInfo(object): """ The pyeds.PrecursorInfo is used to hold information from precursor info. """ def __init__(self): """Initializes a new instance of PrecursorInfo.""" self.Header = None self.Event = None self.Charge = None self.Intensity = None self.InstrumentDeterminedCharge = None self.InstrumentDeterminedMonoisotopicMass = None self.IonInjectTime = None self.IsolationMass = None self.IsolationOffset = None self.IsolationWidth = None self.PercentIsolationInterference = None self.PrecursorMassOrigin = None self.Resolution = None self.SignalToNoise = None self.SinglyChargedMass = None self.SpectrumNumber = None self.IsotopeClusterPeakCentroids = [] self.MonoisotopicPeakCentroids = [] self.MeasuredMonoisotopicPeakCentroids = [] def __str__(self): """Gets standard string representation.""" data = "P" if self.IsolationMass is not None: data += " %.4f" % self.IsolationMass if self.Charge is not None: data += " (%+d)" % self.Charge if self.IsolationWidth is not None and self.IsolationMass is not None: data += " [%.4f-%.4f]" % (self.IsolationLowMass, self.IsolationHighMass) return data def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__()) def __getattr__(self, name): """Tries to get unknown attribute from header or event.""" if self.Header is not None and hasattr(self.Header, name): return getattr(self.Header, name) if self.Event is not None and hasattr(self.Event, name): return getattr(self.Event, name) raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) @property def IsolationLowMass(self): """Gets low isolation mass.""" if self.IsolationMass is None or self.IsolationWidth is None: return None return self.IsolationMass - .5*self.IsolationWidth + (self.IsolationOffset or 0) @property def IsolationHighMass(self): """Gets high isolation mass.""" if self.IsolationMass is None or self.IsolationWidth is None: return None return self.IsolationMass + .5*self.IsolationWidth + (self.IsolationOffset or 0) class Centroid(object): """ The pyeds.Centroid is used to hold information about a single mass centroid. Attributes: MZ: float Mass-to-charge ratio. Intensity: float Absolute intensity. SN: float or None Signal-to-noise ratio. Charge: int or None Instrument assigned charge. Resolution: int or None Profile peak resolution. """ def __init__(self): """Initializes a new instance of Centroid.""" self.MZ = None self.Intensity = None self.SN = None self.Charge = None self.Resolution = None def __str__(self): """Gets standard string representation.""" data = "MZ:%f Int:%f" % (self.MZ, self.Intensity) if self.SN is not None: data += " SN:%d" % self.SN if self.Charge is not None: data += " Z:%d" % self.Charge if self.Resolution is not None: data += " Res:%d" % self.Resolution return data def __repr__(self): """Gets debug string representation.""" return "%s(%s)" % (self.__class__.__name__, self.__str__())
py
b412e9c5c52db6524eaa515536ff2e87cca9fe5c
import sys import numpy as np from PyQt5 import QtWidgets from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import QDialog, QPushButton, QWidget, QHBoxLayout, QApplication, QLabel, QVBoxLayout, QGridLayout from PyQt5.uic import loadUi import cv2 imageT = None import windowSize class mywin(QtWidgets.QDialog): def __init__(self): super(mywin, self).__init__() # loadUi('img.ui',self) self.desktop = QApplication.desktop() self.screenRect = self.desktop.screenGeometry() self.height = self.screenRect.height() self.width = self.screenRect.width() self.setWindowTitle("PyScrcpy") print("pc屏幕分辨率为", (self.height, self.width)) minAxis = min(self.width, self.height) * 0.9 // 2 * 2 minAxis = int(minAxis) self.resize(minAxis * 9 // 16, minAxis) layout = QHBoxLayout() frameLayout = QHBoxLayout() buttonLayout = QVBoxLayout() self.all_btn = all_btn = QPushButton() all_btn.setText("一键启动") self.start_btn = start_btn = QPushButton() start_btn.setText("启动server") self.androit_btn = androit_btn = QPushButton() androit_btn.setText("启动android") self.qrShow_btn=qrShow_btn=QPushButton() qrShow_btn.setText("显示二维码") # self.load_btn.clicked.connect(self.loadimage) # self. buttonLayout.addWidget(all_btn) buttonLayout.addWidget(start_btn) buttonLayout.addWidget(androit_btn) buttonLayout.addWidget(qrShow_btn) buttonLayout.addStretch() self.img_label = QLabel() # self.img_label.setMinimumWidth(720) frameLayout.addWidget(self.img_label) layout.addLayout(buttonLayout) layout.addLayout(frameLayout) self.setLayout(layout) # self.setLayout(wLayout) def loadimage(self): global imageT # image = cv2.cvtColor(imageT, cv2.COLOR_BGR2RGB) self.qimg = QImage(imageT.data, imageT.shape[1], imageT.shape[0], QImage.Format_RGB888) # QPixmap.loadFromData() # self.qimg = self.qimg.rgbSwapped() self.img_label.setPixmap(QPixmap.fromImage(self.qimg)) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) window = mywin() window.show() window.setWindowTitle("window") # window.setGeometry(100,100,400,300) sys.exit(app.exec_())
py
b412ea9ccae5cc479a4344f697266ff86de47c72
from typing import List import numpy as np from reader import TrainData class Perceptron: def __init__(self, size: int, h: float = 0.75) -> None: self.h = h self.weights = self._get_weights(size) def train(self, train_data: List[TrainData], target_number: int, nu: float = 000.1, epochs: int = 10) -> None: for epoch in range(epochs): for item in train_data: target = 1 if target_number == item.number else 0 sum_local = self.__get_sum_for_weight(item.data) res = self.__get_activation_function(sum_local) error = self.__get_error(target, res) self.__normalize_weights(item.data, nu, error) def predict(self, test_data: TrainData): sum_local = self.__get_sum_for_weight(test_data.data) return self.__get_activation_function(sum_local) @staticmethod def _get_weights(size: int) -> np.array: return np.random.uniform(-1, 1, size) def __get_activation_function(self, sum_local: float) -> float: return 1 if sum_local > self.h else 0 def __get_sum_for_weight(self, data: List[float]) -> float: net_y = 0 length = len(data) if length != len(self.weights): raise Exception for i in range(length): net_y += data[i] * self.weights[i] return net_y @staticmethod def __get_error(target: int, res: float) -> float: return target - res def __normalize_weights(self, data: List[float], nu: float, error: float) -> None: for i in range(len(self.weights)): self.weights[i] += error * nu * data[i]
py
b412eb87a7da809080782181368b14490903f7d3
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=5, create_symlink=False) evaluation = dict(interval=10, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=133, dataset_joints=133, dataset_channel=[ list(range(133)), ], inference_channel=list(range(133))) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w48-8ef0771d.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(48, 96)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(48, 96, 192)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(48, 96, 192, 384))), ), keypoint_head=dict( type='TopDownSimpleHead', in_channels=48, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='unbiased', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='../../../../dataset/coco/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2, unbiased_encoding=True), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = '../../../../dataset/coco' data = dict( samples_per_gpu=32, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=256), test_dataloader=dict(samples_per_gpu=256), train=dict( type='TopDownCocoWholeBodyDataset', ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json', img_prefix=f'{data_root}/train2017/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='TopDownCocoWholeBodyDataset', ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='TopDownCocoWholeBodyDataset', ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), )
py
b412ebb3c2153495913f8615e592cf060297dbc1
# pylint: disable=no-member,unused-argument,protected-access,redefined-outer-name import pytest from botocore.exceptions import ClientError from django_dynamic_fixture import G from tests.fixtures import api_client, boto_client, zone # noqa: F401 from tests.utils import strip_ns_and_soa, get_test_record from zinc import models as m @pytest.mark.django_db def test_create_zone(api_client, boto_client): root = 'example.com.presslabs.com.' resp = api_client.post( '/zones', data={ 'root': root, } ) assert resp.status_code == 201, resp.data assert resp.data['root'] == root _id = resp.data['id'] assert list(m.Zone.objects.all().values_list('id', 'root')) == [(_id, root)] @pytest.mark.django_db def test_create_zone_passing_wrong_params(api_client, boto_client): resp = api_client.post( '/zones', data={ 'id': 'asd', 'root': 'asdasd' } ) assert resp.status_code == 400, resp.data assert resp.data['root'] == ['Invalid root domain'] @pytest.mark.django_db def test_list_zones(api_client, boto_client): zones = [G(m.Zone, root='1.test-zinc.com.', route53_id=None), G(m.Zone, root='2.test-zinc.com.', route53_id=None)] response = api_client.get('/zones') assert [result['url'] for result in response.data] == [ "http://testserver/zones/{}".format(zone.id) for zone in zones] assert ([(zone.id, zone.root, zone.dirty, zone.r53_zone.id) for zone in zones] == [(zone['id'], zone['root'], zone['dirty'], zone['route53_id']) for zone in response.data]) @pytest.mark.django_db def test_detail_zone(api_client, zone): response = api_client.get( '/zones/%s' % zone.id, ) assert strip_ns_and_soa(response.data['records']) == [ get_test_record(zone) ] assert response.data['route53_id'] == zone.route53_id assert response.data['dirty'] is False @pytest.mark.django_db def test_delete_a_zone(api_client, zone, boto_client): response = api_client.delete( '/zones/%s' % zone.id ) with pytest.raises(ClientError) as excp_info: boto_client.get_hosted_zone(Id=zone.route53_id) assert excp_info.value.response['Error']['Code'] == 'NoSuchHostedZone' assert m.Zone.objects.filter(pk=zone.pk).count() == 0 assert not response.data @pytest.mark.django_db def test_policy_record_create_more_values(api_client, zone): response = api_client.post( '/zones/%s/records' % zone.id, data={ 'name': '@', 'type': 'CNAME', 'ttl': 300, 'values': ['test1.com', 'test2.com'] } ) assert response.status_code == 400 assert response.data == { 'values': [ 'Only one value can be specified for CNAME records.' ] } @pytest.mark.django_db def test_create_zone_no_fqdn(api_client, boto_client): root = 'presslabs.com' resp = api_client.post( '/zones', data={ 'root': root, } ) root += '.' assert resp.status_code == 201, resp.data assert resp.data['root'] == root _id = resp.data['id'] assert list(m.Zone.objects.all().values_list('id', 'root')) == [(_id, root)]
py
b412ed4331fa8ea50febd02ef2a53abd4e3f766f
# Copyright 2014 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.import mock import mock import os from nova import test from nova.virt.hyperv import ioutils class IOThreadTestCase(test.NoDBTestCase): _FAKE_SRC = r'fake_source_file' _FAKE_DEST = r'fake_dest_file' _FAKE_MAX_BYTES = 1 def setUp(self): self._iothread = ioutils.IOThread( self._FAKE_SRC, self._FAKE_DEST, self._FAKE_MAX_BYTES) super(IOThreadTestCase, self).setUp() @mock.patch('__builtin__.open') @mock.patch('os.rename') @mock.patch('os.path.exists') @mock.patch('os.remove') def test_copy(self, fake_remove, fake_exists, fake_rename, fake_open): fake_data = 'a' fake_src = mock.Mock() fake_dest = mock.Mock() fake_src.read.return_value = fake_data fake_dest.tell.return_value = 0 fake_exists.return_value = True mock_context_manager = mock.MagicMock() fake_open.return_value = mock_context_manager mock_context_manager.__enter__.side_effect = [fake_src, fake_dest] self._iothread._stopped.isSet = mock.Mock(side_effect=[False, True]) self._iothread._copy() fake_dest.seek.assert_called_once_with(0, os.SEEK_END) fake_dest.write.assert_called_once_with(fake_data) fake_dest.close.assert_called_once_with() fake_rename.assert_called_once_with( self._iothread._dest, self._iothread._dest_archive) fake_remove.assert_called_once_with( self._iothread._dest_archive) self.assertEqual(3, fake_open.call_count)
py
b412edbc1d4c5301a9811934c3e91bfa04c81ea3
import sqlflow_models def test_answer(): assert sqlflow_models.__version__ == sqlflow_models._version.__version__
py
b412edc3a91ecd956c438e0d2d9296d68f9b46bc
import html from telethon.tl.functions.photos import GetUserPhotosRequest from telethon.tl.functions.users import GetFullUserRequest from telethon.tl.types import MessageEntityMentionName from telethon.utils import get_input_location from . import * @Andencento.on(andencento_cmd(pattern="getpic ?(.*)", outgoing=True)) @Andencento.on(sudo_cmd(pattern="getpic ?(.*)", allow_sudo=True)) async def _(event): if event.fwd_from: return await eor(event, "Getting profile photo..") replied_user, error_i_a = await get_full_user(event) if replied_user is None: await edit_or_reply(event, str(error_i_a)) return False replied_user_profile_photos = await bot( GetUserPhotosRequest( user_id=replied_user.user.id, offset=42, max_id=0, limit=80 ) ) replied_user_profile_photos_count = "NaN" try: replied_user_profile_photos_count = replied_user_profile_photos.count except AttributeError: pass user_id = replied_user.user.id # some people have weird HTML in their names first_name = html.escape(replied_user.user.first_name) # https://stackoverflow.com/a/5072031/4723940 # some Deleted Accounts do not have first_name if first_name is not None: # some weird people (like me) have more than 4096 characters in their # names first_name = first_name.replace("\u2060", "") # inspired by https://telegram.dog/afsaI181 user_bio = replied_user.about if user_bio is not None: user_bio = html.escape(replied_user.about) common_chats = replied_user.common_chats_count try: dc_id, location = get_input_location(replied_user.profile_photo) except Exception as e: dc_id = "Need a Profile Picture to check **this**" str(e) caption = """Profile Pics (◠‿◕) Person: <a href='tg://user?id={}'>{}</a> """.format( user_id, user_id, first_name, user_bio, dc_id, replied_user_profile_photos_count, replied_user.user.restricted, replied_user.user.verified, replied_user.user.bot, common_chats, ) message_id_to_reply = event.message.reply_to_msg_id if not message_id_to_reply: message_id_to_reply = event.message.id await bot.send_message( event.chat_id, caption, reply_to=message_id_to_reply, parse_mode="HTML", file=replied_user.profile_photo, force_document=False, silent=True, ) await event.delete() async def get_full_user(event): if event.reply_to_msg_id: previous_message = await event.get_reply_message() if previous_message.forward: replied_user = await event.client( GetFullUserRequest( previous_message.forward.sender_id or previous_message.forward.channel_id ) ) return replied_user, None else: replied_user = await event.client( GetFullUserRequest(previous_message.sender_id) ) return replied_user, None else: input_str = None try: input_str = event.pattern_match.group(1) except IndexError as e: return None, e if event.message.entities is not None: mention_entity = event.message.entities probable_user_mention_entity = mention_entity[0] if isinstance(probable_user_mention_entity, MessageEntityMentionName): user_id = probable_user_mention_entity.user_id replied_user = await event.client(GetFullUserRequest(user_id)) return replied_user, None else: try: user_object = await event.client.get_entity(input_str) user_id = user_object.id replied_user = await event.client(GetFullUserRequest(user_id)) return replied_user, None except Exception as e: return None, e elif event.is_private: try: user_id = event.chat_id replied_user = await event.client(GetFullUserRequest(user_id)) return replied_user, None except Exception as e: return None, e else: try: user_object = await event.client.get_entity(int(input_str)) user_id = user_object.id replied_user = await event.client(GetFullUserRequest(user_id)) return replied_user, None except Exception as e: return None, e name = "Profile Photos" @Andencento.on(andencento_cmd(pattern="poto ?(.*)", outgoing=True)) @Andencento.on(sudo_cmd(pattern="poto ?(.*)", allow_sudo=True)) async def potocmd(event): uid = "".join(event.raw_text.split(maxsplit=1)[1:]) user = await event.get_reply_message() chat = event.input_chat if user: photos = await event.client.get_profile_photos(user.sender) u = True else: photos = await event.client.get_profile_photos(chat) u = False if uid.strip() == "": uid = 1 if int(uid) <= (len(photos)): send_photos = await event.client.download_media(photos[uid - 1]) await event.client.send_file(event.chat_id, send_photos) else: await eod(event, "No photo found of this NIBBA. Now u Die!") await asyncio.sleep(2) return elif uid.strip() == "all": if len(photos) > 0: await event.client.send_file(event.chat_id, photos) else: try: if u is True: photo = await event.client.download_profile_photo(user.sender) else: photo = await event.client.download_profile_photo(event.input_chat) await event.client.send_file(event.chat_id, photo) except a: await eod(event, "**This user has no photos!**") return else: try: uid = int(uid) if uid <= 0: await eod(event, "```number Invalid!``` **Are you komedy Me ?**") return except BaseException: await eod(event, "Are you komedy me ?") return if int(uid) <= (len(photos)): send_photos = await event.client.download_media(photos[uid - 1]) await event.client.send_file(event.chat_id, send_photos) else: await eod(event, "No photo found of this NIBBA. Now u Die!") await asyncio.sleep(2) return CmdHelp("getpfp").add_command( "poto", "<all> / <desired pp number>", "Reply to user to get his/her profile pic. Use .poto <number> to get desired profile pic else use .poto all to get all profile pic(s). If you dont reply to a user then it gets group pics.", ).add_command( "getpic", "<reply> <username>", "Gets the user's 1st profile pic. But this time with a caption. Try it yourself...", ).add_info( "Steal Profile Pictures." ).add_warning( "✅ Harmless Module." ).add()
py
b412ee3e9b6946388deb2003fbfca8e373e46c56
from .images import get_punks from .metadata import PunkMetadata, PunkType, Acccessory, get_all_metadata
py
b412ef124064b41749322dd30f7ea55df234ac10
# coding=utf-8 # Copyright 2017 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import importlib import locale import os import warnings class PantsLoader(object): """Loads and executes entrypoints.""" ENTRYPOINT_ENV_VAR = 'PANTS_ENTRYPOINT' DEFAULT_ENTRYPOINT = 'pants.bin.pants_exe:main' class InvalidLocaleError(Exception): """Raised when a valid locale can't be found.""" @staticmethod def setup_warnings(): # We want to present warnings to the user, set this up before importing any of our own code, # to ensure all deprecation warnings are seen, including module deprecations. # The "default" action displays a warning for a particular file and line number exactly once. # See https://docs.python.org/2/library/warnings.html#the-warnings-filter for the complete list. warnings.simplefilter('default', DeprecationWarning) @classmethod def ensure_locale(cls): # Sanity check for locale, See https://github.com/pantsbuild/pants/issues/2465. # This check is done early to give good feedback to user on how to fix the problem. Other # libraries called by Pants may fail with more obscure errors. try: locale.getlocale()[1] or locale.getdefaultlocale()[1] except Exception as e: raise cls.InvalidLocaleError( '{}: {}\n' ' Could not get a valid locale. Check LC_* and LANG environment settings.\n' ' Example for US English:\n' ' LC_ALL=en_US.UTF-8\n' ' LANG=en_US.UTF-8'.format(type(e).__name__, e) ) @staticmethod def determine_entrypoint(env_var, default): return os.environ.pop(env_var, default) @staticmethod def load_and_execute(entrypoint): assert ':' in entrypoint, 'ERROR: entrypoint must be of the form `module.path:callable`' module_path, func_name = entrypoint.split(':', 1) module = importlib.import_module(module_path) entrypoint_main = getattr(module, func_name) assert callable(entrypoint_main), 'ERROR: entrypoint `{}` is not callable'.format(entrypoint) entrypoint_main() @classmethod def run(cls): cls.setup_warnings() cls.ensure_locale() entrypoint = cls.determine_entrypoint(cls.ENTRYPOINT_ENV_VAR, cls.DEFAULT_ENTRYPOINT) cls.load_and_execute(entrypoint) def main(): PantsLoader.run() if __name__ == '__main__': main()
py
b412ef22bfdb85e41a1064c2506c14df0698d675
import sys def part1(lines): valid_phrases = 0; for row in lines: words = row.split(' ') words.sort() valid = True for i in range(len(words)-1): if words[i] == words[i+1]: valid = False break if valid: valid_phrases += 1 return valid_phrases def part2(lines): valid_phrases = 0; for row in lines: words = row.split(' ') words.sort() valid = True for i in range(len(words)): for j in range(i+1, len(words)): word1list = list(words[i]) word2list = list(words[j]) word1list.sort() word2list.sort() if word1list == word2list: valid = False break if not valid: break if valid: valid_phrases += 1 return valid_phrases if __name__ == "__main__": lines = [line.strip() for line in sys.stdin.readlines()] print part1(lines) print part2(lines)
py
b412ef3ee2860bf110718f28724063bef43aee7d
# -*- coding: utf-8 -*- """Public section, including homepage and signup.""" from flask import Blueprint, flash, redirect, render_template, request, url_for from flask_login import login_required, login_user, logout_user from salary.extensions import login_manager from salary.public.forms import LoginForm from salary.user.forms import RegisterForm from salary.user.models import User from salary.utils import flash_errors blueprint = Blueprint('public', __name__, static_folder='../static') @login_manager.user_loader def load_user(user_id): """Load user by ID.""" return User.get_by_id(int(user_id)) @blueprint.route('/', methods=['GET', 'POST']) def home(): """Home page.""" form = LoginForm(request.form) # Handle logging in if request.method == 'POST': if form.validate_on_submit(): login_user(form.user) flash('You are logged in.', 'success') redirect_url = request.args.get('next') or url_for('user.members') return redirect(redirect_url) else: flash_errors(form) return render_template('public/home.html', form=form) @blueprint.route('/logout/') @login_required def logout(): """Logout.""" logout_user() flash('You are logged out.', 'info') return redirect(url_for('public.home')) @blueprint.route('/register/', methods=['GET', 'POST']) def register(): """Register new user.""" form = RegisterForm(request.form) if form.validate_on_submit(): User.create(employee=form.employee.data, username=form.username.data, password=form.password.data, dept_id=form.dept_id.data, active=True) flash('Thank you for registering. You can now log in.', 'success') return redirect(url_for('public.home')) else: flash_errors(form) return render_template('public/register.html', form=form) @blueprint.route('/about/') def about(): """About page.""" form = LoginForm(request.form) return render_template('public/about.html', form=form)
py
b412ef4c490137fddb97253f91491b8c902d58fc
import sympy import sys import unittest import sophus import functools class So3: """ 3 dimensional group of orthogonal matrices with determinant 1 """ def __init__(self, q): """ internally represented by a unit quaternion q """ self.q = q @staticmethod def exp(v): """ exponential map """ theta_sq = sophus.squared_norm(v) theta = sympy.sqrt(theta_sq) return So3( sophus.Quaternion( sympy.cos(0.5 * theta), sympy.sin(0.5 * theta) / theta * v)) def log(self): """ logarithmic map""" n = sympy.sqrt(sophus.squared_norm(self.q.vec)) return 2 * sympy.atan(n / self.q.real) / n * self.q.vec def __repr__(self): return "So3:" + repr(self.q) @staticmethod def hat(o): return sympy.Matrix([[0, -o[2], o[1]], [o[2], 0, -o[0]], [-o[1], o[0], 0]]) """vee-operator It takes the 3x3-matrix representation ``Omega`` and maps it to the corresponding vector representation of Lie algebra. This is the inverse of the hat-operator, see above. Precondition: ``Omega`` must have the following structure: | 0 -c b | | c 0 -a | | -b a 0 | """ @staticmethod def vee(Omega): v = sophus.Vector3(Omega.row(2).col(1), Omega.row(0).col(2), Omega.row(1).col(0)) return v def matrix(self): """ returns matrix representation """ return sympy.Matrix([[ 1 - 2 * self.q.vec[1]**2 - 2 * self.q.vec[2]**2, 2 * self.q.vec[0] * self.q.vec[1] - 2 * self.q.vec[2] * self.q[3], 2 * self.q.vec[0] * self.q.vec[2] + 2 * self.q.vec[1] * self.q[3] ], [ 2 * self.q.vec[0] * self.q.vec[1] + 2 * self.q.vec[2] * self.q[3], 1 - 2 * self.q.vec[0]**2 - 2 * self.q.vec[2]**2, 2 * self.q.vec[1] * self.q.vec[2] - 2 * self.q.vec[0] * self.q[3] ], [ 2 * self.q.vec[0] * self.q.vec[2] - 2 * self.q.vec[1] * self.q[3], 2 * self.q.vec[1] * self.q.vec[2] + 2 * self.q.vec[0] * self.q[3], 1 - 2 * self.q.vec[0]**2 - 2 * self.q.vec[1]**2 ]]) def __mul__(self, right): """ left-multiplication either rotation concatenation or point-transform """ if isinstance(right, sympy.Matrix): assert right.shape == (3, 1), right.shape return (self.q * sophus.Quaternion(0, right) * self.q.conj()).vec elif isinstance(right, So3): return So3(self.q * right.q) assert False, "unsupported type: {0}".format(type(right)) def __getitem__(self, key): return self.q[key] @staticmethod def calc_Dx_exp_x(x): return sympy.Matrix(4, 3, lambda r, c: sympy.diff(So3.exp(x)[r], x[c])) @staticmethod def Dx_exp_x_at_0(): return sympy.Matrix([[0.5, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.5], [0.0, 0.0, 0.0]]) @staticmethod def calc_Dx_exp_x_at_0(x): return So3.calc_Dx_exp_x(x).subs(x[0], 0).subs(x[1], 0).limit(x[2], 0) def calc_Dx_this_mul_exp_x_at_0(self, x): return sympy.Matrix(4, 3, lambda r, c: sympy.diff((self * So3.exp(x))[r], x[c]))\ .subs(x[0], 0).subs(x[1], 0).limit(x[2], 0) def calc_Dx_exp_x_mul_this_at_0(self, x): return sympy.Matrix(3, 4, lambda r, c: sympy.diff((self * So3.exp(x))[c], x[r, 0]))\ .subs(x[0], 0).subs(x[1], 0).limit(x[2], 0) @staticmethod def Dxi_x_matrix(x, i): if i == 0: return sympy.Matrix([[0, 2 * x[1], 2 * x[2]], [2 * x[1], -4 * x[0], -2 * x[3]], [2 * x[2], 2 * x[3], -4 * x[0]]]) if i == 1: return sympy.Matrix([[-4 * x[1], 2 * x[0], 2 * x[3]], [2 * x[0], 0, 2 * x[2]], [-2 * x[3], 2 * x[2], -4 * x[1]]]) if i == 2: return sympy.Matrix([[-4 * x[2], -2 * x[3], 2 * x[0]], [2 * x[3], -4 * x[2], 2 * x[1]], [2 * x[0], 2 * x[1], 0]]) if i == 3: return sympy.Matrix([[0, -2 * x[2], 2 * x[1]], [2 * x[2], 0, -2 * x[0]], [-2 * x[1], 2 * x[0], 0]]) @staticmethod def calc_Dxi_x_matrix(x, i): return sympy.Matrix(3, 3, lambda r, c: sympy.diff(x.matrix()[r, c], x[i])) @staticmethod def Dxi_exp_x_matrix(x, i): R = So3.exp(x) Dx_exp_x = So3.calc_Dx_exp_x(x) l = [Dx_exp_x[j, i] * So3.Dxi_x_matrix(R, j) for j in [0, 1, 2, 3]] return functools.reduce((lambda a, b: a + b), l) @staticmethod def calc_Dxi_exp_x_matrix(x, i): return sympy.Matrix(3, 3, lambda r, c: sympy.diff(So3.exp(x).matrix()[r, c], x[i])) @staticmethod def Dxi_exp_x_matrix_at_0(i): v = sophus.ZeroVector3() v[i] = 1 return So3.hat(v) @staticmethod def calc_Dxi_exp_x_matrix_at_0(x, i): return sympy.Matrix(3, 3, lambda r, c: sympy.diff(So3.exp(x).matrix()[r, c], x[i]) ).subs(x[0], 0).subs(x[1], 0).limit(x[2], 0) class TestSo3(unittest.TestCase): def setUp(self): omega0, omega1, omega2 = sympy.symbols( 'omega[0], omega[1], omega[2]', real=True) x, v0, v1, v2 = sympy.symbols('q.w() q.x() q.y() q.z()', real=True) p0, p1, p2 = sympy.symbols('p0 p1 p2', real=True) v = sophus.Vector3(v0, v1, v2) self.omega = sophus.Vector3(omega0, omega1, omega2) self.a = So3(sophus.Quaternion(x, v)) self.p = sophus.Vector3(p0, p1, p2) def test_exp_log(self): for o in [sophus.Vector3(0., 1, 0.5), sophus.Vector3(0.1, 0.1, 0.1), sophus.Vector3(0.01, 0.2, 0.03)]: w = So3.exp(o).log() for i in range(0, 3): self.assertAlmostEqual(o[i], w[i]) def test_matrix(self): R_foo_bar = So3.exp(self.omega) Rmat_foo_bar = R_foo_bar.matrix() point_bar = self.p p1_foo = R_foo_bar * point_bar p2_foo = Rmat_foo_bar * point_bar self.assertEqual(sympy.simplify(p1_foo - p2_foo), sophus.ZeroVector3()) def test_derivatives(self): self.assertEqual(sympy.simplify(So3.calc_Dx_exp_x_at_0(self.omega) - So3.Dx_exp_x_at_0()), sympy.Matrix.zeros(4, 3)) for i in [0, 1, 2, 3]: self.assertEqual(sympy.simplify(So3.calc_Dxi_x_matrix(self.a, i) - So3.Dxi_x_matrix(self.a, i)), sympy.Matrix.zeros(3, 3)) for i in [0, 1, 2]: self.assertEqual(sympy.simplify( So3.Dxi_exp_x_matrix(self.omega, i) - So3.calc_Dxi_exp_x_matrix(self.omega, i)), sympy.Matrix.zeros(3, 3)) self.assertEqual(sympy.simplify( So3.Dxi_exp_x_matrix_at_0(i) - So3.calc_Dxi_exp_x_matrix_at_0(self.omega, i)), sympy.Matrix.zeros(3, 3)) def test_codegen(self): stream = sophus.cse_codegen(So3.calc_Dx_exp_x(self.omega)) filename = "cpp_gencode/So3_Dx_exp_x.cpp" # set to true to generate codegen files if False: file = open(filename, "w") for line in stream: file.write(line) file.close() else: file = open(filename, "r") file_lines = file.readlines() for i, line in enumerate(stream): self.assertEqual(line, file_lines[i]) file.close() stream.close stream = sophus.cse_codegen( self.a.calc_Dx_this_mul_exp_x_at_0(self.omega)) filename = "cpp_gencode/So3_Dx_this_mul_exp_x_at_0.cpp" # set to true to generate codegen files if False: file = open(filename, "w") for line in stream: file.write(line) file.close() else: file = open(filename, "r") file_lines = file.readlines() for i, line in enumerate(stream): self.assertEqual(line, file_lines[i]) file.close() stream.close if __name__ == '__main__': unittest.main()
py
b412ef6d176ebd62a6304212a9634cba9b3609fc
from __future__ import unicode_literals try: from backports import configparser except ImportError: # pragma: no cover import configparser import re class EfficientParsingError(configparser.ParsingError): def append(self, lineno, line): """ Rather than inefficiently add all the lines in the file to the error message like the CPython code from 1998. We just `return` because we will catch and `pass` the exception in `high_entropy_strings.py` anyway. """ return configparser.ParsingError = EfficientParsingError class IniFileParser(object): _comment_regex = re.compile(r'\s*[;#]') def __init__(self, file, add_header=False, exclude_lines_regex=None): """ :type file: file object :type add_header: bool :param add_header: whether or not to add a top-level [global] header. :type exclude_lines_regex: regex object :param exclude_lines_regex: optional regex for ignored lines. """ self.parser = configparser.ConfigParser() try: # python2.7 compatible self.parser.optionxform = unicode except NameError: # pragma: no cover # python3 compatible self.parser.optionxform = str self.exclude_lines_regex = exclude_lines_regex content = file.read() if add_header: # This supports environment variables, or other files that look # like config files, without a section header. content = '[global]\n' + content try: # python2.7 compatible self.parser.read_string(unicode(content)) except NameError: # pragma: no cover # python3 compatible self.parser.read_string(content) # Hacky way to keep track of line location file.seek(0) self.lines = [line.strip() for line in file.readlines()] self.line_offset = 0 def iterator(self): if not self.parser.sections(): # To prevent cases where it's not an ini file, but the parser # helpfully attempts to parse everything to a DEFAULT section, # when not explicitly provided. raise configparser.Error for section_name, _ in self.parser.items(): for key, values in self.parser.items(section_name): for value, offset in self._get_value_and_line_offset( key, values, ): yield value, offset def _get_value_and_line_offset(self, key, values): """Returns the index of the location of key, value pair in lines. :type key: str :param key: key, in config file. :type values: str :param values: values for key, in config file. This is plural, because you can have multiple values per key. e.g. >>> key = ... value1 ... value2 :type lines: list :param lines: a collection of lines-so-far in file :rtype: list(tuple) """ values_list = self._construct_values_list(values) if not values_list: return [] current_value_list_index = 0 output = [] lines_modified = False for index, line in enumerate(self.lines): # Check ignored lines before checking values, because # you can write comments *after* the value. if not line.strip() or self._comment_regex.match(line): continue if ( self.exclude_lines_regex and self.exclude_lines_regex.search(line) ): continue if current_value_list_index == 0: first_line_regex = re.compile(r'^\s*{}[ :=]+{}'.format( re.escape(key), re.escape(values_list[current_value_list_index]), )) if first_line_regex.match(line): output.append(( values_list[current_value_list_index], self.line_offset + index + 1, )) current_value_list_index += 1 continue if current_value_list_index == len(values_list): if index == 0: index = 1 # don't want to count the same line again self.line_offset += index self.lines = self.lines[index:] lines_modified = True break else: output.append(( values_list[current_value_list_index], self.line_offset + index + 1, )) current_value_list_index += 1 if not lines_modified: # No more lines left, if loop was not explicitly left. self.lines = [] return output @staticmethod def _construct_values_list(values): """ This values_list is a strange construction, because of ini format. We need to extract the values with the following supported format: >>> key = value0 ... value1 ... ... # comment line here ... value2 given that normally, either value0 is supplied, or (value1, value2), but still allowing for all three at once. Furthermore, with the configparser, we will get a list of values, and intermediate blank lines, but no comments. This means that we can't merely use the count of values' items to heuristically "skip ahead" lines, because we still have to manually parse through this. Therefore, we construct the values_list in the following fashion: 1. Keep the first value (in the example, this is `value0`) 2. For all other values, ignore blank lines. Then, we can parse through, and look for values only. """ lines = values.splitlines() values_list = lines[:1] values_list.extend(filter(None, lines[1:])) return values_list
py
b412ef909bcc60bf8dd4951ada6aa62c53a815dc
#!/usr/bin/env python3 import pacmanBFS import escape import pygame block_size = 50 class Game : def __init__(self, time, filename = 'pacmanMatrix'): fp = open(filename,'r') data = fp.readlines() self.matrix = [] self.row = len(data) self.col = None self.score = 0 self.ghost = () self.time = time self.over = False self.win = False self.pac = () self.fruit = () self.fruitOrg = () i = 0 for line in data: self.col = len(line) - 1 self.matrix.append([]) j = 0 for j in range(len(line) - 1): self.matrix[i].append(' ') if line[j] == 'p': self.pac = (i,j) elif line[j] == 'g': self.ghost += ((i,j),) elif line[j] == '#': self.matrix[i][j] = '#' elif line[j] == 'f': #self.matrix[i][j] = 'f' self.fruit += ((i,j),) i += 1 self.fruitOrg = self.fruit def display(self): s = '' for i in range(self.row): for j in range(self.col): s += self.matrix[i][j] s += '\n' print(s) def valid(self, i, j): if i >= 0 and i < self.row and j >= 0 and j < self.col: if self.matrix[i][j] != '#': return True return False return False def eat(self): fruit = () ghost = () win = False game_over = False for i,j in self.fruit: if (i,j) == self.pac: self.time = 40 else: fruit += ((i,j),) self.fruit = fruit for i,j in self.ghost: if (i,j) == self.pac: if self.time == 0: win = False game_over = True ghost += ((i,j),) else: ghost += ((i,j),) self.ghost = ghost if len(self.ghost) == 0: win = True game_over = True self.over = game_over self.win = win def lose(self): if self.win == True : print('You Won') print('Your time = ', self.score) else: print('Game Over') class window: def __init__(self, row, col): pygame.init() self.background = (33, 33, 33) self.clock = pygame.time.Clock() self.screen = pygame.display.set_mode((col * block_size, row * block_size)) pygame.display.set_caption('Pacman') self.store = {} # Left Pacman image = pygame.image.load('Images/pac.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['pac_left1'] = image image = pygame.image.load('Images/pac1.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['pac_left2'] = image # Right Pacman image = pygame.image.load('Images/pac_right.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['pac_right1'] = image image = pygame.image.load('Images/pac1_right.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['pac_right2'] = image # Fruit image = pygame.image.load('Images/fruit.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['fruit'] = image # Obstacle image = pygame.image.load('Images/block.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['block'] = image # Ghost image = pygame.image.load('Images/red_ghost.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['red_ghost'] = image image = pygame.image.load('Images/cold_ghost.jpg') image = pygame.transform.scale(image, (block_size, block_size)) self.store['cold_ghost'] = image # Game Over image = pygame.image.load('Images/game_over.jpg') #image = pygame.transform.scale(image, (block_size, block_size)) self.store['game_over'] = image # Win image = pygame.image.load('Images/win.jpg') #image = pygame.transform.scale(image, (block_size, block_size)) self.store['win'] = image # start screen image = pygame.image.load('Images/pacman.jpeg') image = pygame.transform.scale(image, (col * block_size, row * block_size)) self.store['start'] = image def display(self, matrix, time, direct, even, pac, ghost, fruit): self.screen.fill(self.background) row = len(matrix) col = len(matrix[0]) for i in range(row): for j in range(col): if matrix[i][j] == ' ': continue if matrix[i][j] == '#': self.screen.blit(self.store['block'], (block_size * j, block_size * i)) #else : # self.screen.blit(self.store['fruit'], (block_size * j, block_size * i)) for i, j in fruit: coord = (block_size * j, block_size * i) self.screen.blit(self.store['fruit'], coord) # Ghost and Pacman coord = (block_size * pac[1], block_size * pac[0]) if direct == 0: if even: self.screen.blit(self.store['pac_left1'], coord) else: self.screen.blit(self.store['pac_left2'], coord) else: if even: self.screen.blit(self.store['pac_right1'], coord) else: self.screen.blit(self.store['pac_right2'], coord) for i, j in ghost: coord = (block_size * j, block_size * i) if time > 8 or time % 2: self.screen.blit(self.store['cold_ghost'], coord) else: self.screen.blit(self.store['red_ghost'], coord) ''' move = 0 -> up move = 1 -> down move = 2 -> left move = 3 -> right ''' def main() : G = Game(40) Win = window(G.row, G.col) game = True direct = 0 move = -1 delay = 2 r, c = G.pac even = 0 Win.screen.blit(Win.store['start'], (0, 0)) pygame.display.flip() Win.clock.tick(0.5) while game: #Win.display(G.matrix, G.time, direct, even, G.pac, G.ghost) for event in pygame.event.get(): if event.type == pygame.QUIT: game = False pressed = pygame.key.get_pressed() if pressed[pygame.K_UP] and G.valid(G.pac[0] - 1, G.pac[1]): move = 0 elif pressed[pygame.K_DOWN] and G.valid(G.pac[0] + 1, G.pac[1]): move = 1 elif pressed[pygame.K_LEFT] and G.valid(G.pac[0], G.pac[1] - 1): move = 2 direct = 0 elif pressed[pygame.K_RIGHT] and G.valid(G.pac[0], G.pac[1] + 1): move = 3 direct = 1 if move == 0 and G.valid(G.pac[0] - 1, G.pac[1]): r = max(r - 1, 1) elif move == 1 and G.valid(G.pac[0] + 1,G.pac[1]): r = min(r + 1, G.row - 2) elif move == 2 and G.valid(G.pac[0], G.pac[1] - 1): c = max(c - 1, 1) elif move == 3 and G.valid(G.pac[0], G.pac[1] + 1): c = min(c + 1,G.col - 2) G.matrix[G.pac[0]][G.pac[1]] = ' ' for i,j in G.ghost: G.matrix[i][j] = ' ' G.pac = (r, c) G.eat() if G.over == True: Win.display(G.matrix, G.time, direct, even, G.pac, G.ghost, G.fruit) break if delay % 2: if G.time: G.ghost = escape.BFS(G.matrix, G.ghost, G.row, G.col, G.pac) else: G.ghost = pacmanBFS.BFS(G.matrix, G.ghost, G.row, G.col, G.pac) delay = (delay + 1) % 2 even = (even + 1) % 2 Win.display(G.matrix, G.time, direct, even, G.pac, G.ghost, G.fruit) G.eat() if G.over == True: Win.display(G.matrix, G.time, direct, even, G.pac, G.ghost, G.fruit) break if len(G.fruit) == 0: G.fruit = G.fruitOrg G.score += 1 G.time = max(0,G.time - 1) Win.clock.tick(6) pygame.display.flip() if G.win == False: Win.screen.blit(Win.store['game_over'], ((G.col // 2 - 2) * block_size, (G.row // 2 - 1) * block_size)) else: Win.screen.blit(Win.store['win'], ((G.col // 2 - 2) * block_size, (G.row // 2 - 1) * block_size)) pygame.display.flip() Win.clock.tick(1) if __name__ == '__main__': main()
py
b412f0a7533a969e4949994e712e792f61ec679f
import fcntl import os import pytest from crl.interactivesessions.shells.remotemodules.servercomm import ServerComm @pytest.fixture def infd(tmpdir): infile = tmpdir.join('infile') infile.write('content-of-infile') with open(str(infile)) as f: yield f.fileno() @pytest.fixture def outfile(tmpdir): outfile = tmpdir.join('outfile') with open(str(outfile), 'w') as f: yield f def test_servercomm_blocking_states(infd, outfile): s = ServerComm(infd, outfile) infl = fcntl.fcntl(s.infd, fcntl.F_GETFL) assert infl & os.O_NONBLOCK outfl = fcntl.fcntl(s.outfile.fileno(), fcntl.F_GETFL) assert not outfl & os.O_NONBLOCK
py
b412f106db13dc555b25e09574e8eda20c30a8a4
import setuptools with open("README.md") as fp: long_description = fp.read() setuptools.setup( name="lab07", version="0.0.1", description="An empty CDK Python app", long_description=long_description, long_description_content_type="text/markdown", author="author", package_dir={"": "lab07"}, packages=setuptools.find_packages(where="lab07"), install_requires=[ "aws-cdk.core==1.34.1", ], python_requires=">=3.6", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: JavaScript", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development :: Code Generators", "Topic :: Utilities", "Typing :: Typed", ], )
py
b412f13800868c49c672479069d47d860309e313
# -*- coding: utf-8 -*- # Copyright (c) 2012 Rackspace # flake8: noqa # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenStack Swift Python client binding. """ from .client import * # At setup.py time, we haven't installed anything yet, so there # is nothing that is able to set this version property. Squelching # that exception here should be fine- if there are problems with # pkg_resources in a real install, that will manifest itself as # an error still try: from swiftclient import version __version__ = version.version_string except Exception: pass
py
b412f382d3b4ec09d0f62e5f6c08d1fcc8dde9f0
from __future__ import print_function from types import MethodType import torch import torch.nn as nn import models from utils.metric import accuracy, AverageMeter, Timer class NormalNN(nn.Module): ''' Normal Neural Network with SGD for classification ''' def __init__(self, agent_config): ''' :param agent_config (dict): lr=float,momentum=float,weight_decay=float, schedule=[int], # The last number in the list is the end of epoch model_type=str,model_name=str,out_dim={task:dim},model_weights=str force_single_head=bool print_freq=int gpuid=[int] ''' super(NormalNN, self).__init__() self.log = print if agent_config['print_freq'] > 0 else lambda \ *args: None # Use a void function to replace the print self.config = agent_config # If out_dim is a dict, there is a list of tasks. The model will have a head for each task. self.multihead = True if len( self.config['out_dim']) > 1 else False # A convenience flag to indicate multi-head/task self.model = self.create_model() self.criterion_fn = nn.CrossEntropyLoss() if agent_config['gpuid'][0] >= 0: self.cuda() self.gpu = True else: self.gpu = False self.init_optimizer() self.reset_optimizer = False self.valid_out_dim = 'ALL' # Default: 'ALL' means all output nodes are active # Set a interger here for the incremental class scenario def init_optimizer(self): optimizer_arg = {'params': self.model.parameters(), 'lr': self.config['lr'], 'weight_decay': self.config['weight_decay']} if self.config['optimizer'] in ['SGD', 'RMSprop']: optimizer_arg['momentum'] = self.config['momentum'] elif self.config['optimizer'] in ['Rprop']: optimizer_arg.pop('weight_decay') elif self.config['optimizer'] == 'amsgrad': optimizer_arg['amsgrad'] = True self.config['optimizer'] = 'Adam' self.optimizer = torch.optim.__dict__[self.config['optimizer']](**optimizer_arg) self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.config['schedule'], gamma=0.1) def create_model(self): cfg = self.config # Define the backbone (MLP, LeNet, VGG, ResNet ... etc) of model model = models.__dict__[cfg['model_type']].__dict__[cfg['model_name']]() # Apply network surgery to the backbone # Create the heads for tasks (It can be single task or multi-task) try: n_feat = model.last.in_features except AttributeError: n_feat = model.fc.in_features # The output of the model will be a dict: {task_name1:output1, task_name2:output2 ...} # For a single-headed model the output will be {'All':output} model.last = nn.ModuleDict() for task, out_dim in cfg['out_dim'].items(): model.last[task] = nn.Linear(n_feat, out_dim) # Redefine the task-dependent function def new_logits(self, x): outputs = {} for task, func in self.last.items(): outputs[task] = func(x) return outputs # Replace the task-dependent function model.logits = MethodType(new_logits, model) # Load pre-trained weights if cfg['model_weights'] is not None: print('=> Load model weights:', cfg['model_weights']) model_state = torch.load(cfg['model_weights'], map_location=lambda storage, loc: storage) # Load to CPU. model.load_state_dict(model_state) print('=> Load Done') return model def forward(self, x): return self.model.forward(x) def predict(self, inputs): self.model.eval() out = self.forward(inputs) for t in out.keys(): out[t] = out[t].detach() return out def validation(self, dataloader, no_task=False): # This function doesn't distinguish tasks. if no_task: print("using no task ") batch_timer = Timer() acc = AverageMeter() batch_timer.tic() orig_mode = self.training self.eval() for i, (input, target, task) in enumerate(dataloader): if self.gpu: with torch.no_grad(): input = input.cuda() target = target.cuda() output = self.predict(input) # Summarize the performance of all tasks, or 1 task, depends on dataloader. # Calculated by total number of data. if no_task: acc = accumulate_acc(output, target, task, acc, guess_task=True) else: acc = accumulate_acc(output, target, task, acc) self.train(orig_mode) self.log(' * Val Acc {acc.avg:.3f}, Total time {time:.2f}' .format(acc=acc, time=batch_timer.toc())) return acc.avg def criterion(self, preds, targets, tasks, **kwargs): # The inputs and targets could come from single task or a mix of tasks # The network always makes the predictions with all its heads # The criterion will match the head and task to calculate the loss. if self.multihead: loss = 0 for t, t_preds in preds.items(): inds = [i for i in range(len(tasks)) if tasks[i] == t] # The index of inputs that matched specific task if len(inds) > 0: t_preds = t_preds[inds] t_target = targets[inds] loss += self.criterion_fn(t_preds, t_target) * len(inds) # restore the loss from average loss /= len(targets) # Average the total loss by the mini-batch size else: pred = preds['All'] if isinstance(self.valid_out_dim, int): # (Not 'ALL') Mask out the outputs of unseen classes for incremental class scenario pred = preds['All'][:, :self.valid_out_dim] loss = self.criterion_fn(pred, targets) return loss def update_model(self, inputs, targets, tasks): out = self.forward(inputs) loss = self.criterion(out, targets, tasks) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.detach(), out def learn_batch(self, train_loader, num_batches, val_loader=None): """this is the learning loop within a dataloader""" if self.reset_optimizer: # Reset optimizer before learning each task self.log('Optimizer is reset!') self.init_optimizer() for epoch in range(self.config['schedule'][-1]): data_timer = Timer() batch_timer = Timer() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() # Config the model and optimizer self.log('Epoch:{0}'.format(epoch)) self.model.train() for param_group in self.optimizer.param_groups: self.log('LR:', param_group['lr']) # Learning with mini-batch data_timer.tic() batch_timer.tic() self.log('Itr\t\tTime\t\t Data\t\t Loss\t\tAcc') for i, (input, target, task) in zip(range(num_batches), train_loader): data_time.update(data_timer.toc()) # measure data loading time if self.gpu: input = input.cuda() target = target.cuda() loss, output = self.update_model(input, target, task) input = input.detach() target = target.detach() # measure accuracy and record loss acc = accumulate_acc(output, target, task, acc) losses.update(loss, input.size(0)) batch_time.update(batch_timer.toc()) # measure elapsed time data_timer.toc() if ((self.config['print_freq'] > 0) and (i % self.config['print_freq'] == 0)) or (i + 1) == num_batches: self.log('[{0}/{1}]\t' '{batch_time.val:.4f} ({batch_time.avg:.4f})\t' '{data_time.val:.4f} ({data_time.avg:.4f})\t' '{loss.val:.3f} ({loss.avg:.3f})\t' '{acc.val:.2f} ({acc.avg:.2f})'.format( i, num_batches, batch_time=batch_time, data_time=data_time, loss=losses, acc=acc)) self.log(' * Train Acc {acc.avg:.3f}'.format(acc=acc)) # Evaluate the performance of current task if val_loader != None: self.validation(val_loader) self.scheduler.step() def learn_stream(self, data, label): assert False, 'No implementation yet' def add_valid_output_dim(self, dim=0): # This function is kind of ad-hoc, but it is the simplest way to support incremental class learning self.log('Incremental class: Old valid output dimension:', self.valid_out_dim) if self.valid_out_dim == 'ALL': self.valid_out_dim = 0 # Initialize it with zero self.valid_out_dim += dim self.log('Incremental class: New Valid output dimension:', self.valid_out_dim) return self.valid_out_dim def count_parameter(self): return sum(p.numel() for p in self.model.parameters()) def save_model(self, filename): model_state = self.model.state_dict() if isinstance(self.model, torch.nn.DataParallel): # Get rid of 'module' before the name of states model_state = self.model.module.state_dict() for key in model_state.keys(): # Always save it to cpu model_state[key] = model_state[key].cpu() print('=> Saving model to:', filename) torch.save(model_state, filename + '.pth') print('=> Save Done') def cuda(self): torch.cuda.set_device(self.config['gpuid'][0]) self.model = self.model.cuda() self.criterion_fn = self.criterion_fn.cuda() # Multi-GPU if len(self.config['gpuid']) > 1: self.model = torch.nn.DataParallel(self.model, device_ids=self.config['gpuid'], output_device=self.config['gpuid'][0]) return self def _guess_task(output): task_names = tuple(output.keys()) task = [] for group_predictions in zip(*output.values()): max_index = int(torch.argmax(torch.Tensor([x.max() for x in group_predictions]))) task.append(task_names[max_index]) return task def _str_equal(string_list1, string_list2): total = len(string_list1) right = 0 for l1, l2 in zip(string_list1, string_list2): if l1 == l2: right += 1 return float(right / total) def accumulate_acc(output, target, task, meter, guess_task=False): def update_meter(output, target, task, meter): for t, t_out in output.items(): inds = [i for i in range(len(task)) if task[i] == t] # The index of inputs that matched specific task if len(inds) > 0: t_out = t_out[inds] t_target = target[inds] meter.update(accuracy(t_out, t_target), len(inds)) if 'All' in output.keys(): # Single-headed model meter.update(accuracy(output['All'], target), len(target)) else: # outputs from multi-headed (multi-task) model if not guess_task: update_meter(output, target, task, meter) else: # you must guess the task new_task = _guess_task(output) print(f"guess task acc: {_str_equal(new_task, task):.2f}") update_meter(output, target, new_task, meter) return meter
py
b412f45122f8b9957bc5f0187248f8960192634a
import numpy # FIXME IntType = numpy.dtype(numpy.int32) RealType = numpy.dtype(numpy.float64) ScalarType = numpy.dtype(numpy.float64)
py
b412f6970364252469fc40e35e51edbe88fc193a
""" Database Connector class that provides a context manager for database connections """ import logging from typing import Dict, Any, List, Optional from sqlalchemy import create_engine, engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import scoped_session, sessionmaker, Session from sqlalchemy.sql import text from .config import DatabaseConnectionConfig BASE_MODEL = declarative_base() class DatabaseConnection: """ Connects to a given database, returning a session in a context manager, and runs a given query """ connections = {} def __init__(self, db_connection_config: DatabaseConnectionConfig): self.db_uri = db_connection_config.db_uri self.db_connection_config = db_connection_config self.db_session: Optional[Session] = None if db_connection_config.db_uri.startswith('sqlite'): self.connection_engine: engine.Engine = create_engine(self.db_uri) else: self.connection_engine: engine.Engine = create_engine( self.db_uri, pool_size=self.db_connection_config.pool_size, max_overflow=self.db_connection_config.pool_size + 5, pool_timeout=self.db_connection_config.pool_timeout, ) DatabaseConnection.connections[self.db_uri] = self def __enter__(self): """ Creates a scoped session for the database that is thread-safe for reads """ session = sessionmaker( bind=self.connection_engine, autocommit=self.db_connection_config.autocommit, autoflush=self.db_connection_config.autocommit, expire_on_commit=False, ) self.db_session = scoped_session(session) return self def __exit__(self, exc_type, exc_val, exc_tb): """ This runs at the end of the 'with' statement as a way of cleaning up """ if not self.db_connection_config.autocommit: # Attempt to commit any changes self.db_session.commit() self.db_session.close() def close(self): """ Closes the db connection engine """ try: self.connection_engine.dispose() logging.info(f'Successfully closed connection {self.db_uri}') except Exception as exp: logging.warning(str(exp)) def execute_sql(self, sql: str, params: Dict[str, Any] = {}) -> engine.ResultProxy: """ Executes the sql passed as a parameter """ return self.db_session.execute(text(sql), params=params) @classmethod def get_db_connection(cls, db_connection_config: DatabaseConnectionConfig): """ Returns an instance of this class that has the given db_uri or if none, it creates a new one """ db_connection = cls.connections.get(db_connection_config.db_uri, None) if db_connection is None: db_connection = cls(db_connection_config=db_connection_config) return db_connection @classmethod def close_all_connections(cls): """ Closes all connections """ for _, db_connection in cls.connections.items(): db_connection.close() @classmethod def open_connections(cls, db_configs: List[DatabaseConnectionConfig]): """ Opens database connections if they are not open """ for db_config in db_configs: cls.get_db_connection(db_connection_config=db_config)
py
b412f74be8bb7dac34066079d3a515ead1cc1f72
@Setup def setup(ctx): ctx["declare"] = True; @Token("T_STRING") def T_STRING(string, ctx): if ctx["declare"] = False: ctx["target"] = string; return string; @Token("T_PRODUCER") def T_PRODUCER(prod, ctx): return prod; @Token("T_SPLIT") def T_SPLIT(split, ctx): ctx["declare"] = False; return split; @Pattern(["T_STRING", "T_PRODUCER", "T_STRING"]) def S_SUB(string1, prod, string2, ctx): return "replacements[\"" + string1 + "\"] = " + string2 + ";"; @Pattern(["S_SUB"]) def S_DEF_SINGLE(sub, ctx): return sub; @Pattern(["S_SUB", "S_DEF"]) def S_DEF_RECURSE(sub, sdef, ctx): return sub + "\n" + sdef;
py
b412f75b24f0e43a4fab9a13b960f37104fdfde3
import os import keras import sys import time import numpy as np from keras.models import Sequential from keras.layers import Activation, GlobalAveragePooling2D from keras.layers.core import Dense, Dropout, Flatten from keras.optimizers import Adam, SGD from keras.metrics import categorical_crossentropy from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import * from keras.utils import Sequence import cv2 import matplotlib.pyplot as plt from pyIGTLink import pyIGTLink # Parameters image_size = 128 # Check command line arguments if len(sys.argv) < 2: print("Usage: {} WEIGHTS_FILE".format(sys.argv[0])) sys.exit() weights_file_name = sys.argv[1] print("Loading weights from: {}".format(weights_file_name)) # Building the model. Should be the same as the weights to be loaded. model = Sequential() model.add(Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(image_size, image_size, 1))) model.add(Conv2D(32, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(.2)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(.2)) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(.4)) model.add(Dense(2, activation='sigmoid')) model.load_weights(weights_file_name) print("Server starting...") client = pyIGTLink.PyIGTLinkClient(host="127.0.0.1") client.start() print("Server running...") try: image_squeezed = np.zeros([image_size, image_size]).astype(np.uint8) image_padded = np.zeros([1, image_size, image_size, 1]).astype(np.uint8) image_input = np.zeros([1, image_size, image_size, 1]).astype(np.uint8) cv2.circle(image_input[0,:,:,0], (10,10), 15, 255, 5) cv2.imshow("image", image_input[0,:,:,0]) cv2.waitKey(10) while True: messages = client.get_latest_messages() if len(messages) > 0: for message in messages: if message._type == "IMAGE": image = message._image image = np.flip(image, 1) image_squeezed = np.squeeze(image) image_padded[0,:,:,0] = cv2.resize(image_squeezed, (image_size, image_size)).astype(np.uint8) image_input = image_padded / 255.0 prediction = model.predict(image_input).tolist() print("Predicted center line: " + str(prediction[0])) cx = int(image_size*prediction[0][0]) cy = int(image_size*prediction[0][1]) cv2.circle(image_input[0,:,:,0], (cx, cy), 2, 255, thickness=1) cv2.imshow("image", image_input[0,:,:,0]) cv2.waitKey(10) client.send_message(pyIGTLink.StringMessage(str(prediction[0]), device_name=message._device_name+"Predicted")) time.sleep(0.1) except KeyboardInterrupt: pass client.stop()
py
b412f78c722a5b71d2e72bdf67d6c7b986e1cdc1
from django.contrib import admin from .models import * class PerConfig(admin.ModelAdmin): list_display = ['title','url','group','action'] # admin.site.register(UserInfo) admin.site.register(Role) admin.site.register(Permission,PerConfig) admin.site.register(PermissionGroup)
py
b412f8105a21cdcea1e9500f110cdec3e1789228
import urllib.request import csv import io from COVID19Map.PublicFun.sql import TCountryMappingRepository from COVID19Map.PublicFun.model import TCountryMapping def getCSVFile(filePath: str): try: res = urllib.request.urlopen(filePath) context = res.read().decode("utf-8") return csv.reader(io.StringIO(context)) except IOError as ioerror: print(ioerror) except Exception as e: print(e) def saveCountryMapping(csvFile): try: countryMappingList = [] firstline = True for line in csvFile: if firstline: firstline = False continue temp = TCountryMapping.TCountryMapping() temp.UID = line[0] temp.iso2 = line[1] temp.iso3 = line[2] temp.code3 = line[3] temp.FIPS = line[4] temp.Admin2 = line[5] temp.ProvinceState = line[6] temp.CountryRegion = line[7] temp.PointLat = line[8] temp.PointLong = line[9] temp.CombinedKey = line[10] temp.Population = line[11] countryMappingList.append(temp) TCountryMappingRepository.TCountryMappingListInsert(countryMappingList) except: pass if __name__ == "__main__": golbalfile = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" countryMappingFileUrl = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv" csvFile = getCSVFile(countryMappingFileUrl) saveCountryMapping(csvFile)
py
b412f8950ed4b4316fc08486c596a26c1b6e7716
# # Copyright 2021 Mobvista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import io import inspect import pickle import cloudpickle from cloudpickle import PYPY import torch def _patch_lookup_module_and_qualname(): _orig_whichmodule = cloudpickle.cloudpickle._whichmodule _orig_lookup_module_and_qualname = cloudpickle.cloudpickle._lookup_module_and_qualname def patched_lookup_module_and_qualname(obj, name=None): if name is None: name = getattr(obj, '__qualname__', None) if name is None: name = getattr(obj, '__name__', None) module_name = _orig_whichmodule(obj, name) if module_name is None: return None if module_name.startswith('unusual_prefix_'): return None return _orig_lookup_module_and_qualname(obj, name) cloudpickle.cloudpickle._lookup_module_and_qualname = patched_lookup_module_and_qualname def _patch_getsourcelines(): _orig_getsourcelines = inspect.getsourcelines def patched_getsourcelines(obj): if not hasattr(obj, '_SourcePatchingPickler__filename'): return _orig_getsourcelines(obj) sourcelines = getattr(obj, '_SourcePatchingPickler__sourcelines') file_lineno = getattr(obj, '_SourcePatchingPickler__file_lineno') sourcelines = list(sourcelines) return sourcelines, file_lineno inspect.getsourcelines = patched_getsourcelines class SourcePatchingPickler(cloudpickle.CloudPickler): def _patch_source(self, module_class): if module_class.__module__.startswith('torch.nn.'): return if module_class.__module__.startswith('mindalpha.nn.'): return forward_method = module_class.forward if hasattr(forward_method, '_SourcePatchingPickler__filename'): return filename = inspect.getsourcefile(forward_method) sourcelines, file_lineno = inspect.getsourcelines(forward_method) sourcelines = tuple(sourcelines) setattr(forward_method, '_SourcePatchingPickler__filename', filename) setattr(forward_method, '_SourcePatchingPickler__sourcelines', sourcelines) setattr(forward_method, '_SourcePatchingPickler__file_lineno', file_lineno) if pickle.HIGHEST_PROTOCOL >= 5 and not PYPY: def reducer_override(self, obj): if isinstance(obj, type) and issubclass(obj, torch.nn.Module): self._patch_source(obj) return super().reducer_override(obj) else: def save(self, obj, save_persistent_id=True): if isinstance(obj, type) and issubclass(obj, torch.nn.Module): self._patch_source(obj) super().save(obj, save_persistent_id=save_persistent_id) if pickle.HIGHEST_PROTOCOL >= 5 and not PYPY: def dump(obj, file, protocol=None, buffer_callback=None): SourcePatchingPickler( file, protocol=protocol, buffer_callback=buffer_callback ).dump(obj) def dumps(obj, protocol=None, buffer_callback=None): with io.BytesIO() as file: cp = SourcePatchingPickler( file, protocol=protocol, buffer_callback=buffer_callback ) cp.dump(obj) return file.getvalue() else: def dump(obj, file, protocol=None): SourcePatchingPickler(file, protocol=protocol).dump(obj) def dumps(obj, protocol=None): with io.BytesIO() as file: cp = SourcePatchingPickler(file, protocol=protocol) cp.dump(obj) return file.getvalue() load, loads = pickle.load, pickle.loads Pickler = SourcePatchingPickler
py
b412f89cd11ac9f26baea1e110c439f69985f23c
import httpx import pytest from demo_project.api.dependencies import azure_scheme from demo_project.core.config import settings from demo_project.main import app from tests.utils import build_openid_keys, keys_url, openid_config_url, openid_configuration from fastapi_azure_auth import MultiTenantAzureAuthorizationCodeBearer @pytest.fixture def multi_tenant_app(): async def issuer_fetcher(tid): tids = {'intility_tenant_id': 'https://login.microsoftonline.com/intility_tenant/v2.0'} return tids[tid] azure_scheme_overrides = MultiTenantAzureAuthorizationCodeBearer( app_client_id=settings.APP_CLIENT_ID, scopes={ f'api://{settings.APP_CLIENT_ID}/user_impersonation': 'User impersonation', }, validate_iss=True, iss_callable=issuer_fetcher, ) app.dependency_overrides[azure_scheme] = azure_scheme_overrides yield azure_scheme @pytest.fixture def mock_openid(respx_mock): respx_mock.get(openid_config_url(version=2, multi_tenant=True)).respond(json=openid_configuration(version=2)) yield @pytest.fixture def mock_openid_and_keys(respx_mock, mock_openid): respx_mock.get(keys_url(version=2)).respond(json=build_openid_keys()) yield @pytest.fixture def mock_openid_and_empty_keys(respx_mock, mock_openid): respx_mock.get(keys_url(version=2)).respond(json=build_openid_keys(empty_keys=True)) yield @pytest.fixture def mock_openid_ok_then_empty(respx_mock, mock_openid): keys_route = respx_mock.get(keys_url(version=2)) keys_route.side_effect = [ httpx.Response(json=build_openid_keys(), status_code=200), httpx.Response(json=build_openid_keys(empty_keys=True), status_code=200), ] openid_route = respx_mock.get(openid_config_url(version=2, multi_tenant=True)) openid_route.side_effect = [ httpx.Response(json=openid_configuration(version=2), status_code=200), httpx.Response(json=openid_configuration(version=2), status_code=200), ] yield @pytest.fixture def mock_openid_and_no_valid_keys(respx_mock, mock_openid): respx_mock.get(keys_url(version=2)).respond(json=build_openid_keys(no_valid_keys=True)) yield
py
b412fa5a52ed83f84d6a214ee2f04aa4a22b830c
from ... import types as sqltypes class JSON(sqltypes.JSON): """SQLite JSON type. SQLite supports JSON as of version 3.9 through its JSON1_ extension. Note that JSON1_ is a `loadable extension <https://www.sqlite.org/loadext.html>`_ and as such may not be available, or may require run-time loading. :class:`_sqlite.JSON` is used automatically whenever the base :class:`_types.JSON` datatype is used against a SQLite backend. .. seealso:: :class:`_types.JSON` - main documentation for the generic cross-platform JSON datatype. The :class:`_sqlite.JSON` type supports persistence of JSON values as well as the core index operations provided by :class:`_types.JSON` datatype, by adapting the operations to render the ``JSON_EXTRACT`` function wrapped in the ``JSON_QUOTE`` function at the database level. Extracted values are quoted in order to ensure that the results are always JSON string values. .. versionadded:: 1.3 .. _JSON1: https://www.sqlite.org/json1.html """ # Note: these objects currently match exactly those of MySQL, however since # these are not generalizable to all JSON implementations, remain separately # implemented for each dialect. class _FormatTypeMixin: def _format_value(self, value): raise NotImplementedError() def bind_processor(self, dialect): super_proc = self.string_bind_processor(dialect) def process(value): value = self._format_value(value) if super_proc: value = super_proc(value) return value return process def literal_processor(self, dialect): super_proc = self.string_literal_processor(dialect) def process(value): value = self._format_value(value) if super_proc: value = super_proc(value) return value return process class JSONIndexType(_FormatTypeMixin, sqltypes.JSON.JSONIndexType): def _format_value(self, value): if isinstance(value, int): value = "$[%s]" % value else: value = '$."%s"' % value return value class JSONPathType(_FormatTypeMixin, sqltypes.JSON.JSONPathType): def _format_value(self, value): return "$%s" % ( "".join( [ "[%s]" % elem if isinstance(elem, int) else '."%s"' % elem for elem in value ] ) )
py
b412fa6f1456745a05da07e85b167ec6006aa450
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for trackable object SavedModel save.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from tensorflow.python.client import session as session_lib from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import backprop from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.framework import versions from tensorflow.python.keras.engine import sequential from tensorflow.python.keras.layers import core from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.lib.io import file_io from tensorflow.python.module import module from tensorflow.python.ops import array_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import loader_impl from tensorflow.python.saved_model import save from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.training.tracking import tracking from tensorflow.python.training.tracking import util from tensorflow.python.util import compat class _ModelWithOptimizer(util.Checkpoint): def __init__(self): self.dense = core.Dense(1) self.optimizer = adam.Adam(0.01) @def_function.function( input_signature=(tensor_spec.TensorSpec([None, 2], dtypes.float32), tensor_spec.TensorSpec([None], dtypes.float32))) def call(self, x, y): with backprop.GradientTape() as tape: loss = math_ops.reduce_mean((self.dense(x) - y) ** 2.) trainable_variables = self.dense.trainable_variables gradients = tape.gradient(loss, trainable_variables) self.optimizer.apply_gradients(zip(gradients, trainable_variables)) return {"loss": loss} def _import_and_infer( save_dir, inputs, signature_key=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY): """Import a SavedModel into a TF 1.x-style graph and run `signature_key`.""" graph = ops.Graph() with graph.as_default(), session_lib.Session() as session: model = loader.load(session, [tag_constants.SERVING], save_dir) signature = model.signature_def[signature_key] assert set(inputs.keys()) == set(signature.inputs.keys()) feed_dict = {} for arg_name in inputs.keys(): feed_dict[graph.get_tensor_by_name(signature.inputs[arg_name].name)] = ( inputs[arg_name]) output_dict = {} for output_name, output_tensor_info in signature.outputs.items(): output_dict[output_name] = graph.get_tensor_by_name( output_tensor_info.name) return session.run(output_dict, feed_dict=feed_dict) class SaveTest(test.TestCase): def test_method_save_signature(self): root = tracking.AutoTrackable() root.f = def_function.function( lambda x: 2. * x, input_signature=[tensor_spec.TensorSpec(None, dtypes.float32)]) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir, root.f) self.assertEqual( {"output_0": 2.}, _import_and_infer(save_dir, {"x": 1.})) def test_method_save_concrete(self): root = tracking.AutoTrackable() root.f = def_function.function( lambda z: {"out": 2. * z}) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save( root, save_dir, {"non_default_key": root.f.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.float32))}) self.assertEqual( {"out": 2.}, _import_and_infer( save_dir, {"z": 1.}, signature_key="non_default_key")) def test_unbuilt_model_does_not_prevent_saving(self): root = util.Checkpoint(model=sequential.Sequential([core.Dense(2)])) save.save(root, os.path.join(self.get_temp_dir(), "saved_model")) def test_version_information_included(self): root = tracking.AutoTrackable() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir) saved_model_proto = loader_impl.parse_saved_model(save_dir) self.assertEqual( versions.__version__, saved_model_proto.meta_graphs[0].meta_info_def.tensorflow_version) self.assertEqual( versions.__git_version__, saved_model_proto.meta_graphs[0].meta_info_def.tensorflow_git_version) def test_non_concrete_error(self): root = tracking.AutoTrackable() root.f = def_function.function(lambda x: 2. * x) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "Expected a TensorFlow function"): save.save(root, save_dir, root.f) def test_captures_unreachable_variable(self): root = tracking.AutoTrackable() unreachable_variable = variables.Variable([5.0, 2.0]) root.reachable_variable = variables.Variable([1.0, 3.0]) @def_function.function def increase_variable(x): return 2 * unreachable_variable * x + root.reachable_variable root.f = increase_variable self.assertAllEqual([101.0, 83.0], root.f(constant_op.constant([10.0, 20.0])).numpy()) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp(KeyError, "not reachable from root"): save.save(root, save_dir) def test_nested_inputs(self): root = tracking.AutoTrackable() root.f = def_function.function( lambda x: 2. * x[0], input_signature=([tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32)],)) root.f([constant_op.constant(1.), constant_op.constant(1.)]) def test_nested_outputs(self): root = tracking.AutoTrackable() root.f = def_function.function(lambda x: (2. * x, (3. * x, 4. * x))) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "non-flat outputs"): save.save(root, save_dir, to_save) def test_nested_dict_outputs(self): root = util.Checkpoint( f=def_function.function( lambda x: {"a": 2. * x, "b": (3. * x, 4. * x)})) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "dictionary containing non-Tensor value"): save.save(root, save_dir, to_save) def test_variable(self): root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function( lambda x: root.v1 * root.v2 * x) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir, to_save) self.assertAllEqual({"output_0": 12.}, _import_and_infer(save_dir, {"x": 2.})) def test_optimizer(self): x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) model = _ModelWithOptimizer() first_loss = model.call(x, y) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir, model.call) second_loss = model.call(x, y) self.assertNotEqual(first_loss, second_loss) self.assertAllClose( second_loss, _import_and_infer(save_dir, {"x": [[3., 4.]], "y": [2.]})) def test_single_method_default_signature(self): model = _ModelWithOptimizer() x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) model.call(x, y) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir) self.assertIn("loss", _import_and_infer(save_dir, {"x": [[3., 4.]], "y": [2.]})) def test_single_function_default_signature(self): model = tracking.AutoTrackable() model.f = def_function.function(lambda: 3., input_signature=()) model.f() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir) self.assertAllClose({"output_0": 3.}, _import_and_infer(save_dir, {})) def test_single_function_no_signature(self): model = tracking.AutoTrackable() model.f = def_function.function(lambda: 3.) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir) def test_find_default_save_function(self): class ObjWithDefaultSignature(util.Checkpoint): @def_function.function(input_signature=[tensor_spec.TensorSpec( shape=None, dtype=dtypes.float32)]) def _default_save_signature(self, x): return x + x + 1 obj = ObjWithDefaultSignature() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(obj, save_dir) self.assertAllClose( {"output_0": 7.}, _import_and_infer(save_dir, {"x": 3.})) def test_docstring(self): class Adder(module.Module): @def_function.function(input_signature=[tensor_spec.TensorSpec( shape=None, dtype=dtypes.float32)]) def add(self, x): return x + x + 1. to_save = Adder() to_save.add(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(to_save, save_dir) self.assertAllClose({"output_0": 7.}, _import_and_infer(save_dir, {"x": 3.})) def test_datastructures(self): class HasDatastructures(util.Checkpoint): def __init__(self): self.a = [1.] self.a.append(variables.Variable(2.)) self.b = {"a": variables.Variable(3.)} @def_function.function(input_signature=[tensor_spec.TensorSpec( shape=None, dtype=dtypes.float32)]) def add(self, x): return x + math_ops.add_n(self.a) + self.b["a"] to_save = HasDatastructures() to_save.add(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(to_save, save_dir) self.assertAllClose({"output_0": 10.}, _import_and_infer(save_dir, {"x": 4.})) def test_default_attr_stripping(self): class Complex(util.Checkpoint): @def_function.function(input_signature=[]) def __call__(self): return math_ops.complex( constant_op.constant(1.), constant_op.constant(2.), name="complex") to_save = Complex() to_save() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(to_save, save_dir) graph = ops.Graph() with graph.as_default(), self.session(graph) as session: loader.load(session, [tag_constants.SERVING], save_dir) func, = [f for name, f in graph._functions.items() if "call" in name] complex_node, = [ node for node in func.definition.node_def if node.op == "Complex"] self.assertNotIn("T", complex_node.attr) self.assertNotIn("Tout", complex_node.attr) def test_signature_attribute_reserved(self): root = util.Checkpoint(signatures=variables.Variable(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp(ValueError, "del obj.signatures"): save.save(root, save_dir) del root.signatures save.save(root, save_dir) def test_function_with_captured_dataset(self): if test_util.is_gpu_available(): self.skipTest("Currently broken when a GPU is available.") class HasDataset(module.Module): def __init__(self): super(HasDataset, self).__init__() self.dataset = ( dataset_ops.Dataset.range(5) .map(lambda x: x ** 2)) @def_function.function def __call__(self, x): current_sum = array_ops.zeros([], dtype=dtypes.int64) for element in self.dataset: current_sum += x * element return current_sum root = HasDataset() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save( root, save_dir, signatures=root.__call__.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.int64))) self.assertAllClose({"output_0": 3 * (1 + 4 + 9 + 16)}, _import_and_infer(save_dir, {"x": 3})) class AssetTests(test.TestCase): def setUp(self): super(AssetTests, self).setUp() self._vocab_path = os.path.join(self.get_temp_dir(), "vocab.txt") with open(self._vocab_path, "w") as f: f.write("alpha\nbeta\ngamma\n") def test_asset_path_returned(self): root = tracking.AutoTrackable() root.path = tracking.TrackableAsset(self._vocab_path) save_dir = os.path.join(self.get_temp_dir(), "saved_model") root.get_asset = def_function.function(lambda: root.path.asset_path) save.save(root, save_dir, signatures=root.get_asset.get_concrete_function()) second_dir = os.path.join(self.get_temp_dir(), "second_dir") file_io.rename(save_dir, second_dir) imported_path = _import_and_infer(second_dir, {})["output_0"] self.assertIn(compat.as_str_any(second_dir), compat.as_str_any(imported_path)) def test_table(self): initializer = lookup_ops.TextFileInitializer( self._vocab_path, key_dtype=dtypes.string, key_index=lookup_ops.TextFileIndex.WHOLE_LINE, value_dtype=dtypes.int64, value_index=lookup_ops.TextFileIndex.LINE_NUMBER) root = util.Checkpoint(table=lookup_ops.HashTable( initializer, default_value=-1)) root.table_user = def_function.function( root.table.lookup, input_signature=[tensor_spec.TensorSpec(None, dtypes.string)]) self.assertEqual( 2, self.evaluate(root.table_user(constant_op.constant("gamma")))) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir) file_io.delete_file(self._vocab_path) self.assertAllClose( {"output_0": [2, 0]}, _import_and_infer(save_dir, {"keys": ["gamma", "alpha"]})) second_dir = os.path.join(self.get_temp_dir(), "second_dir") # Asset paths should track the location the SavedModel is loaded from. file_io.rename(save_dir, second_dir) self.assertAllClose( {"output_0": [2, 1]}, _import_and_infer(second_dir, {"keys": ["gamma", "beta"]})) def test_unused_asset(self): root = tracking.AutoTrackable() root.f = def_function.function( lambda x: 2. * x, input_signature=[tensor_spec.TensorSpec(None, dtypes.float32)]) root.asset = tracking.TrackableAsset(self._vocab_path) export_dir = os.path.join(self.get_temp_dir(), "save_dir") save.save(root, export_dir) self.assertAllClose( {"output_0": [0.2]}, _import_and_infer(export_dir, {"x": [0.1]})) def test_sensible_function_building_exception(self): root = util.Checkpoint(v=variables.Variable(2.)) root.f = def_function.function( lambda x: 2. * root.v, input_signature=[tensor_spec.TensorSpec(None, dtypes.float32)]) export_dir = os.path.join(self.get_temp_dir(), "save_dir") @def_function.function def _calls_save(): save.save(root, export_dir) with self.assertRaisesRegexp(AssertionError, "tf.function"): _calls_save() class _ModelWithOptimizerUsingDefun(util.Checkpoint): def __init__(self): self.dense = core.Dense(1) self.optimizer = adam.Adam(0.01) # Using defun due to control flow v2 cycles, b/121159261. def_function uses # conds to gate variable initialization and so triggers cond reference cycles, # but the thing being wrapped here does not use cond itself. @function.defun( input_signature=(tensor_spec.TensorSpec([None, 2], dtypes.float32), tensor_spec.TensorSpec([None], dtypes.float32)), ) def call(self, x, y): with backprop.GradientTape() as tape: loss = math_ops.reduce_mean((self.dense(x) - y) ** 2.) trainable_variables = self.dense.trainable_variables gradients = tape.gradient(loss, trainable_variables) self.optimizer.apply_gradients(zip(gradients, trainable_variables)) return {"loss": loss} class MemoryTests(test.TestCase): def setUp(self): self._model = _ModelWithOptimizerUsingDefun() @test_util.assert_no_garbage_created def test_no_reference_cycles(self): x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) self._model.call(x, y) if sys.version_info[0] < 3: # TODO(allenl): debug reference cycles in Python 2.x self.skipTest("This test only works in Python 3+. Reference cycles are " "created in older Python versions.") save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(self._model, save_dir, self._model.call) if __name__ == "__main__": test.main()
py
b412faf751e0f54fa2d18eb1a931f4090951de75
import sys import re from multiprocessing.connection import Listener from kazoo.client import KazooClient from kazoo.client import KazooState from data_api import DataAPI class DataApiListener(): def __init__(self, pipe_address, zoo_address): # Requests pipe self.listener = Listener(pipe_address) # Kazoo client self.kz_client = KazooClient(hosts=zoo_address) self.kz_client.start() # Requesting API self.__api = DataAPI(self.kz_client) # Flag to disconnect self.__keep_running = True def run(self): """Run a daemon, accepting requests for the API. This daemon will run until stop() is called on the ApiListener instance. """ while self.__keep_running: new_c = self.listener.accept() # Check there is data to read if not new_c.poll(0.2): # Close after 0.2 seconds idle new_c.close() continue # Accept new connections c_data = new_c.recv() # Request api result = self.__parse_request(c_data) # Return result of operation new_c.send(result) # Close connection new_c.close() # Close socket self.listener.close() # End Kazoo connection self.kz_client.stop() self.kz_client.close() def stop(self): """Stop further connections to this client.""" self.__keep_running = False def __parse_request(self, req): """Parse an incoming request. Returns a dictionary containing the following items: res = { code : <integer>, data : <string, dict> } """ result = {'code' : 0, 'data' : ''} if self.kz_client.state is not KazooState.CONNECTED: result['code'] = -2 result['data'] = "Server unavailable" return result if type(req) is not dict: result['code'] = -1 result['data'] = "Invalid data format" return result try: result['data'] = self.__run_request(req) except Exception as e: result['code'] = -3 result['data'] = str(e) return result def __run_request(self, req): result = '' op = req.get('operation', None) data = req.get('data', None) if op == "create": result = self.__api.create_tournament( name = data['name'], modality = data['modality'], password = data['password'], players = data['players'] ) elif op == "update": result = self.__api.update_tournament( tournament_id = data['id'], version = data['version'], classification = data['classification'], password = data['password'] ) elif op == "delete": result = self.__api.delete_tournament( tournament_id = data['id'], password = data['password'] ) elif op == "get": result = self.__api.get_tournament( tournament_id = data['id'] ) elif op == "get_list": result = self.__api.get_tournament_list() elif op == "status": result = { 'status' : self.kz_client.state, 'address' : self.kz_client.hosts } elif op == "setpath": new_path = data['path'] # Match filesystem format "/path/to/some_where/else" if re.compile("/([\d\w_]+/?)*").match(new_path): self.__api.set_data_path(data['path']) result = data['path'] else: raise Exception("Malformed path") elif op == "dummy": result = 'OK' else: raise Exception("Operation " + op + " is invalid.") return result if __name__ == '__main__': if len(sys.argv) != 3: print("Wrong argument count!") print("python3 {0} <socket_port> <zookeeper_ip:port>".format( sys.argv[0])) else: pipe_address = ("localhost", int(sys.argv[1])) zoo_address = sys.argv[2] listener = DataApiListener(pipe_address, zoo_address) listener.run()
py
b412fb24367de732566ec094764a363b17ab894b
x=5.9 x_int=int(x) print(x_int)ф result=x-x_int print(result) print(int(result*10))
py
b412fb390dc5e8ac583aab32a8abbc1cc5688405
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from botbuilder.dialogs import DialogTurnResult, ComponentDialog, DialogContext from botbuilder.core import BotFrameworkAdapter from botbuilder.schema import ActivityTypes class LogoutDialog(ComponentDialog): def __init__(self, dialog_id: str, connection_name: str): super(LogoutDialog, self).__init__(dialog_id) self.connection_name = connection_name async def on_begin_dialog( self, inner_dc: DialogContext, options: object ) -> DialogTurnResult: result = await self._interrupt(inner_dc) if result: return result return await super().on_begin_dialog(inner_dc, options) async def on_continue_dialog(self, inner_dc: DialogContext) -> DialogTurnResult: result = await self._interrupt(inner_dc) if result: return result return await super().on_continue_dialog(inner_dc) async def _interrupt(self, inner_dc: DialogContext): if inner_dc.context.activity.type == ActivityTypes.message: text = inner_dc.context.activity.text.lower() if text == "logout": bot_adapter: BotFrameworkAdapter = inner_dc.context.adapter await bot_adapter.sign_out_user(inner_dc.context, self.connection_name) await inner_dc.context.send_activity("You have been signed out.") return await inner_dc.cancel_all_dialogs()
py
b412fb4ff49c645e85db64199af44b4dbab33202
import micropyro as mp # read the database database = mp.ReadDatabase.from_csv('database_example.csv') # read the experimental matrix exp_matrix = mp.ReadExperimentTable.from_csv("experimental_matrix.csv", header=0, use_is=True) exp_matrix.compute_is_amount(concentration=0.03) # get the blob dfs dfs = [] temperatures = [] for row_name, row in exp_matrix.df.iterrows(): # print(row_name) blob_file = mp.read_blob_file(f'{row_name}.cdf_img01_Blob_Table.csv') mp.perform_matching_database(blob_df=blob_file, database_df=database.df, extra_columns=['group']) blob_file = mp.compute_yields_is(experiment_df_row=row, blob_df=blob_file, internal_standard_name='fluoranthene') temperatures.append(row['temperature']) # print(blob_file['yield mrf'].nlargest(5)) dfs.append(blob_file) fig, ax = mp.compare_yields(dfs, compounds=['phenol', 'p-cresol', "benzene"], x_axis = temperatures) ax.set_xlabel('Reactor Temperature, C') ax.set_ylabel('Yield, %') fig.savefig('comparison.pdf')
py
b412fba11bcbf32bed64fcccf826f3efc5eb7d01
#!/usr/bin/env python3 # pylint: disable=too-few-public-methods, missing-docstring from __future__ import division, print_function import argparse import datetime import json import logging import os import re import sqlite3 import subprocess import sys import time __version__ = '0.9.2.dev' LOG = logging.getLogger('slurm2sql') LOG.setLevel(logging.DEBUG) if sys.version_info[0] >= 3: logging.lastResort.setLevel(logging.INFO) else: ch = logging.lastResort = logging.StreamHandler() ch.setLevel(logging.DEBUG) LOG.addHandler(ch) # # First, many converter functions/classes which convert strings to # useful values. # # Single converter functions: transform one column to sqlite value # stored as that same column. def nullint(x): """int or None""" return int(x) if x else None def nullstr_strip(x): """str or None""" return str(x).strip() if x else None def unixtime(x): """Timestamp in local time, converted to unixtime""" if not x: return None if x == 'Unknown': return None return time.mktime(time.strptime(x, '%Y-%m-%dT%H:%M:%S')) def datetime_timestamp(dt): """Convert a datetime object to unixtime - Only needed because we support python 2""" if hasattr(dt, 'timestamp'): # python3 return dt.timestamp() return time.mktime(dt.timetuple()) def slurmtime(x): """Parse slurm time of format [dd-[hh:]]mm:ss""" if not x: return None # Handle 'UNLIMITED' ,'Partition_Limit' in 'timelimit' field if x in {'Partition_Limit', 'UNLIMITED'}: return None seconds = 0 # The anchor is different if there is '-' or not. With '-' it is [dd]-hh[:mm[:ss]]. Without it is mm[:ss] first, then hh:mm:ss if '-' in x: days, time_ = x.split('-', 1) seconds += int(days) * 24 * 3600 hms = time_.split(':') if len(hms) >= 1: seconds += 3600 * int(hms[0]) # hour if len(hms) >= 2: seconds += 60 * float(hms[1]) # min if len(hms) >= 3: seconds += int(hms[2]) # sec else: time_ = x hms = time_.split(':') # If only a single number is given, it is interperted as minutes if len(hms) >= 3: seconds += 3600 * int(hms[-3]) # hour if len(hms) >= 2: seconds += float(hms[-1]) # sec if len(hms) >= 1: seconds += 60 * int(hms[-2] if len(hms)>=2 else hms[-1]) # min return seconds def slurm_timestamp(x): """Convert a datetime to the Slurm format of timestamp """ if not isinstance(x, datetime.datetime): x = datetime.datetime.fromtimestamp(x - 5) return x.strftime('%Y-%m-%dT%H:%M:%S') def str_unknown(x): if x == 'Unknown': return None return x def slurmmem(x): """Memory, removing 'n' or 'c' at end, in KB""" if not x: return None x = x.strip('nc') return float_bytes(x) # Converting kibi/mibi, etc units to numbers def unit_value_binary(unit): """Convert a unit to its value, e.g. 'K'-->1024, 'M'-->1048576""" if unit is None: unit = '_' return 2**(10*'_kmgtpezy'.index(unit.lower())) def unit_value_metric(unit): """Convert a unit to its value, e.g. 'K'-->1000, 'M'-->1000000""" if unit is None: unit = '_' return 1000**('_kmgtpezy'.index(unit.lower())) def float_bytes(x, convert=float): """Convert a float with unit (K,M, etc) to value""" if not x: return None unit = x[-1].lower() if unit in 'kmgtpezy': return convert(x[:-1]) * unit_value_binary(unit) return convert(x) def int_bytes(x): return float_bytes(x, convert=lambda x: int(float(x))) def float_metric(x, convert=float): """Convert a float with unit (K,M, etc) to value""" if not x: return None unit = x[-1].lower() if unit in 'kmgtpezy': return convert(x[:-1]) * unit_value_metric(unit) return convert(x) def int_metric(x): return float_metric(x, convert=lambda x: int(float(x))) # Row converter fuctions which need *all* values to convert. Classes # with one method, 'calc', which takes the whole row (a dict) and # converts it to a sqlite value. The only point of the class is to be # able to easily distinguish the function from the column functions # above. class linefunc(object): """Base class for all converter functions""" linefunc = True # Submit, start, and end times as unixtimes class slurmDefaultTime(linefunc): @staticmethod def calc(row): """Latest active time. All jobs in sacct are already started, so this is either current time or end time. """ if row['End'] != 'Unknown': return row['End'] if row['Start'] != 'Unknown': # Currently running, return current time since it's constantly updated. return time.strftime("%Y-%m-%dT%H:%M:%S") # Return submit time, since there is nothing else. return row['Submit'] class slurmDefaultTimeTS(linefunc): @staticmethod def calc(row): """Lastest active time (see above), unixtime.""" return unixtime(slurmDefaultTime.calc(row)) class slurmSubmitTS(linefunc): @staticmethod def calc(row): return unixtime(row['Submit']) class slurmStartTS(linefunc): @staticmethod def calc(row): return unixtime(row['Start']) class slurmEndTS(linefunc): @staticmethod def calc(row): return unixtime(row['End']) class slurmBilling(linefunc): @staticmethod def calc(row): tres = row['AllocTRES'] if not tres: return None m = re.search(r'billing=(\d+)', tres) if m: return int(m.group(1)) # Memory stuff class slurmMemNode(linefunc): """Memory per node""" @staticmethod def calc(row): reqmem = row['ReqMem'] if not reqmem: return None ncpus = int(row['NCPUS']) if ncpus == 0: return 0 nnodes = int(row['NNodes']) if nnodes == 0: return None if reqmem.endswith('c'): return slurmmem(reqmem) * ncpus / nnodes if reqmem.endswith('n'): return slurmmem(reqmem) return slurmmem(reqmem) / nnodes class slurmMemCPU(linefunc): """Memory per cpu, computed if necessary""" @staticmethod def calc(row): reqmem = row['ReqMem'] if not reqmem: return None nnodes = int(row['NNodes']) if nnodes == 0: return 0 ncpus = int(row['NCPUS']) if ncpus == 0: return None if reqmem.endswith('c'): return slurmmem(reqmem) if reqmem.endswith('n'): return slurmmem(reqmem) * nnodes / ncpus return slurmmem(reqmem) / ncpus class slurmMemType(linefunc): """Memory type: 'n' per node, 'c' per core""" @staticmethod def calc(row): reqmem = row['ReqMem'] if not reqmem: return None if reqmem.endswith('n'): return 'n' if reqmem.endswith('c'): return 'c' return None # latest slurm seems to not have this, ~2021-2022 class slurmMemRaw(linefunc): """Raw value of ReqMem column, with 'c' or 'n' suffix""" @staticmethod def calc(row): return row['ReqMem'] # GPU stuff class slurmReqGPU(linefunc): @staticmethod def calc(row): if 'ReqGRES' in row: gres = row['ReqGRES'] else: gres = row['ReqTRES'] if not gres: return None # Slurm 20.11 uses gres= within ReqTRES (instead of ReqGRES) m = re.search(r'gpu[:=](\d+)', gres) if m: return int(m.group(1)) class slurmGPUMem(linefunc): @staticmethod def calc(row): comment = row['Comment'] if not comment.strip(): return if 'No GPU stats' in comment: return if comment == 'abort': return try: comment = json.loads(comment) except: return None if 'gpu_mem_max' not in comment: return return comment.get('gpu_mem_max') * (2**20) class slurmGPUEff(linefunc): @staticmethod def calc(row): comment = row['Comment'] if not comment.strip(): return if 'No GPU stats' in comment: return if comment == 'abort': return try: comment = json.loads(comment) except: return None if 'gpu_util' not in comment: return return comment['gpu_util']/100. class slurmGPUCountComment(linefunc): @staticmethod def calc(row): comment = row['Comment'] if not comment.strip(): return if 'No GPU stats' in comment: return if comment == 'abort': return try: comment = json.loads(comment) except: return None return comment.get('ngpu') class slurmGPUCount(linefunc): @staticmethod def calc(row): tres = row['AllocTRES'] or row['ReqTRES'] if not tres: return None m = re.search(r'gpu=(\d+)', tres) if m: return int(m.group(1)) # Job ID related stuff class slurmJobIDplain(linefunc): """The JobID without any . or _""" @staticmethod def calc(row): return int(row['JobID'].split('_')[0].split('.')[0]) class slurmJobIDrawplain(linefunc): """The JobID without any . or _""" @staticmethod def calc(row): return int(row['JobIDRaw'].split('_')[0].split('.')[0]) class slurmJobIDRawnostep(linefunc): """The JobID without any . or _""" @staticmethod def calc(row): return int(row['JobIDRaw'].split('_')[0].split('.')[0]) class slurmArrayTaskID(linefunc): @staticmethod def calc(row): if '_' not in row['JobID']: return if '[' in row['JobID']: return return int(row['JobID'].split('_')[1].split('.')[0]) class slurmJobStep(linefunc): @staticmethod def calc(row): if '.' not in row['JobID']: return return row['JobID'].split('.')[-1] # not necessarily an integer class slurmJobIDslurm(linefunc): """The JobID field as slurm gives it, including _ and .""" @staticmethod def calc(row): return row['JobID'] # Efficiency stuff class slurmMemEff(linefunc): #https://github.com/SchedMD/slurm/blob/master/contribs/seff/seff @staticmethod def calc(row): reqmem_type = slurmMemType.calc(row) mem_max = slurmmem(row['MaxRSS']) reqmem = slurmmem(row['ReqMem']) nnodes = slurmmem(row['NNodes']) if not reqmem or mem_max is None: return if reqmem_type == 'c': nodemem = reqmem * int(row['NCPUS']) elif reqmem_type == 'n': nodemem = reqmem elif reqmem_type is None: nodemem = reqmem / nnodes else: raise ValueError('unknown memory type: %s'%reqmem_type) return mem_max / nodemem class slurmCPUEff(linefunc): # This matches the seff tool currently: # https://github.com/SchedMD/slurm/blob/master/contribs/seff/seff @staticmethod def calc(row): walltime = slurmtime(row['Elapsed']) if not walltime: return None cpueff = slurmtime(row['TotalCPU']) / (walltime * int(row['NCPUS'])) return cpueff class slurmConsumedEnergy(linefunc): @staticmethod def calc(row): if not row['ConsumedEnergyRaw']: return None return int(row['ConsumedEnergyRaw']) class slurmExitCodeRaw(linefunc): @staticmethod def calc(row): if not row['ExitCode']: return None return row['ExitCode'] class slurmExitCode(linefunc): @staticmethod def calc(row): if not row['ExitCode']: return None return int(row['ExitCode'].split(':')[0]) class slurmExitSignal(linefunc): @staticmethod def calc(row): if not row['ExitCode']: return None return int(row['ExitCode'].split(':')[1]) # All defined columns and their respective converter functions. If a # key begins in a underscore, this is not a Slurm DB field (don't # query it from sacct), it is computed from other fields in this # program. It gets added to our sqlite database without the # underscore. COLUMNS = { # Basic job metadata # Job IDs are of the forms (from sacct man page): # - JobID.JobStep # - ArrayJobID_ArrayTaskID.JobStep # And the below is consistent with this. 'JobID': slurmJobIDrawplain, # Integer JobID (for arrays JobIDRaw), # without array/step suffixes. '_ArrayJobID': slurmJobIDplain, # Same job id for all jobs in an array. # If not array, same as JobID '_ArrayTaskID': slurmArrayTaskID, # Part between '_' and '.' '_JobStep': slurmJobStep, # Part after '.' '_JobIDSlurm': slurmJobIDslurm, # JobID directly as Slurm presents it # (with '_' and '.') #'JobIDRawSlurm': str, # 'JobName': str, # Free-form text name of the job 'User': str, # Username 'Group': str, # Group 'Account': str, # Account '_Billing': slurmBilling, # Billing (from tres) # Times and runtime info 'State': str, # Job state 'Timelimit': slurmtime, # Timelimit specified by user 'Elapsed': slurmtime, # Walltime of the job #'_Time': slurmDefaultTime, # Genalized time, max(Submit, End, (current if started)) #'Submit': str_unknown, # Submit time in yyyy-mm-ddThh:mm:ss straight from slurm #'Start': str_unknown, # Same, job start time #'End': str_unknown, # Same, job end time '_Time': slurmDefaultTimeTS, # unixtime: Genalized time, max(Submit, End, (current if started)) 'Submit': slurmSubmitTS, # unixtime: Submit 'Start': slurmStartTS, # unixtime: Start 'End': slurmEndTS, # unixtime: End 'Partition': str, # Partition '_ExitCodeRaw': slurmExitCodeRaw, # ExitStatus:Signal 'ExitCode': slurmExitCode, # ExitStatus from above, int '_ExitSignal': slurmExitSignal, # Signal from above, int 'NodeList': str, # Node list of jobs 'Priority': nullint, # Slurm priority (higher = will run sooner) '_ConsumedEnergy': slurmConsumedEnergy, # Stuff about number of nodes 'ReqNodes': int_bytes, # Requested number of nodes 'NNodes': nullint, # Number of nodes (allocated if ran, requested if not yet) 'AllocNodes': nullint, # Number of nodes (allocated, zero if not running yet) # Miscelaneous requested resources 'ReqTRES': str, 'ReqGRES': str, # Raw GRES string 'NTasks': nullint, #'AllocGRES' 'AllocTRES': str, # CPU related 'NCPUS': nullint, # === AllocCPUS 'ReqCPUS': nullint, # Requested CPUs 'AllocCPUS': nullint, # === NCPUS 'CPUTime': slurmtime, # = Elapsed * NCPUS (= CPUTimeRaw) (not how much used) 'TotalCPU': slurmtime, # = Elapsed * NCPUS * efficiency 'UserCPU': slurmtime, # 'SystemCPU': slurmtime, # '_CPUEff': slurmCPUEff, # CPU efficiency, should be same as seff 'MinCPU': slurmtime, # Minimum CPU used by any task in the job 'MinCPUNode': str, 'MinCPUTask': str, # Memory related 'ReqMem': str, # Requested mem, value from slurm. Has a 'c' on 'n' suffix '_ReqMemType': slurmMemType, # 'c' for mem-per-cpu or 'n' for mem-per-node '_ReqMemNode': slurmMemNode, # Mem per node, computed if type 'c' '_ReqMemCPU': slurmMemCPU, # Mem per cpu, computed if type 'n' 'AveRSS': slurmmem, 'MaxRSS': slurmmem, 'MaxRSSNode': str, 'MaxRSSTask': str, 'MaxPages': int_metric, 'MaxVMSize': slurmmem, '_MemEff': slurmMemEff, # Slurm memory efficiency # Disk related 'AveDiskRead': int_bytes, 'AveDiskWrite': int_bytes, 'MaxDiskRead': int_bytes, 'MaxDiskReadNode': str, 'MaxDiskReadTask': str, 'MaxDiskWrite': int_bytes, 'MaxDiskWriteNode': str, 'MaxDiskWriteTask': str, # GPU related '_ReqGPUS': slurmReqGPU, # Number of GPUS requested 'Comment': nullstr_strip, # Slurm Comment field (at Aalto used for GPU stats) '_GPUMem': slurmGPUMem, # GPU mem extracted from comment field '_GPUEff': slurmGPUEff, # GPU utilization (0.0 to 1.0) extracted from comment field '_NGPU': slurmGPUCount, # Number of GPUs, extracted from comment field } # Everything above that does not begin with '_' is queried from sacct. # These extra columns are added (don't duplicate with the above!) COLUMNS_EXTRA = ['ConsumedEnergyRaw', 'JobIDRaw'] def main(argv=sys.argv[1:], db=None, raw_sacct=None): """Parse arguments and use the other API""" parser = argparse.ArgumentParser() parser.add_argument('db', help="Database filename to create or update") parser.add_argument('sacct_filter', nargs='*', help="sacct options to filter jobs. For example, one " "would usually give '-a' or '-S 2019-08-01' " "here, for example") parser.add_argument('--update', '-u', action='store_true', help="If given, don't delete existing database and " "instead insert or update rows") parser.add_argument('--history', help="Scrape dd-hh:mm:ss or [hh:]mm:ss from the past to now (Slurm time format)") parser.add_argument('--history-resume', action='store_true', help="Day-by-day collect history, starting from last collection.") parser.add_argument('--history-days', type=int, help="Day-by-day collect history, starting this many days ago.") parser.add_argument('--history-start', help="Day-by-day collect history, starting on this day.") parser.add_argument('--history-end', help="Day-by-day collect history ends on this day. Must include one " "of the other history options to have any effect.") parser.add_argument('--jobs-only', action='store_true', help="Don't include job steps but only the man jobs") parser.add_argument('--quiet', '-q', action='store_true', help="Don't output anything unless errors") parser.add_argument('--verbose', '-v', action='store_true', help="Output more logging info") args = parser.parse_args(argv) if args.verbose: logging.lastResort.setLevel(logging.DEBUG) LOG.debug(args) if args.quiet: logging.lastResort.setLevel(logging.WARN) # db is only given as an argument in tests (normally) if db is None: # Delete existing database unless --update/-u is given if not (args.update or args.history_resume) and os.path.exists(args.db): os.unlink(args.db) db = sqlite3.connect(args.db) sacct_filter = args.sacct_filter # If --history-days, get just this many days history if (args.history is not None or args.history_resume or args.history_days is not None or args.history_start is not None): errors = get_history(db, sacct_filter=sacct_filter, history=args.history, history_resume=args.history_resume, history_days=args.history_days, history_start=args.history_start, history_end=args.history_end, jobs_only=args.jobs_only, raw_sacct=raw_sacct) create_indexes(db) # Normal operation else: errors = slurm2sql(db, sacct_filter=sacct_filter, update=args.update, jobs_only=args.jobs_only, raw_sacct=raw_sacct, verbose=args.verbose) create_indexes(db) if errors: LOG.warning("Completed with %s errors", errors) return(1) return(0) def get_history(db, sacct_filter=['-a'], history=None, history_resume=None, history_days=None, history_start=None, history_end=None, jobs_only=False, raw_sacct=None): """Get history for a certain period of days. Queries each day and updates the database, so as to avoid overloading sacct and causing a failure. Returns: the number of errors. """ errors = 0 now = datetime.datetime.now().replace(microsecond=0) today = datetime.date.today() if history_resume: try: start = get_last_timestamp(db) except sqlite3.OperationalError: import traceback traceback.print_exc() print() print("Error fetching last start time (see above)", file=sys.stderr) exit(5) start = datetime.datetime.fromtimestamp(start - 5) elif history is not None: start = now - datetime.timedelta(seconds=slurmtime(history)) elif history_days is not None: start = datetime.datetime.combine(today - datetime.timedelta(days=history_days), datetime.time()) elif history_start is not None: start = datetime.datetime.strptime(history_start, '%Y-%m-%d') if history_end is not None: stop = datetime.datetime.strptime(history_end, '%Y-%m-%d') else: stop = now + datetime.timedelta(seconds=6*3600) days_ago = (now - start).days day_interval = 1 while start <= stop: end = start+datetime.timedelta(days=day_interval) end = end.replace(hour=0, minute=0, second=0, microsecond=0) new_filter = sacct_filter + [ '-S', slurm_timestamp(start), '-E', slurm_timestamp(end), ] LOG.debug(new_filter) LOG.info("%s %s", days_ago, start.date() if history_days is not None else start) errors += slurm2sql(db, sacct_filter=new_filter, update=True, jobs_only=jobs_only, raw_sacct=raw_sacct) db.commit() update_last_timestamp(db, update_time=end) start = end days_ago -= day_interval return errors def sacct(slurm_cols, sacct_filter): cmd = ['sacct', '-o', ','.join(slurm_cols), '-P', '--units=K', '--delimiter=;|;', #'--allocations', # no job steps, only total jobs, but doesn't show used resources. ] + list(sacct_filter) #LOG.debug(' '.join(cmd)) error_handling = {'errors':'replace'} if sys.version_info[0]>=3 else {} p = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True, **error_handling) return p.stdout def create_indexes(db): db.execute('CREATE INDEX IF NOT EXISTS idx_slurm_start ON slurm (Start)') db.execute('CREATE INDEX IF NOT EXISTS idx_slurm_user_start ON slurm (User, Start)') db.execute('CREATE INDEX IF NOT EXISTS idx_slurm_time ON slurm (Time)') db.execute('CREATE INDEX IF NOT EXISTS idx_slurm_user_time ON slurm (User, Time)') db.execute('ANALYZE;') db.commit() def slurm2sql(db, sacct_filter=['-a'], update=False, jobs_only=False, raw_sacct=None, verbose=False): """Import one call of sacct to a sqlite database. db: open sqlite3 database file object. sacct_filter: filter for sacct, list of arguments. This should only be row filters, such as ['-a'], ['-S' '2019-08-01'], and so on. The argument should be a list. You can't currently filter what columns are selected. raw_sacct: If given, do not run sacct but use this as the input (file-like object) Returns: the number of errors """ columns = COLUMNS.copy() # Slurm > 20.11 deprecates ReqGRES, everything is put only into # ReqTRES. So don't fitch ReqGRES to avoid a warning. if slurm_version() >= (20, 11): del columns['ReqGRES'] create_columns = ', '.join('"'+c.strip('_')+'"' for c in columns) create_columns = create_columns.replace('JobIDSlurm"', 'JobIDSlurm" UNIQUE') db.execute('CREATE TABLE IF NOT EXISTS slurm (%s)'%create_columns) db.execute('CREATE TABLE IF NOT EXISTS meta_slurm_lastupdate (id INTEGER PRIMARY KEY, update_time REAL)') db.execute('CREATE VIEW IF NOT EXISTS allocations AS select * from slurm where JobStep is null;') db.execute('PRAGMA journal_mode = WAL;') db.commit() c = db.cursor() slurm_cols = tuple(c for c in list(columns.keys()) + COLUMNS_EXTRA if not c.startswith('_')) # Read data from sacct, or interpert sacct_filter directly as # testdata if it has the attribute 'testdata' if raw_sacct is None: # This is a real filter, read data lines = sacct(slurm_cols, sacct_filter) else: # Support tests - raw lines can be put in lines = raw_sacct # We don't use the csv module because the csv can be malformed. # In particular, job name can include newlines(!). TODO: handle job # names with newlines. errors = 0 line_continuation = None for i, rawline in enumerate(lines): if i == 0: # header header = rawline.strip().split(';|;') continue # Handle fields that have embedded newline (JobName). If we # have too few fields, save the line and continue. if line_continuation: rawline = line_continuation + rawline line_continuation = None line = rawline.strip().split(';|;') if len(line) < len(slurm_cols): line_continuation = rawline continue # (end) if len(line) > len(slurm_cols): LOG.error("Line with wrong number of columns: (want=%s, have=%s) %s", len(slurm_cols), len(line), rawline) errors += 1 continue line = dict(zip(header, line)) # If --jobs-only, then skip all job steps (sacct updates the # mem/cpu usage on the allocation itself already) step_id = slurmJobStep.calc(line) if jobs_only and step_id is not None: continue #LOG.debug(line) processed_line = {k.strip('_'): (columns[k](line[k]) #if not isinstance(columns[k], type) or not issubclass(columns[k], linefunc) if not hasattr(columns[k], 'linefunc') else columns[k].calc(line)) for k in columns.keys()} c.execute('INSERT %s INTO slurm (%s) VALUES (%s)'%( 'OR REPLACE' if update else '', ','.join('"'+x+'"' for x in processed_line.keys()), ','.join(['?']*len(processed_line))), tuple(processed_line.values())) # Committing every so often allows other queries to succeed if i%10000 == 0: #print('committing') db.commit() if verbose: print('... processing row %d'%i) db.commit() return errors def update_last_timestamp(db, update_time=None): """Update the last update time in the database, for resuming. Updates the one row of the meta_slurm_lastupdate with the latest unix timestamp, as passed as an argument (or now) """ if update_time is None: update_time = time.time() if isinstance(update_time, datetime.datetime): update_time = datetime_timestamp(update_time) update_time = min(update_time, time.time()) db.execute("INSERT OR REPLACE INTO meta_slurm_lastupdate (id, update_time) VALUES (0, ?)", (update_time, )) db.commit() def get_last_timestamp(db): """Return the last update timestamp from the database""" return db.execute('SELECT update_time FROM meta_slurm_lastupdate').fetchone()[0] def slurm_version(cmd=['sacct', '--version']): """Return the version number of Slurm, as a tuple""" # example output: b'slurm 18.08.8\n' or slurm 19.05.7-Bull.1.0 slurm_version = subprocess.check_output(cmd).decode() slurm_version = re.match(r"slurm\s([0-9]+)\.([0-9]+)\.([0-9]+)", slurm_version) slurm_version = tuple(int(x) for x in slurm_version.groups()) return slurm_version if __name__ == "__main__": exit(main(sys.argv[1:]))
py
b412fc24ca322b3b4b3ef1d71c52ba492842e7b3
#!/usr/bin/env python3 # Copyright 2020 Stanford University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import h5py import pygion from pygion import acquire, attach_hdf5, task, Fspace, Ispace, Region, R import numpy def generate_hdf5_file(filename, dims): with h5py.File(filename, 'w') as f: f.create_dataset('x', dims, dtype='i4') f.create_dataset('uu', dims, dtype='i4') f.create_dataset('z', dims, dtype='i4') f.create_dataset('w', dims, dtype='i4') @task(privileges=[R]) def print_region(R): print(R.x) @task def main(): R = Region([4, 4], {'x': pygion.int32, 'uu': pygion.int32, 'z': pygion.int32, 'w': pygion.int32}) generate_hdf5_file('test.h5', [4, 4]) with attach_hdf5(R, 'test.h5', {'x': 'x', 'uu': 'uu', 'z': 'z', 'w': 'w'}, pygion.file_read_only): with acquire(R, ['x', 'uu', 'z']): print_region(R) if __name__ == '__main__': main()
py
b412fd2b2decc24c4bc05b92899f9897067c3655
# AI for Business - Minimize cost with Deep Q-Learning # Building the Brain without Dropout # Importing the libraries from keras.layers import Input, Dense from keras.models import Model from keras.optimizers import Adam # BUILDING THE BRAIN class Brain(object): # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE THE INIT METHOD def __init__(self, learning_rate = 0.001, number_actions = 5): self.learning_rate = learning_rate # BUILDIND THE INPUT LAYER COMPOSED OF THE INPUT STATE states = Input(shape = (3,)) # BUILDING THE FULLY CONNECTED HIDDEN LAYERS x = Dense(units = 64, activation = 'sigmoid')(states) y = Dense(units = 32, activation = 'sigmoid')(x) # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST HIDDEN LAYER q_values = Dense(units = number_actions, activation = 'softmax')(y) # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT self.model = Model(inputs = states, outputs = q_values) # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND A CHOSEN OPTIMIZER self.model.compile(loss = 'mse', optimizer = Adam(lr = learning_rate))
py
b412fdce5baec909784e38839857f5f2c6abada7
# Copyright 2019 The IREE Authors # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import json import numpy as np import unittest from iree import runtime as rt from iree.runtime.function import ( FunctionInvoker, IMPLICIT_BUFFER_ARG_MEMORY_TYPE, IMPLICIT_BUFFER_ARG_USAGE, ) from iree.runtime._binding import VmVariantList class MockVmContext: def __init__(self, invoke_callback): self._invoke_callback = invoke_callback self.invocations = [] def invoke(self, vm_function, arg_list, ret_list): self._invoke_callback(arg_list, ret_list) self.invocations.append((vm_function, arg_list, ret_list)) print(f"INVOKE: {arg_list} -> {ret_list}") @property def mock_arg_reprs(self): return repr([arg_list for _, arg_list, _ in self.invocations]) class MockVmFunction: def __init__(self, reflection): self.reflection = reflection class FunctionTest(unittest.TestCase): @classmethod def setUpClass(cls): # Doesn't matter what device. We just need one. config = rt.Config("vmvx") cls.device = config.device def testNoReflectionScalars(self): def invoke(arg_list, ret_list): ret_list.push_int(3) ret_list.push_int(4) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(1, 2) self.assertEqual("[<VmVariantList(2): [1, 2]>]", vm_context.mock_arg_reprs) self.assertEqual((3, 4), result) def testKeywordArgs(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ "i32", ["named", "a", "i32"], ["named", "b", "i32"], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(-1, a=1, b=2) self.assertEqual("[<VmVariantList(3): [-1, 1, 2]>]", vm_context.mock_arg_reprs) self.assertEqual(3, result) def testListArg(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["slist", "i32", "i32"],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker([2, 3]) self.assertEqual("[<VmVariantList(1): [List[2, 3]]>]", vm_context.mock_arg_reprs) def testListArgNoReflection(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker([2, 3]) self.assertEqual("[<VmVariantList(1): [List[2, 3]]>]", vm_context.mock_arg_reprs) def testListArgArityMismatch(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["slist", "i32", "i32"],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "expected a sequence with 2 values. got:"): _ = invoker([2, 3, 4]) def testTupleArg(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["stuple", "i32", "i32"],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker((2, 3)) self.assertEqual("[<VmVariantList(1): [List[2, 3]]>]", vm_context.mock_arg_reprs) def testDictArg(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [["sdict", ["a", "i32"], ["b", "i32"]],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker({"b": 3, "a": 2}) self.assertEqual("[<VmVariantList(1): [List[2, 3]]>]", vm_context.mock_arg_reprs) def testDictArgArityMismatch(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [["sdict", ["a", "i32"], ["b", "i32"]],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "expected a dict with 2 values. got:"): _ = invoker({"a": 2, "b": 3, "c": 4}) def testDictArgKeyError(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [["sdict", ["a", "i32"], ["b", "i32"]],], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "could not get item 'b' from: "): _ = invoker({"a": 2, "c": 3}) def testDictArgNoReflection(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker({"b": 3, "a": 2}) self.assertEqual("[<VmVariantList(1): [List[2, 3]]>]", vm_context.mock_arg_reprs) def testInlinedResults(self): def invoke(arg_list, ret_list): ret_list.push_int(3) ret_list.push_int(4) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [], "r": [["slist", "i32", "i32"]], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() self.assertEqual([3, 4], result) def testNestedResults(self): def invoke(arg_list, ret_list): ret_list.push_int(3) sub_list = VmVariantList(2) sub_dict = VmVariantList(2) sub_dict.push_int(100) sub_dict.push_int(200) sub_list.push_list(sub_dict) sub_list.push_int(6) ret_list.push_list(sub_list) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [], "r": [ "i32", [ "slist", ["sdict", ["bar", "i32"], ["foo", "i32"]], "i64", ] ], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() self.assertEqual((3, [{"bar": 100, "foo": 200}, 6]), result) def testMissingPositional(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ "i32", ["named", "a", "i32"], ["named", "b", "i32"], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "mismatched call arity:"): result = invoker(a=1, b=1) def testMissingPositionalNdarray(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ ["ndarray", "i32", 1, 1], ["named", "a", ["ndarray", "i32", 1, 1]], ["named", "b", ["ndarray", "i32", 1, 1]], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "mismatched call arity:"): result = invoker(a=1, b=1) def testMissingKeyword(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ "i32", ["named", "a", "i32"], ["named", "b", "i32"], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "mismatched call arity:"): result = invoker(-1, a=1) def testMissingKeywordNdArray(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ ["ndarray", "i32", 1, 1], ["named", "a", ["ndarray", "i32", 1, 1]], ["named", "b", ["ndarray", "i32", 1, 1]], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "mismatched call arity:"): result = invoker(-1, a=1) def testExtraKeyword(self): def invoke(arg_list, ret_list): ret_list.push_int(3) vm_context = MockVmContext(invoke) vm_function = MockVmFunction( reflection={ "iree.abi": json.dumps({ "a": [ "i32", ["named", "a", "i32"], ["named", "b", "i32"], ], "r": ["i32",], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) with self.assertRaisesRegex(ValueError, "specified kwarg 'c' is unknown"): result = invoker(-1, a=1, b=2, c=3) def testNdarrayArg(self): arg_array = np.asarray([1, 0], dtype=np.int32) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["ndarray", "i32", 1, 2]], "r": [], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(arg_array) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testDeviceArrayArg(self): # Note that since the device array is set up to disallow implicit host # transfers, this also verifies that no accidental/automatic transfers # are done as part of marshalling the array to the function. arg_array = rt.asdevicearray(self.device, np.asarray([1, 0], dtype=np.int32), implicit_host_transfer=False) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["ndarray", "i32", 1, 2]], "r": [], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(arg_array) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testBufferViewArg(self): arg_buffer_view = self.device.allocator.allocate_buffer_copy( memory_type=IMPLICIT_BUFFER_ARG_MEMORY_TYPE, allowed_usage=IMPLICIT_BUFFER_ARG_USAGE, buffer=np.asarray([1, 0], dtype=np.int32), element_type=rt.HalElementType.SINT_32) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [["ndarray", "i32", 1, 2]], "r": [], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker(arg_buffer_view) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testNdarrayArgNoReflection(self): arg_array = np.asarray([1, 0], dtype=np.int32) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(arg_array) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testDeviceArrayArgNoReflection(self): # Note that since the device array is set up to disallow implicit host # transfers, this also verifies that no accidental/automatic transfers # are done as part of marshalling the array to the function. arg_array = rt.asdevicearray(self.device, np.asarray([1, 0], dtype=np.int32), implicit_host_transfer=False) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker(arg_array) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testBufferViewArgNoReflection(self): arg_buffer_view = self.device.allocator.allocate_buffer_copy( memory_type=IMPLICIT_BUFFER_ARG_MEMORY_TYPE, allowed_usage=IMPLICIT_BUFFER_ARG_USAGE, buffer=np.asarray([1, 0], dtype=np.int32), element_type=rt.HalElementType.SINT_32) invoked_arg_list = None def invoke(arg_list, ret_list): nonlocal invoked_arg_list invoked_arg_list = arg_list vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) _ = invoker(arg_buffer_view) self.assertEqual("<VmVariantList(1): [HalBufferView(2:0x20000011)]>", repr(invoked_arg_list)) def testReturnBufferView(self): result_array = np.asarray([1, 0], dtype=np.int32) def invoke(arg_list, ret_list): buffer_view = self.device.allocator.allocate_buffer_copy( memory_type=IMPLICIT_BUFFER_ARG_MEMORY_TYPE, allowed_usage=IMPLICIT_BUFFER_ARG_USAGE, buffer=result_array, element_type=rt.HalElementType.SINT_32) ret_list.push_buffer_view(buffer_view) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [], "r": [["ndarray", "i32", 1, 2]], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() np.testing.assert_array_equal([1, 0], result) def testReturnBufferViewNoReflection(self): result_array = np.asarray([1, 0], dtype=np.int32) def invoke(arg_list, ret_list): buffer_view = self.device.allocator.allocate_buffer_copy( memory_type=IMPLICIT_BUFFER_ARG_MEMORY_TYPE, allowed_usage=IMPLICIT_BUFFER_ARG_USAGE, buffer=result_array, element_type=rt.HalElementType.SINT_32) ret_list.push_buffer_view(buffer_view) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={}) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() np.testing.assert_array_equal([1, 0], result) # TODO: Fill out all return types. def testReturnTypeNdArrayBool(self): result_array = np.asarray([1, 0], dtype=np.int8) def invoke(arg_list, ret_list): buffer_view = self.device.allocator.allocate_buffer_copy( memory_type=IMPLICIT_BUFFER_ARG_MEMORY_TYPE, allowed_usage=IMPLICIT_BUFFER_ARG_USAGE, buffer=result_array, element_type=rt.HalElementType.UINT_8) ret_list.push_buffer_view(buffer_view) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [], "r": [["ndarray", "i1", 1, 2]], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() # assertEqual on bool arrays is fraught for... reasons. np.testing.assert_array_equal([True, False], result) def testReturnTypeList(self): vm_list = VmVariantList(2) vm_list.push_int(1) vm_list.push_int(2) def invoke(arg_list, ret_list): ret_list.push_list(vm_list) vm_context = MockVmContext(invoke) vm_function = MockVmFunction(reflection={ "iree.abi": json.dumps({ "a": [], "r": [["py_homogeneous_list", "i64"]], }) }) invoker = FunctionInvoker(vm_context, self.device, vm_function, tracer=None) result = invoker() self.assertEqual("[1, 2]", repr(result)) if __name__ == "__main__": unittest.main()
py
b412fea5ffa5a86f53deff60c860f038f7d62527
import json from flask import url_for from app.models import ApiKey, KEY_TYPE_NORMAL from app.dao.api_key_dao import expire_api_key from tests import create_authorization_header from tests.app.db import create_api_key, create_service, create_user def test_api_key_should_create_new_api_key_for_service(notify_api, sample_service): with notify_api.test_request_context(): with notify_api.test_client() as client: data = { 'name': 'some secret name', 'created_by': str(sample_service.created_by.id), 'key_type': KEY_TYPE_NORMAL } auth_header = create_authorization_header() response = client.post(url_for('service.create_api_key', service_id=sample_service.id), data=json.dumps(data), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 201 assert 'data' in json.loads(response.get_data(as_text=True)) saved_api_key = ApiKey.query.filter_by(service_id=sample_service.id).first() assert saved_api_key.service_id == sample_service.id assert saved_api_key.name == 'some secret name' def test_api_key_should_return_error_when_service_does_not_exist(notify_api, sample_service): with notify_api.test_request_context(): with notify_api.test_client() as client: import uuid missing_service_id = uuid.uuid4() auth_header = create_authorization_header() response = client.post(url_for('service.create_api_key', service_id=missing_service_id), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 404 def test_create_api_key_without_key_type_rejects(notify_api, sample_service): with notify_api.test_request_context(), notify_api.test_client() as client: data = { 'name': 'some secret name', 'created_by': str(sample_service.created_by.id) } auth_header = create_authorization_header() response = client.post(url_for('service.create_api_key', service_id=sample_service.id), data=json.dumps(data), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 400 json_resp = json.loads(response.get_data(as_text=True)) assert json_resp['result'] == 'error' assert json_resp['message'] == {'key_type': ['Missing data for required field.']} def test_revoke_should_expire_api_key_for_service(notify_api, sample_api_key): with notify_api.test_request_context(): with notify_api.test_client() as client: assert ApiKey.query.count() == 1 auth_header = create_authorization_header() response = client.post(url_for('service.revoke_api_key', service_id=sample_api_key.service_id, api_key_id=sample_api_key.id), headers=[auth_header]) assert response.status_code == 202 api_keys_for_service = ApiKey.query.get(sample_api_key.id) assert api_keys_for_service.expiry_date is not None def test_api_key_should_create_multiple_new_api_key_for_service(notify_api, sample_service): with notify_api.test_request_context(): with notify_api.test_client() as client: assert ApiKey.query.count() == 0 data = { 'name': 'some secret name', 'created_by': str(sample_service.created_by.id), 'key_type': KEY_TYPE_NORMAL } auth_header = create_authorization_header() response = client.post(url_for('service.create_api_key', service_id=sample_service.id), data=json.dumps(data), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 201 assert ApiKey.query.count() == 1 data['name'] = 'another secret name' auth_header = create_authorization_header() response2 = client.post(url_for('service.create_api_key', service_id=sample_service.id), data=json.dumps(data), headers=[('Content-Type', 'application/json'), auth_header]) assert response2.status_code == 201 assert json.loads(response.get_data(as_text=True)) != json.loads(response2.get_data(as_text=True)) assert ApiKey.query.count() == 2 def test_get_api_keys_should_return_all_keys_for_service(notify_api, sample_api_key): with notify_api.test_request_context(): with notify_api.test_client() as client: another_user = create_user(email='[email protected]') another_service = create_service(user=another_user, service_name='Another service') # key for another service create_api_key(another_service) # this service already has one key, add two more, one expired create_api_key(sample_api_key.service) one_to_expire = create_api_key(sample_api_key.service) expire_api_key(service_id=one_to_expire.service_id, api_key_id=one_to_expire.id) assert ApiKey.query.count() == 4 auth_header = create_authorization_header() response = client.get(url_for('service.get_api_keys', service_id=sample_api_key.service_id), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 200 json_resp = json.loads(response.get_data(as_text=True)) assert len(json_resp['apiKeys']) == 3 def test_get_api_keys_should_return_one_key_for_service(notify_api, sample_api_key): with notify_api.test_request_context(): with notify_api.test_client() as client: auth_header = create_authorization_header() response = client.get(url_for('service.get_api_keys', service_id=sample_api_key.service_id, key_id=sample_api_key.id), headers=[('Content-Type', 'application/json'), auth_header]) assert response.status_code == 200 json_resp = json.loads(response.get_data(as_text=True)) assert len(json_resp['apiKeys']) == 1
py
b412feab92dd129969896bc20c71f37b51fdd50f
from django.db import models from django.shortcuts import resolve_url as r from djexperience.core.models import TimeStampedModel from djexperience.utils.lists import STATUS_LIST, METHOD_PAID from .managers import PublishedManager class Author(models.Model): name = models.CharField('nome', max_length=50) class Meta: ordering = ['name'] verbose_name = 'autor' verbose_name_plural = 'autores' def __str__(self): return self.name class Book(models.Model): name = models.CharField('nome', max_length=50) authors = models.ManyToManyField('Author', verbose_name='autores') published = models.BooleanField('publicado', default=True) # add our custom model manager objects = PublishedManager() class Meta: ordering = ['name'] verbose_name = 'livro' verbose_name_plural = 'livros' def __str__(self): return self.name def get_absolute_url(self): return r('bookstore:book_detail', pk=self.pk) class People(models.Model): first_name = models.CharField('nome', max_length=50) last_name = models.CharField('sobrenome', max_length=50) email = models.EmailField() birthday = models.DateTimeField('nascimento', null=True, blank=True) active = models.BooleanField('ativo', default=True) class Meta: ordering = ['first_name'] verbose_name = 'pessoa' verbose_name_plural = 'pessoas' def __str__(self): return ' '.join(filter(None, [self.first_name, self.last_name])) full_name = property(__str__) class PF(People): rg = models.CharField('RG', max_length=50, blank=True) cpf = models.CharField('CPF', max_length=50, blank=True) class Meta: ordering = ['first_name'] verbose_name = 'pessoa física' verbose_name_plural = 'pessoas físicas' def __str__(self): return self.first_name class PJ(People): cnpj = models.CharField('CNPJ', max_length=50, blank=True) ie = models.CharField('IE', max_length=50, blank=True) class Meta: ordering = ['first_name'] verbose_name = 'pessoa jurídica' verbose_name_plural = 'pessoas jurídicas' def __str__(self): return self.first_name class Customer(People): pass class Meta: ordering = ['first_name'] verbose_name = 'cliente' verbose_name_plural = 'clientes' def get_absolute_url(self): return r('bookstore:customer_detail', pk=self.pk) class Provider(People): books = models.ManyToManyField('Book', verbose_name='livros') price = models.DecimalField('preço', max_digits=5, decimal_places=2) class Meta: ordering = ['first_name'] verbose_name = 'fornecedor' verbose_name_plural = 'fornecedores' class Ordered(TimeStampedModel): customer = models.ForeignKey('Customer', verbose_name='cliente') status_ordered = models.CharField( 'status', max_length=2, choices=STATUS_LIST) class Meta: ordering = ['-created'] verbose_name = 'pedido' verbose_name_plural = 'pedidos' class Sale(TimeStampedModel): ordered = models.OneToOneField('Ordered', verbose_name='pedido') paid = models.BooleanField('pago') date_paid = models.DateField('data da pagamento') method_paid = models.CharField( 'forma da pagamento', max_length=2, choices=METHOD_PAID) deadline = models.CharField('prazo de entrega', max_length=50) class Meta: ordering = ['-created'] verbose_name = 'venda' verbose_name_plural = 'vendas'
py
b412feef3b63a160fbf0a01cddb33df1ee39c34f
from rlkit.torch import pytorch_util as ptu import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions.normal import Normal from torch.distributions import kl_divergence def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: try: nn.init.xavier_uniform_(m.weight.data) m.bias.data.fill_(0) except AttributeError: print("Skipping initialization of ", classname) class GatedActivation(nn.Module): def forward(self, x): x, y = x.chunk(2, dim=1) return torch.tanh(x) * torch.sigmoid(y) class GatedMaskedConv2d(nn.Module): def __init__(self, mask_type, dim, kernel, residual=True, n_classes=1): super().__init__() assert kernel % 2 == 1, print("Kernel size must be odd") self.mask_type = mask_type self.residual = residual self.class_cond_embedding = nn.Linear( 1, 2 * dim ) kernel_shp = (kernel // 2 + 1, kernel) # (ceil(n/2), n) padding_shp = (kernel // 2, kernel // 2) self.vert_stack = nn.Conv2d( dim, dim * 2, kernel_shp, 1, padding_shp ) self.vert_to_horiz = nn.Conv2d(2 * dim, 2 * dim, 1) kernel_shp = (1, kernel // 2 + 1) padding_shp = (0, kernel // 2) self.horiz_stack = nn.Conv2d( dim, dim * 2, kernel_shp, 1, padding_shp ) self.horiz_resid = nn.Conv2d(dim, dim, 1) self.gate = GatedActivation() def make_causal(self): self.vert_stack.weight.data[:, :, -1].zero_() # Mask final row self.horiz_stack.weight.data[:, :, :, -1].zero_() # Mask final column def forward(self, x_v, x_h, h): if self.mask_type == 'A': self.make_causal() h = self.class_cond_embedding(h) h_vert = self.vert_stack(x_v) h_vert = h_vert[:, :, :x_v.size(-1), :] out_v = self.gate(h_vert + h[:, :, None, None]) h_horiz = self.horiz_stack(x_h) h_horiz = h_horiz[:, :, :, :x_h.size(-2)] v2h = self.vert_to_horiz(h_vert) out = self.gate(v2h + h_horiz + h[:, :, None, None]) if self.residual: out_h = self.horiz_resid(out) + x_h else: out_h = self.horiz_resid(out) return out_v, out_h class GatedPixelCNN(nn.Module): def __init__(self, input_dim=256, dim=64, n_layers=15, n_classes=1): super().__init__() self.dim = dim # Create embedding layer to embed input self.embedding = nn.Embedding(input_dim, dim) # Building the PixelCNN layer by layer self.layers = nn.ModuleList() # Initial block with Mask-A convolution # Rest with Mask-B convolutions for i in range(n_layers): mask_type = 'A' if i == 0 else 'B' kernel = 7 if i == 0 else 3 residual = False if i == 0 else True self.layers.append( GatedMaskedConv2d(mask_type, dim, kernel, residual, n_classes) ) # Add the output layer self.output_conv = nn.Sequential( nn.Conv2d(dim, 512, 1), nn.ReLU(True), nn.Conv2d(512, input_dim, 1) ) self.apply(weights_init) def forward(self, x, label): param = next(self.parameters()) shp = x.size() + (-1, ) x = self.embedding(x.contiguous().view(-1)).view(shp) # (B, H, W, C) x = x.permute(0, 3, 1, 2) # (B, C, W, H) #label = torch.zeros(1, dtype=torch.long, device=param.device) x_v, x_h = (x, x) for i, layer in enumerate(self.layers): x_v, x_h = layer(x_v, x_h, label) return self.output_conv(x_h) def generate(self, label, shape=(12, 12), batch_size=64): param = next(self.parameters()) x = torch.zeros( (batch_size, *shape), dtype=torch.int64, device=param.device ) for i in range(shape[0]): for j in range(shape[1]): logits = self.forward(x, label) #might need to convert 0 to long probs = F.softmax(logits[:, :, i, j], -1) x.data[:, i, j].copy_( probs.multinomial(1).squeeze().data ) return x
py
b412ff3ce6b212efac5600702a8e27371716f274
from os import path from cryptography.fernet import Fernet def get_decrypted_file(settings_key, settings_file, encrypted_extension='enc', initial_extension='json'): encryption = Fernet(settings_key) encrypted_file_name = f'{settings_file}.{encrypted_extension}' encrypted_data = None if path.isfile(encrypted_file_name): with open(encrypted_file_name, 'rb') as f: encrypted_data = encryption.decrypt(f.read()) raw_file_name = f'{settings_file}.{initial_extension}' initial_data = None if path.isfile(raw_file_name): with open(raw_file_name, 'rb') as f: initial_data = f.read() if not initial_data: return encrypted_data elif initial_data != encrypted_data: encrypted_data = encryption.encrypt(initial_data) with open(encrypted_file_name, 'wb') as f: f.write(encrypted_data) return initial_data def random_key(): return Fernet.generate_key().decode("utf-8")
py
b412fff1dd782b40f0c7818bd9ca0de1fdc907b5
#------------------------------------------------------------------------------- # NodeCoupling #------------------------------------------------------------------------------- from PYB11Generator import * @PYB11module("SpheralSPH") class NodeCoupling: "A functor base class encapsulating how we couple pairs of nodes." def pyinit(self): "Default constructor" @PYB11virtual @PYB11const @PYB11cppname("operator()") def __call__(self, nodeListi = "const unsigned", i = "const unsigned", nodeListj = "const unsigned", j = "const unsigned"): "Functional method to override for coupling (nodeListi, i) <-> (nodeListj, j)" return "double" #------------------------------------------------------------------------------- # DamagedNodeCoupling #------------------------------------------------------------------------------- @PYB11template("Dimension") class DamagedNodeCoupling(NodeCoupling): "A functor class encapsulating how we couple solid nodes in the presence of multiple materials and damage." PYB11typedefs = """ typedef typename %(Dimension)s::Vector Vector; typedef typename %(Dimension)s::SymTensor SymTensor; """ def pyinit(self, damage = "const FieldList<%(Dimension)s, SymTensor>&", damageGradient = "const FieldList<%(Dimension)s, Vector>&", H = "const FieldList<%(Dimension)s, SymTensor>&"): "Constructor" @PYB11virtual @PYB11const @PYB11cppname("operator()") def __call__(self, nodeListi = "const unsigned", i = "const unsigned", nodeListj = "const unsigned", j = "const unsigned"): "Provides a damaged coupling between nodes (nodeListi, i) <-> (nodeListj, j)" return "double" #------------------------------------------------------------------------------- # DamagedNodeCouplingWithFrags #------------------------------------------------------------------------------- @PYB11template("Dimension") class DamagedNodeCouplingWithFrags(DamagedNodeCoupling): """A functor class encapsulating how we couple solid nodes in the presence of multiple materials and damage. This version adds logic to decouple based on fragment ID as well.""" PYB11typedefs = """ typedef typename %(Dimension)s::Scalar Scalar; typedef typename %(Dimension)s::Vector Vector; typedef typename %(Dimension)s::Tensor Tensor; typedef typename %(Dimension)s::SymTensor SymTensor; """ def pyinit(self, damage = "const FieldList<%(Dimension)s, SymTensor>&", damageGradient = "const FieldList<%(Dimension)s, Vector>&", H = "const FieldList<%(Dimension)s, SymTensor>&", fragIDs = "const FieldList<%(Dimension)s, int>&"): "Constructor" @PYB11virtual @PYB11const @PYB11cppname("operator()") def __call__(self, nodeListi = "const unsigned", i = "const unsigned", nodeListj = "const unsigned", j = "const unsigned"): "Provides a damaged coupling between nodes (nodeListi, i) <-> (nodeListj, j)" return "double"
py
b413006fc8ed3590e233e900bfab114a6b7dd2aa
import os gettext = lambda s: s DATA_DIR = os.path.dirname(os.path.dirname(__file__)) """ Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.8.16. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mbogc22qi7&dlb7%1c0qbfu2y=my6#r-@^2kiym(yn(oy3)rof' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition ROOT_URLCONF = 'mysite.urls' WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'zh' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(DATA_DIR, 'media') STATIC_ROOT = os.path.join(DATA_DIR, 'static') STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'mysite', 'static'), ) SITE_ID = 1 TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'mysite', 'templates'),], 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.i18n', 'django.core.context_processors.debug', 'django.core.context_processors.request', 'django.core.context_processors.media', 'django.core.context_processors.csrf', 'django.core.context_processors.tz', 'sekizai.context_processors.sekizai', 'django.core.context_processors.static', 'cms.context_processors.cms_settings' ], 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.eggs.Loader' ], }, }, ] MIDDLEWARE_CLASSES = ( 'cms.middleware.utils.ApphookReloadMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'cms.middleware.user.CurrentUserMiddleware', 'cms.middleware.page.CurrentPageMiddleware', 'cms.middleware.toolbar.ToolbarMiddleware', 'cms.middleware.language.LanguageCookieMiddleware' ) INSTALLED_APPS = ( 'djangocms_admin_style', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admin', 'django.contrib.sites', 'django.contrib.sitemaps', 'django.contrib.staticfiles', 'django.contrib.messages', 'cms', 'menus', 'sekizai', 'treebeard', 'djangocms_text_ckeditor', 'filer', 'easy_thumbnails', 'djangocms_column', 'djangocms_link', 'cmsplugin_filer_file', 'cmsplugin_filer_folder', 'cmsplugin_filer_image', 'cmsplugin_filer_utils', 'djangocms_style', 'djangocms_snippet', 'djangocms_googlemap', 'djangocms_video', 'mysite', #REST 'rest_framework', 'rest_framework.authtoken', 'djoser', #APP 'aldryn_background_image', 'aldryn_bootstrap3', 'parler', 'aldryn_search', 'aldryn_categories', ) HAYSTACK_ROUTERS = ['aldryn_search.router.LanguageRouter',] ALDRYN_SEARCH_REGISTER_APPHOOK = True REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ), } DJOSER = { 'PASSWORD_RESET_CONFIRM_URL': '#/password/reset/confirm/{uid}/{token}', } LANGUAGES = ( ## Customize this ('zh', gettext('zh')), ) CMS_LANGUAGES = { ## Customize this 'default': { 'public': True, 'hide_untranslated': False, 'redirect_on_fallback': True, }, 1: [ { 'public': True, 'code': 'zh', 'hide_untranslated': False, 'name': gettext('zh'), 'redirect_on_fallback': True, }, ], } CMS_TEMPLATES = ( ## Customize this ('fullwidth.html', 'Fullwidth'), ('sidebar_left.html', 'Sidebar Left'), ('sidebar_right.html', 'Sidebar Right') ) CMS_PERMISSION = True CMS_PLACEHOLDER_CONF = {} DATABASES = { 'default': { 'CONN_MAX_AGE': 0, 'ENGINE': 'django.db.backends.sqlite3', 'HOST': 'localhost', 'NAME': 'project.db', 'PASSWORD': '', 'PORT': '', 'USER': '' } } MIGRATION_MODULES = { } THUMBNAIL_PROCESSORS = ( 'easy_thumbnails.processors.colorspace', 'easy_thumbnails.processors.autocrop', 'filer.thumbnail_processors.scale_and_crop_with_subject_location', 'easy_thumbnails.processors.filters' )
py
b413008e45832ed8e62c461d642fe5081157089b
""" Tests for the blaze interface to the pipeline api. """ from __future__ import division from collections import OrderedDict from datetime import timedelta, time from itertools import product, chain import warnings import blaze as bz from datashape import dshape, var, Record from nose_parameterized import parameterized import numpy as np from numpy.testing.utils import assert_array_almost_equal from odo import odo import pandas as pd from pandas.util.testing import assert_frame_equal from toolz import keymap, valmap, concatv from toolz.curried import operator as op from catalyst.assets.synthetic import make_simple_equity_info from catalyst.errors import UnsupportedPipelineOutput from catalyst.pipeline import Pipeline, CustomFactor from catalyst.pipeline.data import DataSet, BoundColumn, Column from catalyst.pipeline.engine import SimplePipelineEngine from catalyst.pipeline.loaders.blaze import ( from_blaze, BlazeLoader, NoMetaDataWarning, ) from catalyst.pipeline.loaders.blaze.core import ( ExprData, NonPipelineField, ) from catalyst.testing import ( CatalystTestCase, parameter_space, tmp_asset_finder, ) from catalyst.testing.fixtures import WithAssetFinder from catalyst.testing.predicates import assert_equal, assert_isidentical from catalyst.utils.numpy_utils import float64_dtype, int64_dtype nameof = op.attrgetter('name') dtypeof = op.attrgetter('dtype') asset_infos = ( (make_simple_equity_info( tuple(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ),), (make_simple_equity_info( tuple(map(ord, 'ABCD')), pd.Timestamp(0), pd.Timestamp('2015'), ),), ) simple_asset_info = asset_infos[0][0] with_extra_sid = parameterized.expand(asset_infos) with_ignore_sid = parameterized.expand( product(chain.from_iterable(asset_infos), [True, False]) ) def _utc_localize_index_level_0(df): """``tz_localize`` the first level of a multiindexed dataframe to utc. Mutates df in place. """ idx = df.index df.index = pd.MultiIndex.from_product( (idx.levels[0].tz_localize('utc'), idx.levels[1]), names=idx.names, ) return df class BlazeToPipelineTestCase(WithAssetFinder, CatalystTestCase): START_DATE = pd.Timestamp(0) END_DATE = pd.Timestamp('2015') @classmethod def init_class_fixtures(cls): super(BlazeToPipelineTestCase, cls).init_class_fixtures() cls.dates = dates = pd.date_range('2014-01-01', '2014-01-03') dates = cls.dates.repeat(3) cls.df = df = pd.DataFrame({ 'sid': cls.ASSET_FINDER_EQUITY_SIDS * 3, 'value': (0., 1., 2., 1., 2., 3., 2., 3., 4.), 'int_value': (0, 1, 2, 1, 2, 3, 2, 3, 4), 'asof_date': dates, 'timestamp': dates, }) cls.dshape = dshape(""" var * { sid: ?int64, value: ?float64, int_value: ?int64, asof_date: datetime, timestamp: datetime } """) cls.macro_df = df[df.sid == 65].drop('sid', axis=1) dshape_ = OrderedDict(cls.dshape.measure.fields) del dshape_['sid'] cls.macro_dshape = var * Record(dshape_) cls.garbage_loader = BlazeLoader() cls.missing_values = {'int_value': 0} cls.value_dshape = dshape("""var * { sid: ?int64, value: float64, asof_date: datetime, timestamp: datetime, }""") def test_tabular(self): name = 'expr' expr = bz.data(self.df, name=name, dshape=self.dshape) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) self.assertEqual(ds.__name__, name) self.assertTrue(issubclass(ds, DataSet)) self.assertIs(ds.value.dtype, float64_dtype) self.assertIs(ds.int_value.dtype, int64_dtype) self.assertTrue(np.isnan(ds.value.missing_value)) self.assertEqual(ds.int_value.missing_value, 0) # test memoization self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), ds, ) def test_column(self): exprname = 'expr' expr = bz.data(self.df, name=exprname, dshape=self.dshape) value = from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) self.assertEqual(value.name, 'value') self.assertIsInstance(value, BoundColumn) self.assertIs(value.dtype, float64_dtype) # test memoization self.assertIs( from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), value, ) self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ).value, value, ) # test the walk back up the tree self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), value.dataset, ) self.assertEqual(value.dataset.__name__, exprname) def test_missing_asof(self): expr = bz.data( self.df.loc[:, ['sid', 'value', 'timestamp']], name='expr', dshape="""var * { sid: int64, value: float64, timestamp: datetime, }""", ) with self.assertRaises(TypeError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) self.assertIn("'asof_date'", str(e.exception)) self.assertIn(repr(str(expr.dshape.measure)), str(e.exception)) def test_missing_timestamp(self): expr = bz.data( self.df.loc[:, ['sid', 'value', 'asof_date']], name='expr', dshape="""var * { sid: int64, value: float64, asof_date: datetime, }""", ) loader = BlazeLoader() from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) self.assertEqual(len(loader), 1) exprdata, = loader.values() assert_isidentical( exprdata.expr, bz.transform(expr, timestamp=expr.asof_date), ) def test_from_blaze_no_resources_dataset_expr(self): expr = bz.symbol('expr', self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) assert_equal( str(e.exception), 'no resources provided to compute expr', ) @parameter_space(metadata={'deltas', 'checkpoints'}) def test_from_blaze_no_resources_metadata_expr(self, metadata): expr = bz.data(self.df, name='expr', dshape=self.dshape) metadata_expr = bz.symbol('metadata', self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, **{metadata: metadata_expr} ) assert_equal( str(e.exception), 'no resources provided to compute %s' % metadata, ) def test_from_blaze_mixed_resources_dataset_expr(self): expr = bz.data(self.df, name='expr', dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, resources={expr: self.df}, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) assert_equal( str(e.exception), 'explicit and implicit resources provided to compute expr', ) @parameter_space(metadata={'deltas', 'checkpoints'}) def test_from_blaze_mixed_resources_metadata_expr(self, metadata): expr = bz.symbol('expr', self.dshape) metadata_expr = bz.data(self.df, name=metadata, dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, resources={metadata_expr: self.df}, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, **{metadata: metadata_expr} ) assert_equal( str(e.exception), 'explicit and implicit resources provided to compute %s' % metadata, ) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata(self, deltas, checkpoints): select_level = op.getitem(('ignore', 'raise')) m = {'ds': self.df} if deltas: m['ds_deltas'] = pd.DataFrame(columns=self.df.columns), if checkpoints: m['ds_checkpoints'] = pd.DataFrame(columns=self.df.columns), expr = bz.data( m, dshape=var * Record((k, self.dshape.measure) for k in m), ) loader = BlazeLoader() ds = from_blaze( expr.ds, loader=loader, missing_values=self.missing_values, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), ) self.assertEqual(len(loader), 1) exprdata = loader[ds] self.assertTrue(exprdata.expr.isidentical(expr.ds)) if deltas: self.assertTrue(exprdata.deltas.isidentical(expr.ds_deltas)) else: self.assertIsNone(exprdata.deltas) if checkpoints: self.assertTrue( exprdata.checkpoints.isidentical(expr.ds_checkpoints), ) else: self.assertIsNone(exprdata.checkpoints) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata_fail_warn(self, deltas, checkpoints): select_level = op.getitem(('ignore', 'warn')) with warnings.catch_warnings(record=True) as ws: warnings.simplefilter('always') loader = BlazeLoader() expr = bz.data(self.df, dshape=self.dshape) from_blaze( expr, loader=loader, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), missing_values=self.missing_values, ) self.assertEqual(len(ws), deltas + checkpoints) for w in ws: w = w.message self.assertIsInstance(w, NoMetaDataWarning) self.assertIn(str(expr), str(w)) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata_fail_raise(self, deltas, checkpoints): if not (deltas or checkpoints): # not a real case return select_level = op.getitem(('ignore', 'raise')) loader = BlazeLoader() expr = bz.data(self.df, dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=loader, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), ) self.assertIn(str(expr), str(e.exception)) def test_non_pipeline_field(self): expr = bz.data( [], dshape=""" var * { a: complex, asof_date: datetime, timestamp: datetime, }""", ) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) with self.assertRaises(AttributeError): ds.a self.assertIsInstance( object.__getattribute__(ds, 'a'), NonPipelineField, ) def _test_cols_with_all_missing_vals(self): """ Tests that when there is no known data, we get output where the columns have the right dtypes and the right missing values filled in. input (self.df): Empty DataFrame Columns: [sid, float_value, str_value, int_value, bool_value, dt_value, asof_date, timestamp] Index: [] output (expected) str_value float_value int_value 2014-01-01 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 2014-01-02 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 2014-01-03 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 dt_value bool_value 2014-01-01 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False 2014-01-02 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False 2014-01-03 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False """ df = pd.DataFrame(columns=['sid', 'float_value', 'str_value', 'int_value', 'bool_value', 'dt_value', 'asof_date', 'timestamp']) expr = bz.data( df, dshape=""" var * { sid: int64, float_value: float64, str_value: string, int_value: int64, bool_value: bool, dt_value: datetime, asof_date: datetime, timestamp: datetime, }""", ) fields = OrderedDict(expr.dshape.measure.fields) expected = pd.DataFrame({ "str_value": np.array([None, None, None, None, None, None, None, None, None], dtype='object'), "float_value": np.array([np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], dtype='float64'), "int_value": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype='int64'), "bool_value": np.array([False, False, False, False, False, False, False, False, False], dtype='bool'), "dt_value": [pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT], }, columns=['str_value', 'float_value', 'int_value', 'bool_value', 'dt_value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )) ) ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('float_value', 'str_value', 'int_value', 'bool_value', 'dt_value'), ) def _test_cols_with_some_missing_vals(self): """ Tests the following: 1) Forward filling replaces missing values correctly for the data types supported in pipeline. 2) We don't forward fill when the missing value is the actual value we got for a date in the case of int/bool columns. 3) We get the correct type of missing value in the output. input (self.df): asof_date bool_value dt_value float_value int_value sid 0 2014-01-01 True 2011-01-01 0 1 65 1 2014-01-03 True 2011-01-02 1 2 66 2 2014-01-01 True 2011-01-03 2 3 67 3 2014-01-02 False NaT NaN 0 67 str_value timestamp 0 a 2014-01-01 1 b 2014-01-03 2 c 2014-01-01 3 None 2014-01-02 output (expected) str_value float_value int_value bool_value 2014-01-01 Equity(65 [A]) a 0 1 True Equity(66 [B]) None NaN 0 False Equity(67 [C]) c 2 3 True 2014-01-02 Equity(65 [A]) a 0 1 True Equity(66 [B]) None NaN 0 False Equity(67 [C]) c 2 0 False 2014-01-03 Equity(65 [A]) a 0 1 True Equity(66 [B]) b 1 2 True Equity(67 [C]) c 2 0 False dt_value 2014-01-01 Equity(65 [A]) 2011-01-01 Equity(66 [B]) NaT Equity(67 [C]) 2011-01-03 2014-01-02 Equity(65 [A]) 2011-01-01 Equity(66 [B]) NaT Equity(67 [C]) 2011-01-03 2014-01-03 Equity(65 [A]) 2011-01-01 Equity(66 [B]) 2011-01-02 Equity(67 [C]) 2011-01-03 """ dates = (self.dates[0], self.dates[-1], self.dates[0], self.dates[1]) df = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS[:-1] + (self.ASSET_FINDER_EQUITY_SIDS[-1],)*2, 'float_value': (0., 1., 2., np.NaN), 'str_value': ("a", "b", "c", None), 'int_value': (1, 2, 3, 0), 'bool_value': (True, True, True, False), 'dt_value': (pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.NaT), 'asof_date': dates, 'timestamp': dates, }) expr = bz.data( df, dshape=""" var * { sid: int64, float_value: float64, str_value: string, int_value: int64, bool_value: bool, dt_value: datetime, asof_date: datetime, timestamp: datetime, }""", ) fields = OrderedDict(expr.dshape.measure.fields) expected = pd.DataFrame({ "str_value": np.array(["a", None, "c", "a", None, "c", "a", "b", "c"], dtype='object'), "float_value": np.array([0, np.NaN, 2, 0, np.NaN, 2, 0, 1, 2], dtype='float64'), "int_value": np.array([1, 0, 3, 1, 0, 0, 1, 2, 0], dtype='int64'), "bool_value": np.array([True, False, True, True, False, False, True, True, False], dtype='bool'), "dt_value": [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03')], }, columns=['str_value', 'float_value', 'int_value', 'bool_value', 'dt_value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )) ) ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('float_value', 'str_value', 'int_value', 'bool_value', 'dt_value'), ) def test_complex_expr(self): expr = bz.data(self.df, dshape=self.dshape, name='expr') # put an Add in the table expr_with_add = bz.transform(expr, value=expr.value + 1) # test that we can have complex expressions with no metadata from_blaze( expr_with_add, deltas=None, checkpoints=None, loader=self.garbage_loader, missing_values=self.missing_values, no_checkpoints_rule='ignore', ) with self.assertRaises(TypeError) as e: # test that we cannot create a single column from a non field from_blaze( expr.value + 1, # put an Add in the column deltas=None, checkpoints=None, loader=self.garbage_loader, missing_values=self.missing_values, no_checkpoints_rule='ignore', ) assert_equal( str(e.exception), "expression 'expr.value + 1' was array-like but not a simple field" " of some larger table", ) deltas = bz.data( pd.DataFrame(columns=self.df.columns), dshape=self.dshape, name='deltas', ) checkpoints = bz.data( pd.DataFrame(columns=self.df.columns), dshape=self.dshape, name='checkpoints', ) # test that we can have complex expressions with explicit metadata from_blaze( expr_with_add, deltas=deltas, checkpoints=checkpoints, loader=self.garbage_loader, missing_values=self.missing_values, ) with self.assertRaises(TypeError) as e: # test that we cannot create a single column from a non field # even with explicit metadata from_blaze( expr.value + 1, deltas=deltas, checkpoints=checkpoints, loader=self.garbage_loader, missing_values=self.missing_values, ) assert_equal( str(e.exception), "expression 'expr.value + 1' was array-like but not a simple field" " of some larger table", ) def _test_id(self, df, dshape, expected, finder, add): expr = bz.data(df, name='expr', dshape=dshape) loader = BlazeLoader() ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() for a in add: p.add(getattr(ds, a).latest, a) dates = self.dates result = SimplePipelineEngine( loader, dates, finder, ).run_pipeline(p, dates[0], dates[-1]) assert_frame_equal( result.sort_index(axis=1), _utc_localize_index_level_0(expected.sort_index(axis=1)), check_dtype=False, ) def _test_id_macro(self, df, dshape, expected, finder, add, dates=None): if dates is None: dates = self.dates expr = bz.data(df, name='expr', dshape=dshape) loader = BlazeLoader() ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() macro_inputs = [] for column_name in add: column = getattr(ds, column_name) macro_inputs.append(column) with self.assertRaises(UnsupportedPipelineOutput): # Single column output terms cannot be added to a pipeline. p.add(column.latest, column_name) class UsesMacroInputs(CustomFactor): inputs = macro_inputs window_length = 1 def compute(self, today, assets, out, *inputs): e = expected.loc[today] for i, input_ in enumerate(inputs): # Each macro input should only have one column. assert input_.shape == (self.window_length, 1) assert_equal(input_[0, 0], e[i]) # Run the pipeline with our custom factor. Assertions about the # expected macro data are made in the `compute` function of our custom # factor above. p.add(UsesMacroInputs(), 'uses_macro_inputs') engine = SimplePipelineEngine(loader, dates, finder) engine.run_pipeline(p, dates[0], dates[-1]) def _test_custom_query_time_tz(self): df = self.df.copy() df['timestamp'] = ( pd.DatetimeIndex(df['timestamp'], tz='EST') + timedelta(hours=8, minutes=44) ).tz_convert('utc').tz_localize(None) df.ix[3:5, 'timestamp'] = pd.Timestamp('2014-01-01 13:45') expr = bz.data(df, name='expr', dshape=self.dshape) loader = BlazeLoader(data_query_time=time(8, 45), data_query_tz='EST') ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() p.add(ds.value.latest, 'value') p.add(ds.int_value.latest, 'int_value') dates = self.dates result = SimplePipelineEngine( loader, dates, self.asset_finder, ).run_pipeline(p, dates[0], dates[-1]) expected = df.drop('asof_date', axis=1) expected['timestamp'] = expected['timestamp'].dt.normalize().astype( 'datetime64[ns]', ).dt.tz_localize('utc') expected.ix[3:5, 'timestamp'] += timedelta(days=1) expected.set_index(['timestamp', 'sid'], inplace=True) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) assert_frame_equal(result, expected, check_dtype=False) def _test_id(self): # noqa F811 """ input (self.df): asof_date sid timestamp int_value value 0 2014-01-01 65 2014-01-01 0 0 1 2014-01-01 66 2014-01-01 1 1 2 2014-01-01 67 2014-01-01 2 2 3 2014-01-02 65 2014-01-02 1 1 4 2014-01-02 66 2014-01-02 2 2 5 2014-01-02 67 2014-01-02 3 3 6 2014-01-03 65 2014-01-03 2 2 7 2014-01-03 66 2014-01-03 3 3 8 2014-01-03 67 2014-01-03 4 4 output (expected) int_value value 2014-01-01 Equity(65 [A]) 0 0 Equity(66 [B]) 1 1 Equity(67 [C]) 2 2 2014-01-02 Equity(65 [A]) 1 1 Equity(66 [B]) 2 2 Equity(67 [C]) 3 3 2014-01-03 Equity(65 [A]) 2 2 Equity(66 [B]) 3 3 Equity(67 [C]) 4 4 """ expected = self.df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( self.df, self.dshape, expected, self.asset_finder, ('int_value', 'value',) ) def _test_id_with_asof_date(self): """ input (self.df): asof_date sid timestamp int_value value 0 2014-01-01 65 2014-01-01 0 0 1 2014-01-01 66 2014-01-01 1 1 2 2014-01-01 67 2014-01-01 2 2 3 2014-01-02 65 2014-01-02 1 1 4 2014-01-02 66 2014-01-02 2 2 5 2014-01-02 67 2014-01-02 3 3 6 2014-01-03 65 2014-01-03 2 2 7 2014-01-03 66 2014-01-03 3 3 8 2014-01-03 67 2014-01-03 4 4 output (expected) asof_date 2014-01-01 Equity(65 [A]) 2014-01-01 Equity(66 [B]) 2014-01-01 Equity(67 [C]) 2014-01-01 2014-01-02 Equity(65 [A]) 2014-01-02 Equity(66 [B]) 2014-01-02 Equity(67 [C]) 2014-01-02 2014-01-03 Equity(65 [A]) 2014-01-03 Equity(66 [B]) 2014-01-03 Equity(67 [C]) 2014-01-03 """ expected = self.df.drop(['value', 'int_value'], axis=1).set_index( ['timestamp', 'sid'], ) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( self.df, self.dshape, expected, self.asset_finder, ('asof_date',) ) def _test_id_ffill_out_of_window(self): """ input (df): asof_date timestamp sid other value 0 2013-12-22 2013-12-22 65 0 0 1 2013-12-22 2013-12-22 66 NaN 1 2 2013-12-22 2013-12-22 67 2 NaN 3 2013-12-23 2013-12-23 65 NaN 1 4 2013-12-23 2013-12-23 66 2 NaN 5 2013-12-23 2013-12-23 67 3 3 6 2013-12-24 2013-12-24 65 2 NaN 7 2013-12-24 2013-12-24 66 3 3 8 2013-12-24 2013-12-24 67 NaN 4 output (expected): other value 2014-01-01 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-02 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 """ dates = self.dates.repeat(3) - timedelta(days=10) df = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS * 3, 'value': (0, 1, np.nan, 1, np.nan, 3, np.nan, 3, 4), 'other': (0, np.nan, 2, np.nan, 2, 3, 2, 3, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( np.array([[2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4]]), columns=['other', 'value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )), ), ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def _test_id_multiple_columns(self): """ input (df): asof_date sid timestamp value other 0 2014-01-01 65 2014-01-01 0 1 1 2014-01-01 66 2014-01-01 1 2 2 2014-01-01 67 2014-01-01 2 3 3 2014-01-02 65 2014-01-02 1 2 4 2014-01-02 66 2014-01-02 2 3 5 2014-01-02 67 2014-01-02 3 4 6 2014-01-03 65 2014-01-03 2 3 7 2014-01-03 66 2014-01-03 3 4 8 2014-01-03 67 2014-01-03 4 5 output (expected): value other 2014-01-01 Equity(65 [A]) 0 1 Equity(66 [B]) 1 2 Equity(67 [C]) 2 3 2014-01-02 Equity(65 [A]) 1 2 Equity(66 [B]) 2 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 3 Equity(66 [B]) 3 4 Equity(67 [C]) 4 5 """ df = self.df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ).sort_index(axis=1) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'int_value', 'other'), ) def _test_id_macro_dataset(self): """ input (self.macro_df) asof_date timestamp value 0 2014-01-01 2014-01-01 0 3 2014-01-02 2014-01-02 1 6 2014-01-03 2014-01-03 2 output (expected): value 2014-01-01 0 2014-01-02 1 2014-01-03 2 """ expected = pd.DataFrame( data=[[0], [1], [2]], columns=['value'], index=self.dates, ) self._test_id_macro( self.macro_df, self.macro_dshape, expected, self.asset_finder, ('value',), ) def _test_id_ffill_out_of_window_macro_dataset(self): """ input (df): asof_date timestamp other value 0 2013-12-22 2013-12-22 NaN 0 1 2013-12-23 2013-12-23 1 NaN 2 2013-12-24 2013-12-24 NaN NaN output (expected): other value 2014-01-01 1 0 2014-01-02 1 0 2014-01-03 1 0 """ dates = self.dates - timedelta(days=10) df = pd.DataFrame({ 'value': (0, np.nan, np.nan), 'other': (np.nan, 1, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[0, 1], [0, 1], [0, 1]], columns=['other', 'value'], index=self.dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def _test_id_macro_dataset_multiple_columns(self): """ input (df): asof_date timestamp other value 0 2014-01-01 2014-01-01 1 0 3 2014-01-02 2014-01-02 2 1 6 2014-01-03 2014-01-03 3 2 output (expected): other value 2014-01-01 1 0 2014-01-02 2 1 2014-01-03 3 2 """ df = self.macro_df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder(equities=simple_asset_info) as finder: expected = pd.DataFrame( data=[[0, 1], [1, 2], [2, 3]], columns=['value', 'other'], index=self.dates, dtype=np.float64, ) self._test_id_macro( df, var * Record(fields), expected, finder, ('value', 'other'), ) def _test_id_take_last_in_group(self): T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'sid', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), 65, 0, 0], [T('2014-01-01'), T('2014-01-01 01'), 65, 1, np.nan], [T('2014-01-01'), T('2014-01-01 00'), 66, np.nan, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 66, np.nan, 1], [T('2014-01-01'), T('2014-01-01 00'), 67, 2, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 67, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 65, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 65, np.nan, 1], [T('2014-01-02'), T('2014-01-02 00'), 66, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 66, 2, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 67, 3, 3], [T('2014-01-02'), T('2014-01-02 01'), 67, 3, 3], [T('2014-01-03'), T('2014-01-03 00'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 66, 3, 3], [T('2014-01-03'), T('2014-01-03 01'), 66, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 67, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 67, np.nan, 4], ], ) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( columns=['other', 'value'], data=[ [1, 0], # 2014-01-01 Equity(65 [A]) [np.nan, 1], # Equity(66 [B]) [2, np.nan], # Equity(67 [C]) [1, 1], # 2014-01-02 Equity(65 [A]) [2, 1], # Equity(66 [B]) [3, 3], # Equity(67 [C]) [2, 1], # 2014-01-03 Equity(65 [A]) [3, 3], # Equity(66 [B]) [3, 3], # Equity(67 [C]) ], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )), ), ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def _test_id_take_last_in_group_macro(self): """ output (expected): other value 2014-01-01 NaN 1 2014-01-02 1 2 2014-01-03 2 2 """ T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), np.nan, 1], [T('2014-01-01'), T('2014-01-01 01'), np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 1, np.nan], [T('2014-01-02'), T('2014-01-02 01'), np.nan, 2], [T('2014-01-03'), T('2014-01-03 00'), 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 3, 3], ], ) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[np.nan, 1], # 2014-01-01 [1, 2], # 2014-01-02 [2, 2]], # 2014-01-03 columns=['other', 'value'], index=self.dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('other', 'value'), ) def _run_pipeline(self, expr, deltas, checkpoints, expected_views, expected_output, finder, calendar, start, end, window_length, compute_fn, apply_deltas_adjustments=True): loader = BlazeLoader() ds = from_blaze( expr, deltas, checkpoints, apply_deltas_adjustments=apply_deltas_adjustments, loader=loader, no_deltas_rule='raise', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() # prevent unbound locals issue in the inner class window_length_ = window_length class TestFactor(CustomFactor): inputs = ds.value, window_length = window_length_ def compute(self, today, assets, out, data): assert_array_almost_equal( data, expected_views[today], err_msg=str(today), ) out[:] = compute_fn(data) p.add(TestFactor(), 'value') result = SimplePipelineEngine( loader, calendar, finder, ).run_pipeline(p, start, end) assert_frame_equal( result, _utc_localize_index_level_0(expected_output), check_dtype=False, ) @with_ignore_sid def _test_deltas(self, asset_info, add_extra_sid): df = self.df.copy() if add_extra_sid: extra_sid_df = pd.DataFrame({ 'asof_date': self.dates, 'timestamp': self.dates, 'sid': (ord('E'),) * 3, 'value': (3., 4., 5.,), 'int_value': (3, 4, 5), }) df = df.append(extra_sid_df, ignore_index=True) expr = bz.data(df, name='expr', dshape=self.dshape) deltas = bz.data(df, dshape=self.dshape) deltas = bz.data( odo( bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[10.0, 11.0, 12.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[11.0, 12.0, 13.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[12.0, 13.0, 14.0], [12.0, 13.0, 14.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( list(concatv([12] * nassets, [13] * nassets, [14] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def _test_deltas_only_one_delta_in_universe(self, asset_info): expr = bz.data(self.df, name='expr', dshape=self.dshape) deltas = pd.DataFrame({ 'sid': [65, 66], 'asof_date': [self.dates[1], self.dates[0]], 'timestamp': [self.dates[2], self.dates[1]], 'value': [10, 11], }) deltas = bz.data(deltas, name='deltas', dshape=self.dshape) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[0.0, 11.0, 2.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[10.0, 2.0, 3.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[2.0, 3.0, 4.0], [2.0, 3.0, 4.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( columns=[ 'value', ], data=np.array([11, 10, 4]).repeat(len(asset_info.index)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) def _test_deltas_macro(self): expr = bz.data(self.macro_df, name='expr', dshape=self.macro_dshape) deltas = bz.data( self.macro_df.iloc[:-1], name='deltas', dshape=self.macro_dshape, ) deltas = bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ) nassets = len(simple_asset_info) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[10.0], [1.0]]), '2014-01-03': np.array([[11.0], [2.0]]), }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv([10] * nassets, [11] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) dates = self.dates self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def _test_novel_deltas(self, asset_info): base_dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') ]) repeated_dates = base_dates.repeat(3) baseline = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS * 2, 'value': (0., 1., 2., 1., 2., 3.), 'int_value': (0, 1, 2, 1, 2, 3), 'asof_date': repeated_dates, 'timestamp': repeated_dates, }) expr = bz.data(baseline, name='expr', dshape=self.dshape) deltas = bz.data( odo( bz.transform( expr, value=expr.value + 10, timestamp=expr.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views_all_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [10.0, 11.0, 12.0]]), '2014-01-06': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [11.0, 12.0, 13.0]]), }) # The only novel delta is on 2014-01-05, because it modifies a # baseline data point that occurred on 2014-01-04, which is on a # Saturday. The other delta, occurring on 2014-01-02, is seen after # we already see the baseline data it modifies, and so it is a # non-novel delta. Thus, the only delta seen in the expected view for # novel deltas is on 2014-01-06 at (2, 0), (2, 1), and (2, 2). expected_views_novel_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]), '2014-01-06': np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0], [11.0, 12.0, 13.0]]), }) def get_fourth_asset_view(expected_views, window_length): return valmap( lambda view: np.c_[view, [np.nan] * window_length], expected_views, ) if len(asset_info) == 4: expected_views_all_deltas = get_fourth_asset_view( expected_views_all_deltas, window_length=3 ) expected_views_novel_deltas = get_fourth_asset_view( expected_views_novel_deltas, window_length=3 ) expected_output_buffer_all_deltas = [ 10, 11, 12, np.nan, 11, 12, 13, np.nan ] expected_output_buffer_novel_deltas = [ 0, 1, 2, np.nan, 11, 12, 13, np.nan ] else: expected_output_buffer_all_deltas = [ 10, 11, 12, 11, 12, 13 ] expected_output_buffer_novel_deltas = [ 0, 1, 2, 11, 12, 13 ] cal = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), # omitting the 4th and 5th to simulate a weekend pd.Timestamp('2014-01-06'), ]) with tmp_asset_finder(equities=asset_info) as finder: expected_output_all_deltas = pd.DataFrame( expected_output_buffer_all_deltas, index=pd.MultiIndex.from_product(( sorted(expected_views_all_deltas.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) expected_output_novel_deltas = pd.DataFrame( expected_output_buffer_novel_deltas, index=pd.MultiIndex.from_product(( sorted(expected_views_novel_deltas.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) it = ( ( True, expected_views_all_deltas, expected_output_all_deltas ), ( False, expected_views_novel_deltas, expected_output_novel_deltas ) ) for apply_deltas_adjs, expected_views, expected_output in it: self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=cal, start=cal[2], end=cal[-1], window_length=3, compute_fn=op.itemgetter(-1), apply_deltas_adjustments=apply_deltas_adjs, ) def _test_novel_deltas_macro(self): base_dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') ]) baseline = pd.DataFrame({ 'value': (0., 1.), 'asof_date': base_dates, 'timestamp': base_dates, }) expr = bz.data(baseline, name='expr', dshape=self.macro_dshape) deltas = bz.data(baseline, name='deltas', dshape=self.macro_dshape) deltas = bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ) nassets = len(simple_asset_info) expected_views_all_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[10.0], [10.0], [10.0]]), '2014-01-06': np.array([[10.0], [10.0], [11.0]]), }) # The only novel delta is on 2014-01-05, because it modifies a # baseline data point that occurred on 2014-01-04, which is on a # Saturday. The other delta, occurring on 2014-01-02, is seen after # we already see the baseline data it modifies, and so it is a # non-novel delta. Thus, the only delta seen in the expected view for # novel deltas is on 2014-01-06 at (2, 0). expected_views_novel_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[0.0], [0.0], [0.0]]), '2014-01-06': np.array([[0.0], [0.0], [11.0]]), }) cal = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), # omitting the 4th and 5th to simulate a weekend pd.Timestamp('2014-01-06'), ]) def get_expected_output(expected_views, values, asset_info): return pd.DataFrame( list(concatv(*([value] * nassets for value in values))), index=pd.MultiIndex.from_product( (sorted(expected_views.keys()), finder.retrieve_all(asset_info.index),) ), columns=('value',), ) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output_all_deltas = get_expected_output( expected_views_all_deltas, [10, 11], simple_asset_info, ) expected_output_novel_deltas = get_expected_output( expected_views_novel_deltas, [0, 11], simple_asset_info, ) it = ( ( True, expected_views_all_deltas, expected_output_all_deltas ), ( False, expected_views_novel_deltas, expected_output_novel_deltas ) ) for apply_deltas_adjs, expected_views, expected_output in it: self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=cal, start=cal[2], end=cal[-1], window_length=3, compute_fn=op.itemgetter(-1), apply_deltas_adjustments=apply_deltas_adjs, ) def _test_checkpoints_macro(self, checkpoints, ffilled_value=-1.0): """Simple checkpoints test that accepts a checkpoints dataframe and the expected value for 2014-01-03 for macro datasets. The underlying data has value -1.0 on 2014-01-01 and 1.0 on 2014-01-04. Parameters ---------- checkpoints : pd.DataFrame The checkpoints data. ffilled_value : float, optional The value to be read on the third, if not provided, it will be the value in the base data that will be naturally ffilled there. """ dates = pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') baseline = pd.DataFrame({ 'value': [-1.0, 1.0], 'asof_date': dates, 'timestamp': dates, }) nassets = len(simple_asset_info) expected_views = keymap(pd.Timestamp, { '2014-01-03': np.array([[ffilled_value]]), '2014-01-04': np.array([[1.0]]), }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv([ffilled_value] * nassets, [1.0] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) self._run_pipeline( bz.data(baseline, name='expr', dshape=self.macro_dshape), None, bz.data( checkpoints, name='expr_checkpoints', dshape=self.macro_dshape, ), expected_views, expected_output, finder, calendar=pd.date_range('2014-01-01', '2014-01-04'), start=pd.Timestamp('2014-01-03'), end=dates[-1], window_length=1, compute_fn=op.itemgetter(-1), ) def _test_checkpoints_macro(self): # noqa F811 ffilled_value = 0.0 checkpoints_ts = pd.Timestamp('2014-01-02') checkpoints = pd.DataFrame({ 'value': [ffilled_value], 'asof_date': checkpoints_ts, 'timestamp': checkpoints_ts, }) self._test_checkpoints_macro(checkpoints, ffilled_value) def _test_empty_checkpoints_macro(self): empty_checkpoints = pd.DataFrame({ 'value': [], 'asof_date': [], 'timestamp': [], }) self._test_checkpoints_macro(empty_checkpoints) def _test_checkpoints_out_of_bounds_macro(self): # provide two checkpoints, one before the data in the base table # and one after, these should not affect the value on the third dates = pd.to_datetime(['2013-12-31', '2014-01-05']) checkpoints = pd.DataFrame({ 'value': [-2, 2], 'asof_date': dates, 'timestamp': dates, }) self._test_checkpoints_macro(checkpoints) def _test_checkpoints(self, checkpoints, ffilled_values=None): """Simple checkpoints test that accepts a checkpoints dataframe and the expected value for 2014-01-03. The underlying data has value -1.0 on 2014-01-01 and 1.0 on 2014-01-04. Parameters ---------- checkpoints : pd.DataFrame The checkpoints data. ffilled_value : float, optional The value to be read on the third, if not provided, it will be the value in the base data that will be naturally ffilled there. """ nassets = len(simple_asset_info) dates = pd.to_datetime(['2014-01-01', '2014-01-04']) dates_repeated = np.tile(dates, nassets) values = np.arange(nassets) + 1 values = np.hstack((values[::-1], values)) baseline = pd.DataFrame({ 'sid': np.tile(simple_asset_info.index, 2), 'value': values, 'asof_date': dates_repeated, 'timestamp': dates_repeated, }) if ffilled_values is None: ffilled_values = baseline.value.iloc[:nassets] updated_values = baseline.value.iloc[nassets:] expected_views = keymap(pd.Timestamp, { '2014-01-03': [ffilled_values], '2014-01-04': [updated_values], }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv(ffilled_values, updated_values)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) self._run_pipeline( bz.data(baseline, name='expr', dshape=self.value_dshape), None, bz.data( checkpoints, name='expr_checkpoints', dshape=self.value_dshape, ), expected_views, expected_output, finder, calendar=pd.date_range('2014-01-01', '2014-01-04'), start=pd.Timestamp('2014-01-03'), end=dates[-1], window_length=1, compute_fn=op.itemgetter(-1), ) def _test_checkpoints(self): # noqa F811 nassets = len(simple_asset_info) ffilled_values = (np.arange(nassets, dtype=np.float64) + 1) * 10 dates = [pd.Timestamp('2014-01-02')] * nassets checkpoints = pd.DataFrame({ 'sid': simple_asset_info.index, 'value': ffilled_values, 'asof_date': dates, 'timestamp': dates, }) self._test_checkpoints(checkpoints, ffilled_values) def _test_empty_checkpoints(self): checkpoints = pd.DataFrame({ 'sid': [], 'value': [], 'asof_date': [], 'timestamp': [], }) self._test_checkpoints(checkpoints) def _test_checkpoints_out_of_bounds(self): nassets = len(simple_asset_info) # provide two sets of checkpoints, one before the data in the base # table and one after, these should not affect the value on the third dates = pd.to_datetime(['2013-12-31', '2014-01-05']) dates_repeated = np.tile(dates, nassets) ffilled_values = (np.arange(nassets) + 2) * 10 ffilled_values = np.hstack((ffilled_values[::-1], ffilled_values)) checkpoints = pd.DataFrame({ 'sid': np.tile(simple_asset_info.index, 2), 'value': ffilled_values, 'asof_date': dates_repeated, 'timestamp': dates_repeated, }) self._test_checkpoints(checkpoints) def _test_id_take_last_in_group_sorted(self): """ input asof_date timestamp other value 2014-01-03 2014-01-04 00 3 3 2014-01-02 2014-01-04 00 2 2 output (expected): other value 2014-01-02 NaN NaN 2014-01-03 NaN NaN 2014-01-06 3 3 """ dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), pd.Timestamp('2014-01-06'), ]) T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'other', 'value'], data=[ # asof-dates are flipped in terms of order so that if we # don't sort on asof-date before getting the last in group, # we will get the wrong result. [T('2014-01-03'), T('2014-01-04 00'), 3, 3], [T('2014-01-02'), T('2014-01-04 00'), 2, 2], ], ) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[np.nan, np.nan], # 2014-01-02 [np.nan, np.nan], # 2014-01-03 [3, 3]], # 2014-01-06 columns=['other', 'value'], index=dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('other', 'value'), dates=dates, ) class MiscTestCase(CatalystTestCase): def test_exprdata_repr(self): strd = set() class BadRepr(object): """A class which cannot be repr'd. """ def __init__(self, name): self._name = name def __repr__(self): # pragma: no cover raise AssertionError('ayy') def __str__(self): strd.add(self) return self._name assert_equal( repr(ExprData( expr=BadRepr('expr'), deltas=BadRepr('deltas'), checkpoints=BadRepr('checkpoints'), odo_kwargs={'a': 'b'}, )), "ExprData(expr='expr', deltas='deltas'," " checkpoints='checkpoints', odo_kwargs={'a': 'b'}, " "apply_deltas_adjustments=True)", ) def test_blaze_loader_repr(self): assert_equal(repr(BlazeLoader()), '<BlazeLoader: {}>') def test_blaze_loader_lookup_failure(self): class D(DataSet): c = Column(dtype='float64') with self.assertRaises(KeyError) as e: BlazeLoader()(D.c) assert_equal(str(e.exception), 'D.c::float64')
py
b413009fb2c2002449a441424a66c578cb81306f
# -*- coding: utf-8 -*- # (C) Copyright 2019 Hewlett Packard Enterprise Development LP. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # __author__ = "@netwookie" # __credits__ = ["Rick Kauffman"] # __license__ = "Apache2.0" # __maintainer__ = "Rick Kauffman" # __email__ = "[email protected]" # # a python module that handles the link-aggregation API call to the CFM controller # #--------------------------------------------------------------------------------------- from flask import Blueprint, render_template, request, redirect, session, url_for, abort import os from werkzeug import secure_filename from mongoengine import Q import pygal import json # Place to stach the user temporarily from database.sidekick import Sidekick from database.ports import Ports from database.b_ports import b_Ports from pyhpecfm.client import CFMClient from pyhpecfm import fabric from pyhpecfm import system from utilities.get_client import access_client from utilities.switch_array import get_switches from utilities.port_array import get_ports from utilities.vlan_array import get_vlans lag_app=Blueprint('lag_app', __name__) @lag_app.route('/process_lags', methods=('GET', 'POST')) def process_lags(): # Get a client connection. client=access_client() # assignment of attributes count_only=False mac_attachments=True mac_learning=True ports=True port_type='access' tags=True type='provisioned' vlan_groups=True # Create an attribute dictionary params={ 'count_only': count_only, 'mac_attachments': mac_attachments, 'mac_learning': mac_learning, 'ports': ports, 'port_type': port_type, 'tags': tags, 'type': type, 'vlan_groups': vlan_groups } # Pull the CFM controller for all lags try: cfm_lags=fabric.get_lags(client, params) except: error="ERR-LOGIN - Failed to log into CFM controller" return error # build properties and ports disctionaries # Create some empty lists port_props=[] port_detail=[] lag_group=[] for lag in cfm_lags: if len(lag['port_properties']) > 1: # Iterate through port_properties for item in lag['port_properties']: lag_mode=item['lacp']['mode'] lag_speed=item['speed']['current'] lag_partner_status=item['port_lacp_state'][0]['partner_state_lacp_status'] lag_partner_system=item['port_lacp_state'][0]['partner_state_system_id'] lag_partner_port_state=item['port_lacp_state'][0]['partner_state_port'] actor_lacp_status=item['port_lacp_state'][0]['actor_state_lacp_status'] # Define properties dictionary properties={ 'mode':lag_mode, 'speed':lag_speed, 'partner_status':lag_partner_status, 'partner_system':lag_partner_system, 'partner_port_state':lag_partner_port_state, 'actor_status':actor_lacp_status } # Extract port detail. for ports in item['ports']: switch_name=ports['switch_name'] link_state=ports['link_state'] admin_state=ports['admin_state'] port_security_enabled=ports['port_security_enabled'] vlans=ports['vlans'] speed=ports['speed'] port_label=ports['port_label'] bridge_loop_detection=ports['bridge_loop_detection'] # Define port dictionary port_information={ 'switch_name': switch_name, 'link_state': link_state, 'admin_state': admin_state, 'port_security_enabled': port_security_enabled, 'vlans': vlans, 'speed': speed, 'port_label': port_label, 'bridge_loop_detection': bridge_loop_detection } port_detail.append(port_information) #ports = {'ports':port_detail} #----add port detail to the dictionary items properties['ports']=port_detail properties['name']=lag['name'] # Now make it a dictionary properties={'properties': properties} lag_group.append(properties) lag_data=[] port_props=[] port_detail=[] return render_template('lags/lags.html', l=lag_group) @lag_app.route('/autolag', methods=('GET', 'POST')) def autolag(): # Clear ports database on new session. Ports.objects().delete() # Clear ports database on new session. b_Ports.objects().delete() switch_list_out=[] switch_list=[] vlan_list_out=[] vlan_list=[] # Get a client connection. switches=get_switches() for switch in switches: switch_name=switch[3].encode('utf-8') switch_uuid=switch[5].encode('utf-8') switch_list=[switch_name,switch_uuid] switch_list_out.append(switch_list) # Get a client connection. vlans=get_vlans() for vlan in vlans: vlansx=vlan['vlans'].encode('utf-8') uuid=vlan['uuid'].encode('utf-8') vlan_list=[vlansx,uuid] vlan_list_out.append(vlan_list) count = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] return render_template('lags/autolag.html', switches=switch_list_out, vlans=vlan_list_out, count=count) @lag_app.route('/makelags', methods=('GET', 'POST')) def makelags(): # Get a client connection. client=access_client() a_list=[] a_list_out=[] b_list=[] b_list_out=[] #Get items from the chooser rick.append('fail') vlan_uuid=request.form['vlan'].encode('utf-8') a_switch=request.form['a_switch'].encode('utf-8') b_switch=request.form['b_switch'].encode('utf-8') count=request.form['count'].encode('utf-8') count = int(count) # Verify selections if a_switch == b_switch: error="ERR009 - You picked the same switches. Please pick two different switches" return render_template('sidekick/dberror.html', error=error) if a_switch == 'no select' or b_switch == 'no select' or vlan_uuid == 'no select': error="ERR00910 - You missed a selection. Make sure to select valid items" return render_template('sidekick/dberror.html', error=error) # Build a side ports database port_info=[] port_info_out=[] ports=get_ports() for port in ports: if port['switch_uuid'] == a_switch: speed=port['speed']['current'] speed=str(speed) speed=speed.encode('utf-8') uuid=port['uuid'].encode('utf-8') port_label=port['port_label'].encode('utf-8') silkscreen=port['silkscreen'].encode('utf-8') switch_uuid=port['switch_uuid'].encode('utf-8') # Build database entry to save creds port = Ports(speed=speed,uuid=uuid,switch_uuid=switch_uuid,port_label=port_label,silkscreen=silkscreen) # Save the record try: port.save() except: error="ERR001 - Failed to save port information" return render_template('sidekick/dberror.html', error=error) # Build b side ports database port_info=[] port_info_out=[] ports=get_ports() for port in ports: if port['switch_uuid'] == b_switch: speed=port['speed']['current'] speed=str(speed) speed=speed.encode('utf-8') uuid=port['uuid'].encode('utf-8') port_label=port['port_label'].encode('utf-8') silkscreen=port['silkscreen'].encode('utf-8') switch_uuid=port['switch_uuid'].encode('utf-8') # Build database entry to save creds port = b_Ports(speed=speed,uuid=uuid,switch_uuid=switch_uuid,port_label=port_label,silkscreen=silkscreen) # Save the record try: port.save() except: error="ERR001 - Failed to save port information" return render_template('sidekick/dberror.html', error=error) # Build static variables description = "Symetrical Link Aggregation for DL attached servers" test=[] port_counter = 1 # Process a-side-ports while port_counter <= count: a_switch_ports = Ports.objects(silkscreen=str(port_counter)) port_counter=port_counter + 1 a_silkscreen=a_switch_ports[0]['silkscreen'].encode('utf-8') a_port_uuid=a_switch_ports[0]['uuid'].encode('utf-8') speed=a_switch_ports[0]['speed'].encode('utf-8') speed=int(speed) # # Find matching B side port rick.append('fail') b_switch_ports = b_Ports.objects(silkscreen=a_silkscreen) for obj in b_switch_ports: if obj['switch_uuid'] == b_switch: b_port_uuid=obj['uuid'].encode('utf-8') b_port_silk=obj['silkscreen'].encode('utf-8') out = [a_silkscreen,b_port_silk,speed,a_port_uuid, b_port_uuid,port_counter, count] print 'writing lag to cfm....' name = "Auto generated link aggregation-%s" % (port_counter) result = fabric.add_lags(client, name, description, vlan_uuid, a_port_uuid, b_port_uuid, speed) test.append(out) print test return render_template('lags/autolag_success.html', result=result) #rick.append('fail') @lag_app.route('/testports', methods=('GET', 'POST')) def testports(): # Process a-side-ports a_switch_ports = Ports.objects(switch_uuid=a_switch) for i in sorted (silkscreen.keys()): print i return render_template('lags/autolag_success.html')
py
b41300e18dc5618376beec3248cfbe0e2ecd31af
import os from setuptools import find_packages, setup VERSION = __import__('herald').__version__ def read_file(filename): """Read a file into a string""" path = os.path.abspath(os.path.dirname(__file__)) filepath = os.path.join(path, filename) try: return open(filepath).read() except IOError: return '' install_requires = [ 'django>=1.8', 'six', 'jsonpickle', ] dev_requires = [ 'pytz', ] twilio_requires = [ 'twilio', ] html2text_requires = [ 'html2text', ] setup( name='django-herald', version=VERSION, author='Worthwhile', author_email='[email protected]', install_requires=install_requires, extras_require={ 'dev': install_requires + dev_requires, 'twilio': twilio_requires, 'html2text': html2text_requires, }, packages=find_packages(include=('herald', 'herald.*')), include_package_data=True, # declarations in MANIFEST.in license='MIT', url='https://github.com/worthwhile/django-herald/', download_url='https://github.com/worthwhile/django-herald/tarball/'+VERSION, description="Django library for separating the message content from transmission method", long_description=read_file('README.md'), long_description_content_type="text/markdown", keywords=['django', 'notifications', 'messaging'], classifiers=[ 'Framework :: Django', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'License :: OSI Approved :: MIT License', ], )
py
b413010d03cb32b02edf88c26020306dac423fae
import datetime now = datetime.datetime.now() one_month_ago = now - datetime.timedelta(days=30) cmod.Rendtal.objects.filter(due_date__gte=one_month_ago, due_date__lte=now).exclude(active=False)
py
b41301593f6bd20f0bbc1c58877796f402c4d829
word = input('Enter a word: ') if word == word[::-1]: print(f'The word "{word}" is a palindrome.') else: print(f'The word "{word}" is not a palindrome.')
py
b41303b092fc748f527e2dce4ad48ae152a57f20
"""A controller for watering a plant. This acts a both a source (current output state) and a sink (receives sensor data to act on). """ import atexit import logging from threading import Lock, Timer from RPi import GPIO from sensor_feed.sensor import SleepingSensor from sensor_feed.sink import Sink LOGGER = logging.getLogger(__name__) GPIO.setmode(GPIO.BCM) class PlantControl(SleepingSensor, Sink): """A controller to water a plant.""" param_name = 'water_input' param_id = 'water_input' param_unit = 'seconds' trigger_param = 'soil' def __init__(self, *args, **kwargs): super(SleepingSensor, self).__init__(*args, **kwargs) super(Sink, self).__init__(*args, **kwargs) self._water_input = 0 self.threshold = 1300 self.water_period = 20 self.min_period = self.water_period + 2 self._watering = Lock() self.gpio_pin = 17 GPIO.setup(self.gpio_pin, GPIO.OUT) atexit.register(GPIO.cleanup) def get_value(self): last_water = self._water_input self._water_input = 0 return last_water def process_value(self, param_name, timestamp, value): # only interested in one parameter if param_name != self.trigger_param: return if value > self.threshold: self.apply_water() def apply_water(self): LOGGER.critical('Applying water.') self._water_input += self.water_period if self._watering.locked(): LOGGER.critical('Already watering.') return self._watering.acquire() # turn on water supply. GPIO.output(self.gpio_pin, GPIO.HIGH) LOGGER.critical('Tap on.') timer = Timer(self.water_period, self._stop) timer.start() def _stop(self): LOGGER.critical('Tap off.') GPIO.output(self.gpio_pin, GPIO.LOW) self._watering.release() def __del__(self): GPIO.output(self.gpio_pin, GPIO.LOW) LOGGER.critical('Ensure tap off.')
py
b413078441e25f227284dd1d88e8c021273b76f7
#!/usr/bin/python # Author: @BlankGodd class Stack: """Last in First Out""" def __init__(self): self._stack = [] self._size = 0 def add(self, data): # adding to a stack self._stack.append(data) self._size += 1 def remove(self): # getting the item top of the stack if self._size == 0: print("Stack is Empty!") return x = self._stack[-1] del(self._stack[-1]) self._size -= 1 return x def top(self): # display the item top of the stack without removing if self._size == 0: print("Stack is Empty!") return print(self._stack[-1]) def length(self): return self._size def flip(self): # to turn the stack over if self._size == 0 or self._size == 1: return a,b = 0,1 x = [i for i in self._stack] for i in range(self._size): self._stack[a] = x[-b] a += 1 b += 1 def display(self): print(self._stack)