ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b41307d90f43557915b808b89d43c7f4e70fecbe
import json import re import functools from typing import List, Dict, Set, Tuple, Optional, TypeVar, Iterable from spacy.tokens import Doc, Token, Span, DocBin # type: ignore import numpy as np T = TypeVar('T') ############################################ # Utility functions for NLP analysis ############################################ def is_likely_proper(tok: Token, min_rank=200) -> bool: """Returns true if the spacy token is a likely proper name, based on its form. NB: this method should only be used for languages that have a distinction between lowercase and uppercase (so called bicameral scripts).""" # We require at least two characters if len(tok) < 2: return False # If the lemma is titled or in uppercase, just return True elif tok.lemma_.istitle() and len(tok.lemma_) >2: return True elif tok.lemma_.isupper() and len(tok.lemma_) >2 and tok.lemma_ != "-PRON-": return True # If there is no lemma, but the token is in uppercase, return true as well elif tok.lemma_=="" and tok.is_upper: return True # We do not consider the 200 most common words as proper name elif (tok.lemma_.islower() and tok.lemma in tok.vocab.strings and tok.vocab[tok.lemma].rank < min_rank): return False # Handling cases such as iPad elif len(tok) > 2 and tok.text[0].islower() and tok.text[1].isupper(): return True # Handling cases such as IceFog elif (len(tok) > 2 and tok.text[0].isupper() and any([k.islower() for k in tok.text[1:]]) and any([k.isupper() for k in tok.text[1:]])): return True # Else, check whether the surface token is titled and is not sentence-initial # NB: This should be commented out for languages such as German elif (tok.i > 0 and tok.is_title and not tok.is_sent_start and tok.nbor(-1).text not in {'\'', '"', '‘', '“', '”', '’', "\n", "|"} and not tok.nbor(-1).text.endswith(".")): return True # If the part-of-speech is a proper noun elif tok.pos_ == "PROPN": return True # If the token is a quite rare token elif (len(tok) > 3 and (tok.is_lower or tok.is_upper) and len(tok.vocab.vectors) > 0 and tok.is_oov): return True return False def is_infrequent(span: Span, max_rank_threshold=15000) -> bool: """Returns true if there is at least one token that is quite infrequent""" max_rank = max(tok.rank if len(span.vocab.vectors) > 0 and tok.rank > 0 else 0 for tok in span) return max_rank > max_rank_threshold def in_compound(tok: Token): """Returns true if the spacy token is part of a compound phrase""" if tok.dep_ == "compound": return True elif tok.i > 0 and tok.nbor(-1).dep_ == "compound": return True return False def replace_ner_spans(doc: Doc, source: str): """Given a Spacy Doc object and the name of an annotation source, replaces the current named entities by the ones specified in the source""" # We create Spacy spans based on the annotation layer spans = [] if source in doc.spans: for span in doc.spans[source]: spans.append(span) doc.ents = tuple(spans) return doc @functools.lru_cache(maxsize=5) def get_spacy_model(spacy_model_name: str): """Returns the vocabulary associated with the spacy model (and caches it for faster access)""" import spacy return spacy.load(spacy_model_name) @functools.lru_cache(maxsize=1) def get_tokens(doc: Doc) -> List[str]: """Returns the list of tokens from a given spacy Document. As it is an operation that (for some strange reason) actually takes some CPU resources, we cache the results, as it is a frequent operation, e.g. for gazetteers. """ return [tok.text for tok in doc] @functools.lru_cache(maxsize=1) def get_next_sentence_boundaries(doc: Doc) -> List[int]: """Returns a list of integers (of same size as the number of tokens) expressing, for each token, the position of the next sentence boundary (start-of-sentence token). """ boundaries = [] for tok in doc: if tok.is_sent_start: boundaries.append(tok.i) next_boundary_indices = np.searchsorted(boundaries, range(1, len(doc)+1)) next_boundaries = [boundaries[i] if i < len(boundaries) else len(doc) for i in next_boundary_indices] return next_boundaries ############################################ # I/O related functions ############################################ def docbin_reader(docbin_file_path: str, spacy_model_name: str = "en_core_web_md", cutoff: Optional[int] = None, nb_to_skip: int = 0): """Read a binary file containing a DocBin repository of spacy documents. In addition to the file path, we also need to provide the name of the spacy model (which is necessary to load the vocabulary), such as "en_core_web_md". If cutoff is specified, the method will stop after generating the given number of documents. If nb_to_skip is > 0, the method will skip the given number of documents before starting the generation. """ import spacy # Reading the binary data from the file fd = open(docbin_file_path, "rb") data = fd.read() fd.close() docbin = DocBin(store_user_data=True) docbin.from_bytes(data) del data # print("Total number of documents in docbin:", len(docbin)) # Skip a number of documents if nb_to_skip: docbin.tokens = docbin.tokens[nb_to_skip:] docbin.spaces = docbin.spaces[nb_to_skip:] docbin.user_data = docbin.user_data[nb_to_skip:] # Retrieves the vocabulary vocab = get_spacy_model(spacy_model_name).vocab # We finally generate the documents one by one reader = docbin.get_docs(vocab) for i, doc in enumerate(reader): yield doc if cutoff is not None and (i+1) >= cutoff: return def docbin_writer(docs: Iterable[Doc], docbin_output_path: str): """Writes a stream of Spacy Doc objects to a binary file in the DocBin format.""" import spacy.attrs # Creating the DocBin object (with all attributes) attrs = [spacy.attrs.LEMMA, spacy.attrs.TAG, spacy.attrs.DEP, spacy.attrs.HEAD, spacy.attrs.ENT_IOB, spacy.attrs.ENT_TYPE] docbin = DocBin(attrs=attrs, store_user_data=True) # Storing the documents in the DocBin repository for doc in docs: doc.cats = {} docbin.add(doc) data = docbin.to_bytes() # And writing the content to the file print("Write to", docbin_output_path, end="...", flush=True) fd = open(docbin_output_path, "wb") fd.write(data) fd.close() print("done") def json_writer(docs, json_file_path: str, source: str = None): """Converts a collection of Spacy Doc objects to a JSON format, such that it can be used to train the Spacy NER model. (for Spacy v2) Source must be an aggregated source (defined in user_data["agg_spans"]), which will correspond to the target values in the JSON file. """ import spacy if int(spacy.__version__[0]) > 2: raise RuntimeError("Only supported for Spacy v2") import spacy.gold # type: ignore # We start opening up the JSON file print("Writing JSON file to", json_file_path) out_fd = open(json_file_path, "wt") out_fd.write("[{\"id\": 0, \"paragraphs\": [\n") for i, doc in enumerate(docs): # We replace the NER labels with the annotation source if source is not None: doc = replace_ner_spans(doc, source) # We dump the JSON content to the file d = spacy.gold.docs_to_json([doc]) s = json.dumps(d["paragraphs"]).strip("[]") if i > 0: s = ",\n" + s out_fd.write(s) if i > 0 and i % 1000 == 0: print("Converted documents:", i) out_fd.flush() # And finally close all file descriptors out_fd.write("]}]\n") out_fd.flush() out_fd.close() ############################################ # Operations on spans ############################################ def get_spans(doc: Doc, sources: List[str], labels: Optional[List[str]] = None ) -> List[Span]: """Return the spans annotated by a list of labelling sources. If two spans are overlapping, the longest spans are kept. One can also specify the labels to focus on (if empty, we extract all). """ # Creating a list of spans spans = [] for source in sources: if source in doc.spans: for span in doc.spans[source]: if labels is None or span.label_ in labels: spans.append(span) else: raise RuntimeError("Annotation source \"%s\" cannot be found" % source) # Remove possible overlaps spans = _remove_overlaps(spans) return spans def get_spans_with_probs(doc: Doc, source: str, labels: Optional[List[str]] = None ) -> List[Tuple[Span,float]]: """Return the spans annotated by an aggregated source. The method returns a dictionary of non-overlapping spans where the keys are (start, end) pairs and the values are pairs of (label, prob). """ spans = [] if source in doc.spans: for span in doc.spans[source]: if labels is None or span.label_ in labels: prob = _get_agg_span_prob(doc, source, span) spans.append((span, prob)) else: raise RuntimeError("Annotation source \"%s\" cannot be found" % source) return spans def _get_agg_span_prob(doc, source, span): """Get the probability that the source assigns the (start,end)->label span""" if source not in doc.spans: return 0 elif "probs" not in doc.spans[source].attrs: return 1 probs = doc.spans[source].attrs["probs"] if (span.start, span.end) in probs: return probs[(span.start, span.end)] probs_per_token = [] for i in range(span.start, span.end): if i in probs: for prefixed_label, prob in probs[i].items(): if prefixed_label.endswith("-%s" % span.label_): probs_per_token.append(prob) return sum(probs_per_token)/(len(span)) def count_nb_occurrences(tokens: Tuple[str, ...], all_tokens: List[str]): """Count the number of occurences of the sequence of tokens in the full list all_tokens""" nb_occurrences = 0 for i in range(len(all_tokens)): for k in range(len(tokens)): if all_tokens[i+k] != tokens[k]: break else: nb_occurrences += 1 return nb_occurrences def at_least_nb_occurrences(tokens: Tuple[str, ...], all_tokens: List[str], min_threshold): """Returns true if the number of occurences of the sequence of tokens in the full list all_tokens is at least min_threshold, and false otherwise""" if len(tokens) == 1: return all_tokens.count(tokens[0]) >= min_threshold nb_occurrences = 0 for i in range(len(all_tokens)): for k in range(len(tokens)): if (i+k) >= len(all_tokens) or all_tokens[i+k] != tokens[k]: break else: nb_occurrences += 1 if nb_occurrences >= min_threshold: return True return False def _remove_overlaps(spans: List[Span]) -> List[Span]: """Remove overlaps between spans expressed as (start, end, label, score) tuples. When two overlapping spans are detected, the method keeps the longest span and removes the other. If the two scores are identical, the first span is discarded). """ # We sort the spans by their position spans.sort() # We resolve overlaps between spans finished = False while not finished: finished = True for i in range(1, len(spans)): # If two spans are overlapping , keep the longest one start1 = spans[i-1].start end1 = spans[i-1].end start2 = spans[i].start end2 = spans[i].end if start2 < end1 and start1 < end2: length_diff = (end1-start1) - (end2-start2) if length_diff > 0: del spans[i] else: del spans[i-1] finished = False break return spans def merge_contiguous_spans(spans: List[Tuple[int, int, str]], doc: Doc, acceptable_gaps: str = ","): """Merge spans that are contiguous (and with same label), or only separated with some predefined punctuation symbols""" finished = False while not finished: finished = True spans.sort() for i in range(1, len(spans)): start1, end1, label1 = spans[i-1] start2, end2, label2 = spans[i] if end1 == start2 or (end1 == start2-1 and doc[end1].text in acceptable_gaps): if label1 == label2: new_spans = spans[:i-1] if i > 1 else [] new_spans.append((start1, end2, label1)) new_spans += spans[i+1:] spans = new_spans finished = False break return spans def get_overlaps(start: int, end: int, other_spans: List[Tuple[int, int]]) -> List[Tuple[int, int]]: """Returns a list of overlaps (as (start, end, value) between the provided span and other existing spans""" overlaps = [] other_spans.sort() start_search, end_search = _binary_search(start, end, other_spans) for other_span_start, other_span_end in other_spans[start_search:end_search]: if start < other_span_start and end > other_span_end: overlaps.append((other_span_start, other_span_end)) return overlaps def _binary_search(start: int, end: int, intervals: List[Tuple[int, int]]) -> Tuple[int, int]: """Performs a binary search""" start_search = 0 end_search = len(intervals) while start_search < (end_search-1): mid = start_search + (end_search-start_search)//2 (interval_start, interval_end) = intervals[mid] if interval_end <= start: start_search = mid elif interval_start >= end: end_search = mid else: break return start_search, end_search def get_subsequences(sequence: List[T]) -> List[List[T]]: """Returns the list of possible subsequences that are included in the full sequence (including the original sequence).""" subsequences = [] for length in range(1, len(sequence)+1): for i in range(length, len(sequence)+1): subsequences.append(sequence[i-length:i]) return subsequences def spans_to_array( doc: Doc, labels: List[str], sources: Optional[List[str]] = None, ) -> np.ndarray: """Convert the annotations of a spacy document into a 2D array. Each row corresponds to a token, and each column to a labelling source. In other words, the value at (i,j) represents the prediction of source j for token i. This prediction is expressed as the index of the label in the labels. Labels must be a list of labels (such as B-PERSON, I-ORG) to detect. Sources should be a list of labelling sources. If empty, all sources are employed. NB: we assume the labels use either IO/BIO/BILUO, and that the O label is at position 0. """ label2idx, prefixes, labels_without_prefix, = _index_labels( original_labels=labels, strip_prefixes=False, ) return _spans_to_array( doc, sources, label2idx, labels_without_prefix, prefixes ) def _index_labels( original_labels: List[str], strip_prefixes: bool = False ) -> Tuple[Dict[str, int], Set[str], Set[str]]: """ Normalize and index a list of labels to: 1. Generate a mapping from labels to indices 2. Identify label prefixes (e.g., I, B, L, etc.) 3. Identify list of labels without prefixes If `strip_prefixes` is True, we normalize IO/BIO/BILUO labels (e.g., B-PERSON and I-PERSON will be normalized PERSON). If `strip_prefixes` is False, we assume the labels use IO/BIO/BILUO formats and mantain different labels/indices for labels like B-PERSON and I-PERSON. NB: We assume that the first label in labels is 'O' for the null token. """ labels = [] prefixes = set() labels_without_prefix = set() for original_label in original_labels: if "-" in original_label: # Normalize B-PER and I-PER to PER prefix, normalized_label = original_label.split("-", 1) prefixes.add(prefix) else: # No normalization required normalized_label = original_label # Track labels without prefixes labels_without_prefix.add(normalized_label) if strip_prefixes: # Use normalized label for token labeling if normalized_label not in labels: labels.append(normalized_label) else: # Use original label for token labeling if original_label not in labels: labels.append(original_label) # Generate mapping of labels to label indices label2idx = {label: i for i, label in enumerate(labels)} return label2idx, prefixes, labels_without_prefix def _spans_to_array( doc: Doc, sources: List[str], label2idx: Dict[str, int], labels_without_prefix: Set[str], prefixes: Optional[Set[str]] = None, warn_missing_labels: bool = False ) -> np.ndarray: """Convert the annotations of a spacy document into a 2D array. Each row corresponds to a token, and each column to a labelling source. In other words, the value at (i,j) represents the prediction of source j for token i. This prediction is expressed as the index of the label in the labels. NB: - Sources should be a list of labelling sources. If empty, all sources are employed. - If `prefixes` are provided (e.g., [I, B, L]), it is assumed that the labels in `label2idx` contain the prefixes (e.g., I-PERSON, B-PERSON). - If `prefixes` are not provided, it is assumed that the labels in `label2idx` do not contain prefixes (e.g, PERSON). - We also assume the O is label is at position 0. """ if sources is None: sources = list(doc.spans.keys()) if warn_missing_labels: missing_labels = set() # Creating the numpy array itself data = np.zeros((len(doc), len(sources)), dtype=np.int16) for source_index, source in enumerate(sources): for span in doc.spans.get(source, []): if span.label_ not in labels_without_prefix: if warn_missing_labels: missing_labels.add(span.label_) continue if prefixes is None: # Do not use prefix labels (e.g., use PER instead of # B-PER, I-PER, etc.) data[span.start:span.end, source_index] = label2idx[ span.label_ ] else: # If the span is a single token, we can use U if "U" in prefixes and len(span) == 1: data[span.start, source_index] = label2idx[ "U-%s" % span.label_ ] continue # Otherwise, we use B, I and L if "B" in prefixes: data[span.start, source_index] = label2idx[ "B-%s" % span.label_ ] if "I" in prefixes: start_i = (span.start+1) if "B" in prefixes else span.start end_i = (span.end-1) if "L" in prefixes else span.end data[start_i:end_i, source_index] = label2idx[ "I-%s" % span.label_ ] if "L" in prefixes: data[span.end-1, source_index] = label2idx[ "L-%s" % span.label_ ] if warn_missing_labels: print( "WARNING: \ Span labels were found in the dataset that were not provided \ in `labels_without_prefices`: {}".format(missing_labels) ) return data def token_array_to_spans(agg_array: np.ndarray, prefix_labels: List[str]) -> Dict[Tuple[int, int], str]: """Returns an dictionary of spans corresponding to the aggregated 2D array. prefix_labels must be list of prefix labels such as B-PERSON, I-ORG etc., of same size as the number of columns in the array.""" spans = {} i = 0 while i < len(agg_array): if np.isscalar(agg_array[i]): value_index = agg_array[i] else: # If we have probabilities, select most likely label value_index = agg_array[i].argmax() if value_index == 0: i += 1 continue prefix_label = prefix_labels[value_index] prefix, label = prefix_label.split("-", 1) # If the prefix is "U", create a single-token span if prefix == "U": spans[(i, i+1)] = label i += 1 # Otherwise, we need to continue until the span ends elif prefix in {"B", "I"}: start = i i += 1 while i < len(agg_array): if np.isscalar(agg_array[i]): next_val = agg_array[i] else: next_val = agg_array[i].argmax() if next_val == 0: break next_prefix_label = prefix_labels[next_val] next_prefix, next_label = next_prefix_label.split("-", 1) if next_prefix not in {"I", "L"}: break i += 1 spans[(start, i)] = label return spans def token_array_to_probs(agg_array: np.ndarray, prefix_labels: List[str]) -> Dict[int, Dict[str, float]]: """Given a 2D array containing, for each token, the probabilities for a each possible output label in prefix form (B-PERSON, I-ORG, etc.), returns a dictionary of dictionaries mapping token indices to probability distributions over their possible labels. The "O" label and labels with zero probabilities are ignored. """ # Initialising the label sequence token_probs = {} # We only look at labels beyond "O", and with non-zero probability row_indices, col_indices = np.nonzero(agg_array[:, 1:]) for i, j in zip(row_indices, col_indices): if i not in token_probs: token_probs[i] = {prefix_labels[j+1]: agg_array[i, j+1]} #type: ignore else: token_probs[i][prefix_labels[j+1]] = agg_array[i, j+1] #type: ignore return token_probs def is_valid_start(prefix_label, encoding="BIO"): """Returns whether the prefix label is allowed to start a sequence""" return (prefix_label == "O" or prefix_label.startswith("B-") or prefix_label.startswith("U-") or (prefix_label.startswith("I-") and "B" not in encoding)) def is_valid_transition(prefix_label1, prefix_label2, encoding="BIO"): """Returns whether the two labels (associated with a prefix, such as B-PERSON, I-ORG etc.) are allowed to follow one another according to the encoding (which can be BIO, BILUO, IO, etc.)""" if prefix_label1.startswith("B-"): if ((prefix_label2.startswith("I-") or prefix_label2.startswith("L-")) and prefix_label1[2:] == prefix_label2[2:]): return True elif "U" not in encoding: return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) elif prefix_label1.startswith("I-"): if ((prefix_label2.startswith("I-") or prefix_label2.startswith("L-")) and prefix_label1[2:] == prefix_label2[2:]): return True elif "L" not in encoding: return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) elif prefix_label1 == "O" or prefix_label1.startswith("L-") or prefix_label1.startswith("U-"): return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) ############################################ # Visualisation ############################################ def display_entities(doc: Doc, layer=None, add_tooltip=False): """Display the entities annotated in a spacy document, based on the provided annotation layer(s). If layer is None, the method displays the entities from Spacy. This method will only work in a Jupyter Notebook or similar. If add_tooltip is set to True, the visualisation also adds tooltips to show the predictions of each labelling functions for a given token. This functionality only works with Jupyter Lab (not Jupyter Notebook). """ import spacy.displacy import IPython.core.display if layer is None: spans = doc.ents elif type(layer) is list: spans = get_spans(doc, layer) elif type(layer) == str: if "*" in layer: matched_layers = [l for l in doc.spans if re.match(layer.replace("*", ".*?")+"$", l)] spans = get_spans(doc, matched_layers) else: spans = get_spans(doc, [layer]) else: raise RuntimeError("Layer type not accepted") entities = {} for span in spans: start_char = doc[span.start].idx end_char = doc[span.end-1].idx + len(doc[span.end-1]) if (start_char, end_char) not in entities: entities[(start_char, end_char)] = span.label_ # If we have several alternative labels for a span, join them with + elif span.label_ not in entities[(start_char, end_char)]: entities[(start_char, end_char)] = entities[( start_char, end_char)] + "+" + span.label_ entities = [{"start": start, "end": end, "label": label} for (start, end), label in entities.items()] doc2 = {"text": doc.text, "title": None, "ents": entities} html = spacy.displacy.render(doc2, jupyter=False, style="ent", manual=True) if add_tooltip and type(layer)==str and "sources" in doc.spans[layer].attrs: html = _enrich_with_tooltip(doc, html, doc.spans[layer].attrs["sources"]) # type: ignore ipython_html = IPython.core.display.HTML( '<span class="tex2jax_ignore">{}</span>'.format(html)) return IPython.core.display.display(ipython_html) def _enrich_with_tooltip(doc: Doc, html: str, sources: List[str]): """Enrich the HTML produced by spacy with tooltips displaying the predictions of each labelling function""" import spacy.util if len(doc.spans)==0: return html # Retrieves annotations for each token annotations_by_tok = {} for source in sources: for span in doc.spans[source]: for i in range(span.start, span.end): annotations_by_tok[i] = annotations_by_tok.get(i, []) + [(source, span.label_)] # We determine which characters are part of the HTML markup and not the text all_chars_to_skip = set() for fragment in re.finditer("<span.+?</span>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) for fragment in re.finditer("</?div.*?>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) for fragment in re.finditer("</?mark.*?>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) # We loop on each token curr_pos = 0 new_fragments = [] for tok in doc: # We search for the token position in the HTML toktext = spacy.util.escape_html(tok.text) if "\n" in toktext: continue start_pos = html.index(toktext, curr_pos) if start_pos == -1: raise RuntimeError("could not find", tok) while any((i in all_chars_to_skip for i in range(start_pos, start_pos + len(toktext)))): start_pos = html.index(toktext, start_pos+1) if start_pos == -1: raise RuntimeError("could not find", tok) # We add the preceding fragment new_fragments.append(html[curr_pos:start_pos]) # If the token has annotations, we create a tooltip if tok.i in annotations_by_tok: lines = ["%s:\t%s&nbsp;&nbsp" % (ann, label) for ann, label in annotations_by_tok[tok.i]] max_width = 7*max([len(l) for l in lines]) new_fragment = ("<label class='tooltip'>%s" % toktext + "<span class='tooltip-text' style='width:%ipx'>"%max_width + "%s</span></label>" %"<br>".join(lines)) else: new_fragment = toktext new_fragments.append(new_fragment) curr_pos = start_pos + len(toktext) new_fragments.append(html[curr_pos:]) new_html = """<style> .tooltip { position: relative; border-bottom: 1px dotted black; } .tooltip .tooltip-text {visibility: hidden; background-color: black; color: white; line-height: 1.2; text-align: right; border-radius: 6px; padding: 5px 0; position: absolute; z-index: 1; margin-left:1em; opacity: 0; transition: opacity 1s;} .tooltip .tooltip-text::after {position: absolute; top: 1.5em; right: 100%; margin-top: -5px; border-width: 5px; border-style: solid; border-color: transparent black transparent transparent;} .tooltip:hover .tooltip-text {visibility: visible; opacity: 1;} </style> """ + "".join(new_fragments) return new_html
py
b41308dab80172d5dd5232cc360098a776053bc6
from .syngas_adapted import build_model __all__ = ['build_model']
py
b41309a09b31543000d3276bfaf0c9185a43f3d5
from gym_minigrid.minigrid import * from gym_minigrid.register import register class EmptyEnv(MiniGridEnv): """ Empty grid environment, no obstacles, sparse reward """ def __init__(self, size=8): super().__init__( grid_size=size, max_steps=4*size*size, # Set this to True for maximum speed see_through_walls=True ) def _gen_grid(self, width, height): # Create an empty grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Place the agent in the top-left corner self.start_pos = (1, 1) self.start_dir = 0 # Place a goal square in the bottom-right corner self.grid.set(width - 2, height - 2, Goal()) self.mission = "get to the green goal square" class EmptyEnv6x6(EmptyEnv): def __init__(self): super().__init__(size=6) class EmptyEnv16x16(EmptyEnv): def __init__(self): super().__init__(size=16) register( id='MiniGrid-Empty-6x6-v0', entry_point='gym_minigrid.envs:EmptyEnv6x6' ) register( id='MiniGrid-Empty-8x8-v0', entry_point='gym_minigrid.envs:EmptyEnv' ) register( id='MiniGrid-Empty-16x16-v0', entry_point='gym_minigrid.envs:EmptyEnv16x16' )
py
b4130ac953f8c63a69c89dba93e738848cb99dfc
import os from hacktools import common from PIL import Image def run(data): infile = data + "extract_BMP/FDT/000.BIN" outfile = data + "repack_BMP/FDT/000.BIN" imgfiles = [data + "font_input.png", data + "font_input2.png"] common.logMessage("Repacking FDT from", imgfiles[0], "...") common.copyFile(infile, outfile) with common.Stream(outfile, "rb+", False) as f: for fntnum in range(len(imgfiles)): imgfile = imgfiles[fntnum] if not os.path.isfile(imgfile): common.logError("Input file", imgfile, "not found") return img = Image.open(imgfile) img = img.convert("RGB") pixels = img.load() width = f.readUShort() width = 8 if fntnum == 0 else 16 height = f.readUShort() charn = f.readUShort() charperline = 16 bytelen = (width * height) // 8 imgwidth = (charperline * width) + charperline + 1 imgx = 1 imgy = 1 for i in range(charn): charx = imgx chary = imgy for j in range(bytelen): data = 0 for x in range(8): if pixels[charx, chary] == (255, 255, 255): data |= 1 << (7 - x) charx += 1 if charx - imgx == width: charx = imgx chary += 1 f.writeByte(data) imgx += width + 1 if imgx == imgwidth: imgx = 1 imgy += height + 1 common.logMessage("Done!")
py
b4130b91941028cd3c0680d79c09a04fd3e40824
# orm/mapper.py # Copyright (C) 2005-2022 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """Logic to map Python classes to and from selectables. Defines the :class:`~sqlalchemy.orm.mapper.Mapper` class, the central configurational unit which associates a class with a database table. This is a semi-private module; the main configurational API of the ORM is available in :class:`~sqlalchemy.orm.`. """ from __future__ import absolute_import from collections import deque from itertools import chain import sys import weakref from . import attributes from . import exc as orm_exc from . import instrumentation from . import loading from . import properties from . import util as orm_util from .base import _class_to_mapper from .base import _state_mapper from .base import class_mapper from .base import state_str from .interfaces import _MappedAttribute from .interfaces import EXT_SKIP from .interfaces import InspectionAttr from .interfaces import MapperProperty from .interfaces import ORMEntityColumnsClauseRole from .interfaces import ORMFromClauseRole from .interfaces import StrategizedProperty from .path_registry import PathRegistry from .. import event from .. import exc as sa_exc from .. import inspection from .. import log from .. import schema from .. import sql from .. import util from ..sql import base as sql_base from ..sql import coercions from ..sql import expression from ..sql import operators from ..sql import roles from ..sql import util as sql_util from ..sql import visitors from ..sql.selectable import LABEL_STYLE_TABLENAME_PLUS_COL from ..util import HasMemoized _mapper_registries = weakref.WeakKeyDictionary() _legacy_registry = None def _all_registries(): with _CONFIGURE_MUTEX: return set(_mapper_registries) def _unconfigured_mappers(): for reg in _all_registries(): for mapper in reg._mappers_to_configure(): yield mapper _already_compiling = False # a constant returned by _get_attr_by_column to indicate # this mapper is not handling an attribute for a particular # column NO_ATTRIBUTE = util.symbol("NO_ATTRIBUTE") # lock used to synchronize the "mapper configure" step _CONFIGURE_MUTEX = util.threading.RLock() @inspection._self_inspects @log.class_logger class Mapper( ORMFromClauseRole, ORMEntityColumnsClauseRole, sql_base.MemoizedHasCacheKey, InspectionAttr, ): """Defines an association between a Python class and a database table or other relational structure, so that ORM operations against the class may proceed. The :class:`_orm.Mapper` object is instantiated using mapping methods present on the :class:`_orm.registry` object. For information about instantiating new :class:`_orm.Mapper` objects, see :ref:`orm_mapping_classes_toplevel`. """ _dispose_called = False _ready_for_configure = False @util.deprecated_params( non_primary=( "1.3", "The :paramref:`.mapper.non_primary` parameter is deprecated, " "and will be removed in a future release. The functionality " "of non primary mappers is now better suited using the " ":class:`.AliasedClass` construct, which can also be used " "as the target of a :func:`_orm.relationship` in 1.3.", ), ) def __init__( self, class_, local_table=None, properties=None, primary_key=None, non_primary=False, inherits=None, inherit_condition=None, inherit_foreign_keys=None, always_refresh=False, version_id_col=None, version_id_generator=None, polymorphic_on=None, _polymorphic_map=None, polymorphic_identity=None, concrete=False, with_polymorphic=None, polymorphic_load=None, allow_partial_pks=True, batch=True, column_prefix=None, include_properties=None, exclude_properties=None, passive_updates=True, passive_deletes=False, confirm_deleted_rows=True, eager_defaults=False, legacy_is_orphan=False, _compiled_cache_size=100, ): r"""Direct constructor for a new :class:`_orm.Mapper` object. The :func:`_orm.mapper` function is normally invoked through the use of the :class:`_orm.registry` object through either the :ref:`Declarative <orm_declarative_mapping>` or :ref:`Imperative <orm_imperative_mapping>` mapping styles. .. versionchanged:: 1.4 The :func:`_orm.mapper` function should not be called directly for classical mapping; for a classical mapping configuration, use the :meth:`_orm.registry.map_imperatively` method. The :func:`_orm.mapper` function may become private in a future release. Parameters documented below may be passed to either the :meth:`_orm.registry.map_imperatively` method, or may be passed in the ``__mapper_args__`` declarative class attribute described at :ref:`orm_declarative_mapper_options`. :param class\_: The class to be mapped. When using Declarative, this argument is automatically passed as the declared class itself. :param local_table: The :class:`_schema.Table` or other selectable to which the class is mapped. May be ``None`` if this mapper inherits from another mapper using single-table inheritance. When using Declarative, this argument is automatically passed by the extension, based on what is configured via the ``__table__`` argument or via the :class:`_schema.Table` produced as a result of the ``__tablename__`` and :class:`_schema.Column` arguments present. :param always_refresh: If True, all query operations for this mapped class will overwrite all data within object instances that already exist within the session, erasing any in-memory changes with whatever information was loaded from the database. Usage of this flag is highly discouraged; as an alternative, see the method :meth:`_query.Query.populate_existing`. :param allow_partial_pks: Defaults to True. Indicates that a composite primary key with some NULL values should be considered as possibly existing within the database. This affects whether a mapper will assign an incoming row to an existing identity, as well as if :meth:`.Session.merge` will check the database first for a particular primary key value. A "partial primary key" can occur if one has mapped to an OUTER JOIN, for example. :param batch: Defaults to ``True``, indicating that save operations of multiple entities can be batched together for efficiency. Setting to False indicates that an instance will be fully saved before saving the next instance. This is used in the extremely rare case that a :class:`.MapperEvents` listener requires being called in between individual row persistence operations. :param column_prefix: A string which will be prepended to the mapped attribute name when :class:`_schema.Column` objects are automatically assigned as attributes to the mapped class. Does not affect explicitly specified column-based properties. See the section :ref:`column_prefix` for an example. :param concrete: If True, indicates this mapper should use concrete table inheritance with its parent mapper. See the section :ref:`concrete_inheritance` for an example. :param confirm_deleted_rows: defaults to True; when a DELETE occurs of one more rows based on specific primary keys, a warning is emitted when the number of rows matched does not equal the number of rows expected. This parameter may be set to False to handle the case where database ON DELETE CASCADE rules may be deleting some of those rows automatically. The warning may be changed to an exception in a future release. .. versionadded:: 0.9.4 - added :paramref:`.mapper.confirm_deleted_rows` as well as conditional matched row checking on delete. :param eager_defaults: if True, the ORM will immediately fetch the value of server-generated default values after an INSERT or UPDATE, rather than leaving them as expired to be fetched on next access. This can be used for event schemes where the server-generated values are needed immediately before the flush completes. By default, this scheme will emit an individual ``SELECT`` statement per row inserted or updated, which note can add significant performance overhead. However, if the target database supports :term:`RETURNING`, the default values will be returned inline with the INSERT or UPDATE statement, which can greatly enhance performance for an application that needs frequent access to just-generated server defaults. .. seealso:: :ref:`orm_server_defaults` .. versionchanged:: 0.9.0 The ``eager_defaults`` option can now make use of :term:`RETURNING` for backends which support it. :param exclude_properties: A list or set of string column names to be excluded from mapping. See :ref:`include_exclude_cols` for an example. :param include_properties: An inclusive list or set of string column names to map. See :ref:`include_exclude_cols` for an example. :param inherits: A mapped class or the corresponding :class:`_orm.Mapper` of one indicating a superclass to which this :class:`_orm.Mapper` should *inherit* from. The mapped class here must be a subclass of the other mapper's class. When using Declarative, this argument is passed automatically as a result of the natural class hierarchy of the declared classes. .. seealso:: :ref:`inheritance_toplevel` :param inherit_condition: For joined table inheritance, a SQL expression which will define how the two tables are joined; defaults to a natural join between the two tables. :param inherit_foreign_keys: When ``inherit_condition`` is used and the columns present are missing a :class:`_schema.ForeignKey` configuration, this parameter can be used to specify which columns are "foreign". In most cases can be left as ``None``. :param legacy_is_orphan: Boolean, defaults to ``False``. When ``True``, specifies that "legacy" orphan consideration is to be applied to objects mapped by this mapper, which means that a pending (that is, not persistent) object is auto-expunged from an owning :class:`.Session` only when it is de-associated from *all* parents that specify a ``delete-orphan`` cascade towards this mapper. The new default behavior is that the object is auto-expunged when it is de-associated with *any* of its parents that specify ``delete-orphan`` cascade. This behavior is more consistent with that of a persistent object, and allows behavior to be consistent in more scenarios independently of whether or not an orphan object has been flushed yet or not. See the change note and example at :ref:`legacy_is_orphan_addition` for more detail on this change. :param non_primary: Specify that this :class:`_orm.Mapper` is in addition to the "primary" mapper, that is, the one used for persistence. The :class:`_orm.Mapper` created here may be used for ad-hoc mapping of the class to an alternate selectable, for loading only. .. seealso:: :ref:`relationship_aliased_class` - the new pattern that removes the need for the :paramref:`_orm.Mapper.non_primary` flag. :param passive_deletes: Indicates DELETE behavior of foreign key columns when a joined-table inheritance entity is being deleted. Defaults to ``False`` for a base mapper; for an inheriting mapper, defaults to ``False`` unless the value is set to ``True`` on the superclass mapper. When ``True``, it is assumed that ON DELETE CASCADE is configured on the foreign key relationships that link this mapper's table to its superclass table, so that when the unit of work attempts to delete the entity, it need only emit a DELETE statement for the superclass table, and not this table. When ``False``, a DELETE statement is emitted for this mapper's table individually. If the primary key attributes local to this table are unloaded, then a SELECT must be emitted in order to validate these attributes; note that the primary key columns of a joined-table subclass are not part of the "primary key" of the object as a whole. Note that a value of ``True`` is **always** forced onto the subclass mappers; that is, it's not possible for a superclass to specify passive_deletes without this taking effect for all subclass mappers. .. versionadded:: 1.1 .. seealso:: :ref:`passive_deletes` - description of similar feature as used with :func:`_orm.relationship` :paramref:`.mapper.passive_updates` - supporting ON UPDATE CASCADE for joined-table inheritance mappers :param passive_updates: Indicates UPDATE behavior of foreign key columns when a primary key column changes on a joined-table inheritance mapping. Defaults to ``True``. When True, it is assumed that ON UPDATE CASCADE is configured on the foreign key in the database, and that the database will handle propagation of an UPDATE from a source column to dependent columns on joined-table rows. When False, it is assumed that the database does not enforce referential integrity and will not be issuing its own CASCADE operation for an update. The unit of work process will emit an UPDATE statement for the dependent columns during a primary key change. .. seealso:: :ref:`passive_updates` - description of a similar feature as used with :func:`_orm.relationship` :paramref:`.mapper.passive_deletes` - supporting ON DELETE CASCADE for joined-table inheritance mappers :param polymorphic_load: Specifies "polymorphic loading" behavior for a subclass in an inheritance hierarchy (joined and single table inheritance only). Valid values are: * "'inline'" - specifies this class should be part of the "with_polymorphic" mappers, e.g. its columns will be included in a SELECT query against the base. * "'selectin'" - specifies that when instances of this class are loaded, an additional SELECT will be emitted to retrieve the columns specific to this subclass. The SELECT uses IN to fetch multiple subclasses at once. .. versionadded:: 1.2 .. seealso:: :ref:`with_polymorphic_mapper_config` :ref:`polymorphic_selectin` :param polymorphic_on: Specifies the column, attribute, or SQL expression used to determine the target class for an incoming row, when inheriting classes are present. This value is commonly a :class:`_schema.Column` object that's present in the mapped :class:`_schema.Table`:: class Employee(Base): __tablename__ = 'employee' id = Column(Integer, primary_key=True) discriminator = Column(String(50)) __mapper_args__ = { "polymorphic_on":discriminator, "polymorphic_identity":"employee" } It may also be specified as a SQL expression, as in this example where we use the :func:`.case` construct to provide a conditional approach:: class Employee(Base): __tablename__ = 'employee' id = Column(Integer, primary_key=True) discriminator = Column(String(50)) __mapper_args__ = { "polymorphic_on":case([ (discriminator == "EN", "engineer"), (discriminator == "MA", "manager"), ], else_="employee"), "polymorphic_identity":"employee" } It may also refer to any attribute configured with :func:`.column_property`, or to the string name of one:: class Employee(Base): __tablename__ = 'employee' id = Column(Integer, primary_key=True) discriminator = Column(String(50)) employee_type = column_property( case([ (discriminator == "EN", "engineer"), (discriminator == "MA", "manager"), ], else_="employee") ) __mapper_args__ = { "polymorphic_on":employee_type, "polymorphic_identity":"employee" } When setting ``polymorphic_on`` to reference an attribute or expression that's not present in the locally mapped :class:`_schema.Table`, yet the value of the discriminator should be persisted to the database, the value of the discriminator is not automatically set on new instances; this must be handled by the user, either through manual means or via event listeners. A typical approach to establishing such a listener looks like:: from sqlalchemy import event from sqlalchemy.orm import object_mapper @event.listens_for(Employee, "init", propagate=True) def set_identity(instance, *arg, **kw): mapper = object_mapper(instance) instance.discriminator = mapper.polymorphic_identity Where above, we assign the value of ``polymorphic_identity`` for the mapped class to the ``discriminator`` attribute, thus persisting the value to the ``discriminator`` column in the database. .. warning:: Currently, **only one discriminator column may be set**, typically on the base-most class in the hierarchy. "Cascading" polymorphic columns are not yet supported. .. seealso:: :ref:`inheritance_toplevel` :param polymorphic_identity: Specifies the value which identifies this particular class as returned by the column expression referred to by the ``polymorphic_on`` setting. As rows are received, the value corresponding to the ``polymorphic_on`` column expression is compared to this value, indicating which subclass should be used for the newly reconstructed object. :param properties: A dictionary mapping the string names of object attributes to :class:`.MapperProperty` instances, which define the persistence behavior of that attribute. Note that :class:`_schema.Column` objects present in the mapped :class:`_schema.Table` are automatically placed into ``ColumnProperty`` instances upon mapping, unless overridden. When using Declarative, this argument is passed automatically, based on all those :class:`.MapperProperty` instances declared in the declared class body. :param primary_key: A list of :class:`_schema.Column` objects which define the primary key to be used against this mapper's selectable unit. This is normally simply the primary key of the ``local_table``, but can be overridden here. :param version_id_col: A :class:`_schema.Column` that will be used to keep a running version id of rows in the table. This is used to detect concurrent updates or the presence of stale data in a flush. The methodology is to detect if an UPDATE statement does not match the last known version id, a :class:`~sqlalchemy.orm.exc.StaleDataError` exception is thrown. By default, the column must be of :class:`.Integer` type, unless ``version_id_generator`` specifies an alternative version generator. .. seealso:: :ref:`mapper_version_counter` - discussion of version counting and rationale. :param version_id_generator: Define how new version ids should be generated. Defaults to ``None``, which indicates that a simple integer counting scheme be employed. To provide a custom versioning scheme, provide a callable function of the form:: def generate_version(version): return next_version Alternatively, server-side versioning functions such as triggers, or programmatic versioning schemes outside of the version id generator may be used, by specifying the value ``False``. Please see :ref:`server_side_version_counter` for a discussion of important points when using this option. .. versionadded:: 0.9.0 ``version_id_generator`` supports server-side version number generation. .. seealso:: :ref:`custom_version_counter` :ref:`server_side_version_counter` :param with_polymorphic: A tuple in the form ``(<classes>, <selectable>)`` indicating the default style of "polymorphic" loading, that is, which tables are queried at once. <classes> is any single or list of mappers and/or classes indicating the inherited classes that should be loaded at once. The special value ``'*'`` may be used to indicate all descending classes should be loaded immediately. The second tuple argument <selectable> indicates a selectable that will be used to query for multiple classes. .. seealso:: :ref:`with_polymorphic` - discussion of polymorphic querying techniques. """ self.class_ = util.assert_arg_type(class_, type, "class_") self._sort_key = "%s.%s" % ( self.class_.__module__, self.class_.__name__, ) self.class_manager = None self._primary_key_argument = util.to_list(primary_key) self.non_primary = non_primary self.always_refresh = always_refresh if isinstance(version_id_col, MapperProperty): self.version_id_prop = version_id_col self.version_id_col = None else: self.version_id_col = version_id_col if version_id_generator is False: self.version_id_generator = False elif version_id_generator is None: self.version_id_generator = lambda x: (x or 0) + 1 else: self.version_id_generator = version_id_generator self.concrete = concrete self.single = False self.inherits = inherits if local_table is not None: self.local_table = coercions.expect( roles.StrictFromClauseRole, local_table ) else: self.local_table = None self.inherit_condition = inherit_condition self.inherit_foreign_keys = inherit_foreign_keys self._init_properties = properties or {} self._delete_orphans = [] self.batch = batch self.eager_defaults = eager_defaults self.column_prefix = column_prefix self.polymorphic_on = ( coercions.expect( roles.ColumnArgumentOrKeyRole, polymorphic_on, argname="polymorphic_on", ) if polymorphic_on is not None else None ) self._dependency_processors = [] self.validators = util.EMPTY_DICT self.passive_updates = passive_updates self.passive_deletes = passive_deletes self.legacy_is_orphan = legacy_is_orphan self._clause_adapter = None self._requires_row_aliasing = False self._inherits_equated_pairs = None self._memoized_values = {} self._compiled_cache_size = _compiled_cache_size self._reconstructor = None self.allow_partial_pks = allow_partial_pks if self.inherits and not self.concrete: self.confirm_deleted_rows = False else: self.confirm_deleted_rows = confirm_deleted_rows self._set_with_polymorphic(with_polymorphic) self.polymorphic_load = polymorphic_load # our 'polymorphic identity', a string name that when located in a # result set row indicates this Mapper should be used to construct # the object instance for that row. self.polymorphic_identity = polymorphic_identity # a dictionary of 'polymorphic identity' names, associating those # names with Mappers that will be used to construct object instances # upon a select operation. if _polymorphic_map is None: self.polymorphic_map = {} else: self.polymorphic_map = _polymorphic_map if include_properties is not None: self.include_properties = util.to_set(include_properties) else: self.include_properties = None if exclude_properties: self.exclude_properties = util.to_set(exclude_properties) else: self.exclude_properties = None # prevent this mapper from being constructed # while a configure_mappers() is occurring (and defer a # configure_mappers() until construction succeeds) with _CONFIGURE_MUTEX: self.dispatch._events._new_mapper_instance(class_, self) self._configure_inheritance() self._configure_class_instrumentation() self._configure_properties() self._configure_polymorphic_setter() self._configure_pks() self.registry._flag_new_mapper(self) self._log("constructed") self._expire_memoizations() # major attributes initialized at the classlevel so that # they can be Sphinx-documented. is_mapper = True """Part of the inspection API.""" represents_outer_join = False @property def mapper(self): """Part of the inspection API. Returns self. """ return self def _gen_cache_key(self, anon_map, bindparams): return (self,) @property def entity(self): r"""Part of the inspection API. Returns self.class\_. """ return self.class_ local_table = None """The :class:`_expression.Selectable` which this :class:`_orm.Mapper` manages. Typically is an instance of :class:`_schema.Table` or :class:`_expression.Alias`. May also be ``None``. The "local" table is the selectable that the :class:`_orm.Mapper` is directly responsible for managing from an attribute access and flush perspective. For non-inheriting mappers, the local table is the same as the "mapped" table. For joined-table inheritance mappers, local_table will be the particular sub-table of the overall "join" which this :class:`_orm.Mapper` represents. If this mapper is a single-table inheriting mapper, local_table will be ``None``. .. seealso:: :attr:`_orm.Mapper.persist_selectable`. """ persist_selectable = None """The :class:`_expression.Selectable` to which this :class:`_orm.Mapper` is mapped. Typically an instance of :class:`_schema.Table`, :class:`_expression.Join`, or :class:`_expression.Alias`. The :attr:`_orm.Mapper.persist_selectable` is separate from :attr:`_orm.Mapper.selectable` in that the former represents columns that are mapped on this class or its superclasses, whereas the latter may be a "polymorphic" selectable that contains additional columns which are in fact mapped on subclasses only. "persist selectable" is the "thing the mapper writes to" and "selectable" is the "thing the mapper selects from". :attr:`_orm.Mapper.persist_selectable` is also separate from :attr:`_orm.Mapper.local_table`, which represents the set of columns that are locally mapped on this class directly. .. seealso:: :attr:`_orm.Mapper.selectable`. :attr:`_orm.Mapper.local_table`. """ inherits = None """References the :class:`_orm.Mapper` which this :class:`_orm.Mapper` inherits from, if any. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ configured = False """Represent ``True`` if this :class:`_orm.Mapper` has been configured. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. .. seealso:: :func:`.configure_mappers`. """ concrete = None """Represent ``True`` if this :class:`_orm.Mapper` is a concrete inheritance mapper. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ tables = None """An iterable containing the collection of :class:`_schema.Table` objects which this :class:`_orm.Mapper` is aware of. If the mapper is mapped to a :class:`_expression.Join`, or an :class:`_expression.Alias` representing a :class:`_expression.Select`, the individual :class:`_schema.Table` objects that comprise the full construct will be represented here. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ primary_key = None """An iterable containing the collection of :class:`_schema.Column` objects which comprise the 'primary key' of the mapped table, from the perspective of this :class:`_orm.Mapper`. This list is against the selectable in :attr:`_orm.Mapper.persist_selectable`. In the case of inheriting mappers, some columns may be managed by a superclass mapper. For example, in the case of a :class:`_expression.Join`, the primary key is determined by all of the primary key columns across all tables referenced by the :class:`_expression.Join`. The list is also not necessarily the same as the primary key column collection associated with the underlying tables; the :class:`_orm.Mapper` features a ``primary_key`` argument that can override what the :class:`_orm.Mapper` considers as primary key columns. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ class_ = None """The Python class which this :class:`_orm.Mapper` maps. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ class_manager = None """The :class:`.ClassManager` which maintains event listeners and class-bound descriptors for this :class:`_orm.Mapper`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ single = None """Represent ``True`` if this :class:`_orm.Mapper` is a single table inheritance mapper. :attr:`_orm.Mapper.local_table` will be ``None`` if this flag is set. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ non_primary = None """Represent ``True`` if this :class:`_orm.Mapper` is a "non-primary" mapper, e.g. a mapper that is used only to select rows but not for persistence management. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_on = None """The :class:`_schema.Column` or SQL expression specified as the ``polymorphic_on`` argument for this :class:`_orm.Mapper`, within an inheritance scenario. This attribute is normally a :class:`_schema.Column` instance but may also be an expression, such as one derived from :func:`.cast`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_map = None """A mapping of "polymorphic identity" identifiers mapped to :class:`_orm.Mapper` instances, within an inheritance scenario. The identifiers can be of any type which is comparable to the type of column represented by :attr:`_orm.Mapper.polymorphic_on`. An inheritance chain of mappers will all reference the same polymorphic map object. The object is used to correlate incoming result rows to target mappers. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_identity = None """Represent an identifier which is matched against the :attr:`_orm.Mapper.polymorphic_on` column during result row loading. Used only with inheritance, this object can be of any type which is comparable to the type of column represented by :attr:`_orm.Mapper.polymorphic_on`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ base_mapper = None """The base-most :class:`_orm.Mapper` in an inheritance chain. In a non-inheriting scenario, this attribute will always be this :class:`_orm.Mapper`. In an inheritance scenario, it references the :class:`_orm.Mapper` which is parent to all other :class:`_orm.Mapper` objects in the inheritance chain. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ columns = None """A collection of :class:`_schema.Column` or other scalar expression objects maintained by this :class:`_orm.Mapper`. The collection behaves the same as that of the ``c`` attribute on any :class:`_schema.Table` object, except that only those columns included in this mapping are present, and are keyed based on the attribute name defined in the mapping, not necessarily the ``key`` attribute of the :class:`_schema.Column` itself. Additionally, scalar expressions mapped by :func:`.column_property` are also present here. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ validators = None """An immutable dictionary of attributes which have been decorated using the :func:`_orm.validates` decorator. The dictionary contains string attribute names as keys mapped to the actual validation method. """ c = None """A synonym for :attr:`_orm.Mapper.columns`.""" @property @util.deprecated("1.3", "Use .persist_selectable") def mapped_table(self): return self.persist_selectable @util.memoized_property def _path_registry(self): return PathRegistry.per_mapper(self) def _configure_inheritance(self): """Configure settings related to inheriting and/or inherited mappers being present.""" # a set of all mappers which inherit from this one. self._inheriting_mappers = util.WeakSequence() if self.inherits: if isinstance(self.inherits, type): self.inherits = class_mapper(self.inherits, configure=False) if not issubclass(self.class_, self.inherits.class_): raise sa_exc.ArgumentError( "Class '%s' does not inherit from '%s'" % (self.class_.__name__, self.inherits.class_.__name__) ) self.dispatch._update(self.inherits.dispatch) if self.non_primary != self.inherits.non_primary: np = not self.non_primary and "primary" or "non-primary" raise sa_exc.ArgumentError( "Inheritance of %s mapper for class '%s' is " "only allowed from a %s mapper" % (np, self.class_.__name__, np) ) # inherit_condition is optional. if self.local_table is None: self.local_table = self.inherits.local_table self.persist_selectable = self.inherits.persist_selectable self.single = True elif self.local_table is not self.inherits.local_table: if self.concrete: self.persist_selectable = self.local_table for mapper in self.iterate_to_root(): if mapper.polymorphic_on is not None: mapper._requires_row_aliasing = True else: if self.inherit_condition is None: # figure out inherit condition from our table to the # immediate table of the inherited mapper, not its # full table which could pull in other stuff we don't # want (allows test/inheritance.InheritTest4 to pass) try: self.inherit_condition = sql_util.join_condition( self.inherits.local_table, self.local_table ) except sa_exc.NoForeignKeysError as nfe: assert self.inherits.local_table is not None assert self.local_table is not None util.raise_( sa_exc.NoForeignKeysError( "Can't determine the inherit condition " "between inherited table '%s' and " "inheriting " "table '%s'; tables have no " "foreign key relationships established. " "Please ensure the inheriting table has " "a foreign key relationship to the " "inherited " "table, or provide an " "'on clause' using " "the 'inherit_condition' mapper argument." % ( self.inherits.local_table.description, self.local_table.description, ) ), replace_context=nfe, ) except sa_exc.AmbiguousForeignKeysError as afe: assert self.inherits.local_table is not None assert self.local_table is not None util.raise_( sa_exc.AmbiguousForeignKeysError( "Can't determine the inherit condition " "between inherited table '%s' and " "inheriting " "table '%s'; tables have more than one " "foreign key relationship established. " "Please specify the 'on clause' using " "the 'inherit_condition' mapper argument." % ( self.inherits.local_table.description, self.local_table.description, ) ), replace_context=afe, ) self.persist_selectable = sql.join( self.inherits.persist_selectable, self.local_table, self.inherit_condition, ) fks = util.to_set(self.inherit_foreign_keys) self._inherits_equated_pairs = sql_util.criterion_as_pairs( self.persist_selectable.onclause, consider_as_foreign_keys=fks, ) else: self.persist_selectable = self.local_table if self.polymorphic_identity is not None and not self.concrete: self._identity_class = self.inherits._identity_class else: self._identity_class = self.class_ if self.version_id_col is None: self.version_id_col = self.inherits.version_id_col self.version_id_generator = self.inherits.version_id_generator elif ( self.inherits.version_id_col is not None and self.version_id_col is not self.inherits.version_id_col ): util.warn( "Inheriting version_id_col '%s' does not match inherited " "version_id_col '%s' and will not automatically populate " "the inherited versioning column. " "version_id_col should only be specified on " "the base-most mapper that includes versioning." % ( self.version_id_col.description, self.inherits.version_id_col.description, ) ) self.polymorphic_map = self.inherits.polymorphic_map self.batch = self.inherits.batch self.inherits._inheriting_mappers.append(self) self.base_mapper = self.inherits.base_mapper self.passive_updates = self.inherits.passive_updates self.passive_deletes = ( self.inherits.passive_deletes or self.passive_deletes ) self._all_tables = self.inherits._all_tables if self.polymorphic_identity is not None: if self.polymorphic_identity in self.polymorphic_map: util.warn( "Reassigning polymorphic association for identity %r " "from %r to %r: Check for duplicate use of %r as " "value for polymorphic_identity." % ( self.polymorphic_identity, self.polymorphic_map[self.polymorphic_identity], self, self.polymorphic_identity, ) ) self.polymorphic_map[self.polymorphic_identity] = self if self.polymorphic_load and self.concrete: raise sa_exc.ArgumentError( "polymorphic_load is not currently supported " "with concrete table inheritance" ) if self.polymorphic_load == "inline": self.inherits._add_with_polymorphic_subclass(self) elif self.polymorphic_load == "selectin": pass elif self.polymorphic_load is not None: raise sa_exc.ArgumentError( "unknown argument for polymorphic_load: %r" % self.polymorphic_load ) else: self._all_tables = set() self.base_mapper = self self.persist_selectable = self.local_table if self.polymorphic_identity is not None: self.polymorphic_map[self.polymorphic_identity] = self self._identity_class = self.class_ if self.persist_selectable is None: raise sa_exc.ArgumentError( "Mapper '%s' does not have a persist_selectable specified." % self ) def _set_with_polymorphic(self, with_polymorphic): if with_polymorphic == "*": self.with_polymorphic = ("*", None) elif isinstance(with_polymorphic, (tuple, list)): if isinstance( with_polymorphic[0], util.string_types + (tuple, list) ): self.with_polymorphic = with_polymorphic else: self.with_polymorphic = (with_polymorphic, None) elif with_polymorphic is not None: raise sa_exc.ArgumentError("Invalid setting for with_polymorphic") else: self.with_polymorphic = None if self.with_polymorphic and self.with_polymorphic[1] is not None: self.with_polymorphic = ( self.with_polymorphic[0], coercions.expect( roles.StrictFromClauseRole, self.with_polymorphic[1], allow_select=True, ), ) if self.configured: self._expire_memoizations() def _add_with_polymorphic_subclass(self, mapper): subcl = mapper.class_ if self.with_polymorphic is None: self._set_with_polymorphic((subcl,)) elif self.with_polymorphic[0] != "*": self._set_with_polymorphic( (self.with_polymorphic[0] + (subcl,), self.with_polymorphic[1]) ) def _set_concrete_base(self, mapper): """Set the given :class:`_orm.Mapper` as the 'inherits' for this :class:`_orm.Mapper`, assuming this :class:`_orm.Mapper` is concrete and does not already have an inherits.""" assert self.concrete assert not self.inherits assert isinstance(mapper, Mapper) self.inherits = mapper self.inherits.polymorphic_map.update(self.polymorphic_map) self.polymorphic_map = self.inherits.polymorphic_map for mapper in self.iterate_to_root(): if mapper.polymorphic_on is not None: mapper._requires_row_aliasing = True self.batch = self.inherits.batch for mp in self.self_and_descendants: mp.base_mapper = self.inherits.base_mapper self.inherits._inheriting_mappers.append(self) self.passive_updates = self.inherits.passive_updates self._all_tables = self.inherits._all_tables for key, prop in mapper._props.items(): if key not in self._props and not self._should_exclude( key, key, local=False, column=None ): self._adapt_inherited_property(key, prop, False) def _set_polymorphic_on(self, polymorphic_on): self.polymorphic_on = polymorphic_on self._configure_polymorphic_setter(True) def _configure_class_instrumentation(self): """If this mapper is to be a primary mapper (i.e. the non_primary flag is not set), associate this Mapper with the given class and entity name. Subsequent calls to ``class_mapper()`` for the ``class_`` / ``entity`` name combination will return this mapper. Also decorate the `__init__` method on the mapped class to include optional auto-session attachment logic. """ # we expect that declarative has applied the class manager # already and set up a registry. if this is None, # we will emit a deprecation warning below when we also see that # it has no registry. manager = attributes.manager_of_class(self.class_) if self.non_primary: if not manager or not manager.is_mapped: raise sa_exc.InvalidRequestError( "Class %s has no primary mapper configured. Configure " "a primary mapper first before setting up a non primary " "Mapper." % self.class_ ) self.class_manager = manager self.registry = manager.registry self._identity_class = manager.mapper._identity_class manager.registry._add_non_primary_mapper(self) return if manager is not None: assert manager.class_ is self.class_ if manager.is_mapped: # changed in #7579: # this message is defined in two places as of this change, # also in decl_api -> _add_manager(). in 2.0, this codepath # is removed as any calls to mapper() / Mapper without # the registry setting up first will be rejected. raise sa_exc.ArgumentError( "Class '%s' already has a primary mapper defined. " % self.class_ ) # else: # a ClassManager may already exist as # ClassManager.instrument_attribute() creates # new managers for each subclass if they don't yet exist. self.dispatch.instrument_class(self, self.class_) # this invokes the class_instrument event and sets up # the __init__ method. documented behavior is that this must # occur after the instrument_class event above. # yes two events with the same two words reversed and different APIs. # :( manager = instrumentation.register_class( self.class_, mapper=self, expired_attribute_loader=util.partial( loading.load_scalar_attributes, self ), # finalize flag means instrument the __init__ method # and call the class_instrument event finalize=True, ) if not manager.registry: util.warn_deprecated_20( "Calling the mapper() function directly outside of a " "declarative registry is deprecated." " Please use the sqlalchemy.orm.registry.map_imperatively() " "function for a classical mapping." ) assert _legacy_registry is not None _legacy_registry._add_manager(manager) self.class_manager = manager self.registry = manager.registry # The remaining members can be added by any mapper, # e_name None or not. if manager.mapper is None: return event.listen(manager, "init", _event_on_init, raw=True) for key, method in util.iterate_attributes(self.class_): if key == "__init__" and hasattr(method, "_sa_original_init"): method = method._sa_original_init if hasattr(method, "__func__"): method = method.__func__ if callable(method): if hasattr(method, "__sa_reconstructor__"): self._reconstructor = method event.listen(manager, "load", _event_on_load, raw=True) elif hasattr(method, "__sa_validators__"): validation_opts = method.__sa_validation_opts__ for name in method.__sa_validators__: if name in self.validators: raise sa_exc.InvalidRequestError( "A validation function for mapped " "attribute %r on mapper %s already exists." % (name, self) ) self.validators = self.validators.union( {name: (method, validation_opts)} ) def _set_dispose_flags(self): self.configured = True self._ready_for_configure = True self._dispose_called = True self.__dict__.pop("_configure_failed", None) def _configure_pks(self): self.tables = sql_util.find_tables(self.persist_selectable) self._pks_by_table = {} self._cols_by_table = {} all_cols = util.column_set( chain(*[col.proxy_set for col in self._columntoproperty]) ) pk_cols = util.column_set(c for c in all_cols if c.primary_key) # identify primary key columns which are also mapped by this mapper. tables = set(self.tables + [self.persist_selectable]) self._all_tables.update(tables) for t in tables: if t.primary_key and pk_cols.issuperset(t.primary_key): # ordering is important since it determines the ordering of # mapper.primary_key (and therefore query.get()) self._pks_by_table[t] = util.ordered_column_set( t.primary_key ).intersection(pk_cols) self._cols_by_table[t] = util.ordered_column_set(t.c).intersection( all_cols ) # if explicit PK argument sent, add those columns to the # primary key mappings if self._primary_key_argument: for k in self._primary_key_argument: if k.table not in self._pks_by_table: self._pks_by_table[k.table] = util.OrderedSet() self._pks_by_table[k.table].add(k) # otherwise, see that we got a full PK for the mapped table elif ( self.persist_selectable not in self._pks_by_table or len(self._pks_by_table[self.persist_selectable]) == 0 ): raise sa_exc.ArgumentError( "Mapper %s could not assemble any primary " "key columns for mapped table '%s'" % (self, self.persist_selectable.description) ) elif self.local_table not in self._pks_by_table and isinstance( self.local_table, schema.Table ): util.warn( "Could not assemble any primary " "keys for locally mapped table '%s' - " "no rows will be persisted in this Table." % self.local_table.description ) if ( self.inherits and not self.concrete and not self._primary_key_argument ): # if inheriting, the "primary key" for this mapper is # that of the inheriting (unless concrete or explicit) self.primary_key = self.inherits.primary_key else: # determine primary key from argument or persist_selectable pks if self._primary_key_argument: primary_key = [ self.persist_selectable.corresponding_column(c) for c in self._primary_key_argument ] else: # if heuristically determined PKs, reduce to the minimal set # of columns by eliminating FK->PK pairs for a multi-table # expression. May over-reduce for some kinds of UNIONs # / CTEs; use explicit PK argument for these special cases primary_key = sql_util.reduce_columns( self._pks_by_table[self.persist_selectable], ignore_nonexistent_tables=True, ) if len(primary_key) == 0: raise sa_exc.ArgumentError( "Mapper %s could not assemble any primary " "key columns for mapped table '%s'" % (self, self.persist_selectable.description) ) self.primary_key = tuple(primary_key) self._log("Identified primary key columns: %s", primary_key) # determine cols that aren't expressed within our tables; mark these # as "read only" properties which are refreshed upon INSERT/UPDATE self._readonly_props = set( self._columntoproperty[col] for col in self._columntoproperty if self._columntoproperty[col] not in self._identity_key_props and ( not hasattr(col, "table") or col.table not in self._cols_by_table ) ) def _configure_properties(self): # Column and other ClauseElement objects which are mapped # TODO: technically this should be a DedupeColumnCollection # however DCC needs changes and more tests to fully cover # storing columns under a separate key name self.columns = self.c = sql_base.ColumnCollection() # object attribute names mapped to MapperProperty objects self._props = util.OrderedDict() # table columns mapped to lists of MapperProperty objects # using a list allows a single column to be defined as # populating multiple object attributes self._columntoproperty = _ColumnMapping(self) # load custom properties if self._init_properties: for key, prop in self._init_properties.items(): self._configure_property(key, prop, False) # pull properties from the inherited mapper if any. if self.inherits: for key, prop in self.inherits._props.items(): if key not in self._props and not self._should_exclude( key, key, local=False, column=None ): self._adapt_inherited_property(key, prop, False) # create properties for each column in the mapped table, # for those columns which don't already map to a property for column in self.persist_selectable.columns: if column in self._columntoproperty: continue column_key = (self.column_prefix or "") + column.key if self._should_exclude( column.key, column_key, local=self.local_table.c.contains_column(column), column=column, ): continue # adjust the "key" used for this column to that # of the inheriting mapper for mapper in self.iterate_to_root(): if column in mapper._columntoproperty: column_key = mapper._columntoproperty[column].key self._configure_property( column_key, column, init=False, setparent=True ) def _configure_polymorphic_setter(self, init=False): """Configure an attribute on the mapper representing the 'polymorphic_on' column, if applicable, and not already generated by _configure_properties (which is typical). Also create a setter function which will assign this attribute to the value of the 'polymorphic_identity' upon instance construction, also if applicable. This routine will run when an instance is created. """ setter = False if self.polymorphic_on is not None: setter = True if isinstance(self.polymorphic_on, util.string_types): # polymorphic_on specified as a string - link # it to mapped ColumnProperty try: self.polymorphic_on = self._props[self.polymorphic_on] except KeyError as err: util.raise_( sa_exc.ArgumentError( "Can't determine polymorphic_on " "value '%s' - no attribute is " "mapped to this name." % self.polymorphic_on ), replace_context=err, ) if self.polymorphic_on in self._columntoproperty: # polymorphic_on is a column that is already mapped # to a ColumnProperty prop = self._columntoproperty[self.polymorphic_on] elif isinstance(self.polymorphic_on, MapperProperty): # polymorphic_on is directly a MapperProperty, # ensure it's a ColumnProperty if not isinstance( self.polymorphic_on, properties.ColumnProperty ): raise sa_exc.ArgumentError( "Only direct column-mapped " "property or SQL expression " "can be passed for polymorphic_on" ) prop = self.polymorphic_on else: # polymorphic_on is a Column or SQL expression and # doesn't appear to be mapped. this means it can be 1. # only present in the with_polymorphic selectable or # 2. a totally standalone SQL expression which we'd # hope is compatible with this mapper's persist_selectable col = self.persist_selectable.corresponding_column( self.polymorphic_on ) if col is None: # polymorphic_on doesn't derive from any # column/expression isn't present in the mapped # table. we will make a "hidden" ColumnProperty # for it. Just check that if it's directly a # schema.Column and we have with_polymorphic, it's # likely a user error if the schema.Column isn't # represented somehow in either persist_selectable or # with_polymorphic. Otherwise as of 0.7.4 we # just go with it and assume the user wants it # that way (i.e. a CASE statement) setter = False instrument = False col = self.polymorphic_on if isinstance(col, schema.Column) and ( self.with_polymorphic is None or self.with_polymorphic[1].corresponding_column(col) is None ): raise sa_exc.InvalidRequestError( "Could not map polymorphic_on column " "'%s' to the mapped table - polymorphic " "loads will not function properly" % col.description ) else: # column/expression that polymorphic_on derives from # is present in our mapped table # and is probably mapped, but polymorphic_on itself # is not. This happens when # the polymorphic_on is only directly present in the # with_polymorphic selectable, as when use # polymorphic_union. # we'll make a separate ColumnProperty for it. instrument = True key = getattr(col, "key", None) if key: if self._should_exclude(col.key, col.key, False, col): raise sa_exc.InvalidRequestError( "Cannot exclude or override the " "discriminator column %r" % col.key ) else: self.polymorphic_on = col = col.label("_sa_polymorphic_on") key = col.key prop = properties.ColumnProperty(col, _instrument=instrument) self._configure_property(key, prop, init=init, setparent=True) # the actual polymorphic_on should be the first public-facing # column in the property self.polymorphic_on = prop.columns[0] polymorphic_key = prop.key else: # no polymorphic_on was set. # check inheriting mappers for one. for mapper in self.iterate_to_root(): # determine if polymorphic_on of the parent # should be propagated here. If the col # is present in our mapped table, or if our mapped # table is the same as the parent (i.e. single table # inheritance), we can use it if mapper.polymorphic_on is not None: if self.persist_selectable is mapper.persist_selectable: self.polymorphic_on = mapper.polymorphic_on else: self.polymorphic_on = ( self.persist_selectable ).corresponding_column(mapper.polymorphic_on) # we can use the parent mapper's _set_polymorphic_identity # directly; it ensures the polymorphic_identity of the # instance's mapper is used so is portable to subclasses. if self.polymorphic_on is not None: self._set_polymorphic_identity = ( mapper._set_polymorphic_identity ) self._validate_polymorphic_identity = ( mapper._validate_polymorphic_identity ) else: self._set_polymorphic_identity = None return if setter: def _set_polymorphic_identity(state): dict_ = state.dict state.get_impl(polymorphic_key).set( state, dict_, state.manager.mapper.polymorphic_identity, None, ) def _validate_polymorphic_identity(mapper, state, dict_): if ( polymorphic_key in dict_ and dict_[polymorphic_key] not in mapper._acceptable_polymorphic_identities ): util.warn_limited( "Flushing object %s with " "incompatible polymorphic identity %r; the " "object may not refresh and/or load correctly", (state_str(state), dict_[polymorphic_key]), ) self._set_polymorphic_identity = _set_polymorphic_identity self._validate_polymorphic_identity = ( _validate_polymorphic_identity ) else: self._set_polymorphic_identity = None _validate_polymorphic_identity = None @HasMemoized.memoized_attribute def _version_id_prop(self): if self.version_id_col is not None: return self._columntoproperty[self.version_id_col] else: return None @HasMemoized.memoized_attribute def _acceptable_polymorphic_identities(self): identities = set() stack = deque([self]) while stack: item = stack.popleft() if item.persist_selectable is self.persist_selectable: identities.add(item.polymorphic_identity) stack.extend(item._inheriting_mappers) return identities @HasMemoized.memoized_attribute def _prop_set(self): return frozenset(self._props.values()) @util.preload_module("sqlalchemy.orm.descriptor_props") def _adapt_inherited_property(self, key, prop, init): descriptor_props = util.preloaded.orm_descriptor_props if not self.concrete: self._configure_property(key, prop, init=False, setparent=False) elif key not in self._props: # determine if the class implements this attribute; if not, # or if it is implemented by the attribute that is handling the # given superclass-mapped property, then we need to report that we # can't use this at the instance level since we are a concrete # mapper and we don't map this. don't trip user-defined # descriptors that might have side effects when invoked. implementing_attribute = self.class_manager._get_class_attr_mro( key, prop ) if implementing_attribute is prop or ( isinstance( implementing_attribute, attributes.InstrumentedAttribute ) and implementing_attribute._parententity is prop.parent ): self._configure_property( key, descriptor_props.ConcreteInheritedProperty(), init=init, setparent=True, ) @util.preload_module("sqlalchemy.orm.descriptor_props") def _configure_property(self, key, prop, init=True, setparent=True): descriptor_props = util.preloaded.orm_descriptor_props self._log("_configure_property(%s, %s)", key, prop.__class__.__name__) if not isinstance(prop, MapperProperty): prop = self._property_from_column(key, prop) if isinstance(prop, properties.ColumnProperty): col = self.persist_selectable.corresponding_column(prop.columns[0]) # if the column is not present in the mapped table, # test if a column has been added after the fact to the # parent table (or their parent, etc.) [ticket:1570] if col is None and self.inherits: path = [self] for m in self.inherits.iterate_to_root(): col = m.local_table.corresponding_column(prop.columns[0]) if col is not None: for m2 in path: m2.persist_selectable._refresh_for_new_column(col) col = self.persist_selectable.corresponding_column( prop.columns[0] ) break path.append(m) # subquery expression, column not present in the mapped # selectable. if col is None: col = prop.columns[0] # column is coming in after _readonly_props was # initialized; check for 'readonly' if hasattr(self, "_readonly_props") and ( not hasattr(col, "table") or col.table not in self._cols_by_table ): self._readonly_props.add(prop) else: # if column is coming in after _cols_by_table was # initialized, ensure the col is in the right set if ( hasattr(self, "_cols_by_table") and col.table in self._cols_by_table and col not in self._cols_by_table[col.table] ): self._cols_by_table[col.table].add(col) # if this properties.ColumnProperty represents the "polymorphic # discriminator" column, mark it. We'll need this when rendering # columns in SELECT statements. if not hasattr(prop, "_is_polymorphic_discriminator"): prop._is_polymorphic_discriminator = ( col is self.polymorphic_on or prop.columns[0] is self.polymorphic_on ) if isinstance(col, expression.Label): # new in 1.4, get column property against expressions # to be addressable in subqueries col.key = col._tq_key_label = key self.columns.add(col, key) for col in prop.columns + prop._orig_columns: for col in col.proxy_set: self._columntoproperty[col] = prop prop.key = key if setparent: prop.set_parent(self, init) if key in self._props and getattr( self._props[key], "_mapped_by_synonym", False ): syn = self._props[key]._mapped_by_synonym raise sa_exc.ArgumentError( "Can't call map_column=True for synonym %r=%r, " "a ColumnProperty already exists keyed to the name " "%r for column %r" % (syn, key, key, syn) ) if ( key in self._props and not isinstance(prop, properties.ColumnProperty) and not isinstance( self._props[key], ( properties.ColumnProperty, descriptor_props.ConcreteInheritedProperty, ), ) ): util.warn( "Property %s on %s being replaced with new " "property %s; the old property will be discarded" % (self._props[key], self, prop) ) oldprop = self._props[key] self._path_registry.pop(oldprop, None) self._props[key] = prop if not self.non_primary: prop.instrument_class(self) for mapper in self._inheriting_mappers: mapper._adapt_inherited_property(key, prop, init) if init: prop.init() prop.post_instrument_class(self) if self.configured: self._expire_memoizations() @util.preload_module("sqlalchemy.orm.descriptor_props") def _property_from_column(self, key, prop): """generate/update a :class:`.ColumnProperty` given a :class:`_schema.Column` object.""" descriptor_props = util.preloaded.orm_descriptor_props # we were passed a Column or a list of Columns; # generate a properties.ColumnProperty columns = util.to_list(prop) column = columns[0] assert isinstance(column, expression.ColumnElement) prop = self._props.get(key, None) if isinstance(prop, properties.ColumnProperty): if ( ( not self._inherits_equated_pairs or (prop.columns[0], column) not in self._inherits_equated_pairs ) and not prop.columns[0].shares_lineage(column) and prop.columns[0] is not self.version_id_col and column is not self.version_id_col ): warn_only = prop.parent is not self msg = ( "Implicitly combining column %s with column " "%s under attribute '%s'. Please configure one " "or more attributes for these same-named columns " "explicitly." % (prop.columns[-1], column, key) ) if warn_only: util.warn(msg) else: raise sa_exc.InvalidRequestError(msg) # existing properties.ColumnProperty from an inheriting # mapper. make a copy and append our column to it prop = prop.copy() prop.columns.insert(0, column) self._log( "inserting column to existing list " "in properties.ColumnProperty %s" % (key) ) return prop elif prop is None or isinstance( prop, descriptor_props.ConcreteInheritedProperty ): mapped_column = [] for c in columns: mc = self.persist_selectable.corresponding_column(c) if mc is None: mc = self.local_table.corresponding_column(c) if mc is not None: # if the column is in the local table but not the # mapped table, this corresponds to adding a # column after the fact to the local table. # [ticket:1523] self.persist_selectable._refresh_for_new_column(mc) mc = self.persist_selectable.corresponding_column(c) if mc is None: raise sa_exc.ArgumentError( "When configuring property '%s' on %s, " "column '%s' is not represented in the mapper's " "table. Use the `column_property()` function to " "force this column to be mapped as a read-only " "attribute." % (key, self, c) ) mapped_column.append(mc) return properties.ColumnProperty(*mapped_column) else: raise sa_exc.ArgumentError( "WARNING: when configuring property '%s' on %s, " "column '%s' conflicts with property '%r'. " "To resolve this, map the column to the class under a " "different name in the 'properties' dictionary. Or, " "to remove all awareness of the column entirely " "(including its availability as a foreign key), " "use the 'include_properties' or 'exclude_properties' " "mapper arguments to control specifically which table " "columns get mapped." % (key, self, column.key, prop) ) def _check_configure(self): if self.registry._new_mappers: _configure_registries({self.registry}, cascade=True) def _post_configure_properties(self): """Call the ``init()`` method on all ``MapperProperties`` attached to this mapper. This is a deferred configuration step which is intended to execute once all mappers have been constructed. """ self._log("_post_configure_properties() started") l = [(key, prop) for key, prop in self._props.items()] for key, prop in l: self._log("initialize prop %s", key) if prop.parent is self and not prop._configure_started: prop.init() if prop._configure_finished: prop.post_instrument_class(self) self._log("_post_configure_properties() complete") self.configured = True def add_properties(self, dict_of_properties): """Add the given dictionary of properties to this mapper, using `add_property`. """ for key, value in dict_of_properties.items(): self.add_property(key, value) def add_property(self, key, prop): """Add an individual MapperProperty to this mapper. If the mapper has not been configured yet, just adds the property to the initial properties dictionary sent to the constructor. If this Mapper has already been configured, then the given MapperProperty is configured immediately. """ self._init_properties[key] = prop self._configure_property(key, prop, init=self.configured) def _expire_memoizations(self): for mapper in self.iterate_to_root(): mapper._reset_memoizations() @property def _log_desc(self): return ( "(" + self.class_.__name__ + "|" + ( self.local_table is not None and self.local_table.description or str(self.local_table) ) + (self.non_primary and "|non-primary" or "") + ")" ) def _log(self, msg, *args): self.logger.info("%s " + msg, *((self._log_desc,) + args)) def _log_debug(self, msg, *args): self.logger.debug("%s " + msg, *((self._log_desc,) + args)) def __repr__(self): return "<Mapper at 0x%x; %s>" % (id(self), self.class_.__name__) def __str__(self): return "mapped class %s%s->%s" % ( self.class_.__name__, self.non_primary and " (non-primary)" or "", self.local_table.description if self.local_table is not None else self.persist_selectable.description, ) def _is_orphan(self, state): orphan_possible = False for mapper in self.iterate_to_root(): for (key, cls) in mapper._delete_orphans: orphan_possible = True has_parent = attributes.manager_of_class(cls).has_parent( state, key, optimistic=state.has_identity ) if self.legacy_is_orphan and has_parent: return False elif not self.legacy_is_orphan and not has_parent: return True if self.legacy_is_orphan: return orphan_possible else: return False def has_property(self, key): return key in self._props def get_property(self, key, _configure_mappers=True): """return a MapperProperty associated with the given key.""" if _configure_mappers: self._check_configure() try: return self._props[key] except KeyError as err: util.raise_( sa_exc.InvalidRequestError( "Mapper '%s' has no property '%s'" % (self, key) ), replace_context=err, ) def get_property_by_column(self, column): """Given a :class:`_schema.Column` object, return the :class:`.MapperProperty` which maps this column.""" return self._columntoproperty[column] @property def iterate_properties(self): """return an iterator of all MapperProperty objects.""" self._check_configure() return iter(self._props.values()) def _mappers_from_spec(self, spec, selectable): """given a with_polymorphic() argument, return the set of mappers it represents. Trims the list of mappers to just those represented within the given selectable, if present. This helps some more legacy-ish mappings. """ if spec == "*": mappers = list(self.self_and_descendants) elif spec: mappers = set() for m in util.to_list(spec): m = _class_to_mapper(m) if not m.isa(self): raise sa_exc.InvalidRequestError( "%r does not inherit from %r" % (m, self) ) if selectable is None: mappers.update(m.iterate_to_root()) else: mappers.add(m) mappers = [m for m in self.self_and_descendants if m in mappers] else: mappers = [] if selectable is not None: tables = set( sql_util.find_tables(selectable, include_aliases=True) ) mappers = [m for m in mappers if m.local_table in tables] return mappers def _selectable_from_mappers(self, mappers, innerjoin): """given a list of mappers (assumed to be within this mapper's inheritance hierarchy), construct an outerjoin amongst those mapper's mapped tables. """ from_obj = self.persist_selectable for m in mappers: if m is self: continue if m.concrete: raise sa_exc.InvalidRequestError( "'with_polymorphic()' requires 'selectable' argument " "when concrete-inheriting mappers are used." ) elif not m.single: if innerjoin: from_obj = from_obj.join( m.local_table, m.inherit_condition ) else: from_obj = from_obj.outerjoin( m.local_table, m.inherit_condition ) return from_obj @HasMemoized.memoized_attribute def _single_table_criterion(self): if self.single and self.inherits and self.polymorphic_on is not None: return self.polymorphic_on._annotate({"parentmapper": self}).in_( m.polymorphic_identity for m in self.self_and_descendants ) else: return None @HasMemoized.memoized_attribute def _with_polymorphic_mappers(self): self._check_configure() if not self.with_polymorphic: return [] return self._mappers_from_spec(*self.with_polymorphic) @HasMemoized.memoized_attribute def _post_inspect(self): """This hook is invoked by attribute inspection. E.g. when Query calls: coercions.expect(roles.ColumnsClauseRole, ent, keep_inspect=True) This allows the inspection process run a configure mappers hook. """ self._check_configure() @HasMemoized.memoized_attribute def _with_polymorphic_selectable(self): if not self.with_polymorphic: return self.persist_selectable spec, selectable = self.with_polymorphic if selectable is not None: return selectable else: return self._selectable_from_mappers( self._mappers_from_spec(spec, selectable), False ) with_polymorphic_mappers = _with_polymorphic_mappers """The list of :class:`_orm.Mapper` objects included in the default "polymorphic" query. """ @HasMemoized.memoized_attribute def _insert_cols_evaluating_none(self): return dict( ( table, frozenset( col for col in columns if col.type.should_evaluate_none ), ) for table, columns in self._cols_by_table.items() ) @HasMemoized.memoized_attribute def _insert_cols_as_none(self): return dict( ( table, frozenset( col.key for col in columns if not col.primary_key and not col.server_default and not col.default and not col.type.should_evaluate_none ), ) for table, columns in self._cols_by_table.items() ) @HasMemoized.memoized_attribute def _propkey_to_col(self): return dict( ( table, dict( (self._columntoproperty[col].key, col) for col in columns ), ) for table, columns in self._cols_by_table.items() ) @HasMemoized.memoized_attribute def _pk_keys_by_table(self): return dict( (table, frozenset([col.key for col in pks])) for table, pks in self._pks_by_table.items() ) @HasMemoized.memoized_attribute def _pk_attr_keys_by_table(self): return dict( ( table, frozenset([self._columntoproperty[col].key for col in pks]), ) for table, pks in self._pks_by_table.items() ) @HasMemoized.memoized_attribute def _server_default_cols(self): return dict( ( table, frozenset( [ col.key for col in columns if col.server_default is not None ] ), ) for table, columns in self._cols_by_table.items() ) @HasMemoized.memoized_attribute def _server_default_plus_onupdate_propkeys(self): result = set() for table, columns in self._cols_by_table.items(): for col in columns: if ( col.server_default is not None or col.server_onupdate is not None ) and col in self._columntoproperty: result.add(self._columntoproperty[col].key) return result @HasMemoized.memoized_attribute def _server_onupdate_default_cols(self): return dict( ( table, frozenset( [ col.key for col in columns if col.server_onupdate is not None ] ), ) for table, columns in self._cols_by_table.items() ) @HasMemoized.memoized_instancemethod def __clause_element__(self): annotations = { "entity_namespace": self, "parententity": self, "parentmapper": self, } if self.persist_selectable is not self.local_table: # joined table inheritance, with polymorphic selectable, # etc. annotations["dml_table"] = self.local_table._annotate( { "entity_namespace": self, "parententity": self, "parentmapper": self, } )._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) return self.selectable._annotate(annotations)._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) @util.memoized_property def select_identity_token(self): return ( expression.null() ._annotate( { "entity_namespace": self, "parententity": self, "parentmapper": self, "identity_token": True, } ) ._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) ) @property def selectable(self): """The :class:`_schema.FromClause` construct this :class:`_orm.Mapper` selects from by default. Normally, this is equivalent to :attr:`.persist_selectable`, unless the ``with_polymorphic`` feature is in use, in which case the full "polymorphic" selectable is returned. """ return self._with_polymorphic_selectable def _with_polymorphic_args( self, spec=None, selectable=False, innerjoin=False ): if selectable not in (None, False): selectable = coercions.expect( roles.StrictFromClauseRole, selectable, allow_select=True ) if self.with_polymorphic: if not spec: spec = self.with_polymorphic[0] if selectable is False: selectable = self.with_polymorphic[1] elif selectable is False: selectable = None mappers = self._mappers_from_spec(spec, selectable) if selectable is not None: return mappers, selectable else: return mappers, self._selectable_from_mappers(mappers, innerjoin) @HasMemoized.memoized_attribute def _polymorphic_properties(self): return list( self._iterate_polymorphic_properties( self._with_polymorphic_mappers ) ) @property def _all_column_expressions(self): poly_properties = self._polymorphic_properties adapter = self._polymorphic_adapter return [ adapter.columns[prop.columns[0]] if adapter else prop.columns[0] for prop in poly_properties if isinstance(prop, properties.ColumnProperty) and prop._renders_in_subqueries ] def _columns_plus_keys(self, polymorphic_mappers=()): if polymorphic_mappers: poly_properties = self._iterate_polymorphic_properties( polymorphic_mappers ) else: poly_properties = self._polymorphic_properties return [ (prop.key, prop.columns[0]) for prop in poly_properties if isinstance(prop, properties.ColumnProperty) ] @HasMemoized.memoized_attribute def _polymorphic_adapter(self): if self.with_polymorphic: return sql_util.ColumnAdapter( self.selectable, equivalents=self._equivalent_columns ) else: return None def _iterate_polymorphic_properties(self, mappers=None): """Return an iterator of MapperProperty objects which will render into a SELECT.""" if mappers is None: mappers = self._with_polymorphic_mappers if not mappers: for c in self.iterate_properties: yield c else: # in the polymorphic case, filter out discriminator columns # from other mappers, as these are sometimes dependent on that # mapper's polymorphic selectable (which we don't want rendered) for c in util.unique_list( chain( *[ list(mapper.iterate_properties) for mapper in [self] + mappers ] ) ): if getattr(c, "_is_polymorphic_discriminator", False) and ( self.polymorphic_on is None or c.columns[0] is not self.polymorphic_on ): continue yield c @HasMemoized.memoized_attribute def attrs(self): """A namespace of all :class:`.MapperProperty` objects associated this mapper. This is an object that provides each property based on its key name. For instance, the mapper for a ``User`` class which has ``User.name`` attribute would provide ``mapper.attrs.name``, which would be the :class:`.ColumnProperty` representing the ``name`` column. The namespace object can also be iterated, which would yield each :class:`.MapperProperty`. :class:`_orm.Mapper` has several pre-filtered views of this attribute which limit the types of properties returned, including :attr:`.synonyms`, :attr:`.column_attrs`, :attr:`.relationships`, and :attr:`.composites`. .. warning:: The :attr:`_orm.Mapper.attrs` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.attrs[somename]`` over ``getattr(mapper.attrs, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.all_orm_descriptors` """ self._check_configure() return util.ImmutableProperties(self._props) @HasMemoized.memoized_attribute def all_orm_descriptors(self): """A namespace of all :class:`.InspectionAttr` attributes associated with the mapped class. These attributes are in all cases Python :term:`descriptors` associated with the mapped class or its superclasses. This namespace includes attributes that are mapped to the class as well as attributes declared by extension modules. It includes any Python descriptor type that inherits from :class:`.InspectionAttr`. This includes :class:`.QueryableAttribute`, as well as extension types such as :class:`.hybrid_property`, :class:`.hybrid_method` and :class:`.AssociationProxy`. To distinguish between mapped attributes and extension attributes, the attribute :attr:`.InspectionAttr.extension_type` will refer to a constant that distinguishes between different extension types. The sorting of the attributes is based on the following rules: 1. Iterate through the class and its superclasses in order from subclass to superclass (i.e. iterate through ``cls.__mro__``) 2. For each class, yield the attributes in the order in which they appear in ``__dict__``, with the exception of those in step 3 below. In Python 3.6 and above this ordering will be the same as that of the class' construction, with the exception of attributes that were added after the fact by the application or the mapper. 3. If a certain attribute key is also in the superclass ``__dict__``, then it's included in the iteration for that class, and not the class in which it first appeared. The above process produces an ordering that is deterministic in terms of the order in which attributes were assigned to the class. .. versionchanged:: 1.3.19 ensured deterministic ordering for :meth:`_orm.Mapper.all_orm_descriptors`. When dealing with a :class:`.QueryableAttribute`, the :attr:`.QueryableAttribute.property` attribute refers to the :class:`.MapperProperty` property, which is what you get when referring to the collection of mapped properties via :attr:`_orm.Mapper.attrs`. .. warning:: The :attr:`_orm.Mapper.all_orm_descriptors` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.all_orm_descriptors[somename]`` over ``getattr(mapper.all_orm_descriptors, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.attrs` """ return util.ImmutableProperties( dict(self.class_manager._all_sqla_attributes()) ) @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.descriptor_props") def synonyms(self): """Return a namespace of all :class:`.SynonymProperty` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ descriptor_props = util.preloaded.orm_descriptor_props return self._filter_properties(descriptor_props.SynonymProperty) @property def entity_namespace(self): return self.class_ @HasMemoized.memoized_attribute def column_attrs(self): """Return a namespace of all :class:`.ColumnProperty` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties(properties.ColumnProperty) @util.preload_module("sqlalchemy.orm.relationships") @HasMemoized.memoized_attribute def relationships(self): """A namespace of all :class:`.RelationshipProperty` properties maintained by this :class:`_orm.Mapper`. .. warning:: the :attr:`_orm.Mapper.relationships` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.relationships[somename]`` over ``getattr(mapper.relationships, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties( util.preloaded.orm_relationships.RelationshipProperty ) @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.descriptor_props") def composites(self): """Return a namespace of all :class:`.CompositeProperty` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties( util.preloaded.orm_descriptor_props.CompositeProperty ) def _filter_properties(self, type_): self._check_configure() return util.ImmutableProperties( util.OrderedDict( (k, v) for k, v in self._props.items() if isinstance(v, type_) ) ) @HasMemoized.memoized_attribute def _get_clause(self): """create a "get clause" based on the primary key. this is used by query.get() and many-to-one lazyloads to load this item by primary key. """ params = [ ( primary_key, sql.bindparam("pk_%d" % idx, type_=primary_key.type), ) for idx, primary_key in enumerate(self.primary_key, 1) ] return ( sql.and_(*[k == v for (k, v) in params]), util.column_dict(params), ) @HasMemoized.memoized_attribute def _equivalent_columns(self): """Create a map of all equivalent columns, based on the determination of column pairs that are equated to one another based on inherit condition. This is designed to work with the queries that util.polymorphic_union comes up with, which often don't include the columns from the base table directly (including the subclass table columns only). The resulting structure is a dictionary of columns mapped to lists of equivalent columns, e.g.:: { tablea.col1: {tableb.col1, tablec.col1}, tablea.col2: {tabled.col2} } """ result = util.column_dict() def visit_binary(binary): if binary.operator == operators.eq: if binary.left in result: result[binary.left].add(binary.right) else: result[binary.left] = util.column_set((binary.right,)) if binary.right in result: result[binary.right].add(binary.left) else: result[binary.right] = util.column_set((binary.left,)) for mapper in self.base_mapper.self_and_descendants: if mapper.inherit_condition is not None: visitors.traverse( mapper.inherit_condition, {}, {"binary": visit_binary} ) return result def _is_userland_descriptor(self, assigned_name, obj): if isinstance( obj, ( _MappedAttribute, instrumentation.ClassManager, expression.ColumnElement, ), ): return False else: return assigned_name not in self._dataclass_fields @HasMemoized.memoized_attribute def _dataclass_fields(self): return [f.name for f in util.dataclass_fields(self.class_)] def _should_exclude(self, name, assigned_name, local, column): """determine whether a particular property should be implicitly present on the class. This occurs when properties are propagated from an inherited class, or are applied from the columns present in the mapped table. """ # check for class-bound attributes and/or descriptors, # either local or from an inherited class # ignore dataclass field default values if local: if self.class_.__dict__.get( assigned_name, None ) is not None and self._is_userland_descriptor( assigned_name, self.class_.__dict__[assigned_name] ): return True else: attr = self.class_manager._get_class_attr_mro(assigned_name, None) if attr is not None and self._is_userland_descriptor( assigned_name, attr ): return True if ( self.include_properties is not None and name not in self.include_properties and (column is None or column not in self.include_properties) ): self._log("not including property %s" % (name)) return True if self.exclude_properties is not None and ( name in self.exclude_properties or (column is not None and column in self.exclude_properties) ): self._log("excluding property %s" % (name)) return True return False def common_parent(self, other): """Return true if the given mapper shares a common inherited parent as this mapper.""" return self.base_mapper is other.base_mapper def is_sibling(self, other): """return true if the other mapper is an inheriting sibling to this one. common parent but different branch """ return ( self.base_mapper is other.base_mapper and not self.isa(other) and not other.isa(self) ) def _canload(self, state, allow_subtypes): s = self.primary_mapper() if self.polymorphic_on is not None or allow_subtypes: return _state_mapper(state).isa(s) else: return _state_mapper(state) is s def isa(self, other): """Return True if the this mapper inherits from the given mapper.""" m = self while m and m is not other: m = m.inherits return bool(m) def iterate_to_root(self): m = self while m: yield m m = m.inherits @HasMemoized.memoized_attribute def self_and_descendants(self): """The collection including this mapper and all descendant mappers. This includes not just the immediately inheriting mappers but all their inheriting mappers as well. """ descendants = [] stack = deque([self]) while stack: item = stack.popleft() descendants.append(item) stack.extend(item._inheriting_mappers) return util.WeakSequence(descendants) def polymorphic_iterator(self): """Iterate through the collection including this mapper and all descendant mappers. This includes not just the immediately inheriting mappers but all their inheriting mappers as well. To iterate through an entire hierarchy, use ``mapper.base_mapper.polymorphic_iterator()``. """ return iter(self.self_and_descendants) def primary_mapper(self): """Return the primary mapper corresponding to this mapper's class key (class).""" return self.class_manager.mapper @property def primary_base_mapper(self): return self.class_manager.mapper.base_mapper def _result_has_identity_key(self, result, adapter=None): pk_cols = self.primary_key if adapter: pk_cols = [adapter.columns[c] for c in pk_cols] rk = result.keys() for col in pk_cols: if col not in rk: return False else: return True def identity_key_from_row(self, row, identity_token=None, adapter=None): """Return an identity-map key for use in storing/retrieving an item from the identity map. :param row: A :class:`.Row` instance. The columns which are mapped by this :class:`_orm.Mapper` should be locatable in the row, preferably via the :class:`_schema.Column` object directly (as is the case when a :func:`_expression.select` construct is executed), or via string names of the form ``<tablename>_<colname>``. """ pk_cols = self.primary_key if adapter: pk_cols = [adapter.columns[c] for c in pk_cols] return ( self._identity_class, tuple(row[column] for column in pk_cols), identity_token, ) def identity_key_from_primary_key(self, primary_key, identity_token=None): """Return an identity-map key for use in storing/retrieving an item from an identity map. :param primary_key: A list of values indicating the identifier. """ return self._identity_class, tuple(primary_key), identity_token def identity_key_from_instance(self, instance): """Return the identity key for the given instance, based on its primary key attributes. If the instance's state is expired, calling this method will result in a database check to see if the object has been deleted. If the row no longer exists, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. This value is typically also found on the instance state under the attribute name `key`. """ state = attributes.instance_state(instance) return self._identity_key_from_state(state, attributes.PASSIVE_OFF) def _identity_key_from_state( self, state, passive=attributes.PASSIVE_RETURN_NO_VALUE ): dict_ = state.dict manager = state.manager return ( self._identity_class, tuple( [ manager[prop.key].impl.get(state, dict_, passive) for prop in self._identity_key_props ] ), state.identity_token, ) def primary_key_from_instance(self, instance): """Return the list of primary key values for the given instance. If the instance's state is expired, calling this method will result in a database check to see if the object has been deleted. If the row no longer exists, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. """ state = attributes.instance_state(instance) identity_key = self._identity_key_from_state( state, attributes.PASSIVE_OFF ) return identity_key[1] @HasMemoized.memoized_attribute def _persistent_sortkey_fn(self): key_fns = [col.type.sort_key_function for col in self.primary_key] if set(key_fns).difference([None]): def key(state): return tuple( key_fn(val) if key_fn is not None else val for key_fn, val in zip(key_fns, state.key[1]) ) else: def key(state): return state.key[1] return key @HasMemoized.memoized_attribute def _identity_key_props(self): return [self._columntoproperty[col] for col in self.primary_key] @HasMemoized.memoized_attribute def _all_pk_cols(self): collection = set() for table in self.tables: collection.update(self._pks_by_table[table]) return collection @HasMemoized.memoized_attribute def _should_undefer_in_wildcard(self): cols = set(self.primary_key) if self.polymorphic_on is not None: cols.add(self.polymorphic_on) return cols @HasMemoized.memoized_attribute def _primary_key_propkeys(self): return {self._columntoproperty[col].key for col in self._all_pk_cols} def _get_state_attr_by_column( self, state, dict_, column, passive=attributes.PASSIVE_RETURN_NO_VALUE ): prop = self._columntoproperty[column] return state.manager[prop.key].impl.get(state, dict_, passive=passive) def _set_committed_state_attr_by_column(self, state, dict_, column, value): prop = self._columntoproperty[column] state.manager[prop.key].impl.set_committed_value(state, dict_, value) def _set_state_attr_by_column(self, state, dict_, column, value): prop = self._columntoproperty[column] state.manager[prop.key].impl.set(state, dict_, value, None) def _get_committed_attr_by_column(self, obj, column): state = attributes.instance_state(obj) dict_ = attributes.instance_dict(obj) return self._get_committed_state_attr_by_column( state, dict_, column, passive=attributes.PASSIVE_OFF ) def _get_committed_state_attr_by_column( self, state, dict_, column, passive=attributes.PASSIVE_RETURN_NO_VALUE ): prop = self._columntoproperty[column] return state.manager[prop.key].impl.get_committed_value( state, dict_, passive=passive ) def _optimized_get_statement(self, state, attribute_names): """assemble a WHERE clause which retrieves a given state by primary key, using a minimized set of tables. Applies to a joined-table inheritance mapper where the requested attribute names are only present on joined tables, not the base table. The WHERE clause attempts to include only those tables to minimize joins. """ props = self._props col_attribute_names = set(attribute_names).intersection( state.mapper.column_attrs.keys() ) tables = set( chain( *[ sql_util.find_tables(c, check_columns=True) for key in col_attribute_names for c in props[key].columns ] ) ) if self.base_mapper.local_table in tables: return None def visit_binary(binary): leftcol = binary.left rightcol = binary.right if leftcol is None or rightcol is None: return if leftcol.table not in tables: leftval = self._get_committed_state_attr_by_column( state, state.dict, leftcol, passive=attributes.PASSIVE_NO_INITIALIZE, ) if leftval in orm_util._none_set: raise _OptGetColumnsNotAvailable() binary.left = sql.bindparam( None, leftval, type_=binary.right.type ) elif rightcol.table not in tables: rightval = self._get_committed_state_attr_by_column( state, state.dict, rightcol, passive=attributes.PASSIVE_NO_INITIALIZE, ) if rightval in orm_util._none_set: raise _OptGetColumnsNotAvailable() binary.right = sql.bindparam( None, rightval, type_=binary.right.type ) allconds = [] start = False # as of #7507, from the lowest base table on upwards, # we include all intermediary tables. for mapper in reversed(list(self.iterate_to_root())): if mapper.local_table in tables: start = True elif not isinstance(mapper.local_table, expression.TableClause): return None if start and not mapper.single: allconds.append(mapper.inherit_condition) tables.add(mapper.local_table) # only the bottom table needs its criteria to be altered to fit # the primary key ident - the rest of the tables upwards to the # descendant-most class should all be present and joined to each # other. try: allconds[0] = visitors.cloned_traverse( allconds[0], {}, {"binary": visit_binary} ) except _OptGetColumnsNotAvailable: return None cond = sql.and_(*allconds) cols = [] for key in col_attribute_names: cols.extend(props[key].columns) return ( sql.select(*cols) .where(cond) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) ) def _iterate_to_target_viawpoly(self, mapper): if self.isa(mapper): prev = self for m in self.iterate_to_root(): yield m if m is not prev and prev not in m._with_polymorphic_mappers: break prev = m if m is mapper: break def _should_selectin_load(self, enabled_via_opt, polymorphic_from): if not enabled_via_opt: # common case, takes place for all polymorphic loads mapper = polymorphic_from for m in self._iterate_to_target_viawpoly(mapper): if m.polymorphic_load == "selectin": return m else: # uncommon case, selectin load options were used enabled_via_opt = set(enabled_via_opt) enabled_via_opt_mappers = {e.mapper: e for e in enabled_via_opt} for entity in enabled_via_opt.union([polymorphic_from]): mapper = entity.mapper for m in self._iterate_to_target_viawpoly(mapper): if ( m.polymorphic_load == "selectin" or m in enabled_via_opt_mappers ): return enabled_via_opt_mappers.get(m, m) return None @util.preload_module("sqlalchemy.orm.strategy_options") def _subclass_load_via_in(self, entity): """Assemble a that can load the columns local to this subclass as a SELECT with IN. """ strategy_options = util.preloaded.orm_strategy_options assert self.inherits if self.polymorphic_on is not None: polymorphic_prop = self._columntoproperty[self.polymorphic_on] keep_props = set([polymorphic_prop] + self._identity_key_props) else: keep_props = set(self._identity_key_props) disable_opt = strategy_options.Load(entity) enable_opt = strategy_options.Load(entity) for prop in self.attrs: if prop.parent is self or prop in keep_props: # "enable" options, to turn on the properties that we want to # load by default (subject to options from the query) if not isinstance(prop, StrategizedProperty): continue enable_opt.set_generic_strategy( # convert string name to an attribute before passing # to loader strategy (getattr(entity.entity_namespace, prop.key),), dict(prop.strategy_key), ) else: # "disable" options, to turn off the properties from the # superclass that we *don't* want to load, applied after # the options from the query to override them disable_opt.set_generic_strategy( # convert string name to an attribute before passing # to loader strategy (getattr(entity.entity_namespace, prop.key),), {"do_nothing": True}, ) primary_key = [ sql_util._deep_annotate(pk, {"_orm_adapt": True}) for pk in self.primary_key ] if len(primary_key) > 1: in_expr = sql.tuple_(*primary_key) else: in_expr = primary_key[0] if entity.is_aliased_class: assert entity.mapper is self q = sql.select(entity).set_label_style( LABEL_STYLE_TABLENAME_PLUS_COL ) in_expr = entity._adapter.traverse(in_expr) primary_key = [entity._adapter.traverse(k) for k in primary_key] q = q.where( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ).order_by(*primary_key) else: q = sql.select(self).set_label_style( LABEL_STYLE_TABLENAME_PLUS_COL ) q = q.where( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ).order_by(*primary_key) return q, enable_opt, disable_opt @HasMemoized.memoized_attribute def _subclass_load_via_in_mapper(self): return self._subclass_load_via_in(self) def cascade_iterator(self, type_, state, halt_on=None): r"""Iterate each element and its mapper in an object graph, for all relationships that meet the given cascade rule. :param type\_: The name of the cascade rule (i.e. ``"save-update"``, ``"delete"``, etc.). .. note:: the ``"all"`` cascade is not accepted here. For a generic object traversal function, see :ref:`faq_walk_objects`. :param state: The lead InstanceState. child items will be processed per the relationships defined for this object's mapper. :return: the method yields individual object instances. .. seealso:: :ref:`unitofwork_cascades` :ref:`faq_walk_objects` - illustrates a generic function to traverse all objects without relying on cascades. """ visited_states = set() prp, mpp = object(), object() assert state.mapper.isa(self) visitables = deque( [(deque(state.mapper._props.values()), prp, state, state.dict)] ) while visitables: iterator, item_type, parent_state, parent_dict = visitables[-1] if not iterator: visitables.pop() continue if item_type is prp: prop = iterator.popleft() if type_ not in prop.cascade: continue queue = deque( prop.cascade_iterator( type_, parent_state, parent_dict, visited_states, halt_on, ) ) if queue: visitables.append((queue, mpp, None, None)) elif item_type is mpp: ( instance, instance_mapper, corresponding_state, corresponding_dict, ) = iterator.popleft() yield ( instance, instance_mapper, corresponding_state, corresponding_dict, ) visitables.append( ( deque(instance_mapper._props.values()), prp, corresponding_state, corresponding_dict, ) ) @HasMemoized.memoized_attribute def _compiled_cache(self): return util.LRUCache(self._compiled_cache_size) @HasMemoized.memoized_attribute def _sorted_tables(self): table_to_mapper = {} for mapper in self.base_mapper.self_and_descendants: for t in mapper.tables: table_to_mapper.setdefault(t, mapper) extra_dependencies = [] for table, mapper in table_to_mapper.items(): super_ = mapper.inherits if super_: extra_dependencies.extend( [(super_table, table) for super_table in super_.tables] ) def skip(fk): # attempt to skip dependencies that are not # significant to the inheritance chain # for two tables that are related by inheritance. # while that dependency may be important, it's technically # not what we mean to sort on here. parent = table_to_mapper.get(fk.parent.table) dep = table_to_mapper.get(fk.column.table) if ( parent is not None and dep is not None and dep is not parent and dep.inherit_condition is not None ): cols = set(sql_util._find_columns(dep.inherit_condition)) if parent.inherit_condition is not None: cols = cols.union( sql_util._find_columns(parent.inherit_condition) ) return fk.parent not in cols and fk.column not in cols else: return fk.parent not in cols return False sorted_ = sql_util.sort_tables( table_to_mapper, skip_fn=skip, extra_dependencies=extra_dependencies, ) ret = util.OrderedDict() for t in sorted_: ret[t] = table_to_mapper[t] return ret def _memo(self, key, callable_): if key in self._memoized_values: return self._memoized_values[key] else: self._memoized_values[key] = value = callable_() return value @util.memoized_property def _table_to_equated(self): """memoized map of tables to collections of columns to be synchronized upwards to the base mapper.""" result = util.defaultdict(list) for table in self._sorted_tables: cols = set(table.c) for m in self.iterate_to_root(): if m._inherits_equated_pairs and cols.intersection( util.reduce( set.union, [l.proxy_set for l, r in m._inherits_equated_pairs], ) ): result[table].append((m, m._inherits_equated_pairs)) return result class _OptGetColumnsNotAvailable(Exception): pass def configure_mappers(): """Initialize the inter-mapper relationships of all mappers that have been constructed thus far across all :class:`_orm.registry` collections. The configure step is used to reconcile and initialize the :func:`_orm.relationship` linkages between mapped classes, as well as to invoke configuration events such as the :meth:`_orm.MapperEvents.before_configured` and :meth:`_orm.MapperEvents.after_configured`, which may be used by ORM extensions or user-defined extension hooks. Mapper configuration is normally invoked automatically, the first time mappings from a particular :class:`_orm.registry` are used, as well as whenever mappings are used and additional not-yet-configured mappers have been constructed. The automatic configuration process however is local only to the :class:`_orm.registry` involving the target mapper and any related :class:`_orm.registry` objects which it may depend on; this is equivalent to invoking the :meth:`_orm.registry.configure` method on a particular :class:`_orm.registry`. By contrast, the :func:`_orm.configure_mappers` function will invoke the configuration process on all :class:`_orm.registry` objects that exist in memory, and may be useful for scenarios where many individual :class:`_orm.registry` objects that are nonetheless interrelated are in use. .. versionchanged:: 1.4 As of SQLAlchemy 1.4.0b2, this function works on a per-:class:`_orm.registry` basis, locating all :class:`_orm.registry` objects present and invoking the :meth:`_orm.registry.configure` method on each. The :meth:`_orm.registry.configure` method may be preferred to limit the configuration of mappers to those local to a particular :class:`_orm.registry` and/or declarative base class. Points at which automatic configuration is invoked include when a mapped class is instantiated into an instance, as well as when ORM queries are emitted using :meth:`.Session.query` or :meth:`_orm.Session.execute` with an ORM-enabled statement. The mapper configure process, whether invoked by :func:`_orm.configure_mappers` or from :meth:`_orm.registry.configure`, provides several event hooks that can be used to augment the mapper configuration step. These hooks include: * :meth:`.MapperEvents.before_configured` - called once before :func:`.configure_mappers` or :meth:`_orm.registry.configure` does any work; this can be used to establish additional options, properties, or related mappings before the operation proceeds. * :meth:`.MapperEvents.mapper_configured` - called as each individual :class:`_orm.Mapper` is configured within the process; will include all mapper state except for backrefs set up by other mappers that are still to be configured. * :meth:`.MapperEvents.after_configured` - called once after :func:`.configure_mappers` or :meth:`_orm.registry.configure` is complete; at this stage, all :class:`_orm.Mapper` objects that fall within the scope of the configuration operation will be fully configured. Note that the calling application may still have other mappings that haven't been produced yet, such as if they are in modules as yet unimported, and may also have mappings that are still to be configured, if they are in other :class:`_orm.registry` collections not part of the current scope of configuration. """ _configure_registries(_all_registries(), cascade=True) def _configure_registries(registries, cascade): for reg in registries: if reg._new_mappers: break else: return with _CONFIGURE_MUTEX: global _already_compiling if _already_compiling: return _already_compiling = True try: # double-check inside mutex for reg in registries: if reg._new_mappers: break else: return Mapper.dispatch._for_class(Mapper).before_configured() # initialize properties on all mappers # note that _mapper_registry is unordered, which # may randomly conceal/reveal issues related to # the order of mapper compilation _do_configure_registries(registries, cascade) finally: _already_compiling = False Mapper.dispatch._for_class(Mapper).after_configured() @util.preload_module("sqlalchemy.orm.decl_api") def _do_configure_registries(registries, cascade): registry = util.preloaded.orm_decl_api.registry orig = set(registries) for reg in registry._recurse_with_dependencies(registries): has_skip = False for mapper in reg._mappers_to_configure(): run_configure = None for fn in mapper.dispatch.before_mapper_configured: run_configure = fn(mapper, mapper.class_) if run_configure is EXT_SKIP: has_skip = True break if run_configure is EXT_SKIP: continue if getattr(mapper, "_configure_failed", False): e = sa_exc.InvalidRequestError( "One or more mappers failed to initialize - " "can't proceed with initialization of other " "mappers. Triggering mapper: '%s'. " "Original exception was: %s" % (mapper, mapper._configure_failed) ) e._configure_failed = mapper._configure_failed raise e if not mapper.configured: try: mapper._post_configure_properties() mapper._expire_memoizations() mapper.dispatch.mapper_configured(mapper, mapper.class_) except Exception: exc = sys.exc_info()[1] if not hasattr(exc, "_configure_failed"): mapper._configure_failed = exc raise if not has_skip: reg._new_mappers = False if not cascade and reg._dependencies.difference(orig): raise sa_exc.InvalidRequestError( "configure was called with cascade=False but " "additional registries remain" ) @util.preload_module("sqlalchemy.orm.decl_api") def _dispose_registries(registries, cascade): registry = util.preloaded.orm_decl_api.registry orig = set(registries) for reg in registry._recurse_with_dependents(registries): if not cascade and reg._dependents.difference(orig): raise sa_exc.InvalidRequestError( "Registry has dependent registries that are not disposed; " "pass cascade=True to clear these also" ) while reg._managers: try: manager, _ = reg._managers.popitem() except KeyError: # guard against race between while and popitem pass else: reg._dispose_manager_and_mapper(manager) reg._non_primary_mappers.clear() reg._dependents.clear() for dep in reg._dependencies: dep._dependents.discard(reg) reg._dependencies.clear() # this wasn't done in the 1.3 clear_mappers() and in fact it # was a bug, as it could cause configure_mappers() to invoke # the "before_configured" event even though mappers had all been # disposed. reg._new_mappers = False def reconstructor(fn): """Decorate a method as the 'reconstructor' hook. Designates a single method as the "reconstructor", an ``__init__``-like method that will be called by the ORM after the instance has been loaded from the database or otherwise reconstituted. The reconstructor will be invoked with no arguments. Scalar (non-collection) database-mapped attributes of the instance will be available for use within the function. Eagerly-loaded collections are generally not yet available and will usually only contain the first element. ORM state changes made to objects at this stage will not be recorded for the next flush() operation, so the activity within a reconstructor should be conservative. .. seealso:: :ref:`mapping_constructors` :meth:`.InstanceEvents.load` """ fn.__sa_reconstructor__ = True return fn def validates(*names, **kw): r"""Decorate a method as a 'validator' for one or more named properties. Designates a method as a validator, a method which receives the name of the attribute as well as a value to be assigned, or in the case of a collection, the value to be added to the collection. The function can then raise validation exceptions to halt the process from continuing (where Python's built-in ``ValueError`` and ``AssertionError`` exceptions are reasonable choices), or can modify or replace the value before proceeding. The function should otherwise return the given value. Note that a validator for a collection **cannot** issue a load of that collection within the validation routine - this usage raises an assertion to avoid recursion overflows. This is a reentrant condition which is not supported. :param \*names: list of attribute names to be validated. :param include_removes: if True, "remove" events will be sent as well - the validation function must accept an additional argument "is_remove" which will be a boolean. :param include_backrefs: defaults to ``True``; if ``False``, the validation function will not emit if the originator is an attribute event related via a backref. This can be used for bi-directional :func:`.validates` usage where only one validator should emit per attribute operation. .. versionadded:: 0.9.0 .. seealso:: :ref:`simple_validators` - usage examples for :func:`.validates` """ include_removes = kw.pop("include_removes", False) include_backrefs = kw.pop("include_backrefs", True) def wrap(fn): fn.__sa_validators__ = names fn.__sa_validation_opts__ = { "include_removes": include_removes, "include_backrefs": include_backrefs, } return fn return wrap def _event_on_load(state, ctx): instrumenting_mapper = state.manager.mapper if instrumenting_mapper._reconstructor: instrumenting_mapper._reconstructor(state.obj()) def _event_on_init(state, args, kwargs): """Run init_instance hooks. This also includes mapper compilation, normally not needed here but helps with some piecemeal configuration scenarios (such as in the ORM tutorial). """ instrumenting_mapper = state.manager.mapper if instrumenting_mapper: instrumenting_mapper._check_configure() if instrumenting_mapper._set_polymorphic_identity: instrumenting_mapper._set_polymorphic_identity(state) class _ColumnMapping(dict): """Error reporting helper for mapper._columntoproperty.""" __slots__ = ("mapper",) def __init__(self, mapper): self.mapper = mapper def __missing__(self, column): prop = self.mapper._props.get(column) if prop: raise orm_exc.UnmappedColumnError( "Column '%s.%s' is not available, due to " "conflicting property '%s':%r" % (column.table.name, column.name, column.key, prop) ) raise orm_exc.UnmappedColumnError( "No column %s is configured on mapper %s..." % (column, self.mapper) )
py
b4130ce9f68df87da5128660cbfdc67b82b3f6c2
import os def get_html_theme_path(): """Return the HTML theme path to set in Sphinx to use this theme""" cur_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) return cur_dir
py
b4130d04b43c706ebb56a9d6ede2201a268db5d7
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for hparam.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.training.python.training import hparam from tensorflow.python.platform import test class HParamsTest(test.TestCase): def _assertDictEquals(self, d1, d2): self.assertEqual(len(d1), len(d2)) for k, v in six.iteritems(d1): self.assertTrue(k in d2, k) self.assertEquals(v, d2[k], d2[k]) def testEmpty(self): hparams = hparam.HParams() self._assertDictEquals({}, hparams.values()) hparams.parse('') self._assertDictEquals({}, hparams.values()) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('xyz=123') def testSomeValues(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6') self._assertDictEquals( {'aaa': 1, 'b': 2.0, 'c_c': 'relu6'}, hparams.values()) expected_str = '[(\'aaa\', 1), (\'b\', 2.0), (\'c_c\', \'relu6\')]' self.assertEquals(expected_str, str(hparams.__str__())) self.assertEquals(expected_str, str(hparams)) self.assertEquals(1, hparams.aaa) self.assertEquals(2.0, hparams.b) self.assertEquals('relu6', hparams.c_c) hparams.parse('aaa=12') self._assertDictEquals( {'aaa': 12, 'b': 2.0, 'c_c': 'relu6'}, hparams.values()) self.assertEquals(12, hparams.aaa) self.assertEquals(2.0, hparams.b) self.assertEquals('relu6', hparams.c_c) hparams.parse('c_c=relu4,b=-2.0e10') self._assertDictEquals({'aaa': 12, 'b': -2.0e10, 'c_c': 'relu4'}, hparams.values()) self.assertEquals(12, hparams.aaa) self.assertEquals(-2.0e10, hparams.b) self.assertEquals('relu4', hparams.c_c) hparams.parse('c_c=,b=0,') self._assertDictEquals({'aaa': 12, 'b': 0, 'c_c': ''}, hparams.values()) self.assertEquals(12, hparams.aaa) self.assertEquals(0.0, hparams.b) self.assertEquals('', hparams.c_c) hparams.parse('c_c=2.3",b=+2,') self.assertEquals(2.0, hparams.b) self.assertEquals('2.3"', hparams.c_c) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('x=123') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=poipoi') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=1.0') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=12x') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=relu') with self.assertRaisesRegexp(ValueError, 'Must not pass a list'): hparams.parse('aaa=[123]') self.assertEquals(12, hparams.aaa) self.assertEquals(2.0, hparams.b) self.assertEquals('2.3"', hparams.c_c) # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) # Verifies that all hparams are restored. self.assertEquals(12, hparams2.aaa) self.assertEquals(2.0, hparams2.b) self.assertEquals('2.3"', hparams2.c_c) def testBoolParsing(self): for value in 'true', 'false', 'True', 'False', '1', '0': for initial in False, True: hparams = hparam.HParams(use_gpu=initial) hparams.parse('use_gpu=' + value) self.assertEqual(hparams.use_gpu, value in ['True', 'true', '1']) # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) self.assertEquals(hparams.use_gpu, hparams2.use_gpu) # Check that hparams2.use_gpu is a bool rather than an int. # The assertEquals() call above won't catch this, since # (0 == False) and (1 == True) in Python. self.assertEquals(bool, type(hparams2.use_gpu)) def testBoolParsingFail(self): hparams = hparam.HParams(use_gpu=True) with self.assertRaisesRegexp(ValueError, r'Could not parse.*use_gpu'): hparams.parse('use_gpu=yep') def testLists(self): hparams = hparam.HParams(aaa=[1], b=[2.0, 3.0], c_c=['relu6']) self._assertDictEquals({'aaa': [1], 'b': [2.0, 3.0], 'c_c': ['relu6']}, hparams.values()) self.assertEquals([1], hparams.aaa) self.assertEquals([2.0, 3.0], hparams.b) self.assertEquals(['relu6'], hparams.c_c) hparams.parse('aaa=[12]') self.assertEquals([12], hparams.aaa) hparams.parse('aaa=[12,34,56]') self.assertEquals([12, 34, 56], hparams.aaa) hparams.parse('c_c=[relu4,relu12],b=[1.0]') self.assertEquals(['relu4', 'relu12'], hparams.c_c) self.assertEquals([1.0], hparams.b) hparams.parse('c_c=[],aaa=[-34]') self.assertEquals([-34], hparams.aaa) self.assertEquals([], hparams.c_c) hparams.parse('c_c=[_12,3\'4"],aaa=[+3]') self.assertEquals([3], hparams.aaa) self.assertEquals(['_12', '3\'4"'], hparams.c_c) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('x=[123]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=[poipoi]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=[1.0]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=[12x]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=[relu]') with self.assertRaisesRegexp(ValueError, 'Must pass a list'): hparams.parse('aaa=123') # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) # Verifies that all hparams are restored. self.assertEquals([3], hparams2.aaa) self.assertEquals([1.0], hparams2.b) self.assertEquals(['_12', '3\'4"'], hparams2.c_c) def testJson(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6', d=True) self._assertDictEquals( {'aaa': 1, 'b': 2.0, 'c_c': 'relu6', 'd': True}, hparams.values()) self.assertEquals(1, hparams.aaa) self.assertEquals(2.0, hparams.b) self.assertEquals('relu6', hparams.c_c) hparams.parse_json('{"aaa": 12, "b": 3.0, "c_c": "relu4", "d": false}') self._assertDictEquals( {'aaa': 12, 'b': 3.0, 'c_c': 'relu4', 'd': False}, hparams.values()) self.assertEquals(12, hparams.aaa) self.assertEquals(3.0, hparams.b) self.assertEquals('relu4', hparams.c_c) json_str = hparams.to_json() hparams2 = hparam.HParams(aaa=10, b=20.0, c_c='hello', d=False) hparams2.parse_json(json_str) self.assertEquals(12, hparams2.aaa) self.assertEquals(3.0, hparams2.b) self.assertEquals('relu4', hparams2.c_c) self.assertEquals(False, hparams2.d) def testNonProtoFails(self): with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=1) with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=1.0) with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def='hello') with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=[1, 2, 3]) if __name__ == '__main__': test.main()
py
b4130e48d535fdb76df202c42e25c4d93cb2c91a
""" This module contains useful functions to compute distances and errors on on circles and spheres. """ from __future__ import division import numpy as np def circ_dist(azimuth1, azimuth2, r=1.0): """ Returns the shortest distance between two points on a circle Parameters ---------- azimuth1: azimuth of point 1 azimuth2: azimuth of point 2 r: optional radius of the circle (Default 1) """ return np.arccos(np.cos(azimuth1 - azimuth2)) def great_circ_dist(r, colatitude1, azimuth1, colatitude2, azimuth2): """ calculate great circle distance for points located on a sphere Parameters ---------- r: radius of the sphere colatitude1: colatitude of point 1 azimuth1: azimuth of point 1 colatitude2: colatitude of point 2 azimuth2: azimuth of point 2 Returns ------- float or ndarray great-circle distance """ d_azimuth = np.abs(azimuth1 - azimuth2) dist = r * np.arctan2( np.sqrt( (np.sin(colatitude2) * np.sin(d_azimuth)) ** 2 + ( np.sin(colatitude1) * np.cos(colatitude2) - np.cos(colatitude1) * np.sin(colatitude2) * np.cos(d_azimuth) ) ** 2 ), np.cos(colatitude1) * np.cos(colatitude2) + np.sin(colatitude1) * np.sin(colatitude2) * np.cos(d_azimuth), ) return dist def spher2cart(azimuth, colatitude=None, r=1, degrees=False): """ Convert a spherical point to cartesian coordinates. Parameters ---------- r: radius azimuth: azimuth colatitude: colatitude Returns ------- ndarray An ndarray containing the Cartesian coordinates of the points as its columns. """ if degrees: azimuth = np.radians(azimuth) if colatitude is not None: colatitude = np.radians(colatitude) if colatitude is None: # default to XY plane colatitude = np.pi / 2 if hasattr(azimuth, "__len__"): colatitude = np.ones(len(azimuth)) * colatitude # convert to cartesian x = r * np.cos(azimuth) * np.sin(colatitude) y = r * np.sin(azimuth) * np.sin(colatitude) z = r * np.cos(colatitude) return np.array([x, y, z]) def polar_distance(x1, x2): """ Given two arrays of numbers x1 and x2, pairs the cells that are the closest and provides the pairing matrix index: x1(index(1,:)) should be as close as possible to x2(index(2,:)). The function outputs the average of the absolute value of the differences abs(x1(index(1,:))-x2(index(2,:))). Parameters ---------- x1: vector 1 x2: vector 2 Returns ------- d: minimum distance between d index: the permutation matrix """ x1 = np.reshape(x1, (1, -1), order="F") x2 = np.reshape(x2, (1, -1), order="F") N1 = x1.size N2 = x2.size diffmat = np.arccos(np.cos(x1 - np.reshape(x2, (-1, 1), order="F"))) min_N1_N2 = np.min([N1, N2]) index = np.zeros((min_N1_N2, 2), dtype=int) if min_N1_N2 > 1: for k in range(min_N1_N2): d2 = np.min(diffmat, axis=0) index2 = np.argmin(diffmat, axis=0) index1 = np.argmin(d2) index2 = index2[index1] index[k, :] = [index1, index2] diffmat[index2, :] = float("inf") diffmat[:, index1] = float("inf") d = np.mean(np.arccos(np.cos(x1[:, index[:, 0]] - x2[:, index[:, 1]]))) else: d = np.min(diffmat) index = np.argmin(diffmat) if N1 == 1: index = np.array([1, index]) else: index = np.array([index, 1]) return d, index
py
b4130eda5f7c068f66981cd7b1d5e1fc4d3751ca
from library import * from collections import defaultdict if len(sys.argv) > 2: n = int(sys.argv[2]) else: n = None i, o, t = load_npz(sys.argv[1]) t = t[:, 250000:280000] normalize(t) align_fft(t, 1000) t = t[:, :-1000] if 1: t_parts = np.zeros((len(t) * 16, 2000)) for j, tra in enumerate(t): off = 2800 for k in range(16): if k < 1: t_parts[j * 16 + k] = tra[off:off+2000] off += 1465 if k % 4 == 3: off += 308 align_fft(t_parts, 100) t = t_parts if 1: t = t[:, 100:1600] normalize(t) align_fft(t, 200) if 0: t = t[:, 4500:6500] normalize(t) align_fft(t, 100) if 0: t_avg = np.zeros((len(t) / 16, 1500)) for j in range(len(t_avg)): t_avg[j] = np.mean(t[j*16:j*16+16], axis=0) t = t_avg d = defaultdict(list) for j, inp in enumerate(i): inp = "".join(chr(c) for c in inp) for k in range(16): d[inp].append(j*16+k) tlist = [] for indices in d.values(): tlist.append(indices) t1 = t[tlist[0][:12*16]] t2 = t[tlist[1][:12*16]] show_red_green(t1, t2)
py
b4130f3b119d757cc5075c29ad51647f138830f1
from lib_sudoku import Sudoku_Solver mylist= list() mylist2= list() #first mylist.append([0,0,0,0,0,0,0,0,8]) mylist.append([0,1,8,0,6,7,2,0,0]) mylist.append([0,5,0,9,0,0,0,0,0]) mylist.append([0,0,5,0,4,0,0,6,0]) mylist.append([0,6,0,3,0,0,7,4,9]) mylist.append([0,7,0,0,0,9,0,0,3]) mylist.append([0,9,0,0,2,0,0,0,0]) mylist.append([0,0,0,4,7,0,0,0,1]) mylist.append([4,0,0,0,9,5,0,2,0]) #second mylist2.append([0,0,0,0,0,0,0,0,0]) mylist2.append([0,0,0,5,0,6,0,0,0]) mylist2.append([0,9,0,0,0,0,0,7,0]) mylist2.append([0,0,5,0,0,0,1,0,0]) mylist2.append([0,3,0,8,0,2,0,6,0]) mylist2.append([0,2,1,0,0,0,8,4,0]) mylist2.append([2,1,0,0,7,0,0,3,8]) mylist2.append([7,0,3,0,2,0,6,0,9]) mylist2.append([0,5,0,1,0,3,0,2,0]) slib = Sudoku_Solver(mylist2) # print(mylist[4][2]) # print(slib.populate_get_all_possibilities()) slib.brain() # http://norvig.com/sudoku.html
py
b4130fe75ea04e2eceeab44c6f157e786eb58707
import src.MainImages as main_img class LettersPlayFair(object): def __init__(self): self.letters = main_img.letters self.letters_start_pos = {'A': (908, 8), 'B': (980, 8), 'C': (1053, 8), 'D': (1127, 8), 'E': (1200, 8), 'F': (908, 80), 'G': (980, 80), 'H': (1053, 80), 'I': (1127, 80), 'K': (1200, 80), 'L': (908, 153), 'M': (980, 153), 'N': (1053, 153), 'O': (1127, 153), 'P': (1200, 153), 'Q': (908, 227), 'R': (980, 227), 'S': (1053, 227), 'T': (1127, 227), 'U': (1200, 227), 'V': (908, 300), 'W': (980, 300), 'X': (1053, 300), 'Y': (1127, 300), 'Z': (1200, 300)} def draw(self, surface): for letter in self.letters: surface.blit(self.letters[letter], self.letters_start_pos[letter])
py
b413113557160f068161df8ff423281bfe183038
import glob from PIL import Image images = glob.glob('*.jpg') new_im = Image.new('RGB', (20*15,20*15), (250,250,250)) i=0 j=0 for image in images: with open(image, 'rb') as file: img = Image.open(file) new_im.paste(img, ((i%20)*15,j*15)) i=i+1 if(i>0 and i%20==0): j=j+1 new_im.save("merged_images.png", "PNG") new_im.show()
py
b4131141aad4084ea581a1d08f39218ba986c3c3
"""Basic Test.""" import hashlib import pytest from nr_merkletree import MerkleTree def test_basic(): """Test if MerkleTree works for a basic example.""" data_chunks = [b'0', b'1', b'2'] merkle_tree = MerkleTree(data_chunks) expected_hash0 = hashlib.sha256(data_chunks[0]).digest() expected_hash1 = hashlib.sha256(data_chunks[1]).digest() expected_hash2 = hashlib.sha256(data_chunks[2]).digest() expected_hash01 = hashlib.sha256(expected_hash0 + expected_hash1).digest() expected_hash2x = hashlib.sha256(expected_hash2).digest() expected_root_hash = hashlib.sha256(expected_hash01 + expected_hash2x).digest() assert merkle_tree.get_node(nid=expected_hash0).identifier == expected_hash0 assert merkle_tree.get_node(nid=expected_hash1).identifier == expected_hash1 assert merkle_tree.get_node(nid=expected_hash1).identifier == expected_hash1 assert merkle_tree.get_node(nid=expected_hash01).identifier == expected_hash01 assert merkle_tree.get_node(nid=expected_hash2x).identifier == expected_hash2x assert merkle_tree.get_node(nid=expected_root_hash).identifier == expected_root_hash # Sanity check. with pytest.raises(AttributeError): assert merkle_tree.get_node(nid=b'not_an_expected_hash').identifier
py
b41313438dbeb5af3d5081e892429fd51b3555c1
import sys import os # 09-Mar-2017 Diogo Ribeiro # Routine to merge and process RPISeq raw results into a format readable to my scripts (catRAPID format) inputFiles = sys.argv[1] # file with list of RPISeq output files to parse here, full paths must be given outputFolder = sys.argv[2] # folder where to write output file proteinID = sys.argv[3] # ID of the interacting protein, to appear in output file ### Input example (RPISeq output) # RNA ID RF Classifier SVM Classifier # >ENST00000437898 0.75 0.541 # >ENST00000452728 0.75 0.774 # >ENST00000422049 0.8 0.451 # (split into several files, each one with a header) # the protein name is defined beforehand, e.g. P52298 # RPISeq provides two scores, one output file will be created for each ### Wanted Output # sp|P52298|NCBP2_HUMAN ENST00000625358 40.15 0.88 0.08 # sp|P52298|NCBP2_HUMAN ENST00000625632 49.31 0.94 0.29 # sp|P52298|NCBP2_HUMAN ENST00000627767 48.38 0.94 0.29 # (no header) outFileRF = open( outputFolder + "/RIPSeq_RF_formatted.out", "w") outFileSVM = open( outputFolder + "/RIPSeq_SVM_formatted.out", "w") with open( inputFiles, "r") as initialFile: for li in initialFile: # open each file with open( li.strip(), "r") as inFile: header = inFile.readline() for line in inFile: spl = line.strip().split() if spl < 3: print "Problem with input file: %s, %s" % (inFile, line) txID = spl[0].replace(">","") rfScore = spl[1] svmScore = spl[2] # write RF scores outFileRF.write( "sp|%s|sp %s\t%s\n" % (proteinID, txID, rfScore)) # write SVM scores outFileSVM.write( "sp|%s|sp %s\t%s\n" % (proteinID, txID, svmScore)) outFileRF.close() outFileSVM.close()
py
b41314a686e69446c6ee0bcc550ac7751ebe4671
""" Classes to represent the default SQL aggregate functions """ from django.db.models.fields import IntegerField, FloatField # Fake fields used to identify aggregate types in data-conversion operations. ordinal_aggregate_field = IntegerField() computed_aggregate_field = FloatField() class Aggregate(object): """ Default SQL Aggregate. """ is_ordinal = False is_computed = False sql_template = '%(function)s(%(field)s)' def __init__(self, col, source=None, is_summary=False, **extra): """Instantiate an SQL aggregate * col is a column reference describing the subject field of the aggregate. It can be an alias, or a tuple describing a table and column name. * source is the underlying field or aggregate definition for the column reference. If the aggregate is not an ordinal or computed type, this reference is used to determine the coerced output type of the aggregate. * extra is a dictionary of additional data to provide for the aggregate definition Also utilizes the class variables: * sql_function, the name of the SQL function that implements the aggregate. * sql_template, a template string that is used to render the aggregate into SQL. * is_ordinal, a boolean indicating if the output of this aggregate is an integer (e.g., a count) * is_computed, a boolean indicating if this output of this aggregate is a computed float (e.g., an average), regardless of the input type. """ self.col = col self.source = source self.is_summary = is_summary self.extra = extra # Follow the chain of aggregate sources back until you find an # actual field, or an aggregate that forces a particular output # type. This type of this field will be used to coerce values # retrieved from the database. tmp = self while tmp and isinstance(tmp, Aggregate): if getattr(tmp, 'is_ordinal', False): tmp = ordinal_aggregate_field elif getattr(tmp, 'is_computed', False): tmp = computed_aggregate_field else: tmp = tmp.source self.field = tmp def relabel_aliases(self, change_map): if isinstance(self.col, (list, tuple)): self.col = (change_map.get(self.col[0], self.col[0]), self.col[1]) def as_sql(self, qn, connection): "Return the aggregate, rendered as SQL." if hasattr(self.col, 'as_sql'): field_name = self.col.as_sql(qn, connection) elif isinstance(self.col, (list, tuple)): field_name = '.'.join([qn(c) for c in self.col]) else: field_name = self.col params = { 'function': self.sql_function, 'field': field_name } params.update(self.extra) return self.sql_template % params class Avg(Aggregate): is_computed = True sql_function = 'AVG' class Count(Aggregate): is_ordinal = True sql_function = 'COUNT' sql_template = '%(function)s(%(distinct)s%(field)s)' def __init__(self, col, distinct=False, **extra): super(Count, self).__init__(col, distinct=distinct and 'DISTINCT ' or '', **extra) class Max(Aggregate): sql_function = 'MAX' class Min(Aggregate): sql_function = 'MIN' class StdDev(Aggregate): is_computed = True def __init__(self, col, sample=False, **extra): super(StdDev, self).__init__(col, **extra) self.sql_function = sample and 'STDDEV_SAMP' or 'STDDEV_POP' class Sum(Aggregate): sql_function = 'SUM' class Variance(Aggregate): is_computed = True def __init__(self, col, sample=False, **extra): super(Variance, self).__init__(col, **extra) self.sql_function = sample and 'VAR_SAMP' or 'VAR_POP'
py
b41314cb5ead0a315423d208ceda7dbbfe65ad43
# Copyright 2014-2021 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Various utilities for dealing with Neutron and the renaming from Quantum. import six from subprocess import check_output from charmhelpers.core.hookenv import ( config, log, ERROR, ) from charmhelpers.contrib.openstack.utils import ( os_release, CompareOpenStackReleases, ) def headers_package(): """Ensures correct linux-headers for running kernel are installed, for building DKMS package""" kver = check_output(['uname', '-r']).decode('UTF-8').strip() return 'linux-headers-%s' % kver QUANTUM_CONF_DIR = '/etc/quantum' def kernel_version(): """ Retrieve the current major kernel version as a tuple e.g. (3, 13) """ kver = check_output(['uname', '-r']).decode('UTF-8').strip() kver = kver.split('.') return (int(kver[0]), int(kver[1])) def determine_dkms_package(): """ Determine which DKMS package should be used based on kernel version """ # NOTE: 3.13 kernels have support for GRE and VXLAN native if kernel_version() >= (3, 13): return [] else: return [headers_package(), 'openvswitch-datapath-dkms'] # legacy def quantum_plugins(): return { 'ovs': { 'config': '/etc/quantum/plugins/openvswitch/' 'ovs_quantum_plugin.ini', 'driver': 'quantum.plugins.openvswitch.ovs_quantum_plugin.' 'OVSQuantumPluginV2', 'contexts': [], 'services': ['quantum-plugin-openvswitch-agent'], 'packages': [determine_dkms_package(), ['quantum-plugin-openvswitch-agent']], 'server_packages': ['quantum-server', 'quantum-plugin-openvswitch'], 'server_services': ['quantum-server'] }, 'nvp': { 'config': '/etc/quantum/plugins/nicira/nvp.ini', 'driver': 'quantum.plugins.nicira.nicira_nvp_plugin.' 'QuantumPlugin.NvpPluginV2', 'contexts': [], 'services': [], 'packages': [], 'server_packages': ['quantum-server', 'quantum-plugin-nicira'], 'server_services': ['quantum-server'] } } NEUTRON_CONF_DIR = '/etc/neutron' def neutron_plugins(): release = os_release('nova-common') plugins = { 'ovs': { 'config': '/etc/neutron/plugins/openvswitch/' 'ovs_neutron_plugin.ini', 'driver': 'neutron.plugins.openvswitch.ovs_neutron_plugin.' 'OVSNeutronPluginV2', 'contexts': [], 'services': ['neutron-plugin-openvswitch-agent'], 'packages': [determine_dkms_package(), ['neutron-plugin-openvswitch-agent']], 'server_packages': ['neutron-server', 'neutron-plugin-openvswitch'], 'server_services': ['neutron-server'] }, 'nvp': { 'config': '/etc/neutron/plugins/nicira/nvp.ini', 'driver': 'neutron.plugins.nicira.nicira_nvp_plugin.' 'NeutronPlugin.NvpPluginV2', 'contexts': [], 'services': [], 'packages': [], 'server_packages': ['neutron-server', 'neutron-plugin-nicira'], 'server_services': ['neutron-server'] }, 'nsx': { 'config': '/etc/neutron/plugins/vmware/nsx.ini', 'driver': 'vmware', 'contexts': [], 'services': [], 'packages': [], 'server_packages': ['neutron-server', 'neutron-plugin-vmware'], 'server_services': ['neutron-server'] }, 'n1kv': { 'config': '/etc/neutron/plugins/cisco/cisco_plugins.ini', 'driver': 'neutron.plugins.cisco.network_plugin.PluginV2', 'contexts': [], 'services': [], 'packages': [determine_dkms_package(), ['neutron-plugin-cisco']], 'server_packages': ['neutron-server', 'neutron-plugin-cisco'], 'server_services': ['neutron-server'] }, 'Calico': { 'config': '/etc/neutron/plugins/ml2/ml2_conf.ini', 'driver': 'neutron.plugins.ml2.plugin.Ml2Plugin', 'contexts': [], 'services': ['calico-felix', 'bird', 'neutron-dhcp-agent', 'nova-api-metadata', 'etcd'], 'packages': [determine_dkms_package(), ['calico-compute', 'bird', 'neutron-dhcp-agent', 'nova-api-metadata', 'etcd']], 'server_packages': ['neutron-server', 'calico-control', 'etcd'], 'server_services': ['neutron-server', 'etcd'] }, 'vsp': { 'config': '/etc/neutron/plugins/nuage/nuage_plugin.ini', 'driver': 'neutron.plugins.nuage.plugin.NuagePlugin', 'contexts': [], 'services': [], 'packages': [], 'server_packages': ['neutron-server', 'neutron-plugin-nuage'], 'server_services': ['neutron-server'] }, 'plumgrid': { 'config': '/etc/neutron/plugins/plumgrid/plumgrid.ini', 'driver': ('neutron.plugins.plumgrid.plumgrid_plugin' '.plumgrid_plugin.NeutronPluginPLUMgridV2'), 'contexts': [], 'services': [], 'packages': ['plumgrid-lxc', 'iovisor-dkms'], 'server_packages': ['neutron-server', 'neutron-plugin-plumgrid'], 'server_services': ['neutron-server'] }, 'midonet': { 'config': '/etc/neutron/plugins/midonet/midonet.ini', 'driver': 'midonet.neutron.plugin.MidonetPluginV2', 'contexts': [], 'services': [], 'packages': [determine_dkms_package()], 'server_packages': ['neutron-server', 'python-neutron-plugin-midonet'], 'server_services': ['neutron-server'] } } if CompareOpenStackReleases(release) >= 'icehouse': # NOTE: patch in ml2 plugin for icehouse onwards plugins['ovs']['config'] = '/etc/neutron/plugins/ml2/ml2_conf.ini' plugins['ovs']['driver'] = 'neutron.plugins.ml2.plugin.Ml2Plugin' plugins['ovs']['server_packages'] = ['neutron-server', 'neutron-plugin-ml2'] # NOTE: patch in vmware renames nvp->nsx for icehouse onwards plugins['nvp'] = plugins['nsx'] if CompareOpenStackReleases(release) >= 'kilo': plugins['midonet']['driver'] = ( 'neutron.plugins.midonet.plugin.MidonetPluginV2') if CompareOpenStackReleases(release) >= 'liberty': plugins['midonet']['driver'] = ( 'midonet.neutron.plugin_v1.MidonetPluginV2') plugins['midonet']['server_packages'].remove( 'python-neutron-plugin-midonet') plugins['midonet']['server_packages'].append( 'python-networking-midonet') plugins['plumgrid']['driver'] = ( 'networking_plumgrid.neutron.plugins' '.plugin.NeutronPluginPLUMgridV2') plugins['plumgrid']['server_packages'].remove( 'neutron-plugin-plumgrid') if CompareOpenStackReleases(release) >= 'mitaka': plugins['nsx']['server_packages'].remove('neutron-plugin-vmware') plugins['nsx']['server_packages'].append('python-vmware-nsx') plugins['nsx']['config'] = '/etc/neutron/nsx.ini' plugins['vsp']['driver'] = ( 'nuage_neutron.plugins.nuage.plugin.NuagePlugin') if CompareOpenStackReleases(release) >= 'newton': plugins['vsp']['config'] = '/etc/neutron/plugins/ml2/ml2_conf.ini' plugins['vsp']['driver'] = 'neutron.plugins.ml2.plugin.Ml2Plugin' plugins['vsp']['server_packages'] = ['neutron-server', 'neutron-plugin-ml2'] return plugins def neutron_plugin_attribute(plugin, attr, net_manager=None): manager = net_manager or network_manager() if manager == 'quantum': plugins = quantum_plugins() elif manager == 'neutron': plugins = neutron_plugins() else: log("Network manager '%s' does not support plugins." % (manager), level=ERROR) raise Exception try: _plugin = plugins[plugin] except KeyError: log('Unrecognised plugin for %s: %s' % (manager, plugin), level=ERROR) raise Exception try: return _plugin[attr] except KeyError: return None def network_manager(): ''' Deals with the renaming of Quantum to Neutron in H and any situations that require compatibility (eg, deploying H with network-manager=quantum, upgrading from G). ''' release = os_release('nova-common') manager = config('network-manager').lower() if manager not in ['quantum', 'neutron']: return manager if release in ['essex']: # E does not support neutron log('Neutron networking not supported in Essex.', level=ERROR) raise Exception elif release in ['folsom', 'grizzly']: # neutron is named quantum in F and G return 'quantum' else: # ensure accurate naming for all releases post-H return 'neutron' def parse_mappings(mappings, key_rvalue=False): """By default mappings are lvalue keyed. If key_rvalue is True, the mapping will be reversed to allow multiple configs for the same lvalue. """ parsed = {} if mappings: mappings = mappings.split() for m in mappings: p = m.partition(':') if key_rvalue: key_index = 2 val_index = 0 # if there is no rvalue skip to next if not p[1]: continue else: key_index = 0 val_index = 2 key = p[key_index].strip() parsed[key] = p[val_index].strip() return parsed def parse_bridge_mappings(mappings): """Parse bridge mappings. Mappings must be a space-delimited list of provider:bridge mappings. Returns dict of the form {provider:bridge}. """ return parse_mappings(mappings) def parse_data_port_mappings(mappings, default_bridge='br-data'): """Parse data port mappings. Mappings must be a space-delimited list of bridge:port. Returns dict of the form {port:bridge} where ports may be mac addresses or interface names. """ # NOTE(dosaboy): we use rvalue for key to allow multiple values to be # proposed for <port> since it may be a mac address which will differ # across units this allowing first-known-good to be chosen. _mappings = parse_mappings(mappings, key_rvalue=True) if not _mappings or list(_mappings.values()) == ['']: if not mappings: return {} # For backwards-compatibility we need to support port-only provided in # config. _mappings = {mappings.split()[0]: default_bridge} ports = _mappings.keys() if len(set(ports)) != len(ports): raise Exception("It is not allowed to have the same port configured " "on more than one bridge") return _mappings def parse_vlan_range_mappings(mappings): """Parse vlan range mappings. Mappings must be a space-delimited list of provider:start:end mappings. The start:end range is optional and may be omitted. Returns dict of the form {provider: (start, end)}. """ _mappings = parse_mappings(mappings) if not _mappings: return {} mappings = {} for p, r in six.iteritems(_mappings): mappings[p] = tuple(r.split(':')) return mappings
py
b41314de90fb6691a6f247e30ae35c16bacce685
from pathlib import Path from shutil import move import os import sys import time from tqdm import tqdm import requests import numpy as np imaging_url = "https://kits19.sfo2.digitaloceanspaces.com/" imaging_name_tmplt = "master_{:05d}.nii.gz" temp_f = Path(__file__).parent / "temp.tmp" def get_destination(i): destination = Path("__file__").parent.parent /\ "data" / "case_{:05d}".format(i) / "imaging.nii.gz" if not destination.parent.exists(): destination.parent.mkdir() return destination def cleanup(bar, msg): bar.close() if temp_f.exists(): temp_f.unlink() print(msg) sys.exit() if __name__ == "__main__": left_to_download = [] for i in range(300): if not get_destination(i).exists(): left_to_download = left_to_download + [i] print("{} cases to download...".format(len(left_to_download))) for i, cid in enumerate(left_to_download): print("Download {}/{}: ".format( i+1, len(left_to_download) )) destination = get_destination(cid) remote_name = imaging_name_tmplt.format(cid) uri = imaging_url + remote_name chnksz = 1000 tries = 0 while True: try: tries = tries + 1 response = requests.get(uri, stream=True) break except Exception as e: print("Failed to establish connection with server:\n") print(str(e) + "\n") if tries < 1000: print("Retrying in 30s") time.sleep(30) else: print("Max retries exceeded") sys.exit() with temp_f.open("wb") as f: bar = tqdm( unit="KB", desc="case_{:05d}".format(cid), total=int( np.ceil(int(response.headers["content-length"])/chnksz) ) ) try: for pkg in response.iter_content(chunk_size=chnksz): f.write(pkg) bar.update(int(len(pkg)/chnksz)) move(str(temp_f), str(destination)) bar.close() except KeyboardInterrupt: cleanup(bar, "KeyboardInterrupt") except Exception as e: cleanup(bar, str(e))
py
b413164859df84d1bb1ed2dc38071189821df6e0
from lclpy.termination.abstract_termination_criterion \ import AbstractTerminationCriterion class MultiCriterion(AbstractTerminationCriterion): """Class to combine multiple terminationcriteria. Parameters ---------- criteria : list or tuple of AbstractTerminationCriterion An iterable object containing the intialised termination criterions one wishes to use. Attributes ---------- criteria : list or tuple of AbstractTerminationCriterion An iterable object containing the intialised termination criterions one wishes to use. Examples -------- 3 termination criteria are used, three tests are done to ensure that all three criterions are capable of stopping the iterating correctly. MaxSecondsTerminationCriterion stops the iterating: .. doctest:: >>> import time >>> from lclpy.termination.max_seconds_termination_criterion \\ ... import MaxSecondsTerminationCriterion >>> from lclpy.termination.max_iterations_termination_criterion \\ ... import MaxIterationsTerminationCriterion >>> from lclpy.termination.no_improvement_termination_criterion \\ ... import NoImprovementTerminationCriterion >>> from lclpy.termination.multi_criterion import MultiCriterion ... # init list >>> criteria = [] >>> criteria.append(MaxSecondsTerminationCriterion(3)) >>> criteria.append(MaxIterationsTerminationCriterion(10)) >>> criteria.append(NoImprovementTerminationCriterion(3)) ... # init MultiCriterion >>> multi_criterion = MultiCriterion(criteria) ... # test >>> start = time.time() >>> multi_criterion.start_timing() >>> while multi_criterion.keep_running(): ... multi_criterion.iteration_done() >>> stop = time.time() >>> time_passed = stop - start >>> time_passed < 4 True MaxIterationsTerminationCriterion stops the iterating: .. doctest:: >>> from lclpy.termination.max_seconds_termination_criterion \\ ... import MaxSecondsTerminationCriterion >>> from lclpy.termination.max_iterations_termination_criterion \\ ... import MaxIterationsTerminationCriterion >>> from lclpy.termination.no_improvement_termination_criterion \\ ... import NoImprovementTerminationCriterion >>> from lclpy.termination.multi_criterion import MultiCriterion ... # init list >>> criteria = [] >>> criteria.append(MaxSecondsTerminationCriterion(3)) >>> criteria.append(MaxIterationsTerminationCriterion(10)) >>> criteria.append(NoImprovementTerminationCriterion(3)) ... # init MultiCriterion >>> multi_criterion = MultiCriterion(criteria) ... # test >>> iterations = 0 >>> values = [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9] >>> multi_criterion.start_timing() >>> while multi_criterion.keep_running(): ... multi_criterion.check_new_value(values[iterations]) ... iterations += 1 ... multi_criterion.iteration_done() >>> iterations 10 NoImprovementTerminationCriterion stops the iterating: .. doctest:: >>> from lclpy.termination.max_seconds_termination_criterion \\ ... import MaxSecondsTerminationCriterion >>> from lclpy.termination.max_iterations_termination_criterion \\ ... import MaxIterationsTerminationCriterion >>> from lclpy.termination.no_improvement_termination_criterion \\ ... import NoImprovementTerminationCriterion >>> from lclpy.termination.multi_criterion import MultiCriterion ... # init list >>> criteria = [] >>> criteria.append(MaxSecondsTerminationCriterion(3)) >>> criteria.append(MaxIterationsTerminationCriterion(10)) >>> criteria.append(NoImprovementTerminationCriterion(3)) ... # init MultiCriterion >>> multi_criterion = MultiCriterion(criteria) ... # test 1 >>> iterations = 0 >>> values = [9, 8, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9] >>> multi_criterion.start_timing() >>> while multi_criterion.keep_running(): ... multi_criterion.check_new_value(values[iterations]) ... iterations += 1 ... multi_criterion.iteration_done() >>> iterations 6 """ def __init__(self, criteria): super().__init__() self.criteria = criteria def keep_running(self): """function to determine if the algorithm needs to continue running. Returns ------- bool The function returns true if the algorithm has to continue running, if the function returns false the algorithm needs to stop running. If one or more of the composing termination criterions returns False if its keep_running method is called, this method will return False. Else the method will return True. """ for criterion in self.criteria: if criterion.keep_running() is False: return False return True def iteration_done(self): """function to be called after every iteration.""" for criterion in self.criteria: criterion.iteration_done() def check_new_value(self, value): """Checks a value. Parameters ---------- value : int or float A value from the evaluation function. """ for criterion in self.criteria: criterion.check_new_value(value) def start_timing(self): """Starts an internal timer if needed.""" for criterion in self.criteria: criterion.start_timing() def check_variable(self, variable): """Checks a variable specific to an implementation. Does not need to be used or implemented Parameters ---------- variable The value of a certain value of a specific algorithm. """ for criterion in self.criteria: criterion.check_variable(variable) def reset(self): """Resets the object back to it's state after init. Examples -------- MaxIterationsTerminationCriterion stops the iterating: .. doctest:: >>> from lclpy.termination.max_seconds_termination_criterion \\ ... import MaxSecondsTerminationCriterion >>> from lclpy.termination.max_iterations_termination_criterion \\ ... import MaxIterationsTerminationCriterion >>> from lclpy.termination.no_improvement_termination_criterion \\ ... import NoImprovementTerminationCriterion >>> from lclpy.termination.multi_criterion \\ ... import MultiCriterion ... # init list >>> criteria = [] >>> criteria.append(MaxSecondsTerminationCriterion(3)) >>> criteria.append(MaxIterationsTerminationCriterion(10)) >>> criteria.append(NoImprovementTerminationCriterion(3)) ... # init MultiCriterion >>> multi_criterion = MultiCriterion(criteria) ... # run 1 >>> iterations = 0 >>> values = [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9] >>> multi_criterion.start_timing() >>> while multi_criterion.keep_running(): ... multi_criterion.check_new_value(values[iterations]) ... iterations += 1 ... multi_criterion.iteration_done() >>> iterations 10 >>> # reset >>> multi_criterion.reset() ... # run 2 >>> iterations = 0 >>> values = [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9] >>> multi_criterion.start_timing() >>> while multi_criterion.keep_running(): ... multi_criterion.check_new_value(values[iterations]) ... iterations += 1 ... multi_criterion.iteration_done() >>> iterations 10 """ for criterion in self.criteria: criterion.reset()
py
b413173edb609dac5c45ca3ffb750e75d0a8f75d
import ctypes import numpy import glob # find the shared library, the path depends on the platform and Python version libfile = glob.glob('build/*/Addbook*.so')[0] # 1. open the shared library mylib = ctypes.CDLL(libfile) class Books(object): def __init__(self): self.obj = mylib.b_new() def myFunc(self): mylib.B_func(self.obj) f = Books() f.add_book()
py
b4131763971acab05291eb1c73856db25b64b85e
import torch import torch.nn as nn from collections import OrderedDict from fcos_core.utils.registry import Registry from fcos_core.layers import FrozenBatchNorm2d from fcos_core.modeling.make_layers import group_norm _GN = False VoVNet27FPNStagesTo5 = { 'config_stage_ch': [64, 80, 96, 112], 'config_concat_ch': [128, 256, 384, 512], 'layer_per_block': 5, 'block_per_stage': [1, 1, 1, 1] } VoVNet39FPNStagesTo5 = { 'config_stage_ch': [128, 160, 192, 224], 'config_concat_ch': [256, 512, 768, 1024], 'layer_per_block': 5, 'block_per_stage': [1, 1, 2, 2] } VoVNet57FPNStagesTo5 = { 'config_stage_ch': [128, 160, 192, 224], 'config_concat_ch': [256, 512, 768, 1024], 'layer_per_block': 5, 'block_per_stage': [1, 1, 4, 3] } VoVNet93FPNStagesTo5 = { 'config_stage_ch': [128, 160, 192, 224], 'config_concat_ch': [256, 512, 768, 1024], 'layer_per_block': 5, 'block_per_stage': [1, 3, 8, 3] } _STAGE_SPECS = Registry({ "V-27-FPN": VoVNet27FPNStagesTo5, "V-39-FPN": VoVNet39FPNStagesTo5, "V-57-FPN": VoVNet57FPNStagesTo5, "V-93-FPN": VoVNet93FPNStagesTo5, "V-27-FPN-RETINANET": VoVNet27FPNStagesTo5, "V-39-FPN-RETINANET": VoVNet39FPNStagesTo5, "V-57-FPN-RETINANET": VoVNet57FPNStagesTo5, "V-93-FPN-RETINANET": VoVNet93FPNStagesTo5 }) def freeze_bn_params(m): """Freeze all the weights by setting requires_grad to False """ m.eval() for p in m.parameters(): p.requires_grad = False def conv3x3(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=3, padding=1): """3x3 convolution with padding""" return [ (f'{module_name}_{postfix}/conv', nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)), (f'{module_name}_{postfix}/norm', group_norm(out_channels) if _GN else FrozenBatchNorm2d(out_channels) ), (f'{module_name}_{postfix}/relu', nn.ReLU(inplace=True)) ] def conv1x1(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=1, padding=0): """3x3 convolution with padding""" return [ (f'{module_name}_{postfix}/conv', nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)), (f'{module_name}_{postfix}/norm', group_norm(out_channels) if _GN else FrozenBatchNorm2d(out_channels) ), (f'{module_name}_{postfix}/relu', nn.ReLU(inplace=True)) ] class _OSA_module(nn.Module): def __init__(self, in_ch, stage_ch, concat_ch, layer_per_block, module_name, identity=False): super(_OSA_module, self).__init__() self.identity = identity self.layers = nn.ModuleList() in_channel = in_ch for i in range(layer_per_block): self.layers.append(nn.Sequential(OrderedDict(conv3x3(in_channel, stage_ch, module_name, i)))) in_channel = stage_ch # feature aggregation in_channel = in_ch + layer_per_block * stage_ch self.concat = nn.Sequential(OrderedDict(conv1x1(in_channel, concat_ch, module_name, 'concat'))) def forward(self, x): identity_feat = x output = [] output.append(x) for layer in self.layers: x = layer(x) output.append(x) x = torch.cat(output, dim=1) xt = self.concat(x) if self.identity: xt = xt + identity_feat return xt class _OSA_stage(nn.Sequential): def __init__(self, in_ch, stage_ch, concat_ch, block_per_stage, layer_per_block, stage_num): super(_OSA_stage, self).__init__() if not stage_num == 2: self.add_module('Pooling', nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)) module_name = f'OSA{stage_num}_1' self.add_module(module_name, _OSA_module(in_ch, stage_ch, concat_ch, layer_per_block, module_name)) for i in range(block_per_stage - 1): module_name = f'OSA{stage_num}_{i + 2}' self.add_module(module_name, _OSA_module(concat_ch, stage_ch, concat_ch, layer_per_block, module_name, identity=True)) class VoVNet(nn.Module): def __init__(self, cfg): super(VoVNet, self).__init__() global _GN _GN = cfg.MODEL.VOVNET.USE_GN stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY] config_stage_ch = stage_specs['config_stage_ch'] config_concat_ch = stage_specs['config_concat_ch'] block_per_stage = stage_specs['block_per_stage'] layer_per_block = stage_specs['layer_per_block'] # self.stem = nn.Sequential() # Stem module stem = conv3x3(3, 64, 'stem', '1', 2) stem += conv3x3(64, 64, 'stem', '2', 1) stem += conv3x3(64, 128, 'stem', '3', 2) self.add_module('stem', nn.Sequential((OrderedDict(stem)))) stem_out_ch = [128] in_ch_list = stem_out_ch + config_concat_ch[:-1] # OSA stages self.stage_names = [] for i in range(4): # num_stages name = 'stage%d' % (i + 2) self.stage_names.append(name) self.add_module(name, _OSA_stage(in_ch_list[i], config_stage_ch[i], config_concat_ch[i], block_per_stage[i], layer_per_block, i + 2)) # initialize weights self._initialize_weights() # Optionally freeze (requires_grad=False) parts of the backbone self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) def _freeze_backbone(self, freeze_at): if freeze_at < 0: return # freeze BN layers for m in self.modules(): if isinstance(m, nn.BatchNorm2d): freeze_bn_params(m) for stage_index in range(freeze_at): if stage_index == 0: m = self.stem # stage 0 is the stem else: m = getattr(self, "stage" + str(stage_index+1)) for p in m.parameters(): p.requires_grad = False def forward(self, x): x = self.stem(x) outputs = [] for name in self.stage_names: x = getattr(self, name)(x) outputs.append(x) return outputs
py
b4131928125ccecd79e9690381b4286752b9d5a9
import discord from discord.ext import commands from discord.ext.commands import cooldown from discord.ext.commands.cooldowns import BucketType from discord import Color import asyncpg import asyncio from random import choice, randint from datetime import datetime, timedelta from utils import extras, errorhandler import lavalink import time import re import logging import math import aiodns import cchardet import aioredis time_rx = re.compile("[0-9]+") url_rx = re.compile("https?:\/\/(?:www\.)?.+") beta_servers = [ 513_888_506_498_646_052, 336_642_139_381_301_249, 253_716_112_292_839_425, ] uwu_emote = "<:uwu:521394346688249856>" caution = "<:caution:521002590566219776>" class music(commands.Cog): def __init__(self, bot): self.bot = bot def cog_unload(self): self.bot.lavalink._event_hooks.clear() def cog_load(self): if self.bot.is_ready: if not self.bot.lavalink: self.bot.lavalink = lavalink.Client(self.bot.user.id) self.bot.lavalink.add_node( self.bot.config["lavalink_ip"], 8080, self.bot.config["lavalink"], "us", "us-east", ) self.bot.add_listener( self.bot.lavalink.voice_update_handler, "on_socket_response" ) self.bot.lavalink.add_event_hook(self.track_hook) async def track_hook(self, event): if isinstance(event, lavalink.TrackStartEvent): chnnl = event.player.fetch("channel") if chnnl: chnnl = self.bot.get_channel(chnnl) if chnnl: durtion = lavalink.utils.format_time(event.track.duration) await chnnl.send( f"Started song `{event.track.title}` with duration `{durtion}`.", delete_after=30, ) elif isinstance(event, lavalink.TrackEndEvent): chnnl = event.player.fetch("channel") if chnnl: chnnl = self.bot.get_channel(chnnl) if len(event.player.queue) == 0: await event.player.stop() await self.connect_to(chnnl.guild.id, None) return await chnnl.send( f"Disconnecting because queue is over...", delete_after=30 ) await chnnl.send(f"Song ended...", delete_after=30) async def connect_to(self, guild_id: int, channel_id: str): ws = self.bot._connection._get_websocket(guild_id) await ws.voice_state(str(guild_id), channel_id) async def cog_check(self, ctx): if not await self.bot.redis.execute("GET", f"{ctx.author.id}-vote"): raise (errorhandler.hasVoted(ctx)) player = self.bot.lavalink.players.create( ctx.guild.id, endpoint=ctx.guild.region.value ) should_connect = ctx.command.name in ( "play", "now", "seek", "skip", "stop", "pause", "volume", "disconnect", "queue", "remove", "music_player", ) if not ctx.author.voice or not ctx.author.voice.channel: return await ctx.caution("You must be in a voice channel.") if not player.is_connected: if not should_connect: return await ctx.caution("Not connected...") permissions = ctx.author.voice.channel.permissions_for(ctx.me) if not permissions.connect: return await ctx.caution( f"I need the permission connect to use voice channels. You can check my role or channel overrides to find permissions." ) if not permissions.speak: return await ctx.caution( f"I need the permission speak to use voice channels. You can check my role or channel overrides to find permissions." ) player.store("channel", ctx.channel.id) await self.connect_to(ctx.guild.id, str(ctx.author.voice.channel.id)) if ( player.is_connected and int(player.channel_id) != ctx.author.voice.channel.id ): return await ctx.caution("You need to be in my current voice channel.") return True @commands.command(aliases=["p"]) async def play(self, ctx, *, query: str): player = self.bot.lavalink.players.get(ctx.guild.id) query = query.strip("<>") if not url_rx.match(query): query = f"ytsearch:{query}" results = await player.node.get_tracks(query) if not results or not results["tracks"]: return await ctx.send("No song found...", delete_after=30) e = discord.Embed(color=0x7289DA) if results["loadType"] == "PLAYLIST_LOADED": tracks = results["tracks"] for track in tracks: player.add(requester=ctx.author.id, track=track) e.set_author(name=f"Playlist queued by {ctx.author}") e.description = f'{results["playlistInfo"]["name"]} - {len(tracks)} songs' await ctx.send(embed=e) else: track = results["tracks"][0] e.set_author(name=f"Song queued by {ctx.author}") e.description = f'[{track["info"]["title"]}]({track["info"]["uri"]})' await ctx.send(embed=e) player.add(requester=ctx.author.id, track=track) if not player.is_playing: await player.play() @commands.command(aliases=["np", "n", "playing"]) async def now(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) position = lavalink.utils.format_time(player.position) if player.current.stream: duration = "Live" else: duration = lavalink.utils.format_time(player.current.duration) e = discord.Embed( color=0x7289DA, description=f"[{player.current.title}]({player.current.uri})", ) e.add_field(name="Duration", value=f"[{position}/{duration}]") await ctx.send(embed=e) @commands.command() async def seek(self, ctx, *, time: str): player = self.bot.lavalink.players.get(ctx.guild.id) seconds = time_rx.search(time) if not seconds: return await ctx.send( "Please specify a time in seconds to skip.", delete_after=30 ) seconds = int(seconds.group()) * 1000 if time.startswith("-"): seconds *= -1 track_time = player.position + seconds await player.seek(track_time) await ctx.send(f"Moved song to `{lavalink.utils.format_time(track_time)}`") @commands.command() async def skip(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) await player.skip() await ctx.send("Skipped.", delete_after=30) @commands.command() async def stop(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) player.queue.clear() await player.stop() await ctx.send("Stopped.", delete_after=30) @commands.command(aliases=["resume"]) async def pause(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) if player.paused: await player.set_pause(False) await ctx.send("Resumed.", delete_after=30) else: await player.set_pause(True) await ctx.send("Paused.", delete_after=30) @commands.command(aliases=["vol"]) async def volume(self, ctx, volume: int = None): player = self.bot.lavalink.players.get(ctx.guild.id) if not volume: return await ctx.send( f"My current player volume is `{player.volume}`%", delete_after=30 ) await player.set_volume(volume) await ctx.send(f"Set player volume to `{player.volume}`%", delete_after=30) @commands.command(aliases=["dc"]) async def disconnect(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) player.queue.clear() await player.stop() await self.connect_to(ctx.guild.id, None) await ctx.send("Disconnected.", delete_after=30) @commands.command(aliases=["q"]) async def queue(self, ctx, page: int = 1): """ Shows the player's queue. """ player = self.bot.lavalink.players.get(ctx.guild.id) if not player.queue: return await ctx.send("Nothing queued.", delete_after=30) items_per_page = 10 pages = math.ceil(len(player.queue) / items_per_page) start = (page - 1) * items_per_page end = start + items_per_page queue_list = "" for index, track in enumerate(player.queue[start:end], start=start): queue_list += f"{index + 1} - [{track.title}]({track.uri})\n" e = discord.Embed(colour=0x7289DA, description=queue_list) e.set_author(name=f"{len(player.queue)} songs in the queue ({page}/{pages})") e.set_footer( text=f'To change pages do "uwu queue PAGE" replacing page with the desired page' ) await ctx.send(embed=e) @commands.command() async def remove(self, ctx, index: int): player = self.bot.lavalink.players.get(ctx.guild.id) if index > len(player.queue) or index < 1: return await ctx.send( f"Invalid index please use an index of `1`-`{len(player.queue)}`" ) index -= 1 removed = player.queue.pop(index) await ctx.send(f"Removed `{removed.title}` from the queue.") @commands.command() async def music_player(self, ctx): player = self.bot.lavalink.players.get(ctx.guild.id) is_paused = "No" if player.paused: is_paused = "Yes" e = discord.Embed(colour=0x7289DA) e.set_author(name=f"Player info for {ctx.guild}") e.add_field(name="Volume", value=f"{player.volume}/1000", inline=False) e.add_field( name=f"Current song", value=f"[{player.current.title}]({player.current.uri})", inline=False, ) e.add_field(name="Is paused", value=is_paused, inline=False) await ctx.send(embed=e) def setup(bot): bot.add_cog(music(bot))
py
b4131b1fd7dfeec9d1af5cead0a7f7538f8341e4
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from oslo_config import cfg from st2common import log as logging from st2common.constants.api import DEFAULT_API_VERSION from st2common.util.url import get_url_without_trailing_slash __all__ = [ 'get_base_public_api_url', 'get_full_public_api_url', 'get_mistral_api_url' ] LOG = logging.getLogger(__name__) def get_base_public_api_url(): """ Return full public URL to the API endpoint (excluding the API version). :rtype: ``str`` """ # Note: This is here for backward compatibility reasons - if api_url is not set we fall back # to the old approach (using api listen host and port) if cfg.CONF.auth.api_url: api_url = get_url_without_trailing_slash(cfg.CONF.auth.api_url) else: LOG.warn('"auth.api_url" configuration option is not configured') api_url = 'http://%s:%s' % (cfg.CONF.api.host, cfg.CONF.api.port) return api_url def get_full_public_api_url(api_version=DEFAULT_API_VERSION): """ Return full public URL to the API endpoint (including the API version). :rtype: ``str`` """ api_url = get_base_public_api_url() api_url = '%s/%s' % (api_url, api_version) return api_url def get_mistral_api_url(api_version=DEFAULT_API_VERSION): """ Return a URL which Mistral uses to talk back to the StackStorm API. Note: If not provided it defaults to the public API url. """ if cfg.CONF.mistral.api_url: api_url = get_url_without_trailing_slash(cfg.CONF.mistral.api_url) api_url = '%s/%s' % (api_url, api_version) else: LOG.warn('"mistral.api_url" not set, using auth.api_url') api_url = get_full_public_api_url(api_version=api_version) return api_url
py
b4131b62d0723a8d06eacf1be92a0d0adbdb4fd7
import numpy as np import pandas as pd from torch.utils.data import Dataset, DataLoader import os from utils import get_spectrograms import hyperparams as hp import librosa class PrepareDataset(Dataset): """LJSpeech dataset.""" def __init__(self, csv_file, root_dir): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the wavs. """ self.landmarks_frame = pd.read_csv(csv_file, sep='|', header=None) self.root_dir = root_dir def load_wav(self, filename): return librosa.load(filename, sr=hp.sr) def __len__(self): return len(self.landmarks_frame) def __getitem__(self, idx): wav_name = os.path.join(self.root_dir, self.landmarks_frame.iloc[idx, 0]) + '.wav' mel, mag = get_spectrograms(wav_name) np.save(wav_name[:-4] + '.pt', mel) np.save(wav_name[:-4] + '.mag', mag) sample = {'mel':mel, 'mag': mag} return sample if __name__ == '__main__': dataset = PrepareDataset(os.path.join(hp.data_path,'metadata.csv'), os.path.join(hp.data_path,'wavs')) dataloader = DataLoader(dataset, batch_size=1, drop_last=False, num_workers=8) from tqdm import tqdm pbar = tqdm(dataloader) for d in pbar: pass
py
b4131bf8155c5a6139e9ad2f02edcb4aaee44a0a
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains convenience wrappers for typical Neural Network TensorFlow layers. Additionally it maintains a collection with update_ops that need to be updated after the ops have been computed, for exmaple to update moving means and moving variances of batch_norm. Ops that have different behavior during training or eval have an is_training parameter. Additionally Ops that contain variables.variable have a trainable parameter, which control if the ops variables are trainable or not. """ import tensorflow as tf from tensorflow.python.training import moving_averages from inception.slim import losses from inception.slim import scopes from inception.slim import variables # Used to keep the update ops done by batch_norm. UPDATE_OPS_COLLECTION = '_update_ops_' @scopes.add_arg_scope def batch_norm(inputs, decay=0.999, center=True, scale=False, epsilon=0.001, moving_vars='moving_vars', activation=None, is_training=True, trainable=True, restore=True, scope=None, reuse=None): """Adds a Batch Normalization layer. Args: inputs: a tensor of size [batch_size, height, width, channels] or [batch_size, channels]. decay: decay for the moving average. center: If True, subtract beta. If False, beta is not created and ignored. scale: If True, multiply by gamma. If False, gamma is not used. When the next layer is linear (also e.g. ReLU), this can be disabled since the scaling can be done by the next layer. epsilon: small float added to variance to avoid dividing by zero. moving_vars: collection to store the moving_mean and moving_variance. activation: activation function. is_training: whether or not the model is in training mode. trainable: whether or not the variables should be trainable or not. restore: whether or not the variables should be marked for restore. scope: Optional scope for variable_op_scope. reuse: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. Returns: a tensor representing the output of the operation. """ inputs_shape = inputs.get_shape() with tf.variable_op_scope([inputs], scope, 'BatchNorm', reuse=reuse): axis = list(range(len(inputs_shape) - 1)) params_shape = inputs_shape[-1:] # Allocate parameters for the beta and gamma of the normalization. beta, gamma = None, None if center: beta = variables.variable('beta', params_shape, initializer=tf.zeros_initializer, trainable=trainable, restore=restore) if scale: gamma = variables.variable('gamma', params_shape, initializer=tf.ones_initializer, trainable=trainable, restore=restore) # Create moving_mean and moving_variance add them to # GraphKeys.MOVING_AVERAGE_VARIABLES collections. moving_collections = [moving_vars, tf.GraphKeys.MOVING_AVERAGE_VARIABLES] moving_mean = variables.variable('moving_mean', params_shape, initializer=tf.zeros_initializer, trainable=False, restore=restore, collections=moving_collections) moving_variance = variables.variable('moving_variance', params_shape, initializer=tf.ones_initializer, trainable=False, restore=restore, collections=moving_collections) if is_training: # Calculate the moments based on the individual batch. mean, variance = tf.nn.moments(inputs, axis) update_moving_mean = moving_averages.assign_moving_average( moving_mean, mean, decay) tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_mean) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay) tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_variance) else: # Just use the moving_mean and moving_variance. mean = moving_mean variance = moving_variance # Normalize the activations. outputs = tf.nn.batch_normalization( inputs, mean, variance, beta, gamma, epsilon) outputs.set_shape(inputs.get_shape()) if activation: outputs = activation(outputs) return outputs def _two_element_tuple(int_or_tuple): """Converts `int_or_tuple` to height, width. Several of the functions that follow accept arguments as either a tuple of 2 integers or a single integer. A single integer indicates that the 2 values of the tuple are the same. This functions normalizes the input value by always returning a tuple. Args: int_or_tuple: A list of 2 ints, a single int or a tf.TensorShape. Returns: A tuple with 2 values. Raises: ValueError: If `int_or_tuple` it not well formed. """ if isinstance(int_or_tuple, (list, tuple)): if len(int_or_tuple) != 2: raise ValueError('Must be a list with 2 elements: %s' % int_or_tuple) return int(int_or_tuple[0]), int(int_or_tuple[1]) if isinstance(int_or_tuple, int): return int(int_or_tuple), int(int_or_tuple) if isinstance(int_or_tuple, tf.TensorShape): if len(int_or_tuple) == 2: return int_or_tuple[0], int_or_tuple[1] raise ValueError('Must be an int, a list with 2 elements or a TensorShape of ' 'length 2') @scopes.add_arg_scope def conv2d(inputs, num_filters_out, kernel_size, stride=1, padding='SAME', activation=tf.nn.relu, stddev=0.01, bias=0.0, weight_decay=0, batch_norm_params=None, is_training=True, trainable=True, restore=True, scope=None, reuse=None): """Adds a 2D convolution followed by an optional batch_norm layer. conv2d creates a variable called 'weights', representing the convolutional kernel, that is convolved with the input. If `batch_norm_params` is None, a second variable called 'biases' is added to the result of the convolution operation. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_filters_out: the number of output filters. kernel_size: a list of length 2: [kernel_height, kernel_width] of of the filters. Can be an int if both values are the same. stride: a list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: one of 'VALID' or 'SAME'. activation: activation function. stddev: standard deviation of the truncated guassian weight distribution. bias: the initial value of the biases. weight_decay: the weight decay. batch_norm_params: parameters for the batch_norm. If is None don't use it. is_training: whether or not the model is in training mode. trainable: whether or not the variables should be trainable or not. restore: whether or not the variables should be marked for restore. scope: Optional scope for variable_op_scope. reuse: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. Returns: a tensor representing the output of the operation. """ with tf.variable_op_scope([inputs], scope, 'Conv', reuse=reuse): kernel_h, kernel_w = _two_element_tuple(kernel_size) stride_h, stride_w = _two_element_tuple(stride) num_filters_in = inputs.get_shape()[-1] weights_shape = [kernel_h, kernel_w, num_filters_in, num_filters_out] weights_initializer = tf.truncated_normal_initializer(stddev=stddev) l2_regularizer = None if weight_decay and weight_decay > 0: l2_regularizer = losses.l2_regularizer(weight_decay) weights = variables.variable('weights', shape=weights_shape, initializer=weights_initializer, regularizer=l2_regularizer, trainable=trainable, restore=restore) conv = tf.nn.conv2d(inputs, weights, [1, stride_h, stride_w, 1], padding=padding) if batch_norm_params is not None: with scopes.arg_scope([batch_norm], is_training=is_training, trainable=trainable, restore=restore): outputs = batch_norm(conv, **batch_norm_params) else: bias_shape = [num_filters_out,] bias_initializer = tf.constant_initializer(bias) biases = variables.variable('biases', shape=bias_shape, initializer=bias_initializer, trainable=trainable, restore=restore) outputs = tf.nn.bias_add(conv, biases) if activation: outputs = activation(outputs) return outputs @scopes.add_arg_scope def fc(inputs, num_units_out, activation=tf.nn.relu, stddev=0.01, bias=0.0, weight_decay=0, batch_norm_params=None, is_training=True, trainable=True, restore=True, scope=None, reuse=None): """Adds a fully connected layer followed by an optional batch_norm layer. FC creates a variable called 'weights', representing the fully connected weight matrix, that is multiplied by the input. If `batch_norm` is None, a second variable called 'biases' is added to the result of the initial vector-matrix multiplication. Args: inputs: a [B x N] tensor where B is the batch size and N is the number of input units in the layer. num_units_out: the number of output units in the layer. activation: activation function. stddev: the standard deviation for the weights. bias: the initial value of the biases. weight_decay: the weight decay. batch_norm_params: parameters for the batch_norm. If is None don't use it. is_training: whether or not the model is in training mode. trainable: whether or not the variables should be trainable or not. restore: whether or not the variables should be marked for restore. scope: Optional scope for variable_op_scope. reuse: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. Returns: the tensor variable representing the result of the series of operations. """ with tf.variable_op_scope([inputs], scope, 'FC', reuse=reuse): num_units_in = inputs.get_shape()[1] weights_shape = [num_units_in, num_units_out] weights_initializer = tf.truncated_normal_initializer(stddev=stddev) l2_regularizer = None if weight_decay and weight_decay > 0: l2_regularizer = losses.l2_regularizer(weight_decay) weights = variables.variable('weights', shape=weights_shape, initializer=weights_initializer, regularizer=l2_regularizer, trainable=trainable, restore=restore) if batch_norm_params is not None: outputs = tf.matmul(inputs, weights) with scopes.arg_scope([batch_norm], is_training=is_training, trainable=trainable, restore=restore): outputs = batch_norm(outputs, **batch_norm_params) else: bias_shape = [num_units_out,] bias_initializer = tf.constant_initializer(bias) biases = variables.variable('biases', shape=bias_shape, initializer=bias_initializer, trainable=trainable, restore=restore) outputs = tf.nn.xw_plus_b(inputs, weights, biases) if activation: outputs = activation(outputs) return outputs def one_hot_encoding(labels, num_classes, scope=None): """Transform numeric labels into onehot_labels. Args: labels: [batch_size] target labels. num_classes: total number of classes. scope: Optional scope for op_scope. Returns: one hot encoding of the labels. """ with tf.op_scope([labels], scope, 'OneHotEncoding'): batch_size = labels.get_shape()[0] indices = tf.expand_dims(tf.range(0, batch_size), 1) labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense( concated, tf.pack([batch_size, num_classes]), 1.0, 0.0) onehot_labels.set_shape([batch_size, num_classes]) return onehot_labels @scopes.add_arg_scope def max_pool(inputs, kernel_size, stride=2, padding='VALID', scope=None): """Adds a Max Pooling layer. It is assumed by the wrapper that the pooling is only done per image and not in depth or batch. Args: inputs: a tensor of size [batch_size, height, width, depth]. kernel_size: a list of length 2: [kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: a list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: the padding method, either 'VALID' or 'SAME'. scope: Optional scope for op_scope. Returns: a tensor representing the results of the pooling operation. Raises: ValueError: if 'kernel_size' is not a 2-D list """ with tf.op_scope([inputs], scope, 'MaxPool'): kernel_h, kernel_w = _two_element_tuple(kernel_size) stride_h, stride_w = _two_element_tuple(stride) return tf.nn.max_pool(inputs, ksize=[1, kernel_h, kernel_w, 1], strides=[1, stride_h, stride_w, 1], padding=padding) @scopes.add_arg_scope def avg_pool(inputs, kernel_size, stride=2, padding='VALID', scope=None): """Adds a Avg Pooling layer. It is assumed by the wrapper that the pooling is only done per image and not in depth or batch. Args: inputs: a tensor of size [batch_size, height, width, depth]. kernel_size: a list of length 2: [kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: a list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: the padding method, either 'VALID' or 'SAME'. scope: Optional scope for op_scope. Returns: a tensor representing the results of the pooling operation. """ with tf.op_scope([inputs], scope, 'AvgPool'): kernel_h, kernel_w = _two_element_tuple(kernel_size) stride_h, stride_w = _two_element_tuple(stride) return tf.nn.avg_pool(inputs, ksize=[1, kernel_h, kernel_w, 1], strides=[1, stride_h, stride_w, 1], padding=padding) @scopes.add_arg_scope def dropout(inputs, keep_prob=0.5, is_training=True, scope=None): """Returns a dropout layer applied to the input. Args: inputs: the tensor to pass to the Dropout layer. keep_prob: the probability of keeping each input unit. is_training: whether or not the model is in training mode. If so, dropout is applied and values scaled. Otherwise, inputs is returned. scope: Optional scope for op_scope. Returns: a tensor representing the output of the operation. """ if is_training and keep_prob > 0: with tf.op_scope([inputs], scope, 'Dropout'): return tf.nn.dropout(inputs, keep_prob) else: return inputs def flatten(inputs, scope=None): """Flattens the input while maintaining the batch_size. Assumes that the first dimension represents the batch. Args: inputs: a tensor of size [batch_size, ...]. scope: Optional scope for op_scope. Returns: a flattened tensor with shape [batch_size, k]. Raises: ValueError: if inputs.shape is wrong. """ if len(inputs.get_shape()) < 2: raise ValueError('Inputs must be have a least 2 dimensions') dims = inputs.get_shape()[1:] k = dims.num_elements() with tf.op_scope([inputs], scope, 'Flatten'): return tf.reshape(inputs, [-1, k]) def repeat_op(repetitions, inputs, op, *args, **kwargs): """Build a sequential Tower starting from inputs by using an op repeatedly. It creates new scopes for each operation by increasing the counter. Example: given repeat_op(3, _, ops.conv2d, 64, [3, 3], scope='conv1') it will repeat the given op under the following variable_scopes: conv1/Conv conv1/Conv_1 conv1/Conv_2 Args: repetitions: number or repetitions. inputs: a tensor of size [batch_size, height, width, channels]. op: an operation. *args: args for the op. **kwargs: kwargs for the op. Returns: a tensor result of applying the operation op, num times. Raises: ValueError: if the op is unknown or wrong. """ scope = kwargs.pop('scope', None) with tf.variable_op_scope([inputs], scope, 'RepeatOp'): tower = inputs for _ in range(repetitions): tower = op(tower, *args, **kwargs) return tower
py
b4131ce02942d4554788c793fe6dcb0b3001bb65
import random def ordenamiento_por_insercion(lista): for indice in range(1, len(lista)): valor_actual = lista[indice] posicion_actual = indice while posicion_actual > 0 and lista[posicion_actual - 1] > valor_actual: lista[posicion_actual] = lista[posicion_actual - 1] posicion_actual -= 1 lista[posicion_actual] = valor_actual
py
b4131df5896184305487a2f4108994a899457e04
import pandas as pd from datetime import datetime from django.core.management.base import BaseCommand from gensim.corpora import Dictionary from gensim.models import LdaModel from archiv.models import Stelle from topics.models import ModelingProcess, Topic from topics.utils import top_to_topic_object class Command(BaseCommand): help = "Creates a document-topic-matrix" def handle(self, *args, **kwargs): ModelingProcess.objects.all().delete() process_start = datetime.now() params = { "LdaModel_params": { "num_topics": 10, "chunksize": 2000, "passes": 20, "iterations": 100, "eval_every": None, "alpha": "auto", "eta": "auto", }, "dict_filter_params": { "no_below": 20, "no_above": 0.5 } } qs = Stelle.objects.filter(lemmata__isnull=False).filter(text__text_lang='lat') print(f"Processing {qs.count()} out of {Stelle.objects.all().count()} passages") df = pd.DataFrame( [ { 'index': i, 'db_id': x.id, 'text': x.lemmata['tokens'] } for i, x in enumerate(qs) ] ) docs = list(df['text'].values) dictionary = Dictionary(docs) dictionary.filter_extremes(**params["dict_filter_params"]) corpus = [dictionary.doc2bow(doc) for doc in docs] print(f"Number of unique tokens: {len(dictionary)}") print(f"Number of documents: {len(corpus)}") dictionary[0] id2word = dictionary.id2token model = LdaModel( corpus=corpus, id2word=id2word, **params["LdaModel_params"] ) model_process = ModelingProcess.objects.create( process_start=process_start, process_end=datetime.now(), param=params ) for x in model.top_topics(corpus): Topic.objects.create( process=model_process, **top_to_topic_object(x) )
py
b4131eeb8660c90376b1c54be2a0766b06fe143c
from .generate_overland_flow_Bates import OverlandFlowBates from .generate_overland_flow_deAlmeida import OverlandFlow from .generate_overland_flow_implicit_kinwave import KinwaveImplicitOverlandFlow from .generate_overland_flow_kinwave import KinwaveOverlandFlowModel from .kinematic_wave_rengers import KinematicWaveRengers from .linear_diffusion_overland_flow_router import LinearDiffusionOverlandFlowRouter __all__ = [ "OverlandFlowBates", "OverlandFlow", "KinematicWaveRengers", "KinwaveImplicitOverlandFlow", "KinwaveOverlandFlowModel", "LinearDiffusionOverlandFlowRouter", ]
py
b4131f4cedf8aa45d69528cb1e307cbf80c85d5d
from boa.interop.Neo.Runtime import CheckWitness from boa.interop.Neo.Storage import Delete, Get, GetContext, Put from contracts.util.serialize import * IDX_KEY = 0 IDX_ADDRESS = 0 IDX_HASH = 1 OWNER = b'S\xefB\xc8\xdf!^\xbeZ|z\xe8\x01\xcb\xc3\xac/\xacI)' ctx = GetContext() def serialize_data(data): identity = list(length=2) identity[IDX_ADDRESS] = data[IDX_ADDRESS] identity[IDX_HASH] = data[IDX_HASH] return serialize_array(identity) def create(data): """ Parameters ---------- data : boa.builtins.list The input data containing an address and a hash, both in bytes Returns ------- bool Returns False if the entry does exist already, otherwise True """ if Get(ctx, data[IDX_KEY]): print('Error: Entry already exists!') return False data_serialized = serialize_data(data) Put(ctx, data[IDX_KEY], data_serialized) return True def retrieve(data): saved = Get(ctx, data[IDX_KEY]) return deserialize_bytearray(saved) def update(data): if Get(ctx, data[IDX_KEY]) is None: print('Error: Entry does not exist!') return False data_serialized = serialize_data(data) Put(ctx, data[IDX_KEY], data_serialized) return True def delete(data): if not Get(ctx, data[IDX_KEY]): print('Error: Entry does not exist!') return False Delete(ctx, data[IDX_KEY]) return True def verify(data): saved_serialized = Get(ctx, data[IDX_KEY]) saved_deserialized = deserialize_bytearray(saved_serialized) saved = saved_deserialized[IDX_HASH] check = data[IDX_HASH] return saved == check def Main(operation, data): """ Parameters ---------- operation : str The operation to execute with the contract call data : boa.builtins.list A list containing an address and a hash. Address: Of the student to whom the identity belongs Hash: The hash of the identity belonging the the student Returns ------- bool Returns a result of an operation as a boolean ByteArray Returns a ByteArray of ByteArrays when data is retrieved """ if operation == "Verify": return verify(data) if operation == "Create": return create(data) # Only the Owner can execute methods hereafter if not CheckWitness(OWNER): print('You are not the owner of this Contract!') return False if operation == "Retrieve": return retrieve(data) if operation == "Update": return update(data) if operation == "Delete": return delete(data) print('Operation does not exist') return False
py
b4131f64f2c01006bb0b5db21bec0eaec2228104
from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * class ToolBar(QToolBar): def __init__(self, title): super(ToolBar, self).__init__(title) self.layout().setSpacing(0) self.layout().setContentsMargins(0, 0, 0, 0) self.setWindowFlags(self.windowFlags() | Qt.FramelessWindowHint) def addAction(self, action): if isinstance(action, QWidgetAction): return super(ToolBar, self).addAction(action) button = QToolButton() button.setDefaultAction(action) button.setToolButtonStyle(self.toolButtonStyle()) self.addWidget(button) # center align for i in range(self.layout().count()): if isinstance(self.layout().itemAt(i).widget(), QToolButton): self.layout().itemAt(i).setAlignment(Qt.AlignCenter)
py
b41321097adff1d736f5af774228929cd330428c
from django.contrib import admin from activitystream.models import ActivityStream class ActivityStreamAdmin(admin.ModelAdmin): fieldsets = [ (None, {'fields': ['created', 'data']}) ] list_display = ('id', 'created', 'data') readonly_fields = ['id', 'created'] admin.site.register(ActivityStream, ActivityStreamAdmin)
py
b41323018bd2cedda9c9c0ebbd95f39dfd9b14b3
class Room(object): def __init__(self, name, description): self.name = name self.description = description self.paths = {} def go(self, direction): return self.paths.get(direction, None) def add_paths(self, paths): self.paths.update(paths)
py
b41324a18fdccddc67ee007e236b9b5883876f83
#!/usr/bin/python # -*- coding: utf-8 -*- import matplotlib matplotlib.use('webagg') import numpy as np from scipy.special import binom import matplotlib.pyplot as plt from matplotlib.lines import Line2D class BezierBuilder(object): """Bézier curve interactive builder. """ def __init__(self, control_polygon, ax_bernstein): """Constructor. Receives the initial control polygon of the curve. """ self.control_polygon = control_polygon self.xp = list(control_polygon.get_xdata()) self.yp = list(control_polygon.get_ydata()) self.canvas = control_polygon.figure.canvas self.ax_main = control_polygon.get_axes() self.ax_bernstein = ax_bernstein # Event handler for mouse clicking self.cid = self.canvas.mpl_connect('button_press_event', self) # Create Bézier curve line_bezier = Line2D([], [], c=control_polygon.get_markeredgecolor()) self.bezier_curve = self.ax_main.add_line(line_bezier) def __call__(self, event): # Ignore clicks outside axes if event.inaxes != self.control_polygon.axes: return # Add point self.xp.append(event.xdata) self.yp.append(event.ydata) self.control_polygon.set_data(self.xp, self.yp) # Rebuild Bézier curve and update canvas self.bezier_curve.set_data(*self._build_bezier()) self._update_bernstein() self._update_bezier() def _build_bezier(self): x, y = Bezier(list(zip(self.xp, self.yp))).T return x, y def _update_bezier(self): self.canvas.draw() def _update_bernstein(self): N = len(self.xp) - 1 t = np.linspace(0, 1, num=200) ax = self.ax_bernstein ax.clear() for kk in range(N + 1): ax.plot(t, Bernstein(N, kk)(t)) ax.set_title("Bernstein basis, N = {}".format(N)) ax.set_xlim(0, 1) ax.set_ylim(0, 1) def Bernstein(n, k): """Bernstein polynomial. """ coeff = binom(n, k) def _bpoly(x): return coeff * x ** k * (1 - x) ** (n - k) return _bpoly def Bezier(points, num=200): """Build Bézier curve from points. """ N = len(points) t = np.linspace(0, 1, num=num) curve = np.zeros((num, 2)) for ii in range(N): curve += np.outer(Bernstein(N - 1, ii)(t), points[ii]) return curve if __name__ == '__main__': # Initial setup fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) # Empty line line = Line2D([], [], ls='--', c='#666666', marker='x', mew=2, mec='#204a87') ax1.add_line(line) # Canvas limits ax1.set_xlim(0, 1) ax1.set_ylim(0, 1) ax1.set_title("Bezier curve") # Bernstein plot ax2.set_title("Bernstein basis") # Create BezierBuilder bezier_builder = BezierBuilder(line, ax2) plt.show()
py
b41325b880510f3dbb15d21d16b8eb5de1ecc0a3
import math import warnings import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import build_norm_layer from mmcv.cnn.bricks.drop import build_dropout from mmcv.cnn.bricks.transformer import FFN from mmcv.cnn.utils.weight_init import (constant_init, normal_init, trunc_normal_init) from mmcv.runner import BaseModule, ModuleList from torch.nn.modules.batchnorm import _BatchNorm from mmseg.models.backbones.mit import EfficientMultiheadAttention from mmseg.models.builder import BACKBONES from ..utils.embed import PatchEmbed class GlobalSubsampledAttention(EfficientMultiheadAttention): """Global Sub-sampled Attention (Spatial Reduction Attention) This module is modified from EfficientMultiheadAttention, which is a module from mmseg.models.backbones.mit.py. Specifically, there is no difference between `GlobalSubsampledAttention` and `EfficientMultiheadAttention`, `GlobalSubsampledAttention` is built as a brand new class because it is renamed as `Global sub-sampled attention (GSA)` in paper. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. attn_drop (float): A Dropout layer on attn_output_weights. Default: 0.0. proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. Default: 0.0. dropout_layer (obj:`ConfigDict`): The dropout_layer used when adding the shortcut. Default: None. batch_first (bool): Key, Query and Value are shape of (batch, n, embed_dims) or (n, batch, embed_dims). Default: False. qkv_bias (bool): enable bias for qkv if True. Default: True. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN'). sr_ratio (int): The ratio of spatial reduction of GSA of PCPVT. Default: 1. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, embed_dims, num_heads, attn_drop=0., proj_drop=0., dropout_layer=None, batch_first=True, qkv_bias=True, norm_cfg=dict(type='LN'), sr_ratio=1, init_cfg=None): super(GlobalSubsampledAttention, self).__init__( embed_dims, num_heads, attn_drop=attn_drop, proj_drop=proj_drop, dropout_layer=dropout_layer, batch_first=batch_first, qkv_bias=qkv_bias, norm_cfg=norm_cfg, sr_ratio=sr_ratio, init_cfg=init_cfg) class GSAEncoderLayer(BaseModule): """Implements one encoder layer with GSA. Args: embed_dims (int): The feature dimension. num_heads (int): Parallel attention heads. feedforward_channels (int): The hidden dimension for FFNs. drop_rate (float): Probability of an element to be zeroed after the feed forward layer. Default: 0.0. attn_drop_rate (float): The drop out rate for attention layer. Default: 0.0. drop_path_rate (float): Stochastic depth rate. Default 0.0. num_fcs (int): The number of fully-connected layers for FFNs. Default: 2. qkv_bias (bool): Enable bias for qkv if True. Default: True act_cfg (dict): The activation config for FFNs. Default: dict(type='GELU'). norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN'). sr_ratio (float): Kernel_size of conv in Attention modules. Default: 1. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, embed_dims, num_heads, feedforward_channels, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., num_fcs=2, qkv_bias=True, act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN'), sr_ratio=1., init_cfg=None): super(GSAEncoderLayer, self).__init__(init_cfg=init_cfg) self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] self.attn = GlobalSubsampledAttention( embed_dims=embed_dims, num_heads=num_heads, attn_drop=attn_drop_rate, proj_drop=drop_rate, dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), qkv_bias=qkv_bias, norm_cfg=norm_cfg, sr_ratio=sr_ratio) self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] self.ffn = FFN( embed_dims=embed_dims, feedforward_channels=feedforward_channels, num_fcs=num_fcs, ffn_drop=drop_rate, dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), act_cfg=act_cfg, add_identity=False) self.drop_path = build_dropout( dict(type='DropPath', drop_prob=drop_path_rate) ) if drop_path_rate > 0. else nn.Identity() def forward(self, x, hw_shape): x = x + self.drop_path(self.attn(self.norm1(x), hw_shape, identity=0.)) x = x + self.drop_path(self.ffn(self.norm2(x))) return x class LocallyGroupedSelfAttention(BaseModule): """Locally-grouped Self Attention (LSA) module. Args: embed_dims (int): Number of input channels. num_heads (int): Number of attention heads. Default: 8 qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. Default: False. qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. Default: None. attn_drop_rate (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. window_size(int): Window size of LSA. Default: 1. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, embed_dims, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop_rate=0., proj_drop_rate=0., window_size=1, init_cfg=None): super(LocallyGroupedSelfAttention, self).__init__(init_cfg=init_cfg) assert embed_dims % num_heads == 0, f'dim {embed_dims} should be ' \ f'divided by num_heads ' \ f'{num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads head_dim = embed_dims // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop_rate) self.proj = nn.Linear(embed_dims, embed_dims) self.proj_drop = nn.Dropout(proj_drop_rate) self.window_size = window_size def forward(self, x, hw_shape): b, n, c = x.shape h, w = hw_shape x = x.view(b, h, w, c) # pad feature maps to multiples of Local-groups pad_l = pad_t = 0 pad_r = (self.window_size - w % self.window_size) % self.window_size pad_b = (self.window_size - h % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) # calculate attention mask for LSA Hp, Wp = x.shape[1:-1] _h, _w = Hp // self.window_size, Wp // self.window_size mask = torch.zeros((1, Hp, Wp), device=x.device) mask[:, -pad_b:, :].fill_(1) mask[:, :, -pad_r:].fill_(1) # [B, _h, _w, window_size, window_size, C] x = x.reshape(b, _h, self.window_size, _w, self.window_size, c).transpose(2, 3) mask = mask.reshape(1, _h, self.window_size, _w, self.window_size).transpose(2, 3).reshape( 1, _h * _w, self.window_size * self.window_size) # [1, _h*_w, window_size*window_size, window_size*window_size] attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill( attn_mask == 0, float(0.0)) # [3, B, _w*_h, nhead, window_size*window_size, dim] qkv = self.qkv(x).reshape(b, _h * _w, self.window_size * self.window_size, 3, self.num_heads, c // self.num_heads).permute( 3, 0, 1, 4, 2, 5) q, k, v = qkv[0], qkv[1], qkv[2] # [B, _h*_w, n_head, window_size*window_size, window_size*window_size] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn + attn_mask.unsqueeze(2) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) attn = (attn @ v).transpose(2, 3).reshape(b, _h, _w, self.window_size, self.window_size, c) x = attn.transpose(2, 3).reshape(b, _h * self.window_size, _w * self.window_size, c) if pad_r > 0 or pad_b > 0: x = x[:, :h, :w, :].contiguous() x = x.reshape(b, n, c) x = self.proj(x) x = self.proj_drop(x) return x class LSAEncoderLayer(BaseModule): """Implements one encoder layer in Twins-SVT. Args: embed_dims (int): The feature dimension. num_heads (int): Parallel attention heads. feedforward_channels (int): The hidden dimension for FFNs. drop_rate (float): Probability of an element to be zeroed after the feed forward layer. Default: 0.0. attn_drop_rate (float, optional): Dropout ratio of attention weight. Default: 0.0 drop_path_rate (float): Stochastic depth rate. Default 0.0. num_fcs (int): The number of fully-connected layers for FFNs. Default: 2. qkv_bias (bool): Enable bias for qkv if True. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. Default: None. act_cfg (dict): The activation config for FFNs. Default: dict(type='GELU'). norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN'). window_size (int): Window size of LSA. Default: 1. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, embed_dims, num_heads, feedforward_channels, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., num_fcs=2, qkv_bias=True, qk_scale=None, act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN'), window_size=1, init_cfg=None): super(LSAEncoderLayer, self).__init__(init_cfg=init_cfg) self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads, qkv_bias, qk_scale, attn_drop_rate, drop_rate, window_size) self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] self.ffn = FFN( embed_dims=embed_dims, feedforward_channels=feedforward_channels, num_fcs=num_fcs, ffn_drop=drop_rate, dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), act_cfg=act_cfg, add_identity=False) self.drop_path = build_dropout( dict(type='DropPath', drop_prob=drop_path_rate) ) if drop_path_rate > 0. else nn.Identity() def forward(self, x, hw_shape): x = x + self.drop_path(self.attn(self.norm1(x), hw_shape)) x = x + self.drop_path(self.ffn(self.norm2(x))) return x class ConditionalPositionEncoding(BaseModule): """The Conditional Position Encoding (CPE) module. The CPE is the implementation of 'Conditional Positional Encodings for Vision Transformers <https://arxiv.org/abs/2102.10882>'_. Args: in_channels (int): Number of input channels. embed_dims (int): The feature dimension. Default: 768. stride (int): Stride of conv layer. Default: 1. """ def __init__(self, in_channels, embed_dims=768, stride=1, init_cfg=None): super(ConditionalPositionEncoding, self).__init__(init_cfg=init_cfg) self.proj = nn.Conv2d( in_channels, embed_dims, kernel_size=3, stride=stride, padding=1, bias=True, groups=embed_dims) self.stride = stride def forward(self, x, hw_shape): b, n, c = x.shape h, w = hw_shape feat_token = x cnn_feat = feat_token.transpose(1, 2).view(b, c, h, w) if self.stride == 1: x = self.proj(cnn_feat) + cnn_feat else: x = self.proj(cnn_feat) x = x.flatten(2).transpose(1, 2) return x @BACKBONES.register_module() class PCPVT(BaseModule): """The backbone of Twins-PCPVT. This backbone is the implementation of `Twins: Revisiting the Design of Spatial Attention in Vision Transformers <https://arxiv.org/abs/1512.03385>`_. Args: in_channels (int): Number of input channels. Default: 3. embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. strides (list): The strides. Default: [4, 2, 2, 2]. num_heads (int): Number of attention heads. Default: [1, 2, 4, 8]. mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. Default: [4, 4, 4, 4]. out_indices (tuple[int]): Output from which stages. Default: (0, 1, 2, 3). qkv_bias (bool): Enable bias for qkv if True. Default: False. drop_rate (float): Probability of an element to be zeroed. Default 0. attn_drop_rate (float): The drop out rate for attention layer. Default 0.0 drop_path_rate (float): Stochastic depth rate. Default 0.0 norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN') depths (list): Depths of each stage. Default [3, 4, 6, 3] sr_ratios (list): Kernel_size of conv in each Attn module in Transformer encoder layer. Default: [8, 4, 2, 1]. norm_after_stage(bool): Add extra norm. Default False. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, in_channels=3, embed_dims=[64, 128, 256, 512], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], out_indices=(0, 1, 2, 3), qkv_bias=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_cfg=dict(type='LN'), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], norm_after_stage=False, pretrained=None, init_cfg=None): super(PCPVT, self).__init__(init_cfg=init_cfg) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be set at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is not None: raise TypeError('pretrained must be a str or None') self.depths = depths # patch_embed self.patch_embeds = ModuleList() self.position_encoding_drops = ModuleList() self.layers = ModuleList() for i in range(len(depths)): self.patch_embeds.append( PatchEmbed( in_channels=in_channels if i == 0 else embed_dims[i - 1], embed_dims=embed_dims[i], conv_type='Conv2d', kernel_size=patch_sizes[i], stride=strides[i], padding='corner', norm_cfg=norm_cfg)) self.position_encoding_drops.append(nn.Dropout(p=drop_rate)) self.position_encodings = ModuleList([ ConditionalPositionEncoding(embed_dim, embed_dim) for embed_dim in embed_dims ]) # transformer encoder dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 for k in range(len(depths)): _block = ModuleList([ GSAEncoderLayer( embed_dims=embed_dims[k], num_heads=num_heads[k], feedforward_channels=mlp_ratios[k] * embed_dims[k], attn_drop_rate=attn_drop_rate, drop_rate=drop_rate, drop_path_rate=dpr[cur + i], num_fcs=2, qkv_bias=qkv_bias, act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN'), sr_ratio=sr_ratios[k]) for i in range(depths[k]) ]) self.layers.append(_block) cur += depths[k] self.norm_name, norm = build_norm_layer( norm_cfg, embed_dims[-1], postfix=1) self.out_indices = out_indices self.norm_after_stage = norm_after_stage if self.norm_after_stage: self.norm_list = ModuleList() for dim in embed_dims: self.norm_list.append(build_norm_layer(norm_cfg, dim)[1]) def init_weights(self): if self.init_cfg is not None: super(PCPVT, self).init_weights() else: for m in self.modules(): if isinstance(m, nn.Linear): trunc_normal_init(m, std=.02, bias=0.) elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): constant_init(m, val=1.0, bias=0.) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[ 1] * m.out_channels fan_out //= m.groups normal_init( m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) def forward(self, x): outputs = list() b = x.shape[0] for i in range(len(self.depths)): x, hw_shape = self.patch_embeds[i](x) h, w = hw_shape x = self.position_encoding_drops[i](x) for j, blk in enumerate(self.layers[i]): x = blk(x, hw_shape) if j == 0: x = self.position_encodings[i](x, hw_shape) if self.norm_after_stage: x = self.norm_list[i](x) x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous() if i in self.out_indices: outputs.append(x) return tuple(outputs) @BACKBONES.register_module() class SVT(PCPVT): """The backbone of Twins-SVT. This backbone is the implementation of `Twins: Revisiting the Design of Spatial Attention in Vision Transformers <https://arxiv.org/abs/1512.03385>`_. Args: in_channels (int): Number of input channels. Default: 3. embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. strides (list): The strides. Default: [4, 2, 2, 2]. num_heads (int): Number of attention heads. Default: [1, 2, 4]. mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. Default: [4, 4, 4]. out_indices (tuple[int]): Output from which stages. Default: (0, 1, 2, 3). qkv_bias (bool): Enable bias for qkv if True. Default: False. drop_rate (float): Dropout rate. Default 0. attn_drop_rate (float): Dropout ratio of attention weight. Default 0.0 drop_path_rate (float): Stochastic depth rate. Default 0.2. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN') depths (list): Depths of each stage. Default [4, 4, 4]. sr_ratios (list): Kernel_size of conv in each Attn module in Transformer encoder layer. Default: [4, 2, 1]. windiow_sizes (list): Window size of LSA. Default: [7, 7, 7], input_features_slice(bool): Input features need slice. Default: False. norm_after_stage(bool): Add extra norm. Default False. strides (list): Strides in patch-Embedding modules. Default: (2, 2, 2) init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, in_channels=3, embed_dims=[64, 128, 256], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], out_indices=(0, 1, 2, 3), qkv_bias=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_cfg=dict(type='LN'), depths=[4, 4, 4], sr_ratios=[4, 2, 1], windiow_sizes=[7, 7, 7], norm_after_stage=True, pretrained=None, init_cfg=None): super(SVT, self).__init__(in_channels, embed_dims, patch_sizes, strides, num_heads, mlp_ratios, out_indices, qkv_bias, drop_rate, attn_drop_rate, drop_path_rate, norm_cfg, depths, sr_ratios, norm_after_stage, pretrained, init_cfg) # transformer encoder dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule for k in range(len(depths)): for i in range(depths[k]): if i % 2 == 0: self.layers[k][i] = \ LSAEncoderLayer( embed_dims=embed_dims[k], num_heads=num_heads[k], feedforward_channels=mlp_ratios[k] * embed_dims[k], drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=dpr[sum(depths[:k])+i], qkv_bias=qkv_bias, window_size=windiow_sizes[k])
py
b4132750ac0e23fa53808f4a9388fa49df1e6ad8
#!/usr/bin/python class GrabzItWaterMark: def __init__(self, identifier, xPosition, yPosition, format): self.Identifier = identifier self.XPosition = xPosition self.YPosition = yPosition self.Format = format
py
b41327b5b177e500d0d49ddbdc7f02215c254744
#!/usr/bin/python3 # Created by Adam Smith on 20211003 # Imports import random # classes class Decks: """This class is for shuffling between 1 to 6 decks of cards the primary set will be a deck of cards. Up to 5 more decks can be added with the add_decks function.""" def __init__(self): self.deck = [] self.last_round = False self.diamond_suit = ['AD', '2D', '3D', '4D', '5D', '6D', '7D', '8D', '9D', '10D', 'JD', 'QD', 'KD'] self.spade_suit = ['AS', '2S', '3S', '4S', '5S', '6S', '7S', '8S', '9S', '10S', 'JS', 'QS', 'KS'] self.heart_suit = ['AH', '2H', '3H', '4H', '5H', '6H', '7H', '8H', '9H', '10H', 'JH', 'QH', 'KH'] self.club_suit = ['AC', '2C', '3C', '4C', '5C', '6C', '7C', '8C', '9C', '10C', 'JC', 'QC', 'KC'] def shoe_build(self, num_deck=1): self.deck = (self.diamond_suit + self.spade_suit + self.heart_suit + self.club_suit) * num_deck def deck_shuffle(self): temp_deck = [] while len(self.deck) > 0: rand_num = random.randint(0, len(self.deck) - 1) temp_deck.append(self.deck[rand_num]) self.deck.pop(rand_num) self.deck = temp_deck self.deck.insert(int(len(self.deck) / 52) * -15, 'r') def show_deck(self): print(self.deck) def next_card(self): if self.deck[0] != 'r': next_cd = self.deck[0] self.deck.pop(0) else: next_cd = self.deck[1] self.deck.pop(0) self.deck.pop(0) self.last_round = True return next_cd
py
b41327b6d79c8138998b0068d5ddfa0bc399815b
# Generated by Django 3.0 on 2019-12-15 22:07 import django.contrib.postgres.fields import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion import koocook_core.models.base import koocook_core.models.review import koocook_core.support.markdown import koocook_core.support.quantity class Migration(migrations.Migration): initial = True dependencies = [ ('koocook_auth', '0001_initial'), ] operations = [ migrations.CreateModel( name='AggregateRating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rating_value', models.DecimalField(decimal_places=10, max_digits=13)), ('rating_count', models.IntegerField()), ('best_rating', models.IntegerField(default=5)), ('worst_rating', models.IntegerField(default=1)), ], ), migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('user', models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='koocook_auth.KoocookUser')), ], bases=(koocook_core.models.base.SerialisableModel, models.Model), ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_published', models.DateTimeField(auto_now_add=True)), ('body', koocook_core.support.markdown.FormattedField()), ('aggregate_rating', models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='koocook_core.AggregateRating')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='koocook_core.Author')), ('reviewed_comment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Comment')), ], bases=(koocook_core.models.review.ReviewerModel, koocook_core.models.base.SerialisableModel, koocook_core.models.review.ReviewableModel, models.Model), ), migrations.CreateModel( name='MetaIngredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('nutrient', django.contrib.postgres.fields.jsonb.JSONField(default=dict)), ('description', models.CharField(blank=True, max_length=255, null=True)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_published', models.DateTimeField(auto_now_add=True)), ('body', koocook_core.support.markdown.FormattedField()), ('aggregate_rating', models.OneToOneField(blank=True, on_delete=django.db.models.deletion.PROTECT, to='koocook_core.AggregateRating')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='koocook_core.Author')), ], bases=(koocook_core.models.base.SerialisableModel, koocook_core.models.review.ReviewableModel, models.Model), ), migrations.CreateModel( name='Recipe', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('image', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=200), blank=True, null=True, size=None)), ('video', models.URLField(blank=True, null=True)), ('date_published', models.DateTimeField(auto_now_add=True, null=True)), ('description', models.TextField()), ('prep_time', models.DurationField(null=True)), ('cook_time', models.DurationField(null=True)), ('recipe_instructions', django.contrib.postgres.fields.ArrayField(base_field=models.TextField(), default=list, size=None)), ('recipe_yield', koocook_core.support.quantity.QuantityField(null=True)), ('aggregate_rating', models.OneToOneField(blank=True, on_delete=django.db.models.deletion.PROTECT, to='koocook_core.AggregateRating')), ('author', models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='koocook_core.Author')), ], bases=(koocook_core.models.review.ReviewableModel, models.Model), ), migrations.CreateModel( name='RecipeEquipment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ], bases=(koocook_core.models.base.SerialisableModel, models.Model), ), migrations.CreateModel( name='TagLabel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('level', models.IntegerField(default=1)), ], bases=(koocook_core.models.base.SerialisableModel, models.Model), ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('label', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='koocook_core.TagLabel')), ], options={ 'unique_together': {('name', 'label')}, }, bases=(koocook_core.models.base.SerialisableModel, models.Model), ), migrations.CreateModel( name='RecipeIngredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', koocook_core.support.quantity.QuantityField()), ('description', models.CharField(blank=True, max_length=255, null=True)), ('meta', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='koocook_core.MetaIngredient')), ('recipe', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Recipe')), ('substitute_set', models.ManyToManyField(blank=True, related_name='_recipeingredient_substitute_set_+', to='koocook_core.RecipeIngredient')), ], ), migrations.AddField( model_name='recipe', name='equipment_set', field=models.ManyToManyField(blank=True, to='koocook_core.RecipeEquipment'), ), migrations.AddField( model_name='recipe', name='tag_set', field=models.ManyToManyField(blank=True, to='koocook_core.Tag'), ), migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rating_value', models.IntegerField()), ('best_rating', models.IntegerField(default=5)), ('worst_rating', models.IntegerField(default=1)), ('used', models.BooleanField(blank=True, default=False)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='koocook_core.Author')), ('reviewed_comment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Comment')), ('reviewed_post', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Post')), ('reviewed_recipe', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Recipe')), ], bases=(koocook_core.models.review.ReviewerModel, models.Model), ), migrations.AddField( model_name='comment', name='reviewed_post', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Post'), ), migrations.AddField( model_name='comment', name='reviewed_recipe', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Recipe'), ), migrations.CreateModel( name='RecipeVisit', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ip_address', models.CharField(max_length=45)), ('date_first_visited', models.DateTimeField(auto_now_add=True)), ('date_last_visited', models.DateTimeField(auto_now=True)), ('recipe', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='koocook_core.Recipe')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='koocook_auth.KoocookUser')), ], options={ 'verbose_name': 'Recipe visit count', 'db_table': 'koocook_core_recipe_visit', 'unique_together': {('ip_address', 'user', 'recipe'), ('user', 'recipe')}, }, ), ]
py
b41327f58cf4ddbee338ed2bea2c29649f34c00d
""" This is for running the PRNTR's complete operation: What to do Place .stl file in the code folder Check path Check the correct camera operation is being used, if using computer use camera.py, if using py use os.systemm(...) Check camera.py if using computer --> if the cv2.videocapture is 0 then its builtin webcam, if its 1 then its the connected camera Check range values for number of layers --> change in bottomrange & toprange variables below Check that 'PRNTR/files/Layer/ideal/image_name.jpg' exists Check that 'PRNTR/files/Layer/diffs/diff.jpg' exists Run PRNTR.py Enter the STL filename Answer file deletion question """ import time import os import shutil import os.path import LayerNumber start = time.time() path = str('/Users/BobTheBlockchainBuilder/Desktop/PRNTR') #change path according to device location = path #Range values for the layers in the print used in: LayerSplitter.py & Image_maker.py bottomrange = int(0) bottom_range = bottomrange toprange = int(101) top_range = toprange #currentlayernumber = LayerNumber.numberiton #not working properly currentlayernumber = 4 def main(): location = path #Copies g code file from code file into files file and change name to operation.gcode so its easier to streamline the rest of the code stlname = str(input('Name of STL file: ')) #STL file has to be stored in code file os.system( 'mandoline -o {}.gcode -n {}.stl'.format(stlname, stlname) ) #this runs command in terminal to begin the slicer for the stl file with the name inputed and save the g-code of that file src = '{}/code/{}.gcode'.format(path, stlname) dst = '{}/files/operation.gcode'.format(path) shutil.copyfile(src, dst) #Copys the gcode file into the files file and renames it to operation.gcode if os.path.exists('{}/files/operation.gcode'.format(location)): #Telling Layer Splitter operation to activate os.system('python LayerSplitter.py') #operation to trigger the skin maker if os.path.exists("{}/files/Layer/Layer0.gcode".format(location)): os.system('python skin.py') # Operation to produce image files from the g code, to be used as an 'ideal image' if os.path.exists('{}/files/Layer/Layer0.gcode'.format(location)): os.system('python Image_maker.py') else: print('Error in splitted layer files or Image_maker') else: print('There is an error in the LayerSplitter or skin code') else: print('There is an error with the operation.gcode file') def CCO(): # CCO - Camera & Comparison Operation """ #CAMERA # using python find a way to see what layer is being printed at that specific moment in time #Layer_number = (layer being printed, which will be read from the printers 'website') if(Layer_number%5==0): os.system('python camera.py') else: print('Not capturing yet') #add code to check head is clear and camera can capture correctly """ # -------- Camera Operation -------- # Camera operation; use camera.py for computer & fswebcam for Raspberry Pi os.system('python camera.py') #Use with Mac/Windows #os.system('fswebcam -r 1920x1080 --no-banner {}/files/capture.jpg'.format(location)) #Use with raspberry pi # -------- Camera Operation -------- # Operation to verify that the file has been captured if os.path.exists('{}/files/capture.jpg'.format(location)): # Operation to run Image_manipulation.py os.system('python Image_manipulation.py') # Operation to verify Image_manipulation.py has occured if os.path.exists('{}/files/new_test_resize.jpg'.format(location)): # Operation to run edge.py os.system('python edge.py') # Operation to verify that edge.py has been run if os.path.exists('{}/files/Edgey.jpg'.format(location)): print('Edgey exists!') # Operation to run image comparison (for the layer file set it so the image with 'Layer{}' file name is the one used for comparison) os.system('python ImageComparison2.py') # *show comparison* else: print('There is an error in the ImageComparison file') else: print('There is an error in the edge file, or the file names') else: print("There is an error in the Image_manipulation file") def delete(): # Operation to delete files finish = input('The printing complete, do you want to delete the files? Yes or No --> ') if finish == "yes" or finish == "Yes" or finish == "y" or finish == "Y" or finish == "YES": print("The files will be deleted") os.system('python delete.py') elif finish == 'no' or finish == "NO" or finish == "No" or finish == "N" or finish == "n": print('Not Deleting') else: print("Could no understand answer") end = time.time() print('Time to run PRNTR code:', end - start, "seconds") print("") # FLO needs to be fixed # Send 5 Layers to printer then CCO def FLO(): # FLO - five layer operation num = currentlayernumber div = int(5) if num%div == 0: CCO() elif num%toprange == 1: #doesnt work very well. needs to be redone because when using multiples of 5 it doesnt recgnise that it could also be the last layer print('Operation complete') delete() else: print("We have not reached that layer number yet!") #FLO() #if this is turned on. remove comand below "CCO()" | FLO causes the camera operation to occur when it is on a layer which is a multiple of 5 CCO() delete() if __name__ == '__main__': main() print("😃") print('') #else: # this is used to main commands that will run when importing the file into another # print('---')
py
b413285cad9fe824824041a54fc68c638c79f553
from typing import Optional, List # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def maxPathSum(self, root: Optional[TreeNode]) -> int: max_value = [float('-inf')] self.maxPathDown(root, max_value) return int(max_value[0]) def maxPathDown(self, node: Optional[TreeNode], max_value: List[float]): if not node: return 0 left = max(0, self.maxPathDown(node.left, max_value)) right = max(0, self.maxPathDown(node.right, max_value)) max_value[0] = max(max_value[0], left + right + node.val) return max(left, right) + node.val
py
b41329ac1d4f4628c50fc8d9c7922779c2dcfaed
""" The old version of this script is here: https://github.com/mrdrozdov/spinn/blob/2a06fc489faf44796dcb88a57afd699ba9937cfa/scripts/analyze_trees.py Usage: $ mkdir example_trees $ python scripts/analyze_report_trees.py \ --data_path ./snli_1.0/snli_1.0_dev.jsonl \ --report_path ./checkpoints/example-snli.report \ --out_path ./example_trees """ from __future__ import print_function import gflags import numpy as np import pandas as pd import sys import pydot import argparse from tqdm import tqdm from spinn.data.listops import load_listops_data FLAGS = gflags.FLAGS def create_tree_ascii(words, transitions): buf = list(reversed(words)) stack = [] for i, t in enumerate(transitions): if t == 0: stack.append([buf.pop()]) elif t == 1: r = stack.pop() l = stack.pop() stack.append(['('] + l + r + [')']) return stack[-1] def newline(depth): print('\n' + ' '*depth, end='') def ascii_tree_prettyprint(tree): print() ind = 0 for i, sym in enumerate(tree): if sym == '(': if tree[i - 1] != '(': print(' ', end='') print(sym, end='') ind += 1 elif sym == ')': print(sym, end='') ind -= 1 newline(ind) else: print(sym, end='') if tree[i + 1] != ')': newline(ind) def print_tree(words, transitions): ascii_tree_prettyprint(create_tree_ascii(words, transitions)) def read_report(fn): return pd.read_csv(fn, delimiter=' ', names=['example_id', 'correct', 'truth', 'pred', '', 'p', 'p', 'p', 'p', 'p', 'p', 'p', 'p', 'p', 'sent1_parse']) def build_data_dict(data): table = dict() for ex in data: table[str(ex['example_id'])] = ex return table def run(): print("Loading data...") data, _ = load_listops_data.load_data(FLAGS.data_path) print("Building data table...") data_table = build_data_dict(data) print("Loading report...") report = read_report(FLAGS.report_path) report = report.to_records() for rec in tqdm(report): if str(rec.example_id) not in data_table: continue ex = data_table[str(rec.example_id)] transitions1 = [int(t) for t in rec.sent1_parse] tokens1 = ex['tokens'] # Writes tree to file. graph1 = print_tree(tokens1, transitions1) if __name__ == '__main__': gflags.DEFINE_string("report_path", "./checkpoints/example.report", "") gflags.DEFINE_string("data_path", "./spinn/data/listops/test_d20a.tsv", "") gflags.DEFINE_string("out_path", "./example_trees", "") FLAGS(sys.argv) run()
py
b4132a99a5390c8d94bebb2302b2bd409105030e
""" datadict.py : Data classes we use throughout the plottr package, and tools to work on them. """ import warnings import copy as cp import numpy as np from functools import reduce from typing import List, Tuple, Dict, Sequence, Union, Any, Iterator, Optional, TypeVar from plottr.utils import num, misc __author__ = 'Wolfgang Pfaff' __license__ = 'MIT' # TODO: functionality that returns axes values given a set of slices. # TODO: an easier way to access data and meta values. # maybe with getattr/setattr? # TODO: direct slicing of full datasets. implement getitem/setitem? # TODO: feature to compare if datadicts are equal not fully tested yet. def is_meta_key(key: str) -> bool: if key[:2] == '__' and key[-2:] == '__': return True else: return False def meta_key_to_name(key: str) -> str: if is_meta_key(key): return key[2:-2] else: raise ValueError(f'{key} is not a meta key.') def meta_name_to_key(name: str) -> str: return '__' + name + '__' T = TypeVar('T', bound='DataDictBase') class DataDictBase(dict): """ Simple data storage class that is based on a regular dictionary. This base class does not make assumptions about the structure of the values. This is implemented in inheriting classes. """ def __init__(self, **kw: Any): super().__init__(self, **kw) def __eq__(self, other: object) -> bool: """Check for content equality of two datadicts.""" if not isinstance(other, DataDictBase): return NotImplemented if not self.same_structure(self, other): # print('structure') return False for k, v in self.meta_items(): if k not in [kk for kk, vv in other.meta_items()]: # print(f'{k} not in {other}') return False elif other.meta_val(k) != v: # print(f'{other.meta_val(k)} != {v}') return False for k, v in other.meta_items(): if k not in [kk for kk, vv in self.meta_items()]: # print(f'{k} not in {self}') return False for dn, dv in self.data_items(): # print(dn) if dn not in [dnn for dnn, dvv in other.data_items()]: # print(f"{dn} not in {other}") return False if self[dn].get('unit', '') != other[dn].get('unit', ''): # print(f"different units for {dn}") return False if self[dn].get('axes', []) != other[dn].get('axes', []): # print(f"different axes for {dn}") return False if not num.arrays_equal( np.array(self.data_vals(dn)), np.array(other.data_vals(dn)), ): # print(f"different data for {dn}") return False for k, v in self.meta_items(dn): if k not in [kk for kk, vv in other.meta_items(dn)]: # print(f"{dn}: {k} not in {other}") return False elif v != other.meta_val(k, dn): # print(f"{v} != {other.meta_val(k, dn)}") return False for dn, dv in other.data_items(): # print(dn) if dn not in [dnn for dnn, dvv in self.data_items()]: # print(f"{dn} not in {other}") return False for k, v in other.meta_items(dn): if k not in [kk for kk, vv in self.meta_items(dn)]: # print(f"{dn}: {k} not in {other}") return False return True # Assignment and retrieval of data and meta data @staticmethod def _is_meta_key(key: str) -> bool: return is_meta_key(key) @staticmethod def _meta_key_to_name(key: str) -> str: return meta_key_to_name(key) @staticmethod def _meta_name_to_key(name: str) -> str: return meta_name_to_key(name) def data_items(self) -> Iterator[Tuple[str, Dict[str, Any]]]: """ Generator for data field items. Like dict.items(), but ignores meta data. """ for k, v in self.items(): if not self._is_meta_key(k): yield k, v def meta_items(self, data: Union[str, None] = None, clean_keys: bool = True) -> Iterator[Tuple[str, Dict[str, Any]]]: """ Generator for meta items. Like dict.items(), but yields `only` meta entries. The keys returned do not contain the underscores used internally. :param data: if ``None`` iterate over global meta data. if it's the name of a data field, iterate over the meta information of that field. :param clean_keys: if `True`, remove the underscore pre/suffix """ if data is None: for k, v in self.items(): if self._is_meta_key(k): if clean_keys: n = self._meta_key_to_name(k) else: n = k yield n, v else: for k, v in self[data].items(): if self._is_meta_key(k): if clean_keys: n = self._meta_key_to_name(k) else: n = k yield n, v def data_vals(self, key: str) -> Union[Sequence, np.ndarray]: """ Return the data values of field ``key``. Equivalent to ``DataDict['key'].values``. :param key: name of the data field :return: values of the data field """ if self._is_meta_key(key): raise ValueError(f"{key} is a meta key.") return self[key].get('values', np.array([])) def has_meta(self, key: str) -> bool: """Check whether meta field exists in the dataset.""" k = self._meta_name_to_key(key) if k in self: return True else: return False def meta_val(self, key: str, data: Union[str, None] = None) -> Any: """ Return the value of meta field ``key`` (given without underscore). :param key: name of the meta field :param data: ``None`` for global meta; name of data field for data meta. :return: the value of the meta information. """ k = self._meta_name_to_key(key) if data is None: return self[k] else: return self[data][k] def add_meta(self, key: str, value: Any, data: Union[str, None] = None) -> None: """ Add meta info to the dataset. If the key already exists, meta info will be overwritten. :param key: Name of the meta field (without underscores) :param value: Value of the meta information :param data: if ``None``, meta will be global; otherwise assigned to data field ``data``. """ key = self._meta_name_to_key(key) if data is None: self[key] = value else: self[data][key] = value set_meta = add_meta def delete_meta(self, key: str, data: Union[str, None] = None) -> None: """ Remove meta data. :param key: name of the meta field to remove. :param data: if ``None``, this affects global meta; otherwise remove from data field ``data``. """ key = self._meta_name_to_key(key) if data is None: del self[key] else: del self[data][key] def clear_meta(self, data: Union[str, None] = None) -> None: """ Delete meta information. :param data: if this is not None, delete onlymeta information from data field `data`. Else, delete all top-level meta, as well as meta for all data fields. """ if data is None: meta_list = [k for k, _ in self.meta_items()] for m in meta_list: self.delete_meta(m) for d, _ in self.data_items(): data_meta_list = [k for k, _ in self.meta_items(d)] for m in data_meta_list: self.delete_meta(m, d) else: for m, _ in self.meta_items(data): self.delete_meta(m, data) def extract(self: T, data: List[str], include_meta: bool = True, copy: bool = True, sanitize: bool = True) -> T: """ Extract data from a dataset. Return a new datadict with all fields specified in ``data`` included. Will also take any axes fields along that have not been explicitly specified. :param data: data field or list of data fields to be extracted :param include_meta: if ``True``, include the global meta data. data meta will always be included. :param copy: if ``True``, data fields will be deep copies of the original. :param sanitize: if ``True``, will run DataDictBase.sanitize before returning. :return: new DataDictBase containing only requested fields. """ if isinstance(data, str): data = [data] else: data = data.copy() for d in data: for a in self.axes(d): if a not in data: data.append(a) ret = self.__class__() for d in data: if copy: ret[d] = cp.deepcopy(self[d]) else: ret[d] = self[d] if include_meta: for k, v in self.meta_items(): if copy: ret.add_meta(k, cp.deepcopy(v)) else: ret.add_meta(k, v) if sanitize: ret = ret.sanitize() ret.validate() return ret # info about structure @staticmethod def same_structure(*data: T, check_shape: bool = False) -> bool: """ Check if all supplied DataDicts share the same data structure (i.e., dependents and axes). Ignores meta info and values. Checks also for matching shapes if `check_shape` is `True`. :param data: the data sets to compare :param check_shape: whether to include a shape check in the comparison :return: ``True`` if the structure matches for all, else ``False``. """ if len(data) < 2: return True def empty_structure(d: T) -> T: s = misc.unwrap_optional(d.structure(include_meta=False, add_shape=check_shape)) for k, v in s.data_items(): if 'values' in v: del s[k]['values'] return s s0 = empty_structure(data[0]) for d in data[1:]: if d is None: return False if s0 != empty_structure(d): return False return True def structure(self: T, add_shape: bool = False, include_meta: bool = True, same_type: bool = False) -> Optional[T]: """ Get the structure of the DataDict. Return the datadict without values (`value` omitted in the dict). :param add_shape: Deprecated -- ignored. :param include_meta: if `True`, include the meta information in the returned dict, else clear it. :param same_type: if `True`, return type will be the one of the object this is called on. Else, DataDictBase. :return: The DataDict containing the structure only. The exact type is the same as the type of ``self`` """ if add_shape: warnings.warn("'add_shape' is deprecated and will be ignored", DeprecationWarning) add_shape = False if self.validate(): s = self.__class__() for n, v in self.data_items(): v2 = v.copy() v2.pop('values') s[n] = v2 if include_meta: for n, v in self.meta_items(): s.add_meta(n, v) else: s.clear_meta() if same_type: s = self.__class__(**s) return s return None def label(self, name: str) -> Optional[str]: """ Get a label for a data field. If a unit is present, this is the name with the unit appended in brackets: ``name (unit)``; if no unit is present, just the name. :param name: name of the data field :return: labelled name """ if self.validate(): if name not in self: raise ValueError("No field '{}' present.".format(name)) n = name if self[name]['unit'] != '': n += ' ({})'.format(self[name]['unit']) return n return None def axes_are_compatible(self) -> bool: """ Check if all dependent data fields have the same axes. This includes axes order. :return: ``True`` or ``False`` """ axes = [] for i, d in enumerate(self.dependents()): if i == 0: axes = self.axes(d) else: if self.axes(d) != axes: return False return True def axes(self, data: Union[Sequence[str], str, None] = None) -> List[str]: """ Return a list of axes. :param data: if ``None``, return all axes present in the dataset, otherwise only the axes of the dependent ``data``. :return: the list of axes """ lst = [] if data is None: for k, v in self.data_items(): if 'axes' in v: for n in v['axes']: if n not in lst and self[n].get('axes', []) == []: lst.append(n) else: if isinstance(data, str): dataseq: Sequence[str] = (data,) else: dataseq = data for n in dataseq: if 'axes' not in self[n]: continue for m in self[n]['axes']: if m not in lst and self[m].get('axes', []) == []: lst.append(m) return lst def dependents(self) -> List[str]: """ Get all dependents in the dataset. :return: a list of the names of dependents (data fields that have axes) """ ret = [] for n, v in self.data_items(): if len(v.get('axes', [])) != 0: ret.append(n) return ret def shapes(self) -> Dict[str, Tuple[int, ...]]: """ Get the shapes of all data fields. :return: a dictionary of the form ``{key : shape}``, where shape is the np.shape-tuple of the data with name ``key``. """ shapes = {} for k, v in self.data_items(): shapes[k] = np.array(self.data_vals(k)).shape return shapes # validation and sanitizing def validate(self) -> bool: """ Check the validity of the dataset. Checks performed: * all axes specified with dependents must exist as data fields. Other tasks performed: * ``unit`` keys are created if omitted * ``shape`` meta information is updated with the correct values (only if present already). :return: ``True`` if valid. :raises: ``ValueError`` if invalid. """ msg = '\n' for n, v in self.data_items(): if 'axes' in v: for na in v['axes']: if na not in self: msg += " * '{}' has axis '{}', but no field " \ "with name '{}' registered.\n".format( n, na, na) elif na not in self.axes(): msg += " * '{}' has axis '{}', but no independent " \ "with name '{}' registered.\n".format( n, na, na) else: v['axes'] = [] if 'unit' not in v: v['unit'] = '' vals = v.get('values', []) if type(vals) not in [np.ndarray, np.ma.core.MaskedArray]: vals = np.array(vals) v['values'] = vals if msg != '\n': raise ValueError(msg) return True def remove_unused_axes(self: T) -> T: """ Removes axes not associated with dependents. :return: cleaned dataset. """ dependents = self.dependents() unused = [] ret = self.copy() for n, v in self.data_items(): used = False if n not in dependents: for m in dependents: if n in self[m]['axes']: used = True else: used = True if not used: unused.append(n) for u in unused: del ret[u] return ret def sanitize(self: T) -> T: """ Clean-up tasks: * removes unused axes. :return: sanitized dataset. """ return self.remove_unused_axes() # axes order tools def reorder_axes_indices(self, name: str, **pos: int) -> Tuple[Tuple[int, ...], List[str]]: """ Get the indices that can reorder axes in a given way. :param name: name of the data field of which we want to reorder axes :param pos: new axes position in the form ``axis_name = new_position``. non-specified axes positions are adjusted automatically. :return: the tuple of new indices, and the list of axes names in the new order. """ axlist = self.axes(name) order = misc.reorder_indices_from_new_positions(axlist, **pos) return order, [axlist[i] for i in order] def reorder_axes(self: T, data_names: Union[str, Sequence[str], None] = None, **pos: int) -> T: """ Reorder data axes. :param data_names: data name(s) for which to reorder the axes if None, apply to all dependents. :param pos: new axes position in the form ``axis_name = new_position``. non-specified axes positions are adjusted automatically. :return: dataset with re-ordered axes. """ if data_names is None: data_names = self.dependents() if isinstance(data_names, str): data_names = [data_names] ret = self.copy() for n in data_names: neworder, newaxes = self.reorder_axes_indices(n, **pos) ret[n]['axes'] = newaxes ret.validate() return ret def copy(self: T) -> T: """ Make a copy of the dataset. :return: A copy of the dataset. """ return cp.deepcopy(self) def astype(self: T, dtype: np.dtype) -> T: """ Convert all data values to given dtype. :param dtype: np dtype. :return: copy of the dataset, with values as given type. """ ret = self.copy() for k, v in ret.data_items(): vals = v['values'] if type(v['values']) not in [np.ndarray, np.ma.core.MaskedArray]: vals = np.array(v['values']) ret[k]['values'] = vals.astype(dtype) return ret def mask_invalid(self: T) -> T: """ Mask all invalid data in all values. :return: copy of the dataset with invalid entries (nan/None) masked. """ ret = self.copy() for d, _ in self.data_items(): arr = self.data_vals(d) assert isinstance(arr, np.ndarray) vals = np.ma.masked_where(num.is_invalid(arr), arr, copy=True) try: vals.fill_value = np.nan except TypeError: vals.fill_value = -9999 ret[d]['values'] = vals return ret class DataDict(DataDictBase): """ The most basic implementation of the DataDict class. It only enforces that the number of `records` per data field must be equal for all fields. This refers to the most outer dimension in case of nested arrays. The class further implements simple appending of datadicts through the ``DataDict.append`` method, as well as allowing addition of DataDict instances. """ def __add__(self, newdata: 'DataDict') -> 'DataDict': """ Adding two datadicts by appending each data array. Requires that the datadicts have the same structure. Retains the meta information of the first array. :param newdata: DataDict to be added. :returns: combined DataDict. :raises: ``ValueError`` if the structures are incompatible. """ # FIXME: remove shape s = misc.unwrap_optional(self.structure(add_shape=False)) if DataDictBase.same_structure(self, newdata): for k, v in self.data_items(): val0 = self[k]['values'] val1 = newdata[k]['values'] s[k]['values'] = np.append( self[k]['values'], newdata[k]['values'], axis=0 ) return s else: raise ValueError('Incompatible data structures.') def append(self, newdata: "DataDict") -> None: """ Append a datadict to this one by appending data values. :param newdata: DataDict to append. :raises: ``ValueError``, if the structures are incompatible. """ if not DataDictBase.same_structure(self, newdata): raise ValueError('Incompatible data structures.') newvals = {} for k, v in newdata.data_items(): if isinstance(self[k]['values'], list) and isinstance( v['values'], list): newvals[k] = self[k]['values'] + v['values'] else: newvals[k] = np.append( self[k]['values'], v['values'], axis=0 ) # only actually for k, v in newvals.items(): self[k]['values'] = v def add_data(self, **kw: Sequence) -> None: # TODO: fill non-given data with nan or none """ Add data to all values. new data must be valid in itself. This method is useful to easily add data without needing to specify meta data or dependencies, etc. :param kw: one array per data field (none can be omitted). :return: None """ dd = misc.unwrap_optional(self.structure(same_type=True)) for k, v in kw.items(): if isinstance(v, list): dd[k]['values'] = np.array(v) elif isinstance(v, np.ndarray): dd[k]['values'] = v else: dd[k]['values'] = np.array([v]) if dd.validate(): records = self.nrecords() if records is not None and records > 0: self.append(dd) else: for key, val in dd.data_items(): self[key]['values'] = val['values'] self.validate() # shape information and expansion def nrecords(self) -> Optional[int]: """ :return: The number of records in the dataset. """ self.validate() for _, v in self.data_items(): return len(v['values']) return None def _inner_shapes(self) -> Dict[str, Tuple[int, ...]]: shapes = self.shapes() return {k: v[1:] for k, v in shapes.items()} def is_expanded(self) -> bool: """ Determine if the DataDict is expanded. :return: ``True`` if expanded. ``False`` if not. """ ishp = self._inner_shapes() if set(ishp.values()) == {tuple()}: return True else: return False def is_expandable(self) -> bool: """ Determine if the DataDict can be expanded. Expansion flattens all nested data values to a 1D array. For doing so, we require that all data fields that have nested/inner dimensions (i.e, inside the `records` level) shape the inner shape. In other words, all data fields must be of shape (N,) or (N, (shape)), where shape is common to all that have a shape not equal to (N,). :return: ``True`` if expandable. ``False`` otherwise. """ shp = self._inner_shapes() if len(set(shp.values())) == 1: return True elif len(set(shp.values())) == 2 and tuple() in set(shp.values()): return True else: return False def expand(self) -> 'DataDict': """ Expand nested values in the data fields. Flattens all value arrays. If nested dimensions are present, all data with non-nested dims will be repeated accordingly -- each record is repeated to match the size of the nested dims. :return: The flattened dataset. :raises: ``ValueError`` if data is not expandable. """ self.validate() if not self.is_expandable(): raise ValueError('Data cannot be expanded.') struct = misc.unwrap_optional(self.structure(add_shape=False)) ret = DataDict(**struct) if self.is_expanded(): return self.copy() ishp = self._inner_shapes() size = max([np.prod(s) for s in ishp.values()]) for k, v in self.data_items(): reps = size // np.prod(ishp[k]) if reps > 1: ret[k]['values'] = \ self[k]['values'].repeat(reps, axis=0).reshape(-1) else: ret[k]['values'] = self[k]['values'].reshape(-1) return ret # validation and sanitizing def validate(self) -> bool: """ Check dataset validity. Beyond the checks performed in the base class ``DataDictBase``, check whether the number of records is the same for all data fields. :return: ``True`` if valid. :raises: ``ValueError`` if invalid. """ if super().validate(): nvals = None nvalsrc = None msg = '\n' for n, v in self.data_items(): if type(v['values']) not in [np.ndarray, np.ma.core.MaskedArray]: self[n]['values'] = np.array(v['values']) if nvals is None: nvals = len(v['values']) nvalsrc = n else: if len(v['values']) != nvals: msg += " * '{}' has length {}, but have found {} in " \ "'{}'\n".format( n, len(v['values']), nvals, nvalsrc) if msg != '\n': raise ValueError(msg) return True def sanitize(self) -> "DataDict": """ Clean-up. Beyond the tasks of the base class ``DataDictBase``: * remove invalid entries as far as reasonable. :return: sanitized DataDict """ ret = super().sanitize() return ret.remove_invalid_entries() def remove_invalid_entries(self) -> 'DataDict': """ Remove all rows that are ``None`` or ``np.nan`` in *all* dependents. :return: the cleaned DataDict. """ ishp = self._inner_shapes() idxs = [] ret = self.copy() # collect rows that are completely invalid for d in self.dependents(): # need to discriminate whether there are nested dims or not if len(ishp[d]) == 0: rows = self.data_vals(d) else: datavals = self.data_vals(d) assert isinstance(datavals, np.ndarray) rows = datavals.reshape(-1, np.prod(ishp[d])) _idxs = np.array([]) # get indices of all rows that are fully None if len(ishp[d]) == 0: _newidxs = np.where(rows is None)[0] else: _newidxs = np.where(np.all(rows is None, axis=-1))[0] _idxs = np.append(_idxs, _newidxs) # get indices for all rows that are fully NaN. works only # for some dtypes, so except TypeErrors. try: if len(ishp[d]) == 0: _newidxs = np.where(np.isnan(rows))[0] else: _newidxs = np.where(np.all(np.isnan(rows), axis=-1))[0] _idxs = np.append(_idxs, _newidxs) except TypeError: pass idxs.append(_idxs) if len(idxs) > 0: remove_idxs = reduce(np.intersect1d, tuple(np.array(idxs).astype(int))) for k, v in ret.data_items(): v['values'] = np.delete(v['values'], remove_idxs, axis=0) return ret class MeshgridDataDict(DataDictBase): """ A dataset where the axes form a grid on which the dependent values reside. This is a more special case than ``DataDict``, but a very common scenario. To support flexible grids, this class requires that all axes specify values for each datapoint, rather than a single row/column/dimension. For example, if we want to specify a 3-dimensional grid with axes x, y, z, the values of x, y, z all need to be 3-dimensional arrays; the same goes for all dependents that live on that grid. Then, say, x[i,j,k] is the x-coordinate of point i,j,k of the grid. This implies that a ``MeshgridDataDict`` can only have a single shape, i.e., all data values share the exact same nesting structure. For grids where the axes do not depend on each other, the correct values for the axes can be obtained from np.meshgrid (hence the name of the class). Example: a simple uniform 3x2 grid might look like this; x and y are the coordinates of the grid, and z is a function of the two:: x = [[0, 0], [1, 1], [2, 2]] y = [[0, 1], [0, 1], [0, 1]] z = x * y = [[0, 0], [0, 1], [0, 2]] Note: Internally we will typically assume that the nested axes are ordered from slow to fast, i.e., dimension 1 is the most outer axis, and dimension N of an N-dimensional array the most inner (i.e., the fastest changing one). This guarantees, for example, that the default implementation of np.reshape has the expected outcome. If, for some reason, the specified axes are not in that order (e.g., we might have ``z`` with ``axes = ['x', 'y']``, but ``x`` is the fast axis in the data). In such a case, the guideline is that at creation of the meshgrid, the data should be transposed such that it conforms correctly to the order as given in the ``axis = [...]`` specification of the data. The function ``datadict_to_meshgrid`` provides options for that. """ def shape(self) -> Union[None, Tuple[int, ...]]: """ Return the shape of the meshgrid. :returns: the shape as tuple. None if no data in the set. """ for d, _ in self.data_items(): return np.array(self.data_vals(d)).shape return None def validate(self) -> bool: """ Validation of the dataset. Performs the following checks: * all dependents must have the same axes * all shapes need to be identical :return: ``True`` if valid. :raises: ``ValueError`` if invalid. """ if not super().validate(): return False msg = '\n' axes = None axessrc = '' for d in self.dependents(): if axes is None: axes = self.axes(d) else: if axes != self.axes(d): msg += f" * All dependents must have the same axes, but " msg += f"{d} has {self.axes(d)} and {axessrc} has {axes}\n" shp = None shpsrc = '' for n, v in self.data_items(): if type(v['values']) not in [np.ndarray, np.ma.core.MaskedArray]: self[n]['values'] = np.array(v['values']) if shp is None: shp = v['values'].shape shpsrc = n else: if v['values'].shape != shp: msg += f" * shapes need to match, but '{n}' has" msg += f" {v['values'].shape}, " msg += f"and '{shpsrc}' has {shp}.\n" if msg != '\n': raise ValueError(msg) return True def reorder_axes(self, data_names: Union[str, Sequence[str], None] = None, **pos: int) -> 'MeshgridDataDict': """ Reorder the axes for all data. This includes transposing the data, since we're on a grid. :param pos: new axes position in the form ``axis_name = new_position``. non-specified axes positions are adjusted automatically. :return: Dataset with re-ordered axes. """ if data_names is None: data_names = self.dependents() if isinstance(data_names, str): data_names = [data_names] transposed = [] ret: "MeshgridDataDict" = self.copy() for n in data_names: neworder, newaxes = self.reorder_axes_indices(n, **pos) ret[n]['axes'] = newaxes ret[n]['values'] = self[n]['values'].transpose(neworder) for ax in self.axes(n): if ax not in transposed: ret[ax]['values'] = self[ax]['values'].transpose(neworder) transposed.append(ax) ret.validate() return ret # Tools for converting between different data types def guess_shape_from_datadict(data: DataDict) -> \ Dict[str, Union[None, Tuple[List[str], Tuple[int, ...]]]]: """ Try to guess the shape of the datadict dependents from the axes values. :param data: dataset to examine. :return: a dictionary with the dependents as keys, and inferred shapes as values. value is None, if the shape could not be inferred. """ shapes = {} for d in data.dependents(): axnames = data.axes(d) axes: Dict[str, np.ndarray] = {} for a in axnames: axdata = data.data_vals(a) assert isinstance(axdata, np.ndarray) axes[a] = axdata shapes[d] = num.guess_grid_from_sweep_direction(**axes) return shapes def datadict_to_meshgrid(data: DataDict, target_shape: Union[Tuple[int, ...], None] = None, inner_axis_order: Union[None, List[str]] = None, use_existing_shape: bool = False) \ -> MeshgridDataDict: """ Try to make a meshgrid from a dataset. :param data: input DataDict. :param target_shape: target shape. if ``None`` we use ``guess_shape_from_datadict`` to infer. :param inner_axis_order: if axes of the datadict are not specified in the 'C' order (1st the slowest, last the fastest axis) then the 'true' inner order can be specified as a list of axes names, which has to match the specified axes in all but order. The data is then transposed to conform to the specified order. **Note**: if this is given, then `target_shape` needs to be given in in the order of this inner_axis_order. The output data will keep the axis ordering specified in the `axes` property. :param use_existing_shape: if ``True``, simply use the shape that the data already has. For numpy-array data, this might already be present. if ``False``, flatten and reshape. :returns: the generated ``MeshgridDataDict``. """ # if the data is empty, return empty MeshgridData if len([k for k, _ in data.data_items()]) == 0: return MeshgridDataDict() if not data.axes_are_compatible(): raise ValueError('Non-compatible axes, cannot grid that.') if not use_existing_shape and data.is_expandable(): data = data.expand() elif use_existing_shape: target_shape = list(data.shapes().values())[0] # guess what the shape likely is. if target_shape is None: shp_specs = guess_shape_from_datadict(data) shps = [] for order_shape in shp_specs.values(): assert order_shape is not None shps.append(order_shape[1]) if len(set(shps)) > 1: raise ValueError('Cannot determine unique shape for all data.') ret = list(shp_specs.values())[0] if ret is None: raise ValueError('Shape could not be inferred.') # the guess-function returns both axis order as well as shape. inner_axis_order, target_shape = ret # construct new data newdata = MeshgridDataDict(**misc.unwrap_optional(data.structure(add_shape=False))) axlist = data.axes(data.dependents()[0]) for k, v in data.data_items(): vals = num.array1d_to_meshgrid(v['values'], target_shape, copy=True) # if an inner axis order is given, we transpose to transform from that # to the specified order. if inner_axis_order is not None: transpose_idxs = misc.reorder_indices( inner_axis_order, axlist) vals = vals.transpose(transpose_idxs) newdata[k]['values'] = vals newdata = newdata.sanitize() newdata.validate() return newdata def meshgrid_to_datadict(data: MeshgridDataDict) -> DataDict: """ Make a DataDict from a MeshgridDataDict by reshaping the data. :param data: input ``MeshgridDataDict`` :return: flattened ``DataDict`` """ newdata = DataDict(**misc.unwrap_optional(data.structure(add_shape=False))) for k, v in data.data_items(): val = v['values'].copy().reshape(-1) newdata[k]['values'] = val newdata = newdata.sanitize() newdata.validate() return newdata # Tools for manipulating and transforming data def _find_replacement_name(ddict: DataDictBase, name: str) -> str: """ Find a replacement name for a data field that already exists in a datadict. Appends '-<index>' to the name. :param ddict: datadict that contains the already existing field :param name: the name that needs to be replaced :return: a suitable replacement """ if name not in ddict: return name else: idx = 0 newname = name + f"_{idx}" while newname in ddict: idx += 1 newname = name + f"_{idx}" return newname def combine_datadicts(*dicts: DataDict) -> Union[DataDictBase, DataDict]: """ Try to make one datadict out of multiple. Basic rules: - we try to maintain the input type - return type is 'downgraded' to DataDictBase if the contents are not compatible (i.e., different numbers of records in the inputs) :returns: combined data """ # TODO: deal correctly with MeshGridData when combined with other types # TODO: should we strictly copy all values? # TODO: we should try to consolidate axes as much as possible. Currently # axes in the return can be separated even if they match (caused # by earlier mismatches) ret = None rettype = None for d in dicts: if ret is None: ret = d.copy() rettype = type(d) else: # if we don't have a well defined number of records anymore, # need to revert the type to DataDictBase if hasattr(d, 'nrecords') and hasattr(ret, 'nrecords'): if d.nrecords() != ret.nrecords(): rettype = DataDictBase else: rettype = DataDictBase ret = rettype(**ret) # First, parse the axes in the to-be-added ddict. # if dimensions with same names are present already in the current # return ddict and are not compatible with what's to be added, # rename the incoming dimension. ax_map = {} for d_ax in d.axes(): if d_ax in ret.axes(): if num.arrays_equal(d.data_vals(d_ax), ret.data_vals(d_ax)): ax_map[d_ax] = d_ax else: newax = _find_replacement_name(ret, d_ax) ax_map[d_ax] = newax ret[newax] = d[d_ax] elif d_ax in ret.dependents(): newax = _find_replacement_name(ret, d_ax) ax_map[d_ax] = newax ret[newax] = d[d_ax] else: ax_map[d_ax] = d_ax ret[d_ax] = d[d_ax] for d_dep in d.dependents(): if d_dep in ret: newdep = _find_replacement_name(ret, d_dep) else: newdep = d_dep dep_axes = [ax_map[ax] for ax in d[d_dep]['axes']] ret[newdep] = d[d_dep] ret[newdep]['axes'] = dep_axes assert ret is not None ret.validate() return ret
py
b4132b2f1b7aad366bbfb3c6c9ba1a7281da3243
"""Elementwise operators""" from __future__ import absolute_import as _abs import tvm from .. import tag from ..util import get_const_int @tvm.tag_scope(tag=tag.ELEMWISE) def relu(x): """Take relu of input x. Parameters ---------- x : tvm.Tensor Input argument. Returns ------- y : tvm.Tensor The result. """ return tvm.compute(x.shape, lambda *i: tvm.max(x(*i), tvm.const(0, x.dtype))) @tvm.tag_scope(tag=tag.ELEMWISE) def leaky_relu(x, alpha): """Take leaky relu of input x. Parameters ---------- x : tvm.Tensor Input argument. alpha : float The slope for the small gradient when x < 0 Returns ------- y : tvm.Tensor The result. """ def _compute(*indices): value = x(*indices) calpha = tvm.const(alpha, value.dtype) return tvm.select(value > 0, value, value * calpha) return tvm.compute(x.shape, _compute) @tvm.tag_scope(tag=tag.BROADCAST) def prelu(x, slope, axis=1): """ PReLU. It accepts two arguments: an input ``x`` and a weight array ``W`` and computes the output as :math:`PReLU(x) y = x > 0 ? x : W * x`, where :math:`*` is an elementwise multiplication for each sample in the batch. Arguments: x : tvm.Tensor Input argument. slope : tvm.Tensor Channelised slope tensor for prelu axis : int The axis where the channel data needs to be applied Returns: y : tvm.Tensor The result. Links: [http://arxiv.org/pdf/1502.01852v1.pdf] """ assert len(x.shape) == 4 and len(slope.shape) == 1 assert axis < len(x.shape) assert get_const_int(slope.shape[0]) == get_const_int(x.shape[axis]) def _compute_channelwise(*indices): return tvm.select(x(*indices) > 0, x(*indices), x(*indices) * slope(indices[axis])) return tvm.compute(x.shape, _compute_channelwise)
py
b4132c353ae2d4d9ef4c34101b2eb73e9f73ebf0
# Copyright 2015, 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple from synapse.api.constants import ReadReceiptEventFields, ReceiptTypes from synapse.appservice import ApplicationService from synapse.streams import EventSource from synapse.types import JsonDict, ReadReceipt, UserID, get_domain_from_id if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class ReceiptsHandler: def __init__(self, hs: "HomeServer"): self.notifier = hs.get_notifier() self.server_name = hs.config.server.server_name self.store = hs.get_datastores().main self.event_auth_handler = hs.get_event_auth_handler() self.hs = hs # We only need to poke the federation sender explicitly if its on the # same instance. Other federation sender instances will get notified by # `synapse.app.generic_worker.FederationSenderHandler` when it sees it # in the receipts stream. self.federation_sender = None if hs.should_send_federation(): self.federation_sender = hs.get_federation_sender() # If we can handle the receipt EDUs we do so, otherwise we route them # to the appropriate worker. if hs.get_instance_name() in hs.config.worker.writers.receipts: hs.get_federation_registry().register_edu_handler( "m.receipt", self._received_remote_receipt ) else: hs.get_federation_registry().register_instances_for_edu( "m.receipt", hs.config.worker.writers.receipts, ) self.clock = self.hs.get_clock() self.state = hs.get_state_handler() async def _received_remote_receipt(self, origin: str, content: JsonDict) -> None: """Called when we receive an EDU of type m.receipt from a remote HS.""" receipts = [] for room_id, room_values in content.items(): # If we're not in the room just ditch the event entirely. This is # probably an old server that has come back and thinks we're still in # the room (or we've been rejoined to the room by a state reset). is_in_room = await self.event_auth_handler.check_host_in_room( room_id, self.server_name ) if not is_in_room: logger.info( "Ignoring receipt for room %r from server %s as we're not in the room", room_id, origin, ) continue for receipt_type, users in room_values.items(): for user_id, user_values in users.items(): if get_domain_from_id(user_id) != origin: logger.info( "Received receipt for user %r from server %s, ignoring", user_id, origin, ) continue receipts.append( ReadReceipt( room_id=room_id, receipt_type=receipt_type, user_id=user_id, event_ids=user_values["event_ids"], data=user_values.get("data", {}), ) ) await self._handle_new_receipts(receipts) async def _handle_new_receipts(self, receipts: List[ReadReceipt]) -> bool: """Takes a list of receipts, stores them and informs the notifier.""" min_batch_id: Optional[int] = None max_batch_id: Optional[int] = None for receipt in receipts: res = await self.store.insert_receipt( receipt.room_id, receipt.receipt_type, receipt.user_id, receipt.event_ids, receipt.data, ) if not res: # res will be None if this read receipt is 'old' continue stream_id, max_persisted_id = res if min_batch_id is None or stream_id < min_batch_id: min_batch_id = stream_id if max_batch_id is None or max_persisted_id > max_batch_id: max_batch_id = max_persisted_id # Either both of these should be None or neither. if min_batch_id is None or max_batch_id is None: # no new receipts return False affected_room_ids = list({r.room_id for r in receipts}) self.notifier.on_new_event("receipt_key", max_batch_id, rooms=affected_room_ids) # Note that the min here shouldn't be relied upon to be accurate. await self.hs.get_pusherpool().on_new_receipts( min_batch_id, max_batch_id, affected_room_ids ) return True async def received_client_receipt( self, room_id: str, receipt_type: str, user_id: str, event_id: str, hidden: bool ) -> None: """Called when a client tells us a local user has read up to the given event_id in the room. """ receipt = ReadReceipt( room_id=room_id, receipt_type=receipt_type, user_id=user_id, event_ids=[event_id], data={"ts": int(self.clock.time_msec()), "hidden": hidden}, ) is_new = await self._handle_new_receipts([receipt]) if not is_new: return if self.federation_sender and not ( self.hs.config.experimental.msc2285_enabled and hidden ): await self.federation_sender.send_read_receipt(receipt) class ReceiptEventSource(EventSource[int, JsonDict]): def __init__(self, hs: "HomeServer"): self.store = hs.get_datastores().main self.config = hs.config @staticmethod def filter_out_hidden(events: List[JsonDict], user_id: str) -> List[JsonDict]: visible_events = [] # filter out hidden receipts the user shouldn't see for event in events: content = event.get("content", {}) new_event = event.copy() new_event["content"] = {} for event_id in content.keys(): event_content = content.get(event_id, {}) m_read = event_content.get(ReceiptTypes.READ, {}) # If m_read is missing copy over the original event_content as there is nothing to process here if not m_read: new_event["content"][event_id] = event_content.copy() continue new_users = {} for rr_user_id, user_rr in m_read.items(): try: hidden = user_rr.get("hidden") except AttributeError: # Due to https://github.com/matrix-org/synapse/issues/10376 # there are cases where user_rr is a string, in those cases # we just ignore the read receipt continue if hidden is not True or rr_user_id == user_id: new_users[rr_user_id] = user_rr.copy() # If hidden has a value replace hidden with the correct prefixed key if hidden is not None: new_users[rr_user_id].pop("hidden") new_users[rr_user_id][ ReadReceiptEventFields.MSC2285_HIDDEN ] = hidden # Set new users unless empty if len(new_users.keys()) > 0: new_event["content"][event_id] = {ReceiptTypes.READ: new_users} # Append new_event to visible_events unless empty if len(new_event["content"].keys()) > 0: visible_events.append(new_event) return visible_events async def get_new_events( self, user: UserID, from_key: int, limit: Optional[int], room_ids: Iterable[str], is_guest: bool, explicit_room_id: Optional[str] = None, ) -> Tuple[List[JsonDict], int]: from_key = int(from_key) to_key = self.get_current_key() if from_key == to_key: return [], to_key events = await self.store.get_linearized_receipts_for_rooms( room_ids, from_key=from_key, to_key=to_key ) if self.config.experimental.msc2285_enabled: events = ReceiptEventSource.filter_out_hidden(events, user.to_string()) return events, to_key async def get_new_events_as( self, from_key: int, service: ApplicationService ) -> Tuple[List[JsonDict], int]: """Returns a set of new read receipt events that an appservice may be interested in. Args: from_key: the stream position at which events should be fetched from service: The appservice which may be interested Returns: A two-tuple containing the following: * A list of json dictionaries derived from read receipts that the appservice may be interested in. * The current read receipt stream token. """ from_key = int(from_key) to_key = self.get_current_key() if from_key == to_key: return [], to_key # Fetch all read receipts for all rooms, up to a limit of 100. This is ordered # by most recent. rooms_to_events = await self.store.get_linearized_receipts_for_all_rooms( from_key=from_key, to_key=to_key ) # Then filter down to rooms that the AS can read events = [] for room_id, event in rooms_to_events.items(): if not await service.matches_user_in_member_list(room_id, self.store): continue events.append(event) return events, to_key def get_current_key(self, direction: str = "f") -> int: return self.store.get_max_receipt_stream_id()
py
b4132df8ae5cf0d3023c1d4e6d9e2f18d78024aa
import os, sys, time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from reader import batch_patcher as patcher from network.WideResNet.WideResNet import * from network.DenseNet.DenseNet import * os.environ['TF_CPP_MIN_LOG_LEVEL']='3' tf.logging.set_verbosity(tf.logging.ERROR) def AdaBatch(gpu_id, input_reader, model_type, training_epochs, batch_size, lr_boundaries, lr_values, optimizer_type, update_method, warm_up_period, s_e=100.0, pretrain=0, log_dir="log"): if not os.path.exists(log_dir): os.makedirs(log_dir) text_log = [] text_log.append("epoch, time(s), learning rate, minibatch loss, minibatch error, test loss, test error") num_train_images = input_reader.num_train_images num_val_images = input_reader.num_val_images num_label = input_reader.num_classes image_shape = [input_reader.width, input_reader.height, input_reader.depth] train_batch_patcher = patcher.BatchPatcher(num_train_images, batch_size, num_label, s_e=s_e, update_method=update_method) validation_batch_patcher = patcher.BatchPatcher(num_val_images, batch_size, num_label, update_method=update_method) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.visible_device_list = str(gpu_id) config.gpu_options.allow_growth = True graph = tf.Graph() with graph.as_default(): with tf.device('/gpu:'+str(gpu_id)): with tf.Session(config=config) as sess: # Input Graph Generation ############################################################################# t_ids, t_images, t_labels = input_reader.data_read(batch_size, train=True) v_ids, v_images, v_labels = input_reader.data_read(batch_size, train=False) # Model Graph Construction ########################################################################### if model_type == "DenseNet-25-12": model = DenseNet(25, 12, image_shape, num_label, batch_size, batch_size) elif model_type == "WideResNet16-8": model = WideResNet(16, 8, image_shape, num_label, batch_size, batch_size) train_loss_op, train_accuracy_op, train_op, _, train_distance_op = model.build_train_op(lr_boundaries, lr_values, optimizer_type) test_loss_op, test_accuracy_op, _ = model.build_test_op() # Data load in memeory ############################################################################### print("start to load data set.") coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) train_batch_patcher.bulk_load_in_memory(sess, t_ids, t_images, t_labels) validation_batch_patcher.bulk_load_in_memory(sess, v_ids, v_images, v_labels) start_time = time.time() # Model Initialization ########################################################################### # init params: we share the initial epochs. See paper. if pretrain != 0: start_time = time.time() saver = tf.train.Saver() file_dir = "init_weight/" + input_reader.dataset_name + "/" + model_type + "_" + optimizer_type + "_lr=" + str(lr_values[0]) + "_e=" + str(pretrain) + "/" minus_start_time = 0 with open(file_dir + "text_log.csv") as f: for line in f: print(line, end="") text_log.append(line.rstrip()) minus_start_time = line.split(",")[1] start_time = start_time - float(minus_start_time) saver.restore(sess, file_dir + "model.ckpt") for i in range(train_batch_patcher.num_iters_per_epoch): ids, images, labels = train_batch_patcher.get_init_mini_batch(i) distance = sess.run(train_distance_op, feed_dict={model.train_image_placeholder: images, model.train_label_placeholder: labels}) train_batch_patcher.update_prob_table(ids, distance) print(train_batch_patcher.prob_table.table) print("shared weight is successfully loaded") else: sess.run(tf.global_variables_initializer()) # Traing Process ##################################################################################### for epoch in range(pretrain, training_epochs): if epoch < warm_up_period: is_warm_up = True else: is_warm_up = False # (1) Mini-batch loss and error along with netowrk updates avg_mini_loss = 0.0 avg_mini_acc = 0.0 for i in range(train_batch_patcher.num_iters_per_epoch): # Next batch depends on the method: {Ada_Boundary, Ada-Hard, Ada-Uniform} ids, images, labels = train_batch_patcher.get_next_mini_batch(num_of_sample=batch_size, is_warm_up=is_warm_up) mini_loss, mini_acc, _, distance = sess.run([train_loss_op, train_accuracy_op, train_op, train_distance_op], feed_dict={model.train_image_placeholder: images, model.train_label_placeholder: labels}) train_batch_patcher.update_prob_table(ids, distance) avg_mini_loss += mini_loss avg_mini_acc += mini_acc avg_mini_loss /= train_batch_patcher.num_iters_per_epoch avg_mini_acc /= train_batch_patcher.num_iters_per_epoch # (2) Compute training loss and error avg_train_loss = 0.0 avg_train_acc = 0.0 for i in range(train_batch_patcher.num_iters_per_epoch): ids, images, labels = train_batch_patcher.get_init_mini_batch(i) train_loss, train_acc = sess.run([test_loss_op, test_accuracy_op], feed_dict={model.test_image_placeholder: images, model.test_label_placeholder: labels}) avg_train_loss += train_loss avg_train_acc += train_acc avg_train_loss /= train_batch_patcher.num_iters_per_epoch avg_train_acc /= train_batch_patcher.num_iters_per_epoch # (3) Validation (or test) loss and error avg_val_loss = 0.0 avg_val_acc = 0.0 for i in range(validation_batch_patcher.num_iters_per_epoch): ids, images, labels = validation_batch_patcher.get_init_mini_batch(i) val_loss, val_acc = sess.run([test_loss_op, test_accuracy_op], feed_dict={model.test_image_placeholder: images, model.test_label_placeholder: labels}) avg_val_loss += val_loss avg_val_acc += val_acc avg_val_loss /= validation_batch_patcher.num_iters_per_epoch avg_val_acc /= validation_batch_patcher.num_iters_per_epoch # Log Writing #################################################################################### cur_lr = sess.run(model.learning_rate) print((epoch + 1), ", ", int(time.time() - start_time) ,", ", cur_lr, ", ", avg_mini_loss, ", ", (1.0-avg_mini_acc), ", ", avg_train_loss, ", ", (1.0-avg_train_acc), ", ", avg_val_loss, ", ", (1.0-avg_val_acc)) text_log.append(str(epoch + 1) + ", " + str(int(time.time() - start_time)) + ", " + str(cur_lr) + ", " + str(avg_mini_loss) + ", " + str(1.0-avg_mini_acc) + ", " + str(avg_train_loss) + ", " + str(1.0-avg_train_acc) + ", " + str(avg_val_loss) + ", " + str(1.0-avg_val_acc)) coord.request_stop() coord.join(threads) sess.close() # Log Flushing f = open(log_dir + "/text_log.csv", "w") for text in text_log: f.write(text + "\n") f.close()
py
b4132e0ed2eb527a4f9388952aae8e5c01cd13a0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://github.com/kennethreitz/setup.py ❤️ ✨ 🍰 ✨ import os from setuptools import setup, find_packages NAME = 'stones' DESCRIPTION = 'Library for Persistent key-value containers, compatible with Python dict.' KEYWORDS = 'persistent dict' URL = 'https://github.com/croqaz/Stones' AUTHOR = 'Cristi Constantin' EMAIL = '[email protected]' here = os.path.abspath(os.path.dirname(__file__)) about = {} try: with open(os.path.join(here, 'README.md')) as f: long_description = '\n' + f.read() except FileNotFoundError: long_description = DESCRIPTION with open(os.path.join(here, NAME, '__version__.py')) as f: exec(f.read(), about) setup( version=about['__version__'], name=NAME, description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', keywords=KEYWORDS, url=URL, author=AUTHOR, author_email=EMAIL, license='MIT', packages=find_packages(exclude=['tests']), include_package_data=True, zip_safe=True, python_requires='>= 3.6', extras_require={ 'dev': ['flake8', 'codecov'], 'test': ['pytest', 'pytest-cov'], }, classifiers=[ # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'Natural Language :: English', 'Operating System :: OS Independent', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Software Development', 'Topic :: Database', ])
py
b4132fab3ed7e79a1b5cca2b3987fda554a6cbd6
""" Python module for getting stock data @module: pinance @author: neberej (https://github.com/neberej) @version: 1.00 """ # Dependencies import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), "engine")) import gfinance import gfinancenews import yfinance import yfinance2 from datetime import datetime, timedelta millnames = ['','T','M','B','T'] # Human readable numbers def millify(n): n = float(n) millidx = max(0,min(len(millnames)-1, int(math.floor(0 if n == 0 else math.log10(abs(n))/3)))) return '{:.0f}{}'.format(n / 10**(3 * millidx), millnames[millidx]) # Check if dictionary def isValid(item): if(type(item) is dict): return True return False # Combine data from all three sources and remove all keys which has 'None' as values def combine_objects(a, b, c): data = {} if isValid(a): data.update(a) if isValid(b): data.update(b) if isValid(c): data.update(c) res = {k:v for k,v in data.items() if v is not None} return res # Convert date/time to unix time for options def totimestamp(inputdate, epoch=datetime(1970,1,1)): dt = datetime.strptime(inputdate, '%Y-%m-%d') td = dt - epoch timestamp = (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10**6) / 1e6 # td.total_seconds() return int(timestamp) # Extract expiry, call/put and strike price (allows to enter them on any order) def options_params(a, b, c): expiry = totimestamp(a) return expiry, b, c class Base(object): def __init__(self, symbol): self.symbol = symbol def __request_quotes__(self): gfinance_data = gfinance.get_quotes(self.symbol) yfinance_data = yfinance.get_quotes(self.symbol) yfinance2_data = yfinance2.get_quotes(self.symbol) return combine_objects(gfinance_data, yfinance_data, yfinance2_data) def __request_news__(self): gfinance_news = gfinancenews.get_news(self.symbol) return gfinance_news def __request_options__(self, a, b, c): yfinance2_options = yfinance2.get_options(self.symbol, a, b, c) return yfinance2_options def __getQuotes__(self): self.quotes_data = self.__request_quotes__() def __getNews__(self): self.news_data = self.__request_news__() def __getOptions__(self, a, b, c): expiry, type, strike = options_params(a, b, c) self.options_data = self.__request_options__(expiry, type, strike) class Pinance(Base): def __init__(self, symbol): super(Pinance, self).__init__(symbol) self.symbol = symbol def get_quotes(self): self.__getQuotes__() def get_news(self): self.__getNews__() def get_options(self, a, b, c): self.__getOptions__(a, b, c) def quotes_data(self): return self.quotes_data def news_data(self): return self.news_data def options_data(self): return self.options_data
py
b41331a27d9174b401a838ed7a4383ce20b13af6
from easygraphics.turtle import * def main(): create_world() set_speed(50) while is_run(): fd(100) rt(90) fd(100) rt(90) fd(50) rt(90) fd(50) rt(90) fd(100) rt(90) fd(25) rt(90) fd(25) rt(90) fd(50) rt(10) forward(50) close_world() easy_run(main)
py
b41331b2ee01211723cfba1ff86dbbda96942fc5
ACCEPTED_SEMTYPES = { 'T020', # Acquired Abnormality, ex.: Hemorrhoids; Hernia, Femoral; Cauliflower ear # 'T052', # Activity, ex.: Expeditions; Information Distribution; Social Planning # 'T100', # Age Group, ex.: Adult; Infant, Premature; Adolescent (age group) 'T087', # Amino Acid Sequence, ex.: Signal Peptides; Homologous Sequences, Amino Acid; Abnormal amino acid 'T116', # Amino Acid, Peptide, or Protein, ex.: Amino Acids, Cyclic; Glycopeptides; Keratin 'T011', # Amphibian, ex.: Salamandra; Urodela; Brazilian horned frog 'T190', # Anatomical Abnormality, ex.: Bronchial Fistula; Foot Deformities; Hyperostosis of skull 'T017', # Anatomical Structure, ex.: Cadaver; Pharyngostome; Anatomic structures 'T008', # Animal, ex.: Animals; Animals, Laboratory; Carnivore 'T195', # Antibiotic, ex.: Antibiotics; bactericide; Thienamycins 'T194', # Archaeon, ex.: Thermoproteales; Haloferax volcanii; Methanospirillum 'T007', # Bacterium, ex.: Acetobacter; Bacillus cereus; Cytophaga # 'T053', # Behavior, ex.: Homing Behavior; Sexuality; Habitat Selection 'T038', # Biologic Function, ex.: Antibody Formation; Drug resistance; Homeostasis 'T123', # Biologically Active Substance, ex.: Cytokinins; Pheromone 'T091', # Biomedical Occupation or Discipline, ex.: Adolescent Medicine; Cellular Neurobiology; Dentistry 'T122', # Biomedical or Dental Material, ex.: Acrylic Resins; Bone Cements; Dentifrices # 'T012', # Bird, ex.: Serinus; Ducks; Quail 'T029', # Body Location or Region, ex.: Forehead; Sublingual Region; Base of skull structure 'T023', # Body Part, Organ, or Organ Component, ex.: Aorta; Brain Stem; Structure of neck of femur # 'T030', # Body Space or Junction, ex.: Knee joint; Greater sac of peritoneum; Synapses 'T031', # Body Substance, ex.: Amniotic Fluid; saliva; Smegma 'T022', # Body System, ex.: Endocrine system; Renin-angiotensin system; Reticuloendothelial System 'T088', # Carbohydrate Sequence, ex.: Carbohydrate Sequence; Abnormal carbohydrate sequence 'T025', # Cell, ex.: B-Lymphocytes; Dendritic Cells; Fibroblasts 'T026', # Cell Component, ex.: Axon; Golgi Apparatus; Organelles 'T043', # Cell Function, ex.: Cell Cycle; Cell division; Phagocytosis 'T049', # Cell or Molecular Dysfunction, ex.: DNA Damage; Wallerian Degeneration; Atypical squamous metaplasia 'T103', # Chemical, ex.: Acids; Chemicals; Ionic Liquids 'T120', # Chemical Viewed Functionally, ex.: Aerosol Propellants; Detergents; Stabilizing Agents 'T104', # Chemical Viewed Structurally, ex.: Ammonium Compounds; Cations; Sulfur Compounds # 'T185', # Classification, ex.: Anatomy (MeSH Category); Tumor Stage Classification; axis i 'T201', # Clinical Attribute, ex.: Bone Density; heart rate; Range of Motion, Articular 'T200', # Clinical Drug, ex.: Ranitidine 300 MG Oral Tablet [Zantac]; Aspirin 300 MG Delayed Release Oral # 'T077', # Conceptual Entity, ex.: Geographic Factors; Fractals; Secularism # 'T019', # Congenital Abnormality, ex.: Albinism; Cleft palate with cleft lip; Polydactyly of toes # 'T056', # Daily or Recreational Activity, ex.: Badminton; Dancing; Swimming 'T060', # Diagnostic Procedure, ex.: Biopsy; Heart Auscultation; Magnetic Resonance Imaging 'T047', # Disease or Syndrome, ex.: Diabetes Mellitus; Drug Allergy; Malabsorption Syndrome 'T203', # Drug Delivery Device, ex.: Nordette 21 Day Pack; {7 (Terazosin 1 MG Oral Tablet) / 7 (Terazosin 2 MG # 'T065', # Educational Activity, ex.: Academic Training; Family Planning Training; Preceptorship 'T196', # Element, Ion, or Isotope, ex.: Carbon; Chromium Isotopes; Radioisotopes 'T018', # Embryonic Structure, ex.: Blastoderm; Fetus; Neural Crest # 'T071', # Entity, ex.: Gifts, Financial; Image; Product Part 'T069', # Environmental Effect of Humans, ex.: Air Pollution; Desertification; Bioremediation 'T126', # Enzyme, ex.: GTP Cyclohydrolase II; enzyme substrate complex; arginine amidase 'T204', # Eukaryote, ex.: Order Acarina; Bees; Plasmodium malariae 'T051', # Event, ex.: Anniversaries; Exposure to Mumps virus (event); Device Unattended 'T050', # Experimental Model of Disease, ex.: Alloxan Diabetes; Liver Cirrhosis, Experimental; Transient Gene Knock-Out # 'T099', # Family Group, ex.: Daughter; Is an only child; Unmarried Fathers 'T033', # Finding, ex.: Birth History; Downward displacement of diaphragm; Decreased glucose level # 'T013', # Fish, ex.: Bass; Salmonidae; Whitefish # 'T168', # Food, ex.: Beverages; Egg Yolk (Dietary); Ice Cream # 'T021', # Fully Formed Anatomical Structure, ex.: Entire body as a whole; Female human body; Set of parts of human body 'T169', # Functional Concept, ex.: Interviewer Effect; Problem Formulation; Endogenous 'T004', # Fungus, ex.: Aspergillus clavatus; Blastomyces; Neurospora 'T028', # Gene or Genome, ex.: Alleles; Genome, Human; rRNA Operon 'T045', # Genetic Function, ex.: Early Gene Transcription; Gene Amplification; RNA Splicing 'T083', # Geographic Area, ex.: Baltimore; Canada; Far East 'T064', # Governmental or Regulatory Activity, ex.: Certification; Credentialing; Public Policy 'T096', # Group, ex.: Focus Groups; jury; teams # 'T102', # Group Attribute, ex.: Family Size; Group Structure; Life Expectancy 'T131', # Hazardous or Poisonous Substance, ex.: Carcinogens; Fumigant; Mutagens 'T058', # Health Care Activity, ex.: ambulatory care services; Clinic Activities; Preventive Health Services # 'T093', # Health Care Related Organization, ex.: Centers for Disease Control and Prevention (U.S.); Halfway Houses; # 'T125', # Hormone, ex.: Enteric Hormones; thymic humoral factor; Prohormone # 'T016', # Human, ex.: Homo sapiens; jean piaget; Member of public 'T068', # Human-caused Phenomenon or Process, ex.: Baby Boom; Cultural Evolution; Mass Media # 'T078', # Idea or Concept, ex.: Capitalism; Civil Rights; Ethics # 'T129', # Immunologic Factor, ex.: Antigens; Immunologic Factors; Blood group antigen P 'T130', # Indicator, Reagent, or Diagnostic Aid, ex.: Fluorescent Dyes; Indicators and Reagents; India ink stain 'T055', # Individual Behavior, ex.: Assertiveness; Grooming; Risk-Taking 'T037', # Injury or Poisoning, ex.: Accidental Falls; Carbon Monoxide Poisoning; Snake Bites 'T197', # Inorganic Chemical, ex.: Carbonic Acid; aluminum nitride; ferric citrate 'T170', # Intellectual Product, ex.: Decision Support Techniques; Information Systems; Literature 'T034', # Laboratory or Test Result, ex.: Blood Flow Velocity; Serum Calcium Level; Spinal Fluid Pressure 'T059', # Laboratory Procedure, ex.: Blood Protein Electrophoresis; Crystallography; Radioimmunoassay 'T171', # Language, ex.: Armenian language; braille; Bilingualism 'T066', # Machine Activity, ex.: Computer Simulation; Equipment Failure; Natural Language Processing 'T015', # Mammal, ex.: Ursidae Family; Hamsters; Macaca 'T073', # Manufactured Object, ex.: car seat; Cooking and Eating Utensils; Goggles 'T074', # Medical Device, ex.: Bone Screws; Headgear, Orthodontic; Compression Stockings 'T048', # Mental or Behavioral Dysfunction, ex.: Agoraphobia; Cyclothymic Disorder; Frigidity # 'T041', # Mental Process, ex.: Anger; Auditory Fatigue; Avoidance Learning 'T063', # Molecular Biology Research Technique, ex.: Northern Blotting; Genetic Engineering; In Situ Hybridization 'T044', # Molecular Function, ex.: Binding, Competitive; Electron Transport; Glycolysis 'T085', # Molecular Sequence, ex.: Genetic Code; Homologous Sequences; Molecular Sequence 'T070', # Natural Phenomenon or Process, ex.: Air Movements; Corrosion; Lightning (phenomenon) 'T191', # Neoplastic Process, ex.: Abdominal Neoplasms; Bowen's Disease; Polyp in nasopharynx 'T114', # Nucleic Acid, Nucleoside, or Nucleotide, ex.: Cytosine Nucleotides; Guanine; Oligonucleotides 'T086', # Nucleotide Sequence, ex.: Base Sequence; Direct Repeat; RNA Sequence 'T090', # Occupation or Discipline, ex.: Aviation; Craniology; Ecology 'T057', # Occupational Activity, ex.: Collective Bargaining; Commerce; Containment of Biohazards 'T042', # Organ or Tissue Function, ex.: Osteogenesis; Renal Circulation; Tooth Calcification 'T109', # Organic Chemical, ex.: Benzene Derivatives 'T001', # Organism, ex.: Organism; Infectious agent; Heterotroph # 'T032', # Organism Attribute, ex.: Age; Birth Weight; Eye Color 'T040', # Organism Function, ex.: Breeding; Hibernation; Motor Skills # 'T092', # Organization, ex.: Labor Unions; United Nations; Boarding school 'T046', # Pathologic Function, ex.: Inflammation; Shock; Thrombosis # 'T101', # Patient or Disabled Group, ex.: Amputees; Institutionalized Child; Mentally Ill Persons 'T121', # Pharmacologic Substance, ex.: Antiemetics; Cardiovascular Agents; Alka-Seltzer 'T067', # Phenomenon or Process, ex.: Disasters; Motor Traffic Accidents; Depolymerization # 'T072', # Physical Object, ex.: Printed Media; Meteors; Physical object 'T039', # Physiologic Function, ex.: Biorhythms; Hearing; Vasodilation # 'T002', # Plant, ex.: Aloe; Pollen; Helianthus species # 'T098', # Population Group, ex.: Asian Americans; Ethnic group; Adult Offenders # 'T097', # Professional or Occupational Group, ex.: Clergy; Demographers; Hospital Volunteers # 'T094', # Professional Society, ex.: American Medical Association; International Council of Nurses; Library # 'T080', # Qualitative Concept, ex.: Clinical Competence; Consumer Satisfaction; Health Status # 'T081', # Quantitative Concept, ex.: Age Distribution; Metric System; Selection Bias # 'T192', # Receptor, ex.: Binding Sites; Lymphocyte antigen CD4 receptor; integrin alpha11beta1 'T089', # Regulation or Law, ex.: Building Codes; Criminal Law; Health Planning Guidelines # 'T014', # Reptile, ex.: Alligators; Water Mocassin; Genus Python (organism) # 'T062', # Research Activity, ex.: Animal Experimentation; Biomedical Research; Experimental Replication # 'T075', # Research Device, ex.: Electrodes, Enzyme; DNA Microarray Chip; Particle Count and Size Analyzer # 'T095', # Self-help or Relief Organization, ex.: Alcoholics Anonymous; Charities - organization; Red Cross 'T184', # Sign or Symptom, ex.: Dyspnea; Nausea; Pain # 'T054', # Social Behavior, ex.: Acculturation; Communication; Interpersonal Relations # 'T082', # Spatial Concept, ex.: Mandibular Rest Position; Lateral; Extrinsic 'T167', # Substance, ex.: Air (substance); Fossils; Plastics # 'T079', # Temporal Concept, ex.: Birth Intervals; Half-Life; Postoperative Period 'T061', # Therapeutic or Preventive Procedure, ex.: Cesarean section; Dermabrasion; Family psychotherapy 'T024', # Tissue, ex.: Cartilage; Endothelium; Epidermis 'T010', # Vertebrate, ex.: Vertebrates; Gnathostomata vertebrate; Craniata <chordata> 'T005', # Virus, ex.: Coliphages; Echovirus; Parvoviridae 'T127' # Vitamin, ex.: 5,25-Dihydroxy cholecalciferol; alpha-tocopheryl oxalate; Vitamin A [EPC] }
py
b4133256f8ee472601cd212ce75405d08e94afaf
from modules.utilities import check_dir from shutil import copytree, copy2, make_archive from glob import glob project_dir = '/home/dakorda/Python/NN/' backup_dir_pref = '/home/dakorda/Python/NN/backup/' def make_backup(version: str) -> None: # definition of backup dirs and creating them backup_dir = "".join((backup_dir_pref, version)) backup_dir_modules = "".join((backup_dir, '/modules/')) backup_dir_models = "".join((backup_dir, '/Models/')) backup_dir_datasets = "".join((backup_dir, '/Datasets/')) backup_dir_range_test = "".join((backup_dir, '/range_test_data/')) check_dir(backup_dir_modules) # check_dir(backup_dir_models) # copytree creates the folder # check_dir(backup_dir_datasets) # copytree creates the folder # check_dir(backup_dir_range_test) # copytree creates the folder # copy main* and make_backup source = "".join((project_dir, '/ma*.py')) for file in glob(source): copy2(file, backup_dir) # copy modules source = "".join((project_dir, '/modules/*.py')) for file in glob(source): copy2(file, backup_dir_modules) # copy models source = "".join((project_dir, '/Models/')) copytree(source, backup_dir_models) # copy datasets source = "".join((project_dir, '/Datasets/')) copytree(source, backup_dir_datasets) source = "".join((project_dir, '/range_test_data/')) copytree(source, backup_dir_range_test) # zip the folder make_archive(backup_dir, 'zip', backup_dir) if __name__ == '__main__': make_backup('v1.1')
py
b41332e661db0d8b175c89d3a0dc62400e673e45
from pathlib import Path from PIL import Image import numpy as np # Constants TRAINING_PATH = "/Users/gantlaborde/Downloads/rps" SPRITE_SIZE = 64 # Initialization x_data = [] y_data = [] final_image = np.array([]) y_offset = 0 new_im = Image.new('RGB', (SPRITE_SIZE*SPRITE_SIZE, 2520)) # Load the training sprite by looping over every image file for image_file in Path(TRAINING_PATH).glob("**/*.png"): # Load the current image file src_image = Image.open(image_file) # make it smaller downsized = src_image.resize((SPRITE_SIZE,SPRITE_SIZE)) # get 1px high version pixels = list(downsized.getdata()) smoosh = Image.new('RGB', (SPRITE_SIZE * SPRITE_SIZE, 1)) smoosh.putdata(pixels) # store image x_data.append(smoosh) # Use image path to build our answer key if "rock" in image_file.stem: y_data.append(1) elif "paper" in image_file.stem: y_data.append(2) else: y_data.append(3) # Now randomize X and Y the same way before making data # (the JS code splits then randomizes) DERP!!! assert len(y_data) == len(x_data) p = np.random.permutation(len(y_data)) npy = np.array(y_data) shuffled_y = npy[p].tolist() one_hot_y = [] # Build the data image and 1-hot encoded answer array for idx in p: # build master sprite 1 pixel down at a time new_im.paste(x_data[idx], (0, y_offset)) # build 1-hot encoded answer key if shuffled_y[y_offset] == 1: one_hot_y.append(1) one_hot_y.append(0) one_hot_y.append(0) elif shuffled_y[y_offset] == 2: one_hot_y.append(0) one_hot_y.append(1) one_hot_y.append(0) else: one_hot_y.append(0) one_hot_y.append(0) one_hot_y.append(1) # NEEEEXXXXXXT y_offset += 1 # Save answers file (Y) newFile = open("labels_uint8", "wb") newFileByteArray = bytearray(one_hot_y) bytesWritte = newFile.write(newFileByteArray) # should be num classes * original answer key size assert bytesWritte == (3 * len(y_data)) # Save Data Sprite (X) new_im.save('data.png') # Good ol Debugging Stuff # new_im.show() # print(str(shuffled_y)) # print(str(one_hot_y))
py
b413351405738f763ba947e6383f9a6174f43ba5
#!/usr/bin/env python3 # Copyright (c) 2017 The Bytcoyn Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test message sending before handshake completion. A node should never send anything other than VERSION/VERACK/REJECT until it's received a VERACK. This test connects to a node and sends it a few messages, trying to intice it into sending us something it shouldn't. Also test that nodes that send unsupported service bits to arcanad are disconnected and don't receive a VERACK. Unsupported service bits are currently 1 << 5 and 1 << 7 (until August 1st 2018).""" from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * banscore = 10 class CLazyNode(P2PInterface): def __init__(self): super().__init__() self.unexpected_msg = False self.ever_connected = False def bad_message(self, message): self.unexpected_msg = True self.log.info("should not have received message: %s" % message.command) def on_open(self): self.ever_connected = True def on_version(self, message): self.bad_message(message) def on_verack(self, message): self.bad_message(message) def on_reject(self, message): self.bad_message(message) def on_inv(self, message): self.bad_message(message) def on_addr(self, message): self.bad_message(message) def on_getdata(self, message): self.bad_message(message) def on_getblocks(self, message): self.bad_message(message) def on_tx(self, message): self.bad_message(message) def on_block(self, message): self.bad_message(message) def on_getaddr(self, message): self.bad_message(message) def on_headers(self, message): self.bad_message(message) def on_getheaders(self, message): self.bad_message(message) def on_ping(self, message): self.bad_message(message) def on_mempool(self, message): self.bad_message(message) def on_pong(self, message): self.bad_message(message) def on_feefilter(self, message): self.bad_message(message) def on_sendheaders(self, message): self.bad_message(message) def on_sendcmpct(self, message): self.bad_message(message) def on_cmpctblock(self, message): self.bad_message(message) def on_getblocktxn(self, message): self.bad_message(message) def on_blocktxn(self, message): self.bad_message(message) # Node that never sends a version. We'll use this to send a bunch of messages # anyway, and eventually get disconnected. class CNodeNoVersionBan(CLazyNode): # send a bunch of veracks without sending a message. This should get us disconnected. # NOTE: implementation-specific check here. Remove if arcanad ban behavior changes def on_open(self): super().on_open() for i in range(banscore): self.send_message(msg_verack()) def on_reject(self, message): pass # Node that never sends a version. This one just sits idle and hopes to receive # any message (it shouldn't!) class CNodeNoVersionIdle(CLazyNode): def __init__(self): super().__init__() # Node that sends a version but not a verack. class CNodeNoVerackIdle(CLazyNode): def __init__(self): self.version_received = False super().__init__() def on_reject(self, message): pass def on_verack(self, message): pass # When version is received, don't reply with a verack. Instead, see if the # node will give us a message that it shouldn't. This is not an exhaustive # list! def on_version(self, message): self.version_received = True self.send_message(msg_ping()) self.send_message(msg_getaddr()) class P2PLeakTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['-banscore='+str(banscore)]] def run_test(self): self.nodes[0].setmocktime(1501545600) # August 1st 2017 no_version_bannode = self.nodes[0].add_p2p_connection(CNodeNoVersionBan(), send_version=False) no_version_idlenode = self.nodes[0].add_p2p_connection(CNodeNoVersionIdle(), send_version=False) no_verack_idlenode = self.nodes[0].add_p2p_connection(CNodeNoVerackIdle()) unsupported_service_bit5_node = self.nodes[0].add_p2p_connection(CLazyNode(), services=NODE_NETWORK|NODE_UNSUPPORTED_SERVICE_BIT_5) unsupported_service_bit7_node = self.nodes[0].add_p2p_connection(CLazyNode(), services=NODE_NETWORK|NODE_UNSUPPORTED_SERVICE_BIT_7) network_thread_start() wait_until(lambda: no_version_bannode.ever_connected, timeout=10, lock=mininode_lock) wait_until(lambda: no_version_idlenode.ever_connected, timeout=10, lock=mininode_lock) wait_until(lambda: no_verack_idlenode.version_received, timeout=10, lock=mininode_lock) wait_until(lambda: unsupported_service_bit5_node.ever_connected, timeout=10, lock=mininode_lock) wait_until(lambda: unsupported_service_bit7_node.ever_connected, timeout=10, lock=mininode_lock) # Mine a block and make sure that it's not sent to the connected nodes self.nodes[0].generate(1) #Give the node enough time to possibly leak out a message time.sleep(5) #This node should have been banned assert no_version_bannode.state != "connected" # These nodes should have been disconnected assert unsupported_service_bit5_node.state != "connected" assert unsupported_service_bit7_node.state != "connected" self.nodes[0].disconnect_p2ps() # Wait until all connections are closed and the network thread has terminated wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 0) network_thread_join() # Make sure no unexpected messages came in assert(no_version_bannode.unexpected_msg == False) assert(no_version_idlenode.unexpected_msg == False) assert(no_verack_idlenode.unexpected_msg == False) assert not unsupported_service_bit5_node.unexpected_msg assert not unsupported_service_bit7_node.unexpected_msg self.log.info("Service bits 5 and 7 are allowed after August 1st 2018") self.nodes[0].setmocktime(1533168000) # August 2nd 2018 allowed_service_bit5_node = self.nodes[0].add_p2p_connection(P2PInterface(), services=NODE_NETWORK|NODE_UNSUPPORTED_SERVICE_BIT_5) allowed_service_bit7_node = self.nodes[0].add_p2p_connection(P2PInterface(), services=NODE_NETWORK|NODE_UNSUPPORTED_SERVICE_BIT_7) # Network thread stopped when all previous P2PInterfaces disconnected. Restart it network_thread_start() wait_until(lambda: allowed_service_bit5_node.message_count["verack"], lock=mininode_lock) wait_until(lambda: allowed_service_bit7_node.message_count["verack"], lock=mininode_lock) if __name__ == '__main__': P2PLeakTest().main()
py
b41336b3f4a190b1e4e207fc024b3a40f6cde310
# -*- coding: utf-8 -*- from django.contrib import admin from models import * class LinksListAdmin(admin.ModelAdmin): list_display = ('__unicode__', 'nb_links') class LinkAdmin(admin.ModelAdmin): list_display = ('text', 'target', 'plugin', 'order') list_filter = ('plugin',) ordering = ('text',) admin.site.register(Plugin_LinksList, LinksListAdmin) admin.site.register(Link, LinkAdmin)
py
b41337b9f4957c73fd5e4b6d3bbcd90372c90d80
from .hello_world import hello_world from .load_fannie_dataframes import load_dataframes_fannie
py
b41337f69d8bef08b571a40cadf79582f59cc9c7
#!/usr/bin/python # Classification (U) """Program: list_nodes.py Description: Integration testing of list_nodes in elastic_db_admin.py. Usage: test/integration/elastic_db_admin/list_nodes.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import elastic_db_admin import lib.gen_libs as gen_libs import elastic_lib.elastic_class as elastic_class import version __version__ = version.__version__ class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp test_list_nodes """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.base_dir = "test/integration/elastic_db_admin" self.test_path = os.path.join(os.getcwd(), self.base_dir) self.config_path = os.path.join(self.test_path, "config") self.cfg = gen_libs.load_module("elastic", self.config_path) self.user = self.cfg.user if hasattr(self.cfg, "user") else None self.japd = self.cfg.japd if hasattr(self.cfg, "japd") else None self.ca_cert = self.cfg.ssl_client_ca if hasattr( self.cfg, "ssl_client_ca") else None self.scheme = self.cfg.scheme if hasattr( self.cfg, "scheme") else "https" self.els = elastic_class.ElasticSearchStatus( self.cfg.host, port=self.cfg.port, user=self.user, japd=self.japd, ca_cert=self.ca_cert, scheme=self.scheme) self.els.connect() def test_list_nodes(self): """Function: test_list_nodes Description: Test list_nodes function. Arguments: """ with gen_libs.no_std_out(): self.assertFalse(elastic_db_admin.list_nodes(self.els)) if __name__ == "__main__": unittest.main()
py
b413380d63fb95664ccbb0facb05276f4bd047f5
#=============================================================================== # Copyright 2021-2022 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== import pytest import numpy as np from numpy.testing import assert_allclose from onedal.primitives import (linear_kernel, rbf_kernel, poly_kernel, sigmoid_kernel) from sklearn.metrics.pairwise import rbf_kernel as sklearn_rbf_kernel from onedal.tests.utils._device_selection import (get_queues, pass_if_not_implemented_for_gpu) # TODO: investigate sporadic failures on GPU @pytest.mark.parametrize('queue', get_queues('host,cpu')) def test_dense_self_linear_kernel(queue): rng = np.random.RandomState(0) X = np.array(5 * rng.random_sample((10, 4))) result = linear_kernel(X, queue=queue) expected = np.dot(X, np.array(X).T) assert_allclose(result, expected, rtol=1e-15) def _test_dense_small_linear_kernel(queue, scale, shift, dtype): rng = np.random.RandomState(0) X = np.array(5 * rng.random_sample((10, 4)), dtype=dtype) Y = np.array(5 * rng.random_sample((15, 4)), dtype=dtype) result = linear_kernel(X, Y, scale=scale, shift=shift, queue=queue) expected = np.dot(X, np.array(Y).T) * scale + shift tol = 1e-14 if dtype == np.float64 else 1e-6 assert_allclose(result, expected, rtol=tol) # TODO: investigate sporadic failures on GPU @pytest.mark.parametrize('queue', get_queues('host,cpu')) @pytest.mark.parametrize('scale', [1.0, 2.0]) @pytest.mark.parametrize('shift', [0.0, 1.0]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_dense_small_linear_kernel(queue, scale, shift, dtype): _test_dense_small_linear_kernel(queue, scale, shift, dtype) @pytest.mark.parametrize('queue', get_queues()) def test_dense_self_rbf_kernel(queue): rng = np.random.RandomState(0) X = np.array(5 * rng.random_sample((10, 4))) result = rbf_kernel(X, queue=queue) expected = sklearn_rbf_kernel(X) assert_allclose(result, expected, rtol=1e-14) def _test_dense_small_rbf_kernel(queue, gamma, dtype): rng = np.random.RandomState(0) X = np.array(5 * rng.random_sample((10, 4)), dtype=dtype) Y = np.array(5 * rng.random_sample((15, 4)), dtype=dtype) result = rbf_kernel(X, Y, gamma=gamma, queue=queue) expected = sklearn_rbf_kernel(X, Y, gamma) tol = 1e-14 if dtype == np.float64 else 1e-5 assert_allclose(result, expected, rtol=tol) @pytest.mark.parametrize('gamma', [0.1, None]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) @pytest.mark.parametrize('queue', get_queues()) def test_dense_small_rbf_kernel(queue, gamma, dtype): _test_dense_small_rbf_kernel(queue, gamma, dtype) @pass_if_not_implemented_for_gpu(reason="poly kernel is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_dense_self_poly_kernel(queue): rng = np.random.RandomState(0) X = np.array(2 * rng.random_sample((10, 4))) degree = 2 result = poly_kernel(X, degree=degree, queue=queue) expected = np.dot(X, np.array(X).T) ** degree assert_allclose(result, expected, rtol=1e-14) def _test_dense_small_poly_kernel(queue, gamma, coef0, degree, dtype): rng = np.random.RandomState(0) X = np.array(2 * rng.random_sample((10, 4)), dtype=dtype) Y = np.array(2 * rng.random_sample((15, 4)), dtype=dtype) result = poly_kernel(X, Y, gamma=gamma, coef0=coef0, degree=degree, queue=queue) expected = (gamma * np.dot(X, np.array(Y).T) + coef0) ** degree tol = 1e-14 if dtype == np.float64 else 1e-5 assert_allclose(result, expected, rtol=tol) @pass_if_not_implemented_for_gpu(reason="poly kernel is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('gamma', [0.1, 1.0]) @pytest.mark.parametrize('coef0', [0.0, 1.0]) @pytest.mark.parametrize('degree', [2, 3]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_dense_small_poly_kernel(queue, gamma, coef0, degree, dtype): _test_dense_small_poly_kernel(queue, gamma, coef0, degree, dtype) @pass_if_not_implemented_for_gpu(reason="sigmoid kernel is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_dense_self_sigmoid_kernel(queue): rng = np.random.RandomState(0) X = np.array(2 * rng.random_sample((15, 4))) result = sigmoid_kernel(X, queue=queue) expected = np.tanh(np.dot(X, np.array(X).T)) assert_allclose(result, expected) def _test_dense_small_sigmoid_kernel(queue, gamma, coef0, dtype): rng = np.random.RandomState(0) X = np.array(2 * rng.random_sample((10, 4)), dtype=dtype) Y = np.array(2 * rng.random_sample((15, 4)), dtype=dtype) result = sigmoid_kernel(X, Y, gamma=gamma, coef0=coef0, queue=queue) expected = np.tanh(gamma * np.dot(X, np.array(Y).T) + coef0) tol = 1e-14 if dtype == np.float64 else 1e-6 assert_allclose(result, expected, rtol=tol) @pass_if_not_implemented_for_gpu(reason="sigmoid kernel is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('gamma', [0.1, 1.0, 2.4]) @pytest.mark.parametrize('coef0', [0.0, 1.0, 5.5]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_dense_small_sigmoid_kernel(queue, gamma, coef0, dtype): _test_dense_small_sigmoid_kernel(queue, gamma, coef0, dtype)
py
b41339a362ad5297b4fd88c695dcc2e97568faf4
## some utils functions for scanpy import os import anndata import numpy as np import pandas as pd import scanpy as sc from scipy import io from scipy.sparse import hstack def adata_hstack(blocks, sample_ids=None, layer_keys=None): if layer_keys is None: layer_keys = blocks[0].layers.keys() layers = {} for _key in layer_keys: layers[_key] = hstack([adata.layers[_key].T for adata in blocks]).T if len(layer_keys) == 0: layers = None X_blocks = [adata.X.transpose() for adata in blocks] obs_blocks = [adata.obs for adata in blocks] new_X = hstack(X_blocks).transpose() new_obs = pd.concat(obs_blocks, axis=0) new_var = blocks[0].var new_adata = anndata.AnnData(X=new_X, obs=new_obs, var=new_var, layers=layers) sample_ids_default = [] for i in range(len(blocks)): sample_ids_default += ["S%d" %i] * blocks[i].shape[0] if sample_ids is not None: if len(sample_ids) != len(new_obs): print("sample ids has different size to observations, change to default.") sample_ids = sample_ids_default else: sample_ids = sample_ids_default cell_ids = [ new_adata.obs.index.values[i] + ":" + sample_ids[i] for i in range(len(sample_ids))] new_adata.obs['cell_id'] = cell_ids new_adata.obs['sample_id'] = sample_ids return new_adata def adata_preprocess(adata, min_cells=3, min_genes=500, max_genes=5000, max_percent_mito=0.1): ## first filtering sc.pp.filter_cells(adata, min_genes=min_genes) print(adata.shape) sc.pp.filter_genes(adata, min_cells=min_cells) print(adata.shape) ## basic info mito_genes = [name for name in adata.var_names if name.startswith('MT-')] adata.obs['n_counts'] = np.sum(adata.X, axis=1).A1 adata.obs['n_genes'] = np.sum(adata.X>=1, axis=1).A1 adata.obs['n_mito'] = np.sum(adata[:, mito_genes].X, axis=1).A1 adata.obs['percent_mito'] = adata.obs['n_mito'] / adata.obs['n_counts'] ## filter cells adata = adata[adata.obs['n_genes'] < max_genes, :] adata = adata[adata.obs['percent_mito'] < max_percent_mito, :] ## log transform adata.raw = sc.pp.log1p(adata, copy=True) sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4) ## filter genes filter_result = sc.pp.filter_genes_dispersion(adata.X, min_mean=0.0125, max_mean=3, min_disp=0.2) adata = adata[:, filter_result.gene_subset] ## regress and scale sc.pp.log1p(adata) sc.pp.regress_out(adata, ['n_counts', 'percent_mito']) sc.pp.scale(adata, max_value=10) ### PCA, t-SNE, and UMAP sc.tl.pca(adata) adata.obsm['X_pca'] *= -1 # multiply by -1 to match Seurat sc.tl.tsne(adata, random_state=2, n_pcs=10) sc.pp.neighbors(adata, n_neighbors=10) sc.tl.umap(adata) return adata def load_10X(path, min_counts=None, min_cells=None, version3=False): """ Load 10X data from cellranger output matrix, into scipy csr matrix, arrays for genes and cell barcodes Filter cells by min_counts and filter genes by min_cells """ ## load 10X matrix folder if version3: mat = io.mmread(path + "/matrix.mtx.gz").tocsr() genes = np.genfromtxt(path + "/features.tsv.gz", dtype="str", delimiter="\t") cells = np.genfromtxt(path + "/barcodes.tsv.gz", dtype="str", delimiter="\t") else: mat = io.mmread(path + "/matrix.mtx").tocsr() genes = np.genfromtxt(path + "/genes.tsv", dtype="str", delimiter="\t") cells = np.genfromtxt(path + "/barcodes.tsv", dtype="str", delimiter="\t") ## filter cells if min_counts is not None and min_counts > 0: n_counts = np.array(np.sum(mat, axis=0)).reshape(-1) idx = n_counts >= min_counts mat = mat[:, idx] cells = cells[idx] ## filter genes if min_cells is not None and min_cells > 0: n_cells = np.array(np.sum(mat, axis=1)).reshape(-1) idx = n_counts >= min_counts mat = mat[idx, :] genes = genes[idx, ] return mat, genes, cells def save_10X(path, mat, genes, barcodes, version3=False): """ Save 10X matrix, genes and cell barcodes into under the path. """ if not os.path.exists(path): os.makedirs(path) io.mmwrite(path + '/matrix.mtx', mat) if version3: fid = open(path + '/features.tsv', 'w') else: fid = open(path + '/genes.tsv', 'w') for ii in range(genes.shape[0]): fid.writelines("\t".join(genes[ii, :]) + "\n") fid.close() fid = open(path + '/barcodes.tsv', 'w') for _cell in barcodes: fid.writelines("%s\n" %(_cell)) fid.close() if version3: import subprocess bashCommand = "gzip -f %s %s %s" %(path + '/matrix.mtx', path + '/features.tsv', path + '/barcodes.tsv') pro = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) pro.communicate()[0] def read_dropEst(path, cell_file = 'barcodes.tsv', gene_file = 'genes.tsv', layer_keys = ['exon', 'intron', 'spanning'], layer_files = ['cell.counts.exon.mtx', 'cell.counts.intron.mtx', 'cell.counts.spanning.mtx'], combine_unspliced = True): """ Load dropEst matrices produced by this script: """ ## load 10X matrix folder # genes = np.genfromtxt(path + "/" + gene_file, dtype="str", delimiter="\t") # cells = np.genfromtxt(path + "/" + cell_file, dtype="str", delimiter="\t") genes = pd.read_csv(path + "/" + gene_file, sep="\t", index_col=0, header=None) cells = pd.read_csv(path + "/" + cell_file, sep="\t", index_col=0, header=None) mat_list = [] for _mxt_file in layer_files: mat_list.append(io.mmread(path + "/" + _mxt_file).tocsr().T) if len(mat_list) == 0: print('Error: requiring at least one matrix.') return None # change layer names if combine_unspliced and len(mat_list) == 3: mat_list[1] += mat_list[2] mat_list = mat_list[:2] layer_keys = ['spliced', 'unspliced'] if len(layer_keys) != len(mat_list): print('Warning: len(layer_keys) != len(mat_list). Use index instead.') layer_keys = ['matrix%d' %(x + 1) for x in range(len(mat_list))] layers = {} for i in range(len(mat_list)): layers[layer_keys[i]] = mat_list[i] X = mat_list[0].copy() adata = sc.AnnData(X, obs=cells, var=genes, layers=layers) return adata
py
b4133a8189cce00852f99ca81e57db76d4d5cf14
from rest_framework import serializers from .models import Post from django.contrib.auth import get_user_model class PostSerializer(serializers.ModelSerializer): user = serializers.StringRelatedField(read_only=True) url = serializers.HyperlinkedIdentityField( view_name='posts:detail-post', read_only=True ) class Meta: model = Post fields = ('url', 'id', 'title','user', 'created_at',) class PostCreateSerializer(serializers.ModelSerializer): class Meta: model = Post fields = ('title', 'image', 'body') class PostDetailSerializer(serializers.ModelSerializer): class Meta: model = Post fields = '__all__'
py
b4133a974f818e11b9cea8806addfce510a0ccce
import _plotly_utils.basevalidators class ExponentformatValidator( _plotly_utils.basevalidators.EnumeratedValidator ): def __init__( self, plotly_name='exponentformat', parent_name='scattergeo.marker.colorbar', **kwargs ): super(ExponentformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), role=kwargs.pop('role', 'style'), values=kwargs.pop( 'values', ['none', 'e', 'E', 'power', 'SI', 'B'] ), **kwargs )
py
b4133b1699662174d76514a7c3de19f6e0149c2c
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import re from setuptools import setup def get_version(package): """ Return package version as listed in `__version__` in `init.py`. """ with open(os.path.join(package, "__init__.py")) as f: return re.search("__version__ = ['\"]([^'\"]+)['\"]", f.read()).group(1) def get_long_description(): """ Return the README. """ with open("README.md", encoding="utf8") as f: return f.read() def get_packages(package): """ Return root package and all sub-packages. """ return [ dirpath for dirpath, dirnames, filenames in os.walk(package) if os.path.exists(os.path.join(dirpath, "__init__.py")) ] setup( name="databases", version=get_version("databases"), python_requires='>=3.6', url="https://github.com/encode/databases", license="BSD", description="Async database support for Python.", long_description=get_long_description(), long_description_content_type="text/markdown", author="Tom Christie", author_email="[email protected]", packages=get_packages("databases"), package_data={"databases": ["py.typed"]}, data_files=[("", ["LICENSE.md"])], install_requires=['sqlalchemy>=1.4,<1.5', 'aiocontextvars;python_version<"3.7"'], extras_require={ "postgresql": ["asyncpg"], "mysql": ["aiomysql"], "sqlite": ["aiosqlite"], "postgresql+aiopg": ["aiopg"] }, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Topic :: Internet :: WWW/HTTP", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], zip_safe=False, )
py
b4133caf3fff9c5c680fb882274a5d83d2574b64
# encoding: utf-8 # module torch._C # from /Users/rook/anaconda/lib/python3.6/site-packages/torch/_C.cpython-36m-darwin.so # by generator 1.145 # no doc # imports import torch._C._functions as _functions # <module 'torch._C._functions'> from .object import object class CudaCharStorageBase(object): # no doc def copy_(self, *args, **kwargs): # real signature unknown pass def data_ptr(self, *args, **kwargs): # real signature unknown pass def element_size(self, *args, **kwargs): # real signature unknown pass def fill_(self, *args, **kwargs): # real signature unknown pass def get_device(self, *args, **kwargs): # real signature unknown pass def is_pinned(self, *args, **kwargs): # real signature unknown pass def is_shared(self, *args, **kwargs): # real signature unknown pass def new(self, *args, **kwargs): # real signature unknown pass def resize_(self, *args, **kwargs): # real signature unknown pass def size(self, *args, **kwargs): # real signature unknown pass def _get_shared_fd(self, *args, **kwargs): # real signature unknown pass def _new_shared_cuda(self, *args, **kwargs): # real signature unknown pass def _new_view(self, *args, **kwargs): # real signature unknown pass def _new_with_file(self, *args, **kwargs): # real signature unknown pass @classmethod def _new_with_weak_ptr(cls, *args, **kwargs): # real signature unknown pass def _root_storage(self, *args, **kwargs): # real signature unknown pass def _set_cdata(self, *args, **kwargs): # real signature unknown pass def _set_from_file(self, *args, **kwargs): # real signature unknown pass def _shared_decref(self, *args, **kwargs): # real signature unknown pass def _shared_incref(self, *args, **kwargs): # real signature unknown pass def _share_cuda_(self, *args, **kwargs): # real signature unknown pass def _weak_ref(self, *args, **kwargs): # real signature unknown pass def _write_file(self, *args, **kwargs): # real signature unknown pass def __delitem__(self, *args, **kwargs): # real signature unknown """ Delete self[key]. """ pass def __getitem__(self, *args, **kwargs): # real signature unknown """ Return self[key]. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __len__(self, *args, **kwargs): # real signature unknown """ Return len(self). """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __setitem__(self, *args, **kwargs): # real signature unknown """ Set self[key] to value. """ pass _cdata = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
py
b4133d95adcb8e9f3ca32243d42fc4562e53e12e
import time import dataset db = dataset.connect('sqlite:///record.db') groups = db['groups'] times = db['times'] notes = db['notes'] def add_group(name, inactive=False): # TODO: validate conditions: group does not exist, name is valid str groups.insert(dict(name=name, inactive=False, punched_in=False)) def punch_in(group_id, in_time): # TODO: validate conditions: group is punched out, # no out times are None within group db.begin() times.insert(dict(group_id=group_id, in_time=in_time)) group = groups.find_one(id=group_id) group['punched_in'] = True groups.update(group, ['id']) db.commit() def punch_out(group_id, out_time): # TODO: validate conditions: exactly one time in group is None, # group is punched in if not 'out_time' in times.columns: times.create_column('out_time', db.types.float) db.begin() interval = times.find_one(group_id=group_id, out_time=None) interval['out_time'] = out_time times.update(interval, ['id']) group = groups.find_one(id=group_id) group['punched_in'] = False groups.update(group, ['id']) db.commit() def toggle_punch(group_id, tog_time): # TODO: validate conditions: group exists punched_in = groups.find_one(id=group_id)['punched_in'] if punched_in: punch_out(group_id, tog_time) else: punch_in(group_id, tog_time) def add_note(group_id, note, note_time): # TODO: validate group exists, note is valid str notes.insert(dict(group_id=group_id, time=note_time, note=note))
py
b4133de35f6fb5cc2162f3de7875b06f982976ab
from collections import OrderedDict import numpy as np from gym.spaces import Dict , Box from metaworld.envs.env_util import get_stat_in_paths, \ create_stats_ordered_dict, get_asset_full_path from metaworld.core.multitask_env import MultitaskEnv from metaworld.envs.mujoco.sawyer_xyz.base import SawyerXYZEnv from metaworld.envs.mujoco.utils.rotation import euler2quat from metaworld.envs.mujoco.sawyer_xyz.base import OBS_TYPE class SawyerReachPushPickPlaceWallEnv(SawyerXYZEnv): def __init__( self, random_init=False, obs_type='plain', task_types=['pick_place', 'reach', 'push'], task_type='pick_place', goal_low=(-0.05, 0.85, 0.05), goal_high=(0.05, 0.9, 0.3), liftThresh = 0.04, sampleMode='equal', rewMode = 'orig', rotMode='fixed', **kwargs ): hand_low=(-0.5, 0.40, 0.05) hand_high=(0.5, 1, 0.5) obj_low=(-0.05, 0.6, 0.015) obj_high=(0.05, 0.65, 0.015) SawyerXYZEnv.__init__( self, frame_skip=5, action_scale=1./100, hand_low=hand_low, hand_high=hand_high, model_name=self.model_name, **kwargs ) self.task_type = task_type self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.6, 0.02]), 'hand_init_pos': np.array([0, .6, .2]), } # we only do one task from [pick_place, reach, push] # per instance of SawyerReachPushPickPlaceEnv. # Please only set task_type from constructor. if self.task_type == 'pick_place': self.goal = np.array([0.05, 0.8, 0.2]) elif self.task_type == 'reach': self.goal = np.array([-0.05, 0.8, 0.2]) elif self.task_type == 'push': self.goal = np.array([0.05, 0.8, 0.015]) else: raise NotImplementedError self.obj_init_angle = self.init_config['obj_init_angle'] self.obj_init_pos = self.init_config['obj_init_pos'] self.hand_init_pos = self.init_config['hand_init_pos'] assert obs_type in OBS_TYPE self.obs_type = obs_type if goal_low is None: goal_low = self.hand_low if goal_high is None: goal_high = self.hand_high self.random_init = random_init self.liftThresh = liftThresh self.max_path_length = 150 self.rewMode = rewMode self.rotMode = rotMode self.sampleMode = sampleMode self.task_types = task_types if rotMode == 'fixed': self.action_space = Box( np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), ) elif rotMode == 'rotz': self.action_rot_scale = 1./50 self.action_space = Box( np.array([-1, -1, -1, -np.pi, -1]), np.array([1, 1, 1, np.pi, 1]), ) elif rotMode == 'quat': self.action_space = Box( np.array([-1, -1, -1, 0, -1, -1, -1, -1]), np.array([1, 1, 1, 2*np.pi, 1, 1, 1, 1]), ) else: self.action_space = Box( np.array([-1, -1, -1, -np.pi/2, -np.pi/2, 0, -1]), np.array([1, 1, 1, np.pi/2, np.pi/2, np.pi*2, 1]), ) self.obj_and_goal_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) self.goal_space = Box(np.array(goal_low), np.array(goal_high)) if self.obs_type == 'plain': self.observation_space = Box( np.hstack((self.hand_low, obj_low,)), np.hstack((self.hand_high, obj_high,)), ) elif self.obs_type == 'with_goal': self.observation_space = Box( np.hstack((self.hand_low, obj_low, goal_low)), np.hstack((self.hand_high, obj_high, goal_high)), ) else: raise NotImplementedError self.num_resets = 0 self.reset() def get_goal(self): return { 'state_desired_goal': self._state_goal, } @property def model_name(self): return get_asset_full_path('sawyer_xyz/sawyer_reach_push_pick_and_place_wall.xml') def step(self, action): if self.rotMode == 'euler': action_ = np.zeros(7) action_[:3] = action[:3] action_[3:] = euler2quat(action[3:6]) self.set_xyz_action_rot(action_) elif self.rotMode == 'fixed': self.set_xyz_action(action[:3]) elif self.rotMode == 'rotz': self.set_xyz_action_rotz(action[:4]) else: self.set_xyz_action_rot(action[:7]) self.do_simulation([action[-1], -action[-1]]) # The marker seems to get reset every time you do a simulation self._set_goal_marker(self._state_goal) ob = self._get_obs() obs_dict = self._get_obs_dict() reward , reachRew, reachDist, pushRew, pushDist, pickRew, placeRew , placingDist = self.compute_reward(action, obs_dict, mode=self.rewMode, task_type=self.task_type) self.curr_path_length +=1 goal_dist = placingDist if self.task_type == 'pick_place' else pushDist if self.task_type == 'reach': success = float(reachDist <= 0.05) else: success = float(goal_dist <= 0.07) info = {'reachDist': reachDist, 'pickRew':pickRew, 'epRew' : reward, 'goalDist': goal_dist, 'success': success} info['goal'] = self.goal return ob, reward, False, info def _get_obs(self): hand = self.get_endeff_pos() objPos = self.data.get_geom_xpos('objGeom') flat_obs = np.concatenate((hand, objPos)) if self.obs_type == 'with_goal_and_id': return np.concatenate([ flat_obs, self._state_goal, self._state_goal_idx ]) elif self.obs_type == 'with_goal': return np.concatenate([ flat_obs, self._state_goal ]) elif self.obs_type == 'plain': return np.concatenate([flat_obs,]) # TODO ZP do we need the concat? else: return np.concatenate([flat_obs, self._state_goal_idx]) def _get_obs_dict(self): hand = self.get_endeff_pos() objPos = self.data.get_geom_xpos('objGeom') flat_obs = np.concatenate((hand, objPos)) return dict( state_observation=flat_obs, state_desired_goal=self._state_goal, state_achieved_goal=objPos, ) def _get_info(self): pass def _set_goal_marker(self, goal): """ This should be use ONLY for visualization. Use self._state_goal for logging, learning, etc. """ self.data.site_xpos[self.model.site_name2id('goal_{}'.format(self.task_type))] = ( goal[:3] ) for task_type in self.task_types: if task_type != self.task_type: self.data.site_xpos[self.model.site_name2id('goal_{}'.format(task_type))] = ( np.array([10.0, 10.0, 10.0]) ) def _set_objCOM_marker(self): """ This should be use ONLY for visualization. Use self._state_goal for logging, learning, etc. """ objPos = self.data.get_geom_xpos('objGeom') self.data.site_xpos[self.model.site_name2id('objSite')] = ( objPos ) def _set_obj_xyz(self, pos): qpos = self.data.qpos.flat.copy() qvel = self.data.qvel.flat.copy() qpos[9:12] = pos.copy() qvel[9:15] = 0 self.set_state(qpos, qvel) def adjust_initObjPos(self, orig_init_pos): #This is to account for meshes for the geom and object are not aligned #If this is not done, the object could be initialized in an extreme position diff = self.get_body_com('obj')[:2] - self.data.get_geom_xpos('objGeom')[:2] adjustedPos = orig_init_pos[:2] + diff #The convention we follow is that body_com[2] is always 0, and geom_pos[2] is the object height return [adjustedPos[0], adjustedPos[1],self.data.get_geom_xpos('objGeom')[-1]] def reset_model(self): self._reset_hand() self._state_goal = self.goal.copy() self.obj_init_pos = self.adjust_initObjPos(self.init_config['obj_init_pos']) self.obj_init_angle = self.init_config['obj_init_angle'] self.objHeight = self.data.get_geom_xpos('objGeom')[2] self.heightTarget = self.objHeight + self.liftThresh if self.random_init: goal_pos = np.random.uniform( self.obj_and_goal_space.low, self.obj_and_goal_space.high, size=(self.obj_and_goal_space.low.size), ) self._state_goal = goal_pos[3:] while np.linalg.norm(goal_pos[:2] - self._state_goal[:2]) < 0.15: goal_pos = np.random.uniform( self.obj_and_goal_space.low, self.obj_and_goal_space.high, size=(self.obj_and_goal_space.low.size), ) self._state_goal = goal_pos[3:] if self.task_type == 'push': self._state_goal = np.concatenate((goal_pos[-3:-1], [self.obj_init_pos[-1]])) self.obj_init_pos = np.concatenate((goal_pos[:2], [self.obj_init_pos[-1]])) else: self._state_goal = goal_pos[-3:] self.obj_init_pos = goal_pos[:3] self._set_goal_marker(self._state_goal) self._set_obj_xyz(self.obj_init_pos) self.curr_path_length = 0 self.maxReachDist = np.linalg.norm(self.init_fingerCOM - np.array(self._state_goal)) self.maxPushDist = np.linalg.norm(self.obj_init_pos[:2] - np.array(self._state_goal)[:2]) self.maxPlacingDist = np.linalg.norm(np.array([self.obj_init_pos[0], self.obj_init_pos[1], self.heightTarget]) - np.array(self._state_goal)) + self.heightTarget self.target_rewards = [1000*self.maxPlacingDist + 1000*2, 1000*self.maxReachDist + 1000*2, 1000*self.maxPushDist + 1000*2] if self.task_type == 'pick_place': idx = 0 elif self.task_type == 'reach': idx = 1 else: idx = 2 self.target_reward = self.target_rewards[idx] self.num_resets += 1 return self._get_obs() def _reset_hand(self): for _ in range(10): self.data.set_mocap_pos('mocap', self.hand_init_pos) self.data.set_mocap_quat('mocap', np.array([1, 0, 1, 0])) self.do_simulation([-1,1], self.frame_skip) #self.do_simulation(None, self.frame_skip) rightFinger, leftFinger = self.get_site_pos('rightEndEffector'), self.get_site_pos('leftEndEffector') self.init_fingerCOM = (rightFinger + leftFinger)/2 self.pickCompleted = False def get_site_pos(self, siteName): _id = self.model.site_names.index(siteName) return self.data.site_xpos[_id].copy() def compute_rewards(self, actions, obsBatch): #Required by HER-TD3 assert isinstance(obsBatch, dict) == True obsList = obsBatch['state_observation'] rewards = [self.compute_reward(action, obs, task_type=self.task_type)[0] for action, obs in zip(actions, obsList)] return np.array(rewards) def compute_reward(self, actions, obs, mode = 'general', task_type='reach'): if isinstance(obs, dict): obs = obs['state_observation'] objPos = obs[3:6] rightFinger, leftFinger = self.get_site_pos('rightEndEffector'), self.get_site_pos('leftEndEffector') fingerCOM = (rightFinger + leftFinger)/2 heightTarget = self.heightTarget goal = self._state_goal def compute_reward_reach(actions, obs, mode): c1 = 1000 ; c2 = 0.01 ; c3 = 0.001 reachDist = np.linalg.norm(fingerCOM - goal) # reachRew = -reachDist # if reachDist < 0.1: # reachNearRew = 1000*(self.maxReachDist - reachDist) + c1*(np.exp(-(reachDist**2)/c2) + np.exp(-(reachDist**2)/c3)) # else: # reachNearRew = 0. reachRew = c1*(self.maxReachDist - reachDist) + c1*(np.exp(-(reachDist**2)/c2) + np.exp(-(reachDist**2)/c3)) reachRew = max(reachRew, 0) # reachNearRew = max(reachNearRew,0) # reachRew = -reachDist reward = reachRew# + reachNearRew return [reward, reachRew, reachDist, None, None, None, None, None] def compute_reward_push(actions, obs, mode): c1 = 1000 ; c2 = 0.01 ; c3 = 0.001 assert np.all(goal == self.get_site_pos('goal_push')) reachDist = np.linalg.norm(fingerCOM - objPos) pushDist = np.linalg.norm(objPos[:2] - goal[:2]) reachRew = -reachDist if reachDist < 0.05: # pushRew = -pushDist pushRew = 1000*(self.maxPushDist - pushDist) + c1*(np.exp(-(pushDist**2)/c2) + np.exp(-(pushDist**2)/c3)) pushRew = max(pushRew, 0) else: pushRew = 0 reward = reachRew + pushRew return [reward, reachRew, reachDist, pushRew, pushDist, None, None, None] def compute_reward_pick_place(actions, obs, mode): reachDist = np.linalg.norm(objPos - fingerCOM) placingDist = np.linalg.norm(objPos - goal) assert np.all(goal == self.get_site_pos('goal_pick_place')) def reachReward(): reachRew = -reachDist# + min(actions[-1], -1)/50 reachDistxy = np.linalg.norm(objPos[:-1] - fingerCOM[:-1]) zRew = np.linalg.norm(fingerCOM[-1] - self.init_fingerCOM[-1]) if reachDistxy < 0.05: #0.02 reachRew = -reachDist else: reachRew = -reachDistxy - 2*zRew #incentive to close fingers when reachDist is small if reachDist < 0.05: reachRew = -reachDist + max(actions[-1],0)/50 return reachRew , reachDist def pickCompletionCriteria(): tolerance = 0.01 if objPos[2] >= (heightTarget- tolerance): return True else: return False if pickCompletionCriteria(): self.pickCompleted = True def objDropped(): return (objPos[2] < (self.objHeight + 0.005)) and (placingDist >0.02) and (reachDist > 0.02) # Object on the ground, far away from the goal, and from the gripper #Can tweak the margin limits def objGrasped(thresh = 0): sensorData = self.data.sensordata return (sensorData[0]>thresh) and (sensorData[1]> thresh) def orig_pickReward(): # hScale = 50 hScale = 100 # hScale = 1000 if self.pickCompleted and not(objDropped()): return hScale*heightTarget # elif (reachDist < 0.1) and (objPos[2]> (self.objHeight + 0.005)) : elif (reachDist < 0.1) and (objPos[2]> (self.objHeight + 0.005)) : return hScale* min(heightTarget, objPos[2]) else: return 0 def general_pickReward(): hScale = 50 if self.pickCompleted and objGrasped(): return hScale*heightTarget elif objGrasped() and (objPos[2]> (self.objHeight + 0.005)): return hScale* min(heightTarget, objPos[2]) else: return 0 def placeReward(): # c1 = 1000 ; c2 = 0.03 ; c3 = 0.003 c1 = 1000 ; c2 = 0.01 ; c3 = 0.001 if mode == 'general': cond = self.pickCompleted and objGrasped() else: cond = self.pickCompleted and (reachDist < 0.1) and not(objDropped()) if cond: placeRew = 1000*(self.maxPlacingDist - placingDist) + c1*(np.exp(-(placingDist**2)/c2) + np.exp(-(placingDist**2)/c3)) placeRew = max(placeRew,0) return [placeRew , placingDist] else: return [0 , placingDist] reachRew, reachDist = reachReward() if mode == 'general': pickRew = general_pickReward() else: pickRew = orig_pickReward() placeRew , placingDist = placeReward() assert ((placeRew >=0) and (pickRew>=0)) reward = reachRew + pickRew + placeRew return [reward, reachRew, reachDist, None, None, pickRew, placeRew, placingDist] if task_type == 'reach': return compute_reward_reach(actions, obs, mode) elif task_type == 'push': return compute_reward_push(actions, obs, mode) else: return compute_reward_pick_place(actions, obs, mode) def get_diagnostics(self, paths, prefix=''): statistics = OrderedDict() return statistics def log_diagnostics(self, paths = None, logger = None): pass
py
b4133e7550d985c4a11ccf0ef0f0e925a108a57f
"""Monitor the NZBGet API.""" from datetime import timedelta import logging from typing import Callable, List, Optional from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_NAME, DATA_MEGABYTES, DATA_RATE_MEGABYTES_PER_SECOND, DEVICE_CLASS_TIMESTAMP, ) from homeassistant.helpers.entity import Entity from homeassistant.helpers.typing import HomeAssistantType from homeassistant.util.dt import utcnow from . import NZBGetEntity from .const import DATA_COORDINATOR, DOMAIN from .coordinator import NZBGetDataUpdateCoordinator _LOGGER = logging.getLogger(__name__) SENSOR_TYPES = { "article_cache": ["ArticleCacheMB", "Article Cache", DATA_MEGABYTES], "average_download_rate": [ "AverageDownloadRate", "Average Speed", DATA_RATE_MEGABYTES_PER_SECOND, ], "download_paused": ["DownloadPaused", "Download Paused", None], "download_rate": ["DownloadRate", "Speed", DATA_RATE_MEGABYTES_PER_SECOND], "download_size": ["DownloadedSizeMB", "Size", DATA_MEGABYTES], "free_disk_space": ["FreeDiskSpaceMB", "Disk Free", DATA_MEGABYTES], "post_job_count": ["PostJobCount", "Post Processing Jobs", "Jobs"], "post_paused": ["PostPaused", "Post Processing Paused", None], "remaining_size": ["RemainingSizeMB", "Queue Size", DATA_MEGABYTES], "uptime": ["UpTimeSec", "Uptime", None], } async def async_setup_entry( hass: HomeAssistantType, entry: ConfigEntry, async_add_entities: Callable[[List[Entity], bool], None], ) -> None: """Set up NZBGet sensor based on a config entry.""" coordinator: NZBGetDataUpdateCoordinator = hass.data[DOMAIN][entry.entry_id][ DATA_COORDINATOR ] sensors = [] for sensor_config in SENSOR_TYPES.values(): sensors.append( NZBGetSensor( coordinator, entry.entry_id, entry.data[CONF_NAME], sensor_config[0], sensor_config[1], sensor_config[2], ) ) async_add_entities(sensors) class NZBGetSensor(NZBGetEntity): """Representation of a NZBGet sensor.""" def __init__( self, coordinator: NZBGetDataUpdateCoordinator, entry_id: str, entry_name: str, sensor_type: str, sensor_name: str, unit_of_measurement: Optional[str] = None, ): """Initialize a new NZBGet sensor.""" self._sensor_type = sensor_type self._unique_id = f"{entry_id}_{sensor_type}" self._unit_of_measurement = unit_of_measurement super().__init__( coordinator=coordinator, entry_id=entry_id, name=f"{entry_name} {sensor_name}", ) @property def device_class(self): """Return the device class.""" if "UpTimeSec" in self._sensor_type: return DEVICE_CLASS_TIMESTAMP return None @property def unique_id(self) -> str: """Return the unique ID of the sensor.""" return self._unique_id @property def unit_of_measurement(self) -> str: """Return the unit that the state of sensor is expressed in.""" return self._unit_of_measurement @property def state(self): """Return the state of the sensor.""" value = self.coordinator.data["status"].get(self._sensor_type) if value is None: _LOGGER.warning("Unable to locate value for %s", self._sensor_type) return None if "DownloadRate" in self._sensor_type and value > 0: # Convert download rate from Bytes/s to MBytes/s return round(value / 2 ** 20, 2) if "UpTimeSec" in self._sensor_type and value > 0: uptime = utcnow() - timedelta(seconds=value) return uptime.replace(microsecond=0).isoformat() return value
py
b4133efc910736c49f51c3cfcdeb02cca259b8b1
from hachiko.hachiko import AIOEventHandler from os.path import join, isdir from pathlib import Path from os import remove, stat, chown import stat as lib_stat from shutil import copy2, move, rmtree import logging class PlexLocalFileBackupHandler(AIOEventHandler): def __init__(self, plex_local_path, backup_path, name): super().__init__() self._logger = logging.getLogger(name) self._backup_path = backup_path self._plex_local_path = plex_local_path def get_backup_basename(self, path, plex_local_path=None): if plex_local_path is None: plex_local_path = self._plex_local_path + "/" else: plex_local_path = plex_local_path + "/" backup_path = path self._logger.debug("Backup Basename Path: %s", path) if path.startswith(plex_local_path): backup_path = path[len(plex_local_path):] self._logger.debug("New Basename: %s", backup_path) return backup_path def delete_file(self, path): plex_file = self.get_backup_basename(path) delete_path = join(self._backup_path, plex_file) self._logger.debug("Removing file: %s", delete_path) try: if isdir(delete_path): rmtree(delete_path) else: remove(delete_path) except (FileNotFoundError, NotADirectoryError): self._logger.error("File %s has already been deleted", delete_path) def backup_file(self, path): self._logger.debug("Original file path: %s", path) plex_file = self.get_backup_basename(path) backup_path = join(self._backup_path, plex_file) self._logger.debug("Backup file path: %s", backup_path) try: stat_info = stat(path) UID = stat_info[lib_stat.ST_UID] GID = stat_info[lib_stat.ST_GID] if isdir(path): Path(backup_path).mkdir(parents=True, exist_ok=True) else: copy2(path, backup_path, follow_symlinks=False) self._logger.debug("Setting UID:GID %s:%s for %s", UID, GID, backup_path) chown(backup_path, UID, GID, follow_symlinks=False) except FileNotFoundError: self._logger.info("File %s was deleted before it could be copied", path) async def on_created(self, event): if event.src_path != self._plex_local_path: self._logger.info("File created: Backing up %s", self.get_backup_basename(event.src_path)) self.backup_file(event.src_path) async def on_moved(self, event): if event.src_path != self._plex_local_path: self._logger.info("File moved: old: %s, new: %s", self.get_backup_basename(event.src_path), self.get_backup_basename(event.dest_path)) plex_file = self.get_backup_basename(event.src_path) plex_new_name = self.get_backup_basename(event.dest_path) old_path = join(self._backup_path, plex_file) self._logger.debug("Old file path: %s", old_path) new_path = join(self._backup_path, plex_new_name) self._logger.debug("New file path: %s", new_path) stat_info = stat(event.dest_path) UID = stat_info[lib_stat.ST_UID] GID = stat_info[lib_stat.ST_GID] try: move(old_path, new_path) self._logger.debug("Setting UID:GID %s:%s for %s", UID, GID, new_path) chown(new_path, UID, GID, follow_symlinks=False) except FileNotFoundError: self._logger.info("File %s was already moved to new Dest %s", old_path, new_path) async def on_modified(self, event): if event.src_path != self._plex_local_path: self._logger.info("File modified: Backing up %s", self.get_backup_basename(event.src_path)) self.backup_file(event.src_path) async def on_deleted(self, event): if event.src_path != self._plex_local_path: self._logger.info("File deleted: Removing %s", self.get_backup_basename(event.src_path)) self.delete_file(event.src_path)
py
b4133fb077975700d3cac229b8857a38f2b86e7c
import re from django.template import Node, Variable, VariableNode, _render_value_in_context from django.template import TemplateSyntaxError, TokenParser, Library from django.template import TOKEN_TEXT, TOKEN_VAR from django.utils import translation from django.utils.encoding import force_unicode register = Library() class GetAvailableLanguagesNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): from django.conf import settings context[self.variable] = [(k, translation.ugettext(v)) for k, v in settings.LANGUAGES] return '' class GetCurrentLanguageNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = translation.get_language() return '' class GetCurrentLanguageBidiNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = translation.get_language_bidi() return '' class TranslateNode(Node): def __init__(self, filter_expression, noop): self.noop = noop self.filter_expression = filter_expression if isinstance(self.filter_expression.var, basestring): self.filter_expression.var = Variable(u"'%s'" % self.filter_expression.var) def render(self, context): self.filter_expression.var.translate = not self.noop output = self.filter_expression.resolve(context) return _render_value_in_context(output, context) class BlockTranslateNode(Node): def __init__(self, extra_context, singular, plural=None, countervar=None, counter=None): self.extra_context = extra_context self.singular = singular self.plural = plural self.countervar = countervar self.counter = counter def render_token_list(self, tokens): result = [] vars = [] for token in tokens: if token.token_type == TOKEN_TEXT: result.append(token.contents) elif token.token_type == TOKEN_VAR: result.append(u'%%(%s)s' % token.contents) vars.append(token.contents) return ''.join(result), vars def render(self, context): tmp_context = {} for var, val in self.extra_context.items(): tmp_context[var] = val.render(context) # Update() works like a push(), so corresponding context.pop() is at # the end of function context.update(tmp_context) singular, vars = self.render_token_list(self.singular) if self.plural and self.countervar and self.counter: count = self.counter.resolve(context) context[self.countervar] = count plural, plural_vars = self.render_token_list(self.plural) result = translation.ungettext(singular, plural, count) vars.extend(plural_vars) else: result = translation.ugettext(singular) # Escape all isolated '%' before substituting in the context. result = re.sub(u'%(?!\()', u'%%', result) data = dict([(v, _render_value_in_context(context[v], context)) for v in vars]) context.pop() return result % data def do_get_available_languages(parser, token): """ This will store a list of available languages in the context. Usage:: {% get_available_languages as languages %} {% for language in languages %} ... {% endfor %} This will just pull the LANGUAGES setting from your setting file (or the default settings) and put it into the named variable. """ args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_available_languages' requires 'as variable' (got %r)" % args) return GetAvailableLanguagesNode(args[2]) def do_get_current_language(parser, token): """ This will store the current language in the context. Usage:: {% get_current_language as language %} This will fetch the currently active language and put it's value into the ``language`` context variable. """ args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_current_language' requires 'as variable' (got %r)" % args) return GetCurrentLanguageNode(args[2]) def do_get_current_language_bidi(parser, token): """ This will store the current language layout in the context. Usage:: {% get_current_language_bidi as bidi %} This will fetch the currently active language's layout and put it's value into the ``bidi`` context variable. True indicates right-to-left layout, otherwise left-to-right """ args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_current_language_bidi' requires 'as variable' (got %r)" % args) return GetCurrentLanguageBidiNode(args[2]) def do_translate(parser, token): """ This will mark a string for translation and will translate the string for the current language. Usage:: {% trans "this is a test" %} This will mark the string for translation so it will be pulled out by mark-messages.py into the .po files and will run the string through the translation engine. There is a second form:: {% trans "this is a test" noop %} This will only mark for translation, but will return the string unchanged. Use it when you need to store values into forms that should be translated later on. You can use variables instead of constant strings to translate stuff you marked somewhere else:: {% trans variable %} This will just try to translate the contents of the variable ``variable``. Make sure that the string in there is something that is in the .po file. """ class TranslateParser(TokenParser): def top(self): value = self.value() # Backwards Compatiblity fix: # FilterExpression does not support single-quoted strings, # so we make a cheap localized fix in order to maintain # backwards compatibility with existing uses of ``trans`` # where single quote use is supported. if value[0] == "'": pos = None m = re.match("^'([^']+)'(\|.*$)",value) if m: value = '"%s"%s' % (m.group(1).replace('"','\\"'),m.group(2)) elif value[-1] == "'": value = '"%s"' % value[1:-1].replace('"','\\"') if self.more(): if self.tag() == 'noop': noop = True else: raise TemplateSyntaxError("only option for 'trans' is 'noop'") else: noop = False return (value, noop) value, noop = TranslateParser(token.contents).top() return TranslateNode(parser.compile_filter(value), noop) def do_block_translate(parser, token): """ This will translate a block of text with parameters. Usage:: {% blocktrans with foo|filter as bar and baz|filter as boo %} This is {{ bar }} and {{ boo }}. {% endblocktrans %} Additionally, this supports pluralization:: {% blocktrans count var|length as count %} There is {{ count }} object. {% plural %} There are {{ count }} objects. {% endblocktrans %} This is much like ngettext, only in template syntax. """ class BlockTranslateParser(TokenParser): def top(self): countervar = None counter = None extra_context = {} while self.more(): tag = self.tag() if tag == 'with' or tag == 'and': value = self.value() if self.tag() != 'as': raise TemplateSyntaxError("variable bindings in 'blocktrans' must be 'with value as variable'") extra_context[self.tag()] = VariableNode( parser.compile_filter(value)) elif tag == 'count': counter = parser.compile_filter(self.value()) if self.tag() != 'as': raise TemplateSyntaxError("counter specification in 'blocktrans' must be 'count value as variable'") countervar = self.tag() else: raise TemplateSyntaxError("unknown subtag %s for 'blocktrans' found" % tag) return (countervar, counter, extra_context) countervar, counter, extra_context = BlockTranslateParser(token.contents).top() singular = [] plural = [] while parser.tokens: token = parser.next_token() if token.token_type in (TOKEN_VAR, TOKEN_TEXT): singular.append(token) else: break if countervar and counter: if token.contents.strip() != 'plural': raise TemplateSyntaxError("'blocktrans' doesn't allow other block tags inside it") while parser.tokens: token = parser.next_token() if token.token_type in (TOKEN_VAR, TOKEN_TEXT): plural.append(token) else: break if token.contents.strip() != 'endblocktrans': raise TemplateSyntaxError("'blocktrans' doesn't allow other block tags (seen %r) inside it" % token.contents) return BlockTranslateNode(extra_context, singular, plural, countervar, counter) register.tag('get_available_languages', do_get_available_languages) register.tag('get_current_language', do_get_current_language) register.tag('get_current_language_bidi', do_get_current_language_bidi) register.tag('trans', do_translate) register.tag('blocktrans', do_block_translate)
py
b413402246c9022f12d4949d9cd40a08fb158570
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # referenced from # Library Name: torchtext # Authors: torchtext authors and @sluks # Date: 2021-11-25 # Link: import itertools from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union import torch from torch import Tensor, tensor from torchmetrics import Metric from torchmetrics.functional.text.chrf import _chrf_score_compute, _chrf_score_update, _prepare_n_grams_dicts _N_GRAM_LEVELS = ("char", "word") _TEXT_LEVELS = ("ref", "hyp", "matching") _DICT_STATES_NAMES = ( "total_ref_char_n_grams", "total_ref_word_n_grams", "total_hyp_char_n_grams", "total_hyp_word_n_grams", "total_matching_char_n_grams", "total_matching_word_n_grams", ) _DICT_STATES_TYPES = Tuple[ Dict[int, Tensor], Dict[int, Tensor], Dict[int, Tensor], Dict[int, Tensor], Dict[int, Tensor], Dict[int, Tensor] ] class CHRFScore(Metric): """Calculate `chrf score`_ of machine translated text with one or more references. This implementation supports both ChrF score computation introduced in [1] and chrF++ score introduced in `chrF++ score_`. This implementation follows the implmenetaions from https://github.com/m-popovic/chrF and https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/chrf.py. Args: n_char_order: A character n-gram order. If `n_char_order=6`, the metrics refers to the official chrF/chrF++. n_word_order: A word n-gram order. If `n_word_order=2`, the metric refers to the official chrF++. If `n_word_order=0`, the metric is equivalent to the original ChrF. beta: A parameter determining an importance of recall w.r.t. precision. If `beta=1`, their importance is equal. lowercase: An indication whether to enable case-insesitivity. whitespace: An indication whether keep whitespaces during n-gram extraction. return_sentence_level_score: An indication whether a sentence-level chrF/chrF++ score to be returned. compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``n_char_order`` is not an integer greater than or equal to 1. ValueError: If ``n_word_order`` is not an integer greater than or equal to 0. ValueError: If ``beta`` is smaller than 0. Example: >>> hypothesis_corpus = ['the cat is on the mat'] >>> reference_corpus = [['there is a cat on the mat', 'a cat is on the mat']] >>> metric = CHRFScore() >>> metric(reference_corpus, hypothesis_corpus) tensor(0.8640) References: [1] chrF: character n-gram F-score for automatic MT evaluation by Maja Popović `chrF score`_ [2] chrF++: words helping character n-grams by Maja Popović `chrF++ score`_ """ is_differentiable = False higher_is_better = True sentence_chrf_score: Optional[List[Tensor]] = None def __init__( self, n_char_order: int = 6, n_word_order: int = 2, beta: float = 2.0, lowercase: bool = False, whitespace: bool = False, return_sentence_level_score: bool = False, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Optional[Callable] = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) if not isinstance(n_char_order, int) or n_char_order < 1: raise ValueError("Expected argument `n_char_order` to be an integer greater than or equal to 1.") self.n_char_order = n_char_order if not isinstance(n_word_order, int) or n_word_order < 0: raise ValueError("Expected argument `n_word_order` to be an integer greater than or equal to 0.") self.n_word_order = n_word_order if beta < 0: raise ValueError("Expected argument `beta` to be greater than 0.") self.beta = beta self.lowercase = lowercase self.whitespace = whitespace self.return_sentence_level_score = return_sentence_level_score self.n_order = float(n_char_order + n_word_order) # Adding state dynamically for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator(): for n in range(1, n_gram_order + 1): state_name = self._get_state_name(text, n_gram_level, n) self.add_state(state_name, tensor(0.0), dist_reduce_fx="sum") if self.return_sentence_level_score: self.add_state("sentence_chrf_score", [], dist_reduce_fx="cat") def update( # type: ignore self, reference_corpus: Sequence[Sequence[str]], hypothesis_corpus: Sequence[str] ) -> None: """Compute Precision Scores. Args: reference_corpus: An iterable of iterables of reference corpus. hypothesis_corpus: An iterable of hypothesis corpus. """ n_grams_dicts_tuple = _chrf_score_update( reference_corpus, hypothesis_corpus, *self._convert_states_to_dicts(), self.n_char_order, self.n_word_order, self.n_order, self.beta, self.lowercase, self.whitespace, self.sentence_chrf_score if self.return_sentence_level_score else None, ) self._update_states_from_dicts(n_grams_dicts_tuple[:-1]) if self.sentence_chrf_score is not None: self.sentence_chrf_score = n_grams_dicts_tuple[-1] def compute(self) -> Union[Tensor, Tuple[Tensor, Tensor]]: """Calculate chrF/chrF++ score. Return: A corpus-level chrF/chrF++ score. (Optionally) A list of sentence-level chrF/chrF++ scores if `return_sentence_level_score=True`. """ if self.sentence_chrf_score is not None: return ( _chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta), torch.cat(self.sentence_chrf_score), ) return _chrf_score_compute(*self._convert_states_to_dicts(), self.n_order, self.beta) def _convert_states_to_dicts(self) -> _DICT_STATES_TYPES: """Convert global metric states to the n-gram dictionaries to be passed in `_chrf_score_update`.""" n_grams_dicts: Dict[str, Dict[int, Tensor]] = { name: n_gram_dict for name, n_gram_dict in zip( _DICT_STATES_NAMES, _prepare_n_grams_dicts(self.n_char_order, self.n_word_order) ) } for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator(): for n in range(1, n_gram_order + 1): dict_name = self._get_dict_name(text, n_gram_level) state_name = self._get_state_name(text, n_gram_level, n) n_grams_dicts[dict_name][n] = getattr(self, state_name) return tuple(n_grams_dicts.values()) # type: ignore def _update_states_from_dicts(self, n_grams_dicts_tuple: _DICT_STATES_TYPES) -> None: """Update global metric states based on the n-gram dictionaries calculated on the current batch.""" n_grams_dicts = {name: n_gram_dict for name, n_gram_dict, in zip(_DICT_STATES_NAMES, n_grams_dicts_tuple)} for (n_gram_level, n_gram_order), text in self._get_text_n_gram_iterator(): for n in range(1, n_gram_order + 1): dict_name = self._get_dict_name(text, n_gram_level) state_name = self._get_state_name(text, n_gram_level, n) setattr(self, state_name, n_grams_dicts[dict_name][n]) @staticmethod def _get_dict_name(text: str, n_gram_level: str) -> str: """Return a dictionary name w.r.t input args.""" return f"total_{text}_{n_gram_level}_n_grams" @staticmethod def _get_state_name(text: str, n_gram_level: str, n: int) -> str: """Return a metric state name w.r.t input args.""" return f"total_{text}_{n_gram_level}_{n}_grams" def _get_text_n_gram_iterator(self) -> Iterator[Tuple[Tuple[str, int], str]]: """Get iterator over char/word and reference/hypothesis/matching n-gram level.""" return itertools.product(zip(_N_GRAM_LEVELS, [self.n_char_order, self.n_word_order]), _TEXT_LEVELS)
py
b41340f8ce9a14791df072a64c98c0e4124945cb
# pylint:disable=unused-argument,arguments-differ import logging from typing import Dict, List, Set from collections import defaultdict import ailment from ..analysis import Analysis from .sequence_walker import SequenceWalker from .structurer_nodes import SequenceNode, CodeNode, MultiNode, LoopNode, ConditionNode, EmptyBlockNotice, \ ContinueNode, CascadingConditionNode from .condition_processor import ConditionProcessor from .utils import insert_node l = logging.getLogger(name=__name__) class NodeAddressFinder(SequenceWalker): """ Walk the entire node and collect all addresses of nodes. """ def __init__(self, node): handlers = { ailment.Block: self._handle_Block, } super().__init__(handlers=handlers) self.addrs: Set[int] = set() self.walk(node) def _handle_Block(self, node: ailment.Block, **kwargs): self.addrs.add(node.addr) class GotoSimplifier(SequenceWalker): """ Remove unnecessary Jump statements. """ def __init__(self, node): handlers = { SequenceNode: self._handle_sequencenode, CodeNode: self._handle_codenode, MultiNode: self._handle_multinode, LoopNode: self._handle_loopnode, ConditionNode: self._handle_conditionnode, CascadingConditionNode: self._handle_cascadingconditionnode, ailment.Block: self._handle_block, } super().__init__(handlers) self._node_addrs: Set[int] = NodeAddressFinder(node).addrs self.walk(node) def _handle_sequencenode(self, node, successor=None, **kwargs): """ :param SequenceNode node: :return: """ for n0, n1 in zip(node.nodes, node.nodes[1:] + [successor]): self._handle(n0, successor=n1) def _handle_codenode(self, node, successor=None, **kwargs): """ :param CodeNode node: :return: """ self._handle(node.node, successor=successor) def _handle_conditionnode(self, node, successor=None, **kwargs): """ :param ConditionNode node: :param successor: :return: """ if node.true_node is not None: self._handle(node.true_node, successor=successor) if node.false_node is not None: self._handle(node.false_node, successor=successor) def _handle_cascadingconditionnode(self, node: CascadingConditionNode, successor=None, **kwargs): for _, child_node in node.condition_and_nodes: self._handle(child_node, successor=successor) if node.else_node is not None: self._handle(node.else_node) def _handle_loopnode(self, node, successor=None, **kwargs): """ :param LoopNode node: :param successor: :return: """ self._handle(node.sequence_node, successor=node, # the end of a loop always jumps to the beginning of its body ) def _handle_multinode(self, node, successor=None, **kwargs): """ :param MultiNode node: :return: """ for n0, n1 in zip(node.nodes, node.nodes[1:] + [successor]): self._handle(n0, successor=n1) def _handle_block(self, block, successor=None, **kwargs): # pylint:disable=no-self-use """ :param ailment.Block block: :return: """ if block.statements and isinstance(block.statements[-1], ailment.Stmt.Jump): goto_stmt = block.statements[-1] # ailment.Stmt.Jump if isinstance(goto_stmt.target, ailment.Expr.Const): goto_target = goto_stmt.target.value if successor and goto_target == successor.addr: can_remove = True elif goto_target not in self._node_addrs: # the target block has been removed and is no longer exist. we assume this goto is useless can_remove = True else: can_remove = False if can_remove: # we can remove this statement block.statements = block.statements[:-1] class LoopSimplifier(SequenceWalker): def __init__(self, node): handlers = { SequenceNode: self._handle_sequencenode, CodeNode: self._handle_codenode, MultiNode: self._handle_multinode, LoopNode: self._handle_loopnode, ConditionNode: self._handle_conditionnode, CascadingConditionNode: self._handle_cascadingconditionnode, ailment.Block: self._handle_block, } super().__init__(handlers) self.continue_preludes: Dict[LoopNode, List[ailment.Block]] = defaultdict(list) self.walk(node) @staticmethod def _control_transferring_statement(stmt: ailment.Stmt.Statement) -> bool: return isinstance(stmt, (ailment.Stmt.Call, ailment.Stmt.Return, ailment.Stmt.Jump, ailment.Stmt.ConditionalJump)) def _handle_sequencenode(self, node, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): for n0, n1, n2 in zip(node.nodes, node.nodes[1:] + [successor], [predecessor] + node.nodes[:-1]): self._handle(n0, predecessor=n2, successor=n1, loop=loop, loop_successor=loop_successor) def _handle_codenode(self, node, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): self._handle(node.node, predecessor=predecessor, successor=successor, loop=loop, loop_successor=loop_successor) def _handle_conditionnode(self, node, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): if node.true_node is not None: self._handle(node.true_node, predecessor=predecessor, successor=successor, loop=loop, loop_successor=loop_successor) if node.false_node is not None: self._handle(node.false_node, predecessor=predecessor, successor=successor, loop=loop, loop_successor=loop_successor) def _handle_cascadingconditionnode(self, node: CascadingConditionNode, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): for _, child_node in node.condition_and_nodes: self._handle(child_node, predecessor=predecessor, successor=successor, loop=loop, loop_successor=loop_successor) if node.else_node is not None: self._handle(node.else_node, predecessor=predecessor, successor=successor, loop=loop, loop_successor=loop_successor) def _handle_loopnode(self, node: LoopNode, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): self._handle(node.sequence_node, predecessor=predecessor, successor=successor, loop=node, loop_successor=successor) # find for-loop iterators if node.sort == 'while' and self.continue_preludes[node] and \ (node.condition is not None or len(self.continue_preludes[node]) > 1): if all(block.statements for block in self.continue_preludes[node]) and \ all(not self._control_transferring_statement(block.statements[-1]) for block in self.continue_preludes[node]) and \ all(block.statements[-1] == self.continue_preludes[node][0].statements[-1] for block in self.continue_preludes[node]): node.sort = 'for' node.iterator = self.continue_preludes[node][0].statements[-1] for block in self.continue_preludes[node]: block.statements = block.statements[:-1] # find for-loop initializers if isinstance(predecessor, MultiNode): predecessor = predecessor.nodes[-1] if node.sort == 'for' and isinstance(predecessor, ailment.Block) and predecessor.statements and \ isinstance(predecessor.statements[-1], (ailment.Stmt.Assignment, ailment.Stmt.Store)): node.initializer = predecessor.statements[-1] predecessor.statements = predecessor.statements[:-1] def _handle_multinode(self, node, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): for n0, n1, n2 in zip(node.nodes, node.nodes[1:] + [successor], [predecessor] + node.nodes[:-1]): self._handle(n0, predecessor=n2, successor=n1, loop=loop, loop_successor=loop_successor) def _handle_block(self, block, predecessor=None, successor=None, loop=None, loop_successor=None, **kwargs): # pylint:disable=no-self-use if isinstance(successor, ContinueNode) or successor is loop_successor: self.continue_preludes[loop].append(block) class IfSimplifier(SequenceWalker): """ Remove unnecessary jump or conditional jump statements if they jump to the successor right afterwards. """ def __init__(self, node): handlers = { SequenceNode: self._handle_sequencenode, CodeNode: self._handle_codenode, MultiNode: self._handle_multinode, LoopNode: self._handle_loopnode, ConditionNode: self._handle_conditionnode, CascadingConditionNode: self._handle_cascadingconditionnode, ailment.Block: self._handle_block, } super().__init__(handlers) self.walk(node) def _handle_sequencenode(self, node, successor=None, **kwargs): """ :param SequenceNode node: :return: """ for n0, n1 in zip(node.nodes, node.nodes[1:] + [successor]): self._handle(n0, successor=n1) def _handle_codenode(self, node, successor=None, **kwargs): """ :param CodeNode node: :return: """ self._handle(node.node, successor=successor) def _handle_conditionnode(self, node, successor=None, **kwargs): """ :param ConditionNode node: :param successor: :return: """ if node.true_node is not None: self._handle(node.true_node, successor=successor) if node.false_node is not None: self._handle(node.false_node, successor=successor) def _handle_cascadingconditionnode(self, node: CascadingConditionNode, successor=None, **kwargs): for _, child_node in node.condition_and_nodes: self._handle(child_node, successor=successor) if node.else_node is not None: self._handle(node.else_node,successor=successor) def _handle_loopnode(self, node, successor=None, **kwargs): """ :param LoopNode node: :param successor: :return: """ self._handle(node.sequence_node, successor=successor) def _handle_multinode(self, node, successor=None, **kwargs): """ :param MultiNode node: :return: """ for n0, n1 in zip(node.nodes, node.nodes[1:] + [successor]): self._handle(n0, successor=n1) def _handle_block(self, block, successor=None, **kwargs): # pylint:disable=no-self-use """ Remove unnecessary jump or conditional jump statements if they jump to the successor right afterwards. :param ailment.Block block: :return: """ if block.statements and isinstance(block.statements[-1], ailment.Stmt.ConditionalJump): cond_stmt = block.statements[-1] # ailment.Stmt.ConditionalJump if isinstance(successor, ConditionNode): true_cond = False if cond_stmt.true_target is not None and successor.true_node is not None: # True branch exists. Test if the true target is the address if isinstance(cond_stmt.true_target, ailment.Expr.Const) \ and cond_stmt.true_target.value == successor.true_node.addr: true_cond = True if cond_stmt.true_target is not None and successor.false_node is not None: # True branch exists. Test if the true target is the address if isinstance(cond_stmt.true_target, ailment.Expr.Const) \ and cond_stmt.true_target.value == successor.false_node.addr: true_cond = True false_cond = False if cond_stmt.false_target is not None and successor.false_node is not None: # False branch exists. Test if the false target is the address if isinstance(cond_stmt.true_target, ailment.Expr.Const) \ and cond_stmt.false_target.value == successor.false_node.addr: false_cond = True if cond_stmt.false_target is not None and successor.true_node is not None: # True branch exists. Test if the true target is the address if isinstance(cond_stmt.true_target, ailment.Expr.Const) \ and cond_stmt.false_target.value == successor.true_node.addr: false_cond = True if true_cond or false_cond: # We can safely remove this statement block.statements = block.statements[:-1] else: l.error("An unexpected successor %s follows the conditional statement %s.", successor, cond_stmt ) class IfElseFlattener(SequenceWalker): """ Remove unnecessary else branches and make the else node a direct successor of the previous If node if the If node always returns. """ def __init__(self, node, functions): handlers = { SequenceNode: self._handle_Sequence, CodeNode: self._handle_Code, MultiNode: self._handle_MultiNode, LoopNode: self._handle_Loop, ConditionNode: self._handle_Condition, CascadingConditionNode: self._handle_CascadingCondition, } super().__init__(handlers) self.functions = functions self.walk(node) def _handle_Condition(self, node, parent=None, index=None, **kwargs): """ :param ConditionNode node: :param successor: :return: """ if node.true_node is not None and node.false_node is not None: try: last_stmts = ConditionProcessor.get_last_statements(node.true_node) except EmptyBlockNotice: last_stmts = None if last_stmts is not None and all(self._is_statement_terminating(stmt) for stmt in last_stmts): # all end points in the true node are returning # remove the else node and make it a new node following node else_node = node.false_node node.false_node = None insert_node(parent, index + 1, else_node, index) if node.true_node is not None: self._handle(node.true_node, parent=node, index=0) if node.false_node is not None: self._handle(node.false_node, parent=node, index=1) def _is_statement_terminating(self, stmt): if isinstance(stmt, ailment.Stmt.Return): return True if isinstance(stmt, ailment.Stmt.Call) and isinstance(stmt.target, ailment.Expr.Const): # is it calling a non-returning function? target_func_addr = stmt.target.value try: func = self.functions.get_by_addr(target_func_addr) return func.returning is False except KeyError: pass return False class CascadingIfsRemover(SequenceWalker): """ Coalesce cascading If constructs. Transforming the following construct:: if (cond_a) { if (cond_b) { true_body } else { } } else { } into:: if (cond_a and cond_b) { true_body } else { } """ def __init__(self, node): handlers = { SequenceNode: self._handle_Sequence, CodeNode: self._handle_Code, MultiNode: self._handle_MultiNode, LoopNode: self._handle_Loop, ConditionNode: self._handle_Condition, CascadingConditionNode: self._handle_CascadingCondition, } super().__init__(handlers) self.walk(node) def _handle_Condition(self, node, parent=None, index=None, **kwargs): """ :param ConditionNode node: :param successor: :return: """ if node.true_node is not None: self._handle(node.true_node, parent=node, index=0) if node.false_node is not None: self._handle(node.false_node, parent=node, index=1) if node.true_node is not None and node.false_node is None: if isinstance(node.true_node, SequenceNode): last_node = None if len(node.true_node.nodes) > 1 and all(self.is_empty_node(node_) for node_ in node.true_node.nodes[:-1]): last_node = node.true_node.nodes[-1] elif len(node.true_node.nodes) == 1: last_node = node.true_node.nodes[0] true_node = last_node if isinstance(true_node, ConditionNode) and true_node.true_node is not None and true_node.false_node is None: node.condition = ailment.BinaryOp(None, "LogicalAnd", (node.condition, true_node.condition), False, **node.condition.tags) node.true_node = true_node.true_node @staticmethod def is_empty_node(node): if isinstance(node, ailment.Block): return not node.statements if isinstance(node, SequenceNode): return all(CascadingIfsRemover.is_empty_node(n) for n in node.nodes) return False class RegionSimplifier(Analysis): def __init__(self, region): self.region = region self.result = None self._simplify() def _simplify(self): """ RegionSimplifier performs the following simplifications: - Remove redundant Gotos - Remove redundant If/If-else statements """ r = self.region # Remove unnecessary Jump statements r = self._simplify_gotos(r) # Remove unnecessary jump or conditional jump statements if they jump to the successor right afterwards r = self._simplify_ifs(r) # Remove unnecessary else branches if the if branch will always return r = self._simplify_ifelses(r) # r = self._simplify_cascading_ifs(r) # r = self._simplify_loops(r) self.result = r # # Simplifiers # @staticmethod def _simplify_gotos(region): GotoSimplifier(region) return region @staticmethod def _simplify_ifs(region): IfSimplifier(region) return region def _simplify_ifelses(self, region): IfElseFlattener(region, self.kb.functions) return region @staticmethod def _simplify_cascading_ifs(region): CascadingIfsRemover(region) return region @staticmethod def _simplify_loops(region): LoopSimplifier(region) return region from ...analyses import AnalysesHub AnalysesHub.register_default('RegionSimplifier', RegionSimplifier)
py
b41340f8d43d16b0e6e8ac0510348096393dbdec
# Import librairies import time import busio import board import displayio import terminalio import digitalio import usb_hid import adafruit_matrixkeypad import adafruit_displayio_ssd1306 from adafruit_display_text import label from digitalio import DigitalInOut from adafruit_hid.keyboard import Keyboard from adafruit_hid.keycode import Keycode from adafruit_datetime import datetime, date, timezone # Setup HID keyboard = Keyboard(usb_hid.devices) # Setup Matrix for buttons cols = [DigitalInOut(x) for x in (board.GP2, board.GP3, board.GP4, board.GP5, board.GP6, board.GP7, board.GP8)] rows = [DigitalInOut(x) for x in (board.GP10, board.GP9)] keys = ((1, 2, 3, 4, 5, 6, 7), (8, 9, 10, 11, 12, 13, 14)) keypad = adafruit_matrixkeypad.Matrix_Keypad(rows, cols, keys) # Remove all previous connections to displayio displayio.release_displays() # Display and border setup i2c = busio.I2C(scl=board.GP1, sda=board.GP0) display_bus = displayio.I2CDisplay(i2c, device_address = 0x3C) oled = adafruit_displayio_ssd1306.SSD1306(display_bus, width=128, height=32) splash = displayio.Group(max_size=10) oled.show(splash) color_bitmap = displayio.Bitmap(128, 32, 1) # Full screen white color_palette = displayio.Palette(1) color_palette[0] = 0xFFFFFF # White bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0) splash.append(bg_sprite) inner_bitmap = displayio.Bitmap(118, 22, 1) inner_palette = displayio.Palette(1) inner_palette[0] = 0x000000 inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=5, y=5) splash.append(inner_sprite) text_area = label.Label(terminalio.FONT, text=" "*32, color=0xFFFF00, x=10, y=15) splash.append(text_area) # Setup displayTurnOffTime = 0 # Turn off display oled.sleep() # Function to display the string for 5s def display_screen(str): oled.wake() global text_area global displayTurnOffTime text_area.text = str displayTurnOffTime = time.time() while True: keys = keypad.pressed_keys # Keypad if (Feel free to change the function of all keys) if keys: if keys == [1]: keyboard.press(Keycode.F14) time.sleep(0.1) keyboard.release(Keycode.F14) display_screen("Vol -") elif keys == [2]: keyboard.press(Keycode.F15) time.sleep(0.1) keyboard.release(Keycode.F15) display_screen("Vol +") elif keys == [6]: keyboard.send(Keycode.F16) display_screen("Bulb Brightness -") elif keys == [7]: keyboard.send(Keycode.F17) display_screen("Bulb Brightness +") elif keys == [8]: keyboard.send(Keycode.F18) elif keys == [9]: keyboard.send(Keycode.F19) elif keys == [10]: keyboard.send(Keycode.F20) elif keys == [11]: keyboard.send(Keycode.F21) elif keys == [12]: keyboard.send(Keycode.F22) elif keys == [13]: keyboard.send(Keycode.F23) display_screen("Bulb Color Temp -") elif keys == [14]: keyboard.send(Keycode.F24) display_screen("Bulb Color Temp +") time.sleep(0.1) # Check if it has been more than 5s since the screen was turned on, if yes, screen will turn off if ((displayTurnOffTime + 5) < time.time()) and displayTurnOffTime != 0: text_area.text = " " displayTurnOffTime = 0 oled.sleep()
py
b413410dc34d8585e3061b805102d8ebcd915a2f
import json import re import zipfile from typing import Optional from django.http import HttpResponse, FileResponse, HttpResponseServerError from core.model import Result from tools import store, http_utils class Service: @classmethod def get_prefix_pattern(cls) -> str: pass @classmethod def make_url(cls, index) -> str: pass @classmethod def get_url(cls, text: str) -> Optional[str]: urls = re.findall(r'(?<=' + cls.get_prefix_pattern() + ')\w+', text, re.I | re.M) if urls: return cls.make_url(urls[0]) return None @classmethod def index(cls, url) -> Optional[str]: index = re.findall(r'(?<=com\/)\w+', url) try: return index[0] except IndexError: return None @classmethod def fetch(cls, url: str, mode=0) -> Result: """ 获取视频地址 :param url: :param mode: :return: """ pass @staticmethod def download_header(): pass @classmethod def download(cls, url: str) -> HttpResponse: """ 下载视频 :param url: :return: """ result = cls.fetch(url) if result.is_success(): name = cls.index(url) + '.mp4' url = result.get_data() data = json.dumps({'name': name, 'url': url}) return HttpResponse(data) return HttpResponseServerError(result.get_data()) @classmethod def proxy_download(cls, vtype, url, header: dict, mode=1) -> HttpResponse: # 检查文件 index = cls.index(url) file, filename = store.find(vtype, index) if file is not None: return Service.stream(file, filename) result = cls.fetch(url, mode=mode) if not result.is_success(): return HttpResponseServerError(result.get_data()) if mode == 1: header = header.copy() header['referer'] = result.ref if result.is_image(): res = store.save_image(vtype, result.get_data(), index) if res is not None: return res else: res = http_utils.get(url=result.get_data(), header=header) if http_utils.is_error(res): return HttpResponseServerError(str(res)) store.save(vtype, res, index) res.close() file, filename = store.find(vtype, index) return Service.stream(file, filename) @staticmethod def stream(file, filename) -> HttpResponse: try: # 设置响应头 # StreamingHttpResponse将文件内容进行流式传输,数据量大可以用这个方法 response = FileResponse(file) # 以流的形式下载文件,这样可以实现任意格式的文件下载 response['Content-Type'] = 'application/octet-stream' # Content-Disposition就是当用户想把请求所得的内容存为一个文件的时候提供一个默认的文件名 response['Content-Disposition'] = 'attachment;filename="{}"'.format(filename) except Exception as e: response = HttpResponse(e) # finally: # file.close() return response
py
b413410e618d817b56d0cb712a1aa3c9c1b6b1f9
class Intcode: def __init__(self, instructions): self.instructions = instructions def interpreter(self, index, args=[]): instruction = self.instructions[index] % 100 mode = int(self.instructions[index] / 100) if instruction == 99: return [-1] elif instruction == 1: # add return self.add(index, mode) elif instruction == 2: # multiply return self.multiply(index, mode) elif instruction == 3: # read and store return self.readAndStore(index, mode, args) elif instruction == 4: # return value return self.returnVal(index, mode) def add(self, index, mode): if mode % 10 == 0: arg1 = self.instructions[self.instructions[index + 1]] elif mode % 10 == 1: arg1 = self.instructions[index + 1] mode = int(mode / 10) if mode % 10 == 0: arg2 = self.instructions[self.instructions[index + 2]] elif mode % 10 == 1: arg2 = self.instructions[index + 2] self.instructions[self.instructions[index + 3]] = arg1 + arg2 return [index + 4] def multiply(self, index, mode): if mode % 10 == 0: arg1 = self.instructions[self.instructions[index + 1]] elif mode % 10 == 1: arg1 = self.instructions[index + 1] mode = int(mode / 10) if mode % 10 == 0: arg2 = self.instructions[self.instructions[index + 2]] elif mode % 10 == 1: arg2 = self.instructions[index + 2] self.instructions[self.instructions[index + 3]] = arg1 * arg2 return [index + 4] def readAndStore(self, index, mode, args): self.instructions[self.instructions[index + 1]] = args[0] return [index + 2] def returnVal(self, index, mode): if mode % 10 == 0: arg1 = self.instructions[self.instructions[index + 1]] elif mode % 10 == 1: arg1 = self.instructions[index + 1] return [index + 2, arg1] with open("input.txt") as f: data = f.read() instructions = list(map(int, data.split(","))) iterpreter = Intcode(instructions) index = 0 args = [1] while index != -1: res = iterpreter.interpreter(index, args) index = res[0] if res.__len__() > 1: print(res[1])
py
b41341624d8cfd646a5417e93ee28972bab3de69
from layers import * import cPickle as pickle import make_data import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='trainingprocess.log', filemode='w') class BiLSTMQA(object): def __init__(self, voca_size, hidden_size, ydim, learn_rate=0.1): self.nnet = StackedBiLSTM(voca_size, hidden_size, ydim) def fit(self, x, y, vx=None, vy=None, max_epochs=10000, batch_size=5): mask = self.__get_mask(x) num_batches = x.shape[1] // batch_size batch_idx = 0 for ep in range(max_epochs): btx = x[:, batch_idx*batch_size:(batch_idx+1)*batch_size] bty = y[batch_idx*batch_size:(batch_idx+1)*batch_size] btmask = mask[:, batch_idx*batch_size:(batch_idx+1)*batch_size] loss = self.nnet.train(btx, btmask, bty) if ep%20 == 0: print "in epoch %d/%d..."%(ep, max_epochs) if batch_idx == 0: ot = "in epoch %d/%d..."%(ep, max_epochs) + " loss: "+str(loss) print ot logging.info(ot) """ validate if vx != None: print self.score(vx, vy) """ batch_idx = (batch_idx+1) % num_batches def predict(self, x): mask = self.__get_mask(x) return self.nnet.predict(x, mask) def score(self, x, y): prd = self.predict(x) s = 0 for i in range(len(y)): s += 1. if prd[i] == y[i] else 0. return s/len(y) def self_pickl(self, path="./data/bilstm_model.pkl"): with open(path, "wb") as mf: pickle.dump(self, mf) def __get_mask(self, data): mask = np.not_equal(data, 0).astype("int32") return mask if __name__ == '__main__': train, valid = make_data.get_data(0.9) train_x, train_y = train valid_x, valid_y = valid model = BiLSTMQA(12448, 100, 2) model.fit(train_x, train_y, vx=valid_x, vy=valid_y)
py
b41341818015422816a85090221e313776ed0698
import helpers from colorama import Fore def aceptarOpcionMenu(): opcion = -1 while (True): inputUsuario = input(Fore.GREEN + '· Dime, ¿que opción deseas? ' + Fore.WHITE) if (inputUsuario == 'F' or inputUsuario == 'f'): # Finalizar return -1 # =========================================> elif (helpers.testInputInt(inputUsuario, 1, 7)): # Seleccionada una opción corredta return int(inputUsuario) # ==========================> else: # Opción incorrecta print(Fore.RED + '* ATENCION: Selecciona una opción valida ...' + Fore.WHITE) def show(): helpers.clear() print(Fore.GREEN + 'MENU') print('====') print('1 - Precio con impuestos') print('2 - Importe intereses generados') print('3 - Media aritmetica de tres números') print('4 - Media ponderada de tres números') print('5 - Area de un triángulo' ) print('6 - Calcular importe nómina') print('7 - Gestión cuenta bancaria') print('F - Finalizar') print(Fore.WHITE) return aceptarOpcionMenu()
py
b41345a72d4f454e9c6eadb3703ff6e72f044feb
import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse import torch import torch.optim as optim import torch.nn as nn from torch.autograd import Variable import os import random import pickle import esm from torch.utils.data import TensorDataset, DataLoader import emb_classifier torch.cuda.empty_cache() def get_args(): parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-indir', type=str, required=False, default=None) parser.add_argument('-outdir', type=str, required=False, default=None) parser.add_argument('-data_dir', type=str, required=False, default='data/') args = parser.parse_args() return args def suffle_n_batch(data, batch_size): batched = [] random.shuffle(data) for i in range(len(data)//batch_size+1): batched.append(data[i*batch_size:i*batch_size+batch_size]) if len(batched[-1])==0: return batched[:-1] else: return batched def get_emb_esm1b(seq, LM_model, average=True): B, L = seq.shape L = L - 2 # remove start and end token #LM_model.eval() with torch.no_grad(): output = LM_model(seq, repr_layers=[33], return_contacts=True) # get the output from the language model embedding = output['representations'][33][:,1:-1,:] # embedding size (1, L, 1280) attention_map = output['attentions'][:,:,:,1:-1,1:-1] # attention map size (1, 33, 20, L, L) attention_map = attention_map.reshape(B, 33*20, L, L).permute(0,2,3,1) # (1, L, L, 660) # if you wanna average the embeddings along the sequence dimension -- i think this could be really cool too if (average): embedding = embedding.mean(1) return embedding,attention_map def load_data(args): with open(os.path.join(args.data_dir,'train_tuple_data.pkl'), 'rb') as f: train = pickle.load(f) with open(os.path.join(args.data_dir,'valid_tuple_data.pkl'), 'rb') as f: valid = pickle.load(f) return train, valid #get arguments args = get_args() indir = args.indir outdir = args.outdir print('Args got') print(f'indir {indir}') print(f'outdir {outdir}') # Loading and processing the data: train, valid = load_data(args) print('Data loaded') #Preprocess data into tensors LM_model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S() batch_converter = alphabet.get_batch_converter() print('ESM1b loaded') #Convert data into format that esm1b will like y_train, _, x_train = batch_converter(train) y_val, _, x_val = batch_converter(valid) y_train = torch.tensor(y_train) y_val = torch.tensor(y_val) # Instantiate the network classifier = emb_classifier.Net() # Load model from previous state if indir arg is specified if indir is not None: if os.path.exists(indir): classifier.load_state_dict(torch.load(indir)) print(f'loaded model from {indir}') # Instantiate the cross-entropy loss criterion = nn.CrossEntropyLoss() # Instantiate the Adam optimizer optimizer = optim.Adam(classifier.parameters(),lr=3e-4) print('Classifier, optimizer, and criterion compiled') # Moving tensors over to gpu if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f'Using device {device}') #x_train = x_train.to(device) #y_train = y_train.to(device) #x_val = x_val.to(device) #y_val = y_val.to(device) classifier = classifier.to(device) LM_model = LM_model.to(device) LM_model.eval() print(f'Moved tensors to {device}') trainset = TensorDataset(x_train, y_train) valset = TensorDataset(x_val, y_val) train_loader = DataLoader(trainset, shuffle=True, batch_size=1) valid_loader = DataLoader(valset, shuffle=True, batch_size=1) print('Dataloaders built') num_parameters = sum(p.numel() for p in classifier.parameters() if p.requires_grad) print('Number of parameters classifier: ', num_parameters) num_parameters = sum(p.numel() for p in LM_model.parameters() if p.requires_grad) print('Number of parameters esm1b: ', num_parameters) grad_accum = 256 # CNN model training count = 0 loss_list = [] iteration_list = [] accuracy_list = [] num_epochs = 100 output_dict = {} print('Now beginning training') torch.cuda.empty_cache() for epoch in range(num_epochs): for i, data in enumerate(train_loader): seq, labels = data seq = seq.to(device) labels = labels.to(device) x, _ = get_emb_esm1b(seq, LM_model=LM_model, average=True) # Clear gradients optimizer.zero_grad() # Forward propagation outputs = classifier(x) # Calculate relu and cross entropy loss loss = criterion(outputs, labels)/grad_accum print(f'outputs {outputs.tolist()} lables {labels.tolist()}') # Calculating gradients loss.backward() if (i+1) % grad_accum == 0: total_norm = torch.nn.utils.clip_grad_norm_(classifier.parameters(),1.0) if not (total_norm == total_norm): print('Gradient are NaN') optimizer.zero_grad() continue optimizer.step() print('Train - epoch: '+str(epoch)+' batch: '+str(int((i+1)/grad_accum))+' loss: '+str(float(loss.data)*grad_accum)) count += 1 correct = 0 total = 0 valid_loss = 0 for j, val_data in enumerate(valid_loader): with torch.no_grad(): val_seq, val_labels = val_data val_seq = val_seq.to(device) val_labels = val_labels.to(device) val_x, _ = get_emb_esm1b(val_seq, LM_model=LM_model, average=True) outputs = classifier(val_x) loss_valid = criterion(outputs, val_labels) # Get predictions from the maximum value predicted = torch.max(outputs.data, 1)[1] # Total number of labels total += len(val_labels) correct += (predicted == val_labels).sum() valid_loss += float(loss_valid.data) # print('valid_loss: ', valid_loss) accuracy = 100 * correct / float(total) print('Valid - epcoh: '+str(epoch) + ' loss: '+str(float(valid_loss/(j+1)))+' accuracy: '+str(float(accuracy))) path = os.path.join(outdir,'save_model/model_'+str(epoch)+'.pt') torch.save(classifier.state_dict(), path) print('Model '+str(epoch)+' was saved.')
py
b4134621128be59b558afceda218c2108291f7b5
from bingads.v13.internal.bulk.mappings import _SimpleBulkMapping from bingads.v13.internal.bulk.string_table import _StringTable from bingads.service_client import _CAMPAIGN_OBJECT_FACTORY_V13 from .common import * from .common import _BulkAdExtensionBase from .common import _BulkCampaignAdExtensionAssociation from .common import _BulkAccountAdExtensionAssociation _LocationAdExtension = type(_CAMPAIGN_OBJECT_FACTORY_V13.create('LocationAdExtension')) class BulkLocationAdExtension(_BulkAdExtensionBase): """ Represents an location ad extension. This class exposes the :attr:`location_ad_extension` property that can be read and written as fields of the Location Ad Extension record in a bulk file. For more information, see Location Ad Extension at https://go.microsoft.com/fwlink/?linkid=846127. *See also:* * :class:`.BulkServiceManager` * :class:`.BulkOperation` * :class:`.BulkFileReader` * :class:`.BulkFileWriter` """ def __init__(self, account_id=None, ad_extension=None): if ad_extension and not isinstance(ad_extension, _LocationAdExtension): raise ValueError('The type of ad_extension is: {0}, should be: {1}'.format( type(ad_extension), 'LocationAdExtension' )) super(BulkLocationAdExtension, self).__init__( account_id=account_id, ad_extension=ad_extension ) @property def location_ad_extension(self): """ The location ad extension. see Location Ad Extension at https://go.microsoft.com/fwlink/?linkid=846127. """ return self._ad_extension @location_ad_extension.setter def location_ad_extension(self, value): self._ad_extension = value _MAPPINGS = [ _SimpleBulkMapping( header=_StringTable.BusinessName, field_to_csv=lambda c: c.location_ad_extension.CompanyName, csv_to_field=lambda c, v: setattr(c.location_ad_extension, 'CompanyName', v) ), _SimpleBulkMapping( header=_StringTable.PhoneNumber, field_to_csv=lambda c: bulk_optional_str(c.location_ad_extension.PhoneNumber, c.location_ad_extension.Id), csv_to_field=lambda c, v: setattr(c.location_ad_extension, 'PhoneNumber', v if v else '') ), _SimpleBulkMapping( header=_StringTable.GeoCodeStatus, field_to_csv=lambda c: bulk_str(c.location_ad_extension.GeoCodeStatus), csv_to_field=lambda c, v: setattr(c.location_ad_extension, 'GeoCodeStatus', v if v else None) ), _SimpleBulkMapping( header=_StringTable.AddressLine1, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part( c, lambda x: x.StreetAddress ), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'StreetAddress', v) ) ), _SimpleBulkMapping( header=_StringTable.AddressLine2, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part( c, lambda x: bulk_optional_str(x.StreetAddress2, c.location_ad_extension.Id) ), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'StreetAddress2', v if v else '') ) ), _SimpleBulkMapping( header=_StringTable.City, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part(c, lambda x: x.CityName), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'CityName', v) ) ), _SimpleBulkMapping( header=_StringTable.ProvinceName, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part(c, lambda x: x.ProvinceName), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'ProvinceName', v) ) ), _SimpleBulkMapping( header=_StringTable.StateOrProvince, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part(c, lambda x: x.ProvinceCode), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'ProvinceCode', v) ) ), _SimpleBulkMapping( header=_StringTable.PostalCode, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part(c, lambda x: x.PostalCode), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'PostalCode', v) ) ), _SimpleBulkMapping( header=_StringTable.CountryCode, field_to_csv=lambda c: BulkLocationAdExtension.get_address_part(c, lambda x: x.CountryCode), csv_to_field=lambda c, v: BulkLocationAdExtension.set_address_part( c, lambda x: setattr(x, 'CountryCode', v) ) ), _SimpleBulkMapping( header=_StringTable.Latitude, field_to_csv=lambda c: BulkLocationAdExtension.get_geo_point_part( c, lambda x: bulk_str( float(x.LatitudeInMicroDegrees) / 1000000.0 ) if x.LatitudeInMicroDegrees is not None else None ), csv_to_field=lambda c, v: BulkLocationAdExtension.set_geo_point_part( c, lambda x, latitude: setattr(x, 'LatitudeInMicroDegrees', int(round(float(latitude) * 1000000))), v ) ), _SimpleBulkMapping( header=_StringTable.Longitude, field_to_csv=lambda c: BulkLocationAdExtension.get_geo_point_part( c, lambda x: bulk_str( float(x.LongitudeInMicroDegrees) / 1000000.0 ) if x.LongitudeInMicroDegrees is not None else None ), csv_to_field=lambda c, v: BulkLocationAdExtension.set_geo_point_part( c, lambda x, longitude: setattr(x, 'LongitudeInMicroDegrees', int(round(float(longitude) * 1000000))), v ) ), ] @staticmethod def get_address_part(bulk_ad_extension, get_func): if bulk_ad_extension.location_ad_extension.Address is not None: return get_func(bulk_ad_extension.location_ad_extension.Address) else: return None @staticmethod def set_address_part(bulk_ad_extension, set_func): if bulk_ad_extension.location_ad_extension.Address is None: bulk_ad_extension.location_ad_extension.Address = _CAMPAIGN_OBJECT_FACTORY_V13.create('Address') set_func(bulk_ad_extension.location_ad_extension.Address) @staticmethod def get_geo_point_part(bulk_ad_extension, get_func): if bulk_ad_extension.location_ad_extension.GeoPoint is not None: return get_func(bulk_ad_extension.location_ad_extension.GeoPoint) else: return None @staticmethod def set_geo_point_part(bulk_ad_extension, set_func, value): if not value: return if bulk_ad_extension.location_ad_extension.GeoPoint is None: bulk_ad_extension.location_ad_extension.GeoPoint = _CAMPAIGN_OBJECT_FACTORY_V13.create('GeoPoint') set_func(bulk_ad_extension.location_ad_extension.GeoPoint, value) def process_mappings_from_row_values(self, row_values): self.location_ad_extension = _CAMPAIGN_OBJECT_FACTORY_V13.create('LocationAdExtension') self.location_ad_extension.Type = 'LocationAdExtension' if row_values[_StringTable.Latitude] or row_values[_StringTable.Longitude]: self.location_ad_extension.GeoPoint = _CAMPAIGN_OBJECT_FACTORY_V13.create('GeoPoint') super(BulkLocationAdExtension, self).process_mappings_from_row_values(row_values) row_values.convert_to_entity(self, BulkLocationAdExtension._MAPPINGS) def process_mappings_to_row_values(self, row_values, exclude_readonly_data): self._validate_property_not_null(self.location_ad_extension, 'location_ad_extension') super(BulkLocationAdExtension, self).process_mappings_to_row_values(row_values, exclude_readonly_data) self.convert_to_values(row_values, BulkLocationAdExtension._MAPPINGS) class BulkAccountLocationAdExtension(_BulkAccountAdExtensionAssociation): """ Represents an account level location ad extension. This class exposes properties that can be read and written as fields of the Account Location Ad Extension record in a bulk file. For more information, see Account Location Ad Extension at https://go.microsoft.com/fwlink/?linkid=846127. *See also:* * :class:`.BulkServiceManager` * :class:`.BulkOperation` * :class:`.BulkFileReader` * :class:`.BulkFileWriter` """ pass class BulkCampaignLocationAdExtension(_BulkCampaignAdExtensionAssociation): """ Represents a campaign level location ad extension. This class exposes properties that can be read and written as fields of the Campaign Location Ad Extension record in a bulk file. For more information, see Campaign Location Ad Extension at https://go.microsoft.com/fwlink/?linkid=846127. *See also:* * :class:`.BulkServiceManager` * :class:`.BulkOperation` * :class:`.BulkFileReader` * :class:`.BulkFileWriter` """ pass
py
b41346e9a9df584f87f590ff328aa72aa2b5fe19
import torch import numpy as np from torch import nn from typing import Any, Dict, List, Type, Tuple, Union, Optional, Sequence ModuleType = Type[nn.Module] def miniblock( input_size: int, output_size: int = 0, norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = None, ) -> List[nn.Module]: """Construct a miniblock with given input/output-size, norm layer and \ activation.""" layers: List[nn.Module] = [nn.Linear(input_size, output_size)] if norm_layer is not None: layers += [norm_layer(output_size)] # type: ignore if activation is not None: layers += [activation()] return layers class MLP(nn.Module): """Simple MLP backbone. Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ... * hidden_sizes[-1] * output_dim :param int input_dim: dimension of the input vector. :param int output_dim: dimension of the output vector. If set to 0, there is no final linear layer. :param hidden_sizes: shape of MLP passed in as a list, not incluing input_dim and output_dim. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same actvition for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. """ def __init__( self, input_dim: int, output_dim: int = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[Union[ModuleType, Sequence[ModuleType]]] = None, activation: Optional[Union[ModuleType, Sequence[ModuleType]]] = nn.ReLU, device: Optional[Union[str, int, torch.device]] = None, ) -> None: super().__init__() self.device = device if norm_layer: if isinstance(norm_layer, list): assert len(norm_layer) == len(hidden_sizes) norm_layer_list = norm_layer else: norm_layer_list = [ norm_layer for _ in range(len(hidden_sizes))] else: norm_layer_list = [None] * len(hidden_sizes) if activation: if isinstance(activation, list): assert len(activation) == len(hidden_sizes) activation_list = activation else: activation_list = [ activation for _ in range(len(hidden_sizes))] else: activation_list = [None] * len(hidden_sizes) hidden_sizes = [input_dim] + list(hidden_sizes) model = [] for in_dim, out_dim, norm, activ in zip( hidden_sizes[:-1], hidden_sizes[1:], norm_layer_list, activation_list): model += miniblock(in_dim, out_dim, norm, activ) if output_dim > 0: model += [nn.Linear(hidden_sizes[-1], output_dim)] self.output_dim = output_dim or hidden_sizes[-1] self.model = nn.Sequential(*model) def forward( self, x: Union[np.ndarray, torch.Tensor] ) -> torch.Tensor: x = torch.as_tensor( x, device=self.device, dtype=torch.float32) # type: ignore return self.model(x.flatten(1)) class Net(nn.Module): """Wrapper of MLP to support more specific DRL usage. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. :param state_shape: int or a sequence of int of the shape of state. :param action_shape: int or a sequence of int of the shape of action. :param hidden_sizes: shape of MLP passed in as a list. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same actvition for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. :param device: specify the device when the network actually runs. Default to "cpu". :param bool softmax: whether to apply a softmax layer over the last layer's output. :param bool concat: whether the input shape is concatenated by state_shape and action_shape. If it is True, ``action_shape`` is not the output shape, but affects the input shape only. :param int num_atoms: in order to expand to the net of distributional RL. Default to 1 (not use). :param bool dueling_param: whether to use dueling network to calculate Q values (for Dueling DQN). If you want to use dueling option, you should pass a tuple of two dict (first for Q and second for V) stating self-defined arguments as stated in class:`~tianshou.utils.net.common.MLP`. Default to None. .. seealso:: Please refer to :class:`~tianshou.utils.net.common.MLP` for more detailed explanation on the usage of activation, norm_layer, etc. You can also refer to :class:`~tianshou.utils.net.continuous.Actor`, :class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's suggested be used. """ def __init__( self, state_shape: Union[int, Sequence[int]], action_shape: Optional[Union[int, Sequence[int]]] = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = nn.ReLU, device: Union[str, int, torch.device] = "cpu", softmax: bool = False, concat: bool = False, num_atoms: int = 1, dueling_param: Optional[Tuple[Dict[str, Any], Dict[str, Any]]] = None, ) -> None: super().__init__() self.device = device self.softmax = softmax self.num_atoms = num_atoms input_dim = np.prod(state_shape) action_dim = np.prod(action_shape) * num_atoms if concat: input_dim += action_dim self.use_dueling = dueling_param is not None output_dim = action_dim if not self.use_dueling and not concat else 0 self.model = MLP(input_dim, output_dim, hidden_sizes, norm_layer, activation, device) self.output_dim = self.model.output_dim if self.use_dueling: # dueling DQN q_kwargs, v_kwargs = dueling_param # type: ignore q_output_dim, v_output_dim = 0, 0 if not concat: q_output_dim, v_output_dim = action_dim, num_atoms q_kwargs: Dict[str, Any] = { **q_kwargs, "input_dim": self.output_dim, "output_dim": q_output_dim} v_kwargs: Dict[str, Any] = { **v_kwargs, "input_dim": self.output_dim, "output_dim": v_output_dim} self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs) self.output_dim = self.Q.output_dim def forward( self, s: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: """Mapping: s -> flatten (inside MLP)-> logits.""" logits = self.model(s) bsz = logits.shape[0] if self.use_dueling: # Dueling DQN q, v = self.Q(logits), self.V(logits) if self.num_atoms > 1: q = q.view(bsz, -1, self.num_atoms) v = v.view(bsz, -1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v elif self.num_atoms > 1: logits = logits.view(bsz, -1, self.num_atoms) if self.softmax: logits = torch.softmax(logits, dim=-1) return logits, state class Recurrent(nn.Module): """Simple Recurrent network based on LSTM. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, layer_num: int, state_shape: Union[int, Sequence[int]], action_shape: Union[int, Sequence[int]], device: Union[str, int, torch.device] = "cpu", hidden_layer_size: int = 128, ) -> None: super().__init__() self.device = device self.nn = nn.LSTM( input_size=hidden_layer_size, hidden_size=hidden_layer_size, num_layers=layer_num, batch_first=True, ) self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size) self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape)) def forward( self, s: Union[np.ndarray, torch.Tensor], state: Optional[Dict[str, torch.Tensor]] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """Mapping: s -> flatten -> logits. In the evaluation mode, s should be with shape ``[bsz, dim]``; in the training mode, s should be with shape ``[bsz, len, dim]``. See the code and comment for more detail. """ s = torch.as_tensor( s, device=self.device, dtype=torch.float32) # type: ignore # s [bsz, len, dim] (training) or [bsz, dim] (evaluation) # In short, the tensor's shape in training phase is longer than which # in evaluation phase. if len(s.shape) == 2: s = s.unsqueeze(-2) s = self.fc1(s) self.nn.flatten_parameters() if state is None: s, (h, c) = self.nn(s) else: # we store the stack data in [bsz, len, ...] format # but pytorch rnn needs [len, bsz, ...] s, (h, c) = self.nn(s, (state["h"].transpose(0, 1).contiguous(), state["c"].transpose(0, 1).contiguous())) s = self.fc2(s[:, -1]) # please ensure the first dim is batch size: [bsz, len, ...] return s, {"h": h.transpose(0, 1).detach(), "c": c.transpose(0, 1).detach()}
py
b41347c7f5bf5311895ddb6b3c3f36f935df61f0
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['PrivateEndpointConnection'] class PrivateEndpointConnection(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config_store_name: Optional[pulumi.Input[str]] = None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointArgs']]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStateArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ A private endpoint connection :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] config_store_name: The name of the configuration store. :param pulumi.Input[pulumi.InputType['PrivateEndpointArgs']] private_endpoint: The resource of private endpoint. :param pulumi.Input[str] private_endpoint_connection_name: Private endpoint connection name :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStateArgs']] private_link_service_connection_state: A collection of information about the state of the connection between service consumer and provider. :param pulumi.Input[str] resource_group_name: The name of the resource group to which the container registry belongs. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if config_store_name is None: raise TypeError("Missing required property 'config_store_name'") __props__['config_store_name'] = config_store_name __props__['private_endpoint'] = private_endpoint if private_endpoint_connection_name is None: raise TypeError("Missing required property 'private_endpoint_connection_name'") __props__['private_endpoint_connection_name'] = private_endpoint_connection_name if private_link_service_connection_state is None: raise TypeError("Missing required property 'private_link_service_connection_state'") __props__['private_link_service_connection_state'] = private_link_service_connection_state if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:appconfiguration/latest:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:appconfiguration/v20191101preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:appconfiguration/v20200701preview:PrivateEndpointConnection")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateEndpointConnection, __self__).__init__( 'azure-nextgen:appconfiguration/v20200601:PrivateEndpointConnection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateEndpointConnection': """ Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return PrivateEndpointConnection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> pulumi.Output[Optional['outputs.PrivateEndpointResponse']]: """ The resource of private endpoint. """ return pulumi.get(self, "private_endpoint") @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> pulumi.Output['outputs.PrivateLinkServiceConnectionStateResponse']: """ A collection of information about the state of the connection between service consumer and provider. """ return pulumi.get(self, "private_link_service_connection_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning status of the private endpoint connection. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
b413481331988e41e9b58de9eac10af8ec216917
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn import preprocessing def preprocess(df): print('----------------------------------------------') print("Before preprocessing") print("Number of rows with 0 values for each variable") for col in df.columns: missing_rows = df.loc[df[col]==0].shape[0] print(col + ": " + str(missing_rows)) print('----------------------------------------------') # Replace 0 values with the mean of the existing values df['Glucose'] = df['Glucose'].replace(0, np.nan) df['BloodPressure'] = df['BloodPressure'].replace(0, np.nan) df['SkinThickness'] = df['SkinThickness'].replace(0, np.nan) df['Insulin'] = df['Insulin'].replace(0, np.nan) df['BMI'] = df['BMI'].replace(0, np.nan) df['Glucose'] = df['Glucose'].fillna(df['Glucose'].mean()) df['BloodPressure'] = df['BloodPressure'].fillna(df['BloodPressure'].mean()) df['SkinThickness'] = df['SkinThickness'].fillna(df['SkinThickness'].mean()) df['Insulin'] = df['Insulin'].fillna(df['Insulin'].mean()) df['BMI'] = df['BMI'].fillna(df['BMI'].mean()) print('----------------------------------------------') print("After preprocessing") print("Number of rows with 0 values for each variable") for col in df.columns: missing_rows = df.loc[df[col]==0].shape[0] print(col + ": " + str(missing_rows)) print('----------------------------------------------') # Standardization df_scaled = preprocessing.scale(df) df_scaled = pd.DataFrame(df_scaled, columns=df.columns) df_scaled['Outcome'] = df['Outcome'] df = df_scaled return df
py
b41349ac931379207742f0e9ac6e1ee6f97e1716
# Standard Library import calendar from datetime import datetime from json import loads from uuid import uuid4 # 3rd Party from preggy import expect import tests.func.base # NOQA isort:skip pylint:disable=unused-import def test_update1(client): """ Given API and Worker are UP When I update a job's details Then I can see its updated in API """ task_id = uuid4() date = datetime.utcnow() unixtime = calendar.timegm(date.utctimetuple()) status, body, _ = client.post( f"/tasks/{task_id}/", data={ "image": "ubuntu", "command": "echo 'it works'", "startAt": unixtime + 5000, }, ) expect(status).to_equal(200) result = loads(body) expect(result["jobId"]).not_to_be_null() job_id = result["jobId"] status, body, _ = client.put( f"/tasks/{task_id}/jobs/{job_id}/", data={ "image": "ubuntu", "command": "echo 'it was updated'", "startAt": unixtime + 2, }, ) result = loads(body) expect(result["jobId"]).not_to_be_null() job_url = result["jobUrl"] meta = {} expect(job_url).to_have_execution(cli=client, execution=meta, timeout=30) expect(meta).to_include("url") expect(meta).to_include("executionId") expect(meta["url"]).to_have_finished_with( status="done", log="it was updated", exitCode=0, cli=client )
py
b4134a563b0ddf51173c9124b36b72a47b0ac79e
import setuptools with open("README.md", "r") as rdm: desc = rdm.read() setuptools.setup( name="pyTigerDriver", version="v1.0.12", author="Zrouga Mohamed", author_email="[email protected]", description="GSQL client for TigerGraph", long_description=desc, long_description_content_type="text/markdown", keywords=['gsql', 'client','tigergraph'], requires=["requests"], url="https://github.com/Zrouga-Mohamed/pyTigerDriver ", packages=setuptools.find_packages(), classifiers=[ "Development Status :: 5 - Production/Stable", "Programming Language :: Python :: 3", "License :: OSI Approved :: GNU Affero General Public License v3", "Operating System :: OS Independent", "Topic :: Database", ], python_requires='>=3.5' )
py
b4134a7f82f795df1d9ccc3c73d977772e26f864
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import logging import torch import torch.nn.functional as F from torch import nn __all__ = ["IBN", "get_norm"] class BatchNorm(nn.BatchNorm2d): def __init__(self, num_features, eps=1e-05, momentum=0.1, weight_freeze=False, bias_freeze=False, weight_init=1.0, bias_init=0.0, **kwargs): super().__init__(num_features, eps=eps, momentum=momentum) if weight_init is not None: nn.init.constant_(self.weight, weight_init) if bias_init is not None: nn.init.constant_(self.bias, bias_init) self.weight.requires_grad_(not weight_freeze) self.bias.requires_grad_(not bias_freeze) class SyncBatchNorm(nn.SyncBatchNorm): def __init__(self, num_features, eps=1e-05, momentum=0.1, weight_freeze=False, bias_freeze=False, weight_init=1.0, bias_init=0.0): super().__init__(num_features, eps=eps, momentum=momentum) if weight_init is not None: nn.init.constant_(self.weight, weight_init) if bias_init is not None: nn.init.constant_(self.bias, bias_init) self.weight.requires_grad_(not weight_freeze) self.bias.requires_grad_(not bias_freeze) class IBN(nn.Module): def __init__(self, planes, bn_norm, **kwargs): super(IBN, self).__init__() half1 = int(planes / 2) self.half = half1 half2 = planes - half1 self.IN = nn.InstanceNorm2d(half1, affine=True) self.BN = get_norm(bn_norm, half2, **kwargs) def forward(self, x): split = torch.split(x, self.half, 1) out1 = self.IN(split[0].contiguous()) out2 = self.BN(split[1].contiguous()) out = torch.cat((out1, out2), 1) return out class GhostBatchNorm(BatchNorm): def __init__(self, num_features, num_splits=1, **kwargs): super().__init__(num_features, **kwargs) self.num_splits = num_splits self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) def forward(self, input): N, C, H, W = input.shape if self.training or not self.track_running_stats: self.running_mean = self.running_mean.repeat(self.num_splits) self.running_var = self.running_var.repeat(self.num_splits) outputs = F.batch_norm( input.view(-1, C * self.num_splits, H, W), self.running_mean, self.running_var, self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits), True, self.momentum, self.eps).view(N, C, H, W) self.running_mean = torch.mean(self.running_mean.view(self.num_splits, self.num_features), dim=0) self.running_var = torch.mean(self.running_var.view(self.num_splits, self.num_features), dim=0) return outputs else: return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, False, self.momentum, self.eps) class FrozenBatchNorm(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. It contains non-trainable buffers called "weight" and "bias", "running_mean", "running_var", initialized to perform identity transformation. The pre-trained backbone models from Caffe2 only contain "weight" and "bias", which are computed from the original four parameters of BN. The affine transform `x * weight + bias` will perform the equivalent computation of `(x - running_mean) / sqrt(running_var) * weight + bias`. When loading a backbone model from Caffe2, "running_mean" and "running_var" will be left unchanged as identity transformation. Other pre-trained backbone models may contain all 4 parameters. The forward is implemented by `F.batch_norm(..., training=False)`. """ _version = 3 def __init__(self, num_features, eps=1e-5, **kwargs): super().__init__() self.num_features = num_features self.eps = eps self.register_buffer("weight", torch.ones(num_features)) self.register_buffer("bias", torch.zeros(num_features)) self.register_buffer("running_mean", torch.zeros(num_features)) self.register_buffer("running_var", torch.ones(num_features) - eps) def forward(self, x): if x.requires_grad: # When gradients are needed, F.batch_norm will use extra memory # because its backward op computes gradients for weight/bias as well. scale = self.weight * (self.running_var + self.eps).rsqrt() bias = self.bias - self.running_mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) return x * scale + bias else: # When gradients are not needed, F.batch_norm is a single fused op # and provide more optimization opportunities. return F.batch_norm( x, self.running_mean, self.running_var, self.weight, self.bias, training=False, eps=self.eps, ) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): version = local_metadata.get("version", None) if version is None or version < 2: # No running_mean/var in early versions # This will silent the warnings if prefix + "running_mean" not in state_dict: state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean) if prefix + "running_var" not in state_dict: state_dict[prefix + "running_var"] = torch.ones_like(self.running_var) if version is not None and version < 3: logger = logging.getLogger(__name__) logger.info("FrozenBatchNorm {} is upgraded to version 3.".format(prefix.rstrip("."))) # In version < 3, running_var are used without +eps. state_dict[prefix + "running_var"] -= self.eps super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def __repr__(self): return "FrozenBatchNorm2d(num_features={}, eps={})".format(self.num_features, self.eps) @classmethod def convert_frozen_batchnorm(cls, module): """ Convert BatchNorm/SyncBatchNorm in module into FrozenBatchNorm. Args: module (torch.nn.Module): Returns: If module is BatchNorm/SyncBatchNorm, returns a new module. Otherwise, in-place convert module and return it. Similar to convert_sync_batchnorm in https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py """ bn_module = nn.modules.batchnorm bn_module = (bn_module.BatchNorm2d, bn_module.SyncBatchNorm) res = module if isinstance(module, bn_module): res = cls(module.num_features) if module.affine: res.weight.data = module.weight.data.clone().detach() res.bias.data = module.bias.data.clone().detach() res.running_mean.data = module.running_mean.data res.running_var.data = module.running_var.data res.eps = module.eps else: for name, child in module.named_children(): new_child = cls.convert_frozen_batchnorm(child) if new_child is not child: res.add_module(name, new_child) return res def get_norm(norm, out_channels, **kwargs): """ Args: norm (str or callable): either one of BN, GhostBN, FrozenBN, GN or SyncBN; or a callable that takes a channel number and returns the normalization layer as a nn.Module out_channels: number of channels for normalization layer Returns: nn.Module or None: the normalization layer """ if isinstance(norm, str): if len(norm) == 0: return None norm = { "BN": BatchNorm, "syncBN": SyncBatchNorm, "GhostBN": GhostBatchNorm, "FrozenBN": FrozenBatchNorm, "GN": lambda channels, **args: nn.GroupNorm(32, channels), }[norm] return norm(out_channels, **kwargs)
py
b4134b1d242b5226a5fcf4392128f9ae4737e77c
# -*- coding: utf-8 -*- import networkx as nx import itertools as it from nose.tools import (assert_equal, assert_not_equal, assert_greater_equal, assert_raises, assert_in) from networkx.utils import pairwise from networkx.algorithms.connectivity import ( bridge_components, EdgeComponentAuxGraph, ) from networkx.algorithms.connectivity.edge_kcomponents import ( general_k_edge_subgraphs, ) # ---------------- # Helper functions # ---------------- def fset(list_of_sets): """ allows == to be used for list of sets """ return set(map(frozenset, list_of_sets)) def _assert_subgraph_edge_connectivity(G, ccs_subgraph, k): """ tests properties of k-edge-connected subgraphs the actual edge connectivity should be no less than k unless the cc is a single node. """ for cc in ccs_subgraph: C = G.subgraph(cc) if len(cc) > 1: connectivity = nx.edge_connectivity(C) assert_greater_equal(connectivity, k) def _memo_connectivity(G, u, v, memo): edge = (u, v) if edge in memo: return memo[edge] if not G.is_directed(): redge = (v, u) if redge in memo: return memo[redge] memo[edge] = nx.edge_connectivity(G, *edge) return memo[edge] def _all_pairs_connectivity(G, cc, k, memo): # Brute force check for u, v in it.combinations(cc, 2): # Use a memoization dict to save on computation connectivity = _memo_connectivity(G, u, v, memo) if G.is_directed(): connectivity = min(connectivity, _memo_connectivity(G, v, u, memo)) assert_greater_equal(connectivity, k) def _assert_local_cc_edge_connectivity(G, ccs_local, k, memo): """ tests properties of k-edge-connected components the local edge connectivity between each pair of nodes in the the original graph should be no less than k unless the cc is a single node. """ for cc in ccs_local: if len(cc) > 1: # Strategy for testing a bit faster: If the subgraph has high edge # connectivity then it must have local connectivity C = G.subgraph(cc) connectivity = nx.edge_connectivity(C) if connectivity < k: # Otherwise do the brute force (with memoization) check _all_pairs_connectivity(G, cc, k, memo) # Helper function def _check_edge_connectivity(G): """ Helper - generates all k-edge-components using the aux graph. Checks the both local and subgraph edge connectivity of each cc. Also checks that alternate methods of computing the k-edge-ccs generate the same result. """ # Construct the auxiliary graph that can be used to make each k-cc or k-sub aux_graph = EdgeComponentAuxGraph.construct(G) # memoize the local connectivity in this graph memo = {} for k in it.count(1): # Test "local" k-edge-components and k-edge-subgraphs ccs_local = fset(aux_graph.k_edge_components(k)) ccs_subgraph = fset(aux_graph.k_edge_subgraphs(k)) # Check connectivity properties that should be garuenteed by the # algorithms. _assert_local_cc_edge_connectivity(G, ccs_local, k, memo) _assert_subgraph_edge_connectivity(G, ccs_subgraph, k) if k == 1 or k == 2 and not G.is_directed(): assert_equal(ccs_local, ccs_subgraph, 'Subgraphs and components should be the same ' 'when k == 1 or (k == 2 and not G.directed())') if G.is_directed(): # Test special case methods are the same as the aux graph if k == 1: alt_sccs = fset(nx.strongly_connected_components(G)) assert_equal(alt_sccs, ccs_local, 'k=1 failed alt') assert_equal(alt_sccs, ccs_subgraph, 'k=1 failed alt') else: # Test special case methods are the same as the aux graph if k == 1: alt_ccs = fset(nx.connected_components(G)) assert_equal(alt_ccs, ccs_local, 'k=1 failed alt') assert_equal(alt_ccs, ccs_subgraph, 'k=1 failed alt') elif k == 2: alt_bridge_ccs = fset(bridge_components(G)) assert_equal(alt_bridge_ccs, ccs_local, 'k=2 failed alt') assert_equal(alt_bridge_ccs, ccs_subgraph, 'k=2 failed alt') # if new methods for k == 3 or k == 4 are implemented add them here # Check the general subgraph method works by itself alt_subgraph_ccs = fset([set(C.nodes()) for C in general_k_edge_subgraphs(G, k=k)]) assert_equal(alt_subgraph_ccs, ccs_subgraph, 'alt subgraph method failed') # Stop once k is larger than all special case methods # and we cannot break down ccs any further. if k > 2 and all(len(cc) == 1 for cc in ccs_local): break # ---------------- # Misc tests # ---------------- def test_zero_k_exception(): G = nx.Graph() # functions that return generators error immediately assert_raises(ValueError, nx.k_edge_components, G, k=0) assert_raises(ValueError, nx.k_edge_subgraphs, G, k=0) # actual generators only error when you get the first item aux_graph = EdgeComponentAuxGraph.construct(G) assert_raises(ValueError, list, aux_graph.k_edge_components(k=0)) assert_raises(ValueError, list, aux_graph.k_edge_subgraphs(k=0)) assert_raises(ValueError, list, general_k_edge_subgraphs(G, k=0)) def test_empty_input(): G = nx.Graph() assert_equal([], list(nx.k_edge_components(G, k=5))) assert_equal([], list(nx.k_edge_subgraphs(G, k=5))) G = nx.DiGraph() assert_equal([], list(nx.k_edge_components(G, k=5))) assert_equal([], list(nx.k_edge_subgraphs(G, k=5))) def test_not_implemented(): G = nx.MultiGraph() assert_raises(nx.NetworkXNotImplemented, EdgeComponentAuxGraph.construct, G) assert_raises(nx.NetworkXNotImplemented, nx.k_edge_components, G, k=2) assert_raises(nx.NetworkXNotImplemented, nx.k_edge_subgraphs, G, k=2) assert_raises(nx.NetworkXNotImplemented, bridge_components, G) assert_raises(nx.NetworkXNotImplemented, bridge_components, nx.DiGraph()) def test_general_k_edge_subgraph_quick_return(): # tests quick return optimization G = nx.Graph() G.add_node(0) subgraphs = list(general_k_edge_subgraphs(G, k=1)) assert_equal(len(subgraphs), 1) for subgraph in subgraphs: assert_equal(subgraph.number_of_nodes(), 1) G.add_node(1) subgraphs = list(general_k_edge_subgraphs(G, k=1)) assert_equal(len(subgraphs), 2) for subgraph in subgraphs: assert_equal(subgraph.number_of_nodes(), 1) # ---------------- # Undirected tests # ---------------- def test_random_gnp(): # seeds = [1550709854, 1309423156, 4208992358, 2785630813, 1915069929] seeds = [12, 13] for seed in seeds: G = nx.gnp_random_graph(20, 0.2, seed=seed) _check_edge_connectivity(G) def test_configuration(): # seeds = [2718183590, 2470619828, 1694705158, 3001036531, 2401251497] seeds = [14, 15] for seed in seeds: deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) G = nx.Graph(nx.configuration_model(deg_seq, seed=seed)) G.remove_edges_from(nx.selfloop_edges(G)) _check_edge_connectivity(G) def test_shell(): # seeds = [2057382236, 3331169846, 1840105863, 476020778, 2247498425] seeds = [20] for seed in seeds: constructor = [(12, 70, 0.8), (15, 40, 0.6)] G = nx.random_shell_graph(constructor, seed=seed) _check_edge_connectivity(G) def test_karate(): G = nx.karate_club_graph() _check_edge_connectivity(G) def test_tarjan_bridge(): # graph from tarjan paper # RE Tarjan - "A note on finding the bridges of a graph" # Information Processing Letters, 1974 - Elsevier # doi:10.1016/0020-0190(74)90003-9. # define 2-connected components and bridges ccs = [(1, 2, 4, 3, 1, 4), (5, 6, 7, 5), (8, 9, 10, 8), (17, 18, 16, 15, 17), (11, 12, 14, 13, 11, 14)] bridges = [(4, 8), (3, 5), (3, 17)] G = nx.Graph(it.chain(*(pairwise(path) for path in ccs + bridges))) _check_edge_connectivity(G) def test_bridge_cc(): # define 2-connected components and bridges cc2 = [(1, 2, 4, 3, 1, 4), (8, 9, 10, 8), (11, 12, 13, 11)] bridges = [(4, 8), (3, 5), (20, 21), (22, 23, 24)] G = nx.Graph(it.chain(*(pairwise(path) for path in cc2 + bridges))) bridge_ccs = fset(bridge_components(G)) target_ccs = fset([ {1, 2, 3, 4}, {5}, {8, 9, 10}, {11, 12, 13}, {20}, {21}, {22}, {23}, {24} ]) assert_equal(bridge_ccs, target_ccs) _check_edge_connectivity(G) def test_undirected_aux_graph(): # Graph similar to the one in # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 a, b, c, d, e, f, g, h, i = 'abcdefghi' paths = [ (a, d, b, f, c), (a, e, b), (a, e, b, c, g, b, a), (c, b), (f, g, f), (h, i) ] G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) aux_graph = EdgeComponentAuxGraph.construct(G) components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) target_1 = fset([{a, b, c, d, e, f, g}, {h, i}]) assert_equal(target_1, components_1) # Check that the undirected case for k=1 agrees with CCs alt_1 = fset(nx.k_edge_subgraphs(G, k=1)) assert_equal(alt_1, components_1) components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) target_2 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) assert_equal(target_2, components_2) # Check that the undirected case for k=2 agrees with bridge components alt_2 = fset(nx.k_edge_subgraphs(G, k=2)) assert_equal(alt_2, components_2) components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) target_3 = fset([{a}, {b, c, f, g}, {d}, {e}, {h}, {i}]) assert_equal(target_3, components_3) components_4 = fset(aux_graph.k_edge_subgraphs(k=4)) target_4 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) assert_equal(target_4, components_4) _check_edge_connectivity(G) def test_local_subgraph_difference(): paths = [ (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique # paths connecting each node of the 4 cliques (11, 101, 21), (12, 102, 22), (13, 103, 23), (14, 104, 24), ] G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) aux_graph = EdgeComponentAuxGraph.construct(G) # Each clique is returned separately in k-edge-subgraphs subgraph_ccs = fset(aux_graph.k_edge_subgraphs(3)) subgraph_target = fset([{101}, {102}, {103}, {104}, {21, 22, 23, 24}, {11, 12, 13, 14}]) assert_equal(subgraph_ccs, subgraph_target) # But in k-edge-ccs they are returned together # because they are locally 3-edge-connected local_ccs = fset(aux_graph.k_edge_components(3)) local_target = fset([{101}, {102}, {103}, {104}, {11, 12, 13, 14, 21, 22, 23, 24}]) assert_equal(local_ccs, local_target) def test_local_subgraph_difference_directed(): dipaths = [ (1, 2, 3, 4, 1), (1, 3, 1), ] G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) assert_equal( fset(nx.k_edge_components(G, k=1)), fset(nx.k_edge_subgraphs(G, k=1)) ) # Unlike undirected graphs, when k=2, for directed graphs there is a case # where the k-edge-ccs are not the same as the k-edge-subgraphs. # (in directed graphs ccs and subgraphs are the same when k=2) assert_not_equal( fset(nx.k_edge_components(G, k=2)), fset(nx.k_edge_subgraphs(G, k=2)) ) assert_equal( fset(nx.k_edge_components(G, k=3)), fset(nx.k_edge_subgraphs(G, k=3)) ) _check_edge_connectivity(G) def test_triangles(): paths = [ (11, 12, 13, 11), # first 3-clique (21, 22, 23, 21), # second 3-clique (11, 21), # connected by an edge ] G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) # subgraph and ccs are the same in all cases here assert_equal( fset(nx.k_edge_components(G, k=1)), fset(nx.k_edge_subgraphs(G, k=1)) ) assert_equal( fset(nx.k_edge_components(G, k=2)), fset(nx.k_edge_subgraphs(G, k=2)) ) assert_equal( fset(nx.k_edge_components(G, k=3)), fset(nx.k_edge_subgraphs(G, k=3)) ) _check_edge_connectivity(G) def test_four_clique(): paths = [ (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique # paths connecting the 4 cliques such that they are # 3-connected in G, but not in the subgraph. # Case where the nodes bridging them do not have degree less than 3. (100, 13), (12, 100, 22), (13, 200, 23), (14, 300, 24), ] G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) # The subgraphs and ccs are different for k=3 local_ccs = fset(nx.k_edge_components(G, k=3)) subgraphs = fset(nx.k_edge_subgraphs(G, k=3)) assert_not_equal(local_ccs, subgraphs) # The cliques ares in the same cc clique1 = frozenset(paths[0]) clique2 = frozenset(paths[1]) assert_in(clique1.union(clique2).union({100}), local_ccs) # but different subgraphs assert_in(clique1, subgraphs) assert_in(clique2, subgraphs) assert_equal(G.degree(100), 3) _check_edge_connectivity(G) def test_five_clique(): # Make a graph that can be disconnected less than 4 edges, but no node has # degree less than 4. G = nx.disjoint_union(nx.complete_graph(5), nx.complete_graph(5)) paths = [ # add aux-connections (1, 100, 6), (2, 100, 7), (3, 200, 8), (4, 200, 100), ] G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) assert_equal(min(dict(nx.degree(G)).values()), 4) # For k=3 they are the same assert_equal( fset(nx.k_edge_components(G, k=3)), fset(nx.k_edge_subgraphs(G, k=3)) ) # For k=4 they are the different # the aux nodes are in the same CC as clique 1 but no the same subgraph assert_not_equal( fset(nx.k_edge_components(G, k=4)), fset(nx.k_edge_subgraphs(G, k=4)) ) # For k=5 they are not the same assert_not_equal( fset(nx.k_edge_components(G, k=5)), fset(nx.k_edge_subgraphs(G, k=5)) ) # For k=6 they are the same assert_equal( fset(nx.k_edge_components(G, k=6)), fset(nx.k_edge_subgraphs(G, k=6)) ) _check_edge_connectivity(G) # ---------------- # Undirected tests # ---------------- def test_directed_aux_graph(): # Graph similar to the one in # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 a, b, c, d, e, f, g, h, i = 'abcdefghi' dipaths = [ (a, d, b, f, c), (a, e, b), (a, e, b, c, g, b, a), (c, b), (f, g, f), (h, i) ] G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) aux_graph = EdgeComponentAuxGraph.construct(G) components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) target_1 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) assert_equal(target_1, components_1) # Check that the directed case for k=1 agrees with SCCs alt_1 = fset(nx.strongly_connected_components(G)) assert_equal(alt_1, components_1) components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) target_2 = fset([{i}, {e}, {d}, {b, c, f, g}, {h}, {a}]) assert_equal(target_2, components_2) components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) target_3 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) assert_equal(target_3, components_3) def test_random_gnp_directed(): # seeds = [3894723670, 500186844, 267231174, 2181982262, 1116750056] seeds = [21] for seed in seeds: G = nx.gnp_random_graph(20, 0.2, directed=True, seed=seed) _check_edge_connectivity(G) def test_configuration_directed(): # seeds = [671221681, 2403749451, 124433910, 672335939, 1193127215] seeds = [67] for seed in seeds: deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) G = nx.DiGraph(nx.configuration_model(deg_seq, seed=seed)) G.remove_edges_from(nx.selfloop_edges(G)) _check_edge_connectivity(G) def test_shell_directed(): # seeds = [3134027055, 4079264063, 1350769518, 1405643020, 530038094] seeds = [31] for seed in seeds: constructor = [(12, 70, 0.8), (15, 40, 0.6)] G = nx.random_shell_graph(constructor, seed=seed).to_directed() _check_edge_connectivity(G) def test_karate_directed(): G = nx.karate_club_graph().to_directed() _check_edge_connectivity(G)
py
b4134bdfc05937e7009b5fc16360797f0365ec03
# -*- coding: utf-8 -*- """ kombu.async.timer ================= Timer scheduling Python callbacks. """ from __future__ import absolute_import import heapq import sys from collections import namedtuple from datetime import datetime from functools import wraps from time import time from weakref import proxy as weakrefproxy from kombu.five import monotonic from kombu.log import get_logger from kombu.utils.compat import timedelta_seconds try: from pytz import utc except ImportError: utc = None DEFAULT_MAX_INTERVAL = 2 EPOCH = datetime.utcfromtimestamp(0).replace(tzinfo=utc) IS_PYPY = hasattr(sys, 'pypy_version_info') logger = get_logger(__name__) __all__ = ['Entry', 'Timer', 'to_timestamp'] scheduled = namedtuple('scheduled', ('eta', 'priority', 'entry')) def to_timestamp(d, default_timezone=utc): if isinstance(d, datetime): if d.tzinfo is None: d = d.replace(tzinfo=default_timezone) return timedelta_seconds(d - EPOCH) return d class Entry(object): if not IS_PYPY: # pragma: no cover __slots__ = ( 'fun', 'args', 'kwargs', 'tref', 'cancelled', '_last_run', '__weakref__', ) def __init__(self, fun, args=None, kwargs=None): self.fun = fun self.args = args or [] self.kwargs = kwargs or {} self.tref = weakrefproxy(self) self._last_run = None self.cancelled = False def __call__(self): return self.fun(*self.args, **self.kwargs) def cancel(self): try: self.tref.cancelled = True except ReferenceError: # pragma: no cover pass def __repr__(self): return '<TimerEntry: {0}(*{1!r}, **{2!r})'.format( self.fun.__name__, self.args, self.kwargs) def __hash__(self): return hash((self.fun, self.args, self.kwargs)) if sys.version_info[0] == 3: # pragma: no cover def __lt__(self, other): return hash(self) < hash(other) def __gt__(self, other): return hash(self) > hash(other) def __eq__(self, other): return hash(self) == hash(other) def __ne__(self, other): return not self.__eq__(other) class Timer(object): """ETA scheduler.""" Entry = Entry on_error = None def __init__(self, max_interval=None, on_error=None, **kwargs): self.max_interval = float(max_interval or DEFAULT_MAX_INTERVAL) self.on_error = on_error or self.on_error self._queue = [] def __enter__(self): return self def __exit__(self, *exc_info): self.stop() def call_at(self, eta, fun, args=(), kwargs={}, priority=0): return self.enter_at(self.Entry(fun, args, kwargs), eta, priority) def call_after(self, secs, fun, args=(), kwargs={}, priority=0): return self.enter_after(secs, self.Entry(fun, args, kwargs), priority) def call_repeatedly(self, secs, fun, args=(), kwargs={}, priority=0): tref = self.Entry(fun, args, kwargs) @wraps(fun) def _reschedules(*args, **kwargs): last, now = tref._last_run, monotonic() lsince = (now - tref._last_run) if last else secs try: if lsince and lsince >= secs: tref._last_run = now return fun(*args, **kwargs) finally: if not tref.cancelled: last = tref._last_run next = secs - (now - last) if last else secs self.enter_after(next, tref, priority) tref.fun = _reschedules tref._last_run = None return self.enter_after(secs, tref, priority) def enter_at(self, entry, eta=None, priority=0, time=time): """Enter function into the scheduler. :param entry: Item to enter. :keyword eta: Scheduled time as a :class:`datetime.datetime` object. :keyword priority: Unused. """ if eta is None: eta = time() if isinstance(eta, datetime): try: eta = to_timestamp(eta) except Exception as exc: if not self.handle_error(exc): raise return return self._enter(eta, priority, entry) def enter_after(self, secs, entry, priority=0, time=time): return self.enter_at(entry, time() + secs, priority) def _enter(self, eta, priority, entry, push=heapq.heappush): push(self._queue, scheduled(eta, priority, entry)) return entry def apply_entry(self, entry): try: entry() except Exception as exc: if not self.handle_error(exc): logger.error('Error in timer: %r', exc, exc_info=True) def handle_error(self, exc_info): if self.on_error: self.on_error(exc_info) return True def stop(self): pass def __iter__(self, min=min, nowfun=time, pop=heapq.heappop, push=heapq.heappush): """This iterator yields a tuple of ``(entry, wait_seconds)``, where if entry is :const:`None` the caller should wait for ``wait_seconds`` until it polls the schedule again.""" max_interval = self.max_interval queue = self._queue while 1: if queue: eventA = queue[0] now, eta = nowfun(), eventA[0] if now < eta: yield min(eta - now, max_interval), None else: eventB = pop(queue) if eventB is eventA: entry = eventA[2] if not entry.cancelled: yield None, entry continue else: push(queue, eventB) else: yield None, None def clear(self): self._queue[:] = [] # atomic, without creating a new list. def cancel(self, tref): tref.cancel() def __len__(self): return len(self._queue) def __nonzero__(self): return True @property def queue(self, _pop=heapq.heappop): """Snapshot of underlying datastructure.""" events = list(self._queue) return [_pop(v) for v in [events] * len(events)] @property def schedule(self): return self
py
b4134c35fa50389b71f78c139b32a1bad03de69b
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Networks used in discrete-action agents.""" import sonnet as snt import tensorflow as tf class DiscreteFilteredQNetwork(snt.Module): """Discrete filtered Q-network. This produces filtered Q values according to the method used in the discrete BCQ algorithm (https://arxiv.org/pdf/1910.01708.pdf - section 4). """ def __init__(self, g_network: snt.Module, q_network: snt.Module, threshold: float): super().__init__(name='discrete_filtered_qnet') assert threshold >= 0 and threshold <= 1 self.g_network = g_network self.q_network = q_network self._threshold = threshold def __call__(self, o_t: tf.Tensor) -> tf.Tensor: q_t = self.q_network(o_t) g_t = tf.nn.softmax(self.g_network(o_t)) normalized_g_t = g_t / tf.reduce_max(g_t, axis=-1, keepdims=True) # Filter actions based on g_network outputs. min_q = tf.reduce_min(q_t, axis=-1, keepdims=True) return tf.where(normalized_g_t >= self._threshold, q_t, min_q)
py
b4134c824e15ccf564a6a3dacb0d65cb39a246ff
# coding: utf-8 from unittest import TestCase from tools.error import DataNotFound from tools.text import find_number, drop_space, normalize_space class TextTestCase(TestCase): def test_find_number(self): self.assertEqual(2, find_number('2')) self.assertEqual(2, find_number('foo 2 4 bar')) self.assertEqual('2', find_number('foo 2 4 bar', make_int=False)) self.assertEqual(24, find_number('foo 2 4 bar', ignore_spaces=True)) self.assertEqual(24, find_number(u'бешеный 2 4 барсук', ignore_spaces=True)) self.assertRaises(DataNotFound, lambda: find_number('foo')) self.assertRaises(DataNotFound, lambda: find_number(u'фыва')) def test_drop_space(self): self.assertEqual('', drop_space(' ')) self.assertEqual('f', drop_space(' f ')) self.assertEqual('fb', drop_space(' f b ')) self.assertEqual(u'триглаза', drop_space(u' тр и гла' + '\t' + '\n' + u' за ')) def test_normalize_space(self): self.assertEqual('', normalize_space(' ')) self.assertEqual('f', normalize_space(' f ')) self.assertEqual('f b', normalize_space(' f b ')) self.assertEqual(u'тр и гла за', normalize_space(u' тр и гла' + '\t' + '\n' + u' за ')) self.assertEqual(u'тр_и_гла_за', normalize_space(u' тр и гла' + '\t' + '\n' + u' за ', replace='_')) self.assertEqual(u'трABCиABCглаABCза', normalize_space(u' тр и гла' + '\t' + '\n' + u' за ', replace='ABC'))
py
b4134d7a379510842d2a6dc253f9c3cf462b119b
from sqlalchemy import Column, Float, ForeignKey, Integer, String from sqlalchemy.orm import relationship from nonbonded.backend.database.models import Base class ForceBalancePrior(Base): __tablename__ = "force_balance_priors" id = Column(Integer, primary_key=True, index=True) parent_id = Column(Integer, ForeignKey("force_balance.id")) parameter_type = Column(String, nullable=False) value = Column(Float, nullable=False) class ForceBalance(Base): __tablename__ = "force_balance" id = Column(Integer, primary_key=True, index=True) parent_id = Column(Integer, ForeignKey("optimizations.id"), nullable=False) priors = relationship("ForceBalancePrior", cascade="all, delete-orphan") convergence_step_criteria = Column(Float, nullable=False) convergence_objective_criteria = Column(Float, nullable=False) convergence_gradient_criteria = Column(Float, nullable=False) n_criteria = Column(Integer, nullable=False) initial_trust_radius = Column(Float, nullable=False) minimum_trust_radius = Column(Float, nullable=False)
py
b4134d7df1036ed179ac4475006f136709b082a3
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The arithmetic circuit library.""" from .functional_pauli_rotations import FunctionalPauliRotations from .integer_comparator import IntegerComparator from .linear_pauli_rotations import LinearPauliRotations from .piecewise_linear_pauli_rotations import PiecewiseLinearPauliRotations from .piecewise_polynomial_pauli_rotations import PiecewisePolynomialPauliRotations from .polynomial_pauli_rotations import PolynomialPauliRotations from .weighted_adder import WeightedAdder from .quadratic_form import QuadraticForm from .linear_amplitude_function import LinearAmplitudeFunction from .adders import VBERippleCarryAdder, CDKMRippleCarryAdder, DraperQFTAdder from .piecewise_chebyshev import PiecewiseChebyshev from .multipliers import HRSCumulativeMultiplier, RGQFTMultiplier
py
b4134d9ca8c2917a81985fbe2f7aa6b0b8bc4434
import yaml import os import re import sys import httplib2 import socket import pkg_resources import threading import base64 import json from docassemble.base.generate_key import random_string from distutils.version import LooseVersion dbtableprefix = None daconfig = dict() s3_config = dict() S3_ENABLED = False gc_config = dict() GC_ENABLED = False azure_config = dict() AZURE_ENABLED = False hostname = None loaded = False in_celery = False errors = list() env_messages = list() def env_true_false(var): value = str(os.getenv(var, 'false')).lower().strip() return value == 'true' def env_exists(var): value = os.getenv(var) return value is not None def env_translate(var): value = str(os.getenv(var)).strip() if value in ('true', 'True'): return True if value in ('false', 'False'): return False if value in ('null', 'None', 'Null'): return None if re.match(r'^\-?[0-9]+$', value): return int(value) return value def override_config(the_config, messages, key, var, pre_key=None): value = env_translate(var) if value == '': return if value is None and (key in ('redis', 'rabbitmq', 'log server') or (pre_key == 'db' and key == 'host')): return if pre_key is None: if key in the_config and str(the_config[key]) != str(value): messages.append("The value of configuration key %s has been replaced with %s based on the value of environment variable %s" % (key, value, var)) elif key not in the_config: messages.append("The value of configuration key %s has been set to %s based on the value of environment variable %s" % (key, value, var)) the_config[key] = value else: if pre_key not in the_config: the_config[pre_key] = dict() if key in the_config[pre_key] and str(the_config[pre_key][key]) != str(value): messages.append("The value of configuration key %s in %s has been replaced with %s based on the value of environment variable %s" % (key, pre_key, value, var)) elif key not in the_config[pre_key]: messages.append("The value of configuration key %s in %s has been set to %s based on the value of environment variable %s" % (key, pre_key, value, var)) the_config[pre_key][key] = value def config_error(error): errors.append(error) sys.stderr.write(error + "\n") def cleanup_filename(filename): filename = filename.strip() parts = filename.split(':') if len(parts) != 2 or re.search(r'\s', parts[0]): return None if not parts[0].startswith('docassemble.playground') and not parts[1].startswith('data/questions/'): return parts[0] + ':' + 'data/questions/' + parts[1] return filename def delete_environment(): for var in ('DBSSLMODE', 'DBSSLCERT', 'DBSSLKEY', 'DBSSLROOTCERT', 'DBTYPE', 'DBPREFIX', 'DBNAME', 'DBUSER', 'DBPASSWORD', 'DBHOST', 'DBPORT', 'DBTABLEPREFIX', 'DBBACKUP', 'DASECRETKEY', 'DABACKUPDAYS', 'ENVIRONMENT_TAKES_PRECEDENCE', 'DASTABLEVERSION', 'DASSLPROTOCOLS', 'SERVERADMIN', 'REDIS', 'REDISCLI', 'RABBITMQ', 'DACELERYWORKERS', 'S3ENABLE', 'S3ACCESSKEY', 'S3SECRETACCESSKEY', 'S3BUCKET', 'S3REGION', 'S3ENDPOINTURL', 'AZUREENABLE', 'AZUREACCOUNTKEY', 'AZUREACCOUNTNAME', 'AZURECONTAINER', 'AZURECONNECTIONSTRING', 'EC2', 'COLLECTSTATISTICS', 'KUBERNETES', 'LOGSERVER', 'USECLOUDURLS', 'USEMINIO', 'USEHTTPS', 'USELETSENCRYPT', 'LETSENCRYPTEMAIL', 'BEHINDHTTPSLOADBALANCER', 'XSENDFILE', 'DAUPDATEONSTART', 'URLROOT', 'DAHOSTNAME', 'DAEXPOSEWEBSOCKETS', 'DAWEBSOCKETSIP', 'DAWEBSOCKETSPORT', 'POSTURLROOT', 'DAWEBSERVER', 'DASQLPING', 'PORT', 'OTHERLOCALES', 'DAMAXCONTENTLENGTH', 'DACELERYWORKERS', 'PACKAGES', 'PYTHONPACKAGES', 'DAALLOWUPDATES', 'AWS_SECRET_ACCESS_KEY', 'AWS_ACCESS_KEY_ID', 'S4CMD_OPTS', 'WSGIROOT', 'DATIMEOUT'): if var in os.environ: del os.environ[var] this_thread = threading.local() this_thread.botoclient = dict() def aws_get_region(arn): m = re.search(r'arn:aws:secretsmanager:([^:]+):', arn) if m: return m.group(1) return 'us-east-1' def aws_get_secret(data): region = aws_get_region(data) if region not in this_thread.botoclient: import boto3 if env_exists('AWSACCESSKEY') and env_exists('AWSSECRETACCESSKEY'): sys.stderr.write("Using access keys\n") session = boto3.session.Session(aws_access_key_id=os.environ['AWSACCESSKEY'], aws_secret_access_key=os.environ['AWSSECRETACCESSKEY']) else: sys.stderr.write("Not using access keys\n") session = boto3.session.Session() this_thread.botoclient[region] = session.client( service_name='secretsmanager', region_name=region, ) try: response = this_thread.botoclient[region].get_secret_value(SecretId=data) except Exception as e: if e.__class__.__name__ == 'ClientError': if e.response['Error']['Code'] == 'DecryptionFailureException': sys.stderr.write("aws_get_secret: Secrets Manager can't decrypt the protected secret text using the provided KMS key.\n") elif e.response['Error']['Code'] == 'InternalServiceErrorException': sys.stderr.write("aws_get_secret: An error occurred on the server side.\n") elif e.response['Error']['Code'] == 'InvalidParameterException': sys.stderr.write("aws_get_secret: You provided an invalid value for a parameter.\n") elif e.response['Error']['Code'] == 'InvalidRequestException': sys.stderr.write("aws_get_secret: You provided a parameter value that is not valid for the current state of the resource.\n") elif e.response['Error']['Code'] == 'ResourceNotFoundException': sys.stderr.write("aws_get_secret: We can't find the resource that you asked for.") else: sys.stderr.write("aws_get_secret: " + e.__class__.__name__ + ": " + str(e) + "\n") else: sys.stderr.write("aws_get_secret: " + e.__class__.__name__ + ": " + str(e) + "\n") return data if 'SecretString' in response: result = response['SecretString'] else: result = base64.b64decode(response['SecretBinary']) try: result = json.loads(result) except: sys.stderr.write("aws_get_secret: problem decoding JSON\n") return result def recursive_fetch_cloud(data): if isinstance(data, str): if data.startswith('arn:aws:secretsmanager:'): data = aws_get_secret(data.strip()) return data elif isinstance(data, (int, float, bool)): return data elif isinstance(data, list): return [recursive_fetch_cloud(y) for y in data] elif isinstance(data, dict): return {k: recursive_fetch_cloud(v) for k, v in data.items()} elif isinstance(data, set): return {recursive_fetch_cloud(y) for y in data} elif isinstance(data, tuple): return tuple([recursive_fetch_cloud(y) for y in data]) else: return data def load(**kwargs): global daconfig global s3_config global S3_ENABLED global gc_config global GC_ENABLED global azure_config global AZURE_ENABLED global dbtableprefix global hostname global loaded global in_celery global env_messages # changed = False filename = None if 'arguments' in kwargs and isinstance(kwargs['arguments'], list) and len(kwargs['arguments']) > 1: for arg in kwargs['arguments'][1:]: if arg.startswith('--'): continue if os.path.isfile(arg): filename = arg if filename is None: filename = kwargs.get('filename', os.getenv('DA_CONFIG_FILE', '/usr/share/docassemble/config/config.yml')) if 'in_celery' in kwargs and kwargs['in_celery']: in_celery = True if not os.path.isfile(filename): if not os.access(os.path.dirname(filename), os.W_OK): sys.stderr.write("Configuration file " + str(filename) + " does not exist and cannot be created\n") sys.exit(1) with open(filename, 'w') as config_file: config_file.write(default_config()) sys.stderr.write("Wrote configuration file to " + str(filename) + "\n") if not os.path.isfile(filename): sys.stderr.write("Configuration file " + str(filename) + " does not exist. Trying default instead.\n") filename = '/usr/share/docassemble/config/config.yml' if not os.path.isfile(filename): sys.stderr.write("Configuration file " + str(filename) + " does not exist.\n") sys.exit(1) with open(filename, 'r', encoding='utf-8') as stream: raw_daconfig = yaml.load(stream, Loader=yaml.FullLoader) if raw_daconfig is None: sys.stderr.write("Could not open configuration file from " + str(filename) + "\n") with open(filename, 'r', encoding='utf-8') as fp: sys.stderr.write(fp.read() + "\n") sys.exit(1) daconfig.clear() raw_daconfig = recursive_fetch_cloud(raw_daconfig) if raw_daconfig.get('config from', None) and isinstance(raw_daconfig['config from'], dict): raw_daconfig.update(raw_daconfig['config from']) del raw_daconfig['config from'] for key, val in raw_daconfig.items(): if re.search(r'_', key): config_error("Configuration keys may not contain underscores. Your configuration key " + str(key) + " has been converted.") daconfig[re.sub(r'_', r' ', key)] = val else: daconfig[key] = val if 'avconv' in daconfig: config_error("The Configuration directive avconv has been renamed ffmpeg.") daconfig['ffmpeg'] = daconfig['avconv'] del daconfig['avconv'] daconfig['config file'] = filename if 'modules' not in daconfig: daconfig['modules'] = os.getenv('DA_PYTHON', '/usr/share/docassemble/local' + str(sys.version_info.major) + '.' + str(sys.version_info.minor)) daconfig['python version'] = str(pkg_resources.get_distribution("docassemble.base").version) version_file = daconfig.get('version file', '/usr/share/docassemble/webapp/VERSION') if os.path.isfile(version_file) and os.access(version_file, os.R_OK): with open(version_file, 'r', encoding='utf-8') as fp: daconfig['system version'] = fp.read().strip() else: daconfig['system version'] = '0.1.12' if LooseVersion(daconfig['system version']) >= LooseVersion('1.2.50'): daconfig['has_celery_single_queue'] = True else: daconfig['has_celery_single_queue'] = False if env_true_false('ENVIRONMENT_TAKES_PRECEDENCE'): null_messages = list() for env_var, key in (('S3ENABLE', 'enable'), ('S3ACCESSKEY', 'access key id'), ('S3SECRETACCESSKEY', 'secret access key'), ('S3BUCKET', 'bucket'), ('S3REGION', 'region'), ('S3ENDPOINTURL', 'endpoint url')): if env_exists(env_var): override_config(daconfig, null_messages, key, env_var, pre_key='s3') for env_var, key in (('AZUREENABLE', 'enable'), ('AZUREACCOUNTKEY', 'account key'), ('AZUREACCOUNTNAME', 'account name'), ('AZURECONTAINER', 'container'), ('AZURECONNECTIONSTRING', 'connection string')): if env_exists(env_var): override_config(daconfig, null_messages, key, env_var, pre_key='azure') if env_exists('KUBERNETES'): override_config(daconfig, null_messages, 'kubernetes', 'KUBERNETES') s3_config = daconfig.get('s3', None) if not s3_config or ('enable' in s3_config and not s3_config['enable']): S3_ENABLED = False else: S3_ENABLED = True if not s3_config.get('access key id', None) and env_exists('AWSACCESSKEY'): s3_config['access key id'] = os.environ['AWSACCESSKEY'] if not s3_config.get('secret access key', None) and env_exists('AWSSECRETACCESSKEY'): s3_config['secret access key'] = os.environ['AWSSECRETACCESSKEY'] gc_config = daconfig.get('google cloud', None) if not gc_config or ('enable' in gc_config and not gc_config['enable']) or not ('access key id' in gc_config and gc_config['access key id']) or not ('secret access key' in gc_config and gc_config['secret access key']): GC_ENABLED = False else: GC_ENABLED = True if 'azure' in daconfig and not isinstance(daconfig['azure'], dict): config_error('azure must be a dict') azure_config = daconfig.get('azure', None) if not isinstance(azure_config, dict) or ('enable' in azure_config and not azure_config['enable']) or 'account name' not in azure_config or azure_config['account name'] is None or 'account key' not in azure_config or azure_config['account key'] is None: AZURE_ENABLED = False else: AZURE_ENABLED = True if daconfig.get('ec2', False) or (env_true_false('ENVIRONMENT_TAKES_PRECEDENCE') and env_true_false('EC2')): h = httplib2.Http() resp, content = h.request(daconfig.get('ec2 ip url', "http://169.254.169.254/latest/meta-data/local-hostname"), "GET") if resp['status'] and int(resp['status']) == 200: hostname = content.decode() else: config_error("Could not get hostname from ec2") sys.exit(1) elif daconfig.get('kubernetes', False) or (env_true_false('ENVIRONMENT_TAKES_PRECEDENCE') and env_true_false('KUBERNETES')): hostname = socket.gethostbyname(socket.gethostname()) else: hostname = os.getenv('SERVERHOSTNAME', socket.gethostname()) if S3_ENABLED: import docassemble.webapp.amazon cloud = docassemble.webapp.amazon.s3object(s3_config) elif AZURE_ENABLED: import docassemble.webapp.microsoft cloud = docassemble.webapp.microsoft.azureobject(azure_config) if ('key vault name' in azure_config and azure_config['key vault name'] is not None and 'managed identity' in azure_config and azure_config['managed identity'] is not None): daconfig = cloud.load_with_secrets(daconfig) else: cloud = None if 'suppress error notificiations' in daconfig and isinstance(daconfig['suppress error notificiations'], list): ok = True for item in daconfig['suppress error notificiations']: if not isinstance(item, str): ok = False break if not ok: daconfig['suppress error notificiations'] = [] config_error("Configuration file suppress error notifications directive not valid") else: daconfig['suppress error notificiations'] = [] if 'maximum content length' in daconfig: if isinstance(daconfig['maximum content length'], (int, type(None))): if daconfig['maximum content length'] is not None and daconfig['maximum content length'] <= 0: daconfig['maximum content length'] = None else: config_error("The maximum content length must be an integer number of bytes, or null.") del daconfig['maximum content length'] if 'maximum content length' not in daconfig: daconfig['maximum content length'] = 16 * 1024 * 1024 if 'social' not in daconfig or not isinstance(daconfig['social'], dict): daconfig['social'] = dict() if 'twitter' not in daconfig['social'] or not isinstance(daconfig['social']['twitter'], dict): daconfig['social']['twitter'] = dict() if 'og' not in daconfig['social'] or not isinstance(daconfig['social']['og'], dict): daconfig['social']['og'] = dict() if 'fb' not in daconfig['social'] or not isinstance(daconfig['social']['fb'], dict): daconfig['social']['fb'] = dict() for key in list(daconfig['social'].keys()): if key in ('og', 'twitter', 'fb'): continue if (not isinstance(daconfig['social'][key], str)) or daconfig['social'][key].strip() == '': del daconfig['social'][key] else: daconfig['social'][key] = noquote(daconfig['social'][key]) for part in ('og', 'fb', 'twitter'): for key in list(daconfig['social'][part].keys()): if (not isinstance(daconfig['social'][part][key], str)) or daconfig['social'][part][key].strip() == '': del daconfig['social'][part][key] else: daconfig['social'][part][key] = noquote(daconfig['social'][part][key]) if 'name' in daconfig['social']: del daconfig['social']['name'] if 'title' in daconfig['social']['og']: del daconfig['social']['og']['title'] if 'title' in daconfig['social']['twitter']: del daconfig['social']['twitter']['title'] if 'url' in daconfig['social']['og']: del daconfig['social']['og']['url'] if 'administrative interviews' in daconfig: if isinstance(daconfig['administrative interviews'], list): new_admin_interviews = list() for item in daconfig['administrative interviews']: if isinstance(item, str): new_item = cleanup_filename(item) if new_item: new_admin_interviews.append(dict(interview=new_item)) elif isinstance(item, dict) and 'interview' in item and isinstance(item['interview'], str): item['interview'] = cleanup_filename(item['interview']) if item['interview'] is not None: new_admin_interviews.append(item) daconfig['administrative interviews'] = new_admin_interviews else: del daconfig['administrative interviews'] if 'session lifetime seconds' in daconfig: try: daconfig['session lifetime seconds'] = int(daconfig['session lifetime seconds']) assert daconfig['session lifetime seconds'] > 0 except: config_error("Invalid session lifetime seconds.") del daconfig['session lifetime seconds'] if 'pagination limit' in daconfig: try: assert isinstance(daconfig['pagination limit'], int) assert daconfig['pagination limit'] > 1 assert daconfig['pagination limit'] < 1001 except: daconfig['pagination limit'] = 100 if 'page after login' in daconfig: if isinstance(daconfig['page after login'], str): daconfig['page after login'] = [{'*': daconfig['page after login']}] if isinstance(daconfig['page after login'], dict): daconfig['page after login'] = [daconfig['page after login']] page_after_login = [] if isinstance(daconfig['page after login'], list): for item in daconfig['page after login']: if isinstance(item, dict): for key, val in item.items(): if isinstance(key, str) and isinstance(val, str): page_after_login.append((key, val)) else: config_error('page after login keys and values must be strings') else: config_error('page after login items must be dictionaries') else: config_error('page after login must be a string, a list, or a dict') daconfig['page after login'] = page_after_login else: daconfig['page after login'] = [] if 'keymap' in daconfig and daconfig['keymap'] not in ['vim', 'emacs', 'sublime']: config_error("You used a keymap that is not supported. Available values are vim, emacs, and sublime.") del daconfig['keymap'] if 'voicerss' in daconfig: if isinstance(daconfig['voicerss'], dict): if 'languages' in daconfig['voicerss']: daconfig['voicerss']['dialects'] = daconfig['voicerss']['languages'] del daconfig['voicerss']['languages'] else: config_error('voicerss must be a dict') del daconfig['voicerss'] if 'cross site domain' in daconfig and 'cross site domains' not in daconfig: daconfig['cross site domains'] = [daconfig['cross site domain'].strip()] del daconfig['cross site domain'] if 'cross site domains' in daconfig: if isinstance(daconfig['cross site domains'], list): for item in daconfig['cross site domains']: if not isinstance(item, str): config_error("The configuration directive cross site domains must be a list of strings.") del daconfig['cross site domains'] break if len(daconfig['cross site domains']) == 1 and daconfig['cross site domains'] == '*': daconfig['cross site domains'] = '*' else: config_error("The configuration directive cross site domains must be a list.") del daconfig['cross site domains'] if 'vim' in daconfig: config_error("The configuration directive vim is deprecated. Please use keymap instead.") if daconfig['vim'] and 'keymap' not in daconfig: daconfig['keymap'] = 'vim' if 'db' not in daconfig: daconfig['db'] = dict(name="docassemble", user="docassemble", password="abc123") dbtableprefix = daconfig['db'].get('table prefix', None) if not dbtableprefix: dbtableprefix = '' if cloud is not None: if 'host' not in daconfig['db'] or daconfig['db']['host'] is None: key = cloud.get_key('hostname-sql') if key.does_exist: the_host = key.get_contents_as_string() if the_host == hostname: daconfig['db']['host'] = 'localhost' else: daconfig['db']['host'] = the_host if 'log server' not in daconfig or daconfig['log server'] is None: key = cloud.get_key('hostname-log') if key.does_exist: the_host = key.get_contents_as_string() if the_host == hostname: daconfig['log server'] = 'localhost' else: daconfig['log server'] = the_host if 'redis' not in daconfig or daconfig['redis'] is None: key = cloud.get_key('hostname-redis') if key.does_exist: the_host = key.get_contents_as_string() if the_host == hostname: the_host = 'localhost' daconfig['redis'] = 'redis://' + the_host if 'rabbitmq' not in daconfig or daconfig['rabbitmq'] is None: key = cloud.get_key('hostname-rabbitmq') if key.does_exist: the_host = key.get_contents_as_string() daconfig['rabbitmq'] = 'pyamqp://guest@' + str(the_host) + '//' if daconfig['db'].get('prefix', None) is None or daconfig['db'].get('prefix', '') == '': daconfig['db']['prefix'] = 'postgresql+psycopg2://' if daconfig['db'].get('host', None) is None or daconfig['db'].get('host', '') == '': daconfig['db']['host'] = 'localhost' if daconfig['db'].get('name', None) is None or daconfig['db'].get('name', '') == '': daconfig['db']['name'] = 'docassemble' if daconfig['db'].get('user', None) is None or daconfig['db'].get('user', '') == '': daconfig['db']['user'] = 'docassemble' if daconfig['db'].get('password', None) is None or daconfig['db'].get('password', '') == '': daconfig['db']['password'] = 'abc123' if daconfig['db'].get('port', None) is None or daconfig['db'].get('port', '') == '': if daconfig['db']['prefix'].startswith('postgresql'): daconfig['db']['port'] = '5432' elif daconfig['db']['prefix'].startswith('mysql'): daconfig['db']['port'] = '3306' elif daconfig['db']['prefix'].startswith('oracle'): daconfig['db']['port'] = '1521' if 'ocr languages' not in daconfig: daconfig['ocr languages'] = dict() if not isinstance(daconfig['ocr languages'], dict): config_error('ocr languages must be a dict') daconfig['ocr languages'] = dict() if 'zh' not in daconfig['ocr languages']: daconfig['ocr languages']['zh'] = 'chi-tra' if 'attempt limit' not in daconfig: daconfig['attempt limit'] = 10 if not isinstance(daconfig['attempt limit'], (int, float)): config_error('attempt limit must be a number') daconfig['attempt limit'] = 10 if daconfig['attempt limit'] < 2: config_error('attempt limit cannot be less than 2') daconfig['attempt limit'] = 10 if 'ban period' not in daconfig: daconfig['ban period'] = 86400 if not isinstance(daconfig['ban period'], (int, float)): config_error('ban period must be a number') daconfig['ban period'] = 86400 if daconfig['ban period'] < 2: config_error('ban period cannot be less than 2') daconfig['ban period'] = 86400 if 'verification code digits' not in daconfig: daconfig['verification code digits'] = 6 if not isinstance(daconfig['verification code digits'], (int, float)): config_error('verification code digits must be a number') daconfig['verification code digits'] = 6 if daconfig['verification code digits'] < 1 or daconfig['verification code digits'] > 32: config_error('verification code digits must be between 1 and 32') daconfig['verification code digits'] = 6 if 'verification code timeout' not in daconfig: daconfig['verification code timeout'] = 180 if not isinstance(daconfig['verification code timeout'], (int, float)): config_error('verification code timeout must be a number') daconfig['verification code timeout'] = 180 if daconfig['verification code timeout'] < 1: config_error('verification code timeout must be one or greater') daconfig['verification code timeout'] = 180 if 'api privileges' in daconfig: if not isinstance(daconfig['api privileges'], list): config_error("api privileges must be in the form of a list") daconfig['api privileges'] = ['admin', 'developer'] else: daconfig['api privileges'] = ['admin', 'developer'] if 'two factor authentication' in daconfig: if isinstance(daconfig['two factor authentication'], bool): daconfig['two factor authentication'] = dict(enable=daconfig['two factor authentication']) if not isinstance(daconfig['two factor authentication'], dict): config_error('two factor authentication must be boolean or a dict') daconfig['two factor authentication'] = dict() else: daconfig['two factor authentication'] = dict(enable=False) if 'allowed for' in daconfig['two factor authentication']: if not isinstance(daconfig['two factor authentication']['allowed for'], list): config_error("two factor authentication allowed for must be in the form of a list") daconfig['two factor authentication']['allowed for'] = ['admin', 'developer'] else: if 'two factor authentication privileges' in daconfig: if isinstance(daconfig['two factor authentication privileges'], list): daconfig['two factor authentication']['allowed for'] = daconfig['two factor authentication privileges'] else: config_error("two factor authentication privileges must be in the form of a list") daconfig['two factor authentication']['allowed for'] = ['admin', 'developer'] else: daconfig['two factor authentication']['allowed for'] = ['admin', 'developer'] if 'email confirmation privileges' in daconfig: if not isinstance(daconfig['email confirmation privileges'], list): config_error("email confirmation privileges must be in the form of a list") daconfig['email confirmation privileges'] = [] else: daconfig['email confirmation privileges'] = [] loaded = True for key in ['global javascript', 'global css']: if key in daconfig: if daconfig[key] is None: del daconfig[key] elif not isinstance(daconfig[key], list): daconfig[key] = [daconfig[key]] if 'password complexity' in daconfig: if isinstance(daconfig['password complexity'], dict): for key in ('length', 'lowercase', 'uppercase', 'digits', 'punctuation'): if key in daconfig['password complexity'] and not isinstance(daconfig['password complexity'][key], int): config_error("password complexity key " + key + " must be an integer.") del daconfig['password complexity'][key] else: config_error("password complexity must be in the form of a dict.") del daconfig['password complexity'] if 'checkin interval' in daconfig: if not isinstance(daconfig['checkin interval'], int): config_error("checkin interval must be an integer.") del daconfig['checkin interval'] elif daconfig['checkin interval'] > 0 and daconfig['checkin interval'] < 1000: config_error("checkin interval must be at least 1000, if not 0.") del daconfig['checkin interval'] if daconfig.get('checkin interval', 5) == 0: daconfig['enable monitor'] = False else: daconfig['enable monitor'] = True if daconfig.get('default icons', None) == 'font awesome': daconfig['use font awesome'] = True if 'websockets port' in daconfig and daconfig['websockets port']: try: daconfig['websockets port'] = int(daconfig['websockets port']) except: config_error("websockets port must be an integer") del daconfig['websockets port'] if 'mail' not in daconfig: daconfig['mail'] = dict() if 'dispatch' not in daconfig: daconfig['dispatch'] = dict() if not isinstance(daconfig['dispatch'], dict): config_error("dispatch must be structured as a dictionary") daconfig['dispatch'] = dict() if len(daconfig['dispatch']): new_dispatch = dict() for shortcut, filename in daconfig['dispatch'].items(): if isinstance(shortcut, str) and isinstance(filename, str): new_filename = cleanup_filename(filename) if new_filename: new_dispatch[shortcut] = new_filename daconfig['dispatch'] = new_dispatch if 'interview delete days by filename' in daconfig and isinstance(daconfig['interview delete days by filename'], dict): new_delete_days = dict() for filename, days in daconfig['interview delete days by filename'].items(): new_filename = cleanup_filename(filename) if new_filename: new_delete_days[new_filename] = days daconfig['interview delete days by filename'] = new_delete_days for key in ('default interview', 'session list interview', 'dispatch interview', 'auto resume interview'): if key in daconfig: if isinstance(daconfig[key], str): daconfig[key] = cleanup_filename(daconfig[key]) if daconfig[key] is None: del daconfig[key] else: del daconfig[key] if 'ldap login' not in daconfig: daconfig['ldap login'] = dict() if not isinstance(daconfig['ldap login'], dict): config_error("ldap login must be structured as a dictionary") daconfig['ldap login'] = dict() if daconfig.get('auto resume interview', None) is not None: daconfig['show interviews link'] = False if 'use minio' not in daconfig: daconfig['use minio'] = False if 'server administrator email' not in daconfig or not daconfig['server administrator email']: daconfig['server administrator email'] = 'webmaster@localhost' if 'use cloud urls' not in daconfig: daconfig['use cloud urls'] = False else: daconfig['use cloud urls'] = True if daconfig['use cloud urls'] else False if 'use https' not in daconfig or not daconfig['use https']: daconfig['use https'] = False if 'use lets encrypt' not in daconfig or not daconfig['use lets encrypt']: daconfig['use lets encrypt'] = False if 'behind https load balancer' not in daconfig or not daconfig['behind https load balancer']: daconfig['behind https load balancer'] = False if 'websockets ip' in daconfig and not daconfig['websockets ip']: del daconfig['websockets ip'] if 'websockets port' not in daconfig or not daconfig['websockets port']: daconfig['websockets port'] = 5000 if 'root' not in daconfig or not daconfig['root']: daconfig['root'] = '/' if 'web server' not in daconfig or not daconfig['web server']: daconfig['web server'] = 'nginx' if 'table css class' not in daconfig or not isinstance(daconfig['table css class'], str): daconfig['table css class'] = 'table table-striped' if env_true_false('ENVIRONMENT_TAKES_PRECEDENCE'): messages = list() for env_var, key in (('DBPREFIX', 'prefix'), ('DBNAME', 'name'), ('DBUSER', 'user'), ('DBPASSWORD', 'password'), ('DBHOST', 'host'), ('DBPORT', 'port'), ('DBTABLEPREFIX', 'table prefix'), ('DBBACKUP', 'backup')): if env_exists(env_var): override_config(daconfig, messages, key, env_var, pre_key='db') if env_exists('DASECRETKEY'): override_config(daconfig, messages, 'secretkey', 'DASECRETKEY') daconfig['secretkey'] = env_translate('DASECRETKEY') if env_exists('DABACKUPDAYS'): override_config(daconfig, messages, 'backup days', 'DABACKUPDAYS') if env_exists('DASTABLEVERSION'): override_config(daconfig, messages, 'stable version', 'DASTABLEVERSION') if env_exists('DASSLPROTOCOLS'): override_config(daconfig, messages, 'nginx ssl protocols', 'DASSLPROTOCOLS') if env_exists('SERVERADMIN'): override_config(daconfig, messages, 'server administrator email', 'SERVERADMIN') if env_exists('LOCALE'): override_config(daconfig, messages, 'os locale', 'LOCALE') if env_exists('TIMEZONE'): override_config(daconfig, messages, 'timezone', 'TIMEZONE') if env_exists('REDIS'): override_config(daconfig, messages, 'redis', 'REDIS') if env_exists('RABBITMQ'): override_config(daconfig, messages, 'rabbitmq', 'RABBITMQ') if env_exists('DACELERYWORKERS'): override_config(daconfig, messages, 'celery processes', 'DACELERYWORKERS') for env_var, key in (('S3ENABLE', 'enable'), ('S3ACCESSKEY', 'access key id'), ('S3SECRETACCESSKEY', 'secret access key'), ('S3BUCKET', 'bucket'), ('S3REGION', 'region'), ('S3ENDPOINTURL', 'endpoint url')): if env_exists(env_var): override_config(daconfig, messages, key, env_var, pre_key='s3') for env_var, key in (('AZUREENABLE', 'enable'), ('AZUREACCOUNTKEY', 'account key'), ('AZUREACCOUNTNAME', 'account name'), ('AZURECONTAINER', 'container'), ('AZURECONNECTIONSTRING', 'connection string')): if env_exists(env_var): override_config(daconfig, messages, key, env_var, pre_key='azure') if env_exists('EC2'): override_config(daconfig, messages, 'ec2', 'EC2') if env_exists('COLLECTSTATISTICS'): override_config(daconfig, messages, 'collect statistics', 'COLLECTSTATISTICS') if env_exists('KUBERNETES'): override_config(daconfig, messages, 'kubernetes', 'KUBERNETES') if env_exists('LOGSERVER'): override_config(daconfig, messages, 'log server', 'LOGSERVER') if env_exists('USECLOUDURLS'): override_config(daconfig, messages, 'use cloud urls', 'USECLOUDURLS') if env_exists('USEMINIO'): override_config(daconfig, messages, 'use minio', 'USEMINIO') if env_exists('USEHTTPS'): override_config(daconfig, messages, 'use https', 'USEHTTPS') if env_exists('USELETSENCRYPT'): override_config(daconfig, messages, 'use lets encrypt', 'USELETSENCRYPT') if env_exists('LETSENCRYPTEMAIL'): override_config(daconfig, messages, 'lets encrypt email', 'LETSENCRYPTEMAIL') if env_exists('BEHINDHTTPSLOADBALANCER'): override_config(daconfig, messages, 'behind https load balancer', 'BEHINDHTTPSLOADBALANCER') if env_exists('XSENDFILE'): override_config(daconfig, messages, 'xsendfile', 'XSENDFILE') if env_exists('DAUPDATEONSTART'): override_config(daconfig, messages, 'update on start', 'DAUPDATEONSTART') if env_exists('URLROOT'): override_config(daconfig, messages, 'url root', 'URLROOT') if env_exists('DAHOSTNAME'): override_config(daconfig, messages, 'external hostname', 'DAHOSTNAME') if env_exists('DAEXPOSEWEBSOCKETS'): override_config(daconfig, messages, 'expose websockets', 'DAEXPOSEWEBSOCKETS') if env_exists('DAWEBSOCKETSIP'): override_config(daconfig, messages, 'websockets ip', 'DAWEBSOCKETSIP') if env_exists('DAWEBSOCKETSPORT'): override_config(daconfig, messages, 'websockets port', 'DAWEBSOCKETSPORT') if env_exists('POSTURLROOT'): override_config(daconfig, messages, 'root', 'POSTURLROOT') if env_exists('DAWEBSERVER'): override_config(daconfig, messages, 'web server', 'DAWEBSERVER') if env_exists('DASQLPING'): override_config(daconfig, messages, 'sql ping', 'DASQLPING') if env_exists('PORT'): override_config(daconfig, messages, 'http port', 'PORT') env_messages = messages return def default_config(): config = """\ secretkey: """ + random_string(32) + """ mail: default sender: '"Administrator" <[email protected]>' """ return config def parse_redis_uri(): redis_host = daconfig.get('redis', None) if redis_host is None: redis_host = 'redis://localhost' redis_host = redis_host.strip() if not redis_host.startswith('redis://'): redis_host = 'redis://' + redis_host m = re.search(r'redis://([^:@\?]*):([^:@\?]*)@(.*)', redis_host) if m: redis_password = m.group(2) redis_host = 'redis://' + m.group(3) else: redis_password = None m = re.search(r'[?\&]password=([^&]+)', redis_host) if m: redis_password = m.group(1) m = re.search(r'[?\&]db=([0-9]+)', redis_host) if m: redis_db = int(m.group(1)) else: redis_db = 0 redis_host = re.sub(r'\?.*', '', redis_host) redis_host = re.sub(r'^redis://', r'', redis_host) m = re.search(r'/([0-9]+)', redis_host) if m: redis_db = int(m.group(1)) redis_host = re.sub(r'/.*', r'', redis_host) m = re.search(r':([0-9]+)$', redis_host) if m: redis_port = m.group(1) redis_host = re.sub(r':([0-9]+)$', '', redis_host) else: redis_port = '6379' redis_offset = daconfig.get('redis database offset', redis_db) redis_cli = 'redis-cli' if redis_host != 'localhost' or redis_port != '6379': redis_cli += ' -h ' + redis_host + ' -p ' + redis_port if redis_password is not None: redis_cli += ' -a ' + redis_password return (redis_host, redis_port, redis_password, redis_offset, redis_cli) def noquote(string): if isinstance(string, str): return string.replace('\n', ' ').replace('"', '&quot;').strip() return string
py
b4134de3ce411ae2867aba6bda6c41dc639a7564
"""Abstract model with created, modified timestamps""" from django.db import models class TimeStampedModel(models.Model): """ An abstract base class model that provides self-updating "created" and "modified" fields. """ created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) class Meta: """Abstract model""" abstract = True
py
b4134e998bafbfb0408e24eb7187d26e8dfee594
# qubit number=3 # total number=14 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.y(input_qubit[3]) # number=5 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=6 prog.swap(input_qubit[1],input_qubit[0]) # number=7 prog.y(input_qubit[3]) # number=8 prog.y(input_qubit[3]) # number=9 prog.swap(input_qubit[1],input_qubit[0]) # number=10 prog.swap(input_qubit[1],input_qubit[0]) # number=11 prog.x(input_qubit[1]) # number=12 prog.x(input_qubit[1]) # number=13 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit_QC793.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
py
b4134fd37a28f291fea1dfa4a173a98ab1356b5e
from airflow.hooks.base_hook import BaseHook from neo4j.v1 import GraphDatabase class Neo4jHook(BaseHook): """ The Neo4j Python driver is officially supported by Neo4j and connects to the database using the binary protocol. It aims to be minimal, while being idiomatic to Python. pip install neo4j-driver https://neo4j.com/developer/python/#neo4j-python-driver You can specify connection string options in extra field of your connection https://neo4j.com/docs/api/python-driver/current/ """ conn_type = 'Neo4j' def __init__(self, neo4j_conn_id='neo4j_default', *args, **kwargs): super().__init__(source='neo4j') self.neo4j_conn_id = neo4j_conn_id self.neo4j_connection = self.get_connection(neo4j_conn_id) self.neo4j_driver = None def get_driver(self): """ Fetches neo4j driver """ if not self.neo4j_driver: conn = self.neo4j_connection host = conn.host port = conn.port uri = str(host) + ":" + str(port) user = conn.login password = conn.password self.neo4j_driver = GraphDatabase.driver(uri, auth=(user, password)) return self.neo4j_driver def get_session(self): """ Fetches neo4j session """ neo4j_driver = self.get_driver() return neo4j_driver.session() def execute_cql(self, cql): """ Executes cql """ if not cql: return tx = self.get_session().begin_transaction() if isinstance(cql, list): cql_sequence = cql else: cql_sequence = [cql] for cql in cql_sequence: tx.run(cql) tx.commit() def on_kill(self): """ Gets neo4j connection closed """ if self.neo4j_driver: self.neo4j_driver.close() self.neo4j_driver = None
py
b4135032a95bebccb03e4fdb57232473dd0395ac
from datetime import datetime from django.contrib.auth.models import User from django.core import management from django.db import models # Forward declared intermediate model class Membership(models.Model): person = models.ForeignKey('Person') group = models.ForeignKey('Group') price = models.IntegerField(default=100) def __unicode__(self): return "%s is a member of %s" % (self.person.name, self.group.name) class UserMembership(models.Model): user = models.ForeignKey(User) group = models.ForeignKey('Group') price = models.IntegerField(default=100) def __unicode__(self): return "%s is a user and member of %s" % (self.user.username, self.group.name) class Person(models.Model): name = models.CharField(max_length=128) def __unicode__(self): return self.name class Group(models.Model): name = models.CharField(max_length=128) # Membership object defined as a class members = models.ManyToManyField(Person, through=Membership) user_members = models.ManyToManyField(User, through='UserMembership') def __unicode__(self): return self.name __test__ = {'API_TESTS':""" # Create some dummy data >>> bob = Person.objects.create(name='Bob') >>> jim = Person.objects.create(name='Jim') >>> rock = Group.objects.create(name='Rock') >>> roll = Group.objects.create(name='Roll') >>> frank = User.objects.create_user('frank','[email protected]','password') >>> jane = User.objects.create_user('jane','[email protected]','password') # Now test that the forward declared Membership works >>> Membership.objects.create(person=bob, group=rock) <Membership: Bob is a member of Rock> >>> Membership.objects.create(person=bob, group=roll) <Membership: Bob is a member of Roll> >>> Membership.objects.create(person=jim, group=rock) <Membership: Jim is a member of Rock> >>> bob.group_set.all() [<Group: Rock>, <Group: Roll>] >>> roll.members.all() [<Person: Bob>] # Error messages use the model name, not repr of the class name >>> bob.group_set = [] Traceback (most recent call last): ... AttributeError: Cannot set values on a ManyToManyField which specifies an intermediary model. Use Membership's Manager instead. >>> roll.members = [] Traceback (most recent call last): ... AttributeError: Cannot set values on a ManyToManyField which specifies an intermediary model. Use Membership's Manager instead. >>> rock.members.create(name='Anne') Traceback (most recent call last): ... AttributeError: Cannot use create() on a ManyToManyField which specifies an intermediary model. Use Membership's Manager instead. >>> bob.group_set.create(name='Funk') Traceback (most recent call last): ... AttributeError: Cannot use create() on a ManyToManyField which specifies an intermediary model. Use Membership's Manager instead. # Now test that the intermediate with a relationship outside # the current app (i.e., UserMembership) workds >>> UserMembership.objects.create(user=frank, group=rock) <UserMembership: frank is a user and member of Rock> >>> UserMembership.objects.create(user=frank, group=roll) <UserMembership: frank is a user and member of Roll> >>> UserMembership.objects.create(user=jane, group=rock) <UserMembership: jane is a user and member of Rock> >>> frank.group_set.all() [<Group: Rock>, <Group: Roll>] >>> roll.user_members.all() [<User: frank>] # Regression test for #8134 -- # m2m-through models shouldn't be serialized as m2m fields on the model. # First, clean up a lot of objects we don't need. # The serialization test only requires three objects to work - # one for each end of the m2m, plus the through model. >>> User.objects.all().delete() >>> UserMembership.objects.all().delete() >>> frank.delete() >>> rock.delete() >>> jim.delete() # Dump the current contents of the database as a JSON fixture >>> management.call_command('dumpdata', 'm2m_through_regress', format='json', indent=2) [ { "pk": 2, "model": "m2m_through_regress.membership", "fields": { "person": 1, "price": 100, "group": 2 } }, { "pk": 1, "model": "m2m_through_regress.person", "fields": { "name": "Bob" } }, { "pk": 2, "model": "m2m_through_regress.group", "fields": { "name": "Roll" } } ] # Check the XML serializer too, since it doesn't use the common implementation >>> management.call_command('dumpdata', 'm2m_through_regress', format='xml', indent=2) <?xml version="1.0" encoding="utf-8"?> <django-objects version="1.0"> <object pk="2" model="m2m_through_regress.membership"> <field to="m2m_through_regress.person" name="person" rel="ManyToOneRel">1</field> <field to="m2m_through_regress.group" name="group" rel="ManyToOneRel">2</field> <field type="IntegerField" name="price">100</field> </object> <object pk="1" model="m2m_through_regress.person"> <field type="CharField" name="name">Bob</field> </object> <object pk="2" model="m2m_through_regress.group"> <field type="CharField" name="name">Roll</field> </object> </django-objects> ## Regression test for #8046: Check that we don't involve too many copies of the intermediate table when doing a join. >>> bob = Person.objects.create(name='Bob') >>> jim = Person.objects.create(name='Jim') >>> rock = Group.objects.create(name='Rock') >>> roll = Group.objects.create(name='Roll') >>> _ = Membership.objects.create(person=bob, group=rock) >>> _ = Membership.objects.create(person=jim, group=rock, price=50) >>> _ = Membership.objects.create(person=bob, group=roll, price=50) >>> rock.members.filter(membership__price=50) [<Person: Jim>] ## Regression test for #8254 >>> bob.group_set.filter(membership__price=50) [<Group: Roll>] """}
py
b41351baebf15f859c3ad9d16b4dde93a794d3c9
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Основная ветка программы, не считая заголовков функций, состоит из двух строки кода. Это вызов функции test() и # инструкции if __name__ == '__main__' . В ней запрашивается на ввод целое число. Если оно положительное, # то вызывается функция positive(), тело которой содержит команду вывода на экран слова "Положительное". Если число # отрицательное, то вызывается функция negative(), ее тело содержит выражение вывода на экран слова "Отрицательное”. def test(A): if A >= 0: positive() elif A < 0: negative() def positive(): print('Положительное') def negative(): print('Отрицательное') if __name__ == '__main__': a = int(input('Введите целое число: ')) test(a)
py
b413528b2e148b7403535f662f0dd87202883b9c
#!/usr/bin/env python3 import datetime import os import signal import subprocess import sys import traceback from typing import List, Tuple, Union import cereal.messaging as messaging import selfdrive.sentry as sentry from common.basedir import BASEDIR from common.params import Params, ParamKeyType from common.text_window import TextWindow from selfdrive.boardd.set_time import set_time from selfdrive.hardware import HARDWARE, PC, EON from selfdrive.hardware.eon.apk import (pm_apply_packages, update_apks) from selfdrive.manager.helpers import unblock_stdout from selfdrive.manager.process import ensure_running from selfdrive.manager.process_config import managed_processes from selfdrive.athena.registration import register, UNREGISTERED_DONGLE_ID from selfdrive.swaglog import cloudlog, add_file_handler from selfdrive.version import is_dirty, get_commit, get_version, get_origin, get_short_branch, \ terms_version, training_version sys.path.append(os.path.join(BASEDIR, "pyextra")) def manager_init() -> None: # update system time from panda set_time(cloudlog) # save boot log # subprocess.call("./bootlog", cwd=os.path.join(BASEDIR, "selfdrive/loggerd")) params = Params() params.clear_all(ParamKeyType.CLEAR_ON_MANAGER_START) default_params: List[Tuple[str, Union[str, bytes]]] = [ ("CompletedTrainingVersion", "0"), ("HasAcceptedTerms", "0"), ("OpenpilotEnabledToggle", "1"), ("IsMetric", "1"), ("EndToEndToggle", "1"), ("IsOpenpilotViewEnabled", "0"), ("OpkrAutoShutdown", "2"), ("OpkrForceShutdown", "5"), ("OpkrAutoScreenOff", "0"), ("OpkrUIBrightness", "0"), ("OpkrUIVolumeBoost", "0"), ("OpkrEnableDriverMonitoring", "1"), ("OpkrEnableLogger", "0"), ("OpkrEnableUploader", "0"), ("OpkrEnableGetoffAlert", "0"), ("OpkrAutoResume", "1"), ("OpkrVariableCruise", "1"), ("OpkrLaneChangeSpeed", "45"), ("OpkrAutoLaneChangeDelay", "0"), ("OpkrSteerAngleCorrection", "0"), ("PutPrebuiltOn", "1"), ("LdwsCarFix", "0"), ("LateralControlMethod", "2"), ("CruiseStatemodeSelInit", "1"), ("InnerLoopGain", "35"), ("OuterLoopGain", "20"), ("TimeConstant", "14"), ("ActuatorEffectiveness", "20"), ("Scale", "1500"), ("LqrKi", "15"), ("DcGain", "270"), ("PidKp", "25"), ("PidKi", "50"), ("PidKd", "150"), ("PidKf", "7"), ("CameraOffsetAdj", "60"), ("PathOffsetAdj", "0"), ("SteerRatioAdj", "1550"), ("SteerRatioMaxAdj", "1750"), ("SteerActuatorDelayAdj", "20"), ("SteerRateCostAdj", "35"), ("SteerLimitTimerAdj", "100"), ("TireStiffnessFactorAdj", "100"), ("SteerMaxBaseAdj", "384"), ("SteerMaxAdj", "384"), ("SteerDeltaUpBaseAdj", "3"), ("SteerDeltaUpAdj", "3"), ("SteerDeltaDownBaseAdj", "7"), ("SteerDeltaDownAdj", "7"), ("OpkrBatteryChargingControl", "1"), ("OpkrBatteryChargingMin", "70"), ("OpkrBatteryChargingMax", "80"), ("LeftCurvOffsetAdj", "0"), ("RightCurvOffsetAdj", "0"), ("DebugUi1", "0"), ("DebugUi2", "0"), ("DebugUi3", "0"), ("LongLogDisplay", "0"), ("OpkrBlindSpotDetect", "1"), ("OpkrMaxAngleLimit", "90"), ("OpkrSpeedLimitOffset", "0"), ("OpkrLiveSteerRatio", "1"), ("OpkrVariableSteerMax", "0"), ("OpkrVariableSteerDelta", "0"), ("FingerprintTwoSet", "0"), ("OpkrDrivingRecord", "0"), ("OpkrTurnSteeringDisable", "0"), ("CarModel", ""), ("OpkrHotspotOnBoot", "0"), ("OpkrSSHLegacy", "1"), ("CruiseOverMaxSpeed", "0"), ("JustDoGearD", "0"), ("LanelessMode", "2"), ("ComIssueGone", "1"), ("MaxSteer", "384"), ("MaxRTDelta", "112"), ("MaxRateUp", "3"), ("MaxRateDown", "7"), ("SteerThreshold", "150"), ("RecordingCount", "100"), ("RecordingQuality", "1"), ("CruiseGapAdjust", "0"), ("AutoEnable", "1"), ("CruiseAutoRes", "0"), ("AutoResOption", "0"), ("AutoResCondition", "0"), ("OpkrMonitoringMode", "0"), ("OpkrMonitorEyesThreshold", "45"), ("OpkrMonitorNormalEyesThreshold", "45"), ("OpkrMonitorBlinkThreshold", "35"), ("MadModeEnabled", "1"), ("WhitePandaSupport", "0"), ("SteerWarningFix", "0"), ("OpkrRunNaviOnBoot", "0"), ("CruiseGap1", "11"), ("CruiseGap2", "13"), ("CruiseGap3", "15"), ("CruiseGap4", "17"), ("DynamicTRGap", "3"), ("DynamicTRSpd", "0,20,40,60,110"), ("DynamicTRSet", "1.3,1.4,1.5,1.6,1.7"), ("OpkrBattLess", "0"), ("LCTimingFactorUD", "1"), ("LCTimingFactor30", "10"), ("LCTimingFactor60", "20"), ("LCTimingFactor80", "70"), ("LCTimingFactor110", "100"), ("OpkrUIBrightnessOff", "10"), ("LCTimingFactorEnable", "1"), ("AutoEnableSpeed", "3"), ("SafetyCamDecelDistGain", "0"), ("OpkrLiveTunePanelEnable", "0"), ("RadarLongHelper", "1"), ("GitPullOnBoot", "0"), ("LiveSteerRatioPercent", "-5"), ("StoppingDistAdj", "0"), ("ShowError", "1"), ("AutoResLimitTime", "0"), ("VCurvSpeedC", "30,50,70,90"), ("VCurvSpeedT", "43,55,68,85"), ("OCurvSpeedC", "30,40,50,60,70"), ("OCurvSpeedT", "35,45,60,70,80"), ("OSMCustomSpeedLimitC", "30,40,50,60,70,90"), ("OSMCustomSpeedLimitT", "30,40,65,72,80,95"), ("StockNaviSpeedEnabled", "0"), ("OPKRNaviSelect", "2"), ("dp_atl", "1"), ("E2ELong", "0"), ("GoogleMapEnabled", "0"), ("OPKRServer", "0"), ("OPKRMapboxStyleSelect", "0"), ("IgnoreCANErroronISG", "0"), ("RESCountatStandstill", "20"), ("OpkrSpeedLimitOffsetOption", "0"), ("OpkrSpeedLimitSignType", "0"), ("StockLKASEnabled", "1"), ("SpeedLimitDecelOff", "0"), ("CurvDecelOption", "2"), ("FCA11Message", "0"), ("StandstillResumeAlt", "0"), ("MapboxEnabled", "0"), ("AutoRESDelay", "0"), ("UseRadarTrack", "0"), ("RadarDisable", "0"), ("DesiredCurvatureLimit", "5"), ("C2WithCommaPower", "0"), ("CustomTREnabled", "0"), ("RoadList", "RoadName1,+0.0,RoadName2,-0.0"), ("LaneWidth", "37"), ("SpdLaneWidthSpd", "0,31"), ("SpdLaneWidthSet", "2.8,3.5"), ("TopTextView", "0"), ("CloseToRoadEdge", "0"), ("LeftEdgeOffset", "0"), ("RightEdgeOffset", "0"), ("AvoidLKASFaultEnabled", "0"), ("AvoidLKASFaultMaxAngle", "85"), ("AvoidLKASFaultMaxFrame", "90"), ("AvoidLKASFaultBeyond", "0"), ("UseStockDecelOnSS", "0"), ("AnimatedRPM", "1"), ] if not PC: default_params.append(("LastUpdateTime", datetime.datetime.utcnow().isoformat().encode('utf8'))) if params.get_bool("RecordFrontLock"): params.put_bool("RecordFront", True) if not params.get_bool("DisableRadar_Allow"): params.delete("DisableRadar") # set unset params for k, v in default_params: if params.get(k) is None: params.put(k, v) # is this dashcam? if os.getenv("PASSIVE") is not None: params.put_bool("Passive", bool(int(os.getenv("PASSIVE", "0")))) if params.get("Passive") is None: raise Exception("Passive must be set to continue") if EON: update_apks(show_spinner=True) # Create folders needed for msgq try: os.mkdir("/dev/shm") except FileExistsError: pass except PermissionError: print("WARNING: failed to make /dev/shm") # set version params params.put("Version", get_version()) params.put("TermsVersion", terms_version) params.put("TrainingVersion", training_version) params.put("GitCommit", get_commit(default="")) params.put("GitBranch", get_short_branch(default="")) params.put("GitRemote", get_origin(default="")) # set dongle id reg_res = register(show_spinner=True) if reg_res: dongle_id = reg_res elif not reg_res: dongle_id = "maintenance" else: serial = params.get("HardwareSerial") raise Exception(f"Registration failed for device {serial}") os.environ['DONGLE_ID'] = dongle_id # Needed for swaglog if not is_dirty(): os.environ['CLEAN'] = '1' # init logging sentry.init(sentry.SentryProject.SELFDRIVE) cloudlog.bind_global(dongle_id=dongle_id, version=get_version(), dirty=is_dirty(), device=HARDWARE.get_device_type()) # opkr if os.path.isfile('/data/log/error.txt'): os.remove('/data/log/error.txt') if os.path.isfile('/data/log/can_missing.txt'): os.remove('/data/log/can_missing.txt') if os.path.isfile('/data/log/can_timeout.txt'): os.remove('/data/log/can_timeout.txt') # ensure shared libraries are readable by apks if EON: os.chmod(BASEDIR, 0o755) os.chmod("/dev/shm", 0o777) os.chmod(os.path.join(BASEDIR, "cereal"), 0o755) os.chmod(os.path.join(BASEDIR, "cereal", "libmessaging_shared.so"), 0o755) os.system("/data/openpilot/selfdrive/assets/addon/script/gitcommit.sh") def manager_prepare() -> None: for p in managed_processes.values(): p.prepare() def manager_cleanup() -> None: if EON: pm_apply_packages('disable') # send signals to kill all procs for p in managed_processes.values(): p.stop(block=False) # ensure all are killed for p in managed_processes.values(): p.stop(block=True) cloudlog.info("everything is dead") def manager_thread() -> None: cloudlog.bind(daemon="manager") cloudlog.info("manager start") cloudlog.info({"environ": os.environ}) params = Params() ignore: List[str] = [] if params.get("DongleId", encoding='utf8') in (None, UNREGISTERED_DONGLE_ID): ignore += ["manage_athenad", "uploader"] if os.getenv("NOBOARD") is not None: ignore.append("pandad") ignore += [x for x in os.getenv("BLOCK", "").split(",") if len(x) > 0] if EON: pm_apply_packages('enable') ensure_running(managed_processes.values(), started=False, not_run=ignore) started_prev = False sm = messaging.SubMaster(['deviceState']) pm = messaging.PubMaster(['managerState']) while True: sm.update() not_run = ignore[:] started = sm['deviceState'].started driverview = params.get_bool("IsDriverViewEnabled") ensure_running(managed_processes.values(), started, driverview, not_run) # trigger an update after going offroad if started_prev and not started and 'updated' in managed_processes: os.sync() managed_processes['updated'].signal(signal.SIGHUP) started_prev = started running = ' '.join("%s%s\u001b[0m" % ("\u001b[32m" if p.proc.is_alive() else "\u001b[31m", p.name) for p in managed_processes.values() if p.proc) print(running) cloudlog.debug(running) # send managerState msg = messaging.new_message('managerState') msg.managerState.processes = [p.get_process_state_msg() for p in managed_processes.values()] pm.send('managerState', msg) # Exit main loop when uninstall/shutdown/reboot is needed shutdown = False for param in ("DoUninstall", "DoShutdown", "DoReboot"): if params.get_bool(param): shutdown = True params.put("LastManagerExitReason", param) cloudlog.warning(f"Shutting down manager - {param} set") if shutdown: break def main() -> None: prepare_only = os.getenv("PREPAREONLY") is not None manager_init() # Start UI early so prepare can happen in the background if not prepare_only: managed_processes['ui'].start() manager_prepare() if prepare_only: return # SystemExit on sigterm signal.signal(signal.SIGTERM, lambda signum, frame: sys.exit(1)) try: manager_thread() except Exception: traceback.print_exc() sentry.capture_exception() finally: manager_cleanup() params = Params() if params.get_bool("DoUninstall"): cloudlog.warning("uninstalling") HARDWARE.uninstall() elif params.get_bool("DoReboot"): cloudlog.warning("reboot") HARDWARE.reboot() elif params.get_bool("DoShutdown"): cloudlog.warning("shutdown") HARDWARE.shutdown() if __name__ == "__main__": unblock_stdout() try: main() except Exception: add_file_handler(cloudlog) cloudlog.exception("Manager failed to start") try: managed_processes['ui'].stop() except Exception: pass # Show last 3 lines of traceback error = traceback.format_exc(-3) error = "Manager failed to start\n\n" + error with TextWindow(error) as t: t.wait_for_exit() raise # manual exit because we are forked sys.exit(0)
py
b41352cc9050aa22b00f3265ee5ee643b17d6322
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import time from six import wraps, get_method_function, get_method_self from .exceptions import DoNotReadThisWidget null_logger = logging.getLogger('widgetastic_null') null_logger.addHandler(logging.NullHandler()) def call_sig(args, kwargs): """Generates a function-like signature of function called with certain parameters. Args: args: *args kwargs: **kwargs Returns: A string that contains parameters in parentheses like the call to it. """ arglist = [repr(x) for x in args] arglist.extend("{0}={1!r}".format(k, v) for k, v in kwargs.items()) return "({args})".format( args=', '.join(arglist), ) class PrependParentsAdapter(logging.LoggerAdapter): """This class ensures the path to the widget is represented in the log records.""" def process(self, msg, kwargs): # Sanitizing %->%% for formatter working properly return '[{}]: {}'.format(self.extra['widget_path'].replace('%', '%%'), msg), kwargs def __repr__(self): return '{}({!r}, {!r})'.format(type(self).__name__, self.logger, self.extra['widget_path']) def create_widget_logger(widget_path, logger=None): """Create a logger that prepends the ``widget_path`` to the log records. Args: widget_path: A string indicating the path to the widget logger: Specify a logger if you want some output, otherwise a null logger will be used. Returns: A logger instance. """ return PrependParentsAdapter( logger or null_logger, {'widget_path': widget_path}) def _create_logger_appender(parent_logger, suffix): """Generic name-append logger creator.""" if isinstance(parent_logger, PrependParentsAdapter): widget_path = '{}{}'.format(parent_logger.extra['widget_path'], suffix) logger = parent_logger.logger else: widget_path = suffix logger = parent_logger return PrependParentsAdapter(logger, {'widget_path': widget_path.lstrip('/')}) def create_child_logger(parent_logger, child_name): """Creates a logger for a standard child widget. Args: parent_logger: Logger of the parent widget (or can be plain, in that case this is the top-level widget then. child_name: Name under which this child widgets is represented. Returns: A :py:class:`PrependParentsAdapter` logger instance. """ return _create_logger_appender(parent_logger, '/{}'.format(child_name)) def create_item_logger(parent_logger, item): """Creates a logger for a widget that is inside iteration - referred to by index or key. Args: parent_logger: Logger of the parent widget (or can be plain, in that case this is the top-level widget then. item: Index or key name under which this widget is represented. Returns: A :py:class:`PrependParentsAdapter` logger instance. """ return _create_logger_appender(parent_logger, '[{!r}]'.format(item)) def logged(log_args=False, log_result=False): """Decorator that logs entry and exit to a method and also times the execution. It assumes that the object where you decorate the methods on has a ``.logger`` attribute. :py:meth:`widgetastic.widget.Widget.fill` and :py:meth:`widgetastic.widget.Widget.read` are automatically wrapped with this call due to usage of :py:class:`widgetastic.widget.WidgetMetaclass` which finds all ``fill`` and ``read`` methods and wraps them automatically. Args: log_args: Whether to log args passed to the method log_result: Whether to log the result value returned from the method. """ def g(f): @wraps(f) def wrapped(self, *args, **kwargs): start_time = time.time() signature = f.__name__ + (call_sig(args, kwargs) if log_args else '') self.logger.debug('%s started', signature) try: result = f(self, *args, **kwargs) except DoNotReadThisWidget: elapsed_time = (time.time() - start_time) * 1000.0 self.logger.info( '%s not read on widget\'s request (elapsed %.0f ms)', signature, elapsed_time) raise except Exception as e: elapsed_time = (time.time() - start_time) * 1000.0 self.logger.error( 'An exception happened during %s call (elapsed %.0f ms)', signature, elapsed_time) self.logger.exception(e) raise else: elapsed_time = (time.time() - start_time) * 1000.0 if log_result: self.logger.info('%s -> %r (elapsed %.0f ms)', signature, result, elapsed_time) else: self.logger.info('%s (elapsed %.0f ms)', signature, elapsed_time) return result wrapped.original_function = f return wrapped return g def call_unlogged(method, *args, **kwargs): """Calls the original method without logging when ``logged`` is applied. In case you pass in an ordinary method that was not decorated, it will work as usual. Args: method: The method object from the object. *args: Args to pass to the method. **kwargs: Keyword arguments to pass to the method. Returns: Whatever that method returns. """ try: f = method.original_function except AttributeError: f = get_method_function(method) return f(get_method_self(method), *args, **kwargs)
py
b413536eead765ce81ee3b1b10671cac483f5a64
#!/usr/bin/env python3 # https://pythonspot.com/pyqt5-drag-and-drop/ import sys from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLineEdit, QLabel from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot class App(QWidget): def __init__(self): super().__init__() self.title = 'PyQt5 drag and drop - pythonspot.com' self.left = 10 self.top = 10 self.width = 320 self.height = 60 self.initUI() def initUI(self): self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) editBox = QLineEdit('Drag this', self) editBox.setDragEnabled(True) editBox.move(10, 10) editBox.resize(100,32) button = CustomLabel('Drop here.', self) button.move(130,15) self.show() @pyqtSlot() def on_click(self): print('PyQt5 button click') class CustomLabel(QLabel): def __init__(self, title, parent): super().__init__(title, parent) self.setAcceptDrops(True) def dragEnterEvent(self, e): if e.mimeData().hasFormat('text/plain'): e.accept() else: e.ignore() def dropEvent(self, e): self.setText(e.mimeData().text()) if __name__ == '__main__': app = QApplication(sys.argv) ex = App() sys.exit(app.exec_())
py
b413537c55ae79caf2eaeff943859be27d712472
from keras.models import Model from keras.layers import Input, Lambda, BatchNormalization, Convolution2D, MaxPooling2D, Dropout, merge, Flatten, Dense import keras.backend as K input_shape = (3, 32, 32) pr_axis = 1 if K.image_dim_ordering() == 'tf': input_shape = (32, 32, 3) pr_axis = 3 def get_slice(axis, axis_id, input_shape): return Lambda( lambda x: x[[slice(None) if i != axis else slice(axis_id, axis_id + 1) for i in range(len(input_shape) + 1)]], output_shape=[p if i+1 != axis else 1 for i, p in enumerate(input_shape)]) def get_eqsplit_eq_xcon(nb_classes): inputYUV = Input(shape=input_shape) # inputNorm = BatchNormalization(axis=1)(inputYUV) inputY = get_slice(pr_axis, 0, input_shape)(inputYUV) inputU = get_slice(pr_axis, 1, input_shape)(inputYUV) inputV = get_slice(pr_axis, 2, input_shape)(inputYUV) inputYnorm = BatchNormalization(axis=pr_axis)(inputY) inputUnorm = BatchNormalization(axis=pr_axis)(inputU) inputVnorm = BatchNormalization(axis=pr_axis)(inputV) convY = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(inputYnorm) convU = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(inputUnorm) convV = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(inputVnorm) convY = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(convY) convU = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(convU) convV = Convolution2D(21, 3, 3, border_mode='same', activation='relu')(convV) poolY = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convY) poolU = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convU) poolV = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convV) poolY = Dropout(0.25)(poolY) poolU = Dropout(0.25)(poolU) poolV = Dropout(0.25)(poolV) # ------------------ Y_to_U = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolY) Y_to_V = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolY) U_to_Y = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolU) U_to_V = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolU) V_to_Y = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolV) V_to_U = Convolution2D(21, 1, 1, border_mode='same', activation='relu')(poolV) Ymap = merge([poolY, U_to_Y, V_to_Y], mode='concat', concat_axis=pr_axis) Umap = merge([poolU, V_to_U, Y_to_U], mode='concat', concat_axis=pr_axis) Vmap = merge([poolV, Y_to_V, U_to_V], mode='concat', concat_axis=pr_axis) Ycon = Ymap Ucon = Umap Vcon = Vmap # ------------------ convY = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(Ycon) convU = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(Ucon) convV = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(Vcon) convY = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(convY) convU = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(convU) convV = Convolution2D(42, 3, 3, border_mode='same', activation='relu')(convV) poolY = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convY) poolU = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convU) poolV = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(convV) poolY = Dropout(0.25)(poolY) poolU = Dropout(0.25)(poolU) poolV = Dropout(0.25)(poolV) concatenate_map = merge([poolY, poolU, poolV], mode='concat', concat_axis=pr_axis) reshape = Flatten()(concatenate_map) fc = Dense(512, activation='relu')(reshape) fc = Dropout(0.5)(fc) out = Dense(nb_classes, activation='softmax')(fc) model = Model(input=inputYUV, output=out) return model, 32
py
b41353e36cdddb8baf389d879dacc40818c52abc
from direct.distributed import DistributedObject from toontown.catalog import CatalogItem from toontown.catalog import CatalogItemList from direct.directnotify.DirectNotifyGlobal import * class DistributedFurnitureManager(DistributedObject.DistributedObject): notify = directNotify.newCategory('DistributedFurnitureManager') def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) self.director = 0 self.dfitems = [] def generate(self): DistributedObject.DistributedObject.generate(self) self.accept('releaseDirector', self.releaseDirector) def disable(self): self.ignoreAll() if self.cr.furnitureManager == self: self.cr.furnitureManager = None base.localAvatar.setFurnitureDirector(0, self) self.director = 0 self.notify.debug('disable') DistributedObject.DistributedObject.disable(self) return def delete(self): self.notify.debug('delete') DistributedObject.DistributedObject.delete(self) def setOwnerId(self, ownerId): self.ownerId = ownerId if self.ownerId == base.localAvatar.doId: self.cr.furnitureManager = self if self.cr.objectManager == None: import houseDesign self.cr.objectManager = houseDesign.ObjectManager() return def setOwnerName(self, name): self.ownerName = name def setInteriorId(self, interiorId): self.interiorId = interiorId def getInteriorObject(self): return self.cr.doId2do.get(self.interiorId) def setAtticItems(self, items): self.atticItems = CatalogItemList.CatalogItemList(items, store=CatalogItem.Customization) def setAtticWallpaper(self, items): self.atticWallpaper = CatalogItemList.CatalogItemList(items, store=CatalogItem.Customization) def setAtticWindows(self, items): self.atticWindows = CatalogItemList.CatalogItemList(items, store=CatalogItem.Customization) def setDeletedItems(self, items): self.deletedItems = CatalogItemList.CatalogItemList(items, store=CatalogItem.Customization) def releaseDirector(self): if self.director == base.localAvatar.doId: self.d_suggestDirector(0) self.setDirector(0) def d_suggestDirector(self, avId): self.sendUpdate('suggestDirector', [avId]) def setDirector(self, avId): self.notify.info('Furniture director is now %s' % avId) base.localAvatar.setFurnitureDirector(avId, self) self.director = avId def d_avatarEnter(self): self.sendUpdate('avatarEnter', []) def d_avatarExit(self): self.sendUpdate('avatarExit', []) def moveItemToAttic(self, dfitem, callback): context = self.getCallbackContext(callback, [dfitem.item]) self.sendUpdate('moveItemToAtticMessage', [dfitem.doId, context]) def moveItemFromAttic(self, index, posHpr, callback): context = self.getCallbackContext(callback, [index]) self.sendUpdate('moveItemFromAtticMessage', [index, posHpr[0], posHpr[1], posHpr[2], posHpr[3], posHpr[4], posHpr[5], context]) def deleteItemFromAttic(self, item, index, callback): context = self.getCallbackContext(callback, [item, index]) blob = item.getBlob(store=CatalogItem.Customization) self.sendUpdate('deleteItemFromAtticMessage', [blob, index, context]) def deleteItemFromRoom(self, dfitem, callback): context = self.getCallbackContext(callback, [dfitem.item]) blob = dfitem.item.getBlob(store=CatalogItem.Customization) self.sendUpdate('deleteItemFromRoomMessage', [blob, dfitem.doId, context]) def moveWallpaperFromAttic(self, index, room, callback): context = self.getCallbackContext(callback, [index, room]) self.sendUpdate('moveWallpaperFromAtticMessage', [index, room, context]) def deleteWallpaperFromAttic(self, item, index, callback): context = self.getCallbackContext(callback, [item, index]) blob = item.getBlob(store=CatalogItem.Customization) self.sendUpdate('deleteWallpaperFromAtticMessage', [blob, index, context]) def moveWindowToAttic(self, slot, callback): context = self.getCallbackContext(callback, [slot]) self.sendUpdate('moveWindowToAtticMessage', [slot, context]) def moveWindowFromAttic(self, index, slot, callback): context = self.getCallbackContext(callback, [index, slot]) self.sendUpdate('moveWindowFromAtticMessage', [index, slot, context]) def moveWindow(self, fromSlot, toSlot, callback): context = self.getCallbackContext(callback, [fromSlot, toSlot]) self.sendUpdate('moveWindowMessage', [fromSlot, toSlot, context]) def deleteWindowFromAttic(self, item, index, callback): context = self.getCallbackContext(callback, [item, index]) blob = item.getBlob(store=CatalogItem.Customization) self.sendUpdate('deleteWindowFromAtticMessage', [blob, index, context]) def recoverDeletedItem(self, item, index, callback): context = self.getCallbackContext(callback, [item, index]) blob = item.getBlob(store=CatalogItem.Customization) self.sendUpdate('recoverDeletedItemMessage', [blob, index, context]) def moveItemToAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def moveItemFromAtticResponse(self, retcode, objectId, context): if retcode >= 0: dfitem = base.cr.doId2do[objectId] else: dfitem = None self.doCallbackContext(context, [retcode, dfitem]) return def deleteItemFromAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def deleteItemFromRoomResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def moveWallpaperFromAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def deleteWallpaperFromAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def moveWindowToAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def moveWindowFromAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def moveWindowResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def deleteWindowFromAtticResponse(self, retcode, context): self.doCallbackContext(context, [retcode]) def recoverDeletedItemResponse(self, retcode, context): self.doCallbackContext(context, [retcode])
py
b413543aaf5b93ba81fe71deedec6511f07e08fa
#!/usr/bin/python # Author: Brendan Le Foll <[email protected]> # Contributions: Zion Orent <[email protected]> # Copyright (c) 2014 Intel Corporation. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE from __future__ import print_function import time, sys, signal, atexit from upm import pyupm_lsm303dlh as lsm303dlh def main(): # Instantiate LSM303DLH compass on I2C myAccelrCompass = lsm303dlh.LSM303DLH(0) ## Exit handlers ## # This stops python from printing a stacktrace when you hit control-C def SIGINTHandler(signum, frame): raise SystemExit # This lets you run code on exit, # including functions from myAccelrCompass def exitHandler(): print("Exiting") sys.exit(0) # Register exit handlers atexit.register(exitHandler) signal.signal(signal.SIGINT, SIGINTHandler) while(1): # Load coordinates into LSM303DLH object successFail = myAccelrCompass.getCoordinates() # in XYZ order. The sensor returns XZY, # but the driver compensates and makes it XYZ coords = myAccelrCompass.getRawCoorData() # Print out the X, Y, and Z coordinate data # using two different methods outputStr = "coor: rX {0} - rY {1} - rZ {2}".format( coords.__getitem__(0), coords.__getitem__(1), coords.__getitem__(2)) print(outputStr) outputStr = "coor: gX {0} - gY {1} - gZ {2}".format( myAccelrCompass.getCoorX(), myAccelrCompass.getCoorY(), myAccelrCompass.getCoorZ()) print(outputStr) # Get and print out the heading print("heading:", myAccelrCompass.getHeading()) # Get the acceleration myAccelrCompass.getAcceleration(); accel = myAccelrCompass.getRawAccelData(); # Print out the X, Y, and Z acceleration data # using two different methods outputStr = "acc: rX {0} - rY {1} - Z {2}".format( accel.__getitem__(0), accel.__getitem__(1), accel.__getitem__(2)) print(outputStr) outputStr = "acc: gX {0} - gY {1} - gZ {2}".format( myAccelrCompass.getAccelX(), myAccelrCompass.getAccelY(), myAccelrCompass.getAccelZ()) print(outputStr) print(" ") time.sleep(1) if __name__ == '__main__': main()
py
b413544e7f164d4fa131446a6dc28b606400d06c
# coding: utf-8 """ Memsource REST API Welcome to Memsource's API documentation. To view our legacy APIs please [visit our documentation](https://wiki.memsource.com/wiki/Memsource_API) and for more information about our new APIs, [visit our blog](https://www.memsource.com/blog/2017/10/24/introducing-rest-apis-qa-with-the-memsource-api-team/). If you have any questions, please contact [Memsource Support](<mailto:[email protected]>). # noqa: E501 OpenAPI spec version: Latest Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import memsource_cli from memsource_cli.models.moravia_warning_dto import MoraviaWarningDto # noqa: E501 from memsource_cli.rest import ApiException class TestMoraviaWarningDto(unittest.TestCase): """MoraviaWarningDto unit test stubs""" def setUp(self): pass def tearDown(self): pass def testMoraviaWarningDto(self): """Test MoraviaWarningDto""" # FIXME: construct object with mandatory attributes with example values # model = memsource_cli.models.moravia_warning_dto.MoraviaWarningDto() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
b413554103241bd20463225ff046b4ace9db44fd
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import torch import torch.distributed as dist from concurrent.futures import ThreadPoolExecutor from galileo.platform.log import log from galileo.platform.export import export from galileo.framework.pytorch.python.hooks.base import BaseHook DEFAULT_CHECKPOINT_FILENAME = 'checkpoint.pth' def load_checkpoint(trainer, checkpoint_file, optimizer=None): if not os.path.isfile(checkpoint_file): return False local_rank = trainer.config['local_rank'] if local_rank is None: checkpoint = torch.load(checkpoint_file) else: if trainer.config['use_cuda']: # Map model to be loaded to specified single gpu. loc = f'cuda:{local_rank}' checkpoint = torch.load(checkpoint_file, map_location=loc) try: trainer.model.load_state_dict(checkpoint['state_dict']) except RuntimeError: from torch.nn.parallel import DistributedDataParallel dist.init_process_group(backend=trainer.config['dist_backend'], init_method=trainer.config['dist_url'], world_size=trainer.config['world_size'], rank=trainer.config['global_rank']) trainer.model = DistributedDataParallel(trainer.model) trainer.model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] trainer.run_config['start_epoch'] = start_epoch if optimizer is not None: optimizer.load_state_dict(checkpoint['optimizer']) log.info(f'loaded checkpoint "{checkpoint_file}" (epoch {start_epoch})') return True @export('galileo.pytorch') class CheckpointHook(BaseHook): r''' load and save checkpoint ''' def __init__(self, trainer, optimizer): super().__init__() self.trainer = trainer self.optimizer = optimizer self.resume = trainer.run_config.get('resume') self.model_dir = trainer.run_config.get('model_dir') self.checkpoint_file = os.path.join(self.model_dir, DEFAULT_CHECKPOINT_FILENAME) self.save_checkpoint_epochs = trainer.run_config.get( 'save_checkpoint_epochs') self.save_best_model = trainer.run_config.get('save_best_model') self.save_model = None self.save_loss = None self.epoch = 0 self._checkpoint_executor = ThreadPoolExecutor( max_workers=2, thread_name_prefix='checkpoint-threadpool') def on_train_begin(self): if self.resume: if not load_checkpoint( self.trainer, self.resume, optimizer=self.optimizer): log.warning(f'no checkpoint found at "{self.resume}"') def on_evaluate_begin(self): resume = self.resume if not resume: resume = self.checkpoint_file if not load_checkpoint(self.trainer, resume, optimizer=None): log.warning(f'no checkpoint found at "{resume}", ' 'this may not what you want') def on_evaluate_end(self): if dist.is_initialized(): dist.barrier() def on_predict_begin(self): self.on_evaluate_begin() def on_epoch_begin(self, epoch, steps): self.epoch = epoch def on_epoch_end(self, outputs): loss = outputs.pop('loss') if self.save_best_model and self.optimizer is not None: if self.save_model is None or self.save_loss > loss.item(): self.save_loss = loss.item() self.save_model = (self.trainer.model.state_dict(), self.optimizer.state_dict()) if ((self.epoch + 1) % self.save_checkpoint_epochs == 0) and self.trainer.config['is_master']: if not self.save_best_model and self.optimizer is not None: self.save_loss = loss.item() self.save_model = (self.trainer.model.state_dict(), self.optimizer.state_dict()) if self.save_loss is not None and self.save_model is not None: self._checkpoint_executor.submit( torch.save, { 'epoch': self.epoch + 1, 'loss': self.save_loss, 'state_dict': self.save_model[0], 'optimizer': self.save_model[1], }, self.checkpoint_file) def on_train_end(self): self._checkpoint_executor.shutdown()
py
b41355e90c867da7c8ce100489bef500521834d6
import os import sys import shutil try: from dialog import Dialog except: from menu import Dialog from shutil import copyfile from shutil import rmtree from util import copytree def find_installed_dir(src_path,search_name,directory=True): found=[] for root, dirs, files in os.walk(src_path): for name in list(set(files + dirs)) : if directory==True: dir_name=os.path.dirname(os.path.join(root, name)) if dir_name.endswith(search_name): if dir_name not in found: found.append(dir_name) if directory==False: file_name=os.path.join(root, name) if os.path.isfile(file_name)==True: if file_name.endswith(search_name): if file_name not in found: found.append(file_name) print(found) if len(found)==0: return None return min(found, key=len) def intelligent_move(dest_root,search_path,target,directory=True): src=find_installed_dir(search_path,target,directory=directory) if src==None: print("not found",target) return if os.path.isdir(src)==True: for f in os.listdir(src): dest=os.path.join(dest_root,f) src_file=os.path.join(src,f) if os.path.isdir(os.path.dirname(dest))==False: os.makedirs(os.path.dirname(dest)) print("move",src_file) shutil.move(src_file,dest) else: shutil.move(src,dest_root) def flat_install(d): pub_path=os.path.join(os.getcwd(),"pub") output_path=os.path.join(pub_path,"build") flat_path=os.path.join(pub_path,"flat") flat_path_plugins=os.path.join(flat_path,"plugins") flat_path_inp_template=os.path.join(flat_path,"inp_template") flat_path_docs=os.path.join(flat_path,"docs") flat_path_device_lib=os.path.join(flat_path,"device_lib") #asdsd if os.path.isdir(pub_path)==True: rmtree(pub_path) os.makedirs(output_path) interactive=">../log.txt 2>../log.txt &" interactive="" os.system("cd gpvdm_core; make DESTDIR="+output_path+" install "+interactive) #ret=d.tailbox("log.txt", height=None, width=150) os.system("cd gpvdm_gui; make DESTDIR="+output_path+" install "+interactive) #ret=d.tailbox("log.txt", height=None, width=150) os.system("cd gpvdm_data; make DESTDIR="+output_path+" install "+interactive) #ret=d.tailbox("log.txt", height=None, width=150) #This needs fixing intelligent_move(flat_path,output_path,"gpvdm_core") intelligent_move(flat_path,output_path,"gpvdm_data") intelligent_move(flat_path_device_lib,output_path,"device_lib") intelligent_move(flat_path,output_path,"gpvdm_gui") intelligent_move(flat_path_plugins,output_path,"plugins") intelligent_move(flat_path,output_path,"icons") intelligent_move(flat_path_docs,output_path,"doc") intelligent_move(flat_path,output_path,"man") intelligent_move(flat_path_inp_template,output_path,"inp_template") intelligent_move(flat_path,output_path,"applications") intelligent_move(flat_path,output_path,"mime") intelligent_move(flat_path,output_path,"video") #The bin file intelligent_move(flat_path,output_path,"gpvdm_core",directory=False) intelligent_move(flat_path,output_path,"gpvdm_core.exe",directory=False) intelligent_move(flat_path,output_path,"libgpvdm_core.dll",directory=False) intelligent_move(flat_path,output_path,"libgpvdm_core.so",directory=False) intelligent_move(flat_path,output_path,"base.gpvdm",directory=False) os.symlink("gui/gpvdm.py",os.path.join(flat_path,"gpvdm")) #os.symlink("gui/gpvdm_tool.py",os.path.join(flat_path,"gpvdm_tool")) #shutil.copytree("./gpvdm_data/materials", os.path.join(output_path,"materials"), symlinks=False) #shutil.copytree("./gpvdm_data/spectra", os.path.join(output_path,"spectra"), symlinks=False) return flat_path