ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b413a190ce9ae7df74ed42c5915cf39c0e453f62
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import functools from cryptography import utils, x509 from cryptography.exceptions import UnsupportedAlgorithm from cryptography.hazmat.backends.openssl.decode_asn1 import ( _CRL_ENTRY_REASON_CODE_TO_ENUM, _OCSP_BASICRESP_EXT_PARSER, _OCSP_REQ_EXT_PARSER, _OCSP_SINGLERESP_EXT_PARSER, _OCSP_SINGLERESP_EXT_PARSER_NO_SCT, _asn1_integer_to_int, _asn1_string_to_bytes, _decode_x509_name, _obj2txt, _parse_asn1_generalized_time, ) from cryptography.hazmat.backends.openssl.x509 import _Certificate from cryptography.hazmat.primitives import serialization from cryptography.x509.ocsp import ( OCSPCertStatus, OCSPRequest, OCSPResponse, OCSPResponseStatus, _CERT_STATUS_TO_ENUM, _OIDS_TO_HASH, _RESPONSE_STATUS_TO_ENUM, ) def _requires_successful_response(func): @functools.wraps(func) def wrapper(self, *args): if self.response_status != OCSPResponseStatus.SUCCESSFUL: raise ValueError( "OCSP response status is not successful so the property " "has no value" ) else: return func(self, *args) return wrapper def _issuer_key_hash(backend, cert_id): key_hash = backend._ffi.new("ASN1_OCTET_STRING **") res = backend._lib.OCSP_id_get0_info( backend._ffi.NULL, backend._ffi.NULL, key_hash, backend._ffi.NULL, cert_id ) backend.openssl_assert(res == 1) backend.openssl_assert(key_hash[0] != backend._ffi.NULL) return _asn1_string_to_bytes(backend, key_hash[0]) def _issuer_name_hash(backend, cert_id): name_hash = backend._ffi.new("ASN1_OCTET_STRING **") res = backend._lib.OCSP_id_get0_info( name_hash, backend._ffi.NULL, backend._ffi.NULL, backend._ffi.NULL, cert_id ) backend.openssl_assert(res == 1) backend.openssl_assert(name_hash[0] != backend._ffi.NULL) return _asn1_string_to_bytes(backend, name_hash[0]) def _serial_number(backend, cert_id): num = backend._ffi.new("ASN1_INTEGER **") res = backend._lib.OCSP_id_get0_info( backend._ffi.NULL, backend._ffi.NULL, backend._ffi.NULL, num, cert_id ) backend.openssl_assert(res == 1) backend.openssl_assert(num[0] != backend._ffi.NULL) return _asn1_integer_to_int(backend, num[0]) def _hash_algorithm(backend, cert_id): asn1obj = backend._ffi.new("ASN1_OBJECT **") res = backend._lib.OCSP_id_get0_info( backend._ffi.NULL, asn1obj, backend._ffi.NULL, backend._ffi.NULL, cert_id ) backend.openssl_assert(res == 1) backend.openssl_assert(asn1obj[0] != backend._ffi.NULL) oid = _obj2txt(backend, asn1obj[0]) try: return _OIDS_TO_HASH[oid] except KeyError: raise UnsupportedAlgorithm( "Signature algorithm OID: {} not recognized".format(oid) ) @utils.register_interface(OCSPResponse) class _OCSPResponse(object): def __init__(self, backend, ocsp_response): self._backend = backend self._ocsp_response = ocsp_response status = self._backend._lib.OCSP_response_status(self._ocsp_response) self._backend.openssl_assert(status in _RESPONSE_STATUS_TO_ENUM) self._status = _RESPONSE_STATUS_TO_ENUM[status] if self._status is OCSPResponseStatus.SUCCESSFUL: basic = self._backend._lib.OCSP_response_get1_basic( self._ocsp_response ) self._backend.openssl_assert(basic != self._backend._ffi.NULL) self._basic = self._backend._ffi.gc( basic, self._backend._lib.OCSP_BASICRESP_free ) self._backend.openssl_assert( self._backend._lib.OCSP_resp_count(self._basic) == 1 ) self._single = self._backend._lib.OCSP_resp_get0(self._basic, 0) self._backend.openssl_assert( self._single != self._backend._ffi.NULL ) self._cert_id = self._backend._lib.OCSP_SINGLERESP_get0_id( self._single ) self._backend.openssl_assert( self._cert_id != self._backend._ffi.NULL ) response_status = utils.read_only_property("_status") @property @_requires_successful_response def signature_algorithm_oid(self): alg = self._backend._lib.OCSP_resp_get0_tbs_sigalg(self._basic) self._backend.openssl_assert(alg != self._backend._ffi.NULL) oid = _obj2txt(self._backend, alg.algorithm) return x509.ObjectIdentifier(oid) @property @_requires_successful_response def signature_hash_algorithm(self): oid = self.signature_algorithm_oid try: return x509._SIG_OIDS_TO_HASH[oid] except KeyError: raise UnsupportedAlgorithm( "Signature algorithm OID:{} not recognized".format(oid) ) @property @_requires_successful_response def signature(self): sig = self._backend._lib.OCSP_resp_get0_signature(self._basic) self._backend.openssl_assert(sig != self._backend._ffi.NULL) return _asn1_string_to_bytes(self._backend, sig) @property @_requires_successful_response def tbs_response_bytes(self): respdata = self._backend._lib.OCSP_resp_get0_respdata(self._basic) self._backend.openssl_assert(respdata != self._backend._ffi.NULL) pp = self._backend._ffi.new("unsigned char **") res = self._backend._lib.i2d_OCSP_RESPDATA(respdata, pp) self._backend.openssl_assert(pp[0] != self._backend._ffi.NULL) pp = self._backend._ffi.gc( pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0]) ) self._backend.openssl_assert(res > 0) return self._backend._ffi.buffer(pp[0], res)[:] @property @_requires_successful_response def certificates(self): sk_x509 = self._backend._lib.OCSP_resp_get0_certs(self._basic) num = self._backend._lib.sk_X509_num(sk_x509) certs = [] for i in range(num): x509 = self._backend._lib.sk_X509_value(sk_x509, i) self._backend.openssl_assert(x509 != self._backend._ffi.NULL) cert = _Certificate(self._backend, x509) # We need to keep the OCSP response that the certificate came from # alive until the Certificate object itself goes out of scope, so # we give it a private reference. cert._ocsp_resp = self certs.append(cert) return certs @property @_requires_successful_response def responder_key_hash(self): _, asn1_string = self._responder_key_name() if asn1_string == self._backend._ffi.NULL: return None else: return _asn1_string_to_bytes(self._backend, asn1_string) @property @_requires_successful_response def responder_name(self): x509_name, _ = self._responder_key_name() if x509_name == self._backend._ffi.NULL: return None else: return _decode_x509_name(self._backend, x509_name) def _responder_key_name(self): asn1_string = self._backend._ffi.new("ASN1_OCTET_STRING **") x509_name = self._backend._ffi.new("X509_NAME **") res = self._backend._lib.OCSP_resp_get0_id( self._basic, asn1_string, x509_name ) self._backend.openssl_assert(res == 1) return x509_name[0], asn1_string[0] @property @_requires_successful_response def produced_at(self): produced_at = self._backend._lib.OCSP_resp_get0_produced_at( self._basic ) return _parse_asn1_generalized_time(self._backend, produced_at) @property @_requires_successful_response def certificate_status(self): status = self._backend._lib.OCSP_single_get0_status( self._single, self._backend._ffi.NULL, self._backend._ffi.NULL, self._backend._ffi.NULL, self._backend._ffi.NULL, ) self._backend.openssl_assert(status in _CERT_STATUS_TO_ENUM) return _CERT_STATUS_TO_ENUM[status] @property @_requires_successful_response def revocation_time(self): if self.certificate_status is not OCSPCertStatus.REVOKED: return None asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **") self._backend._lib.OCSP_single_get0_status( self._single, self._backend._ffi.NULL, asn1_time, self._backend._ffi.NULL, self._backend._ffi.NULL, ) self._backend.openssl_assert(asn1_time[0] != self._backend._ffi.NULL) return _parse_asn1_generalized_time(self._backend, asn1_time[0]) @property @_requires_successful_response def revocation_reason(self): if self.certificate_status is not OCSPCertStatus.REVOKED: return None reason_ptr = self._backend._ffi.new("int *") self._backend._lib.OCSP_single_get0_status( self._single, reason_ptr, self._backend._ffi.NULL, self._backend._ffi.NULL, self._backend._ffi.NULL, ) # If no reason is encoded OpenSSL returns -1 if reason_ptr[0] == -1: return None else: self._backend.openssl_assert( reason_ptr[0] in _CRL_ENTRY_REASON_CODE_TO_ENUM ) return _CRL_ENTRY_REASON_CODE_TO_ENUM[reason_ptr[0]] @property @_requires_successful_response def this_update(self): asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **") self._backend._lib.OCSP_single_get0_status( self._single, self._backend._ffi.NULL, self._backend._ffi.NULL, asn1_time, self._backend._ffi.NULL, ) self._backend.openssl_assert(asn1_time[0] != self._backend._ffi.NULL) return _parse_asn1_generalized_time(self._backend, asn1_time[0]) @property @_requires_successful_response def next_update(self): asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **") self._backend._lib.OCSP_single_get0_status( self._single, self._backend._ffi.NULL, self._backend._ffi.NULL, self._backend._ffi.NULL, asn1_time, ) if asn1_time[0] != self._backend._ffi.NULL: return _parse_asn1_generalized_time(self._backend, asn1_time[0]) else: return None @property @_requires_successful_response def issuer_key_hash(self): return _issuer_key_hash(self._backend, self._cert_id) @property @_requires_successful_response def issuer_name_hash(self): return _issuer_name_hash(self._backend, self._cert_id) @property @_requires_successful_response def hash_algorithm(self): return _hash_algorithm(self._backend, self._cert_id) @property @_requires_successful_response def serial_number(self): return _serial_number(self._backend, self._cert_id) @utils.cached_property @_requires_successful_response def extensions(self): return _OCSP_BASICRESP_EXT_PARSER.parse(self._backend, self._basic) @utils.cached_property @_requires_successful_response def single_extensions(self): if self._backend._lib.CRYPTOGRAPHY_OPENSSL_110_OR_GREATER: return _OCSP_SINGLERESP_EXT_PARSER.parse( self._backend, self._single ) else: return _OCSP_SINGLERESP_EXT_PARSER_NO_SCT.parse( self._backend, self._single ) def public_bytes(self, encoding): if encoding is not serialization.Encoding.DER: raise ValueError( "The only allowed encoding value is Encoding.DER" ) bio = self._backend._create_mem_bio_gc() res = self._backend._lib.i2d_OCSP_RESPONSE_bio( bio, self._ocsp_response ) self._backend.openssl_assert(res > 0) return self._backend._read_mem_bio(bio) @utils.register_interface(OCSPRequest) class _OCSPRequest(object): def __init__(self, backend, ocsp_request): if backend._lib.OCSP_request_onereq_count(ocsp_request) > 1: raise NotImplementedError( 'OCSP request contains more than one request' ) self._backend = backend self._ocsp_request = ocsp_request self._request = self._backend._lib.OCSP_request_onereq_get0( self._ocsp_request, 0 ) self._backend.openssl_assert(self._request != self._backend._ffi.NULL) self._cert_id = self._backend._lib.OCSP_onereq_get0_id(self._request) self._backend.openssl_assert(self._cert_id != self._backend._ffi.NULL) @property def issuer_key_hash(self): return _issuer_key_hash(self._backend, self._cert_id) @property def issuer_name_hash(self): return _issuer_name_hash(self._backend, self._cert_id) @property def serial_number(self): return _serial_number(self._backend, self._cert_id) @property def hash_algorithm(self): return _hash_algorithm(self._backend, self._cert_id) @utils.cached_property def extensions(self): return _OCSP_REQ_EXT_PARSER.parse(self._backend, self._ocsp_request) def public_bytes(self, encoding): if encoding is not serialization.Encoding.DER: raise ValueError( "The only allowed encoding value is Encoding.DER" ) bio = self._backend._create_mem_bio_gc() res = self._backend._lib.i2d_OCSP_REQUEST_bio(bio, self._ocsp_request) self._backend.openssl_assert(res > 0) return self._backend._read_mem_bio(bio)
py
b413a1cb0a6c0baf11218cecd739e29b45b505f1
class Person: def __init__(self, name, surname): self.name = name self.surname = surname def __add__(self, other): return Person(self.name, other.surname) def __repr__(self): return f'{self.name} {self.surname}' class Group: def __init__(self, name, people): self.name = name self.people = people def __add__(self, other): return Group(self.name, self.people + other.people) def __len__(self): return len(self.people) def __getitem__(self, index): # return f'Person {self.people.index(self.people[item])}: {self.people[item]}' return f'Person {index}: {self.people[index]}' # The index can be implemented as a class attribute in the Person class # which will lead to changes to both __repr__ methods def __repr__(self): return f'Group {self.name} with members {", ".join(p.name + " " + p.surname for p in self.people)}' p0 = Person('Aliko', 'Dangote') p1 = Person('Bill', 'Gates') p2 = Person('Warren', 'Buffet') p3 = Person('Elon', 'Musk') p4 = p2 + p3 first_group = Group('__VIP__', [p0, p1, p2]) second_group = Group('Special', [p3, p4]) third_group = first_group + second_group print(len(first_group)) print(second_group) print(third_group[0]) for person in third_group: print(person)
py
b413a3d4e14451d460e0596f8aa839ec5373dbc6
""" MXNet neural networks for tabular data containing numerical, categorical, and text fields. First performs neural network specific pre-processing of the data. Contains separate input modules which are applied to different columns of the data depending on the type of values they contain: - Numeric columns are pased through single Dense layer (binary categorical variables are treated as numeric) - Categorical columns are passed through separate Embedding layers - Text columns are passed through separate LanguageModel layers Vectors produced by different input layers are then concatenated and passed to multi-layer MLP model with problem_type determined output layer. Hyperparameters are passed as dict params, including options for preprocessing stages. """ import random, json, time, os, logging, warnings from collections import OrderedDict import numpy as np import pandas as pd import mxnet as mx from mxnet import nd, autograd, gluon from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, QuantileTransformer # PowerTransformer from ......core import Space from ......utils import try_import_mxboard from ......task.base import BasePredictor from ....utils.loaders import load_pkl from ..abstract.abstract_model import AbstractModel, fixedvals_from_searchspaces from ....utils.savers import save_pkl from ...constants import BINARY, MULTICLASS, REGRESSION from .categorical_encoders import OneHotMergeRaresHandleUnknownEncoder, OrdinalMergeRaresHandleUnknownEncoder from .tabular_nn_dataset import TabularNNDataset from .embednet import EmbedNet from .tabular_nn_trial import tabular_nn_trial from .hyperparameters.parameters import get_default_param from .hyperparameters.searchspaces import get_default_searchspace # __all__ = ['TabularNeuralNetModel', 'EPS'] warnings.filterwarnings("ignore", module='sklearn.preprocessing') # sklearn processing n_quantiles warning logger = logging.getLogger(__name__) EPS = 10e-8 # small number # TODO: Gets stuck after infering feature types near infinitely in nyc-jiashenliu-515k-hotel-reviews-data-in-europe dataset, 70 GB of memory, c5.9xlarge # Suspect issue is coming from embeddings due to text features with extremely large categorical counts. class TabularNeuralNetModel(AbstractModel): """ Class for neural network models that operate on tabular data. These networks use different types of input layers to process different types of data in various columns. Attributes: types_of_features (dict): keys = 'continuous', 'skewed', 'onehot', 'embed', 'language'; values = column-names of Dataframe corresponding to the features of this type feature_arraycol_map (OrderedDict): maps feature-name -> list of column-indices in processed_array corresponding to this feature self.feature_type_map (OrderedDict): maps feature-name -> feature_type string (options: 'vector', 'embed', 'language') processor (sklearn.ColumnTransformer): scikit-learn preprocessor object. Note: This model always assumes higher values of self.objective_func indicate better performance. """ # Constants used throughout this class: # model_internals_file_name = 'model-internals.pkl' # store model internals here unique_category_str = '!missing!' # string used to represent missing values and unknown categories for categorical features. Should not appear in the dataset # TODO: remove: metric_map = {REGRESSION: 'Rsquared', BINARY: 'accuracy', MULTICLASS: 'accuracy'} # string used to represent different evaluation metrics. metric_map[self.problem_type] produces str corresponding to metric used here. # TODO: should be using self.objective_func as the metric of interest. Should have method: get_metric_name(self.objective_func) rescale_losses = {gluon.loss.L1Loss:'std', gluon.loss.HuberLoss:'std', gluon.loss.L2Loss:'var'} # dict of loss names where we should rescale loss, value indicates how to rescale. Call self.loss_func.name model_file_name = 'tabularNN.pkl' params_file_name = 'net.params' # Stores parameters of final network temp_file_name = 'temp_net.params' # Stores temporary network parameters (eg. during the course of training) def __init__(self, path, name, problem_type, objective_func, hyperparameters=None, features=None): super().__init__(path=path, name=name, model=None, problem_type=problem_type, objective_func=objective_func, hyperparameters=hyperparameters, features=features) """ TabularNeuralNetModel object. Parameters ---------- path (str): file-path to directory where to save files associated with this model name (str): name used to refer to this model problem_type (str): what type of prediction problem is this model used for objective_func (func): function used to evaluate performance (Note: we assume higher = better) hyperparameters (dict): various hyperparameters for neural network and the NN-specific data processing features (list): List of predictive features to use, other features are ignored by the model. """ self.problem_type = problem_type self.objective_func = objective_func self.eval_metric_name = self.objective_func.name self.feature_types_metadata = None self.types_of_features = None self.feature_arraycol_map = None self.feature_type_map = None self.processor = None # data processor self.summary_writer = None self.ctx = mx.cpu() # TODO: Remove this, add generic unfit_copy func or fix model to not have tabNN in params def create_unfit_copy(self): new_model = TabularNeuralNetModel(path=self.path, name=self.name, problem_type=self.problem_type, objective_func=self.objective_func, features=self.features, hyperparameters=self.params) new_model.path = self.path new_model.params['tabNN'] = None return new_model def _set_default_params(self): """ Specifies hyperparameter values to use by default """ default_params = get_default_param(self.problem_type) for param, val in default_params.items(): self._set_default_param_value(param, val) def set_net_defaults(self, train_dataset): """ Sets dataset-adaptive default values to use for our neural network """ if self.problem_type == MULTICLASS: self.num_classes = train_dataset.num_classes self.num_net_outputs = self.num_classes elif self.problem_type == REGRESSION: self.num_net_outputs = 1 if self.params['y_range'] is None: # Infer default y-range y_vals = train_dataset.dataset._data[train_dataset.label_index].asnumpy() min_y = float(min(y_vals)) max_y = float(max(y_vals)) std_y = np.std(y_vals) y_ext = self.params['y_range_extend']*std_y if min_y >= 0: # infer y must be nonnegative min_y = max(0, min_y-y_ext) else: min_y = min_y-y_ext if max_y <= 0: # infer y must be non-positive max_y = min(0, max_y+y_ext) else: max_y = max_y+y_ext self.params['y_range'] = (min_y, max_y) elif self.problem_type == BINARY: self.num_classes = 2 self.num_net_outputs = 2 if self.params['layers'] is None: # Use default choices for MLP architecture if self.problem_type == REGRESSION: default_layer_sizes = [256, 128] # overall network will have 4 layers. Input layer, 256-unit hidden layer, 128-unit hidden layer, output layer. elif self.problem_type == BINARY or self.problem_type == MULTICLASS: default_sizes = [256, 128] # will be scaled adaptively # base_size = max(1, min(self.num_net_outputs, 20)/2.0) # scale layer width based on number of classes base_size = max(1, min(self.num_net_outputs, 100) / 50) # TODO: Updated because it improved model quality and made training far faster default_layer_sizes = [defaultsize*base_size for defaultsize in default_sizes] # TODO: This gets really large on 100K+ rows... It takes hours on gpu for nyc-albert: 78 float/int features which get expanded to 1734, it also overfits and maxes accuracy on epoch # LGBM takes 120 seconds on 4 cpu's and gets far better accuracy # Perhaps we should add an order of magnitude to the pre-req with -3, or else scale based on feature count instead of row count. # layer_expansion_factor = np.log10(max(train_dataset.num_examples, 1000)) - 2 # scale layers based on num_training_examples layer_expansion_factor = 1 # TODO: Hardcoded to 1 because it results in both better model quality and far faster training time max_layer_width = self.params['max_layer_width'] self.params['layers'] = [int(min(max_layer_width, layer_expansion_factor*defaultsize)) for defaultsize in default_layer_sizes] if train_dataset.has_vector_features() and self.params['numeric_embed_dim'] is None: # Use default choices for numeric embedding size vector_dim = train_dataset.dataset._data[train_dataset.vectordata_index].shape[1] # total dimensionality of vector features prop_vector_features = train_dataset.num_vector_features() / float(train_dataset.num_features) # Fraction of features that are numeric min_numeric_embed_dim = 32 max_numeric_embed_dim = self.params['max_layer_width'] self.params['numeric_embed_dim'] = int(min(max_numeric_embed_dim, max(min_numeric_embed_dim, self.params['layers'][0]*prop_vector_features*np.log10(vector_dim+10) ))) return def fit(self, X_train, Y_train, X_test=None, Y_test=None, **kwargs): """ X_train (pd.DataFrame): training data features (not necessarily preprocessed yet) X_test (pd.DataFrame): test data features (should have same column names as Xtrain) Y_train (pd.Series): Y_test (pd.Series): are pandas Series kwargs: Can specify amount of compute resources to utilize (num_cpus, num_gpus). """ self.verbosity = kwargs.get('verbosity', 2) self.params = fixedvals_from_searchspaces(self.params) if self.feature_types_metadata is None: raise ValueError("Trainer class must set feature_types_metadata for this model") X_train = self.preprocess(X_train) if self.features is None: self.features = list(X_train.columns) # print('features: ', self.features) if 'num_cpus' in kwargs: self.params['num_dataloading_workers'] = max(1, int(kwargs['num_cpus']/2.0)) else: self.params['num_dataloading_workers'] = 1 if 'num_gpus' in kwargs and kwargs['num_gpus'] >= 1: # Currently cannot use >1 GPU self.params['ctx'] = mx.gpu() # Currently cannot use more than 1 GPU else: self.params['ctx'] = mx.cpu() train_dataset = self.process_data(X_train, Y_train, is_test=False) # Dataset object if X_test is not None: X_test = self.preprocess(X_test) test_dataset = self.process_data(X_test, Y_test, is_test=True) # Dataset object to use for validation else: test_dataset = None logger.log(15, "Training data for neural network has: %d examples, %d features (%d vector, %d embedding, %d language)" % (train_dataset.num_examples, train_dataset.num_features, len(train_dataset.feature_groups['vector']), len(train_dataset.feature_groups['embed']), len(train_dataset.feature_groups['language']) )) # train_dataset.save() # test_dataset.save() # self._save_preprocessor() # TODO: should save these things for hyperparam tunning. Need one HP tuner for network-specific HPs, another for preprocessing HPs. self.get_net(train_dataset) self.train_net(params=self.params, train_dataset=train_dataset, test_dataset=test_dataset, initialize=True, setup_trainer=True) """ # TODO: if we don't want to save intermediate network parameters, need to do something like saving in temp directory to clean up after training: with make_temp_directory() as temp_dir: save_callback = SaveModelCallback(self.model, monitor=self.metric, mode=save_callback_mode, name=self.name) with progress_disabled_ctx(self.model) as model: original_path = model.path model.path = Path(temp_dir) model.fit_one_cycle(self.epochs, self.lr, callbacks=save_callback) # Load the best one and export it model.load(self.name) print(f'Model validation metrics: {model.validate()}') model.path = original_path\ """ def get_net(self, train_dataset): """ Creates a Gluon neural net and context for this dataset. Also sets up trainer/optimizer as necessary. """ self.set_net_defaults(train_dataset) self.ctx = self.params['ctx'] net = EmbedNet(train_dataset=train_dataset, params=self.params, num_net_outputs=self.num_net_outputs, ctx=self.ctx) self.architecture_desc = net.architecture_desc # Description of network architecture self.net_filename = self.path + self.temp_file_name self.model = net if not os.path.exists(self.path): os.makedirs(self.path) return def train_net(self, params, train_dataset, test_dataset=None, initialize=True, setup_trainer=True, file_prefix=""): """ Trains neural net on given train dataset, early stops based on test_dataset. Args: params (dict): various hyperparameter values train_dataset (TabularNNDataset): training data used to learn network weights test_dataset (TabularNNDataset): validation data used for hyperparameter tuning initialize (bool): set = False to continue training of a previously trained model, otherwise initializes network weights randomly setup_trainer (bool): set = False to reuse the same trainer from a previous training run, otherwise creates new trainer from scratch file_prefix (str): prefix to append to all file-names created here. Can use to make sure different trials create different files """ logger.log(15, "Training neural network for up to %s epochs..." % self.params['num_epochs']) seed_value = self.params.get('seed_value') if seed_value is not None: # Set seed random.seed(seed_value) np.random.seed(seed_value) mx.random.seed(seed_value) if initialize: # Initialize the weights of network logging.debug("initializing neural network...") self.model.collect_params().initialize(ctx=self.ctx) self.model.hybridize() logging.debug("initialized") if setup_trainer: # Also setup mxboard if visualizer has been specified: visualizer = self.params.get('visualizer', 'none') if visualizer == 'tensorboard' or visualizer == 'mxboard': try_import_mxboard() from mxboard import SummaryWriter self.summary_writer = SummaryWriter(logdir=self.path, flush_secs=5, verbose=False) self.setup_trainer() best_val_metric = -np.inf # higher = better val_metric = None best_val_epoch = 0 best_train_epoch = 0 # epoch with best training loss so far best_train_loss = np.inf # smaller = better num_epochs = self.params['num_epochs'] if test_dataset is not None: y_test = test_dataset.get_labels() else: y_test = None loss_scaling_factor = 1.0 # we divide loss by this quantity to stabilize gradients loss_torescale = [key for key in self.rescale_losses if isinstance(self.loss_func, key)] if len(loss_torescale) > 0: loss_torescale = loss_torescale[0] if self.rescale_losses[loss_torescale] == 'std': loss_scaling_factor = np.std(train_dataset.get_labels())/5.0 + EPS # std-dev of labels elif self.rescale_losses[loss_torescale] == 'var': loss_scaling_factor = np.var(train_dataset.get_labels())/5.0 + EPS # variance of labels else: raise ValueError("Unknown loss-rescaling type %s specified for loss_func==%s" % (self.rescale_losses[loss_torescale],self.loss_func)) if self.verbosity <= 1: verbose_eval = -1 # Print losses every verbose epochs, Never if -1 elif self.verbosity == 2: verbose_eval = 50 elif self.verbosity == 3: verbose_eval = 10 else: verbose_eval = 1 # Training Loop: for e in range(num_epochs): if e == 0: # special actions during first epoch: logger.log(15, "Neural network architecture:") logger.log(15, str(self.model)) # TODO: remove? cumulative_loss = 0 for batch_idx, data_batch in enumerate(train_dataset.dataloader): data_batch = train_dataset.format_batch_data(data_batch, self.ctx) with autograd.record(): output = self.model(data_batch) labels = data_batch['label'] loss = self.loss_func(output, labels) / loss_scaling_factor # print(str(nd.mean(loss).asscalar()), end="\r") # prints per-batch losses loss.backward() self.optimizer.step(labels.shape[0]) cumulative_loss += nd.sum(loss).asscalar() train_loss = cumulative_loss/float(train_dataset.num_examples) # training loss this epoch if test_dataset is not None: # val_metric = self.evaluate_metric(test_dataset) # Evaluate after each epoch val_metric = self.score(X=test_dataset, y=y_test) if test_dataset is None or val_metric >= best_val_metric: # keep training if score has improved best_val_metric = val_metric best_val_epoch = e self.model.save_parameters(self.net_filename) if test_dataset is not None: if verbose_eval > 0 and e % verbose_eval == 0: logger.log(15, "Epoch %s. Train loss: %s, Val %s: %s" % (e, train_loss, self.eval_metric_name, val_metric)) if self.summary_writer is not None: self.summary_writer.add_scalar(tag='val_'+self.eval_metric_name, value=val_metric, global_step=e) else: if verbose_eval > 0 and e % verbose_eval == 0: logger.log(15, "Epoch %s. Train loss: %s" % (e, train_loss)) if self.summary_writer is not None: self.summary_writer.add_scalar(tag='train_loss', value=train_loss, global_step=e) # TODO: do we want to keep mxboard support? if e - best_val_epoch > self.params['epochs_wo_improve']: break self.model.load_parameters(self.net_filename) # Revert back to best model if test_dataset is None: # evaluate one final time: logger.log(15, "Best model found in epoch %d" % best_val_epoch) else: final_val_metric = self.score(X=test_dataset, y=y_test) logger.log(15, "Best model found in epoch %d. Val %s: %s" % (best_val_epoch, self.eval_metric_name, final_val_metric)) return def evaluate_metric(self, dataset, mx_metric=None): """ Evaluates metric on the given dataset (TabularNNDataset object), used for early stopping and to tune hyperparameters. If provided, mx_metric must be a function that follows the mxnet.metric API. Higher values = better! By default, returns accuracy in the case of classification, R^2 for regression. TODO: currently hard-coded metrics used only. Does not respect user-supplied metrics... """ if mx_metric is None: if self.problem_type == REGRESSION: mx_metric = mx.metric.MSE() else: mx_metric = mx.metric.Accuracy() for batch_idx, data_batch in enumerate(dataset.dataloader): data_batch = dataset.format_batch_data(data_batch, self.ctx) preds = self.model(data_batch) mx_metric.update(preds=preds, labels=data_batch['label']) # argmax not needed, even for classification if self.problem_type == REGRESSION: y_var = np.var(dataset.dataset._data[dataset.label_index].asnumpy()) + EPS return 1.0 - mx_metric.get()[1] / y_var else: return mx_metric.get()[1] # accuracy def predict_proba(self, X, preprocess=True): """ To align predict wiht abstract_model API. Preprocess here only refers to feature processing stesp done by all AbstractModel objects, not tabularNN-specific preprocessing steps. If X is not DataFrame but instead TabularNNDataset object, we can still produce predictions, but cannot use preprocess in this case (needs to be already processed). """ if isinstance(X, TabularNNDataset): return self._predict_tabular_data(new_data=X, process=False, predict_proba=True) elif isinstance(X, pd.DataFrame): if preprocess: X = self.preprocess(X) return self._predict_tabular_data(new_data=X, process=True, predict_proba=True) else: raise ValueError("X must be of type pd.DataFrame or TabularNNDataset, not type: %s" % type(X)) def _predict_tabular_data(self, new_data, process=True, predict_proba=True): # TODO ensure API lines up with tabular.Model class. """ Specific TabularNN method to produce predictions on new (unprocessed) data. Returns 1D numpy array unless predict_proba=True and task is multi-class classification (not binary). Args: new_data (pd.Dataframe or TabularNNDataset): new data to make predictions on. If you want to make prediction for just a single row of new_data, pass in: new_data.iloc[[row_index]] process (bool): should new data be processed (if False, new_data must be TabularNNDataset) predict_proba (bool): should we output class-probabilities (not used for regression) """ if process: new_data = self.process_data(new_data, labels=None, is_test=True) if not isinstance(new_data, TabularNNDataset): raise ValueError("new_data must of of type TabularNNDataset if process=False") if self.problem_type == REGRESSION or not predict_proba: preds = nd.zeros((new_data.num_examples,1)) else: preds = nd.zeros((new_data.num_examples, self.num_net_outputs)) i = 0 for batch_idx, data_batch in enumerate(new_data.dataloader): data_batch = new_data.format_batch_data(data_batch, self.ctx) preds_batch = self.model(data_batch) batch_size = len(preds_batch) if self.problem_type != REGRESSION: if not predict_proba: # need to take argmax preds_batch = nd.argmax(preds_batch, axis=1, keepdims=True) else: # need to take softmax preds_batch = nd.softmax(preds_batch, axis=1) preds[i:(i+batch_size)] = preds_batch i = i+batch_size if self.problem_type == REGRESSION or not predict_proba: return preds.asnumpy().flatten() # return 1D numpy array elif self.problem_type == BINARY and predict_proba: return preds[:,1].asnumpy() # for binary problems, only return P(Y==1) return preds.asnumpy() # return 2D numpy array def process_data(self, df, labels = None, is_test=True): """ Process train or test DataFrame into a form fit for neural network models. Args: df (pd.DataFrame): Data to be processed (X) labels (pd.Series): labels to be processed (y) test (bool): Is this test data where each datapoint should be processed separately using predetermined preprocessing steps. Otherwise preprocessor uses all data to determine propreties like best scaling factors, number of categories, etc. Returns: Dataset object """ warnings.filterwarnings("ignore", module='sklearn.preprocessing') # sklearn processing n_quantiles warning if set(df.columns) != set(self.features): raise ValueError("Column names in provided Dataframe do not match self.features") if labels is not None and len(labels) != len(df): raise ValueError("Number of examples in Dataframe does not match number of labels") if not is_test: return self.process_train_data(df, labels) # Otherwise we are processing test data: if (self.processor is None or self.types_of_features is None or self.feature_arraycol_map is None or self.feature_type_map is None): raise ValueError("Need to process training data before test data") df = self.ensure_onehot_object(df) processed_array = self.processor.transform(df) # 2D numpy array. self.feature_arraycol_map, self.feature_type_map have been previously set while processing training data. return TabularNNDataset(processed_array, self.feature_arraycol_map, self.feature_type_map, self.params, self.problem_type, labels=labels, is_test=True) def process_train_data(self, df, labels): """ Preprocess training data and create self.processor object that can be used to process future data. This method should only be used once per TabularNeuralNetModel object, otherwise will produce Warning. # TODO no label processing for now # TODO: language features are ignored for now # TODO: how to add new features such as time features and remember to do the same for test data? # TODO: no filtering of data-frame columns based on statistics, e.g. categorical columns with all unique variables or zero-variance features. This should be done in default_learner class for all models not just TabularNeuralNetModel... Here is old Grail code for column-filtering of data-frame Xtrain based on statistics: try: X_train_stats = X_train.describe(include='all').T.reset_index() cols_to_drop = X_train_stats[(X_train_stats['unique'] > self.max_unique_categorical_values) | (X_train_stats['unique'].isna())]['index'].values except: cols_to_drop = [] cols_to_keep = [col for col in list(X_train.columns) if col not in cols_to_drop] cols_to_use = [col for col in self.cat_names if col in cols_to_keep] print(f'Using {len(cols_to_use)}/{len(self.cat_names)} categorical features') self.cat_names = cols_to_use print(f'Using {len(self.cont_names)} cont features') """ if labels is None: raise ValueError("Attempting process training data without labels") self.types_of_features = self._get_types_of_features(df) # dict with keys: : 'continuous', 'skewed', 'onehot', 'embed', 'language', values = column-names of df df = df[self.features] logger.log(15, "AutoGluon Neural Network infers features are of the following types:") logger.log(15, json.dumps(self.types_of_features, indent=4)) logger.log(15, "\n") df = self.ensure_onehot_object(df) self.processor = self._create_preprocessor() processed_array = self.processor.fit_transform(df) # 2D numpy array self.feature_arraycol_map = self._get_feature_arraycol_map() # OrderedDict of feature-name -> list of column-indices in processed_array corresponding to this feature # print(self.feature_arraycol_map) self.feature_type_map = self._get_feature_type_map() # OrderedDict of feature-name -> feature_type string (options: 'vector', 'embed', 'language') # print(self.feature_type_map) return TabularNNDataset(processed_array, self.feature_arraycol_map, self.feature_type_map, self.params, self.problem_type, labels=labels, is_test=False) def setup_trainer(self): """ Set up stuff needed for training: optimizer, loss, and summary writer (for mxboard). Network must first be initialized before this. """ optimizer_opts = {'learning_rate': self.params['learning_rate'], 'wd': self.params['weight_decay'], 'clip_gradient': self.params['clip_gradient']} if self.params['optimizer'] == 'sgd': optimizer_opts['momentum'] = self.params['momentum'] self.optimizer = gluon.Trainer(self.model.collect_params(), 'sgd', optimizer_opts) elif self.params['optimizer'] == 'adam': # TODO: Can we try AdamW? self.optimizer = gluon.Trainer(self.model.collect_params(), 'adam', optimizer_opts) else: raise ValueError("Unknown optimizer specified: %s" % self.params['optimizer']) if self.params['loss_function'] is None: if self.problem_type == REGRESSION: self.params['loss_function'] = gluon.loss.L1Loss() else: self.params['loss_function'] = gluon.loss.SoftmaxCrossEntropyLoss(from_logits=self.model.from_logits) self.loss_func = self.params['loss_function'] # Helper functions for tabular NN: def ensure_onehot_object(self, df): """ Converts all numerical one-hot columns to object-dtype. Note: self.types_of_features must already exist! """ new_df = df.copy() # To avoid SettingWithCopyWarning for feature in self.types_of_features['onehot']: if df[feature].dtype != 'object': new_df.loc[:,feature] = df.loc[:,feature].astype(str) return new_df def __get_feature_type_if_present(self, feature_type): """ Returns crude categorization of feature types """ return self.feature_types_metadata[feature_type] if feature_type in self.feature_types_metadata else [] def _get_types_of_features(self, df): """ Returns dict with keys: : 'continuous', 'skewed', 'onehot', 'embed', 'language', values = ordered list of feature-names falling into each category. Each value is a list of feature-names corresponding to columns in original dataframe. TODO: ensure features with zero variance have already been removed before this function is called. """ if self.types_of_features is not None: Warning("Attempting to _get_types_of_features for TabularNeuralNetModel, but previously already did this.") categorical_featnames = self.__get_feature_type_if_present('object') + self.__get_feature_type_if_present('bool') continuous_featnames = self.__get_feature_type_if_present('float') + self.__get_feature_type_if_present('int') + self.__get_feature_type_if_present('datetime') # print("categorical_featnames:", categorical_featnames) # print("continuous_featnames:", continuous_featnames) language_featnames = [] # TODO: not implemented. This should fetch text features present in the data valid_features = categorical_featnames + continuous_featnames + language_featnames if len(categorical_featnames) + len(continuous_featnames)\ + len(language_featnames)\ != df.shape[1]: unknown_features = [feature for feature in df.columns if feature not in valid_features] # print('unknown features:', unknown_features) df = df.drop(columns=unknown_features) self.features = list(df.columns) # raise ValueError("unknown feature types present in DataFrame") types_of_features = {'continuous': [], 'skewed': [], 'onehot': [], 'embed': [], 'language': []} # continuous = numeric features to rescale # skewed = features to which we will apply power (ie. log / box-cox) transform before normalization # onehot = features to one-hot encode (unknown categories for these features encountered at test-time are encoded as all zeros). We one-hot encode any features encountered that only have two unique values. for feature in self.features: feature_data = df[feature] # pd.Series num_unique_vals = len(feature_data.unique()) if num_unique_vals == 2: # will be onehot encoded regardless of proc.embed_min_categories value types_of_features['onehot'].append(feature) elif feature in continuous_featnames: if np.abs(feature_data.skew()) > self.params['proc.skew_threshold']: types_of_features['skewed'].append(feature) else: types_of_features['continuous'].append(feature) elif feature in categorical_featnames: if num_unique_vals >= self.params['proc.embed_min_categories']: # sufficiently many cateories to warrant learned embedding dedicated to this feature types_of_features['embed'].append(feature) else: types_of_features['onehot'].append(feature) elif feature in language_featnames: types_of_features['language'].append(feature) return types_of_features def _get_feature_arraycol_map(self): """ Returns OrderedDict of feature-name -> list of column-indices in processed data array corresponding to this feature """ feature_preserving_transforms = set(['continuous','skewed', 'ordinal', 'language']) # these transforms do not alter dimensionality of feature feature_arraycol_map = {} # unordered version current_colindex = 0 for transformer in self.processor.transformers_: transformer_name = transformer[0] transformed_features = transformer[2] if transformer_name in feature_preserving_transforms: for feature in transformed_features: if feature in feature_arraycol_map: raise ValueError("same feature is processed by two different column transformers: %s" % feature) feature_arraycol_map[feature] = [current_colindex] current_colindex += 1 elif transformer_name == 'onehot': oh_encoder = [step for (name, step) in transformer[1].steps if name == 'onehot'][0] for i in range(len(transformed_features)): feature = transformed_features[i] if feature in feature_arraycol_map: raise ValueError("same feature is processed by two different column transformers: %s" % feature) oh_dimensionality = len(oh_encoder.categories_[i]) feature_arraycol_map[feature] = list(range(current_colindex, current_colindex+oh_dimensionality)) current_colindex += oh_dimensionality else: raise ValueError("unknown transformer encountered: %s" % transformer_name) if set(feature_arraycol_map.keys()) != set(self.features): raise ValueError("failed to account for all features when determining column indices in processed array") return OrderedDict([(key, feature_arraycol_map[key]) for key in feature_arraycol_map]) def _get_feature_type_map(self): """ Returns OrderedDict of feature-name -> feature_type string (options: 'vector', 'embed', 'language') """ if self.feature_arraycol_map is None: raise ValueError("must first call _get_feature_arraycol_map() before _get_feature_type_map()") vector_features = self.types_of_features['continuous'] + self.types_of_features['skewed'] + self.types_of_features['onehot'] feature_type_map = OrderedDict() for feature_name in self.feature_arraycol_map: if feature_name in vector_features: feature_type_map[feature_name] = 'vector' elif feature_name in self.types_of_features['embed']: feature_type_map[feature_name] = 'embed' elif feature_name in self.types_of_features['language']: feature_type_map[feature_name] = 'language' else: raise ValueError("unknown feature type encountered") return feature_type_map def _create_preprocessor(self): """ Defines data encoders used to preprocess different data types and creates instance variable which is sklearn ColumnTransformer object """ if self.processor is not None: Warning("Attempting to process training data for TabularNeuralNetModel, but previously already did this.") continuous_features = self.types_of_features['continuous'] skewed_features = self.types_of_features['skewed'] onehot_features = self.types_of_features['onehot'] embed_features = self.types_of_features['embed'] language_features = self.types_of_features['language'] transformers = [] # order of various column transformers in this list is important! if len(continuous_features) > 0: continuous_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])), ('scaler', StandardScaler())]) transformers.append( ('continuous', continuous_transformer, continuous_features) ) if len(skewed_features) > 0: power_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])), ('quantile', QuantileTransformer(output_distribution='normal')) ]) # Or output_distribution = 'uniform' # TODO: remove old code: ('power', PowerTransformer(method=self.params['proc.power_transform_method'])) ]) transformers.append( ('skewed', power_transformer, skewed_features) ) if len(onehot_features) > 0: onehot_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value=self.unique_category_str)), ('onehot', OneHotMergeRaresHandleUnknownEncoder(max_levels=self.params['proc.max_category_levels'],sparse=False)) ]) # test-time unknown values will be encoded as all zeros vector transformers.append( ('onehot', onehot_transformer, onehot_features) ) if len(embed_features) > 0: # Ordinal transformer applied to convert to-be-embedded categorical features to integer levels ordinal_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value=self.unique_category_str)), ('ordinal', OrdinalMergeRaresHandleUnknownEncoder(max_levels=self.params['proc.max_category_levels'])) ]) # returns 0-n when max_category_levels = n-1. category n is reserved for unknown test-time categories. transformers.append( ('ordinal', ordinal_transformer, embed_features) ) if len(language_features) > 0: raise NotImplementedError("language_features cannot be used at the moment") return ColumnTransformer(transformers=transformers) # numeric features are processed in the same order as in numeric_features vector, so feature-names remain the same. def save(self, file_prefix="", directory = None, return_name=False, verbose=None): """ file_prefix (str): Appended to beginning of file-name (does not affect directory in file-path). directory (str): if unspecified, use self.path as directory return_name (bool): return the file-names corresponding to this save as tuple (model_obj_file, net_params_file) """ if verbose is None: verbose = self.verbosity >= 3 if directory is not None: path = directory + file_prefix else: path = self.path + file_prefix params_filepath = path + self.params_file_name modelobj_filepath = path + self.model_file_name if self.model is not None: self.model.save_parameters(params_filepath) temp_model = self.model temp_sw = self.summary_writer self.model = None self.summary_writer = None save_pkl.save(path=modelobj_filepath, object=self, verbose=verbose) self.model = temp_model self.summary_writer = temp_sw if return_name: return (modelobj_filepath, params_filepath) @classmethod def load(cls, path, file_prefix="", reset_paths=False, verbose=True): """ file_prefix (str): Appended to beginning of file-name. If you want to load files with given prefix, can also pass arg: path = directory+file_prefix """ path = path + file_prefix obj = load_pkl.load(path = path + cls.model_file_name, verbose=verbose) if reset_paths: obj.set_contexts(path) obj.model = EmbedNet(architecture_desc=obj.architecture_desc, ctx=obj.ctx) # recreate network from architecture description # TODO: maybe need to initialize/hybridize?? obj.model.load_parameters(path + cls.params_file_name, ctx=obj.ctx) obj.summary_writer = None return obj def hyperparameter_tune(self, X_train, X_test, Y_train, Y_test, scheduler_options, **kwargs): """ Performs HPO and sets self.params to best hyperparameter values """ self.verbosity = kwargs.get('verbosity', 2) logger.log(15, "Beginning hyperparameter tuning for Neural Network...") self._set_default_searchspace() # changes non-specified default hyperparams from fixed values to search-spaces. if self.feature_types_metadata is None: raise ValueError("Trainer class must set feature_types_metadata for this model") scheduler_func = scheduler_options[0] # Unpack tuple scheduler_options = scheduler_options[1] if scheduler_func is None or scheduler_options is None: raise ValueError("scheduler_func and scheduler_options cannot be None for hyperparameter tuning") num_cpus = scheduler_options['resource']['num_cpus'] num_gpus = scheduler_options['resource']['num_gpus'] self.params['num_dataloading_workers'] = max(1, int(num_cpus/2.0)) if num_gpus >= 1: self.params['ctx'] = mx.gpu() # Currently cannot use more than 1 GPU until scheduler works else: self.params['ctx'] = mx.cpu() # self.params['ctx'] = mx.cpu() # use this in case embedding layer complains during predict() for HPO with GPU start_time = time.time() X_train = self.preprocess(X_train) if self.features is None: self.features = list(X_train.columns) params_copy = self.params.copy() if not np.any([isinstance(params_copy[hyperparam], Space) for hyperparam in params_copy]): logger.warning("Warning: Attempting to do hyperparameter optimization without any search space (all hyperparameters are already fixed values)") else: logger.log(15, "Hyperparameter search space for Neural Network: ") for hyperparam in params_copy: if isinstance(params_copy[hyperparam], Space): logger.log(15, str(hyperparam)+ ": "+str(params_copy[hyperparam])) directory = self.path # path to directory where all remote workers store things train_dataset = self.process_data(X_train, Y_train, is_test=False) # Dataset object X_test = self.preprocess(X_test) test_dataset = self.process_data(X_test, Y_test, is_test=True) # Dataset object to use for validation train_fileprefix = self.path + "train" test_fileprefix = self.path + "validation" train_dataset.save(file_prefix=train_fileprefix) # TODO: cleanup after HPO? test_dataset.save(file_prefix=test_fileprefix) tabular_nn_trial.register_args(train_fileprefix=train_fileprefix, test_fileprefix=test_fileprefix, directory=directory, tabNN=self, **params_copy) scheduler = scheduler_func(tabular_nn_trial, **scheduler_options) if ('dist_ip_addrs' in scheduler_options) and (len(scheduler_options['dist_ip_addrs']) > 0): # This is multi-machine setting, so need to copy dataset to workers: logger.log(15, "Uploading preprocessed data to remote workers...") scheduler.upload_files([train_fileprefix+TabularNNDataset.DATAOBJ_SUFFIX, train_fileprefix+TabularNNDataset.DATAVALUES_SUFFIX, test_fileprefix+TabularNNDataset.DATAOBJ_SUFFIX, test_fileprefix+TabularNNDataset.DATAVALUES_SUFFIX]) # TODO: currently does not work. train_fileprefix = "train" test_fileprefix = "validation" directory = self.path # TODO: need to change to path to working directory on every remote machine tabular_nn_trial.update(train_fileprefix=train_fileprefix, test_fileprefix=test_fileprefix, directory=directory) logger.log(15, "uploaded") scheduler.run() scheduler.join_jobs() scheduler.get_training_curves(plot=False, use_legend=False) # Store results / models from this HPO run: best_hp = scheduler.get_best_config() # best_hp only contains searchable stuff hpo_results = {'best_reward': scheduler.get_best_reward(), 'best_config': best_hp, 'total_time': time.time() - start_time, 'metadata': scheduler.metadata, 'training_history': scheduler.training_history, 'config_history': scheduler.config_history, 'reward_attr': scheduler._reward_attr, 'args': tabular_nn_trial.args } hpo_results = BasePredictor._format_results(hpo_results) # store results summarizing HPO for this model if ('dist_ip_addrs' in scheduler_options) and (len(scheduler_options['dist_ip_addrs']) > 0): raise NotImplementedError("need to fetch model files from remote Workers") # TODO: need to handle locations carefully: fetch these 2 files and put into self.path: # 1) hpo_results['trial_info'][trial]['metadata']['modelobj_file'] # 2) hpo_results['trial_info'][trial]['metadata']['netparams_file'] hpo_models = {} # stores all the model names and file paths to model objects created during this HPO run. hpo_model_performances = {} for trial in sorted(hpo_results['trial_info'].keys()): # TODO: ignore models which were killed early by scheduler (eg. in Hyperband)s file_id = "trial_"+str(trial) # unique identifier to files from this trial file_prefix = file_id + "_" trial_model_name = self.name+"_"+file_id trial_model_path = self.path + file_prefix hpo_models[trial_model_name] = trial_model_path hpo_model_performances[trial_model_name] = hpo_results['trial_info'][trial][scheduler._reward_attr] logger.log(15, "Time for Neural Network hyperparameter optimization: %s" % str(hpo_results['total_time'])) self.params.update(best_hp) # TODO: reload model params from best trial? Do we want to save this under cls.model_file as the "optimal model" logger.log(15, "Best hyperparameter configuration for Tabular Neural Network: ") logger.log(15, str(best_hp)) return (hpo_models, hpo_model_performances, hpo_results) """ # TODO: do final fit here? args.final_fit = True model_weights = scheduler.run_with_config(best_config) save(model_weights) """ def _set_default_searchspace(self): """ Sets up default search space for HPO. Each hyperparameter which user did not specify is converted from default fixed value to default spearch space. """ search_space = get_default_searchspace(self.problem_type) for key in self.nondefault_params: # delete all user-specified hyperparams from the default search space _ = search_space.pop(key, None) self.params.update(search_space) """ General TODOs: - Automatically decrease batch-size if memory issue arises - Retrain final NN on full dataset (train+val). How to ensure stability here? - OrdinalEncoder class in sklearn currently cannot handle rare categories or unknown ones at test-time, so we have created our own Encoder in category_encoders.py There is open PR in sklearn to address this: https://github.com/scikit-learn/scikit-learn/pull/13833/files Currently, our code uses category_encoders package (BSD license) instead: https://github.com/scikit-learn-contrib/categorical-encoding Once PR is merged into sklearn, may want to switch: category_encoders.Ordinal -> sklearn.preprocessing.OrdinalEncoder in preprocess_train_data() - Save preprocessed data so that we can do HPO of neural net hyperparameters more efficiently, while also doing HPO of preprocessing hyperparameters? Naive full HPO method requires redoing preprocessing in each trial even if we did not change preprocessing hyperparameters. Alternative is we save each proprocessed dataset & corresponding TabularNeuralNetModel object with its unique param names in the file. Then when we try a new HP-config, we first try loading from file if one exists. """
py
b413a48aeaeadb7379b9c71de32ba0ef478d88f4
#!/usr/bin/env python # (C) 2001 by Argonne National Laboratory. # See COPYRIGHT in top-level directory. # # This program does installs, etc and needs to run start to finish. # Presently, it does NOT use the 'testing' MPD_CON_EXT. import os, sys USERDIR = "/tmp/rmbmpd" ROOTDIR = "/tmp/rootmpd" # install as user print "install as user ---------------------------------------------------" if not os.access("./mpdroot",os.X_OK): os.system("./configure") # use prefix on makes below os.system("make") os.system("make prefix=%s install" % (USERDIR) ) # test: print "TEST mpd as user ; mpdtrace as user" PYEXT = '' NMPDS = 1 HFILE = 'temph' import os,socket from mpdlib import MPDTest mpdtest = MPDTest() os.system("%s/bin/mpdallexit%s 1> /dev/null 2> /dev/null" % (USERDIR,PYEXT) ) os.system("%s/bin/mpdboot%s -n %d" % (USERDIR,PYEXT,NMPDS) ) expout = ['%s' % (socket.gethostname())] rv = mpdtest.run(cmd="%s/bin/mpdtrace%s -l" % (USERDIR,PYEXT), grepOut=1, expOut=expout ) os.system("%s/bin/mpdallexit%s 1> /dev/null 2> /dev/null" % (USERDIR,PYEXT) ) # install as root print "install as root ---------------------------------------------------" if not os.access("./mpdroot",os.X_OK): os.system("./configure") # use prefix on makes below os.system("make") os.system("sudo make prefix=%s install" % (ROOTDIR) ) # sudo did not work here # test: print "TEST mpd as root ; mpdtrace as user" PYEXT = '' NMPDS = 1 HFILE = 'temph' import os,socket from mpdlib import MPDTest mpdtest = MPDTest() os.system("sudo %s/bin/mpdallexit%s 1> /dev/null 2> /dev/null" % (ROOTDIR,PYEXT) ) os.system("sudo %s/bin/mpd%s -d" % (ROOTDIR,PYEXT) ) # not using boot here import time time.sleep(2) os.environ['MPD_USE_ROOT_MPD'] = '1' # os.system("%s/bin/mpdtrace%s -l" % (ROOTDIR,PYEXT)) expout = ['%s' % (socket.gethostname())] rv = mpdtest.run(cmd="%s/bin/mpdtrace%s -l" % (ROOTDIR,PYEXT), grepOut=1, expOut=expout ) print "TEST that user cannot remove files owned by root" os.system("sudo touch /tmp/testroot") expout = ['cannot remove'] rv = mpdtest.run(cmd="%s/bin/mpiexec%s -n 1 rm -f /tmp/testroot" % (ROOTDIR,PYEXT), grepOut=1, expOut=expout ) os.system("sudo rm -f /tmp/testroot") os.system("sudo %s/bin/mpdallexit%s 1> /dev/null 2> /dev/null" % (ROOTDIR,PYEXT) )
py
b413a56c07a9ce3afbe15baffbffaf92a3d42129
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn.functional as F from paddle import fluid import paddle.fluid.dygraph as dg import paddle.fluid.initializer as I import numpy as np import unittest from unittest import TestCase class TestFunctionalConv3D(TestCase): batch_size = 4 spatial_shape = (8, 8, 8) dtype = "float32" def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = 0 self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" def prepare(self): if isinstance(self.filter_shape, int): filter_shape = (self.filter_shape, ) * 3 else: filter_shape = tuple(self.filter_shape) self.weight = np.random.uniform( -1, 1, (self.out_channels, self.in_channels // self.groups ) + filter_shape).astype(self.dtype) if not self.no_bias: self.bias = np.random.uniform(-1, 1, ( self.out_channels, )).astype(self.dtype) self.channel_last = (self.data_format == "NDHWC") if self.channel_last: self.input_shape = (self.batch_size, ) + self.spatial_shape + ( self.in_channels, ) else: self.input_shape = (self.batch_size, self.in_channels ) + self.spatial_shape self.input = np.random.uniform(-1, 1, self.input_shape).astype(self.dtype) def static_graph_case_1(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): if self.channel_last: x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype) y = fluid.layers.conv3d( x, self.out_channels, self.filter_shape, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, param_attr=I.NumpyArrayInitializer(self.weight), bias_attr=False if self.no_bias else I.NumpyArrayInitializer(self.bias), act=self.act, data_format=self.data_format) exe = fluid.Executor(self.place) exe.run(start) out, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) return out def static_graph_case_2(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): if self.channel_last: x = x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype) weight = fluid.data( "weight", self.weight.shape, dtype=self.dtype) if not self.no_bias: bias = fluid.data("bias", self.bias.shape, dtype=self.dtype) y = F.conv3d( x, weight, None if self.no_bias else bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format) if self.act == 'sigmoid': y = F.sigmoid(y) exe = fluid.Executor(self.place) exe.run(start) feed_dict = {"input": self.input, "weight": self.weight} if not self.no_bias: feed_dict["bias"] = self.bias out, = exe.run(main, feed=feed_dict, fetch_list=[y]) return out def dygraph_case(self): with dg.guard(self.place): x = dg.to_variable(self.input) weight = dg.to_variable(self.weight) bias = None if self.no_bias else dg.to_variable(self.bias) y = F.conv3d( x, weight, bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format) if self.act == 'sigmoid': y = F.sigmoid(y) out = y.numpy() return out def _test_identity(self): self.prepare() out1 = self.static_graph_case_1() out2 = self.static_graph_case_2() out3 = self.dygraph_case() np.testing.assert_array_almost_equal(out1, out2) np.testing.assert_array_almost_equal(out2, out3) def test_identity_cpu(self): self.place = fluid.CPUPlace() self._test_identity() @unittest.skipIf(not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA") def test_identity_gpu(self): self.place = fluid.CUDAPlace(0) self._test_identity() class TestFunctionalConv3DError(TestCase): batch_size = 4 spatial_shape = (8, 8, 8) dtype = "float32" def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = "not_valid" self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" def test_exception(self): self.prepare() with self.assertRaises(ValueError): self.static_graph_case() def prepare(self): if isinstance(self.filter_shape, int): filter_shape = (self.filter_shape, ) * 3 else: filter_shape = tuple(self.filter_shape) self.weight_shape = (self.out_channels, self.in_channels // self.groups ) + filter_shape self.bias_shape = (self.out_channels, ) def static_graph_case(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): self.channel_last = self.data_format == "NDHWC" if self.channel_last: x = x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype) weight = fluid.data( "weight", self.weight_shape, dtype=self.dtype) if not self.no_bias: bias = fluid.data("bias", self.bias_shape, dtype=self.dtype) y = F.conv3d( x, weight, None if self.no_bias else bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format) if self.act == 'sigmoid': y = F.sigmoid(y) class TestFunctionalConv3DCase2(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 1] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase3(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 3, 1, 2, 3] self.stride = 2 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase4(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 1, 2, 2, 3, 3] self.stride = 1 self.dilation = 2 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase5(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [1, 1], [2, 2], [1, 1], [0, 0]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase6(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [0, 0], [1, 1], [2, 2], [2, 2]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DCase7(TestFunctionalConv3D): def setUp(self): self.in_channels = 6 self.out_channels = 8 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DCase8(TestFunctionalConv3D): def setUp(self): self.in_channels = 6 self.out_channels = 12 self.filter_shape = 3 self.padding = "valid" self.stride = 1 self.dilation = 1 self.groups = 6 self.no_bias = True self.act = None self.use_cudnn = False self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase2(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [1, 1], [1, 2], [3, 4], [5, 6]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase3(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 4 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "not_valid" class TestFunctionalConv3DErrorCase4(TestFunctionalConv3DError): def setUp(self): self.in_channels = 4 self.out_channels = 3 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase7(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "not_valid" class TestFunctionalConv3DErrorCase8(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 1, 2, 1] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase9(TestFunctionalConv3DError): def setUp(self): self.in_channels = -5 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [0, 0], [3, 2], [1, 2], [1, 1]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 4 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" if __name__ == "__main__": unittest.main()
py
b413a646a171500eca9587aadbf59e952f553aba
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import random import shutil import tempfile import unittest from logging import DEBUG from mock import patch, call, DEFAULT from contextlib import nested from swift.account import reaper from swift.account.backend import DATADIR from swift.common.exceptions import ClientException from swift.common.utils import normalize_timestamp from test import unit from swift.common.storage_policy import StoragePolicy, POLICIES class FakeLogger(object): def __init__(self, *args, **kwargs): self.inc = {'return_codes.4': 0, 'return_codes.2': 0, 'objects_failures': 0, 'objects_deleted': 0, 'objects_remaining': 0, 'objects_possibly_remaining': 0, 'containers_failures': 0, 'containers_deleted': 0, 'containers_remaining': 0, 'containers_possibly_remaining': 0} self.exp = [] def info(self, msg, *args): self.msg = msg def error(self, msg, *args): self.msg = msg def timing_since(*args, **kwargs): pass def getEffectiveLevel(self): return DEBUG def exception(self, *args): self.exp.append(args) def increment(self, key): self.inc[key] += 1 class FakeBroker(object): def __init__(self): self.info = {} def get_info(self): return self.info class FakeAccountBroker(object): def __init__(self, containers): self.containers = containers def get_info(self): info = {'account': 'a', 'delete_timestamp': time.time() - 10} return info def list_containers_iter(self, *args): for cont in self.containers: yield cont, None, None, None def is_status_deleted(self): return True def empty(self): return False class FakeRing(object): def __init__(self): self.nodes = [{'id': '1', 'ip': '10.10.10.1', 'port': 6002, 'device': None}, {'id': '2', 'ip': '10.10.10.1', 'port': 6002, 'device': None}, {'id': '3', 'ip': '10.10.10.1', 'port': 6002, 'device': None}, ] def get_nodes(self, *args, **kwargs): return ('partition', self.nodes) def get_part_nodes(self, *args, **kwargs): return self.nodes acc_nodes = [{'device': 'sda1', 'ip': '', 'port': ''}, {'device': 'sda1', 'ip': '', 'port': ''}, {'device': 'sda1', 'ip': '', 'port': ''}] cont_nodes = [{'device': 'sda1', 'ip': '', 'port': ''}, {'device': 'sda1', 'ip': '', 'port': ''}, {'device': 'sda1', 'ip': '', 'port': ''}] @unit.patch_policies([StoragePolicy(0, 'zero', False, object_ring=unit.FakeRing()), StoragePolicy(1, 'one', True, object_ring=unit.FakeRing(replicas=4))]) class TestReaper(unittest.TestCase): def setUp(self): self.to_delete = [] self.myexp = ClientException("", http_host=None, http_port=None, http_device=None, http_status=404, http_reason=None ) def tearDown(self): for todel in self.to_delete: shutil.rmtree(todel) def fake_direct_delete_object(self, *args, **kwargs): if self.amount_fail < self.max_fail: self.amount_fail += 1 raise self.myexp def fake_direct_delete_container(self, *args, **kwargs): if self.amount_delete_fail < self.max_delete_fail: self.amount_delete_fail += 1 raise self.myexp def fake_direct_get_container(self, *args, **kwargs): if self.get_fail: raise self.myexp objects = [{'name': 'o1'}, {'name': 'o2'}, {'name': unicode('o3')}, {'name': ''}] return None, objects def fake_container_ring(self): return FakeRing() def fake_reap_object(self, *args, **kwargs): if self.reap_obj_fail: raise Exception def prepare_data_dir(self, ts=False): devices_path = tempfile.mkdtemp() # will be deleted by teardown self.to_delete.append(devices_path) path = os.path.join(devices_path, 'sda1', DATADIR) os.makedirs(path) path = os.path.join(path, '100', 'a86', 'a8c682d2472e1720f2d81ff8993aba6') os.makedirs(path) suffix = 'db' if ts: suffix = 'ts' with open(os.path.join(path, 'a8c682203aba6.%s' % suffix), 'w') as fd: fd.write('') return devices_path def init_reaper(self, conf=None, myips=None, fakelogger=False): if conf is None: conf = {} if myips is None: myips = ['10.10.10.1'] r = reaper.AccountReaper(conf) r.stats_return_codes = {} r.stats_containers_deleted = 0 r.stats_containers_remaining = 0 r.stats_containers_possibly_remaining = 0 r.stats_objects_deleted = 0 r.stats_objects_remaining = 0 r.stats_objects_possibly_remaining = 0 r.myips = myips if fakelogger: r.logger = unit.debug_logger('test-reaper') return r def fake_reap_account(self, *args, **kwargs): self.called_amount += 1 def fake_account_ring(self): return FakeRing() def test_delay_reaping_conf_default(self): r = reaper.AccountReaper({}) self.assertEqual(r.delay_reaping, 0) r = reaper.AccountReaper({'delay_reaping': ''}) self.assertEqual(r.delay_reaping, 0) def test_delay_reaping_conf_set(self): r = reaper.AccountReaper({'delay_reaping': '123'}) self.assertEqual(r.delay_reaping, 123) def test_delay_reaping_conf_bad_value(self): self.assertRaises(ValueError, reaper.AccountReaper, {'delay_reaping': 'abc'}) def test_reap_warn_after_conf_set(self): conf = {'delay_reaping': '2', 'reap_warn_after': '3'} r = reaper.AccountReaper(conf) self.assertEqual(r.reap_not_done_after, 5) def test_reap_warn_after_conf_bad_value(self): self.assertRaises(ValueError, reaper.AccountReaper, {'reap_warn_after': 'abc'}) def test_reap_delay(self): time_value = [100] def _time(): return time_value[0] time_orig = reaper.time try: reaper.time = _time r = reaper.AccountReaper({'delay_reaping': '10'}) b = FakeBroker() b.info['delete_timestamp'] = normalize_timestamp(110) self.assertFalse(r.reap_account(b, 0, None)) b.info['delete_timestamp'] = normalize_timestamp(100) self.assertFalse(r.reap_account(b, 0, None)) b.info['delete_timestamp'] = normalize_timestamp(90) self.assertFalse(r.reap_account(b, 0, None)) # KeyError raised immediately as reap_account tries to get the # account's name to do the reaping. b.info['delete_timestamp'] = normalize_timestamp(89) self.assertRaises(KeyError, r.reap_account, b, 0, None) b.info['delete_timestamp'] = normalize_timestamp(1) self.assertRaises(KeyError, r.reap_account, b, 0, None) finally: reaper.time = time_orig def test_reap_object(self): conf = { 'mount_check': 'false', } r = reaper.AccountReaper(conf, logger=unit.debug_logger()) mock_path = 'swift.account.reaper.direct_delete_object' for policy in POLICIES: r.reset_stats() with patch(mock_path) as fake_direct_delete: with patch('swift.account.reaper.time') as mock_time: mock_time.return_value = 1429117638.86767 r.reap_object('a', 'c', 'partition', cont_nodes, 'o', policy.idx) mock_time.assert_called_once_with() for i, call_args in enumerate( fake_direct_delete.call_args_list): cnode = cont_nodes[i % len(cont_nodes)] host = '%(ip)s:%(port)s' % cnode device = cnode['device'] headers = { 'X-Container-Host': host, 'X-Container-Partition': 'partition', 'X-Container-Device': device, 'X-Backend-Storage-Policy-Index': policy.idx, 'X-Timestamp': '1429117638.86767' } ring = r.get_object_ring(policy.idx) expected = call(dict(ring.devs[i], index=i), 0, 'a', 'c', 'o', headers=headers, conn_timeout=0.5, response_timeout=10) self.assertEqual(call_args, expected) self.assertEqual(policy.object_ring.replicas - 1, i) self.assertEqual(r.stats_objects_deleted, policy.object_ring.replicas) def test_reap_object_fail(self): r = self.init_reaper({}, fakelogger=True) self.amount_fail = 0 self.max_fail = 1 policy = random.choice(list(POLICIES)) with patch('swift.account.reaper.direct_delete_object', self.fake_direct_delete_object): r.reap_object('a', 'c', 'partition', cont_nodes, 'o', policy.idx) # IMHO, the stat handling in the node loop of reap object is # over indented, but no one has complained, so I'm not inclined # to move it. However it's worth noting we're currently keeping # stats on deletes per *replica* - which is rather obvious from # these tests, but this results is surprising because of some # funny logic to *skip* increments on successful deletes of # replicas until we have more successful responses than # failures. This means that while the first replica doesn't # increment deleted because of the failure, the second one # *does* get successfully deleted, but *also does not* increment # the counter (!?). # # In the three replica case this leaves only the last deleted # object incrementing the counter - in the four replica case # this leaves the last two. # # Basically this test will always result in: # deleted == num_replicas - 2 self.assertEqual(r.stats_objects_deleted, policy.object_ring.replicas - 2) self.assertEqual(r.stats_objects_remaining, 1) self.assertEqual(r.stats_objects_possibly_remaining, 1) def test_reap_object_non_exist_policy_index(self): r = self.init_reaper({}, fakelogger=True) r.reap_object('a', 'c', 'partition', cont_nodes, 'o', 2) self.assertEqual(r.stats_objects_deleted, 0) self.assertEqual(r.stats_objects_remaining, 1) self.assertEqual(r.stats_objects_possibly_remaining, 0) @patch('swift.account.reaper.Ring', lambda *args, **kwargs: unit.FakeRing()) def test_reap_container(self): policy = random.choice(list(POLICIES)) r = self.init_reaper({}, fakelogger=True) with patch.multiple('swift.account.reaper', direct_get_container=DEFAULT, direct_delete_object=DEFAULT, direct_delete_container=DEFAULT) as mocks: headers = {'X-Backend-Storage-Policy-Index': policy.idx} obj_listing = [{'name': 'o'}] def fake_get_container(*args, **kwargs): try: obj = obj_listing.pop(0) except IndexError: obj_list = [] else: obj_list = [obj] return headers, obj_list mocks['direct_get_container'].side_effect = fake_get_container with patch('swift.account.reaper.time') as mock_time: mock_time.side_effect = [1429117638.86767, 1429117639.67676] r.reap_container('a', 'partition', acc_nodes, 'c') # verify calls to direct_delete_object mock_calls = mocks['direct_delete_object'].call_args_list self.assertEqual(policy.object_ring.replicas, len(mock_calls)) for call_args in mock_calls: _args, kwargs = call_args self.assertEqual(kwargs['headers'] ['X-Backend-Storage-Policy-Index'], policy.idx) self.assertEqual(kwargs['headers'] ['X-Timestamp'], '1429117638.86767') # verify calls to direct_delete_container self.assertEquals(mocks['direct_delete_container'].call_count, 3) for i, call_args in enumerate( mocks['direct_delete_container'].call_args_list): anode = acc_nodes[i % len(acc_nodes)] host = '%(ip)s:%(port)s' % anode device = anode['device'] headers = { 'X-Account-Host': host, 'X-Account-Partition': 'partition', 'X-Account-Device': device, 'X-Account-Override-Deleted': 'yes', 'X-Timestamp': '1429117639.67676' } ring = r.get_object_ring(policy.idx) expected = call(dict(ring.devs[i], index=i), 0, 'a', 'c', headers=headers, conn_timeout=0.5, response_timeout=10) self.assertEqual(call_args, expected) self.assertEqual(r.stats_objects_deleted, policy.object_ring.replicas) def test_reap_container_get_object_fail(self): r = self.init_reaper({}, fakelogger=True) self.get_fail = True self.reap_obj_fail = False self.amount_delete_fail = 0 self.max_delete_fail = 0 ctx = [patch('swift.account.reaper.direct_get_container', self.fake_direct_get_container), patch('swift.account.reaper.direct_delete_container', self.fake_direct_delete_container), patch('swift.account.reaper.AccountReaper.get_container_ring', self.fake_container_ring), patch('swift.account.reaper.AccountReaper.reap_object', self.fake_reap_object)] with nested(*ctx): r.reap_container('a', 'partition', acc_nodes, 'c') self.assertEqual(r.logger.get_increment_counts()['return_codes.4'], 1) self.assertEqual(r.stats_containers_deleted, 1) def test_reap_container_partial_fail(self): r = self.init_reaper({}, fakelogger=True) self.get_fail = False self.reap_obj_fail = False self.amount_delete_fail = 0 self.max_delete_fail = 2 ctx = [patch('swift.account.reaper.direct_get_container', self.fake_direct_get_container), patch('swift.account.reaper.direct_delete_container', self.fake_direct_delete_container), patch('swift.account.reaper.AccountReaper.get_container_ring', self.fake_container_ring), patch('swift.account.reaper.AccountReaper.reap_object', self.fake_reap_object)] with nested(*ctx): r.reap_container('a', 'partition', acc_nodes, 'c') self.assertEqual(r.logger.get_increment_counts()['return_codes.4'], 2) self.assertEqual(r.stats_containers_possibly_remaining, 1) def test_reap_container_full_fail(self): r = self.init_reaper({}, fakelogger=True) self.get_fail = False self.reap_obj_fail = False self.amount_delete_fail = 0 self.max_delete_fail = 3 ctx = [patch('swift.account.reaper.direct_get_container', self.fake_direct_get_container), patch('swift.account.reaper.direct_delete_container', self.fake_direct_delete_container), patch('swift.account.reaper.AccountReaper.get_container_ring', self.fake_container_ring), patch('swift.account.reaper.AccountReaper.reap_object', self.fake_reap_object)] with nested(*ctx): r.reap_container('a', 'partition', acc_nodes, 'c') self.assertEqual(r.logger.get_increment_counts()['return_codes.4'], 3) self.assertEqual(r.stats_containers_remaining, 1) @patch('swift.account.reaper.Ring', lambda *args, **kwargs: unit.FakeRing()) def test_reap_container_non_exist_policy_index(self): r = self.init_reaper({}, fakelogger=True) with patch.multiple('swift.account.reaper', direct_get_container=DEFAULT, direct_delete_object=DEFAULT, direct_delete_container=DEFAULT) as mocks: headers = {'X-Backend-Storage-Policy-Index': 2} obj_listing = [{'name': 'o'}] def fake_get_container(*args, **kwargs): try: obj = obj_listing.pop(0) except IndexError: obj_list = [] else: obj_list = [obj] return headers, obj_list mocks['direct_get_container'].side_effect = fake_get_container r.reap_container('a', 'partition', acc_nodes, 'c') self.assertEqual(r.logger.get_lines_for_level('error'), [ 'ERROR: invalid storage policy index: 2']) def fake_reap_container(self, *args, **kwargs): self.called_amount += 1 self.r.stats_containers_deleted = 1 self.r.stats_objects_deleted = 1 self.r.stats_containers_remaining = 1 self.r.stats_objects_remaining = 1 self.r.stats_containers_possibly_remaining = 1 self.r.stats_objects_possibly_remaining = 1 def test_reap_account(self): containers = ('c1', 'c2', 'c3', '') broker = FakeAccountBroker(containers) self.called_amount = 0 self.r = r = self.init_reaper({}, fakelogger=True) r.start_time = time.time() ctx = [patch('swift.account.reaper.AccountReaper.reap_container', self.fake_reap_container), patch('swift.account.reaper.AccountReaper.get_account_ring', self.fake_account_ring)] with nested(*ctx): nodes = r.get_account_ring().get_part_nodes() self.assertTrue(r.reap_account(broker, 'partition', nodes)) self.assertEqual(self.called_amount, 4) info_lines = r.logger.get_lines_for_level('info') self.assertEqual(len(info_lines), 2) start_line, stat_line = info_lines self.assertEqual(start_line, 'Beginning pass on account a') self.assertTrue(stat_line.find('1 containers deleted')) self.assertTrue(stat_line.find('1 objects deleted')) self.assertTrue(stat_line.find('1 containers remaining')) self.assertTrue(stat_line.find('1 objects remaining')) self.assertTrue(stat_line.find('1 containers possibly remaining')) self.assertTrue(stat_line.find('1 objects possibly remaining')) def test_reap_account_no_container(self): broker = FakeAccountBroker(tuple()) self.r = r = self.init_reaper({}, fakelogger=True) self.called_amount = 0 r.start_time = time.time() ctx = [patch('swift.account.reaper.AccountReaper.reap_container', self.fake_reap_container), patch('swift.account.reaper.AccountReaper.get_account_ring', self.fake_account_ring)] with nested(*ctx): nodes = r.get_account_ring().get_part_nodes() self.assertTrue(r.reap_account(broker, 'partition', nodes)) self.assertTrue(r.logger.get_lines_for_level( 'info')[-1].startswith('Completed pass')) self.assertEqual(self.called_amount, 0) def test_reap_device(self): devices = self.prepare_data_dir() self.called_amount = 0 conf = {'devices': devices} r = self.init_reaper(conf) ctx = [patch('swift.account.reaper.AccountBroker', FakeAccountBroker), patch('swift.account.reaper.AccountReaper.get_account_ring', self.fake_account_ring), patch('swift.account.reaper.AccountReaper.reap_account', self.fake_reap_account)] with nested(*ctx): r.reap_device('sda1') self.assertEqual(self.called_amount, 1) def test_reap_device_with_ts(self): devices = self.prepare_data_dir(ts=True) self.called_amount = 0 conf = {'devices': devices} r = self.init_reaper(conf=conf) ctx = [patch('swift.account.reaper.AccountBroker', FakeAccountBroker), patch('swift.account.reaper.AccountReaper.get_account_ring', self.fake_account_ring), patch('swift.account.reaper.AccountReaper.reap_account', self.fake_reap_account)] with nested(*ctx): r.reap_device('sda1') self.assertEqual(self.called_amount, 0) def test_reap_device_with_not_my_ip(self): devices = self.prepare_data_dir() self.called_amount = 0 conf = {'devices': devices} r = self.init_reaper(conf, myips=['10.10.1.2']) ctx = [patch('swift.account.reaper.AccountBroker', FakeAccountBroker), patch('swift.account.reaper.AccountReaper.get_account_ring', self.fake_account_ring), patch('swift.account.reaper.AccountReaper.reap_account', self.fake_reap_account)] with nested(*ctx): r.reap_device('sda1') self.assertEqual(self.called_amount, 0) def test_run_once(self): def prepare_data_dir(): devices_path = tempfile.mkdtemp() # will be deleted by teardown self.to_delete.append(devices_path) path = os.path.join(devices_path, 'sda1', DATADIR) os.makedirs(path) return devices_path def init_reaper(devices): r = reaper.AccountReaper({'devices': devices}) return r devices = prepare_data_dir() r = init_reaper(devices) with patch('swift.account.reaper.ismount', lambda x: True): with patch( 'swift.account.reaper.AccountReaper.reap_device') as foo: r.run_once() self.assertEqual(foo.called, 1) with patch('swift.account.reaper.ismount', lambda x: False): with patch( 'swift.account.reaper.AccountReaper.reap_device') as foo: r.run_once() self.assertFalse(foo.called) def test_run_forever(self): def fake_sleep(val): self.val = val def fake_random(): return 1 def fake_run_once(): raise Exception('exit') def init_reaper(): r = reaper.AccountReaper({'interval': 1}) r.run_once = fake_run_once return r r = init_reaper() with patch('swift.account.reaper.sleep', fake_sleep): with patch('swift.account.reaper.random.random', fake_random): try: r.run_forever() except Exception as err: pass self.assertEqual(self.val, 1) self.assertEqual(str(err), 'exit') if __name__ == '__main__': unittest.main()
py
b413a7ebe21e850e85f4e13adeaf5ab27568d92e
def insertion_sort(collection): """Pure implementation of the insertion sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> insertion_sort([]) [] >>> insertion_sort([-2, -5, -45]) [-45, -5, -2] """ for index in range(1, len(collection)): while index > 0 and collection[index - 1] > collection[index]: collection[index], collection[index - 1] = collection[index - 1], collection[index] index -= 1 return collection if __name__ == '__main__': user_input = input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(insertion_sort(unsorted))
py
b413a9160cbe6992a450cbf7b3e31ed1c54e625e
# Copyright (c) 2013 Hewlett-Packard Development Company, L.P. # Copyright (c) 2012 VMware, Inc. # Copyright (c) 2011 Citrix Systems, Inc. # Copyright 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ A connection to the VMware vCenter platform. """ import os import re import os_resource_classes as orc from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import units from oslo_utils import versionutils as v_utils from oslo_vmware import api from oslo_vmware import exceptions as vexc from oslo_vmware import pbm from oslo_vmware import vim from oslo_vmware import vim_util from nova.compute import power_state from nova.compute import task_states from nova.compute import utils as compute_utils import nova.conf from nova import context as nova_context from nova import exception from nova.i18n import _ from nova import objects import nova.privsep.path from nova.virt import driver from nova.virt.vmwareapi import constants from nova.virt.vmwareapi import ds_util from nova.virt.vmwareapi import error_util from nova.virt.vmwareapi import host from nova.virt.vmwareapi import vim_util as nova_vim_util from nova.virt.vmwareapi import vm_util from nova.virt.vmwareapi import vmops from nova.virt.vmwareapi import volumeops LOG = logging.getLogger(__name__) CONF = nova.conf.CONF TIME_BETWEEN_API_CALL_RETRIES = 1.0 MAX_CONSOLE_BYTES = 100 * units.Ki class VMwareVCDriver(driver.ComputeDriver): """The VC host connection object.""" capabilities = { "has_imagecache": True, "supports_evacuate": False, "supports_migrate_to_same_host": True, "supports_attach_interface": True, "supports_multiattach": False, "supports_trusted_certs": False, "supports_pcpus": False, "supports_accelerators": False, # Image type support flags "supports_image_type_aki": False, "supports_image_type_ami": False, "supports_image_type_ari": False, "supports_image_type_iso": True, "supports_image_type_qcow2": False, "supports_image_type_raw": False, "supports_image_type_vdi": False, "supports_image_type_vhd": False, "supports_image_type_vhdx": False, "supports_image_type_vmdk": True, "supports_image_type_ploop": False, } # Legacy nodename is of the form: <mo id>(<cluster name>) # e.g. domain-26(TestCluster) # We assume <mo id> consists of alphanumeric, _ and -. # We assume cluster name is everything between the first ( and the last ). # We pull out <mo id> for re-use. LEGACY_NODENAME = re.compile(r'([\w-]+)\(.+\)') # The vCenter driver includes API that acts on ESX hosts or groups # of ESX hosts in clusters or non-cluster logical-groupings. # # vCenter is not a hypervisor itself, it works with multiple # hypervisor host machines and their guests. This fact can # subtly alter how vSphere and OpenStack interoperate. def __init__(self, virtapi, scheme="https"): super(VMwareVCDriver, self).__init__(virtapi) if (CONF.vmware.host_ip is None or CONF.vmware.host_username is None or CONF.vmware.host_password is None): raise Exception(_("Must specify host_ip, host_username and " "host_password to use vmwareapi.VMwareVCDriver")) self._datastore_regex = None if CONF.vmware.datastore_regex: try: self._datastore_regex = re.compile(CONF.vmware.datastore_regex) except re.error: raise exception.InvalidInput(reason= _("Invalid Regular Expression %s") % CONF.vmware.datastore_regex) self._session = VMwareAPISession(scheme=scheme) self._check_min_version() # Update the PBM location if necessary if CONF.vmware.pbm_enabled: self._update_pbm_location() self._validate_configuration() self._cluster_name = CONF.vmware.cluster_name self._cluster_ref = vm_util.get_cluster_ref_by_name(self._session, self._cluster_name) if self._cluster_ref is None: raise exception.NotFound(_("The specified cluster '%s' was not " "found in vCenter") % self._cluster_name) self._vcenter_uuid = self._get_vcenter_uuid() self._nodename = self._create_nodename(self._cluster_ref.value) self._volumeops = volumeops.VMwareVolumeOps(self._session, self._cluster_ref) self._vmops = vmops.VMwareVMOps(self._session, virtapi, self._volumeops, self._cluster_ref, datastore_regex=self._datastore_regex) self._vc_state = host.VCState(self._session, self._nodename, self._cluster_ref, self._datastore_regex) # Register the OpenStack extension self._register_openstack_extension() def _check_min_version(self): min_version = v_utils.convert_version_to_int(constants.MIN_VC_VERSION) next_min_ver = v_utils.convert_version_to_int( constants.NEXT_MIN_VC_VERSION) vc_version = vim_util.get_vc_version(self._session) LOG.info("VMware vCenter version: %s", vc_version) if v_utils.convert_version_to_int(vc_version) < min_version: raise exception.NovaException( _('Detected vCenter version %(version)s. Nova requires VMware ' 'vCenter version %(min_version)s or greater.') % { 'version': vc_version, 'min_version': constants.MIN_VC_VERSION}) elif v_utils.convert_version_to_int(vc_version) < next_min_ver: LOG.warning('Running Nova with a VMware vCenter version less ' 'than %(version)s is deprecated. The required ' 'minimum version of vCenter will be raised to ' '%(version)s in the 16.0.0 release.', {'version': constants.NEXT_MIN_VC_VERSION}) @property def need_legacy_block_device_info(self): return False def _update_pbm_location(self): if CONF.vmware.pbm_wsdl_location: pbm_wsdl_loc = CONF.vmware.pbm_wsdl_location else: version = vim_util.get_vc_version(self._session) pbm_wsdl_loc = pbm.get_pbm_wsdl_location(version) self._session.pbm_wsdl_loc_set(pbm_wsdl_loc) def _validate_configuration(self): if CONF.vmware.pbm_enabled: if not CONF.vmware.pbm_default_policy: raise error_util.PbmDefaultPolicyUnspecified() if not pbm.get_profile_id_by_name( self._session, CONF.vmware.pbm_default_policy): raise error_util.PbmDefaultPolicyDoesNotExist() if CONF.vmware.datastore_regex: LOG.warning("datastore_regex is ignored when PBM is enabled") self._datastore_regex = None def init_host(self, host): LOG.warning('The vmwareapi driver is deprecated and may be removed in ' 'a future release. The driver is not tested by the ' 'OpenStack project nor does it have clear maintainer(s) ' 'and thus its quality can not be ensured. If you are ' 'using the driver in production please let us know in ' 'freenode IRC and/or the openstack-discuss mailing list.') vim = self._session.vim if vim is None: self._session._create_session() def cleanup_host(self, host): self._session.logout() def _register_openstack_extension(self): # Register an 'OpenStack' extension in vCenter os_extension = self._session._call_method(vim_util, 'find_extension', constants.EXTENSION_KEY) if os_extension is None: try: self._session._call_method(vim_util, 'register_extension', constants.EXTENSION_KEY, constants.EXTENSION_TYPE_INSTANCE) LOG.info('Registered extension %s with vCenter', constants.EXTENSION_KEY) except vexc.VimFaultException as e: with excutils.save_and_reraise_exception() as ctx: if 'InvalidArgument' in e.fault_list: LOG.debug('Extension %s already exists.', constants.EXTENSION_KEY) ctx.reraise = False else: LOG.debug('Extension %s already exists.', constants.EXTENSION_KEY) def cleanup(self, context, instance, network_info, block_device_info=None, destroy_disks=True, migrate_data=None, destroy_vifs=True): """Cleanup after instance being destroyed by Hypervisor.""" pass def resume_state_on_host_boot(self, context, instance, network_info, block_device_info=None): """resume guest state when a host is booted.""" # Check if the instance is running already and avoid doing # anything if it is. state = vm_util.get_vm_state(self._session, instance) ignored_states = [power_state.RUNNING, power_state.SUSPENDED] if state in ignored_states: return # Instance is not up and could be in an unknown state. # Be as absolute as possible about getting it back into # a known and running state. self.reboot(context, instance, network_info, 'hard', block_device_info) def list_instance_uuids(self): """List VM instance UUIDs.""" return self._vmops.list_instances() def list_instances(self): """List VM instances from the single compute node.""" return self._vmops.list_instances() def migrate_disk_and_power_off(self, context, instance, dest, flavor, network_info, block_device_info=None, timeout=0, retry_interval=0): """Transfers the disk of a running instance in multiple phases, turning off the instance before the end. """ # TODO(PhilDay): Add support for timeout (clean shutdown) return self._vmops.migrate_disk_and_power_off(context, instance, dest, flavor) def confirm_migration(self, context, migration, instance, network_info): """Confirms a resize, destroying the source VM.""" self._vmops.confirm_migration(migration, instance, network_info) def finish_revert_migration(self, context, instance, network_info, migration, block_device_info=None, power_on=True): """Finish reverting a resize, powering back on the instance.""" self._vmops.finish_revert_migration(context, instance, network_info, block_device_info, power_on) def finish_migration(self, context, migration, instance, disk_info, network_info, image_meta, resize_instance, allocations, block_device_info=None, power_on=True): """Completes a resize, turning on the migrated instance.""" self._vmops.finish_migration(context, migration, instance, disk_info, network_info, image_meta, resize_instance, block_device_info, power_on) def pre_live_migration(self, context, instance, block_device_info, network_info, disk_info, migrate_data): return migrate_data def post_live_migration_at_source(self, context, instance, network_info): pass def post_live_migration_at_destination(self, context, instance, network_info, block_migration=False, block_device_info=None): pass def cleanup_live_migration_destination_check(self, context, dest_check_data): pass def live_migration(self, context, instance, dest, post_method, recover_method, block_migration=False, migrate_data=None): """Live migration of an instance to another host.""" self._vmops.live_migration(context, instance, dest, post_method, recover_method, block_migration, migrate_data) def check_can_live_migrate_source(self, context, instance, dest_check_data, block_device_info=None): cluster_name = dest_check_data.cluster_name cluster_ref = vm_util.get_cluster_ref_by_name(self._session, cluster_name) if cluster_ref is None: msg = (_("Cannot find destination cluster %s for live migration") % cluster_name) raise exception.MigrationPreCheckError(reason=msg) res_pool_ref = vm_util.get_res_pool_ref(self._session, cluster_ref) if res_pool_ref is None: msg = _("Cannot find destination resource pool for live migration") raise exception.MigrationPreCheckError(reason=msg) return dest_check_data def check_can_live_migrate_destination(self, context, instance, src_compute_info, dst_compute_info, block_migration=False, disk_over_commit=False): # the information that we need for the destination compute node # is the name of its cluster and datastore regex data = objects.VMwareLiveMigrateData() data.cluster_name = CONF.vmware.cluster_name data.datastore_regex = CONF.vmware.datastore_regex return data def rollback_live_migration_at_destination(self, context, instance, network_info, block_device_info, destroy_disks=True, migrate_data=None): """Clean up destination node after a failed live migration.""" self.destroy(context, instance, network_info, block_device_info) def get_instance_disk_info(self, instance, block_device_info=None): pass def get_vnc_console(self, context, instance): """Return link to instance's VNC console using vCenter logic.""" # vCenter does not actually run the VNC service # itself. You must talk to the VNC host underneath vCenter. return self._vmops.get_vnc_console(instance) def get_mks_console(self, context, instance): return self._vmops.get_mks_console(instance) def get_console_output(self, context, instance): if not CONF.vmware.serial_log_dir: LOG.error("The 'serial_log_dir' config option is not set!") return fname = instance.uuid.replace('-', '') path = os.path.join(CONF.vmware.serial_log_dir, fname) if not os.path.exists(path): LOG.warning('The console log is missing. Check your VSPC ' 'configuration', instance=instance) return b"" read_log_data, remaining = nova.privsep.path.last_bytes( path, MAX_CONSOLE_BYTES) return read_log_data def _get_vcenter_uuid(self): """Retrieves the vCenter UUID.""" about = self._session._call_method(nova_vim_util, 'get_about_info') return about.instanceUuid def _create_nodename(self, mo_id): """Return a nodename which uniquely describes a cluster. The name will be of the form: <mo id>.<vcenter uuid> e.g. domain-26.9d51f082-58a4-4449-beed-6fd205a5726b """ return '%s.%s' % (mo_id, self._vcenter_uuid) def _get_available_resources(self, host_stats): return {'vcpus': host_stats['vcpus'], 'memory_mb': host_stats['host_memory_total'], 'local_gb': host_stats['disk_total'], 'vcpus_used': 0, 'memory_mb_used': host_stats['host_memory_total'] - host_stats['host_memory_free'], 'local_gb_used': host_stats['disk_used'], 'hypervisor_type': host_stats['hypervisor_type'], 'hypervisor_version': host_stats['hypervisor_version'], 'hypervisor_hostname': host_stats['hypervisor_hostname'], # The VMWare driver manages multiple hosts, so there are # likely many different CPU models in use. As such it is # impossible to provide any meaningful info on the CPU # model of the "host" 'cpu_info': None, 'supported_instances': host_stats['supported_instances'], 'numa_topology': None, } def get_available_resource(self, nodename): """Retrieve resource info. This method is called when nova-compute launches, and as part of a periodic task. :returns: dictionary describing resources """ host_stats = self._vc_state.get_host_stats(refresh=True) stats_dict = self._get_available_resources(host_stats) return stats_dict def get_available_nodes(self, refresh=False): """Returns nodenames of all nodes managed by the compute service. This driver supports only one compute node. """ return [self._nodename] def update_provider_tree(self, provider_tree, nodename, allocations=None): """Update a ProviderTree object with current resource provider, inventory information and CPU traits. :param nova.compute.provider_tree.ProviderTree provider_tree: A nova.compute.provider_tree.ProviderTree object representing all the providers in the tree associated with the compute node, and any sharing providers (those with the ``MISC_SHARES_VIA_AGGREGATE`` trait) associated via aggregate with any of those providers (but not *their* tree- or aggregate-associated providers), as currently known by placement. :param nodename: String name of the compute node (i.e. ComputeNode.hypervisor_hostname) for which the caller is requesting updated provider information. :param allocations: Dict of allocation data of the form: { $CONSUMER_UUID: { # The shape of each "allocations" dict below is identical # to the return from GET /allocations/{consumer_uuid} "allocations": { $RP_UUID: { "generation": $RP_GEN, "resources": { $RESOURCE_CLASS: $AMOUNT, ... }, }, ... }, "project_id": $PROJ_ID, "user_id": $USER_ID, "consumer_generation": $CONSUMER_GEN, }, ... } If None, and the method determines that any inventory needs to be moved (from one provider to another and/or to a different resource class), the ReshapeNeeded exception must be raised. Otherwise, this dict must be edited in place to indicate the desired final state of allocations. :raises ReshapeNeeded: If allocations is None and any inventory needs to be moved from one provider to another and/or to a different resource class. At this time the VMware driver does not reshape. :raises: ReshapeFailed if the requested tree reshape fails for whatever reason. """ # NOTE(cdent): This is a side-effecty method, we are changing the # the provider tree in place (on purpose). inv = provider_tree.data(nodename).inventory ratios = self._get_allocation_ratios(inv) stats = vm_util.get_stats_from_cluster(self._session, self._cluster_ref) datastores = ds_util.get_available_datastores(self._session, self._cluster_ref, self._datastore_regex) total_disk_capacity = sum([ds.capacity for ds in datastores]) max_free_space = max([ds.freespace for ds in datastores]) reserved_disk_gb = compute_utils.convert_mb_to_ceil_gb( CONF.reserved_host_disk_mb) result = { orc.VCPU: { 'total': stats['cpu']['vcpus'], 'reserved': CONF.reserved_host_cpus, 'min_unit': 1, 'max_unit': stats['cpu']['max_vcpus_per_host'], 'step_size': 1, 'allocation_ratio': ratios[orc.VCPU], }, orc.MEMORY_MB: { 'total': stats['mem']['total'], 'reserved': CONF.reserved_host_memory_mb, 'min_unit': 1, 'max_unit': stats['mem']['max_mem_mb_per_host'], 'step_size': 1, 'allocation_ratio': ratios[orc.MEMORY_MB], }, } # If a sharing DISK_GB provider exists in the provider tree, then our # storage is shared, and we should not report the DISK_GB inventory in # the compute node provider. # TODO(cdent): We don't do this yet, in part because of the issues # in bug #1784020, but also because we can represent all datastores # as shared providers and should do once update_provider_tree is # working well. if provider_tree.has_sharing_provider(orc.DISK_GB): LOG.debug('Ignoring sharing provider - see bug #1784020') result[orc.DISK_GB] = { 'total': total_disk_capacity // units.Gi, 'reserved': reserved_disk_gb, 'min_unit': 1, 'max_unit': max_free_space // units.Gi, 'step_size': 1, 'allocation_ratio': ratios[orc.DISK_GB], } provider_tree.update_inventory(nodename, result) # TODO(cdent): Here is where additional functionality would be added. # In the libvirt driver this is where nested GPUs are reported and # where cpu traits are added. In the vmware world, this is where we # would add nested providers representing tenant VDC and similar. def spawn(self, context, instance, image_meta, injected_files, admin_password, allocations, network_info=None, block_device_info=None, power_on=True, accel_info=None): """Create VM instance.""" self._vmops.spawn(context, instance, image_meta, injected_files, admin_password, network_info, block_device_info) def attach_volume(self, context, connection_info, instance, mountpoint, disk_bus=None, device_type=None, encryption=None): """Attach volume storage to VM instance.""" return self._volumeops.attach_volume(connection_info, instance) def detach_volume(self, context, connection_info, instance, mountpoint, encryption=None): """Detach volume storage to VM instance.""" # NOTE(claudiub): if context parameter is to be used in the future, # the _detach_instance_volumes method will have to be updated as well. return self._volumeops.detach_volume(connection_info, instance) def get_volume_connector(self, instance): """Return volume connector information.""" return self._volumeops.get_volume_connector(instance) def get_host_ip_addr(self): """Returns the IP address of the vCenter host.""" return CONF.vmware.host_ip def snapshot(self, context, instance, image_id, update_task_state): """Create snapshot from a running VM instance.""" self._vmops.snapshot(context, instance, image_id, update_task_state) def reboot(self, context, instance, network_info, reboot_type, block_device_info=None, bad_volumes_callback=None, accel_info=None): """Reboot VM instance.""" self._vmops.reboot(instance, network_info, reboot_type) def _detach_instance_volumes(self, instance, block_device_info): # We need to detach attached volumes block_device_mapping = driver.block_device_info_get_mapping( block_device_info) if block_device_mapping: # Certain disk types, for example 'IDE' do not support hot # plugging. Hence we need to power off the instance and update # the instance state. self._vmops.power_off(instance) for disk in block_device_mapping: connection_info = disk['connection_info'] try: # NOTE(claudiub): Passing None as the context, as it is # not currently used. self.detach_volume(None, connection_info, instance, disk.get('device_name')) except exception.DiskNotFound: LOG.warning('The volume %s does not exist!', disk.get('device_name'), instance=instance) except Exception as e: with excutils.save_and_reraise_exception(): LOG.error("Failed to detach %(device_name)s. " "Exception: %(exc)s", {'device_name': disk.get('device_name'), 'exc': e}, instance=instance) def destroy(self, context, instance, network_info, block_device_info=None, destroy_disks=True): """Destroy VM instance.""" # Destroy gets triggered when Resource Claim in resource_tracker # is not successful. When resource claim is not successful, # node is not set in instance. Perform destroy only if node is set if not instance.node: return # A resize uses the same instance on the VC. We do not delete that # VM in the event of a revert if instance.task_state == task_states.RESIZE_REVERTING: return # We need to detach attached volumes if block_device_info is not None: try: self._detach_instance_volumes(instance, block_device_info) except (vexc.ManagedObjectNotFoundException, exception.InstanceNotFound): LOG.warning('Instance does not exists. Proceeding to ' 'delete instance properties on datastore', instance=instance) self._vmops.destroy(instance, destroy_disks) def pause(self, instance): """Pause VM instance.""" self._vmops.pause(instance) def unpause(self, instance): """Unpause paused VM instance.""" self._vmops.unpause(instance) def suspend(self, context, instance): """Suspend the specified instance.""" self._vmops.suspend(instance) def resume(self, context, instance, network_info, block_device_info=None): """Resume the suspended VM instance.""" self._vmops.resume(instance) def rescue(self, context, instance, network_info, image_meta, rescue_password, block_device_info): """Rescue the specified instance.""" self._vmops.rescue(context, instance, network_info, image_meta) def unrescue( self, context: nova_context.RequestContext, instance: 'objects.Instance', ): """Unrescue the specified instance.""" self._vmops.unrescue(instance) def power_off(self, instance, timeout=0, retry_interval=0): """Power off the specified instance.""" self._vmops.power_off(instance, timeout, retry_interval) def power_on(self, context, instance, network_info, block_device_info=None, accel_info=None): """Power on the specified instance.""" self._vmops.power_on(instance) def poll_rebooting_instances(self, timeout, instances): """Poll for rebooting instances.""" self._vmops.poll_rebooting_instances(timeout, instances) def get_info(self, instance, use_cache=True): """Return info about the VM instance.""" return self._vmops.get_info(instance) def get_diagnostics(self, instance): """Return data about VM diagnostics.""" return self._vmops.get_diagnostics(instance) def get_instance_diagnostics(self, instance): """Return data about VM diagnostics.""" return self._vmops.get_instance_diagnostics(instance) def host_power_action(self, action): """Host operations not supported by VC driver. This needs to override the ESX driver implementation. """ raise NotImplementedError() def host_maintenance_mode(self, host, mode): """Host operations not supported by VC driver. This needs to override the ESX driver implementation. """ raise NotImplementedError() def set_host_enabled(self, enabled): """Host operations not supported by VC driver. This needs to override the ESX driver implementation. """ raise NotImplementedError() def get_host_uptime(self): """Host uptime operation not supported by VC driver.""" msg = _("Multiple hosts may be managed by the VMWare " "vCenter driver; therefore we do not return " "uptime for just one host.") raise NotImplementedError(msg) def inject_network_info(self, instance, nw_info): """inject network info for specified instance.""" self._vmops.inject_network_info(instance, nw_info) def manage_image_cache(self, context, all_instances): """Manage the local cache of images.""" self._vmops.manage_image_cache(context, all_instances) def instance_exists(self, instance): """Efficient override of base instance_exists method.""" return self._vmops.instance_exists(instance) def attach_interface(self, context, instance, image_meta, vif): """Attach an interface to the instance.""" self._vmops.attach_interface(context, instance, image_meta, vif) def detach_interface(self, context, instance, vif): """Detach an interface from the instance.""" self._vmops.detach_interface(context, instance, vif) class VMwareAPISession(api.VMwareAPISession): """Sets up a session with the VC/ESX host and handles all the calls made to the host. """ def __init__(self, host_ip=CONF.vmware.host_ip, host_port=CONF.vmware.host_port, username=CONF.vmware.host_username, password=CONF.vmware.host_password, retry_count=CONF.vmware.api_retry_count, scheme="https", cacert=CONF.vmware.ca_file, insecure=CONF.vmware.insecure, pool_size=CONF.vmware.connection_pool_size): super(VMwareAPISession, self).__init__( host=host_ip, port=host_port, server_username=username, server_password=password, api_retry_count=retry_count, task_poll_interval=CONF.vmware.task_poll_interval, scheme=scheme, create_session=True, cacert=cacert, insecure=insecure, pool_size=pool_size) def _is_vim_object(self, module): """Check if the module is a VIM Object instance.""" return isinstance(module, vim.Vim) def _call_method(self, module, method, *args, **kwargs): """Calls a method within the module specified with args provided. """ if not self._is_vim_object(module): return self.invoke_api(module, method, self.vim, *args, **kwargs) else: return self.invoke_api(module, method, *args, **kwargs) def _wait_for_task(self, task_ref): """Return a Deferred that will give the result of the given task. The task is polled until it completes. """ return self.wait_for_task(task_ref)
py
b413a91d51e494d4e3b0ee067908095cb02ef531
import os ## TODO: create list for listDir and update when needed class Explorer: @staticmethod def listDir(path): items = os.listdir(path) dirs, files = [], [] for item in items: if os.path.isdir(os.path.join(path, item)): dirs.append(item) else: files.append(item) return dirs + files def __init__(self, path): self.path = os.path.abspath(path) self.listdir = Explorer.listDir(self.path) def pathUp(self): self.path = os.path.abspath( os.path.join(self.path, "..") ) self.listdir = Explorer.listDir(self.path) def pathIn(self, ind): self.path = os.path.join(self.path, Explorer.listDir(self.path)[ind]) self.listdir = Explorer.listDir(self.path) def getItemCount(self): return len(self.listdir) def isItemDir(self, ind): return os.path.isdir( os.path.join( self.path, self.listdir[ind] ) ) def getItemPath(self, ind): return os.path.join( self.path, self.listdir[ind] ) def getItemName(self, ind): return self.listdir[ind] def getPath(self): return self.path def setPath(self, path): if os.path.isdir(path): self.path = os.path.abspath(path) def reload(self): self.listdir = Explorer.listDir(self.path)
py
b413a9b451aa063276455e65ec47cde2ec3b0179
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from bambou import NURESTFetcher class NUInfrastructurePortProfilesFetcher(NURESTFetcher): """ Represents a NUInfrastructurePortProfiles fetcher Notes: This fetcher enables to fetch NUInfrastructurePortProfile objects. See: bambou.NURESTFetcher """ @classmethod def managed_class(cls): """ Return NUInfrastructurePortProfile class that is managed. Returns: .NUInfrastructurePortProfile: the managed class """ from .. import NUInfrastructurePortProfile return NUInfrastructurePortProfile
py
b413aae020e8d864afd5bc9e1e562fcf6e01c367
''' Copyright 2014-2018 Biogen, Celgene Corporation, EMBL - European Bioinformatics Institute, GlaxoSmithKline, Takeda Pharmaceutical Company and Wellcome Sanger Institute This software was developed as part of the Open Targets project. For more information please see: http://www.opentargets.org Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import re import sys import iso8601 import types import json import logging import six import collections __author__ = "Gautier Koscielny" __copyright__ = "Copyright 2014-2018 Biogen, Celgene Corporation, EMBL - European Bioinformatics Institute, GlaxoSmithKline, Takeda Pharmaceutical Company and Wellcome Sanger Institute" __credits__ = ["Gautier Koscielny", "Samiul Hasan"] __license__ = "Apache 2.0" __version__ = "1.2.8" __maintainer__ = "Gautier Koscielny" __email__ = "[email protected]" __status__ = "Production" logger = logging.getLogger(__name__) """ https://raw.githubusercontent.com/opentargets/json_schema/master/src/evidence/linkout/linkout.json """ class Linkout(object): """ Constructor using all fields with default values Arguments: :param nice_name = None :param url = None """ def __init__(self, nice_name = None, url = None): """ Name: nice_name Type: string Can be null: False Required: {True} """ self.nice_name = nice_name """ Name: url Type: string Can be null: False Required: {True} String format: uri """ self.url = url @classmethod def cloneObject(cls, clone): obj = cls() if clone.nice_name: obj.nice_name = clone.nice_name if clone.url: obj.url = clone.url return obj @classmethod def fromDict(cls, dict_obj): cls_keys = ['nice_name','url'] obj = cls() if not isinstance(dict_obj, dict): logger.warn("Linkout - DictType expected - {0} found\n".format(type(dict_obj))) return if 'nice_name' in dict_obj: obj.nice_name = dict_obj['nice_name'] if 'url' in dict_obj: obj.url = dict_obj['url'] return obj def validate(self, logger, path = "root"): """ Validate class Linkout :returns: number of errors found during validation """ error = 0 # nice_name is mandatory if self.nice_name is None : logger.error("Linkout - {0}.nice_name is required".format(path)) error = error + 1 if self.nice_name is not None and not isinstance(self.nice_name, six.string_types): logger.error("Linkout - {0}.nice_name type should be a string".format(path)) error = error + 1 # url is mandatory if self.url is None : logger.error("Linkout - {0}.url is required".format(path)) error = error + 1 if self.url is not None and not isinstance(self.url, six.string_types): logger.error("Linkout - {0}.url type should be a string".format(path)) error = error + 1 return error def serialize(self): classDict = collections.OrderedDict() if not self.nice_name is None: classDict['nice_name'] = self.nice_name if not self.url is None: classDict['url'] = self.url return classDict def to_JSON(self, indentation=4): if sys.version_info[0] == 3: return json.dumps(self.serialize(), sort_keys=True, check_circular=False, indent=indentation) elif sys.version_info[0] == 2: return json.dumps(self, default=lambda o: o.serialize(), sort_keys=True, check_circular=False, indent=indentation)
py
b413ab4c2c7134c6b0bf2ecf60d39ea76ddbf576
#!/usr/bin/env python2.7 # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build and upload docker images to Google Container Registry per matrix.""" from __future__ import print_function import argparse import atexit import multiprocessing import os import shutil import subprocess import sys import tempfile # Language Runtime Matrix import client_matrix python_util_dir = os.path.abspath( os.path.join(os.path.dirname(__file__), '../run_tests/python_utils')) sys.path.append(python_util_dir) import dockerjob import jobset _IMAGE_BUILDER = 'tools/run_tests/dockerize/build_interop_image.sh' _LANGUAGES = client_matrix.LANG_RUNTIME_MATRIX.keys() # All gRPC release tags, flattened, deduped and sorted. _RELEASES = sorted( list( set(release for release_dict in client_matrix.LANG_RELEASE_MATRIX.values() for release in release_dict.keys()))) # Destination directory inside docker image to keep extra info from build time. _BUILD_INFO = '/var/local/build_info' argp = argparse.ArgumentParser(description='Run interop tests.') argp.add_argument('--gcr_path', default='gcr.io/grpc-testing', help='Path of docker images in Google Container Registry') argp.add_argument('--release', default='master', choices=['all', 'master'] + _RELEASES, help='github commit tag to checkout. When building all ' 'releases defined in client_matrix.py, use "all". Valid only ' 'with --git_checkout.') argp.add_argument('-l', '--language', choices=['all'] + sorted(_LANGUAGES), nargs='+', default=['all'], help='Test languages to build docker images for.') argp.add_argument('--git_checkout', action='store_true', help='Use a separate git clone tree for building grpc stack. ' 'Required when using --release flag. By default, current' 'tree and the sibling will be used for building grpc stack.') argp.add_argument('--git_checkout_root', default='/export/hda3/tmp/grpc_matrix', help='Directory under which grpc-go/java/main repo will be ' 'cloned. Valid only with --git_checkout.') argp.add_argument('--keep', action='store_true', help='keep the created local images after uploading to GCR') argp.add_argument('--reuse_git_root', default=False, action='store_const', const=True, help='reuse the repo dir. If False, the existing git root ' 'directory will removed before a clean checkout, because ' 'reusing the repo can cause git checkout error if you switch ' 'between releases.') argp.add_argument( '--upload_images', action='store_true', help='If set, images will be uploaded to container registry after building.' ) args = argp.parse_args() def add_files_to_image(image, with_files, label=None): """Add files to a docker image. image: docker image name, i.e. grpc_interop_java:26328ad8 with_files: additional files to include in the docker image. label: label string to attach to the image. """ tag_idx = image.find(':') if tag_idx == -1: jobset.message('FAILED', 'invalid docker image %s' % image, do_newline=True) sys.exit(1) orig_tag = '%s_' % image subprocess.check_output(['docker', 'tag', image, orig_tag]) lines = ['FROM ' + orig_tag] if label: lines.append('LABEL %s' % label) temp_dir = tempfile.mkdtemp() atexit.register(lambda: subprocess.call(['rm', '-rf', temp_dir])) # Copy with_files inside the tmp directory, which will be the docker build # context. for f in with_files: shutil.copy(f, temp_dir) lines.append('COPY %s %s/' % (os.path.basename(f), _BUILD_INFO)) # Create a Dockerfile. with open(os.path.join(temp_dir, 'Dockerfile'), 'w') as f: f.write('\n'.join(lines)) jobset.message('START', 'Repackaging %s' % image, do_newline=True) build_cmd = ['docker', 'build', '--rm', '--tag', image, temp_dir] subprocess.check_output(build_cmd) dockerjob.remove_image(orig_tag, skip_nonexistent=True) def build_image_jobspec(runtime, env, gcr_tag, stack_base): """Build interop docker image for a language with runtime. runtime: a <lang><version> string, for example go1.8. env: dictionary of env to passed to the build script. gcr_tag: the tag for the docker image (i.e. v1.3.0). stack_base: the local gRPC repo path. """ basename = 'grpc_interop_%s' % runtime tag = '%s/%s:%s' % (args.gcr_path, basename, gcr_tag) build_env = {'INTEROP_IMAGE': tag, 'BASE_NAME': basename, 'TTY_FLAG': '-t'} build_env.update(env) image_builder_path = _IMAGE_BUILDER if client_matrix.should_build_docker_interop_image_from_release_tag(lang): image_builder_path = os.path.join(stack_base, _IMAGE_BUILDER) build_job = jobset.JobSpec(cmdline=[image_builder_path], environ=build_env, shortname='build_docker_%s' % runtime, timeout_seconds=30 * 60) build_job.tag = tag return build_job def build_all_images_for_lang(lang): """Build all docker images for a language across releases and runtimes.""" if not args.git_checkout: if args.release != 'master': print( 'Cannot use --release without also enabling --git_checkout.\n') sys.exit(1) releases = [args.release] else: if args.release == 'all': releases = client_matrix.get_release_tags(lang) else: # Build a particular release. if args.release not in ['master' ] + client_matrix.get_release_tags(lang): jobset.message('SKIPPED', '%s for %s is not defined' % (args.release, lang), do_newline=True) return [] releases = [args.release] images = [] for release in releases: images += build_all_images_for_release(lang, release) jobset.message('SUCCESS', 'All docker images built for %s at %s.' % (lang, releases), do_newline=True) return images def build_all_images_for_release(lang, release): """Build all docker images for a release across all runtimes.""" docker_images = [] build_jobs = [] env = {} # If we not using current tree or the sibling for grpc stack, do checkout. stack_base = '' if args.git_checkout: stack_base = checkout_grpc_stack(lang, release) var = { 'go': 'GRPC_GO_ROOT', 'java': 'GRPC_JAVA_ROOT', 'node': 'GRPC_NODE_ROOT' }.get(lang, 'GRPC_ROOT') env[var] = stack_base for runtime in client_matrix.get_runtimes_for_lang_release(lang, release): job = build_image_jobspec(runtime, env, release, stack_base) docker_images.append(job.tag) build_jobs.append(job) jobset.message('START', 'Building interop docker images.', do_newline=True) print('Jobs to run: \n%s\n' % '\n'.join(str(j) for j in build_jobs)) num_failures, _ = jobset.run(build_jobs, newline_on_success=True, maxjobs=multiprocessing.cpu_count()) if num_failures: jobset.message('FAILED', 'Failed to build interop docker images.', do_newline=True) docker_images_cleanup.extend(docker_images) sys.exit(1) jobset.message('SUCCESS', 'All docker images built for %s at %s.' % (lang, release), do_newline=True) if release != 'master': commit_log = os.path.join(stack_base, 'commit_log') if os.path.exists(commit_log): for image in docker_images: add_files_to_image(image, [commit_log], 'release=%s' % release) return docker_images def cleanup(): if not args.keep: for image in docker_images_cleanup: dockerjob.remove_image(image, skip_nonexistent=True) docker_images_cleanup = [] atexit.register(cleanup) def maybe_apply_patches_on_git_tag(stack_base, lang, release): files_to_patch = [] release_info = client_matrix.LANG_RELEASE_MATRIX[lang].get(release) if release_info: files_to_patch = release_info.patch if not files_to_patch: return patch_file_relative_path = 'patches/%s_%s/git_repo.patch' % (lang, release) patch_file = os.path.abspath( os.path.join(os.path.dirname(__file__), patch_file_relative_path)) if not os.path.exists(patch_file): jobset.message('FAILED', 'expected patch file |%s| to exist' % patch_file) sys.exit(1) subprocess.check_output(['git', 'apply', patch_file], cwd=stack_base, stderr=subprocess.STDOUT) # TODO(jtattermusch): this really would need simplification and refactoring # - "git add" and "git commit" can easily be done in a single command # - it looks like the only reason for the existence of the "files_to_patch" # entry is to perform "git add" - which is clumsy and fragile. # - we only allow a single patch with name "git_repo.patch". A better design # would be to allow multiple patches that can have more descriptive names. for repo_relative_path in files_to_patch: subprocess.check_output(['git', 'add', repo_relative_path], cwd=stack_base, stderr=subprocess.STDOUT) subprocess.check_output([ 'git', 'commit', '-m', ('Hack performed on top of %s git ' 'tag in order to build and run the %s ' 'interop tests on that tag.' % (lang, release)) ], cwd=stack_base, stderr=subprocess.STDOUT) def checkout_grpc_stack(lang, release): """Invokes 'git check' for the lang/release and returns directory created.""" assert args.git_checkout and args.git_checkout_root if not os.path.exists(args.git_checkout_root): os.makedirs(args.git_checkout_root) repo = client_matrix.get_github_repo(lang) # Get the subdir name part of repo # For example, '[email protected]:grpc/grpc-go.git' should use 'grpc-go'. repo_dir = os.path.splitext(os.path.basename(repo))[0] stack_base = os.path.join(args.git_checkout_root, repo_dir) # Clean up leftover repo dir if necessary. if not args.reuse_git_root and os.path.exists(stack_base): jobset.message('START', 'Removing git checkout root.', do_newline=True) shutil.rmtree(stack_base) if not os.path.exists(stack_base): subprocess.check_call(['git', 'clone', '--recursive', repo], cwd=os.path.dirname(stack_base)) # git checkout. jobset.message('START', 'git checkout %s from %s' % (release, stack_base), do_newline=True) # We should NEVER do checkout on current tree !!! assert not os.path.dirname(__file__).startswith(stack_base) output = subprocess.check_output(['git', 'checkout', release], cwd=stack_base, stderr=subprocess.STDOUT) maybe_apply_patches_on_git_tag(stack_base, lang, release) commit_log = subprocess.check_output(['git', 'log', '-1'], cwd=stack_base) jobset.message('SUCCESS', 'git checkout', '%s: %s' % (str(output), commit_log), do_newline=True) # git submodule update jobset.message('START', 'git submodule update --init at %s from %s' % (release, stack_base), do_newline=True) subprocess.check_call(['git', 'submodule', 'update', '--init'], cwd=stack_base, stderr=subprocess.STDOUT) jobset.message('SUCCESS', 'git submodule update --init', '%s: %s' % (str(output), commit_log), do_newline=True) # Write git log to commit_log so it can be packaged with the docker image. with open(os.path.join(stack_base, 'commit_log'), 'w') as f: f.write(commit_log) return stack_base languages = args.language if args.language != ['all'] else _LANGUAGES for lang in languages: docker_images = build_all_images_for_lang(lang) for image in docker_images: if args.upload_images: jobset.message('START', 'Uploading %s' % image, do_newline=True) # docker image name must be in the format <gcr_path>/<image>:<gcr_tag> assert image.startswith(args.gcr_path) and image.find(':') != -1 subprocess.call(['gcloud', 'docker', '--', 'push', image]) else: # Uploading (and overwriting images) by default can easily break things. print( 'Not uploading image %s, run with --upload_images to upload.' % image)
py
b413ac40b1ff3a2626f1a1f77916f7ead15d5523
from cli_rack.modular import ExtensionUnavailableError def is_available() -> bool: try: import jinja2 return True except ImportError: raise ExtensionUnavailableError( "modular_app.feature2", "Jinja2 is required but it is not installed" ).hint_install_python_package("jinja2")
py
b413ac64fd651cc7245c3ebe8159f1a57c0f0778
# coding:utf-8 import os import cv2 import face_recognition from PIL import Image, ImageDraw def face_square(): """ 框选人脸部位 """ face_image = face_recognition.load_image_file('../origin_face/face2.jpg') face_location = face_recognition.face_locations(face_image, model='cnn') print(face_location) pil_image = Image.fromarray(face_image) pos = face_location[0] d = ImageDraw.Draw(pil_image, 'RGBA') d.rectangle((pos[3], pos[0], pos[1], pos[2])) pil_image.show() pil_image.save('result.jpg') def show_face(): """ 显示人脸图片 """ image = face_recognition.load_image_file("../origin_face/face2.jpg") face_locations = face_recognition.face_locations(image, model="cnn") top, right, bottom, left = face_locations[0] print( "A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) face_image = image[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show() pil_image.save("result.jpg") pass def face_lipstick(): """ 上口红 """ face_image = face_recognition.load_image_file('../origin_face/face2.jpg') face_landmarks_list = face_recognition.face_landmarks(face_image) print(face_landmarks_list) for face_landmarks in face_landmarks_list: pil_image = Image.fromarray(face_image) d = ImageDraw.Draw(pil_image, 'RGBA') d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128)) d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128)) d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=3) d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=3) pil_image.show() pil_image.save('result.jpg') def dynamic_recognition(): video_capture = cv2.VideoCapture('rtsp://admin:[email protected]:554/25') face_image = face_recognition.load_image_file("../origin_face/face2.jpg") face_image_encoding = face_recognition.face_encodings(face_image)[0] face_locations = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) if process_this_frame: face_locations = face_recognition.face_locations(small_frame) face_encodings = face_recognition.face_encodings(small_frame, face_locations) face_names = [] for face_encoding in face_encodings: match = face_recognition.compare_faces([face_image_encoding], face_encoding) if match[0]: name = "Barack Obama" else: name = "Unknown" face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.namedWindow("Video", 0) cv2.resizeWindow("Video", 800, 600) cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() class FaceRecognition: def __init__(self, path): self.path = path def recognition(self): picture_face = {} for root, dirs, files in os.walk(self.path): for file in files: file_info = os.path.splitext(file) if file_info[1] == '.jpg': picture_face[os.path.join(root, file)] = file_info[0] print(picture_face) know_face_encodings = [] known_face_names = [] for path, name in picture_face.items(): face_image = face_recognition.load_image_file(path) encoding = face_recognition.face_encodings(face_image) if len(encoding) > 0: know_face_encodings.append(encoding) known_face_names.append(name) print('len', len(known_face_names)) face_locations = [] face_names = [] process_this_frame = True video_capture = cv2.VideoCapture('rtsp://admin:[email protected]:554/25') while True: ret, frame = video_capture.read() # 改变摄像头图像的大小,图像小,所做的计算就少 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # openCV 的 BGR 格式转为 RGB 格式 rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(know_face_encodings, face_encoding) name = "Unknown" print(matches) # if all(matches): # # first_match_index = matches.index(True) # first_match_index = 0 # name = known_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame # Show the square outline of the face for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # 矩形框 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # 加上标签 cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Show video cv2.imshow('video', frame) # Quit if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() if __name__ == '__main__': # face_square() # face_lipstick() dynamic_recognition() # fr = FaceRecognition(os.getcwd()[0:-4] + os.sep + 'origin_face') # fr.recognition()
py
b413ac99e65cb5de7d77feb694c303ed3235ff26
from abc import ABCMeta, abstractmethod from six import with_metaclass from os.path import join import numpy as np from datetime import datetime import os import glob from MCEq.misc import theta_rad from MCEq.misc import info import mceq_config as config class EarthsAtmosphere(with_metaclass(ABCMeta)): """ Abstract class containing common methods on atmosphere. You have to inherit from this class and implement the virtual method :func:`get_density`. Note: Do not instantiate this class directly. Attributes: thrad (float): current zenith angle :math:`\\theta` in radiants theta_deg (float): current zenith angle :math:`\\theta` in degrees max_X (float): Slant depth at the surface according to the geometry defined in the :mod:`MCEq.geometry` geometry (object): Can be a custom instance of EarthGeometry """ def __init__(self, *args, **kwargs): from MCEq.geometry.geometry import EarthGeometry self.geom = kwargs.pop('geometry', EarthGeometry()) self.thrad = None self.theta_deg = None self._max_den = config.max_density self.max_theta = 90. self.location = None self.season = None @abstractmethod def get_density(self, h_cm): """Abstract method which implementation should return the density in g/cm**3. Args: h_cm (float): height in cm Returns: float: density in g/cm**3 Raises: NotImplementedError: """ raise NotImplementedError("Base class called.") def calculate_density_spline(self, n_steps=2000): """Calculates and stores a spline of :math:`\\rho(X)`. Args: n_steps (int, optional): number of :math:`X` values to use for interpolation Raises: Exception: if :func:`set_theta` was not called before. """ from scipy.integrate import cumtrapz from time import time from scipy.interpolate import UnivariateSpline if self.theta_deg is None: raise Exception('zenith angle not set') else: info( 5, 'Calculating spline of rho(X) for zenith {0:4.1f} degrees.'. format(self.theta_deg)) thrad = self.thrad path_length = self.geom.l(thrad) vec_rho_l = np.vectorize( lambda delta_l: self.get_density(self.geom.h(delta_l, thrad))) dl_vec = np.linspace(0, path_length, n_steps) now = time() rho_l = vec_rho_l(dl_vec) # Calculate integral for each depth point X_int = cumtrapz(rho_l[np.isfinite(rho_l)], dl_vec[np.isfinite(rho_l)]) # dl_vec = dl_vec[np.isfinite(rho_l)][1:] info(5, '.. took {0:1.2f}s'.format(time() - now)) # Save depth value at h_obs self._max_X = X_int[-1] self._max_den = self.get_density(self.geom.h(0, thrad)) # Interpolate with bi-splines without smoothing h_intp = [self.geom.h(dl, thrad) for dl in reversed(dl_vec[1:])] X_intp = [X for X in reversed(X_int[1:])] self._s_h2X = UnivariateSpline(h_intp, np.log(X_intp), k=2, s=0.0) self._s_X2rho = UnivariateSpline(X_int, vec_rho_l(dl_vec), k=2, s=0.0) self._s_lX2h = UnivariateSpline(np.log(X_intp)[::-1], h_intp[::-1], k=2, s=0.0) @property def max_X(self): """Depth at altitude 0.""" if not hasattr(self, '_max_X'): self.set_theta(0) return self._max_X @property def max_den(self): """Density at altitude 0.""" if not hasattr(self, '_max_den'): self.set_theta(0) return self._max_den @property def s_h2X(self): """Spline for conversion from altitude to depth.""" if not hasattr(self, '_s_h2X'): self.set_theta(0) return self._s_h2X @property def s_X2rho(self): """Spline for conversion from depth to density.""" if not hasattr(self, '_s_X2rho'): self.set_theta(0) return self._s_X2rho @property def s_lX2h(self): """Spline for conversion from depth to altitude.""" if not hasattr(self, '_s_lX2h'): self.set_theta(0) return self._s_lX2h def set_theta(self, theta_deg, force_spline_calc=False): """Configures geometry and initiates spline calculation for :math:`\\rho(X)`. If the option 'use_atm_cache' is enabled in the config, the function will check, if a corresponding spline is available in the cache and use it. Otherwise it will call :func:`calculate_density_spline`, make the function :func:`r_X2rho` available to the core code and store the spline in the cache. Args: theta_deg (float): zenith angle :math:`\\theta` at detector force_spline_calc (bool): forces (re-)calculation of the spline for each call """ if theta_deg < 0. or theta_deg > self.max_theta: raise Exception('Zenith angle not in allowed range.') self.thrad = theta_rad(theta_deg) self.theta_deg = theta_deg self.calculate_density_spline() def r_X2rho(self, X): """Returns the inverse density :math:`\\frac{1}{\\rho}(X)`. The spline `s_X2rho` is used, which was calculated or retrieved from cache during the :func:`set_theta` call. Args: X (float): slant depth in g/cm**2 Returns: float: :math:`1/\\rho` in cm**3/g """ return 1. / self.s_X2rho(X) def h2X(self, h): """Returns the depth along path as function of height above surface. The spline `s_X2rho` is used, which was calculated or retrieved from cache during the :func:`set_theta` call. Args: h (float): vertical height above surface in cm Returns: float: X slant depth in g/cm**2 """ return np.exp(self.s_h2X(h)) def X2h(self, X): """Returns the height above surface as a function of slant depth for currently selected zenith angle. The spline `s_lX2h` is used, which was calculated or retrieved from cache during the :func:`set_theta` call. Args: X (float): slant depth in g/cm**2 Returns: float h: height above surface in cm """ return self.s_lX2h(np.log(X)) def X2rho(self, X): """Returns the density :math:`\\rho(X)`. The spline `s_X2rho` is used, which was calculated or retrieved from cache during the :func:`set_theta` call. Args: X (float): slant depth in g/cm**2 Returns: float: :math:`\\rho` in cm**3/g """ return self.s_X2rho(X) def moliere_air(self, h_cm): """Returns the Moliere unit of air for US standard atmosphere. """ return 9.3 / (self.get_density(h_cm) * 100.) def nref_rel_air(self, h_cm): """Returns the refractive index - 1 in air (density parametrization as in CORSIKA). """ return 0.000283 * self.get_density(h_cm) / self.get_density(0) def gamma_cherenkov_air(self, h_cm): """Returns the Lorentz factor gamma of Cherenkov threshold in air (MeV). """ nrel = self.nref_rel_air(h_cm) return (1. + nrel) / np.sqrt(2. * nrel + nrel**2) def theta_cherenkov_air(self, h_cm): """Returns the Cherenkov angle in air (degrees). """ return np.arccos(1. / (1. + self.nref_rel_air(h_cm))) * 180. / np.pi class CorsikaAtmosphere(EarthsAtmosphere): """Class, holding the parameters of a Linsley type parameterization similar to the Air-Shower Monte Carlo `CORSIKA <https://web.ikp.kit.edu/corsika/>`_. The parameters pre-defined parameters are taken from the CORSIKA manual. If new sets of parameters are added to :func:`init_parameters`, the array _thickl can be calculated using :func:`calc_thickl` . Attributes: _atm_param (numpy.array): (5x5) Stores 5 atmospheric parameters _aatm, _batm, _catm, _thickl, _hlay for each of the 5 layers Args: location (str): see :func:`init_parameters` season (str,optional): see :func:`init_parameters` """ _atm_param = None def __init__(self, location, season=None): cka_atmospheres = [ ("USStd", None), ("BK_USStd", None), ("Karlsruhe", None), ("ANTARES/KM3NeT-ORCA", 'Summer'), ("ANTARES/KM3NeT-ORCA", 'Winter'), ("KM3NeT-ARCA", 'Summer'), ("KM3NeT-ARCA", 'Winter'), ("KM3NeT",None), ('SouthPole','December'), ('PL_SouthPole','January'), ('PL_SouthPole','August'), ] assert (location, season) in cka_atmospheres, \ '{0}/{1} not available for CorsikaAtmsophere'.format( location, season ) self.init_parameters(location, season) import MCEq.geometry.corsikaatm.corsikaatm as corsika_acc self.corsika_acc = corsika_acc EarthsAtmosphere.__init__(self) def init_parameters(self, location, season): """Initializes :attr:`_atm_param`. Parameters from ANTARES/KM3NET are based on the work of T. Heid (`see this issue <https://github.com/afedynitch/MCEq/issues/12>`_) +---------------------+-------------------+------------------------------+ | location | CORSIKA Table | Description/season | +=====================+===================+==============================+ | "USStd" | 23 | US Standard atmosphere | +---------------------+-------------------+------------------------------+ | "BK_USStd" | 37 | Bianca Keilhauer's USStd | +---------------------+-------------------+------------------------------+ | "Karlsruhe" | 24 | AT115 / Karlsruhe | +---------------------+-------------------+------------------------------+ | "SouthPole" | 26 and 28 | MSIS-90-E for Dec and June | +---------------------+-------------------+------------------------------+ |"PL_SouthPole" | 29 and 30 | P. Lipari's Jan and Aug | +---------------------+-------------------+------------------------------+ |"ANTARES/KM3NeT-ORCA"| NA | PhD T. Heid | +---------------------+-------------------+------------------------------+ | "KM3NeT-ARCA" | NA | PhD T. Heid | +---------------------+-------------------+------------------------------+ Args: location (str): see table season (str, optional): choice of season for supported locations Raises: Exception: if parameter set not available """ _aatm, _batm, _catm, _thickl, _hlay = None, None, None, None, None if location == "USStd": _aatm = np.array([-186.5562, -94.919, 0.61289, 0.0, 0.01128292]) _batm = np.array([1222.6562, 1144.9069, 1305.5948, 540.1778, 1.0]) _catm = np.array([994186.38, 878153.55, 636143.04, 772170., 1.0e9]) _thickl = np.array( [1036.102549, 631.100309, 271.700230, 3.039494, 0.001280]) _hlay = np.array([0, 4.0e5, 1.0e6, 4.0e6, 1.0e7]) elif location == "BK_USStd": _aatm = np.array([ -149.801663, -57.932486, 0.63631894, 4.3545369e-4, 0.01128292 ]) _batm = np.array([1183.6071, 1143.0425, 1322.9748, 655.69307, 1.0]) _catm = np.array( [954248.34, 800005.34, 629568.93, 737521.77, 1.0e9]) _thickl = np.array( [1033.804941, 418.557770, 216.981635, 4.344861, 0.001280]) _hlay = np.array([0.0, 7.0e5, 1.14e6, 3.7e6, 1.0e7]) elif location == "Karlsruhe": _aatm = np.array( [-118.1277, -154.258, 0.4191499, 5.4094056e-4, 0.01128292]) _batm = np.array([1173.9861, 1205.7625, 1386.7807, 555.8935, 1.0]) _catm = np.array([919546., 963267.92, 614315., 739059.6, 1.0e9]) _thickl = np.array( [1055.858707, 641.755364, 272.720974, 2.480633, 0.001280]) _hlay = np.array([0.0, 4.0e5, 1.0e6, 4.0e6, 1.0e7]) elif location == "KM3NeT": # averaged over detector and season _aatm = np.array([-141.31449999999998, -8.256029999999999, 0.6132505, -0.025998975, 0.4024275]) _batm = np.array([1153.0349999999999, 1263.3325, 1257.0724999999998, 404.85974999999996, 1.0]) _catm = np.array([967990.75, 668591.75, 636790.0, 814070.75, 21426175.0]) _thickl = np.array([1011.8521512499999, 275.84507575000003, 51.0230705, 2.983134, 0.21927724999999998]) _hlay = np.array([0.0, 993750.0, 2081250.0, 4150000.0, 6877500.0]) elif location == "ANTARES/KM3NeT-ORCA": if season == 'Summer': _aatm = np.array([-158.85, -5.38682, 0.889893, -0.0286665, 0.50035]) _batm = np.array([1145.62, 1176.79, 1248.92, 415.543, 1.0]) _catm = np.array([998469.0, 677398.0, 636790.0, 823489.0, 16090500.0]) _thickl = np.array([986.951713, 306.4668, 40.546793, 4.288721, 0.277182]) _hlay = np.array([0, 9.0e5, 22.0e5, 38.0e5, 68.2e5]) elif season == 'Winter': _aatm = np.array([-132.16, -2.4787, 0.298031, -0.0220264, 0.348021]) _batm = np.array([1120.45, 1203.97, 1163.28, 360.027, 1.0]) _catm = np.array([933697.0, 643957.0, 636790.0, 804486.0, 23109000.0]) _thickl = np.array([988.431172, 273.033464, 37.185105, 1.162987, 0.192998]) _hlay = np.array([0, 9.5e5, 22.0e5, 47.0e5, 68.2e5]) elif location == "KM3NeT-ARCA": if season == 'Summer': _aatm = np.array([-157.857, -28.7524, 0.790275, -0.0286999, 0.481114]) _batm = np.array([1190.44, 1171.0, 1344.78, 445.357, 1.0]) _catm = np.array([1006100.0, 758614.0, 636790.0, 817384.0, 16886800.0]) _thickl = np.array([1032.679434, 328.978681, 80.601135, 4.420745, 0.264112]) _hlay = np.array([0, 9.0e5, 18.0e5, 38.0e5, 68.2e5]) elif season == 'Winter': _aatm = np.array([-116.391, 3.5938, 0.474803, -0.0246031, 0.280225]) _batm = np.array([1155.63, 1501.57, 1271.31, 398.512, 1.0]) _catm = np.array([933697.0, 594398.0, 636790.0, 810924.0, 29618400.0]) _thickl = np.array([1039.346286, 194.901358, 45.759249, 2.060083, 0.142817]) _hlay = np.array([0, 12.25e5, 21.25e5, 43.0e5, 70.5e5]) elif location == 'SouthPole': if season == 'December': _aatm = np.array( [-128.601, -39.5548, 1.13088, -0.00264960, 0.00192534]) _batm = np.array([1139.99, 1073.82, 1052.96, 492.503, 1.0]) _catm = np.array( [861913., 744955., 675928., 829627., 5.8587010e9]) _thickl = np.array( [1011.398804, 588.128367, 240.955360, 3.964546, 0.000218]) _hlay = np.array([0.0, 4.0e5, 1.0e6, 4.0e6, 1.0e7]) elif season == "June": _aatm = np.array( [-163.331, -65.3713, 0.402903, -0.000479198, 0.00188667]) _batm = np.array([1183.70, 1108.06, 1424.02, 207.595, 1.0]) _catm = np.array( [875221., 753213., 545846., 793043., 5.9787908e9]) _thickl = np.array( [1020.370363, 586.143464, 228.374393, 1.338258, 0.000214]) _hlay = np.array([0.0, 4.0e5, 1.0e6, 4.0e6, 1.0e7]) else: raise Exception('CorsikaAtmosphere(): Season "' + season + '" not parameterized for location SouthPole.') elif location == 'PL_SouthPole': if season == 'January': _aatm = np.array( [-113.139, -7930635, -54.3888, -0.0, 0.00421033]) _batm = np.array([1133.10, 1101.20, 1085.00, 1098.00, 1.0]) _catm = np.array( [861730., 826340., 790950., 682800., 2.6798156e9]) _thickl = np.array([ 1019.966898, 718.071682, 498.659703, 340.222344, 0.000478 ]) _hlay = np.array([0.0, 2.67e5, 5.33e5, 8.0e5, 1.0e7]) elif season == "August": _aatm = np.array( [-59.0293, -21.5794, -7.14839, 0.0, 0.000190175]) _batm = np.array([1079.0, 1071.90, 1182.0, 1647.1, 1.0]) _catm = np.array( [764170., 699910., 635650., 551010., 59.329575e9]) _thickl = np.array( [1019.946057, 391.739652, 138.023515, 43.687992, 0.000022]) _hlay = np.array([0.0, 6.67e5, 13.33e5, 2.0e6, 1.0e7]) else: raise Exception('CorsikaAtmosphere(): Season "' + season + '" not parameterized for location SouthPole.') else: raise Exception("CorsikaAtmosphere:init_parameters(): Location " + str(location) + " not parameterized.") self._atm_param = np.array([_aatm, _batm, _catm, _thickl, _hlay]) self.location, self.season = location, season # Clear cached theta value to force spline recalculation self.theta_deg = None def depth2height(self, x_v): """Converts column/vertical depth to height. Args: x_v (float): column depth :math:`X_v` in g/cm**2 Returns: float: height in cm """ _aatm, _batm, _catm, _thickl, _hlay = self._atm_param if x_v >= _thickl[1]: height = _catm[0] * np.log(_batm[0] / (x_v - _aatm[0])) elif x_v >= _thickl[2]: height = _catm[1] * np.log(_batm[1] / (x_v - _aatm[1])) elif x_v >= _thickl[3]: height = _catm[2] * np.log(_batm[2] / (x_v - _aatm[2])) elif x_v >= _thickl[4]: height = _catm[3] * np.log(_batm[3] / (x_v - _aatm[3])) else: height = (_aatm[4] - x_v) * _catm[4] return height def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Uses the optimized module function :func:`corsika_get_density_jit`. Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ return self.corsika_acc.corsika_get_density(h_cm, *self._atm_param) # return corsika_get_density_jit(h_cm, self._atm_param) def get_mass_overburden(self, h_cm): """ Returns the mass overburden in atmosphere in g/cm**2. Uses the optimized module function :func:`corsika_get_m_overburden_jit` Args: h_cm (float): height in cm Returns: float: column depth :math:`T(h_{cm})` in g/cm**2 """ return self.corsika_acc.corsika_get_m_overburden(h_cm, *self._atm_param) # return corsika_get_m_overburden_jit(h_cm, self._atm_param) def rho_inv(self, X, cos_theta): """Returns reciprocal density in cm**3/g using planar approximation. This function uses the optimized function :func:`planar_rho_inv_jit` Args: h_cm (float): height in cm Returns: float: :math:`\\frac{1}{\\rho}(X,\\cos{\\theta})` cm**3/g """ return self.corsika_acc.planar_rho_inv(X, cos_theta, *self._atm_param) # return planar_rho_inv_jit(X, cos_theta, self._atm_param) def calc_thickl(self): """Calculates thickness layers for :func:`depth2height` The analytical inversion of the CORSIKA parameterization relies on the knowledge about the depth :math:`X`, where trasitions between layers/exponentials occur. Example: Create a new set of parameters in :func:`init_parameters` inserting arbitrary values in the _thikl array:: $ cor_atm = CorsikaAtmosphere(new_location, new_season) $ cor_atm.calc_thickl() Replace _thickl values with printout. """ from scipy.integrate import quad thickl = [] for h in self._atm_param[4]: thickl.append('{0:4.6f}'.format( quad(self.get_density, h, 112.8e5, epsrel=1e-4)[0])) info(5, '_thickl = np.array([' + ', '.join(thickl) + '])') return thickl class IsothermalAtmosphere(EarthsAtmosphere): """Isothermal model of the atmosphere. This model is widely used in semi-analytical calculations. The isothermal approximation is valid in a certain range of altitudes and usually one adjust the parameters to match a more realistic density profile at altitudes between 10 - 30 km, where the high energy muon production rate peaks. Such parametrizations are given in the book "Cosmic Rays and Particle Physics", Gaisser, Engel and Resconi (2016). The default values are from M. Thunman, G. Ingelman, and P. Gondolo, Astropart. Physics 5, 309 (1996). Args: location (str): no effect season (str): no effect hiso_km (float): isothermal scale height in km X0 (float): Ground level overburden """ def __init__(self, location, season, hiso_km=6.3, X0=1300.): self.hiso_cm = hiso_km * 1e5 self.X0 = X0 self.location = location self.season = season EarthsAtmosphere.__init__(self) def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ return self.X0 / self.hiso_cm * np.exp(-h_cm / self.hiso_cm) def get_mass_overburden(self, h_cm): """ Returns the mass overburden in atmosphere in g/cm**2. Args: h_cm (float): height in cm Returns: float: column depth :math:`T(h_{cm})` in g/cm**2 """ return self.X0 * np.exp(-h_cm / self.hiso_cm) class MSIS00Atmosphere(EarthsAtmosphere): """Wrapper class for a python interface to the NRLMSISE-00 model. `NRLMSISE-00 <http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html>`_ is an empirical model of the Earth's atmosphere. It is available as a FORTRAN 77 code or as a verson traslated into `C by Dominik Borodowski <http://www.brodo.de/english/pub/nrlmsise/>`_. Here a PYTHON wrapper has been used. Attributes: _msis : NRLMSISE-00 python wrapper object handler Args: location (str): see :func:`init_parameters` season (str,optional): see :func:`init_parameters` """ def __init__(self, location, season=None, doy=None, use_loc_altitudes=False): from MCEq.geometry.nrlmsise00_mceq import cNRLMSISE00 msis_atmospheres = [ 'SouthPole', 'Karlsruhe', 'Geneva', 'Tokyo', 'SanGrasso', 'TelAviv', 'KSC', 'SoudanMine', 'Tsukuba', 'LynnLake', 'PeaceRiver', 'FtSumner' ] assert location in msis_atmospheres, \ '{0} not available for MSIS00Atmosphere'.format( location ) self._msis = cNRLMSISE00() self.init_parameters(location, season, doy, use_loc_altitudes) EarthsAtmosphere.__init__(self) def init_parameters(self, location, season, doy, use_loc_altitudes): """Sets location and season in :class:`NRLMSISE-00`. Translates location and season into day of year and geo coordinates. Args: location (str): Supported are "SouthPole" and "Karlsruhe" season (str): months of the year: January, February, etc. use_loc_altitudes (bool): If to use default altitudes from location """ self._msis.set_location(location) if season is not None: self._msis.set_season(season) else: self._msis.set_doy(doy) self.location, self.season = location, season # Clear cached value to force spline recalculation self.theta_deg = None if use_loc_altitudes: info(0, 'Using loc altitude', self._msis.alt_surface, 'cm') self.geom.h_obs = self._msis.alt_surface def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Wraps around ctypes calls to the NRLMSISE-00 C library. Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ return self._msis.get_density(h_cm) def set_location(self, location): """ Changes MSIS location by strings defined in _msis_wrapper. Args: location (str): location as defined in :class:`NRLMSISE-00.` """ self._msis.set_location(location) def set_season(self, month): """ Changes MSIS location by month strings defined in _msis_wrapper. Args: location (str): month as defined in :class:`NRLMSISE-00.` """ self._msis.set_season(month) def set_doy(self, day_of_year): """ Changes MSIS season by day of year. Args: day_of_year (int): 1. Jan.=0, 1.Feb=32 """ self._msis.set_doy(day_of_year) def get_temperature(self, h_cm): """ Returns the temperature of air in K. Wraps around ctypes calls to the NRLMSISE-00 C library. Args: h_cm (float): height in cm Returns: float: density :math:`T(h_{cm})` in K """ return self._msis.get_temperature(h_cm) class AIRSAtmosphereLatLong(EarthsAtmosphere): """Class for downloading AIRS data from website and using as for atmosphere data. This class can only be used with a working internet connection or already downloaded AIRS data. For this to work a .netcdf file has to be created containing the Username password combination for eosdis.nasa.gov. The files are downloaded with wget in AIRS_Download and further processed by the read_in function of AIRS_T_eff_functions(credit to Phillip Fuerst and Simon Hauser). Additionally netcdf4+HDF4 are required to read the downloaded AIRS files. (https://unidata.github.io/netcdf4-python/netCDF4/index.html,https://www.unidata.ucar.edu/software/netcdf/, https://portal.hdfgroup.org/display/HDF4/HDF4) HDF4 has to be installed with the --prefix=H4DIR --enable-shared --disable-fortran --disable-netcdf options. HDF5 has to be installed with the --prefix=H5DIR --enable-zlib --with-zlib= --with-szlib= options. Next the NETCDF4 C package has to be installed: Env variables: H5DIR= H4DIR= LIBS="-ldl" CPPFLAGS="-I${H5DIR}/include -I${H4DIR}/include" LDFLAGS="-L${H5DIR}/lib -L${H4DIR}/lib" Configure Flags: --prefix= --enable-hdf4 --disble-dap Before installing python netcdf, enviroment variables have to be set: NETCDF4_DIR= USE_SETUPCFG=0 HDF5_INCDIR= HDF5_LIBDIR= Same for HDF4 and NETCDF4! Then python setup.py install --user Args: date (str): Date to probe for analysis (YearMonthDay) location ((int,int)): (lat,long) of location. Latitude in degrees (0 to 180) 0=North Pole, 180=South Pole airs_dir (str): directory to save downloaded AIRS data or which contains already downloaded AIRS data keep_airs (bool): Wether to keep downloaded airs data asc_desc (str) : Either "asc","desc" or "mean". Defines if ascending or descending or the average value of the Dataset is used for temperature and height. """ def __init__(self, date, location,airs_dir = '',keep_airs=False,dataset = 'AIRS',asc_desc='mean' ,*args,**kwargs): self.airs_dir = airs_dir self.keep_airs = keep_airs self.lat,self.long = location self.asc_desc = asc_desc self.dataset = dataset self.init_parameters(date,dataset=dataset, **kwargs) self.set_location(location) EarthsAtmosphere.__init__(self) def init_parameters(self, date, **kwargs): from MCEq.geometry.T_downloader import AIRS_Download, AIRS_read_in from MCEq.geometry.ECMWF_Download import Download_ERA5, read_grib_data, read_gribTwo_Data #from matplotlib.dates import strpdate2num, num2date if self.dataset == 'AIRS': airs_filenames = AIRS_Download(self.airs_dir, date, date) self.Pressure, self.Lat_rad_bins, self.Long_rad_bins, Temp_asc ,Height_asc,Temp_desc,Height_desc = AIRS_read_in(airs_filenames[0]) # hPa, rad,rad,K,m if not self.keep_airs: for file in airs_filenames: os.remove(glob.glob(file)[0] ) if self.asc_desc == 'asc': Temp = Temp_asc Height = Height_asc elif self.asc_desc == 'desc': Temp = Temp_desc Height = Height_desc elif self.asc_desc == 'mean': Temp = np.nanmean(np.stack((Temp_asc[...,np.newaxis],Temp_desc[...,np.newaxis]), axis=3),3) Height = np.nanmean(np.stack((Height_asc,Height_desc), axis=3),3) else: raise Exception("Variable asc_desc should be asc, desc or mean not " +asc_desc ) del Temp_asc,Height_asc,Height_desc, Temp_desc elif self.dataset == 'ERA5': Filenames = Download_ERA5(self.airs_dir, date, date,'12:00') Temp,Height,lat_bins,long_bins,self.Pressure = read_grib_data(Filenames[0]) self.Lat_rad_bins,self.Long_rad_bins = lat_bins[:,0]/180*np.pi,long_bins[0,:]/180*np.pi #print(self.Lat_rad_bins.shape,self.Long_rad_bins.shape) Temp,Height,self.Pressure = Temp[::-1],Height[::-1],self.Pressure[::-1] elif self.dataset == 'ERA5_model': Filenames = Download_ERA5(self.airs_dir, date, date,'12:00',model_lvl=True) if 'single_day' in Filenames[0]: Temp,Height,lat_bins,long_bins,self.Pressure = read_gribTwo_Data(Filenames[0]) else: Temp,Height,lat_bins,long_bins,Pressure = read_gribTwo_Data(Filenames[0],datetime.strptime(date,"%Y%m%d")) self.Lat_rad_bins,self.Long_rad_bins = lat_bins/180*np.pi,long_bins/180*np.pi #print(self.Lat_rad_bins.shape,self.Long_rad_bins.shape) Temp,Height,Pressure = Temp[::-1],Height[::-1],Pressure[::-1] else: raise Exception("Dataset must be either 'AIRS' or 'ERA5'") self.date_obj = datetime.strptime(date , '%Y%m%d') #self.T_splines,self.H_splines,self.D_splines = [],[],[] self.msis = MSIS00Atmosphere("SouthPole", 'January') self.msis._msis.set_doy(self._get_y_doy(self.date_obj)[1] - 1) if self.dataset == 'AIRS': self.Temp,self.Height = Temp,Height elif self.dataset == 'ERA5': from scipy.interpolate import RectBivariateSpline self.Temp,self.Height = [],[] for p_idx,p in enumerate(self.Pressure): T,H = RectBivariateSpline(self.Lat_rad_bins[::-1],self.Long_rad_bins,Temp[p_idx,::-1], kx=1,ky=1 ),RectBivariateSpline(self.Lat_rad_bins[::-1],self.Long_rad_bins,Height[p_idx,::-1], kx=1,ky=1 ) self.Temp.append(T) self.Height.append(H) elif self.dataset == 'ERA5_model': from scipy.interpolate import RectBivariateSpline self.Temp,self.Height,self.Pressure = [],[],[] for p_idx,p in enumerate(Pressure): T,H = RectBivariateSpline(self.Lat_rad_bins[::-1],self.Long_rad_bins,Temp[p_idx,::-1], kx=1,ky=1 ),RectBivariateSpline(self.Lat_rad_bins[::-1],self.Long_rad_bins,Height[p_idx,::-1], kx=1,ky=1 ) self.Pressure.append(RectBivariateSpline(self.Lat_rad_bins[::-1],self.Long_rad_bins,Pressure[p_idx,::-1], kx=1,ky=1 )) self.Temp.append(T) self.Height.append(H) del Height,Temp self.theta_deg = None def splines(self,p_idx, latitude, longitude): from scipy.interpolate import griddata if self.dataset=='AIRS': lo,la = np.meshgrid(self.Long_rad_bins,self.Lat_rad_bins) la,lo = la.ravel(),lo.ravel() T = self.Temp[p_idx,:,:].ravel() H = self.Height[p_idx,:,:].ravel() mask_T = np.isfinite(T) mask_H = np.isfinite(H) T,H = T[mask_T],H[mask_H] la_T,lo_T,la_H,lo_H = la[mask_T],lo[mask_T] ,la[mask_H],lo[mask_H] if self.theta_deg != None: #print('doing angle correction') theta_deg = 180 - self.theta_deg H_pre = griddata((la_H,lo_H),H,(latitude,longitude),method='nearest') length = config.r_E*(np.cos(theta_deg/180.*np.pi)+np.sqrt((1+H_pre/config.r_E )**2-np.sin(theta_deg*np.pi/180.)**2 )) dlat = np.arccos(((config.r_E+H_pre)**2+config.r_E**2-length**2)/(2*config.r_E*(config.r_E+H_pre) )) #print(dlat,latitude) else: dlat = 0 lat_height = min(90.,(self.lat+dlat)) #if self.dataset == 'AIRS': return griddata((la_T,lo_T),T,(lat_height,longitude),method='nearest'),griddata((la_H,lo_H),H,(lat_height,longitude),method='nearest') elif self.dataset == 'ERA5': return self.Temp[p_idx](latitude,longitude%(2*np.pi),grid=False),self.Height[p_idx](latitude,longitude%(2*np.pi),grid=False) elif self.dataset == 'ERA5_model': return self.Temp[p_idx](latitude,longitude%(2*np.pi),grid=False),self.Height[p_idx](latitude,longitude%(2*np.pi),grid=False),self.Pressure[p_idx](latitude,longitude%(2*np.pi),grid=False) def set_location(self, location): from scipy.interpolate import interp1d self.lat,self.long = location[0]*np.pi/180.,location[1]*np.pi/180. R = 8.314*1e6*1e-2 #cm^3 hPa/K/mol (Ideal gas constant) M = 28.964 #g/mol (molar density of Air) T_H = np.array([self.splines(p_i,self.lat,self.long) for p_i in range(len(self.Pressure)) ]) h_vec = T_H[:,1]*1e2 #cm #h_er = np.array([10,20,30,40,50,60,])*1e3*1e2 #cm #sy_e = np.array([1.1,0.6,1.1,1.0,2.1,5.5]) #st_e = np.array([2.9,1.5,1.4,1.6,2.1,3.6]) #indx = np.digitize(h_vec,h_er) t_vec = T_H[:,0]#- sy_e[indx-1] + np.random.normal(0,st_e[indx-1]) #K if self.dataset == 'ERA5' or self.dataset =='AIRS': d_vec = self.Pressure/t_vec*M/R #g/cm^3 elif self.dataset == 'ERA5_model': mask =( t_vec > 0 )&(h_vec > 0) d_vec = (T_H[:,2]/t_vec*M/R) #g/cm^3 t_vec = t_vec[mask] h_vec = h_vec[mask] d_vec = d_vec[mask] if (len(h_vec)==0 or h_vec[-1] < config.h_atm*1e2) and self.dataset != 'ERA5_model': self.msis._msis.set_location_coord(longitude = self.long*180./np.pi ,latitude = self.lat*180./np.pi) if len(h_vec>0): h_extra = np.linspace(h_vec[-1], config.h_atm * 1e2, 10) #print(h_vec,h_extra) else: self.dens = lambda h: np.log(self.msis.get_density(h)) self.temp = lambda t: self.msis.get_temperature(t) return msis_extra_d,msis_extra_t = np.zeros(len(h_extra)),np.zeros(len(h_extra)) for h_i,h in enumerate(h_extra): if self.theta_deg != None : #print('doing angle correction') theta_deg = 180 - self.theta_deg length = config.r_E*(np.cos(theta_deg/180.*np.pi)+np.sqrt((1+h/1e2/config.r_E )**2-np.sin(theta_deg*np.pi/180.)**2 )) dlat = np.arccos(((config.r_E+h/1e2)**2+config.r_E**2-length**2)/(2*config.r_E*(config.r_E+h/1e2) )) #print(dlat,latitude) else: dlat = 0 #print(self.lat+dlat) lat_height = min(90.,(self.lat+dlat)*180/np.pi) self.msis._msis.set_location_coord(longitude = self.long*180./np.pi ,latitude = lat_height) msis_extra_d[h_i] = self.msis.get_density(h) msis_extra_t[h_i] = self.msis.get_temperature(h) # Merge the two datasets h_vec = np.hstack([h_vec[:-1], h_extra]) d_vec = np.hstack([d_vec[:-1], msis_extra_d]) t_vec = np.hstack([t_vec[:-1], msis_extra_t]) self.dens = interp1d(h_vec, np.log(d_vec),assume_sorted=True,bounds_error=False) self.temp = interp1d(h_vec, t_vec,assume_sorted=True, bounds_error=False) def set_date(self, date): if self.date_obj ==datetime.strptime(date , '%Y%m%d'): return self.init_parameters(date) self.set_location((self.lat,self.long)) def _get_y_doy(self, date): return date.timetuple().tm_year, date.timetuple().tm_yday def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ ret = np.exp(self.dens(h_cm)) try: ret[h_cm > config.h_atm*1e2] = np.nan except TypeError: if h_cm > config.h_atm*1e2: return np.nan return ret def get_temperature(self, h_cm): """ Returns the temperature in K. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: temperature :math:`T(h_{cm})` in K """ ret = self.temp(h_cm) try: ret[h_cm > config.h_atm*1e2] = np.nan except TypeError: if h_cm > config.h_atm*1e2: return np.nan return ret class AIRSAtmosphereNorth(EarthsAtmosphere): """Interpolation class for tabulated atmospheres. This class is intended to read preprocessed AIRS Satellite data. Args: location (int): see :func:`init_parameters` season (str,optional): see :func:`init_parameters` """ def __init__(self, location, season, extrapolate=True, *args, **kwargs): if location.isdigit(): location = int(location) else: raise Exception(self.__class__.__name__ + "(): location should be a latitude between 0 and 180. " + location) if location > 180 or location <0: raise Exception(self.__class__.__name__ + "(): location should be a latitude between 0 and 180. " + str(location)) self.extrapolate = extrapolate self.month2doy = { 'January': 1, 'February': 32, 'March': 60, 'April': 91, 'May': 121, 'June': 152, 'July': 182, 'August': 213, 'September': 244, 'October': 274, 'November': 305, 'December': 335 } self.season = season self.init_parameters(location, **kwargs) EarthsAtmosphere.__init__(self) def init_parameters(self, location, **kwargs): """Loads tables and prepares interpolation. Args: location (int): Latitude in degrees (0 to 180) 0=North Pole, 180=South Pole doy (int): Day Of Year """ from scipy.interpolate import interp1d from matplotlib.dates import strpdate2num, num2date from os import path #This is a bruteforce path to takaos AIRS data on the IceCube Madison Server. This should be made more general in the future. data_path = "/data/user/takao/analysis/airs/airx3std_v6_lat_daily/" if 'table_path' in kwargs: data_path = kwargs['table_path'] files = [('temp', 'airs_amsu_temp_%03i_daily.txt'%(location)), ('alti', 'airs_amsu_alti_%03i_daily.txt'%(location))] data_collection = {} # limit SouthPole pressure to <= 600 min_press_idx = 1 IC79_idx_1 = None IC79_idx_2 = None for d_key, fname in files: fname = data_path + fname tab = np.loadtxt(fname, converters={0: strpdate2num('%Y/%m/%d')}, usecols=[0] + list(range(2, 27))) with open(fname, 'r') as f: comline = f.readline() p_levels = [float(s.strip()) for s in comline.split(' ')[3:] if s != '' ][min_press_idx:]#hPa dates = num2date(tab[:, 0]) for di, date in enumerate(dates): if date.month == 6 and date.day == 1: if date.year == 2010: IC79_idx_1 = di elif date.year == 2011: IC79_idx_2 = di surf_val = tab[:, 1] cols = tab[:, min_press_idx + 2:] data_collection[d_key] = (dates, surf_val, cols) self.interp_tab_d = {} self.interp_tab_t = {} self.dates = {} dates = data_collection['alti'][0] msis = MSIS00Atmosphere("SouthPole", 'January') msis._msis.set_location_coord(longitude=0.,latitude=90.-float(location)) for didx, date in enumerate(dates): R = 8.314*1e6*1e-2# cm^3 hPa/K/mol (Ideal gas constant) M = 28.964 #g/mol (molar density of Air) h_vec = np.array(data_collection['alti'][2][didx, :] * 1e2) #cm t_vec = np.array(data_collection['temp'][2][didx, :]) #K d_vec = p_levels/t_vec*M/R #g/cm^3 (from ideal Gas Law) #if all(np.isfinite(t_vec)&(t_vec>0)==0): # print t_vec h_vec = h_vec[np.isfinite(t_vec)&(t_vec>0)] d_vec = d_vec[np.isfinite(t_vec)&(t_vec>0)] t_vec = t_vec[np.isfinite(t_vec)&(t_vec>0)] if self.extrapolate: # Extrapolate using msis msis._msis.set_doy(self._get_y_doy(date)[1] - 1) if len(h_vec>0): h_extra = np.linspace(h_vec[-1], config.h_atm * 1e2, 250) else: self.interp_tab_d[self._get_y_doy(date)] = lambda h: np.log(msis.get_density(h)) self.interp_tab_t[self._get_y_doy(date)] = lambda h: np.log(msis.get_temperature(h)) self.dates[self._get_y_doy(date)] = date continue msis_extra_d = np.array([msis.get_density(h) for h in h_extra]) msis_extra_t = np.array([msis.get_temperature(h) for h in h_extra]) # Interpolate last few altitude bins #ninterp = 5 #for ni in range(ninterp): # cl = (1 - np.exp(-ninterp + ni + 1)) # ch = (1 - np.exp(-ni)) # norm = 1. / (cl + ch) # d_vec[-ni - # 1] = (d_vec[-ni - 1] * cl * norm + # msis.get_density(h_vec[-ni - 1]) * ch * norm) # t_vec[-ni - 1] = ( # t_vec[-ni - 1] * cl * norm + # msis.get_temperature(h_vec[-ni - 1]) * ch * norm) # Merge the two datasets h_vec = np.hstack([h_vec[:-1], h_extra]) d_vec = np.hstack([d_vec[:-1], msis_extra_d]) t_vec = np.hstack([t_vec[:-1], msis_extra_t]) self.interp_tab_d[self._get_y_doy(date)] = interp1d(h_vec, np.log(d_vec),kind='cubic', fill_value = 'extrapolate') self.interp_tab_t[self._get_y_doy(date)] = interp1d(h_vec, np.log(t_vec),kind='cubic', fill_value = 'extrapolate') self.dates[self._get_y_doy(date)] = date self.IC79_start = self._get_y_doy(dates[IC79_idx_1]) self.IC79_end = self._get_y_doy(dates[IC79_idx_2]) self.IC79_days = (dates[IC79_idx_2] - dates[IC79_idx_1]).days self.location = location if self.season is None: self.set_IC79_day(0) else: self.set_season(self.season) # Clear cached value to force spline recalculation self.theta_deg = None def doy2month(self,doy): oldseason = None for season in self.month2doy: if (oldseason != None ) and doy < self.month2doy[season]: return oldseason elif doy >= 335: return'December' oldseason = season def set_location(self, location): if location.isdigit(): location = int(location) else: raise Exception(self.__class__.__name__ + "(): location should be a latitude between 0 and 180. " + location) if location > 180 or location <0: raise Exception(self.__class__.__name__ + "(): location should be a latitude between 0 and 180. " + str(location)) self.init_parameters(location) #self.calculate_density_spline() def set_date(self, year, doy): self.dens = self.interp_tab_d[(year, doy)] self.temp = self.interp_tab_t[(year, doy)] self.date = self.dates[(year, doy)] # Compatibility with caching self.season = self.doy2month(doy) self.calculate_density_spline() def _set_doy(self, doy, year=2010): self.dens = self.interp_tab_d[(year, doy)] self.temp = self.interp_tab_t[(year, doy)] self.date = self.dates[(year, doy)] def set_season(self, month): self.season = month self._set_doy(self.month2doy[month]) self.season = month def set_IC79_day(self, IC79_day): import datetime if IC79_day > self.IC79_days: raise Exception(self.__class__.__name__ + "::set_IC79_day(): IC79_day above range.") target_day = self._get_y_doy(self.dates[self.IC79_start] + datetime.timedelta(days=IC79_day)) info(2, 'setting IC79_day', IC79_day) self.dens = self.interp_tab_d[target_day] self.temp = self.interp_tab_t[target_day] self.date = self.dates[target_day] # Compatibility with caching self.season = self.date def _get_y_doy(self, date): return date.timetuple().tm_year, date.timetuple().tm_yday def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ ret = np.exp(self.dens(h_cm))#np.exp(np.interp(h_cm, self.h, np.log(self.dens))) try: ret[h_cm > config.h_atm*1e2] = np.nan except TypeError: if h_cm > config.h_atm*1e2: return np.nan return ret def get_temperature(self, h_cm): """ Returns the temperature in K. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: temperature :math:`T(h_{cm})` in K """ ret = np.exp(self.temp(h_cm))#np.exp(interp1d( self.h, np.log(self.temp))(h_cm)) try: ret[h_cm > config.h_atm*1e2] = np.nan except TypeError: if h_cm > config.h_atm*1e2: return np.nan return ret class AIRSAtmosphere(EarthsAtmosphere): """Interpolation class for tabulated atmospheres. This class is intended to read preprocessed AIRS Satellite data. Args: location (str): see :func:`init_parameters` season (str,optional): see :func:`init_parameters` """ def __init__(self, location, season, extrapolate=True, *args, **kwargs): if location != 'SouthPole': raise Exception(self.__class__.__name__ + "(): Only South Pole location supported. " + location) self.extrapolate = extrapolate self.month2doy = { 'January': 1, 'February': 32, 'March': 60, 'April': 91, 'May': 121, 'June': 152, 'July': 182, 'August': 213, 'September': 244, 'October': 274, 'November': 305, 'December': 335 } self.season = season self.init_parameters(location, **kwargs) EarthsAtmosphere.__init__(self) def init_parameters(self, location, **kwargs): """Loads tables and prepares interpolation. Args: location (str): supported is only "SouthPole" doy (int): Day Of Year """ from scipy.interpolate import interp1d #from matplotlib.dates import strpdate2num, num2date # from time import strptime from matplotlib.dates import datestr2num, num2date from os import path def bytespdate2num(b): return datestr2num(b.decode('utf-8')) data_path = (join( path.expanduser('~'), 'OneDrive/Dokumente/projects/atmospheric_variations/')) if 'table_path' in kwargs: data_path = kwargs['table_path'] files = [('dens', 'airs_amsu_dens_180_daily.txt'), ('temp', 'airs_amsu_temp_180_daily.txt'), ('alti', 'airs_amsu_alti_180_daily.txt')] data_collection = {} # limit SouthPole pressure to <= 600 min_press_idx = 4 IC79_idx_1 = None IC79_idx_2 = None for d_key, fname in files: fname = data_path + 'tables/' + fname # tabf = open(fname).read() tab = np.loadtxt(fname, converters={0: bytespdate2num}, usecols=[0] + list(range(2, 27))) # with open(fname, 'r') as f: # comline = f.readline() # p_levels = [ # float(s.strip()) for s in comline.split(' ')[3:] if s != '' # ][min_press_idx:] dates = num2date(tab[:, 0]) for di, date in enumerate(dates): if date.month == 6 and date.day == 1: if date.year == 2010: IC79_idx_1 = di elif date.year == 2011: IC79_idx_2 = di surf_val = tab[:, 1] cols = tab[:, min_press_idx + 2:] data_collection[d_key] = (dates, surf_val, cols) self.interp_tab_d = {} self.interp_tab_t = {} self.dates = {} dates = data_collection['alti'][0] msis = MSIS00Atmosphere(location, 'January') for didx, date in enumerate(dates): h_vec = np.array(data_collection['alti'][2][didx, :] * 1e2) d_vec = np.array(data_collection['dens'][2][didx, :]) t_vec = np.array(data_collection['temp'][2][didx, :]) if self.extrapolate: # Extrapolate using msis h_extra = np.linspace(h_vec[-1], self.geom.h_atm * 1e2, 250) msis._msis.set_doy(self._get_y_doy(date)[1] - 1) msis_extra_d = np.array([msis.get_density(h) for h in h_extra]) msis_extra_t = np.array( [msis.get_temperature(h) for h in h_extra]) # Interpolate last few altitude bins ninterp = 5 for ni in range(ninterp): cl = (1 - np.exp(-ninterp + ni + 1)) ch = (1 - np.exp(-ni)) norm = 1. / (cl + ch) d_vec[-ni - 1] = (d_vec[-ni - 1] * cl * norm + msis.get_density(h_vec[-ni - 1]) * ch * norm) t_vec[-ni - 1] = ( t_vec[-ni - 1] * cl * norm + msis.get_temperature(h_vec[-ni - 1]) * ch * norm) # Merge the two datasets h_vec = np.hstack([h_vec[:-1], h_extra]) d_vec = np.hstack([d_vec[:-1], msis_extra_d]) t_vec = np.hstack([t_vec[:-1], msis_extra_t]) self.interp_tab_d[self._get_y_doy(date)] = (h_vec, d_vec) self.interp_tab_t[self._get_y_doy(date)] = (h_vec, t_vec) self.dates[self._get_y_doy(date)] = date self.IC79_start = self._get_y_doy(dates[IC79_idx_1]) self.IC79_end = self._get_y_doy(dates[IC79_idx_2]) self.IC79_days = (dates[IC79_idx_2] - dates[IC79_idx_1]).days self.location = location if self.season is None: self.set_IC79_day(0) else: self.set_season(self.season) # Clear cached value to force spline recalculation self.theta_deg = None def set_date(self, year, doy): self.h, self.dens = self.interp_tab_d[(year, doy)] _, self.temp = self.interp_tab_t[(year, doy)] self.date = self.dates[(year, doy)] # Compatibility with caching self.season = self.date def _set_doy(self, doy, year=2010): self.h, self.dens = self.interp_tab_d[(year, doy)] _, self.temp = self.interp_tab_t[(year, doy)] self.date = self.dates[(year, doy)] def set_season(self, month): self.season = month self._set_doy(self.month2doy[month]) self.season = month def set_IC79_day(self, IC79_day): import datetime if IC79_day > self.IC79_days: raise Exception(self.__class__.__name__ + "::set_IC79_day(): IC79_day above range.") target_day = self._get_y_doy(self.dates[self.IC79_start] + datetime.timedelta(days=IC79_day)) info(2, 'setting IC79_day', IC79_day) self.h, self.dens = self.interp_tab_d[target_day] _, self.temp = self.interp_tab_t[target_day] self.date = self.dates[target_day] # Compatibility with caching self.season = self.date def _get_y_doy(self, date): return date.timetuple().tm_year, date.timetuple().tm_yday def get_density(self, h_cm): """ Returns the density of air in g/cm**3. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: density :math:`\\rho(h_{cm})` in g/cm**3 """ ret = np.exp(np.interp(h_cm, self.h, np.log(self.dens))) try: ret[h_cm > self.h[-1]] = np.nan except TypeError: if h_cm > self.h[-1]: return np.nan return ret def get_temperature(self, h_cm): """ Returns the temperature in K. Interpolates table at requested value for previously set year and day of year (doy). Args: h_cm (float): height in cm Returns: float: temperature :math:`T(h_{cm})` in K """ ret = np.exp(np.interp(h_cm, self.h, np.log(self.temp))) try: ret[h_cm > self.h[-1]] = np.nan except TypeError: if h_cm > self.h[-1]: return np.nan return ret class MSIS00IceCubeCentered(MSIS00Atmosphere): """Extension of :class:`MSIS00Atmosphere` which couples the latitude setting with the zenith angle of the detector. Args: location (str): see :func:`init_parameters` season (str,optional): see :func:`init_parameters` """ def __init__(self, location, season): if location != 'SouthPole': info(2, 'location forced to the South Pole') location = 'SouthPole' MSIS00Atmosphere.__init__(self, location, season) # Allow for upgoing zenith angles self.max_theta = 180. def latitude(self, det_zenith_deg): """ Returns the geographic latitude of the shower impact point. Assumes a spherical earth. The detector is 1948m under the surface. Credits: geometry fomulae by Jakob van Santen, DESY Zeuthen. Args: det_zenith_deg (float): zenith angle at detector in degrees Returns: float: latitude of the impact point in degrees """ r = self.geom.r_E d = 1948 # m theta_rad = det_zenith_deg / 180. * np.pi x = (np.sqrt(2. * r * d + ((r - d) * np.cos(theta_rad))**2 - d**2) - (r - d) * np.cos(theta_rad)) return -90. + np.arctan2(x * np.sin(theta_rad), r - d + x * np.cos(theta_rad)) / np.pi * 180. def set_theta(self, theta_deg, force_spline_calc=True): self._msis.set_location_coord(longitude=0., latitude=self.latitude(theta_deg)) info( 1, 'latitude = {0:5.2f} for zenith angle = {1:5.2f}'.format( self.latitude(theta_deg), theta_deg)) if theta_deg > 90.: info( 1, 'theta = {0:5.2f} below horizon. using theta = {1:5.2f}'. format(theta_deg, 180. - theta_deg)) theta_deg = 180. - theta_deg MSIS00Atmosphere.set_theta(self, theta_deg, force_spline_calc=force_spline_calc) class GeneralizedTarget(object): """This class provides a way to run MCEq on piece-wise constant one-dimenional density profiles. The default values for the average density are taken from config file variables `len_target`, `env_density` and `env_name`. The density profile has to be built by calling subsequently :func:`add_material`. The current composition of the target can be checked with :func:`draw_materials` or :func:`print_table`. Note: If the target is not air or hydrogen, the result is approximate, since seconray particle yields are provided for nucleon-air or proton-proton collisions. Depending on this choice one has to adjust the nuclear mass in :mod:`mceq_config`. Args: len_target (float): total length of the target in meters env_density (float): density of the default material in g/cm**3 env_name (str): title for this environment """ def __init__( self, len_target=config.len_target * 1e2, # cm env_density=config.env_density, # g/cm3 env_name=config.env_name): self.len_target = len_target self.env_density = env_density self.env_name = env_name self.reset() @property def max_den(self): return self._max_den def reset(self): """Resets material list to defaults.""" self.mat_list = [[ 0., self.len_target, self.env_density, self.env_name ]] self._update_variables() def _update_variables(self): """Updates internal variables. Not needed to call by user.""" self.start_bounds, self.end_bounds, \ self.densities = list(zip(*self.mat_list))[:-1] self.densities = np.array(self.densities) self.start_bounds = np.array(self.start_bounds) self.end_bounds = np.array(self.end_bounds) self._max_den = np.max(self.densities) self._integrate() def set_length(self, new_length_cm): """Updates the total length of the target. Usually the length is set """ if new_length_cm < self.mat_list[-1][0]: raise Exception( "GeneralizedTarget::set_length(): " + "can not set length below lower boundary of last " + "material.") self.len_target = new_length_cm self.mat_list[-1][1] = new_length_cm self._update_variables() def add_material(self, start_position_cm, density, name): """Adds one additional material to a composite target. Args: start_position_cm (float): position where the material starts counted from target origin l|X = 0 in cm density (float): density of material in g/cm**3 name (str): any user defined name Raises: Exception: If requested start_position_cm is not properly defined. """ if start_position_cm < 0. or start_position_cm > self.len_target: raise Exception("GeneralizedTarget::add_material(): " + "distance exceeds target dimensions.") elif (start_position_cm == self.mat_list[-1][0] and self.mat_list[-1][-1] == self.env_name): self.mat_list[-1] = [ start_position_cm, self.len_target, density, name ] elif start_position_cm <= self.mat_list[-1][0]: raise Exception("GeneralizedTarget::add_material(): " + "start_position_cm is ahead of previous material.") else: self.mat_list[-1][1] = start_position_cm self.mat_list.append( [start_position_cm, self.len_target, density, name]) info(2, ("{0}::add_material(): Material '{1}' added. " + "location on path {2} to {3} m").format(self.__class__.__name__, name, self.mat_list[-1][0], self.mat_list[-1][1])) self._update_variables() def set_theta(self, *args): """This method is not defined for the generalized target. The purpose is to catch usage errors. Raises: NotImplementedError: always """ raise NotImplementedError('GeneralizedTarget::set_theta(): Method' + 'not defined for this target class.') def _integrate(self): """Walks through material list and computes the depth along the position (path). Computes the spline for the position-depth relation and determines the maximum depth for the material selection. Method does not need to be called by the user, instead the class calls it when necessary. """ from scipy.interpolate import UnivariateSpline self.density_depth = None self.knots = [0.] self.X_int = [0.] for start, end, density, _ in self.mat_list: self.knots.append(end) self.X_int.append(density * (end - start) + self.X_int[-1]) self._s_X2h = UnivariateSpline(self.X_int, self.knots, k=1, s=0.) self._s_h2X = UnivariateSpline(self.knots, self.X_int, k=1, s=0.) self._max_X = self.X_int[-1] @property def s_X2h(self): """Spline for depth at distance.""" if not hasattr(self, '_s_X2h'): self._integrate() return self._s_X2h @property def s_h2X(self): """Spline for distance at depth.""" if not hasattr(self, '_s_h2X'): self._integrate() return self._s_h2X @property def max_X(self): """Maximal depth of target.""" if not hasattr(self, '_max_X'): self._integrate() return self._max_X def get_density_X(self, X): """Returns the density in g/cm**3 as a function of depth X. Args: X (float): depth in g/cm**2 Returns: float: density in g/cm**3 Raises: Exception: If requested depth exceeds target. """ X = np.atleast_1d(X) # allow for some small constant extrapolation for odepack solvers if X[-1] > self.max_X and X[-1] < self.max_X * 1.003: X[-1] = self.max_X if np.min(X) < 0. or np.max(X) > self.max_X: # return self.get_density(self.s_X2h(self.max_X)) info(0, 'Depth {0:4.3f} exceeds target dimensions {1:4.3f}'.format( np.max(X), self.max_X )) raise Exception('Invalid input') return self.get_density(self.s_X2h(X)) def r_X2rho(self, X): """Returns the inverse density :math:`\\frac{1}{\\rho}(X)`. Args: X (float): slant depth in g/cm**2 Returns: float: :math:`1/\\rho` in cm**3/g """ return 1. / self.get_density_X(X) def get_density(self, l_cm): """Returns the density in g/cm**3 as a function of position l in cm. Args: l (float): position in target in cm Returns: float: density in g/cm**3 Raises: Exception: If requested position exceeds target length. """ l_cm = np.atleast_1d(l_cm) res = np.zeros_like(l_cm) if np.min(l_cm) < 0 or np.max(l_cm) > self.len_target: raise Exception("GeneralizedTarget::get_density(): " + "requested position exceeds target legth.") for i, li in enumerate(l_cm): bi = 0 while not (li >= self.start_bounds[bi] and li <= self.end_bounds[bi]): bi += 1 res[i] = self.densities[bi] return res def draw_materials(self, axes=None, logx=False): """Makes a plot of depth and density profile as a function of the target length. The list of materials is printed out, too. Args: axes (plt.axes, optional): handle for matplotlib axes """ import matplotlib.pyplot as plt if not axes: plt.figure(figsize=(5, 2.5)) axes = plt.gca() ymax = np.max(self.X_int) * 1.01 for _, mat in enumerate(self.mat_list): xstart = mat[0] xend = mat[1] alpha = 0.188 * mat[2] / max(self.densities) + 0.248 if alpha > 1: alpha = 1. elif alpha < 0.: alpha = 0. axes.fill_between((xstart, xend), (ymax, ymax), (0., 0.), label=mat[2], facecolor='grey', alpha=alpha) # axes.text(0.5e-2 * (xstart + xend), 0.5 * ymax, str(nm)) axes.plot([xl for xl in self.knots], self.X_int, lw=1.7, color='r') if logx: axes.set_xscale('log', nonposx='clip') axes.set_ylim(0., ymax) axes.set_xlabel('distance in target (cm)') axes.set_ylabel(r'depth X (g/cm$^2)$') self.print_table(min_dbg_lev=2) def print_table(self, min_dbg_lev=0): """Prints table of materials to standard output. """ templ = '{0:^3} | {1:15} | {2:^9.3g} | {3:^9.3g} | {4:^8.5g}' info( min_dbg_lev, '********************* List of materials ***********************', no_caller=True) head = '{0:3} | {1:15} | {2:9} | {3:9} | {4:9}'.format( 'no', 'name', 'start [cm]', 'end [cm]', 'density [g/cm**3]') info(min_dbg_lev, '-' * len(head), no_caller=True) info(min_dbg_lev, head, no_caller=True) info(min_dbg_lev, '-' * len(head), no_caller=True) for nm, mat in enumerate(self.mat_list): info(min_dbg_lev, templ.format(nm, mat[3], mat[0], mat[1], mat[2]), no_caller=True) if __name__ == '__main__': import matplotlib.pyplot as plt plt.figure(figsize=(5, 4)) plt.title('CORSIKA atmospheres') cka_atmospheres = [ ("USStd", None), ("BK_USStd", None), ("Karlsruhe", None), ("ANTARES/KM3NeT-ORCA", 'Summer'), ("ANTARES/KM3NeT-ORCA", 'Winter'), ("KM3NeT-ARCA", 'Summer'), ("KM3NeT-ARCA", 'Winter'), ("KM3NeT", None), ('SouthPole','December'), ('PL_SouthPole','January'), ('PL_SouthPole','August'), ] cka_surf_100 = [] for loc, season in cka_atmospheres: cka_obj = CorsikaAtmosphere(loc, season) cka_obj.set_theta(0.0) x_vec = np.linspace(0, cka_obj.max_X, 5000) plt.plot(x_vec, 1 / cka_obj.r_X2rho(x_vec), lw=1.5, label='{0}/{1}'.format(loc, season) if season is not None else '{0}'.format(loc)) cka_surf_100.append((cka_obj.max_X, 1. / cka_obj.r_X2rho(100.))) print(cka_surf_100) plt.ylabel(r'Density $\rho$ (g/cm$^3$)') plt.xlabel(r'Depth (g/cm$^2$)') plt.legend(loc='upper left') plt.tight_layout() plt.figure(figsize=(5, 4)) plt.title('NRLMSISE-00 atmospheres') msis_atmospheres = [ ('SouthPole', "January"), ('Karlsruhe', "January"), ('Geneva', "January"), ('Tokyo', "January"), ('SanGrasso', "January"), ('TelAviv', "January"), ('KSC', "January"), ('SoudanMine', "January"), ('Tsukuba', "January"), ('LynnLake', "January"), ('PeaceRiver', "January"), ('FtSumner', "January") ] msis_surf_100 = [] for loc, season in msis_atmospheres: msis_obj = MSIS00Atmosphere(loc, season) msis_obj.set_theta(0.0) x_vec = np.linspace(0, msis_obj.max_X, 5000) plt.plot(x_vec, 1 / msis_obj.r_X2rho(x_vec), lw=1.5, label='{0}'.format(loc)) msis_surf_100.append((msis_obj.max_X, 1. / msis_obj.r_X2rho(100.))) print(msis_surf_100) plt.ylabel(r'Density $\rho$ (g/cm$^3$)') plt.xlabel(r'Depth (g/cm$^2$)') plt.legend(loc='upper left') plt.tight_layout() plt.show()
py
b413acd0b61f8a5c7a35622c3c717d5940f96ec0
from __future__ import print_function import os import sys # Needed to pass # http://www.w3.org/2009/sparql/docs/tests/data-sparql11/ # syntax-update-2/manifest#syntax-update-other-01 from test import TEST_DIR from test.earl import report, add_test from test.manifest import nose_tests, UP, MF sys.setrecursionlimit(6000) # default is 1000 from collections import Counter import datetime import isodate import typing from rdflib import Dataset, Graph, URIRef, BNode from rdflib.query import Result from rdflib.compare import isomorphic from rdflib.plugins import sparql as rdflib_sparql_module from rdflib.plugins.sparql.algebra import pprintAlgebra, translateQuery, translateUpdate from rdflib.plugins.sparql.parser import parseQuery, parseUpdate from rdflib.plugins.sparql.results.rdfresults import RDFResultParser from rdflib.plugins.sparql.update import evalUpdate from rdflib.compat import decodeStringEscape, bopen from urllib.parse import urljoin from io import BytesIO from nose.tools import nottest, eq_ from nose import SkipTest def eq(a, b, msg): return eq_(a, b, msg + ": (%r!=%r)" % (a, b)) def setFlags(): import rdflib # Several tests rely on lexical form of literals being kept! rdflib.NORMALIZE_LITERALS = False # we need an explicit default graph rdflib_sparql_module.SPARQL_DEFAULT_GRAPH_UNION = False # we obviously need this rdflib.DAWG_LITERAL_COLLATION = True def resetFlags(): import rdflib # Several tests rely on lexical form of literals being kept! rdflib.NORMALIZE_LITERALS = True # we need an explicit default graph rdflib_sparql_module.SPARQL_DEFAULT_GRAPH_UNION = True # we obviously need this rdflib.DAWG_LITERAL_COLLATION = False DEBUG_FAIL = True DEBUG_FAIL = False DEBUG_ERROR = True DEBUG_ERROR = False SPARQL10Tests = True # SPARQL10Tests = False SPARQL11Tests = True # SPARQL11Tests=False RDFLibTests = True DETAILEDASSERT = True # DETAILEDASSERT=False NAME = None fails: typing.Counter[str] = Counter() errors: typing.Counter[str] = Counter() failed_tests = [] error_tests = [] def bopen_read_close(fn): with bopen(fn) as f: return f.read() try: with open("skiptests.list") as skip_tests_f: skiptests = dict( [ (URIRef(x.strip().split("\t")[0]), x.strip().split("\t")[1]) for x in skip_tests_f ] ) except IOError: skiptests = dict() def _fmt(f): if f.endswith(".rdf"): return "xml" return "turtle" def bindingsCompatible(a, b): """ Are two binding-sets compatible. From the spec: http://www.w3.org/2009/sparql/docs/tests/#queryevaltests A SPARQL implementation passes a query evaluation test if the graph produced by evaluating the query against the RDF dataset (and encoding in the DAWG result set vocabulary, if necessary) is equivalent [RDF-CONCEPTS] to the graph named in the result (after encoding in the DAWG result set vocabulary, if necessary). Note that, solution order only is considered relevant, if the result is expressed in the test suite in the DAWG result set vocabulary, with explicit rs:index triples; otherwise solution order is considered irrelevant for passing. Equivalence can be tested by checking that the graphs are isomorphic and have identical IRI and literal nodes. Note that testing whether two result sets are isomorphic is simpler than full graph isomorphism. Iterating over rows in one set, finding a match with the other set, removing this pair, then making sure all rows are accounted for, achieves the same effect. """ def rowCompatible(x, y): m = {} y = y.asdict() for v1, b1 in x.asdict().items(): if v1 not in y: return False if isinstance(b1, BNode): if b1 in m: if y[v1] != m[b1]: return False else: m[b1] = y[v1] else: # if y[v1]!=b1: # return False try: if y[v1].neq(b1): return False except TypeError: return False return True if not a: if b: return False return True x = next(iter(a)) for y in b: if rowCompatible(x, y): if bindingsCompatible(a - set((x,)), b - set((y,))): return True return False def pp_binding(solutions): """ Pretty print a single binding - for less eye-strain when debugging """ return ( "\n[" + ",\n\t".join( "{" + ", ".join("%s:%s" % (x[0], x[1].n3()) for x in bindings.items()) + "}" for bindings in solutions ) + "]\n" ) @nottest def update_test(t): # the update-eval tests refer to graphs on http://example.org rdflib_sparql_module.SPARQL_LOAD_GRAPHS = False uri, name, comment, data, graphdata, query, res, syntax = t if uri in skiptests: raise SkipTest() try: g = Dataset() if not res: if syntax: with bopen(query[7:]) as f: translateUpdate(parseUpdate(f)) else: try: with bopen(query[7:]) as f: translateUpdate(parseUpdate(f)) raise AssertionError("Query shouldn't have parsed!") except: pass # negative syntax test return resdata, resgraphdata = res # read input graphs if data: g.default_context.load(data, format=_fmt(data)) if graphdata: for x, l in graphdata: g.load(x, publicID=URIRef(l), format=_fmt(x)) with bopen(query[7:]) as f: req = translateUpdate(parseUpdate(f)) evalUpdate(g, req) # read expected results resg = Dataset() if resdata: resg.default_context.load(resdata, format=_fmt(resdata)) if resgraphdata: for x, l in resgraphdata: resg.load(x, publicID=URIRef(l), format=_fmt(x)) eq( set(x.identifier for x in g.contexts() if x != g.default_context), set(x.identifier for x in resg.contexts() if x != resg.default_context), "named graphs in datasets do not match", ) assert isomorphic( g.default_context, resg.default_context ), "Default graphs are not isomorphic" for x in g.contexts(): if x == g.default_context: continue assert isomorphic(x, resg.get_context(x.identifier)), ( "Graphs with ID %s are not isomorphic" % x.identifier ) except Exception as e: if isinstance(e, AssertionError): failed_tests.append(uri) fails[str(e)] += 1 else: error_tests.append(uri) errors[str(e)] += 1 if DEBUG_ERROR and not isinstance(e, AssertionError) or DEBUG_FAIL: print("======================================") print(uri) print(name) print(comment) if not res: if syntax: print("Positive syntax test") else: print("Negative syntax test") if data: print("----------------- DATA --------------------") print(">>>", data) print(bopen_read_close(data[7:])) if graphdata: print("----------------- GRAPHDATA --------------------") for x, l in graphdata: print(">>>", x, l) print(bopen_read_close(x[7:])) print("----------------- Request -------------------") print(">>>", query) print(bopen_read_close(query[7:])) if res: if resdata: print("----------------- RES DATA --------------------") print(">>>", resdata) print(bopen_read_close(resdata[7:])) if resgraphdata: print("----------------- RES GRAPHDATA -------------------") for x, l in resgraphdata: print(">>>", x, l) print(bopen_read_close(x[7:])) print("------------- MY RESULT ----------") print(g.serialize(format="trig")) try: pq = translateUpdate(parseUpdate(bopen_read_close(query[7:]))) print("----------------- Parsed ------------------") pprintAlgebra(pq) # print pq except: print("(parser error)") print(decodeStringEscape(str(e))) import pdb pdb.post_mortem(sys.exc_info()[2]) raise @nottest # gets called by generator def query_test(t): uri, name, comment, data, graphdata, query, resfile, syntax = t # the query-eval tests refer to graphs to load by resolvable filenames rdflib_sparql_module.SPARQL_LOAD_GRAPHS = True if uri in skiptests: raise SkipTest() def skip(reason="(none)"): print("Skipping %s from now on." % uri) with bopen("skiptests.list", "a") as f: f.write("%s\t%s\n" % (uri, reason)) try: g = Dataset() if data: g.default_context.load(data, format=_fmt(data)) if graphdata: for x in graphdata: g.load(x, format=_fmt(x)) if not resfile: # no result - syntax test if syntax: translateQuery( parseQuery(bopen_read_close(query[7:])), base=urljoin(query, ".") ) else: # negative syntax test try: translateQuery( parseQuery(bopen_read_close(query[7:])), base=urljoin(query, "."), ) assert False, "Query should not have parsed!" except: pass # it's fine - the query should not parse return # eval test - carry out query res2 = g.query(bopen_read_close(query[7:]), base=urljoin(query, ".")) if resfile.endswith("ttl"): resg = Graph() resg.load(resfile, format="turtle", publicID=resfile) res = RDFResultParser().parse(resg) elif resfile.endswith("rdf"): resg = Graph() resg.load(resfile, publicID=resfile) res = RDFResultParser().parse(resg) else: with bopen(resfile[7:]) as f: if resfile.endswith("srj"): res = Result.parse(f, format="json") elif resfile.endswith("tsv"): res = Result.parse(f, format="tsv") elif resfile.endswith("csv"): res = Result.parse(f, format="csv") # CSV is lossy, round-trip our own resultset to # lose the same info :) # write bytes, read strings... s = BytesIO() res2.serialize(s, format="csv") s.seek(0) res2 = Result.parse(s, format="csv") s.close() else: res = Result.parse(f, format="xml") if not DETAILEDASSERT: eq(res.type, res2.type, "Types do not match") if res.type == "SELECT": eq(set(res.vars), set(res2.vars), "Vars do not match") comp = bindingsCompatible(set(res), set(res2)) assert comp, "Bindings do not match" elif res.type == "ASK": eq(res.askAnswer, res2.askAnswer, "Ask answer does not match") elif res.type in ("DESCRIBE", "CONSTRUCT"): assert isomorphic(res.graph, res2.graph), "graphs are not isomorphic!" else: raise Exception("Unknown result type: %s" % res.type) else: eq( res.type, res2.type, "Types do not match: %r != %r" % (res.type, res2.type), ) if res.type == "SELECT": eq( set(res.vars), set(res2.vars), "Vars do not match: %r != %r" % (set(res.vars), set(res2.vars)), ) assert bindingsCompatible(set(res), set(res2)), ( "Bindings do not match: \nexpected:\n%s\n!=\ngot:\n%s" % ( res.serialize( format="txt", namespace_manager=g.namespace_manager ), res2.serialize( format="txt", namespace_manager=g.namespace_manager ), ) ) elif res.type == "ASK": eq( res.askAnswer, res2.askAnswer, "Ask answer does not match: %r != %r" % (res.askAnswer, res2.askAnswer), ) elif res.type in ("DESCRIBE", "CONSTRUCT"): assert isomorphic(res.graph, res2.graph), "graphs are not isomorphic!" else: raise Exception("Unknown result type: %s" % res.type) except Exception as e: if isinstance(e, AssertionError): failed_tests.append(uri) fails[str(e)] += 1 else: error_tests.append(uri) errors[str(e)] += 1 if DEBUG_ERROR and not isinstance(e, AssertionError) or DEBUG_FAIL: print("======================================") print(uri) print(name) print(comment) if not resfile: if syntax: print("Positive syntax test") else: print("Negative syntax test") if data: print("----------------- DATA --------------------") print(">>>", data) print(bopen_read_close(data[7:])) if graphdata: print("----------------- GRAPHDATA --------------------") for x in graphdata: print(">>>", x) print(bopen_read_close(x[7:])) print("----------------- Query -------------------") print(">>>", query) print(bopen_read_close(query[7:])) if resfile: print("----------------- Res -------------------") print(">>>", resfile) print(bopen_read_close(resfile[7:])) try: pq = parseQuery(bopen_read_close(query[7:])) print("----------------- Parsed ------------------") pprintAlgebra(translateQuery(pq, base=urljoin(query, "."))) except: print("(parser error)") print(decodeStringEscape(str(e))) import pdb pdb.post_mortem(sys.exc_info()[2]) # pdb.set_trace() # nose.tools.set_trace() raise testers = { UP.UpdateEvaluationTest: update_test, MF.UpdateEvaluationTest: update_test, MF.PositiveUpdateSyntaxTest11: update_test, MF.NegativeUpdateSyntaxTest11: update_test, MF.QueryEvaluationTest: query_test, MF.NegativeSyntaxTest11: query_test, MF.PositiveSyntaxTest11: query_test, MF.CSVResultFormatTest: query_test, } def test_dawg(): setFlags() if SPARQL10Tests: for t in nose_tests(testers, "test/DAWG/data-r2/manifest-evaluation.ttl"): yield t if SPARQL11Tests: for t in nose_tests(testers, "test/DAWG/data-sparql11/manifest-all.ttl"): yield t if RDFLibTests: for t in nose_tests(testers, "test/DAWG/rdflib/manifest.ttl"): yield t resetFlags() if __name__ == "__main__": import sys import time start = time.time() if len(sys.argv) > 1: NAME = sys.argv[1] DEBUG_FAIL = True i = 0 success = 0 skip = 0 for _type, t in test_dawg(): if NAME and not str(t[0]).startswith(NAME): continue i += 1 try: _type(t) add_test(t[0], "passed") success += 1 except SkipTest as e: msg = skiptests.get(t[0], e.args) add_test(t[0], "untested", msg) print("skipping %s - %s" % (t[0], msg)) skip += 1 except KeyboardInterrupt: raise except AssertionError: add_test(t[0], "failed") except: add_test(t[0], "failed", "error") import traceback traceback.print_exc() sys.stderr.write("%s\n" % t[0]) print("\n----------------------------------------------------\n") print("Failed tests:") for failed in failed_tests: print(failed) print("\n----------------------------------------------------\n") print("Error tests:") for error in error_tests: print(error) print("\n----------------------------------------------------\n") print("Most common fails:") for failed in fails.most_common(10): failed_str = str(failed) print(failed_str[:450] + (failed_str[450:] and "...")) print("\n----------------------------------------------------\n") if errors: print("Most common errors:") for error in errors.most_common(10): print(error) else: print("(no errors!)") f_sum = sum(fails.values()) e_sum = sum(errors.values()) if success + f_sum + e_sum + skip != i: print("(Something is wrong, %d!=%d)" % (success + f_sum + e_sum + skip, i)) print( "\n%d tests, %d passed, %d failed, %d errors, \ %d skipped (%.2f%% success)" % (i, success, f_sum, e_sum, skip, 100.0 * success / i) ) print("Took %.2fs" % (time.time() - start)) if not NAME: now = isodate.datetime_isoformat(datetime.datetime.utcnow()) with open("testruns.txt", "a") as tf: tf.write( "%s\n%d tests, %d passed, %d failed, %d errors, %d " "skipped (%.2f%% success)\n\n" % (now, i, success, f_sum, e_sum, skip, 100.0 * success / i) ) earl_report = os.path.join(TEST_DIR, "../test_reports/rdflib_sparql-%s.ttl" % now.replace(":", "")) report.serialize(earl_report, format="n3") report.serialize(os.path.join(TEST_DIR, "../test_reports/rdflib_sparql-latest.ttl"), format="n3") print("Wrote EARL-report to '%s'" % earl_report)
py
b413ad6f8c08f474212bc5973b8fc53dc57d01dc
from django.contrib import admin from django.apps import apps models = apps.get_models() for model in models: try: admin.site.register(model) except admin.sites.AlreadyRegistered: pass
py
b413ade7a3ff4ca4026f90a84110d3aff9721933
import pytest # noqa from actions.homeassistant_action import HomeAssistantAction def test_homeassistant_action(card, actions, monkeypatch, mocker): requests_post = mocker.MagicMock() monkeypatch.setattr("requests.post", requests_post) card["uri"] = "uri" action = actions["Test Action"] action["token"] = "token" action["host"] = "hostname" action["port"] = "1337" action["verify_ssl"] = False processor = HomeAssistantAction(card, action) processor.process() requests_post.assert_called_with( "http://hostname:1337/api/events/magic_card_scanned", data={ "card_code": "123456789", "card_type": "test-type", "card_arturl": "test-URL", "card_title": "test-Title", "card_subtitle": "test-Subtitle", "card_uri": "uri", "magic_cards_room": "Living Room", }, headers={"Authorization": "Bearer token", "Content-Type": "application/json"}, verify=False, )
py
b413ae4205defeebcf0e650927f3bf9eb9ef21ec
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Geopm(AutotoolsPackage): """GEOPM is an extensible power management framework targeting HPC. The GEOPM package provides libgeopm, libgeopmpolicy and applications geopmctl and geopmpolicy, as well as tools for postprocessing. GEOPM is designed to be extended for new control algorithms and new hardware power management features via its plugin infrastructure. Note: GEOPM interfaces with hardware using Model Specific Registers (MSRs). For propper usage make sure MSRs are made available directly or via the msr-safe kernel module by your administrator.""" homepage = "https://geopm.github.io" url = "https://github.com/geopm/geopm/releases/download/v0.4.0/geopm-0.4.0.tar.gz" # Add additional proper versions and checksums here. "spack checksum geopm" version('0.5.0', '61b454bc74d4606fe84818aef16c1be4') version('0.4.0', 'd4cc8fffe521296dab379857d7e2064d') version('0.3.0', '568fd37234396fff134f8d57b60f2b83') version('master', git='https://github.com/geopm/geopm.git', branch='master') version('develop', git='https://github.com/geopm/geopm.git', branch='dev') # Variants reflecting most ./configure --help options variant('debug', default=False, description='Enable debug.') variant('coverage', default=False, description='Enable test coverage support, enables debug by default.') variant('overhead', default=False, description='Enable GEOPM to calculate and display time spent in GEOPM API calls.') variant('procfs', default=True, description='Enable procfs (disable for OSes not using procfs).') variant('mpi', default=True, description='Enable MPI dependent components.') variant('fortran', default=True, description='Build fortran interface.') variant('doc', default=True, description='Create man pages with ruby-ronn.') variant('openmp', default=True, description='Build with OpenMP.') variant('ompt', default=False, description='Use OpenMP Tools Interface.') variant('hwloc', default=True, description='Build with hwloc.') variant('gnu-ld', default=False, description='Assume C compiler uses gnu-ld.') # Added dependencies. depends_on('m4', type='build') depends_on('automake', type='build') depends_on('autoconf', type='build') depends_on('libtool', type='build') depends_on('ruby-ronn', type='build', when='+doc') depends_on('doxygen', type='build', when='+doc') depends_on('numactl') depends_on('mpi', when='+mpi') # TODO: check if hwloc@specific-version still required with future openmpi depends_on('[email protected]', when='+hwloc') depends_on('json-c') depends_on('py-pandas', type='run') depends_on('py-numpy', type='run') depends_on('py-natsort', type='run') depends_on('py-matplotlib', type='run') parallel = False def configure_args(self): args = [] args.extend(self.enable_or_disable('debug')) args.extend(self.enable_or_disable('coverage')) args.extend(self.enable_or_disable('overhead')) args.extend(self.enable_or_disable('procfs')) args.extend(self.enable_or_disable('mpi')) args.extend(self.enable_or_disable('fortran')) args.extend(self.enable_or_disable('doc')) args.extend(self.enable_or_disable('openmp')) args.extend(self.enable_or_disable('ompt')) args.extend(self.with_or_without('hwloc', activation_value='prefix')) args.extend(self.with_or_without('gnu-ld')) return args
py
b413ae5ae1a0791dc7ee069aca0c8b6d7b13d6f2
""" Clean and validate a DataFrame column containing Indian Permanent Account numbers (PANs). """ # pylint: disable=too-many-lines, too-many-arguments, too-many-branches from typing import Any, Union from operator import itemgetter import dask.dataframe as dd import numpy as np import pandas as pd from stdnum.in_ import pan from ..progress_bar import ProgressBar from .utils import NULL_VALUES, to_dask def clean_in_pan( df: Union[pd.DataFrame, dd.DataFrame], column: str, output_format: str = "standard", inplace: bool = False, errors: str = "coerce", progress: bool = True, ) -> pd.DataFrame: """ Clean Indian Permanent Account numbers (PANs) type data in a DataFrame column. Parameters ---------- df A pandas or Dask DataFrame containing the data to be cleaned. col The name of the column containing data of PAN type. output_format The output format of standardized number string. If output_format = 'compact', return string without any separators or whitespace. If output_format = 'standard', return string with proper separators and whitespace. If output_format = 'info', return a dictionary containing information that can be decoded from the PAN. If output_format = 'mask', mask the PAN as per CBDT masking standard. Note: in the case of PAN, the compact format is the same as the standard one. (default: "standard") inplace If True, delete the column containing the data that was cleaned. Otherwise, keep the original column. (default: False) errors How to handle parsing errors. - ‘coerce’: invalid parsing will be set to NaN. - ‘ignore’: invalid parsing will return the input. - ‘raise’: invalid parsing will raise an exception. (default: 'coerce') progress If True, display a progress bar. (default: True) Examples -------- Clean a column of PAN data. >>> df = pd.DataFrame({{ "pan": [ 'ACUPA7085R', '234123412347',] }) >>> clean_in_pan(df, 'pan') pan pan_clean 0 ACUPA7085R ACUPA7085R 1 234123412347 NaN """ if output_format not in {"compact", "standard", "info", "mask"}: raise ValueError( f"output_format {output_format} is invalid. " 'It needs to be "compact", "standard", "info", "mask".' ) # convert to dask df = to_dask(df) # To clean, create a new column "clean_code_tup" which contains # the cleaned values and code indicating how the initial value was # changed in a tuple. Then split the column of tuples and count the # amount of different codes to produce the report df["clean_code_tup"] = df[column].map_partitions( lambda srs: [_format(x, output_format, errors) for x in srs], meta=object, ) df = df.assign( _temp_=df["clean_code_tup"].map(itemgetter(0)), ) df = df.rename(columns={"_temp_": f"{column}_clean"}) df = df.drop(columns=["clean_code_tup"]) if inplace: df[column] = df[f"{column}_clean"] df = df.drop(columns=f"{column}_clean") df = df.rename(columns={column: f"{column}_clean"}) with ProgressBar(minimum=1, disable=not progress): df = df.compute() return df def validate_in_pan( df: Union[str, pd.Series, dd.Series, pd.DataFrame, dd.DataFrame], column: str = "", ) -> Union[bool, pd.Series, pd.DataFrame]: """ Validate if a data cell is PAN in a DataFrame column. For each cell, return True or False. Parameters ---------- df A pandas or Dask DataFrame containing the data to be validated. col The name of the column to be validated. """ if isinstance(df, (pd.Series, dd.Series)): return df.apply(pan.is_valid) elif isinstance(df, (pd.DataFrame, dd.DataFrame)): if column != "": return df[column].apply(pan.is_valid) else: return df.applymap(pan.is_valid) return pan.is_valid(df) def _format(val: Any, output_format: str = "standard", errors: str = "coarse") -> Any: """ Reformat a number string with proper separators and whitespace. Parameters ---------- val The value of number string. output_format If output_format = 'compact', return string without any separators or whitespace. If output_format = 'standard', return string with proper separators and whitespace. If output_format = 'info', return a dictionary containing information that can be decoded from the PAN. If output_format = 'mask', mask the PAN as per CBDT masking standard. Note: in the case of PAN, the compact format is the same as the standard one. """ val = str(val) result: Any = [] if val in NULL_VALUES: return [np.nan] if not validate_in_pan(val): if errors == "raise": raise ValueError(f"Unable to parse value {val}") error_result = val if errors == "ignore" else np.nan return [error_result] if output_format in {"compact", "standard"}: result = [pan.compact(val)] + result elif output_format == "info": result = [pan.info(val)] + result elif output_format == "mask": result = [pan.mask(val)] + result return result
py
b413ae91c639d1229334e2070db43cda2f3a75d8
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, get_object_or_404 from django.utils.translation import gettext from django.views.decorators.http import require_http_methods from django.http import HttpResponse from django.core import serializers from main_app.forms import AddIceForm from main_app.models import IceSlot @require_http_methods(["GET"]) @login_required() def list_ices(request): """ List all booked ics slots :param request: client request :return: a page with a table of all ices """ ice_slots = IceSlot.objects.all() return render(request, 'ice_slots/list_ices.html', { 'ice_slots': ice_slots }) @require_http_methods(["GET", "POST"]) @login_required() def add_ice(request): """ Provides a form so user can schedule ice times :param request: client request :return: a page with add ice form """ if request.method == 'POST': form = AddIceForm(request.POST) if form.is_valid(): ice_slot = IceSlot( start_time=form.cleaned_data['start_time'], end_time=form.cleaned_data['end_time'], club=request.user.member.club ) ice_slot.save() ice_slot.refresh_from_db() messages.add_message(request, messages.SUCCESS, gettext('Added ice-slot at {start} for club {club}').format(start=ice_slot.start_time, club=ice_slot.club.name)) return redirect('list_ices') else: form = AddIceForm() return render(request, 'ice_slots/add_ice.html', { 'form': form }) @require_http_methods(["GET", "POST"]) @login_required() def edit_ice(request, ice_slot_id): """ View to edit a booked ice slot. e.g. it's time. :param request: client request :param ice_slot_id: id of to be modified ice slot :return: a page with a edit ice form """ ice_slot = get_object_or_404(IceSlot, pk=ice_slot_id) if request.method == 'POST': form = AddIceForm(request.POST, instance=ice_slot) if form.is_valid(): old_start = ice_slot.start_time old_end = ice_slot.end_time form.save() messages.add_message(request, messages.SUCCESS, gettext( 'Changed time from {old_start}-{old_end} to {start}-{end} for slot {id}').format( old_start=old_start.time(), old_end=old_end.time(), start=ice_slot.start_time.time(), end=ice_slot.end_time.time(), id=ice_slot_id)) return redirect('list_ices') else: form = AddIceForm(instance=ice_slot) return render(request, 'ice_slots/add_ice.html', { 'form': form, }) @require_http_methods(["POST"]) @login_required() def delete_ice(request, ice_slot_id): """ URL to delete a provided ice slot id and redirect to list ices view. :param request: client request :param ice_slot_id: id of to be deleted ice slot :return: success message and redirect to ice slot list or throws a error message """ if request.method == 'POST': ice_slot = get_object_or_404(IceSlot, pk=ice_slot_id) ice_slot.delete() messages.add_message(request, messages.SUCCESS, gettext('Deleted ice_slot {id}').format(id=ice_slot_id)) return redirect('list_ices') @require_http_methods(["GET"]) @login_required() def view_ice(request, ice_slot_id): ice_slot = get_object_or_404(IceSlot, pk=ice_slot_id) trainings = ice_slot.trainings.all() data = serializers.serialize('json', trainings, fields=('title', 'start_time', 'end_time')) return HttpResponse(data, content_type="application/json")
py
b413b04562c6bd38552d27a597cb39b2c081aff7
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Data generators for the Mathematical Language Understanding dataset. The training and test data were generated by assigning symbolic variables either positive or negative decimal integers and then describing the algebraic operation to perform. We restrict our variable assignments to the range x,y->[-1000,1000) and the operations to the set {+,-,*}. To ensure that the model embraces symbolic variables, the order in which x and y appears in the expression is randomly chosen. For instance, an input string contrasting from the example shown above might be y=129,x=531,x-y. Each input string is accompanied by its target string, which is the evaluation of the mathematical expression. For this study, all targets considered are decimal integers represented at the character level. About 12 million unique samples were thus generated and randomly split into training and test sets at an approximate ratio of 9:1, respectively. For more information check the following paper: Artit Wangperawong. Attending to Mathematical Language with Transformers, arXiv:1812.02825 (https://arxiv.org/abs/1812.02825). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tarfile from tensor2tensor.data_generators import generator_utils from tensor2tensor.data_generators import problem from tensor2tensor.data_generators import text_problems from tensor2tensor.utils import registry import tensorflow as tf @registry.register_problem class MathematicalLanguageUnderstanding(text_problems.Text2TextProblem): """Mathematical language understanding, see arxiv.org/abs/1812.02825.""" URL = ("https://art.wangperawong.com/mathematical_language_understanding" "_train.tar.gz") @property def vocab_type(self): return text_problems.VocabType.CHARACTER @property def dataset_splits(self): return [{ "split": problem.DatasetSplit.TRAIN, "shards": 10, }, { "split": problem.DatasetSplit.EVAL, "shards": 1, }] @property def is_generate_per_split(self): return False def generate_samples(self, data_dir, tmp_dir, dataset_split): """Downloads and extracts the dataset and generates examples. Args: data_dir: The base directory where data and vocab files are stored. tmp_dir: temp directory to download and extract the dataset. dataset_split: split of the data-set. Yields: The data examples. """ if not tf.gfile.Exists(tmp_dir): tf.gfile.MakeDirs(tmp_dir) if not tf.gfile.Exists(data_dir): tf.gfile.MakeDirs(data_dir) # Download and extract. compressed_filename = os.path.basename(self.URL) download_path = generator_utils.maybe_download( tmp_dir, compressed_filename, self.URL) with tarfile.open(download_path, "r:gz") as tar: tar.extractall(tmp_dir) filepath = os.path.join(tmp_dir, "mathematical_language_understanding_train.txt") with open(filepath, "r") as fp: for l in fp: prob, ans = l.strip().split(":") yield {"inputs": prob, "targets": ans}
py
b413b0e7e37b101783db669eefb48e9f2f8443a9
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import OhonetworkTestFramework from test_framework.util import * from test_framework.blocktools import create_block, create_coinbase ''' SendHeadersTest -- test behavior of headers messages to announce blocks. Setup: - Two nodes, two p2p connections to node0. One p2p connection should only ever receive inv's (omitted from testing description below, this is our control). Second node is used for creating reorgs. Part 1: No headers announcements before "sendheaders" a. node mines a block [expect: inv] send getdata for the block [expect: block] b. node mines another block [expect: inv] send getheaders and getdata [expect: headers, then block] c. node mines another block [expect: inv] peer mines a block, announces with header [expect: getdata] d. node mines another block [expect: inv] Part 2: After "sendheaders", headers announcements should generally work. a. peer sends sendheaders [expect: no response] peer sends getheaders with current tip [expect: no response] b. node mines a block [expect: tip header] c. for N in 1, ..., 10: * for announce-type in {inv, header} - peer mines N blocks, announces with announce-type [ expect: getheaders/getdata or getdata, deliver block(s) ] - node mines a block [ expect: 1 header ] Part 3: Headers announcements stop after large reorg and resume after getheaders or inv from peer. - For response-type in {inv, getheaders} * node mines a 7 block reorg [ expect: headers announcement of 8 blocks ] * node mines an 8-block reorg [ expect: inv at tip ] * peer responds with getblocks/getdata [expect: inv, blocks ] * node mines another block [ expect: inv at tip, peer sends getdata, expect: block ] * node mines another block at tip [ expect: inv ] * peer responds with getheaders with an old hashstop more than 8 blocks back [expect: headers] * peer requests block [ expect: block ] * node mines another block at tip [ expect: inv, peer sends getdata, expect: block ] * peer sends response-type [expect headers if getheaders, getheaders/getdata if mining new block] * node mines 1 block [expect: 1 header, peer responds with getdata] Part 4: Test direct fetch behavior a. Announce 2 old block headers. Expect: no getdata requests. b. Announce 3 new blocks via 1 headers message. Expect: one getdata request for all 3 blocks. (Send blocks.) c. Announce 1 header that forks off the last two blocks. Expect: no response. d. Announce 1 more header that builds on that fork. Expect: one getdata request for two blocks. e. Announce 16 more headers that build on that fork. Expect: getdata request for 14 more blocks. f. Announce 1 more header that builds on that fork. Expect: no response. Part 5: Test handling of headers that don't connect. a. Repeat 10 times: 1. Announce a header that doesn't connect. Expect: getheaders message 2. Send headers chain. Expect: getdata for the missing blocks, tip update. b. Then send 9 more headers that don't connect. Expect: getheaders message each time. c. Announce a header that does connect. Expect: no response. d. Announce 49 headers that don't connect. Expect: getheaders message each time. e. Announce one more that doesn't connect. Expect: disconnect. ''' direct_fetch_response_time = 0.05 class BaseNode(SingleNodeConnCB): def __init__(self): SingleNodeConnCB.__init__(self) self.last_inv = None self.last_headers = None self.last_block = None self.last_getdata = None self.block_announced = False self.last_getheaders = None self.disconnected = False self.last_blockhash_announced = None def clear_last_announcement(self): with mininode_lock: self.block_announced = False self.last_inv = None self.last_headers = None # Request data for a list of block hashes def get_data(self, block_hashes): msg = msg_getdata() for x in block_hashes: msg.inv.append(CInv(2, x)) self.connection.send_message(msg) def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.connection.send_message(msg) def send_block_inv(self, blockhash): msg = msg_inv() msg.inv = [CInv(2, blockhash)] self.connection.send_message(msg) def on_inv(self, conn, message): self.last_inv = message self.block_announced = True self.last_blockhash_announced = message.inv[-1].hash def on_headers(self, conn, message): self.last_headers = message if len(message.headers): self.block_announced = True message.headers[-1].calc_sha256() self.last_blockhash_announced = message.headers[-1].sha256 def on_block(self, conn, message): self.last_block = message.block self.last_block.calc_sha256() def on_getdata(self, conn, message): self.last_getdata = message def on_getheaders(self, conn, message): self.last_getheaders = message def on_close(self, conn): self.disconnected = True # Test whether the last announcement we received had the # right header or the right inv # inv and headers should be lists of block hashes def check_last_announcement(self, headers=None, inv=None): expect_headers = headers if headers != None else [] expect_inv = inv if inv != None else [] test_function = lambda: self.block_announced assert(wait_until(test_function, timeout=60)) with mininode_lock: self.block_announced = False success = True compare_inv = [] if self.last_inv != None: compare_inv = [x.hash for x in self.last_inv.inv] if compare_inv != expect_inv: success = False hash_headers = [] if self.last_headers != None: # treat headers as a list of block hashes hash_headers = [ x.sha256 for x in self.last_headers.headers ] if hash_headers != expect_headers: success = False self.last_inv = None self.last_headers = None return success # Syncing helpers def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash assert(wait_until(test_function, timeout=timeout)) return def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_getheaders != None assert(wait_until(test_function, timeout=timeout)) return def wait_for_getdata(self, hash_list, timeout=60): if hash_list == []: return test_function = lambda: self.last_getdata != None and [x.hash for x in self.last_getdata.inv] == hash_list assert(wait_until(test_function, timeout=timeout)) return def wait_for_disconnect(self, timeout=60): test_function = lambda: self.disconnected assert(wait_until(test_function, timeout=timeout)) return def wait_for_block_announcement(self, block_hash, timeout=60): test_function = lambda: self.last_blockhash_announced == block_hash assert(wait_until(test_function, timeout=timeout)) return def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [ CBlockHeader(b) for b in new_blocks ] self.send_message(headers_message) def send_getblocks(self, locator): getblocks_message = msg_getblocks() getblocks_message.locator.vHave = locator self.send_message(getblocks_message) # InvNode: This peer should only ever receive inv's, because it doesn't ever send a # "sendheaders" message. class InvNode(BaseNode): def __init__(self): BaseNode.__init__(self) # TestNode: This peer is the one we use for most of the testing. class TestNode(BaseNode): def __init__(self): BaseNode.__init__(self) class SendHeadersTest(OhonetworkTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 def setup_network(self): self.nodes = [] self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [["-debug", "-logtimemicros=1"]]*2) connect_nodes(self.nodes[0], 1) # mine count blocks and return the new tip def mine_blocks(self, count): # Clear out last block announcement from each p2p listener [ x.clear_last_announcement() for x in self.p2p_connections ] self.nodes[0].generate(count) return int(self.nodes[0].getbestblockhash(), 16) # mine a reorg that invalidates length blocks (replacing them with # length+1 blocks). # Note: we clear the state of our p2p connections after the # to-be-reorged-out blocks are mined, so that we don't break later tests. # return the list of block hashes newly mined def mine_reorg(self, length): self.nodes[0].generate(length) # make sure all invalidated blocks are node0's sync_blocks(self.nodes, wait=0.1) for x in self.p2p_connections: x.wait_for_block_announcement(int(self.nodes[0].getbestblockhash(), 16)) x.clear_last_announcement() tip_height = self.nodes[1].getblockcount() hash_to_invalidate = self.nodes[1].getblockhash(tip_height-(length-1)) self.nodes[1].invalidateblock(hash_to_invalidate) all_hashes = self.nodes[1].generate(length+1) # Must be longer than the orig chain sync_blocks(self.nodes, wait=0.1) return [int(x, 16) for x in all_hashes] def run_test(self): # Setup the p2p connections and start up the network thread. inv_node = InvNode() test_node = TestNode() self.p2p_connections = [inv_node, test_node] connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], inv_node)) # Set nServices to 0 for test_node, so no block download will occur outside of # direct fetching connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node, services=0)) inv_node.add_connection(connections[0]) test_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here inv_node.wait_for_verack() test_node.wait_for_verack() tip = int(self.nodes[0].getbestblockhash(), 16) # PART 1 # 1. Mine a block; expect inv announcements each time print("Part 1: headers don't start before sendheaders message...") for i in range(4): old_tip = tip tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) # Try a few different responses; none should affect next announcement if i == 0: # first request the block test_node.get_data([tip]) test_node.wait_for_block(tip, timeout=5) elif i == 1: # next try requesting header and block test_node.get_headers(locator=[old_tip], hashstop=tip) test_node.get_data([tip]) test_node.wait_for_block(tip) test_node.clear_last_announcement() # since we requested headers... elif i == 2: # this time announce own block via headers height = self.nodes[0].getblockcount() last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 new_block = create_block(tip, create_coinbase(height+1), block_time) new_block.solve() test_node.send_header_for_blocks([new_block]) test_node.wait_for_getdata([new_block.sha256], timeout=5) test_node.send_message(msg_block(new_block)) test_node.sync_with_ping() # make sure this block is processed inv_node.clear_last_announcement() test_node.clear_last_announcement() print("Part 1: success!") print("Part 2: announce blocks with headers after sendheaders message...") # PART 2 # 2. Send a sendheaders message and test that headers announcements # commence and keep working. test_node.send_message(msg_sendheaders()) prev_tip = int(self.nodes[0].getbestblockhash(), 16) test_node.get_headers(locator=[prev_tip], hashstop=0) test_node.sync_with_ping() # Now that we've synced headers, headers announcements should work tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height = self.nodes[0].getblockcount()+1 block_time += 10 # Advance far enough ahead for i in range(10): # Mine i blocks, and alternate announcing either via # inv (of tip) or via headers. After each, new blocks # mined by the node should successfully be announced # with block header, even though the blocks are never requested for j in range(2): blocks = [] for b in range(i+1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 if j == 0: # Announce via inv test_node.send_block_inv(tip) test_node.wait_for_getdata([tip], timeout=5) # Test that duplicate inv's won't result in duplicate # getdata requests, or duplicate headers announcements inv_node.send_block_inv(tip) # Should have received a getheaders as well! test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks[0:-1]], timeout=5) [ inv_node.send_block_inv(x.sha256) for x in blocks[0:-1] ] inv_node.sync_with_ping() else: # Announce via headers test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=5) # Test that duplicate headers won't result in duplicate # getdata requests (the check is further down) inv_node.send_header_for_blocks(blocks) inv_node.sync_with_ping() [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() inv_node.sync_with_ping() # This block should not be announced to the inv node (since it also # broadcast it) assert_equal(inv_node.last_inv, None) assert_equal(inv_node.last_headers, None) tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height += 1 block_time += 1 print("Part 2: success!") print("Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer...") # PART 3. Headers announcements can stop after large reorg, and resume after # getheaders or inv from peer. for j in range(2): # First try mining a reorg that can propagate with header announcement new_block_hashes = self.mine_reorg(length=7) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=new_block_hashes), True) block_time += 8 # Mine a too-large reorg, which should be announced with a single inv new_block_hashes = self.mine_reorg(length=8) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) block_time += 9 fork_point = self.nodes[0].getblock("%02x" % new_block_hashes[0])["previousblockhash"] fork_point = int(fork_point, 16) # Use getblocks/getdata test_node.send_getblocks(locator = [fork_point]) assert_equal(test_node.check_last_announcement(inv=new_block_hashes), True) test_node.get_data(new_block_hashes) test_node.wait_for_block(new_block_hashes[-1]) for i in range(3): # Mine another block, still should get only an inv tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) if i == 0: # Just get the data -- shouldn't cause headers announcements to resume test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # Send a getheaders message that shouldn't trigger headers announcements # to resume (best header sent will be too old) test_node.get_headers(locator=[fork_point], hashstop=new_block_hashes[1]) test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 2: test_node.get_data([tip]) test_node.wait_for_block(tip) # This time, try sending either a getheaders to trigger resumption # of headers announcements, or mine a new block and inv it, also # triggering resumption of headers announcements. if j == 0: test_node.get_headers(locator=[tip], hashstop=0) test_node.sync_with_ping() else: test_node.send_block_inv(tip) test_node.sync_with_ping() # New blocks should now be announced with header tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) print("Part 3: success!") print("Part 4: Testing direct fetch behavior...") tip = self.mine_blocks(1) height = self.nodes[0].getblockcount() + 1 last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 # Create 2 blocks. Send the blocks, then send the headers. blocks = [] for b in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 inv_node.send_message(msg_block(blocks[-1])) inv_node.sync_with_ping() # Make sure blocks are processed test_node.last_getdata = None test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() # should not have received any getdata messages with mininode_lock: assert_equal(test_node.last_getdata, None) # This time, direct fetch should work blocks = [] for b in range(3): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=direct_fetch_response_time) [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() # Now announce a header that forks the last two blocks tip = blocks[0].sha256 height -= 1 blocks = [] # Create extra blocks for later for b in range(20): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Announcing one block on fork should not trigger direct fetch # (less work than tip) test_node.last_getdata = None test_node.send_header_for_blocks(blocks[0:1]) test_node.sync_with_ping() with mininode_lock: assert_equal(test_node.last_getdata, None) # Announcing one more block on fork should trigger direct fetch for # both blocks (same work as tip) test_node.send_header_for_blocks(blocks[1:2]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]], timeout=direct_fetch_response_time) # Announcing 16 more headers should trigger direct fetch for 14 more # blocks test_node.send_header_for_blocks(blocks[2:18]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]], timeout=direct_fetch_response_time) # Announcing 1 more header should not trigger any response test_node.last_getdata = None test_node.send_header_for_blocks(blocks[18:19]) test_node.sync_with_ping() with mininode_lock: assert_equal(test_node.last_getdata, None) print("Part 4: success!") # Now deliver all those blocks we announced. [ test_node.send_message(msg_block(x)) for x in blocks ] print("Part 5: Testing handling of unconnecting headers") # First we test that receipt of an unconnecting header doesn't prevent # chain sync. for i in range(10): test_node.last_getdata = None blocks = [] # Create two more blocks. for j in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Send the header of the second block -> this won't connect. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[1]]) test_node.wait_for_getheaders(timeout=1) test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() assert_equal(int(self.nodes[0].getbestblockhash(), 16), blocks[1].sha256) blocks = [] # Now we test that if we repeatedly don't send connecting headers, we # don't go into an infinite loop trying to get them to connect. MAX_UNCONNECTING_HEADERS = 10 for j in range(MAX_UNCONNECTING_HEADERS+1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 for i in range(1, MAX_UNCONNECTING_HEADERS): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[i]]) test_node.wait_for_getheaders(timeout=1) # Next header will connect, should re-set our count: test_node.send_header_for_blocks([blocks[0]]) # Remove the first two entries (blocks[1] would connect): blocks = blocks[2:] # Now try to see how many unconnecting headers we can send # before we get disconnected. Should be 5*MAX_UNCONNECTING_HEADERS for i in range(5*MAX_UNCONNECTING_HEADERS - 1): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[i%len(blocks)]]) test_node.wait_for_getheaders(timeout=1) # Eventually this stops working. with mininode_lock: self.last_getheaders = None test_node.send_header_for_blocks([blocks[-1]]) # Should get disconnected test_node.wait_for_disconnect() with mininode_lock: self.last_getheaders = True print("Part 5: success!") # Finally, check that the inv node never received a getdata request, # throughout the test assert_equal(inv_node.last_getdata, None) if __name__ == '__main__': SendHeadersTest().main()
py
b413b13ae8ec39e38f93ca07cc81908391dafe27
import pytest from concurrent.futures import ThreadPoolExecutor import time import threading def test_thread_id(kivy_clock): import asynckivy as ak async def job(executer): before = threading.get_ident() await ak.run_in_executer(lambda: None, executer) after = threading.get_ident() assert before == after with ThreadPoolExecutor() as executer: task = ak.start(job(executer)) time.sleep(.01) assert not task.done kivy_clock.tick() assert task.done def test_propagate_exception(kivy_clock): import asynckivy as ak async def job(executer): with pytest.raises(ZeroDivisionError): await ak.run_in_executer(lambda: 1 / 0, executer) with ThreadPoolExecutor() as executer: task = ak.start(job(executer)) time.sleep(.01) assert not task.done kivy_clock.tick() assert task.done def test_no_exception(kivy_clock): import asynckivy as ak async def job(executer): assert 'A' == await ak.run_in_executer(lambda: 'A', executer) with ThreadPoolExecutor() as executer: task = ak.start(job(executer)) time.sleep(.01) assert not task.done kivy_clock.tick() assert task.done def test_cancel_before_getting_excuted(kivy_clock): import time import asynckivy as ak flag = ak.Event() async def job(executer): await ak.run_in_executer(flag.set, executer) with ThreadPoolExecutor(max_workers=1) as executer: executer.submit(time.sleep, .1) task = ak.start(job(executer)) time.sleep(.02) assert not task.done assert not flag.is_set() kivy_clock.tick() task.cancel() assert task.cancelled assert not flag.is_set() time.sleep(.2) assert not flag.is_set()
py
b413b1ce732e77ea40d9743eb334adec98aec85b
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-06-19 06:40 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('wildlifecompliance', '0051_auto_20180619_1256'), ] operations = [ migrations.RemoveField( model_name='applicationdeclineddetails', name='activity_type', ), migrations.AddField( model_name='applicationdeclineddetails', name='activity_type', field=django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True), ), ]
py
b413b2817bf514ac01874e5377f22d20dfb75d29
from pymongo import MongoClient from progressbar import ProgressBar, Bar, Percentage, FormatLabel, ETA import numpy as np np.set_printoptions(threshold=np.nan) client = MongoClient() db = client.dotabot matches = db.matches # We're going to create a training matrix, X, where each # row is a different match and each column is a feature # The features are bit vectors indicating whether heroes # were picked (1) or not picked (0). The first N features # correspond to radiant, and the last N features are # for dire. NUM_HEROES = 108 NUM_FEATURES = NUM_HEROES * 2 # Our training label vector, Y, is a bit vector indicating # whether radiant won (1) or lost (-1) NUM_MATCHES = matches.count() # Initialize training matrix X = np.zeros((NUM_MATCHES, NUM_FEATURES), dtype=np.int8) # Initialize training label vector Y = np.zeros(NUM_MATCHES, dtype=np.int8) widgets = [FormatLabel('Processed: %(value)d/%(max)d matches. '), ETA(), Percentage(), ' ', Bar()] pbar = ProgressBar(widgets=widgets, maxval=NUM_MATCHES).start() for i, record in enumerate(matches.find()): pbar.update(i) Y[i] = 1 if record['radiant_win'] else 0 players = record['players'] for player in players: hero_id = player['hero_id'] - 1 # If the left-most bit of player_slot is set, # this player is on dire, so push the index accordingly player_slot = player['player_slot'] if player_slot >= 128: hero_id += NUM_HEROES X[i, hero_id] = 1 pbar.finish() print "Permuting, generating train and test sets." indices = np.random.permutation(NUM_MATCHES) test_indices = indices[0:NUM_MATCHES/10] train_indices = indices[NUM_MATCHES/10:NUM_MATCHES] X_test = X[test_indices] Y_test = Y[test_indices] X_train = X[train_indices] Y_train = Y[train_indices] print "Saving output file now..." np.savez_compressed('test_%d.npz' % len(test_indices), X=X_test, Y=Y_test) np.savez_compressed('train_%d.npz' % len(train_indices), X=X_train, Y=Y_train)
py
b413b2eb665223f588393065dc6737851f859f5d
import json def select(order): ''' 0: brief 1: tips 2: detail 3: info ''' filename = [ 'data/brief.txt', 'data/tips.json', 'data/detail.json', 'data/info.json' ] if order == 0: f = open(filename[order], "r") line = f.readline() return line else: f = open(filename[order], "r") line = f.readline() return line def update(order, data): ''' 0: brief 1: tips 2: detail 3: info ''' filename = [ 'data/brief.txt', 'data/tips.json', 'data/detail.json', 'data/info.json' ] if order == 0: f = open(filename[order], "w+") f.write(data) return data else: f = open(filename[order], "w+") js = json.dumps(data, ensure_ascii=False) f.write(js) return data
py
b413b2ed912e3e3655d19c860e8e5d9db14c356b
import atexit from distutils.version import StrictVersion import glob import uuid import numpy as np import os import subprocess from typing import Dict, List, Optional, Any, Tuple import mlagents_envs from mlagents_envs.logging_util import get_logger from mlagents_envs.side_channel.side_channel import SideChannel, IncomingMessage from mlagents_envs.base_env import ( BaseEnv, DecisionSteps, TerminalSteps, BehaviorSpec, BehaviorName, AgentId, ) from mlagents_envs.timers import timed, hierarchical_timer from mlagents_envs.exception import ( UnityEnvironmentException, UnityCommunicationException, UnityActionException, UnityTimeOutException, ) from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto from mlagents_envs.communicator_objects.capabilities_pb2 import UnityRLCapabilitiesProto from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import ( UnityRLInitializationInputProto, ) from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto from .rpc_communicator import RpcCommunicator from sys import platform import signal import struct logger = get_logger(__name__) class UnityEnvironment(BaseEnv): SCALAR_ACTION_TYPES = (int, np.int32, np.int64, float, np.float32, np.float64) SINGLE_BRAIN_ACTION_TYPES = SCALAR_ACTION_TYPES + (list, np.ndarray) # Communication protocol version. # When connecting to C#, this must match Academy.k_ApiVersion # Currently we require strict equality between the communication protocol # on each side, although we may allow some flexibility in the future. # This should be incremented whenever a change is made to the communication protocol. API_VERSION = "0.17.0" # Default port that the editor listens on. If an environment executable # isn't specified, this port will be used. DEFAULT_EDITOR_PORT = 5004 # Default base port for environments. Each environment will be offset from this # by it's worker_id. BASE_ENVIRONMENT_PORT = 5005 # Command line argument used to pass the port to the executable environment. PORT_COMMAND_LINE_ARG = "--mlagents-port" @staticmethod def _raise_version_exception(unity_com_ver: str) -> None: raise UnityEnvironmentException( f"The communication API version is not compatible between Unity and python. " f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_com_ver}.\n " f"Please go to https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release " f"to download the latest version of ML-Agents." ) @staticmethod def check_communication_compatibility( unity_com_ver: str, python_api_version: str, unity_package_version: str ) -> bool: unity_communicator_version = StrictVersion(unity_com_ver) api_version = StrictVersion(python_api_version) if unity_communicator_version.version[0] == 0: if ( unity_communicator_version.version[0] != api_version.version[0] or unity_communicator_version.version[1] != api_version.version[1] ): # Minor beta versions differ. return False elif unity_communicator_version.version[0] != api_version.version[0]: # Major versions mismatch. return False elif unity_communicator_version.version[1] != api_version.version[1]: # Non-beta minor versions mismatch. Log a warning but allow execution to continue. logger.warning( f"WARNING: The communication API versions between Unity and python differ at the minor version level. " f"Python API: {python_api_version}, Unity API: {unity_communicator_version}.\n" f"This means that some features may not work unless you upgrade the package with the lower version." f"Please find the versions that work best together from our release page.\n" "https://github.com/Unity-Technologies/ml-agents/releases" ) else: logger.info( f"Connected to Unity environment with package version {unity_package_version} " f"and communication version {unity_com_ver}" ) return True @staticmethod def get_capabilities_proto() -> UnityRLCapabilitiesProto: capabilities = UnityRLCapabilitiesProto() capabilities.baseRLCapabilities = True return capabilities @staticmethod def warn_csharp_base_capabitlities( caps: UnityRLCapabilitiesProto, unity_package_ver: str, python_package_ver: str ) -> None: if not caps.baseRLCapabilities: logger.warning( "WARNING: The Unity process is not running with the expected base Reinforcement Learning" " capabilities. Please be sure upgrade the Unity Package to a version that is compatible with this " "python package.\n" f"Python package version: {python_package_ver}, C# package version: {unity_package_ver}" f"Please find the versions that work best together from our release page.\n" "https://github.com/Unity-Technologies/ml-agents/releases" ) def __init__( self, file_name: Optional[str] = None, worker_id: int = 0, base_port: Optional[int] = None, seed: int = 0, no_graphics: bool = False, timeout_wait: int = 60, additional_args: Optional[List[str]] = None, side_channels: Optional[List[SideChannel]] = None, log_folder: Optional[str] = None, ): """ Starts a new unity environment and establishes a connection with the environment. Notice: Currently communication between Unity and Python takes place over an open socket without authentication. Ensure that the network where training takes place is secure. :string file_name: Name of Unity environment binary. :int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used. :int worker_id: Offset from base_port. Used for training multiple environments simultaneously. :bool no_graphics: Whether to run the Unity simulator in no-graphics mode :int timeout_wait: Time (in seconds) to wait for connection from environment. :list args: Addition Unity command line arguments :list side_channels: Additional side channel for no-rl communication with Unity :str log_folder: Optional folder to write the Unity Player log file into. Requires absolute path. """ atexit.register(self._close) self.additional_args = additional_args or [] self.no_graphics = no_graphics # If base port is not specified, use BASE_ENVIRONMENT_PORT if we have # an environment, otherwise DEFAULT_EDITOR_PORT if base_port is None: base_port = ( self.BASE_ENVIRONMENT_PORT if file_name else self.DEFAULT_EDITOR_PORT ) self.port = base_port + worker_id self._buffer_size = 12000 # If true, this means the environment was successfully loaded self._loaded = False # The process that is started. If None, no process was started self.proc1 = None self.timeout_wait: int = timeout_wait self.communicator = self.get_communicator(worker_id, base_port, timeout_wait) self.worker_id = worker_id self.side_channels: Dict[uuid.UUID, SideChannel] = {} if side_channels is not None: for _sc in side_channels: if _sc.channel_id in self.side_channels: raise UnityEnvironmentException( "There cannot be two side channels with the same channel id {0}.".format( _sc.channel_id ) ) self.side_channels[_sc.channel_id] = _sc self.log_folder = log_folder # If the environment name is None, a new environment will not be launched # and the communicator will directly try to connect to an existing unity environment. # If the worker-id is not 0 and the environment name is None, an error is thrown if file_name is None and worker_id != 0: raise UnityEnvironmentException( "If the environment name is None, " "the worker-id must be 0 in order to connect with the Editor." ) if file_name is not None: self.executable_launcher(file_name, no_graphics, additional_args) else: logger.info( f"Listening on port {self.port}. " f"Start training by pressing the Play button in the Unity Editor." ) self._loaded = True rl_init_parameters_in = UnityRLInitializationInputProto( seed=seed, communication_version=self.API_VERSION, package_version=mlagents_envs.__version__, capabilities=UnityEnvironment.get_capabilities_proto(), ) try: aca_output = self.send_academy_parameters(rl_init_parameters_in) aca_params = aca_output.rl_initialization_output except UnityTimeOutException: self._close(0) raise if not UnityEnvironment.check_communication_compatibility( aca_params.communication_version, UnityEnvironment.API_VERSION, aca_params.package_version, ): self._close(0) UnityEnvironment._raise_version_exception(aca_params.communication_version) UnityEnvironment.warn_csharp_base_capabitlities( aca_params.capabilities, aca_params.package_version, UnityEnvironment.API_VERSION, ) self._env_state: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {} self._env_specs: Dict[str, BehaviorSpec] = {} self._env_actions: Dict[str, np.ndarray] = {} self._is_first_message = True self._update_behavior_specs(aca_output) @staticmethod def get_communicator(worker_id, base_port, timeout_wait): return RpcCommunicator(worker_id, base_port, timeout_wait) @staticmethod def validate_environment_path(env_path: str) -> Optional[str]: # Strip out executable extensions if passed env_path = ( env_path.strip() .replace(".app", "") .replace(".exe", "") .replace(".x86_64", "") .replace(".x86", "") ) true_filename = os.path.basename(os.path.normpath(env_path)) logger.debug("The true file name is {}".format(true_filename)) if not (glob.glob(env_path) or glob.glob(env_path + ".*")): return None cwd = os.getcwd() launch_string = None true_filename = os.path.basename(os.path.normpath(env_path)) if platform == "linux" or platform == "linux2": candidates = glob.glob(os.path.join(cwd, env_path) + ".x86_64") if len(candidates) == 0: candidates = glob.glob(os.path.join(cwd, env_path) + ".x86") if len(candidates) == 0: candidates = glob.glob(env_path + ".x86_64") if len(candidates) == 0: candidates = glob.glob(env_path + ".x86") if len(candidates) > 0: launch_string = candidates[0] elif platform == "darwin": candidates = glob.glob( os.path.join(cwd, env_path + ".app", "Contents", "MacOS", true_filename) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(env_path + ".app", "Contents", "MacOS", true_filename) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(cwd, env_path + ".app", "Contents", "MacOS", "*") ) if len(candidates) == 0: candidates = glob.glob( os.path.join(env_path + ".app", "Contents", "MacOS", "*") ) if len(candidates) > 0: launch_string = candidates[0] elif platform == "win32": candidates = glob.glob(os.path.join(cwd, env_path + ".exe")) if len(candidates) == 0: candidates = glob.glob(env_path + ".exe") if len(candidates) > 0: launch_string = candidates[0] return launch_string def executable_args(self) -> List[str]: args: List[str] = [] if self.no_graphics: args += ["-nographics", "-batchmode"] args += [UnityEnvironment.PORT_COMMAND_LINE_ARG, str(self.port)] if self.log_folder: log_file_path = os.path.join( self.log_folder, f"Player-{self.worker_id}.log" ) args += ["-logFile", log_file_path] # Add in arguments passed explicitly by the user. args += self.additional_args return args def executable_launcher(self, file_name, no_graphics, args): launch_string = self.validate_environment_path(file_name) if launch_string is None: self._close(0) raise UnityEnvironmentException( f"Couldn't launch the {file_name} environment. Provided filename does not match any environments." ) else: logger.debug("This is the launch string {}".format(launch_string)) # Launch Unity environment subprocess_args = [launch_string] + self.executable_args() try: self.proc1 = subprocess.Popen( subprocess_args, # start_new_session=True means that signals to the parent python process # (e.g. SIGINT from keyboard interrupt) will not be sent to the new process on POSIX platforms. # This is generally good since we want the environment to have a chance to shutdown, # but may be undesirable in come cases; if so, we'll add a command-line toggle. # Note that on Windows, the CTRL_C signal will still be sent. start_new_session=True, ) except PermissionError as perm: # This is likely due to missing read or execute permissions on file. raise UnityEnvironmentException( f"Error when trying to launch environment - make sure " f"permissions are set correctly. For example " f'"chmod -R 755 {launch_string}"' ) from perm def _update_behavior_specs(self, output: UnityOutputProto) -> None: init_output = output.rl_initialization_output for brain_param in init_output.brain_parameters: # Each BrainParameter in the rl_initialization_output should have at least one AgentInfo # Get that agent, because we need some of its observations. agent_infos = output.rl_output.agentInfos[brain_param.brain_name] if agent_infos.value: agent = agent_infos.value[0] new_spec = behavior_spec_from_proto(brain_param, agent) self._env_specs[brain_param.brain_name] = new_spec logger.info(f"Connected new brain:\n{brain_param.brain_name}") def _update_state(self, output: UnityRLOutputProto) -> None: """ Collects experience information from all external brains in environment at current step. """ for brain_name in self._env_specs.keys(): if brain_name in output.agentInfos: agent_info_list = output.agentInfos[brain_name].value self._env_state[brain_name] = steps_from_proto( agent_info_list, self._env_specs[brain_name] ) else: self._env_state[brain_name] = ( DecisionSteps.empty(self._env_specs[brain_name]), TerminalSteps.empty(self._env_specs[brain_name]), ) self._parse_side_channel_message(self.side_channels, output.side_channel) def reset(self) -> None: if self._loaded: outputs = self.communicator.exchange(self._generate_reset_input()) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") self._update_behavior_specs(outputs) rl_output = outputs.rl_output self._update_state(rl_output) self._is_first_message = False self._env_actions.clear() else: raise UnityEnvironmentException("No Unity environment is loaded.") @timed def step(self) -> None: if self._is_first_message: return self.reset() if not self._loaded: raise UnityEnvironmentException("No Unity environment is loaded.") # fill the blanks for missing actions for group_name in self._env_specs: if group_name not in self._env_actions: n_agents = 0 if group_name in self._env_state: n_agents = len(self._env_state[group_name][0]) self._env_actions[group_name] = self._env_specs[ group_name ].create_empty_action(n_agents) step_input = self._generate_step_input(self._env_actions) with hierarchical_timer("communicator.exchange"): outputs = self.communicator.exchange(step_input) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") self._update_behavior_specs(outputs) rl_output = outputs.rl_output self._update_state(rl_output) self._env_actions.clear() def get_behavior_names(self): return list(self._env_specs.keys()) def _assert_behavior_exists(self, behavior_name: str) -> None: if behavior_name not in self._env_specs: raise UnityActionException( "The group {0} does not correspond to an existing agent group " "in the environment".format(behavior_name) ) def set_actions(self, behavior_name: BehaviorName, action: np.ndarray) -> None: self._assert_behavior_exists(behavior_name) if behavior_name not in self._env_state: return spec = self._env_specs[behavior_name] expected_type = np.float32 if spec.is_action_continuous() else np.int32 expected_shape = (len(self._env_state[behavior_name][0]), spec.action_size) if action.shape != expected_shape: raise UnityActionException( "The behavior {0} needs an input of dimension {1} but received input of dimension {2}".format( behavior_name, expected_shape, action.shape ) ) if action.dtype != expected_type: action = action.astype(expected_type) self._env_actions[behavior_name] = action def set_action_for_agent( self, behavior_name: BehaviorName, agent_id: AgentId, action: np.ndarray ) -> None: self._assert_behavior_exists(behavior_name) if behavior_name not in self._env_state: return spec = self._env_specs[behavior_name] expected_shape = (spec.action_size,) if action.shape != expected_shape: raise UnityActionException( f"The Agent {0} with BehaviorName {1} needs an input of dimension " f"{2} but received input of dimension {3}".format( agent_id, behavior_name, expected_shape, action.shape ) ) expected_type = np.float32 if spec.is_action_continuous() else np.int32 if action.dtype != expected_type: action = action.astype(expected_type) if behavior_name not in self._env_actions: self._env_actions[behavior_name] = spec.create_empty_action( len(self._env_state[behavior_name][0]) ) try: index = np.where(self._env_state[behavior_name][0].agent_id == agent_id)[0][ 0 ] except IndexError as ie: raise IndexError( "agent_id {} is did not request a decision at the previous step".format( agent_id ) ) from ie self._env_actions[behavior_name][index] = action def get_steps( self, behavior_name: BehaviorName ) -> Tuple[DecisionSteps, TerminalSteps]: self._assert_behavior_exists(behavior_name) return self._env_state[behavior_name] def get_behavior_spec(self, behavior_name: BehaviorName) -> BehaviorSpec: self._assert_behavior_exists(behavior_name) return self._env_specs[behavior_name] def close(self): """ Sends a shutdown signal to the unity environment, and closes the socket connection. """ if self._loaded: self._close() else: raise UnityEnvironmentException("No Unity environment is loaded.") def _close(self, timeout: Optional[int] = None) -> None: """ Close the communicator and environment subprocess (if necessary). :int timeout: [Optional] Number of seconds to wait for the environment to shut down before force-killing it. Defaults to `self.timeout_wait`. """ if timeout is None: timeout = self.timeout_wait self._loaded = False self.communicator.close() if self.proc1 is not None: # Wait a bit for the process to shutdown, but kill it if it takes too long try: self.proc1.wait(timeout=timeout) signal_name = self.returncode_to_signal_name(self.proc1.returncode) signal_name = f" ({signal_name})" if signal_name else "" return_info = f"Environment shut down with return code {self.proc1.returncode}{signal_name}." logger.info(return_info) except subprocess.TimeoutExpired: logger.info("Environment timed out shutting down. Killing...") self.proc1.kill() # Set to None so we don't try to close multiple times. self.proc1 = None @classmethod def _flatten(cls, arr: Any) -> List[float]: """ Converts arrays to list. :param arr: numpy vector. :return: flattened list. """ if isinstance(arr, cls.SCALAR_ACTION_TYPES): arr = [float(arr)] if isinstance(arr, np.ndarray): arr = arr.tolist() if len(arr) == 0: return arr if isinstance(arr[0], np.ndarray): # pylint: disable=no-member arr = [item for sublist in arr for item in sublist.tolist()] if isinstance(arr[0], list): # pylint: disable=not-an-iterable arr = [item for sublist in arr for item in sublist] arr = [float(x) for x in arr] return arr @staticmethod def _parse_side_channel_message( side_channels: Dict[uuid.UUID, SideChannel], data: bytes ) -> None: offset = 0 while offset < len(data): try: channel_id = uuid.UUID(bytes_le=bytes(data[offset : offset + 16])) offset += 16 message_len, = struct.unpack_from("<i", data, offset) offset = offset + 4 message_data = data[offset : offset + message_len] offset = offset + message_len except Exception: raise UnityEnvironmentException( "There was a problem reading a message in a SideChannel. " "Please make sure the version of MLAgents in Unity is " "compatible with the Python version." ) if len(message_data) != message_len: raise UnityEnvironmentException( "The message received by the side channel {0} was " "unexpectedly short. Make sure your Unity Environment " "sending side channel data properly.".format(channel_id) ) if channel_id in side_channels: incoming_message = IncomingMessage(message_data) side_channels[channel_id].on_message_received(incoming_message) else: logger.warning( "Unknown side channel data received. Channel type " ": {0}.".format(channel_id) ) @staticmethod def _generate_side_channel_data( side_channels: Dict[uuid.UUID, SideChannel] ) -> bytearray: result = bytearray() for channel_id, channel in side_channels.items(): for message in channel.message_queue: result += channel_id.bytes_le result += struct.pack("<i", len(message)) result += message channel.message_queue = [] return result @timed def _generate_step_input( self, vector_action: Dict[str, np.ndarray] ) -> UnityInputProto: rl_in = UnityRLInputProto() for b in vector_action: n_agents = len(self._env_state[b][0]) if n_agents == 0: continue for i in range(n_agents): action = AgentActionProto(vector_actions=vector_action[b][i]) rl_in.agent_actions[b].value.extend([action]) rl_in.command = STEP rl_in.side_channel = bytes(self._generate_side_channel_data(self.side_channels)) return self.wrap_unity_input(rl_in) def _generate_reset_input(self) -> UnityInputProto: rl_in = UnityRLInputProto() rl_in.command = RESET rl_in.side_channel = bytes(self._generate_side_channel_data(self.side_channels)) return self.wrap_unity_input(rl_in) def send_academy_parameters( self, init_parameters: UnityRLInitializationInputProto ) -> UnityOutputProto: inputs = UnityInputProto() inputs.rl_initialization_input.CopyFrom(init_parameters) return self.communicator.initialize(inputs) @staticmethod def wrap_unity_input(rl_input: UnityRLInputProto) -> UnityInputProto: result = UnityInputProto() result.rl_input.CopyFrom(rl_input) return result @staticmethod def returncode_to_signal_name(returncode: int) -> Optional[str]: """ Try to convert return codes into their corresponding signal name. E.g. returncode_to_signal_name(-2) -> "SIGINT" """ try: # A negative value -N indicates that the child was terminated by signal N (POSIX only). s = signal.Signals(-returncode) # pylint: disable=no-member return s.name except Exception: # Should generally be a ValueError, but catch everything just in case. return None
py
b413b395a70cde5a30c60487d30bb6e89cd26c71
#!/usr/bin/env python # # Created by: Pearu Peterson, September 2002 # import numpy as np from numpy.testing import * from common import FUNCS_TP, FUNCS_CLAPACK, FUNCS_FLAPACK, FLAPACK_IS_EMPTY, \ CLAPACK_IS_EMPTY class TestLapack(TestCase): def _test_gebal_base(self, func, lang): tp = FUNCS_TP[func] a = np.array([[1,2,3],[4,5,6],[7,8,9]]).astype(tp) a1 = np.array([[1,0,0,3e-4], [4,0,0,2e-3], [7,1,0,0], [0,1,0,0]]).astype(tp) if lang == 'C': f = FUNCS_CLAPACK[func] elif lang == 'F': f = FUNCS_FLAPACK[func] else: raise ValueError("Lang %s ??" % lang) ba, lo, hi, pivscale, info = f(a) assert_(not info, msg=repr(info)) assert_array_almost_equal(ba, a) assert_equal((lo,hi), (0, len(a[0])-1)) assert_array_almost_equal(pivscale, np.ones(len(a))) ba, lo, hi, pivscale, info = f(a1,permute=1,scale=1) assert_(not info, msg=repr(info)) def _test_gehrd_base(self, func, lang): tp = FUNCS_TP[func] a = np.array([[-149, -50,-154], [ 537, 180, 546], [ -27, -9, -25]]).astype(tp) if lang == 'C': f = FUNCS_CLAPACK[func] elif lang == 'F': f = FUNCS_FLAPACK[func] else: raise ValueError("Lang %s ??" % lang) ht, tau, info = f(a) assert_(not info, msg=repr(info)) @dec.skipif(FLAPACK_IS_EMPTY, "Flapack empty, skip flapack test") def test_sgebal(self): self._test_gebal_base('sgebal', 'F') @dec.skipif(FLAPACK_IS_EMPTY, "Flapack empty, skip flapack test") def test_dgebal(self): self._test_gebal_base('dgebal', 'F') @dec.skipif(FLAPACK_IS_EMPTY, "Flapack empty, skip clapack test") def test_sgehrd(self): self._test_gehrd_base('sgehrd', 'F') @dec.skipif(FLAPACK_IS_EMPTY, "Flapack empty, skip clapack test") def test_dgehrd(self): self._test_gehrd_base('dgehrd', 'F') @dec.skipif(CLAPACK_IS_EMPTY or not FUNCS_CLAPACK["sgebal"], "Clapack empty, skip flapack test") def test_clapack_sgebal(self): self._test_gebal_base('sgebal', 'C') @dec.skipif(CLAPACK_IS_EMPTY or not FUNCS_CLAPACK["dgebal"], "Clapack empty, skip flapack test") def test_clapack_dgebal(self): self._test_gebal_base('dgebal', 'C') @dec.skipif(CLAPACK_IS_EMPTY or not FUNCS_CLAPACK["sgehrd"], "Clapack empty, skip flapack test") def test_clapack_sgehrd(self): self._test_gehrd_base('sgehrd', 'C') @dec.skipif(CLAPACK_IS_EMPTY or not FUNCS_CLAPACK["dgehrd"], "Clapack empty, skip flapack test") def test_clapack_dgehrd(self): self._test_gehrd_base('dgehrd', 'C')
py
b413b3fa455b03656f0a6def41eeec79c9b4d5b6
""" Django settings for polished_queen_31605 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging from modules.manifest import get_modules env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'polished_queen_31605.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'polished_queen_31605.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
py
b413b51d39aefbc5ca03f00e1856885a0c401bb9
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_bcrypt import Bcrypt from flask_login import LoginManager app = Flask(__name__) app.config['SECRET_KEY'] = '7b8549b703e554ac883b29c2ad68df22' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' db = SQLAlchemy(app) bcrypt = Bcrypt(app) login_manager = LoginManager(app) login_manager.login_view = 'login' login_manager.login_message_category = 'info' from flaskblog import routes
py
b413b5b0020df13b44b4a97550a4f15f4156b16a
# -*- coding: utf-8 -*- """ Models are modeled after schema.org. When model is going to be serialized as JSON(-LD), model name must be same as Schema.org schema name, the model name is automatically published in @type JSON-LD field. Note: jsonld_type attribute value can be used to override @type definition in rendering phase. Schema definitions: http://schema.org/<ModelName> (e.g. http://schema.org/Event) Some models have custom fields not found from schema.org. Decide if there's a need for custom extension types (e.g. Event/MyCustomEvent) as schema.org documentation is suggesting: http://schema.org/docs/extension.html. Override schema_org_type can be used to define custom types. Override jsonld_context attribute to change @context when need to define schemas for custom fields. """ import datetime import logging from django.conf import settings from django.contrib.contenttypes.fields import GenericForeignKey import pytz from django.contrib.gis.db import models from rest_framework.exceptions import ValidationError from reversion import revisions as reversion from django.utils.translation import ugettext_lazy as _ from mptt.models import MPTTModel, TreeForeignKey from mptt.querysets import TreeQuerySet from django.contrib.contenttypes.models import ContentType from events import translation_utils from django.utils.encoding import python_2_unicode_compatible from django.contrib.postgres.fields import HStoreField from django.contrib.sites.models import Site from django.core.mail import send_mail from django.db import transaction from django.db.models.signals import m2m_changed from django.dispatch import receiver from image_cropping import ImageRatioField from munigeo.models import AdministrativeDivision from notifications.models import render_notification_template, NotificationType, NotificationTemplateException from smtplib import SMTPException logger = logging.getLogger(__name__) User = settings.AUTH_USER_MODEL class PublicationStatus: PUBLIC = 1 DRAFT = 2 PUBLICATION_STATUSES = ( (PublicationStatus.PUBLIC, "public"), (PublicationStatus.DRAFT, "draft"), ) class SchemalessFieldMixin(models.Model): custom_data = HStoreField(null=True, blank=True) class Meta: abstract = True @python_2_unicode_compatible class DataSource(models.Model): id = models.CharField(max_length=100, primary_key=True) name = models.CharField(verbose_name=_('Name'), max_length=255) api_key = models.CharField(max_length=128, blank=True, default='') owner = models.ForeignKey( 'django_orghierarchy.Organization', on_delete=models.SET_NULL, related_name='owned_systems', null=True, blank=True) user_editable = models.BooleanField(default=False, verbose_name=_('Objects may be edited by users')) def __str__(self): return self.id class SimpleValueMixin(object): """ Used for models which are simple one-to-many fields and can be compared by value when importing as part of their related object. These models have no existence outside their related object. """ def value_fields(self): return [] def simple_value(self): field_names = translation_utils.expand_model_fields(self, self.value_fields()) return tuple((f, getattr(self, f)) for f in field_names) def value_equals(self, other): return self.simple_value() == other.simple_value() class BaseQuerySet(models.QuerySet): def is_user_editable(self): return not bool(self.filter(data_source__isnull=True) and self.filter(data_source__user_editable=False)) def can_be_edited_by(self, user): """Check if the whole queryset can be edited by the given user""" if user.is_superuser: return True for event in self: if not user.can_edit_event(event.publisher, event.publication_status): return False return True class BaseTreeQuerySet(TreeQuerySet, BaseQuerySet): pass class ReplacedByMixin(): def _has_circular_replacement(self): replaced_by = self.replaced_by while replaced_by is not None: replaced_by = replaced_by.replaced_by if replaced_by == self: return True return False def get_replacement(self): replacement = self.replaced_by while replacement.replaced_by is not None: replacement = replacement.replaced_by return replacement class License(models.Model): id = models.CharField(max_length=50, primary_key=True) name = models.CharField(verbose_name=_('Name'), max_length=255) url = models.URLField(verbose_name=_('Url'), blank=True) class Meta: verbose_name = _('License') verbose_name_plural = _('Licenses') def __str__(self): return self.name class Image(models.Model): jsonld_type = 'ImageObject' objects = BaseQuerySet.as_manager() # Properties from schema.org/Thing name = models.CharField(verbose_name=_('Name'), max_length=255, db_index=True, default='') data_source = models.ForeignKey( DataSource, on_delete=models.CASCADE, related_name='provided_%(class)s_data', db_index=True, null=True) publisher = models.ForeignKey( 'django_orghierarchy.Organization', on_delete=models.CASCADE, verbose_name=_('Publisher'), db_index=True, null=True, blank=True, related_name='Published_images') created_time = models.DateTimeField(auto_now_add=True) last_modified_time = models.DateTimeField(auto_now=True, db_index=True) created_by = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, blank=True, related_name='EventImage_created_by') last_modified_by = models.ForeignKey( User, on_delete=models.SET_NULL, related_name='EventImage_last_modified_by', null=True, blank=True) image = models.ImageField(upload_to='images', null=True, blank=True) url = models.URLField(verbose_name=_('Image'), max_length=400, null=True, blank=True) cropping = ImageRatioField('image', '800x800', verbose_name=_('Cropping')) license = models.ForeignKey( License, on_delete=models.SET_NULL, verbose_name=_('License'), related_name='images', default='cc_by', null=True) photographer_name = models.CharField(verbose_name=_('Photographer name'), max_length=255, null=True, blank=True) alt_text = models.CharField(verbose_name=_('Alt text'), max_length=320, null=True, blank=True) def save(self, *args, **kwargs): if not self.publisher: try: self.publisher = self.created_by.get_default_organization() except AttributeError: pass # ensure that either image or url is provided if not self.url and not self.image: raise ValidationError(_('You must provide either image or url.')) if self.url and self.image: raise ValidationError(_('You can only provide image or url, not both.')) self.last_modified_time = BaseModel.now() super(Image, self).save(*args, **kwargs) def is_user_editable(self): return bool(self.data_source and self.data_source.user_editable) def is_user_edited(self): return bool(self.is_user_editable() and self.last_modified_by) def can_be_edited_by(self, user): """Check if current image can be edited by the given user""" if user.is_superuser: return True return user.is_admin(self.publisher) class ImageMixin(models.Model): image = models.ForeignKey(Image, verbose_name=_('Image'), on_delete=models.SET_NULL, null=True, blank=True) class Meta: abstract = True @python_2_unicode_compatible class BaseModel(models.Model): objects = BaseQuerySet.as_manager() id = models.CharField(max_length=100, primary_key=True) data_source = models.ForeignKey( DataSource, on_delete=models.CASCADE, related_name='provided_%(class)s_data', db_index=True) # Properties from schema.org/Thing name = models.CharField(verbose_name=_('Name'), max_length=255, db_index=True) origin_id = models.CharField(verbose_name=_('Origin ID'), max_length=100, db_index=True, null=True, blank=True) created_time = models.DateTimeField(null=True, blank=True, auto_now_add=True) last_modified_time = models.DateTimeField(null=True, blank=True, auto_now=True, db_index=True) created_by = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, blank=True, related_name="%(app_label)s_%(class)s_created_by") last_modified_by = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, blank=True, related_name="%(app_label)s_%(class)s_modified_by") @staticmethod def now(): return datetime.datetime.utcnow().replace(tzinfo=pytz.utc) def __str__(self): return self.name class Meta: abstract = True def is_user_editable(self): return self.data_source.user_editable def is_user_edited(self): return bool(self.data_source.user_editable and self.last_modified_by) class Language(models.Model): id = models.CharField(max_length=10, primary_key=True) name = models.CharField(verbose_name=_('Name'), max_length=20) def __str__(self): return self.name class Meta: verbose_name = _('language') verbose_name_plural = _('languages') class KeywordLabel(models.Model): name = models.CharField(verbose_name=_('Name'), max_length=255, db_index=True) language = models.ForeignKey(Language, on_delete=models.CASCADE, blank=False, null=False) def __str__(self): return self.name + ' (' + str(self.language) + ')' class Meta: unique_together = (('name', 'language'),) class Keyword(BaseModel, ImageMixin, ReplacedByMixin): publisher = models.ForeignKey( 'django_orghierarchy.Organization', on_delete=models.CASCADE, verbose_name=_('Publisher'), db_index=True, null=True, blank=True, related_name='Published_keywords') alt_labels = models.ManyToManyField(KeywordLabel, blank=True, related_name='keywords') aggregate = models.BooleanField(default=False) deprecated = models.BooleanField(default=False, db_index=True) n_events = models.IntegerField( verbose_name=_('event count'), help_text=_('number of events with this keyword'), default=0, editable=False, db_index=True ) n_events_changed = models.BooleanField(default=False, db_index=True) replaced_by = models.ForeignKey( 'Keyword', on_delete=models.SET_NULL, related_name='aliases', null=True, blank=True) schema_org_type = "Thing/LinkedEventKeyword" def __str__(self): return self.name def deprecate(self): self.deprecated = True self.save(update_fields=['deprecated']) return True def replace(self, replaced_by): self.replaced_by = replaced_by self.save(update_fields=['replaced_by']) return True @transaction.atomic def save(self, *args, **kwargs): if self._has_circular_replacement(): raise Exception("Trying to replace this keyword with a keyword that is replaced by this keyword" "Please refrain from creating circular replacements and" "remove one of the replacements.") if self.replaced_by and not self.deprecated: self.deprecated = True logger.warning("Keyword replaced without deprecating. Deprecating automatically", extra={'keyword': self}) old_replaced_by = None if self.id: try: old_replaced_by = Keyword.objects.get(id=self.id).replaced_by except Keyword.DoesNotExist: pass super().save(*args, **kwargs) if not old_replaced_by == self.replaced_by: # Remap keyword sets qs = KeywordSet.objects.filter(keywords__id__exact=self.id) for kw_set in qs: kw_set.keywords.remove(self) kw_set.keywords.add(self.replaced_by) kw_set.save() # Remap events qs = Event.objects.filter(keywords__id__exact=self.id) \ | Event.objects.filter(audience__id__exact=self.id) for event in qs: if self in event.keywords.all(): event.keywords.remove(self) event.keywords.add(self.replaced_by) if self in event.audience.all(): event.audience.remove(self) event.audience.add(self.replaced_by) class Meta: verbose_name = _('keyword') verbose_name_plural = _('keywords') class KeywordSet(BaseModel, ImageMixin): """ Sets of pre-chosen keywords intended or specific uses and/or organizations, for example the set of possible audiences for an event in a specific client. """ ANY = 1 KEYWORD = 2 AUDIENCE = 3 USAGES = ( (ANY, "any"), (KEYWORD, "keyword"), (AUDIENCE, "audience"), ) usage = models.SmallIntegerField(verbose_name=_('Intended keyword usage'), choices=USAGES, default=ANY) organization = models.ForeignKey('django_orghierarchy.Organization', on_delete=models.CASCADE, verbose_name=_('Organization which uses this set'), null=True) keywords = models.ManyToManyField(Keyword, blank=False, related_name='sets') def save(self, *args, **kwargs): if any([keyword.deprecated for keyword in self.keywords.all()]): raise ValidationError(_("KeywordSet can't have deprecated keywords")) super().save(*args, **kwargs) class Place(MPTTModel, BaseModel, SchemalessFieldMixin, ImageMixin, ReplacedByMixin): objects = BaseTreeQuerySet.as_manager() geo_objects = objects publisher = models.ForeignKey( 'django_orghierarchy.Organization', on_delete=models.CASCADE, verbose_name=_('Publisher'), db_index=True) info_url = models.URLField(verbose_name=_('Place home page'), null=True, blank=True, max_length=1000) description = models.TextField(verbose_name=_('Description'), null=True, blank=True) parent = TreeForeignKey('self', on_delete=models.CASCADE, null=True, blank=True, related_name='children') position = models.PointField(srid=settings.PROJECTION_SRID, null=True, blank=True) email = models.EmailField(verbose_name=_('E-mail'), null=True, blank=True) telephone = models.CharField(verbose_name=_('Telephone'), max_length=128, null=True, blank=True) contact_type = models.CharField(verbose_name=_('Contact type'), max_length=255, null=True, blank=True) street_address = models.CharField(verbose_name=_('Street address'), max_length=255, null=True, blank=True) address_locality = models.CharField(verbose_name=_('Address locality'), max_length=255, null=True, blank=True) address_region = models.CharField(verbose_name=_('Address region'), max_length=255, null=True, blank=True) postal_code = models.CharField(verbose_name=_('Postal code'), max_length=128, null=True, blank=True) post_office_box_num = models.CharField(verbose_name=_('PO BOX'), max_length=128, null=True, blank=True) address_country = models.CharField(verbose_name=_('Country'), max_length=2, null=True, blank=True) deleted = models.BooleanField(verbose_name=_('Deleted'), default=False) replaced_by = models.ForeignKey('Place', on_delete=models.SET_NULL, related_name='aliases', null=True, blank=True) divisions = models.ManyToManyField(AdministrativeDivision, verbose_name=_('Divisions'), related_name='places', blank=True) n_events = models.IntegerField( verbose_name=_('event count'), help_text=_('number of events in this location'), default=0, editable=False, db_index=True ) n_events_changed = models.BooleanField(default=False, db_index=True) class Meta: verbose_name = _('place') verbose_name_plural = _('places') unique_together = (('data_source', 'origin_id'),) def __unicode__(self): values = filter(lambda x: x, [ self.street_address, self.postal_code, self.address_locality ]) return u', '.join(values) @transaction.atomic def save(self, *args, **kwargs): if self._has_circular_replacement(): raise Exception("Trying to replace this place with a place that is replaced by this place" "Please refrain from creating circular replacements and" "remove one of the replacements." "We don't want homeless events.") if self.replaced_by and not self.deleted: self.deleted = True logger.warning("Place replaced without soft deleting. Soft deleting automatically", extra={'place': self}) # needed to remap events to replaced location old_replaced_by = None if self.id: try: old_replaced_by = Place.objects.get(id=self.id).replaced_by except Place.DoesNotExist: pass super().save(*args, **kwargs) # needed to remap events to replaced location if not old_replaced_by == self.replaced_by: Event.objects.filter(location=self).update(location=self.replaced_by) # Update doesn't call save so we update event numbers manually. # Not all of the below are necessarily present. ids_to_update = [event.id for event in (self, self.replaced_by, old_replaced_by) if event] Place.objects.filter(id__in=ids_to_update).update(n_events_changed=True) if self.position: self.divisions.set(AdministrativeDivision.objects.filter( type__type__in=('district', 'sub_district', 'neighborhood', 'muni'), geometry__boundary__contains=self.position)) else: self.divisions.clear() reversion.register(Place) class OpeningHoursSpecification(models.Model): GR_BASE_URL = "http://purl.org/goodrelations/v1#" WEEK_DAYS = ( (1, "Monday"), (2, "Tuesday"), (3, "Wednesday"), (4, "Thursday"), (5, "Friday"), (6, "Saturday"), (7, "Sunday"), (8, "PublicHolidays") ) place = models.ForeignKey(Place, on_delete=models.CASCADE, db_index=True, related_name='opening_hours') opens = models.TimeField(null=True, blank=True) closes = models.TimeField(null=True, blank=True) days_of_week = models.SmallIntegerField(choices=WEEK_DAYS, null=True, blank=True) valid_from = models.DateTimeField(null=True, blank=True) valid_through = models.DateTimeField(null=True, blank=True) class Meta: verbose_name = _('opening hour specification') verbose_name_plural = _('opening hour specifications') class Event(MPTTModel, BaseModel, SchemalessFieldMixin, ReplacedByMixin): jsonld_type = "Event/LinkedEvent" objects = BaseTreeQuerySet.as_manager() """ eventStatus enumeration is based on http://schema.org/EventStatusType """ class Status: SCHEDULED = 1 CANCELLED = 2 POSTPONED = 3 RESCHEDULED = 4 # Properties from schema.org/Event STATUSES = ( (Status.SCHEDULED, "EventScheduled"), (Status.CANCELLED, "EventCancelled"), (Status.POSTPONED, "EventPostponed"), (Status.RESCHEDULED, "EventRescheduled"), ) class SuperEventType: RECURRING = 'recurring' UMBRELLA = 'umbrella' SUPER_EVENT_TYPES = ( (SuperEventType.RECURRING, _('Recurring')), (SuperEventType.UMBRELLA, _('Umbrella event')), ) # Properties from schema.org/Thing info_url = models.URLField(verbose_name=_('Event home page'), blank=True, null=True, max_length=1000) description = models.TextField(verbose_name=_('Description'), blank=True, null=True) short_description = models.TextField(verbose_name=_('Short description'), blank=True, null=True) # Properties from schema.org/CreativeWork date_published = models.DateTimeField(verbose_name=_('Date published'), null=True, blank=True) # headline and secondary_headline are for cases where # the original event data contains a title and a subtitle - in that # case the name field is combined from these. # # secondary_headline is mapped to schema.org alternative_headline # and is used for subtitles, that is for # secondary, complementary headlines, not "alternative" headlines headline = models.CharField(verbose_name=_('Headline'), max_length=255, null=True, db_index=True) secondary_headline = models.CharField(verbose_name=_('Secondary headline'), max_length=255, null=True, db_index=True) provider = models.CharField(verbose_name=_('Provider'), max_length=512, null=True) provider_contact_info = models.CharField(verbose_name=_("Provider's contact info"), max_length=255, null=True, blank=True) publisher = models.ForeignKey('django_orghierarchy.Organization', verbose_name=_('Publisher'), db_index=True, on_delete=models.PROTECT, related_name='published_events') # Status of the event itself event_status = models.SmallIntegerField(verbose_name=_('Event status'), choices=STATUSES, default=Status.SCHEDULED) # Whether or not this data about the event is ready to be viewed by the general public. # DRAFT means the data is considered incomplete or is otherwise undergoing refinement -- # or just waiting to be published for other reasons. publication_status = models.SmallIntegerField( verbose_name=_('Event data publication status'), choices=PUBLICATION_STATUSES, default=PublicationStatus.PUBLIC) location = models.ForeignKey(Place, related_name='events', null=True, blank=True, on_delete=models.PROTECT) location_extra_info = models.CharField(verbose_name=_('Location extra info'), max_length=400, null=True, blank=True) start_time = models.DateTimeField(verbose_name=_('Start time'), null=True, db_index=True, blank=True) end_time = models.DateTimeField(verbose_name=_('End time'), null=True, db_index=True, blank=True) has_start_time = models.BooleanField(default=True) has_end_time = models.BooleanField(default=True) audience_min_age = models.SmallIntegerField(verbose_name=_('Minimum recommended age'), blank=True, null=True, db_index=True) audience_max_age = models.SmallIntegerField(verbose_name=_('Maximum recommended age'), blank=True, null=True, db_index=True) super_event = TreeForeignKey('self', null=True, blank=True, on_delete=models.SET_NULL, related_name='sub_events') super_event_type = models.CharField(max_length=255, blank=True, null=True, db_index=True, default=None, choices=SUPER_EVENT_TYPES) in_language = models.ManyToManyField(Language, verbose_name=_('In language'), related_name='events', blank=True) images = models.ManyToManyField(Image, related_name='events', blank=True) deleted = models.BooleanField(default=False, db_index=True) replaced_by = models.ForeignKey('Event', on_delete=models.SET_NULL, related_name='aliases', null=True, blank=True) # Custom fields not from schema.org keywords = models.ManyToManyField(Keyword, related_name='events') audience = models.ManyToManyField(Keyword, related_name='audience_events', blank=True) class Meta: verbose_name = _('event') verbose_name_plural = _('events') class MPTTMeta: parent_attr = 'super_event' def save(self, *args, **kwargs): if self._has_circular_replacement(): raise Exception("Trying to replace this event with an event that is replaced by this event" "Please refrain from creating circular replacements and" "remove one of the replacements.") if self.replaced_by and not self.deleted: self.deleted = True logger.warning("Event replaced without soft deleting. Soft deleting automatically", extra={'event': self}) # needed to cache location event numbers old_location = None # needed for notifications old_publication_status = None old_deleted = None created = True if self.id: try: event = Event.objects.get(id=self.id) created = False old_location = event.location old_publication_status = event.publication_status old_deleted = event.deleted except Event.DoesNotExist: pass # drafts may not have times set, so check that first start = getattr(self, 'start_time', None) end = getattr(self, 'end_time', None) if start and end: if start > end: raise ValidationError({'end_time': _('The event end time cannot be earlier than the start time.')}) if any([keyword.deprecated for keyword in self.keywords.all() | self.audience.all()]): raise ValidationError({'keywords': _("Event can't have deprecated keywords")}) super(Event, self).save(*args, **kwargs) # needed to cache location event numbers if not old_location and self.location: Place.objects.filter(id=self.location.id).update(n_events_changed=True) if old_location and not self.location: # drafts (or imported events) may not always have location set Place.objects.filter(id=old_location.id).update(n_events_changed=True) if old_location and self.location and old_location != self.location: Place.objects.filter(id__in=(old_location.id, self.location.id)).update(n_events_changed=True) # send notifications if old_publication_status == PublicationStatus.DRAFT and self.publication_status == PublicationStatus.PUBLIC: self.send_published_notification() if old_deleted is False and self.deleted is True: self.send_deleted_notification() if created and self.publication_status == PublicationStatus.DRAFT: self.send_draft_posted_notification() def __str__(self): name = '' languages = [lang[0] for lang in settings.LANGUAGES] for lang in languages: lang = lang.replace('-', '_') # to handle complex codes like e.g. zh-hans s = getattr(self, 'name_%s' % lang, None) if s: name = s break val = [name, '(%s)' % self.id] dcount = self.get_descendant_count() if dcount > 0: val.append(u" (%d children)" % dcount) else: val.append(str(self.start_time)) return u" ".join(val) def is_admin(self, user): if user.is_superuser: return True else: return user.is_admin(self.publisher) def can_be_edited_by(self, user): """Check if current event can be edited by the given user""" if user.is_superuser: return True return user.can_edit_event(self.publisher, self.publication_status) def soft_delete(self, using=None): self.deleted = True self.save(update_fields=("deleted",), using=using, force_update=True) def undelete(self, using=None): self.deleted = False self.save(update_fields=("deleted",), using=using, force_update=True) def _send_notification(self, notification_type, recipient_list, request=None): if len(recipient_list) == 0: logger.warning("No recipients for notification type '%s'" % notification_type, extra={'event': self}) return context = {'event': self} try: rendered_notification = render_notification_template(notification_type, context) except NotificationTemplateException as e: logger.error(e, exc_info=True, extra={'request': request}) return try: send_mail( rendered_notification['subject'], rendered_notification['body'], 'noreply@%s' % Site.objects.get_current().domain, recipient_list, html_message=rendered_notification['html_body'] ) except SMTPException as e: logger.error(e, exc_info=True, extra={'request': request, 'event': self}) def _get_author_emails(self): author_emails = [] for user in (self.created_by, self.last_modified_by): if user and user.email: author_emails.append(user.email) return author_emails def send_deleted_notification(self, request=None): recipient_list = self._get_author_emails() self._send_notification(NotificationType.UNPUBLISHED_EVENT_DELETED, recipient_list, request) def send_published_notification(self, request=None): recipient_list = self._get_author_emails() self._send_notification(NotificationType.EVENT_PUBLISHED, recipient_list, request) def send_draft_posted_notification(self, request=None): recipient_list = [] for admin in self.publisher.admin_users.all(): if admin.email: recipient_list.append(admin.email) self._send_notification(NotificationType.DRAFT_POSTED, recipient_list, request) reversion.register(Event) @receiver(m2m_changed, sender=Event.keywords.through) @receiver(m2m_changed, sender=Event.audience.through) def keyword_added_or_removed(sender, model=None, instance=None, pk_set=None, action=None, **kwargs): """ Listens to event-keyword add signals to keep event number up to date """ if action in ('post_add', 'post_remove'): if model is Keyword: Keyword.objects.filter(pk__in=pk_set).update(n_events_changed=True) if model is Event: instance.n_events_changed = True instance.save(update_fields=("n_events_changed",)) class Offer(models.Model, SimpleValueMixin): event = models.ForeignKey(Event, on_delete=models.CASCADE, db_index=True, related_name='offers') price = models.CharField(verbose_name=_('Price'), blank=True, max_length=1000) info_url = models.URLField(verbose_name=_('Web link to offer'), blank=True, null=True, max_length=1000) description = models.TextField(verbose_name=_('Offer description'), blank=True, null=True) # Don't expose is_free as an API field. It is used to distinguish # between missing price info and confirmed free entry. is_free = models.BooleanField(verbose_name=_('Is free'), default=False) def value_fields(self): return ['price', 'info_url', 'description', 'is_free'] reversion.register(Offer) class EventLink(models.Model, SimpleValueMixin): name = models.CharField(verbose_name=_('Name'), max_length=100, blank=True) event = models.ForeignKey(Event, on_delete=models.CASCADE, db_index=True, related_name='external_links') language = models.ForeignKey(Language, on_delete=models.CASCADE) link = models.URLField() class Meta: unique_together = (('name', 'event', 'language', 'link'),) def value_fields(self): return ['name', 'language_id', 'link'] class Video(models.Model, SimpleValueMixin): name = models.CharField(verbose_name=_('Name'), max_length=255, db_index=True, default='') event = models.ForeignKey(Event, on_delete=models.CASCADE, db_index=True, related_name='videos') url = models.URLField() alt_text = models.CharField(verbose_name=_('Alt text'), max_length=320, null=True, blank=True) class Meta: unique_together = (('name', 'event', 'url'),) def value_fields(self): return ['name', 'url'] class ExportInfo(models.Model): target_id = models.CharField(max_length=255, db_index=True, null=True, blank=True) target_system = models.CharField(max_length=255, db_index=True, null=True, blank=True) last_exported_time = models.DateTimeField(null=True, blank=True) content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE) object_id = models.CharField(max_length=50) content_object = GenericForeignKey('content_type', 'object_id') class Meta: unique_together = (('target_system', 'content_type', 'object_id'),) def save(self, *args, **kwargs): self.last_exported_time = BaseModel.now() super(ExportInfo, self).save(*args, **kwargs) class EventAggregate(models.Model): super_event = models.OneToOneField(Event, on_delete=models.CASCADE, related_name='aggregate', null=True) class EventAggregateMember(models.Model): event_aggregate = models.ForeignKey(EventAggregate, on_delete=models.CASCADE, related_name='members') event = models.OneToOneField(Event, on_delete=models.CASCADE)
py
b413b719e5d7dd4c0686d2b499c950aa9c44362e
from CommonServerPython import * reload(sys) sys.setdefaultencoding('utf-8') # pylint: disable=E1101 requests.packages.urllib3.disable_warnings() URL = demisto.getParam('server') if URL[-1] != '/': URL += '/' if not demisto.getParam('proxy'): del os.environ['HTTP_PROXY'] del os.environ['HTTPS_PROXY'] del os.environ['http_proxy'] del os.environ['https_proxy'] VALIDATE_CERT = not demisto.params().get('insecure', True) ID_AND_API_KEY = demisto.getParam('credentials')['identifier'] + ':' + demisto.getParam('credentials')['password'] ENCODED_AUTH_KEY = base64.b64encode(ID_AND_API_KEY.encode("utf-8")) MSSP_ACCOUNT_ID = demisto.getParam('mssp_sub_account_id') HEADERS = {'Authorization': 'Basic {}'.format(ENCODED_AUTH_KEY.decode()), 'Content-Type': 'application/json', 'Account-Id': demisto.getParam('credentials')['identifier']} # Change the Account-Id to the sub account id, so all actions will be on the sub account. if MSSP_ACCOUNT_ID: HEADERS['Account-Id'] = MSSP_ACCOUNT_ID IOC_TYPE_TO_DBOT_TYPE = { 'IpAddresses': 'ip', 'Urls': 'url', 'Domains': 'domain', 'Hashes': 'hash' } DEFAULT_TIME_RANGE = '1 day' SEVERITY_LEVEL = { 'All': 0, 'Low': 1, 'Medium': 2, 'High': 3 } def http_request(method, path, json_data=None, params=None, json_response=False): """ Send the request to IntSights and return the JSON response """ try: response = requests.request(method, URL + path, headers=HEADERS, json=json_data, params=params, verify=VALIDATE_CERT) except requests.exceptions.SSLError: raise Exception('Connection error in the API call to IntSights.\nCheck your not secure parameter.') except requests.ConnectionError: raise Exception('Connection error in the API call to IntSights.\nCheck your Server URL parameter.') if response.status_code < 200 or response.status_code > 299: if not (response.text == 'SeverityNotChanged' or response.text == 'TagExist' or response.text == 'IocBlocklistStatusNotChanged'): return_error('Error in API call to IntSights service %s - [%d] %s' % (path, response.status_code, response.text)) if response.status_code == 204: return [] # type: ignore if json_response: try: return response.json() except ValueError: raise Exception('Error in API call to IntSights service - check your configured URL address') return response def convert_iso_string_to_python_date(date_in_iso_format): iso_format = "%Y-%m-%dT%H:%M:%S" date_in_python_format = datetime.strptime(date_in_iso_format, iso_format) return date_in_python_format def convert_python_date_to_unix_millisecond(python_date_object): timestamp_in_unix_millisecond = date_to_timestamp(python_date_object, 'datetime.datetime') return timestamp_in_unix_millisecond def increase_iso_by_x_days(date_in_iso_format, num_of_days): date_in_python_format = convert_iso_string_to_python_date(date_in_iso_format) new_date_in_python_format = date_in_python_format + timedelta(days=int(num_of_days)) new_date_in_iso_format = new_date_in_python_format.isoformat() return new_date_in_iso_format def remove_milliseconds_from_iso(date_in_iso_format): date_parts_arr = date_in_iso_format.split('.') date_in_iso_without_milliseconds = date_parts_arr[0] return date_in_iso_without_milliseconds def increase_timestamp_by_x_days(date_in_unix_ms_timestamp, num_of_days): date_in_iso = timestamp_to_datestring(date_in_unix_ms_timestamp) date_in_iso_without_ms = remove_milliseconds_from_iso(date_in_iso) date_in_iso_plus_x_days = increase_iso_by_x_days(date_in_iso_without_ms, num_of_days) timestamp_in_unix_ms_plus_x_days = date_to_timestamp(date_in_iso_plus_x_days) return timestamp_in_unix_ms_plus_x_days def update_params_with_end_and_start_date(params, oldest_day_to_search_in_unix_timestamp, now_date_in_unix_timestamp): params['foundDateFrom'] = oldest_day_to_search_in_unix_timestamp params['foundDateTo'] = now_date_in_unix_timestamp params['sourceDateFrom'] = oldest_day_to_search_in_unix_timestamp params['sourceDateTo'] = now_date_in_unix_timestamp def update_params_with_delta_arg(params, time_delta_in_days_int): now_date_in_iso = datetime.utcnow().isoformat() now_date_in_iso_without_ms = remove_milliseconds_from_iso(now_date_in_iso) now_date_in_unix_timestamp = date_to_timestamp(now_date_in_iso_without_ms) oldest_day_to_search_in_unix_timestamp = increase_timestamp_by_x_days(now_date_in_unix_timestamp, -1 * time_delta_in_days_int) update_params_with_end_and_start_date(params, oldest_day_to_search_in_unix_timestamp, now_date_in_unix_timestamp) del params['time-delta'] def update_params_dict_according_to_delta_arg(params, time_delta_in_days_int): if 'foundDateFrom' in params or 'foundDateTo' in params: demisto.debug( "ERROR in get_alerts() - can't use found-date-to or found-date-from arguments with time-delta argument") return_error("Error: can't assign delta when assigned both found-date-to or found-date-from") else: update_params_with_delta_arg(params, time_delta_in_days_int) return params def handle_filters(found_date_from=None): """ Apply filters to alert list """ args_camel_case = { 'alert-type': 'alertType', 'source-type': 'sourceType', 'network-type': 'networkType', 'source-date-from': 'sourceDateFrom', 'source-date-to': 'sourceDateTo', 'found-date-from': 'foundDateFrom', 'found-date-to': 'foundDateTo', 'is-flagged': 'isFlagged', 'is-closed': 'isClosed', 'source-ID': 'sourceId', 'first-seen-from': 'firstSeenFrom', 'first-seen-to': 'firstSeenTo', 'last-seen-from': 'lastSeenFrom', 'last-seen-to': 'lastSeenTo', 'value': 'iocValue', } params = {} for key in demisto.args(): if demisto.getArg(key): params[args_camel_case.get(key) or key] = demisto.getArg(key) if demisto.getArg('time-delta'): time_delta_in_days = demisto.getArg('time-delta') update_params_dict_according_to_delta_arg(params, int(time_delta_in_days)) elif found_date_from: params['foundDateFrom'] = found_date_from return params def get_alerts_helper(params): demisto.info("Executing get_alerts with params: {}".format(params)) response = http_request('GET', 'public/v1/data/alerts/alerts-list', params=params, json_response=True) alerts_human_readable = [] alerts_context = [] for alert_id in response: alert_human_readable, alert_context = get_alert_by_id_helper(alert_id) alerts_human_readable.append(alert_human_readable) alerts_context.append(alert_context) return alerts_human_readable, alerts_context def extract_mail(replies): if not replies: return '' mails = [] for reply in replies: mails.append(reply.get('Email')) return '\n'.join(mails) def extract_remediation(remidiations): if not remidiations: return '' remedies = [] string_format = "{0} - Status: {1}" for remedy in remidiations: remedies.append(string_format.format(remedy.get('Value'), remedy.get('Status'))) return '\n'.join(remedies) def hash_identifier(hash_val): if md5Regex.match(hash_val): return 'MD5' if sha1Regex.match(hash_val): return 'SHA1' if sha256Regex.match(hash_val): return 'SHA256' return 'Unknown' def extract_tags(tags): pretty_tags = [] string_format = "ID: {0} - Name: {1}" for tag in tags: pretty_tags.append(string_format.format(tag.get('_id'), tag.get('Name'))) return pretty_tags def get_alerts(): """ Gets all alerts and returns as a list. """ alerts_human_readable, alerts_context = get_alerts_helper(handle_filters()) headers = ['ID', 'Severity', 'Type', 'FoundDate', 'SourceType', 'SourceURL', 'SourceEmail', 'SourceNetworkType', 'IsClosed', 'Closed', 'IsFlagged', 'Images', 'Tags', 'Description', 'Title', 'TakedownStatus', 'SubType'] demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': alerts_context}, 'Contents': alerts_context, 'HumanReadable': tableToMarkdown('IntSights Alerts', alerts_human_readable, headers=headers, removeNull=False), 'ContentsFormat': formats['json'] }) def alert_to_readable(alert, parse_tags): """ Convert alert to readable format """ is_closed = demisto.get(alert, 'IsClosed') if is_closed is None: is_closed = demisto.get(alert, 'Closed.IsClosed') readable = { 'ID': demisto.get(alert, '_id'), 'Severity': demisto.get(alert, 'Details.Severity'), 'Type': demisto.get(alert, 'Details.Type'), 'FoundDate': demisto.get(alert, 'FoundDate'), 'SourceType': demisto.get(alert, 'Details.Source.Type'), 'SourceURL': demisto.get(alert, 'Details.Source.URL'), 'SourceEmail': demisto.get(alert, 'Details.Source.Email'), 'SourceNetworkType': demisto.get(alert, 'Details.Source.NetworkType'), 'IsClosed': is_closed, 'IsFlagged': demisto.get(alert, 'IsFlagged'), 'Assets': demisto.get(alert, 'Assets'), 'Images': demisto.get(alert, 'Details.Images'), 'Description': demisto.get(alert, 'Details.Description'), 'Title': demisto.get(alert, 'Details.Title'), 'TakedownStatus': demisto.get(alert, 'TakedownStatus'), 'SubType': demisto.get(alert, 'Details.SubType'), } tags = demisto.get(alert, 'Details.Tags') if parse_tags: readable['Tags'] = extract_tags(tags) else: readable['Tag'] = [] for tag in tags: readable['Tag'].append({'ID': tag.get('_id'), 'Name': tag.get('Name')}) return readable def get_alert_by_id_helper(alert_id): """ Helper for getting details by ID """ response = http_request('GET', 'public/v1/data/alerts/get-complete-alert/' + alert_id, json_response=True) return alert_to_readable(response, True), alert_to_readable(response, False) def get_alert_by_id(): """ Get alert details by id """ alert_id = demisto.getArg('alert-id') activity_hr, activity_ctx = get_alert_by_id_helper(alert_id) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': activity_ctx}, 'Contents': activity_hr, 'HumanReadable': tableToMarkdown('IntSights Alert Details', [activity_hr], ['ID', 'Severity', 'Type', 'FoundDate', 'SourceType', 'SourceURL', 'SourceEmail', 'SourceNetworkType', 'IsClosed', 'IsFlagged', 'Images', 'Tags', 'Description', 'Title', 'TakedownStatus', 'SubType']), 'ContentsFormat': formats['json'] }) def get_alert_image(): """ Retrieves the alert image by image_id """ image_id = demisto.getArg('image-id') response = http_request('GET', 'public/v1/data/alerts/alert-image/' + image_id) demisto.results(fileResult(image_id + '-image.jpeg', response.content)) def ask_analyst(): """ Send question to an analyst about the requested alert """ alert_id = demisto.getArg('alert-id') question = demisto.getArg('question') http_request('POST', 'public/v1/data/alerts/ask-the-analyst/' + alert_id, json_data={'Question': question}) question_details = {'ID': alert_id, 'Question': question} title = 'IntSights Ask the Analyst: ' \ 'Your question has been successfully sent to an analyst about the requested alert' demisto.results( { 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': question_details}, 'Contents': question_details, 'HumanReadable': tableToMarkdown(title, [question_details], ['ID', 'Question']), 'ContentsFormat': formats['json'] } ) def get_alert_activity(): """ Retrieves the alert activity by alert-id """ alert_id = demisto.getArg('alert-id') response = http_request('GET', 'public/v1/data/alerts/activity-log/' + alert_id, json_response=True) alert = {'ID': alert_id, 'Activities': []} if not response: demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': alert}, 'Contents': response, 'HumanReadable': 'Alert {} does not have activities.'.format(alert_id), 'ContentsFormat': formats['json'] }) else: human_readable_arr = [] for activity in response: alert['Activities'].append({ 'ID': demisto.get(activity, '_id'), 'Type': demisto.get(activity, 'Type'), 'Initiator': demisto.get(activity, 'Initiator'), 'CreatedDate': demisto.get(activity, 'CreatedDate'), 'UpdateDate': demisto.get(activity, 'UpdateDate'), 'RemediationBlocklistUpdate': demisto.get(activity, 'AdditionalInformation.RemediationBlocklistUpdate'), 'AskTheAnalyst': {'Replies': demisto.get(activity, 'AdditionalInformation.AskTheAnalyst.Replies')}, 'Mail': {'Replies': demisto.get(activity, 'AdditionalInformation.Mail.Replies')}, 'ReadBy': demisto.get(activity, 'ReadBy') }) human_readable_arr.append({ 'ID': demisto.get(activity, '_id'), 'Type': demisto.get(activity, 'Type'), 'Initiator': demisto.get(activity, 'Initiator'), 'CreatedDate': demisto.get(activity, 'CreatedDate'), 'UpdateDate': demisto.get(activity, 'UpdateDate'), 'RemediationBlocklistUpdate': extract_remediation( demisto.get(activity, 'AdditionalInformation.RemediationBlocklistUpdate')) if demisto.get(activity, 'AdditionalInformation') else '', 'AskTheAnalyst': {'Replies': demisto.get(activity, 'AdditionalInformation.AskTheAnalyst.Replies')}, 'Mail': extract_mail( demisto.get(activity, 'AdditionalInformation.Mail.Replies')) if demisto.get(activity, 'AdditionalInformation.Mail') else '', 'ReadBy': demisto.get(activity, 'ReadBy') }) headers = ['ID', 'Type', 'Initiator', 'CreatedDate', 'UpdateDate', 'RemediationBlocklistUpdate', 'AskTheAnalyst', 'Mail', 'ReadBy'] human_readable = tableToMarkdown('IntSights Alert {} Activity Log'.format(alert_id), t=human_readable_arr, headers=headers), demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': alert}, 'Contents': response, 'HumanReadable': human_readable, 'ContentsFormat': formats['json'] }) def change_severity(): """ Change severity of an alert """ alert_id = demisto.getArg('alert-id') severity = demisto.getArg('severity') http_request('PATCH', 'public/v1/data/alerts/change-severity/' + alert_id, json_data={'Severity': severity}) severity_details = {'ID': alert_id, 'Severity': severity} demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': severity_details}, 'Contents': severity_details, 'HumanReadable': tableToMarkdown( 'IntSights Update Alert Severity: The Alert severity has been successfully updated.', [severity_details], ['ID', 'Severity']), 'ContentsFormat': formats['json'] }) def get_assignee_id(assignee_email): response = http_request('GET', 'public/v1/account/users-details', json_response=True) for user in response: if assignee_email == user.get('Email', ''): return user.get('_id') raise Exception('user not found') def assign_alert(): """ Assign alert to an Assignee ID """ alert_id = demisto.getArg('alert-id') assignee_email = demisto.getArg('assignee-email') is_mssp = demisto.getArg('is-mssp-optional') assignee_id = get_assignee_id(assignee_email) assign_details = {'ID': alert_id, 'Assignees.AssigneeID': assignee_id} url = 'public/v1/data/alerts/assign-alert/' + alert_id if is_mssp: url += '?IsMssp=' + is_mssp http_request('PATCH', url, json_data={'AssigneeID': assignee_id}) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': assign_details}, 'Contents': assign_details, 'HumanReadable': tableToMarkdown( 'IntSights Assign Alert: The Alert has been successfully assigned to assigneeID', [assign_details], ['ID', 'Assignees.AssigneeID']), 'ContentsFormat': formats['json'] }) def unassign_alert(): """ Unassign an alert """ alert_id = demisto.getArg('alert-id') http_request('PATCH', 'public/v1/data/alerts/unassign-alert/' + alert_id) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': {'ID': alert_id}}, 'Contents': {'ID': alert_id}, 'HumanReadable': 'Alert id: ' + alert_id + ' successfully unassigned', 'ContentsFormat': formats['json'] }) def close_alert(): """ Close an alert """ alert_id = demisto.getArg('alert-id') reason = demisto.getArg('reason') free_text = demisto.getArg('free-text') is_hidden = demisto.getArg('is-hidden') == 'True' rate = demisto.getArg('rate') close_details = {'ID': alert_id, 'Close Reason': reason, 'Closed FreeText': free_text, 'Closed Rate': rate, 'IsHidden': is_hidden} close_details_context = {'ID': alert_id, 'Closed': {'Reason': reason, 'FreeText': free_text, 'Rate': rate}, 'IsHidden': is_hidden} url = 'public/v1/data/alerts/close-alert/' + alert_id json_data = {'Reason': reason} if free_text: json_data['FreeText'] = free_text if is_hidden: json_data['IsHidden'] = is_hidden if rate: json_data['Rate'] = rate http_request('PATCH', url, json_data) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': close_details}, 'Contents': close_details_context, 'HumanReadable': tableToMarkdown('IntSights Close Alert: The Alert has successfully been closed.', [close_details], ['ID', 'Close Reason', 'Closed FreeText', 'Closed Rate', 'IsHidden']), 'ContentsFormat': formats['json'] }) def send_mail(): """ Send email with the alert details and a question """ alert_id = demisto.getArg('alert-id') emails = argToList(demisto.getArg('emails')) content = demisto.getArg('content') http_request('POST', 'public/v1/data/alerts/send-mail/' + alert_id, {'Emails': emails, 'Content': content}) context = { 'ID': alert_id, 'EmailID': emails, 'Question': content } demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': 'Email with content (' + content + ') sent to emails', 'ContentsFormat': formats['json'] }) def get_tag_id(alert_id, tag_name): response = http_request('GET', 'public/v1/data/alerts/get-complete-alert/' + alert_id, json_response=True) details = response.get('Details', {}) tags = details.get('Tags', []) for tag in tags: if tag.get('Name', '') == tag_name: return tag.get('_id', '') return 'Not found' def add_tag(): """ Adds a tag to the alert """ alert_id = demisto.getArg('alert-id') tag_name = demisto.getArg('tag-name') http_request('PATCH', 'public/v1/data/alerts/add-tag/' + alert_id, json_data={'TagName': tag_name}) tag_info = { 'TagName': tag_name, 'ID': get_tag_id(alert_id, tag_name) } context = { 'ID': alert_id, 'Tags': tag_info } demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': 'Tag (' + tag_name + ') added to alert id: ' + alert_id, 'ContentsFormat': formats['json'] }) def remove_tag(): """ Removes a tag from an alert """ alert_id = demisto.getArg('alert-id') tag_id = demisto.getArg('tag-id') http_request('PATCH', 'public/v1/data/alerts/remove-tag/' + alert_id, json_data={'TagID': tag_id}) context = { 'ID': alert_id, 'Tags': {'ID': tag_id} } demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': 'Tag id: ' + tag_id + ' removed from alert id: ' + alert_id, 'ContentsFormat': formats['json'] }) def add_comment(): """ Adds a comment to an alert """ alert_id = demisto.getArg('alert-id') comment = demisto.getArg('comment') http_request('PATCH', 'public/v1/data/alerts/add-comment/' + alert_id, json_data={'Comment': comment}) context = { 'ID': alert_id, 'Comment': comment } demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': 'Succesfully added comment "' + comment + '" to alert id: ' + alert_id, 'ContentsFormat': formats['json'] }) def ioc_to_readable(ioc_data): """ Convert IOC to readable format """ ioc_context = { 'ID': demisto.get(ioc_data, '_id'), 'SourceID': demisto.get(ioc_data, 'SourceID'), 'AccountID': demisto.get(ioc_data, 'AccountID'), 'Type': demisto.get(ioc_data, 'Type'), 'Value': demisto.get(ioc_data, 'Value'), 'FirstSeen': demisto.get(ioc_data, 'FirstSeen'), 'LastSeen': demisto.get(ioc_data, 'LastSeen'), 'Domain': demisto.get(ioc_data, 'Domain'), 'Status': demisto.get(ioc_data, 'Status'), 'Severity': demisto.get(ioc_data, 'Severity'), 'SourceName': demisto.get(ioc_data, 'Source.Name'), 'SourceConfidence': demisto.get(ioc_data, 'Source.Confidence'), 'Flags': {'IsInAlexa': demisto.get(ioc_data, 'Flags.IsInAlexa')}, 'Enrichment': { 'Status': demisto.get(ioc_data, 'Enrichment.Status'), 'Data': demisto.get(ioc_data, 'Enrichment.Data'), 'Date': demisto.get(ioc_data, 'Enrichment.Data') # Backwards compatibility issue } } ioc_readable = { 'ID': demisto.get(ioc_data, '_id'), 'SourceID': demisto.get(ioc_data, 'SourceID'), 'AccountID': demisto.get(ioc_data, 'AccountID'), 'Type': demisto.get(ioc_data, 'Type'), 'Value': demisto.get(ioc_data, 'Value'), 'FirstSeen': demisto.get(ioc_data, 'FirstSeen'), 'LastSeen': demisto.get(ioc_data, 'LastSeen'), 'Domain': demisto.get(ioc_data, 'Domain'), 'Status': demisto.get(ioc_data, 'Status'), 'Severity': demisto.get(ioc_data, 'Severity').get('Value'), 'SourceName': demisto.get(ioc_data, 'Source.Name'), 'SourceConfidence': demisto.get(ioc_data, 'Source.Confidence'), 'IsInAlexa': demisto.get(ioc_data, 'Flags.IsInAlexa'), 'Enrichment Status': demisto.get(ioc_data, 'Enrichment.Status'), 'Enrichment Data': demisto.get(ioc_data, 'Enrichment.Data') } dbot_score = { 'Indicator': ioc_context['Value'], 'Type': IOC_TYPE_TO_DBOT_TYPE[ioc_context['Type']], 'Vendor': 'IntSights', 'Score': translate_severity(ioc_readable['Severity']) } malicious_dict = { 'Vendor': 'IntSights', 'Description': 'IntSights severity level is High' } domain = {} if ioc_context['Domain']: domain['Name'] = ioc_context['Domain'] if translate_severity(ioc_readable['Severity']) == 3: domain['Malicious'] = malicious_dict ip_info = {} if ioc_context['Type'] == 'IpAddresses': ip_info['Address'] = ioc_context['Value'] if translate_severity(ioc_readable['Severity']) == 3: ip_info['Malicious'] = malicious_dict url_info = {} if ioc_context['Type'] == 'Urls': url_info['Data'] = ioc_context['Value'] if translate_severity(ioc_readable['Severity']) == 3: url_info['Malicious'] = malicious_dict hash_info = {} if ioc_context['Type'] == 'Hashes': hash_info['Name'] = ioc_context['Value'] hash_info[hash_identifier(ioc_context['Value'])] = ioc_context['Value'] if translate_severity(ioc_readable['Severity']) == 3: hash_info['Malicious'] = malicious_dict return ioc_context, ioc_readable, dbot_score, domain, ip_info, url_info, hash_info def search_for_ioc(): """ Search for IOC by value """ response = http_request('GET', 'public/v1/iocs/ioc-by-value', params=handle_filters(), json_response=True) if response: ioc_context, ioc_readable, dbot_score, domain, ip_info, url_info, hash_info = ioc_to_readable(response) demisto.results( { 'Type': entryTypes['note'], 'EntryContext': { 'IntSights.Iocs(val.ID === obj.ID)': ioc_context, 'DBotScore': dbot_score, 'Domain': domain, 'IP': ip_info, 'URL': url_info, 'File': hash_info }, 'Contents': response, 'HumanReadable': tableToMarkdown('IOC Information', [ioc_readable], ['ID', 'SourceID', 'AccountID', 'Type', 'Value', 'FirstSeen', 'LastSeen', 'Domain', 'Status', 'Severity', 'SourceName', 'SourceConfidence', 'IsInAlexa', 'Enrichment Status', 'Enrichment Data']), 'ContentsFormat': formats['json'] } ) else: results_for_no_content('IOC Information') def results_for_no_content(cmd_name): demisto.results( { 'Type': entryTypes['note'], 'EntryContext': {'IntSights': {}}, 'Contents': {}, 'HumanReadable': '### {} \n\n Could not get any results.'.format(cmd_name), 'ContentsFormat': formats['json'] } ) def translate_severity(sev): """ Translate alert severity to demisto """ if sev in ['Medium', 'High']: return 3 if sev == 'Low': return 2 return 0 def fetch_incidents(): """ Fetch incidents for Demisto """ now = int((datetime.utcnow() - datetime.utcfromtimestamp(0)).total_seconds() * 1000) last_run = demisto.getLastRun() demisto.info("IntSight fetch last run time is: {}".format(str(last_run))) if not last_run or 'time' not in last_run: fetch_delta, _ = parse_date_range(demisto.params().get('fetch_delta', DEFAULT_TIME_RANGE), to_timestamp=True) else: fetch_delta = last_run.get('time') alert_type = demisto.getParam('type') min_severity_level = demisto.params().get('severity_level', 'All') if min_severity_level not in SEVERITY_LEVEL: raise Exception("Minimum Alert severity level to fetch incidents incidents from, allowed values are: All," " Low, Medium, High. (Setting to All will fetch all incidents)") _, alerts_context = get_alerts_helper(handle_filters(fetch_delta)) incidents = [] for alert in alerts_context: if SEVERITY_LEVEL[min_severity_level] <= SEVERITY_LEVEL[alert.get('Severity', 'Low')]: if not alert_type or alert_type.lower() == alert.get('Type', '').lower(): incidents.append({ 'name': '{type} - {id}'.format(type=alert.get('Type', 'Type not found'), id=alert.get('ID')), 'occurred': alert.get('FoundDate'), 'severity': translate_severity(alert.get('Severity')), 'rawJSON': json.dumps(alert) }) demisto.incidents(incidents) demisto.setLastRun({'time': now}) def get_iocs(): """ Gets all IOCs with the given filters """ response = http_request('GET', 'public/v1/iocs/complete-iocs-list', params=handle_filters(), json_response=True) domains = [] ip_infos = [] url_infos = [] hash_infos = [] dbot_scores = [] iocs_context = [] iocs_readable = [] for indicator in response: ioc_context, ioc_readable, dbot_score, domain, ip_info, url_info, hash_info = ioc_to_readable(indicator) iocs_context.append(ioc_context) iocs_readable.append(ioc_readable) dbot_scores.append(dbot_score) domains.append(domain) ip_infos.append(ip_info) url_infos.append(url_info) hash_infos.append(hash_info) headers = ['ID', 'SourceID', 'AccountID', 'Type', 'Value', 'FirstSeen', 'LastSeen', 'Domain', 'Status', 'Severity', 'SourceName', 'SourceConfidence', 'IsInAlexa', 'Enrichment Status', 'Enrichment Data'] demisto.results( { 'Type': entryTypes['note'], 'EntryContext': { 'IntSights.Iocs': iocs_context, 'DBotScore': dbot_scores, 'Domain': domains, 'IP': ip_infos, 'URL': url_infos, 'File': hash_infos }, 'Contents': response, 'HumanReadable': tableToMarkdown('IOC Information', t=iocs_readable, headers=headers), 'ContentsFormat': formats['json'] } ) def takedown_request(): """ Request alert takedown """ alert_id = demisto.getArg('alert-id') http_request('PATCH', 'public/v1/data/alerts/takedown-request/' + alert_id) context = { 'ID': alert_id, } human_readable = '### IntSights Alert Takedown\n' \ 'The Alert Takedown request has been sent successfully for {}'.format(str(alert_id)) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': human_readable, 'ContentsFormat': formats['json'] }) def get_alert_takedown_status(): """ Get an alert's takedown status """ alert_id = demisto.getArg('alert-id') response = http_request('GET', 'public/v1/data/alerts/takedown-status/' + alert_id) context = { 'ID': alert_id, 'TakedownStatus': response.text } demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': context}, 'Contents': context, 'HumanReadable': tableToMarkdown('IntSights Alert Takedown Status', [context], ['ID', 'TakedownStatus']), 'ContentsFormat': formats['json'] }) def update_ioc_blocklist_status(): alert_id = demisto.getArg('alert-id') types = argToList(demisto.getArg('type')) values = argToList(demisto.getArg('value')) statuses = argToList(demisto.getArg('blocklist-status')) if len(types) != len(values) or len(types) != len(statuses): return_error('The lists must be of equal length. For each IOC, provide an entry in each list.') data = [] for count, type_ in enumerate(types): data.append({ 'Type': type_, 'Value': values[count], 'BlocklistStatus': statuses[count] }) http_request('PATCH', 'public/v1/data/alerts/change-iocs-blocklist-status/' + alert_id, json_data={'Iocs': data}) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.Alerts(val.ID === obj.ID)': {'ID': alert_id, 'Status': statuses}}, 'Contents': {'ID': alert_id, 'Status': statuses}, 'HumanReadable': tableToMarkdown('IntSights Update IOC BlockList Status for ' + alert_id, data, ['BlocklistStatus']), 'ContentsFormat': formats['json'] }) def get_ioc_blocklist_status(): alert_id = demisto.getArg('alert-id') response = http_request('GET', 'public/v1/data/alerts/blocklist-status/' + alert_id, json_response=True) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': { 'IntSights.Alerts(val.ID === obj.ID)': {'ID': alert_id, 'Status': [ioc.get('Status') for ioc in response]}}, 'Contents': response, 'HumanReadable': tableToMarkdown('IntSights Blocklist Status for ' + alert_id, response, ['Status']), 'ContentsFormat': formats['json'] }) def get_mssp_sub_accounts(): account_id = demisto.getParam('credentials')['identifier'] accounts = http_request('GET', 'public/v1/mssp/customers', json_response=True) if not accounts: return_error("intsights-mssp-get-sub-accounts failed to return data.") # Fix accounts _id keys for account in accounts: account["ID"] = account["_id"] del account["_id"] if len(accounts) < 1: return_error('Current MSSP Account has no sub accounts.') account_ids = [i["ID"] for i in accounts] if MSSP_ACCOUNT_ID not in account_ids: demisto.log("[DEBUG] - MSSP sub accounts:" + str(accounts)) return_error('Entered sub account id ({}) is not part of this mssp account'.format(MSSP_ACCOUNT_ID)) for i, account in enumerate(account_ids): # Call account HEADERS['Account-Id'] = account account_ua = http_request('GET', 'public/v1/account/used-assets', json_response=True) if not account_ua: continue accounts[i].update(account_ua) demisto.results({ 'Type': entryTypes['note'], 'EntryContext': {'IntSights.MsspAccount(val.ID === obj.ID)': accounts}, 'HumanReadable': tableToMarkdown('IntSights MSSP accounts used assets ' + account_id, accounts, ["ID", 'CompanyName', "Status", "AssetsLimit", "AssetsCount"]), 'Contents': accounts, 'ContentsFormat': formats['json'] }) # Restore the header HEADERS['Account-Id'] = MSSP_ACCOUNT_ID def test_module(): http_request('GET', 'public/v1/api/version') if demisto.params().get('isFetch'): min_severity_level = demisto.params().get('severity_level', 'All') if min_severity_level not in SEVERITY_LEVEL: return_error("Minimum Alert severity level to fetch incidents incidents from, allowed values are: " "All, Low, Medium, High. (Setting to All will fetch all incidents)") demisto.results('ok') try: if demisto.command() == 'test-module': test_module() elif demisto.command() == 'fetch-incidents': fetch_incidents() elif demisto.command() == 'intsights-mssp-get-sub-accounts': get_mssp_sub_accounts() elif demisto.command() == 'intsights-get-alerts': get_alerts() elif demisto.command() == 'intsights-get-alert-image': get_alert_image() elif demisto.command() == 'intsights-get-alert-activities': get_alert_activity() elif demisto.command() == 'intsights-assign-alert': assign_alert() elif demisto.command() == 'intsights-unassign-alert': unassign_alert() elif demisto.command() == 'intsights-send-mail': send_mail() elif demisto.command() == 'intsights-ask-the-analyst': ask_analyst() elif demisto.command() == 'intsights-add-tag-to-alert': add_tag() elif demisto.command() == 'intsights-remove-tag-from-alert': remove_tag() elif demisto.command() == 'intsights-add-comment-to-alert': add_comment() elif demisto.command() == 'intsights-update-alert-severity': change_severity() elif demisto.command() == 'intsights-get-alert-by-id': get_alert_by_id() elif demisto.command() == 'intsights-get-ioc-by-value': search_for_ioc() elif demisto.command() == 'intsights-get-iocs': get_iocs() elif demisto.command() == 'intsights-alert-takedown-request': takedown_request() elif demisto.command() == 'intsights-get-alert-takedown-status': get_alert_takedown_status() elif demisto.command() == 'intsights-get-ioc-blocklist-status': get_ioc_blocklist_status() elif demisto.command() == 'intsights-update-ioc-blocklist-status': update_ioc_blocklist_status() elif demisto.command() == 'intsights-close-alert': close_alert() else: raise Exception('Unrecognized command: ' + demisto.command()) except Exception as err: return_error(str(err))
py
b413b7d389481bb8b57cd87daabbc260be90f655
# -*- coding: utf-8 -*- """ hooks.sendmail ~~~~~~~~~~~~~~ Encapsulate multiple mail sending methods. :copyright: (c) 2020 by staugur. :license: BSD 3-Clause, see LICENSE for more details. """ __version__ = '0.1.1' __author__ = 'staugur' __description__ = '多方式发送邮件' from flask import request, g from utils.tool import Mailbox, try_request, logger, is_true intpl_emailsetting = ''' <div class="layui-col-xs12 layui-col-sm12 layui-col-md12"> <div class="layui-form-item"> <div class="layui-inline"> <label class="layui-form-label" style="width: auto;">不使用本地邮件服务发送</label> <div class="layui-input-inline" style="width: auto;"> <input type="checkbox" name="email_nolocal" lay-skin="switch" lay-text="是|否" {% if is_true(g.site.email_nolocal) %}checked="checked" {% endif %} autocomplete="off" value="1"> </div> </div> </div> <div class="layui-form-item"> <div class="layui-inline"> <label class="layui-form-label">SaintIC Open</label> <div class="layui-input-block"> <input type="text" name="email_open_token" value="{{ g.site.email_open_token }}" placeholder="Api密钥" autocomplete="off" class="layui-input"> </div> </div> </div> <fieldset class="layui-elem-field layui-field-title"> <legend><i class="saintic-icon saintic-icon-info" id="tip-sc" style="font-size:120%"></i> SendCloud</legend> <div class="layui-field-box"> <div class="layui-form-item"> <label class="layui-form-label">Api User</label> <div class="layui-input-block"> <input type="text" name="email_sendcloud_apiuser" value="{{ g.site.email_sendcloud_apiuser }}" placeholder="SendCloud.sohu.com API USER" autocomplete="off" class="layui-input"> </div> </div> <div class="layui-form-item"> <label class="layui-form-label">Api Key</label> <div class="layui-input-block"> <input type="text" name="email_sendcloud_apikey" value="{{ g.site.email_sendcloud_apikey }}" placeholder="SendCloud KEY of API USER" autocomplete="off" class="layui-input"> </div> </div> <div class="layui-form-item"> <label class="layui-form-label">From</label> <div class="layui-input-block"> <input type="text" name="email_sendcloud_from" value="{{ g.site.email_sendcloud_from }}" placeholder="(可选)发件人地址" autocomplete="off" class="layui-input"> </div> </div> </div> </fieldset> </div> ''' def _sendcloud(API_USER, API_KEY, subject, html, to, from_addr, from_name=""): url = "https://api.sendcloud.net/apiv2/mail/send" data = { "apiUser": API_USER, "apiKey": API_KEY, "from": from_addr, "fromName": from_name, "to": to.replace(",", ";"), "subject": subject, "html": html, } r = try_request(url, data=data) return r.json() def _saintic_open(TOKEN, subject, html, to, from_name=""): url = "https://open.saintic.com/api/sendmail" data = dict( token=TOKEN, from_name=from_name, to=to, subject=subject, html=html, ) r = try_request(url, data=data) return r.json() def sendmail(subject, message, to_addr): """Web环境下发送邮件""" #: from_addr建议设置发件人邮箱,否则基本会被拦截或进入垃圾邮箱 from_addr = "picbed@{}".format(request.host) from_name = g.cfg.email_from_name or g.site_name #: 关闭通过本地服务器发送邮件 no_local = g.cfg.email_nolocal if is_true(no_local): res = dict(code=1) else: #: 通过本地邮件服务发送 mb = Mailbox(from_addr, "", "localhost") res = mb.send(subject, message, to_addr, from_name) logger.debug("sendmail with localhost: {}".format(res)) if res["code"] != 0: #: 根据钩子配置依次发送邮件,除非某次发送成功 API_USER = g.cfg.email_sendcloud_apiuser API_KEY = g.cfg.email_sendcloud_apikey TOKEN = g.cfg.email_open_token #: SaintIC Open(open.saintic.com) Email Service(private now) if TOKEN: res = _saintic_open(TOKEN, subject, message, to_addr, from_name) logger.debug("sendmail with saintic open: {}".format(res)) res.update(method="open") #: Sohu(sendcloud.sohu.com) public service if res["code"] != 0 and API_USER and API_KEY: #: See docs: https://www.sendcloud.net/doc/email_v2/ _sr = _sendcloud( API_USER, API_KEY, subject, message, to_addr, g.cfg.email_sendcloud_from or from_addr, from_name ) if is_true(_sr.get("result")): res = dict(code=0, data=_sr.get("info")) else: res = dict(code=_sr.get("statusCode"), msg=_sr.get("message")) logger.debug("sendmail with sendcloud: {}".format(res)) res.update(method="sendcloud") else: res.update(method="local") return res
py
b413b7db4f10bccfb5345f8032d57acf202ff869
# -*- coding: utf-8 -*- # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UX Configuration test.""" import logging import socket import unittest from unittest.mock import MagicMock, patch from neural_compressor.ux.utils.consts import WORKSPACE_LOCATION from neural_compressor.ux.web.configuration import Configuration from neural_compressor.ux.web.exceptions import NotFoundException @patch("neural_compressor.ux.web.configuration.determine_ip", new=lambda: "127.0.0.1") class TestConfiguration(unittest.TestCase): """UX Configuration tests.""" @patch( "sys.argv", [ "inc_bench.py", ], ) @patch("secrets.token_hex") def test_defaults( self, mock_secrets_token_hex: MagicMock, ) -> None: """Test default values.""" mock_secrets_token_hex.return_value = "this is a mocked token value" configuration = Configuration() configuration.set_up() self.assertEqual(5000, configuration.server_port) self.assertEqual(5000, configuration.gui_port) self.assertEqual(logging.CRITICAL, configuration.log_level) self.assertEqual("127.0.0.1", configuration.server_address) self.assertEqual("https", configuration.scheme) self.assertEqual("this is a mocked token value", configuration.token) self.assertEqual( "https://127.0.0.1:5000/?token=this is a mocked token value", configuration.get_url(), ) @patch("sys.argv", ["inc_bench.py", "-P1234"]) @patch("secrets.token_hex") def test_changing_gui_port( self, mock_secrets_token_hex: MagicMock, ) -> None: """Test changing GUI port.""" mock_secrets_token_hex.return_value = "this is a mocked token value" configuration = Configuration() configuration.set_up() self.assertEqual(1234, configuration.gui_port) self.assertNotEqual(configuration.server_port, configuration.gui_port) self.assertEqual( "https://127.0.0.1:1234/?token=this is a mocked token value", configuration.get_url(), ) @patch("sys.argv", ["inc_bench.py", "-p1234"]) @patch("secrets.token_hex") def test_changing_server_port( self, mock_secrets_token_hex: MagicMock, ) -> None: """Test changing API port.""" mock_secrets_token_hex.return_value = "this is a mocked token value" configuration = Configuration() configuration.set_up() self.assertEqual(1234, configuration.server_port) self.assertEqual(1234, configuration.gui_port) self.assertEqual( "https://127.0.0.1:1234/?token=this is a mocked token value", configuration.get_url(), ) @patch("sys.argv", ["inc_bench.py", "-p 0"]) def test_changing_server_port_too_low(self) -> None: """Test changing API port to invalid value.""" configuration = Configuration() with self.assertRaisesRegex( ValueError, "Lowest allowed port number is 1, attempted to use: 0", ): configuration.set_up() @patch("sys.argv", ["inc_bench.py", "-p 65536"]) def test_changing_server_port_too_high(self) -> None: """Test changing API port to invalid value.""" configuration = Configuration() with self.assertRaisesRegex( ValueError, "Highest allowed port number is 65535, attempted to use: 65536", ): configuration.set_up() @patch("sys.argv", ["inc_bench.py", "-P 0"]) def test_changing_gui_port_too_low(self) -> None: """Test changing GUI port to invalid value.""" configuration = Configuration() with self.assertRaisesRegex( ValueError, "Lowest allowed port number is 1, attempted to use: 0", ): configuration.set_up() @patch("sys.argv", ["inc_bench.py", "-P 65536"]) def test_changing_gui_port_too_high(self) -> None: """Test changing GUI port to invalid value.""" configuration = Configuration() with self.assertRaisesRegex( ValueError, "Highest allowed port number is 65535, attempted to use: 65536", ): configuration.set_up() @patch("sys.argv", ["inc_bench.py", "-p1234", "-P5678"]) @patch("secrets.token_hex") def test_changing_server_and_gui_port( self, mock_secrets_token_hex: MagicMock, ) -> None: """Test changing API and GUI ports.""" mock_secrets_token_hex.return_value = "this is a mocked token value" configuration = Configuration() configuration.set_up() self.assertEqual(1234, configuration.server_port) self.assertEqual(5678, configuration.gui_port) self.assertEqual( "https://127.0.0.1:5678/?token=this is a mocked token value", configuration.get_url(), ) @patch("sys.argv", ["inc_bench.py", "-vv"]) def test_changing_log_level_to_defined_one(self) -> None: """Test changing log level.""" configuration = Configuration() configuration.set_up() self.assertEqual(logging.INFO, configuration.log_level) @patch("sys.argv", ["inc_bench.py", "-vvvvvvvvvvvvv"]) def test_changing_log_level_to_not_defined_one(self) -> None: """Test changing log level to unknown one.""" configuration = Configuration() configuration.set_up() self.assertEqual(logging.DEBUG, configuration.log_level) @patch("socket.socket.bind") @patch("sys.argv", ["inc_bench.py", "-p1234"]) def test_changing_server_port_to_already_taken_fails( self, mock_socket_bind: MagicMock, ) -> None: """Test fail during attempting to use taken port.""" mock_socket_bind.configure_mock(side_effect=socket.error) with self.assertRaises(NotFoundException): configuration = Configuration() configuration.set_up() @patch("socket.socket.bind") @patch("sys.argv", ["inc_bench.py"]) def test_when_all_ports_taken_it_fails( self, mock_socket_bind: MagicMock, ) -> None: """Test fail when all ports taken.""" mock_socket_bind.configure_mock(side_effect=socket.error) with self.assertRaises(NotFoundException): configuration = Configuration() configuration.set_up() @patch("sys.argv", ["inc_bench.py"]) def test_many_instances_are_the_same(self) -> None: """Test that all instances references same object.""" original_configuration = Configuration() new_configuration = Configuration() self.assertTrue(original_configuration is new_configuration) @patch("sys.argv", ["inc_bench.py"]) def test_reloading_config_changes_token(self) -> None: """Test that reloading configuration changes token.""" configuration = Configuration() original_token = configuration.token configuration.set_up() self.assertNotEqual(original_token, configuration.token) @patch("sys.argv", ["inc_bench.py"]) def test_default_workdir(self) -> None: """Test that when no existing config given, default will be used.""" configuration = Configuration() configuration.set_up() self.assertEqual(WORKSPACE_LOCATION, configuration.workdir) if __name__ == "__main__": unittest.main()
py
b413b7eb66afb0a06e1deb620fd0953986b5b6c9
import requests from mozart import config class Music(object): """ 音乐封装类,实现下载链接,封面图,歌手,歌名的获取 """ # 需要重定向的短链列表 should_redirect_lists = ['url.cn'] def __init__(self, url="", music_id="", use_id=False): self.music_id = "" self.real_url = "" # output info self._download_url = "" self._cover = "" self._singer = "" self._song = "" self._rate = 128 # whether use music id or not self.use_id = use_id if self.use_id: self.music_id = music_id else: self.real_url = self.get_real_url(url) # 初始化歌曲信息 pass def __repr__(self): return "[Music]\n" \ "singer:%s\n" \ "song:%s\n" \ "cover:%s\n" \ "download_url:%s" % ( self._singer, self._song, self._cover, self._download_url) @property def download_url(self): return self._download_url @property def cover(self): return self._cover @property def singer(self): return self._singer @property def song(self): return self._song @property def rate(self): return self._rate def get_music_from_id(self): """ 从music id获得音乐信息及下载链接 """ raise NotImplementedError("Music's method `get_music_id_from_url` does not implement!") @classmethod def get_music_id_from_url(cls, url): """ 从real_url获得music id """ raise NotImplementedError("Music's method `get_music_id_from_url` does not implement!") @classmethod def get_real_url(cls, url): """ 根据分享链接,获取最终访问的URL,支持redirect :return: url # Now, only qq need redirect """ for l in cls.should_redirect_lists: if l in url: r = requests.head(url, allow_redirects=True, headers={"User-Agent": config.ios_ua}) return r.url return url def _get_download_url(self): raise NotImplementedError("Music's method `_get_download_url` does not implement!") def _get_music_info(self): raise NotImplementedError("Music's method `_get_music_info` does not implement!")
py
b413b8b0a57f9d64151b77937d31cce3af1c2f1c
from pathlib import Path import click from skimage.restoration import denoise_tv_chambolle from dtoolbioimage import ImageDataSet, Image3D, zoom_to_match_scales def denoise_stack_from_dataset(imageds, image_name, series_name, channel, output_filename): stack = imageds.get_stack(image_name, series_name, channel) zoomed_stack = zoom_to_match_scales(stack) denoised_stack = denoise_tv_chambolle(zoomed_stack, weight=0.02) denoised_stack.view(Image3D).save(output_filename) def derive_output_filename(output_dirpath, image_name, series_name): return output_dirpath/(image_name + '_denoised_venus.tif') def denoise_all_stacks_in_dataset(imageds, channel, output_dirpath): for image_name in imageds.get_image_names(): for series_name in imageds.get_series_names(image_name): output_filename = derive_output_filename(output_dirpath, image_name, series_name) denoise_stack_from_dataset(imageds, image_name, series_name, channel, output_filename) @click.command() @click.argument('dataset_uri') def main(dataset_uri): imageds = ImageDataSet(dataset_uri) image_name = 'fca-3_FLC-Venus_root03' series_name = 'fca-3_FLC-Venus_root03 #1' channel = 0 output_filename = 'root_03_denoised.tif' # denoise_stack_from_dataset(imageds, image_name, series_name, channel, output_filename) output_dirpath = Path('scratch/') denoise_all_stacks_in_dataset(imageds, channel, output_dirpath) if __name__ == "__main__": main()
py
b413b8e09ce5fb310fdcadbb74cd1d386bc77e3d
import phonetic_matcher # match scores score = phonetic_matcher.fuzzy_match("mycroft", "microsoft") # 0.7400408163265306 score = phonetic_matcher.fuzzy_match("cat", "dog") # 0.4999999999999999 # best match selection query = "mycroft" choices = ["microsoft", "minecraft", "mike roft", "mein kampf", "my raft"] best, score = phonetic_matcher.best_match(query, choices) # mike roft 0.9179748822605965 # all matches matches = phonetic_matcher.match(query, choices) # [('mike roft', 0.9047095761381476), # ('minecraft', 0.7416326530612245), # ('microsoft', 0.7387755102040816), # ('my raft', 0.7083333333333333), # ('mein kampf', 0.48752834467120176)] query = "cat" choices = ["fat", "crab", "bat", "crap", "trap", "sat"] matches = phonetic_matcher.match(query, choices) # [('fat', 0.6666666666666666), # ('bat', 0.6666666666666666), # ('sat', 0.6666666666666666), # ('crap', 0.6222222222222222), # ('crab', 0.5388888888888889), # ('trap', 0.5388888888888889)]
py
b413b9dffdd7d3eab31204aa67702f6de3dd6cbd
import src.helpers import src.util # To test logging w/o db connection simply set the db in .env to invalid name def test_logging_db(): logger_wrapper = src.util.LoggerWrapper(entity_name=1, location="log/test_file.log") db_connector = src.helpers.DBConnector(logger_wrapper.logger, mode="DEV") print(db_connector._connection.closed, type(db_connector._connection.closed)) if db_connector._connection is not None: print("SUCCESS: DB_Connection") logger_wrapper.db_connector = db_connector logger_wrapper.add_db_handler() logger_wrapper._logger.error("This is a test") db_connector._connection.close() print(db_connector._connection.closed) test_logging_db()
py
b413bb36837f38eb067f647bda6f89e53ea2d2c1
import random import os import sys from colorama import Fore import requests import random from random import randint gentype = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' g = Fore.GREEN r = Fore.RED b = Fore.BLUE y = Fore.YELLOW re = Fore.RESET l = Fore.LIGHTBLACK_EX blue = Fore.BLUE payload={} headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:92.0) Gecko/20100101 Firefox/92.0', 'Accept': '*/*', 'Accept-Language': 'en-GB,en;q=0.5', 'Content-Type': 'application/json', 'X-Platform': 'CHIHIRO', 'Access-Control-Max-Age': '600', 'Origin': 'https://transact.playstation.com', 'Connection': 'keep-alive', 'Referer': 'https://transact.playstation.com/', 'Cookie': '', #Update 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-site', 'TE': 'trailers' } def clearscreen(): os.system("cls") def mainfunction(): print(f"Welcome to The {blue}Playstation{re} Generator") readyornot = input("Ready? Y/N > ") if readyornot == "y": clearscreen() while True: generate1 = random.choice(gentype) generate2 = random.choice(gentype) generate3 = random.choice(gentype) generate4 = random.choice(gentype) space1 = "-" generate5 = random.choice(gentype) generate6 = random.choice(gentype) generate7 = random.choice(gentype) generate8 = random.choice(gentype) space2 = "-" generate9 = random.choice(gentype) generate10 = random.choice(gentype) generate11 = random.choice(gentype) generate12 = random.choice(gentype) url = "https://web.np.playstation.com/api/graphql/v1/transact/wallets/vouchers/" + generate1+generate2+generate3+generate4+space1+generate5+generate6+generate7+generate8+space2+generate9+generate10+generate11+generate12 #Fx response = requests.request("GET", url, headers=headers, data=payload) if requests.get(url).status_code == 403: print(f"[{r}ERROR{re}] " + generate1+generate2+generate3+generate4+space1+generate5+generate6+generate7+generate8+space2+generate9+generate10+generate11+generate12) else: print(f"[{g}SUCCES{re}] " + generate1+generate2+generate3+generate4+space1+generate5+generate6+generate7+generate8+space2+generate9+generate10+generate11+generate12) if __name__ == "__main__": mainfunction()
py
b413bb6fe0505df8fb09fa0759fefb6509b95bc9
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import sys import unittest import google.protobuf.text_format as text_format import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2 parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--profile_path', type=str, default='', help='Input profile file name. If there are multiple file, the format ' 'should be trainer1=file1,trainer2=file2,ps=file3') parser.add_argument( '--timeline_path', type=str, default='', help='Output timeline file name.') args = parser.parse_args() class _ChromeTraceFormatter(object): def __init__(self): self._events = [] self._metadata = [] def _create_event(self, ph, category, name, pid, tid, timestamp): """Creates a new Chrome Trace event. For details of the file format, see: https://github.com/catapult-project/catapult/blob/master/tracing/README.md Args: ph: The type of event - usually a single character. category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. timestamp: The timestamp of this event as a long integer. Returns: A JSON compatible event object. """ event = {} event['ph'] = ph event['cat'] = category event['name'] = name event['pid'] = pid event['tid'] = tid event['ts'] = timestamp return event def emit_pid(self, name, pid): """Adds a process metadata event to the trace. Args: name: The process name as a string. pid: Identifier of the process as an integer. """ event = {} event['name'] = 'process_name' event['ph'] = 'M' event['pid'] = pid event['args'] = {'name': name} self._metadata.append(event) def emit_region(self, timestamp, duration, pid, tid, category, name, args): """Adds a region event to the trace. Args: timestamp: The start timestamp of this region as a long integer. duration: The duration of this region as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. category: The event category as a string. name: The event name as a string. args: A JSON-compatible dictionary of event arguments. """ event = self._create_event('X', category, name, pid, tid, timestamp) event['dur'] = duration event['args'] = args self._events.append(event) def format_to_string(self, pretty=False): """Formats the chrome trace to a string. Args: pretty: (Optional.) If True, produce human-readable JSON output. Returns: A JSON-formatted string in Chrome Trace format. """ trace = {} trace['traceEvents'] = self._metadata + self._events if pretty: return json.dumps(trace, indent=4, separators=(',', ': ')) else: return json.dumps(trace, separators=(',', ':')) class Timeline(object): def __init__(self, profile_dict): self._profile_dict = profile_dict self._pid = 0 self._devices = dict() self._chrome_trace = _ChromeTraceFormatter() def _allocate_pid(self): cur_pid = self._pid self._pid += 1 return cur_pid def _allocate_pids(self): for k, profile_pb in self._profile_dict.iteritems(): for event in profile_pb.events: if event.type == profiler_pb2.Event.CPU: if (k, event.device_id, "CPU") not in self._devices: pid = self._allocate_pid() self._devices[(k, event.device_id, "CPU")] = pid self._chrome_trace.emit_pid("%s:cpu:block:%d" % (k, event.device_id), pid) elif event.type == profiler_pb2.Event.GPUKernel: if (k, event.device_id, "GPUKernel") not in self._devices: pid = self._allocate_pid() self._devices[(k, event.device_id, "GPUKernel")] = pid self._chrome_trace.emit_pid("%s:gpu:%d" % (k, event.device_id), pid) def _allocate_events(self): for k, profile_pb in self._profile_dict.iteritems(): for event in profile_pb.events: if event.type == profiler_pb2.Event.CPU: type = "CPU" elif event.type == profiler_pb2.Event.GPUKernel: type = "GPUKernel" pid = self._devices[(k, event.device_id, type)] args = {'name': event.name} if event.memcopy.bytes > 0: args = {'mem_bytes': event.memcopy.bytes} # TODO(panyx0718): Chrome tracing only handles ms. However, some # ops takes micro-seconds. Hence, we keep the ns here. self._chrome_trace.emit_region( event.start_ns, (event.end_ns - event.start_ns) / 1.0, pid, event.sub_device_id, 'Op', event.name, args) def generate_chrome_trace(self): self._allocate_pids() self._allocate_events() return self._chrome_trace.format_to_string() profile_path = '/tmp/profile' if args.profile_path: profile_path = args.profile_path timeline_path = '/tmp/timeline' if args.timeline_path: timeline_path = args.timeline_path profile_paths = profile_path.split(',') profile_dict = dict() if len(profile_paths) == 1: with open(profile_path, 'r') as f: profile_s = f.read() profile_pb = profiler_pb2.Profile() profile_pb.ParseFromString(profile_s) profile_dict['trainer'] = profile_pb else: for profile_path in profile_paths: k, v = profile_path.split('=') with open(v, 'r') as f: profile_s = f.read() profile_pb = profiler_pb2.Profile() profile_pb.ParseFromString(profile_s) profile_dict[k] = profile_pb tl = Timeline(profile_dict) with open(timeline_path, 'w') as f: f.write(tl.generate_chrome_trace())
py
b413bb7d0d5bf6e2d43c782b658fa0760acd4e56
#Written by Neil McHenry #September 23rd, 2018 #Load math relate packages import numpy as np import matplotlib.pyplot as plt import scipy from scipy.integrate import ode #AERO 622 Hw #3 Page 49 Problem 2 #Solve for the motion of the bead on a spinning wire #Using a numerical integration technique, then comment #Physical parameters m = 0.1 #kg r = 0.4 #meters g = 10 #m/s/s #Initial Condition 1 OMEGA1 = 4 #rad/s theta = np.pi/2 + 0.1 #radians thetaDot = 0 #rad/s time = 12 #seconds #Initial Condition 2 OMEGA2 = 6 #rad/s #Function Definition def fun(t, z, omega): """ Right hand side of the differential equations dx/dt = -omega * y dy/dt = omega * x """ x, y = z f = [-omega*y, omega*x] return f # Create an `ode` instance to solve the system of differential # equations defined by `fun`, and set the solver method to 'dop853'. solver = ode(fun) solver.set_integrator('dop853') # Give the value of omega to the solver. This is passed to # `fun` when the solver calls it. omega = 2 * np.pi solver.set_f_params(omega) # Set the initial value z(0) = z0. t0 = 0.0 z0 = [1, -0.25] solver.set_initial_value(z0, t0) # Create the array `t` of time values at which to compute # the solution, and create an array to hold the solution. # Put the initial value in the solution array. t1 = 2.5 N = 75 t = np.linspace(t0, t1, N) sol = np.empty((N, 2)) sol[0] = z0 # Repeatedly call the `integrate` method to advance the # solution to time t[k], and save the solution in sol[k]. k = 1 while solver.successful() and solver.t < t1: solver.integrate(t[k]) sol[k] = solver.y k += 1 # Plot the solution... plt.plot(t, sol[:,0], label='x') plt.plot(t, sol[:,1], label='y') plt.xlabel('t') plt.grid(True) plt.legend() plt.show()
py
b413bb9f433055d6b75d99ca7b75d27ac362dea5
import os from enum import Enum from enum import unique from importlib.resources import open_text from logging.config import dictConfig import envtoml from mipengine import AttrDict from mipengine import controller @unique class DeploymentType(str, Enum): LOCAL = "LOCAL" KUBERNETES = "KUBERNETES" if config_file := os.getenv("MIPENGINE_CONTROLLER_CONFIG_FILE"): with open(config_file) as fp: config = AttrDict(envtoml.load(fp)) else: with open_text(controller, "config.toml") as fp: config = AttrDict(envtoml.load(fp)) dictConfig( { "version": 1, "formatters": { "controller_request_frm": { "format": "%(asctime)s - %(levelname)s - CONTROLLER - %(module)s - %(funcName)s(%(lineno)d) - %(message)s", }, "controller_background_service_frm": { "format": "%(asctime)s - %(levelname)s - CONTROLLER - BACKGROUND - %(module)s - %(funcName)s(%(lineno)d) - %(message)s", }, }, "handlers": { "controller_request_hdl": { "level": config.log_level, "formatter": "controller_request_frm", "class": "logging.StreamHandler", "stream": "ext://sys.stdout", }, "controller_background_service_hdl": { "level": config.log_level, "formatter": "controller_background_service_frm", "class": "logging.StreamHandler", "stream": "ext://sys.stdout", }, }, "loggers": { "controller_request": { "level": config.log_level, "handlers": ["controller_request_hdl"], }, "controller_background_service": { "level": config.log_level, "handlers": ["controller_background_service_hdl"], }, }, } )
py
b413bba9934a78ee87c11c19a52576c203cafec0
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-04-22 06:02 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='SpamNumber', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('phone_number', models.CharField(blank=True, max_length=200, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'User Contacts', 'verbose_name': 'User Contact', }, ), migrations.CreateModel( name='UserContact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('phone_number', models.CharField(blank=True, max_length=200, null=True)), ('name', models.CharField(max_length=200)), ('email', models.EmailField(blank=True, max_length=254, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'User Contacts', 'verbose_name': 'User Contact', }, ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('phone_number', models.CharField(blank=True, max_length=200, null=True)), ('name', models.CharField(max_length=200)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'User Profiles', 'verbose_name': 'User Profile', }, ), ]
py
b413bda964e34510d6c28c45fd61b434e284773e
#!/usr/bin/env python2 # Copyright (c) 2014-2020 The Bitcoin Core developers # Copyright (c) 2014-2020 The Martkist Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import MartkistTestFramework from test_framework.util import * # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(MartkistTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 4) def setup_network(self, split=False): self.nodes = start_nodes(4, self.options.tmpdir, [['-usehd=1'], ['-usehd=1'], ['-usehd=1'], ['-usehd=1']]) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() def run_test(self): print "Mining blocks..." min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(2000) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 15) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 50) self.sync_all() self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enought inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 22 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26, self.nodes[1].getnewaddress() : 25 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 50: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 50: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(50) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx if aUtx['amount'] == 50: utx2 = aUtx assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx if aUtx['amount'] == 50: utx2 = aUtx assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60, self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 10} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) raise AssertionError("Spent more than available") except JSONRPCException as e: assert("Insufficient" in e.error['message']) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():11,self.nodes[1].getnewaddress():12,self.nodes[1].getnewaddress():1,self.nodes[1].getnewaddress():13,self.nodes[1].getnewaddress():2,self.nodes[1].getnewaddress():3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 12 MARTK to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 12) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('11.0000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.nodes.pop(1) stop_nodes(self.nodes) wait_martkistds() self.nodes = start_nodes(4, self.options.tmpdir, [['-usehd=1'], ['-usehd=1'], ['-usehd=1'], ['-usehd=1']]) # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked try: fundedTx = self.nodes[1].fundrawtransaction(rawTx) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('Keypool ran out' in e.error['message']) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill(2) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() try: self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 12) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('walletpassphrase' in e.error['message']) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():11} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #now we need to unlock self.nodes[1].walletpassphrase("test", 100) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('511.0000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('500.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) if __name__ == '__main__': RawTransactionsTest().main()
py
b413bdee207a7da51e0700ee6795816c38222a21
import types def _clean_acc(acc): out = {} for attr in ['genomic', 'protein', 'rna']: if attr in acc: v = acc[attr] if type(v) is types.ListType: out[attr] = [x.split('.')[0] for x in v] else: out[attr] = v.split('.')[0] return out def diff_doc1(doc_1, doc_2): diff_d = {'update': {}, 'delete': [], 'add': {}} for attr in set(doc_1) | set(doc_2): if attr in ['_rev', 'pir', 'Vega']: continue if attr in doc_1 and attr in doc_2: _v1 = doc_1[attr] _v2 = doc_2[attr] if attr == 'MGI': _v2 = _v2.split(':')[1] elif attr in ['refseq', 'accession']: _v1 = _clean_acc(_v1) elif attr == 'interpro': if type(_v1) is types.ListType: _v1.sort() if type(_v2) is types.ListType: _v2.sort() elif attr == 'reagent': for k in _v1.keys(): if k.find('.') != -1: _v1[k.replace('.', '_')] = _v1[k] del _v1[k] if _v1 != _v2: diff_d['update'][attr] = _v2 elif attr in doc_1 and attr not in doc_2: diff_d['delete'].append(attr) else: diff_d['add'][attr] = doc_2[attr] if diff_d['update'] or diff_d['delete'] or diff_d['add']: return diff_d
py
b413c02a8f0d23705dc3cb830c50987b9d7b2ce5
"""A component registry, similar to nlp_saft::RegisteredClass<>. Like nlp_saft::RegisteredClass<>, one does not need to explicitly import the module containing each subclass. It is sufficient to add subclasses as build dependencies. Unlike nlp_saft::RegisteredClass<>, which allows subclasses to be registered under arbitrary names, subclasses must be looked up based on their type name. This restriction allows the registry to dynamically import the module containing the desired subclass. Example usage: # In basepackage/base.py... @registry.RegisteredClass class MyBase: def my_method(self): pass # In implpackage/impl.py... class MyImpl(MyBase): def my_method(self): ... # In userpackage/user.py... try impl = MyBase.Create("implpackage.impl.MyImpl") except ValueError as error: ... Note that there is no registration statement in impl.py. For convenience, if the base class and subclass share a package prefix, the shared portion of the package path may be omitted in the call to Create(). For example, if the base class is 'foo.bar.Base' and the subclass is 'foo.bar.baz.Impl', then these are all equivalent: Base.Create('foo.bar.baz.Impl') Base.Create('bar.baz.Impl') Base.Create('baz.Impl') Name resolution happens in inside-out fashion, so if there is also a subclass 'foo.baz.Impl', then Base.Create('baz.Impl') # returns foo.bar.baz.Impl Base.Create('bar.baz.Impl') # returns foo.bar.baz.Impl Base.Create('foo.baz.Impl') # returns foo.baz.Impl NB: Care is required when moving code, because config files may refer to the classes being moved by their type name, which may include the package path. To preserve existing names, leave a stub in the original location that imports the class from its new location. For example, # Before move, in oldpackage/old.py... class Foo(Base): ... # After move, in newpackage/new.py... class Bar(Base): ... # After move, in oldpackage/old.py... from newpackage import new Foo = new.Bar """ import inspect import sys from tensorflow.python.platform import tf_logging as logging def _GetClass(name): """Looks up a class by name. Args: name: The fully-qualified type name of the class to return. Returns: The class associated with the |name|, or None on error. """ elements = name.split('.') # Need at least "module.Class". if len(elements) < 2: logging.debug('Malformed type: "%s"', name) return None module_path = '.'.join(elements[:-1]) class_name = elements[-1] # Import the module. try: __import__(module_path) except ImportError as e: logging.debug('Unable to find module "%s": "%s"', module_path, e) return None module = sys.modules[module_path] # Look up the class. if not hasattr(module, class_name): logging.debug('Name "%s" not found in module: "%s"', class_name, module_path) return None class_obj = getattr(module, class_name) # Check that it is actually a class. if not inspect.isclass(class_obj): logging.debug('Name does not refer to a class: "%s"', name) return None return class_obj def _Create(baseclass, subclass_name, *args, **kwargs): """Creates an instance of a named subclass. Args: baseclass: The expected base class. subclass_name: The fully-qualified type name of the subclass to create. *args: Passed to the subclass constructor. **kwargs: Passed to the subclass constructor. Returns: An instance of the named subclass, or None on error. """ subclass = _GetClass(subclass_name) if subclass is None: return None # _GetClass() already logged an error if not issubclass(subclass, baseclass): logging.debug('Class "%s" is not a subclass of "%s"', subclass_name, baseclass.__name__) return None return subclass(*args, **kwargs) def _ResolveAndCreate(baseclass, path, subclass_name, *args, **kwargs): """Resolves the name of a subclass and creates an instance of it. The subclass is resolved with respect to a package path in an inside-out manner. For example, if |path| is 'google3.foo.bar' and |subclass_name| is 'baz.ClassName', then attempts are made to create instances of the following fully-qualified class names: 'google3.foo.bar.baz.ClassName' 'google3.foo.baz.ClassName' 'google3.baz.ClassName' 'baz.ClassName' An instance corresponding to the first successful attempt is returned. Args: baseclass: The expected base class. path: The path to use to resolve the subclass. subclass_name: The name of the subclass to create. *args: Passed to the subclass constructor. **kwargs: Passed to the subclass constructor. Returns: An instance of the named subclass corresponding to the inner-most successful name resolution, or None if the name could not be resolved. Raises: ValueError: If the subclass cannot be resolved and created. """ elements = path.split('.') while True: resolved_subclass_name = '.'.join(elements + [subclass_name]) subclass = _Create(baseclass, resolved_subclass_name, *args, **kwargs) if subclass: return subclass # success if not elements: break # no more paths to try elements.pop() # try resolving against the next-outer path raise ValueError( 'Failed to create subclass "%s" of base class %s using path %s' % (subclass_name, baseclass.__name__, path)) def RegisteredClass(baseclass): """Decorates the |baseclass| with a static Create() method.""" assert not hasattr(baseclass, 'Create') def Create(subclass_name, *args, **kwargs): """A wrapper around _Create() that curries the |baseclass|.""" path = inspect.getmodule(baseclass).__name__ return _ResolveAndCreate(baseclass, path, subclass_name, *args, **kwargs) baseclass.Create = staticmethod(Create) return baseclass
py
b413c23f1e52d4ab745b3475f920fd34ffb30ab6
#TODO collecting the servers' MAC addresses and set a period #TODO using etac (the topology information) to compute the route #for each flow and add the flow entries to the switches, then add them to mysql db import time import random import MySQLdb from ryu.base import app_manager from ryu.topology import event from ryu.controller.controller import Datapath from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.lib import ofctl_v1_3 from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.topology.switches import Switch #from ryu.topology.switches import get_link, get_switch, Switch from priodict import priorityDictionary #from ryu.topology import event from ryu.topology.api import get_link, get_switch #hardware DBADDRESS = 'localhost' DBUSER = 'root' DBPASSWD = 'mysql' DBNAME = 'meshsr' #TODO add the topology 4,12 (the computeflowok4_7_3.py is the ok edition with no topology collecting and ff:ff:ff:ff:ff:ff flow entries) #TODO add the flow entry about FF:FF:FF:FF:FF:FF to let them learn each other's MAC without flood #TODO judge that if the ports table is empty in the Packet_in_handler, 2014,4,18 #TODO move the topology recollecting to the Port_Status_Change handler, 2014,4,18 #TODO save the path of two servers, when the topology is changed, recompute the path if the original path is broken, 2014,4,18 #TODO 2014,4,21 add meter, flow to the same action list conn = MySQLdb.connect(host=DBADDRESS, user=DBUSER, passwd=DBPASSWD, db=DBNAME) cursor = conn.cursor() start=time.time() ##def get_switch(app, dpid=None): ## rep = app.send_request(event.EventSwitchRequest(dpid)) ## return rep.switches ## ## ##def get_all_switch(app): ## return get_switch(app) ## ## ##def get_link(app, dpid=None): ## rep = app.send_request(event.EventLinkRequest(dpid)) ## return rep.links ## ## ##def get_all_link(app): ## return get_link(app) def Dijkstra(G,start,end=None):#TODO test that if there is no way between start and end??? D = {} # dictionary of final distances P = {} # dictionary of predecessors Q = priorityDictionary() # est.dist. of non-final vert. Q[start] = 0 for v in Q: D[v] = Q[v] if v == end: break for w in G[v]: vwLength = D[v] + G[v][w] if w in D: if vwLength < D[w]: raise ValueError, \ "Dijkstra: found better path to already-final vertex" elif w not in Q or vwLength < Q[w]: Q[w] = vwLength P[w] = v return (D,P) def shortestPath(G,start,end): D,P = Dijkstra(G,start,end) Path = [] while 1: Path.append(end) if end == start: break end = P[end] Path.reverse() return Path class SDNswitch(app_manager.RyuApp): OFP_VERSIONS = {ofproto_v1_3.OFP_VERSION} def __init__(self, *args, **kwargs): super(SDNswitch, self).__init__(*args, **kwargs) self.mac_to_port = {}#{dpid:{src:port},} self.flow={} band={} band['type']='DROP'#OFPMeterBandDrop band['rate']=3000 band['burst_size']=100#TODO bands=[] bands.append(band) self.flow['flags']='KBPS' self.flow['meter_id']=0 self.flow['bands']=bands#TODO if it is right?? self.flow['burst_size']=100 print self.flow self.addmeter={} self.flowEntryID = 0 self.flowID = 0 self.servernum = 0 self.serNICID = 'F000' self.k=4 self.half=10# the topology is half fattree(4) self.T=5000#TODO 1 ms,(10s)? #TODO add the parameters self.swlabel_IP = {0:'10.0.0.1', 1:'10.0.1.1', 2:'10.1.0.1', 3:'10.1.1.1', 4:'10.0.2.1', 5:'10.0.3.1', 6:'10.1.2.1', 7:'10.1.3.1', 8:'10.2.1.1', 9:'10.2.1.2'} self.dpid_to_label = {16:0,17:1,18:4,19:5,20:9,21:8,22:6,23:7,24:2,25:3}#read from the etac result, or the dpid,port->label,port? ? #TODO TODO 2014,4,14 the server's (label,bport):(dpid,port) should be dynamic self.bports_to_dports = {(0,2):(10,4),(0,3):(10,2),(1,2):(11,3),(1,3):(11,1),(2,2):(18,1),(2,3):(18,3),(3,2):(19,2),(3,3):(19,4), (4,0):(12,2),(4,1):(12,1),(4,2):(12,4),(5,0):(13,4),(5,1):(13,3),(5,2):(13,1),(6,0):(16,3),(6,1):(16,4), (6,2):(16,1),(7,0):(17,1),(7,1):(17,2),(7,2):(17,4),(8,0):(15,4),(8,1):(15,1),(9,0):(14,1),(9,1):(14,4)} #TODO#TODO test if it is ok? {(blueprint_switch_label,port):(dpid,port)}#TODO TODO prepare to be done, add etac to this file to get the parameters self.mac_to_dpid = {}#TODO server mac address -> the (dpid,port) of its connecting switch {mac:(dpid,port)} self.label_to_port = {(0,4):(3,0),(0,5):(2,0),(1,4):(3,1),(1,5):(2,1),(2,6):(3,0),(2,7):(2,0),(3,6):(3,1),(3,7):(2,1),(4,8):(2,0),(5,9):(2,0),(6,8):(2,1),(7,9):(2,1), (4,0):(0,3),(5,0):(0,2),(4,1):(1,3),(5,1):(1,2),(6,2):(0,3),(7,2):(0,2),(6,3):(1,3),(7,3):(1,2),(8,4):(0,2),(9,5):(0,2),(8,6):(1,2),(9,7):(1,2)} self.label_to_dpid = {0:16,1:17,4:18,5:19,9:20,8:21,6:22,7:23,2:24,3:25} self.graph={(0,4):1,(0,5):1,(1,4):1,(1,5):1,(2,6):1,(2,7):1,(3,6):1,(3,7):1,(4,8):1,(5,9):1,(6,8):1,(7,9):1, (4,0):1,(5,0):1,(4,1):1,(5,1):1,(6,2):1,(7,2):1,(6,3):1,(7,3):1,(8,4):1,(9,5):1,(8,6):1,(9,7):1} self.prepath1=[] self.prepath2=[] self.server1='' self.server2='' self.n=0 self.m=0 self.startnum=0 self.G={} self.dpids_to_nums={} self.nums_to_dpids={} self.dpid_to_port={} self.graph=[] self.undirected=[] self.linkgraph=[] self.switch_num=10 self.link_num=24#bothway,edge number * 2 self.switches = [] self.links = {} self.topo_col_period_max = 120 #TODO will 2min be enough for the topology collecting ? self.topo_col_period = 0 self.topo_col_num_max = 10 #after topo_col_num times get_links(), no matter whether the topology is complete or not, we will auto-configure adresses self.topo_col_num = 0 self.edgenum=0 self.maxtopocoltimes=30#TODO test the times when the topology can be stabilized self.topocoltimes=0 self.inittime = time.time() self.sleeptime=60 sql="DELETE FROM serverNIC;" print sql count=cursor.execute(sql) sql="DELETE FROM flowEntry;" print sql count=cursor.execute(sql) sql="SELECT * FROM serverNIC;" print sql count=cursor.execute(sql) conn.commit() self.noresult = cursor.fetchone() for i in xrange(self.switch_num): self.graph.append([]) self.undirected.append([]) self.linkgraph.append([]) for j in xrange(self.switch_num): self.graph[i].append(0) self.undirected[i].append(0) self.linkgraph[i].append(0) print 'init over' @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): print 'switch' datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 15, match, actions) # jamie change 0 to 15 def add_flow(self, datapath, priority, match, actions): print 'add flow!!!!!!!!!!!!!!!' ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] idle_timeout=600 hard_timeout=10 mod = parser.OFPFlowMod(datapath=datapath,#idle_timeout=idle_timeout,hard_timeout=hard_timeout, priority=priority,match=match, instructions=inst) datapath.send_msg(mod) print str(datapath)+' '+str(priority)+' '+str(match)+' '+str(inst) def delete_flow(self, datapath, match): print 'delete flow!!!!!!!!!!!!!!!' ofproto = datapath.ofproto parser = datapath.ofproto_parser #inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, # actions)] table_id=1 #idle_timeout=6 #hard_timeout=10 #mod = parser.OFPFlowMod(datapath=datapath, table_id=table_id, command=OFPFC_DELETE, match=match, instructions=inst) mod = parser.OFPFlowMod(datapath=datapath, #table_id=table_id,#TODO command=ofproto.OFPFC_DELETE, match=match) datapath.send_msg(mod) print str(datapath)+' '+str(match)#+' '+str(inst) def add_meter(self, datapath, priority, match, actions): ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = actions mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) datapath.send_msg(mod) def add_flow_meter(self, datapath, priority, match, flowaction, meteraction): print 'add flow!!!!!!!!!!!!!!!' ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, flowaction),meteraction] idle_timeout=600 hard_timeout=10 mod = parser.OFPFlowMod(datapath=datapath,#idle_timeout=idle_timeout,hard_timeout=hard_timeout, priority=priority,match=match, instructions=inst) datapath.send_msg(mod) print str(datapath)+' '+str(priority)+' '+str(match)+' '+str(inst) def MACLearning(self, ev): print 'MACLearning' msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] dst = eth.dst src = eth.src strsrc=src.split(':') print src print dst dpid = datapath.id if None == self.mac_to_port.get(dpid): self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) #learn a mac address to avoid FLOOD next time self.mac_to_port[dpid][src]=in_port #self.mac_to_dpid[src]=(dpid,in_port) print 'mac_to_port['+str(dpid)+']'+'['+str(src)+']='+str(in_port) #only add server mac to the database #if '00'!=strsrc[0]:#TODO test, because only servermac address should be added to the data base sql="SELECT portID FROM ports WHERE MAC='%s';" \ % (src) print sql count=cursor.execute(sql) result = cursor.fetchone() #conn.commit() nosrc='00:00:00:00:00:00' sql="SELECT portID FROM ports WHERE MAC='%s';" \ % (nosrc) print sql count=cursor.execute(sql) noresult = cursor.fetchone() sql="SELECT serNICID FROM serverNIC WHERE MAC='%s';" \ % (src) print sql count=cursor.execute(sql) resultser = cursor.fetchone() #conn.commit() nosrc='00:00:00:00:00:00' sql="SELECT serNICID FROM serverNIC WHERE MAC='%s';" \ % (nosrc) print sql count=cursor.execute(sql) noresultser = cursor.fetchone() conn.commit() if noresult==result and noresultser==resultser: print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!add server!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' self.servernum = self.servernum+1 self.serNICID = 'F00000000000000'+str(self.servernum)#TODO when the server number > 10, this should be change self.mac_to_dpid[src]=(dpid,in_port) MAC=src port=in_port self.add_server_to_sql(self.serNICID, dpid, port, MAC) if 1==self.servernum: self.server1=MAC elif 2==self.servernum: self.server2=MAC else: print result elif None == self.mac_to_port.get(dpid).get(src): self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) #learn a mac address to avoid FLOOD next time self.mac_to_port[dpid][src]=in_port #self.mac_to_dpid[src]=(dpid,in_port) print 'mac_to_port['+str(dpid)+']'+'['+str(src)+']='+str(in_port) #only add server mac to the database sql="SELECT portID FROM ports WHERE MAC='%s';" \ % (src) print sql count=cursor.execute(sql) result = cursor.fetchone() #conn.commit() nosrc='00:00:00:00:00:00' sql="SELECT portID FROM ports WHERE MAC='%s';" \ % (nosrc) print sql count=cursor.execute(sql) noresult = cursor.fetchone() sql="SELECT serNICID FROM serverNIC WHERE MAC='%s';" \ % (src) print sql count=cursor.execute(sql) resultser = cursor.fetchone() #conn.commit() nosrc='00:00:00:00:00:00' sql="SELECT serNICID FROM serverNIC WHERE MAC='%s';" \ % (nosrc) print sql count=cursor.execute(sql) noresultser = cursor.fetchone() conn.commit() if noresult==result and noresultser==resultser: print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!add server!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' self.servernum = self.servernum+1 self.serNICID = 'F00000000000000'+str(self.servernum)#TODO when the server number > 10, this should be change self.mac_to_dpid[src]=(dpid,in_port) MAC=src port=in_port self.add_server_to_sql(self.serNICID, dpid, port, MAC) if 1==self.servernum: self.server1=MAC elif 2==self.servernum: self.server2=MAC else: print result else: print 'server has been added!!!!!!!!!!!' #TODO the following flood of arp will make loop in fattree ....(data center topologies which has loop) ## out_port=ofproto.OFPP_FLOOD ## actions=[parser.OFPActionOutput(out_port)] ## data=None ## if msg.buffer_id == ofproto.OFP_NO_BUFFER: ## data=msg.data ## out=parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,#TODO consider that this packet maybe lose (if it will has some problems?) ## in_port=in_port, actions=actions, data=data)#TODO actions should be the action for the datapath ## datapath.send_msg(out) def add_flow_to_sql(self, flowEntryID, flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue): #TODO check the port table to get inPort and outPort print 'add flow to sql' dbdpid='00000000000000'+str(int(dpid)/16)+str(int(dpid)%16) sql="SELECT portID FROM ports WHERE dpid='%s' AND number='%d';" \ % (dbdpid, in_port) print sql count=cursor.execute(sql) result = cursor.fetchone() inPort=result[0] sql="SELECT portID FROM ports WHERE dpid='%s' AND number='%d';" \ % (dbdpid, out_port) print sql count=cursor.execute(sql) result = cursor.fetchone() outPort=result[0] #TODO check if the ports has existed in the tables #TODO check if this flow entry exists sql="SELECT flowEntryID FROM flowEntry WHERE dpid='%s' AND inPort='%d';" \ % (dbdpid, inPort) print sql count=cursor.execute(sql) result = cursor.fetchone() nodpid='0000000000000020' noinPort=0 sql="SELECT flowEntryID FROM flowEntry WHERE dpid='%s' AND inPort='%d';" \ % (nodpid,noinPort) print sql count=cursor.execute(sql) noresultflow = cursor.fetchone() conn.commit() if result != noresultflow: print result print noresultflow print 'the flow has existed' #TODO 2014,4,21 delete the flowEntry sql = "DELETE FROM flowEntry where flowEntryID='%d';" \ % (result[0]) print sql cursor.execute(sql) conn.commit() flag=1 else: flag=0 sql = "INSERT INTO flowEntry VALUE (%s, %s, %s, '%s', %s, %s, %s, %s, %s, %s);" \ % (flowEntryID, flowID, flowSeqNum, dbdpid, tableID, entryID, inPort, outPort, meterID, meterValue)#TODO #sql = "INSERT INTO flowEntry VALUE (NULL, '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s');" \ # % (flowID, flowSeqNum, dbdpid, tableID, entryID, inPort, outPort, meterID, meterValue)#TODO print sql cursor.execute(sql) conn.commit() return flag def add_server_to_sql(self, serNICID, dpid, port, MAC): #TODO check the port table to get peer (the switch port which is connected by the server) print dpid print port print MAC dbdpid='00000000000000'+str(int(dpid)/16)+str(int(dpid)%16) sql="SELECT portID FROM ports WHERE dpid='%s' AND number='%d';" \ % (dbdpid, port) print sql count=cursor.execute(sql) result = cursor.fetchone() peer=result[0] sql = "INSERT INTO serverNIC VALUE ('%s', '%s', '%s');" \ % (serNICID, peer, MAC) #sql = "INSERT INTO serverNIC VALUE (NULL, '%d', '%s');" \ # % (peer, MAC) print sql count=cursor.execute(sql) #test conn.commit() sql = "SELECT peer FROM serverNIC WHERE MAC='%s';"\ % (MAC) count=cursor.execute(sql) result = cursor.fetchone() print 'result' print result def addflowsql(self, dst, dpid, in_port, out_port, flag, priority): print 'add flow sql !!!!!!!!!!!!!!!!!!!!!!!!!!!' print dpid,in_port,out_port data_path=get_switch(self,dpid)#TODO test print type(data_path) print '!!!!!!!!!!!!!!!!!!!' print data_path datapath=data_path[0].dp#TODO test print 'datapath = ' print datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser print 'dst = '+str(dst) print 'dpid = '+str(dpid) print 'in_port = '+str(in_port) print 'out port = '+str(out_port) ## actions=[parser.OFPActionOutput(out_port)] match=parser.OFPMatch(in_port=in_port,eth_dst=dst) f='ff:ff:ff:ff:ff:ff' if 1==flag: self.delete_flow(datapath, match)#TODO test delete flow!! #TODO delete the ff:ff:ff:ff:ff:ff flow matchf=parser.OFPMatch(in_port=in_port,eth_dst=f) self.delete_flow(datapath, matchf) print '!!!!!!!!!!!!!!!!!!add flow!!!!!!!!!!!!!!!!!!!!in_port='+str(in_port)+' dst='+str(dst)+' out_port='+str(out_port)+' dpid='+str(dpid) ## self.add_flow(datapath, 1, match, actions) if None==self.addmeter.get(dpid):#TODO test add meter cmd=datapath.ofproto.OFPMC_ADD if datapath.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: print self.flow ofctl_v1_3.mod_meter_entry(datapath,self.flow,cmd)#TODO complete the parameters def mod_meter_entry(dp, flow, cmd) #TODO check ofproto_v1_3_paser.py class OFPMeterMod(MsgBase): self.addmeter[dpid]=1 #self.addflow[dpid]=0 print 'add meter table' ## action = [parser.OFPInstructionMeter(self.flow.get('meter_id'))] ## self.add_meter(datapath, 1, match, action)#TODO the action should be a meter TODO so we should add meter entry to meter table first ## print 'add meter' flowaction=[parser.OFPActionOutput(out_port)] meteraction=parser.OFPInstructionMeter(self.flow.get('meter_id')) self.add_flow_meter(datapath,priority,match,flowaction,meteraction) def short(self,ev,src,dst,G,priority): #TODO add the flow entries of ff:ff:ff:ff:ff:ff #TODO TODO just make ff:ff:ff:ff:ff:ff as the other server's mac (because there is only two server) #TODO after controller learning two servers' MAC, then add all the needing flow entries (4,bothway of MAC and ff:ff:ff:ff:ff:ff) #using self.mac_to_dpid to get the two servers' MAC and (dpid,port), then add the 4 flow entries print 'FFRouting' msg = ev.msg datapath = msg.datapath print type(datapath) print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!' print datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] ## dst = eth.dst ## src = eth.src ## macsrc=src.split(':') ## macdst=dst.split(':') ## print src ## print dst ## if None==self.mac_to_dpid.get(src) or None==self.mac_to_dpid.get(dst):#TODO ## print 'src or dst mac is not ok' ## self.MACLearning(ev) ## return dpid = datapath.id #TODO add meter ## if None==self.addmeter.get(dpid):#TODO test add meter ## cmd=datapath.ofproto.OFPMC_ADD ## if datapath.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ## print self.flow ## ofctl_v1_3.mod_meter_entry(datapath,self.flow,cmd)#TODO complete the parameters def mod_meter_entry(dp, flow, cmd) #TODO check ofproto_v1_3_paser.py class OFPMeterMod(MsgBase): ## self.addmeter[dpid]=1 ## #self.addflow[dpid]=0 ## print 'add meter table' print '!!!!!!!!!!!!!dpid=!!!!!!!!!!!!1' print str(dpid) #TODO because if the switch has the flow entry it will not packet_in, when it packet_in we only #need to compute the route and set a living period for every flow entry #TODO how to get the topology just add etac (error tolerance address configuration) to this file? #or write the blueprint id, port <-> dpid, port to the file ? then read that file ????? #TODO compute the route in the blueprint #and then get corresponding route in the physical graph (switch dpid as a node) f='ff:ff:ff:ff:ff:ff' #if None==self.mac_to srcsw=self.mac_to_dpid[src] dstsw=self.mac_to_dpid[dst] ## srcswip=self.swlabel_IP[self.dpid_to_label[srcsw[0]]].split('.') ## dstswip=self.swlabel_IP[self.dpid_to_label[dstsw[0]]].split('.') self.flowID=self.flowID+1 flowSeqNum=0 tableID=0#TODO TODO prepare to be done how to get the value of tabelID, entryID ? entryID=0 inPort=in_port outPort=0 meterID=self.flow.get('meter_id')#TODO TODO prepare to be done write meter meterValue=self.flow.get('bands')[0].get('rate')#kb/s ## meterID=0#TODO TODO prepare to be done write meter ## meterValue=100#kb/s # install a flow to avoid packet_in next time #TODO how to use dpid to get datapath get_switch(dpid)? #TODO use the shortest path to compute the flow start=self.dpids_to_nums[srcsw[0]] end=self.dpids_to_nums[dstsw[0]] path=shortestPath(G,start,end)#TODO test if there is no path between them print path #TODO add flow entry to the self.nums_to_dpids[path[i]], with the first in port (srcsw[1]), out_port (self.dpid_to_port[()]) if len(path)==0 or len(path)==1: print 'no path' print start,end,src,dst return x=1 dpflag=0 for i in xrange(len(path)): dpid=self.nums_to_dpids[path[i]] if x==1: s=dpid t=self.nums_to_dpids[path[i+1]] in_port=srcsw[1] out_port=self.dpid_to_port[(s,t)][0] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1)#TODO if it need to packet out the packet ?? test elif x<len(path): flowSeqNum=flowSeqNum+1 s=dpid t=self.nums_to_dpids[path[i+1]] in_port=self.dpid_to_port[(self.nums_to_dpids[path[i-1]],s)][1] out_port=self.dpid_to_port[(s,t)][0] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1) else: flowSeqNum=flowSeqNum+1 s=self.nums_to_dpids[path[i-1]] t=dpid in_port=self.dpid_to_port[(s,t)][1] out_port=dstsw[1] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1) if datapath.id==s: dpaction=actions dpflag=1 x=x+1 if src==self.server1: self.prepath1=path else: self.prepath2=path if 1==dpflag: in_port = msg.match['in_port'] data=None out=parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,#TODO consider that this packet maybe lose (if it will has some problems?) in_port=in_port, actions=dpaction, data=data)#TODO actions should be the action for the datapath datapath.send_msg(out) def shortnopacketout(self,ev,src,dst,G,priority): print 'FFRouting' msg = ev.msg datapath = msg.datapath print type(datapath) print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!' print datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser #in_port = msg.match['in_port'] #pkt = packet.Packet(msg.data) #eth = pkt.get_protocols(ethernet.ethernet)[0] ## dst = eth.dst ## src = eth.src ## macsrc=src.split(':') ## macdst=dst.split(':') ## print src ## print dst ## if None==self.mac_to_dpid.get(src) or None==self.mac_to_dpid.get(dst):#TODO ## print 'src or dst mac is not ok' ## self.MACLearning(ev) ## return dpid = datapath.id print '!!!!!!!!!!!!!dpid=!!!!!!!!!!!!1' print str(dpid) #TODO because if the switch has the flow entry it will not packet_in, when it packet_in we only #need to compute the route and set a living period for every flow entry #TODO how to get the topology just add etac (error tolerance address configuration) to this file? #or write the blueprint id, port <-> dpid, port to the file ? then read that file ????? #TODO compute the route in the blueprint #and then get corresponding route in the physical graph (switch dpid as a node) f='ff:ff:ff:ff:ff:ff' #if None==self.mac_to srcsw=self.mac_to_dpid[src] dstsw=self.mac_to_dpid[dst] ## srcswip=self.swlabel_IP[self.dpid_to_label[srcsw[0]]].split('.') ## dstswip=self.swlabel_IP[self.dpid_to_label[dstsw[0]]].split('.') self.flowID=self.flowID+1 flowSeqNum=0 tableID=0#TODO TODO prepare to be done how to get the value of tabelID, entryID ? entryID=0 #inPort=in_port outPort=0 meterID=self.flow.get('meter_id')#TODO TODO prepare to be done write meter meterValue=self.flow.get('bands')[0].get('rate')#kb/s ## meterID=0#TODO TODO prepare to be done write meter ## meterValue=100#kb/s # install a flow to avoid packet_in next time #TODO how to use dpid to get datapath get_switch(dpid)? #TODO use the shortest path to compute the flow start=self.dpids_to_nums[srcsw[0]] end=self.dpids_to_nums[dstsw[0]] path=shortestPath(G,start,end)#TODO test if there is no path between them print path #TODO add flow entry to the self.nums_to_dpids[path[i]], with the first in port (srcsw[1]), out_port (self.dpid_to_port[()]) if len(path)==0: print 'no path' return x=1 dpflag=0 for i in xrange(len(path)): dpid=self.nums_to_dpids[path[i]] if x==1: s=dpid t=self.nums_to_dpids[path[i+1]] in_port=srcsw[1] out_port=self.dpid_to_port[(s,t)][0] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1)#TODO if it need to packet out the packet ?? test elif x<len(path): flowSeqNum=flowSeqNum+1 s=dpid t=self.nums_to_dpids[path[i+1]] in_port=self.dpid_to_port[(self.nums_to_dpids[path[i-1]],s)][1] out_port=self.dpid_to_port[(s,t)][0] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1) else: flowSeqNum=flowSeqNum+1 s=self.nums_to_dpids[path[i-1]] t=dpid in_port=self.dpid_to_port[(s,t)][1] out_port=dstsw[1] flag=self.add_flow_to_sql(self.flowEntryID, self.flowID, flowSeqNum, dpid, tableID, entryID, in_port, out_port, meterID, meterValue) self.addflowsql(dst, dpid, in_port, out_port, flag, priority) print 'add_flow' self.flowEntryID=self.flowEntryID+1 actions=[parser.OFPActionOutput(out_port)] self.addflowsql(f, dpid, in_port, out_port, 0, priority+1) ## if datapath.id==s: ## dpaction=actions ## dpflag=1 x=x+1 if src==self.server1: self.prepath1=path else: self.prepath2=path #TODO how to packet out the message with the buffer_id, dose the post status change message has the buffer_id? ## if 1==dpflag: ## in_port = msg.match['in_port'] ## data=None ## out=parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,#TODO consider that this packet maybe lose (if it will has some problems?) ## in_port=in_port, actions=dpaction, data=data)#TODO actions should be the action for the datapath ## datapath.send_msg(out) def topology(self): #TODO add the topology collecting periodically self.edgenum=0 start = time.time() print start self.switches = get_switch(self) self.links = get_link(self) self.topo_col_num = self.topo_col_num + 1 end = time.time() print end print 'topology collecting time:' print end-start self.topo_col_period = self.topo_col_period + end-start #n=len(self.switches) #m=len(self.links) ## self.startnum=0 ## self.dpids_to_nums={} ## self.nums_to_dpids={} print 'dpids nums:' for switch in self.switches:#TODO this may has error if self.dpids_to_nums.get(switch.dp.id)==None: self.nums_to_dpids[self.startnum] = switch.dp.id self.dpids_to_nums[switch.dp.id] = self.startnum print str(switch.dp.id)+' '+str(self.startnum) self.startnum = self.startnum + 1 print self.dpids_to_nums self.n=self.startnum print 'edges:' self.linkgraph=[] for i in xrange(self.switch_num): self.linkgraph.append([]) for j in xrange(self.switch_num): self.linkgraph[i].append(0) for link in self.links: self.edgenum=self.edgenum+1 srcnum = self.dpids_to_nums[link.src.dpid] dstnum = self.dpids_to_nums[link.dst.dpid] self.linkgraph[srcnum][dstnum]=1 if self.graph[srcnum][dstnum]==0 and self.graph[dstnum][srcnum]==0: print str(srcnum)+' '+str(dstnum) self.dpid_to_port[(link.src.dpid, link.dst.dpid)] = (link.src.port_no, link.dst.port_no) self.dpid_to_port[(link.dst.dpid, link.src.dpid)]=(link.dst.port_no, link.src.port_no) #print>>devicegraph, str(srcnum)+' '+str(dstnum) self.graph[srcnum][dstnum] = 1 self.graph[dstnum][srcnum] = 1 self.undirected[srcnum][dstnum] = 1 self.m=self.m+1 self.G={} for i in xrange(self.switch_num): self.G[i]={} for j in xrange(self.switch_num): if self.linkgraph[i][j]==1 and self.linkgraph[j][i]==1:#TODO if only one way is ok then regard it as not ok self.G[i][j]=1 print self.G #print self.linkgraph #print self.graph #print self.undirected def whether(self,src,dst,G): flag=0 if src==self.server1: path=self.prepath1 else: path=self.prepath2 for i in xrange(len(path)-1): if None==G.get(path[i]): flag=1 break elif None==G.get(path[i]).get(path[i+1]): flag=1 break return flag @set_ev_cls(ofp_event.EventOFPPortStatus) def _port_status_handler(self, ev): print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!port change!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' #print ev.port msg = ev.msg dp = msg.datapath ofp = dp.ofproto dpid = dp.id print 'dp=' + str(dp) print 'port=' + str(msg.desc) print dpid if msg.reason == ofp.OFPPR_ADD: reason = 'ADD' elif msg.reason == ofp.OFPPR_DELETE: reason = 'DELETE' elif msg.reason == ofp.OFPPR_MODIFY: reason = 'MODIFY'#TODO the reason only has EventOFPPortStatus else: reason = 'UNKNOWN' print 'reason=' + reason if 2==self.servernum: self.topology() #TODO judge that if the original path is broken,2014,4,18 src=self.server1 dst=self.server2 #TODO 2014,4,21 when the flow Entry is changed, the original path should be deleted ## flag=0 ## flag=self.whether(src,dst,self.G) ## if 1==flag: ## self.shortnopacketout(ev, src, dst, self.G)#add the flow entries of FF:FF:FF:FF:FF:FF ## flag=self.whether(dst,src,self.G) ## if 1==flag: ## self.shortnopacketout(ev, dst, src, self.G) flag1=0 flag2=0 flag1=self.whether(src,dst,self.G) flag2=self.whether(dst,src,self.G) if 1==flag1 or 1==flag2: #TODO delete all the flowID<=self.flowID for i in range(1, self.flowID+1): #TODO 2014,4,21 delete the flowEntry sql = "DELETE FROM flowEntry where flowID='%d';" \ % (i) print sql cursor.execute(sql) conn.commit() priority=1 ## revsrc=list(src) ## revsrc.reverse() ## revsrc="".join(revsrc) ## revdst=list(dst) ## revdst.reverse() ## revdst="".join(revdst) self.shortnopacketout(ev, src, dst, self.G,priority)#add the flow entries of FF:FF:FF:FF:FF:FF priority=3 self.shortnopacketout(ev, dst, src, self.G,priority) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): #TODO using two methods to do two things respectively ? #TODO using server MAC learning period T to separate the two methods ? ## end=time.time() ## if (end-start)*1000 < self.T: ## #TODO compute the route ## print (end-start)*1000 ## self.MACLearning(ev) ## else: ## print (end-start)*1000 ## #TODO learning server MAC ## self.Routing(ev) now=time.time() if now-self.inittime<self.sleeptime:#wait for the ports table to be ok self.topology() return self.topology() flag=0 ## if self.n<4 or self.m<4 or self.topo_col_num<self.topo_col_num_max or self.topo_col_period<self.topo_col_period_max:#TODO test,but when the edge is error, then it will not be ok ## flag=1#TODO print 'topology ok' if self.servernum<2: sql="SELECT * FROM ports;" print sql count=cursor.execute(sql) conn.commit() result = cursor.fetchone() if result==self.noresult: return self.MACLearning(ev) if 2==self.servernum: #and 0==flag: #TODO judge whether the ports table is ok, 2014,4,18 sql="SELECT * FROM ports;" print sql count=cursor.execute(sql) conn.commit() result = cursor.fetchone() if result==self.noresult: return #TODO the topology may be not complete in the first collecting self.topology() if self.edgenum!=self.link_num: return src=self.server1 dst=self.server2 ## revsrc=list(src) ## revsrc.reverse() ## revsrc="".join(revsrc) ## revdst=list(dst) ## revdst.reverse() ## revdst="".join(revdst) priority=1 self.short(ev, src, dst, self.G,priority)#add the flow entries of FF:FF:FF:FF:FF:FF src=self.server2 dst=self.server1 ## revsrc=list(src) ## revsrc.reverse() ## revsrc="".join(revsrc) ## revdst=list(dst) ## revdst.reverse() ## revdst="".join(revdst) priority=3 self.short(ev, src, dst, self.G,priority) sql="SELECT * FROM ports;" print sql count=cursor.execute(sql) conn.commit() result = cursor.fetchone() if result==self.noresult: return elif 0==len(self.prepath1) and 2==self.servernum: self.topology() if self.edgenum!=self.link_num: return src=self.server1 dst=self.server2 ## revsrc=list(src) ## revsrc.reverse() ## revsrc="".join(revsrc) ## revdst=list(dst) ## revdst.reverse() ## revdst="".join(revdst) priority=1 self.short(ev, src, dst, self.G,priority)#add the flow entries of FF:FF:FF:FF:FF:FF src=self.server2 dst=self.server1 ## revsrc=list(src) ## revsrc.reverse() ## revsrc="".join(revsrc) ## revdst=list(dst) ## revdst.reverse() ## revdst="".join(revdst) priority=3 self.short(ev, src, dst, self.G,priority) ## elif self.edgenum!=8: ## #it means that two servers' MAC have been added, then add the ## src=self.server1 ## dst=self.server2 ## self.short(ev, src, dst, self.G)#add the flow entries of FF:FF:FF:FF:FF:FF ## src=self.server2 ## dst=self.server1 ## self.short(ev, src, dst, self.G) ## #elif 2==self.servernum or self.edgenum!=8: #and 0==flag: ## elif self.edgenum!=8 ## #it means that two servers' MAC have been added, then add the ## src=self.server1 ## dst=self.server2 ## self.short(ev, src, dst, self.G)#add the flow entries of FF:FF:FF:FF:FF:FF ## src=self.server2 ## dst=self.server1 ## self.short(ev, src, dst, self.G) ## if self.m!=4:#TODO when the edge has error ,recompute the routing between two servers ## ## src=self.server1 ## dst=self.server2 ## self.short(ev, src, dst, self.G)#add the flow entries of FF:FF:FF:FF:FF:FF ## src=self.server2 ## dst=self.server1 ## self.short(ev, src, dst, self.G)
py
b413c2c4aa089f72c665239b5d8c486dbaa8cfcb
#!/usr/bin/env python try: import asyncio except ImportError: import trollius as asyncio import unittest import socket import sys import aiodns import pycares class DNSTest(unittest.TestCase): def setUp(self): self.loop = asyncio.new_event_loop() self.addCleanup(self.loop.close) self.resolver = aiodns.DNSResolver(loop=self.loop) def tearDown(self): self.resolver = None def test_query_a(self): f = self.resolver.query('google.com', 'A') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_a_bad(self): f = self.resolver.query('hgf8g2od29hdohid.com', 'A') try: self.loop.run_until_complete(f) except aiodns.error.DNSError as e: self.assertEqual(e.args[0], aiodns.error.ARES_ENOTFOUND) def test_query_aaaa(self): f = self.resolver.query('ipv6.google.com', 'AAAA') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_cname(self): f = self.resolver.query('livechat.ripe.net', 'CNAME') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_mx(self): f = self.resolver.query('google.com', 'MX') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_ns(self): f = self.resolver.query('google.com', 'NS') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_txt(self): f = self.resolver.query('google.com', 'TXT') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_soa(self): f = self.resolver.query('google.com', 'SOA') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_srv(self): f = self.resolver.query('_xmpp-server._tcp.jabber.org', 'SRV') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_naptr(self): f = self.resolver.query('sip2sip.info', 'NAPTR') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_ptr(self): ip = '8.8.8.8' f = self.resolver.query(pycares.reverse_address(ip), 'PTR') result = self.loop.run_until_complete(f) self.assertTrue(result) def test_query_bad_type(self): self.assertRaises(ValueError, self.resolver.query, 'google.com', 'XXX') def test_query_timeout(self): self.resolver = aiodns.DNSResolver(timeout=0.1, loop=self.loop) self.resolver.nameservers = ['1.2.3.4'] f = self.resolver.query('google.com', 'A') try: self.loop.run_until_complete(f) except aiodns.error.DNSError as e: self.assertEqual(e.args[0], aiodns.error.ARES_ETIMEOUT) def test_query_cancel(self): f = self.resolver.query('google.com', 'A') self.resolver.cancel() try: self.loop.run_until_complete(f) except aiodns.error.DNSError as e: self.assertEqual(e.args[0], aiodns.error.ARES_ECANCELLED) # def test_future_cancel(self): # # TODO: write this in such a way it also works with trollius # f = self.resolver.query('google.com', 'A') # f.cancel() # def coro(): # yield from asyncio.sleep(0.1, loop=self.loop) # yield from f # try: # self.loop.run_until_complete(coro()) # except asyncio.CancelledError as e: # self.assertTrue(e) def test_query_twice(self): if sys.version[:3] >= '3.3': exec('''if 1: @asyncio.coroutine def coro(self, host, qtype, n=2): for i in range(n): result = yield from self.resolver.query(host, qtype) self.assertTrue(result) ''') else: exec('''if 1: @asyncio.coroutine def coro(self, host, qtype, n=2): for i in range(n): result = yield asyncio.From(self.resolver.query(host, qtype)) self.assertTrue(result) ''') self.loop.run_until_complete(locals()['coro'](self, 'gmail.com', 'MX')) def test_gethostbyname(self): f = self.resolver.gethostbyname("google.com", socket.AF_INET) result = self.loop.run_until_complete(f) self.assertTrue(result) def test_gethostbyname_ipv6(self): f = self.resolver.gethostbyname("ipv6.google.com", socket.AF_INET6) result = self.loop.run_until_complete(f) self.assertTrue(result) def test_gethostbyname_bad_family(self): f = self.resolver.gethostbyname("ipv6.google.com", -1) with self.assertRaises(aiodns.error.DNSError): self.loop.run_until_complete(f) if __name__ == '__main__': unittest.main(verbosity=2)
py
b413c3dcd9ec734fe96cbe3201fb87e43ea69eb6
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- import numpy as np from logging import getLogger from enum import Enum from onnx import helper, numpy_helper, TensorProto from onnx_model import OnnxModel from fusion_base import Fusion from fusion_utils import FusionUtils logger = getLogger(__name__) class AttentionMaskFormat: MaskIndexEnd = 0 MaskIndexEndAndStart = 1 AttentionMask = 2 NoMask = 3 class AttentionMask(): """ Fuse Attention subgraph into one Attention node. """ def __init__(self, model: OnnxModel): self.model = model # A lookup table with mask input as key, and mask index output as value self.mask_indice = {} # A lookup table with mask input as key, and cast (to int32) output as value self.mask_casted = {} self.utils = FusionUtils(model) self.mask_format = AttentionMaskFormat.MaskIndexEnd def set_mask_format(self, mask_format: AttentionMaskFormat): self.mask_format = mask_format def set_mask_indice(self, mask, mask_index): if mask in self.mask_indice: assert mask_index == self.mask_indice[mask] self.mask_indice[mask] = mask_index def get_first_mask(self): assert len(self.mask_indice) > 0 return next(iter(self.mask_indice)) def process_mask(self, input): if self.mask_format == AttentionMaskFormat.NoMask: return None if input in self.mask_indice: return self.mask_indice[input] # Add cast to convert int64 to int32 if self.model.find_graph_input(input): casted, input_name = self.utils.cast_graph_input_to_int32(input) else: input_name, cast_node = self.utils.cast_input_to_int32(input) casted = True if casted: self.mask_casted[input] = input_name # Attention supports int32 attention mask (2D) since 1.4.0 if self.mask_format == AttentionMaskFormat.AttentionMask: self.mask_indice[input] = input_name return input_name # Add a mask processing node to convert attention mask to mask index (1D) output_name = self.model.create_node_name('mask_index') mask_index_node = helper.make_node('ReduceSum', inputs=[input_name], outputs=[output_name], name=self.model.create_node_name('ReduceSum', 'MaskReduceSum')) mask_index_node.attribute.extend([helper.make_attribute("axes", [1]), helper.make_attribute("keepdims", 0)]) self.model.add_node(mask_index_node) self.mask_indice[input] = output_name return output_name class FusionAttention(Fusion): """ Fuse Attention subgraph into one Attention node. """ def __init__(self, model: OnnxModel, hidden_size: int, num_heads: int, attention_mask: AttentionMask): super().__init__(model, "Attention", ["SkipLayerNormalization", "LayerNormalization"]) self.hidden_size = hidden_size self.num_heads = num_heads self.attention_mask = attention_mask def create_attention_node(self, mask_index, q_matmul, k_matmul, v_matmul, q_add, k_add, v_add, input, output): q_weight = self.model.get_initializer(q_matmul.input[1]) k_weight = self.model.get_initializer(k_matmul.input[1]) v_weight = self.model.get_initializer(v_matmul.input[1]) q_bias = self.model.get_initializer(q_add.input[1]) k_bias = self.model.get_initializer(k_add.input[1]) v_bias = self.model.get_initializer(v_add.input[1]) if q_weight is None: print(f"{q_matmul.input[1]} is not initializer. Please set do_constant_folding=True in torch.onnx.export") return None if not (k_weight and v_weight and q_bias and k_bias): return None qw = numpy_helper.to_array(q_weight) assert qw.shape == (self.hidden_size, self.hidden_size) kw = numpy_helper.to_array(k_weight) assert kw.shape == (self.hidden_size, self.hidden_size) vw = numpy_helper.to_array(v_weight) assert vw.shape == (self.hidden_size, self.hidden_size) qkv_weight = np.stack((qw, kw, vw), axis=-2) qb = numpy_helper.to_array(q_bias) assert qb.shape == (self.hidden_size, ) kb = numpy_helper.to_array(k_bias) assert kb.shape == (self.hidden_size, ) vb = numpy_helper.to_array(v_bias) assert vb.shape == (self.hidden_size, ) qkv_bias = np.stack((qb, kb, vb), axis=-2) attention_node_name = self.model.create_node_name('Attention') weight = helper.make_tensor(name=attention_node_name + '_qkv_weight', data_type=TensorProto.FLOAT, dims=[self.hidden_size, 3 * self.hidden_size], vals=qkv_weight.flatten().tolist()) # Sometimes weights and bias are stored in fp16 if q_weight.data_type == 10: weight.CopyFrom(numpy_helper.from_array(numpy_helper.to_array(weight).astype(np.float16), weight.name)) self.model.add_initializer(weight) bias = helper.make_tensor(name=attention_node_name + '_qkv_bias', data_type=TensorProto.FLOAT, dims=[3 * self.hidden_size], vals=qkv_bias.flatten().tolist()) if q_bias.data_type == 10: bias.CopyFrom(numpy_helper.from_array(numpy_helper.to_array(bias).astype(np.float16), bias.name)) self.model.add_initializer(bias) attention_inputs = [input, attention_node_name + '_qkv_weight', attention_node_name + '_qkv_bias'] if mask_index is not None: attention_inputs.append(mask_index) attention_node = helper.make_node('Attention', inputs=attention_inputs, outputs=[output], name=attention_node_name) attention_node.domain = "com.microsoft" attention_node.attribute.extend([helper.make_attribute("num_heads", self.num_heads)]) return attention_node def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node): # Sometimes we can not fuse skiplayernormalization since the add before layernorm has an output that used by nodes outside skiplayernorm # Conceptually we treat add before layernorm as skiplayernorm node since they share the same pattern start_node = normalize_node if normalize_node.op_type == 'LayerNormalization': add_before_layernorm = self.model.match_parent(normalize_node, 'Add', 0) if add_before_layernorm is not None: start_node = add_before_layernorm else: return # SkipLayerNormalization has two inputs, and one of them is the root input for attention. qkv_nodes = self.model.match_parent_path(start_node, ['Add', 'MatMul', 'Reshape', 'Transpose', 'MatMul'], [None, 0, 0, 0, 0]) einsum_node = None if qkv_nodes is not None: (_, matmul_qkv, reshape_qkv, transpose_qkv, matmul_qkv) = qkv_nodes else: # Match Albert qkv_nodes = self.model.match_parent_path(start_node, ['Add', 'Einsum', 'Transpose', 'MatMul'], [1, 0, 0, 0]) if qkv_nodes is not None: (_, einsum_node, transpose_qkv, matmul_qkv) = qkv_nodes else: return other_inputs = [] for i, input in enumerate(start_node.input): if input not in output_name_to_node: continue if input == qkv_nodes[0].output[0]: continue other_inputs.append(input) if len(other_inputs) != 1: return root_input = other_inputs[0] """ Match flaubert Mask | Mul --> LayerNormalization --> Attention --> MatMul --> Add | | | | +--------------------------------------------------------- """ mul_before_layernorm = self.model.match_parent(start_node, 'Mul', 0) if mul_before_layernorm is not None: mul_children = input_name_to_nodes[mul_before_layernorm.output[0]] if mul_children is not None and len(mul_children) == 2: layernorm_node = mul_children[1] if layernorm_node.op_type == 'LayerNormalization': root_input = layernorm_node.output[0] else: return else: return children = input_name_to_nodes[root_input] children_types = [child.op_type for child in children] if children_types.count('MatMul') != 3: return v_nodes = self.model.match_parent_path(matmul_qkv, ['Transpose', 'Reshape', 'Add', 'MatMul'], [1, 0, 0, 0]) if v_nodes is None: logger.debug("fuse_attention: failed to match v path") return (_, _, add_v, matmul_v) = v_nodes is_distill = False qk_nodes = self.model.match_parent_path(matmul_qkv, ['Softmax', 'Add', 'Div', 'MatMul'], [0, 0, 0, 0]) if qk_nodes is None: qk_nodes = self.model.match_parent_path(matmul_qkv, ['Softmax', 'Add', 'Mul', 'MatMul'], [0, 0, 0, 0]) if qk_nodes is None: qk_nodes = self.model.match_parent_path(matmul_qkv, ['Softmax', 'Where', 'MatMul', 'Div'], [0, 0, 2, 0]) is_distill = True if qk_nodes is None: logger.debug("fuse_attention: failed to match qk path") return add_qk = None matmul_qk = None where_qk = None if is_distill: (_, where_qk, matmul_qk, _) = qk_nodes else: (_, add_qk, _, matmul_qk) = qk_nodes q_nodes = self.model.match_parent_path(matmul_qk, ['Transpose', 'Reshape', 'Add', 'MatMul'], [0, 0, 0, 0]) if q_nodes is None: q_nodes = self.model.match_parent_path(matmul_qk, ['Div', 'Transpose', 'Reshape', 'Add', 'MatMul'], [0, 0, 0, 0, 0]) if q_nodes is None: logger.debug("fuse_attention: failed to match q path") return add_q = q_nodes[-2] matmul_q = q_nodes[-1] k_nodes = self.model.match_parent_path(matmul_qk, ['Transpose', 'Reshape', 'Add', 'MatMul'], [1, 0, 0, 0]) if k_nodes is None: k_nodes = self.model.match_parent_path(matmul_qk, ['Transpose', 'Transpose', 'Reshape', 'Add', 'MatMul'], [1, 0, 0, 0, 0]) if k_nodes is None: logger.debug("fuse_attention: failed to match k path") return add_k = k_nodes[-2] matmul_k = k_nodes[-1] # Note that Cast might be removed by OnnxRuntime so we match two patterns here. mask_nodes = None if is_distill: _, mask_nodes, _ = self.model.match_parent_paths(where_qk, [(['Expand', 'Reshape', 'Equal'], [0, 0, 0]), (['Cast', 'Expand', 'Reshape', 'Equal'], [0, 0, 0, 0])], output_name_to_node) else: _, mask_nodes, _ = self.model.match_parent_paths( add_qk, [(['Mul', 'Sub', 'Cast', 'Unsqueeze', 'Unsqueeze'], [1, 0, 1, 0, 0]), (['Mul', 'Sub', 'Unsqueeze', 'Unsqueeze'], [1, 0, 1, 0])], output_name_to_node) if mask_nodes is None: logger.debug("fuse_attention: failed to match mask path") return if matmul_v.input[0] == root_input and matmul_q.input[0] == root_input and matmul_v.input[0] == root_input: mask_index = self.attention_mask.process_mask(mask_nodes[-1].input[0]) attention_last_node = reshape_qkv if einsum_node is None else transpose_qkv new_node = self.create_attention_node(mask_index, matmul_q, matmul_k, matmul_v, add_q, add_k, add_v, root_input, attention_last_node.output[0]) if new_node is None: return self.nodes_to_add.append(new_node) if einsum_node is not None: unique_index = einsum_node.input[0] new_edge = "edge_modified_" + unique_index shape_tensor = helper.make_tensor(name="shape_modified_tensor" + unique_index, data_type=TensorProto.INT64, dims=[4], vals=np.int64( [0, 0, self.num_heads, int(self.hidden_size / self.num_heads)]).tobytes(), raw=True) self.model.add_initializer(shape_tensor) self.model.add_node( helper.make_node("Reshape", [attention_last_node.output[0], shape_tensor.name], [new_edge], "reshape_modified_" + unique_index)) einsum_node.input[0] = new_edge self.nodes_to_remove.extend([attention_last_node, transpose_qkv, matmul_qkv]) self.nodes_to_remove.extend(qk_nodes) self.nodes_to_remove.extend(q_nodes) self.nodes_to_remove.extend(k_nodes) self.nodes_to_remove.extend(v_nodes) # Use prune graph to remove mask nodes since they are shared by all attention nodes. #self.nodes_to_remove.extend(mask_nodes) self.prune_graph = True
py
b413c41dfc295a26e23102d663fe53bc9796b17c
import torch import torch.nn as nn import math import torch.nn.functional as F from tensorboardX import SummaryWriter class Conv_bn_relu(nn.Module): def __init__(self, inp, oup, kernel_size=3, stride=1, pad=1, use_relu = True): super(Conv_bn_relu, self).__init__() self.use_relu = use_relu if self.use_relu: self.convs = nn.Sequential( nn.Conv2d(inp, oup, kernel_size, stride, pad, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True), ) else: self.convs = nn.Sequential( nn.Conv2d(inp, oup, kernel_size, stride, pad, bias=False), nn.BatchNorm2d(oup,eps=1e-03), ) def forward(self, x): out = self.convs(x) return out ''' class ConvDW_bn_relu(nn.Module): def __init__(self, inp, kernel_size=3, stride=1, pad=1, use_relu = True): super(ConvDW_bn_relu, self).__init__() self.use_relu = use_relu if self.use_relu: self.convs_dw = nn.Sequential( nn.Conv2d(inp, inp, kernel_size, stride, pad, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), ) else: self.convs_dw = nn.Sequential( nn.Conv2d(inp, inp, kernel_size, stride, pad, groups=inp, bias=False), nn.BatchNorm2d(inp), ) def forward(self, x): out = self.convs_dw(x) return out ''' class StemBlock(nn.Module): def __init__(self, inp=3): super(StemBlock, self).__init__() self.stem_1 = Conv_bn_relu(inp, num_init_features, 3, 2, 1) self.stem_2a = Conv_bn_relu(num_init_features,int(num_init_features/2),1,1,0) self.stem_2b = Conv_bn_relu(int(num_init_features/2), num_init_features, 3, 2, 1) self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2) self.stem_3 = Conv_bn_relu(num_init_features*2,num_init_features,1,1,0) def forward(self, x): stem_1_out = self.stem_1(x) stem_2a_out = self.stem_2a(stem_1_out) stem_2b_out = self.stem_2b(stem_2a_out) stem_2p_out = self.stem_2p(stem_1_out) out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1)) return out class DenseBlock(nn.Module): def __init__(self, inp, inter_channel): super(DenseBlock, self).__init__() self.cb1_a = Conv_bn_relu(inp,inter_channel, 1, 1, 0) self.cb1_b = Conv_bn_relu(inter_channel, inter_channel, 3, 1, 1) self.cb2_a = Conv_bn_relu(inp,inter_channel, 1, 1, 0) self.cb2_b = Conv_bn_relu(inter_channel, inter_channel, 3, 1, 1) self.cb2_c = Conv_bn_relu(inter_channel, inter_channel, 3, 1, 1) def forward(self, x): cb1_a_out = self.cb1_a(x) cb1_b_out = self.cb1_b(cb1_a_out) cb2_a_out = self.cb2_a(x) cb2_b_out = self.cb2_b(cb2_a_out) cb2_c_out = self.cb2_c(cb2_b_out) out = torch.cat((x,cb1_b_out,cb2_c_out),1) return out class TransitionBlock(nn.Module): def __init__(self, inp, oup): super(TransitionBlock, self).__init__() self.tb = Conv_bn_relu(inp,oup,1,1,0) def forward(self, x): out = self.tb(x) return out class Eltwise(nn.Module): def __init__(self, operation='+'): super(Eltwise, self).__init__() self.operation = operation def __repr__(self): return 'Eltwise %s' % self.operation def forward(self, *inputs): if self.operation == '+' or self.operation == 'SUM': x = inputs[0] for i in range(1,len(inputs)): x = x + inputs[i] elif self.operation == '*' or self.operation == 'MUL': x = inputs[0] for i in range(1,len(inputs)): x = x * inputs[i] elif self.operation == '/' or self.operation == 'DIV': x = inputs[0] for i in range(1,len(inputs)): x = x / inputs[i] elif self.operation == 'MAX': x = inputs[0] for i in range(1,len(inputs)): x =torch.max(x, inputs[i]) else: print('forward Eltwise, unknown operator') return x class PeleeNet(nn.Module): def __init__(self, nDenseBlocks = [4,6,6,6]): super(PeleeNet, self).__init__() self.stage = nn.Sequential() inter_channel = [32,48,64,80] total_filter = [128,128,256,64] dense_inp = [128,128,128,256] with_pooling = [1,1,0,0] # building stemblock self.stage.add_module('stage_0', StemBlock(3)) # building middle stageblock for i in range(4) : self.stage.add_module('stage_{}'.format(i+1),self._make_dense_transition(dense_inp[i], total_filter[i], inter_channel[i],nDenseBlocks[i],with_pooling[i])) def _make_dense_transition(self, dense_inp,total_filter, inter_channel, ndenseblocks,with_pooling = 1): layers = [] for i in range(ndenseblocks): layers.append(DenseBlock(dense_inp, inter_channel)) dense_inp += inter_channel * 2 #Transition Layer without Compression layers.append(TransitionBlock(dense_inp,total_filter)) if with_pooling == 1: layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) return nn.Sequential(*layers) def forward(self, x): x = self.stage(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() ''' if __name__ == '__main__': p = PeleeNet() #input = torch.ones(1, 3, 320, 320) #with SummaryWriter(comment='PeleeNet') as w: #w.add_graph(p, (input,)) #output = p(input) from visualize import make_dot from torch.autograd import Variable x = Variable(torch.randn(8,3,320,320))#change 12 to the channel number of network input y = p(x) g = make_dot(y) g.view() #print(output.size()) #print(p) # torch.save(p.state_dict(), 'peleenet.pth.tar') '''
py
b413c44e76ca2aa2b71f8e588665884dfe412313
import pyjokes as pyjokes import pywhatkit import speech_recognition as sr import pyttsx3 import datetime import wikipedia import webbrowser import os import time import subprocess import ecapture as ec import wolframalpha import json import requests import pyaudio import headlines import getpass from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By import librosa import soundfile import numpy as np import os, pickle,glob from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier import pickle from scipy.io import wavfile from bs4 import BeautifulSoup import requests pyttsx3.speak("Enter your password") inpass = getpass.getpass("Enter your password :") apass = "ashwin" if inpass != apass: pyttsx3.speak("Incorrect Password Try Again ") exit() pyttsx3.speak("Access Granted") print("Loading your AI personal assistant - Ashtech ") engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', 'voices[0].id') def speak(text): engine.say(text) engine.runAndWait() def wishMe(): hour = datetime.datetime.now().hour if hour >= 0 and hour < 12: speak("Hello,Good Morning") print("Hello,Good Morning") elif hour >= 12 and hour < 18: speak("Hello,Good Afternoon") print("Hello,Good Afternoon") else: speak("Hello,Good Evening") print("Hello,Good Evening") def take_First_Command(): r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = r.listen(source) with open("audio_file.wav", "wb") as file: file.write(audio.get_wav_data()) user_mood() try: statement = r.recognize_google(audio, language='en-in') print(f"user said:{statement}\n") except Exception as e: speak("Pardon me, please say that again") return "None" return statement def takeCommand(): r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = r.listen(source) try: statement = r.recognize_google(audio, language='en-in') print(f"user said:{statement}\n") except Exception as e: speak("Pardon me, please say that again") return "None" return statement def whatsapp(to, message): person = [to] string = message chrome_driver_binary = "C:\\Program Files\\Google\\Chrome\\Application\\chromedriver.exe" # Selenium chromedriver path driver = webdriver.Chrome(chrome_driver_binary) driver.get("https://web.whatsapp.com/") #wait = WebDriverWait(driver,10) sleep(15) for name in person: print('IN') user = driver.find_element_by_xpath("//span[@title='{}']".format(name)) user.click() print(user) for _ in range(10): text_box = driver.find_element_by_xpath( '//*[@id="main"]/footer/div[1]/div[2]/div/div[2]') text_box.send_keys(string) sendbutton = driver.find_elements_by_xpath( '//*[@id="main"]/footer/div[1]/div[3]/button')[0] sendbutton.click() def user_mood(): with soundfile.SoundFile('audio_file.wav') as s_file: x = s_file.read(dtype="float32") sample_rate = s_file.samplerate # x,sample_rate=soundfile.read(s_file) chroma=True mfcc=True mel=True if chroma: stft=np.abs(librosa.stft(x)) result=np.array([]) if mfcc: mfccs = np.mean(librosa.feature.mfcc(y=x, sr=sample_rate, n_mfcc=40).T, axis=0) result = np.hstack((result, mfccs)) if chroma: chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0) result = np.hstack((result, chroma)) if mel: mel = np.mean(librosa.feature.melspectrogram(x, sr=sample_rate).T, axis=0) result = np.hstack((result, mel)) with open('model.pkl', 'rb') as file: model = pickle.load(file) result=np.array(result) result=result.reshape(180,1) result=result.transpose() pred=model.predict(result) if(pred==1): speak('You seem happy today') print('You seem happy today :)') elif(pred==0): speak(' Should I tell you some jokes to make your mood before') print('Should I tell you some jokes to make your mood before') statement1 = takeCommand().lower() if 'yes' in statement1: joke = pyjokes.get_joke('en', 'all') print(joke) speak(joke) else: return speak("Loading your AI personal assistant AshTech") wishMe() if __name__ == '__main__': statement = take_First_Command().lower() while True: if statement == 0: continue if "good bye" in statement or "ok bye" in statement or "stop" in statement or "quit" in statement or "close" in statement: print('your personal assistant Ashtech is shutting down, Good bye') speak('your personal assistant Ashtech is shutting down, Good bye') break if 'wikipedia' in statement: speak('Searching Wikipedia...') statement = statement.replace("wikipedia", "") results = wikipedia.summary(statement, sentences=3) speak("According to Wikipedia") print(results) speak(results) elif 'open youtube' in statement: webbrowser.open_new_tab("https://www.youtube.com") speak("youtube is open now") time.sleep(5) elif 'open google' in statement: webbrowser.open_new_tab("https://www.google.com") speak("Google chrome is open now") time.sleep(5) elif 'open gmail' in statement: webbrowser.open_new_tab("gmail.com") speak("Google Mail open now") time.sleep(5) elif 'covid-19 tracker' in statement: webbrowser.open_new_tab( "https://news.google.com/covid19/map?hl=en-IN&gl=IN&ceid=IN%3Aen") speak("covid-19 tracker is open now") time.sleep(5) elif "shoping" in statement or 'shopping' in statement: websites = ['amazon', 'flipkart', 'myntra', 'limeroad'] print('\n'.join(websites)) speak("nice mood sir!, what do you want to open?") user_ip = takeCommand().lower().replace(' ', '') for website in websites: if website in user_ip: webbrowser.open(website + '.com') speak("here you are sir") elif 'online courses' in statement or 'course' in statement: platforms = ['coursera', 'udemy', 'edx', 'skillshare', 'datacamp', 'udacity'] speak("Select a platform that you prefer : ") print("\n".join(platforms)) statement1 = takeCommand().lower() if statement1 == 0: continue if 'coursera' in statement1: webbrowser.open_new_tab("https://www.coursera.org") speak("Coursera is open now") time.sleep(2) elif 'udemy' in statement1: webbrowser.open_new_tab("https://www.udemy.com") speak("udemy is open now") time.sleep(2) elif 'edx' in statement1: webbrowser.open_new_tab("https://www.edx.org/") speak("edx is open now") time.sleep(2) elif 'skillshare' in statement1: webbrowser.open_new_tab("https://www.skillshare.com") speak("skill share is open now") time.sleep(2) elif 'datacamp' in statement1: webbrowser.open_new_tab("https://www.datacamp.com") speak("datacamp is open now") time.sleep(2) elif 'udacity' in statement1: webbrowser.open_new_tab("https://www.udacity.com") speak("udacity is open now") time.sleep(2) else: speak("Sorry we couldn't find your search!!!") time.sleep(3) elif 'jobs' in statement or 'job' in statement or 'job recommandation' in statement or 'work' in statement: platforms = ['linkedin', 'indeed', 'glassdoor', 'hackerrank', 'naukri', 'intern shala'] speak("Select a platform that you prefer:") print('\n'.join(platforms)) statement1 = takeCommand().lower() if(statement1 == 0): continue if 'linkedIn' in statement1: webbrowser.open_new_tab("https://www.linkedin.com/jobs") speak("LinkedIn is open now") time.sleep(2) elif 'indeed' in statement1: webbrowser.open_new_tab("https://www.indeed.com/jobs") speak("Indeed is open now") time.sleep(2) elif 'glassdoor' in statement1: webbrowser.open_new_tab("https://www.glassdoor.com/jobs") speak("Glassdoor is open now") time.sleep(2) elif 'hackerrank' in statement1: webbrowser.open_new_tab("https://www.hackerrank.com/jobs/search") speak("HackerRank is open now") time.sleep(2) elif 'naukri' in statement1: webbrowser.open_new_tab("https://www.naukri.com/jobs") speak("Naukri is open now") time.sleep(2) elif 'intern shala' in statement: webbrowser.open_new_tab('internshala.com') speak('Intern Shala is open now') time.sleep(2) else: speak("Sorry we couldn't find your search!!!") time.sleep(3) elif 'news' in statement or 'news headline' in statement or 'top news' in statement or 'some news' in statement: speak('Here are some headlines from the India today') res = requests.get('https://www.indiatoday.in/top-stories') soup = BeautifulSoup(res.text, 'lxml') news_box = soup.find('div', {'class': 'top-takes-video-container'}) all_news = news_box.find_all('p') for news in all_news: print('\n'+news.text) speak(news.text) print() time.sleep(6) time.sleep(8) elif "weather" in statement: api_key = "8ef61edcf1c576d65d836254e11ea420" base_url = "https://api.openweathermap.org/data/2.5/weather?" speak("whats the city name") city_name = takeCommand() complete_url = base_url + "appid=" + api_key + "&q=" + city_name response = requests.get(complete_url) x = response.json() if x["cod"] != "404": y = x["main"] current_temperature = y["temp"] current_humidiy = y["humidity"] z = x["weather"] weather_description = z[0]["description"] print(" Temperature in kelvin unit is " + str(current_temperature) + "\n humidity in percentage is " + str(current_humidiy) + "\n description " + str(weather_description)) speak(" Temperature in kelvin unit = " + str(current_temperature) + "\n humidity (in percentage) = " + str(current_humidiy) + "\n description = " + str(weather_description)) elif 'time' in statement: strTime = datetime.datetime.now().strftime("%H:%M:%S") print(f"the time is {strTime}") speak(f"the time is {strTime}") elif 'who are you' in statement or 'what can you do' in statement: speak('I am Ashwin friend Ashtech version 1 point O your persoanl assistant. I am programmed to minor tasks like' 'opening youtube,google chrome,gmail and stackoverflow ,predict time,take a photo,search wikipedia,predict weather' 'in different cities , get top headline news from times of india and you can ask me computational or geographical questions too!') elif "who made you" in statement or "who created you" in statement or "who discovered you" in statement: speak("I was built by Ashwin Kumar Ramaswamy") print("I was built by Ashwin Kumar Ramaswamy") elif "open stackoverflow" in statement: webbrowser.open_new_tab("https://stackoverflow.com/login") speak("Here is stackoverflow") elif 'news' in statement: news = webbrowser.open_new_tab( "https://timesofindia.indiatimes.com/home/headlines") speak('Here are some headlines from the Times of India,Happy reading') speak( 'If you like the headline, say "visit" to open the page and read details') headlines = headlines.get_headlines( "https://timesofindia.indiatimes.com/home/headlines") for i in range(15): speak(headlines['text'][i]) command = takeCommand() if 'visit' in command: webbrowser.open_new_tab(headlines['link'][i]) break elif 'stop' in command: break time.sleep(5) time.sleep(6) elif "camera" in statement or "take a photo" in statement: ec.capture(0, "robo camera", "img.jpg") elif 'search' in statement: statement = statement.replace("search", "") webbrowser.open_new_tab(statement) time.sleep(5) elif 'ask' in statement: speak('I can answer to computational and geographical questions and what question do you want to ask now') question = takeCommand() app_id = "R2K75H-7ELALHR35X" client = wolframalpha.Client('R2K75H-7ELALHR35X') res = client.query(question) answer = next(res.results).text speak(answer) print(answer) elif 'jokes' in statement or 'joke' in statement: joke = pyjokes.get_joke('en', 'all') print(joke) speak(joke) elif 'pycharm' in statement or 'open pycharm' in statement: os.startfile('pycharm') speak("pycharm is open now") elif 'visual studio code' in statement or 'open code' in statement or 'code' in statement or 'visual code' in statement: os.startfile('code') speak('visual studio code is open now') elif 'on youtube' in statement or 'youtube' in statement: statement = statement.replace("youtube", "") pywhatkit.playonyt(statement) speak('here you are sir!') time.sleep(120) elif 'what is my current location' in statement or 'what is my location' in statement or 'where am I' in statement: ip = "https://api.ipify.org/" ip_r = requests.get(ip).text geoip = "http://ip-api.com/json/"+ip_r geo_r = requests.get(geoip) geo_json = geo_r.json() print(f"Your current location is {geo_json['city']}, {geo_json['regionName']}, {geo_json['country']} {geo_json['zip']}") speak(f"Your current location is {geo_json['city']}, {geo_json['regionName']}, {geo_json['country']} {geo_json['zip']}") elif "notepad" in statement: speak("Opening Notepad") os.system("start Notepad") elif "outlook" in statement: speak("Opening Microsoft Outlook") os.system("start outlook") elif "word" in statement: speak("Opening Word") os.system("start winword") elif "paint" in statement: speak("Opening Paint") os.system("start mspaint") elif "excel" in statement: speak("Opening Excel") os.system("start excel") elif "chrome" in statement: speak("Opening Google Chrome") os.system("start chrome") elif "power point" in statement or "powerpoint" in statement or "ppt" in statement: speak("Opening Notepad") os.system("start powerpnt") elif "edge" in statement: speak("Opening Microsoft Edge") os.system("start msedge") elif "snipping tool" in statement: speak("Opening Snipping Tool") os.system("start snippingtool") elif "show deleted files" in statement or "Recycle Bin" in statement or "Delete files" in statement or "search deleted files" in statement: speak("Opening Recycle Bin") os.system("start shell:RecycleBinFolder") elif "calculator" in statement: speak("Opening Calculator") os.system("start calc") elif "log off" in statement or "sign out" in statement: speak( "Ok , your pc will log off in 10 sec make sure you exit from all applications") subprocess.call(["shutdown", "/l"]) #Writing notes elif "write a note" in statement: speak("What should i write, sir") print("J: What should i write, sir") note = takeCommand() file = open('jarvis.txt', 'w') speak("Sir, Should i include date and time") print("J: Sir, Should i include date and time") snfm = takeCommand() if 'yes' in snfm or 'sure' in snfm: strTime = datetime.datetime.now() file.write(strTime) file.write(" :- ") file.write(note) else: file.write(note) #Showing note elif "show the note" in statement: speak("Showing Notes") print("J: Showing Notes") file = open("jarvis.txt", "r") print(file.read()) speak(file.read(6)) #whatsapp messaging elif 'whatsapp' in statement: try: print("J: To whom should i send? Can you please type in the name.") speak("To whom should i send? Can you please type in the name.") to = input('Name: ') print("J: What should i send? Can you please type in the message.") speak("What should i send? Can you please type in the message.") content = input("Enter the message: ") speak('You will have to scan for whatsapp web. ') print('J: You will have to scan for whatsapp web. ') whatsapp(to, content) speak("Message has been sent !") print("* J: Message has been sent !") except Exception as e: print(e) speak("I am not able to send this message") speak("Tell me how can I help you now?") statement = takeCommand().lower() time.sleep(3)
py
b413c46d5bf2d1d42f0aa6e600f5711c0f78b565
# -*- coding: utf-8 -*- """ Created on Sat May 2 11:26:18 2020 @author: max """ import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont import requests def make_first_page(src,text): def cv2ImgAddText(img, text, left, top, textColor=(0, 0, 0), textSize=10): if (isinstance(img, np.ndarray)): #判断是否OpenCV图片类型 img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) draw = ImageDraw.Draw(img) fontText = ImageFont.truetype("font/simsun.ttc", textSize, encoding="utf-8") draw.text((left, top), text, textColor, font=fontText) return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) try: response = requests.get(src,timeout=3) nparr = np.frombuffer(response.content, np.uint8) im = cv2.imdecode(nparr, cv2.IMREAD_COLOR) except: im=np.zeros((90,120,3), np.uint8) im=cv2.resize(im,(90,120)) im=cv2.copyMakeBorder(src=im,left=0,right=0,top=0,bottom=25,borderType=cv2.BORDER_CONSTANT,value=[255, 255, 255]) tex='' if len(text)>12: if len(text)>24: tex=text[:12]+'\n'+text[12:24]+'\n'+text[24:] else: tex=text im=cv2ImgAddText(im,tex,2,121) #cv2.imwrite("CV.jpg", im) return im
py
b413c5262bef01af46ff80b09d8fc70e8e7de674
import os import json import zipfile import numpy as np import pickle import torch from collections import OrderedDict from itertools import repeat class AverageMeter(object): """Computes and stores the average and current/max/min value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.max = -1e10 self.min = 1e10 self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.max = -1e10 self.min = 1e10 def update(self, val, n=1): self.max = max(val, self.max) self.min = min(val, self.min) self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def read_json(fname): with fname.open('rt') as handle: return json.load(handle, object_hook=OrderedDict) def write_json(content, fname): with fname.open('wt') as handle: json.dump(content, handle, indent=4, sort_keys=False) def load_json(filename): with open(filename, "r") as f: return json.loads(f.readlines()[0].strip("\n")) def save_jsonl(data, filename): """data is a list""" with open(filename, "w") as f: f.write("\n".join([json.dumps(e) for e in data])) def load_jsonl(filename): with open(filename, "r") as f: return [json.loads(l.strip("\n")) for l in f.readlines()] def inf_loop(data_loader): ''' wrapper function for endless data loader. ''' for loader in repeat(data_loader): yield from loader def load_from_feature_package(group_handle): feature_dict = dict() vids = group_handle.keys() for vid in vids: feature_dict[vid] = dict() sub_groups = group_handle[vid].keys() for sub_group in sub_groups: if '.jpg' in sub_group: regions = group_handle[vid][sub_group].keys() region_feature_list = [[] for r in regions] for region in regions: if region == 'image': region_feature_list[0] = group_handle[vid][sub_group][region][0].squeeze() elif region == 'bbox' or region == 'box': region_feature_list[1] = group_handle[vid][sub_group][region][0].squeeze() else: bbox_idx = int(region[4:]) region_feature_list[bbox_idx] = group_handle[vid][sub_group][region][0].squeeze() feature_dict[vid][sub_group] = np.array(region_feature_list) else: feature_dict[vid][sub_group] = dict() datas = group_handle[vid][sub_group].keys() for data in datas: if data == 'img_alignment': img_alignment_rows = group_handle[vid][sub_group][data].keys() feature_dict[vid][sub_group][data] = [[] for i in img_alignment_rows] for img_alignment_row in img_alignment_rows: int(img_alignment_row) feature_dict[vid][sub_group][data][int(img_alignment_row)] = \ group_handle[vid][sub_group][data][img_alignment_row][:].tolist() elif data == 'token': token_list = group_handle[vid][sub_group][data][:].tolist() feature_dict[vid][sub_group][data] = [str(token)[2:-1] for token in token_list] else: if len(group_handle[vid][sub_group][data][:]) == 4: feature_dict[vid][sub_group][data] = group_handle[vid][sub_group][data][:].squeeze() else: feature_dict[vid][sub_group][data] = group_handle[vid][sub_group][data][:] return feature_dict
py
b413c5bf2b918c8e74f9a3c73cd926a2c1298c9d
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for meterstick.v2.models.""" from absl.testing import absltest from absl.testing import parameterized from meterstick import metrics from meterstick import models from meterstick import operations from meterstick import utils import numpy as np import pandas as pd from sklearn import linear_model np.random.seed(42) n = 40 DF = pd.DataFrame({ 'X1': np.random.random(n), 'X2': np.random.random(n), 'Y': np.random.randint(0, 100, n), 'grp1': np.random.choice(['A', 'B', 'C'], n), 'grp2': np.random.choice(('foo', 'bar'), n), }) GRPED1 = DF.groupby('grp1').sum() GRPED2 = DF.groupby(['grp2', 'grp1']).sum() @parameterized.named_parameters( ('linear_regression', models.LinearRegression, linear_model.LinearRegression, 'OLS'), ('ridge', models.Ridge, linear_model.Ridge, 'Ridge'), ('lasso', models.Lasso, linear_model.Lasso, 'Lasso'), ('elastic_net', models.ElasticNet, linear_model.ElasticNet, 'ElasticNet')) class ModelsTest(parameterized.TestCase): def test_model(self, model, sklearn_model, name): m = model(metrics.Sum('Y'), metrics.Sum('X1'), 'grp1') output = m.compute_on(DF) model = sklearn_model().fit(GRPED1[['X1']], GRPED1[['Y']]) expected = pd.DataFrame( [[model.intercept_[0], model.coef_.flatten()[0]]], columns=[ name + '(sum(Y) ~ sum(X1)) Coefficient: intercept', name + '(sum(Y) ~ sum(X1)) Coefficient: sum(X1)' ]) pd.testing.assert_frame_equal(output, expected) def test_melted(self, model, sklearn_model, name): del sklearn_model, name # unused m = model(metrics.Sum('Y'), metrics.Sum('X1'), 'grp1') output = m.compute_on(DF, melted=True) expected = utils.melt(m.compute_on(DF)) pd.testing.assert_frame_equal(output, expected) def test_multi_var(self, model, sklearn_model, name): m = model(metrics.Sum('Y'), [metrics.Sum('X1'), metrics.Sum('X2')], 'grp1') output = m.compute_on(DF) model = sklearn_model().fit(GRPED1[['X1', 'X2']], GRPED1[['Y']]) expected = pd.DataFrame( [[ model.intercept_[0], model.coef_.flatten()[0], model.coef_.flatten()[1] ]], columns=[ name + '(sum(Y) ~ sum(X1) + sum(X2)) Coefficient: intercept', name + '(sum(Y) ~ sum(X1) + sum(X2)) Coefficient: sum(X1)', name + '(sum(Y) ~ sum(X1) + sum(X2)) Coefficient: sum(X2)' ]) pd.testing.assert_frame_equal(output, expected) def test_split_by(self, model, sklearn_model, name): m = model(metrics.Sum('Y'), metrics.Sum('X1'), 'grp1') output = m.compute_on(DF, 'grp2') model = sklearn_model() model.fit(GRPED2.loc['bar'][['X1']], GRPED2.loc['bar'][['Y']]) expected1 = pd.DataFrame( [[model.intercept_[0], model.coef_.flatten()[0]]], columns=[ name + '(sum(Y) ~ sum(X1)) Coefficient: intercept', name + '(sum(Y) ~ sum(X1)) Coefficient: sum(X1)' ]) model.fit(GRPED2.loc['foo'][['X1']], GRPED2.loc['foo'][['Y']]) expected2 = pd.DataFrame( [[model.intercept_[0], model.coef_.flatten()[0]]], columns=[ name + '(sum(Y) ~ sum(X1)) Coefficient: intercept', name + '(sum(Y) ~ sum(X1)) Coefficient: sum(X1)' ]) expected = pd.concat([expected1, expected2], keys=['bar', 'foo'], names=['grp2']) expected = expected.droplevel(-1) pd.testing.assert_frame_equal(output, expected) def test_no_intercept(self, model, sklearn_model, name): m = model(metrics.Sum('Y'), metrics.Sum('X1'), 'grp1', fit_intercept=False) output = m.compute_on(DF) model = sklearn_model(fit_intercept=False) model.fit(GRPED1[['X1']], GRPED1[['Y']]) expected = pd.DataFrame( [[model.coef_.flatten()[0]]], columns=[name + '(sum(Y) ~ sum(X1)) Coefficient: sum(X1)']) pd.testing.assert_frame_equal(output, expected) def test_operation_on(self, model, sklearn_model, name): del sklearn_model # unused m = model(metrics.Sum('Y'), metrics.Sum('X1'), 'grp1') output = operations.Distribution('grp2', m).compute_on(DF) expected = m.compute_on(DF, 'grp2') / m.compute_on(DF, 'grp2').sum() expected.columns = [ 'Distribution of %s(sum(Y) ~ sum(X1)) Coefficient: intercept' % name, 'Distribution of %s(sum(Y) ~ sum(X1)) Coefficient: sum(X1)' % name ] pd.testing.assert_frame_equal(output, expected) class LogisticRegressionTest(absltest.TestCase): def test_model(self): m = models.LogisticRegression(metrics.Sum('grp2'), metrics.Sum('X1'), 'X1') output = m.compute_on(DF) model = linear_model.LogisticRegression().fit(DF[['X1']], DF[['grp2']]) expected = pd.DataFrame( [[model.intercept_[0], model.coef_.flatten()[0]]], columns=[ 'LogisticRegression(sum(grp2) ~ sum(X1)) Coefficient: intercept', 'LogisticRegression(sum(grp2) ~ sum(X1)) Coefficient: sum(X1)' ]) pd.testing.assert_frame_equal(output, expected) def test_melted(self): m = models.LogisticRegression(metrics.Sum('grp2'), metrics.Sum('X1'), 'X1') output = m.compute_on(DF, melted=True) expected = utils.melt(m.compute_on(DF)) pd.testing.assert_frame_equal(output, expected) def test_multi_var(self): m = models.LogisticRegression( metrics.Sum('grp2'), [metrics.Sum('X1'), metrics.Sum('X2')], 'X1') output = m.compute_on(DF) model = linear_model.LogisticRegression().fit(DF[['X1', 'X2']], DF[['grp2']]) expected = pd.DataFrame( [[ model.intercept_[0], model.coef_.flatten()[0], model.coef_.flatten()[1] ]], columns=[ 'LogisticRegression(sum(grp2) ~ sum(X1) + sum(X2)) Coefficient: intercept', 'LogisticRegression(sum(grp2) ~ sum(X1) + sum(X2)) Coefficient: sum(X1)', 'LogisticRegression(sum(grp2) ~ sum(X1) + sum(X2)) Coefficient: sum(X2)' ]) pd.testing.assert_frame_equal(output, expected) def test_split_by(self): m = models.LogisticRegression(metrics.Sum('grp2'), metrics.Sum('X1'), 'X1') output = m.compute_on(DF, 'grp1') res = [] grps = ['A', 'B', 'C'] for g in grps: expected = m.compute_on(DF[DF.grp1 == g]) res.append(expected) expected = pd.concat(res, keys=grps, names=['grp1']) expected = expected.droplevel(-1) pd.testing.assert_frame_equal(output, expected) def test_no_intercept(self): m = models.LogisticRegression( metrics.Sum('grp2'), metrics.Sum('X1'), 'X1', fit_intercept=False) output = m.compute_on(DF) model = linear_model.LogisticRegression(fit_intercept=False) model.fit(DF[['X1']], DF[['grp2']]) expected = pd.DataFrame( [[model.coef_.flatten()[0]]], columns=[ 'LogisticRegression(sum(grp2) ~ sum(X1)) Coefficient: sum(X1)' ]) pd.testing.assert_frame_equal(output, expected) def test_operation_on(self): m = models.LogisticRegression( metrics.Sum('grp2'), metrics.Sum('X1'), 'X1', name='LR') output = operations.Distribution('grp1', m).compute_on(DF) expected = m.compute_on(DF, 'grp1') / m.compute_on(DF, 'grp1').sum() expected.columns = [ 'Distribution of LR Coefficient: intercept', 'Distribution of LR Coefficient: sum(X1)' ] pd.testing.assert_frame_equal(output, expected) def test_logistic_regression_multi_classes(self): m = models.LogisticRegression( metrics.Sum('Y'), [metrics.Sum('X1'), metrics.Sum('X2')], 'grp1') output = m.compute_on(DF) res = [] model = linear_model.LogisticRegression() model.fit(GRPED1[['X1', 'X2']], GRPED1['Y']) prefix = 'LogisticRegression(sum(Y) ~ sum(X1) + sum(X2)) Coefficient: ' for c, i, cl in zip(model.coef_, model.intercept_, model.classes_): expected = pd.DataFrame([[i, c[0], c[1]]], columns=[ prefix + 'intercept for class %s' % cl, prefix + 'sum(X1) for class %s' % cl, prefix + 'sum(X2) for class %s' % cl ]) res.append(expected) expected = pd.concat(res, 1) pd.testing.assert_frame_equal(output, expected) def test_logistic_regression_multi_classes_no_intercept(self): m = models.LogisticRegression( metrics.Sum('Y'), metrics.Sum('X1'), 'grp1', fit_intercept=False) output = m.compute_on(DF) res = [] model = linear_model.LogisticRegression(fit_intercept=False) model.fit(GRPED1[['X1']], GRPED1['Y']) for c, cl in zip(model.coef_, model.classes_): expected = pd.DataFrame( [c], columns=[ 'LogisticRegression(sum(Y) ~ sum(X1)) Coefficient: ' 'sum(X1) for class %s' % cl ]) res.append(expected) expected = pd.concat(res, 1) pd.testing.assert_frame_equal(output, expected) class MiscellaneousTests(absltest.TestCase): def test_model_composition(self): lm = models.LinearRegression( metrics.Sum('Y'), metrics.Sum('X1'), 'grp1', name='lm') ridge = models.Ridge( metrics.Sum('Y'), metrics.Sum('X1'), 'grp1', name='ridge') output = (lm - ridge).compute_on(DF) a = lm.compute_on(DF, return_dataframe=False) b = ridge.compute_on(DF, return_dataframe=False) cols = [ 'lm Coefficient: intercept - ridge Coefficient: intercept', 'lm Coefficient: sum(X1) - ridge Coefficient: sum(X1)' ] a.columns = cols b.columns = cols expected = a - b pd.testing.assert_frame_equal(output, expected) def test_count_features(self): s = metrics.Sum('x') self.assertEqual(models.count_features(metrics.Sum('x')), 1) self.assertEqual(models.count_features(metrics.MetricList([s, s])), 2) self.assertEqual( models.count_features( metrics.MetricList([metrics.Sum('x'), metrics.MetricList([s])])), 2) self.assertEqual( models.count_features(operations.AbsoluteChange('a', 'b', s)), 1) self.assertEqual( models.count_features( operations.AbsoluteChange( 'a', 'b', metrics.MetricList([s, metrics.MetricList([s])]))), 2) self.assertEqual( models.count_features( operations.AbsoluteChange( 'a', 'b', metrics.MetricList([ operations.AbsoluteChange('a', 'b', metrics.MetricList([s, s])) ]))), 2) self.assertEqual(models.count_features(metrics.Ratio('x', 'y')), 1) self.assertEqual(models.count_features(metrics.MetricList([s, s]) / 2), 2) if __name__ == '__main__': absltest.main()
py
b413c5d086bc21c1407ee46d8b7c71e53aaa42ce
# adapted from https://github.com/facebookresearch/fvcore/blob/master/fvcore/transforms/transform_util.py import numpy as np import torch def to_float_tensor(numpy_array: np.ndarray) -> torch.Tensor: """ Convert the numpy array to torch float tensor with dimension of NxCxHxW. Pytorch is not fully supporting uint8, so convert tensor to float if the numpy_array is uint8. Args: numpy_array (ndarray): of shape NxHxWxC, or HxWxC or HxW to represent an image. The array can be of type uint8 in range [0, 255], or floating point in range [0, 1] or [0, 255]. Returns: float_tensor (tensor): converted float tensor. """ assert isinstance(numpy_array, np.ndarray) assert len(numpy_array.shape) in (2, 3, 4) # Some of the input numpy array has negative strides. Pytorch currently # does not support negative strides, perform ascontiguousarray to # resolve the issue. float_tensor = torch.from_numpy(np.ascontiguousarray(numpy_array)) if numpy_array.dtype in (np.uint8, np.int32, np.int64): float_tensor = float_tensor.float() if len(numpy_array.shape) == 2: # HxW -> 1x1xHxW. float_tensor = float_tensor[None, None, :, :] elif len(numpy_array.shape) == 3: # HxWxC -> 1xCxHxW. float_tensor = float_tensor.permute(2, 0, 1) float_tensor = float_tensor[None, :, :, :] elif len(numpy_array.shape) == 4: # NxHxWxC -> NxCxHxW float_tensor = float_tensor.permute(0, 3, 1, 2) else: raise NotImplementedError( "Unknow numpy_array dimension of {}".format(float_tensor.shape) ) return float_tensor def to_numpy( float_tensor: torch.Tensor, target_shape: list, target_dtype: np.dtype ) -> np.ndarray: """ Convert float tensor with dimension of NxCxHxW back to numpy array. Args: float_tensor (tensor): a float pytorch tensor with shape of NxCxHxW. target_shape (list): the target shape of the numpy array to represent the image as output. options include NxHxWxC, or HxWxC or HxW. target_dtype (dtype): the target dtype of the numpy array to represent the image as output. The array can be of type uint8 in range [0, 255], or floating point in range [0, 1] or [0, 255]. Returns: (ndarray): converted numpy array. """ assert len(target_shape) in (2, 3, 4) if len(target_shape) == 2: # 1x1xHxW -> HxW. assert float_tensor.shape[0] == 1 assert float_tensor.shape[1] == 1 float_tensor = float_tensor[0, 0, :, :] elif len(target_shape) == 3: assert float_tensor.shape[0] == 1 # 1xCxHxW -> HxWxC. float_tensor = float_tensor[0].permute(1, 2, 0) elif len(target_shape) == 4: # NxCxHxW -> NxHxWxC float_tensor = float_tensor.permute(0, 2, 3, 1) else: raise NotImplementedError( "Unknow target shape dimension of {}".format(target_shape) ) if target_dtype == np.uint8: # Need to specifically call round here, notice in pytroch the round # is half to even. # https://github.com/pytorch/pytorch/issues/16498 float_tensor = float_tensor.round().byte() return float_tensor.numpy()
py
b413c66119ecb4f2e5cd837375f7dc57de79c8da
import json import os PROJECT_ID = 'project_id' APPLICATION_ID = 'APPLICATION_ID' GOOGLE_APPLICATION_CREDENTIALS = 'GOOGLE_APPLICATION_CREDENTIALS' BIGQUERY_DATASET_ID = 'BIGQUERY_DATASET_ID' def get_creds(creds_path): """ loads a credentials as a json object :param creds_path: path to GCP credentials file :return: """ with open(creds_path, 'rb') as creds_fp: return json.load(creds_fp) def activate_creds(creds_path): """ activates google cloud service account credentials :param creds_path: path to the service account key file :return: """ creds = get_creds(creds_path) project_id = creds.get(PROJECT_ID) if not project_id: raise OSError('%s does not refer to a valid GCP key file' % creds_path) os.environ[APPLICATION_ID] = project_id os.environ[GOOGLE_APPLICATION_CREDENTIALS] = creds_path return creds def set_default_dataset_id(dataset_id): """ sets BIGQUERY_DATASET_ID environment variable to a name of dataset :param dataset_id: name of the dataset_id :return: """ os.environ[BIGQUERY_DATASET_ID] = dataset_id
py
b413c7165202927f43689a0569e61261e013d0ee
# Icon made by surang from www.flaticon.com # Icon made by Freepik from www.flaticon.com import pygame import random import math import time from pygame import mixer pygame.init() clock = pygame.time.Clock() # Game variables SCREENWIDTH = 800 SCREENHEIGHT = 600 black = (0, 0, 0) player_vel = 5 target_vel = 2 num_targets = 5 enemy_vel = 2 num_enemies = 5 fps = 60 target_fps = 60 # Preparing the screen and the background screen = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT)) background = pygame.image.load("Images/background.png") try: mixer.music.load('Sounds/bgmusic.mp3') except pygame.error: mixer.music.load('Sounds/bgmusic.wav') mixer.music.play(-1) pygame.display.set_caption("Catch the Starfish") icon = pygame.image.load('Images/starfish.png') pygame.display.set_icon(icon) # Player (Octopus) playerImg = pygame.image.load("Images/octopus.png") playerX = SCREENWIDTH//2 - 32 playerY = SCREENHEIGHT - 74 playerX_change = 0 playerY_change = 0 # Target (Starfish) targetImgs = [] targetX = [] targetY = [] targetY_change = [] for _ in range(num_targets): targetImgs.append(pygame.image.load("Images/starfish.png")) targetX.append(random.randint(0, SCREENWIDTH - 32)) targetY.append(random.randint(0, 20)) targetY_change.append(target_vel) # Enemy (Bomb) enemyImgs = [] enemyX = [] enemyY = [] enemyY_change = [] for _ in range(num_enemies): enemyImgs.append(pygame.image.load("Images/bomb.png")) enemyX.append(random.randint(0, SCREENWIDTH - 32)) enemyY.append(random.randint(0, 40)) enemyY_change.append(enemy_vel) # Variables to display score and game over text score_value = 0 font = pygame.font.Font('ARIAL.TTF', 32) over_font = pygame.font.Font('ARIAL.TTF', 70) # Functions def show_score(x, y): score = font.render("Score : " + str(score_value), True, black) screen.blit(score, (x, y)) def player(x, y): screen.blit(playerImg, (x, y)) def target(x, y, k): screen.blit(targetImgs[k], (x, y)) def enemy(x, y, k): screen.blit(enemyImgs[k], (x, y)) def is_collision(x1, y1, x2, y2): d = math.sqrt(math.pow((x1 - x2), 2) + math.pow((y1 - y2), 2)) if d < 40: return True else: return False def game_over_text(): over_text = over_font.render("GAME OVER", True, black) screen.blit(over_text, (200, 250)) restart_text = font.render("Press SPACE to start a new game", True, black) screen.blit(restart_text, (190, 330)) def reset_game(): for i in range(num_targets): targetX[i] = random.randint(0, SCREENWIDTH - 32) targetY[i] = random.randint(0, 20) for i in range(num_enemies): enemyX[i] = random.randint(0, SCREENWIDTH - 32) enemyY[i] = random.randint(0, 40) prev_time = time.time() running = True game_over = False # Game Loop while running: screen.fill(black) screen.blit(background, (0, 0)) now = time.time() dt = now - prev_time prev_time = now for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: playerX_change = -player_vel if event.key == pygame.K_RIGHT: playerX_change = player_vel if event.key == pygame.K_UP: playerY_change = -player_vel if event.key == pygame.K_DOWN: playerY_change = player_vel if event.key == pygame.K_SPACE and game_over: score_value = 0 game_over = False reset_game() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT or event.key == pygame.K_UP or event.key == pygame.K_DOWN: playerX_change = 0 playerY_change = 0 if event.type == pygame.QUIT: running = False # Player movement playerX += playerX_change * dt * target_fps playerY += playerY_change * dt * target_fps if playerX <= 0: playerX = 0 elif playerX >= SCREENWIDTH - 64: playerX = SCREENWIDTH - 64 elif playerY <= 400: playerY = 400 elif playerY >= SCREENHEIGHT - 64: playerY = SCREENHEIGHT - 64 if game_over: game_over_text() else: # Target movement for i in range(num_targets): targetY[i] += targetY_change[i] * dt * target_fps if targetY[i] >= SCREENHEIGHT - 32: targetX[i] = random.randint(0, SCREENWIDTH - 32) targetY[i] = random.randint(0, 20) if is_collision(targetX[i], targetY[i], playerX, playerY): hit = mixer.Sound('Sounds/bubble.wav') hit.play() score_value += 1 targetX[i] = random.randint(0, SCREENWIDTH - 32) targetY[i] = random.randint(0, 20) target(targetX[i], targetY[i], i) # Enemy movement for i in range(num_enemies): enemyY[i] += enemyY_change[i] * dt * target_fps if enemyY[i] >= SCREENHEIGHT - 32: enemyX[i] = random.randint(0, SCREENWIDTH - 32) enemyY[i] = random.randint(0, 40) if is_collision(enemyX[i], enemyY[i], playerX, playerY): bomb_hit = mixer.Sound('Sounds/explosion.wav') bomb_hit.play() game_over = True enemy(enemyX[i], enemyY[i], i) player(playerX, playerY) show_score(10, 10) clock.tick(fps) pygame.display.update()
py
b413c7342dfee87a46dce4f194f4b3478135f091
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import scrape_common as sc xls_url = 'https://www.ne.ch/autorites/DFS/SCSP/medecin-cantonal/maladies-vaccinations/Documents/Covid-19-Statistiques/COVID19_PublicationInternet.xlsx' xls = sc.xlsdownload(xls_url, silent=True) rows = sc.parse_xls(xls) for i, row in enumerate(rows): print('NE') sc.timestamp() print('Downloading:', xls_url) print('Date and time:', row['A'].date().isoformat()) print('Confirmed cases:', row['Cumul']) print('Hospitalized:', row['Total des cas hospitalisés']) if row['Soins intensifs (intubés)'] is not None and row['Soins intensifs (non intubés)'] is not None: ICU=row['Soins intensifs (intubés)'] ICU2=row['Soins intensifs (non intubés)'] print('ICU:', int(ICU)+int(ICU2)) print('Vent:', row['Soins intensifs (intubés)']) print('Deaths:', row['Cumul des décès']) # do not print record delimiter for last record # this is an indicator for the next script to check # for expected values. if len(rows) - 1 > i: print('-' * 10)
py
b413c86041a0b2a5cd3c8b16af72285a6a7c71f9
from django.apps import AppConfig from templatestore import app_settings as ts_settings class TemplateStoreAppConfig(AppConfig): name = "templatestore"
py
b413c8f57fffec09fcecc85728e290124f5f5250
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-02-23 12:59 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0014_auto_20180223_1254'), ] operations = [ migrations.AddField( model_name='contactpage', name='map_address', field=models.CharField(default='technic-alu', max_length=250), preserve_default=False, ), ]
py
b413c94eb0efef6e37950da85de88b514fca99b4
from .params_init import dict_portfolio, time_params, Mu, Rfree, Std, det_income, norm_factor, age_plot_params import numpy as np from HARK.utilities import approxNormal time_params['Age_born'] = 27 dict_portfolio['T_age'] = time_params['Age_death'] - time_params['Age_born'] + 1 dict_portfolio['T_cycle'] = time_params['Age_death'] - time_params['Age_born'] dict_portfolio['T_retire'] = time_params['Age_retire'] - time_params['Age_born'] dict_portfolio['T_sim'] = (time_params['Age_death'] - time_params['Age_born'] + 1)*50 time_params['Age_retire'] = 70 dict_portfolio['T_age'] = time_params['Age_death'] - time_params['Age_born'] + 1 dict_portfolio['T_cycle'] = time_params['Age_death'] - time_params['Age_born'] dict_portfolio['T_retire'] = time_params['Age_retire'] - time_params['Age_born'] dict_portfolio['T_sim'] = (time_params['Age_death'] - time_params['Age_born'] + 1)*50 time_params['Age_death'] = 100 dict_portfolio['T_age'] = time_params['Age_death'] - time_params['Age_born'] + 1 dict_portfolio['T_cycle'] = time_params['Age_death'] - time_params['Age_born'] dict_portfolio['T_retire'] = time_params['Age_retire'] - time_params['Age_born'] dict_portfolio['T_sim'] = (time_params['Age_death'] - time_params['Age_born'] + 1)*50 dict_portfolio['TranShkStd'] = np.array([0.063 , 0.066 , 0.0675, 0.0685, 0.069 , 0.069 , 0.067 , 0.0665, 0.066 , 0.064 , 0.063 , 0.062 , 0.061 , 0.06 , 0.0585, 0.057 , 0.055 , 0.053 , 0.0515, 0.05 , 0.047 , 0.045 , 0.043 , 0.04 ,0.038 , 0.036 , 0.033 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 ,0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 ,0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 , 0.03 ]) dict_portfolio['PermShkStd'] = np.array([0.15 , 0.122, 0.115, 0.105, 0.093, 0.09 , 0.087, 0.08 , 0.075, 0.075, 0.067, 0.068, 0.061, 0.062, 0.058, 0.06 , 0.058, 0.058, 0.057, 0.056, 0.054, 0.057, 0.059, 0.059, 0.063, 0.066, 0.07 , 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073,0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073,0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073]) age_plot_params = [30, 40, 50, 60, 70, 80] dict_portfolio['LivPrb'] = dict_portfolio['LivPrb'][(time_params['Age_born'] - 20):(time_params['Age_death'] - 20)]
py
b413ca920ff3c9727ebe0c5c0d81489db1e8c458
import logging from pajbot import utils from pajbot.managers.db import DBManager from pajbot.models.command import Command from pajbot.models.command import CommandExample from pajbot.models.user import User from pajbot.modules import BaseModule from pajbot.modules import ModuleSetting from pajbot.utils import time_since log = logging.getLogger("pajbot") class FollowAgeModule(BaseModule): ID = __name__.split(".")[-1] NAME = "Follow age" DESCRIPTION = "Enables the usage of the !followage and !followsince commands" CATEGORY = "Feature" SETTINGS = [ ModuleSetting( key="action_followage", label="MessageAction for !followage", type="options", required=True, default="say", options=["say", "whisper", "reply"], ), ModuleSetting( key="action_followsince", label="MessageAction for !followsince", type="options", required=True, default="say", options=["say", "whisper", "reply"], ), ModuleSetting( key="global_cd", label="Global cooldown (seconds)", type="number", required=True, placeholder="", default=4, constraints={"min_value": 0, "max_value": 120}, ), ModuleSetting( key="user_cd", label="Per-user cooldown (seconds)", type="number", required=True, placeholder="", default=8, constraints={"min_value": 0, "max_value": 240}, ), ] def load_commands(self, **options): # TODO: Have delay modifiable in settings self.commands["followage"] = Command.raw_command( self.follow_age, delay_all=self.settings["global_cd"], delay_user=self.settings["user_cd"], description="Check your or someone elses follow age for a channel", can_execute_with_whisper=True, examples=[ CommandExample( None, "Check your own follow age", chat="user:!followage\n" "bot:troydota, you have been following Karl_Kons for 4 months and 24 days", description="Check how long you have been following the current streamer (Karl_Kons in this case)", ).parse(), CommandExample( None, "Check someone elses follow age", chat="user:!followage NightNacht\n" "bot:troydota, NightNacht has been following Karl_Kons for 5 months and 4 days", description="Check how long any user has been following the current streamer (Karl_Kons in this case)", ).parse(), CommandExample( None, "Check someones follow age for a certain streamer", chat="user:!followage NightNacht forsenlol\n" "bot:troydota, NightNacht has been following forsenlol for 1 year and 4 months", description="Check how long NightNacht has been following forsenlol", ).parse(), CommandExample( None, "Check your own follow age for a certain streamer", chat="user:!followage troydota forsenlol\n" "bot:troydota, you have been following forsenlol for 1 year and 3 months", description="Check how long you have been following forsenlol", ).parse(), ], ) self.commands["followsince"] = Command.raw_command( self.follow_since, delay_all=self.settings["global_cd"], delay_user=self.settings["user_cd"], description="Check from when you or someone else first followed a channel", can_execute_with_whisper=True, examples=[ CommandExample( None, "Check your own follow since", chat="user:!followsince\n" "bot:troydota, you have been following Karl_Kons since 04 March 2015, 07:02:01 UTC", description="Check when you first followed the current streamer (Karl_Kons in this case)", ).parse(), CommandExample( None, "Check someone elses follow since", chat="user:!followsince NightNacht\n" "bot:troydota, NightNacht has been following Karl_Kons since 03 July 2014, 04:12:42 UTC", description="Check when NightNacht first followed the current streamer (Karl_Kons in this case)", ).parse(), CommandExample( None, "Check someone elses follow since for another streamer", chat="user:!followsince NightNacht forsenlol\n" "bot:troydota, NightNacht has been following forsenlol since 13 June 2013, 13:10:51 UTC", description="Check when NightNacht first followed the given streamer (forsenlol)", ).parse(), CommandExample( None, "Check your follow since for another streamer", chat="user:!followsince troydota forsenlol\n" "bot:troydota, you have been following forsenlol since 16 December 1990, 03:06:51 UTC", description="Check when you first followed the given streamer (forsenlol)", ).parse(), ], ) @staticmethod def _format_for_follow_age(follow_since): human_age = time_since(utils.now().timestamp() - follow_since.timestamp(), 0) return f"for {human_age}" @staticmethod def _format_for_follow_since(follow_since): human_age = follow_since.strftime("%d %B %Y, %X %Z") return f"since {human_age}" @staticmethod def _parse_message(message): from_input = None to_input = None if message is not None and len(message) > 0: message_split = message.split(" ") if len(message_split) >= 1: from_input = message_split[0] if len(message_split) >= 2: to_input = message_split[1] return from_input, to_input def _handle_command(self, bot, source, message, event, format_cb, message_method): from_input, to_input = self._parse_message(message) with DBManager.create_session_scope(expire_on_commit=False) as db_session: if from_input is not None: from_user = User.find_or_create_from_user_input(db_session, bot.twitch_helix_api, from_input) if from_user is None: bot.execute_now( bot.send_message_to_user, source, f'User "{from_input}" could not be found', event, method=self.settings["action_followage"], ) return else: from_user = source if to_input is None: to_input = bot.streamer # TODO make bot.streamer a User() instance? to_user = User.find_or_create_from_user_input(db_session, bot.twitch_helix_api, to_input) if to_user is None: bot.execute_now( bot.send_message_to_user, source, f'User "{to_input}" could not be found', event, method=message_method, ) return follow_since = bot.twitch_helix_api.get_follow_since(from_user.id, to_user.id) is_self = source == from_user if follow_since is not None: # Following suffix = f"been following {to_user} {format_cb(follow_since)}" if is_self: message = "You have " + suffix else: message = from_user.name + " has " + suffix else: # Not following suffix = f"not following {to_user}" if is_self: message = "You are " + suffix else: message = from_user.name + " is " + suffix bot.execute_now(bot.send_message_to_user, source, message, event, method=message_method) def follow_age(self, bot, source, message, event, **rest): self.bot.action_queue.submit( self._handle_command, bot, source, message, event, self._format_for_follow_age, self.settings["action_followage"], ) def follow_since(self, bot, source, message, event, **rest): self.bot.action_queue.submit( self._handle_command, bot, source, message, event, self._format_for_follow_since, self.settings["action_followsince"], )
py
b413cc5f71bf6322f736b99bbe01a67a72ebb015
# Copyright (c) 2015 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from heatclient import exc as heat_exc import mock from sahara.service import engine from sahara.service.heat import heat_engine from sahara.tests.unit import base from sahara.utils import general as g class EngineTest(engine.Engine): def __init__(self): super(EngineTest, self).__init__() self.order = [] def create_cluster(self, cluster): pass def get_type_and_version(self): pass def rollback_cluster(self, cluster, reason): pass def scale_cluster(self, cluster, node_group_id_map): pass def shutdown_cluster(self, cluster): pass class TestEngine(base.SaharaWithDbTestCase): def setUp(self): super(TestEngine, self).setUp() self.eng = EngineTest() @mock.patch('sahara.utils.openstack.images.SaharaImageManager') def test_get_node_group_image_username(self, mock_manager): ng = mock.Mock() manager = mock.Mock() manager.get.return_value = mock.Mock(username='username') mock_manager.return_value = manager self.assertEqual( 'username', self.eng.get_node_group_image_username(ng)) @mock.patch('sahara.utils.cluster_progress_ops.add_successful_event') @mock.patch('sahara.service.networks.init_instances_ips', return_value=True) @mock.patch('sahara.context.set_current_instance_id') @mock.patch('sahara.utils.cluster.check_cluster_exists', return_value=True) def test_ips_assign(self, g, ctx, init, ops): cluster = mock.Mock() instances = [mock.Mock(id='1'), mock.Mock(id='2')] instances_with_ip = set() self.eng._ips_assign(instances_with_ip, cluster, instances) self.assertEqual({'1', '2'}, instances_with_ip) @mock.patch('datetime.datetime') @mock.patch('sahara.context.ctx') @mock.patch('sahara.service.engine.conductor') def test_clean_job_executions(self, conductor, ctx, date): cluster = mock.Mock() je = mock.Mock(info=None, end_time=None) conductor.job_execution_get_all.return_value = [je] date.now.return_value = '28.04.2015' self.eng._clean_job_executions(cluster) args, kwargs = conductor.job_execution_update.call_args update = { 'info': {'status': 'KILLED'}, 'cluster_id': None, 'end_time': '28.04.2015'} self.assertEqual(update, args[2]) class TestDeletion(base.SaharaTestCase): def setUp(self): super(TestDeletion, self).setUp() self.engine = EngineTest() @mock.patch('sahara.utils.openstack.nova.client') def test_delete_auto_security_group(self, nova_client): ng = mock.Mock(id="16fd2706-8baf-433b-82eb-8c7fada847da", auto_security_group=True) ng.name = "ngname" ng.cluster.name = "cluster" auto_name = g.generate_auto_security_group_name(ng) ng.security_groups = [auto_name] client = mock.Mock() nova_client.return_value = client client.security_groups.get.side_effect = lambda x: SecurityGroup(x) self.engine._delete_auto_security_group(ng) client.security_groups.delete.assert_called_once_with(auto_name) @mock.patch('sahara.utils.openstack.nova.client') def test_delete_auto_security_group_other_groups(self, nova_client): ng = mock.Mock(id="16fd2706-8baf-433b-82eb-8c7fada847da", auto_security_group=True) ng.name = "ngname" ng.cluster.name = "cluster" auto_name = g.generate_auto_security_group_name(ng) ng.security_groups = ['1', '2', auto_name] client = mock.Mock() nova_client.return_value = client client.security_groups.get.side_effect = lambda x: SecurityGroup(x) self.engine._delete_auto_security_group(ng) client.security_groups.delete.assert_called_once_with(auto_name) @mock.patch('sahara.utils.openstack.nova.client') def test_delete_auto_security_group_no_groups(self, nova_client): ng = mock.Mock(id="16fd2706-8baf-433b-82eb-8c7fada847da", auto_security_group=True) ng.name = "ngname" ng.cluster.name = "cluster" ng.security_groups = [] client = mock.Mock() nova_client.return_value = client client.security_groups.get.side_effect = lambda x: SecurityGroup(x) self.engine._delete_auto_security_group(ng) self.assertEqual(0, client.security_groups.delete.call_count) @mock.patch('sahara.utils.openstack.nova.client') def test_delete_auto_security_group_wrong_group(self, nova_client): ng = mock.Mock(id="16fd2706-8baf-433b-82eb-8c7fada847da", auto_security_group=True) ng.name = "ngname" ng.cluster.name = "cluster" ng.security_groups = ['1', '2'] client = mock.Mock() nova_client.return_value = client client.security_groups.get.side_effect = lambda x: SecurityGroup(x) self.engine._delete_auto_security_group(ng) self.assertEqual(0, client.security_groups.delete.call_count) @mock.patch('sahara.service.engine.Engine._delete_aa_server_groups') @mock.patch('sahara.service.engine.Engine._shutdown_instances') @mock.patch('sahara.service.engine.Engine._remove_db_objects') @mock.patch('sahara.service.engine.Engine._clean_job_executions') @mock.patch('sahara.utils.openstack.heat.client') @mock.patch('sahara.service.heat.heat_engine.LOG.warning') def test_calls_order(self, logger, heat_client, _job_ex, _db_ob, _shutdown, _delete_aa): class FakeHeatEngine(heat_engine.HeatEngine): def __init__(self): super(FakeHeatEngine, self).__init__() self.order = [] def _clean_job_executions(self, cluster): self.order.append('clean_job_executions') super(FakeHeatEngine, self)._clean_job_executions(cluster) def _remove_db_objects(self, cluster): self.order.append('remove_db_objects') super(FakeHeatEngine, self)._remove_db_objects(cluster) def _shutdown_instances(self, cluster): self.order.append('shutdown_instances') super(FakeHeatEngine, self)._shutdown_instances(cluster) def _delete_aa_server_groups(self, cluster): self.order.append('delete_aa_server_groups') super(FakeHeatEngine, self)._delete_aa_server_groups(cluster) fake_cluster = mock.Mock() heat_client.side_effect = heat_exc.HTTPNotFound() engine = FakeHeatEngine() engine.shutdown_cluster(fake_cluster) self.assertEqual(['shutdown_instances', 'delete_aa_server_groups', 'clean_job_executions', 'remove_db_objects'], engine.order) self.assertEqual( [mock.call('Did not find stack for cluster. Trying to ' 'delete cluster manually.')], logger.call_args_list) class SecurityGroup(object): def __init__(self, name): self.name = name
py
b413ccf2525496fede2c6e034ab13279342af9a7
#!/usr/bin/env python """ Learns context2vec's parametric model """ import argparse import time import sys import os import numpy as np from chainer import cuda import chainer.links as L import chainer.optimizers as O import chainer.serializers as S import chainer.computational_graph as C from chainer.optimizer_hooks import GradientClipping from sentence_reader import SentenceReaderDir from context2vec.common.context_models import BiLstmContext from context2vec.common.defs import IN_TO_OUT_UNITS_RATIO, NEGATIVE_SAMPLING_NUM #TODO: LOWER AS ARG def dump_embeddings(filename, w, units, index2word): with open(filename, 'w') as f: f.write('%d %d\n' % (len(index2word), units)) for i in range(w.shape[0]): v = ' '.join(['%f' % v for v in w[i]]) f.write('%s %s\n' % (index2word[i], v)) def dump_comp_graph(filename, vs): g = C.build_computational_graph(vs) with open(filename, 'w') as o: o.write(g.dump()) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--indir', '-i', default=None, help='input corpus directory') parser.add_argument('--trimfreq', '-t', default=0, type=int, help='minimum frequency for word in training') parser.add_argument('--ns_power', '-p', default=0.75, type=float, help='negative sampling power') parser.add_argument('--dropout', '-o', default=0.0, type=float, help='NN dropout') parser.add_argument('--wordsfile', '-w', default=None, help='word embeddings output filename') parser.add_argument('--modelfile', '-m', default=None, help='model output filename') parser.add_argument('--cgfile', '-cg', default=None, help='computational graph output filename (for debug)') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--unit', '-u', default=300, type=int, help='number of units (dimensions) of one context word') parser.add_argument('--batchsize', '-b', type=int, default=100, help='learning minibatch size') parser.add_argument('--epoch', '-e', default=10, type=int, help='number of epochs to learn') parser.add_argument('--context', '-c', choices=['lstm'], default='lstm', help='context type ("lstm")') parser.add_argument('--deep', '-d', choices=['yes', 'no'], default=None, help='use deep NN architecture') parser.add_argument('--alpha', '-a', default=0.001, type=float, help='alpha param for Adam, controls the learning rate') parser.add_argument('--grad-clip', '-gc', default=None, type=float, help='if specified, clip l2 of the gradient to this value') args = parser.parse_args() if args.deep == 'yes': args.deep = True elif args.deep == 'no': args.deep = False else: raise Exception("Invalid deep choice: " + args.deep) print('GPU: {}'.format(args.gpu)) print('# unit: {}'.format(args.unit)) print('Minibatch-size: {}'.format(args.batchsize)) print('# epoch: {}'.format(args.epoch)) print('Context type: {}'.format(args.context)) print('Deep: {}'.format(args.deep)) print('Dropout: {}'.format(args.dropout)) print('Trimfreq: {}'.format(args.trimfreq)) print('NS Power: {}'.format(args.ns_power)) print('Alpha: {}'.format(args.alpha)) print('Grad clip: {}'.format(args.grad_clip)) print('') return args def savePartialModel(epoch): print("saving partial epoch :- ", epoch) if not os.path.exists(epoch): os.makedirs(epoch) if args.wordsfile != None: dump_embeddings(str(epoch) + r'\\' + args.wordsfile + '.targets', model.loss_func.W.data, target_word_units, reader.index2word) if args.modelfile != None: S.save_npz(str(epoch) + r'\\' + args.modelfile, model) with open(str(epoch) + r'\\' + args.modelfile + '.params', 'w', encoding='utf-8') as f: f.write('model_file\t' + args.modelfile[args.modelfile.rfind('/') + 1:] + '\n') f.write('words_file\t' + args.wordsfile[args.wordsfile.rfind('/') + 1:] + '.targets\n') f.write('unit\t' + str(args.unit) + '\n') if args.deep: f.write('deep\tyes\n') else: f.write('deep\tno\n') f.write('drop_ratio\t' + str(args.dropout) + '\n') f.write('#\t{}\n'.format(' '.join(sys.argv))) args = parse_arguments() context_word_units = args.unit lstm_hidden_units = IN_TO_OUT_UNITS_RATIO*args.unit target_word_units = IN_TO_OUT_UNITS_RATIO*args.unit if args.gpu >= 0: print("GPU") print(cuda.available) print(cuda.get_device_from_id(args.gpu)) xp = cuda.cupy if args.gpu >= 0 else np reader = SentenceReaderDir(args.indir, args.trimfreq, args.batchsize) print('n_vocab: %d' % (len(reader.word2index)-3)) # excluding the three special tokens print('corpus size: %d' % (reader.total_words)) cs = [reader.trimmed_word2count[w] for w in range(len(reader.trimmed_word2count))] loss_func = L.NegativeSampling(target_word_units, cs, NEGATIVE_SAMPLING_NUM, args.ns_power) if args.context == 'lstm': model = BiLstmContext(args.deep, args.gpu, reader.word2index, context_word_units, lstm_hidden_units, target_word_units, loss_func, True, args.dropout) else: raise Exception('Unknown context type: {}'.format(args.context)) optimizer = O.Adam(alpha=args.alpha) optimizer.setup(model) if args.grad_clip: optimizer.add_hook(GradientClipping(args.grad_clip)) STATUS_INTERVAL = 1000000 for epoch in range(args.epoch): begin_time = time.time() cur_at = begin_time word_count = 0 next_count = STATUS_INTERVAL accum_loss = 0.0 last_accum_loss = 0.0 last_word_count = 0 print('epoch: {0}'.format(epoch)) reader.open() for sent in reader.next_batch(): model.zerograds() loss = model(sent) accum_loss += loss.data loss.backward() del loss optimizer.update() word_count += len(sent)*len(sent[0]) # all sents in a batch are the same length accum_mean_loss = float(accum_loss)/word_count if accum_loss > 0.0 else 0.0 if word_count >= next_count: now = time.time() duration = now - cur_at throuput = float((word_count-last_word_count)) / (now - cur_at) cur_mean_loss = (float(accum_loss)-last_accum_loss)/(word_count-last_word_count) print('{} words, {:.2f} sec, {:.2f} words/sec, {:.4f} accum_loss/word, {:.4f} cur_loss/word'.format( word_count, duration, throuput, accum_mean_loss, cur_mean_loss)) next_count += STATUS_INTERVAL cur_at = now last_accum_loss = float(accum_loss) last_word_count = word_count print('accum words per epoch', word_count, 'accum_loss', accum_loss, 'accum_loss/word', accum_mean_loss) reader.close() savePartialModel(str(epoch)) """ if args.wordsfile != None: dump_embeddings(args.wordsfile+'.targets', model.loss_func.W.data, target_word_units, reader.index2word) if args.modelfile != None: S.save_npz(args.modelfile, model) with open(args.modelfile + '.params', 'w') as f: f.write('model_file\t' + args.modelfile[args.modelfile.rfind('/')+1:]+'\n') f.write('words_file\t' + args.wordsfile[args.wordsfile.rfind('/')+1:]+'.targets\n') f.write('unit\t' + str(args.unit)+'\n') if args.deep: f.write('deep\tyes\n') else: f.write('deep\tno\n') f.write('drop_ratio\t' + str(args.dropout)+'\n') f.write('#\t{}\n'.format(' '.join(sys.argv))) """
py
b413ced60341a3d49beb683d7168cb977340bed1
from datetime import datetime from typing import Any, Dict, Iterator from urllib.parse import urlparse import pycountry # type: ignore import structlog # type: ignore import xml.etree.ElementTree as ET from hoard.client import OAIClient from hoard.models import ( Author, Contact, Dataset, Description, Distributor, GrantNumber, Keyword, OtherId, Publication, Series, TimePeriodCovered, ) logger = structlog.get_logger() namespace = { "oai": "http://www.openarchives.org/OAI/2.0/", "dim": "http://www.dspace.org/xmlns/dspace/dim", } class WHOAS: def __init__(self, client: OAIClient) -> None: self.client = client def __iter__(self) -> Iterator[Dataset]: return self def __next__(self) -> Dataset: while True: record = next(self.client) parsed_record = ET.fromstring(record) if parsed_record.find(".//oai:error", namespace) is not None: continue else: try: dataset = create_from_whoas_dim_xml(record, self.client) return dataset except TypeError as ex: id_elem = parsed_record.find(".//oai:identifier", namespace) if id_elem is not None: rec_id = id_elem.text logger.info(f"Error with {rec_id}: {str(ex)}") def create_from_whoas_dim_xml(data: str, client: OAIClient) -> Dataset: kwargs: Dict[str, Any] = {} record = ET.fromstring(data) fields = record.findall(".//dim:field", namespace) kwargs["contacts"] = [ Contact( datasetContactName="Woods Hole Open Access Server", datasetContactEmail="[email protected]", ) ] notesText = "" for field in fields: if field.attrib["element"] == "title" and "qualifier" not in field.attrib: kwargs["title"] = field.text if ( field.attrib["element"] == "contributor" and "qualifier" in field.attrib and field.attrib["qualifier"] == "author" ): if field.text is not None: kwargs.setdefault("authors", []).append( Author(authorName=field.text, authorAffiliation="Woods Hole") ) if ( field.attrib["element"] == "description" and "qualifier" in field.attrib and field.attrib["qualifier"] == "abstract" ): if field.text is not None: kwargs.setdefault("description", []).append( Description(dsDescriptionValue=field.text) ) if field.attrib["element"] == "subject": kwargs.setdefault("keywords", []).append(Keyword(keywordValue=field.text)) if ( field.attrib["element"] == "identifier" and "qualifier" in field.attrib and field.attrib["qualifier"] == "uri" ): kwargs["alternativeURL"] = field.text if ( field.attrib["element"] == "date" and "qualifier" in field.attrib and field.attrib["qualifier"] == "issued" and field.text is not None ): try: datetime.strptime(field.text, "%Y-%m-%d") kwargs["distributionDate"] = field.text except ValueError: pass if field.attrib["element"] == "publisher": kwargs.setdefault("distributors", []).append( Distributor(distributorName=field.text) ) if ( field.attrib["element"] == "description" and "qualifier" in field.attrib and field.attrib["qualifier"] == "sponsorship" ): kwargs.setdefault("grantNumbers", []).append( GrantNumber(grantNumberInformation=field.text) ) if field.attrib["element"] == "description" and "qualifier" not in field.attrib: if field.text is not None and notesText == "": notesText = field.text else: notesText += f" {field.text}" if ( field.attrib["element"] == "language" and "qualifier" in field.attrib and field.attrib["qualifier"] == "iso" ): if field.text is not None: lang_value = pycountry.languages.get(alpha_2=field.text[:2]) if lang_value != "": kwargs.setdefault("language", []).append(lang_value.name) if field.attrib["element"] == "identifier": kwargs.setdefault("otherIds", []).append(OtherId(otherIdValue=field.text)) if ( field.attrib["element"] == "coverage" and "qualifier" in field.attrib and field.attrib["qualifier"] == "spatial" ): kwargs["productionPlace"] = field.text if field.attrib["element"] == "relation" and "qualifier" not in field.attrib: kwargs.setdefault("publications", []).append( Publication(publicationCitation=field.text) ) if ( field.attrib["element"] == "relation" and "qualifier" in field.attrib and field.attrib["qualifier"] == "ispartof" ): if field.text is not None and field.text.startswith( "https://hdl.handle.net/" ): series_args = {"seriesInformation": field.text} parsed_url = urlparse(field.text) id = f"oai:darchive.mblwhoilibrary.org:{parsed_url.path[1:]}" series_name = client.get_record_title(id) series_args["seriesName"] = series_name kwargs["series"] = Series(**series_args) if ( field.attrib["element"] == "coverage" and "qualifier" in field.attrib and field.attrib["qualifier"] == "temporal" ): if field.text is not None and " - " in field.text: dates = field.text.split(" - ") start = dates[0] end = dates[1].rstrip(" (UTC)") time_kwargs = {} try: datetime.strptime(start, "%Y-%m-%d") time_kwargs["timePeriodCoveredStart"] = start except ValueError: pass try: datetime.strptime(end, "%Y-%m-%d") time_kwargs["timePeriodCoveredEnd"] = end except ValueError: pass kwargs.setdefault("timePeriodsCovered", []).append( TimePeriodCovered(**time_kwargs) ) if field.attrib["element"] == "rights" and "qualifier" not in field.attrib: kwargs["license"] = field.text kwargs["termsOfUse"] = field.text kwargs["subjects"] = ["Earth and Environmental Sciences"] if "description" not in kwargs: kwargs["description"] = [Description(dsDescriptionValue=kwargs["title"])] if notesText != "": kwargs["notesText"] = notesText return Dataset(**kwargs)
py
b413d05a50a145942a1cf0a1ca8c72dbae7e27e8
# python script for 0-core testcases import os from argparse import ArgumentParser from subprocess import Popen, PIPE import random import uuid import time import shlex from jumpscale import j from termcolor import colored from multiprocessing import Process, Manager SETUP_ENV_SCRIPT = "tests/integration_tests/travis/setup_env.sh" SETUP_ENV_SCRIPT_NAME = "setup_env.sh" class Utils(object): def __init__(self, options): self.options = options def run_cmd(self, cmd, timeout=20): now = time.time() while time.time() < now + timeout: sub = Popen([cmd], stdout=PIPE, stderr=PIPE, shell=True) out, err = sub.communicate() if sub.returncode == 0: return out.decode('utf-8') elif any(x in err.decode('utf-8') for x in ['Connection refused', 'No route to host']): time.sleep(1) continue else: break raise RuntimeError("Failed to execute command.\n\ncommand:\n{}\n\n{}".format(cmd, err.decode('utf-8'))) def stream_run_cmd(self, cmd): sub = Popen(shlex.split(cmd), stdout=PIPE) while True: out = sub.stdout.readline() if out == b'' and sub.poll() is not None: break if out: print(out.strip()) rc = sub.poll() return rc def send_script_to_remote_machine(self, script, ip, password): cmd = 'wget "https://raw.githubusercontent.com/threefoldtech/jumpscale_lib/sal_testcases/tests/integration_tests/travis/setup_env.sh"' cmd = 'sshpass -p {} ssh -o StrictHostKeyChecking=no root@{} {}'.format(password, ip, cmd) self.run_cmd(cmd) def run_cmd_on_remote_machine(self, cmd, ip, password): templ = 'sshpass -p {} ssh -o StrictHostKeyChecking=no root@{} {}' cmd = templ.format(password, ip, cmd) return self.stream_run_cmd(cmd) def run_cmd_on_remote_machine_without_stream(self, cmd, ip, port, password): templ = 'sshpass -p {} ssh -o StrictHostKeyChecking=no root@{} {}' cmd = templ.format(password, ip, cmd) return self.run_cmd(cmd) def create_disk(self, zos_client): zdb_name = str(uuid.uuid4())[0:8] zdb = zos_client.primitives.create_zerodb(name=zdb_name, path='/mnt/zdbs/sda', mode='user', sync=False, admin='mypassword') zdb.namespaces.add(name='mynamespace', size=50, password='namespacepassword', public=True) zdb.deploy() disk = zos_client.primitives.create_disk('mydisk', zdb, size=50) disk.deploy() return disk def random_mac(self): return "52:54:00:%02x:%02x:%02x" % (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def get_farm_available_node_to_execute_testcases(self): capacity = j.clients.threefold_directory.get(interactive=False) resp = capacity.api.ListCapacity(query_params={'farmer': 'kristof-farm'})[1] nodes = resp.json() # nodes return random.choice(nodes) def random_string(self, size=10): return str(uuid.uuid4()).replace('-', '')[:size] def create_ubuntu_vm(self, zos_client, ubuntu_port): print('* Creating ubuntu vm to fire the testsuite from') keypath = '/root/.ssh/id_rsa.pub' if not os.path.isfile(keypath): os.system("echo | ssh-keygen -P ''") with open(keypath, "r") as key: pub_key = key.read() pub_key.replace('\n', '') vm_ubuntu_name = "ubuntu{}".format(self.random_string()) vm_ubuntu = zos_client.primitives.create_virtual_machine(name=vm_ubuntu_name, type_='ubuntu:lts') vm_ubuntu.nics.add(name='default_nic', type_='default') vm_ubuntu.configs.add('sshkey', '/root/.ssh/authorized_keys', pub_key) vm_ubuntu.ports.add('ssh_port', ubuntu_port, 22) vm_ubuntu.vcpus = 4 vm_ubuntu.memory = 8192 vm_ubuntu.deploy() return vm_ubuntu def main(options): utils = Utils(options) # Send the script to setup the envirnment and run testcases utils.send_script_to_remote_machine(SETUP_ENV_SCRIPT, options.vm_ip, options.vm_password) # get available node to run testcaases against it print('* get available node to run test cases on it ') zos_available_node = utils.get_farm_available_node_to_execute_testcases() node_ip = zos_available_node["robot_address"][7:-5] print('* The available node ip {} '.format(node_ip)) # Access the ubuntu vm and install requirements cmd = 'bash {script} {branch} {nodeip} {zt_token}'.format( script=SETUP_ENV_SCRIPT_NAME, branch="sal_testcases", nodeip=options.zos_ip, zt_token=options.zt_token) utils.run_cmd_on_remote_machine(cmd, options.vm_ip, options.vm_password) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-z", "--zos_ip", type=str, dest="zos_ip", required=True, help="IP of the zeroos machine that will be used") parser.add_argument("-v", "--vm_ip", type=str, dest="vm_ip", required=True, help="IP of the zeroos machine that will be used") parser.add_argument("-b", "--branch", type=str, dest="branch", required=True, help="0-core branch that the tests will run from") parser.add_argument("-jp", "--ubuntu_port", type=str, dest="ubuntu_port", required=False, help="if you have jumpscale machine on the node provide its port") parser.add_argument("-jf", "--js_flag", type=str, dest="js_flag", required=False, help="flag if you have jumpscale machine") parser.add_argument("-t", "--zt_token", type=str, dest="zt_token", default='sgtQtwEMbRcDgKgtHEMzYfd2T7dxtbed', required=True, help="zerotier token that will be used for the core0 tests") parser.add_argument("-p", "--password", type=str, dest="vm_password", default='root', required=True, help="js vm password") options = parser.parse_args() main(options)
py
b413d1405ce02fd04c69a852f73b8e8e7cec7768
from google.cloud import ndb from backend.common.consts.comp_level import CompLevel from backend.common.models.event import Event from backend.common.models.match import Match from backend.common.queries.match_query import EventMatchesQuery def preseed_matches(n: int) -> None: matches = [ Match( id=f"2010ct_qm{i}", event=ndb.Key(Event, "2010ct"), year=2010, comp_level=CompLevel.QM, set_number=1, match_number=i, alliances_json="", ) for i in range(1, n + 1) ] ndb.put_multi(matches) def test_no_matches() -> None: matches = EventMatchesQuery(event_key="2010ct").fetch() assert matches == [] def test_matches_exist() -> None: preseed_matches(5) matches = EventMatchesQuery(event_key="2010ct").fetch() assert len(matches) == 5
py
b413d1ea96343d0b59f978d6751217905041c9b4
""" Module for managing an DPT Up/Down remote value. DPT 1.008. """ from __future__ import annotations from enum import Enum from typing import TYPE_CHECKING from xknx.dpt import DPTArray, DPTBinary from xknx.exceptions import ConversionError, CouldNotParseTelegram from .remote_value import AsyncCallbackType, GroupAddressesType, RemoteValue if TYPE_CHECKING: from xknx.xknx import XKNX class RemoteValueUpDown(RemoteValue[DPTBinary, "RemoteValueUpDown.Direction"]): """Abstraction for remote value of KNX DPT 1.008 / DPT_UpDown.""" class Direction(Enum): """Enum for indicating the direction.""" UP = 0 DOWN = 1 def __init__( self, xknx: XKNX, group_address: GroupAddressesType | None = None, group_address_state: GroupAddressesType | None = None, device_name: str | None = None, feature_name: str = "Up/Down", after_update_cb: AsyncCallbackType | None = None, invert: bool = False, ): """Initialize remote value of KNX DPT 1.008.""" super().__init__( xknx, group_address, group_address_state, device_name=device_name, feature_name=feature_name, after_update_cb=after_update_cb, ) self.invert = invert def payload_valid(self, payload: DPTArray | DPTBinary | None) -> DPTBinary | None: """Test if telegram payload may be parsed.""" # pylint: disable=no-self-use return payload if isinstance(payload, DPTBinary) else None def to_knx(self, value: RemoteValueUpDown.Direction) -> DPTBinary: """Convert value to payload.""" if value == self.Direction.UP: return DPTBinary(1) if self.invert else DPTBinary(0) if value == self.Direction.DOWN: return DPTBinary(0) if self.invert else DPTBinary(1) raise ConversionError( "value invalid", value=value, device_name=self.device_name, feature_name=self.feature_name, ) def from_knx(self, payload: DPTBinary) -> RemoteValueUpDown.Direction: """Convert current payload to value.""" if payload == DPTBinary(0): return self.Direction.DOWN if self.invert else self.Direction.UP if payload == DPTBinary(1): return self.Direction.UP if self.invert else self.Direction.DOWN raise CouldNotParseTelegram( "payload invalid", payload=payload, device_name=self.device_name, feature_name=self.feature_name, ) async def down(self) -> None: """Set value to down.""" await self.set(self.Direction.DOWN) async def up(self) -> None: """Set value to UP.""" # pylint: disable=invalid-name await self.set(self.Direction.UP)
py
b413d37716f8baf3fa90d1b3bc8066b8465be497
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/wearables/ithorian/shared_ith_gloves_s02.iff" result.attribute_template_id = 11 result.stfName("wearables_name","ith_gloves_s02") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
b413d42511ebf53f1da88f920be2d3311a5d7146
import requests from common import logging import config def tokenize(issuee, input_file_name): form_data = {"issuee": issuee} files = { 'input': open(input_file_name, 'rb') } try: res = requests.post(config.API_BASE_URL + "/issue", data=form_data, files=files, verify=True) return res.json() except requests.exceptions.ConnectionError: return None except Exception as e: logging.error(e) return None
py
b413d47c8b35e5d7a818456cfea9a385f3004873
""" This file contains DB related functions. .. module:: GMDA_main :platform: linux .. moduleauthor:: Ivan Syzonenko <[email protected]> """ __license__ = "MIT" __docformat__ = 'reStructuredText' import os import sqlite3 as lite import numpy as np lite.register_adapter(np.int64, lambda val: int(val)) lite.register_adapter(np.int32, lambda val: int(val)) lite.register_adapter(np.float, lambda val: float(val)) lite.register_adapter(np.float32, lambda val: float(val)) # import numpy as np from typing import NoReturn, Mapping, Sequence, List, Set def get_db_con(tot_seeds: int = 4) -> tuple: """Creates the database with structure that fits exact number of seeds. Filename for DB is generated as next number after the highest consequent found. If there is results_0.sqlite3, then next will be results_1.sqlite3 if it did not exist. Args: :param int tot_seeds: number of seeds used in the current run :type tot_seeds: int Returns: :return: database connection and name Connection to the new database and it's name. """ counter = 0 # db_path = '/dev/shm/GMDApy' db_path = os.getcwd() db_name = 'results_{}.sqlite3'.format(counter) full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) while os.path.exists(full_path): counter += 1 full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) con = lite.connect(full_path, check_same_thread=False, isolation_level=None) cur = con.cursor() cur.execute("""CREATE TABLE main_storage ( id INTEGER PRIMARY KEY AUTOINCREMENT, bbrmsd_goal_dist FLOAT NOT NULL, bbrmsd_prev_dist FLOAT NOT NULL, bbrmsd_tot_dist FLOAT NOT NULL, aarmsd_goal_dist FLOAT NOT NULL, aarmsd_prev_dist FLOAT NOT NULL, aarmsd_tot_dist FLOAT NOT NULL, angl_goal_dist FLOAT NOT NULL, angl_prev_dist FLOAT NOT NULL, angl_tot_dist FLOAT NOT NULL, andh_goal_dist INTEGER NOT NULL, andh_prev_dist INTEGER NOT NULL, andh_tot_dist INTEGER NOT NULL, and_goal_dist INTEGER NOT NULL, and_prev_dist INTEGER NOT NULL, and_tot_dist INTEGER NOT NULL, xor_goal_dist INTEGER NOT NULL, xor_prev_dist INTEGER NOT NULL, xor_tot_dist INTEGER NOT NULL, curr_gc INTEGER NOT NULL, Timestamp DATETIME DEFAULT (CURRENT_TIMESTAMP), hashed_name CHAR (32) NOT NULL UNIQUE, name TEXT );""") con.commit() cur.execute("""CREATE TABLE visited ( vid INTEGER PRIMARY KEY AUTOINCREMENT, \ id REFERENCES main_storage (id), cur_gc INTEGER, Timestamp DATETIME DEFAULT (CURRENT_TIMESTAMP) );""") con.commit() add_ind_q = 'CREATE INDEX viz_id_idx ON visited (id);' cur.execute(add_ind_q) con.commit() # id REFERENCES main_storage (id), \ init_query = 'CREATE TABLE log ( \ lid INTEGER PRIMARY KEY AUTOINCREMENT, \ operation INTEGER, \ id INTEGER, \ src CHAR (8), \ dst CHAR(8), \ cur_metr CHAR(5), \ gc INTEGER , \ mul FLOAT, \ bsfrb FLOAT, \ bsfr FLOAT, \ bsfn FLOAT, \ bsfh FLOAT, \ bsfa FLOAT, \ bsfx FLOAT, \ Timestamp DATETIME DEFAULT (CURRENT_TIMESTAMP)' # no this is not an error for i in range(tot_seeds): init_query += ", \ dist_from_prev_{0} FLOAT, \ dist_to_goal_{0} FLOAT ".format(i+1) init_query += ');' cur.execute(init_query) con.commit() add_ind_q = 'CREATE INDEX log_id_idx ON log (id);' cur.execute(add_ind_q) con.commit() cur.execute('PRAGMA mmap_size=-64000') # 32M cur.execute('PRAGMA journal_mode = OFF') cur.execute('PRAGMA synchronous = OFF') cur.execute('PRAGMA temp_store = MEMORY') cur.execute('PRAGMA threads = 32') return con, db_name def log_error(con: lite.Connection, type: str, id: int) -> NoReturn: """Writes an error message into the log table Args: :param con: current DB connection :param type: error type :param id: id associated with the error Returns: Adds one row in the log table. """ qry = 'INSERT INTO log (id, operation, dst) VALUES ({}, "ERROR", "{}")'.format(id, type) try: con.cursor().execute(qry) con.commit() except Exception as e: print(e) print('Error in "log_error": {}'.format(qry)) # def get_id_for_name(con, name): # con.commit() # qry = "SELECT id FROM main_storage WHERE name='{}'".format(name) # cur = con.cursor() # result = cur.execute(qry) # num = int(result.fetchone()[0]) # if not isinstance(num, int): # raise Exception("ID was not found in main stor") # return num def get_id_for_hash(con: lite.Connection, h_name: str) -> int: """Searches main storage for id with given hash Args: :param lite.Connection con: DB connection :param str h_name: hashname to use during the search Returns: :return: id or None if not found """ con.commit() qry = "SELECT id FROM main_storage WHERE hashed_name='{}'".format(h_name) cur = con.cursor() result = cur.execute(qry) row = result.fetchone() if row is not None: num = int(row[0]) else: num = None # if not isinstance(num, int): # print("ID was not found in main stor") return num def get_corr_vid_for_id(con: lite.Connection, max_id: int, prev_ids: list, last_gc: float) -> tuple: """Used for recovery procedure. Tries to find matching sequence of nodes in the visited table Args: :param lite.Connection con: DB connection :param int max_id: maximum value of the id (defined by previous search as the common latest id) :param list prev_ids: several ids that should match :param float last_gc: extra check, whether greed counters also match Returns: :return: last common visited id, timestamp, and id :rtype: tuple """ qry = "SELECT vid, id, CAST(strftime('%s', Timestamp) AS INT), cur_gc FROM visited WHERE id<'{}' AND id in ({}, {}, {}) order by vid desc".format(max_id, prev_ids[0], prev_ids[1], prev_ids[2]) cur = con.cursor() result = cur.execute(qry) rows = result.fetchall() i = 0 while i+2 < len(rows): # 3 for next version if rows[i][0] - rows[i+1][0] == 1 and rows[i+1][0] - rows[i+2][0] == 1: break i += 1 if i+2 >= len(rows): raise Exception("Sequence of events from pickle dump not found in DB") last_good_vid = rows[i][0] last_good_ts = rows[i][2] last_good_id = rows[i][1] if last_gc != int(rows[i][3]): raise Exception('Everything looked good, but greed counters did not match.\n Check manually and comment this exception if you are sure that this is normal.\n') return last_good_vid, last_good_ts, last_good_id def get_corr_lid_for_id(con: lite.Connection, next_id: int, vid_ts: int, last_vis_id: int) -> int: """ Used for recovery procedure. Tries to find matching sequence of nodes in the log table Args: :param lite.Connection con: DB connection :param int next_id: next id we expect to see in the log, used for double check :param int vid_ts: visited timestampt :param int last_vis_id: last visited id Returns: :return: the latest valid log_id """ qry = "SELECT lid, CAST(strftime('%s', Timestamp) AS INT) FROM log WHERE id='{}' AND src='WQ' AND dst='VIZ' order by lid".format(last_vis_id) cur = con.cursor() result = cur.execute(qry) rows = result.fetchall() if len(rows) > 1: # find the smallest dist between vid_ts and all ts dist = abs(rows[0][1] - vid_ts) good_lid = int(rows[0][0]) i = 1 while i < len(rows): if abs(rows[i][1] - vid_ts) <= dist: dist = abs(rows[i][1] - vid_ts) good_lid = int(rows[i][0]) i += 1 else: good_lid = int(rows[0][0]) # so now we have good_lid which is very close, but may be not exact qry = "SELECT lid, operation, id, src, dst FROM log WHERE lid > {} order by lid limit 4".format(good_lid) result = cur.execute(qry) rows = result.fetchall() i = 0 if (rows[i][1] == 'current' and rows[i][4] == 'WQ') or rows[i][1] == 'skip': good_lid += 1 i += 1 if rows[i][1] == 'prom_O': good_lid += 1 i += 1 if rows[i][1] == 'result' and rows[i][4] == 'VIZ' and int(rows[i][2]) == next_id: print("Log table ID computed perfectly.") return good_lid # I am not using it # def get_max_id_from_main(con): # qry = "SELECT max(id) FROM main_storage" # cur = con.cursor() # result = cur.execute(qry) # row = result.fetchone() # if row is not None: # num = int(row[0]) # else: # num = None # return num def get_all_hashed_names(con: lite.Connection) -> list: """Fetches all hashes from the main_storage Args: :param lite.Connection con: DB connection Returns: :return: list of all hashes in the main_storage :rtype: list """ qry = "SELECT hashed_name FROM main_storage order by id desc" cur = con.cursor() result = cur.execute(qry) rows = result.fetchall() return rows def insert_into_main_stor(con: lite.Connection, node_info: dict, curr_gc: int, digest_name: str, name: str) -> NoReturn: """Inserts main information into the DB. Args: :param lite.Connection con: DB connection :param dict node_info: all metric values associated with the node :param int curr_gc: current greedy counter :param str digest_name: hash name for the path, same as filenames for MD simulations :param str name: path from the origin separated by _ Returns: Stores data in the DB in a main_storage table. """ # con = lite.connect('results_8.sqlite3', timeout=300, check_same_thread=False, isolation_level=None) # qry = "INSERT OR IGNORE INTO main_storage(rmsd_goal_dist, rmsd_prev_dist, rmsd_tot_dist, angl_goal_dist, # angl_prev_dist, angl_tot_dist," \ qry = "INSERT INTO main_storage(bbrmsd_goal_dist, bbrmsd_prev_dist, bbrmsd_tot_dist, aarmsd_goal_dist, aarmsd_prev_dist, aarmsd_tot_dist, angl_goal_dist, angl_prev_dist, angl_tot_dist," \ " andh_goal_dist, andh_prev_dist, andh_tot_dist, and_goal_dist, and_prev_dist, and_tot_dist," \ " xor_goal_dist, xor_prev_dist, xor_tot_dist, curr_gc, hashed_name, name) " \ "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)" cur = con.cursor() try: cur.execute(qry, [str(elem) for elem in (node_info['BBRMSD_to_goal'], node_info['BBRMSD_from_prev'], node_info['BBRMSD_dist_total'], node_info['AARMSD_to_goal'], node_info['AARMSD_from_prev'], node_info['AARMSD_dist_total'], node_info['ANGL_to_goal'], node_info['ANGL_from_prev'], node_info['ANGL_dist_total'], node_info['AND_H_to_goal'], node_info['AND_H_from_prev'], node_info['AND_H_dist_total'], node_info['AND_to_goal'], node_info['AND_from_prev'], node_info['AND_dist_total'], node_info['XOR_to_goal'], node_info['XOR_from_prev'], node_info['XOR_dist_total'], curr_gc, digest_name, name)]) con.commit() except Exception as e: nid = get_id_for_hash(con, digest_name) log_error(con, 'MAIN', nid) qry = "SELECT * FROM main_storage WHERE id=?" cur = con.cursor() result = cur.execute(qry, nid) row = result.fetchone() print('Original elment in MAIN:', row) qry = "SELECT * FROM log WHERE id=?" cur = con.cursor() result = cur.execute(qry, nid) rows = result.fetchall() print('Printing all I found in the log about this ID:') for row in rows: print(row) print('Error element message: ', e, '\nqry: ', node_info, curr_gc, digest_name, name) def insert_into_visited(con: lite.Connection, hname: str, gc: int) -> NoReturn: """ Inserts node processing event. Args: :param lite.Connection con: DB connection :param str hname: hashname, same as MD filenames :param int gc: greedy counter Returns: Stores data in the DB in a visited table. """ nid = get_id_for_hash(con, hname) qry = 'INSERT INTO visited( id, cur_gc ) VALUES (?, ?)' cur = con.cursor() try: cur.execute(qry, (nid, gc)) con.commit() except Exception as e: print(e, '\nqry: ', hname, gc) log_error(con, 'VIZ', nid) def insert_into_log(con: lite.Connection, operation: str, hname: str, src: str, dst: str, bsf: list, gc: int, mul: float, prev_arr: list, goal_arr: list, cur_metr_name: str) -> NoReturn: """Inserts various information, like new best_so_far events, insertions into the open queue, etc. Args: :param lite.Connection con: DB connection :param str operation: result, current, prom_O, skip :param str hname: hash name, same as MD filenames :param str src: from WQ (open queue) :param str dst: to VIZ (visited) :param list bsf: all best_so_far values for each metric :param int gc: greedy counter - affects events like seed change :param float mul: greedy multiplier - controls greediness :param list prev_arr: distance from the previous node :param list goal_arr: distance to the goal :param str cur_metr_name: name of the current metric Returns: Stores data in the DB in a log table. """ src = 'None' if src == '' else src dst = 'None' if dst == '' else dst nid = get_id_for_hash(con, hname) nid = 'None' if nid is None else nid columns = 'operation, id, src, dst, cur_metr, bsfr, bsfrb, bsfn, bsfh, bsfa, bsfx, gc, mul, ' if not isinstance(goal_arr, (list,)): # short version for skip operation columns += 'dist_from_prev_1, dist_to_goal_1' final_str = ', '.join('"{}"'.format(elem) if isinstance(elem, str) else str(elem) for elem in (operation, nid, src, dst, cur_metr_name, bsf["BBRMSD"], bsf["AARMSD"], bsf["ANGL"], bsf["AND_H"], bsf["AND"], bsf["XOR"], gc, mul, prev_arr, goal_arr)) else: nseeds = len(prev_arr) # long version for append operation columns += ', '.join(('dist_from_prev_{0}'.format(i+1) for i in range(nseeds))) + ', ' columns += ', '.join(('dist_to_goal_{0}'.format(i+1) for i in range(nseeds))) prev_arr_str = ', '.join((str(elem) for elem in prev_arr)) goal_arr_str = ', '.join((str(elem) for elem in goal_arr)) final_str = ', '.join('"{}"'.format(elem) if isinstance(elem, str) else str(elem) for elem in (operation, nid, src, dst, cur_metr_name, bsf["BBRMSD"], bsf["AARMSD"], bsf["ANGL"], bsf["AND_H"], bsf["AND"], bsf["XOR"], gc, mul)) final_str += ", ".join(('', prev_arr_str, goal_arr_str)) qry = 'INSERT INTO log({}) VALUES ({})'.format(columns, final_str) cur = con.cursor() try: cur.execute(qry) con.commit() except Exception as e: print(e, '\nqry: ', operation, hname, src, dst, bsf, gc, mul, prev_arr, goal_arr) print('Extra info: ', qry) print('Type of function : {}'.format('Short' if not isinstance(goal_arr, (list,)) else 'Long')) log_error(con, 'LOG', nid) # def prep_insert_into_log(con, operation, name, src, dst, bsf, gc, mul, prev_arr, goal_arr): # src = 'None' if src == '' else src # nid = get_id_for_name(con, name) # columns = 'operation, id, src, dst, bsf, gc, mul, ' # # if isinstance(goal_arr, (float, int)): # short version # columns += 'dist_from_prev_1, dist_to_goal_1' # final_str = ', '.join('"{}"'.format(elem) if isinstance(elem, str) else str(elem) # for elem in (operation, nid, src, dst, bsf, gc, mul, prev_arr, goal_arr)) # else: # nseeds = len(prev_arr) # columns += ', '.join(('dist_from_prev_{0}, dist_to_goal_{0}'.format(i+1) for i in range(nseeds))) # prev_arr_str = ', '.join((str(elem) for elem in prev_arr)) # goal_arr_str = ', '.join((str(elem) for elem in goal_arr)) # final_str = ', '.join('"{}"'.format(elem) if isinstance(elem, str) else str(elem) # for elem in (operation, nid, src, dst, bsf, gc, mul)) # final_str += ", ".join(('', prev_arr_str, goal_arr_str)) # # return final_str def copy_old_db(main_dict_keys: list, last_visited: list, next_in_oq: str, last_gc: float) -> NoReturn: """Used during the recovery procedure. Args: :param list main_dict_keys: all hash values from the main_dict - storage of all metric information :param list last_visited: several (3) recent values from the visited queue :param str next_in_oq: next hash (id) in the open queue, used for double check :param float last_gc: last greedy counter observed in the information from the pickle Returns: Conditionally copies data from the previous DB into a new one as a part of the restore process. """ counter = 0 db_path = os.getcwd() # db_name = 'results_{}.sqlite3'.format(counter) full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) while os.path.exists(full_path): prev_db = full_path counter += 1 full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) # yes, prev_db - the last one which exists cur_con = lite.connect(prev_db, check_same_thread=False, isolation_level=None) current_db_cur = cur_con.cursor() current_db_cur.execute("DELETE FROM log") current_db_cur.execute("DELETE FROM visited") current_db_cur.execute("DELETE FROM main_storage") cur_con.commit() prev_db_con = lite.connect(os.path.join(db_path, 'results_{}.sqlite3'.format(counter - 2)), check_same_thread=False, isolation_level=None) hashes = get_all_hashed_names(prev_db_con) for hash_hame in hashes: if hash_hame[0] in main_dict_keys: break max_id = get_id_for_hash(prev_db_con, hash_hame[0]) prev_ids = [get_id_for_hash(prev_db_con, last_visited[0][2]), get_id_for_hash(prev_db_con, last_visited[1][2]), get_id_for_hash(prev_db_con, last_visited[2][2])] next_id = get_id_for_hash(prev_db_con, next_in_oq) # del last_visited, next_in_oq max_vid, vid_ts, last_vis_id = get_corr_vid_for_id(prev_db_con, max_id, prev_ids, last_gc) max_lid = get_corr_lid_for_id(prev_db_con, next_id, vid_ts, last_vis_id) prev_db_con.close() del prev_db_con, hash_hame, hashes, main_dict_keys current_db_cur.execute("ATTACH DATABASE ? AS prev_db", ('results_{}.sqlite3'.format(counter-2),)) # -1 - cur, -2 - prev current_db_cur.execute("INSERT INTO main.main_storage SELECT * FROM prev_db.main_storage WHERE prev_db.main_storage.id <= ?", (max_id,)) cur_con.commit() current_db_cur.execute("INSERT INTO main.visited SELECT * FROM prev_db.visited WHERE prev_db.visited.vid <= ?", (max_vid,)) cur_con.commit() current_db_cur.execute("INSERT INTO main.log SELECT * FROM prev_db.log WHERE prev_db.log.lid <= ?", (max_lid,)) cur_con.commit() # # def sync_state_with_db(state): # counter = 0 # db_path = os.getcwd() # db_name = 'results_{}.sqlite3'.format(counter) # full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) # # while os.path.exists(full_path): # prev_db = full_path # counter += 1 # full_path = os.path.join(db_path, 'results_{}.sqlite3'.format(counter)) # # # yes, prev_db - last one which exists # cur_con = lite.connect(prev_db, check_same_thread=False, isolation_level=None) # # current_db_cur = cur_con.cursor() # # current_db_cur.execute("DELETE FROM log") # # get_conn # # get indexes # # drop all log with # # drop all vis with # # drop all main with # # vacuum # return True
py
b413d4c64466c1ac2ab0c7a677e68e83319efea3
from __future__ import absolute_import from builtins import object from elixir import * from elixir.ext.perform_ddl import perform_ddl, preload_data def setup(): metadata.bind = "sqlite://" class TestPerformDDL(object): def teardown(self): cleanup_all(True) def test_one(self): class Movie(Entity): title = Field(Unicode(30), primary_key=True) year = Field(Integer) perform_ddl('after-create', "insert into %(fullname)s values ('Alien', 1979)") setup_all(True) assert Movie.query.count() == 1 def test_several(self): class Movie(Entity): title = Field(Unicode(30), primary_key=True) year = Field(Integer) perform_ddl('after-create', ["insert into %(fullname)s values ('Alien', 1979)", "insert into %(fullname)s " + "values ('Star Wars', 1977)"]) perform_ddl('after-create', "insert into %(fullname)s (year, title) " + "values (1982, 'Blade Runner')") setup_all(True) assert Movie.query.count() == 3 class TestPreloadData(object): def teardown(self): cleanup_all(True) def test_several(self): class Movie(Entity): title = Field(Unicode(30), primary_key=True) year = Field(Integer) preload_data(('title', 'year'), [(u'Alien', 1979), (u'Star Wars', 1977)]) preload_data(('year', 'title'), [(1982, u'Blade Runner')]) preload_data(data=[(u'Batman', 1966)]) setup_all(True) assert Movie.query.count() == 4
py
b413d4dd997ebc4daba904b6d27cbb83b5329265
import setuptools with open("README.md", "r") as README: long_description = README.read() setuptools.setup( name="je_web_runner", version="0.0.09", author="JE-Chen", author_email="[email protected]", description="selenium get_webdriver_wrapper", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/JE-Chen/WebRunner", packages=setuptools.find_packages(), install_requires=[ "selenium", "webdriver-manager" ], classifiers=[ "Programming Language :: Python :: 3.5", "Development Status :: 2 - Pre-Alpha", "Environment :: Win32 (MS Windows)", "Environment :: MacOS X", "Environment :: X11 Applications", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ] ) # python setup.py sdist bdist_wheel # python -m twine upload dist/*
py
b413d4fdd968861cb7de93a5fe2ef7d6e45af2f2
""" 55.二叉树的深度.py 时间复杂度:O(n) 空间复杂度:O(1) """ # -*- coding:utf-8 -*- class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def CreateTreeNode(listNode): if not listNode: return None root = TreeNode(listNode[0]) level = [root] j = 1 for node in level: if node: node.left = (TreeNode(listNode[j]) if listNode[j] != None else None) level.append(node.left) j += 1 if j == len(listNode): return root node.right = (TreeNode(listNode[j]) if listNode[j] != None else None) level.append(node.right) j += 1 if j == len(listNode): return root class Solution: def TreeDepth(self, pRoot): # write code here if not pRoot: return 0 return 1 + max(self.TreeDepth(pRoot.left), self.TreeDepth(pRoot.right)) def LevelOrder(self, pRoot): if not pRoot: return list() ret = list() level = [pRoot] while level: ret.append([node.val for node in level]) tmp = list() for node in level: tmp.extend([node.left, node.right]) level = [leaf for leaf in tmp if leaf] return ret if __name__ == "__main__": listNode = [1, 2, 3, 4, 5, None, 6, None, None, 7, None, None, None] pRoot = CreateTreeNode(listNode) s = Solution() level_ret = s.LevelOrder(pRoot) print(level_ret) ret = s.TreeDepth(pRoot) print(ret)
py
b413d5174d40f38cd8a93161391f293e41a6e677
#!/usr/bin/python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates a sample product object for the product samples.""" from shopping.content import _constants def create_product_sample(config, offer_id, **overwrites): """Creates a sample product object for the product samples. Args: config: dictionary, Python version of config JSON offer_id: string, offer id for new product **overwrites: dictionary, a set of product attributes to overwrite Returns: A new product in dictionary form. """ website_url = config.get('websiteUrl', 'http://my-book-shop.com') product = { 'offerId': offer_id, 'title': 'A Tale of Two Cities', 'description': 'A classic novel about the French Revolution', 'link': website_url + '/tale-of-two-cities.html', 'imageLink': website_url + '/tale-of-two-cities.jpg', 'contentLanguage': _constants.CONTENT_LANGUAGE, 'targetCountry': _constants.TARGET_COUNTRY, 'channel': _constants.CHANNEL, 'availability': 'in stock', 'condition': 'new', 'googleProductCategory': 'Media > Books', 'gtin': '9780007350896', 'price': { 'value': '2.50', 'currency': 'USD' }, 'shipping': [{ 'country': 'US', 'service': 'Standard shipping', 'price': { 'value': '0.99', 'currency': 'USD' } }], 'shippingWeight': { 'value': '200', 'unit': 'grams' } } product.update(overwrites) return product
py
b413d6eafd26d1bd7c3082db05917a7da0d5672b
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper routines for quantization.""" from typing import Any import chex import jax.numpy as jnp from flax import struct # pylint:disable=no-value-for-parameter @struct.dataclass class QuantizedValue: """State associated with quantized value.""" quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False ) # Dtype for the quantized value. extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. @classmethod def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): if isinstance(fvalue, list) and not fvalue: return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( fvalue, quantized_dtype, extract_diagonal ) return QuantizedValue( quantized, diagonal_fvalue, bucket_size, quantized_dtype, extract_diagonal, list(quantized.shape), ) # Quantization is from Lingvo JAX optimizers. # We extend it for int16 quantization of PSD matrices. @classmethod def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): """Returns quantized value and the bucket.""" if quantized_dtype == jnp.float32: return fvalue, [], [] elif quantized_dtype == jnp.bfloat16: return fvalue.astype(jnp.bfloat16), [], [] float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f"Quantized dtype {quantized_dtype} not supported.") # max value is mapped to num_buckets if extract_diagonal and fvalue.ndim != 2: raise ValueError( f"Input array {fvalue} must be 2D to work with extract_diagonal." ) diagonal_fvalue = [] if extract_diagonal: diagonal_fvalue = jnp.diag(fvalue) # Remove the diagonal entries. fvalue = fvalue - jnp.diag(diagonal_fvalue) # TODO(rohananil): Extend this by making use of information about the blocks # SM3 style which will be useful for diagonal statistics # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f"Input array {fvalue} must have a strictly positive number of " "dimensions." ) max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, Ellipsis] # To avoid divide by 0.0 bs_nonzero = jnp.where( bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded) ) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size def to_float(self): """Returns the float value.""" if isinstance(self.quantized, list) and not self.quantized: return self.quantized if self.quantized_dtype == jnp.float32: return self.quantized if self.quantized_dtype == jnp.bfloat16: return self.quantized.astype(jnp.float32) float_dtype = self.bucket_size.dtype bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] val = self.quantized.astype(float_dtype) * bucket_size if self.extract_diagonal: val += jnp.diag(self.diagonal) return val
py
b413d73408934d274cd93239ed6405220d9973ae
# Copyright 2020 Oscar Higgott # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Union, List, Set, Tuple, Dict import matplotlib.cbook import numpy as np import networkx as nx import retworkx as rx import scipy from scipy.sparse import csc_matrix from pymatching._cpp_mwpm import (exact_matching, local_matching, MatchingGraph) def _find_boundary_nodes(graph: nx.Graph): """Find all boundary nodes in G Find the boundary nodes in G, each of which have the attribute `is_boundary' set to `True'. Return the indices of the boundary nodes. Parameters ---------- graph : NetworkX graph The matching graph. Returns ------- set of int The indices of the boundary nodes in G. """ return {i for i, attr in graph.nodes(data=True) if attr.get("is_boundary", False)} class Matching: """A class for constructing matching graphs and decoding using the minimum-weight perfect matching decoder The Matching class provides most of the core functionality of PyMatching. A PyMatching object can be constructed from a check matrix with one or two non-zero elements in each column (e.g. the :math:`Z` or :math:`X` check matrix of some classes of CSS quantum code), given as a `scipy.sparse` matrix or `numpy.ndarray`, along with additional argument specifying the edge weights, error probabilities and number of repetitions. Alternatively, a Matching object can be constructed from a NetworkX graph, with node and edge attributes used to specify edge weights, fault ids, boundaries and error probabilities. """ def __init__(self, H: Union[scipy.sparse.spmatrix, np.ndarray, rx.PyGraph, nx.Graph, List[List[int]]] = None, spacelike_weights: Union[float, np.ndarray, List[float]] = None, error_probabilities: Union[float, np.ndarray, List[float]] = None, repetitions: int = None, timelike_weights: Union[float, np.ndarray, List[float]] = None, measurement_error_probabilities: Union[float, np.ndarray, List[float]] = None, precompute_shortest_paths: bool = False, **kwargs ): r"""Constructor for the Matching class Parameters ---------- H : `scipy.spmatrix` or `numpy.ndarray` or `networkx.Graph` object, optional The quantum code to be decoded with minimum-weight perfect matching, given either as a binary check matrix (scipy sparse matrix or numpy.ndarray), or as a matching graph (NetworkX graph). Each edge in the NetworkX graph can have optional attributes ``fault_ids``, ``weight`` and ``error_probability``. ``fault_ids`` should be an int or a set of ints. Each fault id corresponds to a self-inverse fault that is flipped when the corresponding edge is flipped. These self-inverse faults could correspond to physical Pauli errors (physical frame changes) or to the logical observables that are flipped by the fault (a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim detector error model). The `fault_ids` attribute was previously named `qubit_id` in an earlier version of PyMatching, and `qubit_id` is still accepted instead of `fault_ids` in order to maintain backward compatibility. Each ``weight`` attribute should be a non-negative float. If every edge is assigned an error_probability between zero and one, then the ``add_noise`` method can be used to simulate noise and flip edges independently in the graph. By default, None spacelike_weights : float or numpy.ndarray, optional If `H` is given as a scipy or numpy array, `spacelike_weights` gives the weights of edges in the matching graph corresponding to columns of `H`. If spacelike_weights is a numpy.ndarray, it should be a 1D array with length equal to `H.shape[1]`. If spacelike_weights is a float, it is used as the weight for all edges corresponding to columns of `H`. By default None, in which case all weights are set to 1.0 error_probabilities : float or numpy.ndarray, optional The probabilities with which an error occurs on each edge corresponding to a column of the check matrix. If a single float is given, the same error probability is used for each edge. If a numpy.ndarray of floats is given, it must have a length equal to the number of columns in the check matrix H. This parameter is only needed for the Matching.add_noise method, and not for decoding. By default None repetitions : int, optional The number of times the stabiliser measurements are repeated, if the measurements are noisy. This option is only used if `H` is provided as a check matrix, not a NetworkX graph. By default None timelike_weights : float, optional If `H` is given as a scipy or numpy array and `repetitions>1`, `timelike_weights` gives the weight of timelike edges. If a float is given, all timelike edges weights are set to the same value. If a numpy array of size `(H.shape[0],)` is given, the edge weight for each vertical timelike edge associated with the `i`th check (row) of `H` is set to `timelike_weights[i]`. By default None, in which case all timelike weights are set to 1.0 measurement_error_probabilities : float, optional If `H` is given as a scipy or numpy array and `repetitions>1`, gives the probability of a measurement error to be used for the add_noise method. If a float is given, all measurement errors are set to the same value. If a numpy array of size `(H.shape[0],)` is given, the error probability for each vertical timelike edge associated with the `i`th check (row) of `H` is set to `measurement_error_probabilities[i]`. By default None precompute_shortest_paths : bool, optional It is almost always recommended to leave this as False. If the exact matching is used for decoding (setting `num_neighbours=None` in `decode`), then setting this option to True will precompute the all-pairs shortest paths. By default False Examples -------- >>> import pymatching >>> import math >>> m = pymatching.Matching() >>> m.add_edge(0, 1, fault_ids={0}, weight=0.1) >>> m.add_edge(1, 2, fault_ids={1}, weight=0.15) >>> m.add_edge(2, 3, fault_ids={2, 3}, weight=0.2) >>> m.add_edge(0, 3, fault_ids={4}, weight=0.1) >>> m.set_boundary_nodes({3}) >>> m <pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges> Matching objects can also be created from a check matrix (provided as a scipy.sparse matrix, dense numpy array, or list of lists): >>> import pymatching >>> m = pymatching.Matching([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]]) >>> m <pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges> """ self.matching_graph = MatchingGraph() if H is None: return if not isinstance(H, (nx.Graph, rx.PyGraph)): try: H = csc_matrix(H) except TypeError: raise TypeError("H must be a NetworkX graph or convertible " "to a scipy.csc_matrix") self.load_from_check_matrix(H, spacelike_weights, error_probabilities, repetitions, timelike_weights, measurement_error_probabilities, **kwargs) elif isinstance(H, nx.Graph): self.load_from_networkx(H) else: self.load_from_retworkx(H) if precompute_shortest_paths: self.matching_graph.compute_all_pairs_shortest_paths() def add_edge( self, node1: int, node2: int, fault_ids: Union[int, Set[int]] = None, weight: float = 1.0, error_probability: float = None, **kwargs ) -> None: """ Add an edge to the matching graph Parameters ---------- node1: int The ID of node1 in the new edge (node1, node2) node2: int The ID of node2 in the new edge (node1, node2) fault_ids: set[int] or int, optional The IDs of any self-inverse faults which are flipped when the edge is flipped, and which should be tracked. This could correspond to the IDs of physical Pauli errors that occur when this edge flips (physical frame changes). Alternatively, this attribute can be used to store the IDs of any logical observables that are flipped when an error occurs on an edge (logical frame changes). In earlier versions of PyMatching, this attribute was instead named `qubit_id` (since for CSS codes and physical frame changes, there can be a one-to-one correspondence between each fault ID and physical qubit ID). For backward compatibility, `qubit_id` can still be used instead of `fault_ids` as a keyword argument. By default None weight: float, optional The weight of the edge, which must be non-negative, by default 1.0 error_probability: float, optional The probability that the edge is flipped. This is used by the `add_noise()` method to sample from the distribution defined by the matching graph (in which each edge is flipped independently with the corresponding `error_probability`). By default None Examples -------- >>> import pymatching >>> m = pymatching.Matching() >>> m.add_edge(0, 1) >>> m.add_edge(1, 2) >>> print(m.num_edges) 2 >>> print(m.num_nodes) 3 >>> import pymatching >>> import math >>> m = pymatching.Matching() >>> m.add_edge(0, 1, fault_ids=2, weight=math.log((1-0.05)/0.05), error_probability=0.05) >>> m.add_edge(1, 2, fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1) >>> m.add_edge(2, 0, fault_ids={1, 2}, weight=math.log((1-0.2)/0.2), error_probability=0.2) >>> m <pymatching.Matching object with 3 detectors, 0 boundary nodes, and 3 edges> """ if fault_ids is not None and "qubit_id" in kwargs: raise ValueError("Both `fault_ids` and `qubit_id` were provided as arguments. Please " "provide `fault_ids` instead of `qubit_id` as an argument, as use of `qubit_id` has " "been deprecated.") if fault_ids is None and "qubit_id" in kwargs: fault_ids = kwargs["qubit_id"] if isinstance(fault_ids, (int, np.integer)): fault_ids = set() if fault_ids == -1 else {int(fault_ids)} fault_ids = set() if fault_ids is None else fault_ids has_error_probability = error_probability is not None error_probability = error_probability if has_error_probability else -1 self.matching_graph.add_edge(node1, node2, fault_ids, weight, error_probability, has_error_probability) def load_from_networkx(self, graph: nx.Graph) -> None: r""" Load a matching graph from a NetworkX graph Parameters ---------- graph : networkx.Graph Each edge in the NetworkX graph can have optional attributes ``fault_ids``, ``weight`` and ``error_probability``. ``fault_ids`` should be an int or a set of ints. Each fault id corresponds to a self-inverse fault that is flipped when the corresponding edge is flipped. These self-inverse faults could correspond to physical Pauli errors (physical frame changes) or to the logical observables that are flipped by the fault (a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim detector error model). The `fault_ids` attribute was previously named `qubit_id` in an earlier version of PyMatching, and `qubit_id` is still accepted instead of `fault_ids` in order to maintain backward compatibility. Each ``weight`` attribute should be a non-negative float. If every edge is assigned an error_probability between zero and one, then the ``add_noise`` method can be used to simulate noise and flip edges independently in the graph. Examples -------- >>> import pymatching >>> import networkx as nx >>> import math >>> g = nx.Graph() >>> g.add_edge(0, 1, fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1) >>> g.add_edge(1, 2, fault_ids=1, weight=math.log((1-0.15)/0.15), error_probability=0.15) >>> g.nodes[0]['is_boundary'] = True >>> g.nodes[2]['is_boundary'] = True >>> m = pymatching.Matching(g) >>> m <pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges> """ if not isinstance(graph, nx.Graph): raise TypeError("G must be a NetworkX graph") boundary = _find_boundary_nodes(graph) num_nodes = graph.number_of_nodes() all_fault_ids = set() g = MatchingGraph(self.num_detectors, boundary) for (u, v, attr) in graph.edges(data=True): u, v = int(u), int(v) if "fault_ids" in attr and "qubit_id" in attr: raise ValueError("Both `fault_ids` and `qubit_id` were provided as edge attributes, however use " "of `qubit_id` has been deprecated in favour of `fault_ids`. Please only supply " "`fault_ids` as an edge attribute.") if "fault_ids" not in attr and "qubit_id" in attr: fault_ids = attr["qubit_id"] # Still accept qubit_id as well for now else: fault_ids = attr.get("fault_ids", set()) if isinstance(fault_ids, (int, np.integer)): fault_ids = {int(fault_ids)} if fault_ids != -1 else set() else: try: fault_ids = set(fault_ids) if not all(isinstance(q, (int, np.integer)) for q in fault_ids): raise ValueError("fault_ids must be a set of ints, not {}".format(fault_ids)) except: raise ValueError( "fault_ids property must be an int or a set of int"\ " (or convertible to a set), not {}".format(fault_ids)) all_fault_ids = all_fault_ids | fault_ids weight = attr.get("weight", 1) # Default weight is 1 if not provided e_prob = attr.get("error_probability", -1) g.add_edge(u, v, fault_ids, weight, e_prob, 0 <= e_prob <= 1) self.matching_graph = g def load_from_retworkx(self, graph: rx.PyGraph) -> None: r""" Load a matching graph from a retworkX graph Parameters ---------- graph : retworkx.PyGraph Each edge in the retworkx graph can have dictionary payload with keys ``fault_ids``, ``weight`` and ``error_probability``. ``fault_ids`` should be an int or a set of ints. Each fault id corresponds to a self-inverse fault that is flipped when the corresponding edge is flipped. These self-inverse faults could correspond to physical Pauli errors (physical frame changes) or to the logical observables that are flipped by the fault (a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim detector error model). The `fault_ids` attribute was previously named `qubit_id` in an earlier version of PyMatching, and `qubit_id` is still accepted instead of `fault_ids` in order to maintain backward compatibility. Each ``weight`` attribute should be a non-negative float. If every edge is assigned an error_probability between zero and one, then the ``add_noise`` method can be used to simulate noise and flip edges independently in the graph. Examples -------- >>> import pymatching >>> import retworkx as rx >>> import math >>> g = rx.PyGraph() >>> matching = g.add_nodes_from([{} for _ in range(3)]) >>> edge_a =g.add_edge(0, 1, dict(fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1)) >>> edge_b = g.add_edge(1, 2, dict(fault_ids=1, weight=math.log((1-0.15)/0.15), error_probability=0.15)) >>> g[0]['is_boundary'] = True >>> g[2]['is_boundary'] = True >>> m = pymatching.Matching(g) >>> m <pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges> """ if not isinstance(graph, rx.PyGraph): raise TypeError("G must be a retworkx graph") boundary = {i for i in graph.node_indices() if graph[i].get("is_boundary", False)} num_nodes = len(graph) g = MatchingGraph(self.num_detectors, boundary) for (u, v, attr) in graph.weighted_edge_list(): u, v = int(u), int(v) if "fault_ids" in attr and "qubit_id" in attr: raise ValueError("Both `fault_ids` and `qubit_id` were provided as edge attributes, however use " "of `qubit_id` has been deprecated in favour of `fault_ids`. Please only supply " "`fault_ids` as an edge attribute.") if "fault_ids" not in attr and "qubit_id" in attr: fault_ids = attr["qubit_id"] # Still accept qubit_id as well for now else: fault_ids = attr.get("fault_ids", set()) if isinstance(fault_ids, (int, np.integer)): fault_ids = {int(fault_ids)} if fault_ids != -1 else set() else: try: fault_ids = set(fault_ids) if not all(isinstance(q, (int, np.integer)) for q in fault_ids): raise ValueError("fault_ids must be a set of ints, not {}".format(fault_ids)) except: raise ValueError( "fault_ids property must be an int or a set of int"\ " (or convertible to a set), not {}".format(fault_ids)) weight = attr.get("weight", 1) # Default weight is 1 if not provided e_prob = attr.get("error_probability", -1) g.add_edge(u, v, fault_ids, weight, e_prob, 0 <= e_prob <= 1) self.matching_graph = g def load_from_check_matrix(self, H: Union[scipy.sparse.spmatrix, np.ndarray, List[List[int]]], spacelike_weights: Union[float, np.ndarray, List[float]] = None, error_probabilities: Union[float, np.ndarray, List[float]] = None, repetitions: int = None, timelike_weights: Union[float, np.ndarray, List[float]] = None, measurement_error_probabilities: Union[float, np.ndarray, List[float]] = None, **kwargs ) -> None: """ Load a matching graph from a check matrix Parameters ---------- H : `scipy.spmatrix` or `numpy.ndarray` or List[List[int]] The quantum code to be decoded with minimum-weight perfect matching, given as a binary check matrix (scipy sparse matrix or numpy.ndarray) spacelike_weights : float or numpy.ndarray, optional If `H` is given as a scipy or numpy array, `spacelike_weights` gives the weights of edges in the matching graph corresponding to columns of `H`. If spacelike_weights is a numpy.ndarray, it should be a 1D array with length equal to `H.shape[1]`. If spacelike_weights is a float, it is used as the weight for all edges corresponding to columns of `H`. By default None, in which case all weights are set to 1.0 error_probabilities : float or numpy.ndarray, optional The probabilities with which an error occurs on each edge associated with a column of H. If a single float is given, the same error probability is used for each column. If a numpy.ndarray of floats is given, it must have a length equal to the number of columns in H. This parameter is only needed for the Matching.add_noise method, and not for decoding. By default None repetitions : int, optional The number of times the stabiliser measurements are repeated, if the measurements are noisy. By default None timelike_weights : float or numpy.ndarray, optional If `repetitions>1`, `timelike_weights` gives the weight of timelike edges. If a float is given, all timelike edges weights are set to the same value. If a numpy array of size `(H.shape[0],)` is given, the edge weight for each vertical timelike edge associated with the `i`th check (row) of `H` is set to `timelike_weights[i]`. By default None, in which case all timelike weights are set to 1.0 measurement_error_probabilities : float or numpy.ndarray, optional If `repetitions>1`, gives the probability of a measurement error to be used for the add_noise method. If a float is given, all measurement errors are set to the same value. If a numpy array of size `(H.shape[0],)` is given, the error probability for each vertical timelike edge associated with the `i`th check (row) of `H` is set to `measurement_error_probabilities[i]`. This argument can also be given using the keyword argument `measurement_error_probability` to maintain backward compatibility with previous versions of Pymatching. By default None Examples -------- >>> import pymatching >>> m = pymatching.Matching([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]]) >>> m <pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges> Matching objects can also be initialised from a sparse scipy matrix: >>> import pymatching >>> from scipy.sparse import csc_matrix >>> H = csc_matrix([[1, 1, 0], [0, 1, 1]]) >>> m = pymatching.Matching(H) >>> m <pymatching.Matching object with 2 detectors, 1 boundary node, and 3 edges> """ try: H = csc_matrix(H) except TypeError: raise TypeError("H must be convertible to a scipy.csc_matrix") unique_elements = np.unique(H.data) if len(unique_elements) > 1 or unique_elements[0] != 1: raise ValueError("Nonzero elements in the parity check matrix" \ " must be 1, not {}.".format(unique_elements)) H = H.astype(np.uint8) num_edges = H.shape[1] weights = 1.0 if spacelike_weights is None else spacelike_weights if isinstance(weights, (int, float, np.integer, np.floating)): weights = np.ones(num_edges, dtype=float)*weights weights = np.asarray(weights) if error_probabilities is None: error_probabilities = np.ones(num_edges) * -1 elif isinstance(error_probabilities, (int, float)): error_probabilities = np.ones(num_edges) * error_probabilities column_weights = np.asarray(H.sum(axis=0))[0] unique_column_weights = np.unique(column_weights) if np.setdiff1d(unique_column_weights, np.array([1, 2])).size > 0: raise ValueError("Each column of H must have weight " "1 or 2, not {}".format(unique_column_weights)) H.eliminate_zeros() H.sort_indices() num_fault_ids = H.shape[1] if weights.shape[0] != num_fault_ids: raise ValueError("Weights array must have num_fault_ids elements") timelike_weights = 1.0 if timelike_weights is None else timelike_weights if isinstance(timelike_weights, (int, float, np.integer, np.floating)): timelike_weights = np.ones(H.shape[0], dtype=float) * timelike_weights elif isinstance(timelike_weights, (np.ndarray, list)): timelike_weights = np.array(timelike_weights, dtype=float) if timelike_weights.shape != (H.shape[0],): raise ValueError("timelike_weights should have the same number of elements as there are rows in H") else: raise ValueError("timelike_weights should be a float or a 1d numpy array") repetitions = 1 if repetitions is None else repetitions mep = kwargs.get("measurement_error_probability") if measurement_error_probabilities is not None and mep is not None: raise ValueError("Both `measurement_error_probabilities` and `measurement_error_probability` " "were provided as arguments. Please " "provide `measurement_error_probabilities` instead of `measurement_error_probability` " "as an argument, as use of `measurement_error_probability` has been deprecated.") if measurement_error_probabilities is None and mep is not None: measurement_error_probabilities = mep p_meas = measurement_error_probabilities if measurement_error_probabilities is not None else -1 if isinstance(p_meas, (int, float, np.integer, np.floating)): p_meas = np.ones(H.shape[0], dtype=float) elif isinstance(p_meas, (np.ndarray, list)): p_meas = np.array(p_meas, dtype=float) if p_meas.shape != (H.shape[0],): raise ValueError("measurement_error_probabilities should have dimensions {}" " not {}".format((H.shape[0],), p_meas.shape)) else: raise ValueError("measurement_error_probabilities should be a float or 1d numpy array") boundary = {H.shape[0] * repetitions} if 1 in unique_column_weights else set() self.matching_graph = MatchingGraph(H.shape[0] * repetitions, boundary=boundary) for t in range(repetitions): for i in range(len(H.indptr) - 1): s, e = H.indptr[i:i + 2] v1 = H.indices[s] + H.shape[0] * t v2 = H.indices[e - 1] + H.shape[0] * t if e - s == 2 else next(iter(boundary)) self.matching_graph.add_edge(v1, v2, {i}, weights[i], error_probabilities[i], error_probabilities[i] >= 0) for t in range(repetitions - 1): for i in range(H.shape[0]): self.matching_graph.add_edge(i + t * H.shape[0], i + (t + 1) * H.shape[0], set(), timelike_weights[i], p_meas[i], p_meas[i] >= 0) def set_boundary_nodes(self, nodes: Set[int]) -> None: """ Set boundary nodes in the matching graph. This defines the nodes in `nodes` to be boundary nodes. Parameters ---------- nodes: set[int] The IDs of the nodes to be set as boundary nodes Examples -------- >>> import pymatching >>> m = pymatching.Matching() >>> m.add_edge(0, 1) >>> m.add_edge(1, 2) >>> m.set_boundary_nodes({0, 2}) >>> m.boundary {0, 2} >>> m <pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges> """ self.matching_graph.set_boundary(nodes) @property def num_fault_ids(self) -> int: """ The number of fault IDs defined in the matching graph Returns ------- int Number of fault IDs """ return self.matching_graph.get_num_fault_ids() @property def boundary(self) -> Set[int]: """Return the indices of the boundary nodes. Note that this property is a copy of the set of boundary nodes. In-place modification of the set Matching.boundary will not change the boundary nodes of the matching graph - boundary nodes should instead be set or updated using the `Matching.set_boundary_nodes` method. Returns ------- set of int The indices of the boundary nodes """ return self.matching_graph.get_boundary() @property def num_nodes(self) -> int: """ The number of nodes in the matching graph Returns ------- int The number of nodes """ return self.matching_graph.get_num_nodes() @property def num_edges(self) -> int: """ The number of edges in the matching graph Returns ------- int The number of edges """ return self.matching_graph.get_num_edges() @property def num_detectors(self) -> int: """ The number of detectors in the matching graph. A detector is a node that can have a non-trivial syndrome (i.e. it is a node that is not a boundary node). Returns ------- int The number of detectors """ return self.num_nodes - len(self.boundary) def decode(self, z: Union[np.ndarray, List[int]], num_neighbours: Union[int, None] = 30, return_weight: bool = False ) -> Union[np.ndarray, Tuple[np.ndarray, int]]: """Decode the syndrome `z` using minimum-weight perfect matching If the parity of the weight of `z` is odd and the matching graph has one connected component, then an arbitrarily chosen boundary node in ``self.boundary`` is flipped, and all other stabiliser and boundary nodes are left unchanged. If the matching graph has multiple connected components, then the parity of the syndrome weight within each connected component is checked separately, and if a connected component has odd parity then an arbitrarily chosen boundary node in the same connected component is highlighted. If the parity of the syndrome weight in a connected component is odd, and the same connected component does not have a boundary node, then a `ValueError` is raised. Parameters ---------- z : numpy.ndarray A binary syndrome vector to decode. The number of elements in `z` should equal the number of nodes in the matching graph. If `z` is a 1D array, then `z[i]` is the syndrome at node `i` of the matching graph. If `z` is 2D then `z[i,j]` is the difference (modulo 2) between the (noisy) measurement of stabiliser `i` in time step `j+1` and time step `j` (for the case where the matching graph is constructed from a check matrix with `repetitions>1`). num_neighbours : int, optional Number of closest neighbours (with non-trivial syndrome) of each matching graph node to consider when decoding. If `num_neighbours` is set (as it is by default), then the local matching decoder in https://arxiv.org/abs/2105.13082 is used, and `num_neighbours` corresponds to the parameter `m` in the paper. It is recommended to leave `num_neighbours` set to at least 20. If `num_neighbours is None`, then instead full matching is performed, with the all-pairs shortest paths precomputed and cached the first time it is used. Since full matching is more memory intensive, it is not recommended to be used for matching graphs with more than around 10,000 nodes, and is only faster than local matching for matching graphs with less than around 1,000 nodes. By default 30 return_weight : bool, optional If `return_weight==True`, the sum of the weights of the edges in the minimum weight perfect matching is also returned. By default False Returns ------- correction : numpy.ndarray or list[int] A 1D numpy array of ints giving the minimum-weight correction operator as a binary vector. The number of elements in `correction` is one greater than the largest fault ID. The ith element of `correction` is 1 if the minimum-weight perfect matching (MWPM) found by PyMatching contains an odd number of edges that have `i` as one of the `fault_ids`, and is 0 otherwise. If each edge in the matching graph is assigned a unique integer in its `fault_ids` attribute, then the locations of nonzero entries in `correction` correspond to the edges in the MWPM. However, `fault_ids` can instead be used, for example, to store IDs of the physical or logical frame changes that occur when an edge flips (see the documentation for ``Matching.add_edge`` for more information). weight : float Present only if `return_weight==True`. The sum of the weights of the edges in the minimum-weight perfect matching. Examples -------- >>> import pymatching >>> import numpy as np >>> H = np.array([[1, 1, 0, 0], ... [0, 1, 1, 0], ... [0, 0, 1, 1]]) >>> m = pymatching.Matching(H) >>> z = np.array([0, 1, 0]) >>> m.decode(z) array([1, 1, 0, 0], dtype=uint8) Each bit in the correction provided by Matching.decode corresponds to a fault_ids. The index of a bit in a correction corresponds to its fault_ids. For example, here an error on edge (0, 1) flips fault_ids 2 and 3, as inferred by the minimum-weight correction: >>> import pymatching >>> m = pymatching.Matching() >>> m.add_edge(0, 1, fault_ids={2, 3}) >>> m.add_edge(1, 2, fault_ids=1) >>> m.add_edge(2, 0, fault_ids=0) >>> m.decode([1, 1, 0]) array([0, 0, 1, 1], dtype=uint8) To decode with a phenomenological noise model (qubits and measurements both suffering bit-flip errors), you can provide a check matrix and number of syndrome repetitions to construct a matching graph with a time dimension (where nodes in consecutive time steps are connected by an edge), and then decode with a 2D syndrome (dimension 0 is space, dimension 1 is time): >>> import pymatching >>> import numpy as np >>> np.random.seed(0) >>> H = np.array([[1, 1, 0, 0], ... [0, 1, 1, 0], ... [0, 0, 1, 1]]) >>> m = pymatching.Matching(H, repetitions=5) >>> data_qubit_noise = (np.random.rand(4, 5) < 0.1).astype(np.uint8) >>> print(data_qubit_noise) [[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 1] [1 1 0 0 0]] >>> cumulative_noise = (np.cumsum(data_qubit_noise, 1) % 2).astype(np.uint8) >>> syndrome = H@cumulative_noise % 2 >>> print(syndrome) [[0 0 0 0 0] [0 0 0 0 1] [1 0 0 0 1]] >>> syndrome[:,:-1] ^= (np.random.rand(3, 4) < 0.1).astype(np.uint8) >>> # Take the parity of consecutive timesteps to construct a difference syndrome: >>> syndrome[:,1:] = syndrome[:,:-1] ^ syndrome[:,1:] >>> m.decode(syndrome) array([0, 0, 1, 0], dtype=uint8) """ try: z = np.array(z, dtype=np.uint8) except: raise TypeError("Syndrome must be of type numpy.ndarray or "\ "convertible to numpy.ndarray, not {}".format(z)) if len(z.shape) == 1 and (self.num_detectors <= z.shape[0] <= self.num_detectors + len(self.boundary)): defects = z.nonzero()[0] elif len(z.shape) == 2 and z.shape[0]*z.shape[1] == self.num_detectors: times, checks = z.T.nonzero() defects = times*z.shape[0] + checks else: raise ValueError("The shape ({}) of the syndrome vector z is not valid.".format(z.shape)) if num_neighbours is None: res = exact_matching(self.matching_graph, defects, return_weight) else: res = local_matching(self.matching_graph, defects, num_neighbours, return_weight) if return_weight: return res.correction, res.weight else: return res.correction def add_noise(self) -> Union[Tuple[np.ndarray, np.ndarray], None]: """Add noise by flipping edges in the matching graph with a probability given by the error_probility edge attribute. The ``error_probability`` must be set for all edges for this method to run, otherwise it returns `None`. All boundary nodes are always given a 0 syndrome. Returns ------- numpy.ndarray of dtype int Noise vector (binary numpy int array of length self.num_fault_ids) numpy.ndarray of dtype int Syndrome vector (binary numpy int array of length self.num_detectors if there is no boundary, or self.num_detectors+len(self.boundary) if there are boundary nodes) """ if not self.matching_graph.all_edges_have_error_probabilities(): return None return self.matching_graph.add_noise() def edges(self) -> List[Tuple[int, int, Dict]]: """Edges of the matching graph Returns a list of edges of the matching graph. Each edge is a tuple `(source, target, attr)` where `source` and `target` are ints corresponding to the indices of the source and target nodes, and `attr` is a dictionary containing the attributes of the edge. The dictionary `attr` has keys `fault_ids` (a set of ints), `weight` (the weight of the edge, set to 1.0 if not specified), and `error_probability` (the error probability of the edge, set to -1 if not specified). Returns ------- List of (int, int, dict) tuples A list of edges of the matching graph """ edata = self.matching_graph.get_edges() return [(e[0], e[1], { 'fault_ids': e[2].fault_ids, 'weight': e[2].weight, 'error_probability': e[2].error_probability }) for e in edata] def to_networkx(self) -> nx.Graph: """Convert to NetworkX graph Returns a NetworkX graph corresponding to the matching graph. Each edge has attributes `fault_ids`, `weight` and `error_probability` and each node has the attribute `is_boundary`. Returns ------- NetworkX.Graph NetworkX Graph corresponding to the matching graph """ G = nx.Graph() G.add_edges_from(self.edges()) boundary = self.boundary for i in G.nodes: is_boundary = i in boundary G.nodes[i]['is_boundary'] = is_boundary return G def to_retworkx(self) -> rx.PyGraph: """Convert to retworkx graph Returns a retworkx graph object corresponding to the matching graph. Each edge payload is a ``dict`` with keys `fault_ids`, `weight` and `error_probability` and each node has a ``dict`` payload with the key ``is_boundary`` and the value is a boolean. Returns ------- retworkx.PyGraph retworkx graph corresponding to the matching graph """ G = rx.PyGraph(multigraph=False) G.add_nodes_from([{} for _ in range(self.num_nodes)]) G.extend_from_weighted_edge_list(self.edges()) boundary = self.boundary for i in G.node_indices(): is_boundary = i in boundary G[i]['is_boundary'] = is_boundary return G def draw(self) -> None: """Draw the matching graph using matplotlib Draws the matching graph as a matplotlib graph. Stabiliser nodes are filled grey and boundary nodes are filled white. The line thickness of each edge is determined from its weight (with min and max thicknesses of 0.2 pts and 2 pts respectively). Note that you may need to call `plt.figure()` before and `plt.show()` after calling this function. """ # Ignore matplotlib deprecation warnings from networkx.draw_networkx warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) warnings.filterwarnings("ignore", category=DeprecationWarning) G = self.to_networkx() pos=nx.spectral_layout(G, weight=None) c = "#bfbfbf" ncolors = ['w' if n[1]['is_boundary'] else c for n in G.nodes(data=True)] nx.draw_networkx_nodes(G, pos=pos, node_color=ncolors, edgecolors=c) nx.draw_networkx_labels(G, pos=pos) weights=np.array([e[2]['weight'] for e in G.edges(data=True)]) normalised_weights = 0.2+2*weights/np.max(weights) nx.draw_networkx_edges(G, pos=pos, width=normalised_weights) def qid_to_str(qid): if len(qid) == 0: return "" elif len(qid) == 1: return str(qid.pop()) else: return str(qid) edge_labels = {(s, t): qid_to_str(d['fault_ids']) for (s,t,d) in G.edges(data=True)} nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) def __repr__(self) -> str: M = self.num_detectors B = len(self.boundary) E = self.matching_graph.get_num_edges() return "<pymatching.Matching object with "\ "{} detector{}, "\ "{} boundary node{}, "\ "and {} edge{}>".format( M, 's' if M != 1 else '', B, 's' if B != 1 else '', E, 's' if E != 1 else '')
py
b413d75cf4089febd2cf65381c56b0bd4d6dc2cd
import math import numpy from spynnaker.pyNN.models.neuron.synapse_dynamics\ .abstract_plastic_synapse_dynamics import AbstractPlasticSynapseDynamics # How large are the time-stamps stored with each event TIME_STAMP_BYTES = 4 # When not using the MAD scheme, how many pre-synaptic events are buffered NUM_PRE_SYNAPTIC_EVENTS = 4 class SynapseDynamicsSTDP(AbstractPlasticSynapseDynamics): def __init__( self, timing_dependence=None, weight_dependence=None, voltage_dependence=None, dendritic_delay_fraction=1.0, mad=True): AbstractPlasticSynapseDynamics.__init__(self) self._timing_dependence = timing_dependence self._weight_dependence = weight_dependence self._dendritic_delay_fraction = float(dendritic_delay_fraction) self._mad = mad if (self._dendritic_delay_fraction < 0.5 or self._dendritic_delay_fraction > 1.0): raise NotImplementedError( "dendritic_delay_fraction must be in the interval [0.5, 1.0]") if self._timing_dependence is None or self._weight_dependence is None: raise NotImplementedError( "Both timing_dependence and weight_dependence must be" "specified") if voltage_dependence is not None: raise NotImplementedError( "Voltage dependence has not been implemented") @property def weight_dependence(self): return self._weight_dependence @property def timing_dependence(self): return self._timing_dependence @property def dendritic_delay_fraction(self): return self._dendritic_delay_fraction def is_same_as(self, synapse_dynamics): if not isinstance(synapse_dynamics, SynapseDynamicsSTDP): return False return ( self._timing_dependence.is_same_as( synapse_dynamics._timing_dependence) and self._weight_dependence.is_same_as( synapse_dynamics._weight_dependence) and (self._dendritic_delay_fraction == synapse_dynamics._dendritic_delay_fraction) and (self._mad == synapse_dynamics._mad)) def are_weights_signed(self): return False def get_vertex_executable_suffix(self): name = "_stdp_mad" if self._mad else "_stdp" name += "_" + self._timing_dependence.vertex_executable_suffix name += "_" + self._weight_dependence.vertex_executable_suffix return name def get_parameters_sdram_usage_in_bytes(self, n_neurons, n_synapse_types): size = 0 size += self._timing_dependence.get_parameters_sdram_usage_in_bytes() size += self._weight_dependence.get_parameters_sdram_usage_in_bytes( n_synapse_types, self._timing_dependence.n_weight_terms) return size def write_parameters(self, spec, region, machine_time_step, weight_scales): spec.comment("Writing Plastic Parameters") # Switch focus to the region: spec.switch_write_focus(region) # Write timing dependence parameters to region self._timing_dependence.write_parameters( spec, machine_time_step, weight_scales) # Write weight dependence information to region self._weight_dependence.write_parameters( spec, machine_time_step, weight_scales, self._timing_dependence.n_weight_terms) @property def _n_header_bytes(self): if self._mad: # If we're using MAD, the header contains a single timestamp and # pre-trace return ( TIME_STAMP_BYTES + self.timing_dependence.pre_trace_n_bytes) else: # Otherwise, headers consist of a counter followed by # NUM_PRE_SYNAPTIC_EVENTS timestamps and pre-traces return ( 4 + (NUM_PRE_SYNAPTIC_EVENTS * (TIME_STAMP_BYTES + self.timing_dependence.pre_trace_n_bytes))) def get_n_words_for_plastic_connections(self, n_connections): synapse_structure = self._timing_dependence.synaptic_structure fp_size_words = \ n_connections if n_connections % 2 == 0 else n_connections + 1 pp_size_bytes = ( self._n_header_bytes + (synapse_structure.get_n_bytes_per_connection() * n_connections)) pp_size_words = int(math.ceil(float(pp_size_bytes) / 4.0)) return fp_size_words + pp_size_words def get_plastic_synaptic_data( self, connections, connection_row_indices, n_rows, post_vertex_slice, n_synapse_types): n_synapse_type_bits = int(math.ceil(math.log(n_synapse_types, 2))) dendritic_delays = ( connections["delay"] * self._dendritic_delay_fraction) axonal_delays = ( connections["delay"] * (1.0 - self._dendritic_delay_fraction)) # Get the fixed data fixed_plastic = ( ((dendritic_delays.astype("uint16") & 0xF) << (8 + n_synapse_type_bits)) | ((axonal_delays.astype("uint16") & 0xF) << (12 + n_synapse_type_bits)) | (connections["synapse_type"].astype("uint16") << 8) | ((connections["target"].astype("uint16") - post_vertex_slice.lo_atom) & 0xFF)) fixed_plastic_rows = self.convert_per_connection_data_to_rows( connection_row_indices, n_rows, fixed_plastic.view(dtype="uint8").reshape((-1, 2))) fp_size = self.get_n_items(fixed_plastic_rows, 2) fp_data = self.get_words(fixed_plastic_rows) # Get the plastic data synapse_structure = self._timing_dependence.synaptic_structure plastic_plastic = synapse_structure.get_synaptic_data(connections) plastic_headers = numpy.zeros( (n_rows, self._n_header_bytes), dtype="uint8") plastic_plastic_row_data = self.convert_per_connection_data_to_rows( connection_row_indices, n_rows, plastic_plastic) plastic_plastic_rows = [ numpy.concatenate(( plastic_headers[i], plastic_plastic_row_data[i])) for i in range(n_rows)] pp_size = self.get_n_items(plastic_plastic_rows, 4) pp_data = self.get_words(plastic_plastic_rows) return (fp_data, pp_data, fp_size, pp_size) def get_n_plastic_plastic_words_per_row(self, pp_size): # pp_size is in words, so return return pp_size def get_n_fixed_plastic_words_per_row(self, fp_size): # fp_size is in half-words return numpy.ceil(fp_size / 2.0).astype(dtype="uint32") def get_n_synapses_in_rows(self, pp_size, fp_size): # Each fixed-plastic synapse is a half-word and fp_size is in half # words so just return it return fp_size def read_plastic_synaptic_data( self, post_vertex_slice, n_synapse_types, pp_size, pp_data, fp_size, fp_data): n_rows = len(fp_size) n_synapse_type_bits = int(math.ceil(math.log(n_synapse_types, 2))) data_fixed = numpy.concatenate([ fp_data[i].view(dtype="uint16")[0:fp_size[i]] for i in range(n_rows)]) pp_without_headers = [ row.view(dtype="uint8")[self._n_header_bytes:] for row in pp_data] synapse_structure = self._timing_dependence.synaptic_structure connections = numpy.zeros( data_fixed.size, dtype=self.NUMPY_CONNECTORS_DTYPE) connections["source"] = numpy.concatenate( [numpy.repeat(i, fp_size[i]) for i in range(len(fp_size))]) connections["target"] = (data_fixed & 0xFF) + post_vertex_slice.lo_atom connections["weight"] = synapse_structure.read_synaptic_data( fp_size, pp_without_headers) connections["delay"] = (data_fixed >> (8 + n_synapse_type_bits)) & 0xF connections["delay"][connections["delay"] == 0] = 16 return connections def get_weight_mean( self, connector, n_pre_slices, pre_slice_index, n_post_slices, post_slice_index, pre_vertex_slice, post_vertex_slice): # Because the weights could all be changed to the maximum, the mean # has to be given as the maximum for scaling return self._weight_dependence.weight_maximum def get_weight_variance( self, connector, n_pre_slices, pre_slice_index, n_post_slices, post_slice_index, pre_vertex_slice, post_vertex_slice): # Because the weights could all be changed to the maximum, the variance # has to be given as no variance return 0.0 def get_weight_maximum( self, connector, n_pre_slices, pre_slice_index, n_post_slices, post_slice_index, pre_vertex_slice, post_vertex_slice): # The maximum weight is the largest that it could be set to from # the weight dependence return self._weight_dependence.weight_maximum def get_provenance_data(self, pre_population_label, post_population_label): prov_data = list() if self._timing_dependence is not None: prov_data.extend(self._timing_dependence.get_provenance_data( pre_population_label, post_population_label)) if self._weight_dependence is not None: prov_data.extend(self._weight_dependence.get_provenance_data( pre_population_label, post_population_label)) return prov_data
py
b413d75e9cb2cbb74c8b2098f1a96a9b83192625
import RPi.GPIO as GPIO import time import logging class LEDs: def __init__(self, logger=logging.getLogger(__name__)): self.logger = logger GPIO.setmode(GPIO.BOARD) #GPIO.setwarnings(False) #success LED GPIO.setup(13,GPIO.OUT) GPIO.output(13,0) #Busy LED GPIO.setup(7,GPIO.OUT) GPIO.output(7,0) #fail LED GPIO.setup(12,GPIO.OUT) GPIO.output(12,0) logging.debug("LEDS initialised") def __enter__(self): return self def busyOff(self): GPIO.output(7,0) def orange(self): GPIO.output(7,1) def green(self): self.busyOff(); for _ in range(6): GPIO.output(13,1) time.sleep(0.3) GPIO.output(13,0) time.sleep(0.3) self.logger.debug("Flashed success LED") def red(self): self.busyOff(); for _ in range(6): GPIO.output(12,1) time.sleep(0.3) GPIO.output(12,0) time.sleep(0.3) logging.info("Flashed failed LED") def __exit__(self, type, value, traceback): self.logger.debug("lights exited") GPIO.cleanup()
py
b413d77206f2edad95142e9964041939c92342e7
#!/usr/bin/env python3 # # Author: Soft9000.com # 2018/12/19: File created # 2018/01/15: File renamed ''' Mission: Manage a factory-order for the GUI, with legacy API (OrderClass) conversion. ''' # Status: Mutli-table serialization testing okay import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../..')) from collections import OrderedDict from SqltDAO.SchemaDef.Table import TableDef from SqltDAO.CodeGen01.OrderClass import OrderClass from SqltDAO.CodeGen01.DaoExceptions import GenOrderError from SqltDAO.CodeGen01.Normalizers import Norm class OrderDef1: ''' The official project-definition. Unlike OrderClass, an OrderDef is designed to be used in conjunction with 'Preferences.' As such, the use of fully-qualified path-names is discouraged. Rather, absolute OUTPUT file locations require user-preferenced to be specified. Designed for more comprehensive database support / user selectable support, things like schema names and multiple table definitions (etc.) are what this order-type is all about. A user-specified endpoint, note that the INPUT DATA FILE s-h-o-u-l-d never be saved by an order, because it m-u-s-t NEVER be changed. ''' NONAME = "_-$junker!__.~" # Invalid SQL name - for "must init" testing ProjType = ".daop1" # "Official Format, Version 1" - Always used. DbType = ".sqlt3" CodeType = ".py" TEXT_DATA_TYPE = ".txt" DEFAULT_SCHEMA = "MySchema" IOKEY = ".~OrdrDf Ky$." # Space elimination marks unique key. SEPS = [os.path.sep, "/", "\\"] # Zero tolerance for path names here. DELIMITERS = ( (0, 'PIPE', '|'), # Code-Base Default (positional.) We prefer PIPE or TAB! (1, 'TAB', '\t'), (2, 'CSV', '","'),# Classic support enabled. (3, 'COMMA', ','), # Catch-All: Try CSV before COMMA. (Might even be depricated, now?) ) def __init__(self, name=None): if not name: name = OrderDef1.NONAME OrderDef1.PATH_EXCEPT(name) self._zdict = OrderedDict() self._zdict['schema_name'] = OrderDef1.DEFAULT_SCHEMA self._zdict['class_name'] = name self._zdict['code_fname'] = name self._zdict['db_fname'] = name self._zdict['project_fname'] = name self._zdict['data_encoding'] = None self._zdict['data_sep'] = OrderDef1.DELIMITERS[0] self._zdict_tables = OrderedDict() def assign(self, detect, table_name): ''' Populate ourselves based upon a detected set of fields. Effects are cumulative. Returns True upon success, else False. ''' from SqltDAO.CodeGen01.TextDataDetector import TextData assert(isinstance(detect, TextData)) self.sep = detect.sep self.encoding = detect.encoding ztable = TableDef(name=table_name) for field in detect.fields: if ztable.add_field(field[0], field[1]) is False: return False return self.add_table(ztable) @staticmethod def PATH_EXCEPT(name): ''' Raise an exception if a platform pathname is found. ''' for sep in OrderDef1.SEPS: if name.find(sep) != -1: raise TypeError("Error: Path name inclusion is not supported.") def fixup(self): ''' Enforce our "no file type" and "no file path" policies. ''' self._zdict['project_fname'] = self.remove(self._zdict['project_fname'], OrderDef1.ProjType) self._zdict['db_fname'] = self.remove(self._zdict['db_fname'], OrderDef1.DbType) self._zdict['code_fname'] = self.remove(self._zdict['code_fname'], OrderDef1.CodeType) def coin_input_file(self): ''' Suggest a text-data file-name based upon the database file name & location. Handy when user has specified none, for example, when working in "ProjectMode." ''' result = self._zdict['db_fname'] if result is OrderDef1.NONAME: result = OrderDef1.DEFAULT_SCHEMA if result.endswith(OrderDef1.DbType): return result + OrderDef1.TEXT_DATA_TYPE return result @staticmethod def BaseName(source): ''' Remove any path characters. ''' for sep in OrderDef1.SEPS: ipos = source.find(sep) if ipos != -1: source = source.split(sep)[-1] return source def remove(self, source, suffix): ''' Detect & remove (1) file suffix, (2) junker name, and (3) Path Names. On (2) defers to (2.1) class-name when defined, else (2.2) NONAME is returned. A user-specified endpoint, note that the INPUT DATA FILE must NEVER be changed? ''' source = OrderDef1.BaseName(source) if source.find(OrderDef1.NONAME) != -1: if self.name.find(OrderDef1.NONAME) != -1: return OrderDef1.DEFAULT else: return self.name if source.endswith(suffix): return source[0:-len(suffix)] return source @property def encoding(self): return self._zdict['data_encoding'] @encoding.setter def encoding(self, value): self._zdict['data_encoding'] = value @property def sep(self): return self._zdict['data_sep'] @sep.setter def sep(self, value): ''' Delimiter can be specified by number, name, pattern, or unique. Unique patterns must follow those of DataDef.DELIMITERS.''' for line in OrderDef1.DELIMITERS: for row in line: if value == row: self._zdict['data_sep'] = line return if len(value) == 3: self._zdict['data_sep'] = value @property def name(self): return self._zdict['class_name'] @property def project_name(self): ''' Concoct a file-name from the schema name.''' return self._zdict['project_fname'] + OrderDef1.ProjType @property def code_name(self): ''' Concoct a file-name from the schema name.''' return self._zdict['code_fname'] + OrderDef1.CodeType @property def database_name(self): ''' Concoct the database file name.''' result = self._zdict['db_fname'] if result.endswith(OrderDef1.DbType): return result return result + OrderDef1.DbType @property def schema_name(self): ''' Query the schema name. ''' return self._zdict['schema_name'] @schema_name.setter def schema_name(self, name): ''' Change the schema name. True if all is well, else False. ''' if not name: return False self._zdict['schema_name'] = Norm.NormCol(name) return True @property def class_name(self): ''' Query the class name. ''' return self._zdict['class_name'] def add_table(self, table_def): ''' Add a table. False if not added, or already added. ''' if not isinstance(table_def, TableDef): return False if table_def._name in self._zdict_tables: return False self._zdict_tables[table_def._name] = table_def return True def table_names(self): ''' Return all of the table-names. Can be empty.''' return tuple(self._zdict_tables.keys()) def find_table(self, name): ''' Lookup a table definition, by name. None if not found. ''' if name in self._zdict_tables: return self._zdict_tables[name] return None def remove_table(self, name): ''' Remove a table. Always returns True. ''' if name in self._zdict_tables: self._zdict_tables.pop(name) return True def change_table(self, name, table_def): ''' Change the definition for an existing TableDef. ''' if name not in self._zdict_tables: return False self._zdict_tables[name] = table_def return True def __str__(self): ''' Program usable string. ''' return str(self.__dict__()) def __repr__(self): ''' Factory usable string. ''' result = str(type(self)) + ' : ' result = result + str(self) return result def __iter__(self): ''' Basic object iteration assured. ''' values = self.__dict__() for key in values: yield key, values[key] def __dict__(self): results = OrderedDict(self._zdict) for key in self._zdict_tables: results[key] = self._zdict_tables[key] return results # Main Test Case: ./Order.py
py
b413d8121a8e723317378a420730ad963424ea8f
"""Default value for eisen collection values Revision ID: ad795c7f1fd8 Revises: 23912567470d Create Date: 2021-03-30 17:01:17.757610 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ad795c7f1fd8' down_revision = '23912567470d' branch_labels = None depends_on = None def upgrade() -> None: op.execute("update metric set collection_eisen=json_array()") def downgrade() -> None: pass
py
b413d8df29eae4f518a9075862d32f824dcec255
# Copyright 2019 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, MutableMapping, Optional import yaml from google.protobuf import json_format from google.protobuf.json_format import MessageToDict, MessageToJson from google.protobuf.timestamp_pb2 import Timestamp from feast.loaders import yaml as feast_yaml from feast.protos.feast.core.Entity_pb2 import Entity as EntityV2Proto from feast.protos.feast.core.Entity_pb2 import EntityMeta as EntityMetaProto from feast.protos.feast.core.Entity_pb2 import EntitySpecV2 as EntitySpecProto from feast.value_type import ValueType class Entity: """ Represents a collection of entities and associated metadata. """ def __init__( self, name: str, value_type: ValueType, description: str = "", join_key: Optional[str] = None, labels: Optional[MutableMapping[str, str]] = None, ): self._name = name self._description = description self._value_type = value_type if join_key: self._join_key = join_key else: self._join_key = name if labels is None: self._labels = dict() # type: MutableMapping[str, str] else: self._labels = labels self._created_timestamp: Optional[Timestamp] = None self._last_updated_timestamp: Optional[Timestamp] = None def __eq__(self, other): if not isinstance(other, Entity): raise TypeError("Comparisons should only involve Entity class objects.") if ( self.labels != other.labels or self.name != other.name or self.description != other.description or self.value_type != other.value_type or self.join_key != other.join_key ): return False return True def __str__(self): return str(MessageToJson(self.to_proto())) @property def name(self): """ Returns the name of this entity """ return self._name @name.setter def name(self, name): """ Sets the name of this entity """ self._name = name @property def description(self): """ Returns the description of this entity """ return self._description @description.setter def description(self, description): """ Sets the description of this entity """ self._description = description @property def join_key(self): """ Returns the join key of this entity """ return self._join_key @join_key.setter def join_key(self, join_key): """ Sets the join key of this entity """ self._join_key = join_key @property def value_type(self) -> ValueType: """ Returns the type of this entity """ return self._value_type @value_type.setter def value_type(self, value_type: ValueType): """ Set the type for this entity """ self._value_type = value_type @property def labels(self): """ Returns the labels of this entity. This is the user defined metadata defined as a dictionary. """ return self._labels @labels.setter def labels(self, labels: MutableMapping[str, str]): """ Set the labels for this entity """ self._labels = labels @property def created_timestamp(self): """ Returns the created_timestamp of this entity """ return self._created_timestamp @property def last_updated_timestamp(self): """ Returns the last_updated_timestamp of this entity """ return self._last_updated_timestamp def is_valid(self): """ Validates the state of a entity locally. Raises an exception if entity is invalid. """ if not self.name: raise ValueError("No name found in entity.") if not self.value_type: raise ValueError("No type found in entity {self.value_type}") @classmethod def from_yaml(cls, yml: str): """ Creates an entity from a YAML string body or a file path Args: yml: Either a file path containing a yaml file or a YAML string Returns: Returns a EntityV2 object based on the YAML file """ return cls.from_dict(feast_yaml.yaml_loader(yml, load_single=True)) @classmethod def from_dict(cls, entity_dict): """ Creates an entity from a dict Args: entity_dict: A dict representation of an entity Returns: Returns a EntityV2 object based on the entity dict """ entity_proto = json_format.ParseDict( entity_dict, EntityV2Proto(), ignore_unknown_fields=True ) return cls.from_proto(entity_proto) @classmethod def from_proto(cls, entity_proto: EntityV2Proto): """ Creates an entity from a protobuf representation of an entity Args: entity_proto: A protobuf representation of an entity Returns: Returns a EntityV2 object based on the entity protobuf """ entity = cls( name=entity_proto.spec.name, description=entity_proto.spec.description, value_type=ValueType(entity_proto.spec.value_type), labels=entity_proto.spec.labels, join_key=entity_proto.spec.join_key, ) entity._created_timestamp = entity_proto.meta.created_timestamp entity._last_updated_timestamp = entity_proto.meta.last_updated_timestamp return entity def to_proto(self) -> EntityV2Proto: """ Converts an entity object to its protobuf representation Returns: EntityV2Proto protobuf """ meta = EntityMetaProto( created_timestamp=self.created_timestamp, last_updated_timestamp=self.last_updated_timestamp, ) spec = EntitySpecProto( name=self.name, description=self.description, value_type=self.value_type.value, labels=self.labels, join_key=self.join_key, ) return EntityV2Proto(spec=spec, meta=meta) def to_dict(self) -> Dict: """ Converts entity to dict Returns: Dictionary object representation of entity """ entity_dict = MessageToDict(self.to_proto()) # Remove meta when empty for more readable exports if entity_dict["meta"] == {}: del entity_dict["meta"] return entity_dict def to_yaml(self): """ Converts a entity to a YAML string. Returns: Entity string returned in YAML format """ entity_dict = self.to_dict() return yaml.dump(entity_dict, allow_unicode=True, sort_keys=False) def to_spec_proto(self) -> EntitySpecProto: """ Converts an EntityV2 object to its protobuf representation. Used when passing EntitySpecV2 object to Feast request. Returns: EntitySpecV2 protobuf """ spec = EntitySpecProto( name=self.name, description=self.description, value_type=self.value_type.value, labels=self.labels, join_key=self.join_key, ) return spec def _update_from_entity(self, entity): """ Deep replaces one entity with another Args: entity: Entity to use as a source of configuration """ self.name = entity.name self.description = entity.description self.value_type = entity.value_type self.labels = entity.labels self.join_key = entity.join_key self._created_timestamp = entity.created_timestamp self._last_updated_timestamp = entity.last_updated_timestamp
py
b413d92b086af2587980070a7c3a904612ac959c
import os import hashlib import dateutil.parser import glob import six import sys import shutil import stat import logging import traceback import contextlib from setuptools.archive_util import unpack_archive from setuptools.archive_util import unpack_tarfile from setuptools.archive_util import unpack_zipfile from contextlib import contextmanager from tornado.log import LogFormatter from dateutil.tz import gettz from datetime import datetime # pwd is for unix passwords only, so we shouldn't import it on # windows machines if sys.platform != 'win32': import pwd else: pwd = None def is_task(cell): """Returns True if the cell is a task cell.""" if 'nbgrader' not in cell.metadata: return False return cell.metadata['nbgrader'].get('task', False) def is_grade(cell): """Returns True if the cell is a grade cell.""" if 'nbgrader' not in cell.metadata: return False return cell.metadata['nbgrader'].get('grade', False) def is_solution(cell): """Returns True if the cell is a solution cell.""" if 'nbgrader' not in cell.metadata: return False return cell.metadata['nbgrader'].get('solution', False) def is_locked(cell): """Returns True if the cell source is locked (will be overwritten).""" if 'nbgrader' not in cell.metadata: return False elif is_solution(cell): return False elif is_grade(cell): return True else: return cell.metadata['nbgrader'].get('locked', False) def determine_grade(cell): if not is_grade(cell): raise ValueError("cell is not a grade cell") max_points = float(cell.metadata['nbgrader']['points']) if is_solution(cell): # if it's a solution cell and the checksum hasn't changed, that means # they didn't provide a response, so we can automatically give this a # zero grade if "checksum" in cell.metadata.nbgrader and cell.metadata.nbgrader["checksum"] == compute_checksum(cell): return 0, max_points else: return None, max_points elif cell.cell_type == 'code': for output in cell.outputs: if output.output_type == 'error': return 0, max_points return max_points, max_points else: return None, max_points def to_bytes(string): """A python 2/3 compatible function for converting a string to bytes. In Python 2, this just returns the 8-bit string. In Python 3, this first encodes the string to utf-8. """ if sys.version_info[0] == 3 or (sys.version_info[0] == 2 and isinstance(string, unicode)): return bytes(string.encode('utf-8')) else: return bytes(string) def compute_checksum(cell): m = hashlib.md5() # add the cell source and type m.update(to_bytes(cell.source)) m.update(to_bytes(cell.cell_type)) # add whether it's a grade cell and/or solution cell m.update(to_bytes(str(is_grade(cell)))) m.update(to_bytes(str(is_solution(cell)))) m.update(to_bytes(str(is_locked(cell)))) # include the cell id m.update(to_bytes(cell.metadata.nbgrader['grade_id'])) # include the number of points that the cell is worth, if it is a grade cell if is_grade(cell): m.update(to_bytes(str(float(cell.metadata.nbgrader['points'])))) return m.hexdigest() def parse_utc(ts): """Parses a timestamp into datetime format, converting it to UTC if necessary.""" if ts is None: return None if isinstance(ts, six.string_types): parts = ts.split(" ") if len(parts) == 3: ts = " ".join(parts[:2] + ["TZ"]) tz = parts[2] try: tz = int(tz) except ValueError: tz = dateutil.tz.gettz(tz) ts = dateutil.parser.parse(ts, tzinfos=dict(TZ=tz)) else: ts = dateutil.parser.parse(ts) if ts.tzinfo is not None: ts = (ts - ts.utcoffset()).replace(tzinfo=None) return ts def to_numeric_tz(timezone): """Converts a timezone to a format which can be read by parse_utc.""" return as_timezone(datetime.utcnow(), timezone).strftime('%z') def as_timezone(ts, timezone): """Converts UTC timestamp ts to have timezone tz.""" if not timezone: return ts tz = gettz(timezone) if tz: return (ts + tz.utcoffset(ts)).replace(tzinfo=tz) else: return ts def check_mode(path, read=False, write=False, execute=False): """Can the current user can rwx the path.""" mode = 0 if read: mode |= os.R_OK if write: mode |= os.W_OK if execute: mode |= os.X_OK return os.access(path, mode) def check_directory(path, read=False, write=False, execute=False): """Does that path exist and can the current user rwx.""" if os.path.isdir(path) and check_mode(path, read=read, write=write, execute=execute): return True else: return False def get_osusername(): """Get the username of the current process.""" if pwd is None: raise OSError("get_username cannot be called on Windows") return pwd.getpwuid(os.getuid())[0] def get_username(): """ Get the username, use os user name but override if username is jovyan .""" osname = get_osusername() if osname == 'jovyan': return os.environ.get('JUPYTERHUB_USER', 'jovyan') else: return osname def find_owner(path): """Get the username of the owner of path.""" if pwd is None: raise OSError("find_owner cannot be called on Windows") return pwd.getpwuid(os.stat(os.path.abspath(path)).st_uid).pw_name def self_owned(path): """Is the path owned by the current user of this process?""" return get_osusername() == find_owner(os.path.abspath(path)) def is_ignored(filename, ignore_globs=None): """Determines whether a filename should be ignored, based on whether it matches any file glob in the given list. Note that this only matches on the base filename itself, not the full path.""" if ignore_globs is None: return False dirname = os.path.dirname(filename) for expr in ignore_globs: globs = glob.glob(os.path.join(dirname, expr)) if filename in globs: return True return False def find_all_files(path, exclude=None): """Recursively finds all filenames rooted at `path`, optionally excluding some based on filename globs.""" files = [] to_skip = [] for dirname, dirnames, filenames in os.walk(path): if is_ignored(dirname, exclude) or dirname in to_skip: to_skip.extend([os.path.join(dirname, x) for x in dirnames]) continue for filename in filenames: fullpath = os.path.join(dirname, filename) if is_ignored(fullpath, exclude): continue else: files.append(fullpath) return files def find_all_notebooks(path): """Return a sorted list of notebooks recursively found rooted at `path`.""" notebooks = list() rootpath = os.path.abspath(path) for _file in find_all_files(rootpath): if os.path.splitext(_file)[-1] == '.ipynb': notebooks.append(os.path.relpath(_file, rootpath)) notebooks.sort() return notebooks def full_split(path): rest, last = os.path.split(path) if last == path: return (path,) elif rest == path: return (rest,) else: return full_split(rest) + (last,) @contextlib.contextmanager def chdir(dirname): currdir = os.getcwd() if dirname: os.chdir(dirname) try: yield finally: os.chdir(currdir) def rmtree(path): # for windows, we need to go through and make sure everything # is writeable, otherwise rmtree will fail if sys.platform == 'win32': for dirname, _, filenames in os.walk(path): os.chmod(dirname, stat.S_IWRITE) for filename in filenames: os.chmod(os.path.join(dirname, filename), stat.S_IWRITE) # now we can remove the path shutil.rmtree(path) def remove(path): # for windows, we need to make sure that the file is writeable, # otherwise remove will fail if sys.platform == 'win32': os.chmod(path, stat.S_IWRITE) # now we can remove the path os.remove(path) def unzip(src, dest, zip_ext=None, create_own_folder=False, tree=False): """Extract all content from an archive file to a destination folder. Arguments --------- src: str Absolute path to the archive file ('/path/to/archive_filename.zip') dest: str Asolute path to extract all content to ('/path/to/extract/') Keyword Arguments ----------------- zip_ext: list Valid zip file extensions. Default: ['.zip', '.gz'] create_own_folder: bool Create a sub-folder in 'dest' with the archive file name if True ('/path/to/extract/archive_filename/'). Default: False tree: bool Extract archive files within archive files (into their own sub-directory) if True. Default: False """ zip_ext = list(zip_ext or ['.zip', '.gz']) filename, ext = os.path.splitext(os.path.basename(src)) if ext not in zip_ext: raise ValueError("Invalid archive file extension {}: {}".format(ext, src)) if not check_directory(dest, write=True, execute=True): raise OSError("Directory not found or unwritable: {}".format(dest)) if create_own_folder: # double splitext for .tar.gz fname, ext = os.path.splitext(os.path.basename(filename)) if ext == '.tar': filename = fname dest = os.path.join(dest, filename) if not os.path.isdir(dest): os.makedirs(dest) unpack_archive(src, dest, drivers=(unpack_zipfile, unpack_tarfile)) # extract flat, don't extract archive files within archive files if not tree: return def find_archive_files(skip): found = [] # find archive files in dest that are not in skip for root, _, filenames in os.walk(dest): for basename in filenames: src_file = os.path.join(root, basename) _, ext = os.path.splitext(basename) if ext in zip_ext and src_file not in skip: found.append(src_file) return found skip = [] new_files = find_archive_files(skip) # keep walking dest until no new archive files are found while new_files: # unzip (flat) new archive files found in dest for src_file in new_files: dest_path = os.path.split(src_file)[0] unzip( src_file, dest_path, zip_ext=zip_ext, create_own_folder=True, tree=False ) skip.append(src_file) new_files = find_archive_files(skip) @contextmanager def temp_attrs(app, **newvals): oldvals = {} for k, v in newvals.items(): oldvals[k] = getattr(app, k) setattr(app, k, v) yield app for k, v in oldvals.items(): setattr(app, k, v) def capture_log(app, fmt="[%(levelname)s] %(message)s"): """Adds an extra handler to the given application the logs to a string buffer, calls ``app.start()``, and returns the log output. The extra handler is removed from the application before returning. Arguments --------- app: LoggingConfigurable An application, withh the `.start()` method implemented fmt: string A format string for formatting log messages Returns ------- A dictionary with the following keys (error and log may or may not be present): - success (bool): whether or not the operation completed successfully - error (string): formatted traceback - log (string): captured log output """ log_buff = six.StringIO() handler = logging.StreamHandler(log_buff) formatter = LogFormatter(fmt="[%(levelname)s] %(message)s") handler.setFormatter(formatter) app.log.addHandler(handler) try: app.start() except: log_buff.flush() val = log_buff.getvalue() result = {"success": False} result["error"] = traceback.format_exc() if val: result["log"] = val else: log_buff.flush() val = log_buff.getvalue() result = {"success": True} if val: result["log"] = val finally: log_buff.close() app.log.removeHandler(handler) return result
py
b413d9dcd0896a169e5bd154c1e21f6419f7fa36
from .base_model import BaseModel, db class Order(BaseModel): __tablename__ = 'order' order_id = db.Column(db.Integer(), primary_key=True) total_amount = db.Column(db.DECIMAL(), nullable=False) created_on = db.Column(db.DateTime(), nullable=False) shipped_on = db.Column(db.DateTime()) status = db.Column(db.Integer(), nullable=False, default=0) comments = db.Column(db.String(255)) auth_code = db.Column(db.String(50)) reference = db.Column(db.String(50)) customer_id = db.Column(db.Integer(), db.ForeignKey('customer.customer_id'), default=1) customer = db.relationship('Customer', lazy=False) shipping_id = db.Column(db.Integer(), db.ForeignKey('shipping.shipping_id'), default=1) shipping = db.relationship('Shipping', lazy=False) tax_id = db.Column(db.Integer(), db.ForeignKey('tax.tax_id'), default=1) tax = db.relationship('Tax', lazy=False)
py
b413da97f4cfb491df42f1c27d23ff2bb924bfe8
# -*- coding: utf-8 -*- from __future__ import unicode_literals from os.path import abspath, dirname, join # # Bokeh documentation build configuration file, created by # sphinx-quickstart on Sat Oct 12 23:43:03 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.8' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.ifconfig', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', 'bokeh.sphinxext.bokeh_autodoc', 'bokeh.sphinxext.bokeh_color', 'bokeh.sphinxext.bokeh_enum', 'bokeh.sphinxext.bokeh_gallery', 'bokeh.sphinxext.bokeh_github', 'bokeh.sphinxext.bokeh_jinja', 'bokeh.sphinxext.bokeh_model', 'bokeh.sphinxext.bokeh_options', 'bokeh.sphinxext.bokeh_palette', 'bokeh.sphinxext.bokeh_palette_group', 'bokeh.sphinxext.bokeh_plot', 'bokeh.sphinxext.bokeh_prop', 'bokeh.sphinxext.bokeh_releases', 'bokeh.sphinxext.bokeh_settings', 'bokeh.sphinxext.bokeh_sitemap', 'bokeh.sphinxext.bokehjs_content', 'bokeh.sphinxext.collapsible_code_block', ] napoleon_include_init_with_doc = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Bokeh' copyright = '© Copyright 2015-2018, Anaconda and Bokeh Contributors.' # Get the standard computed Bokeh version string to use for |version| # and |release| from bokeh import __version__ # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # Check for version override (e.g. when re-deploying a previously released # docs, or when pushing test docs that do not have a corresponding BokehJS # available on CDN) from bokeh.settings import settings if settings.docs_version(): version = release = settings.docs_version() # get all the versions that will appear in the version dropdown f = open(join(dirname(abspath(__file__)), "all_versions.txt")) all_versions = [x.strip() for x in reversed(f.readlines())] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # # NOTE: in these docs all .py script are assumed to be bokeh plot scripts! # with bokeh_plot_pyfile_include_dirs set desired folder to look for .py files bokeh_plot_pyfile_include_dirs = ['docs'] # Whether to allow builds to succeed if a Google API key is not defined and plots # containing "GOOGLE_API_KEY" are processed bokeh_missing_google_api_key_ok = False # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # Sort members by type autodoc_member_order = 'groupwise' # patterns to exclude exclude_patterns = ['docs/releases/*'] # This would more properly be done with rst_epilog but something about # the combination of this with the bokeh-gallery directive breaks the build rst_prolog = """ .. |Color| replace:: :py:class:`~bokeh.core.properties.Color` .. |DataSpec| replace:: :py:class:`~bokeh.core.properties.DataSpec` .. |Document| replace:: :py:class:`~bokeh.document.Document` .. |HasProps| replace:: :py:class:`~bokeh.core.has_props.HasProps` .. |Model| replace:: :py:class:`~bokeh.model.Model` .. |Property| replace:: :py:class:`~bokeh.core.property.bases.Property` .. |PropertyDescriptor| replace:: :py:class:`~bokeh.core.property.descriptor.PropertyDescriptor` .. |PropertyContainer| replace:: :py:class:`~bokeh.core.property.wrappers.PropertyContainer` .. |UnitsSpec| replace:: :py:class:`~bokeh.core.properties.UnitsSpec` .. |field| replace:: :py:func:`~bokeh.core.properties.field` .. |value| replace:: :py:func:`~bokeh.core.properties.value` """ # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bokeh_theme' html_theme_path = ['.'] html_context = { 'SITEMAP_BASE_URL': 'https://bokeh.pydata.org/en/', # Trailing slash is needed 'DESCRIPTION': 'Bokeh visualization library, documentation site.', 'AUTHOR': 'Bokeh contributors', 'VERSION': version, 'NAV': ( ('Github', '//github.com/bokeh/bokeh'), ), 'ABOUT': ( ('Roadmap', '//bokeh.org/roadmap'), ('Team', '//bokeh.org/team'), ('Citation', '//bokeh.org/citation'), ('Contact', '//bokeh.org'), ), 'SOCIAL': ( ('Contribute', 'contribute'), ('Discourse', '//discourse.bokeh.org'), ('Github', '//github.com/bokeh/bokeh'), ('Twitter', '//twitter.com/BokehPlots'), ), 'NAV_DOCS': ( ('Installation', 'installation'), ('User Guide', 'user_guide'), ('Gallery', 'gallery'), ('Tutorial', 'https://mybinder.org/v2/gh/bokeh/bokeh-notebooks/master?filepath=tutorial%2F00%20-%20Introduction%20and%20Setup.ipynb'), ('Reference', 'reference'), ('Releases', 'releases'), ('Developer Guide', 'dev_guide'), ), 'ALL_VERSIONS': all_versions, } # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # Output file base name for HTML help builder. htmlhelp_basename = 'Bokehdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Bokeh.tex', u'Bokeh Documentation', u'Anaconda', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bokeh', u'Bokeh Documentation', [u'Anaconda'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Bokeh', u'Bokeh Documentation', u'Anaconda', 'Bokeh', 'Interactive Web Plotting for Python', 'Graphics'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # intersphinx settings intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None) }
py
b413dd4cd517682925a6c70964cb4d13fe3ef86d
__author__ = 'brett israelsen' __email__ = '[email protected]' import os def get_participant_data_props(): """ Utility function to associate participant data with start/stop times, stop times are important right now becasue parsing past a certain point on different files will break. :return: """ fldr = 'data' # the 'end_t' below was obtained by trying to parse a file, and the observing at what step an error occurred. -1 indicates that the entire file will be parsed. auto_named_data = {'file_prefix': 'processed_ASIST_data_study_id_XXX_condition_id_YYY_trial_id_ZZZ_messages.csv', 'studies': [1], 'trials': {1: [1, 5, 8], 2: [2, 3, 10], 3: [6, 13]}, 'start_t': {1: [0, 0, 0], 2: [0, 0, 0], 3: [0, 0]}, # 'end_t':{1:[36,12,-1], 2:[-1,-1,13], 3:[30,62]}, 'end_t': {1: [-1, -1, -1], 2: [-1, -1, -1], 3: [-1, -1]}, } data_list = [] for cond in auto_named_data['trials']: for i in range(len(auto_named_data['trials'][cond])): trial = auto_named_data['trials'][cond][i] fname = auto_named_data['file_prefix'] study_str = str.zfill('1', 6) cond_str = str.zfill(f'{cond}', 6) id_str = str.zfill(f'{trial}', 6) fname = fname.replace('XXX', study_str) fname = fname.replace('YYY', cond_str) fname = fname.replace('ZZZ', id_str) entry = {'fname': os.path.join(fldr, fname), 'start': auto_named_data['start_t'][cond][i], 'stop': auto_named_data['end_t'][cond][i]} data_list.append(entry) return data_list if __name__ == '__main__': lst = get_participant_data_props() for itm in lst: print(itm)
py
b413ddb2e61fe128564dc7d03229dd53f6d05548
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) # model settings model = dict( type='TopDown', pretrained='torchvision://resnet101', backbone=dict(type='ResNet', depth=101), keypoint_head=dict( type='TopDownSimpleHead', in_channels=2048, out_channels=channel_cfg['num_output_channels'], ), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11), loss_pose=dict(type='JointsMSELoss', use_target_weight=True)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='data/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/ochuman' data = dict( samples_per_gpu=64, workers_per_gpu=2, train=dict( type='TopDownCocoDataset', ann_file='data/coco/annotations/person_keypoints_train2017.json', img_prefix='data/coco//train2017/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='TopDownOCHumanDataset', ann_file=f'{data_root}/annotations/' 'ochuman_coco_format_val_range_0.00_1.00.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='TopDownOCHumanDataset', ann_file=f'{data_root}/annotations/' 'ochuman_coco_format_test_range_0.00_1.00.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline), )
py
b413dddad60bf7d01a9c5d250980ede5284b6cb5
import os,unittest from igf_data.utils.fileutils import get_temp_dir,remove_dir from igf_data.utils.tools.deeptools_utils import run_plotCoverage,run_bamCoverage,run_plotFingerprint class Deeptools_util_test1(unittest.TestCase): def setUp(self): self.temp_dir = get_temp_dir() self.input_bam = os.path.join(self.temp_dir,'input.bam') self.blacklist_file = os.path.join(self.temp_dir,'blacklist.bed') with open(self.input_bam,'w') as fp: fp.write('1') with open(self.blacklist_file,'w') as fp: fp.write('1') def tearDown(self): remove_dir(self.temp_dir) def test_run_plotCoverage(self): deeptools_cmd = \ run_plotCoverage(\ bam_files=[self.input_bam], output_raw_counts='out.raw.txt', plotcov_stdout='out.stdout.txt', output_plot='out.plot.pdf', blacklist_file=self.blacklist_file, thread=1, params_list=None, dry_run=True) self.assertTrue(self.input_bam in deeptools_cmd) self.assertTrue(self.blacklist_file in deeptools_cmd) def test_run_bamCoverage(self): deeptools_cmd = \ run_bamCoverage(\ bam_files=[self.input_bam], output_file='out.bw', blacklist_file=self.blacklist_file, thread=1, dry_run=True) self.assertTrue(self.input_bam in deeptools_cmd) self.assertTrue(self.blacklist_file in deeptools_cmd) self.assertTrue('--blackListFileName' in deeptools_cmd) self.assertTrue('bigwig' in deeptools_cmd) def test_run_plotFingerprint(self): deeptools_cmd = \ run_plotFingerprint(\ bam_files=[self.input_bam], output_raw_counts='out.raw.txt', output_matrics='out.metrics.txt', output_plot='out.plot.pdf', dry_run=True, blacklist_file=self.blacklist_file, thread=1) self.assertTrue(self.input_bam in deeptools_cmd) self.assertTrue(self.blacklist_file in deeptools_cmd) self.assertTrue('--blackListFileName' in deeptools_cmd) deeptools_cmd = \ run_plotFingerprint(\ bam_files=[self.input_bam], output_raw_counts='out.raw.txt', output_matrics='out.metrics.txt', output_plot='out.plot.pdf', dry_run=True, thread=1) self.assertTrue(self.input_bam in deeptools_cmd) self.assertFalse(self.blacklist_file in deeptools_cmd) self.assertFalse('--blackListFileName' in deeptools_cmd) if __name__=='__main__': unittest.main()
py
b413de49fa832d23032f2f477412946cd229e473
# Copyright 2017, Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # EDITING INSTRUCTIONS # This file was generated from the file # https://github.com/google/googleapis/blob/master/google/cloud/language/v1/language_service.proto, # and updates to that file get reflected here through a refresh process. # For the short term, the refresh process will only be runnable by Google engineers. # # The only allowed edits are to method and file documentation. A 3-way # merge preserves those additions if the generated source changes. """Accesses the google.cloud.language.v1 LanguageService API.""" import collections import json import os import pkg_resources import platform from google.gax import api_callable from google.gax import config from google.gax import path_template import google.gax from google.cloud.gapic.language.v1 import enums from google.cloud.proto.language.v1 import language_service_pb2 class LanguageServiceClient(object): """ Provides text analysis operations such as sentiment analysis and entity recognition. """ SERVICE_ADDRESS = 'language.googleapis.com' """The default address of the service.""" DEFAULT_SERVICE_PORT = 443 """The default port of the service.""" # The scopes needed to make gRPC calls to all of the methods defined in # this service _ALL_SCOPES = ('https://www.googleapis.com/auth/cloud-platform', ) def __init__(self, service_path=SERVICE_ADDRESS, port=DEFAULT_SERVICE_PORT, channel=None, credentials=None, ssl_credentials=None, scopes=None, client_config=None, app_name=None, app_version='', lib_name=None, lib_version='', metrics_headers=()): """Constructor. Args: service_path (string): The domain name of the API remote host. port (int): The port on which to connect to the remote host. channel (:class:`grpc.Channel`): A ``Channel`` instance through which to make calls. credentials (object): The authorization credentials to attach to requests. These credentials identify this application to the service. ssl_credentials (:class:`grpc.ChannelCredentials`): A ``ChannelCredentials`` instance for use with an SSL-enabled channel. scopes (list[string]): A list of OAuth2 scopes to attach to requests. client_config (dict): A dictionary for call options for each method. See :func:`google.gax.construct_settings` for the structure of this data. Falls back to the default config if not specified or the specified config is missing data points. app_name (string): The name of the application calling the service. Recommended for analytics purposes. app_version (string): The version of the application calling the service. Recommended for analytics purposes. lib_name (string): The API library software used for calling the service. (Unless you are writing an API client itself, leave this as default.) lib_version (string): The API library software version used for calling the service. (Unless you are writing an API client itself, leave this as default.) metrics_headers (dict): A dictionary of values for tracking client library metrics. Ultimately serializes to a string (e.g. 'foo/1.2.3 bar/3.14.1'). This argument should be considered private. Returns: A LanguageServiceClient object. """ # Unless the calling application specifically requested # OAuth scopes, request everything. if scopes is None: scopes = self._ALL_SCOPES # Initialize an empty client config, if none is set. if client_config is None: client_config = {} # Initialize metrics_headers as an ordered dictionary # (cuts down on cardinality of the resulting string slightly). metrics_headers = collections.OrderedDict(metrics_headers) metrics_headers['gl-python'] = platform.python_version() # The library may or may not be set, depending on what is # calling this client. Newer client libraries set the library name # and version. if lib_name: metrics_headers[lib_name] = lib_version # Finally, track the GAPIC package version. metrics_headers['gapic'] = pkg_resources.get_distribution( 'google-cloud-language', ).version # Load the configuration defaults. default_client_config = json.loads( pkg_resources.resource_string( __name__, 'language_service_client_config.json').decode()) defaults = api_callable.construct_settings( 'google.cloud.language.v1.LanguageService', default_client_config, client_config, config.STATUS_CODE_NAMES, metrics_headers=metrics_headers, ) self.language_service_stub = config.create_stub( language_service_pb2.LanguageServiceStub, channel=channel, service_path=service_path, service_port=port, credentials=credentials, scopes=scopes, ssl_credentials=ssl_credentials) self._analyze_sentiment = api_callable.create_api_call( self.language_service_stub.AnalyzeSentiment, settings=defaults['analyze_sentiment']) self._analyze_entities = api_callable.create_api_call( self.language_service_stub.AnalyzeEntities, settings=defaults['analyze_entities']) self._analyze_syntax = api_callable.create_api_call( self.language_service_stub.AnalyzeSyntax, settings=defaults['analyze_syntax']) self._annotate_text = api_callable.create_api_call( self.language_service_stub.AnnotateText, settings=defaults['annotate_text']) # Service calls def analyze_sentiment(self, document, encoding_type=None, options=None): """ Analyzes the sentiment of the provided text. Example: >>> from google.cloud.gapic.language.v1 import language_service_client >>> from google.cloud.proto.language.v1 import language_service_pb2 >>> client = language_service_client.LanguageServiceClient() >>> document = language_service_pb2.Document() >>> response = client.analyze_sentiment(document) Args: document (:class:`google.cloud.proto.language.v1.language_service_pb2.Document`): Input document. encoding_type (enum :class:`google.cloud.gapic.language.v1.enums.EncodingType`): The encoding type used by the API to calculate sentence offsets. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.cloud.proto.language.v1.language_service_pb2.AnalyzeSentimentResponse` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ request = language_service_pb2.AnalyzeSentimentRequest( document=document, encoding_type=encoding_type) return self._analyze_sentiment(request, options) def analyze_entities(self, document, encoding_type=None, options=None): """ Finds named entities (currently proper names and common nouns) in the text along with entity types, salience, mentions for each entity, and other properties. Example: >>> from google.cloud.gapic.language.v1 import language_service_client >>> from google.cloud.proto.language.v1 import language_service_pb2 >>> client = language_service_client.LanguageServiceClient() >>> document = language_service_pb2.Document() >>> response = client.analyze_entities(document) Args: document (:class:`google.cloud.proto.language.v1.language_service_pb2.Document`): Input document. encoding_type (enum :class:`google.cloud.gapic.language.v1.enums.EncodingType`): The encoding type used by the API to calculate offsets. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.cloud.proto.language.v1.language_service_pb2.AnalyzeEntitiesResponse` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ request = language_service_pb2.AnalyzeEntitiesRequest( document=document, encoding_type=encoding_type) return self._analyze_entities(request, options) def analyze_syntax(self, document, encoding_type=None, options=None): """ Analyzes the syntax of the text and provides sentence boundaries and tokenization along with part of speech tags, dependency trees, and other properties. Example: >>> from google.cloud.gapic.language.v1 import language_service_client >>> from google.cloud.proto.language.v1 import language_service_pb2 >>> client = language_service_client.LanguageServiceClient() >>> document = language_service_pb2.Document() >>> response = client.analyze_syntax(document) Args: document (:class:`google.cloud.proto.language.v1.language_service_pb2.Document`): Input document. encoding_type (enum :class:`google.cloud.gapic.language.v1.enums.EncodingType`): The encoding type used by the API to calculate offsets. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.cloud.proto.language.v1.language_service_pb2.AnalyzeSyntaxResponse` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ request = language_service_pb2.AnalyzeSyntaxRequest( document=document, encoding_type=encoding_type) return self._analyze_syntax(request, options) def annotate_text(self, document, features, encoding_type=None, options=None): """ A convenience method that provides all the features that analyzeSentiment, analyzeEntities, and analyzeSyntax provide in one call. Example: >>> from google.cloud.gapic.language.v1 import language_service_client >>> from google.cloud.proto.language.v1 import language_service_pb2 >>> client = language_service_client.LanguageServiceClient() >>> document = language_service_pb2.Document() >>> features = language_service_pb2.AnnotateTextRequest.Features() >>> response = client.annotate_text(document, features) Args: document (:class:`google.cloud.proto.language.v1.language_service_pb2.Document`): Input document. features (:class:`google.cloud.proto.language.v1.language_service_pb2.AnnotateTextRequest.Features`): The enabled features. encoding_type (enum :class:`google.cloud.gapic.language.v1.enums.EncodingType`): The encoding type used by the API to calculate offsets. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.cloud.proto.language.v1.language_service_pb2.AnnotateTextResponse` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ request = language_service_pb2.AnnotateTextRequest( document=document, features=features, encoding_type=encoding_type) return self._annotate_text(request, options)
py
b413df4e053ccb53a33dd1bce11387a3aa989286
# Auto-generated at 2021-09-27T17:12:29.723871+08:00 # from: Justice DsmController Service (2.4.0) # Copyright (c) 2018 - 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from ....core import Model class ModelsDeploymentConfig(Model): """Models deployment config Properties: buffer_count: (buffer_count) REQUIRED int configuration: (configuration) REQUIRED str game_version: (game_version) REQUIRED str max_count: (max_count) REQUIRED int min_count: (min_count) REQUIRED int regions: (regions) REQUIRED List[str] """ # region fields buffer_count: int # REQUIRED configuration: str # REQUIRED game_version: str # REQUIRED max_count: int # REQUIRED min_count: int # REQUIRED regions: List[str] # REQUIRED # endregion fields # region with_x methods def with_buffer_count(self, value: int) -> ModelsDeploymentConfig: self.buffer_count = value return self def with_configuration(self, value: str) -> ModelsDeploymentConfig: self.configuration = value return self def with_game_version(self, value: str) -> ModelsDeploymentConfig: self.game_version = value return self def with_max_count(self, value: int) -> ModelsDeploymentConfig: self.max_count = value return self def with_min_count(self, value: int) -> ModelsDeploymentConfig: self.min_count = value return self def with_regions(self, value: List[str]) -> ModelsDeploymentConfig: self.regions = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result = {} if hasattr(self, "buffer_count") and self.buffer_count: result["buffer_count"] = int(self.buffer_count) elif include_empty: result["buffer_count"] = int() if hasattr(self, "configuration") and self.configuration: result["configuration"] = str(self.configuration) elif include_empty: result["configuration"] = str() if hasattr(self, "game_version") and self.game_version: result["game_version"] = str(self.game_version) elif include_empty: result["game_version"] = str() if hasattr(self, "max_count") and self.max_count: result["max_count"] = int(self.max_count) elif include_empty: result["max_count"] = int() if hasattr(self, "min_count") and self.min_count: result["min_count"] = int(self.min_count) elif include_empty: result["min_count"] = int() if hasattr(self, "regions") and self.regions: result["regions"] = [str(i0) for i0 in self.regions] elif include_empty: result["regions"] = [] return result # endregion to methods # region static methods @classmethod def create( cls, buffer_count: int, configuration: str, game_version: str, max_count: int, min_count: int, regions: List[str], ) -> ModelsDeploymentConfig: instance = cls() instance.buffer_count = buffer_count instance.configuration = configuration instance.game_version = game_version instance.max_count = max_count instance.min_count = min_count instance.regions = regions return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> ModelsDeploymentConfig: instance = cls() if not dict_: return instance if "buffer_count" in dict_ and dict_["buffer_count"] is not None: instance.buffer_count = int(dict_["buffer_count"]) elif include_empty: instance.buffer_count = int() if "configuration" in dict_ and dict_["configuration"] is not None: instance.configuration = str(dict_["configuration"]) elif include_empty: instance.configuration = str() if "game_version" in dict_ and dict_["game_version"] is not None: instance.game_version = str(dict_["game_version"]) elif include_empty: instance.game_version = str() if "max_count" in dict_ and dict_["max_count"] is not None: instance.max_count = int(dict_["max_count"]) elif include_empty: instance.max_count = int() if "min_count" in dict_ and dict_["min_count"] is not None: instance.min_count = int(dict_["min_count"]) elif include_empty: instance.min_count = int() if "regions" in dict_ and dict_["regions"] is not None: instance.regions = [str(i0) for i0 in dict_["regions"]] elif include_empty: instance.regions = [] return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "buffer_count": "buffer_count", "configuration": "configuration", "game_version": "game_version", "max_count": "max_count", "min_count": "min_count", "regions": "regions", } # endregion static methods
py
b413df796c2142c8c90508e46f967c6fa01fb02e
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' argparser.py: HERON RC parser support for specifying config level arguments in an RC file.''' import argparse import collections import json import os import re import sys from heron.common.src.python.utils.log import Log import heron.tools.common.src.python.utils.config as config ########################################################################## # Run the command ########################################################################## # pylint: disable=invalid-name HERON_RC = os.path.join(os.path.expanduser('~'), '.heronrc') # pylint: disable=anomalous-backslash-in-string # pylint: disable=invalid-name heron_command_pattern = re.compile('(^[^:]*):([^:]*):([^\s]*) (.*)') filters = ['^@'] expressions = [re.compile(x) for x in filters] help_epilog = '''Getting more help: heron help <command> Prints help and options for <command> For detailed documentation, go to http://heronstreaming.io''' class HeronArgumentParser(argparse.ArgumentParser): """ HERON RC parser support for specifying config level arguments in an RC file. check README.md. """ cmdmap = collections.defaultdict(dict) """ HERON RC parser support for specifying config level arguments in an RC file. check README.md. """ def __init__(self, *args, **kwargs): rcfile = HeronArgumentParser.getAndRemoveKey(kwargs, "rcfile") self.rccommand = HeronArgumentParser.getAndRemoveKey( kwargs, "rccommand") self.rcclusterrole = HeronArgumentParser.getAndRemoveKey( kwargs, "rcclusterrole") HeronArgumentParser.initializeFromRC(rcfile) super(HeronArgumentParser, self).__init__(*args, **kwargs) @classmethod def remove_comments(cls, string): pattern = r"(\#.*$)" # first group captures quoted strings (double or single) # second group captures comments (//single-line or /* multi-line */) regex = re.compile(pattern, re.MULTILINE | re.DOTALL) def _replacer(match): # if the 2nd group (capturing comments) is not None, # it means we have captured a non-quoted (real) comment string. if match.group(1) is not None: return "" # so we will return empty to remove the comment else: # otherwise, we will return the 1st group return match.group(1) # captured quoted-string return regex.sub(_replacer, string) @classmethod def getAndRemoveKey(cls, dictionary, key): val = None if key in dictionary: val = dictionary[key] del dictionary[key] return val # tear down @classmethod def clear(cls): cls.cmdmap.clear() # initialize the command map from heron rc file in the parser, # that can be later used for command substitution during parse_args phase # patterns @classmethod def initializeFromRC(cls, rcfile): if len(cls.cmdmap) > 0: return effective_rc = (rcfile, HERON_RC)[rcfile is None] Log.debug('Effective RC file is %s', effective_rc) if os.path.exists(effective_rc): with open(effective_rc) as f: cls.cmdmap['*']['*'] = collections.defaultdict(dict) cls.cmdmap['*']['*']['*'] = '' for line in f: m = heron_command_pattern.match(line) app, value, command, env = '', '', '', '' if m is not None: value = cls.remove_comments(m.group(4).rstrip(os.linesep)) app = (m.group(1), '')[m.group(1) is None or m.group(1) == ''] command = (m.group(2), '')[m.group(2) is None or m.group(1) == ''] env = (m.group(3), '')[m.group(3) is None or m.group(2) == ''] else: continue # make sure that all the single args have a boolean value # associated so that we can load the args to a key value # structure args_list = config.insert_bool_values(value.split()) args_list_string = ' '.join(args_list) if not command or not app or not env: Log.warn("heronrc config entry %s does not have key parameters (command:app:env) ", line) continue if app not in cls.cmdmap: cls.cmdmap[app] = collections.defaultdict(dict) if command in cls.cmdmap[app] and env in cls.cmdmap[app][command]: cls.cmdmap[app][command][env] = cls.cmdmap[app][command][env] + ' ' + args_list_string else: cls.cmdmap[app][command][env] = args_list_string Log.debug("RC cmdmap %s", json.dumps(cls.cmdmap)) else: Log.debug("%s is not an existing file", effective_rc) # for each command / cluster-role-env combination, get the commands from heronrc # remove any duplicates that have already been supplied already and # present in the command-dictionary @classmethod def get_args_for_command_role(cls, app, command, role): args_for_command_role = '' if app in cls.cmdmap and command in cls.cmdmap[app] and role in cls.cmdmap[app][command]: args_for_command_role = (cls.cmdmap[app][command][role], args_for_command_role)[cls.cmdmap[app][command][role] is None] return args_for_command_role.split() # this is invoked when the parser.parse_args is called # apply the commands in the following precedence order # use the defaults in the command line def _read_args_from_files(self, arg_strings): new_arg_strings = [] command = self.rccommand if len(sys.argv) > 1: command = (sys.argv[1], self.rccommand)[self.rccommand is not None] role = self.rcclusterrole if len(sys.argv) > 2: role = (sys.argv[2], self.rcclusterrole)[self.rccommand is not None] app = self.prog new_arg_strings.extend( self.get_args_for_command_role(app, command, role)) new_arg_strings.extend( self.get_args_for_command_role(app, command, '*')) new_arg_strings.extend(self.get_args_for_command_role(app, '*', '*')) new_arg_strings.extend(self.get_args_for_command_role('*', '*', '*')) arg_strings.extend(new_arg_strings) Log.debug("heronparser: _read_args_from_files : %s %s %d %s %s %s %s", arg_strings, new_arg_strings, len(sys.argv), sys.argv, app, command, role) return arg_strings # get the positional arguments for the given sub parser, remove the known obvious def get_positional_args(self): positional_args_map = collections.defaultdict(dict) for key in self._actions: # pylint: disable=protected-access if isinstance(key, argparse._StoreAction) and len(key.option_strings) == 0: if key.dest == 'cluster/[role]/[env]': continue positional_args_map['--'+key.dest] = key.dest Log.debug("get_positional_args : key: %s, dest : %s", key, key.dest) return positional_args_map def parse_known_args(self, args=None, namespace=None): namespace, args = super(HeronArgumentParser, self).parse_known_args(args, namespace) positional_args_map = self.get_positional_args() if self.prog != 'heron': ## sub parser specific validation Log.debug('sub parser expansion %s %s', self.prog, args) ## if the expanded args contains a optional equivalent of a positional argument ## i.e --topology-name xyz for positional argument topology-name ## need to prevent that for that sub parser. bail out for key in args: if key in positional_args_map: raise ValueError( 'positional argument for command {} : {} specified in heronrc'.format( self.prog, positional_args_map[key])) return namespace, args def main(): parser = HeronArgumentParser( prog='heron', epilog=help_epilog, formatter_class=config.SubcommandHelpFormatter, fromfile_prefix_chars='@', add_help=False, rcfile="./.heronrc") parser.add_subparsers( title="Available commands", metavar='<command> <options>') args, unknown_args = parser.parse_known_args() Log.info("parse results args: %s unknown: %s ", args, unknown_args) if __name__ == "__main__": sys.exit(main())
py
b413dffc3c4405ba0e18621dd7bed956b4d9462e
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DO NOT EDIT. THIS FILE WAS AUTOGENERATED FROM templates/instrumentation_setup.py.txt. # RUN `python scripts/generate_setup.py` TO REGENERATE. import distutils.cmd import json import os from configparser import ConfigParser import setuptools config = ConfigParser() config.read("setup.cfg") # We provide extras_require parameter to setuptools.setup later which # overwrites the extras_require section from setup.cfg. To support extras_require # section in setup.cfg, we load it here and merge it with the extras_require param. extras_require = {} if "options.extras_require" in config: for key, value in config["options.extras_require"].items(): extras_require[key] = [v for v in value.split("\n") if v.strip()] BASE_DIR = os.path.dirname(__file__) PACKAGE_INFO = {} VERSION_FILENAME = os.path.join( BASE_DIR, "src", "opentelemetry", "instrumentation", "httpx", "version.py" ) with open(VERSION_FILENAME, encoding="utf-8") as f: exec(f.read(), PACKAGE_INFO) PACKAGE_FILENAME = os.path.join( BASE_DIR, "src", "opentelemetry", "instrumentation", "httpx", "package.py" ) with open(PACKAGE_FILENAME, encoding="utf-8") as f: exec(f.read(), PACKAGE_INFO) # Mark any instruments/runtime dependencies as test dependencies as well. extras_require["instruments"] = PACKAGE_INFO["_instruments"] test_deps = extras_require.get("test", []) for dep in extras_require["instruments"]: test_deps.append(dep) extras_require["test"] = test_deps class JSONMetadataCommand(distutils.cmd.Command): description = ( "print out package metadata as JSON. This is used by OpenTelemetry dev scripts to ", "auto-generate code in other places", ) user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): metadata = { "name": config["metadata"]["name"], "version": PACKAGE_INFO["__version__"], "instruments": PACKAGE_INFO["_instruments"], } print(json.dumps(metadata)) setuptools.setup( cmdclass={"meta": JSONMetadataCommand}, version=PACKAGE_INFO["__version__"], extras_require=extras_require, )
py
b413e0d286a5c1127b1fddc2cb4c440f890710d9
# Generated by Django 3.2.5 on 2021-07-05 18:38 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
py
b413e20048b7e470e0de37146bacd4904d67319b
checkpoint_config = dict(interval=100) log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = None load_from = None resume_from = None workflow = [('train', 1)] lr = 1e-3 optimizer = dict(type='Adam', lr=lr, weight_decay=0) optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) lr_config = dict(policy='step', warmup=None, step=[24, 32]) # runtime settings total_epochs = 200 model = dict(type='CategoryPPF', category=2) train_dataset = 'ShapeNetDatasetForPPF' data = dict( samples_per_gpu=1, workers_per_gpu=0, train=dict(type=train_dataset, category=2, data_root='/hdd0/data/shapenet_v2/ShapeNetCore.v2', ann_file='/hdd0/data/ppf_dataset/shapenet_train.txt'), ) gpu_ids = [0] seed = 0
py
b413e243c189c3b7bdb8f8bd2d072844de92a73b
from django.conf.urls import url from django.urls import include from rest_framework import routers from rest_framework.authtoken import views as authtoken_views from oldp.api.views import CourtViewSet, CityViewSet, StateViewSet, CountryViewSet from oldp.apps.accounts.api_views import UserViewSet from oldp.apps.annotations.api_views import CaseAnnotationViewSet, AnnotationLabelViewSet, CaseMarkerViewSet from oldp.apps.cases.api_views import CaseViewSet, CaseSearchViewSet from oldp.apps.laws.api_views import LawSearchViewSet, LawBookViewSet, LawViewSet from . import schema_view router = routers.DefaultRouter() # Search views (must be declared before model views) router.register(r'laws/search', LawSearchViewSet, base_name='law-search') router.register(r'cases/search', CaseSearchViewSet, base_name='case-search') # Model views router.register(r'users', UserViewSet) router.register(r'laws', LawViewSet) router.register(r'law_books', LawBookViewSet) router.register(r'cases', CaseViewSet) router.register(r'courts', CourtViewSet) router.register(r'cities', CityViewSet) router.register(r'states', StateViewSet) router.register(r'countries', CountryViewSet) router.register(r'annotation_labels', AnnotationLabelViewSet) router.register(r'case_annotations', CaseAnnotationViewSet) router.register(r'case_markers', CaseMarkerViewSet) urlpatterns = [ url(r'^schema(?P<format>\.json|\.yaml)$', schema_view.without_ui(cache_timeout=None), name='schema-json'), url(r'^schema/$', schema_view.with_ui('swagger', cache_timeout=None), name='schema-swagger-ui'), url(r'^docs/$', schema_view.with_ui('redoc', cache_timeout=None), name='schema-redoc'), url(r'^token-auth/', authtoken_views.obtain_auth_token), url(r'^', include(router.urls)), ]
py
b413e2b876f1fe3e24ed823b7569540a87a9eed4
import mysql.connector import logging import sys, traceback from mysql.connector import errorcode from crawler_config import * log = logging.getLogger('rss_crawler') ##################################### # template method to run a function in a transaction on provided cnx ##################################### def run_in_transaction(func, cnx, *args): try: # print '>> run_in_transaction: ', func, '; cnx=', cnx if args: value = func(args, cnx) else: value =func(cnx) except KeyboardInterrupt: log.warning('WARN: CTRL-C detected. Program will exit!') cnx.rollback() # rollback transaction if interrupted by user cnx.close() exit(1) except: # traceback.print_exc(file=sys.stdout) # print exception to console log.error('really bad. program will exit now!', exc_info=True) cnx.rollback() exit(2) # restart process again ??? Recursive call is ok ??? # if args: # run_in_transaction(func, cnx, args) # else: # run_in_transaction(func, cnx) else: cnx.commit() # commit transaction if all good # return same values as the function # print '>> run_in_transaction: ', func, '; cnx=', cnx, ' COMMIT ------> RETURNS: ', value return value ########################## # get maildb connection ########################## def get_crawlerdb_connection(): cnx = mysql.connector.connect(**CRAWLER_DB_CONFIG) return cnx ###################### # check if ###################### def urlExists(url, table, cursor): # log.debug('urlExists: ' + url) sql = "SELECT url FROM {} WHERE hash = MD5(%s)".format(table) cursor.execute(sql, (url,)) result = cursor.fetchone() return result ########################## # get one url from todo ########################## def getTodo(cursor): cursor.execute("SELECT url FROM todo LIMIT 1") result = cursor.fetchone() if result: return result[0] ################ # count records ############### def count(table, cursor): cursor.execute("SELECT count(1) FROM {}".format(table)) return cursor.fetchone()[0] ##################3 # remove a url from todo list ################### def removeTodo(url, cursor, reason): cursor.execute("DELETE FROM todo WHERE hash=MD5(%s)",(url,)) addURL(url, 'crawled', cursor, reason) #################################################### # add url to a table if does not exists already (feeds, bad_feeds, crawled, todo) ##################################################### def addURL(url, table, cursor, reason='', lang=''): # print 'addURL: ', url, ' table=', table, ' reason=', reason if not urlExists(url, table, cursor): if table =='bad_feeds': sql = "INSERT INTO {}(url, hash, reason) VALUES(%s, MD5(%s), %s)".format(table) reason = reason[:1000] # truncate message if > 1000 characters cursor.execute(sql, (url, url, reason)) elif table == 'crawled': sql = "INSERT INTO {}(url, hash, status) VALUES(%s, MD5(%s), %s)".format(table) reason = reason[:1000] # truncate message if > 1000 characters cursor.execute(sql, (url, url, reason)) elif table == 'feeds': sql = "INSERT INTO {}(url, lang, hash) VALUES(%s, %s, MD5(%s))".format(table) cursor.execute(sql, (url, lang, url)) else: sql = "INSERT INTO {}(url, hash) VALUES(%s, MD5(%s))".format(table) cursor.execute(sql, (url, url)) ############################ # ############################ def acceptPageFromDomain(name, cursor): cursor.execute("SELECT page_count FROM domains where hash = MD5(%s)", (name,)) page_count = cursor.fetchone() if page_count: if page_count[0] < MAX_PAGES_PER_DOMAIN: # update database cursor.execute("UPDATE domains set page_count=page_count+1 where hash = MD5(%s)",(name,)) return True else: cursor.execute("INSERT INTO domains(name, hash) VALUES(%s, MD5(%s))", (name, name)) return True # by default return false return False ################################# # creates the database ################################# def create_database(cnx): cursor = cnx.cursor(buffered=True) ################################################## def _create_db(): try: cursor.execute( "CREATE DATABASE IF NOT EXISTS {} DEFAULT CHARACTER SET 'utf8'".format(CRAWLER_DB_CONFIG['database'])) log.info("OK: create database '{}'".format(CRAWLER_DB_CONFIG['database'])) except mysql.connector.Error as err: if (err.errno != 1007): # 1007: Can't create database ; database exists log.error("ERROR: Failed creating database: {}".format(err), exc_info=True) # traceback.print_exc(file=sys.stdout) exit(1) ################################################## def _create_db_user(): try: cursor.execute( "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP ON {}.* TO '{}'@'localhost' IDENTIFIED by '{}'".format(CRAWLER_DB_CONFIG['database'], CRAWLER_DB_CONFIG['user'], CRAWLER_DB_CONFIG['password'])) cursor.execute( "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP ON {}.* TO '{}'@'%' IDENTIFIED by '{}'".format(CRAWLER_DB_CONFIG['database'], CRAWLER_DB_CONFIG['user'], CRAWLER_DB_CONFIG['password'])) log.info("OK: create database user '{}'".format(CRAWLER_DB_CONFIG['user']) ) except mysql.connector.Error as err: log.error("ERROR: Failed creating user: {}".format(err), exc_info=True) #traceback.print_exc(file=sys.stdout) exit(1) ################################################## def _setup_all(): # create database _create_db() # create db user and privileges _create_db_user() # create database tables if yes crawlerdb_cnx = get_crawlerdb_connection() run_in_transaction(create_database_tables, crawlerdb_cnx) crawlerdb_cnx.close() ################################################## # check if database exists cursor.execute("SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = '{}'".format(CRAWLER_DB_CONFIG['database'])) if cursor.fetchone(): if GLOBAL_CONFIG['drop_existing_database']: cursor.execute("DROP DATABASE {}".format(CRAWLER_DB_CONFIG['database'])) log.info("OK: drop database '{}'".format(CRAWLER_DB_CONFIG['database'])) _setup_all() else: log.warning("MySQL database '{}' aready exists! Existing database tables will be used for crawling!".format(CRAWLER_DB_CONFIG['database'])) else: #database does not exist _setup_all() # make sure to close the cursor cursor.close() ########################### # create db tables ########################### def create_database_tables(cnx): cursor = cnx.cursor(buffered=True) # print("OK: create_database_tables: {}".format(cnx.database)) TABLES = {} TABLES['crawled'] = ( "CREATE TABLE `crawled` (" " `pkid` bigint unsigned NOT NULL AUTO_INCREMENT," " `url` varchar(3000) NOT NULL," " `status` varchar(1000) NOT NULL," " `hash` varchar(32) NOT NULL," " PRIMARY KEY (`pkid`)," " UNIQUE KEY `hash` (`hash`)" ") ENGINE=InnoDB") TABLES['todo'] = ( "CREATE TABLE `todo` (" " `pkid` bigint unsigned NOT NULL AUTO_INCREMENT," " `url` varchar(3000) NOT NULL," " `hash` varchar(32) NOT NULL," " PRIMARY KEY (`pkid`)," " UNIQUE KEY `hash` (`hash`)" ") ENGINE=InnoDB") TABLES['feeds'] = ( "CREATE TABLE `feeds` (" " `pkid` bigint unsigned NOT NULL AUTO_INCREMENT," " `url` varchar(3000) NOT NULL," " `lang` varchar(50)," " `hash` varchar(32) NOT NULL," " PRIMARY KEY (`pkid`)," " UNIQUE KEY `hash` (`hash`)" ") ENGINE=InnoDB") TABLES['bad_feeds'] = ( "CREATE TABLE `bad_feeds` (" " `pkid` bigint unsigned NOT NULL AUTO_INCREMENT," " `url` varchar(3000) NOT NULL," " `reason` varchar(1000) NOT NULL DEFAULT ''," " `hash` varchar(32) NOT NULL," " PRIMARY KEY (`pkid`)," " UNIQUE KEY `hash` (`hash`)" ") ENGINE=InnoDB") TABLES['domains'] = ( "CREATE TABLE `domains` (" " `pkid` bigint unsigned NOT NULL AUTO_INCREMENT," " `name` varchar(1000) NOT NULL," " `page_count` smallint(3) NOT NULL DEFAULT 1," " `hash` varchar(32) NOT NULL," " PRIMARY KEY (`pkid`)," " UNIQUE KEY `hash` (`hash`)" ") ENGINE=InnoDB") ### creating tables ========= for name, ddl in TABLES.iteritems(): try: cursor.execute(ddl) except mysql.connector.Error as err: if err.errno == errorcode.ER_TABLE_EXISTS_ERROR: log.warning("WARN: database table '{}' already exists.".format(name)) else: log.error('ERROR create_database_tables -> for table:' + name, exc_info=True) exit(1) else: log.info("OK: create table '{}'".format(name)) #close cursor in the end cursor.close() ###################### ###################### def prepare_database(): log.debug('prepare_database') cnx = mysql.connector.connect(**ROOT_DB_CONFIG) run_in_transaction(create_database, cnx) cnx.close() ########################### # if executed as a script ########################### if __name__ == "__main__": prepare_database();
py
b413e319763f8a8b4cfa3d0889e573c01914faac
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from collections import Counter import os from argparse import Namespace flags = Namespace( train_file='harry.txt', seq_size=32, batch_size=16, embedding_size=64, lstm_size=64, gradients_norm=5, initial_words=['I', 'am'], predict_top_k=5, checkpoint_path='checkpoint', ) def get_data_from_file(train_file, batch_size, seq_size): with open(train_file, 'r', encoding='utf-8') as f: text = f.read() text = text.split() word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {k: w for k, w in enumerate(sorted_vocab)} vocab_to_int = {w: k for k, w in int_to_vocab.items()} n_vocab = len(int_to_vocab) print('Vocabulary size', n_vocab) int_text = [vocab_to_int[w] for w in text] num_batches = int(len(int_text) / (seq_size * batch_size)) in_text = int_text[:num_batches * batch_size * seq_size] out_text = np.zeros_like(in_text) out_text[:-1] = in_text[1:] out_text[-1] = in_text[0] in_text = np.reshape(in_text, (batch_size, -1)) out_text = np.reshape(out_text, (batch_size, -1)) return int_to_vocab, vocab_to_int, n_vocab, in_text, out_text def get_batches(in_text, out_text, batch_size, seq_size): num_batches = np.prod(in_text.shape) // (seq_size * batch_size) for i in range(0, num_batches * seq_size, seq_size): yield in_text[:, i:i+seq_size], out_text[:, i:i+seq_size] class RNNModule(nn.Module): def __init__(self, n_vocab, seq_size, embedding_size, lstm_size): super(RNNModule, self).__init__() self.seq_size = seq_size self.lstm_size = lstm_size self.embedding = nn.Embedding(n_vocab, embedding_size) self.lstm = nn.LSTM(embedding_size, lstm_size, batch_first=True) self.dense = nn.Linear(lstm_size, n_vocab) def forward(self, x, prev_state): embed = self.embedding(x) output, state = self.lstm(embed, prev_state) logits = self.dense(output) return logits, state def zero_state(self, batch_size): return (torch.zeros(1, batch_size, self.lstm_size), torch.zeros(1, batch_size, self.lstm_size)) def get_loss_and_train_op(net, lr=0.001): criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=lr) return criterion, optimizer def predict(device, net, words, n_vocab, vocab_to_int, int_to_vocab, top_k=5): net.eval() words = ['I', 'am'] state_h, state_c = net.zero_state(1) state_h = state_h.to(device) state_c = state_c.to(device) for w in words: ix = torch.tensor([[vocab_to_int[w]]]).to(device) output, (state_h, state_c) = net(ix, (state_h, state_c)) _, top_ix = torch.topk(output[0], k=top_k) choices = top_ix.tolist() choice = np.random.choice(choices[0]) words.append(int_to_vocab[choice]) for _ in range(100): ix = torch.tensor([[choice]]).to(device) output, (state_h, state_c) = net(ix, (state_h, state_c)) _, top_ix = torch.topk(output[0], k=top_k) choices = top_ix.tolist() choice = np.random.choice(choices[0]) words.append(int_to_vocab[choice]) print(' '.join(words).encode('utf-8')) def main(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') int_to_vocab, vocab_to_int, n_vocab, in_text, out_text = get_data_from_file( flags.train_file, flags.batch_size, flags.seq_size) net = RNNModule(n_vocab, flags.seq_size, flags.embedding_size, flags.lstm_size) net = net.to(device) criterion, optimizer = get_loss_and_train_op(net, 0.01) iteration = 0 for e in range(200): batches = get_batches(in_text, out_text, flags.batch_size, flags.seq_size) state_h, state_c = net.zero_state(flags.batch_size) state_h = state_h.to(device) state_c = state_c.to(device) for x, y in batches: iteration += 1 net.train() optimizer.zero_grad() x = torch.tensor(x).to(device) y = torch.tensor(y).to(device) logits, (state_h, state_c) = net(x, (state_h, state_c)) loss = criterion(logits.transpose(1, 2), y) loss_value = loss.item() loss.backward() state_h = state_h.detach() state_c = state_c.detach() _ = torch.nn.utils.clip_grad_norm_( net.parameters(), flags.gradients_norm) optimizer.step() if iteration % 100 == 0: print('Epoch: {}/{}'.format(e, 200), 'Iteration: {}'.format(iteration), 'Loss: {}'.format(loss_value)) if iteration % 1000 == 0: predict(device, net, flags.initial_words, n_vocab, vocab_to_int, int_to_vocab, top_k=5) torch.save(net.state_dict(), 'checkpoint_pt/model-{}.pth'.format(iteration)) if __name__ == '__main__': main()
py
b413e52d69f794dc9b25173f6e99e148138f7903
#!/usr/bin/env python # -*- coding: utf-8 -*- import logforce_settings as settings from logforce_request import LogforceRequest def main(): #Base url is given here request = LogforceRequest(base_url=settings.URLS['development'], client_version=settings.CLIENT_VERSION ) #Authentication is required to make request to Logforce server. #Authentication cookies are stored in request._authentication_request #those cookies are passed to every service request. response = request.authenticate(username='[email protected]', password='Logf2014') #Service url is concatenated with base url to form whole url address service_url = '/server/services/1006/maps/vehicle/2916746?_=1460107399102' #Response JSON can be printed out like this, the last response object #is stored in request._reqeuest variable. json = request.get(service_url).pretty_response() print(json) if __name__ == '__main__': main()
py
b413e65f3cf23cc6c34df801548bae7ad8deb5b5
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import unittest import itertools import pandas as pd import numpy as np import random import string import pyarrow.parquet as pq import numba import sdc import os from sdc import hiframes from sdc.str_arr_ext import StringArray from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, dist_IR_contains, get_start_end) class TestHiFrames(unittest.TestCase): def test_column_list_select2(self): # make sure SDC copies the columns like Pandas does def test_impl(df): df2 = df[['A']] df2['A'] += 10 return df2.A, df.A hpat_func = sdc.jit(test_impl) n = 11 df = pd.DataFrame( {'A': np.arange(n), 'B': np.ones(n), 'C': np.random.ranf(n)}) np.testing.assert_array_equal(hpat_func(df.copy())[1], test_impl(df)[1]) def test_pd_DataFrame_from_series_par(self): def test_impl(n): S1 = pd.Series(np.ones(n)) S2 = pd.Series(np.random.ranf(n)) df = pd.DataFrame({'A': S1, 'B': S2}) return df.A.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 1) def test_getitem_bool_series(self): def test_impl(df): return df['A'][df['B']].values hpat_func = sdc.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': [True, False, True]}) np.testing.assert_array_equal(test_impl(df), hpat_func(df)) def test_fillna(self): def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) B = df.A.fillna(5.0) return B.sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_fillna_inplace(self): def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) df.A.fillna(5.0, inplace=True) return df.A.sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_column_mean(self): def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) return df.A.mean() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_column_var(self): def test_impl(): A = np.array([1., 2., 3.]) A[0] = 4.0 df = pd.DataFrame({'A': A}) return df.A.var() hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(), test_impl()) def test_column_std(self): def test_impl(): A = np.array([1., 2., 3.]) A[0] = 4.0 df = pd.DataFrame({'A': A}) return df.A.std() hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(), test_impl()) def test_column_map(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) df['B'] = df.A.map(lambda a: 2 * a) return df.B.sum() n = 121 hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_column_map_arg(self): def test_impl(df): df['B'] = df.A.map(lambda a: 2 * a) return n = 121 df1 = pd.DataFrame({'A': np.arange(n)}) df2 = pd.DataFrame({'A': np.arange(n)}) hpat_func = sdc.jit(test_impl) hpat_func(df1) self.assertTrue(hasattr(df1, 'B')) test_impl(df2) np.testing.assert_equal(df1.B.values, df2.B.values) def test_cumsum(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df.A.cumsum() return Ac.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_array_OneDs(), 2) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 2) self.assertTrue(dist_IR_contains('dist_cumsum')) def test_column_distribution(self): # make sure all column calls are distributed def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df.A.fillna(5.0, inplace=True) DF = df.A.fillna(5.0) s = DF.sum() m = df.A.mean() v = df.A.var() t = df.A.std() Ac = df.A.cumsum() return Ac.sum() + s + m + v + t hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(dist_IR_contains('dist_cumsum')) def test_quantile_parallel(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float64)}) return df.A.quantile(.25) hpat_func = sdc.jit(test_impl) n = 1001 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip('Error - fix needed\n' 'NUMA_PES=3 build') def test_quantile_parallel_float_nan(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float32)}) df.A[0:100] = np.nan df.A[200:331] = np.nan return df.A.quantile(.25) hpat_func = sdc.jit(test_impl) n = 1001 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip('Error - fix needed\n' 'NUMA_PES=3 build') def test_quantile_parallel_int(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.int32)}) return df.A.quantile(.25) hpat_func = sdc.jit(test_impl) n = 1001 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip('Error - fix needed\n' 'NUMA_PES=3 build') def test_quantile_sequential(self): def test_impl(A): df = pd.DataFrame({'A': A}) return df.A.quantile(.25) hpat_func = sdc.jit(test_impl) n = 1001 A = np.arange(0, n, 1, np.float64) np.testing.assert_almost_equal(hpat_func(A), test_impl(A)) def test_nunique(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) df.A[2] = 0 return df.A.nunique() hpat_func = sdc.jit(test_impl) n = 1001 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) # test compile again for overload related issues hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_nunique_parallel(self): # TODO: test without file def test_impl(): df = pq.read_table('example.parquet').to_pandas() return df.four.nunique() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) # test compile again for overload related issues hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) def test_nunique_str(self): def test_impl(n): df = pd.DataFrame({'A': ['aa', 'bb', 'aa', 'cc', 'cc']}) return df.A.nunique() hpat_func = sdc.jit(test_impl) n = 1001 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) # test compile again for overload related issues hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) @unittest.skip('AssertionError - fix needed\n' '5 != 3\n') def test_nunique_str_parallel(self): # TODO: test without file def test_impl(): df = pq.read_table('example.parquet').to_pandas() return df.two.nunique() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) # test compile again for overload related issues hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) def test_unique_parallel(self): # TODO: test without file def test_impl(): df = pq.read_table('example.parquet').to_pandas() return (df.four.unique() == 3.0).sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) @unittest.skip('AssertionError - fix needed\n' '2 != 1\n') def test_unique_str_parallel(self): # TODO: test without file def test_impl(): df = pq.read_table('example.parquet').to_pandas() return (df.two.unique() == 'foo').sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) def test_describe(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float64)}) return df.A.describe() hpat_func = sdc.jit(test_impl) n = 1001 hpat_func(n) # XXX: test actual output self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_str_contains_regex(self): def test_impl(): A = StringArray(['ABC', 'BB', 'ADEF']) df = pd.DataFrame({'A': A}) B = df.A.str.contains('AB*', regex=True) return B.sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), 2) def test_str_contains_noregex(self): def test_impl(): A = StringArray(['ABC', 'BB', 'ADEF']) df = pd.DataFrame({'A': A}) B = df.A.str.contains('BB', regex=False) return B.sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), 1) def test_str_replace_regex(self): def test_impl(df): return df.A.str.replace('AB*', 'EE', regex=True) df = pd.DataFrame({'A': ['ABCC', 'CABBD']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_replace_noregex(self): def test_impl(df): return df.A.str.replace('AB', 'EE', regex=False) df = pd.DataFrame({'A': ['ABCC', 'CABBD']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_replace_regex_parallel(self): def test_impl(df): B = df.A.str.replace('AB*', 'EE', regex=True) return B n = 5 A = ['ABCC', 'CABBD', 'CCD', 'CCDAABB', 'ED'] start, end = get_start_end(n) df = pd.DataFrame({'A': A[start:end]}) hpat_func = sdc.jit(distributed={'df', 'B'})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) self.assertEqual(count_array_REPs(), 3) self.assertEqual(count_parfor_REPs(), 0) def test_str_split(self): def test_impl(df): return df.A.str.split(',') df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D', 'G', '', 'g,f']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_split_default(self): def test_impl(df): return df.A.str.split() df = pd.DataFrame({'A': ['AB CC', 'C ABB D', 'G ', ' ', 'g\t f']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_split_filter(self): def test_impl(df): B = df.A.str.split(',') df2 = pd.DataFrame({'B': B}) return df2[df2.B.str.len() > 1] df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D', 'G', '', 'g,f']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_frame_equal( hpat_func(df), test_impl(df).reset_index(drop=True)) def test_str_split_box_df(self): def test_impl(df): return pd.DataFrame({'B': df.A.str.split(',')}) df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df).B, test_impl(df).B, check_names=False) def test_str_split_unbox_df(self): def test_impl(df): return df.A.iloc[0] df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D']}) df2 = pd.DataFrame({'A': df.A.str.split(',')}) hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(df2), test_impl(df2)) def test_str_split_bool_index(self): def test_impl(df): C = df.A.str.split(',') return C[df.B == 'aa'] df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D'], 'B': ['aa', 'bb']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_split_parallel(self): def test_impl(df): B = df.A.str.split(',') return B n = 5 start, end = get_start_end(n) A = ['AB,CC', 'C,ABB,D', 'CAD', 'CA,D', 'AA,,D'] df = pd.DataFrame({'A': A[start:end]}) hpat_func = sdc.jit(distributed={'df', 'B'})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) self.assertEqual(count_array_REPs(), 3) self.assertEqual(count_parfor_REPs(), 0) def test_str_get(self): def test_impl(df): B = df.A.str.split(',') return B.str.get(1) df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_split(self): def test_impl(df): return df.A.str.split(',') df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal(hpat_func(df), test_impl(df), check_names=False) def test_str_get_parallel(self): def test_impl(df): A = df.A.str.split(',') B = A.str.get(1) return B n = 5 start, end = get_start_end(n) A = ['AB,CC', 'C,ABB,D', 'CAD,F', 'CA,D', 'AA,,D'] df = pd.DataFrame({'A': A[start:end]}) hpat_func = sdc.jit(distributed={'df', 'B'})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) self.assertEqual(count_array_REPs(), 3) self.assertEqual(count_parfor_REPs(), 0) def test_str_get_to_numeric(self): def test_impl(df): B = df.A.str.split(',') C = pd.to_numeric(B.str.get(1), errors='coerce') return C df = pd.DataFrame({'A': ['AB,12', 'C,321,D']}) hpat_func = sdc.jit(locals={'C': sdc.int64[:]})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_flatten(self): def test_impl(df): A = df.A.str.split(',') return pd.Series(list(itertools.chain(*A))) df = pd.DataFrame({'A': ['AB,CC', 'C,ABB,D']}) hpat_func = sdc.jit(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_str_flatten_parallel(self): def test_impl(df): A = df.A.str.split(',') B = pd.Series(list(itertools.chain(*A))) return B n = 5 start, end = get_start_end(n) A = ['AB,CC', 'C,ABB,D', 'CAD', 'CA,D', 'AA,,D'] df = pd.DataFrame({'A': A[start:end]}) hpat_func = sdc.jit(distributed={'df', 'B'})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) self.assertEqual(count_array_REPs(), 3) self.assertEqual(count_parfor_REPs(), 0) def test_to_numeric(self): def test_impl(df): B = pd.to_numeric(df.A, errors='coerce') return B df = pd.DataFrame({'A': ['123.1', '331.2']}) hpat_func = sdc.jit(locals={'B': sdc.float64[:]})(test_impl) pd.testing.assert_series_equal( hpat_func(df), test_impl(df), check_names=False) def test_1D_Var_len(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n) + 1.0}) df1 = df[df.A > 5] return len(df1.B) hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_rolling1(self): # size 3 without unroll def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)}) Ac = df.A.rolling(3).sum() return Ac.sum() hpat_func = sdc.jit(test_impl) n = 121 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) # size 7 with unroll def test_impl_2(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.rolling(7).sum() return Ac.sum() hpat_func = sdc.jit(test_impl) n = 121 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_rolling2(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df['moving average'] = df.A.rolling(window=5, center=True).mean() return df['moving average'].sum() hpat_func = sdc.jit(test_impl) n = 121 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_rolling3(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df.A.rolling(3, center=True).apply(lambda a: a[0] + 2 * a[1] + a[2]) return Ac.sum() hpat_func = sdc.jit(test_impl) n = 121 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip('Error - fix needed\n' 'NUMA_PES=3 build') def test_shift1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.shift(1) return Ac.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip('Error - fix needed\n' 'NUMA_PES=3 build') def test_shift2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.pct_change(1) return Ac.sum() hpat_func = sdc.jit(test_impl) n = 11 np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_df_input(self): def test_impl(df): return df.B.sum() n = 121 df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df), test_impl(df)) def test_df_input2(self): def test_impl(df): C = df.B == 'two' return C.sum() n = 11 df = pd.DataFrame({'A': np.random.ranf(3 * n), 'B': ['one', 'two', 'three'] * n}) hpat_func = sdc.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df), test_impl(df)) def test_df_input_dist1(self): def test_impl(df): return df.B.sum() n = 121 A = [3, 4, 5, 6, 1] B = [5, 6, 2, 1, 3] n = 5 start, end = get_start_end(n) df = pd.DataFrame({'A': A, 'B': B}) df_h = pd.DataFrame({'A': A[start:end], 'B': B[start:end]}) hpat_func = sdc.jit(distributed={'df'})(test_impl) np.testing.assert_almost_equal(hpat_func(df_h), test_impl(df)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_concat(self): def test_impl(n): df1 = pd.DataFrame({'key1': np.arange(n), 'A': np.arange(n) + 1.0}) df2 = pd.DataFrame({'key2': n - np.arange(n), 'A': n + np.arange(n) + 1.0}) df3 = pd.concat([df1, df2]) return df3.A.sum() + df3.key2.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) n = 11111 self.assertEqual(hpat_func(n), test_impl(n)) def test_concat_str(self): def test_impl(): df1 = pq.read_table('example.parquet').to_pandas() df2 = pq.read_table('example.parquet').to_pandas() A3 = pd.concat([df1, df2]) return (A3.two == 'foo').sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_concat_series(self): def test_impl(n): df1 = pd.DataFrame({'key1': np.arange(n), 'A': np.arange(n) + 1.0}) df2 = pd.DataFrame({'key2': n - np.arange(n), 'A': n + np.arange(n) + 1.0}) A3 = pd.concat([df1.A, df2.A]) return A3.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) n = 11111 self.assertEqual(hpat_func(n), test_impl(n)) def test_concat_series_str(self): def test_impl(): df1 = pq.read_table('example.parquet').to_pandas() df2 = pq.read_table('example.parquet').to_pandas() A3 = pd.concat([df1.two, df2.two]) return (A3 == 'foo').sum() hpat_func = sdc.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skipIf(int(os.getenv('SDC_NP_MPI', '0')) > 1, 'Test hangs on NP=2 and NP=3 on all platforms') def test_intraday(self): def test_impl(nsyms): max_num_days = 100 all_res = 0.0 for i in sdc.prange(nsyms): s_open = 20 * np.ones(max_num_days) s_low = 28 * np.ones(max_num_days) s_close = 19 * np.ones(max_num_days) df = pd.DataFrame({'Open': s_open, 'Low': s_low, 'Close': s_close}) df['Stdev'] = df['Close'].rolling(window=90).std() df['Moving Average'] = df['Close'].rolling(window=20).mean() df['Criteria1'] = (df['Open'] - df['Low'].shift(1)) < -df['Stdev'] df['Criteria2'] = df['Open'] > df['Moving Average'] df['BUY'] = df['Criteria1'] & df['Criteria2'] df['Pct Change'] = (df['Close'] - df['Open']) / df['Open'] df['Rets'] = df['Pct Change'][df['BUY']] all_res += df['Rets'].mean() return all_res hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_OneDs(), 0) self.assertEqual(count_parfor_OneDs(), 1) def test_var_dist1(self): def test_impl(A, B): df = pd.DataFrame({'A': A, 'B': B}) df2 = df.groupby('A', as_index=False)['B'].sum() # TODO: fix handling of df setitem to force match of array dists # probably with a new node that is appended to the end of basic block # df2['C'] = np.full(len(df2.B), 3, np.int8) # TODO: full_like for Series df2['C'] = np.full_like(df2.B.values, 3, np.int8) return df2 A = np.array([1, 1, 2, 3]) B = np.array([3, 4, 5, 6]) hpat_func = sdc.jit(locals={'A:input': 'distributed', 'B:input': 'distributed', 'df2:return': 'distributed'})(test_impl) start, end = get_start_end(len(A)) df2 = hpat_func(A[start:end], B[start:end]) # TODO: # pd.testing.assert_frame_equal( # hpat_func(A[start:end], B[start:end]), test_impl(A, B)) if __name__ == "__main__": unittest.main()