Datasets:
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: liar
pretty_name: LIAR
train-eval-index:
- config: default
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
statement: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
tags:
- fake-news-detection
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'false'
'1': half-true
'2': mostly-true
'3': 'true'
'4': barely-true
'5': pants-fire
- name: statement
dtype: string
- name: subject
dtype: string
- name: speaker
dtype: string
- name: job_title
dtype: string
- name: state_info
dtype: string
- name: party_affiliation
dtype: string
- name: barely_true_counts
dtype: float32
- name: false_counts
dtype: float32
- name: half_true_counts
dtype: float32
- name: mostly_true_counts
dtype: float32
- name: pants_on_fire_counts
dtype: float32
- name: context
dtype: string
splits:
- name: train
num_bytes: 2730651
num_examples: 10269
- name: test
num_bytes: 341414
num_examples: 1283
- name: validation
num_bytes: 341592
num_examples: 1284
download_size: 1013571
dataset_size: 3413657
Dataset Card for [Dataset Name]
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://sites.cs.ucsb.edu/~william/
- Repository:
- Paper: https://arxiv.org/abs/1705.00648
- Leaderboard:
- Point of Contact:
Dataset Summary
LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English.
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]
Contributions
Thanks to @hugoabonizio for adding this dataset.