Datasets:
Tasks:
Text Classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
fake-news-detection
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- found | |
language: | |
- en | |
license: | |
- unknown | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- text-classification | |
task_ids: [] | |
paperswithcode_id: liar | |
pretty_name: LIAR | |
train-eval-index: | |
- config: default | |
task: text-classification | |
task_id: multi_class_classification | |
splits: | |
train_split: train | |
eval_split: test | |
col_mapping: | |
statement: text | |
label: target | |
metrics: | |
- type: accuracy | |
name: Accuracy | |
- type: f1 | |
name: F1 macro | |
args: | |
average: macro | |
- type: f1 | |
name: F1 micro | |
args: | |
average: micro | |
- type: f1 | |
name: F1 weighted | |
args: | |
average: weighted | |
- type: precision | |
name: Precision macro | |
args: | |
average: macro | |
- type: precision | |
name: Precision micro | |
args: | |
average: micro | |
- type: precision | |
name: Precision weighted | |
args: | |
average: weighted | |
- type: recall | |
name: Recall macro | |
args: | |
average: macro | |
- type: recall | |
name: Recall micro | |
args: | |
average: micro | |
- type: recall | |
name: Recall weighted | |
args: | |
average: weighted | |
tags: | |
- fake-news-detection | |
dataset_info: | |
features: | |
- name: id | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
0: 'false' | |
1: half-true | |
2: mostly-true | |
3: 'true' | |
4: barely-true | |
5: pants-fire | |
- name: statement | |
dtype: string | |
- name: subject | |
dtype: string | |
- name: speaker | |
dtype: string | |
- name: job_title | |
dtype: string | |
- name: state_info | |
dtype: string | |
- name: party_affiliation | |
dtype: string | |
- name: barely_true_counts | |
dtype: float32 | |
- name: false_counts | |
dtype: float32 | |
- name: half_true_counts | |
dtype: float32 | |
- name: mostly_true_counts | |
dtype: float32 | |
- name: pants_on_fire_counts | |
dtype: float32 | |
- name: context | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 2730651 | |
num_examples: 10269 | |
- name: test | |
num_bytes: 341414 | |
num_examples: 1283 | |
- name: validation | |
num_bytes: 341592 | |
num_examples: 1284 | |
download_size: 1013571 | |
dataset_size: 3413657 | |
# Dataset Card for [Dataset Name] | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** https://sites.cs.ucsb.edu/~william/ | |
- **Repository:** | |
- **Paper:** https://arxiv.org/abs/1705.00648 | |
- **Leaderboard:** | |
- **Point of Contact:** | |
### Dataset Summary | |
LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment. | |
### Supported Tasks and Leaderboards | |
[More Information Needed] | |
### Languages | |
English. | |
## Dataset Structure | |
### Data Instances | |
[More Information Needed] | |
### Data Fields | |
[More Information Needed] | |
### Data Splits | |
[More Information Needed] | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
[More Information Needed] | |
### Citation Information | |
[More Information Needed] | |
### Contributions | |
Thanks to [@hugoabonizio](https://github.com/hugoabonizio) for adding this dataset. |