repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 39
1.84M
| func_code_tokens
listlengths 15
672k
| func_documentation_string
stringlengths 1
47.2k
| func_documentation_tokens
listlengths 1
3.92k
| split_name
stringclasses 1
value | func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|---|---|---|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_term_radial_distances
|
def section_term_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the termination sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ileaf)
|
python
|
def section_term_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ileaf)
|
[
"def",
"section_term_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"origin",
"=",
"None",
")",
":",
"return",
"section_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"origin",
"=",
"origin",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")"
] |
Get the radial distances of the termination sections for a collection of neurites
|
[
"Get",
"the",
"radial",
"distances",
"of",
"the",
"termination",
"sections",
"for",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L336-L339
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_bif_radial_distances
|
def section_bif_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the bifurcation sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ibifurcation_point)
|
python
|
def section_bif_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ibifurcation_point)
|
[
"def",
"section_bif_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"origin",
"=",
"None",
")",
":",
"return",
"section_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"origin",
"=",
"origin",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] |
Get the radial distances of the bifurcation sections for a collection of neurites
|
[
"Get",
"the",
"radial",
"distances",
"of",
"the",
"bifurcation",
"sections",
"for",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L342-L345
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
number_of_sections_per_neurite
|
def number_of_sections_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the number of sections per neurite in a collection of neurites'''
return list(sum(1 for _ in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
python
|
def number_of_sections_per_neurite(neurites, neurite_type=NeuriteType.all):
return list(sum(1 for _ in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
[
"def",
"number_of_sections_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"1",
"for",
"_",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] |
Get the number of sections per neurite in a collection of neurites
|
[
"Get",
"the",
"number",
"of",
"sections",
"per",
"neurite",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L348-L351
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
total_length_per_neurite
|
def total_length_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path length per neurite in a collection'''
return list(sum(s.length for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
python
|
def total_length_per_neurite(neurites, neurite_type=NeuriteType.all):
return list(sum(s.length for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
[
"def",
"total_length_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"s",
".",
"length",
"for",
"s",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] |
Get the path length per neurite in a collection
|
[
"Get",
"the",
"path",
"length",
"per",
"neurite",
"in",
"a",
"collection"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L354-L357
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
terminal_path_lengths_per_neurite
|
def terminal_path_lengths_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path lengths to each terminal point per neurite in a collection'''
return list(sectionfunc.section_path_length(s)
for n in iter_neurites(neurites, filt=is_type(neurite_type))
for s in iter_sections(n, iterator_type=Tree.ileaf))
|
python
|
def terminal_path_lengths_per_neurite(neurites, neurite_type=NeuriteType.all):
return list(sectionfunc.section_path_length(s)
for n in iter_neurites(neurites, filt=is_type(neurite_type))
for s in iter_sections(n, iterator_type=Tree.ileaf))
|
[
"def",
"terminal_path_lengths_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sectionfunc",
".",
"section_path_length",
"(",
"s",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
"for",
"s",
"in",
"iter_sections",
"(",
"n",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")",
")"
] |
Get the path lengths to each terminal point per neurite in a collection
|
[
"Get",
"the",
"path",
"lengths",
"to",
"each",
"terminal",
"point",
"per",
"neurite",
"in",
"a",
"collection"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L360-L364
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
total_volume_per_neurite
|
def total_volume_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the volume per neurite in a collection'''
return list(sum(s.volume for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
python
|
def total_volume_per_neurite(neurites, neurite_type=NeuriteType.all):
return list(sum(s.volume for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
[
"def",
"total_volume_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"s",
".",
"volume",
"for",
"s",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] |
Get the volume per neurite in a collection
|
[
"Get",
"the",
"volume",
"per",
"neurite",
"in",
"a",
"collection"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L367-L370
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
neurite_volume_density
|
def neurite_volume_density(neurites, neurite_type=NeuriteType.all):
'''Get the volume density per neurite
The volume density is defined as the ratio of the neurite volume and
the volume of the neurite's enclosing convex hull
'''
def vol_density(neurite):
'''volume density of a single neurite'''
return neurite.volume / convex_hull(neurite).volume
return list(vol_density(n)
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
python
|
def neurite_volume_density(neurites, neurite_type=NeuriteType.all):
def vol_density(neurite):
return neurite.volume / convex_hull(neurite).volume
return list(vol_density(n)
for n in iter_neurites(neurites, filt=is_type(neurite_type)))
|
[
"def",
"neurite_volume_density",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"vol_density",
"(",
"neurite",
")",
":",
"'''volume density of a single neurite'''",
"return",
"neurite",
".",
"volume",
"/",
"convex_hull",
"(",
"neurite",
")",
".",
"volume",
"return",
"list",
"(",
"vol_density",
"(",
"n",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] |
Get the volume density per neurite
The volume density is defined as the ratio of the neurite volume and
the volume of the neurite's enclosing convex hull
|
[
"Get",
"the",
"volume",
"density",
"per",
"neurite"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L373-L384
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_volumes
|
def section_volumes(neurites, neurite_type=NeuriteType.all):
'''section volumes in a collection of neurites'''
return map_sections(sectionfunc.section_volume, neurites, neurite_type=neurite_type)
|
python
|
def section_volumes(neurites, neurite_type=NeuriteType.all):
return map_sections(sectionfunc.section_volume, neurites, neurite_type=neurite_type)
|
[
"def",
"section_volumes",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_volume",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] |
section volumes in a collection of neurites
|
[
"section",
"volumes",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L387-L389
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_areas
|
def section_areas(neurites, neurite_type=NeuriteType.all):
'''section areas in a collection of neurites'''
return map_sections(sectionfunc.section_area, neurites, neurite_type=neurite_type)
|
python
|
def section_areas(neurites, neurite_type=NeuriteType.all):
return map_sections(sectionfunc.section_area, neurites, neurite_type=neurite_type)
|
[
"def",
"section_areas",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_area",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] |
section areas in a collection of neurites
|
[
"section",
"areas",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L392-L394
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_tortuosity
|
def section_tortuosity(neurites, neurite_type=NeuriteType.all):
'''section tortuosities in a collection of neurites'''
return map_sections(sectionfunc.section_tortuosity, neurites, neurite_type=neurite_type)
|
python
|
def section_tortuosity(neurites, neurite_type=NeuriteType.all):
return map_sections(sectionfunc.section_tortuosity, neurites, neurite_type=neurite_type)
|
[
"def",
"section_tortuosity",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_tortuosity",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] |
section tortuosities in a collection of neurites
|
[
"section",
"tortuosities",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L397-L399
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_end_distances
|
def section_end_distances(neurites, neurite_type=NeuriteType.all):
'''section end to end distances in a collection of neurites'''
return map_sections(sectionfunc.section_end_distance, neurites, neurite_type=neurite_type)
|
python
|
def section_end_distances(neurites, neurite_type=NeuriteType.all):
return map_sections(sectionfunc.section_end_distance, neurites, neurite_type=neurite_type)
|
[
"def",
"section_end_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_end_distance",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] |
section end to end distances in a collection of neurites
|
[
"section",
"end",
"to",
"end",
"distances",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L402-L404
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
principal_direction_extents
|
def principal_direction_extents(neurites, neurite_type=NeuriteType.all, direction=0):
'''Principal direction extent of neurites in neurons'''
def _pde(neurite):
'''Get the PDE of a single neurite'''
# Get the X, Y,Z coordinates of the points in each section
points = neurite.points[:, :3]
return morphmath.principal_direction_extent(points)[direction]
return map(_pde, iter_neurites(neurites, filt=is_type(neurite_type)))
|
python
|
def principal_direction_extents(neurites, neurite_type=NeuriteType.all, direction=0):
def _pde(neurite):
points = neurite.points[:, :3]
return morphmath.principal_direction_extent(points)[direction]
return map(_pde, iter_neurites(neurites, filt=is_type(neurite_type)))
|
[
"def",
"principal_direction_extents",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"direction",
"=",
"0",
")",
":",
"def",
"_pde",
"(",
"neurite",
")",
":",
"'''Get the PDE of a single neurite'''",
"# Get the X, Y,Z coordinates of the points in each section",
"points",
"=",
"neurite",
".",
"points",
"[",
":",
",",
":",
"3",
"]",
"return",
"morphmath",
".",
"principal_direction_extent",
"(",
"points",
")",
"[",
"direction",
"]",
"return",
"map",
"(",
"_pde",
",",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] |
Principal direction extent of neurites in neurons
|
[
"Principal",
"direction",
"extent",
"of",
"neurites",
"in",
"neurons"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L407-L415
|
BlueBrain/NeuroM
|
neurom/fst/_neuritefunc.py
|
section_strahler_orders
|
def section_strahler_orders(neurites, neurite_type=NeuriteType.all):
'''Inter-segment opening angles in a section'''
return map_sections(sectionfunc.strahler_order, neurites, neurite_type)
|
python
|
def section_strahler_orders(neurites, neurite_type=NeuriteType.all):
return map_sections(sectionfunc.strahler_order, neurites, neurite_type)
|
[
"def",
"section_strahler_orders",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"strahler_order",
",",
"neurites",
",",
"neurite_type",
")"
] |
Inter-segment opening angles in a section
|
[
"Inter",
"-",
"segment",
"opening",
"angles",
"in",
"a",
"section"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L418-L420
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
_plane2col
|
def _plane2col(plane):
'''take a string like 'xy', and return the indices from COLS.*'''
planes = ('xy', 'yx', 'xz', 'zx', 'yz', 'zy')
assert plane in planes, 'No such plane found! Please select one of: ' + str(planes)
return (getattr(COLS, plane[0].capitalize()),
getattr(COLS, plane[1].capitalize()), )
|
python
|
def _plane2col(plane):
planes = ('xy', 'yx', 'xz', 'zx', 'yz', 'zy')
assert plane in planes, 'No such plane found! Please select one of: ' + str(planes)
return (getattr(COLS, plane[0].capitalize()),
getattr(COLS, plane[1].capitalize()), )
|
[
"def",
"_plane2col",
"(",
"plane",
")",
":",
"planes",
"=",
"(",
"'xy'",
",",
"'yx'",
",",
"'xz'",
",",
"'zx'",
",",
"'yz'",
",",
"'zy'",
")",
"assert",
"plane",
"in",
"planes",
",",
"'No such plane found! Please select one of: '",
"+",
"str",
"(",
"planes",
")",
"return",
"(",
"getattr",
"(",
"COLS",
",",
"plane",
"[",
"0",
"]",
".",
"capitalize",
"(",
")",
")",
",",
"getattr",
"(",
"COLS",
",",
"plane",
"[",
"1",
"]",
".",
"capitalize",
"(",
")",
")",
",",
")"
] |
take a string like 'xy', and return the indices from COLS.*
|
[
"take",
"a",
"string",
"like",
"xy",
"and",
"return",
"the",
"indices",
"from",
"COLS",
".",
"*"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L57-L62
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
_get_linewidth
|
def _get_linewidth(tree, linewidth, diameter_scale):
'''calculate the desired linewidth based on tree contents
If diameter_scale exists, it is used to scale the diameter of each of the segments
in the tree
If diameter_scale is None, the linewidth is used.
'''
if diameter_scale is not None and tree:
linewidth = [2 * segment_radius(s) * diameter_scale
for s in iter_segments(tree)]
return linewidth
|
python
|
def _get_linewidth(tree, linewidth, diameter_scale):
if diameter_scale is not None and tree:
linewidth = [2 * segment_radius(s) * diameter_scale
for s in iter_segments(tree)]
return linewidth
|
[
"def",
"_get_linewidth",
"(",
"tree",
",",
"linewidth",
",",
"diameter_scale",
")",
":",
"if",
"diameter_scale",
"is",
"not",
"None",
"and",
"tree",
":",
"linewidth",
"=",
"[",
"2",
"*",
"segment_radius",
"(",
"s",
")",
"*",
"diameter_scale",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"return",
"linewidth"
] |
calculate the desired linewidth based on tree contents
If diameter_scale exists, it is used to scale the diameter of each of the segments
in the tree
If diameter_scale is None, the linewidth is used.
|
[
"calculate",
"the",
"desired",
"linewidth",
"based",
"on",
"tree",
"contents"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L65-L75
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_tree
|
def plot_tree(ax, tree, plane='xy',
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2d figure of the tree's segments
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
Note:
If the tree contains one single point the plot will be empty
since no segments can be constructed.
'''
plane0, plane1 = _plane2col(plane)
segs = [((s[0][plane0], s[0][plane1]),
(s[1][plane0], s[1][plane1]))
for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = LineCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection(collection)
|
python
|
def plot_tree(ax, tree, plane='xy',
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
plane0, plane1 = _plane2col(plane)
segs = [((s[0][plane0], s[0][plane1]),
(s[1][plane0], s[1][plane1]))
for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = LineCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection(collection)
|
[
"def",
"plot_tree",
"(",
"ax",
",",
"tree",
",",
"plane",
"=",
"'xy'",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"segs",
"=",
"[",
"(",
"(",
"s",
"[",
"0",
"]",
"[",
"plane0",
"]",
",",
"s",
"[",
"0",
"]",
"[",
"plane1",
"]",
")",
",",
"(",
"s",
"[",
"1",
"]",
"[",
"plane0",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"plane1",
"]",
")",
")",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"linewidth",
"=",
"_get_linewidth",
"(",
"tree",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree",
".",
"type",
")",
"collection",
"=",
"LineCollection",
"(",
"segs",
",",
"color",
"=",
"color",
",",
"linewidth",
"=",
"linewidth",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"add_collection",
"(",
"collection",
")"
] |
Plots a 2d figure of the tree's segments
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
Note:
If the tree contains one single point the plot will be empty
since no segments can be constructed.
|
[
"Plots",
"a",
"2d",
"figure",
"of",
"the",
"tree",
"s",
"segments"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L85-L112
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_soma
|
def plot_soma(ax, soma, plane='xy',
soma_outline=True,
linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a 2d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plane0, plane1 = _plane2col(plane)
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
plane0, plane1 = _plane2col(plane)
for start, end in zip(soma.points, soma.points[1:]):
common.project_cylinder_onto_2d(ax, (plane0, plane1),
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
if soma_outline:
ax.add_artist(Circle(soma.center[[plane0, plane1]], soma.radius,
color=color, alpha=alpha))
else:
plane0, plane1 = _plane2col(plane)
points = [(p[plane0], p[plane1]) for p in soma.iter()]
if points:
points.append(points[0]) # close the loop
ax.plot(points, color=color, alpha=alpha, linewidth=linewidth)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
bounding_box = geom.bounding_box(soma)
ax.dataLim.update_from_data_xy(np.vstack(([bounding_box[0][plane0], bounding_box[0][plane1]],
[bounding_box[1][plane0], bounding_box[1][plane1]])),
ignore=False)
|
python
|
def plot_soma(ax, soma, plane='xy',
soma_outline=True,
linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
plane0, plane1 = _plane2col(plane)
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
plane0, plane1 = _plane2col(plane)
for start, end in zip(soma.points, soma.points[1:]):
common.project_cylinder_onto_2d(ax, (plane0, plane1),
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
if soma_outline:
ax.add_artist(Circle(soma.center[[plane0, plane1]], soma.radius,
color=color, alpha=alpha))
else:
plane0, plane1 = _plane2col(plane)
points = [(p[plane0], p[plane1]) for p in soma.iter()]
if points:
points.append(points[0])
ax.plot(points, color=color, alpha=alpha, linewidth=linewidth)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
bounding_box = geom.bounding_box(soma)
ax.dataLim.update_from_data_xy(np.vstack(([bounding_box[0][plane0], bounding_box[0][plane1]],
[bounding_box[1][plane0], bounding_box[1][plane1]])),
ignore=False)
|
[
"def",
"plot_soma",
"(",
"ax",
",",
"soma",
",",
"plane",
"=",
"'xy'",
",",
"soma_outline",
"=",
"True",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree_type",
"=",
"NeuriteType",
".",
"soma",
")",
"if",
"isinstance",
"(",
"soma",
",",
"SomaCylinders",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"for",
"start",
",",
"end",
"in",
"zip",
"(",
"soma",
".",
"points",
",",
"soma",
".",
"points",
"[",
"1",
":",
"]",
")",
":",
"common",
".",
"project_cylinder_onto_2d",
"(",
"ax",
",",
"(",
"plane0",
",",
"plane1",
")",
",",
"start",
"=",
"start",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"end",
"=",
"end",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"start_radius",
"=",
"start",
"[",
"COLS",
".",
"R",
"]",
",",
"end_radius",
"=",
"end",
"[",
"COLS",
".",
"R",
"]",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"else",
":",
"if",
"soma_outline",
":",
"ax",
".",
"add_artist",
"(",
"Circle",
"(",
"soma",
".",
"center",
"[",
"[",
"plane0",
",",
"plane1",
"]",
"]",
",",
"soma",
".",
"radius",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
")",
"else",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"points",
"=",
"[",
"(",
"p",
"[",
"plane0",
"]",
",",
"p",
"[",
"plane1",
"]",
")",
"for",
"p",
"in",
"soma",
".",
"iter",
"(",
")",
"]",
"if",
"points",
":",
"points",
".",
"append",
"(",
"points",
"[",
"0",
"]",
")",
"# close the loop",
"ax",
".",
"plot",
"(",
"points",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
",",
"linewidth",
"=",
"linewidth",
")",
"ax",
".",
"set_xlabel",
"(",
"plane",
"[",
"0",
"]",
")",
"ax",
".",
"set_ylabel",
"(",
"plane",
"[",
"1",
"]",
")",
"bounding_box",
"=",
"geom",
".",
"bounding_box",
"(",
"soma",
")",
"ax",
".",
"dataLim",
".",
"update_from_data_xy",
"(",
"np",
".",
"vstack",
"(",
"(",
"[",
"bounding_box",
"[",
"0",
"]",
"[",
"plane0",
"]",
",",
"bounding_box",
"[",
"0",
"]",
"[",
"plane1",
"]",
"]",
",",
"[",
"bounding_box",
"[",
"1",
"]",
"[",
"plane0",
"]",
",",
"bounding_box",
"[",
"1",
"]",
"[",
"plane1",
"]",
"]",
")",
")",
",",
"ignore",
"=",
"False",
")"
] |
Generates a 2d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
|
[
"Generates",
"a",
"2d",
"figure",
"of",
"the",
"soma",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L115-L158
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_neuron
|
def plot_neuron(ax, nrn,
neurite_type=NeuriteType.all,
plane='xy',
soma_outline=True,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2D figure of the neuron, that contains a soma and the neurites
Args:
ax(matplotlib axes): on what to plot
neurite_type(NeuriteType): an optional filter on the neurite type
nrn(neuron): neuron to be plotted
soma_outline(bool): should the soma be drawn as an outline
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plot_soma(ax, nrn.soma, plane=plane, soma_outline=soma_outline, linewidth=linewidth,
color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree(ax, neurite, plane=plane,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
|
python
|
def plot_neuron(ax, nrn,
neurite_type=NeuriteType.all,
plane='xy',
soma_outline=True,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
plot_soma(ax, nrn.soma, plane=plane, soma_outline=soma_outline, linewidth=linewidth,
color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree(ax, neurite, plane=plane,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
|
[
"def",
"plot_neuron",
"(",
"ax",
",",
"nrn",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"plane",
"=",
"'xy'",
",",
"soma_outline",
"=",
"True",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plot_soma",
"(",
"ax",
",",
"nrn",
".",
"soma",
",",
"plane",
"=",
"plane",
",",
"soma_outline",
"=",
"soma_outline",
",",
"linewidth",
"=",
"linewidth",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"nrn",
",",
"filt",
"=",
"tree_type_checker",
"(",
"neurite_type",
")",
")",
":",
"plot_tree",
"(",
"ax",
",",
"neurite",
",",
"plane",
"=",
"plane",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"set_title",
"(",
"nrn",
".",
"name",
")",
"ax",
".",
"set_xlabel",
"(",
"plane",
"[",
"0",
"]",
")",
"ax",
".",
"set_ylabel",
"(",
"plane",
"[",
"1",
"]",
")"
] |
Plots a 2D figure of the neuron, that contains a soma and the neurites
Args:
ax(matplotlib axes): on what to plot
neurite_type(NeuriteType): an optional filter on the neurite type
nrn(neuron): neuron to be plotted
soma_outline(bool): should the soma be drawn as an outline
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
|
[
"Plots",
"a",
"2D",
"figure",
"of",
"the",
"neuron",
"that",
"contains",
"a",
"soma",
"and",
"the",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L162-L191
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
_update_3d_datalim
|
def _update_3d_datalim(ax, obj):
'''unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually'''
min_bounding_box, max_bounding_box = geom.bounding_box(obj)
xy_bounds = np.vstack((min_bounding_box[:COLS.Z],
max_bounding_box[:COLS.Z]))
ax.xy_dataLim.update_from_data_xy(xy_bounds, ignore=False)
z_bounds = np.vstack(((min_bounding_box[COLS.Z], min_bounding_box[COLS.Z]),
(max_bounding_box[COLS.Z], max_bounding_box[COLS.Z])))
ax.zz_dataLim.update_from_data_xy(z_bounds, ignore=False)
|
python
|
def _update_3d_datalim(ax, obj):
min_bounding_box, max_bounding_box = geom.bounding_box(obj)
xy_bounds = np.vstack((min_bounding_box[:COLS.Z],
max_bounding_box[:COLS.Z]))
ax.xy_dataLim.update_from_data_xy(xy_bounds, ignore=False)
z_bounds = np.vstack(((min_bounding_box[COLS.Z], min_bounding_box[COLS.Z]),
(max_bounding_box[COLS.Z], max_bounding_box[COLS.Z])))
ax.zz_dataLim.update_from_data_xy(z_bounds, ignore=False)
|
[
"def",
"_update_3d_datalim",
"(",
"ax",
",",
"obj",
")",
":",
"min_bounding_box",
",",
"max_bounding_box",
"=",
"geom",
".",
"bounding_box",
"(",
"obj",
")",
"xy_bounds",
"=",
"np",
".",
"vstack",
"(",
"(",
"min_bounding_box",
"[",
":",
"COLS",
".",
"Z",
"]",
",",
"max_bounding_box",
"[",
":",
"COLS",
".",
"Z",
"]",
")",
")",
"ax",
".",
"xy_dataLim",
".",
"update_from_data_xy",
"(",
"xy_bounds",
",",
"ignore",
"=",
"False",
")",
"z_bounds",
"=",
"np",
".",
"vstack",
"(",
"(",
"(",
"min_bounding_box",
"[",
"COLS",
".",
"Z",
"]",
",",
"min_bounding_box",
"[",
"COLS",
".",
"Z",
"]",
")",
",",
"(",
"max_bounding_box",
"[",
"COLS",
".",
"Z",
"]",
",",
"max_bounding_box",
"[",
"COLS",
".",
"Z",
"]",
")",
")",
")",
"ax",
".",
"zz_dataLim",
".",
"update_from_data_xy",
"(",
"z_bounds",
",",
"ignore",
"=",
"False",
")"
] |
unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually
|
[
"unlike",
"w",
"/",
"2d",
"Axes",
"the",
"dataLim",
"isn",
"t",
"set",
"by",
"collections",
"so",
"it",
"has",
"to",
"be",
"updated",
"manually"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L194-L203
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_tree3d
|
def plot_tree3d(ax, tree,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a figure of the tree in 3d.
If the tree contains one single point the plot will be empty \
since no segments can be constructed.
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = Line3DCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection3d(collection)
_update_3d_datalim(ax, tree)
|
python
|
def plot_tree3d(ax, tree,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = Line3DCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection3d(collection)
_update_3d_datalim(ax, tree)
|
[
"def",
"plot_tree3d",
"(",
"ax",
",",
"tree",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"segs",
"=",
"[",
"(",
"s",
"[",
"0",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
")",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"linewidth",
"=",
"_get_linewidth",
"(",
"tree",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree",
".",
"type",
")",
"collection",
"=",
"Line3DCollection",
"(",
"segs",
",",
"color",
"=",
"color",
",",
"linewidth",
"=",
"linewidth",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"add_collection3d",
"(",
"collection",
")",
"_update_3d_datalim",
"(",
"ax",
",",
"tree",
")"
] |
Generates a figure of the tree in 3d.
If the tree contains one single point the plot will be empty \
since no segments can be constructed.
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
|
[
"Generates",
"a",
"figure",
"of",
"the",
"tree",
"in",
"3d",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L206-L230
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_soma3d
|
def plot_soma3d(ax, soma, color=None, alpha=_ALPHA):
'''Generates a 3d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
for start, end in zip(soma.points, soma.points[1:]):
common.plot_cylinder(ax,
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
common.plot_sphere(ax, center=soma.center[COLS.XYZ], radius=soma.radius,
color=color, alpha=alpha)
# unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually
_update_3d_datalim(ax, soma)
|
python
|
def plot_soma3d(ax, soma, color=None, alpha=_ALPHA):
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
for start, end in zip(soma.points, soma.points[1:]):
common.plot_cylinder(ax,
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
common.plot_sphere(ax, center=soma.center[COLS.XYZ], radius=soma.radius,
color=color, alpha=alpha)
_update_3d_datalim(ax, soma)
|
[
"def",
"plot_soma3d",
"(",
"ax",
",",
"soma",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree_type",
"=",
"NeuriteType",
".",
"soma",
")",
"if",
"isinstance",
"(",
"soma",
",",
"SomaCylinders",
")",
":",
"for",
"start",
",",
"end",
"in",
"zip",
"(",
"soma",
".",
"points",
",",
"soma",
".",
"points",
"[",
"1",
":",
"]",
")",
":",
"common",
".",
"plot_cylinder",
"(",
"ax",
",",
"start",
"=",
"start",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"end",
"=",
"end",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"start_radius",
"=",
"start",
"[",
"COLS",
".",
"R",
"]",
",",
"end_radius",
"=",
"end",
"[",
"COLS",
".",
"R",
"]",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"else",
":",
"common",
".",
"plot_sphere",
"(",
"ax",
",",
"center",
"=",
"soma",
".",
"center",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"radius",
"=",
"soma",
".",
"radius",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"# unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually",
"_update_3d_datalim",
"(",
"ax",
",",
"soma",
")"
] |
Generates a 3d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
|
[
"Generates",
"a",
"3d",
"figure",
"of",
"the",
"soma",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L233-L255
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_neuron3d
|
def plot_neuron3d(ax, nrn, neurite_type=NeuriteType.all,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''
Generates a figure of the neuron,
that contains a soma and a list of trees.
Args:
ax(matplotlib axes): on what to plot
nrn(neuron): neuron to be plotted
neurite_type(NeuriteType): an optional filter on the neurite type
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plot_soma3d(ax, nrn.soma, color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree3d(ax, neurite,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
|
python
|
def plot_neuron3d(ax, nrn, neurite_type=NeuriteType.all,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
plot_soma3d(ax, nrn.soma, color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree3d(ax, neurite,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
|
[
"def",
"plot_neuron3d",
"(",
"ax",
",",
"nrn",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plot_soma3d",
"(",
"ax",
",",
"nrn",
".",
"soma",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"nrn",
",",
"filt",
"=",
"tree_type_checker",
"(",
"neurite_type",
")",
")",
":",
"plot_tree3d",
"(",
"ax",
",",
"neurite",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"set_title",
"(",
"nrn",
".",
"name",
")"
] |
Generates a figure of the neuron,
that contains a soma and a list of trees.
Args:
ax(matplotlib axes): on what to plot
nrn(neuron): neuron to be plotted
neurite_type(NeuriteType): an optional filter on the neurite type
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
|
[
"Generates",
"a",
"figure",
"of",
"the",
"neuron",
"that",
"contains",
"a",
"soma",
"and",
"a",
"list",
"of",
"trees",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L258-L281
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
_generate_collection
|
def _generate_collection(group, ax, ctype, colors):
'''Render rectangle collection'''
color = TREE_COLOR[ctype]
# generate segment collection
collection = PolyCollection(group, closed=False, antialiaseds=True,
edgecolors='face', facecolors=color)
# add it to the axes
ax.add_collection(collection)
# dummy plot for the legend
if color not in colors:
label = str(ctype).replace('NeuriteType.', '').replace('_', ' ').capitalize()
ax.plot((0., 0.), (0., 0.), c=color, label=label)
colors.add(color)
|
python
|
def _generate_collection(group, ax, ctype, colors):
color = TREE_COLOR[ctype]
collection = PolyCollection(group, closed=False, antialiaseds=True,
edgecolors='face', facecolors=color)
ax.add_collection(collection)
if color not in colors:
label = str(ctype).replace('NeuriteType.', '').replace('_', ' ').capitalize()
ax.plot((0., 0.), (0., 0.), c=color, label=label)
colors.add(color)
|
[
"def",
"_generate_collection",
"(",
"group",
",",
"ax",
",",
"ctype",
",",
"colors",
")",
":",
"color",
"=",
"TREE_COLOR",
"[",
"ctype",
"]",
"# generate segment collection",
"collection",
"=",
"PolyCollection",
"(",
"group",
",",
"closed",
"=",
"False",
",",
"antialiaseds",
"=",
"True",
",",
"edgecolors",
"=",
"'face'",
",",
"facecolors",
"=",
"color",
")",
"# add it to the axes",
"ax",
".",
"add_collection",
"(",
"collection",
")",
"# dummy plot for the legend",
"if",
"color",
"not",
"in",
"colors",
":",
"label",
"=",
"str",
"(",
"ctype",
")",
".",
"replace",
"(",
"'NeuriteType.'",
",",
"''",
")",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
".",
"capitalize",
"(",
")",
"ax",
".",
"plot",
"(",
"(",
"0.",
",",
"0.",
")",
",",
"(",
"0.",
",",
"0.",
")",
",",
"c",
"=",
"color",
",",
"label",
"=",
"label",
")",
"colors",
".",
"add",
"(",
"color",
")"
] |
Render rectangle collection
|
[
"Render",
"rectangle",
"collection"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L284-L299
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
_render_dendrogram
|
def _render_dendrogram(dnd, ax, displacement):
'''Renders dendrogram'''
# set of unique colors that reflect the set of types of the neurites
colors = set()
for n, (indices, ctype) in enumerate(zip(dnd.groups, dnd.types)):
# slice rectangles array for the current neurite
group = dnd.data[indices[0]:indices[1]]
if n > 0:
# displace the neurites by half of their maximum x dimension
# plus half of the previous neurite's maxmimum x dimension
displacement += 0.5 * (dnd.dims[n - 1][0] + dnd.dims[n][0])
# arrange the trees without overlapping with each other
group += (displacement, 0.)
# create the polygonal collection of the dendrogram
# segments
_generate_collection(group, ax, ctype, colors)
soma_square = dnd.soma
if soma_square is not None:
_generate_collection((soma_square + (displacement / 2., 0.),), ax, NeuriteType.soma, colors)
ax.plot((displacement / 2., displacement), (0., 0.), color='k')
ax.plot((0., displacement / 2.), (0., 0.), color='k')
return displacement
|
python
|
def _render_dendrogram(dnd, ax, displacement):
colors = set()
for n, (indices, ctype) in enumerate(zip(dnd.groups, dnd.types)):
group = dnd.data[indices[0]:indices[1]]
if n > 0:
displacement += 0.5 * (dnd.dims[n - 1][0] + dnd.dims[n][0])
group += (displacement, 0.)
_generate_collection(group, ax, ctype, colors)
soma_square = dnd.soma
if soma_square is not None:
_generate_collection((soma_square + (displacement / 2., 0.),), ax, NeuriteType.soma, colors)
ax.plot((displacement / 2., displacement), (0., 0.), color='k')
ax.plot((0., displacement / 2.), (0., 0.), color='k')
return displacement
|
[
"def",
"_render_dendrogram",
"(",
"dnd",
",",
"ax",
",",
"displacement",
")",
":",
"# set of unique colors that reflect the set of types of the neurites",
"colors",
"=",
"set",
"(",
")",
"for",
"n",
",",
"(",
"indices",
",",
"ctype",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"dnd",
".",
"groups",
",",
"dnd",
".",
"types",
")",
")",
":",
"# slice rectangles array for the current neurite",
"group",
"=",
"dnd",
".",
"data",
"[",
"indices",
"[",
"0",
"]",
":",
"indices",
"[",
"1",
"]",
"]",
"if",
"n",
">",
"0",
":",
"# displace the neurites by half of their maximum x dimension",
"# plus half of the previous neurite's maxmimum x dimension",
"displacement",
"+=",
"0.5",
"*",
"(",
"dnd",
".",
"dims",
"[",
"n",
"-",
"1",
"]",
"[",
"0",
"]",
"+",
"dnd",
".",
"dims",
"[",
"n",
"]",
"[",
"0",
"]",
")",
"# arrange the trees without overlapping with each other",
"group",
"+=",
"(",
"displacement",
",",
"0.",
")",
"# create the polygonal collection of the dendrogram",
"# segments",
"_generate_collection",
"(",
"group",
",",
"ax",
",",
"ctype",
",",
"colors",
")",
"soma_square",
"=",
"dnd",
".",
"soma",
"if",
"soma_square",
"is",
"not",
"None",
":",
"_generate_collection",
"(",
"(",
"soma_square",
"+",
"(",
"displacement",
"/",
"2.",
",",
"0.",
")",
",",
")",
",",
"ax",
",",
"NeuriteType",
".",
"soma",
",",
"colors",
")",
"ax",
".",
"plot",
"(",
"(",
"displacement",
"/",
"2.",
",",
"displacement",
")",
",",
"(",
"0.",
",",
"0.",
")",
",",
"color",
"=",
"'k'",
")",
"ax",
".",
"plot",
"(",
"(",
"0.",
",",
"displacement",
"/",
"2.",
")",
",",
"(",
"0.",
",",
"0.",
")",
",",
"color",
"=",
"'k'",
")",
"return",
"displacement"
] |
Renders dendrogram
|
[
"Renders",
"dendrogram"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L302-L332
|
BlueBrain/NeuroM
|
neurom/view/view.py
|
plot_dendrogram
|
def plot_dendrogram(ax, obj, show_diameters=True):
'''Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not.
'''
# create dendrogram and generate rectangle collection
dnd = Dendrogram(obj, show_diameters=show_diameters)
dnd.generate()
# render dendrogram and take into account neurite displacement which
# starts as zero. It is important to avoid overlapping of neurites
# and to determine tha limits of the figure.
_render_dendrogram(dnd, ax, 0.)
ax.set_title('Morphology Dendrogram')
ax.set_xlabel('micrometers (um)')
ax.set_ylabel('micrometers (um)')
ax.set_aspect('auto')
ax.legend()
|
python
|
def plot_dendrogram(ax, obj, show_diameters=True):
dnd = Dendrogram(obj, show_diameters=show_diameters)
dnd.generate()
_render_dendrogram(dnd, ax, 0.)
ax.set_title('Morphology Dendrogram')
ax.set_xlabel('micrometers (um)')
ax.set_ylabel('micrometers (um)')
ax.set_aspect('auto')
ax.legend()
|
[
"def",
"plot_dendrogram",
"(",
"ax",
",",
"obj",
",",
"show_diameters",
"=",
"True",
")",
":",
"# create dendrogram and generate rectangle collection",
"dnd",
"=",
"Dendrogram",
"(",
"obj",
",",
"show_diameters",
"=",
"show_diameters",
")",
"dnd",
".",
"generate",
"(",
")",
"# render dendrogram and take into account neurite displacement which",
"# starts as zero. It is important to avoid overlapping of neurites",
"# and to determine tha limits of the figure.",
"_render_dendrogram",
"(",
"dnd",
",",
"ax",
",",
"0.",
")",
"ax",
".",
"set_title",
"(",
"'Morphology Dendrogram'",
")",
"ax",
".",
"set_xlabel",
"(",
"'micrometers (um)'",
")",
"ax",
".",
"set_ylabel",
"(",
"'micrometers (um)'",
")",
"ax",
".",
"set_aspect",
"(",
"'auto'",
")",
"ax",
".",
"legend",
"(",
")"
] |
Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not.
|
[
"Dendrogram",
"of",
"obj"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L335-L360
|
BlueBrain/NeuroM
|
neurom/fst/_core.py
|
make_neurites
|
def make_neurites(rdw):
'''Build neurite trees from a raw data wrapper'''
post_action = _NEURITE_ACTION[rdw.fmt]
trunks = rdw.neurite_root_section_ids()
if not trunks:
return [], []
# One pass over sections to build nodes
nodes = tuple(Section(section_id=i,
points=rdw.data_block[sec.ids],
section_type=_TREE_TYPES[sec.ntype])
for i, sec in enumerate(rdw.sections))
# One pass over nodes to connect children to parents
for i, node in enumerate(nodes):
parent_id = rdw.sections[i].pid
parent_type = nodes[parent_id].type
# only connect neurites
if parent_id != ROOT_ID and parent_type != NeuriteType.soma:
nodes[parent_id].add_child(node)
neurites = tuple(Neurite(nodes[i]) for i in trunks)
if post_action is not None:
for n in neurites:
post_action(n.root_node)
return neurites, nodes
|
python
|
def make_neurites(rdw):
post_action = _NEURITE_ACTION[rdw.fmt]
trunks = rdw.neurite_root_section_ids()
if not trunks:
return [], []
nodes = tuple(Section(section_id=i,
points=rdw.data_block[sec.ids],
section_type=_TREE_TYPES[sec.ntype])
for i, sec in enumerate(rdw.sections))
for i, node in enumerate(nodes):
parent_id = rdw.sections[i].pid
parent_type = nodes[parent_id].type
if parent_id != ROOT_ID and parent_type != NeuriteType.soma:
nodes[parent_id].add_child(node)
neurites = tuple(Neurite(nodes[i]) for i in trunks)
if post_action is not None:
for n in neurites:
post_action(n.root_node)
return neurites, nodes
|
[
"def",
"make_neurites",
"(",
"rdw",
")",
":",
"post_action",
"=",
"_NEURITE_ACTION",
"[",
"rdw",
".",
"fmt",
"]",
"trunks",
"=",
"rdw",
".",
"neurite_root_section_ids",
"(",
")",
"if",
"not",
"trunks",
":",
"return",
"[",
"]",
",",
"[",
"]",
"# One pass over sections to build nodes",
"nodes",
"=",
"tuple",
"(",
"Section",
"(",
"section_id",
"=",
"i",
",",
"points",
"=",
"rdw",
".",
"data_block",
"[",
"sec",
".",
"ids",
"]",
",",
"section_type",
"=",
"_TREE_TYPES",
"[",
"sec",
".",
"ntype",
"]",
")",
"for",
"i",
",",
"sec",
"in",
"enumerate",
"(",
"rdw",
".",
"sections",
")",
")",
"# One pass over nodes to connect children to parents",
"for",
"i",
",",
"node",
"in",
"enumerate",
"(",
"nodes",
")",
":",
"parent_id",
"=",
"rdw",
".",
"sections",
"[",
"i",
"]",
".",
"pid",
"parent_type",
"=",
"nodes",
"[",
"parent_id",
"]",
".",
"type",
"# only connect neurites",
"if",
"parent_id",
"!=",
"ROOT_ID",
"and",
"parent_type",
"!=",
"NeuriteType",
".",
"soma",
":",
"nodes",
"[",
"parent_id",
"]",
".",
"add_child",
"(",
"node",
")",
"neurites",
"=",
"tuple",
"(",
"Neurite",
"(",
"nodes",
"[",
"i",
"]",
")",
"for",
"i",
"in",
"trunks",
")",
"if",
"post_action",
"is",
"not",
"None",
":",
"for",
"n",
"in",
"neurites",
":",
"post_action",
"(",
"n",
".",
"root_node",
")",
"return",
"neurites",
",",
"nodes"
] |
Build neurite trees from a raw data wrapper
|
[
"Build",
"neurite",
"trees",
"from",
"a",
"raw",
"data",
"wrapper"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L78-L105
|
BlueBrain/NeuroM
|
neurom/fst/_core.py
|
_remove_soma_initial_point
|
def _remove_soma_initial_point(tree):
'''Remove tree's initial point if soma'''
if tree.points[0][COLS.TYPE] == POINT_TYPE.SOMA:
tree.points = tree.points[1:]
|
python
|
def _remove_soma_initial_point(tree):
if tree.points[0][COLS.TYPE] == POINT_TYPE.SOMA:
tree.points = tree.points[1:]
|
[
"def",
"_remove_soma_initial_point",
"(",
"tree",
")",
":",
"if",
"tree",
".",
"points",
"[",
"0",
"]",
"[",
"COLS",
".",
"TYPE",
"]",
"==",
"POINT_TYPE",
".",
"SOMA",
":",
"tree",
".",
"points",
"=",
"tree",
".",
"points",
"[",
"1",
":",
"]"
] |
Remove tree's initial point if soma
|
[
"Remove",
"tree",
"s",
"initial",
"point",
"if",
"soma"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L108-L111
|
BlueBrain/NeuroM
|
neurom/fst/_core.py
|
_check_soma_topology_swc
|
def _check_soma_topology_swc(points):
'''check if points form valid soma
Currently checks if there are bifurcations within a soma
with more than three points.
'''
if len(points) == 3:
return
parents = tuple(p[COLS.P] for p in points if p[COLS.P] != ROOT_ID)
if len(parents) > len(set(parents)):
raise SomaError("Bifurcating soma")
|
python
|
def _check_soma_topology_swc(points):
if len(points) == 3:
return
parents = tuple(p[COLS.P] for p in points if p[COLS.P] != ROOT_ID)
if len(parents) > len(set(parents)):
raise SomaError("Bifurcating soma")
|
[
"def",
"_check_soma_topology_swc",
"(",
"points",
")",
":",
"if",
"len",
"(",
"points",
")",
"==",
"3",
":",
"return",
"parents",
"=",
"tuple",
"(",
"p",
"[",
"COLS",
".",
"P",
"]",
"for",
"p",
"in",
"points",
"if",
"p",
"[",
"COLS",
".",
"P",
"]",
"!=",
"ROOT_ID",
")",
"if",
"len",
"(",
"parents",
")",
">",
"len",
"(",
"set",
"(",
"parents",
")",
")",
":",
"raise",
"SomaError",
"(",
"\"Bifurcating soma\"",
")"
] |
check if points form valid soma
Currently checks if there are bifurcations within a soma
with more than three points.
|
[
"check",
"if",
"points",
"form",
"valid",
"soma"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L114-L125
|
BlueBrain/NeuroM
|
neurom/fst/_core.py
|
FstNeuron.points
|
def points(self):
'''Return unordered array with all the points in this neuron'''
if self._points is None:
_points = self.soma.points.tolist()
for n in self.neurites:
_points.extend(n.points.tolist())
self._points = np.array(_points)
return self._points
|
python
|
def points(self):
if self._points is None:
_points = self.soma.points.tolist()
for n in self.neurites:
_points.extend(n.points.tolist())
self._points = np.array(_points)
return self._points
|
[
"def",
"points",
"(",
"self",
")",
":",
"if",
"self",
".",
"_points",
"is",
"None",
":",
"_points",
"=",
"self",
".",
"soma",
".",
"points",
".",
"tolist",
"(",
")",
"for",
"n",
"in",
"self",
".",
"neurites",
":",
"_points",
".",
"extend",
"(",
"n",
".",
"points",
".",
"tolist",
"(",
")",
")",
"self",
".",
"_points",
"=",
"np",
".",
"array",
"(",
"_points",
")",
"return",
"self",
".",
"_points"
] |
Return unordered array with all the points in this neuron
|
[
"Return",
"unordered",
"array",
"with",
"all",
"the",
"points",
"in",
"this",
"neuron"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L52-L60
|
BlueBrain/NeuroM
|
neurom/fst/_core.py
|
FstNeuron.transform
|
def transform(self, trans):
'''Return a copy of this neuron with a 3D transformation applied'''
_data = deepcopy(self._data)
_data.data_block[:, 0:3] = trans(_data.data_block[:, 0:3])
return FstNeuron(_data, self.name)
|
python
|
def transform(self, trans):
_data = deepcopy(self._data)
_data.data_block[:, 0:3] = trans(_data.data_block[:, 0:3])
return FstNeuron(_data, self.name)
|
[
"def",
"transform",
"(",
"self",
",",
"trans",
")",
":",
"_data",
"=",
"deepcopy",
"(",
"self",
".",
"_data",
")",
"_data",
".",
"data_block",
"[",
":",
",",
"0",
":",
"3",
"]",
"=",
"trans",
"(",
"_data",
".",
"data_block",
"[",
":",
",",
"0",
":",
"3",
"]",
")",
"return",
"FstNeuron",
"(",
"_data",
",",
"self",
".",
"name",
")"
] |
Return a copy of this neuron with a 3D transformation applied
|
[
"Return",
"a",
"copy",
"of",
"this",
"neuron",
"with",
"a",
"3D",
"transformation",
"applied"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L62-L66
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
vector
|
def vector(p1, p2):
'''compute vector between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
3-vector from p1 - p2
'''
return np.subtract(p1[COLS.XYZ], p2[COLS.XYZ])
|
python
|
def vector(p1, p2):
return np.subtract(p1[COLS.XYZ], p2[COLS.XYZ])
|
[
"def",
"vector",
"(",
"p1",
",",
"p2",
")",
":",
"return",
"np",
".",
"subtract",
"(",
"p1",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"p2",
"[",
"COLS",
".",
"XYZ",
"]",
")"
] |
compute vector between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
3-vector from p1 - p2
|
[
"compute",
"vector",
"between",
"two",
"3D",
"points"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L38-L48
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
linear_interpolate
|
def linear_interpolate(p1, p2, fraction):
'''Returns the point p satisfying: p1 + fraction * (p2 - p1)'''
return np.array((p1[0] + fraction * (p2[0] - p1[0]),
p1[1] + fraction * (p2[1] - p1[1]),
p1[2] + fraction * (p2[2] - p1[2])))
|
python
|
def linear_interpolate(p1, p2, fraction):
return np.array((p1[0] + fraction * (p2[0] - p1[0]),
p1[1] + fraction * (p2[1] - p1[1]),
p1[2] + fraction * (p2[2] - p1[2])))
|
[
"def",
"linear_interpolate",
"(",
"p1",
",",
"p2",
",",
"fraction",
")",
":",
"return",
"np",
".",
"array",
"(",
"(",
"p1",
"[",
"0",
"]",
"+",
"fraction",
"*",
"(",
"p2",
"[",
"0",
"]",
"-",
"p1",
"[",
"0",
"]",
")",
",",
"p1",
"[",
"1",
"]",
"+",
"fraction",
"*",
"(",
"p2",
"[",
"1",
"]",
"-",
"p1",
"[",
"1",
"]",
")",
",",
"p1",
"[",
"2",
"]",
"+",
"fraction",
"*",
"(",
"p2",
"[",
"2",
"]",
"-",
"p1",
"[",
"2",
"]",
")",
")",
")"
] |
Returns the point p satisfying: p1 + fraction * (p2 - p1)
|
[
"Returns",
"the",
"point",
"p",
"satisfying",
":",
"p1",
"+",
"fraction",
"*",
"(",
"p2",
"-",
"p1",
")"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L51-L55
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
interpolate_radius
|
def interpolate_radius(r1, r2, fraction):
'''Calculate the radius that corresponds to a point P that lies at a fraction of the length
of a cut cone P1P2 where P1, P2 are the centers of the circles that bound the shape with radii
r1 and r2 respectively.
Args:
r1: float
Radius of the first node of the segment.
r2: float
Radius of the second node of the segment
fraction: float
The fraction at which the interpolated radius is calculated.
Returns: float
The interpolated radius.
Note: The fraction is assumed from point P1, not from point P2.
'''
def f(a, b, c):
''' Returns the length of the interpolated radius calculated
using similar triangles.
'''
return a + c * (b - a)
return f(r2, r1, 1. - fraction) if r1 > r2 else f(r1, r2, fraction)
|
python
|
def interpolate_radius(r1, r2, fraction):
def f(a, b, c):
return a + c * (b - a)
return f(r2, r1, 1. - fraction) if r1 > r2 else f(r1, r2, fraction)
|
[
"def",
"interpolate_radius",
"(",
"r1",
",",
"r2",
",",
"fraction",
")",
":",
"def",
"f",
"(",
"a",
",",
"b",
",",
"c",
")",
":",
"''' Returns the length of the interpolated radius calculated\n using similar triangles.\n '''",
"return",
"a",
"+",
"c",
"*",
"(",
"b",
"-",
"a",
")",
"return",
"f",
"(",
"r2",
",",
"r1",
",",
"1.",
"-",
"fraction",
")",
"if",
"r1",
">",
"r2",
"else",
"f",
"(",
"r1",
",",
"r2",
",",
"fraction",
")"
] |
Calculate the radius that corresponds to a point P that lies at a fraction of the length
of a cut cone P1P2 where P1, P2 are the centers of the circles that bound the shape with radii
r1 and r2 respectively.
Args:
r1: float
Radius of the first node of the segment.
r2: float
Radius of the second node of the segment
fraction: float
The fraction at which the interpolated radius is calculated.
Returns: float
The interpolated radius.
Note: The fraction is assumed from point P1, not from point P2.
|
[
"Calculate",
"the",
"radius",
"that",
"corresponds",
"to",
"a",
"point",
"P",
"that",
"lies",
"at",
"a",
"fraction",
"of",
"the",
"length",
"of",
"a",
"cut",
"cone",
"P1P2",
"where",
"P1",
"P2",
"are",
"the",
"centers",
"of",
"the",
"circles",
"that",
"bound",
"the",
"shape",
"with",
"radii",
"r1",
"and",
"r2",
"respectively",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L58-L81
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
path_fraction_id_offset
|
def path_fraction_id_offset(points, fraction, relative_offset=False):
'''Find the segment which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0.0 <= fraction <= 1.0)
relative_offset: return absolute or relative segment distance
Returns:
(segment ID, segment offset) pair.
'''
if not (0. <= fraction <= 1.0):
raise ValueError("Invalid fraction: %.3f" % fraction)
pts = np.array(points)[:, COLS.XYZ]
lengths = np.linalg.norm(np.diff(pts, axis=0), axis=1)
cum_lengths = np.cumsum(lengths)
offset = cum_lengths[-1] * fraction
seg_id = np.argmin(cum_lengths < offset)
if seg_id > 0:
offset -= cum_lengths[seg_id - 1]
if relative_offset:
offset /= lengths[seg_id]
return seg_id, offset
|
python
|
def path_fraction_id_offset(points, fraction, relative_offset=False):
if not (0. <= fraction <= 1.0):
raise ValueError("Invalid fraction: %.3f" % fraction)
pts = np.array(points)[:, COLS.XYZ]
lengths = np.linalg.norm(np.diff(pts, axis=0), axis=1)
cum_lengths = np.cumsum(lengths)
offset = cum_lengths[-1] * fraction
seg_id = np.argmin(cum_lengths < offset)
if seg_id > 0:
offset -= cum_lengths[seg_id - 1]
if relative_offset:
offset /= lengths[seg_id]
return seg_id, offset
|
[
"def",
"path_fraction_id_offset",
"(",
"points",
",",
"fraction",
",",
"relative_offset",
"=",
"False",
")",
":",
"if",
"not",
"(",
"0.",
"<=",
"fraction",
"<=",
"1.0",
")",
":",
"raise",
"ValueError",
"(",
"\"Invalid fraction: %.3f\"",
"%",
"fraction",
")",
"pts",
"=",
"np",
".",
"array",
"(",
"points",
")",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
"lengths",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"np",
".",
"diff",
"(",
"pts",
",",
"axis",
"=",
"0",
")",
",",
"axis",
"=",
"1",
")",
"cum_lengths",
"=",
"np",
".",
"cumsum",
"(",
"lengths",
")",
"offset",
"=",
"cum_lengths",
"[",
"-",
"1",
"]",
"*",
"fraction",
"seg_id",
"=",
"np",
".",
"argmin",
"(",
"cum_lengths",
"<",
"offset",
")",
"if",
"seg_id",
">",
"0",
":",
"offset",
"-=",
"cum_lengths",
"[",
"seg_id",
"-",
"1",
"]",
"if",
"relative_offset",
":",
"offset",
"/=",
"lengths",
"[",
"seg_id",
"]",
"return",
"seg_id",
",",
"offset"
] |
Find the segment which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0.0 <= fraction <= 1.0)
relative_offset: return absolute or relative segment distance
Returns:
(segment ID, segment offset) pair.
|
[
"Find",
"the",
"segment",
"which",
"corresponds",
"to",
"the",
"fraction",
"of",
"the",
"path",
"length",
"along",
"the",
"piecewise",
"linear",
"curve",
"which",
"is",
"constructed",
"from",
"the",
"set",
"of",
"points",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L84-L109
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
path_fraction_point
|
def path_fraction_point(points, fraction):
'''Computes the point which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0 <= fraction <= 1)
Returns:
The 3D coordinates of the aforementioned point
'''
seg_id, offset = path_fraction_id_offset(points, fraction, relative_offset=True)
return linear_interpolate(points[seg_id], points[seg_id + 1], offset)
|
python
|
def path_fraction_point(points, fraction):
seg_id, offset = path_fraction_id_offset(points, fraction, relative_offset=True)
return linear_interpolate(points[seg_id], points[seg_id + 1], offset)
|
[
"def",
"path_fraction_point",
"(",
"points",
",",
"fraction",
")",
":",
"seg_id",
",",
"offset",
"=",
"path_fraction_id_offset",
"(",
"points",
",",
"fraction",
",",
"relative_offset",
"=",
"True",
")",
"return",
"linear_interpolate",
"(",
"points",
"[",
"seg_id",
"]",
",",
"points",
"[",
"seg_id",
"+",
"1",
"]",
",",
"offset",
")"
] |
Computes the point which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0 <= fraction <= 1)
Returns:
The 3D coordinates of the aforementioned point
|
[
"Computes",
"the",
"point",
"which",
"corresponds",
"to",
"the",
"fraction",
"of",
"the",
"path",
"length",
"along",
"the",
"piecewise",
"linear",
"curve",
"which",
"is",
"constructed",
"from",
"the",
"set",
"of",
"points",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L112-L126
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
scalar_projection
|
def scalar_projection(v1, v2):
'''compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return np.dot(v1, v2) / np.linalg.norm(v2)
|
python
|
def scalar_projection(v1, v2):
return np.dot(v1, v2) / np.linalg.norm(v2)
|
[
"def",
"scalar_projection",
"(",
"v1",
",",
"v2",
")",
":",
"return",
"np",
".",
"dot",
"(",
"v1",
",",
"v2",
")",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"v2",
")"
] |
compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
|
[
"compute",
"the",
"scalar",
"projection",
"of",
"v1",
"upon",
"v2"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L129-L139
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
vector_projection
|
def vector_projection(v1, v2):
'''compute the vector projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return scalar_projection(v1, v2) * v2 / np.linalg.norm(v2)
|
python
|
def vector_projection(v1, v2):
return scalar_projection(v1, v2) * v2 / np.linalg.norm(v2)
|
[
"def",
"vector_projection",
"(",
"v1",
",",
"v2",
")",
":",
"return",
"scalar_projection",
"(",
"v1",
",",
"v2",
")",
"*",
"v2",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"v2",
")"
] |
compute the vector projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
|
[
"compute",
"the",
"vector",
"projection",
"of",
"v1",
"upon",
"v2"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L142-L152
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
dist_point_line
|
def dist_point_line(p, l1, l2):
'''compute the orthogonal distance between from the line that goes through
the points l1, l2 and the point p
Args:
p, l1, l2 : iterable
point
indices 0, 1, 2 corresponding to cartesian coordinates
'''
cross_prod = np.cross(l2 - l1, p - l1)
return np.linalg.norm(cross_prod) / np.linalg.norm(l2 - l1)
|
python
|
def dist_point_line(p, l1, l2):
cross_prod = np.cross(l2 - l1, p - l1)
return np.linalg.norm(cross_prod) / np.linalg.norm(l2 - l1)
|
[
"def",
"dist_point_line",
"(",
"p",
",",
"l1",
",",
"l2",
")",
":",
"cross_prod",
"=",
"np",
".",
"cross",
"(",
"l2",
"-",
"l1",
",",
"p",
"-",
"l1",
")",
"return",
"np",
".",
"linalg",
".",
"norm",
"(",
"cross_prod",
")",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"l2",
"-",
"l1",
")"
] |
compute the orthogonal distance between from the line that goes through
the points l1, l2 and the point p
Args:
p, l1, l2 : iterable
point
indices 0, 1, 2 corresponding to cartesian coordinates
|
[
"compute",
"the",
"orthogonal",
"distance",
"between",
"from",
"the",
"line",
"that",
"goes",
"through",
"the",
"points",
"l1",
"l2",
"and",
"the",
"point",
"p"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L155-L165
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
point_dist2
|
def point_dist2(p1, p2):
'''compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points.
'''
v = vector(p1, p2)
return np.dot(v, v)
|
python
|
def point_dist2(p1, p2):
v = vector(p1, p2)
return np.dot(v, v)
|
[
"def",
"point_dist2",
"(",
"p1",
",",
"p2",
")",
":",
"v",
"=",
"vector",
"(",
"p1",
",",
"p2",
")",
"return",
"np",
".",
"dot",
"(",
"v",
",",
"v",
")"
] |
compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points.
|
[
"compute",
"the",
"square",
"of",
"the",
"euclidian",
"distance",
"between",
"two",
"3D",
"points"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L168-L178
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
angle_3points
|
def angle_3points(p0, p1, p2):
''' compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2.
'''
vec1 = vector(p1, p0)
vec2 = vector(p2, p0)
return math.atan2(np.linalg.norm(np.cross(vec1, vec2)),
np.dot(vec1, vec2))
|
python
|
def angle_3points(p0, p1, p2):
vec1 = vector(p1, p0)
vec2 = vector(p2, p0)
return math.atan2(np.linalg.norm(np.cross(vec1, vec2)),
np.dot(vec1, vec2))
|
[
"def",
"angle_3points",
"(",
"p0",
",",
"p1",
",",
"p2",
")",
":",
"vec1",
"=",
"vector",
"(",
"p1",
",",
"p0",
")",
"vec2",
"=",
"vector",
"(",
"p2",
",",
"p0",
")",
"return",
"math",
".",
"atan2",
"(",
"np",
".",
"linalg",
".",
"norm",
"(",
"np",
".",
"cross",
"(",
"vec1",
",",
"vec2",
")",
")",
",",
"np",
".",
"dot",
"(",
"vec1",
",",
"vec2",
")",
")"
] |
compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2.
|
[
"compute",
"the",
"angle",
"in",
"radians",
"between",
"three",
"3D",
"points"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L193-L209
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
angle_between_vectors
|
def angle_between_vectors(p1, p2):
""" Computes the angle in radians between vectors 'p1' and 'p2'
Normalizes the input vectors and computes the relative angle
between them.
>>> angle_between((1, 0), (0, 1))
1.5707963267948966
>>> angle_between((1, 0), (1, 0))
0.0
>>> angle_between((1, 0), (-1, 0))
3.141592653589793
"""
v1 = p1 / np.linalg.norm(p1)
v2 = p2 / np.linalg.norm(p2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
|
python
|
def angle_between_vectors(p1, p2):
v1 = p1 / np.linalg.norm(p1)
v2 = p2 / np.linalg.norm(p2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
|
[
"def",
"angle_between_vectors",
"(",
"p1",
",",
"p2",
")",
":",
"v1",
"=",
"p1",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"p1",
")",
"v2",
"=",
"p2",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"p2",
")",
"return",
"np",
".",
"arccos",
"(",
"np",
".",
"clip",
"(",
"np",
".",
"dot",
"(",
"v1",
",",
"v2",
")",
",",
"-",
"1.0",
",",
"1.0",
")",
")"
] |
Computes the angle in radians between vectors 'p1' and 'p2'
Normalizes the input vectors and computes the relative angle
between them.
>>> angle_between((1, 0), (0, 1))
1.5707963267948966
>>> angle_between((1, 0), (1, 0))
0.0
>>> angle_between((1, 0), (-1, 0))
3.141592653589793
|
[
"Computes",
"the",
"angle",
"in",
"radians",
"between",
"vectors",
"p1",
"and",
"p2",
"Normalizes",
"the",
"input",
"vectors",
"and",
"computes",
"the",
"relative",
"angle",
"between",
"them",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L212-L226
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
polygon_diameter
|
def polygon_diameter(points):
''' Compute the maximun euclidian distance between any two points
in a list of points
'''
return max(point_dist(p0, p1) for (p0, p1) in combinations(points, 2))
|
python
|
def polygon_diameter(points):
return max(point_dist(p0, p1) for (p0, p1) in combinations(points, 2))
|
[
"def",
"polygon_diameter",
"(",
"points",
")",
":",
"return",
"max",
"(",
"point_dist",
"(",
"p0",
",",
"p1",
")",
"for",
"(",
"p0",
",",
"p1",
")",
"in",
"combinations",
"(",
"points",
",",
"2",
")",
")"
] |
Compute the maximun euclidian distance between any two points
in a list of points
|
[
"Compute",
"the",
"maximun",
"euclidian",
"distance",
"between",
"any",
"two",
"points",
"in",
"a",
"list",
"of",
"points"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L229-L233
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
average_points_dist
|
def average_points_dist(p0, p_list):
"""
Computes the average distance between a list of points
and a given point p0.
"""
return np.mean(list(point_dist(p0, p1) for p1 in p_list))
|
python
|
def average_points_dist(p0, p_list):
return np.mean(list(point_dist(p0, p1) for p1 in p_list))
|
[
"def",
"average_points_dist",
"(",
"p0",
",",
"p_list",
")",
":",
"return",
"np",
".",
"mean",
"(",
"list",
"(",
"point_dist",
"(",
"p0",
",",
"p1",
")",
"for",
"p1",
"in",
"p_list",
")",
")"
] |
Computes the average distance between a list of points
and a given point p0.
|
[
"Computes",
"the",
"average",
"distance",
"between",
"a",
"list",
"of",
"points",
"and",
"a",
"given",
"point",
"p0",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L236-L241
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
path_distance
|
def path_distance(points):
"""
Compute the path distance from given set of points
"""
vecs = np.diff(points, axis=0)[:, :3]
d2 = [np.dot(p, p) for p in vecs]
return np.sum(np.sqrt(d2))
|
python
|
def path_distance(points):
vecs = np.diff(points, axis=0)[:, :3]
d2 = [np.dot(p, p) for p in vecs]
return np.sum(np.sqrt(d2))
|
[
"def",
"path_distance",
"(",
"points",
")",
":",
"vecs",
"=",
"np",
".",
"diff",
"(",
"points",
",",
"axis",
"=",
"0",
")",
"[",
":",
",",
":",
"3",
"]",
"d2",
"=",
"[",
"np",
".",
"dot",
"(",
"p",
",",
"p",
")",
"for",
"p",
"in",
"vecs",
"]",
"return",
"np",
".",
"sum",
"(",
"np",
".",
"sqrt",
"(",
"d2",
")",
")"
] |
Compute the path distance from given set of points
|
[
"Compute",
"the",
"path",
"distance",
"from",
"given",
"set",
"of",
"points"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L244-L250
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
segment_radial_dist
|
def segment_radial_dist(seg, pos):
'''Return the radial distance of a tree segment to a given point
The radial distance is the euclidian distance between the mid-point of
the segment and the point in question.
Parameters:
seg: tree segment
pos: origin to which distances are measured. It must have at lease 3
components. The first 3 components are (x, y, z).
'''
return point_dist(pos, np.divide(np.add(seg[0], seg[1]), 2.0))
|
python
|
def segment_radial_dist(seg, pos):
return point_dist(pos, np.divide(np.add(seg[0], seg[1]), 2.0))
|
[
"def",
"segment_radial_dist",
"(",
"seg",
",",
"pos",
")",
":",
"return",
"point_dist",
"(",
"pos",
",",
"np",
".",
"divide",
"(",
"np",
".",
"add",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
",",
"2.0",
")",
")"
] |
Return the radial distance of a tree segment to a given point
The radial distance is the euclidian distance between the mid-point of
the segment and the point in question.
Parameters:
seg: tree segment
pos: origin to which distances are measured. It must have at lease 3
components. The first 3 components are (x, y, z).
|
[
"Return",
"the",
"radial",
"distance",
"of",
"a",
"tree",
"segment",
"to",
"a",
"given",
"point"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L301-L313
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
segment_area
|
def segment_area(seg):
'''Compute the surface area of a segment.
Approximated as a conical frustum. Does not include the surface area
of the bounding circles.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h2 = point_dist2(seg[0], seg[1])
return math.pi * (r0 + r1) * math.sqrt((r0 - r1) ** 2 + h2)
|
python
|
def segment_area(seg):
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h2 = point_dist2(seg[0], seg[1])
return math.pi * (r0 + r1) * math.sqrt((r0 - r1) ** 2 + h2)
|
[
"def",
"segment_area",
"(",
"seg",
")",
":",
"r0",
"=",
"seg",
"[",
"0",
"]",
"[",
"COLS",
".",
"R",
"]",
"r1",
"=",
"seg",
"[",
"1",
"]",
"[",
"COLS",
".",
"R",
"]",
"h2",
"=",
"point_dist2",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
"return",
"math",
".",
"pi",
"*",
"(",
"r0",
"+",
"r1",
")",
"*",
"math",
".",
"sqrt",
"(",
"(",
"r0",
"-",
"r1",
")",
"**",
"2",
"+",
"h2",
")"
] |
Compute the surface area of a segment.
Approximated as a conical frustum. Does not include the surface area
of the bounding circles.
|
[
"Compute",
"the",
"surface",
"area",
"of",
"a",
"segment",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L316-L325
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
segment_volume
|
def segment_volume(seg):
'''Compute the volume of a segment.
Approximated as a conical frustum.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h = point_dist(seg[0], seg[1])
return math.pi * h * ((r0 * r0) + (r0 * r1) + (r1 * r1)) / 3.0
|
python
|
def segment_volume(seg):
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h = point_dist(seg[0], seg[1])
return math.pi * h * ((r0 * r0) + (r0 * r1) + (r1 * r1)) / 3.0
|
[
"def",
"segment_volume",
"(",
"seg",
")",
":",
"r0",
"=",
"seg",
"[",
"0",
"]",
"[",
"COLS",
".",
"R",
"]",
"r1",
"=",
"seg",
"[",
"1",
"]",
"[",
"COLS",
".",
"R",
"]",
"h",
"=",
"point_dist",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
"return",
"math",
".",
"pi",
"*",
"h",
"*",
"(",
"(",
"r0",
"*",
"r0",
")",
"+",
"(",
"r0",
"*",
"r1",
")",
"+",
"(",
"r1",
"*",
"r1",
")",
")",
"/",
"3.0"
] |
Compute the volume of a segment.
Approximated as a conical frustum.
|
[
"Compute",
"the",
"volume",
"of",
"a",
"segment",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L328-L336
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
taper_rate
|
def taper_rate(p0, p1):
'''Compute the taper rate between points p0 and p1
Args:
p0, p1: iterables with first 4 components containing (x, y, z, r)
Returns:
The taper rate, defined as the absolute value of the difference in
the diameters of p0 and p1 divided by the euclidian distance
between them.
'''
return 2 * abs(p0[COLS.R] - p1[COLS.R]) / point_dist(p0, p1)
|
python
|
def taper_rate(p0, p1):
return 2 * abs(p0[COLS.R] - p1[COLS.R]) / point_dist(p0, p1)
|
[
"def",
"taper_rate",
"(",
"p0",
",",
"p1",
")",
":",
"return",
"2",
"*",
"abs",
"(",
"p0",
"[",
"COLS",
".",
"R",
"]",
"-",
"p1",
"[",
"COLS",
".",
"R",
"]",
")",
"/",
"point_dist",
"(",
"p0",
",",
"p1",
")"
] |
Compute the taper rate between points p0 and p1
Args:
p0, p1: iterables with first 4 components containing (x, y, z, r)
Returns:
The taper rate, defined as the absolute value of the difference in
the diameters of p0 and p1 divided by the euclidian distance
between them.
|
[
"Compute",
"the",
"taper",
"rate",
"between",
"points",
"p0",
"and",
"p1"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L339-L350
|
BlueBrain/NeuroM
|
neurom/morphmath.py
|
principal_direction_extent
|
def principal_direction_extent(points):
'''Calculate the extent of a set of 3D points.
The extent is defined as the maximum distance between
the projections on the principal directions of the covariance matrix
of the points.
Parameter:
points : a 2D numpy array of points
Returns:
extents : the extents for each of the eigenvectors of the cov matrix
eigs : eigenvalues of the covariance matrix
eigv : respective eigenvectors of the covariance matrix
'''
# center the points around 0.0
points = np.copy(points)
points -= np.mean(points, axis=0)
# principal components
_, eigv = pca(points)
extent = np.zeros(3)
for i in range(eigv.shape[1]):
# orthogonal projection onto the direction of the v component
scalar_projs = np.sort(np.array([np.dot(p, eigv[:, i]) for p in points]))
extent[i] = scalar_projs[-1]
if scalar_projs[0] < 0.:
extent -= scalar_projs[0]
return extent
|
python
|
def principal_direction_extent(points):
points = np.copy(points)
points -= np.mean(points, axis=0)
_, eigv = pca(points)
extent = np.zeros(3)
for i in range(eigv.shape[1]):
scalar_projs = np.sort(np.array([np.dot(p, eigv[:, i]) for p in points]))
extent[i] = scalar_projs[-1]
if scalar_projs[0] < 0.:
extent -= scalar_projs[0]
return extent
|
[
"def",
"principal_direction_extent",
"(",
"points",
")",
":",
"# center the points around 0.0",
"points",
"=",
"np",
".",
"copy",
"(",
"points",
")",
"points",
"-=",
"np",
".",
"mean",
"(",
"points",
",",
"axis",
"=",
"0",
")",
"# principal components",
"_",
",",
"eigv",
"=",
"pca",
"(",
"points",
")",
"extent",
"=",
"np",
".",
"zeros",
"(",
"3",
")",
"for",
"i",
"in",
"range",
"(",
"eigv",
".",
"shape",
"[",
"1",
"]",
")",
":",
"# orthogonal projection onto the direction of the v component",
"scalar_projs",
"=",
"np",
".",
"sort",
"(",
"np",
".",
"array",
"(",
"[",
"np",
".",
"dot",
"(",
"p",
",",
"eigv",
"[",
":",
",",
"i",
"]",
")",
"for",
"p",
"in",
"points",
"]",
")",
")",
"extent",
"[",
"i",
"]",
"=",
"scalar_projs",
"[",
"-",
"1",
"]",
"if",
"scalar_projs",
"[",
"0",
"]",
"<",
"0.",
":",
"extent",
"-=",
"scalar_projs",
"[",
"0",
"]",
"return",
"extent"
] |
Calculate the extent of a set of 3D points.
The extent is defined as the maximum distance between
the projections on the principal directions of the covariance matrix
of the points.
Parameter:
points : a 2D numpy array of points
Returns:
extents : the extents for each of the eigenvectors of the cov matrix
eigs : eigenvalues of the covariance matrix
eigv : respective eigenvectors of the covariance matrix
|
[
"Calculate",
"the",
"extent",
"of",
"a",
"set",
"of",
"3D",
"points",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L387-L419
|
BlueBrain/NeuroM
|
examples/features_graph_table.py
|
stylize
|
def stylize(ax, name, feature):
'''Stylization modifications to the plots
'''
ax.set_ylabel(feature)
ax.set_title(name, fontsize='small')
|
python
|
def stylize(ax, name, feature):
ax.set_ylabel(feature)
ax.set_title(name, fontsize='small')
|
[
"def",
"stylize",
"(",
"ax",
",",
"name",
",",
"feature",
")",
":",
"ax",
".",
"set_ylabel",
"(",
"feature",
")",
"ax",
".",
"set_title",
"(",
"name",
",",
"fontsize",
"=",
"'small'",
")"
] |
Stylization modifications to the plots
|
[
"Stylization",
"modifications",
"to",
"the",
"plots"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/features_graph_table.py#L60-L64
|
BlueBrain/NeuroM
|
examples/features_graph_table.py
|
histogram
|
def histogram(neuron, feature, ax, bins=15, normed=True, cumulative=False):
'''
Plot a histogram of the selected feature for the population of neurons.
Plots x-axis versus y-axis on a scatter|histogram|binned values plot.
Parameters :
neurons : neuron list
feature : str
The feature of interest.
bins : int
Number of bins for the histogram.
cumulative : bool
Sets cumulative histogram on.
ax : axes object
the axes in which the plot is taking place
'''
feature_values = nm.get(feature, neuron)
# generate histogram
ax.hist(feature_values, bins=bins, cumulative=cumulative, normed=normed)
|
python
|
def histogram(neuron, feature, ax, bins=15, normed=True, cumulative=False):
feature_values = nm.get(feature, neuron)
ax.hist(feature_values, bins=bins, cumulative=cumulative, normed=normed)
|
[
"def",
"histogram",
"(",
"neuron",
",",
"feature",
",",
"ax",
",",
"bins",
"=",
"15",
",",
"normed",
"=",
"True",
",",
"cumulative",
"=",
"False",
")",
":",
"feature_values",
"=",
"nm",
".",
"get",
"(",
"feature",
",",
"neuron",
")",
"# generate histogram",
"ax",
".",
"hist",
"(",
"feature_values",
",",
"bins",
"=",
"bins",
",",
"cumulative",
"=",
"cumulative",
",",
"normed",
"=",
"normed",
")"
] |
Plot a histogram of the selected feature for the population of neurons.
Plots x-axis versus y-axis on a scatter|histogram|binned values plot.
Parameters :
neurons : neuron list
feature : str
The feature of interest.
bins : int
Number of bins for the histogram.
cumulative : bool
Sets cumulative histogram on.
ax : axes object
the axes in which the plot is taking place
|
[
"Plot",
"a",
"histogram",
"of",
"the",
"selected",
"feature",
"for",
"the",
"population",
"of",
"neurons",
".",
"Plots",
"x",
"-",
"axis",
"versus",
"y",
"-",
"axis",
"on",
"a",
"scatter|histogram|binned",
"values",
"plot",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/features_graph_table.py#L67-L91
|
BlueBrain/NeuroM
|
examples/features_graph_table.py
|
plot_feature
|
def plot_feature(feature, cell):
'''Plot a feature
'''
fig = pl.figure()
ax = fig.add_subplot(111)
if cell is not None:
try:
histogram(cell, feature, ax)
except ValueError:
pass
stylize(ax, cell.name, feature)
return fig
|
python
|
def plot_feature(feature, cell):
fig = pl.figure()
ax = fig.add_subplot(111)
if cell is not None:
try:
histogram(cell, feature, ax)
except ValueError:
pass
stylize(ax, cell.name, feature)
return fig
|
[
"def",
"plot_feature",
"(",
"feature",
",",
"cell",
")",
":",
"fig",
"=",
"pl",
".",
"figure",
"(",
")",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"111",
")",
"if",
"cell",
"is",
"not",
"None",
":",
"try",
":",
"histogram",
"(",
"cell",
",",
"feature",
",",
"ax",
")",
"except",
"ValueError",
":",
"pass",
"stylize",
"(",
"ax",
",",
"cell",
".",
"name",
",",
"feature",
")",
"return",
"fig"
] |
Plot a feature
|
[
"Plot",
"a",
"feature"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/features_graph_table.py#L94-L106
|
BlueBrain/NeuroM
|
examples/end_to_end_distance.py
|
path_end_to_end_distance
|
def path_end_to_end_distance(neurite):
'''Calculate and return end-to-end-distance of a given neurite.'''
trunk = neurite.root_node.points[0]
return max(morphmath.point_dist(l.points[-1], trunk)
for l in neurite.root_node.ileaf())
|
python
|
def path_end_to_end_distance(neurite):
trunk = neurite.root_node.points[0]
return max(morphmath.point_dist(l.points[-1], trunk)
for l in neurite.root_node.ileaf())
|
[
"def",
"path_end_to_end_distance",
"(",
"neurite",
")",
":",
"trunk",
"=",
"neurite",
".",
"root_node",
".",
"points",
"[",
"0",
"]",
"return",
"max",
"(",
"morphmath",
".",
"point_dist",
"(",
"l",
".",
"points",
"[",
"-",
"1",
"]",
",",
"trunk",
")",
"for",
"l",
"in",
"neurite",
".",
"root_node",
".",
"ileaf",
"(",
")",
")"
] |
Calculate and return end-to-end-distance of a given neurite.
|
[
"Calculate",
"and",
"return",
"end",
"-",
"to",
"-",
"end",
"-",
"distance",
"of",
"a",
"given",
"neurite",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L38-L42
|
BlueBrain/NeuroM
|
examples/end_to_end_distance.py
|
make_end_to_end_distance_plot
|
def make_end_to_end_distance_plot(nb_segments, end_to_end_distance, neurite_type):
'''Plot end-to-end distance vs number of segments'''
plt.figure()
plt.plot(nb_segments, end_to_end_distance)
plt.title(neurite_type)
plt.xlabel('Number of segments')
plt.ylabel('End-to-end distance')
plt.show()
|
python
|
def make_end_to_end_distance_plot(nb_segments, end_to_end_distance, neurite_type):
plt.figure()
plt.plot(nb_segments, end_to_end_distance)
plt.title(neurite_type)
plt.xlabel('Number of segments')
plt.ylabel('End-to-end distance')
plt.show()
|
[
"def",
"make_end_to_end_distance_plot",
"(",
"nb_segments",
",",
"end_to_end_distance",
",",
"neurite_type",
")",
":",
"plt",
".",
"figure",
"(",
")",
"plt",
".",
"plot",
"(",
"nb_segments",
",",
"end_to_end_distance",
")",
"plt",
".",
"title",
"(",
"neurite_type",
")",
"plt",
".",
"xlabel",
"(",
"'Number of segments'",
")",
"plt",
".",
"ylabel",
"(",
"'End-to-end distance'",
")",
"plt",
".",
"show",
"(",
")"
] |
Plot end-to-end distance vs number of segments
|
[
"Plot",
"end",
"-",
"to",
"-",
"end",
"distance",
"vs",
"number",
"of",
"segments"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L50-L57
|
BlueBrain/NeuroM
|
examples/end_to_end_distance.py
|
calculate_and_plot_end_to_end_distance
|
def calculate_and_plot_end_to_end_distance(neurite):
'''Calculate and plot the end-to-end distance vs the number of segments for
an increasingly larger part of a given neurite.
Note that the plots are not very meaningful for bifurcating trees.'''
def _dist(seg):
'''Distance between segmenr end and trunk'''
return morphmath.point_dist(seg[1], neurite.root_node.points[0])
end_to_end_distance = [_dist(s) for s in nm.iter_segments(neurite)]
make_end_to_end_distance_plot(np.arange(len(end_to_end_distance)) + 1,
end_to_end_distance, neurite.type)
|
python
|
def calculate_and_plot_end_to_end_distance(neurite):
def _dist(seg):
return morphmath.point_dist(seg[1], neurite.root_node.points[0])
end_to_end_distance = [_dist(s) for s in nm.iter_segments(neurite)]
make_end_to_end_distance_plot(np.arange(len(end_to_end_distance)) + 1,
end_to_end_distance, neurite.type)
|
[
"def",
"calculate_and_plot_end_to_end_distance",
"(",
"neurite",
")",
":",
"def",
"_dist",
"(",
"seg",
")",
":",
"'''Distance between segmenr end and trunk'''",
"return",
"morphmath",
".",
"point_dist",
"(",
"seg",
"[",
"1",
"]",
",",
"neurite",
".",
"root_node",
".",
"points",
"[",
"0",
"]",
")",
"end_to_end_distance",
"=",
"[",
"_dist",
"(",
"s",
")",
"for",
"s",
"in",
"nm",
".",
"iter_segments",
"(",
"neurite",
")",
"]",
"make_end_to_end_distance_plot",
"(",
"np",
".",
"arange",
"(",
"len",
"(",
"end_to_end_distance",
")",
")",
"+",
"1",
",",
"end_to_end_distance",
",",
"neurite",
".",
"type",
")"
] |
Calculate and plot the end-to-end distance vs the number of segments for
an increasingly larger part of a given neurite.
Note that the plots are not very meaningful for bifurcating trees.
|
[
"Calculate",
"and",
"plot",
"the",
"end",
"-",
"to",
"-",
"end",
"distance",
"vs",
"the",
"number",
"of",
"segments",
"for",
"an",
"increasingly",
"larger",
"part",
"of",
"a",
"given",
"neurite",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L60-L71
|
BlueBrain/NeuroM
|
neurom/core/types.py
|
tree_type_checker
|
def tree_type_checker(*ref):
'''Tree type checker functor
Returns:
Functor that takes a tree, and returns true if that tree matches any of
NeuriteTypes in ref
Ex:
>>> from neurom.core.types import NeuriteType, tree_type_checker
>>> tree_filter = tree_type_checker(NeuriteType.axon, NeuriteType.basal_dendrite)
>>> nrn.i_neurites(tree.isegment, tree_filter=tree_filter)
'''
ref = tuple(ref)
if NeuriteType.all in ref:
def check_tree_type(_):
'''Always returns true'''
return True
else:
def check_tree_type(tree):
'''Check whether tree has the same type as ref
Returns:
True if ref in the same type as tree.type or ref is NeuriteType.all
'''
return tree.type in ref
return check_tree_type
|
python
|
def tree_type_checker(*ref):
ref = tuple(ref)
if NeuriteType.all in ref:
def check_tree_type(_):
return True
else:
def check_tree_type(tree):
return tree.type in ref
return check_tree_type
|
[
"def",
"tree_type_checker",
"(",
"*",
"ref",
")",
":",
"ref",
"=",
"tuple",
"(",
"ref",
")",
"if",
"NeuriteType",
".",
"all",
"in",
"ref",
":",
"def",
"check_tree_type",
"(",
"_",
")",
":",
"'''Always returns true'''",
"return",
"True",
"else",
":",
"def",
"check_tree_type",
"(",
"tree",
")",
":",
"'''Check whether tree has the same type as ref\n\n Returns:\n True if ref in the same type as tree.type or ref is NeuriteType.all\n '''",
"return",
"tree",
".",
"type",
"in",
"ref",
"return",
"check_tree_type"
] |
Tree type checker functor
Returns:
Functor that takes a tree, and returns true if that tree matches any of
NeuriteTypes in ref
Ex:
>>> from neurom.core.types import NeuriteType, tree_type_checker
>>> tree_filter = tree_type_checker(NeuriteType.axon, NeuriteType.basal_dendrite)
>>> nrn.i_neurites(tree.isegment, tree_filter=tree_filter)
|
[
"Tree",
"type",
"checker",
"functor"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/types.py#L66-L92
|
BlueBrain/NeuroM
|
neurom/core/types.py
|
dendrite_filter
|
def dendrite_filter(n):
'''Select only dendrites'''
return n.type == NeuriteType.basal_dendrite or n.type == NeuriteType.apical_dendrite
|
python
|
def dendrite_filter(n):
return n.type == NeuriteType.basal_dendrite or n.type == NeuriteType.apical_dendrite
|
[
"def",
"dendrite_filter",
"(",
"n",
")",
":",
"return",
"n",
".",
"type",
"==",
"NeuriteType",
".",
"basal_dendrite",
"or",
"n",
".",
"type",
"==",
"NeuriteType",
".",
"apical_dendrite"
] |
Select only dendrites
|
[
"Select",
"only",
"dendrites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/types.py#L95-L97
|
BlueBrain/NeuroM
|
examples/plot_somas.py
|
plot_somas
|
def plot_somas(somas):
'''Plot set of somas on same figure as spheres, each with different color'''
_, ax = common.get_figure(new_fig=True, subplot=111,
params={'projection': '3d', 'aspect': 'equal'})
for s in somas:
common.plot_sphere(ax, s.center, s.radius, color=random_color(), alpha=1)
plt.show()
|
python
|
def plot_somas(somas):
_, ax = common.get_figure(new_fig=True, subplot=111,
params={'projection': '3d', 'aspect': 'equal'})
for s in somas:
common.plot_sphere(ax, s.center, s.radius, color=random_color(), alpha=1)
plt.show()
|
[
"def",
"plot_somas",
"(",
"somas",
")",
":",
"_",
",",
"ax",
"=",
"common",
".",
"get_figure",
"(",
"new_fig",
"=",
"True",
",",
"subplot",
"=",
"111",
",",
"params",
"=",
"{",
"'projection'",
":",
"'3d'",
",",
"'aspect'",
":",
"'equal'",
"}",
")",
"for",
"s",
"in",
"somas",
":",
"common",
".",
"plot_sphere",
"(",
"ax",
",",
"s",
".",
"center",
",",
"s",
".",
"radius",
",",
"color",
"=",
"random_color",
"(",
")",
",",
"alpha",
"=",
"1",
")",
"plt",
".",
"show",
"(",
")"
] |
Plot set of somas on same figure as spheres, each with different color
|
[
"Plot",
"set",
"of",
"somas",
"on",
"same",
"figure",
"as",
"spheres",
"each",
"with",
"different",
"color"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_somas.py#L48-L54
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_max_recursion_depth
|
def _max_recursion_depth(obj):
''' Estimate recursion depth, which is defined as the number of nodes in a tree
'''
neurites = obj.neurites if hasattr(obj, 'neurites') else [obj]
return max(sum(1 for _ in neu.iter_sections()) for neu in neurites)
|
python
|
def _max_recursion_depth(obj):
neurites = obj.neurites if hasattr(obj, 'neurites') else [obj]
return max(sum(1 for _ in neu.iter_sections()) for neu in neurites)
|
[
"def",
"_max_recursion_depth",
"(",
"obj",
")",
":",
"neurites",
"=",
"obj",
".",
"neurites",
"if",
"hasattr",
"(",
"obj",
",",
"'neurites'",
")",
"else",
"[",
"obj",
"]",
"return",
"max",
"(",
"sum",
"(",
"1",
"for",
"_",
"in",
"neu",
".",
"iter_sections",
"(",
")",
")",
"for",
"neu",
"in",
"neurites",
")"
] |
Estimate recursion depth, which is defined as the number of nodes in a tree
|
[
"Estimate",
"recursion",
"depth",
"which",
"is",
"defined",
"as",
"the",
"number",
"of",
"nodes",
"in",
"a",
"tree"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L44-L49
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_total_rectangles
|
def _total_rectangles(tree):
'''
Calculate the total number of segments that are required
for the dendrogram. There is a vertical line for each segment
and two horizontal line at each branching point
'''
return sum(len(sec.children) + sec.points.shape[0] - 1
for sec in tree.iter_sections())
|
python
|
def _total_rectangles(tree):
return sum(len(sec.children) + sec.points.shape[0] - 1
for sec in tree.iter_sections())
|
[
"def",
"_total_rectangles",
"(",
"tree",
")",
":",
"return",
"sum",
"(",
"len",
"(",
"sec",
".",
"children",
")",
"+",
"sec",
".",
"points",
".",
"shape",
"[",
"0",
"]",
"-",
"1",
"for",
"sec",
"in",
"tree",
".",
"iter_sections",
"(",
")",
")"
] |
Calculate the total number of segments that are required
for the dendrogram. There is a vertical line for each segment
and two horizontal line at each branching point
|
[
"Calculate",
"the",
"total",
"number",
"of",
"segments",
"that",
"are",
"required",
"for",
"the",
"dendrogram",
".",
"There",
"is",
"a",
"vertical",
"line",
"for",
"each",
"segment",
"and",
"two",
"horizontal",
"line",
"at",
"each",
"branching",
"point"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L52-L59
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_n_rectangles
|
def _n_rectangles(obj):
'''
Calculate the total number of rectangles with respect to
the type of the object
'''
return sum(_total_rectangles(neu) for neu in obj.neurites) \
if hasattr(obj, 'neurites') else _total_rectangles(obj)
|
python
|
def _n_rectangles(obj):
return sum(_total_rectangles(neu) for neu in obj.neurites) \
if hasattr(obj, 'neurites') else _total_rectangles(obj)
|
[
"def",
"_n_rectangles",
"(",
"obj",
")",
":",
"return",
"sum",
"(",
"_total_rectangles",
"(",
"neu",
")",
"for",
"neu",
"in",
"obj",
".",
"neurites",
")",
"if",
"hasattr",
"(",
"obj",
",",
"'neurites'",
")",
"else",
"_total_rectangles",
"(",
"obj",
")"
] |
Calculate the total number of rectangles with respect to
the type of the object
|
[
"Calculate",
"the",
"total",
"number",
"of",
"rectangles",
"with",
"respect",
"to",
"the",
"type",
"of",
"the",
"object"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L62-L68
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_square_segment
|
def _square_segment(radius, origin):
'''Vertices for a square
'''
return np.array(((origin[0] - radius, origin[1] - radius),
(origin[0] - radius, origin[1] + radius),
(origin[0] + radius, origin[1] + radius),
(origin[0] + radius, origin[1] - radius)))
|
python
|
def _square_segment(radius, origin):
return np.array(((origin[0] - radius, origin[1] - radius),
(origin[0] - radius, origin[1] + radius),
(origin[0] + radius, origin[1] + radius),
(origin[0] + radius, origin[1] - radius)))
|
[
"def",
"_square_segment",
"(",
"radius",
",",
"origin",
")",
":",
"return",
"np",
".",
"array",
"(",
"(",
"(",
"origin",
"[",
"0",
"]",
"-",
"radius",
",",
"origin",
"[",
"1",
"]",
"-",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"-",
"radius",
",",
"origin",
"[",
"1",
"]",
"+",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"+",
"radius",
",",
"origin",
"[",
"1",
"]",
"+",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"+",
"radius",
",",
"origin",
"[",
"1",
"]",
"-",
"radius",
")",
")",
")"
] |
Vertices for a square
|
[
"Vertices",
"for",
"a",
"square"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L71-L77
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_vertical_segment
|
def _vertical_segment(old_offs, new_offs, spacing, radii):
'''Vertices for a vertical rectangle
'''
return np.array(((new_offs[0] - radii[0], old_offs[1] + spacing[1]),
(new_offs[0] - radii[1], new_offs[1]),
(new_offs[0] + radii[1], new_offs[1]),
(new_offs[0] + radii[0], old_offs[1] + spacing[1])))
|
python
|
def _vertical_segment(old_offs, new_offs, spacing, radii):
return np.array(((new_offs[0] - radii[0], old_offs[1] + spacing[1]),
(new_offs[0] - radii[1], new_offs[1]),
(new_offs[0] + radii[1], new_offs[1]),
(new_offs[0] + radii[0], old_offs[1] + spacing[1])))
|
[
"def",
"_vertical_segment",
"(",
"old_offs",
",",
"new_offs",
",",
"spacing",
",",
"radii",
")",
":",
"return",
"np",
".",
"array",
"(",
"(",
"(",
"new_offs",
"[",
"0",
"]",
"-",
"radii",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
")",
",",
"(",
"new_offs",
"[",
"0",
"]",
"-",
"radii",
"[",
"1",
"]",
",",
"new_offs",
"[",
"1",
"]",
")",
",",
"(",
"new_offs",
"[",
"0",
"]",
"+",
"radii",
"[",
"1",
"]",
",",
"new_offs",
"[",
"1",
"]",
")",
",",
"(",
"new_offs",
"[",
"0",
"]",
"+",
"radii",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
")",
")",
")"
] |
Vertices for a vertical rectangle
|
[
"Vertices",
"for",
"a",
"vertical",
"rectangle"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L80-L86
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_horizontal_segment
|
def _horizontal_segment(old_offs, new_offs, spacing, diameter):
'''Vertices of a horizontal rectangle
'''
return np.array(((old_offs[0], old_offs[1] + spacing[1]),
(new_offs[0], old_offs[1] + spacing[1]),
(new_offs[0], old_offs[1] + spacing[1] - diameter),
(old_offs[0], old_offs[1] + spacing[1] - diameter)))
|
python
|
def _horizontal_segment(old_offs, new_offs, spacing, diameter):
return np.array(((old_offs[0], old_offs[1] + spacing[1]),
(new_offs[0], old_offs[1] + spacing[1]),
(new_offs[0], old_offs[1] + spacing[1] - diameter),
(old_offs[0], old_offs[1] + spacing[1] - diameter)))
|
[
"def",
"_horizontal_segment",
"(",
"old_offs",
",",
"new_offs",
",",
"spacing",
",",
"diameter",
")",
":",
"return",
"np",
".",
"array",
"(",
"(",
"(",
"old_offs",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
")",
",",
"(",
"new_offs",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
")",
",",
"(",
"new_offs",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
"-",
"diameter",
")",
",",
"(",
"old_offs",
"[",
"0",
"]",
",",
"old_offs",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
"-",
"diameter",
")",
")",
")"
] |
Vertices of a horizontal rectangle
|
[
"Vertices",
"of",
"a",
"horizontal",
"rectangle"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L89-L95
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_spacingx
|
def _spacingx(node, max_dims, xoffset, xspace):
'''Determine the spacing of the current node depending on the number
of the leaves of the tree
'''
x_spacing = _n_terminations(node) * xspace
if x_spacing > max_dims[0]:
max_dims[0] = x_spacing
return xoffset - x_spacing / 2.
|
python
|
def _spacingx(node, max_dims, xoffset, xspace):
x_spacing = _n_terminations(node) * xspace
if x_spacing > max_dims[0]:
max_dims[0] = x_spacing
return xoffset - x_spacing / 2.
|
[
"def",
"_spacingx",
"(",
"node",
",",
"max_dims",
",",
"xoffset",
",",
"xspace",
")",
":",
"x_spacing",
"=",
"_n_terminations",
"(",
"node",
")",
"*",
"xspace",
"if",
"x_spacing",
">",
"max_dims",
"[",
"0",
"]",
":",
"max_dims",
"[",
"0",
"]",
"=",
"x_spacing",
"return",
"xoffset",
"-",
"x_spacing",
"/",
"2."
] |
Determine the spacing of the current node depending on the number
of the leaves of the tree
|
[
"Determine",
"the",
"spacing",
"of",
"the",
"current",
"node",
"depending",
"on",
"the",
"number",
"of",
"the",
"leaves",
"of",
"the",
"tree"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L98-L107
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_update_offsets
|
def _update_offsets(start_x, spacing, terminations, offsets, length):
'''Update the offsets
'''
return (start_x + spacing[0] * terminations / 2.,
offsets[1] + spacing[1] * 2. + length)
|
python
|
def _update_offsets(start_x, spacing, terminations, offsets, length):
return (start_x + spacing[0] * terminations / 2.,
offsets[1] + spacing[1] * 2. + length)
|
[
"def",
"_update_offsets",
"(",
"start_x",
",",
"spacing",
",",
"terminations",
",",
"offsets",
",",
"length",
")",
":",
"return",
"(",
"start_x",
"+",
"spacing",
"[",
"0",
"]",
"*",
"terminations",
"/",
"2.",
",",
"offsets",
"[",
"1",
"]",
"+",
"spacing",
"[",
"1",
"]",
"*",
"2.",
"+",
"length",
")"
] |
Update the offsets
|
[
"Update",
"the",
"offsets"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L110-L114
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
_max_diameter
|
def _max_diameter(tree):
'''Find max diameter in tree
'''
return 2. * max(max(node.points[:, COLS.R]) for node in tree.ipreorder())
|
python
|
def _max_diameter(tree):
return 2. * max(max(node.points[:, COLS.R]) for node in tree.ipreorder())
|
[
"def",
"_max_diameter",
"(",
"tree",
")",
":",
"return",
"2.",
"*",
"max",
"(",
"max",
"(",
"node",
".",
"points",
"[",
":",
",",
"COLS",
".",
"R",
"]",
")",
"for",
"node",
"in",
"tree",
".",
"ipreorder",
"(",
")",
")"
] |
Find max diameter in tree
|
[
"Find",
"max",
"diameter",
"in",
"tree"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L117-L120
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
Dendrogram._generate_soma
|
def _generate_soma(self):
'''soma'''
radius = self._obj.soma.radius
return _square_segment(radius, (0., -radius))
|
python
|
def _generate_soma(self):
radius = self._obj.soma.radius
return _square_segment(radius, (0., -radius))
|
[
"def",
"_generate_soma",
"(",
"self",
")",
":",
"radius",
"=",
"self",
".",
"_obj",
".",
"soma",
".",
"radius",
"return",
"_square_segment",
"(",
"radius",
",",
"(",
"0.",
",",
"-",
"radius",
")",
")"
] |
soma
|
[
"soma"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L160-L163
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
Dendrogram.generate
|
def generate(self):
'''Generate dendrogram
'''
offsets = (0., 0.)
n_previous = 0
# set recursion limit with respect to
# the max number of nodes on the trees
old_depth = sys.getrecursionlimit()
max_depth = old_depth if old_depth > self._max_rec_depth else self._max_rec_depth
# TODO: This should be fixed so we don't set sys.setrecursionlimit at all
sys.setrecursionlimit(max_depth)
if isinstance(self._obj, Neurite):
max_diameter = _max_diameter(self._obj.root_node)
dummy_section = Tree()
dummy_section.add_child(self._obj.root_node)
self._generate_dendro(dummy_section, (max_diameter, 0.), offsets)
self._groups.append((0, self._n))
self._dims.append(self._max_dims)
else:
for neurite in self._obj.neurites:
neurite = neurite.root_node
max_diameter = _max_diameter(neurite)
dummy_section = Tree()
dummy_section.add_child(neurite)
self._generate_dendro(dummy_section, (max_diameter, 0.), offsets)
# store in trees the indices for the slice which corresponds
# to the current neurite
self._groups.append((n_previous, self._n))
# store the max dims per neurite for view positioning
self._dims.append(self._max_dims)
# reset the max dimensions for the next tree in line
self._max_dims = [0., 0.]
# keep track of the next tree start index in list
n_previous = self._n
# set it back to its initial value
sys.setrecursionlimit(old_depth)
|
python
|
def generate(self):
offsets = (0., 0.)
n_previous = 0
old_depth = sys.getrecursionlimit()
max_depth = old_depth if old_depth > self._max_rec_depth else self._max_rec_depth
sys.setrecursionlimit(max_depth)
if isinstance(self._obj, Neurite):
max_diameter = _max_diameter(self._obj.root_node)
dummy_section = Tree()
dummy_section.add_child(self._obj.root_node)
self._generate_dendro(dummy_section, (max_diameter, 0.), offsets)
self._groups.append((0, self._n))
self._dims.append(self._max_dims)
else:
for neurite in self._obj.neurites:
neurite = neurite.root_node
max_diameter = _max_diameter(neurite)
dummy_section = Tree()
dummy_section.add_child(neurite)
self._generate_dendro(dummy_section, (max_diameter, 0.), offsets)
self._groups.append((n_previous, self._n))
self._dims.append(self._max_dims)
self._max_dims = [0., 0.]
n_previous = self._n
sys.setrecursionlimit(old_depth)
|
[
"def",
"generate",
"(",
"self",
")",
":",
"offsets",
"=",
"(",
"0.",
",",
"0.",
")",
"n_previous",
"=",
"0",
"# set recursion limit with respect to",
"# the max number of nodes on the trees",
"old_depth",
"=",
"sys",
".",
"getrecursionlimit",
"(",
")",
"max_depth",
"=",
"old_depth",
"if",
"old_depth",
">",
"self",
".",
"_max_rec_depth",
"else",
"self",
".",
"_max_rec_depth",
"# TODO: This should be fixed so we don't set sys.setrecursionlimit at all",
"sys",
".",
"setrecursionlimit",
"(",
"max_depth",
")",
"if",
"isinstance",
"(",
"self",
".",
"_obj",
",",
"Neurite",
")",
":",
"max_diameter",
"=",
"_max_diameter",
"(",
"self",
".",
"_obj",
".",
"root_node",
")",
"dummy_section",
"=",
"Tree",
"(",
")",
"dummy_section",
".",
"add_child",
"(",
"self",
".",
"_obj",
".",
"root_node",
")",
"self",
".",
"_generate_dendro",
"(",
"dummy_section",
",",
"(",
"max_diameter",
",",
"0.",
")",
",",
"offsets",
")",
"self",
".",
"_groups",
".",
"append",
"(",
"(",
"0",
",",
"self",
".",
"_n",
")",
")",
"self",
".",
"_dims",
".",
"append",
"(",
"self",
".",
"_max_dims",
")",
"else",
":",
"for",
"neurite",
"in",
"self",
".",
"_obj",
".",
"neurites",
":",
"neurite",
"=",
"neurite",
".",
"root_node",
"max_diameter",
"=",
"_max_diameter",
"(",
"neurite",
")",
"dummy_section",
"=",
"Tree",
"(",
")",
"dummy_section",
".",
"add_child",
"(",
"neurite",
")",
"self",
".",
"_generate_dendro",
"(",
"dummy_section",
",",
"(",
"max_diameter",
",",
"0.",
")",
",",
"offsets",
")",
"# store in trees the indices for the slice which corresponds",
"# to the current neurite",
"self",
".",
"_groups",
".",
"append",
"(",
"(",
"n_previous",
",",
"self",
".",
"_n",
")",
")",
"# store the max dims per neurite for view positioning",
"self",
".",
"_dims",
".",
"append",
"(",
"self",
".",
"_max_dims",
")",
"# reset the max dimensions for the next tree in line",
"self",
".",
"_max_dims",
"=",
"[",
"0.",
",",
"0.",
"]",
"# keep track of the next tree start index in list",
"n_previous",
"=",
"self",
".",
"_n",
"# set it back to its initial value",
"sys",
".",
"setrecursionlimit",
"(",
"old_depth",
")"
] |
Generate dendrogram
|
[
"Generate",
"dendrogram"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L165-L216
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
Dendrogram._generate_dendro
|
def _generate_dendro(self, current_section, spacing, offsets):
'''Recursive function for dendrogram line computations
'''
max_dims = self._max_dims
start_x = _spacingx(current_section, max_dims, offsets[0], spacing[0])
for child in current_section.children:
segments = child.points
# number of leaves in child
terminations = _n_terminations(child)
# segement lengths
seg_lengths = np.linalg.norm(np.subtract(segments[:-1, COLS.XYZ],
segments[1:, COLS.XYZ]), axis=1)
# segment radii
radii = np.vstack((segments[:-1, COLS.R], segments[1:, COLS.R])).T \
if self._show_diameters else np.zeros((seg_lengths.shape[0], 2))
y_offset = offsets[1]
for i, slen in enumerate(seg_lengths):
# offset update for the vertical segments
new_offsets = _update_offsets(start_x, spacing, terminations,
(offsets[0], y_offset), slen)
# segments are drawn vertically, thus only y_offset changes from init offsets
self._rectangles[self._n] = _vertical_segment((offsets[0], y_offset),
new_offsets, spacing, radii[i, :])
self._n += 1
y_offset = new_offsets[1]
if y_offset + spacing[1] * 2 + sum(seg_lengths) > max_dims[1]:
max_dims[1] = y_offset + spacing[1] * 2. + sum(seg_lengths)
self._max_dims = max_dims
# recursive call to self.
self._generate_dendro(child, spacing, new_offsets)
# update the starting position for the next child
start_x += terminations * spacing[0]
# write the horizontal lines only for bifurcations, where the are actual horizontal
# lines and not zero ones
if offsets[0] != new_offsets[0]:
# horizontal segment. Thickness is either 0 if show_diameters is false
# or 1. if show_diameters is true
self._rectangles[self._n] = _horizontal_segment(offsets, new_offsets, spacing, 0.)
self._n += 1
|
python
|
def _generate_dendro(self, current_section, spacing, offsets):
max_dims = self._max_dims
start_x = _spacingx(current_section, max_dims, offsets[0], spacing[0])
for child in current_section.children:
segments = child.points
terminations = _n_terminations(child)
seg_lengths = np.linalg.norm(np.subtract(segments[:-1, COLS.XYZ],
segments[1:, COLS.XYZ]), axis=1)
radii = np.vstack((segments[:-1, COLS.R], segments[1:, COLS.R])).T \
if self._show_diameters else np.zeros((seg_lengths.shape[0], 2))
y_offset = offsets[1]
for i, slen in enumerate(seg_lengths):
new_offsets = _update_offsets(start_x, spacing, terminations,
(offsets[0], y_offset), slen)
self._rectangles[self._n] = _vertical_segment((offsets[0], y_offset),
new_offsets, spacing, radii[i, :])
self._n += 1
y_offset = new_offsets[1]
if y_offset + spacing[1] * 2 + sum(seg_lengths) > max_dims[1]:
max_dims[1] = y_offset + spacing[1] * 2. + sum(seg_lengths)
self._max_dims = max_dims
self._generate_dendro(child, spacing, new_offsets)
start_x += terminations * spacing[0]
if offsets[0] != new_offsets[0]:
self._rectangles[self._n] = _horizontal_segment(offsets, new_offsets, spacing, 0.)
self._n += 1
|
[
"def",
"_generate_dendro",
"(",
"self",
",",
"current_section",
",",
"spacing",
",",
"offsets",
")",
":",
"max_dims",
"=",
"self",
".",
"_max_dims",
"start_x",
"=",
"_spacingx",
"(",
"current_section",
",",
"max_dims",
",",
"offsets",
"[",
"0",
"]",
",",
"spacing",
"[",
"0",
"]",
")",
"for",
"child",
"in",
"current_section",
".",
"children",
":",
"segments",
"=",
"child",
".",
"points",
"# number of leaves in child",
"terminations",
"=",
"_n_terminations",
"(",
"child",
")",
"# segement lengths",
"seg_lengths",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"np",
".",
"subtract",
"(",
"segments",
"[",
":",
"-",
"1",
",",
"COLS",
".",
"XYZ",
"]",
",",
"segments",
"[",
"1",
":",
",",
"COLS",
".",
"XYZ",
"]",
")",
",",
"axis",
"=",
"1",
")",
"# segment radii",
"radii",
"=",
"np",
".",
"vstack",
"(",
"(",
"segments",
"[",
":",
"-",
"1",
",",
"COLS",
".",
"R",
"]",
",",
"segments",
"[",
"1",
":",
",",
"COLS",
".",
"R",
"]",
")",
")",
".",
"T",
"if",
"self",
".",
"_show_diameters",
"else",
"np",
".",
"zeros",
"(",
"(",
"seg_lengths",
".",
"shape",
"[",
"0",
"]",
",",
"2",
")",
")",
"y_offset",
"=",
"offsets",
"[",
"1",
"]",
"for",
"i",
",",
"slen",
"in",
"enumerate",
"(",
"seg_lengths",
")",
":",
"# offset update for the vertical segments",
"new_offsets",
"=",
"_update_offsets",
"(",
"start_x",
",",
"spacing",
",",
"terminations",
",",
"(",
"offsets",
"[",
"0",
"]",
",",
"y_offset",
")",
",",
"slen",
")",
"# segments are drawn vertically, thus only y_offset changes from init offsets",
"self",
".",
"_rectangles",
"[",
"self",
".",
"_n",
"]",
"=",
"_vertical_segment",
"(",
"(",
"offsets",
"[",
"0",
"]",
",",
"y_offset",
")",
",",
"new_offsets",
",",
"spacing",
",",
"radii",
"[",
"i",
",",
":",
"]",
")",
"self",
".",
"_n",
"+=",
"1",
"y_offset",
"=",
"new_offsets",
"[",
"1",
"]",
"if",
"y_offset",
"+",
"spacing",
"[",
"1",
"]",
"*",
"2",
"+",
"sum",
"(",
"seg_lengths",
")",
">",
"max_dims",
"[",
"1",
"]",
":",
"max_dims",
"[",
"1",
"]",
"=",
"y_offset",
"+",
"spacing",
"[",
"1",
"]",
"*",
"2.",
"+",
"sum",
"(",
"seg_lengths",
")",
"self",
".",
"_max_dims",
"=",
"max_dims",
"# recursive call to self.",
"self",
".",
"_generate_dendro",
"(",
"child",
",",
"spacing",
",",
"new_offsets",
")",
"# update the starting position for the next child",
"start_x",
"+=",
"terminations",
"*",
"spacing",
"[",
"0",
"]",
"# write the horizontal lines only for bifurcations, where the are actual horizontal",
"# lines and not zero ones",
"if",
"offsets",
"[",
"0",
"]",
"!=",
"new_offsets",
"[",
"0",
"]",
":",
"# horizontal segment. Thickness is either 0 if show_diameters is false",
"# or 1. if show_diameters is true",
"self",
".",
"_rectangles",
"[",
"self",
".",
"_n",
"]",
"=",
"_horizontal_segment",
"(",
"offsets",
",",
"new_offsets",
",",
"spacing",
",",
"0.",
")",
"self",
".",
"_n",
"+=",
"1"
] |
Recursive function for dendrogram line computations
|
[
"Recursive",
"function",
"for",
"dendrogram",
"line",
"computations"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L219-L270
|
BlueBrain/NeuroM
|
neurom/view/_dendrogram.py
|
Dendrogram.types
|
def types(self):
''' Returns an iterator over the types of the neurites in the object.
If the object is a tree, then one value is returned.
'''
neurites = self._obj.neurites if hasattr(self._obj, 'neurites') else (self._obj,)
return (neu.type for neu in neurites)
|
python
|
def types(self):
neurites = self._obj.neurites if hasattr(self._obj, 'neurites') else (self._obj,)
return (neu.type for neu in neurites)
|
[
"def",
"types",
"(",
"self",
")",
":",
"neurites",
"=",
"self",
".",
"_obj",
".",
"neurites",
"if",
"hasattr",
"(",
"self",
".",
"_obj",
",",
"'neurites'",
")",
"else",
"(",
"self",
".",
"_obj",
",",
")",
"return",
"(",
"neu",
".",
"type",
"for",
"neu",
"in",
"neurites",
")"
] |
Returns an iterator over the types of the neurites in the object.
If the object is a tree, then one value is returned.
|
[
"Returns",
"an",
"iterator",
"over",
"the",
"types",
"of",
"the",
"neurites",
"in",
"the",
"object",
".",
"If",
"the",
"object",
"is",
"a",
"tree",
"then",
"one",
"value",
"is",
"returned",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L292-L297
|
BlueBrain/NeuroM
|
neurom/fst/__init__.py
|
register_neurite_feature
|
def register_neurite_feature(name, func):
'''Register a feature to be applied to neurites
Parameters:
name: name of the feature, used for access via get() function.
func: single parameter function of a neurite.
'''
if name in NEURITEFEATURES:
raise NeuroMError('Attempt to hide registered feature %s' % name)
def _fun(neurites, neurite_type=_ntype.all):
'''Wrap neurite function from outer scope and map into list'''
return list(func(n) for n in _ineurites(neurites, filt=_is_type(neurite_type)))
NEURONFEATURES[name] = _fun
|
python
|
def register_neurite_feature(name, func):
if name in NEURITEFEATURES:
raise NeuroMError('Attempt to hide registered feature %s' % name)
def _fun(neurites, neurite_type=_ntype.all):
return list(func(n) for n in _ineurites(neurites, filt=_is_type(neurite_type)))
NEURONFEATURES[name] = _fun
|
[
"def",
"register_neurite_feature",
"(",
"name",
",",
"func",
")",
":",
"if",
"name",
"in",
"NEURITEFEATURES",
":",
"raise",
"NeuroMError",
"(",
"'Attempt to hide registered feature %s'",
"%",
"name",
")",
"def",
"_fun",
"(",
"neurites",
",",
"neurite_type",
"=",
"_ntype",
".",
"all",
")",
":",
"'''Wrap neurite function from outer scope and map into list'''",
"return",
"list",
"(",
"func",
"(",
"n",
")",
"for",
"n",
"in",
"_ineurites",
"(",
"neurites",
",",
"filt",
"=",
"_is_type",
"(",
"neurite_type",
")",
")",
")",
"NEURONFEATURES",
"[",
"name",
"]",
"=",
"_fun"
] |
Register a feature to be applied to neurites
Parameters:
name: name of the feature, used for access via get() function.
func: single parameter function of a neurite.
|
[
"Register",
"a",
"feature",
"to",
"be",
"applied",
"to",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/__init__.py#L108-L122
|
BlueBrain/NeuroM
|
neurom/fst/__init__.py
|
get
|
def get(feature, obj, **kwargs):
'''Obtain a feature from a set of morphology objects
Parameters:
feature(string): feature to extract
obj: a neuron, population or neurite tree
**kwargs: parameters to forward to underlying worker functions
Returns:
features as a 1D or 2D numpy array.
'''
feature = (NEURITEFEATURES[feature] if feature in NEURITEFEATURES
else NEURONFEATURES[feature])
return _np.array(list(feature(obj, **kwargs)))
|
python
|
def get(feature, obj, **kwargs):
feature = (NEURITEFEATURES[feature] if feature in NEURITEFEATURES
else NEURONFEATURES[feature])
return _np.array(list(feature(obj, **kwargs)))
|
[
"def",
"get",
"(",
"feature",
",",
"obj",
",",
"*",
"*",
"kwargs",
")",
":",
"feature",
"=",
"(",
"NEURITEFEATURES",
"[",
"feature",
"]",
"if",
"feature",
"in",
"NEURITEFEATURES",
"else",
"NEURONFEATURES",
"[",
"feature",
"]",
")",
"return",
"_np",
".",
"array",
"(",
"list",
"(",
"feature",
"(",
"obj",
",",
"*",
"*",
"kwargs",
")",
")",
")"
] |
Obtain a feature from a set of morphology objects
Parameters:
feature(string): feature to extract
obj: a neuron, population or neurite tree
**kwargs: parameters to forward to underlying worker functions
Returns:
features as a 1D or 2D numpy array.
|
[
"Obtain",
"a",
"feature",
"from",
"a",
"set",
"of",
"morphology",
"objects"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/__init__.py#L125-L141
|
BlueBrain/NeuroM
|
neurom/fst/__init__.py
|
_indent
|
def _indent(string, count):
'''indent `string` by `count` * INDENT'''
indent = _INDENT * count
ret = indent + string.replace('\n', '\n' + indent)
return ret.rstrip()
|
python
|
def _indent(string, count):
indent = _INDENT * count
ret = indent + string.replace('\n', '\n' + indent)
return ret.rstrip()
|
[
"def",
"_indent",
"(",
"string",
",",
"count",
")",
":",
"indent",
"=",
"_INDENT",
"*",
"count",
"ret",
"=",
"indent",
"+",
"string",
".",
"replace",
"(",
"'\\n'",
",",
"'\\n'",
"+",
"indent",
")",
"return",
"ret",
".",
"rstrip",
"(",
")"
] |
indent `string` by `count` * INDENT
|
[
"indent",
"string",
"by",
"count",
"*",
"INDENT"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/__init__.py#L147-L151
|
BlueBrain/NeuroM
|
neurom/fst/__init__.py
|
_get_doc
|
def _get_doc():
'''Get a description of all the known available features'''
def get_docstring(func):
'''extract doctstring, if possible'''
docstring = ':\n'
if func.__doc__:
docstring += _indent(func.__doc__, 2)
return docstring
ret = ['\nNeurite features (neurite, neuron, neuron population):']
ret.extend(_INDENT + '- ' + feature + get_docstring(func)
for feature, func in sorted(NEURITEFEATURES.items()))
ret.append('\nNeuron features (neuron, neuron population):')
ret.extend(_INDENT + '- ' + feature + get_docstring(func)
for feature, func in sorted(NEURONFEATURES.items()))
return '\n'.join(ret)
|
python
|
def _get_doc():
def get_docstring(func):
docstring = ':\n'
if func.__doc__:
docstring += _indent(func.__doc__, 2)
return docstring
ret = ['\nNeurite features (neurite, neuron, neuron population):']
ret.extend(_INDENT + '- ' + feature + get_docstring(func)
for feature, func in sorted(NEURITEFEATURES.items()))
ret.append('\nNeuron features (neuron, neuron population):')
ret.extend(_INDENT + '- ' + feature + get_docstring(func)
for feature, func in sorted(NEURONFEATURES.items()))
return '\n'.join(ret)
|
[
"def",
"_get_doc",
"(",
")",
":",
"def",
"get_docstring",
"(",
"func",
")",
":",
"'''extract doctstring, if possible'''",
"docstring",
"=",
"':\\n'",
"if",
"func",
".",
"__doc__",
":",
"docstring",
"+=",
"_indent",
"(",
"func",
".",
"__doc__",
",",
"2",
")",
"return",
"docstring",
"ret",
"=",
"[",
"'\\nNeurite features (neurite, neuron, neuron population):'",
"]",
"ret",
".",
"extend",
"(",
"_INDENT",
"+",
"'- '",
"+",
"feature",
"+",
"get_docstring",
"(",
"func",
")",
"for",
"feature",
",",
"func",
"in",
"sorted",
"(",
"NEURITEFEATURES",
".",
"items",
"(",
")",
")",
")",
"ret",
".",
"append",
"(",
"'\\nNeuron features (neuron, neuron population):'",
")",
"ret",
".",
"extend",
"(",
"_INDENT",
"+",
"'- '",
"+",
"feature",
"+",
"get_docstring",
"(",
"func",
")",
"for",
"feature",
",",
"func",
"in",
"sorted",
"(",
"NEURONFEATURES",
".",
"items",
"(",
")",
")",
")",
"return",
"'\\n'",
".",
"join",
"(",
"ret",
")"
] |
Get a description of all the known available features
|
[
"Get",
"a",
"description",
"of",
"all",
"the",
"known",
"available",
"features"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/__init__.py#L154-L171
|
BlueBrain/NeuroM
|
neurom/io/hdf5.py
|
read
|
def read(filename, remove_duplicates=False, data_wrapper=DataWrapper):
'''Read a file and return a `data_wrapper'd` data
* Tries to guess the format and the H5 version.
* Unpacks the first block it finds out of ('repaired', 'unraveled', 'raw')
Parameters:
remove_duplicates: boolean, If True removes duplicate points
from the beginning of each section.
'''
with h5py.File(filename, mode='r') as h5file:
version = get_version(h5file)
if version == 'H5V1':
points, groups = _unpack_v1(h5file)
elif version == 'H5V2':
stg = next(s for s in ('repaired', 'unraveled', 'raw')
if s in h5file['neuron1'])
points, groups = _unpack_v2(h5file, stage=stg)
if remove_duplicates:
points, groups = _remove_duplicate_points(points, groups)
neuron_builder = BlockNeuronBuilder()
points[:, POINT_DIAMETER] /= 2 # Store radius, not diameter
for id_, row in enumerate(zip_longest(groups,
groups[1:, GPFIRST],
fillvalue=len(points))):
(point_start, section_type, parent_id), point_end = row
neuron_builder.add_section(id_, int(parent_id), int(section_type),
points[point_start:point_end])
return neuron_builder.get_datawrapper(version, data_wrapper=data_wrapper)
|
python
|
def read(filename, remove_duplicates=False, data_wrapper=DataWrapper):
with h5py.File(filename, mode='r') as h5file:
version = get_version(h5file)
if version == 'H5V1':
points, groups = _unpack_v1(h5file)
elif version == 'H5V2':
stg = next(s for s in ('repaired', 'unraveled', 'raw')
if s in h5file['neuron1'])
points, groups = _unpack_v2(h5file, stage=stg)
if remove_duplicates:
points, groups = _remove_duplicate_points(points, groups)
neuron_builder = BlockNeuronBuilder()
points[:, POINT_DIAMETER] /= 2
for id_, row in enumerate(zip_longest(groups,
groups[1:, GPFIRST],
fillvalue=len(points))):
(point_start, section_type, parent_id), point_end = row
neuron_builder.add_section(id_, int(parent_id), int(section_type),
points[point_start:point_end])
return neuron_builder.get_datawrapper(version, data_wrapper=data_wrapper)
|
[
"def",
"read",
"(",
"filename",
",",
"remove_duplicates",
"=",
"False",
",",
"data_wrapper",
"=",
"DataWrapper",
")",
":",
"with",
"h5py",
".",
"File",
"(",
"filename",
",",
"mode",
"=",
"'r'",
")",
"as",
"h5file",
":",
"version",
"=",
"get_version",
"(",
"h5file",
")",
"if",
"version",
"==",
"'H5V1'",
":",
"points",
",",
"groups",
"=",
"_unpack_v1",
"(",
"h5file",
")",
"elif",
"version",
"==",
"'H5V2'",
":",
"stg",
"=",
"next",
"(",
"s",
"for",
"s",
"in",
"(",
"'repaired'",
",",
"'unraveled'",
",",
"'raw'",
")",
"if",
"s",
"in",
"h5file",
"[",
"'neuron1'",
"]",
")",
"points",
",",
"groups",
"=",
"_unpack_v2",
"(",
"h5file",
",",
"stage",
"=",
"stg",
")",
"if",
"remove_duplicates",
":",
"points",
",",
"groups",
"=",
"_remove_duplicate_points",
"(",
"points",
",",
"groups",
")",
"neuron_builder",
"=",
"BlockNeuronBuilder",
"(",
")",
"points",
"[",
":",
",",
"POINT_DIAMETER",
"]",
"/=",
"2",
"# Store radius, not diameter",
"for",
"id_",
",",
"row",
"in",
"enumerate",
"(",
"zip_longest",
"(",
"groups",
",",
"groups",
"[",
"1",
":",
",",
"GPFIRST",
"]",
",",
"fillvalue",
"=",
"len",
"(",
"points",
")",
")",
")",
":",
"(",
"point_start",
",",
"section_type",
",",
"parent_id",
")",
",",
"point_end",
"=",
"row",
"neuron_builder",
".",
"add_section",
"(",
"id_",
",",
"int",
"(",
"parent_id",
")",
",",
"int",
"(",
"section_type",
")",
",",
"points",
"[",
"point_start",
":",
"point_end",
"]",
")",
"return",
"neuron_builder",
".",
"get_datawrapper",
"(",
"version",
",",
"data_wrapper",
"=",
"data_wrapper",
")"
] |
Read a file and return a `data_wrapper'd` data
* Tries to guess the format and the H5 version.
* Unpacks the first block it finds out of ('repaired', 'unraveled', 'raw')
Parameters:
remove_duplicates: boolean, If True removes duplicate points
from the beginning of each section.
|
[
"Read",
"a",
"file",
"and",
"return",
"a",
"data_wrapper",
"d",
"data"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/hdf5.py#L67-L98
|
BlueBrain/NeuroM
|
neurom/io/hdf5.py
|
_remove_duplicate_points
|
def _remove_duplicate_points(points, groups):
''' Removes the duplicate points from the beginning of a section,
if they are present in points-groups representation.
Returns:
points, groups with unique points.
'''
group_initial_ids = groups[:, GPFIRST]
to_be_reduced = np.zeros(len(group_initial_ids))
to_be_removed = []
for ig, g in enumerate(groups):
iid, typ, pid = g[GPFIRST], g[GTYPE], g[GPID]
# Remove first point from sections that are
# not the root section, a soma, or a child of a soma
if pid != -1 and typ != 1 and groups[pid][GTYPE] != 1:
# Remove duplicate from list of points
to_be_removed.append(iid)
# Reduce the id of the following sections
# in groups structure by one
to_be_reduced[ig + 1:] += 1
groups[:, GPFIRST] = groups[:, GPFIRST] - to_be_reduced
points = np.delete(points, to_be_removed, axis=0)
return points, groups
|
python
|
def _remove_duplicate_points(points, groups):
group_initial_ids = groups[:, GPFIRST]
to_be_reduced = np.zeros(len(group_initial_ids))
to_be_removed = []
for ig, g in enumerate(groups):
iid, typ, pid = g[GPFIRST], g[GTYPE], g[GPID]
if pid != -1 and typ != 1 and groups[pid][GTYPE] != 1:
to_be_removed.append(iid)
to_be_reduced[ig + 1:] += 1
groups[:, GPFIRST] = groups[:, GPFIRST] - to_be_reduced
points = np.delete(points, to_be_removed, axis=0)
return points, groups
|
[
"def",
"_remove_duplicate_points",
"(",
"points",
",",
"groups",
")",
":",
"group_initial_ids",
"=",
"groups",
"[",
":",
",",
"GPFIRST",
"]",
"to_be_reduced",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"group_initial_ids",
")",
")",
"to_be_removed",
"=",
"[",
"]",
"for",
"ig",
",",
"g",
"in",
"enumerate",
"(",
"groups",
")",
":",
"iid",
",",
"typ",
",",
"pid",
"=",
"g",
"[",
"GPFIRST",
"]",
",",
"g",
"[",
"GTYPE",
"]",
",",
"g",
"[",
"GPID",
"]",
"# Remove first point from sections that are",
"# not the root section, a soma, or a child of a soma",
"if",
"pid",
"!=",
"-",
"1",
"and",
"typ",
"!=",
"1",
"and",
"groups",
"[",
"pid",
"]",
"[",
"GTYPE",
"]",
"!=",
"1",
":",
"# Remove duplicate from list of points",
"to_be_removed",
".",
"append",
"(",
"iid",
")",
"# Reduce the id of the following sections",
"# in groups structure by one",
"to_be_reduced",
"[",
"ig",
"+",
"1",
":",
"]",
"+=",
"1",
"groups",
"[",
":",
",",
"GPFIRST",
"]",
"=",
"groups",
"[",
":",
",",
"GPFIRST",
"]",
"-",
"to_be_reduced",
"points",
"=",
"np",
".",
"delete",
"(",
"points",
",",
"to_be_removed",
",",
"axis",
"=",
"0",
")",
"return",
"points",
",",
"groups"
] |
Removes the duplicate points from the beginning of a section,
if they are present in points-groups representation.
Returns:
points, groups with unique points.
|
[
"Removes",
"the",
"duplicate",
"points",
"from",
"the",
"beginning",
"of",
"a",
"section",
"if",
"they",
"are",
"present",
"in",
"points",
"-",
"groups",
"representation",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/hdf5.py#L101-L129
|
BlueBrain/NeuroM
|
neurom/io/hdf5.py
|
_unpack_v1
|
def _unpack_v1(h5file):
'''Unpack groups from HDF5 v1 file'''
points = np.array(h5file['points'])
groups = np.array(h5file['structure'])
return points, groups
|
python
|
def _unpack_v1(h5file):
points = np.array(h5file['points'])
groups = np.array(h5file['structure'])
return points, groups
|
[
"def",
"_unpack_v1",
"(",
"h5file",
")",
":",
"points",
"=",
"np",
".",
"array",
"(",
"h5file",
"[",
"'points'",
"]",
")",
"groups",
"=",
"np",
".",
"array",
"(",
"h5file",
"[",
"'structure'",
"]",
")",
"return",
"points",
",",
"groups"
] |
Unpack groups from HDF5 v1 file
|
[
"Unpack",
"groups",
"from",
"HDF5",
"v1",
"file"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/hdf5.py#L132-L136
|
BlueBrain/NeuroM
|
neurom/io/hdf5.py
|
_unpack_v2
|
def _unpack_v2(h5file, stage):
'''Unpack groups from HDF5 v2 file'''
points = np.array(h5file['neuron1/%s/points' % stage])
# from documentation: The /neuron1/structure/unraveled reuses /neuron1/structure/raw
groups_stage = stage if stage != 'unraveled' else 'raw'
groups = np.array(h5file['neuron1/structure/%s' % groups_stage])
stypes = np.array(h5file['neuron1/structure/sectiontype'])
groups = np.hstack([groups, stypes])
groups[:, [1, 2]] = groups[:, [2, 1]]
return points, groups
|
python
|
def _unpack_v2(h5file, stage):
points = np.array(h5file['neuron1/%s/points' % stage])
groups_stage = stage if stage != 'unraveled' else 'raw'
groups = np.array(h5file['neuron1/structure/%s' % groups_stage])
stypes = np.array(h5file['neuron1/structure/sectiontype'])
groups = np.hstack([groups, stypes])
groups[:, [1, 2]] = groups[:, [2, 1]]
return points, groups
|
[
"def",
"_unpack_v2",
"(",
"h5file",
",",
"stage",
")",
":",
"points",
"=",
"np",
".",
"array",
"(",
"h5file",
"[",
"'neuron1/%s/points'",
"%",
"stage",
"]",
")",
"# from documentation: The /neuron1/structure/unraveled reuses /neuron1/structure/raw",
"groups_stage",
"=",
"stage",
"if",
"stage",
"!=",
"'unraveled'",
"else",
"'raw'",
"groups",
"=",
"np",
".",
"array",
"(",
"h5file",
"[",
"'neuron1/structure/%s'",
"%",
"groups_stage",
"]",
")",
"stypes",
"=",
"np",
".",
"array",
"(",
"h5file",
"[",
"'neuron1/structure/sectiontype'",
"]",
")",
"groups",
"=",
"np",
".",
"hstack",
"(",
"[",
"groups",
",",
"stypes",
"]",
")",
"groups",
"[",
":",
",",
"[",
"1",
",",
"2",
"]",
"]",
"=",
"groups",
"[",
":",
",",
"[",
"2",
",",
"1",
"]",
"]",
"return",
"points",
",",
"groups"
] |
Unpack groups from HDF5 v2 file
|
[
"Unpack",
"groups",
"from",
"HDF5",
"v2",
"file"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/hdf5.py#L139-L148
|
BlueBrain/NeuroM
|
neurom/stats.py
|
fit_results_to_dict
|
def fit_results_to_dict(fit_results, min_bound=None, max_bound=None):
'''Create a JSON-comparable dict from a FitResults object
Parameters:
fit_results (FitResults): object containing fit parameters,\
errors and type
min_bound: optional min value to add to dictionary if min isn't\
a fit parameter.
max_bound: optional max value to add to dictionary if max isn't\
a fit parameter.
Returns:
JSON-compatible dictionary with fit results
Note:
Supported fit types: 'norm', 'expon', 'uniform'
'''
type_map = {'norm': 'normal', 'expon': 'exponential', 'uniform': 'uniform'}
param_map = {'uniform': lambda p: [('min', p[0]), ('max', p[0] + p[1])],
'norm': lambda p: [('mu', p[0]), ('sigma', p[1])],
'expon': lambda p: [('lambda', 1.0 / p[1])]}
d = OrderedDict({'type': type_map[fit_results.type]})
d.update(param_map[fit_results.type](fit_results.params))
if min_bound is not None and 'min' not in d:
d['min'] = min_bound
if max_bound is not None and 'max' not in d:
d['max'] = max_bound
return d
|
python
|
def fit_results_to_dict(fit_results, min_bound=None, max_bound=None):
type_map = {'norm': 'normal', 'expon': 'exponential', 'uniform': 'uniform'}
param_map = {'uniform': lambda p: [('min', p[0]), ('max', p[0] + p[1])],
'norm': lambda p: [('mu', p[0]), ('sigma', p[1])],
'expon': lambda p: [('lambda', 1.0 / p[1])]}
d = OrderedDict({'type': type_map[fit_results.type]})
d.update(param_map[fit_results.type](fit_results.params))
if min_bound is not None and 'min' not in d:
d['min'] = min_bound
if max_bound is not None and 'max' not in d:
d['max'] = max_bound
return d
|
[
"def",
"fit_results_to_dict",
"(",
"fit_results",
",",
"min_bound",
"=",
"None",
",",
"max_bound",
"=",
"None",
")",
":",
"type_map",
"=",
"{",
"'norm'",
":",
"'normal'",
",",
"'expon'",
":",
"'exponential'",
",",
"'uniform'",
":",
"'uniform'",
"}",
"param_map",
"=",
"{",
"'uniform'",
":",
"lambda",
"p",
":",
"[",
"(",
"'min'",
",",
"p",
"[",
"0",
"]",
")",
",",
"(",
"'max'",
",",
"p",
"[",
"0",
"]",
"+",
"p",
"[",
"1",
"]",
")",
"]",
",",
"'norm'",
":",
"lambda",
"p",
":",
"[",
"(",
"'mu'",
",",
"p",
"[",
"0",
"]",
")",
",",
"(",
"'sigma'",
",",
"p",
"[",
"1",
"]",
")",
"]",
",",
"'expon'",
":",
"lambda",
"p",
":",
"[",
"(",
"'lambda'",
",",
"1.0",
"/",
"p",
"[",
"1",
"]",
")",
"]",
"}",
"d",
"=",
"OrderedDict",
"(",
"{",
"'type'",
":",
"type_map",
"[",
"fit_results",
".",
"type",
"]",
"}",
")",
"d",
".",
"update",
"(",
"param_map",
"[",
"fit_results",
".",
"type",
"]",
"(",
"fit_results",
".",
"params",
")",
")",
"if",
"min_bound",
"is",
"not",
"None",
"and",
"'min'",
"not",
"in",
"d",
":",
"d",
"[",
"'min'",
"]",
"=",
"min_bound",
"if",
"max_bound",
"is",
"not",
"None",
"and",
"'max'",
"not",
"in",
"d",
":",
"d",
"[",
"'max'",
"]",
"=",
"max_bound",
"return",
"d"
] |
Create a JSON-comparable dict from a FitResults object
Parameters:
fit_results (FitResults): object containing fit parameters,\
errors and type
min_bound: optional min value to add to dictionary if min isn't\
a fit parameter.
max_bound: optional max value to add to dictionary if max isn't\
a fit parameter.
Returns:
JSON-compatible dictionary with fit results
Note:
Supported fit types: 'norm', 'expon', 'uniform'
|
[
"Create",
"a",
"JSON",
"-",
"comparable",
"dict",
"from",
"a",
"FitResults",
"object"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L60-L91
|
BlueBrain/NeuroM
|
neurom/stats.py
|
fit
|
def fit(data, distribution='norm'):
'''Calculate the parameters of a fit of a distribution to a data set
Parameters:
data: array of data points to be fitted
Options:
distribution (str): type of distribution to fit. Default 'norm'.
Returns:
FitResults object with fitted parameters, errors and distribution type
Note:
Uses Kolmogorov-Smirnov test to estimate distance and p-value.
'''
params = getattr(_st, distribution).fit(data)
return FitResults(params, _st.kstest(data, distribution, params), distribution)
|
python
|
def fit(data, distribution='norm'):
params = getattr(_st, distribution).fit(data)
return FitResults(params, _st.kstest(data, distribution, params), distribution)
|
[
"def",
"fit",
"(",
"data",
",",
"distribution",
"=",
"'norm'",
")",
":",
"params",
"=",
"getattr",
"(",
"_st",
",",
"distribution",
")",
".",
"fit",
"(",
"data",
")",
"return",
"FitResults",
"(",
"params",
",",
"_st",
".",
"kstest",
"(",
"data",
",",
"distribution",
",",
"params",
")",
",",
"distribution",
")"
] |
Calculate the parameters of a fit of a distribution to a data set
Parameters:
data: array of data points to be fitted
Options:
distribution (str): type of distribution to fit. Default 'norm'.
Returns:
FitResults object with fitted parameters, errors and distribution type
Note:
Uses Kolmogorov-Smirnov test to estimate distance and p-value.
|
[
"Calculate",
"the",
"parameters",
"of",
"a",
"fit",
"of",
"a",
"distribution",
"to",
"a",
"data",
"set"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L94-L110
|
BlueBrain/NeuroM
|
neurom/stats.py
|
optimal_distribution
|
def optimal_distribution(data, distr_to_check=('norm', 'expon', 'uniform')):
'''Calculate the parameters of a fit of different distributions to a data set
and returns the distribution of the minimal ks-distance.
Parameters:
data: array of data points to be fitted
Options:
distr_to_check: tuple of distributions to be checked
Returns:
FitResults object with fitted parameters, errors and distribution type\
of the fit with the smallest fit distance
Note:
Uses Kolmogorov-Smirnov test to estimate distance and p-value.
'''
fit_results = [fit(data, d) for d in distr_to_check]
return min(fit_results, key=lambda fit: fit.errs[0])
|
python
|
def optimal_distribution(data, distr_to_check=('norm', 'expon', 'uniform')):
fit_results = [fit(data, d) for d in distr_to_check]
return min(fit_results, key=lambda fit: fit.errs[0])
|
[
"def",
"optimal_distribution",
"(",
"data",
",",
"distr_to_check",
"=",
"(",
"'norm'",
",",
"'expon'",
",",
"'uniform'",
")",
")",
":",
"fit_results",
"=",
"[",
"fit",
"(",
"data",
",",
"d",
")",
"for",
"d",
"in",
"distr_to_check",
"]",
"return",
"min",
"(",
"fit_results",
",",
"key",
"=",
"lambda",
"fit",
":",
"fit",
".",
"errs",
"[",
"0",
"]",
")"
] |
Calculate the parameters of a fit of different distributions to a data set
and returns the distribution of the minimal ks-distance.
Parameters:
data: array of data points to be fitted
Options:
distr_to_check: tuple of distributions to be checked
Returns:
FitResults object with fitted parameters, errors and distribution type\
of the fit with the smallest fit distance
Note:
Uses Kolmogorov-Smirnov test to estimate distance and p-value.
|
[
"Calculate",
"the",
"parameters",
"of",
"a",
"fit",
"of",
"different",
"distributions",
"to",
"a",
"data",
"set",
"and",
"returns",
"the",
"distribution",
"of",
"the",
"minimal",
"ks",
"-",
"distance",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L113-L131
|
BlueBrain/NeuroM
|
neurom/stats.py
|
scalar_stats
|
def scalar_stats(data, functions=('min', 'max', 'mean', 'std')):
'''Calculate the stats from the given numpy functions
Parameters:
data: array of data points to be used for the stats
Options:
functions: tuple of numpy stat functions to apply on data
Returns:
Dictionary with the name of the function as key and the result
as the respective value
'''
stats = {}
for func in functions:
stats[func] = getattr(np, func)(data)
return stats
|
python
|
def scalar_stats(data, functions=('min', 'max', 'mean', 'std')):
stats = {}
for func in functions:
stats[func] = getattr(np, func)(data)
return stats
|
[
"def",
"scalar_stats",
"(",
"data",
",",
"functions",
"=",
"(",
"'min'",
",",
"'max'",
",",
"'mean'",
",",
"'std'",
")",
")",
":",
"stats",
"=",
"{",
"}",
"for",
"func",
"in",
"functions",
":",
"stats",
"[",
"func",
"]",
"=",
"getattr",
"(",
"np",
",",
"func",
")",
"(",
"data",
")",
"return",
"stats"
] |
Calculate the stats from the given numpy functions
Parameters:
data: array of data points to be used for the stats
Options:
functions: tuple of numpy stat functions to apply on data
Returns:
Dictionary with the name of the function as key and the result
as the respective value
|
[
"Calculate",
"the",
"stats",
"from",
"the",
"given",
"numpy",
"functions"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L134-L152
|
BlueBrain/NeuroM
|
neurom/stats.py
|
compare_two
|
def compare_two(data1, data2, test=StatTests.ks):
'''Compares two distributions of data
and assess two scores: a distance between them
and a probability they are drawn from the same
distribution.
Parameters:
data1: numpy array of dataset 1
data2: numpy array of dataset 2
test: Stat_tests\
Defines the statistical test to be used, based\
on the scipy available modules.\
Accepted tests: ks_2samp, wilcoxon, ttest
Returns:
dist: float\
High numbers define high dissimilarity between the two datasets
p-value: float\
Small numbers define high probability the data come from\
same dataset.
'''
results = getattr(_st, get_test(test))(data1, data2)
Stats = namedtuple('Stats', ['dist', 'pvalue'])
return Stats(*results)
|
python
|
def compare_two(data1, data2, test=StatTests.ks):
results = getattr(_st, get_test(test))(data1, data2)
Stats = namedtuple('Stats', ['dist', 'pvalue'])
return Stats(*results)
|
[
"def",
"compare_two",
"(",
"data1",
",",
"data2",
",",
"test",
"=",
"StatTests",
".",
"ks",
")",
":",
"results",
"=",
"getattr",
"(",
"_st",
",",
"get_test",
"(",
"test",
")",
")",
"(",
"data1",
",",
"data2",
")",
"Stats",
"=",
"namedtuple",
"(",
"'Stats'",
",",
"[",
"'dist'",
",",
"'pvalue'",
"]",
")",
"return",
"Stats",
"(",
"*",
"results",
")"
] |
Compares two distributions of data
and assess two scores: a distance between them
and a probability they are drawn from the same
distribution.
Parameters:
data1: numpy array of dataset 1
data2: numpy array of dataset 2
test: Stat_tests\
Defines the statistical test to be used, based\
on the scipy available modules.\
Accepted tests: ks_2samp, wilcoxon, ttest
Returns:
dist: float\
High numbers define high dissimilarity between the two datasets
p-value: float\
Small numbers define high probability the data come from\
same dataset.
|
[
"Compares",
"two",
"distributions",
"of",
"data",
"and",
"assess",
"two",
"scores",
":",
"a",
"distance",
"between",
"them",
"and",
"a",
"probability",
"they",
"are",
"drawn",
"from",
"the",
"same",
"distribution",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L155-L179
|
BlueBrain/NeuroM
|
neurom/stats.py
|
total_score
|
def total_score(paired_dats, p=2, test=StatTests.ks):
'''Calculates the p-norm of the distances that have been calculated from the statistical
test that has been applied on all the paired datasets.
Parameters:
paired_dats: a list of tuples or where each tuple
contains the paired data lists from two datasets
Options:
p : integer that defines the order of p-norm
test: Stat_tests\
Defines the statistical test to be used, based\
on the scipy available modules.\
Accepted tests: ks_2samp, wilcoxon, ttest
Returns:
A float corresponding to the p-norm of the distances that have
been calculated. 0 corresponds to high similarity while 1 to low.
'''
scores = np.array([compare_two(fL1, fL2, test=test).dist for fL1, fL2 in paired_dats])
return np.linalg.norm(scores, p)
|
python
|
def total_score(paired_dats, p=2, test=StatTests.ks):
scores = np.array([compare_two(fL1, fL2, test=test).dist for fL1, fL2 in paired_dats])
return np.linalg.norm(scores, p)
|
[
"def",
"total_score",
"(",
"paired_dats",
",",
"p",
"=",
"2",
",",
"test",
"=",
"StatTests",
".",
"ks",
")",
":",
"scores",
"=",
"np",
".",
"array",
"(",
"[",
"compare_two",
"(",
"fL1",
",",
"fL2",
",",
"test",
"=",
"test",
")",
".",
"dist",
"for",
"fL1",
",",
"fL2",
"in",
"paired_dats",
"]",
")",
"return",
"np",
".",
"linalg",
".",
"norm",
"(",
"scores",
",",
"p",
")"
] |
Calculates the p-norm of the distances that have been calculated from the statistical
test that has been applied on all the paired datasets.
Parameters:
paired_dats: a list of tuples or where each tuple
contains the paired data lists from two datasets
Options:
p : integer that defines the order of p-norm
test: Stat_tests\
Defines the statistical test to be used, based\
on the scipy available modules.\
Accepted tests: ks_2samp, wilcoxon, ttest
Returns:
A float corresponding to the p-norm of the distances that have
been calculated. 0 corresponds to high similarity while 1 to low.
|
[
"Calculates",
"the",
"p",
"-",
"norm",
"of",
"the",
"distances",
"that",
"have",
"been",
"calculated",
"from",
"the",
"statistical",
"test",
"that",
"has",
"been",
"applied",
"on",
"all",
"the",
"paired",
"datasets",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/stats.py#L182-L202
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
iter_neurites
|
def iter_neurites(obj, mapfun=None, filt=None, neurite_order=NeuriteIter.FileOrder):
'''Iterator to a neurite, neuron or neuron population
Applies optional neurite filter and mapping functions.
Parameters:
obj: a neurite, neuron or neuron population.
mapfun: optional neurite mapping function.
filt: optional neurite filter function.
neurite_order (NeuriteIter): order upon which neurites should be iterated
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Examples:
Get the number of points in each neurite in a neuron population
>>> from neurom.core import iter_neurites
>>> n_points = [n for n in iter_neurites(pop, lambda x : len(x.points))]
Get the number of points in each axon in a neuron population
>>> import neurom as nm
>>> from neurom.core import iter_neurites
>>> filter = lambda n : n.type == nm.AXON
>>> mapping = lambda n : len(n.points)
>>> n_points = [n for n in iter_neurites(pop, mapping, filter)]
'''
neurites = ((obj,) if isinstance(obj, Neurite) else
obj.neurites if hasattr(obj, 'neurites') else obj)
if neurite_order == NeuriteIter.NRN:
last_position = max(NRN_ORDER.values()) + 1
neurites = sorted(neurites, key=lambda neurite: NRN_ORDER.get(neurite.type, last_position))
neurite_iter = iter(neurites) if filt is None else filter(filt, neurites)
return neurite_iter if mapfun is None else map(mapfun, neurite_iter)
|
python
|
def iter_neurites(obj, mapfun=None, filt=None, neurite_order=NeuriteIter.FileOrder):
neurites = ((obj,) if isinstance(obj, Neurite) else
obj.neurites if hasattr(obj, 'neurites') else obj)
if neurite_order == NeuriteIter.NRN:
last_position = max(NRN_ORDER.values()) + 1
neurites = sorted(neurites, key=lambda neurite: NRN_ORDER.get(neurite.type, last_position))
neurite_iter = iter(neurites) if filt is None else filter(filt, neurites)
return neurite_iter if mapfun is None else map(mapfun, neurite_iter)
|
[
"def",
"iter_neurites",
"(",
"obj",
",",
"mapfun",
"=",
"None",
",",
"filt",
"=",
"None",
",",
"neurite_order",
"=",
"NeuriteIter",
".",
"FileOrder",
")",
":",
"neurites",
"=",
"(",
"(",
"obj",
",",
")",
"if",
"isinstance",
"(",
"obj",
",",
"Neurite",
")",
"else",
"obj",
".",
"neurites",
"if",
"hasattr",
"(",
"obj",
",",
"'neurites'",
")",
"else",
"obj",
")",
"if",
"neurite_order",
"==",
"NeuriteIter",
".",
"NRN",
":",
"last_position",
"=",
"max",
"(",
"NRN_ORDER",
".",
"values",
"(",
")",
")",
"+",
"1",
"neurites",
"=",
"sorted",
"(",
"neurites",
",",
"key",
"=",
"lambda",
"neurite",
":",
"NRN_ORDER",
".",
"get",
"(",
"neurite",
".",
"type",
",",
"last_position",
")",
")",
"neurite_iter",
"=",
"iter",
"(",
"neurites",
")",
"if",
"filt",
"is",
"None",
"else",
"filter",
"(",
"filt",
",",
"neurites",
")",
"return",
"neurite_iter",
"if",
"mapfun",
"is",
"None",
"else",
"map",
"(",
"mapfun",
",",
"neurite_iter",
")"
] |
Iterator to a neurite, neuron or neuron population
Applies optional neurite filter and mapping functions.
Parameters:
obj: a neurite, neuron or neuron population.
mapfun: optional neurite mapping function.
filt: optional neurite filter function.
neurite_order (NeuriteIter): order upon which neurites should be iterated
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Examples:
Get the number of points in each neurite in a neuron population
>>> from neurom.core import iter_neurites
>>> n_points = [n for n in iter_neurites(pop, lambda x : len(x.points))]
Get the number of points in each axon in a neuron population
>>> import neurom as nm
>>> from neurom.core import iter_neurites
>>> filter = lambda n : n.type == nm.AXON
>>> mapping = lambda n : len(n.points)
>>> n_points = [n for n in iter_neurites(pop, mapping, filter)]
|
[
"Iterator",
"to",
"a",
"neurite",
"neuron",
"or",
"neuron",
"population"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L54-L90
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
iter_sections
|
def iter_sections(neurites,
iterator_type=Tree.ipreorder,
neurite_filter=None,
neurite_order=NeuriteIter.FileOrder):
'''Iterator to the sections in a neurite, neuron or neuron population.
Parameters:
neurites: neuron, population, neurite, or iterable containing neurite objects
iterator_type: section iteration order within a given neurite. Must be one of:
Tree.ipreorder: Depth-first pre-order iteration of tree nodes
Tree.ipreorder: Depth-first post-order iteration of tree nodes
Tree.iupstream: Iterate from a tree node to the root nodes
Tree.ibifurcation_point: Iterator to bifurcation points
Tree.ileaf: Iterator to all leaves of a tree
neurite_filter: optional top level filter on properties of neurite neurite objects.
neurite_order (NeuriteIter): order upon which neurites should be iterated
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Examples:
Get the number of points in each section of all the axons in a neuron population
>>> import neurom as nm
>>> from neurom.core import ites_sections
>>> filter = lambda n : n.type == nm.AXON
>>> n_points = [len(s.points) for s in iter_sections(pop, neurite_filter=filter)]
'''
return chain.from_iterable(
iterator_type(neurite.root_node) for neurite in
iter_neurites(neurites, filt=neurite_filter, neurite_order=neurite_order))
|
python
|
def iter_sections(neurites,
iterator_type=Tree.ipreorder,
neurite_filter=None,
neurite_order=NeuriteIter.FileOrder):
return chain.from_iterable(
iterator_type(neurite.root_node) for neurite in
iter_neurites(neurites, filt=neurite_filter, neurite_order=neurite_order))
|
[
"def",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"Tree",
".",
"ipreorder",
",",
"neurite_filter",
"=",
"None",
",",
"neurite_order",
"=",
"NeuriteIter",
".",
"FileOrder",
")",
":",
"return",
"chain",
".",
"from_iterable",
"(",
"iterator_type",
"(",
"neurite",
".",
"root_node",
")",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"neurite_filter",
",",
"neurite_order",
"=",
"neurite_order",
")",
")"
] |
Iterator to the sections in a neurite, neuron or neuron population.
Parameters:
neurites: neuron, population, neurite, or iterable containing neurite objects
iterator_type: section iteration order within a given neurite. Must be one of:
Tree.ipreorder: Depth-first pre-order iteration of tree nodes
Tree.ipreorder: Depth-first post-order iteration of tree nodes
Tree.iupstream: Iterate from a tree node to the root nodes
Tree.ibifurcation_point: Iterator to bifurcation points
Tree.ileaf: Iterator to all leaves of a tree
neurite_filter: optional top level filter on properties of neurite neurite objects.
neurite_order (NeuriteIter): order upon which neurites should be iterated
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Examples:
Get the number of points in each section of all the axons in a neuron population
>>> import neurom as nm
>>> from neurom.core import ites_sections
>>> filter = lambda n : n.type == nm.AXON
>>> n_points = [len(s.points) for s in iter_sections(pop, neurite_filter=filter)]
|
[
"Iterator",
"to",
"the",
"sections",
"in",
"a",
"neurite",
"neuron",
"or",
"neuron",
"population",
"."
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L93-L126
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
iter_segments
|
def iter_segments(obj, neurite_filter=None, neurite_order=NeuriteIter.FileOrder):
'''Return an iterator to the segments in a collection of neurites
Parameters:
obj: neuron, population, neurite, section, or iterable containing neurite objects
neurite_filter: optional top level filter on properties of neurite neurite objects
neurite_order: order upon which neurite should be iterated. Values:
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Note:
This is a convenience function provided for generic access to
neuron segments. It may have a performance overhead WRT custom-made
segment analysis functions that leverage numpy and section-wise iteration.
'''
sections = iter((obj,) if isinstance(obj, Section) else
iter_sections(obj,
neurite_filter=neurite_filter,
neurite_order=neurite_order))
return chain.from_iterable(zip(sec.points[:-1], sec.points[1:])
for sec in sections)
|
python
|
def iter_segments(obj, neurite_filter=None, neurite_order=NeuriteIter.FileOrder):
sections = iter((obj,) if isinstance(obj, Section) else
iter_sections(obj,
neurite_filter=neurite_filter,
neurite_order=neurite_order))
return chain.from_iterable(zip(sec.points[:-1], sec.points[1:])
for sec in sections)
|
[
"def",
"iter_segments",
"(",
"obj",
",",
"neurite_filter",
"=",
"None",
",",
"neurite_order",
"=",
"NeuriteIter",
".",
"FileOrder",
")",
":",
"sections",
"=",
"iter",
"(",
"(",
"obj",
",",
")",
"if",
"isinstance",
"(",
"obj",
",",
"Section",
")",
"else",
"iter_sections",
"(",
"obj",
",",
"neurite_filter",
"=",
"neurite_filter",
",",
"neurite_order",
"=",
"neurite_order",
")",
")",
"return",
"chain",
".",
"from_iterable",
"(",
"zip",
"(",
"sec",
".",
"points",
"[",
":",
"-",
"1",
"]",
",",
"sec",
".",
"points",
"[",
"1",
":",
"]",
")",
"for",
"sec",
"in",
"sections",
")"
] |
Return an iterator to the segments in a collection of neurites
Parameters:
obj: neuron, population, neurite, section, or iterable containing neurite objects
neurite_filter: optional top level filter on properties of neurite neurite objects
neurite_order: order upon which neurite should be iterated. Values:
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
Note:
This is a convenience function provided for generic access to
neuron segments. It may have a performance overhead WRT custom-made
segment analysis functions that leverage numpy and section-wise iteration.
|
[
"Return",
"an",
"iterator",
"to",
"the",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L129-L150
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
graft_neuron
|
def graft_neuron(root_section):
'''Returns a neuron starting at root_section'''
assert isinstance(root_section, Section)
return Neuron(soma=Soma(root_section.points[:1]), neurites=[Neurite(root_section)])
|
python
|
def graft_neuron(root_section):
assert isinstance(root_section, Section)
return Neuron(soma=Soma(root_section.points[:1]), neurites=[Neurite(root_section)])
|
[
"def",
"graft_neuron",
"(",
"root_section",
")",
":",
"assert",
"isinstance",
"(",
"root_section",
",",
"Section",
")",
"return",
"Neuron",
"(",
"soma",
"=",
"Soma",
"(",
"root_section",
".",
"points",
"[",
":",
"1",
"]",
")",
",",
"neurites",
"=",
"[",
"Neurite",
"(",
"root_section",
")",
"]",
")"
] |
Returns a neuron starting at root_section
|
[
"Returns",
"a",
"neuron",
"starting",
"at",
"root_section"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L153-L156
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
Neurite.points
|
def points(self):
'''Return unordered array with all the points in this neurite'''
# add all points in a section except the first one, which is a duplicate
_pts = [v for s in self.root_node.ipreorder()
for v in s.points[1:, COLS.XYZR]]
# except for the very first point, which is not a duplicate
_pts.insert(0, self.root_node.points[0][COLS.XYZR])
return np.array(_pts)
|
python
|
def points(self):
_pts = [v for s in self.root_node.ipreorder()
for v in s.points[1:, COLS.XYZR]]
_pts.insert(0, self.root_node.points[0][COLS.XYZR])
return np.array(_pts)
|
[
"def",
"points",
"(",
"self",
")",
":",
"# add all points in a section except the first one, which is a duplicate",
"_pts",
"=",
"[",
"v",
"for",
"s",
"in",
"self",
".",
"root_node",
".",
"ipreorder",
"(",
")",
"for",
"v",
"in",
"s",
".",
"points",
"[",
"1",
":",
",",
"COLS",
".",
"XYZR",
"]",
"]",
"# except for the very first point, which is not a duplicate",
"_pts",
".",
"insert",
"(",
"0",
",",
"self",
".",
"root_node",
".",
"points",
"[",
"0",
"]",
"[",
"COLS",
".",
"XYZR",
"]",
")",
"return",
"np",
".",
"array",
"(",
"_pts",
")"
] |
Return unordered array with all the points in this neurite
|
[
"Return",
"unordered",
"array",
"with",
"all",
"the",
"points",
"in",
"this",
"neurite"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L211-L218
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
Neurite.transform
|
def transform(self, trans):
'''Return a copy of this neurite with a 3D transformation applied'''
clone = deepcopy(self)
for n in clone.iter_sections():
n.points[:, 0:3] = trans(n.points[:, 0:3])
return clone
|
python
|
def transform(self, trans):
clone = deepcopy(self)
for n in clone.iter_sections():
n.points[:, 0:3] = trans(n.points[:, 0:3])
return clone
|
[
"def",
"transform",
"(",
"self",
",",
"trans",
")",
":",
"clone",
"=",
"deepcopy",
"(",
"self",
")",
"for",
"n",
"in",
"clone",
".",
"iter_sections",
"(",
")",
":",
"n",
".",
"points",
"[",
":",
",",
"0",
":",
"3",
"]",
"=",
"trans",
"(",
"n",
".",
"points",
"[",
":",
",",
"0",
":",
"3",
"]",
")",
"return",
"clone"
] |
Return a copy of this neurite with a 3D transformation applied
|
[
"Return",
"a",
"copy",
"of",
"this",
"neurite",
"with",
"a",
"3D",
"transformation",
"applied"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L247-L253
|
BlueBrain/NeuroM
|
neurom/core/_neuron.py
|
Neurite.iter_sections
|
def iter_sections(self, order=Tree.ipreorder, neurite_order=NeuriteIter.FileOrder):
'''iteration over section nodes
Parameters:
order: section iteration order within a given neurite. Must be one of:
Tree.ipreorder: Depth-first pre-order iteration of tree nodes
Tree.ipreorder: Depth-first post-order iteration of tree nodes
Tree.iupstream: Iterate from a tree node to the root nodes
Tree.ibifurcation_point: Iterator to bifurcation points
Tree.ileaf: Iterator to all leaves of a tree
neurite_order: order upon which neurites should be iterated. Values:
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
'''
return iter_sections(self, iterator_type=order, neurite_order=neurite_order)
|
python
|
def iter_sections(self, order=Tree.ipreorder, neurite_order=NeuriteIter.FileOrder):
return iter_sections(self, iterator_type=order, neurite_order=neurite_order)
|
[
"def",
"iter_sections",
"(",
"self",
",",
"order",
"=",
"Tree",
".",
"ipreorder",
",",
"neurite_order",
"=",
"NeuriteIter",
".",
"FileOrder",
")",
":",
"return",
"iter_sections",
"(",
"self",
",",
"iterator_type",
"=",
"order",
",",
"neurite_order",
"=",
"neurite_order",
")"
] |
iteration over section nodes
Parameters:
order: section iteration order within a given neurite. Must be one of:
Tree.ipreorder: Depth-first pre-order iteration of tree nodes
Tree.ipreorder: Depth-first post-order iteration of tree nodes
Tree.iupstream: Iterate from a tree node to the root nodes
Tree.ibifurcation_point: Iterator to bifurcation points
Tree.ileaf: Iterator to all leaves of a tree
neurite_order: order upon which neurites should be iterated. Values:
- NeuriteIter.FileOrder: order of appearance in the file
- NeuriteIter.NRN: NRN simulator order: soma -> axon -> basal -> apical
|
[
"iteration",
"over",
"section",
"nodes"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/_neuron.py#L255-L270
|
BlueBrain/NeuroM
|
neurom/apps/morph_stats.py
|
eval_stats
|
def eval_stats(values, mode):
'''Extract a summary statistic from an array of list of values
Parameters:
values: numpy array of values
mode: summary stat to extract. One of ['min', 'max', 'median', 'mean', 'std', 'raw']
Note: fails silently if values is empty, and None is returned
'''
if mode == 'raw':
return values.tolist()
if mode == 'total':
mode = 'sum'
try:
return getattr(np, mode)(values, axis=0)
except ValueError:
pass
return None
|
python
|
def eval_stats(values, mode):
if mode == 'raw':
return values.tolist()
if mode == 'total':
mode = 'sum'
try:
return getattr(np, mode)(values, axis=0)
except ValueError:
pass
return None
|
[
"def",
"eval_stats",
"(",
"values",
",",
"mode",
")",
":",
"if",
"mode",
"==",
"'raw'",
":",
"return",
"values",
".",
"tolist",
"(",
")",
"if",
"mode",
"==",
"'total'",
":",
"mode",
"=",
"'sum'",
"try",
":",
"return",
"getattr",
"(",
"np",
",",
"mode",
")",
"(",
"values",
",",
"axis",
"=",
"0",
")",
"except",
"ValueError",
":",
"pass",
"return",
"None"
] |
Extract a summary statistic from an array of list of values
Parameters:
values: numpy array of values
mode: summary stat to extract. One of ['min', 'max', 'median', 'mean', 'std', 'raw']
Note: fails silently if values is empty, and None is returned
|
[
"Extract",
"a",
"summary",
"statistic",
"from",
"an",
"array",
"of",
"list",
"of",
"values"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/morph_stats.py#L40-L59
|
BlueBrain/NeuroM
|
neurom/apps/morph_stats.py
|
_stat_name
|
def _stat_name(feat_name, stat_mode):
'''Set stat name based on feature name and stat mode'''
if feat_name[-1] == 's':
feat_name = feat_name[:-1]
if feat_name == 'soma_radii':
feat_name = 'soma_radius'
if stat_mode == 'raw':
return feat_name
return '%s_%s' % (stat_mode, feat_name)
|
python
|
def _stat_name(feat_name, stat_mode):
if feat_name[-1] == 's':
feat_name = feat_name[:-1]
if feat_name == 'soma_radii':
feat_name = 'soma_radius'
if stat_mode == 'raw':
return feat_name
return '%s_%s' % (stat_mode, feat_name)
|
[
"def",
"_stat_name",
"(",
"feat_name",
",",
"stat_mode",
")",
":",
"if",
"feat_name",
"[",
"-",
"1",
"]",
"==",
"'s'",
":",
"feat_name",
"=",
"feat_name",
"[",
":",
"-",
"1",
"]",
"if",
"feat_name",
"==",
"'soma_radii'",
":",
"feat_name",
"=",
"'soma_radius'",
"if",
"stat_mode",
"==",
"'raw'",
":",
"return",
"feat_name",
"return",
"'%s_%s'",
"%",
"(",
"stat_mode",
",",
"feat_name",
")"
] |
Set stat name based on feature name and stat mode
|
[
"Set",
"stat",
"name",
"based",
"on",
"feature",
"name",
"and",
"stat",
"mode"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/morph_stats.py#L62-L71
|
BlueBrain/NeuroM
|
neurom/apps/morph_stats.py
|
extract_stats
|
def extract_stats(neurons, config):
'''Extract stats from neurons'''
stats = defaultdict(dict)
for ns, modes in config['neurite'].items():
for n in config['neurite_type']:
n = _NEURITE_MAP[n]
for mode in modes:
stat_name = _stat_name(ns, mode)
stat = eval_stats(nm.get(ns, neurons, neurite_type=n), mode)
if stat is None or not stat.shape:
stats[n.name][stat_name] = stat
else:
assert stat.shape in ((3, ), ), \
'Statistic must create a 1x3 result'
for i, suffix in enumerate('XYZ'):
compound_stat_name = stat_name + '_' + suffix
stats[n.name][compound_stat_name] = stat[i]
for ns, modes in config['neuron'].items():
for mode in modes:
stat_name = _stat_name(ns, mode)
stats[stat_name] = eval_stats(nm.get(ns, neurons), mode)
return stats
|
python
|
def extract_stats(neurons, config):
stats = defaultdict(dict)
for ns, modes in config['neurite'].items():
for n in config['neurite_type']:
n = _NEURITE_MAP[n]
for mode in modes:
stat_name = _stat_name(ns, mode)
stat = eval_stats(nm.get(ns, neurons, neurite_type=n), mode)
if stat is None or not stat.shape:
stats[n.name][stat_name] = stat
else:
assert stat.shape in ((3, ), ), \
'Statistic must create a 1x3 result'
for i, suffix in enumerate('XYZ'):
compound_stat_name = stat_name + '_' + suffix
stats[n.name][compound_stat_name] = stat[i]
for ns, modes in config['neuron'].items():
for mode in modes:
stat_name = _stat_name(ns, mode)
stats[stat_name] = eval_stats(nm.get(ns, neurons), mode)
return stats
|
[
"def",
"extract_stats",
"(",
"neurons",
",",
"config",
")",
":",
"stats",
"=",
"defaultdict",
"(",
"dict",
")",
"for",
"ns",
",",
"modes",
"in",
"config",
"[",
"'neurite'",
"]",
".",
"items",
"(",
")",
":",
"for",
"n",
"in",
"config",
"[",
"'neurite_type'",
"]",
":",
"n",
"=",
"_NEURITE_MAP",
"[",
"n",
"]",
"for",
"mode",
"in",
"modes",
":",
"stat_name",
"=",
"_stat_name",
"(",
"ns",
",",
"mode",
")",
"stat",
"=",
"eval_stats",
"(",
"nm",
".",
"get",
"(",
"ns",
",",
"neurons",
",",
"neurite_type",
"=",
"n",
")",
",",
"mode",
")",
"if",
"stat",
"is",
"None",
"or",
"not",
"stat",
".",
"shape",
":",
"stats",
"[",
"n",
".",
"name",
"]",
"[",
"stat_name",
"]",
"=",
"stat",
"else",
":",
"assert",
"stat",
".",
"shape",
"in",
"(",
"(",
"3",
",",
")",
",",
")",
",",
"'Statistic must create a 1x3 result'",
"for",
"i",
",",
"suffix",
"in",
"enumerate",
"(",
"'XYZ'",
")",
":",
"compound_stat_name",
"=",
"stat_name",
"+",
"'_'",
"+",
"suffix",
"stats",
"[",
"n",
".",
"name",
"]",
"[",
"compound_stat_name",
"]",
"=",
"stat",
"[",
"i",
"]",
"for",
"ns",
",",
"modes",
"in",
"config",
"[",
"'neuron'",
"]",
".",
"items",
"(",
")",
":",
"for",
"mode",
"in",
"modes",
":",
"stat_name",
"=",
"_stat_name",
"(",
"ns",
",",
"mode",
")",
"stats",
"[",
"stat_name",
"]",
"=",
"eval_stats",
"(",
"nm",
".",
"get",
"(",
"ns",
",",
"neurons",
")",
",",
"mode",
")",
"return",
"stats"
] |
Extract stats from neurons
|
[
"Extract",
"stats",
"from",
"neurons"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/morph_stats.py#L74-L100
|
BlueBrain/NeuroM
|
neurom/apps/morph_stats.py
|
get_header
|
def get_header(results):
'''Extracts the headers, using the first value in the dict as the template'''
ret = ['name', ]
values = next(iter(results.values()))
for k, v in values.items():
if isinstance(v, dict):
for metric in v.keys():
ret.append('%s:%s' % (k, metric))
else:
ret.append(k)
return ret
|
python
|
def get_header(results):
ret = ['name', ]
values = next(iter(results.values()))
for k, v in values.items():
if isinstance(v, dict):
for metric in v.keys():
ret.append('%s:%s' % (k, metric))
else:
ret.append(k)
return ret
|
[
"def",
"get_header",
"(",
"results",
")",
":",
"ret",
"=",
"[",
"'name'",
",",
"]",
"values",
"=",
"next",
"(",
"iter",
"(",
"results",
".",
"values",
"(",
")",
")",
")",
"for",
"k",
",",
"v",
"in",
"values",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"dict",
")",
":",
"for",
"metric",
"in",
"v",
".",
"keys",
"(",
")",
":",
"ret",
".",
"append",
"(",
"'%s:%s'",
"%",
"(",
"k",
",",
"metric",
")",
")",
"else",
":",
"ret",
".",
"append",
"(",
"k",
")",
"return",
"ret"
] |
Extracts the headers, using the first value in the dict as the template
|
[
"Extracts",
"the",
"headers",
"using",
"the",
"first",
"value",
"in",
"the",
"dict",
"as",
"the",
"template"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/morph_stats.py#L103-L113
|
BlueBrain/NeuroM
|
neurom/apps/morph_stats.py
|
generate_flattened_dict
|
def generate_flattened_dict(headers, results):
'''extract from results the fields in the headers list'''
for name, values in results.items():
row = []
for header in headers:
if header == 'name':
row.append(name)
elif ':' in header:
neurite_type, metric = header.split(':')
row.append(values[neurite_type][metric])
else:
row.append(values[header])
yield row
|
python
|
def generate_flattened_dict(headers, results):
for name, values in results.items():
row = []
for header in headers:
if header == 'name':
row.append(name)
elif ':' in header:
neurite_type, metric = header.split(':')
row.append(values[neurite_type][metric])
else:
row.append(values[header])
yield row
|
[
"def",
"generate_flattened_dict",
"(",
"headers",
",",
"results",
")",
":",
"for",
"name",
",",
"values",
"in",
"results",
".",
"items",
"(",
")",
":",
"row",
"=",
"[",
"]",
"for",
"header",
"in",
"headers",
":",
"if",
"header",
"==",
"'name'",
":",
"row",
".",
"append",
"(",
"name",
")",
"elif",
"':'",
"in",
"header",
":",
"neurite_type",
",",
"metric",
"=",
"header",
".",
"split",
"(",
"':'",
")",
"row",
".",
"append",
"(",
"values",
"[",
"neurite_type",
"]",
"[",
"metric",
"]",
")",
"else",
":",
"row",
".",
"append",
"(",
"values",
"[",
"header",
"]",
")",
"yield",
"row"
] |
extract from results the fields in the headers list
|
[
"extract",
"from",
"results",
"the",
"fields",
"in",
"the",
"headers",
"list"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/morph_stats.py#L116-L128
|
BlueBrain/NeuroM
|
neurom/core/tree.py
|
Tree.add_child
|
def add_child(self, tree):
'''Add a child to the list of this tree's children
This tree becomes the added tree's parent
'''
tree.parent = self
self.children.append(tree)
return tree
|
python
|
def add_child(self, tree):
tree.parent = self
self.children.append(tree)
return tree
|
[
"def",
"add_child",
"(",
"self",
",",
"tree",
")",
":",
"tree",
".",
"parent",
"=",
"self",
"self",
".",
"children",
".",
"append",
"(",
"tree",
")",
"return",
"tree"
] |
Add a child to the list of this tree's children
This tree becomes the added tree's parent
|
[
"Add",
"a",
"child",
"to",
"the",
"list",
"of",
"this",
"tree",
"s",
"children"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/tree.py#L41-L48
|
BlueBrain/NeuroM
|
neurom/core/tree.py
|
Tree.ipreorder
|
def ipreorder(self):
'''Depth-first pre-order iteration of tree nodes'''
children = deque((self, ))
while children:
cur_node = children.pop()
children.extend(reversed(cur_node.children))
yield cur_node
|
python
|
def ipreorder(self):
children = deque((self, ))
while children:
cur_node = children.pop()
children.extend(reversed(cur_node.children))
yield cur_node
|
[
"def",
"ipreorder",
"(",
"self",
")",
":",
"children",
"=",
"deque",
"(",
"(",
"self",
",",
")",
")",
"while",
"children",
":",
"cur_node",
"=",
"children",
".",
"pop",
"(",
")",
"children",
".",
"extend",
"(",
"reversed",
"(",
"cur_node",
".",
"children",
")",
")",
"yield",
"cur_node"
] |
Depth-first pre-order iteration of tree nodes
|
[
"Depth",
"-",
"first",
"pre",
"-",
"order",
"iteration",
"of",
"tree",
"nodes"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/tree.py#L66-L72
|
BlueBrain/NeuroM
|
neurom/core/tree.py
|
Tree.ipostorder
|
def ipostorder(self):
'''Depth-first post-order iteration of tree nodes'''
children = [self, ]
seen = set()
while children:
cur_node = children[-1]
if cur_node not in seen:
seen.add(cur_node)
children.extend(reversed(cur_node.children))
else:
children.pop()
yield cur_node
|
python
|
def ipostorder(self):
children = [self, ]
seen = set()
while children:
cur_node = children[-1]
if cur_node not in seen:
seen.add(cur_node)
children.extend(reversed(cur_node.children))
else:
children.pop()
yield cur_node
|
[
"def",
"ipostorder",
"(",
"self",
")",
":",
"children",
"=",
"[",
"self",
",",
"]",
"seen",
"=",
"set",
"(",
")",
"while",
"children",
":",
"cur_node",
"=",
"children",
"[",
"-",
"1",
"]",
"if",
"cur_node",
"not",
"in",
"seen",
":",
"seen",
".",
"add",
"(",
"cur_node",
")",
"children",
".",
"extend",
"(",
"reversed",
"(",
"cur_node",
".",
"children",
")",
")",
"else",
":",
"children",
".",
"pop",
"(",
")",
"yield",
"cur_node"
] |
Depth-first post-order iteration of tree nodes
|
[
"Depth",
"-",
"first",
"post",
"-",
"order",
"iteration",
"of",
"tree",
"nodes"
] |
train
|
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/tree.py#L74-L85
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.