repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
39
1.84M
func_code_tokens
listlengths
15
672k
func_documentation_string
stringlengths
1
47.2k
func_documentation_tokens
listlengths
1
3.92k
split_name
stringclasses
1 value
func_code_url
stringlengths
85
339
BlueBrain/NeuroM
neurom/utils.py
deprecated
def deprecated(fun_name=None, msg=""): '''Issue a deprecation warning for a function''' def _deprecated(fun): '''Issue a deprecation warning for a function''' @wraps(fun) def _wrapper(*args, **kwargs): '''Issue deprecation warning and forward arguments to fun''' name = fun_name if fun_name is not None else fun.__name__ _warn_deprecated('Call to deprecated function %s. %s' % (name, msg)) return fun(*args, **kwargs) return _wrapper return _deprecated
python
def deprecated(fun_name=None, msg=""): def _deprecated(fun): @wraps(fun) def _wrapper(*args, **kwargs): name = fun_name if fun_name is not None else fun.__name__ _warn_deprecated('Call to deprecated function %s. %s' % (name, msg)) return fun(*args, **kwargs) return _wrapper return _deprecated
[ "def", "deprecated", "(", "fun_name", "=", "None", ",", "msg", "=", "\"\"", ")", ":", "def", "_deprecated", "(", "fun", ")", ":", "'''Issue a deprecation warning for a function'''", "@", "wraps", "(", "fun", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "'''Issue deprecation warning and forward arguments to fun'''", "name", "=", "fun_name", "if", "fun_name", "is", "not", "None", "else", "fun", ".", "__name__", "_warn_deprecated", "(", "'Call to deprecated function %s. %s'", "%", "(", "name", ",", "msg", ")", ")", "return", "fun", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "return", "_deprecated" ]
Issue a deprecation warning for a function
[ "Issue", "a", "deprecation", "warning", "for", "a", "function" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/utils.py#L86-L99
BlueBrain/NeuroM
neurom/check/__init__.py
check_wrapper
def check_wrapper(fun): '''Decorate a checking function''' @wraps(fun) def _wrapper(*args, **kwargs): '''Sets the title property of the result of running a checker''' title = fun.__name__.replace('_', ' ').capitalize() result = fun(*args, **kwargs) result.title = title return result return _wrapper
python
def check_wrapper(fun): @wraps(fun) def _wrapper(*args, **kwargs): title = fun.__name__.replace('_', ' ').capitalize() result = fun(*args, **kwargs) result.title = title return result return _wrapper
[ "def", "check_wrapper", "(", "fun", ")", ":", "@", "wraps", "(", "fun", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "'''Sets the title property of the result of running a checker'''", "title", "=", "fun", ".", "__name__", ".", "replace", "(", "'_'", ",", "' '", ")", ".", "capitalize", "(", ")", "result", "=", "fun", "(", "*", "args", ",", "*", "*", "kwargs", ")", "result", ".", "title", "=", "title", "return", "result", "return", "_wrapper" ]
Decorate a checking function
[ "Decorate", "a", "checking", "function" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/__init__.py#L34-L44
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner.run
def run(self, path): '''Test a bunch of files and return a summary JSON report''' SEPARATOR = '=' * 40 summary = {} res = True for _f in utils.get_files_by_path(path): L.info(SEPARATOR) status, summ = self._check_file(_f) res &= status if summ is not None: summary.update(summ) L.info(SEPARATOR) status = 'PASS' if res else 'FAIL' return {'files': summary, 'STATUS': status}
python
def run(self, path): SEPARATOR = '=' * 40 summary = {} res = True for _f in utils.get_files_by_path(path): L.info(SEPARATOR) status, summ = self._check_file(_f) res &= status if summ is not None: summary.update(summ) L.info(SEPARATOR) status = 'PASS' if res else 'FAIL' return {'files': summary, 'STATUS': status}
[ "def", "run", "(", "self", ",", "path", ")", ":", "SEPARATOR", "=", "'='", "*", "40", "summary", "=", "{", "}", "res", "=", "True", "for", "_f", "in", "utils", ".", "get_files_by_path", "(", "path", ")", ":", "L", ".", "info", "(", "SEPARATOR", ")", "status", ",", "summ", "=", "self", ".", "_check_file", "(", "_f", ")", "res", "&=", "status", "if", "summ", "is", "not", "None", ":", "summary", ".", "update", "(", "summ", ")", "L", ".", "info", "(", "SEPARATOR", ")", "status", "=", "'PASS'", "if", "res", "else", "'FAIL'", "return", "{", "'files'", ":", "summary", ",", "'STATUS'", ":", "status", "}" ]
Test a bunch of files and return a summary JSON report
[ "Test", "a", "bunch", "of", "files", "and", "return", "a", "summary", "JSON", "report" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L53-L71
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner._do_check
def _do_check(self, obj, check_module, check_str): '''Run a check function on obj''' opts = self._config['options'] if check_str in opts: fargs = opts[check_str] if isinstance(fargs, list): out = check_wrapper(getattr(check_module, check_str))(obj, *fargs) else: out = check_wrapper(getattr(check_module, check_str))(obj, fargs) else: out = check_wrapper(getattr(check_module, check_str))(obj) try: if out.info: L.debug('%s: %d failing ids detected: %s', out.title, len(out.info), out.info) except TypeError: # pragma: no cover pass return out
python
def _do_check(self, obj, check_module, check_str): opts = self._config['options'] if check_str in opts: fargs = opts[check_str] if isinstance(fargs, list): out = check_wrapper(getattr(check_module, check_str))(obj, *fargs) else: out = check_wrapper(getattr(check_module, check_str))(obj, fargs) else: out = check_wrapper(getattr(check_module, check_str))(obj) try: if out.info: L.debug('%s: %d failing ids detected: %s', out.title, len(out.info), out.info) except TypeError: pass return out
[ "def", "_do_check", "(", "self", ",", "obj", ",", "check_module", ",", "check_str", ")", ":", "opts", "=", "self", ".", "_config", "[", "'options'", "]", "if", "check_str", "in", "opts", ":", "fargs", "=", "opts", "[", "check_str", "]", "if", "isinstance", "(", "fargs", ",", "list", ")", ":", "out", "=", "check_wrapper", "(", "getattr", "(", "check_module", ",", "check_str", ")", ")", "(", "obj", ",", "*", "fargs", ")", "else", ":", "out", "=", "check_wrapper", "(", "getattr", "(", "check_module", ",", "check_str", ")", ")", "(", "obj", ",", "fargs", ")", "else", ":", "out", "=", "check_wrapper", "(", "getattr", "(", "check_module", ",", "check_str", ")", ")", "(", "obj", ")", "try", ":", "if", "out", ".", "info", ":", "L", ".", "debug", "(", "'%s: %d failing ids detected: %s'", ",", "out", ".", "title", ",", "len", "(", "out", ".", "info", ")", ",", "out", ".", "info", ")", "except", "TypeError", ":", "# pragma: no cover", "pass", "return", "out" ]
Run a check function on obj
[ "Run", "a", "check", "function", "on", "obj" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L73-L92
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner._check_loop
def _check_loop(self, obj, check_mod_str): '''Run all the checks in a check_module''' check_module = self._check_modules[check_mod_str] checks = self._config['checks'][check_mod_str] result = True summary = OrderedDict() for check in checks: ok = self._do_check(obj, check_module, check) summary[ok.title] = ok.status result &= ok.status return result, summary
python
def _check_loop(self, obj, check_mod_str): check_module = self._check_modules[check_mod_str] checks = self._config['checks'][check_mod_str] result = True summary = OrderedDict() for check in checks: ok = self._do_check(obj, check_module, check) summary[ok.title] = ok.status result &= ok.status return result, summary
[ "def", "_check_loop", "(", "self", ",", "obj", ",", "check_mod_str", ")", ":", "check_module", "=", "self", ".", "_check_modules", "[", "check_mod_str", "]", "checks", "=", "self", ".", "_config", "[", "'checks'", "]", "[", "check_mod_str", "]", "result", "=", "True", "summary", "=", "OrderedDict", "(", ")", "for", "check", "in", "checks", ":", "ok", "=", "self", ".", "_do_check", "(", "obj", ",", "check_module", ",", "check", ")", "summary", "[", "ok", ".", "title", "]", "=", "ok", ".", "status", "result", "&=", "ok", ".", "status", "return", "result", ",", "summary" ]
Run all the checks in a check_module
[ "Run", "all", "the", "checks", "in", "a", "check_module" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L94-L105
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner._check_file
def _check_file(self, f): '''Run tests on a morphology file''' L.info('File: %s', f) full_result = True full_summary = OrderedDict() try: data = load_data(f) except Exception as e: # pylint: disable=W0703 L.error('Failed to load data... skipping tests for this file') L.error(e.args) return False, {f: OrderedDict([('ALL', False)])} try: result, summary = self._check_loop(data, 'structural_checks') full_result &= result full_summary.update(summary) nrn = fst_core.FstNeuron(data) result, summary = self._check_loop(nrn, 'neuron_checks') full_result &= result full_summary.update(summary) except Exception as e: # pylint: disable=W0703 L.error('Check failed: %s', str(type(e)) + str(e.args)) full_result = False full_summary['ALL'] = full_result for m, s in full_summary.items(): self._log_msg(m, s) return full_result, {f: full_summary}
python
def _check_file(self, f): L.info('File: %s', f) full_result = True full_summary = OrderedDict() try: data = load_data(f) except Exception as e: L.error('Failed to load data... skipping tests for this file') L.error(e.args) return False, {f: OrderedDict([('ALL', False)])} try: result, summary = self._check_loop(data, 'structural_checks') full_result &= result full_summary.update(summary) nrn = fst_core.FstNeuron(data) result, summary = self._check_loop(nrn, 'neuron_checks') full_result &= result full_summary.update(summary) except Exception as e: L.error('Check failed: %s', str(type(e)) + str(e.args)) full_result = False full_summary['ALL'] = full_result for m, s in full_summary.items(): self._log_msg(m, s) return full_result, {f: full_summary}
[ "def", "_check_file", "(", "self", ",", "f", ")", ":", "L", ".", "info", "(", "'File: %s'", ",", "f", ")", "full_result", "=", "True", "full_summary", "=", "OrderedDict", "(", ")", "try", ":", "data", "=", "load_data", "(", "f", ")", "except", "Exception", "as", "e", ":", "# pylint: disable=W0703", "L", ".", "error", "(", "'Failed to load data... skipping tests for this file'", ")", "L", ".", "error", "(", "e", ".", "args", ")", "return", "False", ",", "{", "f", ":", "OrderedDict", "(", "[", "(", "'ALL'", ",", "False", ")", "]", ")", "}", "try", ":", "result", ",", "summary", "=", "self", ".", "_check_loop", "(", "data", ",", "'structural_checks'", ")", "full_result", "&=", "result", "full_summary", ".", "update", "(", "summary", ")", "nrn", "=", "fst_core", ".", "FstNeuron", "(", "data", ")", "result", ",", "summary", "=", "self", ".", "_check_loop", "(", "nrn", ",", "'neuron_checks'", ")", "full_result", "&=", "result", "full_summary", ".", "update", "(", "summary", ")", "except", "Exception", "as", "e", ":", "# pylint: disable=W0703", "L", ".", "error", "(", "'Check failed: %s'", ",", "str", "(", "type", "(", "e", ")", ")", "+", "str", "(", "e", ".", "args", ")", ")", "full_result", "=", "False", "full_summary", "[", "'ALL'", "]", "=", "full_result", "for", "m", ",", "s", "in", "full_summary", ".", "items", "(", ")", ":", "self", ".", "_log_msg", "(", "m", ",", "s", ")", "return", "full_result", ",", "{", "f", ":", "full_summary", "}" ]
Run tests on a morphology file
[ "Run", "tests", "on", "a", "morphology", "file" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L107-L138
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner._log_msg
def _log_msg(self, msg, ok): '''Helper to log message to the right level''' if self._config['color']: CGREEN, CRED, CEND = '\033[92m', '\033[91m', '\033[0m' else: CGREEN = CRED = CEND = '' LOG_LEVELS = {False: logging.ERROR, True: logging.INFO} # pylint: disable=logging-not-lazy L.log(LOG_LEVELS[ok], '%35s %s' + CEND, msg, CGREEN + 'PASS' if ok else CRED + 'FAIL')
python
def _log_msg(self, msg, ok): if self._config['color']: CGREEN, CRED, CEND = '\033[92m', '\033[91m', '\033[0m' else: CGREEN = CRED = CEND = '' LOG_LEVELS = {False: logging.ERROR, True: logging.INFO} L.log(LOG_LEVELS[ok], '%35s %s' + CEND, msg, CGREEN + 'PASS' if ok else CRED + 'FAIL')
[ "def", "_log_msg", "(", "self", ",", "msg", ",", "ok", ")", ":", "if", "self", ".", "_config", "[", "'color'", "]", ":", "CGREEN", ",", "CRED", ",", "CEND", "=", "'\\033[92m'", ",", "'\\033[91m'", ",", "'\\033[0m'", "else", ":", "CGREEN", "=", "CRED", "=", "CEND", "=", "''", "LOG_LEVELS", "=", "{", "False", ":", "logging", ".", "ERROR", ",", "True", ":", "logging", ".", "INFO", "}", "# pylint: disable=logging-not-lazy", "L", ".", "log", "(", "LOG_LEVELS", "[", "ok", "]", ",", "'%35s %s'", "+", "CEND", ",", "msg", ",", "CGREEN", "+", "'PASS'", "if", "ok", "else", "CRED", "+", "'FAIL'", ")" ]
Helper to log message to the right level
[ "Helper", "to", "log", "message", "to", "the", "right", "level" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L140-L151
BlueBrain/NeuroM
neurom/check/runner.py
CheckRunner._sanitize_config
def _sanitize_config(config): '''check that the config has the correct keys, add missing keys if necessary''' if 'checks' in config: checks = config['checks'] if 'structural_checks' not in checks: checks['structural_checks'] = [] if 'neuron_checks' not in checks: checks['neuron_checks'] = [] else: raise ConfigError('Need to have "checks" in the config') if 'options' not in config: L.debug('Using default options') config['options'] = {} if 'color' not in config: config['color'] = False return config
python
def _sanitize_config(config): if 'checks' in config: checks = config['checks'] if 'structural_checks' not in checks: checks['structural_checks'] = [] if 'neuron_checks' not in checks: checks['neuron_checks'] = [] else: raise ConfigError('Need to have "checks" in the config') if 'options' not in config: L.debug('Using default options') config['options'] = {} if 'color' not in config: config['color'] = False return config
[ "def", "_sanitize_config", "(", "config", ")", ":", "if", "'checks'", "in", "config", ":", "checks", "=", "config", "[", "'checks'", "]", "if", "'structural_checks'", "not", "in", "checks", ":", "checks", "[", "'structural_checks'", "]", "=", "[", "]", "if", "'neuron_checks'", "not", "in", "checks", ":", "checks", "[", "'neuron_checks'", "]", "=", "[", "]", "else", ":", "raise", "ConfigError", "(", "'Need to have \"checks\" in the config'", ")", "if", "'options'", "not", "in", "config", ":", "L", ".", "debug", "(", "'Using default options'", ")", "config", "[", "'options'", "]", "=", "{", "}", "if", "'color'", "not", "in", "config", ":", "config", "[", "'color'", "]", "=", "False", "return", "config" ]
check that the config has the correct keys, add missing keys if necessary
[ "check", "that", "the", "config", "has", "the", "correct", "keys", "add", "missing", "keys", "if", "necessary" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/runner.py#L154-L172
BlueBrain/NeuroM
neurom/io/swc.py
read
def read(filename, data_wrapper=DataWrapper): '''Read an SWC file and return a tuple of data, format.''' data = np.loadtxt(filename) if len(np.shape(data)) == 1: data = np.reshape(data, (1, -1)) data = data[:, [X, Y, Z, R, TYPE, ID, P]] return data_wrapper(data, 'SWC', None)
python
def read(filename, data_wrapper=DataWrapper): data = np.loadtxt(filename) if len(np.shape(data)) == 1: data = np.reshape(data, (1, -1)) data = data[:, [X, Y, Z, R, TYPE, ID, P]] return data_wrapper(data, 'SWC', None)
[ "def", "read", "(", "filename", ",", "data_wrapper", "=", "DataWrapper", ")", ":", "data", "=", "np", ".", "loadtxt", "(", "filename", ")", "if", "len", "(", "np", ".", "shape", "(", "data", ")", ")", "==", "1", ":", "data", "=", "np", ".", "reshape", "(", "data", ",", "(", "1", ",", "-", "1", ")", ")", "data", "=", "data", "[", ":", ",", "[", "X", ",", "Y", ",", "Z", ",", "R", ",", "TYPE", ",", "ID", ",", "P", "]", "]", "return", "data_wrapper", "(", "data", ",", "'SWC'", ",", "None", ")" ]
Read an SWC file and return a tuple of data, format.
[ "Read", "an", "SWC", "file", "and", "return", "a", "tuple", "of", "data", "format", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/swc.py#L47-L53
BlueBrain/NeuroM
neurom/io/datawrapper.py
_merge_sections
def _merge_sections(sec_a, sec_b): '''Merge two sections Merges sec_a into sec_b and sets sec_a attributes to default ''' sec_b.ids = list(sec_a.ids) + list(sec_b.ids[1:]) sec_b.ntype = sec_a.ntype sec_b.pid = sec_a.pid sec_a.ids = [] sec_a.pid = -1 sec_a.ntype = 0
python
def _merge_sections(sec_a, sec_b): sec_b.ids = list(sec_a.ids) + list(sec_b.ids[1:]) sec_b.ntype = sec_a.ntype sec_b.pid = sec_a.pid sec_a.ids = [] sec_a.pid = -1 sec_a.ntype = 0
[ "def", "_merge_sections", "(", "sec_a", ",", "sec_b", ")", ":", "sec_b", ".", "ids", "=", "list", "(", "sec_a", ".", "ids", ")", "+", "list", "(", "sec_b", ".", "ids", "[", "1", ":", "]", ")", "sec_b", ".", "ntype", "=", "sec_a", ".", "ntype", "sec_b", ".", "pid", "=", "sec_a", ".", "pid", "sec_a", ".", "ids", "=", "[", "]", "sec_a", ".", "pid", "=", "-", "1", "sec_a", ".", "ntype", "=", "0" ]
Merge two sections Merges sec_a into sec_b and sets sec_a attributes to default
[ "Merge", "two", "sections" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L89-L100
BlueBrain/NeuroM
neurom/io/datawrapper.py
_section_end_points
def _section_end_points(structure_block, id_map): '''Get the section end-points''' soma_idx = structure_block[:, TYPE] == POINT_TYPE.SOMA soma_ids = structure_block[soma_idx, ID] neurite_idx = structure_block[:, TYPE] != POINT_TYPE.SOMA neurite_rows = structure_block[neurite_idx, :] soma_end_pts = set(id_map[id_] for id_ in soma_ids[np.in1d(soma_ids, neurite_rows[:, PID])]) # end points have either no children or more than one # ie: leaf or multifurcation nodes n_children = defaultdict(int) for row in structure_block: n_children[row[PID]] += 1 end_pts = set(i for i, row in enumerate(structure_block) if n_children[row[ID]] != 1) return end_pts.union(soma_end_pts)
python
def _section_end_points(structure_block, id_map): soma_idx = structure_block[:, TYPE] == POINT_TYPE.SOMA soma_ids = structure_block[soma_idx, ID] neurite_idx = structure_block[:, TYPE] != POINT_TYPE.SOMA neurite_rows = structure_block[neurite_idx, :] soma_end_pts = set(id_map[id_] for id_ in soma_ids[np.in1d(soma_ids, neurite_rows[:, PID])]) n_children = defaultdict(int) for row in structure_block: n_children[row[PID]] += 1 end_pts = set(i for i, row in enumerate(structure_block) if n_children[row[ID]] != 1) return end_pts.union(soma_end_pts)
[ "def", "_section_end_points", "(", "structure_block", ",", "id_map", ")", ":", "soma_idx", "=", "structure_block", "[", ":", ",", "TYPE", "]", "==", "POINT_TYPE", ".", "SOMA", "soma_ids", "=", "structure_block", "[", "soma_idx", ",", "ID", "]", "neurite_idx", "=", "structure_block", "[", ":", ",", "TYPE", "]", "!=", "POINT_TYPE", ".", "SOMA", "neurite_rows", "=", "structure_block", "[", "neurite_idx", ",", ":", "]", "soma_end_pts", "=", "set", "(", "id_map", "[", "id_", "]", "for", "id_", "in", "soma_ids", "[", "np", ".", "in1d", "(", "soma_ids", ",", "neurite_rows", "[", ":", ",", "PID", "]", ")", "]", ")", "# end points have either no children or more than one", "# ie: leaf or multifurcation nodes", "n_children", "=", "defaultdict", "(", "int", ")", "for", "row", "in", "structure_block", ":", "n_children", "[", "row", "[", "PID", "]", "]", "+=", "1", "end_pts", "=", "set", "(", "i", "for", "i", ",", "row", "in", "enumerate", "(", "structure_block", ")", "if", "n_children", "[", "row", "[", "ID", "]", "]", "!=", "1", ")", "return", "end_pts", ".", "union", "(", "soma_end_pts", ")" ]
Get the section end-points
[ "Get", "the", "section", "end", "-", "points" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L103-L120
BlueBrain/NeuroM
neurom/io/datawrapper.py
_extract_sections
def _extract_sections(data_block): '''Make a list of sections from an SWC-style data wrapper block''' structure_block = data_block[:, COLS.TYPE:COLS.COL_COUNT].astype(np.int) # SWC ID -> structure_block position id_map = {-1: -1} for i, row in enumerate(structure_block): id_map[row[ID]] = i # end points have either no children, more than one, or are the start # of a new gap sec_end_pts = _section_end_points(structure_block, id_map) # a 'gap' is when a section has part of it's segments interleaved # with those of another section gap_sections = set() sections = [] def new_section(): '''new_section''' sections.append(DataBlockSection()) return sections[-1] curr_section = new_section() parent_section = {-1: -1} for row in structure_block: row_id = id_map[row[ID]] parent_id = id_map[row[PID]] if not curr_section.ids: # first in section point is parent curr_section.ids.append(parent_id) curr_section.ntype = row[TYPE] gap = parent_id != curr_section.ids[-1] # If parent is not the previous point, create a section end-point. # Else add the point to this section if gap: sec_end_pts.add(row_id) else: curr_section.ids.append(row_id) if row_id in sec_end_pts: parent_section[curr_section.ids[-1]] = len(sections) - 1 # Parent-child discontinuity section if gap: curr_section = new_section() curr_section.ids.extend((parent_id, row_id)) curr_section.ntype = row[TYPE] gap_sections.add(len(sections) - 2) elif row_id != len(data_block) - 1: # avoid creating an extra DataBlockSection for last row if it's a leaf curr_section = new_section() for sec in sections: # get the section parent ID from the id of the first point. if sec.ids: sec.pid = parent_section[sec.ids[0]] # join gap sections and "disable" first half if sec.pid in gap_sections: _merge_sections(sections[sec.pid], sec) # TODO find a way to remove empty sections. Currently they are # required to maintain tree integrity. return sections
python
def _extract_sections(data_block): structure_block = data_block[:, COLS.TYPE:COLS.COL_COUNT].astype(np.int) id_map = {-1: -1} for i, row in enumerate(structure_block): id_map[row[ID]] = i sec_end_pts = _section_end_points(structure_block, id_map) gap_sections = set() sections = [] def new_section(): sections.append(DataBlockSection()) return sections[-1] curr_section = new_section() parent_section = {-1: -1} for row in structure_block: row_id = id_map[row[ID]] parent_id = id_map[row[PID]] if not curr_section.ids: curr_section.ids.append(parent_id) curr_section.ntype = row[TYPE] gap = parent_id != curr_section.ids[-1] if gap: sec_end_pts.add(row_id) else: curr_section.ids.append(row_id) if row_id in sec_end_pts: parent_section[curr_section.ids[-1]] = len(sections) - 1 if gap: curr_section = new_section() curr_section.ids.extend((parent_id, row_id)) curr_section.ntype = row[TYPE] gap_sections.add(len(sections) - 2) elif row_id != len(data_block) - 1: curr_section = new_section() for sec in sections: if sec.ids: sec.pid = parent_section[sec.ids[0]] if sec.pid in gap_sections: _merge_sections(sections[sec.pid], sec) return sections
[ "def", "_extract_sections", "(", "data_block", ")", ":", "structure_block", "=", "data_block", "[", ":", ",", "COLS", ".", "TYPE", ":", "COLS", ".", "COL_COUNT", "]", ".", "astype", "(", "np", ".", "int", ")", "# SWC ID -> structure_block position", "id_map", "=", "{", "-", "1", ":", "-", "1", "}", "for", "i", ",", "row", "in", "enumerate", "(", "structure_block", ")", ":", "id_map", "[", "row", "[", "ID", "]", "]", "=", "i", "# end points have either no children, more than one, or are the start", "# of a new gap", "sec_end_pts", "=", "_section_end_points", "(", "structure_block", ",", "id_map", ")", "# a 'gap' is when a section has part of it's segments interleaved", "# with those of another section", "gap_sections", "=", "set", "(", ")", "sections", "=", "[", "]", "def", "new_section", "(", ")", ":", "'''new_section'''", "sections", ".", "append", "(", "DataBlockSection", "(", ")", ")", "return", "sections", "[", "-", "1", "]", "curr_section", "=", "new_section", "(", ")", "parent_section", "=", "{", "-", "1", ":", "-", "1", "}", "for", "row", "in", "structure_block", ":", "row_id", "=", "id_map", "[", "row", "[", "ID", "]", "]", "parent_id", "=", "id_map", "[", "row", "[", "PID", "]", "]", "if", "not", "curr_section", ".", "ids", ":", "# first in section point is parent", "curr_section", ".", "ids", ".", "append", "(", "parent_id", ")", "curr_section", ".", "ntype", "=", "row", "[", "TYPE", "]", "gap", "=", "parent_id", "!=", "curr_section", ".", "ids", "[", "-", "1", "]", "# If parent is not the previous point, create a section end-point.", "# Else add the point to this section", "if", "gap", ":", "sec_end_pts", ".", "add", "(", "row_id", ")", "else", ":", "curr_section", ".", "ids", ".", "append", "(", "row_id", ")", "if", "row_id", "in", "sec_end_pts", ":", "parent_section", "[", "curr_section", ".", "ids", "[", "-", "1", "]", "]", "=", "len", "(", "sections", ")", "-", "1", "# Parent-child discontinuity section", "if", "gap", ":", "curr_section", "=", "new_section", "(", ")", "curr_section", ".", "ids", ".", "extend", "(", "(", "parent_id", ",", "row_id", ")", ")", "curr_section", ".", "ntype", "=", "row", "[", "TYPE", "]", "gap_sections", ".", "add", "(", "len", "(", "sections", ")", "-", "2", ")", "elif", "row_id", "!=", "len", "(", "data_block", ")", "-", "1", ":", "# avoid creating an extra DataBlockSection for last row if it's a leaf", "curr_section", "=", "new_section", "(", ")", "for", "sec", "in", "sections", ":", "# get the section parent ID from the id of the first point.", "if", "sec", ".", "ids", ":", "sec", ".", "pid", "=", "parent_section", "[", "sec", ".", "ids", "[", "0", "]", "]", "# join gap sections and \"disable\" first half", "if", "sec", ".", "pid", "in", "gap_sections", ":", "_merge_sections", "(", "sections", "[", "sec", ".", "pid", "]", ",", "sec", ")", "# TODO find a way to remove empty sections. Currently they are", "# required to maintain tree integrity.", "return", "sections" ]
Make a list of sections from an SWC-style data wrapper block
[ "Make", "a", "list", "of", "sections", "from", "an", "SWC", "-", "style", "data", "wrapper", "block" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L142-L210
BlueBrain/NeuroM
neurom/io/datawrapper.py
DataWrapper.neurite_root_section_ids
def neurite_root_section_ids(self): '''Get the section IDs of the intitial neurite sections''' sec = self.sections return [i for i, ss in enumerate(sec) if ss.pid > -1 and (sec[ss.pid].ntype == POINT_TYPE.SOMA and ss.ntype != POINT_TYPE.SOMA)]
python
def neurite_root_section_ids(self): sec = self.sections return [i for i, ss in enumerate(sec) if ss.pid > -1 and (sec[ss.pid].ntype == POINT_TYPE.SOMA and ss.ntype != POINT_TYPE.SOMA)]
[ "def", "neurite_root_section_ids", "(", "self", ")", ":", "sec", "=", "self", ".", "sections", "return", "[", "i", "for", "i", ",", "ss", "in", "enumerate", "(", "sec", ")", "if", "ss", ".", "pid", ">", "-", "1", "and", "(", "sec", "[", "ss", ".", "pid", "]", ".", "ntype", "==", "POINT_TYPE", ".", "SOMA", "and", "ss", ".", "ntype", "!=", "POINT_TYPE", ".", "SOMA", ")", "]" ]
Get the section IDs of the intitial neurite sections
[ "Get", "the", "section", "IDs", "of", "the", "intitial", "neurite", "sections" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L76-L81
BlueBrain/NeuroM
neurom/io/datawrapper.py
DataWrapper.soma_points
def soma_points(self): '''Get the soma points''' db = self.data_block return db[db[:, COLS.TYPE] == POINT_TYPE.SOMA]
python
def soma_points(self): db = self.data_block return db[db[:, COLS.TYPE] == POINT_TYPE.SOMA]
[ "def", "soma_points", "(", "self", ")", ":", "db", "=", "self", ".", "data_block", "return", "db", "[", "db", "[", ":", ",", "COLS", ".", "TYPE", "]", "==", "POINT_TYPE", ".", "SOMA", "]" ]
Get the soma points
[ "Get", "the", "soma", "points" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L83-L86
BlueBrain/NeuroM
neurom/io/datawrapper.py
BlockNeuronBuilder.add_section
def add_section(self, id_, parent_id, section_type, points): '''add a section Args: id_(int): identifying number of the section parent_id(int): identifying number of the parent of this section section_type(int): the section type as defined by POINT_TYPE points is an array of [X, Y, Z, R] ''' # L.debug('Adding section %d, with parent %d, of type: %d with count: %d', # id_, parent_id, section_type, len(points)) assert id_ not in self.sections, 'id %s already exists in sections' % id_ self.sections[id_] = BlockNeuronBuilder.BlockSection(parent_id, section_type, points)
python
def add_section(self, id_, parent_id, section_type, points): assert id_ not in self.sections, 'id %s already exists in sections' % id_ self.sections[id_] = BlockNeuronBuilder.BlockSection(parent_id, section_type, points)
[ "def", "add_section", "(", "self", ",", "id_", ",", "parent_id", ",", "section_type", ",", "points", ")", ":", "# L.debug('Adding section %d, with parent %d, of type: %d with count: %d',", "# id_, parent_id, section_type, len(points))", "assert", "id_", "not", "in", "self", ".", "sections", ",", "'id %s already exists in sections'", "%", "id_", "self", ".", "sections", "[", "id_", "]", "=", "BlockNeuronBuilder", ".", "BlockSection", "(", "parent_id", ",", "section_type", ",", "points", ")" ]
add a section Args: id_(int): identifying number of the section parent_id(int): identifying number of the parent of this section section_type(int): the section type as defined by POINT_TYPE points is an array of [X, Y, Z, R]
[ "add", "a", "section" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L234-L246
BlueBrain/NeuroM
neurom/io/datawrapper.py
BlockNeuronBuilder._make_datablock
def _make_datablock(self): '''Make a data_block and sections list as required by DataWrapper''' section_ids = sorted(self.sections) # create all insertion id's, this needs to be done ahead of time # as some of the children may have a lower id than their parents id_to_insert_id = {} row_count = 0 for section_id in section_ids: row_count += len(self.sections[section_id].points) id_to_insert_id[section_id] = row_count - 1 datablock = np.empty((row_count, COLS.COL_COUNT), dtype=np.float) datablock[:, COLS.ID] = np.arange(len(datablock)) datablock[:, COLS.P] = datablock[:, COLS.ID] - 1 sections = [] insert_index = 0 for id_ in section_ids: sec = self.sections[id_] points, section_type, parent_id = sec.points, sec.section_type, sec.parent_id idx = slice(insert_index, insert_index + len(points)) datablock[idx, COLS.XYZR] = points datablock[idx, COLS.TYPE] = section_type datablock[idx.start, COLS.P] = id_to_insert_id.get(parent_id, ROOT_ID) sections.append(DataBlockSection(idx, section_type, parent_id)) insert_index = idx.stop return datablock, sections
python
def _make_datablock(self): section_ids = sorted(self.sections) id_to_insert_id = {} row_count = 0 for section_id in section_ids: row_count += len(self.sections[section_id].points) id_to_insert_id[section_id] = row_count - 1 datablock = np.empty((row_count, COLS.COL_COUNT), dtype=np.float) datablock[:, COLS.ID] = np.arange(len(datablock)) datablock[:, COLS.P] = datablock[:, COLS.ID] - 1 sections = [] insert_index = 0 for id_ in section_ids: sec = self.sections[id_] points, section_type, parent_id = sec.points, sec.section_type, sec.parent_id idx = slice(insert_index, insert_index + len(points)) datablock[idx, COLS.XYZR] = points datablock[idx, COLS.TYPE] = section_type datablock[idx.start, COLS.P] = id_to_insert_id.get(parent_id, ROOT_ID) sections.append(DataBlockSection(idx, section_type, parent_id)) insert_index = idx.stop return datablock, sections
[ "def", "_make_datablock", "(", "self", ")", ":", "section_ids", "=", "sorted", "(", "self", ".", "sections", ")", "# create all insertion id's, this needs to be done ahead of time", "# as some of the children may have a lower id than their parents", "id_to_insert_id", "=", "{", "}", "row_count", "=", "0", "for", "section_id", "in", "section_ids", ":", "row_count", "+=", "len", "(", "self", ".", "sections", "[", "section_id", "]", ".", "points", ")", "id_to_insert_id", "[", "section_id", "]", "=", "row_count", "-", "1", "datablock", "=", "np", ".", "empty", "(", "(", "row_count", ",", "COLS", ".", "COL_COUNT", ")", ",", "dtype", "=", "np", ".", "float", ")", "datablock", "[", ":", ",", "COLS", ".", "ID", "]", "=", "np", ".", "arange", "(", "len", "(", "datablock", ")", ")", "datablock", "[", ":", ",", "COLS", ".", "P", "]", "=", "datablock", "[", ":", ",", "COLS", ".", "ID", "]", "-", "1", "sections", "=", "[", "]", "insert_index", "=", "0", "for", "id_", "in", "section_ids", ":", "sec", "=", "self", ".", "sections", "[", "id_", "]", "points", ",", "section_type", ",", "parent_id", "=", "sec", ".", "points", ",", "sec", ".", "section_type", ",", "sec", ".", "parent_id", "idx", "=", "slice", "(", "insert_index", ",", "insert_index", "+", "len", "(", "points", ")", ")", "datablock", "[", "idx", ",", "COLS", ".", "XYZR", "]", "=", "points", "datablock", "[", "idx", ",", "COLS", ".", "TYPE", "]", "=", "section_type", "datablock", "[", "idx", ".", "start", ",", "COLS", ".", "P", "]", "=", "id_to_insert_id", ".", "get", "(", "parent_id", ",", "ROOT_ID", ")", "sections", ".", "append", "(", "DataBlockSection", "(", "idx", ",", "section_type", ",", "parent_id", ")", ")", "insert_index", "=", "idx", ".", "stop", "return", "datablock", ",", "sections" ]
Make a data_block and sections list as required by DataWrapper
[ "Make", "a", "data_block", "and", "sections", "list", "as", "required", "by", "DataWrapper" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L248-L277
BlueBrain/NeuroM
neurom/io/datawrapper.py
BlockNeuronBuilder._check_consistency
def _check_consistency(self): '''see if the sections have obvious errors''' type_count = defaultdict(int) for _, section in sorted(self.sections.items()): type_count[section.section_type] += 1 if type_count[POINT_TYPE.SOMA] != 1: L.info('Have %d somas, expected 1', type_count[POINT_TYPE.SOMA])
python
def _check_consistency(self): type_count = defaultdict(int) for _, section in sorted(self.sections.items()): type_count[section.section_type] += 1 if type_count[POINT_TYPE.SOMA] != 1: L.info('Have %d somas, expected 1', type_count[POINT_TYPE.SOMA])
[ "def", "_check_consistency", "(", "self", ")", ":", "type_count", "=", "defaultdict", "(", "int", ")", "for", "_", ",", "section", "in", "sorted", "(", "self", ".", "sections", ".", "items", "(", ")", ")", ":", "type_count", "[", "section", ".", "section_type", "]", "+=", "1", "if", "type_count", "[", "POINT_TYPE", ".", "SOMA", "]", "!=", "1", ":", "L", ".", "info", "(", "'Have %d somas, expected 1'", ",", "type_count", "[", "POINT_TYPE", ".", "SOMA", "]", ")" ]
see if the sections have obvious errors
[ "see", "if", "the", "sections", "have", "obvious", "errors" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L279-L286
BlueBrain/NeuroM
neurom/io/datawrapper.py
BlockNeuronBuilder.get_datawrapper
def get_datawrapper(self, file_format='BlockNeuronBuilder', data_wrapper=DataWrapper): '''returns a DataWrapper''' self._check_consistency() datablock, sections = self._make_datablock() return data_wrapper(datablock, file_format, sections)
python
def get_datawrapper(self, file_format='BlockNeuronBuilder', data_wrapper=DataWrapper): self._check_consistency() datablock, sections = self._make_datablock() return data_wrapper(datablock, file_format, sections)
[ "def", "get_datawrapper", "(", "self", ",", "file_format", "=", "'BlockNeuronBuilder'", ",", "data_wrapper", "=", "DataWrapper", ")", ":", "self", ".", "_check_consistency", "(", ")", "datablock", ",", "sections", "=", "self", ".", "_make_datablock", "(", ")", "return", "data_wrapper", "(", "datablock", ",", "file_format", ",", "sections", ")" ]
returns a DataWrapper
[ "returns", "a", "DataWrapper" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/datawrapper.py#L288-L292
BlueBrain/NeuroM
neurom/io/utils.py
_is_morphology_file
def _is_morphology_file(filepath): """ Check if `filepath` is a file with one of morphology file extensions. """ return ( os.path.isfile(filepath) and os.path.splitext(filepath)[1].lower() in ('.swc', '.h5', '.asc') )
python
def _is_morphology_file(filepath): return ( os.path.isfile(filepath) and os.path.splitext(filepath)[1].lower() in ('.swc', '.h5', '.asc') )
[ "def", "_is_morphology_file", "(", "filepath", ")", ":", "return", "(", "os", ".", "path", ".", "isfile", "(", "filepath", ")", "and", "os", ".", "path", ".", "splitext", "(", "filepath", ")", "[", "1", "]", ".", "lower", "(", ")", "in", "(", "'.swc'", ",", "'.h5'", ",", "'.asc'", ")", ")" ]
Check if `filepath` is a file with one of morphology file extensions.
[ "Check", "if", "filepath", "is", "a", "file", "with", "one", "of", "morphology", "file", "extensions", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L50-L55
BlueBrain/NeuroM
neurom/io/utils.py
get_morph_files
def get_morph_files(directory): '''Get a list of all morphology files in a directory Returns: list with all files with extensions '.swc' , 'h5' or '.asc' (case insensitive) ''' lsdir = (os.path.join(directory, m) for m in os.listdir(directory)) return list(filter(_is_morphology_file, lsdir))
python
def get_morph_files(directory): lsdir = (os.path.join(directory, m) for m in os.listdir(directory)) return list(filter(_is_morphology_file, lsdir))
[ "def", "get_morph_files", "(", "directory", ")", ":", "lsdir", "=", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "m", ")", "for", "m", "in", "os", ".", "listdir", "(", "directory", ")", ")", "return", "list", "(", "filter", "(", "_is_morphology_file", ",", "lsdir", ")", ")" ]
Get a list of all morphology files in a directory Returns: list with all files with extensions '.swc' , 'h5' or '.asc' (case insensitive)
[ "Get", "a", "list", "of", "all", "morphology", "files", "in", "a", "directory" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L92-L99
BlueBrain/NeuroM
neurom/io/utils.py
get_files_by_path
def get_files_by_path(path): '''Get a file or set of files from a file path Return list of files with path ''' if os.path.isfile(path): return [path] if os.path.isdir(path): return get_morph_files(path) raise IOError('Invalid data path %s' % path)
python
def get_files_by_path(path): if os.path.isfile(path): return [path] if os.path.isdir(path): return get_morph_files(path) raise IOError('Invalid data path %s' % path)
[ "def", "get_files_by_path", "(", "path", ")", ":", "if", "os", ".", "path", ".", "isfile", "(", "path", ")", ":", "return", "[", "path", "]", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "return", "get_morph_files", "(", "path", ")", "raise", "IOError", "(", "'Invalid data path %s'", "%", "path", ")" ]
Get a file or set of files from a file path Return list of files with path
[ "Get", "a", "file", "or", "set", "of", "files", "from", "a", "file", "path" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L102-L112
BlueBrain/NeuroM
neurom/io/utils.py
load_neuron
def load_neuron(handle, reader=None): '''Build section trees from an h5 or swc file''' rdw = load_data(handle, reader) if isinstance(handle, StringType): name = os.path.splitext(os.path.basename(handle))[0] else: name = None return FstNeuron(rdw, name)
python
def load_neuron(handle, reader=None): rdw = load_data(handle, reader) if isinstance(handle, StringType): name = os.path.splitext(os.path.basename(handle))[0] else: name = None return FstNeuron(rdw, name)
[ "def", "load_neuron", "(", "handle", ",", "reader", "=", "None", ")", ":", "rdw", "=", "load_data", "(", "handle", ",", "reader", ")", "if", "isinstance", "(", "handle", ",", "StringType", ")", ":", "name", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "handle", ")", ")", "[", "0", "]", "else", ":", "name", "=", "None", "return", "FstNeuron", "(", "rdw", ",", "name", ")" ]
Build section trees from an h5 or swc file
[ "Build", "section", "trees", "from", "an", "h5", "or", "swc", "file" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L115-L122
BlueBrain/NeuroM
neurom/io/utils.py
load_neurons
def load_neurons(neurons, neuron_loader=load_neuron, name=None, population_class=Population, ignored_exceptions=()): '''Create a population object from all morphologies in a directory\ of from morphologies in a list of file names Parameters: neurons: directory path or list of neuron file paths neuron_loader: function taking a filename and returning a neuron population_class: class representing populations name (str): optional name of population. By default 'Population' or\ filepath basename depending on whether neurons is list or\ directory path respectively. Returns: neuron population object ''' if isinstance(neurons, (list, tuple)): files = neurons name = name if name is not None else 'Population' elif isinstance(neurons, StringType): files = get_files_by_path(neurons) name = name if name is not None else os.path.basename(neurons) ignored_exceptions = tuple(ignored_exceptions) pop = [] for f in files: try: pop.append(neuron_loader(f)) except NeuroMError as e: if isinstance(e, ignored_exceptions): L.info('Ignoring exception "%s" for file %s', e, os.path.basename(f)) continue raise return population_class(pop, name=name)
python
def load_neurons(neurons, neuron_loader=load_neuron, name=None, population_class=Population, ignored_exceptions=()): if isinstance(neurons, (list, tuple)): files = neurons name = name if name is not None else 'Population' elif isinstance(neurons, StringType): files = get_files_by_path(neurons) name = name if name is not None else os.path.basename(neurons) ignored_exceptions = tuple(ignored_exceptions) pop = [] for f in files: try: pop.append(neuron_loader(f)) except NeuroMError as e: if isinstance(e, ignored_exceptions): L.info('Ignoring exception "%s" for file %s', e, os.path.basename(f)) continue raise return population_class(pop, name=name)
[ "def", "load_neurons", "(", "neurons", ",", "neuron_loader", "=", "load_neuron", ",", "name", "=", "None", ",", "population_class", "=", "Population", ",", "ignored_exceptions", "=", "(", ")", ")", ":", "if", "isinstance", "(", "neurons", ",", "(", "list", ",", "tuple", ")", ")", ":", "files", "=", "neurons", "name", "=", "name", "if", "name", "is", "not", "None", "else", "'Population'", "elif", "isinstance", "(", "neurons", ",", "StringType", ")", ":", "files", "=", "get_files_by_path", "(", "neurons", ")", "name", "=", "name", "if", "name", "is", "not", "None", "else", "os", ".", "path", ".", "basename", "(", "neurons", ")", "ignored_exceptions", "=", "tuple", "(", "ignored_exceptions", ")", "pop", "=", "[", "]", "for", "f", "in", "files", ":", "try", ":", "pop", ".", "append", "(", "neuron_loader", "(", "f", ")", ")", "except", "NeuroMError", "as", "e", ":", "if", "isinstance", "(", "e", ",", "ignored_exceptions", ")", ":", "L", ".", "info", "(", "'Ignoring exception \"%s\" for file %s'", ",", "e", ",", "os", ".", "path", ".", "basename", "(", "f", ")", ")", "continue", "raise", "return", "population_class", "(", "pop", ",", "name", "=", "name", ")" ]
Create a population object from all morphologies in a directory\ of from morphologies in a list of file names Parameters: neurons: directory path or list of neuron file paths neuron_loader: function taking a filename and returning a neuron population_class: class representing populations name (str): optional name of population. By default 'Population' or\ filepath basename depending on whether neurons is list or\ directory path respectively. Returns: neuron population object
[ "Create", "a", "population", "object", "from", "all", "morphologies", "in", "a", "directory", "\\", "of", "from", "morphologies", "in", "a", "list", "of", "file", "names" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L125-L164
BlueBrain/NeuroM
neurom/io/utils.py
_get_file
def _get_file(handle): '''Returns the filename of the file to read If handle is a stream, a temp file is written on disk first and its filename is returned''' if not isinstance(handle, IOBase): return handle fd, temp_file = tempfile.mkstemp(str(uuid.uuid4()), prefix='neurom-') os.close(fd) with open(temp_file, 'w') as fd: handle.seek(0) shutil.copyfileobj(handle, fd) return temp_file
python
def _get_file(handle): if not isinstance(handle, IOBase): return handle fd, temp_file = tempfile.mkstemp(str(uuid.uuid4()), prefix='neurom-') os.close(fd) with open(temp_file, 'w') as fd: handle.seek(0) shutil.copyfileobj(handle, fd) return temp_file
[ "def", "_get_file", "(", "handle", ")", ":", "if", "not", "isinstance", "(", "handle", ",", "IOBase", ")", ":", "return", "handle", "fd", ",", "temp_file", "=", "tempfile", ".", "mkstemp", "(", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", ",", "prefix", "=", "'neurom-'", ")", "os", ".", "close", "(", "fd", ")", "with", "open", "(", "temp_file", ",", "'w'", ")", "as", "fd", ":", "handle", ".", "seek", "(", "0", ")", "shutil", ".", "copyfileobj", "(", "handle", ",", "fd", ")", "return", "temp_file" ]
Returns the filename of the file to read If handle is a stream, a temp file is written on disk first and its filename is returned
[ "Returns", "the", "filename", "of", "the", "file", "to", "read" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L167-L180
BlueBrain/NeuroM
neurom/io/utils.py
load_data
def load_data(handle, reader=None): '''Unpack data into a raw data wrapper''' if not reader: reader = os.path.splitext(handle)[1][1:].lower() if reader not in _READERS: raise NeuroMError('Do not have a loader for "%s" extension' % reader) filename = _get_file(handle) try: return _READERS[reader](filename) except Exception as e: L.exception('Error reading file %s, using "%s" loader', filename, reader) raise RawDataError('Error reading file %s:\n%s' % (filename, str(e)))
python
def load_data(handle, reader=None): if not reader: reader = os.path.splitext(handle)[1][1:].lower() if reader not in _READERS: raise NeuroMError('Do not have a loader for "%s" extension' % reader) filename = _get_file(handle) try: return _READERS[reader](filename) except Exception as e: L.exception('Error reading file %s, using "%s" loader', filename, reader) raise RawDataError('Error reading file %s:\n%s' % (filename, str(e)))
[ "def", "load_data", "(", "handle", ",", "reader", "=", "None", ")", ":", "if", "not", "reader", ":", "reader", "=", "os", ".", "path", ".", "splitext", "(", "handle", ")", "[", "1", "]", "[", "1", ":", "]", ".", "lower", "(", ")", "if", "reader", "not", "in", "_READERS", ":", "raise", "NeuroMError", "(", "'Do not have a loader for \"%s\" extension'", "%", "reader", ")", "filename", "=", "_get_file", "(", "handle", ")", "try", ":", "return", "_READERS", "[", "reader", "]", "(", "filename", ")", "except", "Exception", "as", "e", ":", "L", ".", "exception", "(", "'Error reading file %s, using \"%s\" loader'", ",", "filename", ",", "reader", ")", "raise", "RawDataError", "(", "'Error reading file %s:\\n%s'", "%", "(", "filename", ",", "str", "(", "e", ")", ")", ")" ]
Unpack data into a raw data wrapper
[ "Unpack", "data", "into", "a", "raw", "data", "wrapper" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L183-L196
BlueBrain/NeuroM
neurom/io/utils.py
_load_h5
def _load_h5(filename): '''Delay loading of h5py until it is needed''' from neurom.io import hdf5 return hdf5.read(filename, remove_duplicates=False, data_wrapper=DataWrapper)
python
def _load_h5(filename): from neurom.io import hdf5 return hdf5.read(filename, remove_duplicates=False, data_wrapper=DataWrapper)
[ "def", "_load_h5", "(", "filename", ")", ":", "from", "neurom", ".", "io", "import", "hdf5", "return", "hdf5", ".", "read", "(", "filename", ",", "remove_duplicates", "=", "False", ",", "data_wrapper", "=", "DataWrapper", ")" ]
Delay loading of h5py until it is needed
[ "Delay", "loading", "of", "h5py", "until", "it", "is", "needed" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L199-L204
BlueBrain/NeuroM
neurom/io/utils.py
NeuronLoader._filepath
def _filepath(self, name): """ File path to `name` morphology file. """ if self.file_ext is None: candidates = glob.glob(os.path.join(self.directory, name + ".*")) try: return next(filter(_is_morphology_file, candidates)) except StopIteration: raise NeuroMError("Can not find morphology file for '%s' " % name) else: return os.path.join(self.directory, name + self.file_ext)
python
def _filepath(self, name): if self.file_ext is None: candidates = glob.glob(os.path.join(self.directory, name + ".*")) try: return next(filter(_is_morphology_file, candidates)) except StopIteration: raise NeuroMError("Can not find morphology file for '%s' " % name) else: return os.path.join(self.directory, name + self.file_ext)
[ "def", "_filepath", "(", "self", ",", "name", ")", ":", "if", "self", ".", "file_ext", "is", "None", ":", "candidates", "=", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "self", ".", "directory", ",", "name", "+", "\".*\"", ")", ")", "try", ":", "return", "next", "(", "filter", "(", "_is_morphology_file", ",", "candidates", ")", ")", "except", "StopIteration", ":", "raise", "NeuroMError", "(", "\"Can not find morphology file for '%s' \"", "%", "name", ")", "else", ":", "return", "os", ".", "path", ".", "join", "(", "self", ".", "directory", ",", "name", "+", "self", ".", "file_ext", ")" ]
File path to `name` morphology file.
[ "File", "path", "to", "name", "morphology", "file", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/utils.py#L75-L84
BlueBrain/NeuroM
neurom/viewer.py
draw
def draw(obj, mode='2d', **kwargs): '''Draw a morphology object Parameters: obj: morphology object to be drawn (neuron, tree, soma). mode (Optional[str]): drawing mode ('2d', '3d', 'dendrogram'). Defaults to '2d'. **kwargs: keyword arguments for underlying neurom.view.view functions. Raises: InvalidDrawModeError if mode is not valid NotDrawableError if obj is not drawable NotDrawableError if obj type and mode combination is not drawable Examples: >>> nrn = ... # load a neuron >>> fig, _ = viewer.draw(nrn) # 2d plot >>> fig.show() >>> fig3d, _ = viewer.draw(nrn, mode='3d') # 3d plot >>> fig3d.show() >>> fig, _ = viewer.draw(nrn.neurites[0]) # 2d plot of neurite tree >>> dend, _ = viewer.draw(nrn, mode='dendrogram') ''' if mode not in MODES: raise InvalidDrawModeError('Invalid drawing mode %s' % mode) if mode in ('2d', 'dendrogram'): fig, ax = common.get_figure() else: fig, ax = common.get_figure(params={'projection': '3d'}) if isinstance(obj, Neuron): tag = 'neuron' elif isinstance(obj, (Tree, Neurite)): tag = 'tree' elif isinstance(obj, Soma): tag = 'soma' else: raise NotDrawableError('draw not implemented for %s' % obj.__class__) viewer = '%s_%s' % (tag, mode) try: plotter = _VIEWERS[viewer] except KeyError: raise NotDrawableError('No drawer for class %s, mode=%s' % (obj.__class__, mode)) output_path = kwargs.pop('output_path', None) plotter(ax, obj, **kwargs) if mode != 'dendrogram': common.plot_style(fig=fig, ax=ax, **kwargs) if output_path: common.save_plot(fig=fig, output_path=output_path, **kwargs) return fig, ax
python
def draw(obj, mode='2d', **kwargs): if mode not in MODES: raise InvalidDrawModeError('Invalid drawing mode %s' % mode) if mode in ('2d', 'dendrogram'): fig, ax = common.get_figure() else: fig, ax = common.get_figure(params={'projection': '3d'}) if isinstance(obj, Neuron): tag = 'neuron' elif isinstance(obj, (Tree, Neurite)): tag = 'tree' elif isinstance(obj, Soma): tag = 'soma' else: raise NotDrawableError('draw not implemented for %s' % obj.__class__) viewer = '%s_%s' % (tag, mode) try: plotter = _VIEWERS[viewer] except KeyError: raise NotDrawableError('No drawer for class %s, mode=%s' % (obj.__class__, mode)) output_path = kwargs.pop('output_path', None) plotter(ax, obj, **kwargs) if mode != 'dendrogram': common.plot_style(fig=fig, ax=ax, **kwargs) if output_path: common.save_plot(fig=fig, output_path=output_path, **kwargs) return fig, ax
[ "def", "draw", "(", "obj", ",", "mode", "=", "'2d'", ",", "*", "*", "kwargs", ")", ":", "if", "mode", "not", "in", "MODES", ":", "raise", "InvalidDrawModeError", "(", "'Invalid drawing mode %s'", "%", "mode", ")", "if", "mode", "in", "(", "'2d'", ",", "'dendrogram'", ")", ":", "fig", ",", "ax", "=", "common", ".", "get_figure", "(", ")", "else", ":", "fig", ",", "ax", "=", "common", ".", "get_figure", "(", "params", "=", "{", "'projection'", ":", "'3d'", "}", ")", "if", "isinstance", "(", "obj", ",", "Neuron", ")", ":", "tag", "=", "'neuron'", "elif", "isinstance", "(", "obj", ",", "(", "Tree", ",", "Neurite", ")", ")", ":", "tag", "=", "'tree'", "elif", "isinstance", "(", "obj", ",", "Soma", ")", ":", "tag", "=", "'soma'", "else", ":", "raise", "NotDrawableError", "(", "'draw not implemented for %s'", "%", "obj", ".", "__class__", ")", "viewer", "=", "'%s_%s'", "%", "(", "tag", ",", "mode", ")", "try", ":", "plotter", "=", "_VIEWERS", "[", "viewer", "]", "except", "KeyError", ":", "raise", "NotDrawableError", "(", "'No drawer for class %s, mode=%s'", "%", "(", "obj", ".", "__class__", ",", "mode", ")", ")", "output_path", "=", "kwargs", ".", "pop", "(", "'output_path'", ",", "None", ")", "plotter", "(", "ax", ",", "obj", ",", "*", "*", "kwargs", ")", "if", "mode", "!=", "'dendrogram'", ":", "common", ".", "plot_style", "(", "fig", "=", "fig", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")", "if", "output_path", ":", "common", ".", "save_plot", "(", "fig", "=", "fig", ",", "output_path", "=", "output_path", ",", "*", "*", "kwargs", ")", "return", "fig", ",", "ax" ]
Draw a morphology object Parameters: obj: morphology object to be drawn (neuron, tree, soma). mode (Optional[str]): drawing mode ('2d', '3d', 'dendrogram'). Defaults to '2d'. **kwargs: keyword arguments for underlying neurom.view.view functions. Raises: InvalidDrawModeError if mode is not valid NotDrawableError if obj is not drawable NotDrawableError if obj type and mode combination is not drawable Examples: >>> nrn = ... # load a neuron >>> fig, _ = viewer.draw(nrn) # 2d plot >>> fig.show() >>> fig3d, _ = viewer.draw(nrn, mode='3d') # 3d plot >>> fig3d.show() >>> fig, _ = viewer.draw(nrn.neurites[0]) # 2d plot of neurite tree >>> dend, _ = viewer.draw(nrn, mode='dendrogram')
[ "Draw", "a", "morphology", "object" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/viewer.py#L77-L134
BlueBrain/NeuroM
examples/histogram.py
histogram
def histogram(neurons, feature, new_fig=True, subplot=False, normed=False, **kwargs): ''' Plot a histogram of the selected feature for the population of neurons. Plots x-axis versus y-axis on a scatter|histogram|binned values plot. More information about the plot and how it works. Parameters : neurons : list List of Neurons. Single neurons must be encapsulated in a list. feature : str The feature of interest. bins : int Number of bins for the histogram. cumulative : bool Sets cumulative histogram on. subplot : bool Default is False, which returns a matplotlib figure object. If True, returns a matplotlib axis object, for use as a subplot. Returns : figure_output : list [fig|ax, figdata, figtext] The first item is either a figure object (if subplot is False) or an axis object. The second item is an object containing the data used to generate the figure. The final item is text used in report generation as a figure legend. This text needs to be manually entered in each figure file. ''' bins = kwargs.get('bins', 25) cumulative = kwargs.get('cumulative', False) fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) kwargs['xlabel'] = kwargs.get('xlabel', feature) kwargs['ylabel'] = kwargs.get('ylabel', feature + ' fraction') kwargs['title'] = kwargs.get('title', feature + ' histogram') feature_values = [getattr(neu, 'get_' + feature)() for neu in neurons] neu_labels = [neu.name for neu in neurons] ax.hist(feature_values, bins=bins, cumulative=cumulative, label=neu_labels, normed=normed) kwargs['no_legend'] = len(neu_labels) == 1 return common.plot_style(fig=fig, ax=ax, **kwargs)
python
def histogram(neurons, feature, new_fig=True, subplot=False, normed=False, **kwargs): bins = kwargs.get('bins', 25) cumulative = kwargs.get('cumulative', False) fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) kwargs['xlabel'] = kwargs.get('xlabel', feature) kwargs['ylabel'] = kwargs.get('ylabel', feature + ' fraction') kwargs['title'] = kwargs.get('title', feature + ' histogram') feature_values = [getattr(neu, 'get_' + feature)() for neu in neurons] neu_labels = [neu.name for neu in neurons] ax.hist(feature_values, bins=bins, cumulative=cumulative, label=neu_labels, normed=normed) kwargs['no_legend'] = len(neu_labels) == 1 return common.plot_style(fig=fig, ax=ax, **kwargs)
[ "def", "histogram", "(", "neurons", ",", "feature", ",", "new_fig", "=", "True", ",", "subplot", "=", "False", ",", "normed", "=", "False", ",", "*", "*", "kwargs", ")", ":", "bins", "=", "kwargs", ".", "get", "(", "'bins'", ",", "25", ")", "cumulative", "=", "kwargs", ".", "get", "(", "'cumulative'", ",", "False", ")", "fig", ",", "ax", "=", "common", ".", "get_figure", "(", "new_fig", "=", "new_fig", ",", "subplot", "=", "subplot", ")", "kwargs", "[", "'xlabel'", "]", "=", "kwargs", ".", "get", "(", "'xlabel'", ",", "feature", ")", "kwargs", "[", "'ylabel'", "]", "=", "kwargs", ".", "get", "(", "'ylabel'", ",", "feature", "+", "' fraction'", ")", "kwargs", "[", "'title'", "]", "=", "kwargs", ".", "get", "(", "'title'", ",", "feature", "+", "' histogram'", ")", "feature_values", "=", "[", "getattr", "(", "neu", ",", "'get_'", "+", "feature", ")", "(", ")", "for", "neu", "in", "neurons", "]", "neu_labels", "=", "[", "neu", ".", "name", "for", "neu", "in", "neurons", "]", "ax", ".", "hist", "(", "feature_values", ",", "bins", "=", "bins", ",", "cumulative", "=", "cumulative", ",", "label", "=", "neu_labels", ",", "normed", "=", "normed", ")", "kwargs", "[", "'no_legend'", "]", "=", "len", "(", "neu_labels", ")", "==", "1", "return", "common", ".", "plot_style", "(", "fig", "=", "fig", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")" ]
Plot a histogram of the selected feature for the population of neurons. Plots x-axis versus y-axis on a scatter|histogram|binned values plot. More information about the plot and how it works. Parameters : neurons : list List of Neurons. Single neurons must be encapsulated in a list. feature : str The feature of interest. bins : int Number of bins for the histogram. cumulative : bool Sets cumulative histogram on. subplot : bool Default is False, which returns a matplotlib figure object. If True, returns a matplotlib axis object, for use as a subplot. Returns : figure_output : list [fig|ax, figdata, figtext] The first item is either a figure object (if subplot is False) or an axis object. The second item is an object containing the data used to generate the figure. The final item is text used in report generation as a figure legend. This text needs to be manually entered in each figure file.
[ "Plot", "a", "histogram", "of", "the", "selected", "feature", "for", "the", "population", "of", "neurons", ".", "Plots", "x", "-", "axis", "versus", "y", "-", "axis", "on", "a", "scatter|histogram|binned", "values", "plot", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/histogram.py#L38-L93
BlueBrain/NeuroM
examples/histogram.py
population_feature_values
def population_feature_values(pops, feature): '''Extracts feature values per population ''' pops_feature_values = [] for pop in pops: feature_values = [getattr(neu, 'get_' + feature)() for neu in pop.neurons] # ugly hack to chain in case of list of lists if any([isinstance(p, (list, np.ndarray)) for p in feature_values]): feature_values = list(chain(*feature_values)) pops_feature_values.append(feature_values) return pops_feature_values
python
def population_feature_values(pops, feature): pops_feature_values = [] for pop in pops: feature_values = [getattr(neu, 'get_' + feature)() for neu in pop.neurons] if any([isinstance(p, (list, np.ndarray)) for p in feature_values]): feature_values = list(chain(*feature_values)) pops_feature_values.append(feature_values) return pops_feature_values
[ "def", "population_feature_values", "(", "pops", ",", "feature", ")", ":", "pops_feature_values", "=", "[", "]", "for", "pop", "in", "pops", ":", "feature_values", "=", "[", "getattr", "(", "neu", ",", "'get_'", "+", "feature", ")", "(", ")", "for", "neu", "in", "pop", ".", "neurons", "]", "# ugly hack to chain in case of list of lists", "if", "any", "(", "[", "isinstance", "(", "p", ",", "(", "list", ",", "np", ".", "ndarray", ")", ")", "for", "p", "in", "feature_values", "]", ")", ":", "feature_values", "=", "list", "(", "chain", "(", "*", "feature_values", ")", ")", "pops_feature_values", ".", "append", "(", "feature_values", ")", "return", "pops_feature_values" ]
Extracts feature values per population
[ "Extracts", "feature", "values", "per", "population" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/histogram.py#L96-L112
BlueBrain/NeuroM
examples/histogram.py
population_histogram
def population_histogram(pops, feature, new_fig=True, normed=False, subplot=False, **kwargs): ''' Plot a histogram of the selected feature for the population of neurons. Plots x-axis versus y-axis on a scatter|histogram|binned values plot. More information about the plot and how it works. Parameters : populations : populations list feature : str The feature of interest. bins : int Number of bins for the histogram. cumulative : bool Sets cumulative histogram on. subplot : bool Default is False, which returns a matplotlib figure object. If True, returns a matplotlib axis object, for use as a subplot. Returns : figure_output : list [fig|ax, figdata, figtext] The first item is either a figure object (if subplot is False) or an axis object. The second item is an object containing the data used to generate the figure. The final item is text used in report generation as a figure legend. This text needs to be manually entered in each figure file. ''' bins = kwargs.get('bins', 25) cumulative = kwargs.get('cumulative', False) fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) kwargs['xlabel'] = kwargs.get('xlabel', feature) kwargs['ylabel'] = kwargs.get('ylabel', feature + ' fraction') kwargs['title'] = kwargs.get('title', feature + ' histogram') pops_feature_values = population_feature_values(pops, feature) pops_labels = [pop.name for pop in pops] ax.hist(pops_feature_values, bins=bins, cumulative=cumulative, label=pops_labels, normed=normed) kwargs['no_legend'] = len(pops_labels) == 1 return common.plot_style(fig=fig, ax=ax, **kwargs)
python
def population_histogram(pops, feature, new_fig=True, normed=False, subplot=False, **kwargs): bins = kwargs.get('bins', 25) cumulative = kwargs.get('cumulative', False) fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) kwargs['xlabel'] = kwargs.get('xlabel', feature) kwargs['ylabel'] = kwargs.get('ylabel', feature + ' fraction') kwargs['title'] = kwargs.get('title', feature + ' histogram') pops_feature_values = population_feature_values(pops, feature) pops_labels = [pop.name for pop in pops] ax.hist(pops_feature_values, bins=bins, cumulative=cumulative, label=pops_labels, normed=normed) kwargs['no_legend'] = len(pops_labels) == 1 return common.plot_style(fig=fig, ax=ax, **kwargs)
[ "def", "population_histogram", "(", "pops", ",", "feature", ",", "new_fig", "=", "True", ",", "normed", "=", "False", ",", "subplot", "=", "False", ",", "*", "*", "kwargs", ")", ":", "bins", "=", "kwargs", ".", "get", "(", "'bins'", ",", "25", ")", "cumulative", "=", "kwargs", ".", "get", "(", "'cumulative'", ",", "False", ")", "fig", ",", "ax", "=", "common", ".", "get_figure", "(", "new_fig", "=", "new_fig", ",", "subplot", "=", "subplot", ")", "kwargs", "[", "'xlabel'", "]", "=", "kwargs", ".", "get", "(", "'xlabel'", ",", "feature", ")", "kwargs", "[", "'ylabel'", "]", "=", "kwargs", ".", "get", "(", "'ylabel'", ",", "feature", "+", "' fraction'", ")", "kwargs", "[", "'title'", "]", "=", "kwargs", ".", "get", "(", "'title'", ",", "feature", "+", "' histogram'", ")", "pops_feature_values", "=", "population_feature_values", "(", "pops", ",", "feature", ")", "pops_labels", "=", "[", "pop", ".", "name", "for", "pop", "in", "pops", "]", "ax", ".", "hist", "(", "pops_feature_values", ",", "bins", "=", "bins", ",", "cumulative", "=", "cumulative", ",", "label", "=", "pops_labels", ",", "normed", "=", "normed", ")", "kwargs", "[", "'no_legend'", "]", "=", "len", "(", "pops_labels", ")", "==", "1", "return", "common", ".", "plot_style", "(", "fig", "=", "fig", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")" ]
Plot a histogram of the selected feature for the population of neurons. Plots x-axis versus y-axis on a scatter|histogram|binned values plot. More information about the plot and how it works. Parameters : populations : populations list feature : str The feature of interest. bins : int Number of bins for the histogram. cumulative : bool Sets cumulative histogram on. subplot : bool Default is False, which returns a matplotlib figure object. If True, returns a matplotlib axis object, for use as a subplot. Returns : figure_output : list [fig|ax, figdata, figtext] The first item is either a figure object (if subplot is False) or an axis object. The second item is an object containing the data used to generate the figure. The final item is text used in report generation as a figure legend. This text needs to be manually entered in each figure file.
[ "Plot", "a", "histogram", "of", "the", "selected", "feature", "for", "the", "population", "of", "neurons", ".", "Plots", "x", "-", "axis", "versus", "y", "-", "axis", "on", "a", "scatter|histogram|binned", "values", "plot", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/histogram.py#L115-L169
BlueBrain/NeuroM
examples/section_ids.py
get_segment
def get_segment(neuron, section_id, segment_id): '''Get a segment given a section and segment id Returns: array of two [x, y, z, r] points defining segment ''' sec = neuron.sections[section_id] return sec.points[segment_id:segment_id + 2][:, COLS.XYZR]
python
def get_segment(neuron, section_id, segment_id): sec = neuron.sections[section_id] return sec.points[segment_id:segment_id + 2][:, COLS.XYZR]
[ "def", "get_segment", "(", "neuron", ",", "section_id", ",", "segment_id", ")", ":", "sec", "=", "neuron", ".", "sections", "[", "section_id", "]", "return", "sec", ".", "points", "[", "segment_id", ":", "segment_id", "+", "2", "]", "[", ":", ",", "COLS", ".", "XYZR", "]" ]
Get a segment given a section and segment id Returns: array of two [x, y, z, r] points defining segment
[ "Get", "a", "segment", "given", "a", "section", "and", "segment", "id" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/section_ids.py#L37-L44
BlueBrain/NeuroM
examples/extract_distribution.py
extract_data
def extract_data(data_path, feature): '''Loads a list of neurons, extracts feature and transforms the fitted distribution in the correct format. Returns the optimal distribution, corresponding parameters, minimun and maximum values. ''' population = nm.load_neurons(data_path) feature_data = [nm.get(feature, n) for n in population] feature_data = list(chain(*feature_data)) return stats.optimal_distribution(feature_data)
python
def extract_data(data_path, feature): population = nm.load_neurons(data_path) feature_data = [nm.get(feature, n) for n in population] feature_data = list(chain(*feature_data)) return stats.optimal_distribution(feature_data)
[ "def", "extract_data", "(", "data_path", ",", "feature", ")", ":", "population", "=", "nm", ".", "load_neurons", "(", "data_path", ")", "feature_data", "=", "[", "nm", ".", "get", "(", "feature", ",", "n", ")", "for", "n", "in", "population", "]", "feature_data", "=", "list", "(", "chain", "(", "*", "feature_data", ")", ")", "return", "stats", ".", "optimal_distribution", "(", "feature_data", ")" ]
Loads a list of neurons, extracts feature and transforms the fitted distribution in the correct format. Returns the optimal distribution, corresponding parameters, minimun and maximum values.
[ "Loads", "a", "list", "of", "neurons", "extracts", "feature", "and", "transforms", "the", "fitted", "distribution", "in", "the", "correct", "format", ".", "Returns", "the", "optimal", "distribution", "corresponding", "parameters", "minimun", "and", "maximum", "values", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/extract_distribution.py#L59-L70
BlueBrain/NeuroM
neurom/fst/_bifurcationfunc.py
local_bifurcation_angle
def local_bifurcation_angle(bif_point): '''Return the opening angle between two out-going sections in a bifurcation point We first ensure that the input point has only two children. The bifurcation angle is defined as the angle between the first non-zero length segments of a bifurcation point. ''' def skip_0_length(sec): '''Return the first point with non-zero distance to first point''' p0 = sec[0] cur = sec[1] for i, p in enumerate(sec[1:]): if not np.all(p[:COLS.R] == p0[:COLS.R]): cur = sec[i + 1] break return cur assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' ch0, ch1 = (skip_0_length(bif_point.children[0].points), skip_0_length(bif_point.children[1].points)) return morphmath.angle_3points(bif_point.points[-1], ch0, ch1)
python
def local_bifurcation_angle(bif_point): def skip_0_length(sec): p0 = sec[0] cur = sec[1] for i, p in enumerate(sec[1:]): if not np.all(p[:COLS.R] == p0[:COLS.R]): cur = sec[i + 1] break return cur assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' ch0, ch1 = (skip_0_length(bif_point.children[0].points), skip_0_length(bif_point.children[1].points)) return morphmath.angle_3points(bif_point.points[-1], ch0, ch1)
[ "def", "local_bifurcation_angle", "(", "bif_point", ")", ":", "def", "skip_0_length", "(", "sec", ")", ":", "'''Return the first point with non-zero distance to first point'''", "p0", "=", "sec", "[", "0", "]", "cur", "=", "sec", "[", "1", "]", "for", "i", ",", "p", "in", "enumerate", "(", "sec", "[", "1", ":", "]", ")", ":", "if", "not", "np", ".", "all", "(", "p", "[", ":", "COLS", ".", "R", "]", "==", "p0", "[", ":", "COLS", ".", "R", "]", ")", ":", "cur", "=", "sec", "[", "i", "+", "1", "]", "break", "return", "cur", "assert", "len", "(", "bif_point", ".", "children", ")", "==", "2", ",", "'A bifurcation point must have exactly 2 children'", "ch0", ",", "ch1", "=", "(", "skip_0_length", "(", "bif_point", ".", "children", "[", "0", "]", ".", "points", ")", ",", "skip_0_length", "(", "bif_point", ".", "children", "[", "1", "]", ".", "points", ")", ")", "return", "morphmath", ".", "angle_3points", "(", "bif_point", ".", "points", "[", "-", "1", "]", ",", "ch0", ",", "ch1", ")" ]
Return the opening angle between two out-going sections in a bifurcation point We first ensure that the input point has only two children. The bifurcation angle is defined as the angle between the first non-zero length segments of a bifurcation point.
[ "Return", "the", "opening", "angle", "between", "two", "out", "-", "going", "sections", "in", "a", "bifurcation", "point" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_bifurcationfunc.py#L36-L61
BlueBrain/NeuroM
neurom/fst/_bifurcationfunc.py
remote_bifurcation_angle
def remote_bifurcation_angle(bif_point): '''Return the opening angle between two out-going sections in a bifurcation point We first ensure that the input point has only two children. The angle is defined as between the bifurcation point and the last points in the out-going sections. ''' assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' return morphmath.angle_3points(bif_point.points[-1], bif_point.children[0].points[-1], bif_point.children[1].points[-1])
python
def remote_bifurcation_angle(bif_point): assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' return morphmath.angle_3points(bif_point.points[-1], bif_point.children[0].points[-1], bif_point.children[1].points[-1])
[ "def", "remote_bifurcation_angle", "(", "bif_point", ")", ":", "assert", "len", "(", "bif_point", ".", "children", ")", "==", "2", ",", "'A bifurcation point must have exactly 2 children'", "return", "morphmath", ".", "angle_3points", "(", "bif_point", ".", "points", "[", "-", "1", "]", ",", "bif_point", ".", "children", "[", "0", "]", ".", "points", "[", "-", "1", "]", ",", "bif_point", ".", "children", "[", "1", "]", ".", "points", "[", "-", "1", "]", ")" ]
Return the opening angle between two out-going sections in a bifurcation point We first ensure that the input point has only two children. The angle is defined as between the bifurcation point and the last points in the out-going sections.
[ "Return", "the", "opening", "angle", "between", "two", "out", "-", "going", "sections", "in", "a", "bifurcation", "point" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_bifurcationfunc.py#L64-L77
BlueBrain/NeuroM
neurom/fst/_bifurcationfunc.py
bifurcation_partition
def bifurcation_partition(bif_point): '''Calculate the partition at a bifurcation point We first ensure that the input point has only two children. The number of nodes in each child tree is counted. The partition is defined as the ratio of the largest number to the smallest number.''' assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return max(n, m) / min(n, m)
python
def bifurcation_partition(bif_point): assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return max(n, m) / min(n, m)
[ "def", "bifurcation_partition", "(", "bif_point", ")", ":", "assert", "len", "(", "bif_point", ".", "children", ")", "==", "2", ",", "'A bifurcation point must have exactly 2 children'", "n", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "0", "]", ".", "ipreorder", "(", ")", ")", ")", "m", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "1", "]", ".", "ipreorder", "(", ")", ")", ")", "return", "max", "(", "n", ",", "m", ")", "/", "min", "(", "n", ",", "m", ")" ]
Calculate the partition at a bifurcation point We first ensure that the input point has only two children. The number of nodes in each child tree is counted. The partition is defined as the ratio of the largest number to the smallest number.
[ "Calculate", "the", "partition", "at", "a", "bifurcation", "point" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_bifurcationfunc.py#L80-L91
BlueBrain/NeuroM
neurom/fst/_bifurcationfunc.py
partition_asymmetry
def partition_asymmetry(bif_point): '''Calculate the partition asymmetry at a bifurcation point as defined in https://www.ncbi.nlm.nih.gov/pubmed/18568015 The number of nodes in each child tree is counted. The partition is defined as the ratio of the absolute difference and the sum of the number of bifurcations in the two daughter subtrees at each branch point.''' assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) if n == m: return 0.0 return abs(n - m) / abs(n + m)
python
def partition_asymmetry(bif_point): assert len(bif_point.children) == 2, 'A bifurcation point must have exactly 2 children' n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) if n == m: return 0.0 return abs(n - m) / abs(n + m)
[ "def", "partition_asymmetry", "(", "bif_point", ")", ":", "assert", "len", "(", "bif_point", ".", "children", ")", "==", "2", ",", "'A bifurcation point must have exactly 2 children'", "n", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "0", "]", ".", "ipreorder", "(", ")", ")", ")", "m", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "1", "]", ".", "ipreorder", "(", ")", ")", ")", "if", "n", "==", "m", ":", "return", "0.0", "return", "abs", "(", "n", "-", "m", ")", "/", "abs", "(", "n", "+", "m", ")" ]
Calculate the partition asymmetry at a bifurcation point as defined in https://www.ncbi.nlm.nih.gov/pubmed/18568015 The number of nodes in each child tree is counted. The partition is defined as the ratio of the absolute difference and the sum of the number of bifurcations in the two daughter subtrees at each branch point.
[ "Calculate", "the", "partition", "asymmetry", "at", "a", "bifurcation", "point", "as", "defined", "in", "https", ":", "//", "www", ".", "ncbi", ".", "nlm", ".", "nih", ".", "gov", "/", "pubmed", "/", "18568015" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_bifurcationfunc.py#L94-L107
BlueBrain/NeuroM
neurom/fst/_bifurcationfunc.py
partition_pair
def partition_pair(bif_point): '''Calculate the partition pairs at a bifurcation point The number of nodes in each child tree is counted. The partition pairs is the number of bifurcations in the two daughter subtrees at each branch point.''' n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return (n, m)
python
def partition_pair(bif_point): n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return (n, m)
[ "def", "partition_pair", "(", "bif_point", ")", ":", "n", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "0", "]", ".", "ipreorder", "(", ")", ")", ")", "m", "=", "float", "(", "sum", "(", "1", "for", "_", "in", "bif_point", ".", "children", "[", "1", "]", ".", "ipreorder", "(", ")", ")", ")", "return", "(", "n", ",", "m", ")" ]
Calculate the partition pairs at a bifurcation point The number of nodes in each child tree is counted. The partition pairs is the number of bifurcations in the two daughter subtrees at each branch point.
[ "Calculate", "the", "partition", "pairs", "at", "a", "bifurcation", "point" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_bifurcationfunc.py#L110-L118
BlueBrain/NeuroM
neurom/io/neurolucida.py
_match_section
def _match_section(section, match): '''checks whether the `type` of section is in the `match` dictionary Works around the unknown ordering of s-expressions in each section. For instance, the `type` is the 3-rd one in for CellBodies ("CellBody" (Color Yellow) (CellBody) (Set "cell10") ) Returns: value associated with match[section_type], None if no match ''' # TODO: rewrite this so it is more clear, and handles sets & dictionaries for matching for i in range(5): if i >= len(section): return None if isinstance(section[i], StringType) and section[i] in match: return match[section[i]] return None
python
def _match_section(section, match): for i in range(5): if i >= len(section): return None if isinstance(section[i], StringType) and section[i] in match: return match[section[i]] return None
[ "def", "_match_section", "(", "section", ",", "match", ")", ":", "# TODO: rewrite this so it is more clear, and handles sets & dictionaries for matching", "for", "i", "in", "range", "(", "5", ")", ":", "if", "i", ">=", "len", "(", "section", ")", ":", "return", "None", "if", "isinstance", "(", "section", "[", "i", "]", ",", "StringType", ")", "and", "section", "[", "i", "]", "in", "match", ":", "return", "match", "[", "section", "[", "i", "]", "]", "return", "None" ]
checks whether the `type` of section is in the `match` dictionary Works around the unknown ordering of s-expressions in each section. For instance, the `type` is the 3-rd one in for CellBodies ("CellBody" (Color Yellow) (CellBody) (Set "cell10") ) Returns: value associated with match[section_type], None if no match
[ "checks", "whether", "the", "type", "of", "section", "is", "in", "the", "match", "dictionary" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L64-L84
BlueBrain/NeuroM
neurom/io/neurolucida.py
_get_tokens
def _get_tokens(morph_fd): '''split a file-like into tokens: split on whitespace Note: this also strips newlines and comments ''' for line in morph_fd: line = line.rstrip() # remove \r\n line = line.split(';', 1)[0] # strip comments squash_token = [] # quoted strings get squashed into one token if '<(' in line: # skip spines, which exist on a single line assert ')>' in line, 'Missing end of spine' continue for token in line.replace('(', ' ( ').replace(')', ' ) ').split(): if squash_token: squash_token.append(token) if token.endswith('"'): token = ' '.join(squash_token) squash_token = [] yield token elif token.startswith('"') and not token.endswith('"'): squash_token.append(token) else: yield token
python
def _get_tokens(morph_fd): for line in morph_fd: line = line.rstrip() line = line.split(';', 1)[0] squash_token = [] if '<(' in line: assert ')>' in line, 'Missing end of spine' continue for token in line.replace('(', ' ( ').replace(')', ' ) ').split(): if squash_token: squash_token.append(token) if token.endswith('"'): token = ' '.join(squash_token) squash_token = [] yield token elif token.startswith('"') and not token.endswith('"'): squash_token.append(token) else: yield token
[ "def", "_get_tokens", "(", "morph_fd", ")", ":", "for", "line", "in", "morph_fd", ":", "line", "=", "line", ".", "rstrip", "(", ")", "# remove \\r\\n", "line", "=", "line", ".", "split", "(", "';'", ",", "1", ")", "[", "0", "]", "# strip comments", "squash_token", "=", "[", "]", "# quoted strings get squashed into one token", "if", "'<('", "in", "line", ":", "# skip spines, which exist on a single line", "assert", "')>'", "in", "line", ",", "'Missing end of spine'", "continue", "for", "token", "in", "line", ".", "replace", "(", "'('", ",", "' ( '", ")", ".", "replace", "(", "')'", ",", "' ) '", ")", ".", "split", "(", ")", ":", "if", "squash_token", ":", "squash_token", ".", "append", "(", "token", ")", "if", "token", ".", "endswith", "(", "'\"'", ")", ":", "token", "=", "' '", ".", "join", "(", "squash_token", ")", "squash_token", "=", "[", "]", "yield", "token", "elif", "token", ".", "startswith", "(", "'\"'", ")", "and", "not", "token", ".", "endswith", "(", "'\"'", ")", ":", "squash_token", ".", "append", "(", "token", ")", "else", ":", "yield", "token" ]
split a file-like into tokens: split on whitespace Note: this also strips newlines and comments
[ "split", "a", "file", "-", "like", "into", "tokens", ":", "split", "on", "whitespace" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L87-L111
BlueBrain/NeuroM
neurom/io/neurolucida.py
_parse_section
def _parse_section(token_iter): '''take a stream of tokens, and create the tree structure that is defined by the s-expressions ''' sexp = [] for token in token_iter: if token == '(': new_sexp = _parse_section(token_iter) if not _match_section(new_sexp, UNWANTED_SECTIONS): sexp.append(new_sexp) elif token == ')': return sexp else: sexp.append(token) return sexp
python
def _parse_section(token_iter): sexp = [] for token in token_iter: if token == '(': new_sexp = _parse_section(token_iter) if not _match_section(new_sexp, UNWANTED_SECTIONS): sexp.append(new_sexp) elif token == ')': return sexp else: sexp.append(token) return sexp
[ "def", "_parse_section", "(", "token_iter", ")", ":", "sexp", "=", "[", "]", "for", "token", "in", "token_iter", ":", "if", "token", "==", "'('", ":", "new_sexp", "=", "_parse_section", "(", "token_iter", ")", "if", "not", "_match_section", "(", "new_sexp", ",", "UNWANTED_SECTIONS", ")", ":", "sexp", ".", "append", "(", "new_sexp", ")", "elif", "token", "==", "')'", ":", "return", "sexp", "else", ":", "sexp", ".", "append", "(", "token", ")", "return", "sexp" ]
take a stream of tokens, and create the tree structure that is defined by the s-expressions
[ "take", "a", "stream", "of", "tokens", "and", "create", "the", "tree", "structure", "that", "is", "defined", "by", "the", "s", "-", "expressions" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L114-L128
BlueBrain/NeuroM
neurom/io/neurolucida.py
_parse_sections
def _parse_sections(morph_fd): '''returns array of all the sections that exist The format is nested lists that correspond to the s-expressions ''' sections = [] token_iter = _get_tokens(morph_fd) for token in token_iter: if token == '(': # find top-level sections section = _parse_section(token_iter) if not _match_section(section, UNWANTED_SECTIONS): sections.append(section) return sections
python
def _parse_sections(morph_fd): sections = [] token_iter = _get_tokens(morph_fd) for token in token_iter: if token == '(': section = _parse_section(token_iter) if not _match_section(section, UNWANTED_SECTIONS): sections.append(section) return sections
[ "def", "_parse_sections", "(", "morph_fd", ")", ":", "sections", "=", "[", "]", "token_iter", "=", "_get_tokens", "(", "morph_fd", ")", "for", "token", "in", "token_iter", ":", "if", "token", "==", "'('", ":", "# find top-level sections", "section", "=", "_parse_section", "(", "token_iter", ")", "if", "not", "_match_section", "(", "section", ",", "UNWANTED_SECTIONS", ")", ":", "sections", ".", "append", "(", "section", ")", "return", "sections" ]
returns array of all the sections that exist The format is nested lists that correspond to the s-expressions
[ "returns", "array", "of", "all", "the", "sections", "that", "exist" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L131-L143
BlueBrain/NeuroM
neurom/io/neurolucida.py
_flatten_subsection
def _flatten_subsection(subsection, _type, offset, parent): '''Flatten a subsection from its nested version Args: subsection: Nested subsection as produced by _parse_section, except one level in _type: type of section, ie: AXON, etc parent: first element has this as it's parent offset: position in the final array of the first element Returns: Generator of values corresponding to [X, Y, Z, R, TYPE, ID, PARENT_ID] ''' for row in subsection: # TODO: Figure out what these correspond to in neurolucida if row in ('Low', 'Generated', 'High', ): continue elif isinstance(row[0], StringType): if len(row) in (4, 5, ): if len(row) == 5: assert row[4][0] == 'S', \ 'Only known usage of a fifth member is Sn, found: %s' % row[4][0] yield (float(row[0]), float(row[1]), float(row[2]), float(row[3]) / 2., _type, offset, parent) parent = offset offset += 1 elif isinstance(row[0], list): split_parent = offset - 1 start_offset = 0 slices = [] start = 0 for i, value in enumerate(row): if value == '|': slices.append(slice(start + start_offset, i)) start = i + 1 slices.append(slice(start + start_offset, len(row))) for split_slice in slices: for _row in _flatten_subsection(row[split_slice], _type, offset, split_parent): offset += 1 yield _row
python
def _flatten_subsection(subsection, _type, offset, parent): for row in subsection: if row in ('Low', 'Generated', 'High', ): continue elif isinstance(row[0], StringType): if len(row) in (4, 5, ): if len(row) == 5: assert row[4][0] == 'S', \ 'Only known usage of a fifth member is Sn, found: %s' % row[4][0] yield (float(row[0]), float(row[1]), float(row[2]), float(row[3]) / 2., _type, offset, parent) parent = offset offset += 1 elif isinstance(row[0], list): split_parent = offset - 1 start_offset = 0 slices = [] start = 0 for i, value in enumerate(row): if value == '|': slices.append(slice(start + start_offset, i)) start = i + 1 slices.append(slice(start + start_offset, len(row))) for split_slice in slices: for _row in _flatten_subsection(row[split_slice], _type, offset, split_parent): offset += 1 yield _row
[ "def", "_flatten_subsection", "(", "subsection", ",", "_type", ",", "offset", ",", "parent", ")", ":", "for", "row", "in", "subsection", ":", "# TODO: Figure out what these correspond to in neurolucida", "if", "row", "in", "(", "'Low'", ",", "'Generated'", ",", "'High'", ",", ")", ":", "continue", "elif", "isinstance", "(", "row", "[", "0", "]", ",", "StringType", ")", ":", "if", "len", "(", "row", ")", "in", "(", "4", ",", "5", ",", ")", ":", "if", "len", "(", "row", ")", "==", "5", ":", "assert", "row", "[", "4", "]", "[", "0", "]", "==", "'S'", ",", "'Only known usage of a fifth member is Sn, found: %s'", "%", "row", "[", "4", "]", "[", "0", "]", "yield", "(", "float", "(", "row", "[", "0", "]", ")", ",", "float", "(", "row", "[", "1", "]", ")", ",", "float", "(", "row", "[", "2", "]", ")", ",", "float", "(", "row", "[", "3", "]", ")", "/", "2.", ",", "_type", ",", "offset", ",", "parent", ")", "parent", "=", "offset", "offset", "+=", "1", "elif", "isinstance", "(", "row", "[", "0", "]", ",", "list", ")", ":", "split_parent", "=", "offset", "-", "1", "start_offset", "=", "0", "slices", "=", "[", "]", "start", "=", "0", "for", "i", ",", "value", "in", "enumerate", "(", "row", ")", ":", "if", "value", "==", "'|'", ":", "slices", ".", "append", "(", "slice", "(", "start", "+", "start_offset", ",", "i", ")", ")", "start", "=", "i", "+", "1", "slices", ".", "append", "(", "slice", "(", "start", "+", "start_offset", ",", "len", "(", "row", ")", ")", ")", "for", "split_slice", "in", "slices", ":", "for", "_row", "in", "_flatten_subsection", "(", "row", "[", "split_slice", "]", ",", "_type", ",", "offset", ",", "split_parent", ")", ":", "offset", "+=", "1", "yield", "_row" ]
Flatten a subsection from its nested version Args: subsection: Nested subsection as produced by _parse_section, except one level in _type: type of section, ie: AXON, etc parent: first element has this as it's parent offset: position in the final array of the first element Returns: Generator of values corresponding to [X, Y, Z, R, TYPE, ID, PARENT_ID]
[ "Flatten", "a", "subsection", "from", "its", "nested", "version" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L146-L187
BlueBrain/NeuroM
neurom/io/neurolucida.py
_extract_section
def _extract_section(section): '''Find top level sections, and get their flat contents, and append them all Returns a numpy array with the row format: [X, Y, Z, R, TYPE, ID, PARENT_ID] Note: PARENT_ID starts at -1 for soma and 0 for neurites ''' # sections with only one element will be skipped, if len(section) == 1: assert section[0] == 'Sections', \ ('Only known usage of a single Section content is "Sections", found %s' % section[0]) return None # try and detect type _type = WANTED_SECTIONS.get(section[0][0], None) start = 1 # CellBody often has [['"CellBody"'], ['CellBody'] as its first two elements if _type is None: _type = WANTED_SECTIONS.get(section[1][0], None) if _type is None: # can't determine the type return None start = 2 parent = -1 if _type == POINT_TYPE.SOMA else 0 subsection_iter = _flatten_subsection(section[start:], _type, offset=0, parent=parent) ret = np.array([row for row in subsection_iter]) return ret
python
def _extract_section(section): if len(section) == 1: assert section[0] == 'Sections', \ ('Only known usage of a single Section content is "Sections", found %s' % section[0]) return None _type = WANTED_SECTIONS.get(section[0][0], None) start = 1 if _type is None: _type = WANTED_SECTIONS.get(section[1][0], None) if _type is None: return None start = 2 parent = -1 if _type == POINT_TYPE.SOMA else 0 subsection_iter = _flatten_subsection(section[start:], _type, offset=0, parent=parent) ret = np.array([row for row in subsection_iter]) return ret
[ "def", "_extract_section", "(", "section", ")", ":", "# sections with only one element will be skipped,", "if", "len", "(", "section", ")", "==", "1", ":", "assert", "section", "[", "0", "]", "==", "'Sections'", ",", "(", "'Only known usage of a single Section content is \"Sections\", found %s'", "%", "section", "[", "0", "]", ")", "return", "None", "# try and detect type", "_type", "=", "WANTED_SECTIONS", ".", "get", "(", "section", "[", "0", "]", "[", "0", "]", ",", "None", ")", "start", "=", "1", "# CellBody often has [['\"CellBody\"'], ['CellBody'] as its first two elements", "if", "_type", "is", "None", ":", "_type", "=", "WANTED_SECTIONS", ".", "get", "(", "section", "[", "1", "]", "[", "0", "]", ",", "None", ")", "if", "_type", "is", "None", ":", "# can't determine the type", "return", "None", "start", "=", "2", "parent", "=", "-", "1", "if", "_type", "==", "POINT_TYPE", ".", "SOMA", "else", "0", "subsection_iter", "=", "_flatten_subsection", "(", "section", "[", "start", ":", "]", ",", "_type", ",", "offset", "=", "0", ",", "parent", "=", "parent", ")", "ret", "=", "np", ".", "array", "(", "[", "row", "for", "row", "in", "subsection_iter", "]", ")", "return", "ret" ]
Find top level sections, and get their flat contents, and append them all Returns a numpy array with the row format: [X, Y, Z, R, TYPE, ID, PARENT_ID] Note: PARENT_ID starts at -1 for soma and 0 for neurites
[ "Find", "top", "level", "sections", "and", "get", "their", "flat", "contents", "and", "append", "them", "all" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L190-L222
BlueBrain/NeuroM
neurom/io/neurolucida.py
_sections_to_raw_data
def _sections_to_raw_data(sections): '''convert list of sections into the `raw_data` format used in neurom This finds the soma, and attaches the neurites ''' soma = None neurites = [] for section in sections: neurite = _extract_section(section) if neurite is None: continue elif neurite[0][COLS.TYPE] == POINT_TYPE.SOMA: assert soma is None, 'Multiple somas defined in file' soma = neurite else: neurites.append(neurite) assert soma is not None, 'Missing CellBody element (ie. soma)' total_length = len(soma) + sum(len(neurite) for neurite in neurites) ret = np.zeros((total_length, 7,), dtype=np.float64) pos = len(soma) ret[0:pos, :] = soma for neurite in neurites: end = pos + len(neurite) ret[pos:end, :] = neurite ret[pos:end, COLS.P] += pos ret[pos:end, COLS.ID] += pos # TODO: attach the neurite at the closest point on the soma ret[pos, COLS.P] = len(soma) - 1 pos = end return ret
python
def _sections_to_raw_data(sections): soma = None neurites = [] for section in sections: neurite = _extract_section(section) if neurite is None: continue elif neurite[0][COLS.TYPE] == POINT_TYPE.SOMA: assert soma is None, 'Multiple somas defined in file' soma = neurite else: neurites.append(neurite) assert soma is not None, 'Missing CellBody element (ie. soma)' total_length = len(soma) + sum(len(neurite) for neurite in neurites) ret = np.zeros((total_length, 7,), dtype=np.float64) pos = len(soma) ret[0:pos, :] = soma for neurite in neurites: end = pos + len(neurite) ret[pos:end, :] = neurite ret[pos:end, COLS.P] += pos ret[pos:end, COLS.ID] += pos ret[pos, COLS.P] = len(soma) - 1 pos = end return ret
[ "def", "_sections_to_raw_data", "(", "sections", ")", ":", "soma", "=", "None", "neurites", "=", "[", "]", "for", "section", "in", "sections", ":", "neurite", "=", "_extract_section", "(", "section", ")", "if", "neurite", "is", "None", ":", "continue", "elif", "neurite", "[", "0", "]", "[", "COLS", ".", "TYPE", "]", "==", "POINT_TYPE", ".", "SOMA", ":", "assert", "soma", "is", "None", ",", "'Multiple somas defined in file'", "soma", "=", "neurite", "else", ":", "neurites", ".", "append", "(", "neurite", ")", "assert", "soma", "is", "not", "None", ",", "'Missing CellBody element (ie. soma)'", "total_length", "=", "len", "(", "soma", ")", "+", "sum", "(", "len", "(", "neurite", ")", "for", "neurite", "in", "neurites", ")", "ret", "=", "np", ".", "zeros", "(", "(", "total_length", ",", "7", ",", ")", ",", "dtype", "=", "np", ".", "float64", ")", "pos", "=", "len", "(", "soma", ")", "ret", "[", "0", ":", "pos", ",", ":", "]", "=", "soma", "for", "neurite", "in", "neurites", ":", "end", "=", "pos", "+", "len", "(", "neurite", ")", "ret", "[", "pos", ":", "end", ",", ":", "]", "=", "neurite", "ret", "[", "pos", ":", "end", ",", "COLS", ".", "P", "]", "+=", "pos", "ret", "[", "pos", ":", "end", ",", "COLS", ".", "ID", "]", "+=", "pos", "# TODO: attach the neurite at the closest point on the soma", "ret", "[", "pos", ",", "COLS", ".", "P", "]", "=", "len", "(", "soma", ")", "-", "1", "pos", "=", "end", "return", "ret" ]
convert list of sections into the `raw_data` format used in neurom This finds the soma, and attaches the neurites
[ "convert", "list", "of", "sections", "into", "the", "raw_data", "format", "used", "in", "neurom" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L225-L257
BlueBrain/NeuroM
neurom/io/neurolucida.py
read
def read(morph_file, data_wrapper=DataWrapper): '''return a 'raw_data' np.array with the full neuron, and the format of the file suitable to be wrapped by DataWrapper ''' msg = ('This is an experimental reader. ' 'There are no guarantees regarding ability to parse ' 'Neurolucida .asc files or correctness of output.') warnings.warn(msg) L.warning(msg) with open(morph_file, encoding='utf-8', errors='replace') as morph_fd: sections = _parse_sections(morph_fd) raw_data = _sections_to_raw_data(sections) return data_wrapper(raw_data, 'NL-ASCII')
python
def read(morph_file, data_wrapper=DataWrapper): msg = ('This is an experimental reader. ' 'There are no guarantees regarding ability to parse ' 'Neurolucida .asc files or correctness of output.') warnings.warn(msg) L.warning(msg) with open(morph_file, encoding='utf-8', errors='replace') as morph_fd: sections = _parse_sections(morph_fd) raw_data = _sections_to_raw_data(sections) return data_wrapper(raw_data, 'NL-ASCII')
[ "def", "read", "(", "morph_file", ",", "data_wrapper", "=", "DataWrapper", ")", ":", "msg", "=", "(", "'This is an experimental reader. '", "'There are no guarantees regarding ability to parse '", "'Neurolucida .asc files or correctness of output.'", ")", "warnings", ".", "warn", "(", "msg", ")", "L", ".", "warning", "(", "msg", ")", "with", "open", "(", "morph_file", ",", "encoding", "=", "'utf-8'", ",", "errors", "=", "'replace'", ")", "as", "morph_fd", ":", "sections", "=", "_parse_sections", "(", "morph_fd", ")", "raw_data", "=", "_sections_to_raw_data", "(", "sections", ")", "return", "data_wrapper", "(", "raw_data", ",", "'NL-ASCII'", ")" ]
return a 'raw_data' np.array with the full neuron, and the format of the file suitable to be wrapped by DataWrapper
[ "return", "a", "raw_data", "np", ".", "array", "with", "the", "full", "neuron", "and", "the", "format", "of", "the", "file", "suitable", "to", "be", "wrapped", "by", "DataWrapper" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/io/neurolucida.py#L260-L275
BlueBrain/NeuroM
examples/get_features.py
stats
def stats(data): '''Dictionary with summary stats for data Returns: dicitonary with length, mean, sum, standard deviation,\ min and max of data ''' return {'len': len(data), 'mean': np.mean(data), 'sum': np.sum(data), 'std': np.std(data), 'min': np.min(data), 'max': np.max(data)}
python
def stats(data): return {'len': len(data), 'mean': np.mean(data), 'sum': np.sum(data), 'std': np.std(data), 'min': np.min(data), 'max': np.max(data)}
[ "def", "stats", "(", "data", ")", ":", "return", "{", "'len'", ":", "len", "(", "data", ")", ",", "'mean'", ":", "np", ".", "mean", "(", "data", ")", ",", "'sum'", ":", "np", ".", "sum", "(", "data", ")", ",", "'std'", ":", "np", ".", "std", "(", "data", ")", ",", "'min'", ":", "np", ".", "min", "(", "data", ")", ",", "'max'", ":", "np", ".", "max", "(", "data", ")", "}" ]
Dictionary with summary stats for data Returns: dicitonary with length, mean, sum, standard deviation,\ min and max of data
[ "Dictionary", "with", "summary", "stats", "for", "data" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/get_features.py#L43-L55
BlueBrain/NeuroM
neurom/apps/__init__.py
get_config
def get_config(config, default_config): '''Load configuration from file if in config, else use default''' if not config: logging.warning('Using default config: %s', default_config) config = default_config try: with open(config, 'r') as config_file: return yaml.load(config_file) except (yaml.reader.ReaderError, yaml.parser.ParserError, yaml.scanner.ScannerError) as e: raise ConfigError('Invalid yaml file: \n %s' % str(e))
python
def get_config(config, default_config): if not config: logging.warning('Using default config: %s', default_config) config = default_config try: with open(config, 'r') as config_file: return yaml.load(config_file) except (yaml.reader.ReaderError, yaml.parser.ParserError, yaml.scanner.ScannerError) as e: raise ConfigError('Invalid yaml file: \n %s' % str(e))
[ "def", "get_config", "(", "config", ",", "default_config", ")", ":", "if", "not", "config", ":", "logging", ".", "warning", "(", "'Using default config: %s'", ",", "default_config", ")", "config", "=", "default_config", "try", ":", "with", "open", "(", "config", ",", "'r'", ")", "as", "config_file", ":", "return", "yaml", ".", "load", "(", "config_file", ")", "except", "(", "yaml", ".", "reader", ".", "ReaderError", ",", "yaml", ".", "parser", ".", "ParserError", ",", "yaml", ".", "scanner", ".", "ScannerError", ")", "as", "e", ":", "raise", "ConfigError", "(", "'Invalid yaml file: \\n %s'", "%", "str", "(", "e", ")", ")" ]
Load configuration from file if in config, else use default
[ "Load", "configuration", "from", "file", "if", "in", "config", "else", "use", "default" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/__init__.py#L36-L48
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
soma_surface_area
def soma_surface_area(nrn, neurite_type=NeuriteType.soma): '''Get the surface area of a neuron's soma. Note: The surface area is calculated by assuming the soma is spherical. ''' assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' return 4 * math.pi * nrn.soma.radius ** 2
python
def soma_surface_area(nrn, neurite_type=NeuriteType.soma): assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' return 4 * math.pi * nrn.soma.radius ** 2
[ "def", "soma_surface_area", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "soma", ")", ":", "assert", "neurite_type", "==", "NeuriteType", ".", "soma", ",", "'Neurite type must be soma'", "return", "4", "*", "math", ".", "pi", "*", "nrn", ".", "soma", ".", "radius", "**", "2" ]
Get the surface area of a neuron's soma. Note: The surface area is calculated by assuming the soma is spherical.
[ "Get", "the", "surface", "area", "of", "a", "neuron", "s", "soma", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L46-L53
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
soma_surface_areas
def soma_surface_areas(nrn_pop, neurite_type=NeuriteType.soma): '''Get the surface areas of the somata in a population of neurons Note: The surface area is calculated by assuming the soma is spherical. Note: If a single neuron is passed, a single element list with the surface area of its soma member is returned. ''' nrns = neuron_population(nrn_pop) assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' return [soma_surface_area(n) for n in nrns]
python
def soma_surface_areas(nrn_pop, neurite_type=NeuriteType.soma): nrns = neuron_population(nrn_pop) assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' return [soma_surface_area(n) for n in nrns]
[ "def", "soma_surface_areas", "(", "nrn_pop", ",", "neurite_type", "=", "NeuriteType", ".", "soma", ")", ":", "nrns", "=", "neuron_population", "(", "nrn_pop", ")", "assert", "neurite_type", "==", "NeuriteType", ".", "soma", ",", "'Neurite type must be soma'", "return", "[", "soma_surface_area", "(", "n", ")", "for", "n", "in", "nrns", "]" ]
Get the surface areas of the somata in a population of neurons Note: The surface area is calculated by assuming the soma is spherical. Note: If a single neuron is passed, a single element list with the surface area of its soma member is returned.
[ "Get", "the", "surface", "areas", "of", "the", "somata", "in", "a", "population", "of", "neurons" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L56-L67
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
soma_radii
def soma_radii(nrn_pop, neurite_type=NeuriteType.soma): ''' Get the radii of the somata of a population of neurons Note: If a single neuron is passed, a single element list with the radius of its soma member is returned. ''' assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' nrns = neuron_population(nrn_pop) return [n.soma.radius for n in nrns]
python
def soma_radii(nrn_pop, neurite_type=NeuriteType.soma): assert neurite_type == NeuriteType.soma, 'Neurite type must be soma' nrns = neuron_population(nrn_pop) return [n.soma.radius for n in nrns]
[ "def", "soma_radii", "(", "nrn_pop", ",", "neurite_type", "=", "NeuriteType", ".", "soma", ")", ":", "assert", "neurite_type", "==", "NeuriteType", ".", "soma", ",", "'Neurite type must be soma'", "nrns", "=", "neuron_population", "(", "nrn_pop", ")", "return", "[", "n", ".", "soma", ".", "radius", "for", "n", "in", "nrns", "]" ]
Get the radii of the somata of a population of neurons Note: If a single neuron is passed, a single element list with the radius of its soma member is returned.
[ "Get", "the", "radii", "of", "the", "somata", "of", "a", "population", "of", "neurons" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L70-L79
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_section_lengths
def trunk_section_lengths(nrn, neurite_type=NeuriteType.all): '''list of lengths of trunk sections of neurites in a neuron''' neurite_filter = is_type(neurite_type) return [morphmath.section_length(s.root_node.points) for s in nrn.neurites if neurite_filter(s)]
python
def trunk_section_lengths(nrn, neurite_type=NeuriteType.all): neurite_filter = is_type(neurite_type) return [morphmath.section_length(s.root_node.points) for s in nrn.neurites if neurite_filter(s)]
[ "def", "trunk_section_lengths", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "return", "[", "morphmath", ".", "section_length", "(", "s", ".", "root_node", ".", "points", ")", "for", "s", "in", "nrn", ".", "neurites", "if", "neurite_filter", "(", "s", ")", "]" ]
list of lengths of trunk sections of neurites in a neuron
[ "list", "of", "lengths", "of", "trunk", "sections", "of", "neurites", "in", "a", "neuron" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L82-L86
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_origin_radii
def trunk_origin_radii(nrn, neurite_type=NeuriteType.all): '''radii of the trunk sections of neurites in a neuron''' neurite_filter = is_type(neurite_type) return [s.root_node.points[0][COLS.R] for s in nrn.neurites if neurite_filter(s)]
python
def trunk_origin_radii(nrn, neurite_type=NeuriteType.all): neurite_filter = is_type(neurite_type) return [s.root_node.points[0][COLS.R] for s in nrn.neurites if neurite_filter(s)]
[ "def", "trunk_origin_radii", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "return", "[", "s", ".", "root_node", ".", "points", "[", "0", "]", "[", "COLS", ".", "R", "]", "for", "s", "in", "nrn", ".", "neurites", "if", "neurite_filter", "(", "s", ")", "]" ]
radii of the trunk sections of neurites in a neuron
[ "radii", "of", "the", "trunk", "sections", "of", "neurites", "in", "a", "neuron" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L89-L92
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_origin_azimuths
def trunk_origin_azimuths(nrn, neurite_type=NeuriteType.all): '''Get a list of all the trunk origin azimuths of a neuron or population The azimuth is defined as Angle between x-axis and the vector defined by (initial tree point - soma center) on the x-z plane. The range of the azimuth angle [-pi, pi] radians ''' neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) def _azimuth(section, soma): '''Azimuth of a section''' vector = morphmath.vector(section[0], soma.center) return np.arctan2(vector[COLS.Z], vector[COLS.X]) return [_azimuth(s.root_node.points, n.soma) for n in nrns for s in n.neurites if neurite_filter(s)]
python
def trunk_origin_azimuths(nrn, neurite_type=NeuriteType.all): neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) def _azimuth(section, soma): vector = morphmath.vector(section[0], soma.center) return np.arctan2(vector[COLS.Z], vector[COLS.X]) return [_azimuth(s.root_node.points, n.soma) for n in nrns for s in n.neurites if neurite_filter(s)]
[ "def", "trunk_origin_azimuths", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "nrns", "=", "neuron_population", "(", "nrn", ")", "def", "_azimuth", "(", "section", ",", "soma", ")", ":", "'''Azimuth of a section'''", "vector", "=", "morphmath", ".", "vector", "(", "section", "[", "0", "]", ",", "soma", ".", "center", ")", "return", "np", ".", "arctan2", "(", "vector", "[", "COLS", ".", "Z", "]", ",", "vector", "[", "COLS", ".", "X", "]", ")", "return", "[", "_azimuth", "(", "s", ".", "root_node", ".", "points", ",", "n", ".", "soma", ")", "for", "n", "in", "nrns", "for", "s", "in", "n", ".", "neurites", "if", "neurite_filter", "(", "s", ")", "]" ]
Get a list of all the trunk origin azimuths of a neuron or population The azimuth is defined as Angle between x-axis and the vector defined by (initial tree point - soma center) on the x-z plane. The range of the azimuth angle [-pi, pi] radians
[ "Get", "a", "list", "of", "all", "the", "trunk", "origin", "azimuths", "of", "a", "neuron", "or", "population" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L95-L113
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_origin_elevations
def trunk_origin_elevations(nrn, neurite_type=NeuriteType.all): '''Get a list of all the trunk origin elevations of a neuron or population The elevation is defined as the angle between x-axis and the vector defined by (initial tree point - soma center) on the x-y half-plane. The range of the elevation angle [-pi/2, pi/2] radians ''' neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) def _elevation(section, soma): '''Elevation of a section''' vector = morphmath.vector(section[0], soma.center) norm_vector = np.linalg.norm(vector) if norm_vector >= np.finfo(type(norm_vector)).eps: return np.arcsin(vector[COLS.Y] / norm_vector) raise ValueError("Norm of vector between soma center and section is almost zero.") return [_elevation(s.root_node.points, n.soma) for n in nrns for s in n.neurites if neurite_filter(s)]
python
def trunk_origin_elevations(nrn, neurite_type=NeuriteType.all): neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) def _elevation(section, soma): vector = morphmath.vector(section[0], soma.center) norm_vector = np.linalg.norm(vector) if norm_vector >= np.finfo(type(norm_vector)).eps: return np.arcsin(vector[COLS.Y] / norm_vector) raise ValueError("Norm of vector between soma center and section is almost zero.") return [_elevation(s.root_node.points, n.soma) for n in nrns for s in n.neurites if neurite_filter(s)]
[ "def", "trunk_origin_elevations", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "nrns", "=", "neuron_population", "(", "nrn", ")", "def", "_elevation", "(", "section", ",", "soma", ")", ":", "'''Elevation of a section'''", "vector", "=", "morphmath", ".", "vector", "(", "section", "[", "0", "]", ",", "soma", ".", "center", ")", "norm_vector", "=", "np", ".", "linalg", ".", "norm", "(", "vector", ")", "if", "norm_vector", ">=", "np", ".", "finfo", "(", "type", "(", "norm_vector", ")", ")", ".", "eps", ":", "return", "np", ".", "arcsin", "(", "vector", "[", "COLS", ".", "Y", "]", "/", "norm_vector", ")", "raise", "ValueError", "(", "\"Norm of vector between soma center and section is almost zero.\"", ")", "return", "[", "_elevation", "(", "s", ".", "root_node", ".", "points", ",", "n", ".", "soma", ")", "for", "n", "in", "nrns", "for", "s", "in", "n", ".", "neurites", "if", "neurite_filter", "(", "s", ")", "]" ]
Get a list of all the trunk origin elevations of a neuron or population The elevation is defined as the angle between x-axis and the vector defined by (initial tree point - soma center) on the x-y half-plane. The range of the elevation angle [-pi/2, pi/2] radians
[ "Get", "a", "list", "of", "all", "the", "trunk", "origin", "elevations", "of", "a", "neuron", "or", "population" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L116-L139
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_vectors
def trunk_vectors(nrn, neurite_type=NeuriteType.all): '''Calculates the vectors between all the trunks of the neuron and the soma center. ''' neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) return np.array([morphmath.vector(s.root_node.points[0], n.soma.center) for n in nrns for s in n.neurites if neurite_filter(s)])
python
def trunk_vectors(nrn, neurite_type=NeuriteType.all): neurite_filter = is_type(neurite_type) nrns = neuron_population(nrn) return np.array([morphmath.vector(s.root_node.points[0], n.soma.center) for n in nrns for s in n.neurites if neurite_filter(s)])
[ "def", "trunk_vectors", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "nrns", "=", "neuron_population", "(", "nrn", ")", "return", "np", ".", "array", "(", "[", "morphmath", ".", "vector", "(", "s", ".", "root_node", ".", "points", "[", "0", "]", ",", "n", ".", "soma", ".", "center", ")", "for", "n", "in", "nrns", "for", "s", "in", "n", ".", "neurites", "if", "neurite_filter", "(", "s", ")", "]", ")" ]
Calculates the vectors between all the trunks of the neuron and the soma center.
[ "Calculates", "the", "vectors", "between", "all", "the", "trunks", "of", "the", "neuron", "and", "the", "soma", "center", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L142-L151
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
trunk_angles
def trunk_angles(nrn, neurite_type=NeuriteType.all): '''Calculates the angles between all the trunks of the neuron. The angles are defined on the x-y plane and the trees are sorted from the y axis and anticlock-wise. ''' vectors = trunk_vectors(nrn, neurite_type=neurite_type) # In order to avoid the failure of the process in case the neurite_type does not exist if not vectors.size: return [] def _sort_angle(p1, p2): """Angle between p1-p2 to sort vectors""" ang1 = np.arctan2(*p1[::-1]) ang2 = np.arctan2(*p2[::-1]) return (ang1 - ang2) # Sorting angles according to x-y plane order = np.argsort(np.array([_sort_angle(i / np.linalg.norm(i), [0, 1]) for i in vectors[:, 0:2]])) ordered_vectors = vectors[order][:, [COLS.X, COLS.Y]] return [morphmath.angle_between_vectors(ordered_vectors[i], ordered_vectors[i - 1]) for i, _ in enumerate(ordered_vectors)]
python
def trunk_angles(nrn, neurite_type=NeuriteType.all): vectors = trunk_vectors(nrn, neurite_type=neurite_type) if not vectors.size: return [] def _sort_angle(p1, p2): ang1 = np.arctan2(*p1[::-1]) ang2 = np.arctan2(*p2[::-1]) return (ang1 - ang2) order = np.argsort(np.array([_sort_angle(i / np.linalg.norm(i), [0, 1]) for i in vectors[:, 0:2]])) ordered_vectors = vectors[order][:, [COLS.X, COLS.Y]] return [morphmath.angle_between_vectors(ordered_vectors[i], ordered_vectors[i - 1]) for i, _ in enumerate(ordered_vectors)]
[ "def", "trunk_angles", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ")", ":", "vectors", "=", "trunk_vectors", "(", "nrn", ",", "neurite_type", "=", "neurite_type", ")", "# In order to avoid the failure of the process in case the neurite_type does not exist", "if", "not", "vectors", ".", "size", ":", "return", "[", "]", "def", "_sort_angle", "(", "p1", ",", "p2", ")", ":", "\"\"\"Angle between p1-p2 to sort vectors\"\"\"", "ang1", "=", "np", ".", "arctan2", "(", "*", "p1", "[", ":", ":", "-", "1", "]", ")", "ang2", "=", "np", ".", "arctan2", "(", "*", "p2", "[", ":", ":", "-", "1", "]", ")", "return", "(", "ang1", "-", "ang2", ")", "# Sorting angles according to x-y plane", "order", "=", "np", ".", "argsort", "(", "np", ".", "array", "(", "[", "_sort_angle", "(", "i", "/", "np", ".", "linalg", ".", "norm", "(", "i", ")", ",", "[", "0", ",", "1", "]", ")", "for", "i", "in", "vectors", "[", ":", ",", "0", ":", "2", "]", "]", ")", ")", "ordered_vectors", "=", "vectors", "[", "order", "]", "[", ":", ",", "[", "COLS", ".", "X", ",", "COLS", ".", "Y", "]", "]", "return", "[", "morphmath", ".", "angle_between_vectors", "(", "ordered_vectors", "[", "i", "]", ",", "ordered_vectors", "[", "i", "-", "1", "]", ")", "for", "i", ",", "_", "in", "enumerate", "(", "ordered_vectors", ")", "]" ]
Calculates the angles between all the trunks of the neuron. The angles are defined on the x-y plane and the trees are sorted from the y axis and anticlock-wise.
[ "Calculates", "the", "angles", "between", "all", "the", "trunks", "of", "the", "neuron", ".", "The", "angles", "are", "defined", "on", "the", "x", "-", "y", "plane", "and", "the", "trees", "are", "sorted", "from", "the", "y", "axis", "and", "anticlock", "-", "wise", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L154-L177
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
sholl_crossings
def sholl_crossings(neurites, center, radii): '''calculate crossings of neurites Args: nrn(morph): morphology on which to perform Sholl analysis radii(iterable of floats): radii for which crossings will be counted Returns: Array of same length as radii, with a count of the number of crossings for the respective radius ''' def _count_crossings(neurite, radius): '''count_crossings of segments in neurite with radius''' r2 = radius ** 2 count = 0 for start, end in iter_segments(neurite): start_dist2, end_dist2 = (morphmath.point_dist2(center, start), morphmath.point_dist2(center, end)) count += int(start_dist2 <= r2 <= end_dist2 or end_dist2 <= r2 <= start_dist2) return count return np.array([sum(_count_crossings(neurite, r) for neurite in iter_neurites(neurites)) for r in radii])
python
def sholl_crossings(neurites, center, radii): def _count_crossings(neurite, radius): r2 = radius ** 2 count = 0 for start, end in iter_segments(neurite): start_dist2, end_dist2 = (morphmath.point_dist2(center, start), morphmath.point_dist2(center, end)) count += int(start_dist2 <= r2 <= end_dist2 or end_dist2 <= r2 <= start_dist2) return count return np.array([sum(_count_crossings(neurite, r) for neurite in iter_neurites(neurites)) for r in radii])
[ "def", "sholl_crossings", "(", "neurites", ",", "center", ",", "radii", ")", ":", "def", "_count_crossings", "(", "neurite", ",", "radius", ")", ":", "'''count_crossings of segments in neurite with radius'''", "r2", "=", "radius", "**", "2", "count", "=", "0", "for", "start", ",", "end", "in", "iter_segments", "(", "neurite", ")", ":", "start_dist2", ",", "end_dist2", "=", "(", "morphmath", ".", "point_dist2", "(", "center", ",", "start", ")", ",", "morphmath", ".", "point_dist2", "(", "center", ",", "end", ")", ")", "count", "+=", "int", "(", "start_dist2", "<=", "r2", "<=", "end_dist2", "or", "end_dist2", "<=", "r2", "<=", "start_dist2", ")", "return", "count", "return", "np", ".", "array", "(", "[", "sum", "(", "_count_crossings", "(", "neurite", ",", "r", ")", "for", "neurite", "in", "iter_neurites", "(", "neurites", ")", ")", "for", "r", "in", "radii", "]", ")" ]
calculate crossings of neurites Args: nrn(morph): morphology on which to perform Sholl analysis radii(iterable of floats): radii for which crossings will be counted Returns: Array of same length as radii, with a count of the number of crossings for the respective radius
[ "calculate", "crossings", "of", "neurites" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L180-L206
BlueBrain/NeuroM
neurom/fst/_neuronfunc.py
sholl_frequency
def sholl_frequency(nrn, neurite_type=NeuriteType.all, step_size=10): '''perform Sholl frequency calculations on a population of neurites Args: nrn(morph): nrn or population neurite_type(NeuriteType): which neurites to operate on step_size(float): step size between Sholl radii Note: Given a neuron, the soma center is used for the concentric circles, which range from the soma radii, and the maximum radial distance in steps of `step_size`. When a population is given, the concentric circles range from the smallest soma radius to the largest radial neurite distance. Finally, each segment of the neuron is tested, so a neurite that bends back on itself, and crosses the same Sholl radius will get counted as having crossed multiple times. ''' nrns = neuron_population(nrn) neurite_filter = is_type(neurite_type) min_soma_edge = float('Inf') max_radii = 0 neurites_list = [] for neuron in nrns: neurites_list.extend(((neurites, neuron.soma.center) for neurites in neuron.neurites if neurite_filter(neurites))) min_soma_edge = min(min_soma_edge, neuron.soma.radius) max_radii = max(max_radii, np.max(np.abs(bounding_box(neuron)))) radii = np.arange(min_soma_edge, max_radii + step_size, step_size) ret = np.zeros_like(radii) for neurites, center in neurites_list: ret += sholl_crossings(neurites, center, radii) return ret
python
def sholl_frequency(nrn, neurite_type=NeuriteType.all, step_size=10): nrns = neuron_population(nrn) neurite_filter = is_type(neurite_type) min_soma_edge = float('Inf') max_radii = 0 neurites_list = [] for neuron in nrns: neurites_list.extend(((neurites, neuron.soma.center) for neurites in neuron.neurites if neurite_filter(neurites))) min_soma_edge = min(min_soma_edge, neuron.soma.radius) max_radii = max(max_radii, np.max(np.abs(bounding_box(neuron)))) radii = np.arange(min_soma_edge, max_radii + step_size, step_size) ret = np.zeros_like(radii) for neurites, center in neurites_list: ret += sholl_crossings(neurites, center, radii) return ret
[ "def", "sholl_frequency", "(", "nrn", ",", "neurite_type", "=", "NeuriteType", ".", "all", ",", "step_size", "=", "10", ")", ":", "nrns", "=", "neuron_population", "(", "nrn", ")", "neurite_filter", "=", "is_type", "(", "neurite_type", ")", "min_soma_edge", "=", "float", "(", "'Inf'", ")", "max_radii", "=", "0", "neurites_list", "=", "[", "]", "for", "neuron", "in", "nrns", ":", "neurites_list", ".", "extend", "(", "(", "(", "neurites", ",", "neuron", ".", "soma", ".", "center", ")", "for", "neurites", "in", "neuron", ".", "neurites", "if", "neurite_filter", "(", "neurites", ")", ")", ")", "min_soma_edge", "=", "min", "(", "min_soma_edge", ",", "neuron", ".", "soma", ".", "radius", ")", "max_radii", "=", "max", "(", "max_radii", ",", "np", ".", "max", "(", "np", ".", "abs", "(", "bounding_box", "(", "neuron", ")", ")", ")", ")", "radii", "=", "np", ".", "arange", "(", "min_soma_edge", ",", "max_radii", "+", "step_size", ",", "step_size", ")", "ret", "=", "np", ".", "zeros_like", "(", "radii", ")", "for", "neurites", ",", "center", "in", "neurites_list", ":", "ret", "+=", "sholl_crossings", "(", "neurites", ",", "center", ",", "radii", ")", "return", "ret" ]
perform Sholl frequency calculations on a population of neurites Args: nrn(morph): nrn or population neurite_type(NeuriteType): which neurites to operate on step_size(float): step size between Sholl radii Note: Given a neuron, the soma center is used for the concentric circles, which range from the soma radii, and the maximum radial distance in steps of `step_size`. When a population is given, the concentric circles range from the smallest soma radius to the largest radial neurite distance. Finally, each segment of the neuron is tested, so a neurite that bends back on itself, and crosses the same Sholl radius will get counted as having crossed multiple times.
[ "perform", "Sholl", "frequency", "calculations", "on", "a", "population", "of", "neurites" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuronfunc.py#L209-L245
BlueBrain/NeuroM
examples/plot_features.py
dist_points
def dist_points(bin_edges, d): """Return an array of values according to a distribution Points are calculated at the center of each bin """ bc = bin_centers(bin_edges) if d is not None: d = DISTS[d['type']](d, bc) return d, bc
python
def dist_points(bin_edges, d): bc = bin_centers(bin_edges) if d is not None: d = DISTS[d['type']](d, bc) return d, bc
[ "def", "dist_points", "(", "bin_edges", ",", "d", ")", ":", "bc", "=", "bin_centers", "(", "bin_edges", ")", "if", "d", "is", "not", "None", ":", "d", "=", "DISTS", "[", "d", "[", "'type'", "]", "]", "(", "d", ",", "bc", ")", "return", "d", ",", "bc" ]
Return an array of values according to a distribution Points are calculated at the center of each bin
[ "Return", "an", "array", "of", "values", "according", "to", "a", "distribution" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_features.py#L70-L78
BlueBrain/NeuroM
examples/plot_features.py
calc_limits
def calc_limits(data, dist=None, padding=0.25): """Calculate a suitable range for a histogram Returns: tuple of (min, max) """ dmin = sys.float_info.max if dist is None else dist.get('min', sys.float_info.max) dmax = sys.float_info.min if dist is None else dist.get('max', sys.float_info.min) _min = min(min(data), dmin) _max = max(max(data), dmax) padding = padding * (_max - _min) return _min - padding, _max + padding
python
def calc_limits(data, dist=None, padding=0.25): dmin = sys.float_info.max if dist is None else dist.get('min', sys.float_info.max) dmax = sys.float_info.min if dist is None else dist.get('max', sys.float_info.min) _min = min(min(data), dmin) _max = max(max(data), dmax) padding = padding * (_max - _min) return _min - padding, _max + padding
[ "def", "calc_limits", "(", "data", ",", "dist", "=", "None", ",", "padding", "=", "0.25", ")", ":", "dmin", "=", "sys", ".", "float_info", ".", "max", "if", "dist", "is", "None", "else", "dist", ".", "get", "(", "'min'", ",", "sys", ".", "float_info", ".", "max", ")", "dmax", "=", "sys", ".", "float_info", ".", "min", "if", "dist", "is", "None", "else", "dist", ".", "get", "(", "'max'", ",", "sys", ".", "float_info", ".", "min", ")", "_min", "=", "min", "(", "min", "(", "data", ")", ",", "dmin", ")", "_max", "=", "max", "(", "max", "(", "data", ")", ",", "dmax", ")", "padding", "=", "padding", "*", "(", "_max", "-", "_min", ")", "return", "_min", "-", "padding", ",", "_max", "+", "padding" ]
Calculate a suitable range for a histogram Returns: tuple of (min, max)
[ "Calculate", "a", "suitable", "range", "for", "a", "histogram" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_features.py#L81-L95
BlueBrain/NeuroM
examples/plot_features.py
load_neurite_features
def load_neurite_features(filepath): '''Unpack relevant data into megadict''' stuff = defaultdict(lambda: defaultdict(list)) nrns = nm.load_neurons(filepath) # unpack data into arrays for nrn in nrns: for t in NEURITES_: for feat in FEATURES: stuff[feat][str(t).split('.')[1]].extend( nm.get(feat, nrn, neurite_type=t) ) return stuff
python
def load_neurite_features(filepath): stuff = defaultdict(lambda: defaultdict(list)) nrns = nm.load_neurons(filepath) for nrn in nrns: for t in NEURITES_: for feat in FEATURES: stuff[feat][str(t).split('.')[1]].extend( nm.get(feat, nrn, neurite_type=t) ) return stuff
[ "def", "load_neurite_features", "(", "filepath", ")", ":", "stuff", "=", "defaultdict", "(", "lambda", ":", "defaultdict", "(", "list", ")", ")", "nrns", "=", "nm", ".", "load_neurons", "(", "filepath", ")", "# unpack data into arrays", "for", "nrn", "in", "nrns", ":", "for", "t", "in", "NEURITES_", ":", "for", "feat", "in", "FEATURES", ":", "stuff", "[", "feat", "]", "[", "str", "(", "t", ")", ".", "split", "(", "'.'", ")", "[", "1", "]", "]", ".", "extend", "(", "nm", ".", "get", "(", "feat", ",", "nrn", ",", "neurite_type", "=", "t", ")", ")", "return", "stuff" ]
Unpack relevant data into megadict
[ "Unpack", "relevant", "data", "into", "megadict" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_features.py#L112-L123
BlueBrain/NeuroM
examples/plot_features.py
parse_args
def parse_args(): '''Parse command line arguments''' parser = argparse.ArgumentParser( description='Morphology feature plotter', epilog='Note: Makes plots of various features and superimposes\ input distributions. Plots are saved to PDF file.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('datapath', help='Morphology data directory path') parser.add_argument('--mtypeconfig', required=True, help='Get mtype JSON configuration file') parser.add_argument('--output', default='plots.pdf', help='Output PDF file name') return parser.parse_args()
python
def parse_args(): parser = argparse.ArgumentParser( description='Morphology feature plotter', epilog='Note: Makes plots of various features and superimposes\ input distributions. Plots are saved to PDF file.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('datapath', help='Morphology data directory path') parser.add_argument('--mtypeconfig', required=True, help='Get mtype JSON configuration file') parser.add_argument('--output', default='plots.pdf', help='Output PDF file name') return parser.parse_args()
[ "def", "parse_args", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Morphology feature plotter'", ",", "epilog", "=", "'Note: Makes plots of various features and superimposes\\\n input distributions. Plots are saved to PDF file.'", ",", "formatter_class", "=", "argparse", ".", "ArgumentDefaultsHelpFormatter", ")", "parser", ".", "add_argument", "(", "'datapath'", ",", "help", "=", "'Morphology data directory path'", ")", "parser", ".", "add_argument", "(", "'--mtypeconfig'", ",", "required", "=", "True", ",", "help", "=", "'Get mtype JSON configuration file'", ")", "parser", ".", "add_argument", "(", "'--output'", ",", "default", "=", "'plots.pdf'", ",", "help", "=", "'Output PDF file name'", ")", "return", "parser", ".", "parse_args", "(", ")" ]
Parse command line arguments
[ "Parse", "command", "line", "arguments" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_features.py#L129-L147
BlueBrain/NeuroM
examples/plot_features.py
main
def main(data_dir, mtype_file): # pylint: disable=too-many-locals '''Run the stuff''' # data structure to store results stuff = load_neurite_features(data_dir) sim_params = json.load(open(mtype_file)) # load histograms, distribution parameter sets and figures into arrays. # To plot figures, do # plots[i].fig.show() # To modify an axis, do # plots[i].ax.something() _plots = [] for feat, d in stuff.items(): for typ, data in d.items(): dist = sim_params['components'][typ].get(feat, None) print('Type = %s, Feature = %s, Distribution = %s' % (typ, feat, dist)) # if no data available, skip this feature if not data: print("No data found for feature %s (%s)" % (feat, typ)) continue # print 'DATA', data num_bins = 100 limits = calc_limits(data, dist) bin_edges = np.linspace(limits[0], limits[1], num_bins + 1) histo = np.histogram(data, bin_edges, normed=True) print('PLOT LIMITS:', limits) # print 'DATA:', data # print 'BIN HEIGHT', histo[0] plot = Plot(*view_utils.get_figure(new_fig=True, subplot=111)) plot.ax.set_xlim(*limits) plot.ax.bar(histo[1][:-1], histo[0], width=bin_widths(histo[1])) dp, bc = dist_points(histo[1], dist) # print 'BIN CENTERS:', bc, len(bc) if dp is not None: # print 'DIST POINTS:', dp, len(dp) plot.ax.plot(bc, dp, 'r*') plot.ax.set_title('%s (%s)' % (feat, typ)) _plots.append(plot) return _plots
python
def main(data_dir, mtype_file): stuff = load_neurite_features(data_dir) sim_params = json.load(open(mtype_file)) _plots = [] for feat, d in stuff.items(): for typ, data in d.items(): dist = sim_params['components'][typ].get(feat, None) print('Type = %s, Feature = %s, Distribution = %s' % (typ, feat, dist)) if not data: print("No data found for feature %s (%s)" % (feat, typ)) continue num_bins = 100 limits = calc_limits(data, dist) bin_edges = np.linspace(limits[0], limits[1], num_bins + 1) histo = np.histogram(data, bin_edges, normed=True) print('PLOT LIMITS:', limits) plot = Plot(*view_utils.get_figure(new_fig=True, subplot=111)) plot.ax.set_xlim(*limits) plot.ax.bar(histo[1][:-1], histo[0], width=bin_widths(histo[1])) dp, bc = dist_points(histo[1], dist) if dp is not None: plot.ax.plot(bc, dp, 'r*') plot.ax.set_title('%s (%s)' % (feat, typ)) _plots.append(plot) return _plots
[ "def", "main", "(", "data_dir", ",", "mtype_file", ")", ":", "# pylint: disable=too-many-locals", "# data structure to store results", "stuff", "=", "load_neurite_features", "(", "data_dir", ")", "sim_params", "=", "json", ".", "load", "(", "open", "(", "mtype_file", ")", ")", "# load histograms, distribution parameter sets and figures into arrays.", "# To plot figures, do", "# plots[i].fig.show()", "# To modify an axis, do", "# plots[i].ax.something()", "_plots", "=", "[", "]", "for", "feat", ",", "d", "in", "stuff", ".", "items", "(", ")", ":", "for", "typ", ",", "data", "in", "d", ".", "items", "(", ")", ":", "dist", "=", "sim_params", "[", "'components'", "]", "[", "typ", "]", ".", "get", "(", "feat", ",", "None", ")", "print", "(", "'Type = %s, Feature = %s, Distribution = %s'", "%", "(", "typ", ",", "feat", ",", "dist", ")", ")", "# if no data available, skip this feature", "if", "not", "data", ":", "print", "(", "\"No data found for feature %s (%s)\"", "%", "(", "feat", ",", "typ", ")", ")", "continue", "# print 'DATA', data", "num_bins", "=", "100", "limits", "=", "calc_limits", "(", "data", ",", "dist", ")", "bin_edges", "=", "np", ".", "linspace", "(", "limits", "[", "0", "]", ",", "limits", "[", "1", "]", ",", "num_bins", "+", "1", ")", "histo", "=", "np", ".", "histogram", "(", "data", ",", "bin_edges", ",", "normed", "=", "True", ")", "print", "(", "'PLOT LIMITS:'", ",", "limits", ")", "# print 'DATA:', data", "# print 'BIN HEIGHT', histo[0]", "plot", "=", "Plot", "(", "*", "view_utils", ".", "get_figure", "(", "new_fig", "=", "True", ",", "subplot", "=", "111", ")", ")", "plot", ".", "ax", ".", "set_xlim", "(", "*", "limits", ")", "plot", ".", "ax", ".", "bar", "(", "histo", "[", "1", "]", "[", ":", "-", "1", "]", ",", "histo", "[", "0", "]", ",", "width", "=", "bin_widths", "(", "histo", "[", "1", "]", ")", ")", "dp", ",", "bc", "=", "dist_points", "(", "histo", "[", "1", "]", ",", "dist", ")", "# print 'BIN CENTERS:', bc, len(bc)", "if", "dp", "is", "not", "None", ":", "# print 'DIST POINTS:', dp, len(dp)", "plot", ".", "ax", ".", "plot", "(", "bc", ",", "dp", ",", "'r*'", ")", "plot", ".", "ax", ".", "set_title", "(", "'%s (%s)'", "%", "(", "feat", ",", "typ", ")", ")", "_plots", ".", "append", "(", "plot", ")", "return", "_plots" ]
Run the stuff
[ "Run", "the", "stuff" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_features.py#L150-L191
BlueBrain/NeuroM
examples/density_plot.py
extract_density
def extract_density(population, plane='xy', bins=100, neurite_type=NeuriteType.basal_dendrite): '''Extracts the 2d histogram of the center coordinates of segments in the selected plane. ''' segment_midpoints = get_feat('segment_midpoints', population, neurite_type=neurite_type) horiz = segment_midpoints[:, 'xyz'.index(plane[0])] vert = segment_midpoints[:, 'xyz'.index(plane[1])] return np.histogram2d(np.array(horiz), np.array(vert), bins=(bins, bins))
python
def extract_density(population, plane='xy', bins=100, neurite_type=NeuriteType.basal_dendrite): segment_midpoints = get_feat('segment_midpoints', population, neurite_type=neurite_type) horiz = segment_midpoints[:, 'xyz'.index(plane[0])] vert = segment_midpoints[:, 'xyz'.index(plane[1])] return np.histogram2d(np.array(horiz), np.array(vert), bins=(bins, bins))
[ "def", "extract_density", "(", "population", ",", "plane", "=", "'xy'", ",", "bins", "=", "100", ",", "neurite_type", "=", "NeuriteType", ".", "basal_dendrite", ")", ":", "segment_midpoints", "=", "get_feat", "(", "'segment_midpoints'", ",", "population", ",", "neurite_type", "=", "neurite_type", ")", "horiz", "=", "segment_midpoints", "[", ":", ",", "'xyz'", ".", "index", "(", "plane", "[", "0", "]", ")", "]", "vert", "=", "segment_midpoints", "[", ":", ",", "'xyz'", ".", "index", "(", "plane", "[", "1", "]", ")", "]", "return", "np", ".", "histogram2d", "(", "np", ".", "array", "(", "horiz", ")", ",", "np", ".", "array", "(", "vert", ")", ",", "bins", "=", "(", "bins", ",", "bins", ")", ")" ]
Extracts the 2d histogram of the center coordinates of segments in the selected plane.
[ "Extracts", "the", "2d", "histogram", "of", "the", "center", "coordinates", "of", "segments", "in", "the", "selected", "plane", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/density_plot.py#L39-L46
BlueBrain/NeuroM
examples/density_plot.py
plot_density
def plot_density(population, # pylint: disable=too-many-arguments, too-many-locals bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): '''Plots the 2d histogram of the center coordinates of segments in the selected plane. ''' fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) H1, xedges1, yedges1 = extract_density(population, plane=plane, bins=bins, neurite_type=neurite_type) mask = H1 < threshold # mask = H1==0 H2 = np.ma.masked_array(H1, mask) getattr(plt.cm, color_map).set_bad(color='white', alpha=None) plots = ax.contourf((xedges1[:-1] + xedges1[1:]) / 2, (yedges1[:-1] + yedges1[1:]) / 2, np.transpose(H2), # / np.max(H2), cmap=getattr(plt.cm, color_map), levels=levels) if not no_colorbar: cbar = plt.colorbar(plots) cbar.ax.set_ylabel(colorlabel, fontsize=labelfontsize) kwargs['title'] = kwargs.get('title', '') kwargs['xlabel'] = kwargs.get('xlabel', plane[0]) kwargs['ylabel'] = kwargs.get('ylabel', plane[1]) return common.plot_style(fig=fig, ax=ax, **kwargs)
python
def plot_density(population, bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): fig, ax = common.get_figure(new_fig=new_fig, subplot=subplot) H1, xedges1, yedges1 = extract_density(population, plane=plane, bins=bins, neurite_type=neurite_type) mask = H1 < threshold H2 = np.ma.masked_array(H1, mask) getattr(plt.cm, color_map).set_bad(color='white', alpha=None) plots = ax.contourf((xedges1[:-1] + xedges1[1:]) / 2, (yedges1[:-1] + yedges1[1:]) / 2, np.transpose(H2), cmap=getattr(plt.cm, color_map), levels=levels) if not no_colorbar: cbar = plt.colorbar(plots) cbar.ax.set_ylabel(colorlabel, fontsize=labelfontsize) kwargs['title'] = kwargs.get('title', '') kwargs['xlabel'] = kwargs.get('xlabel', plane[0]) kwargs['ylabel'] = kwargs.get('ylabel', plane[1]) return common.plot_style(fig=fig, ax=ax, **kwargs)
[ "def", "plot_density", "(", "population", ",", "# pylint: disable=too-many-arguments, too-many-locals", "bins", "=", "100", ",", "new_fig", "=", "True", ",", "subplot", "=", "111", ",", "levels", "=", "None", ",", "plane", "=", "'xy'", ",", "colorlabel", "=", "'Nodes per unit area'", ",", "labelfontsize", "=", "16", ",", "color_map", "=", "'Reds'", ",", "no_colorbar", "=", "False", ",", "threshold", "=", "0.01", ",", "neurite_type", "=", "NeuriteType", ".", "basal_dendrite", ",", "*", "*", "kwargs", ")", ":", "fig", ",", "ax", "=", "common", ".", "get_figure", "(", "new_fig", "=", "new_fig", ",", "subplot", "=", "subplot", ")", "H1", ",", "xedges1", ",", "yedges1", "=", "extract_density", "(", "population", ",", "plane", "=", "plane", ",", "bins", "=", "bins", ",", "neurite_type", "=", "neurite_type", ")", "mask", "=", "H1", "<", "threshold", "# mask = H1==0", "H2", "=", "np", ".", "ma", ".", "masked_array", "(", "H1", ",", "mask", ")", "getattr", "(", "plt", ".", "cm", ",", "color_map", ")", ".", "set_bad", "(", "color", "=", "'white'", ",", "alpha", "=", "None", ")", "plots", "=", "ax", ".", "contourf", "(", "(", "xedges1", "[", ":", "-", "1", "]", "+", "xedges1", "[", "1", ":", "]", ")", "/", "2", ",", "(", "yedges1", "[", ":", "-", "1", "]", "+", "yedges1", "[", "1", ":", "]", ")", "/", "2", ",", "np", ".", "transpose", "(", "H2", ")", ",", "# / np.max(H2),", "cmap", "=", "getattr", "(", "plt", ".", "cm", ",", "color_map", ")", ",", "levels", "=", "levels", ")", "if", "not", "no_colorbar", ":", "cbar", "=", "plt", ".", "colorbar", "(", "plots", ")", "cbar", ".", "ax", ".", "set_ylabel", "(", "colorlabel", ",", "fontsize", "=", "labelfontsize", ")", "kwargs", "[", "'title'", "]", "=", "kwargs", ".", "get", "(", "'title'", ",", "''", ")", "kwargs", "[", "'xlabel'", "]", "=", "kwargs", ".", "get", "(", "'xlabel'", ",", "plane", "[", "0", "]", ")", "kwargs", "[", "'ylabel'", "]", "=", "kwargs", ".", "get", "(", "'ylabel'", ",", "plane", "[", "1", "]", ")", "return", "common", ".", "plot_style", "(", "fig", "=", "fig", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")" ]
Plots the 2d histogram of the center coordinates of segments in the selected plane.
[ "Plots", "the", "2d", "histogram", "of", "the", "center", "coordinates", "of", "segments", "in", "the", "selected", "plane", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/density_plot.py#L49-L80
BlueBrain/NeuroM
examples/density_plot.py
plot_neuron_on_density
def plot_neuron_on_density(population, # pylint: disable=too-many-arguments bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): '''Plots the 2d histogram of the center coordinates of segments in the selected plane and superimposes the view of the first neurite of the collection. ''' _, ax = common.get_figure(new_fig=new_fig) view.plot_tree(ax, population.neurites[0]) return plot_density(population, plane=plane, bins=bins, new_fig=False, subplot=subplot, colorlabel=colorlabel, labelfontsize=labelfontsize, levels=levels, color_map=color_map, no_colorbar=no_colorbar, threshold=threshold, neurite_type=neurite_type, **kwargs)
python
def plot_neuron_on_density(population, bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): _, ax = common.get_figure(new_fig=new_fig) view.plot_tree(ax, population.neurites[0]) return plot_density(population, plane=plane, bins=bins, new_fig=False, subplot=subplot, colorlabel=colorlabel, labelfontsize=labelfontsize, levels=levels, color_map=color_map, no_colorbar=no_colorbar, threshold=threshold, neurite_type=neurite_type, **kwargs)
[ "def", "plot_neuron_on_density", "(", "population", ",", "# pylint: disable=too-many-arguments", "bins", "=", "100", ",", "new_fig", "=", "True", ",", "subplot", "=", "111", ",", "levels", "=", "None", ",", "plane", "=", "'xy'", ",", "colorlabel", "=", "'Nodes per unit area'", ",", "labelfontsize", "=", "16", ",", "color_map", "=", "'Reds'", ",", "no_colorbar", "=", "False", ",", "threshold", "=", "0.01", ",", "neurite_type", "=", "NeuriteType", ".", "basal_dendrite", ",", "*", "*", "kwargs", ")", ":", "_", ",", "ax", "=", "common", ".", "get_figure", "(", "new_fig", "=", "new_fig", ")", "view", ".", "plot_tree", "(", "ax", ",", "population", ".", "neurites", "[", "0", "]", ")", "return", "plot_density", "(", "population", ",", "plane", "=", "plane", ",", "bins", "=", "bins", ",", "new_fig", "=", "False", ",", "subplot", "=", "subplot", ",", "colorlabel", "=", "colorlabel", ",", "labelfontsize", "=", "labelfontsize", ",", "levels", "=", "levels", ",", "color_map", "=", "color_map", ",", "no_colorbar", "=", "no_colorbar", ",", "threshold", "=", "threshold", ",", "neurite_type", "=", "neurite_type", ",", "*", "*", "kwargs", ")" ]
Plots the 2d histogram of the center coordinates of segments in the selected plane and superimposes the view of the first neurite of the collection.
[ "Plots", "the", "2d", "histogram", "of", "the", "center", "coordinates", "of", "segments", "in", "the", "selected", "plane", "and", "superimposes", "the", "view", "of", "the", "first", "neurite", "of", "the", "collection", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/density_plot.py#L83-L99
BlueBrain/NeuroM
neurom/geom/__init__.py
bounding_box
def bounding_box(obj): '''Get the (x, y, z) bounding box of an object containing points Returns: 2D numpy array of [[min_x, min_y, min_z], [max_x, max_y, max_z]] ''' return np.array([np.min(obj.points[:, 0:3], axis=0), np.max(obj.points[:, 0:3], axis=0)])
python
def bounding_box(obj): return np.array([np.min(obj.points[:, 0:3], axis=0), np.max(obj.points[:, 0:3], axis=0)])
[ "def", "bounding_box", "(", "obj", ")", ":", "return", "np", ".", "array", "(", "[", "np", ".", "min", "(", "obj", ".", "points", "[", ":", ",", "0", ":", "3", "]", ",", "axis", "=", "0", ")", ",", "np", ".", "max", "(", "obj", ".", "points", "[", ":", ",", "0", ":", "3", "]", ",", "axis", "=", "0", ")", "]", ")" ]
Get the (x, y, z) bounding box of an object containing points Returns: 2D numpy array of [[min_x, min_y, min_z], [max_x, max_y, max_z]]
[ "Get", "the", "(", "x", "y", "z", ")", "bounding", "box", "of", "an", "object", "containing", "points" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/geom/__init__.py#L36-L43
BlueBrain/NeuroM
neurom/check/morphtree.py
is_monotonic
def is_monotonic(neurite, tol): '''Check if neurite tree is monotonic If each child has smaller or equal diameters from its parent Args: neurite(Neurite): neurite to operate on tol(float): tolerance Returns: True if neurite monotonic ''' for node in neurite.iter_sections(): # check that points in section satisfy monotonicity sec = node.points for point_id in range(len(sec) - 1): if sec[point_id + 1][COLS.R] > sec[point_id][COLS.R] + tol: return False # Check that section boundary points satisfy monotonicity if(node.parent is not None and sec[0][COLS.R] > node.parent.points[-1][COLS.R] + tol): return False return True
python
def is_monotonic(neurite, tol): for node in neurite.iter_sections(): sec = node.points for point_id in range(len(sec) - 1): if sec[point_id + 1][COLS.R] > sec[point_id][COLS.R] + tol: return False if(node.parent is not None and sec[0][COLS.R] > node.parent.points[-1][COLS.R] + tol): return False return True
[ "def", "is_monotonic", "(", "neurite", ",", "tol", ")", ":", "for", "node", "in", "neurite", ".", "iter_sections", "(", ")", ":", "# check that points in section satisfy monotonicity", "sec", "=", "node", ".", "points", "for", "point_id", "in", "range", "(", "len", "(", "sec", ")", "-", "1", ")", ":", "if", "sec", "[", "point_id", "+", "1", "]", "[", "COLS", ".", "R", "]", ">", "sec", "[", "point_id", "]", "[", "COLS", ".", "R", "]", "+", "tol", ":", "return", "False", "# Check that section boundary points satisfy monotonicity", "if", "(", "node", ".", "parent", "is", "not", "None", "and", "sec", "[", "0", "]", "[", "COLS", ".", "R", "]", ">", "node", ".", "parent", ".", "points", "[", "-", "1", "]", "[", "COLS", ".", "R", "]", "+", "tol", ")", ":", "return", "False", "return", "True" ]
Check if neurite tree is monotonic If each child has smaller or equal diameters from its parent Args: neurite(Neurite): neurite to operate on tol(float): tolerance Returns: True if neurite monotonic
[ "Check", "if", "neurite", "tree", "is", "monotonic" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L40-L64
BlueBrain/NeuroM
neurom/check/morphtree.py
is_flat
def is_flat(neurite, tol, method='tolerance'): '''Check if neurite is flat using the given method Args: neurite(Neurite): neurite to operate on tol(float): tolerance method(string): the method of flatness estimation: 'tolerance' returns true if any extent of the tree is smaller than the given tolerance 'ratio' returns true if the ratio of the smallest directions is smaller than tol. e.g. [1,2,3] -> 1/2 < tol Returns: True if neurite is flat ''' ext = principal_direction_extent(neurite.points[:, COLS.XYZ]) assert method in ('tolerance', 'ratio'), "Method must be one of 'tolerance', 'ratio'" if method == 'ratio': sorted_ext = np.sort(ext) return sorted_ext[0] / sorted_ext[1] < float(tol) return any(ext < float(tol))
python
def is_flat(neurite, tol, method='tolerance'): ext = principal_direction_extent(neurite.points[:, COLS.XYZ]) assert method in ('tolerance', 'ratio'), "Method must be one of 'tolerance', 'ratio'" if method == 'ratio': sorted_ext = np.sort(ext) return sorted_ext[0] / sorted_ext[1] < float(tol) return any(ext < float(tol))
[ "def", "is_flat", "(", "neurite", ",", "tol", ",", "method", "=", "'tolerance'", ")", ":", "ext", "=", "principal_direction_extent", "(", "neurite", ".", "points", "[", ":", ",", "COLS", ".", "XYZ", "]", ")", "assert", "method", "in", "(", "'tolerance'", ",", "'ratio'", ")", ",", "\"Method must be one of 'tolerance', 'ratio'\"", "if", "method", "==", "'ratio'", ":", "sorted_ext", "=", "np", ".", "sort", "(", "ext", ")", "return", "sorted_ext", "[", "0", "]", "/", "sorted_ext", "[", "1", "]", "<", "float", "(", "tol", ")", "return", "any", "(", "ext", "<", "float", "(", "tol", ")", ")" ]
Check if neurite is flat using the given method Args: neurite(Neurite): neurite to operate on tol(float): tolerance method(string): the method of flatness estimation: 'tolerance' returns true if any extent of the tree is smaller than the given tolerance 'ratio' returns true if the ratio of the smallest directions is smaller than tol. e.g. [1,2,3] -> 1/2 < tol Returns: True if neurite is flat
[ "Check", "if", "neurite", "is", "flat", "using", "the", "given", "method" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L67-L88
BlueBrain/NeuroM
neurom/check/morphtree.py
is_back_tracking
def is_back_tracking(neurite): ''' Check if a neurite process backtracks to a previous node. Back-tracking takes place when a daughter of a branching process goes back and either overlaps with a previous point, or lies inside the cylindrical volume of the latter. Args: neurite(Neurite): neurite to operate on Returns: True Under the following scenaria: 1. A segment endpoint falls back and overlaps with a previous segment's point 2. The geometry of a segment overlaps with a previous one in the section ''' def pair(segs): ''' Pairs the input list into triplets''' return zip(segs, segs[1:]) def coords(node): ''' Returns the first three values of the tree that correspond to the x, y, z coordinates''' return node[COLS.XYZ] def max_radius(seg): ''' Returns maximum radius from the two segment endpoints''' return max(seg[0][COLS.R], seg[1][COLS.R]) def is_not_zero_seg(seg): ''' Returns True if segment has zero length''' return not np.allclose(coords(seg[0]), coords(seg[1])) def is_in_the_same_verse(seg1, seg2): ''' Checks if the vectors face the same direction. This is true if their dot product is greater than zero. ''' v1 = coords(seg2[1]) - coords(seg2[0]) v2 = coords(seg1[1]) - coords(seg1[0]) return np.dot(v1, v2) >= 0 def is_seg2_within_seg1_radius(dist, seg1, seg2): ''' Checks whether the orthogonal distance from the point at the end of seg1 to seg2 segment body is smaller than the sum of their radii ''' return dist <= max_radius(seg1) + max_radius(seg2) def is_seg1_overlapping_with_seg2(seg1, seg2): '''Checks if a segment is in proximity of another one upstream''' # get the coordinates of seg2 (from the origin) s1 = coords(seg2[0]) s2 = coords(seg2[1]) # vector of the center of seg2 (from the origin) C = 0.5 * (s1 + s2) # endpoint of seg1 (from the origin) P = coords(seg1[1]) # vector from the center C of seg2 to the endpoint P of seg1 CP = P - C # vector of seg2 S1S2 = s2 - s1 # projection of CP upon seg2 prj = mm.vector_projection(CP, S1S2) # check if the distance of the orthogonal complement of CP projection on S1S2 # (vertical distance from P to seg2) is smaller than the sum of the radii. (overlap) # If not exit early, because there is no way that backtracking can feasible if not is_seg2_within_seg1_radius(np.linalg.norm(CP - prj), seg1, seg2): return False # projection lies within the length of the cylinder. Check if the distance between # the center C of seg2 and the projection of the end point of seg1, P is smaller than # half of the others length plus a 5% tolerance return np.linalg.norm(prj) < 0.55 * np.linalg.norm(S1S2) def is_inside_cylinder(seg1, seg2): ''' Checks if seg2 approximately lies within a cylindrical volume of seg1. Two conditions must be satisfied: 1. The two segments are not facing the same direction (seg2 comes back to seg1) 2. seg2 is overlaping with seg1 ''' return not is_in_the_same_verse(seg1, seg2) and is_seg1_overlapping_with_seg2(seg1, seg2) # filter out single segment sections section_itr = (snode for snode in neurite.iter_sections() if snode.points.shape[0] > 2) for snode in section_itr: # group each section's points intro triplets segment_pairs = list(filter(is_not_zero_seg, pair(snode.points))) # filter out zero length segments for i, seg1 in enumerate(segment_pairs[1:]): # check if the end point of the segment lies within the previous # ones in the current sectionmake for seg2 in segment_pairs[0: i + 1]: if is_inside_cylinder(seg1, seg2): return True return False
python
def is_back_tracking(neurite): def pair(segs): return zip(segs, segs[1:]) def coords(node): return node[COLS.XYZ] def max_radius(seg): return max(seg[0][COLS.R], seg[1][COLS.R]) def is_not_zero_seg(seg): return not np.allclose(coords(seg[0]), coords(seg[1])) def is_in_the_same_verse(seg1, seg2): v1 = coords(seg2[1]) - coords(seg2[0]) v2 = coords(seg1[1]) - coords(seg1[0]) return np.dot(v1, v2) >= 0 def is_seg2_within_seg1_radius(dist, seg1, seg2): return dist <= max_radius(seg1) + max_radius(seg2) def is_seg1_overlapping_with_seg2(seg1, seg2): s1 = coords(seg2[0]) s2 = coords(seg2[1]) C = 0.5 * (s1 + s2) P = coords(seg1[1]) CP = P - C S1S2 = s2 - s1 prj = mm.vector_projection(CP, S1S2) if not is_seg2_within_seg1_radius(np.linalg.norm(CP - prj), seg1, seg2): return False return np.linalg.norm(prj) < 0.55 * np.linalg.norm(S1S2) def is_inside_cylinder(seg1, seg2): return not is_in_the_same_verse(seg1, seg2) and is_seg1_overlapping_with_seg2(seg1, seg2) section_itr = (snode for snode in neurite.iter_sections() if snode.points.shape[0] > 2) for snode in section_itr: segment_pairs = list(filter(is_not_zero_seg, pair(snode.points))) for i, seg1 in enumerate(segment_pairs[1:]): for seg2 in segment_pairs[0: i + 1]: if is_inside_cylinder(seg1, seg2): return True return False
[ "def", "is_back_tracking", "(", "neurite", ")", ":", "def", "pair", "(", "segs", ")", ":", "''' Pairs the input list into triplets'''", "return", "zip", "(", "segs", ",", "segs", "[", "1", ":", "]", ")", "def", "coords", "(", "node", ")", ":", "''' Returns the first three values of the tree that correspond to the x, y, z coordinates'''", "return", "node", "[", "COLS", ".", "XYZ", "]", "def", "max_radius", "(", "seg", ")", ":", "''' Returns maximum radius from the two segment endpoints'''", "return", "max", "(", "seg", "[", "0", "]", "[", "COLS", ".", "R", "]", ",", "seg", "[", "1", "]", "[", "COLS", ".", "R", "]", ")", "def", "is_not_zero_seg", "(", "seg", ")", ":", "''' Returns True if segment has zero length'''", "return", "not", "np", ".", "allclose", "(", "coords", "(", "seg", "[", "0", "]", ")", ",", "coords", "(", "seg", "[", "1", "]", ")", ")", "def", "is_in_the_same_verse", "(", "seg1", ",", "seg2", ")", ":", "''' Checks if the vectors face the same direction. This\n is true if their dot product is greater than zero.\n '''", "v1", "=", "coords", "(", "seg2", "[", "1", "]", ")", "-", "coords", "(", "seg2", "[", "0", "]", ")", "v2", "=", "coords", "(", "seg1", "[", "1", "]", ")", "-", "coords", "(", "seg1", "[", "0", "]", ")", "return", "np", ".", "dot", "(", "v1", ",", "v2", ")", ">=", "0", "def", "is_seg2_within_seg1_radius", "(", "dist", ",", "seg1", ",", "seg2", ")", ":", "''' Checks whether the orthogonal distance from the point at the end of\n seg1 to seg2 segment body is smaller than the sum of their radii\n '''", "return", "dist", "<=", "max_radius", "(", "seg1", ")", "+", "max_radius", "(", "seg2", ")", "def", "is_seg1_overlapping_with_seg2", "(", "seg1", ",", "seg2", ")", ":", "'''Checks if a segment is in proximity of another one upstream'''", "# get the coordinates of seg2 (from the origin)", "s1", "=", "coords", "(", "seg2", "[", "0", "]", ")", "s2", "=", "coords", "(", "seg2", "[", "1", "]", ")", "# vector of the center of seg2 (from the origin)", "C", "=", "0.5", "*", "(", "s1", "+", "s2", ")", "# endpoint of seg1 (from the origin)", "P", "=", "coords", "(", "seg1", "[", "1", "]", ")", "# vector from the center C of seg2 to the endpoint P of seg1", "CP", "=", "P", "-", "C", "# vector of seg2", "S1S2", "=", "s2", "-", "s1", "# projection of CP upon seg2", "prj", "=", "mm", ".", "vector_projection", "(", "CP", ",", "S1S2", ")", "# check if the distance of the orthogonal complement of CP projection on S1S2", "# (vertical distance from P to seg2) is smaller than the sum of the radii. (overlap)", "# If not exit early, because there is no way that backtracking can feasible", "if", "not", "is_seg2_within_seg1_radius", "(", "np", ".", "linalg", ".", "norm", "(", "CP", "-", "prj", ")", ",", "seg1", ",", "seg2", ")", ":", "return", "False", "# projection lies within the length of the cylinder. Check if the distance between", "# the center C of seg2 and the projection of the end point of seg1, P is smaller than", "# half of the others length plus a 5% tolerance", "return", "np", ".", "linalg", ".", "norm", "(", "prj", ")", "<", "0.55", "*", "np", ".", "linalg", ".", "norm", "(", "S1S2", ")", "def", "is_inside_cylinder", "(", "seg1", ",", "seg2", ")", ":", "''' Checks if seg2 approximately lies within a cylindrical volume of seg1.\n Two conditions must be satisfied:\n 1. The two segments are not facing the same direction (seg2 comes back to seg1)\n 2. seg2 is overlaping with seg1\n '''", "return", "not", "is_in_the_same_verse", "(", "seg1", ",", "seg2", ")", "and", "is_seg1_overlapping_with_seg2", "(", "seg1", ",", "seg2", ")", "# filter out single segment sections", "section_itr", "=", "(", "snode", "for", "snode", "in", "neurite", ".", "iter_sections", "(", ")", "if", "snode", ".", "points", ".", "shape", "[", "0", "]", ">", "2", ")", "for", "snode", "in", "section_itr", ":", "# group each section's points intro triplets", "segment_pairs", "=", "list", "(", "filter", "(", "is_not_zero_seg", ",", "pair", "(", "snode", ".", "points", ")", ")", ")", "# filter out zero length segments", "for", "i", ",", "seg1", "in", "enumerate", "(", "segment_pairs", "[", "1", ":", "]", ")", ":", "# check if the end point of the segment lies within the previous", "# ones in the current sectionmake", "for", "seg2", "in", "segment_pairs", "[", "0", ":", "i", "+", "1", "]", ":", "if", "is_inside_cylinder", "(", "seg1", ",", "seg2", ")", ":", "return", "True", "return", "False" ]
Check if a neurite process backtracks to a previous node. Back-tracking takes place when a daughter of a branching process goes back and either overlaps with a previous point, or lies inside the cylindrical volume of the latter. Args: neurite(Neurite): neurite to operate on Returns: True Under the following scenaria: 1. A segment endpoint falls back and overlaps with a previous segment's point 2. The geometry of a segment overlaps with a previous one in the section
[ "Check", "if", "a", "neurite", "process", "backtracks", "to", "a", "previous", "node", ".", "Back", "-", "tracking", "takes", "place", "when", "a", "daughter", "of", "a", "branching", "process", "goes", "back", "and", "either", "overlaps", "with", "a", "previous", "point", "or", "lies", "inside", "the", "cylindrical", "volume", "of", "the", "latter", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L91-L187
BlueBrain/NeuroM
neurom/check/morphtree.py
get_flat_neurites
def get_flat_neurites(neuron, tol=0.1, method='ratio'): '''Check if a neuron has neurites that are flat within a tolerance Args: neurite(Neurite): neurite to operate on tol(float): the tolerance or the ratio method(string): 'tolerance' or 'ratio' described in :meth:`is_flat` Returns: Bool list corresponding to the flatness check for each neurite in neuron neurites with respect to the given criteria ''' return [n for n in neuron.neurites if is_flat(n, tol, method)]
python
def get_flat_neurites(neuron, tol=0.1, method='ratio'): return [n for n in neuron.neurites if is_flat(n, tol, method)]
[ "def", "get_flat_neurites", "(", "neuron", ",", "tol", "=", "0.1", ",", "method", "=", "'ratio'", ")", ":", "return", "[", "n", "for", "n", "in", "neuron", ".", "neurites", "if", "is_flat", "(", "n", ",", "tol", ",", "method", ")", "]" ]
Check if a neuron has neurites that are flat within a tolerance Args: neurite(Neurite): neurite to operate on tol(float): the tolerance or the ratio method(string): 'tolerance' or 'ratio' described in :meth:`is_flat` Returns: Bool list corresponding to the flatness check for each neurite in neuron neurites with respect to the given criteria
[ "Check", "if", "a", "neuron", "has", "neurites", "that", "are", "flat", "within", "a", "tolerance" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L190-L202
BlueBrain/NeuroM
neurom/check/morphtree.py
get_nonmonotonic_neurites
def get_nonmonotonic_neurites(neuron, tol=1e-6): '''Get neurites that are not monotonic Args: neurite(Neurite): neurite to operate on tol(float): the tolerance or the ratio Returns: list of neurites that do not satisfy monotonicity test ''' return [n for n in neuron.neurites if not is_monotonic(n, tol)]
python
def get_nonmonotonic_neurites(neuron, tol=1e-6): return [n for n in neuron.neurites if not is_monotonic(n, tol)]
[ "def", "get_nonmonotonic_neurites", "(", "neuron", ",", "tol", "=", "1e-6", ")", ":", "return", "[", "n", "for", "n", "in", "neuron", ".", "neurites", "if", "not", "is_monotonic", "(", "n", ",", "tol", ")", "]" ]
Get neurites that are not monotonic Args: neurite(Neurite): neurite to operate on tol(float): the tolerance or the ratio Returns: list of neurites that do not satisfy monotonicity test
[ "Get", "neurites", "that", "are", "not", "monotonic" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L205-L215
BlueBrain/NeuroM
examples/radius_of_gyration.py
segment_centre_of_mass
def segment_centre_of_mass(seg): '''Calculate and return centre of mass of a segment. C, seg_volalculated as centre of mass of conical frustum''' h = mm.segment_length(seg) r0 = seg[0][COLS.R] r1 = seg[1][COLS.R] num = r0 * r0 + 2 * r0 * r1 + 3 * r1 * r1 denom = 4 * (r0 * r0 + r0 * r1 + r1 * r1) centre_of_mass_z_loc = num / denom return seg[0][COLS.XYZ] + (centre_of_mass_z_loc / h) * (seg[1][COLS.XYZ] - seg[0][COLS.XYZ])
python
def segment_centre_of_mass(seg): h = mm.segment_length(seg) r0 = seg[0][COLS.R] r1 = seg[1][COLS.R] num = r0 * r0 + 2 * r0 * r1 + 3 * r1 * r1 denom = 4 * (r0 * r0 + r0 * r1 + r1 * r1) centre_of_mass_z_loc = num / denom return seg[0][COLS.XYZ] + (centre_of_mass_z_loc / h) * (seg[1][COLS.XYZ] - seg[0][COLS.XYZ])
[ "def", "segment_centre_of_mass", "(", "seg", ")", ":", "h", "=", "mm", ".", "segment_length", "(", "seg", ")", "r0", "=", "seg", "[", "0", "]", "[", "COLS", ".", "R", "]", "r1", "=", "seg", "[", "1", "]", "[", "COLS", ".", "R", "]", "num", "=", "r0", "*", "r0", "+", "2", "*", "r0", "*", "r1", "+", "3", "*", "r1", "*", "r1", "denom", "=", "4", "*", "(", "r0", "*", "r0", "+", "r0", "*", "r1", "+", "r1", "*", "r1", ")", "centre_of_mass_z_loc", "=", "num", "/", "denom", "return", "seg", "[", "0", "]", "[", "COLS", ".", "XYZ", "]", "+", "(", "centre_of_mass_z_loc", "/", "h", ")", "*", "(", "seg", "[", "1", "]", "[", "COLS", ".", "XYZ", "]", "-", "seg", "[", "0", "]", "[", "COLS", ".", "XYZ", "]", ")" ]
Calculate and return centre of mass of a segment. C, seg_volalculated as centre of mass of conical frustum
[ "Calculate", "and", "return", "centre", "of", "mass", "of", "a", "segment", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/radius_of_gyration.py#L38-L48
BlueBrain/NeuroM
examples/radius_of_gyration.py
neurite_centre_of_mass
def neurite_centre_of_mass(neurite): '''Calculate and return centre of mass of a neurite.''' centre_of_mass = np.zeros(3) total_volume = 0 seg_vol = np.array(map(mm.segment_volume, nm.iter_segments(neurite))) seg_centre_of_mass = np.array(map(segment_centre_of_mass, nm.iter_segments(neurite))) # multiply array of scalars with array of arrays # http://stackoverflow.com/questions/5795700/multiply-numpy-array-of-scalars-by-array-of-vectors seg_centre_of_mass = seg_centre_of_mass * seg_vol[:, np.newaxis] centre_of_mass = np.sum(seg_centre_of_mass, axis=0) total_volume = np.sum(seg_vol) return centre_of_mass / total_volume
python
def neurite_centre_of_mass(neurite): centre_of_mass = np.zeros(3) total_volume = 0 seg_vol = np.array(map(mm.segment_volume, nm.iter_segments(neurite))) seg_centre_of_mass = np.array(map(segment_centre_of_mass, nm.iter_segments(neurite))) seg_centre_of_mass = seg_centre_of_mass * seg_vol[:, np.newaxis] centre_of_mass = np.sum(seg_centre_of_mass, axis=0) total_volume = np.sum(seg_vol) return centre_of_mass / total_volume
[ "def", "neurite_centre_of_mass", "(", "neurite", ")", ":", "centre_of_mass", "=", "np", ".", "zeros", "(", "3", ")", "total_volume", "=", "0", "seg_vol", "=", "np", ".", "array", "(", "map", "(", "mm", ".", "segment_volume", ",", "nm", ".", "iter_segments", "(", "neurite", ")", ")", ")", "seg_centre_of_mass", "=", "np", ".", "array", "(", "map", "(", "segment_centre_of_mass", ",", "nm", ".", "iter_segments", "(", "neurite", ")", ")", ")", "# multiply array of scalars with array of arrays", "# http://stackoverflow.com/questions/5795700/multiply-numpy-array-of-scalars-by-array-of-vectors", "seg_centre_of_mass", "=", "seg_centre_of_mass", "*", "seg_vol", "[", ":", ",", "np", ".", "newaxis", "]", "centre_of_mass", "=", "np", ".", "sum", "(", "seg_centre_of_mass", ",", "axis", "=", "0", ")", "total_volume", "=", "np", ".", "sum", "(", "seg_vol", ")", "return", "centre_of_mass", "/", "total_volume" ]
Calculate and return centre of mass of a neurite.
[ "Calculate", "and", "return", "centre", "of", "mass", "of", "a", "neurite", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/radius_of_gyration.py#L51-L64
BlueBrain/NeuroM
examples/radius_of_gyration.py
distance_sqr
def distance_sqr(point, seg): '''Calculate and return square Euclidian distance from given point to centre of mass of given segment.''' centre_of_mass = segment_centre_of_mass(seg) return sum(pow(np.subtract(point, centre_of_mass), 2))
python
def distance_sqr(point, seg): centre_of_mass = segment_centre_of_mass(seg) return sum(pow(np.subtract(point, centre_of_mass), 2))
[ "def", "distance_sqr", "(", "point", ",", "seg", ")", ":", "centre_of_mass", "=", "segment_centre_of_mass", "(", "seg", ")", "return", "sum", "(", "pow", "(", "np", ".", "subtract", "(", "point", ",", "centre_of_mass", ")", ",", "2", ")", ")" ]
Calculate and return square Euclidian distance from given point to centre of mass of given segment.
[ "Calculate", "and", "return", "square", "Euclidian", "distance", "from", "given", "point", "to", "centre", "of", "mass", "of", "given", "segment", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/radius_of_gyration.py#L67-L71
BlueBrain/NeuroM
examples/radius_of_gyration.py
radius_of_gyration
def radius_of_gyration(neurite): '''Calculate and return radius of gyration of a given neurite.''' centre_mass = neurite_centre_of_mass(neurite) sum_sqr_distance = 0 N = 0 dist_sqr = [distance_sqr(centre_mass, s) for s in nm.iter_segments(neurite)] sum_sqr_distance = np.sum(dist_sqr) N = len(dist_sqr) return np.sqrt(sum_sqr_distance / N)
python
def radius_of_gyration(neurite): centre_mass = neurite_centre_of_mass(neurite) sum_sqr_distance = 0 N = 0 dist_sqr = [distance_sqr(centre_mass, s) for s in nm.iter_segments(neurite)] sum_sqr_distance = np.sum(dist_sqr) N = len(dist_sqr) return np.sqrt(sum_sqr_distance / N)
[ "def", "radius_of_gyration", "(", "neurite", ")", ":", "centre_mass", "=", "neurite_centre_of_mass", "(", "neurite", ")", "sum_sqr_distance", "=", "0", "N", "=", "0", "dist_sqr", "=", "[", "distance_sqr", "(", "centre_mass", ",", "s", ")", "for", "s", "in", "nm", ".", "iter_segments", "(", "neurite", ")", "]", "sum_sqr_distance", "=", "np", ".", "sum", "(", "dist_sqr", ")", "N", "=", "len", "(", "dist_sqr", ")", "return", "np", ".", "sqrt", "(", "sum_sqr_distance", "/", "N", ")" ]
Calculate and return radius of gyration of a given neurite.
[ "Calculate", "and", "return", "radius", "of", "gyration", "of", "a", "given", "neurite", "." ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/radius_of_gyration.py#L74-L82
BlueBrain/NeuroM
apps/__main__.py
view
def view(input_file, plane, backend): '''A simple neuron viewer''' if backend == 'matplotlib': from neurom.viewer import draw kwargs = { 'mode': '3d' if plane == '3d' else '2d', } if plane != '3d': kwargs['plane'] = plane draw(load_neuron(input_file), **kwargs) else: from neurom.view.plotly import draw draw(load_neuron(input_file), plane=plane) if backend == 'matplotlib': import matplotlib.pyplot as plt plt.show()
python
def view(input_file, plane, backend): if backend == 'matplotlib': from neurom.viewer import draw kwargs = { 'mode': '3d' if plane == '3d' else '2d', } if plane != '3d': kwargs['plane'] = plane draw(load_neuron(input_file), **kwargs) else: from neurom.view.plotly import draw draw(load_neuron(input_file), plane=plane) if backend == 'matplotlib': import matplotlib.pyplot as plt plt.show()
[ "def", "view", "(", "input_file", ",", "plane", ",", "backend", ")", ":", "if", "backend", "==", "'matplotlib'", ":", "from", "neurom", ".", "viewer", "import", "draw", "kwargs", "=", "{", "'mode'", ":", "'3d'", "if", "plane", "==", "'3d'", "else", "'2d'", ",", "}", "if", "plane", "!=", "'3d'", ":", "kwargs", "[", "'plane'", "]", "=", "plane", "draw", "(", "load_neuron", "(", "input_file", ")", ",", "*", "*", "kwargs", ")", "else", ":", "from", "neurom", ".", "view", ".", "plotly", "import", "draw", "draw", "(", "load_neuron", "(", "input_file", ")", ",", "plane", "=", "plane", ")", "if", "backend", "==", "'matplotlib'", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "plt", ".", "show", "(", ")" ]
A simple neuron viewer
[ "A", "simple", "neuron", "viewer" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/apps/__main__.py#L23-L39
BlueBrain/NeuroM
neurom/apps/annotate.py
generate_annotation
def generate_annotation(result, settings): '''Generate the annotation for a given checker Arguments neuron(Neuron): The neuron object checker: A tuple where the first item is the checking function (usually from neuron_checks) and the second item is a dictionary of settings for the annotation. It must contain the keys name, label and color Returns An S-expression-like string representing the annotation ''' if result.status: return "" header = ("\n\n" "({label} ; MUK_ANNOTATION\n" " (Color {color}) ; MUK_ANNOTATION\n" " (Name \"{name}\") ; MUK_ANNOTATION").format(**settings) points = [p for _, _points in result.info for p in _points] annotations = (" ({0} {1} {2} 0.50) ; MUK_ANNOTATION".format( p[COLS.X], p[COLS.Y], p[COLS.Z]) for p in points) footer = ") ; MUK_ANNOTATION\n" return '\n'.join(chain.from_iterable(([header], annotations, [footer])))
python
def generate_annotation(result, settings): if result.status: return "" header = ("\n\n" "({label} ; MUK_ANNOTATION\n" " (Color {color}) ; MUK_ANNOTATION\n" " (Name \"{name}\") ; MUK_ANNOTATION").format(**settings) points = [p for _, _points in result.info for p in _points] annotations = (" ({0} {1} {2} 0.50) ; MUK_ANNOTATION".format( p[COLS.X], p[COLS.Y], p[COLS.Z]) for p in points) footer = ") ; MUK_ANNOTATION\n" return '\n'.join(chain.from_iterable(([header], annotations, [footer])))
[ "def", "generate_annotation", "(", "result", ",", "settings", ")", ":", "if", "result", ".", "status", ":", "return", "\"\"", "header", "=", "(", "\"\\n\\n\"", "\"({label} ; MUK_ANNOTATION\\n\"", "\" (Color {color}) ; MUK_ANNOTATION\\n\"", "\" (Name \\\"{name}\\\") ; MUK_ANNOTATION\"", ")", ".", "format", "(", "*", "*", "settings", ")", "points", "=", "[", "p", "for", "_", ",", "_points", "in", "result", ".", "info", "for", "p", "in", "_points", "]", "annotations", "=", "(", "\" ({0} {1} {2} 0.50) ; MUK_ANNOTATION\"", ".", "format", "(", "p", "[", "COLS", ".", "X", "]", ",", "p", "[", "COLS", ".", "Y", "]", ",", "p", "[", "COLS", ".", "Z", "]", ")", "for", "p", "in", "points", ")", "footer", "=", "\") ; MUK_ANNOTATION\\n\"", "return", "'\\n'", ".", "join", "(", "chain", ".", "from_iterable", "(", "(", "[", "header", "]", ",", "annotations", ",", "[", "footer", "]", ")", ")", ")" ]
Generate the annotation for a given checker Arguments neuron(Neuron): The neuron object checker: A tuple where the first item is the checking function (usually from neuron_checks) and the second item is a dictionary of settings for the annotation. It must contain the keys name, label and color Returns An S-expression-like string representing the annotation
[ "Generate", "the", "annotation", "for", "a", "given", "checker" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/annotate.py#L37-L62
BlueBrain/NeuroM
neurom/apps/annotate.py
annotate
def annotate(results, settings): '''Concatenate the annotations of all checkers''' annotations = (generate_annotation(result, setting) for result, setting in zip(results, settings)) return '\n'.join(annot for annot in annotations if annot)
python
def annotate(results, settings): annotations = (generate_annotation(result, setting) for result, setting in zip(results, settings)) return '\n'.join(annot for annot in annotations if annot)
[ "def", "annotate", "(", "results", ",", "settings", ")", ":", "annotations", "=", "(", "generate_annotation", "(", "result", ",", "setting", ")", "for", "result", ",", "setting", "in", "zip", "(", "results", ",", "settings", ")", ")", "return", "'\\n'", ".", "join", "(", "annot", "for", "annot", "in", "annotations", "if", "annot", ")" ]
Concatenate the annotations of all checkers
[ "Concatenate", "the", "annotations", "of", "all", "checkers" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/apps/annotate.py#L65-L69
BlueBrain/NeuroM
neurom/core/point.py
as_point
def as_point(row): '''Create a Point from a data block row''' return Point(row[COLS.X], row[COLS.Y], row[COLS.Z], row[COLS.R], int(row[COLS.TYPE]))
python
def as_point(row): return Point(row[COLS.X], row[COLS.Y], row[COLS.Z], row[COLS.R], int(row[COLS.TYPE]))
[ "def", "as_point", "(", "row", ")", ":", "return", "Point", "(", "row", "[", "COLS", ".", "X", "]", ",", "row", "[", "COLS", ".", "Y", "]", ",", "row", "[", "COLS", ".", "Z", "]", ",", "row", "[", "COLS", ".", "R", "]", ",", "int", "(", "row", "[", "COLS", ".", "TYPE", "]", ")", ")" ]
Create a Point from a data block row
[ "Create", "a", "Point", "from", "a", "data", "block", "row" ]
train
https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/point.py#L38-L41
jambonsw/django-improved-user
src/improved_user/managers.py
UserManager.create_superuser
def create_superuser(self, email, password, **extra_fields): """Save new User with is_staff and is_superuser set to True""" extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) if extra_fields.get('is_staff') is not True: raise ValueError('Superuser must have is_staff=True.') if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(email, password, **extra_fields)
python
def create_superuser(self, email, password, **extra_fields): extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) if extra_fields.get('is_staff') is not True: raise ValueError('Superuser must have is_staff=True.') if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(email, password, **extra_fields)
[ "def", "create_superuser", "(", "self", ",", "email", ",", "password", ",", "*", "*", "extra_fields", ")", ":", "extra_fields", ".", "setdefault", "(", "'is_staff'", ",", "True", ")", "extra_fields", ".", "setdefault", "(", "'is_superuser'", ",", "True", ")", "if", "extra_fields", ".", "get", "(", "'is_staff'", ")", "is", "not", "True", ":", "raise", "ValueError", "(", "'Superuser must have is_staff=True.'", ")", "if", "extra_fields", ".", "get", "(", "'is_superuser'", ")", "is", "not", "True", ":", "raise", "ValueError", "(", "'Superuser must have is_superuser=True.'", ")", "return", "self", ".", "_create_user", "(", "email", ",", "password", ",", "*", "*", "extra_fields", ")" ]
Save new User with is_staff and is_superuser set to True
[ "Save", "new", "User", "with", "is_staff", "and", "is_superuser", "set", "to", "True" ]
train
https://github.com/jambonsw/django-improved-user/blob/e5fbb4f0d5f7491b9f06f7eb2812127b5e4616d4/src/improved_user/managers.py#L43-L51
jambonsw/django-improved-user
setup.py
load_file_contents
def load_file_contents(file_path, as_list=True): """Load file as string or list""" abs_file_path = join(HERE, file_path) with open(abs_file_path, encoding='utf-8') as file_pointer: if as_list: return file_pointer.read().splitlines() return file_pointer.read()
python
def load_file_contents(file_path, as_list=True): abs_file_path = join(HERE, file_path) with open(abs_file_path, encoding='utf-8') as file_pointer: if as_list: return file_pointer.read().splitlines() return file_pointer.read()
[ "def", "load_file_contents", "(", "file_path", ",", "as_list", "=", "True", ")", ":", "abs_file_path", "=", "join", "(", "HERE", ",", "file_path", ")", "with", "open", "(", "abs_file_path", ",", "encoding", "=", "'utf-8'", ")", "as", "file_pointer", ":", "if", "as_list", ":", "return", "file_pointer", ".", "read", "(", ")", ".", "splitlines", "(", ")", "return", "file_pointer", ".", "read", "(", ")" ]
Load file as string or list
[ "Load", "file", "as", "string", "or", "list" ]
train
https://github.com/jambonsw/django-improved-user/blob/e5fbb4f0d5f7491b9f06f7eb2812127b5e4616d4/setup.py#L22-L28
jambonsw/django-improved-user
src/improved_user/forms.py
AbstractUserCreationForm.clean_password2
def clean_password2(self): """ Check wether password 1 and password 2 are equivalent While ideally this would be done in clean, there is a chance a superclass could declare clean and forget to call super. We therefore opt to run this password mismatch check in password2 clean, but to show the error above password1 (as we are unsure whether password 1 or password 2 contains the typo, and putting it above password 2 may lead some users to believe the typo is in just one). """ password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') if password1 and password2 and password1 != password2: self.add_error( 'password1', forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', )) return password2
python
def clean_password2(self): password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') if password1 and password2 and password1 != password2: self.add_error( 'password1', forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', )) return password2
[ "def", "clean_password2", "(", "self", ")", ":", "password1", "=", "self", ".", "cleaned_data", ".", "get", "(", "'password1'", ")", "password2", "=", "self", ".", "cleaned_data", ".", "get", "(", "'password2'", ")", "if", "password1", "and", "password2", "and", "password1", "!=", "password2", ":", "self", ".", "add_error", "(", "'password1'", ",", "forms", ".", "ValidationError", "(", "self", ".", "error_messages", "[", "'password_mismatch'", "]", ",", "code", "=", "'password_mismatch'", ",", ")", ")", "return", "password2" ]
Check wether password 1 and password 2 are equivalent While ideally this would be done in clean, there is a chance a superclass could declare clean and forget to call super. We therefore opt to run this password mismatch check in password2 clean, but to show the error above password1 (as we are unsure whether password 1 or password 2 contains the typo, and putting it above password 2 may lead some users to believe the typo is in just one).
[ "Check", "wether", "password", "1", "and", "password", "2", "are", "equivalent" ]
train
https://github.com/jambonsw/django-improved-user/blob/e5fbb4f0d5f7491b9f06f7eb2812127b5e4616d4/src/improved_user/forms.py#L62-L84
jambonsw/django-improved-user
src/improved_user/forms.py
AbstractUserCreationForm._post_clean
def _post_clean(self): """Run password validaton after clean methods When clean methods are run, the user instance does not yet exist. To properly compare model values agains the password (in the UserAttributeSimilarityValidator), we wait until we have an instance to compare against. https://code.djangoproject.com/ticket/28127 https://github.com/django/django/pull/8408 Has no effect in Django prior to 1.9 May become unnecessary in Django 2.0 (if this superclass changes) """ super()._post_clean() # updates self.instance with form data password = self.cleaned_data.get('password1') if password: try: password_validation.validate_password(password, self.instance) except ValidationError as error: self.add_error('password1', error)
python
def _post_clean(self): super()._post_clean() password = self.cleaned_data.get('password1') if password: try: password_validation.validate_password(password, self.instance) except ValidationError as error: self.add_error('password1', error)
[ "def", "_post_clean", "(", "self", ")", ":", "super", "(", ")", ".", "_post_clean", "(", ")", "# updates self.instance with form data", "password", "=", "self", ".", "cleaned_data", ".", "get", "(", "'password1'", ")", "if", "password", ":", "try", ":", "password_validation", ".", "validate_password", "(", "password", ",", "self", ".", "instance", ")", "except", "ValidationError", "as", "error", ":", "self", ".", "add_error", "(", "'password1'", ",", "error", ")" ]
Run password validaton after clean methods When clean methods are run, the user instance does not yet exist. To properly compare model values agains the password (in the UserAttributeSimilarityValidator), we wait until we have an instance to compare against. https://code.djangoproject.com/ticket/28127 https://github.com/django/django/pull/8408 Has no effect in Django prior to 1.9 May become unnecessary in Django 2.0 (if this superclass changes)
[ "Run", "password", "validaton", "after", "clean", "methods" ]
train
https://github.com/jambonsw/django-improved-user/blob/e5fbb4f0d5f7491b9f06f7eb2812127b5e4616d4/src/improved_user/forms.py#L86-L107
jambonsw/django-improved-user
src/improved_user/model_mixins.py
EmailAuthMixin.clean
def clean(self): """Override default clean method to normalize email. Call :code:`super().clean()` if overriding. """ super().clean() self.email = self.__class__.objects.normalize_email(self.email)
python
def clean(self): super().clean() self.email = self.__class__.objects.normalize_email(self.email)
[ "def", "clean", "(", "self", ")", ":", "super", "(", ")", ".", "clean", "(", ")", "self", ".", "email", "=", "self", ".", "__class__", ".", "objects", ".", "normalize_email", "(", "self", ".", "email", ")" ]
Override default clean method to normalize email. Call :code:`super().clean()` if overriding.
[ "Override", "default", "clean", "method", "to", "normalize", "email", "." ]
train
https://github.com/jambonsw/django-improved-user/blob/e5fbb4f0d5f7491b9f06f7eb2812127b5e4616d4/src/improved_user/model_mixins.py#L69-L76
sfalkner/pynisher
pynisher/limit_function_call.py
subprocess_func
def subprocess_func(func, pipe, logger, mem_in_mb, cpu_time_limit_in_s, wall_time_limit_in_s, num_procs, grace_period_in_s, tmp_dir, *args, **kwargs): # simple signal handler to catch the signals for time limits def handler(signum, frame): # logs message with level debug on this logger logger.debug("signal handler: %i"%signum) if (signum == signal.SIGXCPU): # when process reaches soft limit --> a SIGXCPU signal is sent (it normally terminats the process) raise(CpuTimeoutException) elif (signum == signal.SIGALRM): # SIGALRM is sent to process when the specified time limit to an alarm function elapses (when real or clock time elapses) logger.debug("timeout") raise(TimeoutException) raise AnythingException # temporary directory to store stdout and stderr if not tmp_dir is None: logger.debug('Redirecting output of the function to files. Access them via the stdout and stderr attributes of the wrapped function.') stdout = open(os.path.join(tmp_dir, 'std.out'), 'a', buffering=1) sys.stdout=stdout stderr = open(os.path.join(tmp_dir, 'std.err'), 'a', buffering=1) sys.stderr=stderr # catching all signals at this point turned out to interfer with the subprocess (e.g. using ROS) signal.signal(signal.SIGALRM, handler) signal.signal(signal.SIGXCPU, handler) signal.signal(signal.SIGQUIT, handler) # code to catch EVERY catchable signal (even X11 related ones ... ) # only use for debugging/testing as this seems to be too intrusive. """ for i in [x for x in dir(signal) if x.startswith("SIG")]: try: signum = getattr(signal,i) print("register {}, {}".format(signum, i)) signal.signal(signum, handler) except: print("Skipping %s"%i) """ # set the memory limit if mem_in_mb is not None: # byte --> megabyte mem_in_b = mem_in_mb*1024*1024 # the maximum area (in bytes) of address space which may be taken by the process. resource.setrlimit(resource.RLIMIT_AS, (mem_in_b, mem_in_b)) # for now: don't allow the function to spawn subprocesses itself. #resource.setrlimit(resource.RLIMIT_NPROC, (1, 1)) # Turns out, this is quite restrictive, so we don't use this option by default if num_procs is not None: resource.setrlimit(resource.RLIMIT_NPROC, (num_procs, num_procs)) # schedule an alarm in specified number of seconds if wall_time_limit_in_s is not None: signal.alarm(wall_time_limit_in_s) if cpu_time_limit_in_s is not None: # From the Linux man page: # When the process reaches the soft limit, it is sent a SIGXCPU signal. # The default action for this signal is to terminate the process. # However, the signal can be caught, and the handler can return control # to the main program. If the process continues to consume CPU time, # it will be sent SIGXCPU once per second until the hard limit is reached, # at which time it is sent SIGKILL. resource.setrlimit(resource.RLIMIT_CPU, (cpu_time_limit_in_s,cpu_time_limit_in_s+grace_period_in_s)) # the actual function call try: logger.debug("call function") return_value = ((func(*args, **kwargs), 0)) logger.debug("function returned properly: {}".format(return_value)) except MemoryError: return_value = (None, MemorylimitException) except OSError as e: if (e.errno == 11): return_value = (None, SubprocessException) else: return_value = (None, AnythingException) except CpuTimeoutException: return_value = (None, CpuTimeoutException) except TimeoutException: return_value = (None, TimeoutException) except AnythingException as e: return_value = (None, AnythingException) except: raise logger.debug("Some wired exception occured!") finally: try: logger.debug("return value: {}".format(return_value)) pipe.send(return_value) pipe.close() except: # this part should only fail if the parent process is alread dead, so there is not much to do anymore :) pass finally: # recursively kill all children p = psutil.Process() for child in p.children(recursive=True): child.kill()
python
def subprocess_func(func, pipe, logger, mem_in_mb, cpu_time_limit_in_s, wall_time_limit_in_s, num_procs, grace_period_in_s, tmp_dir, *args, **kwargs): def handler(signum, frame): logger.debug("signal handler: %i"%signum) if (signum == signal.SIGXCPU): raise(CpuTimeoutException) elif (signum == signal.SIGALRM): logger.debug("timeout") raise(TimeoutException) raise AnythingException if not tmp_dir is None: logger.debug('Redirecting output of the function to files. Access them via the stdout and stderr attributes of the wrapped function.') stdout = open(os.path.join(tmp_dir, 'std.out'), 'a', buffering=1) sys.stdout=stdout stderr = open(os.path.join(tmp_dir, 'std.err'), 'a', buffering=1) sys.stderr=stderr signal.signal(signal.SIGALRM, handler) signal.signal(signal.SIGXCPU, handler) signal.signal(signal.SIGQUIT, handler) if mem_in_mb is not None: mem_in_b = mem_in_mb*1024*1024 resource.setrlimit(resource.RLIMIT_AS, (mem_in_b, mem_in_b)) if num_procs is not None: resource.setrlimit(resource.RLIMIT_NPROC, (num_procs, num_procs)) if wall_time_limit_in_s is not None: signal.alarm(wall_time_limit_in_s) if cpu_time_limit_in_s is not None: resource.setrlimit(resource.RLIMIT_CPU, (cpu_time_limit_in_s,cpu_time_limit_in_s+grace_period_in_s)) try: logger.debug("call function") return_value = ((func(*args, **kwargs), 0)) logger.debug("function returned properly: {}".format(return_value)) except MemoryError: return_value = (None, MemorylimitException) except OSError as e: if (e.errno == 11): return_value = (None, SubprocessException) else: return_value = (None, AnythingException) except CpuTimeoutException: return_value = (None, CpuTimeoutException) except TimeoutException: return_value = (None, TimeoutException) except AnythingException as e: return_value = (None, AnythingException) except: raise logger.debug("Some wired exception occured!") finally: try: logger.debug("return value: {}".format(return_value)) pipe.send(return_value) pipe.close() except: pass finally: p = psutil.Process() for child in p.children(recursive=True): child.kill()
[ "def", "subprocess_func", "(", "func", ",", "pipe", ",", "logger", ",", "mem_in_mb", ",", "cpu_time_limit_in_s", ",", "wall_time_limit_in_s", ",", "num_procs", ",", "grace_period_in_s", ",", "tmp_dir", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# simple signal handler to catch the signals for time limits", "def", "handler", "(", "signum", ",", "frame", ")", ":", "# logs message with level debug on this logger ", "logger", ".", "debug", "(", "\"signal handler: %i\"", "%", "signum", ")", "if", "(", "signum", "==", "signal", ".", "SIGXCPU", ")", ":", "# when process reaches soft limit --> a SIGXCPU signal is sent (it normally terminats the process)", "raise", "(", "CpuTimeoutException", ")", "elif", "(", "signum", "==", "signal", ".", "SIGALRM", ")", ":", "# SIGALRM is sent to process when the specified time limit to an alarm function elapses (when real or clock time elapses)", "logger", ".", "debug", "(", "\"timeout\"", ")", "raise", "(", "TimeoutException", ")", "raise", "AnythingException", "# temporary directory to store stdout and stderr", "if", "not", "tmp_dir", "is", "None", ":", "logger", ".", "debug", "(", "'Redirecting output of the function to files. Access them via the stdout and stderr attributes of the wrapped function.'", ")", "stdout", "=", "open", "(", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "'std.out'", ")", ",", "'a'", ",", "buffering", "=", "1", ")", "sys", ".", "stdout", "=", "stdout", "stderr", "=", "open", "(", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "'std.err'", ")", ",", "'a'", ",", "buffering", "=", "1", ")", "sys", ".", "stderr", "=", "stderr", "# catching all signals at this point turned out to interfer with the subprocess (e.g. using ROS)", "signal", ".", "signal", "(", "signal", ".", "SIGALRM", ",", "handler", ")", "signal", ".", "signal", "(", "signal", ".", "SIGXCPU", ",", "handler", ")", "signal", ".", "signal", "(", "signal", ".", "SIGQUIT", ",", "handler", ")", "# code to catch EVERY catchable signal (even X11 related ones ... )", "# only use for debugging/testing as this seems to be too intrusive.", "# set the memory limit", "if", "mem_in_mb", "is", "not", "None", ":", "# byte --> megabyte", "mem_in_b", "=", "mem_in_mb", "*", "1024", "*", "1024", "# the maximum area (in bytes) of address space which may be taken by the process.", "resource", ".", "setrlimit", "(", "resource", ".", "RLIMIT_AS", ",", "(", "mem_in_b", ",", "mem_in_b", ")", ")", "# for now: don't allow the function to spawn subprocesses itself.", "#resource.setrlimit(resource.RLIMIT_NPROC, (1, 1))", "# Turns out, this is quite restrictive, so we don't use this option by default", "if", "num_procs", "is", "not", "None", ":", "resource", ".", "setrlimit", "(", "resource", ".", "RLIMIT_NPROC", ",", "(", "num_procs", ",", "num_procs", ")", ")", "# schedule an alarm in specified number of seconds", "if", "wall_time_limit_in_s", "is", "not", "None", ":", "signal", ".", "alarm", "(", "wall_time_limit_in_s", ")", "if", "cpu_time_limit_in_s", "is", "not", "None", ":", "# From the Linux man page:", "# When the process reaches the soft limit, it is sent a SIGXCPU signal.", "# The default action for this signal is to terminate the process.", "# However, the signal can be caught, and the handler can return control ", "# to the main program. If the process continues to consume CPU time,", "# it will be sent SIGXCPU once per second until the hard limit is reached,", "# at which time it is sent SIGKILL.", "resource", ".", "setrlimit", "(", "resource", ".", "RLIMIT_CPU", ",", "(", "cpu_time_limit_in_s", ",", "cpu_time_limit_in_s", "+", "grace_period_in_s", ")", ")", "# the actual function call", "try", ":", "logger", ".", "debug", "(", "\"call function\"", ")", "return_value", "=", "(", "(", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", ",", "0", ")", ")", "logger", ".", "debug", "(", "\"function returned properly: {}\"", ".", "format", "(", "return_value", ")", ")", "except", "MemoryError", ":", "return_value", "=", "(", "None", ",", "MemorylimitException", ")", "except", "OSError", "as", "e", ":", "if", "(", "e", ".", "errno", "==", "11", ")", ":", "return_value", "=", "(", "None", ",", "SubprocessException", ")", "else", ":", "return_value", "=", "(", "None", ",", "AnythingException", ")", "except", "CpuTimeoutException", ":", "return_value", "=", "(", "None", ",", "CpuTimeoutException", ")", "except", "TimeoutException", ":", "return_value", "=", "(", "None", ",", "TimeoutException", ")", "except", "AnythingException", "as", "e", ":", "return_value", "=", "(", "None", ",", "AnythingException", ")", "except", ":", "raise", "logger", ".", "debug", "(", "\"Some wired exception occured!\"", ")", "finally", ":", "try", ":", "logger", ".", "debug", "(", "\"return value: {}\"", ".", "format", "(", "return_value", ")", ")", "pipe", ".", "send", "(", "return_value", ")", "pipe", ".", "close", "(", ")", "except", ":", "# this part should only fail if the parent process is alread dead, so there is not much to do anymore :)", "pass", "finally", ":", "# recursively kill all children", "p", "=", "psutil", ".", "Process", "(", ")", "for", "child", "in", "p", ".", "children", "(", "recursive", "=", "True", ")", ":", "child", ".", "kill", "(", ")" ]
for i in [x for x in dir(signal) if x.startswith("SIG")]: try: signum = getattr(signal,i) print("register {}, {}".format(signum, i)) signal.signal(signum, handler) except: print("Skipping %s"%i)
[ "for", "i", "in", "[", "x", "for", "x", "in", "dir", "(", "signal", ")", "if", "x", ".", "startswith", "(", "SIG", ")", "]", ":", "try", ":", "signum", "=", "getattr", "(", "signal", "i", ")", "print", "(", "register", "{}", "{}", ".", "format", "(", "signum", "i", "))", "signal", ".", "signal", "(", "signum", "handler", ")", "except", ":", "print", "(", "Skipping", "%s", "%i", ")" ]
train
https://github.com/sfalkner/pynisher/blob/8e9518e874673bfc0a62a54fa1580cd1df931617/pynisher/limit_function_call.py#L19-L130
mapbox/cligj
cligj/features.py
normalize_feature_inputs
def normalize_feature_inputs(ctx, param, value): """Click callback that normalizes feature input values. Returns a generator over features from the input value. Parameters ---------- ctx: a Click context param: the name of the argument or option value: object The value argument may be one of the following: 1. A list of paths to files containing GeoJSON feature collections or feature sequences. 2. A list of string-encoded coordinate pairs of the form "[lng, lat]", or "lng, lat", or "lng lat". If no value is provided, features will be read from stdin. """ for feature_like in value or ('-',): try: with click.open_file(feature_like) as src: for feature in iter_features(iter(src)): yield feature except IOError: coords = list(coords_from_query(feature_like)) yield { 'type': 'Feature', 'properties': {}, 'geometry': { 'type': 'Point', 'coordinates': coords}}
python
def normalize_feature_inputs(ctx, param, value): for feature_like in value or ('-',): try: with click.open_file(feature_like) as src: for feature in iter_features(iter(src)): yield feature except IOError: coords = list(coords_from_query(feature_like)) yield { 'type': 'Feature', 'properties': {}, 'geometry': { 'type': 'Point', 'coordinates': coords}}
[ "def", "normalize_feature_inputs", "(", "ctx", ",", "param", ",", "value", ")", ":", "for", "feature_like", "in", "value", "or", "(", "'-'", ",", ")", ":", "try", ":", "with", "click", ".", "open_file", "(", "feature_like", ")", "as", "src", ":", "for", "feature", "in", "iter_features", "(", "iter", "(", "src", ")", ")", ":", "yield", "feature", "except", "IOError", ":", "coords", "=", "list", "(", "coords_from_query", "(", "feature_like", ")", ")", "yield", "{", "'type'", ":", "'Feature'", ",", "'properties'", ":", "{", "}", ",", "'geometry'", ":", "{", "'type'", ":", "'Point'", ",", "'coordinates'", ":", "coords", "}", "}" ]
Click callback that normalizes feature input values. Returns a generator over features from the input value. Parameters ---------- ctx: a Click context param: the name of the argument or option value: object The value argument may be one of the following: 1. A list of paths to files containing GeoJSON feature collections or feature sequences. 2. A list of string-encoded coordinate pairs of the form "[lng, lat]", or "lng, lat", or "lng lat". If no value is provided, features will be read from stdin.
[ "Click", "callback", "that", "normalizes", "feature", "input", "values", "." ]
train
https://github.com/mapbox/cligj/blob/1815692d99abfb4bc4b2d0411f67fa568f112c05/cligj/features.py#L8-L39
mapbox/cligj
cligj/features.py
iter_features
def iter_features(geojsonfile, func=None): """Extract GeoJSON features from a text file object. Given a file-like object containing a single GeoJSON feature collection text or a sequence of GeoJSON features, iter_features() iterates over lines of the file and yields GeoJSON features. Parameters ---------- geojsonfile: a file-like object The geojsonfile implements the iterator protocol and yields lines of JSON text. func: function, optional A function that will be applied to each extracted feature. It takes a feature object and may return a replacement feature or None -- in which case iter_features does not yield. """ func = func or (lambda x: x) first_line = next(geojsonfile) # Does the geojsonfile contain RS-delimited JSON sequences? if first_line.startswith(u'\x1e'): text_buffer = first_line.strip(u'\x1e') for line in geojsonfile: if line.startswith(u'\x1e'): if text_buffer: obj = json.loads(text_buffer) if 'coordinates' in obj: obj = to_feature(obj) newfeat = func(obj) if newfeat: yield newfeat text_buffer = line.strip(u'\x1e') else: text_buffer += line # complete our parsing with a for-else clause. else: obj = json.loads(text_buffer) if 'coordinates' in obj: obj = to_feature(obj) newfeat = func(obj) if newfeat: yield newfeat # If not, it may contains LF-delimited GeoJSON objects or a single # multi-line pretty-printed GeoJSON object. else: # Try to parse LF-delimited sequences of features or feature # collections produced by, e.g., `jq -c ...`. try: obj = json.loads(first_line) if obj['type'] == 'Feature': newfeat = func(obj) if newfeat: yield newfeat for line in geojsonfile: newfeat = func(json.loads(line)) if newfeat: yield newfeat elif obj['type'] == 'FeatureCollection': for feat in obj['features']: newfeat = func(feat) if newfeat: yield newfeat elif 'coordinates' in obj: newfeat = func(to_feature(obj)) if newfeat: yield newfeat for line in geojsonfile: newfeat = func(to_feature(json.loads(line))) if newfeat: yield newfeat # Indented or pretty-printed GeoJSON features or feature # collections will fail out of the try clause above since # they'll have no complete JSON object on their first line. # To handle these, we slurp in the entire file and parse its # text. except ValueError: text = "".join(chain([first_line], geojsonfile)) obj = json.loads(text) if obj['type'] == 'Feature': newfeat = func(obj) if newfeat: yield newfeat elif obj['type'] == 'FeatureCollection': for feat in obj['features']: newfeat = func(feat) if newfeat: yield newfeat elif 'coordinates' in obj: newfeat = func(to_feature(obj)) if newfeat: yield newfeat
python
def iter_features(geojsonfile, func=None): func = func or (lambda x: x) first_line = next(geojsonfile) if first_line.startswith(u'\x1e'): text_buffer = first_line.strip(u'\x1e') for line in geojsonfile: if line.startswith(u'\x1e'): if text_buffer: obj = json.loads(text_buffer) if 'coordinates' in obj: obj = to_feature(obj) newfeat = func(obj) if newfeat: yield newfeat text_buffer = line.strip(u'\x1e') else: text_buffer += line else: obj = json.loads(text_buffer) if 'coordinates' in obj: obj = to_feature(obj) newfeat = func(obj) if newfeat: yield newfeat else: try: obj = json.loads(first_line) if obj['type'] == 'Feature': newfeat = func(obj) if newfeat: yield newfeat for line in geojsonfile: newfeat = func(json.loads(line)) if newfeat: yield newfeat elif obj['type'] == 'FeatureCollection': for feat in obj['features']: newfeat = func(feat) if newfeat: yield newfeat elif 'coordinates' in obj: newfeat = func(to_feature(obj)) if newfeat: yield newfeat for line in geojsonfile: newfeat = func(to_feature(json.loads(line))) if newfeat: yield newfeat except ValueError: text = "".join(chain([first_line], geojsonfile)) obj = json.loads(text) if obj['type'] == 'Feature': newfeat = func(obj) if newfeat: yield newfeat elif obj['type'] == 'FeatureCollection': for feat in obj['features']: newfeat = func(feat) if newfeat: yield newfeat elif 'coordinates' in obj: newfeat = func(to_feature(obj)) if newfeat: yield newfeat
[ "def", "iter_features", "(", "geojsonfile", ",", "func", "=", "None", ")", ":", "func", "=", "func", "or", "(", "lambda", "x", ":", "x", ")", "first_line", "=", "next", "(", "geojsonfile", ")", "# Does the geojsonfile contain RS-delimited JSON sequences?", "if", "first_line", ".", "startswith", "(", "u'\\x1e'", ")", ":", "text_buffer", "=", "first_line", ".", "strip", "(", "u'\\x1e'", ")", "for", "line", "in", "geojsonfile", ":", "if", "line", ".", "startswith", "(", "u'\\x1e'", ")", ":", "if", "text_buffer", ":", "obj", "=", "json", ".", "loads", "(", "text_buffer", ")", "if", "'coordinates'", "in", "obj", ":", "obj", "=", "to_feature", "(", "obj", ")", "newfeat", "=", "func", "(", "obj", ")", "if", "newfeat", ":", "yield", "newfeat", "text_buffer", "=", "line", ".", "strip", "(", "u'\\x1e'", ")", "else", ":", "text_buffer", "+=", "line", "# complete our parsing with a for-else clause.", "else", ":", "obj", "=", "json", ".", "loads", "(", "text_buffer", ")", "if", "'coordinates'", "in", "obj", ":", "obj", "=", "to_feature", "(", "obj", ")", "newfeat", "=", "func", "(", "obj", ")", "if", "newfeat", ":", "yield", "newfeat", "# If not, it may contains LF-delimited GeoJSON objects or a single", "# multi-line pretty-printed GeoJSON object.", "else", ":", "# Try to parse LF-delimited sequences of features or feature", "# collections produced by, e.g., `jq -c ...`.", "try", ":", "obj", "=", "json", ".", "loads", "(", "first_line", ")", "if", "obj", "[", "'type'", "]", "==", "'Feature'", ":", "newfeat", "=", "func", "(", "obj", ")", "if", "newfeat", ":", "yield", "newfeat", "for", "line", "in", "geojsonfile", ":", "newfeat", "=", "func", "(", "json", ".", "loads", "(", "line", ")", ")", "if", "newfeat", ":", "yield", "newfeat", "elif", "obj", "[", "'type'", "]", "==", "'FeatureCollection'", ":", "for", "feat", "in", "obj", "[", "'features'", "]", ":", "newfeat", "=", "func", "(", "feat", ")", "if", "newfeat", ":", "yield", "newfeat", "elif", "'coordinates'", "in", "obj", ":", "newfeat", "=", "func", "(", "to_feature", "(", "obj", ")", ")", "if", "newfeat", ":", "yield", "newfeat", "for", "line", "in", "geojsonfile", ":", "newfeat", "=", "func", "(", "to_feature", "(", "json", ".", "loads", "(", "line", ")", ")", ")", "if", "newfeat", ":", "yield", "newfeat", "# Indented or pretty-printed GeoJSON features or feature", "# collections will fail out of the try clause above since", "# they'll have no complete JSON object on their first line.", "# To handle these, we slurp in the entire file and parse its", "# text.", "except", "ValueError", ":", "text", "=", "\"\"", ".", "join", "(", "chain", "(", "[", "first_line", "]", ",", "geojsonfile", ")", ")", "obj", "=", "json", ".", "loads", "(", "text", ")", "if", "obj", "[", "'type'", "]", "==", "'Feature'", ":", "newfeat", "=", "func", "(", "obj", ")", "if", "newfeat", ":", "yield", "newfeat", "elif", "obj", "[", "'type'", "]", "==", "'FeatureCollection'", ":", "for", "feat", "in", "obj", "[", "'features'", "]", ":", "newfeat", "=", "func", "(", "feat", ")", "if", "newfeat", ":", "yield", "newfeat", "elif", "'coordinates'", "in", "obj", ":", "newfeat", "=", "func", "(", "to_feature", "(", "obj", ")", ")", "if", "newfeat", ":", "yield", "newfeat" ]
Extract GeoJSON features from a text file object. Given a file-like object containing a single GeoJSON feature collection text or a sequence of GeoJSON features, iter_features() iterates over lines of the file and yields GeoJSON features. Parameters ---------- geojsonfile: a file-like object The geojsonfile implements the iterator protocol and yields lines of JSON text. func: function, optional A function that will be applied to each extracted feature. It takes a feature object and may return a replacement feature or None -- in which case iter_features does not yield.
[ "Extract", "GeoJSON", "features", "from", "a", "text", "file", "object", "." ]
train
https://github.com/mapbox/cligj/blob/1815692d99abfb4bc4b2d0411f67fa568f112c05/cligj/features.py#L42-L135
mapbox/cligj
cligj/features.py
iter_query
def iter_query(query): """Accept a filename, stream, or string. Returns an iterator over lines of the query.""" try: itr = click.open_file(query).readlines() except IOError: itr = [query] return itr
python
def iter_query(query): try: itr = click.open_file(query).readlines() except IOError: itr = [query] return itr
[ "def", "iter_query", "(", "query", ")", ":", "try", ":", "itr", "=", "click", ".", "open_file", "(", "query", ")", ".", "readlines", "(", ")", "except", "IOError", ":", "itr", "=", "[", "query", "]", "return", "itr" ]
Accept a filename, stream, or string. Returns an iterator over lines of the query.
[ "Accept", "a", "filename", "stream", "or", "string", ".", "Returns", "an", "iterator", "over", "lines", "of", "the", "query", "." ]
train
https://github.com/mapbox/cligj/blob/1815692d99abfb4bc4b2d0411f67fa568f112c05/cligj/features.py#L154-L161
mapbox/cligj
cligj/features.py
coords_from_query
def coords_from_query(query): """Transform a query line into a (lng, lat) pair of coordinates.""" try: coords = json.loads(query) except ValueError: query = query.replace(',', ' ') vals = query.split() coords = [float(v) for v in vals] return tuple(coords[:2])
python
def coords_from_query(query): try: coords = json.loads(query) except ValueError: query = query.replace(',', ' ') vals = query.split() coords = [float(v) for v in vals] return tuple(coords[:2])
[ "def", "coords_from_query", "(", "query", ")", ":", "try", ":", "coords", "=", "json", ".", "loads", "(", "query", ")", "except", "ValueError", ":", "query", "=", "query", ".", "replace", "(", "','", ",", "' '", ")", "vals", "=", "query", ".", "split", "(", ")", "coords", "=", "[", "float", "(", "v", ")", "for", "v", "in", "vals", "]", "return", "tuple", "(", "coords", "[", ":", "2", "]", ")" ]
Transform a query line into a (lng, lat) pair of coordinates.
[ "Transform", "a", "query", "line", "into", "a", "(", "lng", "lat", ")", "pair", "of", "coordinates", "." ]
train
https://github.com/mapbox/cligj/blob/1815692d99abfb4bc4b2d0411f67fa568f112c05/cligj/features.py#L164-L172
mapbox/cligj
cligj/features.py
normalize_feature_objects
def normalize_feature_objects(feature_objs): """Takes an iterable of GeoJSON-like Feature mappings or an iterable of objects with a geo interface and normalizes it to the former.""" for obj in feature_objs: if hasattr(obj, "__geo_interface__") and \ 'type' in obj.__geo_interface__.keys() and \ obj.__geo_interface__['type'] == 'Feature': yield obj.__geo_interface__ elif isinstance(obj, dict) and 'type' in obj and \ obj['type'] == 'Feature': yield obj else: raise ValueError("Did not recognize object {0}" "as GeoJSON Feature".format(obj))
python
def normalize_feature_objects(feature_objs): for obj in feature_objs: if hasattr(obj, "__geo_interface__") and \ 'type' in obj.__geo_interface__.keys() and \ obj.__geo_interface__['type'] == 'Feature': yield obj.__geo_interface__ elif isinstance(obj, dict) and 'type' in obj and \ obj['type'] == 'Feature': yield obj else: raise ValueError("Did not recognize object {0}" "as GeoJSON Feature".format(obj))
[ "def", "normalize_feature_objects", "(", "feature_objs", ")", ":", "for", "obj", "in", "feature_objs", ":", "if", "hasattr", "(", "obj", ",", "\"__geo_interface__\"", ")", "and", "'type'", "in", "obj", ".", "__geo_interface__", ".", "keys", "(", ")", "and", "obj", ".", "__geo_interface__", "[", "'type'", "]", "==", "'Feature'", ":", "yield", "obj", ".", "__geo_interface__", "elif", "isinstance", "(", "obj", ",", "dict", ")", "and", "'type'", "in", "obj", "and", "obj", "[", "'type'", "]", "==", "'Feature'", ":", "yield", "obj", "else", ":", "raise", "ValueError", "(", "\"Did not recognize object {0}\"", "\"as GeoJSON Feature\"", ".", "format", "(", "obj", ")", ")" ]
Takes an iterable of GeoJSON-like Feature mappings or an iterable of objects with a geo interface and normalizes it to the former.
[ "Takes", "an", "iterable", "of", "GeoJSON", "-", "like", "Feature", "mappings", "or", "an", "iterable", "of", "objects", "with", "a", "geo", "interface", "and", "normalizes", "it", "to", "the", "former", "." ]
train
https://github.com/mapbox/cligj/blob/1815692d99abfb4bc4b2d0411f67fa568f112c05/cligj/features.py#L175-L189
ludeeus/pytraccar
pytraccar/api.py
API.api
async def api(self, endpoint, params=None, test=False): """Comunicate with the API.""" data = {} url = "{}/{}".format(self._api, endpoint) try: async with async_timeout.timeout(8, loop=self._loop): response = await self._session.get( url, auth=self._auth, headers=HEADERS, params=params ) if response.status == 200: self._authenticated = True self._connected = True if not test: data = await response.json() elif response.status == 401: self._authenticated = False self._connected = True except asyncio.TimeoutError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Timeouterror connecting to Traccar, %s", error) except aiohttp.ClientError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except socket.gaierror as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except TypeError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except Exception as error: # pylint: disable=broad-except self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) return data
python
async def api(self, endpoint, params=None, test=False): data = {} url = "{}/{}".format(self._api, endpoint) try: async with async_timeout.timeout(8, loop=self._loop): response = await self._session.get( url, auth=self._auth, headers=HEADERS, params=params ) if response.status == 200: self._authenticated = True self._connected = True if not test: data = await response.json() elif response.status == 401: self._authenticated = False self._connected = True except asyncio.TimeoutError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Timeouterror connecting to Traccar, %s", error) except aiohttp.ClientError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except socket.gaierror as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except TypeError as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) except Exception as error: self._authenticated, self._connected = False, False if not test: _LOGGER.warning("Error connecting to Traccar, %s", error) return data
[ "async", "def", "api", "(", "self", ",", "endpoint", ",", "params", "=", "None", ",", "test", "=", "False", ")", ":", "data", "=", "{", "}", "url", "=", "\"{}/{}\"", ".", "format", "(", "self", ".", "_api", ",", "endpoint", ")", "try", ":", "async", "with", "async_timeout", ".", "timeout", "(", "8", ",", "loop", "=", "self", ".", "_loop", ")", ":", "response", "=", "await", "self", ".", "_session", ".", "get", "(", "url", ",", "auth", "=", "self", ".", "_auth", ",", "headers", "=", "HEADERS", ",", "params", "=", "params", ")", "if", "response", ".", "status", "==", "200", ":", "self", ".", "_authenticated", "=", "True", "self", ".", "_connected", "=", "True", "if", "not", "test", ":", "data", "=", "await", "response", ".", "json", "(", ")", "elif", "response", ".", "status", "==", "401", ":", "self", ".", "_authenticated", "=", "False", "self", ".", "_connected", "=", "True", "except", "asyncio", ".", "TimeoutError", "as", "error", ":", "self", ".", "_authenticated", ",", "self", ".", "_connected", "=", "False", ",", "False", "if", "not", "test", ":", "_LOGGER", ".", "warning", "(", "\"Timeouterror connecting to Traccar, %s\"", ",", "error", ")", "except", "aiohttp", ".", "ClientError", "as", "error", ":", "self", ".", "_authenticated", ",", "self", ".", "_connected", "=", "False", ",", "False", "if", "not", "test", ":", "_LOGGER", ".", "warning", "(", "\"Error connecting to Traccar, %s\"", ",", "error", ")", "except", "socket", ".", "gaierror", "as", "error", ":", "self", ".", "_authenticated", ",", "self", ".", "_connected", "=", "False", ",", "False", "if", "not", "test", ":", "_LOGGER", ".", "warning", "(", "\"Error connecting to Traccar, %s\"", ",", "error", ")", "except", "TypeError", "as", "error", ":", "self", ".", "_authenticated", ",", "self", ".", "_connected", "=", "False", ",", "False", "if", "not", "test", ":", "_LOGGER", ".", "warning", "(", "\"Error connecting to Traccar, %s\"", ",", "error", ")", "except", "Exception", "as", "error", ":", "# pylint: disable=broad-except", "self", ".", "_authenticated", ",", "self", ".", "_connected", "=", "False", ",", "False", "if", "not", "test", ":", "_LOGGER", ".", "warning", "(", "\"Error connecting to Traccar, %s\"", ",", "error", ")", "return", "data" ]
Comunicate with the API.
[ "Comunicate", "with", "the", "API", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L39-L79
ludeeus/pytraccar
pytraccar/api.py
API.get_device_info
async def get_device_info(self, custom_attributes=None): """Get the local installed version.""" await self.get_geofences() await self.get_devices() await self.get_positions() devinfo = {} try: # pylint: disable=too-many-nested-blocks for dev in self._devices or []: for pos in self._positions or []: if pos["deviceId"] == dev.get("id"): uid = dev.get("uniqueId") devinfo[uid] = {} nested = pos.get("attributes", {}) for attribute in ATTRIBUTES["position"]: key = ATTRIBUTES["position"][attribute] devinfo[uid][attribute] = pos[key] for attribute in ATTRIBUTES["device"]: key = ATTRIBUTES["device"][attribute] devinfo[uid][attribute] = dev[key] devinfo[uid]["battery"] = nested.get("batteryLevel") devinfo[uid]["motion"] = nested.get("motion") if custom_attributes is not None: for attr in custom_attributes: if attr in nested: attrvalue = nested.get(attr) devinfo[uid][attr] = attrvalue try: geofence = self.geofences[dev["geofenceIds"][0]] except IndexError: geofence = None devinfo[uid]["geofence"] = geofence if devinfo: self._device_info = devinfo else: self._device_info = self._device_info _LOGGER.debug(self._device_info) except KeyError as error: _LOGGER.error("Error combining data from Traccar, %s", error)
python
async def get_device_info(self, custom_attributes=None): await self.get_geofences() await self.get_devices() await self.get_positions() devinfo = {} try: for dev in self._devices or []: for pos in self._positions or []: if pos["deviceId"] == dev.get("id"): uid = dev.get("uniqueId") devinfo[uid] = {} nested = pos.get("attributes", {}) for attribute in ATTRIBUTES["position"]: key = ATTRIBUTES["position"][attribute] devinfo[uid][attribute] = pos[key] for attribute in ATTRIBUTES["device"]: key = ATTRIBUTES["device"][attribute] devinfo[uid][attribute] = dev[key] devinfo[uid]["battery"] = nested.get("batteryLevel") devinfo[uid]["motion"] = nested.get("motion") if custom_attributes is not None: for attr in custom_attributes: if attr in nested: attrvalue = nested.get(attr) devinfo[uid][attr] = attrvalue try: geofence = self.geofences[dev["geofenceIds"][0]] except IndexError: geofence = None devinfo[uid]["geofence"] = geofence if devinfo: self._device_info = devinfo else: self._device_info = self._device_info _LOGGER.debug(self._device_info) except KeyError as error: _LOGGER.error("Error combining data from Traccar, %s", error)
[ "async", "def", "get_device_info", "(", "self", ",", "custom_attributes", "=", "None", ")", ":", "await", "self", ".", "get_geofences", "(", ")", "await", "self", ".", "get_devices", "(", ")", "await", "self", ".", "get_positions", "(", ")", "devinfo", "=", "{", "}", "try", ":", "# pylint: disable=too-many-nested-blocks", "for", "dev", "in", "self", ".", "_devices", "or", "[", "]", ":", "for", "pos", "in", "self", ".", "_positions", "or", "[", "]", ":", "if", "pos", "[", "\"deviceId\"", "]", "==", "dev", ".", "get", "(", "\"id\"", ")", ":", "uid", "=", "dev", ".", "get", "(", "\"uniqueId\"", ")", "devinfo", "[", "uid", "]", "=", "{", "}", "nested", "=", "pos", ".", "get", "(", "\"attributes\"", ",", "{", "}", ")", "for", "attribute", "in", "ATTRIBUTES", "[", "\"position\"", "]", ":", "key", "=", "ATTRIBUTES", "[", "\"position\"", "]", "[", "attribute", "]", "devinfo", "[", "uid", "]", "[", "attribute", "]", "=", "pos", "[", "key", "]", "for", "attribute", "in", "ATTRIBUTES", "[", "\"device\"", "]", ":", "key", "=", "ATTRIBUTES", "[", "\"device\"", "]", "[", "attribute", "]", "devinfo", "[", "uid", "]", "[", "attribute", "]", "=", "dev", "[", "key", "]", "devinfo", "[", "uid", "]", "[", "\"battery\"", "]", "=", "nested", ".", "get", "(", "\"batteryLevel\"", ")", "devinfo", "[", "uid", "]", "[", "\"motion\"", "]", "=", "nested", ".", "get", "(", "\"motion\"", ")", "if", "custom_attributes", "is", "not", "None", ":", "for", "attr", "in", "custom_attributes", ":", "if", "attr", "in", "nested", ":", "attrvalue", "=", "nested", ".", "get", "(", "attr", ")", "devinfo", "[", "uid", "]", "[", "attr", "]", "=", "attrvalue", "try", ":", "geofence", "=", "self", ".", "geofences", "[", "dev", "[", "\"geofenceIds\"", "]", "[", "0", "]", "]", "except", "IndexError", ":", "geofence", "=", "None", "devinfo", "[", "uid", "]", "[", "\"geofence\"", "]", "=", "geofence", "if", "devinfo", ":", "self", ".", "_device_info", "=", "devinfo", "else", ":", "self", ".", "_device_info", "=", "self", ".", "_device_info", "_LOGGER", ".", "debug", "(", "self", ".", "_device_info", ")", "except", "KeyError", "as", "error", ":", "_LOGGER", ".", "error", "(", "\"Error combining data from Traccar, %s\"", ",", "error", ")" ]
Get the local installed version.
[ "Get", "the", "local", "installed", "version", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L85-L127
ludeeus/pytraccar
pytraccar/api.py
API.get_geofences
async def get_geofences(self): """Get the local installed version.""" data = await self.api("geofences") if self.connected and self.authenticated: for geofence in data or []: self._geofences[geofence["id"]] = geofence["name"] else: self._geofences = self._geofences _LOGGER.debug(self._geofences)
python
async def get_geofences(self): data = await self.api("geofences") if self.connected and self.authenticated: for geofence in data or []: self._geofences[geofence["id"]] = geofence["name"] else: self._geofences = self._geofences _LOGGER.debug(self._geofences)
[ "async", "def", "get_geofences", "(", "self", ")", ":", "data", "=", "await", "self", ".", "api", "(", "\"geofences\"", ")", "if", "self", ".", "connected", "and", "self", ".", "authenticated", ":", "for", "geofence", "in", "data", "or", "[", "]", ":", "self", ".", "_geofences", "[", "geofence", "[", "\"id\"", "]", "]", "=", "geofence", "[", "\"name\"", "]", "else", ":", "self", ".", "_geofences", "=", "self", ".", "_geofences", "_LOGGER", ".", "debug", "(", "self", ".", "_geofences", ")" ]
Get the local installed version.
[ "Get", "the", "local", "installed", "version", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L129-L137
ludeeus/pytraccar
pytraccar/api.py
API.get_devices
async def get_devices(self): """Get the local installed version.""" data = await self.api("devices") if self.connected and self.authenticated: self._devices = data else: self._devices = self._devices _LOGGER.debug(self._devices)
python
async def get_devices(self): data = await self.api("devices") if self.connected and self.authenticated: self._devices = data else: self._devices = self._devices _LOGGER.debug(self._devices)
[ "async", "def", "get_devices", "(", "self", ")", ":", "data", "=", "await", "self", ".", "api", "(", "\"devices\"", ")", "if", "self", ".", "connected", "and", "self", ".", "authenticated", ":", "self", ".", "_devices", "=", "data", "else", ":", "self", ".", "_devices", "=", "self", ".", "_devices", "_LOGGER", ".", "debug", "(", "self", ".", "_devices", ")" ]
Get the local installed version.
[ "Get", "the", "local", "installed", "version", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L139-L146
ludeeus/pytraccar
pytraccar/api.py
API.get_positions
async def get_positions(self): """Get the local installed version.""" data = await self.api("positions") if self.connected and self.authenticated: self._positions = data else: self._positions = self._positions _LOGGER.debug(self._positions)
python
async def get_positions(self): data = await self.api("positions") if self.connected and self.authenticated: self._positions = data else: self._positions = self._positions _LOGGER.debug(self._positions)
[ "async", "def", "get_positions", "(", "self", ")", ":", "data", "=", "await", "self", ".", "api", "(", "\"positions\"", ")", "if", "self", ".", "connected", "and", "self", ".", "authenticated", ":", "self", ".", "_positions", "=", "data", "else", ":", "self", ".", "_positions", "=", "self", ".", "_positions", "_LOGGER", ".", "debug", "(", "self", ".", "_positions", ")" ]
Get the local installed version.
[ "Get", "the", "local", "installed", "version", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L148-L155
ludeeus/pytraccar
pytraccar/api.py
API.get_events
async def get_events( self, device_ids, group_ids=None, from_time=None, to_time=None, event_types=None ): """Get the local installed version.""" if to_time is None: to_time = datetime.utcnow() if from_time is None: from_time = to_time - timedelta(seconds=EVENT_INTERVAL) if event_types is None: event_types = ["allEvents"] get_params = [] get_params.extend([("deviceId", value) for value in device_ids]) if group_ids is not None: get_params.extend([("groupId", value) for value in group_ids]) get_params.extend([("from", from_time.isoformat() + "Z")]) get_params.extend([("to", to_time.isoformat() + "Z")]) get_params.extend([("type", value) for value in event_types]) data = await self.api("reports/events", get_params) if self.connected and self.authenticated: self._events = data else: self._events = self._events return self._events
python
async def get_events( self, device_ids, group_ids=None, from_time=None, to_time=None, event_types=None ): if to_time is None: to_time = datetime.utcnow() if from_time is None: from_time = to_time - timedelta(seconds=EVENT_INTERVAL) if event_types is None: event_types = ["allEvents"] get_params = [] get_params.extend([("deviceId", value) for value in device_ids]) if group_ids is not None: get_params.extend([("groupId", value) for value in group_ids]) get_params.extend([("from", from_time.isoformat() + "Z")]) get_params.extend([("to", to_time.isoformat() + "Z")]) get_params.extend([("type", value) for value in event_types]) data = await self.api("reports/events", get_params) if self.connected and self.authenticated: self._events = data else: self._events = self._events return self._events
[ "async", "def", "get_events", "(", "self", ",", "device_ids", ",", "group_ids", "=", "None", ",", "from_time", "=", "None", ",", "to_time", "=", "None", ",", "event_types", "=", "None", ")", ":", "if", "to_time", "is", "None", ":", "to_time", "=", "datetime", ".", "utcnow", "(", ")", "if", "from_time", "is", "None", ":", "from_time", "=", "to_time", "-", "timedelta", "(", "seconds", "=", "EVENT_INTERVAL", ")", "if", "event_types", "is", "None", ":", "event_types", "=", "[", "\"allEvents\"", "]", "get_params", "=", "[", "]", "get_params", ".", "extend", "(", "[", "(", "\"deviceId\"", ",", "value", ")", "for", "value", "in", "device_ids", "]", ")", "if", "group_ids", "is", "not", "None", ":", "get_params", ".", "extend", "(", "[", "(", "\"groupId\"", ",", "value", ")", "for", "value", "in", "group_ids", "]", ")", "get_params", ".", "extend", "(", "[", "(", "\"from\"", ",", "from_time", ".", "isoformat", "(", ")", "+", "\"Z\"", ")", "]", ")", "get_params", ".", "extend", "(", "[", "(", "\"to\"", ",", "to_time", ".", "isoformat", "(", ")", "+", "\"Z\"", ")", "]", ")", "get_params", ".", "extend", "(", "[", "(", "\"type\"", ",", "value", ")", "for", "value", "in", "event_types", "]", ")", "data", "=", "await", "self", ".", "api", "(", "\"reports/events\"", ",", "get_params", ")", "if", "self", ".", "connected", "and", "self", ".", "authenticated", ":", "self", ".", "_events", "=", "data", "else", ":", "self", ".", "_events", "=", "self", ".", "_events", "return", "self", ".", "_events" ]
Get the local installed version.
[ "Get", "the", "local", "installed", "version", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/api.py#L157-L184
ludeeus/pytraccar
pytraccar/cli.py
runcli
async def runcli(): """Debug of pytraccar.""" async with aiohttp.ClientSession() as session: host = input("IP: ") username = input("Username: ") password = input("Password: ") print("\n\n\n") data = API(LOOP, session, username, password, host) await data.test_connection() print("Authenticated:", data.authenticated) if data.authenticated: await data.get_device_info() print("Authentication:", data.authenticated) print("Geofences:", data.geofences) print("Devices:", data.devices) print("Positions:", data.positions) print("Device info:", data.device_info)
python
async def runcli(): async with aiohttp.ClientSession() as session: host = input("IP: ") username = input("Username: ") password = input("Password: ") print("\n\n\n") data = API(LOOP, session, username, password, host) await data.test_connection() print("Authenticated:", data.authenticated) if data.authenticated: await data.get_device_info() print("Authentication:", data.authenticated) print("Geofences:", data.geofences) print("Devices:", data.devices) print("Positions:", data.positions) print("Device info:", data.device_info)
[ "async", "def", "runcli", "(", ")", ":", "async", "with", "aiohttp", ".", "ClientSession", "(", ")", "as", "session", ":", "host", "=", "input", "(", "\"IP: \"", ")", "username", "=", "input", "(", "\"Username: \"", ")", "password", "=", "input", "(", "\"Password: \"", ")", "print", "(", "\"\\n\\n\\n\"", ")", "data", "=", "API", "(", "LOOP", ",", "session", ",", "username", ",", "password", ",", "host", ")", "await", "data", ".", "test_connection", "(", ")", "print", "(", "\"Authenticated:\"", ",", "data", ".", "authenticated", ")", "if", "data", ".", "authenticated", ":", "await", "data", ".", "get_device_info", "(", ")", "print", "(", "\"Authentication:\"", ",", "data", ".", "authenticated", ")", "print", "(", "\"Geofences:\"", ",", "data", ".", "geofences", ")", "print", "(", "\"Devices:\"", ",", "data", ".", "devices", ")", "print", "(", "\"Positions:\"", ",", "data", ".", "positions", ")", "print", "(", "\"Device info:\"", ",", "data", ".", "device_info", ")" ]
Debug of pytraccar.
[ "Debug", "of", "pytraccar", "." ]
train
https://github.com/ludeeus/pytraccar/blob/c7c635c334cc193c2da351a9fc8213d5095f77d6/pytraccar/cli.py#L9-L25
alexdej/puzpy
puz.py
scramble_string
def scramble_string(s, key): """ s is the puzzle's solution in column-major order, omitting black squares: i.e. if the puzzle is: C A T # # A # # R solution is CATAR Key is a 4-digit number in the range 1000 <= key <= 9999 """ key = key_digits(key) for k in key: # foreach digit in the key s = shift(s, key) # for each char by each digit in the key in sequence s = s[k:] + s[:k] # cut the sequence around the key digit s = shuffle(s) # do a 1:1 shuffle of the 'deck' return s
python
def scramble_string(s, key): key = key_digits(key) for k in key: s = shift(s, key) s = s[k:] + s[:k] s = shuffle(s) return s
[ "def", "scramble_string", "(", "s", ",", "key", ")", ":", "key", "=", "key_digits", "(", "key", ")", "for", "k", "in", "key", ":", "# foreach digit in the key", "s", "=", "shift", "(", "s", ",", "key", ")", "# for each char by each digit in the key in sequence", "s", "=", "s", "[", "k", ":", "]", "+", "s", "[", ":", "k", "]", "# cut the sequence around the key digit", "s", "=", "shuffle", "(", "s", ")", "# do a 1:1 shuffle of the 'deck'", "return", "s" ]
s is the puzzle's solution in column-major order, omitting black squares: i.e. if the puzzle is: C A T # # A # # R solution is CATAR Key is a 4-digit number in the range 1000 <= key <= 9999
[ "s", "is", "the", "puzzle", "s", "solution", "in", "column", "-", "major", "order", "omitting", "black", "squares", ":", "i", ".", "e", ".", "if", "the", "puzzle", "is", ":", "C", "A", "T", "#", "#", "A", "#", "#", "R", "solution", "is", "CATAR" ]
train
https://github.com/alexdej/puzpy/blob/8906ab899845d1200ac3411b4c2a2067cffa15d7/puz.py#L618-L637