version
stringclasses
24 values
code
stringlengths
396
135k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
6
64
hexsha
stringlengths
40
40
1.7
import math import torch import numpy as np import torch.nn.functional as F from PIL import Image from tqdm import tqdm from .floating_region import FloatingRegionScore from .spatial_purity import SpatialPurity def PixelSelection(cfg, feature_extractor, classifier, tgt_epoch_loader): feature_extractor.eval() classifier.eval() active_pixels = math.ceil(cfg.ACTIVE.PIXELS / len(cfg.ACTIVE.SELECT_ITER) / (1280 * 640) * (2048 * 1024)) calculate_purity = SpatialPurity(in_channels=cfg.MODEL.NUM_CLASSES, size=2 * cfg.ACTIVE.RADIUS_K + 1).cuda() mask_radius = cfg.ACTIVE.RADIUS_K with torch.no_grad(): for tgt_data in tqdm(tgt_epoch_loader): tgt_input, path2mask = tgt_data['img'], tgt_data['path_to_mask'] origin_mask, origin_label = tgt_data['origin_mask'], tgt_data['origin_label'] origin_size = tgt_data['size'] active_indicator = tgt_data['active'] selected_indicator = tgt_data['selected'] path2indicator = tgt_data['path_to_indicator'] tgt_input = tgt_input.cuda(non_blocking=True) tgt_size = tgt_input.shape[-2:] tgt_feat = feature_extractor(tgt_input) tgt_out = classifier(tgt_feat, size=tgt_size) for i in range(len(origin_mask)): active_mask = origin_mask[i].cuda(non_blocking=True) ground_truth = origin_label[i].cuda(non_blocking=True) size = (origin_size[i][0], origin_size[i][1]) active = active_indicator[i] selected = selected_indicator[i] output = tgt_out[i:i + 1, :, :, :] output = F.interpolate(output, size=size, mode='bilinear', align_corners=True) output = output.squeeze(dim=0) p = torch.softmax(output, dim=0) entropy = torch.sum(-p * torch.log(p + 1e-6), dim=0) pseudo_label = torch.argmax(p, dim=0) one_hot = F.one_hot(pseudo_label, num_classes=cfg.MODEL.NUM_CLASSES).float() one_hot = one_hot.permute((2, 0, 1)).unsqueeze(dim=0) purity = calculate_purity(one_hot).squeeze(dim=0).squeeze(dim=0) score = entropy * purity score[active] = -float('inf') for pixel in range(active_pixels): values, indices_h = torch.max(score, dim=0) _, indices_w = torch.max(values, dim=0) w = indices_w.item() h = indices_h[w].item() start_w = w - mask_radius if w - mask_radius >= 0 else 0 start_h = h - mask_radius if h - mask_radius >= 0 else 0 end_w = w + mask_radius + 1 end_h = h + mask_radius + 1 # mask out score[start_h:end_h, start_w:end_w] = -float('inf') active[start_h:end_h, start_w:end_w] = True selected[h, w] = True # active sampling active_mask[h, w] = ground_truth[h, w] active_mask = Image.fromarray(np.array(active_mask.cpu().numpy(), dtype=np.uint8)) active_mask.save(path2mask[i]) indicator = { 'active': active, 'selected': selected } torch.save(indicator, path2indicator[i]) feature_extractor.train() classifier.train() def RegionSelection(cfg, feature_extractor, classifier, tgt_epoch_loader): feature_extractor.eval() classifier.eval() floating_region_score = FloatingRegionScore(in_channels=cfg.MODEL.NUM_CLASSES, size=2 * cfg.ACTIVE.RADIUS_K + 1).cuda() per_region_pixels = (2 * cfg.ACTIVE.RADIUS_K + 1) ** 2 active_radius = cfg.ACTIVE.RADIUS_K mask_radius = cfg.ACTIVE.RADIUS_K * 2 active_ratio = cfg.ACTIVE.RATIO / len(cfg.ACTIVE.SELECT_ITER) with torch.no_grad(): for tgt_data in tqdm(tgt_epoch_loader): tgt_input, path2mask = tgt_data['img'], tgt_data['path_to_mask'] origin_mask, origin_label = \ tgt_data['origin_mask'], tgt_data['origin_label'] origin_size = tgt_data['size'] active_indicator = tgt_data['active'] selected_indicator = tgt_data['selected'] path2indicator = tgt_data['path_to_indicator'] tgt_input = tgt_input.cuda(non_blocking=True) tgt_size = tgt_input.shape[-2:] tgt_feat = feature_extractor(tgt_input) tgt_out = classifier(tgt_feat, size=tgt_size) for i in range(len(origin_mask)): active_mask = origin_mask[i].cuda(non_blocking=True) ground_truth = origin_label[i].cuda(non_blocking=True) size = (origin_size[i][0], origin_size[i][1]) num_pixel_cur = size[0] * size[1] active = active_indicator[i] selected = selected_indicator[i] output = tgt_out[i:i + 1, :, :, :] output = F.interpolate(output, size=size, mode='bilinear', align_corners=True) score, purity, entropy = floating_region_score(output) score[active] = -float('inf') active_regions = math.ceil(num_pixel_cur * active_ratio / per_region_pixels) for pixel in range(active_regions): values, indices_h = torch.max(score, dim=0) _, indices_w = torch.max(values, dim=0) w = indices_w.item() h = indices_h[w].item() active_start_w = w - active_radius if w - active_radius >= 0 else 0 active_start_h = h - active_radius if h - active_radius >= 0 else 0 active_end_w = w + active_radius + 1 active_end_h = h + active_radius + 1 mask_start_w = w - mask_radius if w - mask_radius >= 0 else 0 mask_start_h = h - mask_radius if h - mask_radius >= 0 else 0 mask_end_w = w + mask_radius + 1 mask_end_h = h + mask_radius + 1 # mask out score[mask_start_h:mask_end_h, mask_start_w:mask_end_w] = -float('inf') active[mask_start_h:mask_end_h, mask_start_w:mask_end_w] = True selected[active_start_h:active_end_h, active_start_w:active_end_w] = True # active sampling active_mask[active_start_h:active_end_h, active_start_w:active_end_w] = \ ground_truth[active_start_h:active_end_h, active_start_w:active_end_w] active_mask = Image.fromarray(np.array(active_mask.cpu().numpy(), dtype=np.uint8)) active_mask.save(path2mask[i]) indicator = { 'active': active, 'selected': selected } torch.save(indicator, path2indicator[i]) feature_extractor.train() classifier.train()
[ "torch.nn.functional.one_hot", "torch.max", "torch.no_grad", "torch.save", "torch.nn.functional.interpolate", "torch.softmax", "torch.log", "torch.argmax" ]
1.7.1
BIT-DA/RIPU
125edf112c9ded1e7497aedb2a092331824df100
0.4
import random import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from model.roi_crop.functions.roi_crop import RoICropFunction from model.utils.config import cfg from torch.autograd import Variable def save_net(fname, net): import h5py h5f = h5py.File(fname, mode='w') for k, v in net.state_dict().items(): h5f.create_dataset(k, data=v.cpu().numpy()) def load_net(fname, net): import h5py h5f = h5py.File(fname, mode='r') for k, v in net.state_dict().items(): param = torch.from_numpy(np.asarray(h5f[k])) v.copy_(param) def weights_normal_init(model, dev=0.01): if isinstance(model, list): for m in model: weights_normal_init(m, dev) else: for m in model.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, dev) elif isinstance(m, nn.Linear): m.weight.data.normal_(0.0, dev) def clip_gradient(model, clip_norm): """Computes a gradient clipping coefficient based on gradient norm.""" totalnorm = 0 for p in model.parameters(): if p.requires_grad: modulenorm = p.grad.data.norm() totalnorm += modulenorm ** 2 totalnorm = np.sqrt(totalnorm) norm = clip_norm / max(totalnorm, clip_norm) for p in model.parameters(): if p.requires_grad: p.grad.mul_(norm) def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" for i in range(np.minimum(10, dets.shape[0])): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) score = dets[i, -1] if score > thresh: cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) return im def adjust_learning_rate(optimizer, decay=0.1): """Sets the learning rate to the initial LR decayed by 0.5 every 20 epochs""" for param_group in optimizer.param_groups: param_group['lr'] = decay * param_group['lr'] def save_checkpoint(state, filename): torch.save(state, filename) def _smooth_l1_loss(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, sigma=1.0, dim=[1]): sigma_2 = sigma ** 2 box_diff = bbox_pred - bbox_targets in_box_diff = bbox_inside_weights * box_diff abs_in_box_diff = torch.abs(in_box_diff) smoothL1_sign = (abs_in_box_diff < 1. / sigma_2).detach().float() in_loss_box = torch.pow(in_box_diff, 2) * (sigma_2 / 2.) * smoothL1_sign \ + (abs_in_box_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign) out_loss_box = bbox_outside_weights * in_loss_box loss_box = out_loss_box for i in sorted(dim, reverse=True): loss_box = loss_box.sum(i) loss_box = loss_box.mean() return loss_box def _crop_pool_layer(bottom, rois, max_pool=True): # code modified from # https://github.com/ruotianluo/pytorch-faster-rcnn # implement it using stn # box to affine # input (x1,y1,x2,y2) """ [ x2-x1 x1 + x2 - W + 1 ] [ ----- 0 --------------- ] [ W - 1 W - 1 ] [ ] [ y2-y1 y1 + y2 - H + 1 ] [ 0 ----- --------------- ] [ H - 1 H - 1 ] """ rois = rois.detach() batch_size = bottom.size(0) D = bottom.size(1) H = bottom.size(2) W = bottom.size(3) roi_per_batch = rois.size(0) / batch_size x1 = rois[:, 1::4] / 16.0 y1 = rois[:, 2::4] / 16.0 x2 = rois[:, 3::4] / 16.0 y2 = rois[:, 4::4] / 16.0 height = bottom.size(2) width = bottom.size(3) # affine theta zero = Variable(rois.data.new(rois.size(0), 1).zero_()) theta = torch.cat([ \ (x2 - x1) / (width - 1), zero, (x1 + x2 - width + 1) / (width - 1), zero, (y2 - y1) / (height - 1), (y1 + y2 - height + 1) / (height - 1)], 1).view(-1, 2, 3) if max_pool: pre_pool_size = cfg.POOLING_SIZE * 2 grid = F.affine_grid(theta, torch.Size( (rois.size(0), 1, pre_pool_size, pre_pool_size))) bottom = bottom.view(1, batch_size, D, H, W).contiguous().expand( roi_per_batch, batch_size, D, H, W) \ .contiguous().view(-1, D, H, W) crops = F.grid_sample(bottom, grid) crops = F.max_pool2d(crops, 2, 2) else: grid = F.affine_grid(theta, torch.Size( (rois.size(0), 1, cfg.POOLING_SIZE, cfg.POOLING_SIZE))) bottom = bottom.view(1, batch_size, D, H, W).contiguous().expand( roi_per_batch, batch_size, D, H, W) \ .contiguous().view(-1, D, H, W) crops = F.grid_sample(bottom, grid) return crops, grid def _affine_grid_gen(rois, input_size, grid_size): rois = rois.detach() x1 = rois[:, 1::4] / 16.0 y1 = rois[:, 2::4] / 16.0 x2 = rois[:, 3::4] / 16.0 y2 = rois[:, 4::4] / 16.0 height = input_size[0] width = input_size[1] zero = Variable(rois.data.new(rois.size(0), 1).zero_()) theta = torch.cat([ \ (x2 - x1) / (width - 1), zero, (x1 + x2 - width + 1) / (width - 1), zero, (y2 - y1) / (height - 1), (y1 + y2 - height + 1) / (height - 1)], 1).view(-1, 2, 3) grid = F.affine_grid(theta, torch.Size((rois.size(0), 1, grid_size, grid_size))) return grid def _affine_theta(rois, input_size): rois = rois.detach() x1 = rois[:, 1::4] / 16.0 y1 = rois[:, 2::4] / 16.0 x2 = rois[:, 3::4] / 16.0 y2 = rois[:, 4::4] / 16.0 height = input_size[0] width = input_size[1] zero = Variable(rois.data.new(rois.size(0), 1).zero_()) # theta = torch.cat([\ # (x2 - x1) / (width - 1), # zero, # (x1 + x2 - width + 1) / (width - 1), # zero, # (y2 - y1) / (height - 1), # (y1 + y2 - height + 1) / (height - 1)], 1).view(-1, 2, 3) theta = torch.cat([ \ (y2 - y1) / (height - 1), zero, (y1 + y2 - height + 1) / (height - 1), zero, (x2 - x1) / (width - 1), (x1 + x2 - width + 1) / (width - 1)], 1).view(-1, 2, 3) return theta
[ "torch.cat", "torch.save", "torch.abs", "torch.nn.functional.grid_sample", "torch.nn.functional.max_pool2d", "torch.pow" ]
0.4.1
sadjadasghari/3d-vehicle-tracking
f8433f72a51dd1a7190570e63e9fda4a924a81f0
0.4
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- import torch def bbox_transform(ex_rois, gt_rois): ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = torch.log(gt_widths / ex_widths) targets_dh = torch.log(gt_heights / ex_heights) targets = torch.stack( (targets_dx, targets_dy, targets_dw, targets_dh), 1) return targets def bbox_transform_batch(ex_rois, gt_rois): if ex_rois.dim() == 2: ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, :, 2] - gt_rois[:, :, 0] + 1.0 gt_heights = gt_rois[:, :, 3] - gt_rois[:, :, 1] + 1.0 gt_ctr_x = gt_rois[:, :, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, :, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x.view(1, -1).expand_as( gt_ctr_x)) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y.view(1, -1).expand_as( gt_ctr_y)) / ex_heights targets_dw = torch.log( gt_widths / ex_widths.view(1, -1).expand_as(gt_widths)) targets_dh = torch.log( gt_heights / ex_heights.view(1, -1).expand_as(gt_heights)) elif ex_rois.dim() == 3: ex_widths = ex_rois[:, :, 2] - ex_rois[:, :, 0] + 1.0 ex_heights = ex_rois[:, :, 3] - ex_rois[:, :, 1] + 1.0 ex_ctr_x = ex_rois[:, :, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, :, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, :, 2] - gt_rois[:, :, 0] + 1.0 gt_heights = gt_rois[:, :, 3] - gt_rois[:, :, 1] + 1.0 gt_ctr_x = gt_rois[:, :, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, :, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = torch.log(gt_widths / ex_widths) targets_dh = torch.log(gt_heights / ex_heights) else: raise ValueError('ex_roi input dimension is not correct.') targets = torch.stack( (targets_dx, targets_dy, targets_dw, targets_dh), 2) return targets def bbox_transform_inv(boxes, deltas, batch_size): widths = boxes[:, :, 2] - boxes[:, :, 0] + 1.0 heights = boxes[:, :, 3] - boxes[:, :, 1] + 1.0 ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0::4] dy = deltas[:, :, 1::4] dw = deltas[:, :, 2::4] dh = deltas[:, :, 3::4] pred_ctr_x = dx * widths.unsqueeze(2) + ctr_x.unsqueeze(2) pred_ctr_y = dy * heights.unsqueeze(2) + ctr_y.unsqueeze(2) pred_w = torch.exp(dw) * widths.unsqueeze(2) pred_h = torch.exp(dh) * heights.unsqueeze(2) pred_boxes = deltas.clone() # x1 pred_boxes[:, :, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, :, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 pred_boxes[:, :, 2::4] = pred_ctr_x + 0.5 * pred_w # y2 pred_boxes[:, :, 3::4] = pred_ctr_y + 0.5 * pred_h return pred_boxes def center_transform_inv(boxes, deltas, batch_size): widths = boxes[:, :, 2] - boxes[:, :, 0] + 1.0 heights = boxes[:, :, 3] - boxes[:, :, 1] + 1.0 ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0::2] dy = deltas[:, :, 1::2] pred_ctr_x = dx * widths.unsqueeze(2) + ctr_x.unsqueeze(2) pred_ctr_y = dy * heights.unsqueeze(2) + ctr_y.unsqueeze(2) pred_center = deltas.clone() # x1 pred_center[:, :, 0::2] = pred_ctr_x # y1 pred_center[:, :, 1::2] = pred_ctr_y return pred_center def clip_boxes_batch(boxes, im_shape, batch_size): """ Clip boxes to image boundaries. """ # num_rois = boxes.size(1) boxes[boxes < 0] = 0 # batch_x = (im_shape[:,0]-1).view(batch_size, 1).expand(batch_size, # num_rois) # batch_y = (im_shape[:,1]-1).view(batch_size, 1).expand(batch_size, # num_rois) batch_x = im_shape[:, 1] - 1 batch_y = im_shape[:, 0] - 1 boxes[:, :, 0][boxes[:, :, 0] > batch_x] = batch_x boxes[:, :, 1][boxes[:, :, 1] > batch_y] = batch_y boxes[:, :, 2][boxes[:, :, 2] > batch_x] = batch_x boxes[:, :, 3][boxes[:, :, 3] > batch_y] = batch_y return boxes def clip_boxes(boxes, im_shape, batch_size): for i in range(batch_size): boxes[i, :, 0::4].clamp_(0, im_shape[i, 1] - 1) boxes[i, :, 1::4].clamp_(0, im_shape[i, 0] - 1) boxes[i, :, 2::4].clamp_(0, im_shape[i, 1] - 1) boxes[i, :, 3::4].clamp_(0, im_shape[i, 0] - 1) return boxes def bbox_overlaps(anchors, gt_boxes): """ anchors: (N, 4) ndarray of float gt_boxes: (K, 4) ndarray of float overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ N = anchors.size(0) K = gt_boxes.size(0) gt_boxes_area = ((gt_boxes[:, 2] - gt_boxes[:, 0] + 1) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)).view(1, K) anchors_area = ((anchors[:, 2] - anchors[:, 0] + 1) * (anchors[:, 3] - anchors[:, 1] + 1)).view(N, 1) boxes = anchors.view(N, 1, 4).expand(N, K, 4) query_boxes = gt_boxes.view(1, K, 4).expand(N, K, 4) iw = (torch.min(boxes[:, :, 2], query_boxes[:, :, 2]) - torch.max(boxes[:, :, 0], query_boxes[:, :, 0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:, :, 3], query_boxes[:, :, 3]) - torch.max(boxes[:, :, 1], query_boxes[:, :, 1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua return overlaps def bbox_overlaps_batch(anchors, gt_boxes): """ anchors: (N, 4) ndarray of float gt_boxes: (b, K, 5) ndarray of float overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:, :, :4].contiguous() gt_boxes_x = (gt_boxes[:, :, 2] - gt_boxes[:, :, 0] + 1) gt_boxes_y = (gt_boxes[:, :, 3] - gt_boxes[:, :, 1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:, :, 2] - anchors[:, :, 0] + 1) anchors_boxes_y = (anchors[:, :, 3] - anchors[:, :, 1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:, :, :, 2], query_boxes[:, :, :, 2]) - torch.max(boxes[:, :, :, 0], query_boxes[:, :, :, 0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:, :, :, 3], query_boxes[:, :, :, 3]) - torch.max(boxes[:, :, :, 1], query_boxes[:, :, :, 1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_( gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_( anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 4: anchors = anchors[:, :, :4].contiguous() else: anchors = anchors[:, :, 1:5].contiguous() gt_boxes = gt_boxes[:, :, :4].contiguous() gt_boxes_x = (gt_boxes[:, :, 2] - gt_boxes[:, :, 0] + 1) gt_boxes_y = (gt_boxes[:, :, 3] - gt_boxes[:, :, 1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:, :, 2] - anchors[:, :, 0] + 1) anchors_boxes_y = (anchors[:, :, 3] - anchors[:, :, 1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:, :, :, 2], query_boxes[:, :, :, 2]) - torch.max(boxes[:, :, :, 0], query_boxes[:, :, :, 0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:, :, :, 3], query_boxes[:, :, :, 3]) - torch.max(boxes[:, :, :, 1], query_boxes[:, :, :, 1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_( gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_( anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps
[ "torch.stack", "torch.min", "torch.max", "torch.log", "torch.exp" ]
0.4.1
sadjadasghari/3d-vehicle-tracking
f8433f72a51dd1a7190570e63e9fda4a924a81f0
0.4
""" A stacked LSTM with LSTM layers which alternate between going forwards over the sequence and going backwards. """ from typing import Optional, Tuple, Union, List import torch from torch.nn.utils.rnn import PackedSequence from allennlp.modules.augmented_lstm import AugmentedLstm from allennlp.common.checks import ConfigurationError TensorPair = Tuple[torch.Tensor, torch.Tensor] class StackedAlternatingLstm(torch.nn.Module): """ A stacked LSTM with LSTM layers which alternate between going forwards over the sequence and going backwards. This implementation is based on the description in [Deep Semantic Role Labelling - What works and what's next] (https://homes.cs.washington.edu/~luheng/files/acl2017_hllz.pdf). # Parameters input_size : `int`, required The dimension of the inputs to the LSTM. hidden_size : `int`, required The dimension of the outputs of the LSTM. num_layers : `int`, required The number of stacked LSTMs to use. recurrent_dropout_probability : `float`, optional (default = 0.0) The dropout probability to be used in a dropout scheme as stated in [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks] (https://arxiv.org/abs/1512.05287). use_input_projection_bias : `bool`, optional (default = True) Whether or not to use a bias on the input projection layer. This is mainly here for backwards compatibility reasons and will be removed (and set to False) in future releases. # Returns output_accumulator : PackedSequence The outputs of the interleaved LSTMs per timestep. A tensor of shape (batch_size, max_timesteps, hidden_size) where for a given batch element, all outputs past the sequence length for that batch are zero tensors. """ def __init__( self, input_size: int, hidden_size: int, num_layers: int, recurrent_dropout_probability: float = 0.0, use_highway: bool = True, use_input_projection_bias: bool = True, ) -> None: super().__init__() # Required to be wrapped with a `PytorchSeq2SeqWrapper`. self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers layers = [] lstm_input_size = input_size for layer_index in range(num_layers): go_forward = layer_index % 2 == 0 layer = AugmentedLstm( lstm_input_size, hidden_size, go_forward, recurrent_dropout_probability=recurrent_dropout_probability, use_highway=use_highway, use_input_projection_bias=use_input_projection_bias, ) lstm_input_size = hidden_size self.add_module("layer_{}".format(layer_index), layer) layers.append(layer) self.lstm_layers = layers def forward( self, inputs: PackedSequence, initial_state: Optional[TensorPair] = None ) -> Tuple[Union[torch.Tensor, PackedSequence], TensorPair]: """ # Parameters inputs : `PackedSequence`, required. A batch first `PackedSequence` to run the stacked LSTM over. initial_state : Tuple[torch.Tensor, torch.Tensor], optional, (default = None) A tuple (state, memory) representing the initial hidden state and memory of the LSTM. Each tensor has shape (1, batch_size, output_dimension). # Returns output_sequence : PackedSequence The encoded sequence of shape (batch_size, sequence_length, hidden_size) final_states: Tuple[torch.Tensor, torch.Tensor] The per-layer final (state, memory) states of the LSTM, each with shape (num_layers, batch_size, hidden_size). """ if not initial_state: hidden_states: List[Optional[TensorPair]] = [None] * len(self.lstm_layers) elif initial_state[0].size()[0] != len(self.lstm_layers): raise ConfigurationError( "Initial states were passed to forward() but the number of " "initial states does not match the number of layers." ) else: hidden_states = list( zip(initial_state[0].split(1, 0), initial_state[1].split(1, 0)) ) output_sequence = inputs final_states = [] for i, state in enumerate(hidden_states): layer = getattr(self, "layer_{}".format(i)) # The state is duplicated to mirror the Pytorch API for LSTMs. output_sequence, final_state = layer(output_sequence, state) final_states.append(final_state) final_hidden_state, final_cell_state = tuple( torch.cat(state_list, 0) for state_list in zip(*final_states) ) return output_sequence, (final_hidden_state, final_cell_state)
[ "torch.cat" ]
0.4.1
rahular/joint-coref-srl
cd85fb4e11af1a1ea400ed657d0a4511c1d6c6be
2.0
""" Copyright (c) 2019-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest import torch from copy import deepcopy from pytest import approx from torch import nn from nncf.api.compression import CompressionStage from nncf.config import NNCFConfig from nncf.torch.module_operations import UpdateWeight from nncf.torch.sparsity.rb.algo import RBSparsityController from nncf.torch.sparsity.rb.layers import RBSparsifyingWeight from nncf.torch.sparsity.rb.loss import SparseLoss, SparseLossForPerLayerSparsity from nncf.common.sparsity.schedulers import PolynomialSparsityScheduler from tests.torch.helpers import MockModel, BasicConvTestModel, TwoConvTestModel, \ create_compressed_model_and_algo_for_test, check_correct_nncf_modules_replacement, get_empty_config def get_basic_sparsity_config(input_sample_size=None, sparsity_init=0.02, sparsity_target=0.5, sparsity_target_epoch=2, sparsity_freeze_epoch=3): if input_sample_size is None: input_sample_size = [1, 1, 4, 4] config = NNCFConfig() config.update({ "model": "basic_sparse_conv", "input_info": { "sample_size": input_sample_size, }, "compression": { "algorithm": "rb_sparsity", "sparsity_init": sparsity_init, "params": { "schedule": "polynomial", "sparsity_target": sparsity_target, "sparsity_target_epoch": sparsity_target_epoch, "sparsity_freeze_epoch": sparsity_freeze_epoch }, } }) return config def test_can_load_sparse_algo__with_defaults(): model = BasicConvTestModel() config = get_basic_sparsity_config() sparse_model, compression_ctrl = create_compressed_model_and_algo_for_test(deepcopy(model), config) assert isinstance(compression_ctrl, RBSparsityController) _, sparse_model_conv = check_correct_nncf_modules_replacement(model, sparse_model) for sparse_module in sparse_model_conv.values(): store = [] for op in sparse_module.pre_ops.values(): if isinstance(op, UpdateWeight) and isinstance(op.operand, RBSparsifyingWeight): assert torch.allclose(op.operand.binary_mask, torch.ones_like(sparse_module.weight)) assert not op.operand.frozen assert op.__class__.__name__ not in store store.append(op.__class__.__name__) def test_can_set_sparse_layers_to_loss(): model = BasicConvTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) loss = compression_ctrl.loss assert isinstance(loss, SparseLoss) # pylint: disable=protected-access for layer in loss._sparse_layers: assert isinstance(layer, RBSparsifyingWeight) def test_sparse_algo_does_not_replace_not_conv_layer(): class TwoLayersTestModel(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 1, 1) self.bn = nn.BatchNorm2d(1) def forward(self, x): return self.bn(self.conv(x)) model = TwoLayersTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) assert isinstance(compression_ctrl, RBSparsityController) for m in compression_ctrl.sparsified_module_info: assert isinstance(m.operand, RBSparsifyingWeight) def test_can_create_sparse_loss_and_scheduler(): model = BasicConvTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) scheduler = compression_ctrl.scheduler scheduler.epoch_step() loss = compression_ctrl.loss assert isinstance(loss, SparseLoss) assert not loss.disabled assert loss.target_sparsity_rate == approx(0.02) assert loss.p == approx(0.05) assert isinstance(scheduler, PolynomialSparsityScheduler) assert scheduler.current_sparsity_level == approx(0.02) assert scheduler.target_level == approx(0.5) assert scheduler.target_epoch == 2 assert scheduler.freeze_epoch == 3 def test_sparse_algo_can_calc_sparsity_rate__for_basic_model(): model = BasicConvTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) nncf_stats = compression_ctrl.statistics() sparse_model_stats = nncf_stats.rb_sparsity.model_statistics assert sparse_model_stats.sparsity_level == ( 1 - (model.nz_weights_num + model.nz_bias_num) / (model.weights_num + model.bias_num) ) assert sparse_model_stats.sparsity_level_for_layers == 1 - model.nz_weights_num / model.weights_num assert len(compression_ctrl.sparsified_module_info) == 1 def test_sparse_algo_can_collect_sparse_layers(): model = TwoConvTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) assert len(compression_ctrl.sparsified_module_info) == 2 def test_sparse_algo_can_calc_sparsity_rate__for_2_conv_model(): model = TwoConvTestModel() config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) nncf_stats = compression_ctrl.statistics() sparse_model_stats = nncf_stats.rb_sparsity.model_statistics assert pytest.approx(sparse_model_stats.sparsity_level) == ( 1 - (model.nz_weights_num + model.nz_bias_num) / (model.weights_num + model.bias_num) ) assert sparse_model_stats.sparsity_level_for_layers == 1 - model.nz_weights_num / model.weights_num def test_scheduler_can_do_epoch_step__with_rb_algo(): config = NNCFConfig() config['input_info'] = [{"sample_size": [1, 1, 32, 32]}] config['compression'] = { 'algorithm': 'rb_sparsity', 'sparsity_init': 0.2, "params": { 'schedule': 'polynomial', 'power': 1, 'sparsity_target_epoch': 2, 'sparsity_target': 0.6, 'sparsity_freeze_epoch': 3 } } _, compression_ctrl = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config) scheduler = compression_ctrl.scheduler loss = compression_ctrl.loss assert pytest.approx(loss.target_sparsity_rate) == 0.2 assert not loss.disabled for module_info in compression_ctrl.sparsified_module_info: assert not module_info.operand.frozen scheduler.epoch_step() assert pytest.approx(loss.target_sparsity_rate, abs=1e-3) == 0.2 assert pytest.approx(loss().item(), abs=1e-3) == 16 assert not loss.disabled scheduler.epoch_step() assert pytest.approx(loss.target_sparsity_rate, abs=1e-3) == 0.4 assert pytest.approx(loss().item(), abs=1e-3) == 64 assert not loss.disabled scheduler.epoch_step() assert pytest.approx(loss.target_sparsity_rate, abs=1e-3) == 0.6 assert pytest.approx(loss().item(), abs=1e-3) == 144 assert not loss.disabled scheduler.epoch_step() assert loss.disabled assert loss.target_sparsity_rate == 0.6 assert loss() == 0 for module_info in compression_ctrl.sparsified_module_info: assert module_info.operand.frozen def test_create_rb_algo_with_per_layer_loss(): config = get_empty_config() config['compression'] = {'algorithm': 'rb_sparsity', "params": {"sparsity_level_setting_mode": 'local'}} _, compression_ctrl = create_compressed_model_and_algo_for_test(MockModel(), config) # pylint: disable=protected-access assert isinstance(compression_ctrl._loss, SparseLossForPerLayerSparsity) def test_rb_sparsity__can_set_sparsity_level_for_module(): config = get_empty_config() config['compression'] = {'algorithm': 'rb_sparsity', "params": {"sparsity_level_setting_mode": 'local'}} _, compression_ctrl = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config) # pylint: disable=protected-access assert list(compression_ctrl._loss.per_layer_target.values())[0] == 1 compression_ctrl.set_sparsity_level(0.7, compression_ctrl.sparsified_module_info[0]) assert list(compression_ctrl._loss.per_layer_target.values())[0] == pytest.approx(0.3) def test_create_rb_algo_with_local_sparsity_mode(): config = get_empty_config() config['compression'] = {'algorithm': 'rb_sparsity', "params": {"sparsity_level_setting_mode": 'local'}} _, compression_ctrl = create_compressed_model_and_algo_for_test(MockModel(), config) assert compression_ctrl.compression_stage() == CompressionStage.FULLY_COMPRESSED def test_can_set_compression_rate_for_rb_sparsity_algo(): config = get_basic_sparsity_config() _, compression_ctrl = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config) compression_ctrl.compression_rate = 0.65 assert pytest.approx(compression_ctrl.compression_rate, 1e-2) == 0.65
[ "torch.nn.Conv2d", "torch.nn.BatchNorm2d", "torch.ones_like" ]
2.0
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
2.0
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch from torch import nn import torch.nn.functional as F from torch.utils import model_zoo __all__ = ['Inception3', 'inception_v3'] model_urls = { # Inception v3 ported from TensorFlow 'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth', } def inception_v3(pretrained=False, **kwargs): r"""Inception v3 model architecture from `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. Args: pretrained (bool): If True, returns a model pretrained on ImageNet """ if pretrained: if 'transform_input' not in kwargs: kwargs['transform_input'] = True model = Inception3(**kwargs) model.load_state_dict(model_zoo.load_url(model_urls['inception_v3_google'])) return model return Inception3(**kwargs) class Inception3(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False): super().__init__() self.aux_logits = aux_logits self.transform_input = transform_input self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2) self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3) self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1) self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1) self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3) self.Mixed_5b = InceptionA(192, pool_features=32) self.Mixed_5c = InceptionA(256, pool_features=64) self.Mixed_5d = InceptionA(288, pool_features=64) self.Mixed_6a = InceptionB(288) self.Mixed_6b = InceptionC(768, channels_7x7=128) self.Mixed_6c = InceptionC(768, channels_7x7=160) self.Mixed_6d = InceptionC(768, channels_7x7=160) self.Mixed_6e = InceptionC(768, channels_7x7=192) if aux_logits: self.AuxLogits = InceptionAux(768, num_classes) self.Mixed_7a = InceptionD(768) self.Mixed_7b = InceptionE(1280) self.Mixed_7c = InceptionE(2048) self.fc = nn.Linear(2048, num_classes) for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Linear)): from scipy import stats stddev = m.stddev if hasattr(m, 'stddev') else 0.1 X = stats.truncnorm(-2, 2, scale=stddev) values = torch.Tensor(X.rvs(m.weight.numel())) values = values.view(m.weight.size()) m.weight.data.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 299 x 299 x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149 x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147 x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147 x = F.max_pool2d(x, kernel_size=3, stride=2) # N x 64 x 73 x 73 x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73 x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71 x = F.max_pool2d(x, kernel_size=3, stride=2) # N x 192 x 35 x 35 x = self.Mixed_5b(x) # N x 256 x 35 x 35 x = self.Mixed_5c(x) # N x 288 x 35 x 35 x = self.Mixed_5d(x) # N x 288 x 35 x 35 x = self.Mixed_6a(x) # N x 768 x 17 x 17 x = self.Mixed_6b(x) # N x 768 x 17 x 17 x = self.Mixed_6c(x) # N x 768 x 17 x 17 x = self.Mixed_6d(x) # N x 768 x 17 x 17 x = self.Mixed_6e(x) # N x 768 x 17 x 17 if self.training and self.aux_logits: aux = self.AuxLogits(x) # N x 768 x 17 x 17 x = self.Mixed_7a(x) # N x 1280 x 8 x 8 x = self.Mixed_7b(x) # N x 2048 x 8 x 8 x = self.Mixed_7c(x) # N x 2048 x 8 x 8 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 2048 x 1 x 1 x = F.dropout(x, training=self.training) # N x 2048 x 1 x 1 x = x.view(x.size(0), -1) # N x 2048 x = self.fc(x) # N x 1000 (num_classes) if self.training and self.aux_logits: return x, aux return x class InceptionA(nn.Module): def __init__(self, in_channels, pool_features): super().__init__() self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1) self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1) self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionB(nn.Module): def __init__(self, in_channels): super().__init__() self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2) def forward(self, x): branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionC(nn.Module): def __init__(self, in_channels, channels_7x7): super().__init__() self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1) c7 = channels_7x7 self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1) self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1) self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1) class InceptionD(nn.Module): def __init__(self, in_channels): super().__init__() self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1) self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2) self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1) self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2) def forward(self, x): branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch7x7x3, branch_pool] return torch.cat(outputs, 1) class InceptionE(nn.Module): def __init__(self, in_channels): super().__init__() self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1) self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1) self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1) self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super().__init__() self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1) self.conv1 = BasicConv2d(128, 768, kernel_size=5) self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 def forward(self, x): # N x 768 x 17 x 17 x = F.avg_pool2d(x, kernel_size=5, stride=3) # N x 768 x 5 x 5 x = self.conv0(x) # N x 128 x 5 x 5 x = self.conv1(x) # N x 768 x 1 x 1 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 768 x 1 x 1 x = x.view(x.size(0), -1) # N x 768 x = self.fc(x) # N x 1000 return x class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True)
[ "torch.nn.Linear", "torch.cat", "torch.nn.functional.avg_pool2d", "torch.nn.init.constant_", "torch.nn.functional.dropout", "torch.nn.BatchNorm2d", "torch.utils.model_zoo.load_url", "torch.nn.functional.adaptive_avg_pool2d", "torch.unsqueeze", "torch.nn.Conv2d", "torch.nn.functional.relu", "torch.nn.functional.max_pool2d" ]
2.0
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
2.0
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import queue from typing import List, Callable, Optional, Tuple, Dict import numpy as np import torch from torch import nn from copy import deepcopy, copy from functools import partial from torch import optim from nncf.config.config import NNCFConfig from nncf.torch.utils import get_filters_num class EvolutionOptimizer: """ Class for optimizing ranking coefficients for the model with evolution algorithm (agent). The evolution algorithm works as follows: 1. For the first population_size steps it generates and returns random actions (generated with some prior information). For every action, it gets a reward (some measure whether this action is good or not). During these generations all action - reward pairs saving to the population. 2. During remaining (generations - population_size) generations it predict action by next scheme: - Choosing random num_samples actions from population - Choosing the best one from sampled and mutate it - Return the resulting action During this generation's action - reward pairs saving by updating oldest actions in population. After all generations, the best action (with the best reward value) is returned. """ def __init__(self, initial_filter_norms: Dict, hparams: Dict, random_seed: int): """ :param initial_filter_norms: Initial filter norms needed to get std and var of filter norms in each leyer. :param hparams: hyperparams of the Optimizer, can contain population_size, num_generations, num_samples, mutate_percent, sigma_scale :param random_seed: random seed, thet should be set during action generation for reproducibility """ self.random_seed = random_seed # Optimizer hyper-params self.population_size = hparams.get('population_size', 64) self.num_generations = hparams.get('num_generations', 400) self.num_samples = hparams.get('num_samples', 16) self.mutate_percent = hparams.get('mutate_percent', 0.1) self.scale_sigma = hparams.get('sigma_scale', 1) self.max_reward = -np.inf self.mean_rewards = [] self.indexes_queue = queue.Queue(self.population_size) self.oldest_index = None self.population_rewards = np.zeros(self.population_size) self.population = [None for i in range(self.population_size)] self.best_action = None self.last_action = None self.num_layers = len(initial_filter_norms) self.layer_keys = np.array(list(initial_filter_norms.keys())) self.initial_norms_stats = {} for key in self.layer_keys: layer_norms = initial_filter_norms[key].cpu().detach().numpy() self.initial_norms_stats[key] = {'mean': np.mean(layer_norms), 'std': np.std(layer_norms)} self.cur_state = None self.cur_reward = None self.cur_episode = None self.cur_info = None def get_best_action(self): return self.best_action def _save_episode_info(self, reward: float) -> None: """ Saving episode information: action-reward pairs and updating best_action/reward variables if needed. :param reward: reward for the current episode """ # Update best action and reward if needed if reward > self.max_reward: self.best_action = self.last_action self.max_reward = reward if self.cur_episode < self.population_size: self.indexes_queue.put(self.cur_episode) self.population[self.cur_episode] = self.last_action self.population_rewards[self.cur_episode] = reward else: self.indexes_queue.put(self.oldest_index) self.population[self.oldest_index] = self.last_action self.population_rewards[self.oldest_index] = reward def _predict_action(self) -> Dict: """ Predict action for the current episode. Works as described above. :return: new generated action """ np.random.seed(self.random_seed) episode_num = self.cur_episode action = {} if episode_num < self.population_size - 1: # During first population_size generations, generates random actions for key in self.layer_keys: scale = np.exp(np.random.normal(0, self.scale_sigma)) shift = np.random.normal(0, self.initial_norms_stats[key]['std']) action[key] = (scale, shift) elif episode_num == self.population_size - 1: # Adding identity action to population for key in self.layer_keys: action[key] = (1, 0) else: step_size = 1 - (float(episode_num) / (self.num_generations * 1.25)) # Rename this self.mean_rewards.append(np.mean(self.population_rewards)) # 1. Sampling num_samples actions from population and choosing the best one sampled_idxs = np.random.choice(len(self.population_rewards), self.num_samples) sampled_rewards = self.population_rewards[sampled_idxs] best_action = self.population[sampled_idxs[np.argmax(sampled_rewards)]] # 2. Mutate best action mutate_num = int(self.mutate_percent * self.num_layers) mutate_idxs = np.random.choice(self.layer_keys, mutate_num) for key in self.layer_keys: scale, shift = 1, 0 if key in mutate_idxs: scale = np.exp(np.random.normal(0, self.scale_sigma * step_size)) shift = np.random.normal(0, self.initial_norms_stats[key]['std']) action[key] = (scale * best_action[key][0], shift + best_action[key][1]) self.oldest_index = self.indexes_queue.get() return action def ask(self, episode_num: int) -> Dict: """ Predict and returns action for the last told episode information: state, reward, episode_num and info :return: predicted action """ self.cur_episode = episode_num action = self._predict_action() self.last_action = action return action def tell(self, state: torch.Tensor, reward: float, end_of_episode: bool, episode_num: int, info: List) -> None: """ Getting info about episode step and save it every end of episode """ # Saving state, reward and info from the current step self.cur_state = state self.cur_reward = reward self.cur_episode = episode_num self.cur_info = info if end_of_episode: self._save_episode_info(reward) class LeGREvolutionEnv: """ Environment class for optimizing the accuracy of the pruned model with different ranking coefficients. During 'step' environment doing step with received action calculates current reward and useful info and return it During 'reset' resetting Pruner and environment params changed during iteration. """ def __init__(self, filter_pruner: 'LeGRPruner', model: nn.Module, train_loader: torch.utils.data.DataLoader, val_loader: torch.utils.data.DataLoader, train_fn: Callable, train_optimizer: Optional[torch.optim.Optimizer], val_fn: Callable, config: NNCFConfig, train_steps: int, pruning_max: float): """ :param filter_pruner: LeGRPruner, should have an interface for pruning model and resetting pruner. :param model: target model for which ranking coefficients are trained :param train_loader: data loader for training the model :param val_loader: data loader for validating the model :param train_fn: callable for training the model :param train_optimizer: optional, optimizer for training the model :param val_fn: callable for validation of the model, returns acc, loss :param config: NNCF config for model compression :param train_steps: number of training steps to evaluate action (ranking coefficients set) :param pruning_max: pruning level for the model """ self.loss_as_reward = True self.prune_target = pruning_max self.steps = train_steps # Train/test params self.train_loader, self.val_loader = train_loader, val_loader self.train_fn = train_fn self.train_optimizer = train_optimizer if self.train_optimizer is None: # Default optimizer when the user did not provide a custom optimizer self.train_optimizer = partial(optim.SGD, lr=1e-2, momentum=0.9, weight_decay=5e-4, nesterov=True) self.validate_fn = val_fn self.config = config self.filter_pruner = filter_pruner self.model = model def reset(self) -> Tuple[torch.Tensor, List]: """ Resetting pruner params (all changes in the model made by training) and environment params changed during the step. :return: tuple with state and info : full flops in the model and number of flops that is rest in the model """ self.filter_pruner.reset() self.model.eval() self.full_flops = self.filter_pruner.get_full_flops_number_in_model() self.rest = self.full_flops self.last_act = None return torch.zeros(1), [self.full_flops, self.rest] def _train_steps(self, steps: int) -> None: """ Training model with train_fn for received steps number. :param steps: number of model training steps """ optimizer = self.train_optimizer(self.model.parameters()) self.train_fn(self.train_loader, self.model, optimizer, self.filter_pruner, steps) def _get_reward(self) -> Tuple[float, float, float]: """ Validating model with validate_fn and return result in format: (acc, loss) """ return self.validate_fn(self.model, self.val_loader) def step(self, action: Dict) -> Tuple[torch.Tensor, float, bool, List]: """ 1. Getting action (ranking coefficients) 2. Making step with this action - prune model with ranking coefficients 3. Getting a reward for this action- train model for some steps and validate it 4. Returning new state (for current settings state is default and not used), reward, whether the episode is over or not (for current settings an episode is over after every step) and additional info (full flops in model and flops left in the model) :param action: ranking coefficients """ self.last_act = action new_state = torch.zeros(1) reduced = self.filter_pruner.prune(self.prune_target, action) self._train_steps(self.steps) acc, loss = self._get_reward() if self.loss_as_reward: reward = -loss else: reward = acc done = 1 info = [self.full_flops, reduced] return new_state, reward, done, info class LeGRPruner: """ Wrapper for pruning controller with a simplified interface, allowing prune model with received ranking coefficients and resetting all changes in the model made by the environment. """ def __init__(self, filter_pruner_ctrl: 'FilterPruningController', model: nn.Module): self.filter_pruner = filter_pruner_ctrl self.scheduler = copy(self.filter_pruner.scheduler) self.model = model self.model_params_copy = None self._save_model_weights() self.init_filter_norms = {node.node_name: self.filter_pruner.filter_importance(node.module.weight) for node in self.filter_pruner.pruned_module_groups_info.get_all_nodes()} def loss(self) -> float: """ :return: loss for pruning algorithm """ return self.filter_pruner.loss() def _save_model_weights(self) -> None: """ Saving copy of all model parameters """ self.model_params_copy = deepcopy(self.model.state_dict()) def _restore_model_weights(self): """ Restoring saved original model parameters to discard any changes in model weights. """ self.model.load_state_dict(self.model_params_copy) def _reset_masks(self) -> None: """ Resetting masks for all pruned nodes """ for minfo in self.filter_pruner.pruned_module_groups_info.get_all_nodes(): new_mask = torch.ones(get_filters_num(minfo.module)).to( minfo.module.weight.device) self.filter_pruner.set_mask(minfo, new_mask) def reset(self) -> None: """ Resetting all changes made in the model (and model masks during environment step) by restoring the original model weights, resetting masks. """ self._restore_model_weights() self._reset_masks() self.scheduler = copy(self.filter_pruner.scheduler) def get_full_flops_number_in_model(self) -> float: return self.filter_pruner.full_flops def prune(self, flops_pruning_target: float, ranking_coeffs: Dict) -> None: """ Prune target model to flops pruning target with ranking_coeffs. :param flops_pruning_target: pruning target for the model pruning :param ranking_coeffs: ranking coefficients, that will be used for layers ranking during pruning """ self.filter_pruner.ranking_coeffs = ranking_coeffs self.filter_pruner.set_pruning_level(flops_pruning_target)
[ "torch.zeros" ]
2.0
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
1.0
import os import logging from dotenv import load_dotenv load_dotenv(verbose=True) logger = logging.getLogger(__name__) # The Root Directory of the project ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) POSENET_PATH = os.path.join(ROOT_DIR, 'data','raw','posenet.pth') POSTURENET_PATH = os.path.join(ROOT_DIR, 'data','raw','posturenet.pth') import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
[ "torch.cuda.is_available" ]
1.0.1
Sushil-Thapa/rectif.ai
b308f613402097dca9734806a8c27ba3eef6a358
1.5
import os import os print(os.getcwd()) # os.path.dirname(os.path.abspath("__file__")) path = '/Volumes/Extreme SSD/MLWork/DocAI/PICK-pytorch' os.chdir(path) # os.chdir('../') # path = '/Users/neerajyadav/Documents/pycv/PICK-pytorch/' """Convert files of a selected directory in jpg format""" import converter # !pip install easyocr import easyocr #download the model reader = easyocr.Reader(['en'], gpu = True) # show an image import PIL from PIL import ImageDraw from PIL import Image import cv2 import PIL from PIL import ImageDraw from PIL import Image import cv2 import pandas as pd from pandas import DataFrame import pandas as pd import json import glob # import xlrd import csv import argparse import torch from tqdm import tqdm from pathlib import Path from torch.utils.data.dataloader import DataLoader from allennlp.data.dataset_readers.dataset_utils.span_utils import bio_tags_to_spans from parse_config import ConfigParser import model.pick as pick_arch_module from data_utils.pick_dataset import PICKDataset from data_utils.pick_dataset import BatchCollateFn from utils.util import iob_index_to_str, text_index_to_str import converter import shutil, os ### convert image into transcript file """Select jpg files and convert into transcript files""" filenames = glob.glob("../TestImage/*.jpg") filenamesj = glob.glob("../TestImage/*.jpeg") filenames = filenames + filenamesj filenames.sort() def draw_boxes(image, bounds, color='green', width=1): draw = ImageDraw.Draw(image) for bound in bounds: p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color , width=width) # if bound[1] == "ToTAL" or bound[1] =="TOTAL" or bound[1]=="TOTAL" or bound[1] =="Total Payable;" or bound[1] =="Total Payable:" or bound[1] =="Total Payable:" or bound[1]=='Total' or bound[1]=='TOTAL' or bound[1]=="Totz' Ingi, 0f GST" or bound[1]=="Total Sales (Inclusive of GST)" or bound[1]=="Net Total (MYR)": # draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) # print(bound[0]) # image.save("temp.jpg") return image # draw_boxes(im, bounds) def concatenate_list_data(list): result= '' for element in list: result = result +str(element) return result for s in filenames: # s = "Invoice0.jpg" filen = s.split(".")[0] print(filen) im = PIL.Image.open(s).convert('RGB') # Doing OCR. Get bounding boxes. bounds = reader.readtext(s) im = PIL.Image.open(s).convert('RGB') df = pd.DataFrame() CoordinatesValue = [] for i in bounds: Coordinates =[] CoordinatesValue=[] temp_df = pd.DataFrame() Coordinates.append(concatenate_list_data(i[0]).replace("][",",").replace("[","").replace("]","").replace(" ","")) # print(i[1]) CoordinatesValue.append(i[1]) temp_df = DataFrame(zip(Coordinates,CoordinatesValue),columns = ['Coordinates', 'Value']) # print(temp_df) df = df.append(temp_df) # print(item[0]) combine_lambda = lambda x: '{},{}'.format(x.Coordinates, x.Value) df['Result'] = df.apply(combine_lambda, axis = 1) dfnew= df['Result'] dfnew = dfnew[0].str.split(',', expand=True) dfnew.insert(0,'name_of_column','') dfnew['name_of_column'] = 1 # dfnew.to_csv(str(filen)+".tsv", sep = ',',index=False ,header=False ) dfnew.to_csv(str(filen)+".tsv",sep = ',',index=False,header=False, quotechar='',escapechar='\\',quoting=csv.QUOTE_NONE, ) ### copy file from source folder to destination folder ### for f in filenames: shutil.copy(f, 'test_img/') filetsv = glob.glob("/Volumes/Extreme SSD/MLWork/DocAI/TestImage/*.tsv") for f in filetsv: shutil.copy(f, 'test_boxes_and_transcripts/') ### inference code ##### device = torch.device(f'cuda:{args.gpu}' if -1 != -1 else 'cpu') ### setting value of gpu to -1 to run inference savedCheckpiont = 'saved/models/PICK_Default/test_999/model_best.pth' checkpoint = torch.load(savedCheckpiont, map_location=device) config = checkpoint['config'] state_dict = checkpoint['state_dict'] monitor_best = checkpoint['monitor_best'] print('Loading checkpoint: {} \nwith saved mEF {:.4f} ...'.format(savedCheckpiont, monitor_best)) # prepare model for testing pick_model = config.init_obj('model_arch', pick_arch_module) pick_model = pick_model.to(device) pick_model.load_state_dict(state_dict) pick_model.eval() ## pick ocr transcript file and image in below folders out_img_path = "test_img/" out_box_path = "test_boxes_and_transcripts/" # setup dataset and data_loader instances batch_size_val=1 test_dataset = PICKDataset(boxes_and_transcripts_folder=out_box_path, images_folder=out_img_path, resized_image_size=(480, 960), ignore_error=False, training=False) test_data_loader = DataLoader(test_dataset, batch_size=batch_size_val, shuffle=False, num_workers=0, collate_fn=BatchCollateFn(training=False)) ## have changed the number of workers to zero # setup output path output_folder = 'output' output_path = Path(output_folder) output_path.mkdir(parents=True, exist_ok=True) with torch.no_grad(): for step_idx, input_data_item in enumerate(test_data_loader): for key, input_value in input_data_item.items(): if input_value is not None and isinstance(input_value, torch.Tensor): input_data_item[key] = input_value.to(device) # For easier debug. image_names = input_data_item["filenames"] # print('image names') # print(image_names) output = pick_model(**input_data_item) # print(output) logits = output['logits'] # (B, N*T, out_dim) # print(logits) new_mask = output['new_mask'] # print(new_mask) image_indexs = input_data_item['image_indexs'] # (B,) text_segments = input_data_item['text_segments'] # (B, num_boxes, T) mask = input_data_item['mask'] # List[(List[int], torch.Tensor)] best_paths = pick_model.decoder.crf_layer.viterbi_tags(logits, mask=new_mask, logits_batch_first=True) # print('best_paths') # print(best_paths) predicted_tags = [] for path, score in best_paths: # print(path,score) predicted_tags.append(path) # convert iob index to iob string decoded_tags_list = iob_index_to_str(predicted_tags) # union text as a sequence and convert index to string decoded_texts_list = text_index_to_str(text_segments, mask) # print(decoded_texts_list) for decoded_tags, decoded_texts, image_index in zip(decoded_tags_list, decoded_texts_list, image_indexs): # List[ Tuple[str, Tuple[int, int]] ] spans = bio_tags_to_spans(decoded_tags, []) spans = sorted(spans, key=lambda x: x[1][0]) entities = [] # exists one to many case # print(spans) for entity_name, range_tuple in spans: entity = dict(entity_name=entity_name, text=''.join(decoded_texts[range_tuple[0]:range_tuple[1] + 1])) entities.append(entity) result_file = output_path.joinpath(Path(test_dataset.files_list[image_index]).stem + '.txt') # print(entities) with result_file.open(mode='w') as f: for item in entities: f.write('{}\t{}\n'.format(item['entity_name'], item['text'])) print(item['entity_name'],item['text']) # dir = 'path/to/dir' try: dir = out_img_path for f in os.listdir(dir): os.remove(os.path.join(dir, f)) except: pass try: dir = out_box_path for f in os.listdir(dir): os.remove(os.path.join(dir, f)) except: pass
[ "torch.device", "torch.no_grad", "torch.load" ]
1.5.1
NeerajAI/PICK-pytorch
61deb7c1e11df30c8f03726c061a2866234ac770
1.5
import warnings from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from .utils import load_state_dict_from_url __all__ = ['GoogLeNet', 'googlenet'] model_urls = { # GoogLeNet ported from TensorFlow 'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth', } _GoogLeNetOutputs = namedtuple('GoogLeNetOutputs', ['logits', 'aux_logits2', 'aux_logits1']) def googlenet(pretrained=False, progress=True, **kwargs): r"""GoogLeNet (Inception v1) model architecture from `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr aux_logits (bool): If True, adds two auxiliary branches that can improve training. Default: *False* when pretrained is True otherwise *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ if pretrained: if 'transform_input' not in kwargs: kwargs['transform_input'] = True if 'aux_logits' not in kwargs: kwargs['aux_logits'] = False if kwargs['aux_logits']: warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, ' 'so make sure to train them') original_aux_logits = kwargs['aux_logits'] kwargs['aux_logits'] = True kwargs['init_weights'] = False model = GoogLeNet(**kwargs) state_dict = load_state_dict_from_url(model_urls['googlenet'], progress=progress) model.load_state_dict(state_dict) if not original_aux_logits: model.aux_logits = False del model.aux1, model.aux2 return model return GoogLeNet(**kwargs) class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True): super(GoogLeNet, self).__init__() self.aux_logits = aux_logits self.transform_input = transform_input self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3) self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.conv2 = BasicConv2d(64, 64, kernel_size=1) self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1) self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32) self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64) self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64) self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64) self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64) self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128) self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) if aux_logits: self.aux1 = InceptionAux(512, num_classes) self.aux2 = InceptionAux(528, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(0.2) self.fc = nn.Linear(1024, num_classes) if init_weights: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 224 x 224 x = self.conv1(x) # N x 64 x 112 x 112 x = self.maxpool1(x) # N x 64 x 56 x 56 x = self.conv2(x) # N x 64 x 56 x 56 x = self.conv3(x) # N x 192 x 56 x 56 x = self.maxpool2(x) # N x 192 x 28 x 28 x = self.inception3a(x) # N x 256 x 28 x 28 x = self.inception3b(x) # N x 480 x 28 x 28 x = self.maxpool3(x) # N x 480 x 14 x 14 x = self.inception4a(x) # N x 512 x 14 x 14 if self.training and self.aux_logits: aux1 = self.aux1(x) x = self.inception4b(x) # N x 512 x 14 x 14 x = self.inception4c(x) # N x 512 x 14 x 14 x = self.inception4d(x) # N x 528 x 14 x 14 if self.training and self.aux_logits: aux2 = self.aux2(x) x = self.inception4e(x) # N x 832 x 14 x 14 x = self.maxpool4(x) # N x 832 x 7 x 7 x = self.inception5a(x) # N x 832 x 7 x 7 x = self.inception5b(x) # N x 1024 x 7 x 7 x = self.avgpool(x) # N x 1024 x 1 x 1 x = torch.flatten(x, 1) # N x 1024 x = self.dropout(x) x = self.fc(x) # N x 1000 (num_classes) if self.training and self.aux_logits: return _GoogLeNetOutputs(x, aux2, aux1) return x class Inception(nn.Module): def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj): super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( BasicConv2d(in_channels, ch3x3red, kernel_size=1), BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) ) self.branch3 = nn.Sequential( BasicConv2d(in_channels, ch5x5red, kernel_size=1), BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1) ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), BasicConv2d(in_channels, pool_proj, kernel_size=1) ) def forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAux, self).__init__() self.conv = BasicConv2d(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024) self.fc2 = nn.Linear(1024, num_classes) def forward(self, x): # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = F.relu(self.fc1(x), inplace=True) # N x 1024 x = F.dropout(x, 0.7, training=self.training) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True)
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.flatten", "torch.nn.MaxPool2d", "torch.nn.init.constant_", "torch.nn.functional.dropout", "torch.nn.BatchNorm2d", "torch.nn.functional.adaptive_avg_pool2d", "torch.no_grad", "torch.nn.functional.relu", "torch.unsqueeze", "torch.nn.Conv2d", "torch.nn.AdaptiveAvgPool2d" ]
1.5.1
GreenCUBIC/GasBotty
158f5991201c80bf4cbbbb9deabc9954ff19bbb1
1.7
import sys import argparse import torch from ModelLoader import load_model def main(): parser = argparse.ArgumentParser(prog='gentool') parser.add_argument("--training", action='store_true', help="Whether or not to start the model in training mode.") parser.add_argument("--model", type=str, help="The model to loader.") parser.add_argument("--iterations", type=int, default=10000, help="Number of iterations to train for.") parser.add_argument("--itr_offset", type=int, default=0, help="Iteration count offset.") parser.add_argument("--no_cuda", action='store_true', help="Disables loading to GPU.") opt = parser.parse_args() cuda = not opt.no_cuda if opt.model is None: print('Model not defined!') sys.exit(1) if cuda: torch.set_default_tensor_type(torch.cuda.FloatTensor) model = load_model(opt.model, cuda) if opt.training: model.train() else: model.eval() if opt.training: model.fit(opt.iterations, offset=opt.itr_offset) if __name__ == '__main__': main()
[ "torch.set_default_tensor_type" ]
1.7.1
TheDudeFromCI/generative-toolkit
4a0aed629b72e6eea807dadc460afa90dd330f7f
1.4
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.utils import model_zoo from torchvision import models from utils.spp_layer import spatial_pyramid_pool class CIS_VGGBN(nn.Module): def __init__(self, backbone='vgg16_bn', pretrained=True, freeze_backbone=False): super(CIS_VGGBN, self).__init__() self.output_num = [4,2,1] vgg = models.vgg16_bn(pretrained) features = list(vgg.features.children()) self.dec1 = nn.Sequential(*features[:7]) # 160 # self.dec2 = nn.Sequential(*features[5:10]) # 80 # self.dec3 = nn.Sequential(*features[10:17]) # 40 # self.dec4 = nn.Sequential(*features[17:24]) # 20 # self.dec5 = nn.Sequential(*features[24:]) # 10 self.cis1 = nn.Sequential( nn.Conv2d(128, 64, 3, padding=1,stride=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.cis2 = nn.Sequential( nn.Linear(1344, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 2) ) self.dp = nn.Softmax() def forward(self, x, y,bt): x_f1 = self.dec1(x) y_f1 = self.dec1(y) enc = torch.cat((x_f1, y_f1), 1) clc1 = self.cis1(enc) spp = spatial_pyramid_pool(clc1,bt,[clc1.size(2),clc1.size(3)], self.output_num) clc2 = self.cis2(spp) dp = self.dp(clc2) return x_f1, y_f1, dp # def initialize(self): # self.load_state_dict(torch.load('../res/resnet50-19c8e357.pth'), strict=False)
[ "torch.nn.Linear", "torch.cat", "torch.nn.Softmax", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.4.0
rfww/EfficientChangeDetection
42d466c56ed262980c27fd6cde6ffe65314e638f
1.4
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F import os from torch.utils import model_zoo from torchvision import models class SegNetEnc(nn.Module): def __init__(self, in_channels, out_channels, scale, num_layers): super().__init__() layers = [ nn.Upsample(scale_factor=scale, mode='bilinear'), nn.Conv2d(in_channels, in_channels // 2, 3, padding=1), nn.BatchNorm2d(in_channels // 2), nn.ReLU(inplace=True), ] layers += [ nn.Conv2d(in_channels // 2, in_channels // 2, 3, padding=1), nn.BatchNorm2d(in_channels // 2), nn.ReLU(inplace=True), ] * num_layers layers += [ nn.Conv2d(in_channels // 2, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] self.encode = nn.Sequential(*layers) def forward(self, x): return self.encode(x) class ARPPNET(nn.Module): def __init__(self, num_classes): super().__init__() my_model = models.vgg16(pretrained=True) input_1_new = nn.Conv2d(6, 64, (3, 3), 1, 1) my_model.features[0] = input_1_new decoders = list(my_model.features.children()) self.dec1 = nn.Sequential(*decoders[:5]) self.dec2 = nn.Sequential(*decoders[5:10]) self.dec3 = nn.Sequential(*decoders[10:17]) self.dec4 = nn.Sequential(*decoders[17:24]) # self.dec5 = nn.Sequential(*decoders[24:]) for m in self.modules(): if isinstance(m, nn.Conv2d): m.requires_grad = True #block1 self.AR_dec1_1 = nn.Conv2d(64, 16, 3, padding=1, dilation=1) self.AR_dec1_3 = nn.Conv2d(64, 16, 3, padding=3, dilation=3) self.AR_dec1_5 = nn.Conv2d(64, 16, 3, padding=5, dilation=5) self.AR_dec1_7 = nn.Conv2d(64, 16, 3, padding=7, dilation=7) self.AR_dec1_conv = nn.Sequential( nn.Conv2d(16, 8, 3, padding=1), nn.Conv2d(8, 8, 3, padding=1), ) #block2 self.AR_dec2_1 = nn.Conv2d(128, 32, 3, padding=1, dilation=1) self.AR_dec2_3 = nn.Conv2d(128, 32, 3, padding=3, dilation=3) self.AR_dec2_5 = nn.Conv2d(128, 32, 3, padding=5, dilation=5) self.AR_dec2_7 = nn.Conv2d(128, 32, 3, padding=7, dilation=7) self.AR_dec2_conv = nn.Sequential( nn.Conv2d(32, 16, 3, padding=1), nn.Conv2d(16, 16, 3, padding=1), ) #block3 self.AR_dec3_1 = nn.Conv2d(256, 64, 3, padding=1, dilation=1) self.AR_dec3_3 = nn.Conv2d(256, 64, 3, padding=3, dilation=3) self.AR_dec3_5 = nn.Conv2d(256, 64, 3, padding=5, dilation=5) self.AR_dec3_7 = nn.Conv2d(256, 64, 3, padding=7, dilation=7) self.AR_dec3_conv = nn.Sequential( nn.Conv2d(64, 32, 3, padding=1), nn.Conv2d(32, 32, 3, padding=1), ) #block4 self.AR_dec4_1 = nn.Conv2d(512, 128, 3, padding=1, dilation=1) self.AR_dec4_3 = nn.Conv2d(512, 128, 3, padding=3, dilation=3) self.AR_dec4_5 = nn.Conv2d(512, 128, 3, padding=5, dilation=5) self.AR_dec4_7 = nn.Conv2d(512, 128, 3, padding=7, dilation=7) self.AR_dec4_conv = nn.Sequential( nn.Conv2d(128, 128, 3, padding=1), nn.Conv2d(128, 128, 3, padding=1), ) #deconv self.enc4 = SegNetEnc(512, 128, 2, 0) self.enc3 = SegNetEnc(256, 64, 2, 0) self.enc2 = SegNetEnc(128, 32, 2, 0) self.enc1 = SegNetEnc(64, 64, 2, 0) self.final = nn.Conv2d(64, 2, 3, padding=1) def forward(self, x, y): ''' Attention, input size should be the 32x. ''' ################################fusion of im1###################################### # all node of layer 1 concat_xy = torch.cat([x,y],1) dec1 = self.dec1(concat_xy) dec2 = self.dec2(dec1) dec3 = self.dec3(dec2) dec4 = self.dec4(dec3) #dec5 = self.dec5(dec4) AR_dec1_1 = self.AR_dec1_1(dec1) AR_dec1_1 = self.AR_dec1_conv(AR_dec1_1) AR_dec1_3 = self.AR_dec1_3(dec1) AR_dec1_3 = self.AR_dec1_conv(AR_dec1_3) AR_dec1_5 = self.AR_dec1_5(dec1) AR_dec1_5 = self.AR_dec1_conv(AR_dec1_5) AR_dec1_7 = self.AR_dec1_7(dec1) AR_dec1_7 = self.AR_dec1_conv(AR_dec1_7) AR_dec1_cat = torch.cat([AR_dec1_1, AR_dec1_3, AR_dec1_5, AR_dec1_7], 1) AR_dec2_1 = self.AR_dec2_1(dec2) AR_dec2_1 = self.AR_dec2_conv(AR_dec2_1) AR_dec2_3 = self.AR_dec2_3(dec2) AR_dec2_3 = self.AR_dec2_conv(AR_dec2_3) AR_dec2_5 = self.AR_dec2_5(dec2) AR_dec2_5 = self.AR_dec2_conv(AR_dec2_5) AR_dec2_7 = self.AR_dec2_7(dec2) AR_dec2_7 = self.AR_dec2_conv(AR_dec2_7) AR_dec2_cat = torch.cat([AR_dec2_1, AR_dec2_3, AR_dec2_5, AR_dec2_7], 1) AR_dec3_1 = self.AR_dec3_1(dec3) AR_dec3_1 = self.AR_dec3_conv(AR_dec3_1) AR_dec3_3 = self.AR_dec3_3(dec3) AR_dec3_3 = self.AR_dec3_conv(AR_dec3_3) AR_dec3_5 = self.AR_dec3_5(dec3) AR_dec3_5 = self.AR_dec3_conv(AR_dec3_5) AR_dec3_7 = self.AR_dec3_7(dec3) AR_dec3_7 = self.AR_dec3_conv(AR_dec3_7) AR_dec3_cat = torch.cat([AR_dec3_1, AR_dec3_3, AR_dec3_5, AR_dec3_7], 1) AR_dec4_1 = self.AR_dec4_1(dec4) AR_dec4_1 = self.AR_dec4_conv(AR_dec4_1) AR_dec4_3 = self.AR_dec4_3(dec4) AR_dec4_3 = self.AR_dec4_conv(AR_dec4_3) AR_dec4_5 = self.AR_dec4_5(dec4) AR_dec4_5 = self.AR_dec4_conv(AR_dec4_5) AR_dec4_7 = self.AR_dec4_7(dec4) AR_dec4_7 = self.AR_dec4_conv(AR_dec4_7) AR_dec4_cat = torch.cat([AR_dec4_1, AR_dec4_3, AR_dec4_5, AR_dec4_7], 1) enc4 = self.enc4(AR_dec4_cat) enc3 = self.enc3(torch.cat([AR_dec3_cat, F.upsample_bilinear(enc4, AR_dec3_cat.size()[2:])], 1)) enc2 = self.enc2(torch.cat([AR_dec2_cat, F.upsample_bilinear(enc3, AR_dec2_cat.size()[2:])], 1)) enc1 = self.enc1(torch.cat([AR_dec1_cat, F.upsample_bilinear(enc2, AR_dec1_cat.size()[2:])], 1)) final = F.upsample_bilinear(self.final(enc1), x.size()[2:]) return final #model = models.vgg16(pretrained=False) #print(model) #model = TFPCD_middle_fusion(2) #print(model)
[ "torch.cat", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.Upsample", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.4.0
rfww/EfficientChangeDetection
42d466c56ed262980c27fd6cde6ffe65314e638f
1.0
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import os import random import tempfile import unittest from importlib import import_module from typing import List, Tuple from transformers import is_tf_available from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TFSharedEmbeddings, tf_top_k_top_p_filtering, ) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key: setattr(configs_no_init, key, 0.0) return configs_no_init @require_tf class TFModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () test_resize_embeddings = True is_encoder_decoder = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values(): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(): inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(), *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(), *TF_MODEL_FOR_MASKED_LM_MAPPING.values(), *TF_MODEL_FOR_PRETRAINING_MAPPING.values(), *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(), ]: inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 ) return inputs_dict def test_initialization(self): pass def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assert_outputs_same(after_outputs, outputs) def test_graph_mode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @tf.function def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_saved_model_creation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = False config.output_attentions = False if hasattr(config, "use_cache"): config.use_cache = False model_class = self.all_model_classes[0] class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model") self.assertTrue(os.path.exists(saved_model_dir)) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model") self.assertTrue(os.path.exists(saved_model_dir)) @slow def test_saved_model_with_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # A saved model is always executed in graph mode, since we merged the PR #8777 # the booleans in graph mode are always the ones in the config, then we update # the use_cache property if it exists in order to have similar booleans with the inputs if "use_cache" in class_inputs_dict: config.use_cache = class_inputs_dict.pop("use_cache") model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) saved_model_dir = os.path.join(tmpdirname, "saved_model") model = tf.keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output = outputs["encoder_hidden_states"] if isinstance(outputs, dict) else outputs[-1] else: output = outputs["hidden_states"] if isinstance(outputs, dict) else outputs[-1] hidden_states = [t.numpy() for t in output] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) @slow def test_saved_model_with_attentions_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # A saved model is always executed in graph mode, since we merged the PR #8777 # the booleans in graph mode are always the ones in the config, then we update # the use_cache property if it exists in order to have similar booleans with the inputs if "use_cache" in class_inputs_dict: config.use_cache = class_inputs_dict.pop("use_cache") model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: saved_model_dir = os.path.join(tmpdirname, "saved_model") model.save_pretrained(saved_model_dir) model = tf.keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1] else: output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1] attentions = [t.numpy() for t in output] self.assertEqual(len(outputs), num_out) self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_keras_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = set( module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and tf.keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) ) for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(99, 32, name="shared") config.use_cache = inputs_dict.pop("use_cache", None) main_layer = main_layer_class(config, embed_tokens=shared) else: main_layer = main_layer_class(config) symbolic_inputs = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = tf.keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = tf.keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, tf.keras.Model) after_outputs = model(inputs_dict) self.assert_outputs_same(after_outputs, outputs) def assert_outputs_same(self, after_outputs, outputs): # Make sure we don't have nans if isinstance(after_outputs, tf.Tensor): out_1 = after_outputs.numpy() elif isinstance(after_outputs, dict): out_1 = after_outputs[list(after_outputs.keys())[0]].numpy() else: out_1 = after_outputs[0].numpy() out_2 = outputs[0].numpy() self.assertEqual(out_1.shape, out_2.shape) out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self): import torch import transformers config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) config.output_hidden_states = True tf_model = model_class(config) pt_model = pt_model_class(config) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class) ) pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = {} for name, key in self._prepare_for_class(inputs_dict, model_class).items(): if type(key) == bool: pt_inputs_dict[name] = key else: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) # need to rename encoder-decoder "inputs" for PyTorch if "inputs" in pt_inputs_dict and self.is_encoder_decoder: pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs") with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False) tf_hidden_states = tfo[0].numpy() pt_hidden_states = pto[0].numpy() tf_nans = np.copy(np.isnan(tf_hidden_states)) pt_nans = np.copy(np.isnan(pt_hidden_states)) pt_hidden_states[tf_nans] = 0 tf_hidden_states[tf_nans] = 0 pt_hidden_states[pt_nans] = 0 tf_hidden_states[pt_nans] = 0 max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states)) self.assertLessEqual(max_diff, 4e-2) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = {} for name, key in self._prepare_for_class(inputs_dict, model_class).items(): if type(key) == bool: key = np.array(key, dtype=bool) pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long) else: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) # need to rename encoder-decoder "inputs" for PyTorch if "inputs" in pt_inputs_dict and self.is_encoder_decoder: pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs") with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class)) tfo = tfo[0].numpy() pto = pto[0].numpy() tf_nans = np.copy(np.isnan(tfo)) pt_nans = np.copy(np.isnan(pto)) pto[tf_nans] = 0 tfo[tf_nans] = 0 pto[pt_nans] = 0 tfo[pt_nans] = 0 max_diff = np.amax(np.abs(tfo - pto)) self.assertLessEqual(max_diff, 4e-2) def test_train_pipeline_custom_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = set( module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and tf.keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) ) for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared") config.use_cache = False main_layer = main_layer_class(config, embed_tokens=shared) del inputs_dict["use_cache"] else: main_layer = main_layer_class(config) symbolic_inputs = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } if hasattr(self.model_tester, "num_labels"): num_labels = self.model_tester.num_labels else: num_labels = 2 X = tf.data.Dataset.from_tensor_slices( (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1))) ).batch(1) hidden_states = main_layer(symbolic_inputs)[0] outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states) model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs]) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"]) model.fit(X, epochs=1) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = tf.keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = tf.keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, tf.keras.Model) model(inputs_dict) def test_compile_tf_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() max_input = getattr(self.model_tester, "max_position_embeddings", 512) optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") for model_class in self.all_model_classes: if self.is_encoder_decoder: input_ids = { "decoder_input_ids": tf.keras.Input( batch_shape=(2, max_input), name="decoder_input_ids", dtype="int32", ), "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"), } elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32") else: input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32") # Prepare our model model = model_class(config) model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving. # Let's load it from the disk to be sure we can use pretrained weights with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) outputs_dict = model(input_ids) hidden_states = outputs_dict[0] # Add a dense layer on top to test integration with other keras modules outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states) # Compile extended model extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs_keywords.pop("input_ids", None) outputs_keywords = model(input_ids, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(out_len % 2, 0) decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["use_cache"] = False config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model.config.is_encoder_decoder: encoder_hidden_states = outputs.encoder_hidden_states decoder_hidden_states = outputs.decoder_hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(encoder_hidden_states), expected_num_layers) self.assertListEqual( list(encoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(decoder_hidden_states), expected_num_layers) self.assertListEqual( list(decoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) else: hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() list_lm_models = ( list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values()) + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values()) + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values()) ) for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in list_lm_models: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) first, second = ( model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], ) out_1 = first.numpy() out_2 = second.numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}", ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def _get_embeds(self, wte, input_ids): # ^^ In our TF models, the input_embeddings can take slightly different forms, # so we try a few of them. # We used to fall back to just synthetically creating a dummy tensor of ones: try: x = wte(input_ids, mode="embedding") except Exception: try: x = wte([input_ids], mode="embedding") except Exception: try: x = wte([input_ids, None, None, None], mode="embedding") except Exception: if hasattr(self.model_tester, "embedding_size"): x = tf.ones( input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32, ) else: x = tf.ones( input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32, ) return x def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = self._get_embeds(wte, input_ids) else: inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids) inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids) model(inputs) def test_numpy_arrays_inputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def prepare_numpy_arrays(inputs_dict): inputs_np_dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(v): inputs_np_dict[k] = v.numpy() else: inputs_np_dict[k] = np.array(k) return inputs_np_dict for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) inputs_np = prepare_numpy_arrays(inputs) model(inputs_np) def test_resize_token_embeddings(self): if not self.test_resize_embeddings: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(model, embedding_layer): if hasattr(embedding_layer, "word_embeddings"): return embedding_layer.word_embeddings elif hasattr(embedding_layer, "weight"): return embedding_layer.weight elif hasattr(embedding_layer, "decoder"): return embedding_layer.decoder else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model(model.dummy_inputs) if hasattr(embedding_layer, "word_embeddings"): return embedding_layer.word_embeddings elif hasattr(embedding_layer, "weight"): return embedding_layer.weight elif hasattr(embedding_layer, "decoder"): return embedding_layer.decoder else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10, None]: # build the embeddings model = model_class(config=config) old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) old_bias = model.get_bias() old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(size) new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) new_bias = model.get_bias() new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. assert_size = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], assert_size) # check that weights remain the same after resizing models_equal = True for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_bias is not None and new_bias is not None: for old_weight, new_weight in zip(old_bias.values(), new_bias.values()): self.assertEqual(new_weight.shape[0], assert_size) models_equal = True for p1, p2 in zip(old_weight.value(), new_weight.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], assert_size) self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1]) models_equal = True for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined mobel needs input_ids with self.assertRaises(AssertionError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True)) else: # num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5)) with self.assertRaises(AssertionError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_ids, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2)) else: # num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2)) with self.assertRaises(AssertionError): # generating more sequences than having beams leads is not possible model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_ids, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) if getattr(model, "compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label = prepared_for_class[ sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0] ] loss_size = tf.size(added_label) if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(): # if loss is causal lm loss, labels are shift, so that one label per batch # is cut loss_size = loss_size - self.model_tester.batch_size # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") loss = model(input_ids, **prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: "input_ids"} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertEqual(loss.shape, [loss_size]) def _generate_random_bad_tokens(self, num_bad_tokens, model): # special tokens cannot be bad tokens special_tokens = [] if model.config.bos_token_id is not None: special_tokens.append(model.config.bos_token_id) if model.config.pad_token_id is not None: special_tokens.append(model.config.pad_token_id) if model.config.eos_token_id is not None: special_tokens.append(model.config.eos_token_id) # create random bad tokens that are not special tokens bad_tokens = [] while len(bad_tokens) < num_bad_tokens: token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] if token not in special_tokens: bad_tokens.append(token) return bad_tokens def _check_generated_ids(self, output_ids): for token_id in output_ids[0].numpy().tolist(): self.assertGreaterEqual(token_id, 0) self.assertLess(token_id, self.model_tester.vocab_size) def _check_match_tokens(self, generated_ids, bad_words_ids): # for all bad word tokens for bad_word_ids in bad_words_ids: # for all slices in batch for generated_ids_slice in generated_ids: # for all word idx for i in range(len(bad_word_ids), len(generated_ids_slice)): # if tokens match if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: return True return False def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) return output @require_tf class UtilsFunctionsTest(unittest.TestCase): # tests whether the top_k_top_p_filtering function behaves as expected def test_top_k_top_p_filtering(self): logits = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.float32, ) non_inf_expected_idx = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32, ) # expected non filtered idx as noted above non_inf_expected_output = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023], dtype=tf.float32, ) # expected non filtered values as noted above output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4) non_inf_output = output[output != -float("inf")] non_inf_idx = tf.cast( tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32, ) tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12) tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
[ "torch.no_grad", "torch.from_numpy" ]
1.0
wilcoln/transformers
6331d4fe59e85840bb5693837e791f4caedcd53b
1.4
import kornia import kornia.testing as utils # test utils from test.common import device import torch from torch.autograd import gradcheck from torch.testing import assert_allclose import pytest class TestRgbToRgba: def test_smoke(self, device): data = torch.rand(3, 4, 4).to(device) assert kornia.rgb_to_rgba(data, 0.).shape == (4, 4, 4) def test_back_and_forth_rgb(self, device): a_val: float = 1. x_rgb = torch.rand(3, 4, 4).to(device) x_rgba = kornia.rgb_to_rgba(x_rgb, a_val) x_rgb_new = kornia.rgba_to_rgb(x_rgba) assert_allclose(x_rgb, x_rgb_new) def test_back_and_forth_bgr(self, device): a_val: float = 1. x_bgr = torch.rand(3, 4, 4).to(device) x_rgba = kornia.bgr_to_rgba(x_bgr, a_val) x_bgr_new = kornia.rgba_to_bgr(x_rgba) assert_allclose(x_bgr, x_bgr_new) def test_bgr(self, device): a_val: float = 1. x_rgb = torch.rand(3, 4, 4).to(device) x_bgr = kornia.rgb_to_bgr(x_rgb) x_rgba = kornia.rgb_to_rgba(x_rgb, a_val) x_rgba_new = kornia.bgr_to_rgba(x_bgr, a_val) assert_allclose(x_rgba, x_rgba_new) def test_single(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) aval: float = 0.4 expected = torch.tensor([[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[0.4, 0.4], [0.4, 0.4]]]) # 4x2x2 expected = expected.to(device) assert_allclose(kornia.rgb_to_rgba(data, aval), expected) def test_batch(self, device): data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 data = data.to(device) aval: float = 45. expected = torch.tensor([[[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[45., 45.], [45., 45.]]], [[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[45., 45.], [45., 45.]]]]) expected = expected.to(device) assert_allclose(kornia.rgb_to_rgba(data, aval), expected) def test_gradcheck(self, device): data = torch.rand(1, 3, 2, 2).to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.RgbToRgba(1.), (data,), raise_exception=True) class TestBgrToRgb: def test_back_and_forth(self, device): data_bgr = torch.rand(1, 3, 3, 2).to(device) data_rgb = kornia.bgr_to_rgb(data_bgr) data_bgr_new = kornia.rgb_to_bgr(data_rgb) assert_allclose(data_bgr, data_bgr_new) def test_bgr_to_rgb(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 expected = torch.tensor([[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]) # 3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.BgrToRgb() assert_allclose(f(data), expected) def test_batch_bgr_to_rgb(self, device): data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 expected = torch.tensor([[[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]], [[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]]) # 2x3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.BgrToRgb() out = f(data) assert_allclose(out, expected) def test_gradcheck(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.BgrToRgb(), (data,), raise_exception=True) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): @torch.jit.script def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.bgr_to_rgb(data) data = torch.Tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 actual = op_script(data) expected = kornia.bgr_to_rgb(data) assert_allclose(actual, expected) class TestRgbToBgr: def test_back_and_forth(self, device): data_rgb = torch.rand(1, 3, 3, 2).to(device) data_bgr = kornia.rgb_to_bgr(data_rgb) data_rgb_new = kornia.bgr_to_rgb(data_bgr) assert_allclose(data_rgb, data_rgb_new) def test_rgb_to_bgr(self, device): # prepare input data data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 expected = torch.tensor([[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]) # 3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.RgbToBgr() assert_allclose(f(data), expected) def test_gradcheck(self, device): # prepare input data data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.RgbToBgr(), (data,), raise_exception=True) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self): @torch.jit.script def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.rgb_to_bgr(data) data = torch.Tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x actual = op_script(data) expected = kornia.rgb_to_bgr(data) assert_allclose(actual, expected) def test_batch_rgb_to_bgr(self, device): # prepare input data data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 expected = torch.tensor([[[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]], [[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]]) # 2x3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.RgbToBgr() out = f(data) assert_allclose(out, expected)
[ "torch.rand", "torch.Tensor", "torch.tensor", "torch.testing.assert_allclose" ]
1.4.0
connorlee77/kornia
af5b1f76bedf2a7fc0e0da2386b1be3032b6534f
1.6
from typing import Type import torch import torch.nn import torch.distributions.distribution import n3ml.population import n3ml.learning class Synapse(torch.nn.Module): def __init__(self, source: n3ml.population.Population, target: n3ml.population.Population, w: torch.Tensor, w_min: float = 0.0, w_max: float = 1.0, alpha: float = None, learning_rule: Type[n3ml.learning.LearningRule] = None, initializer: torch.distributions.distribution.Distribution = None) -> None: super().__init__() self.source = source self.target = target self.register_buffer('w', w) self.w_min = w_min self.w_max = w_max self.alpha = alpha if learning_rule is None: self.learning_rule = learning_rule else: self.learning_rule = learning_rule(self) self.initializer = initializer def init(self) -> None: self.w[:] = self.initializer.sample(sample_shape=self.w.size()) def normalize(self) -> None: if self.alpha is not None: w_abs_sum = self.w.abs().sum(dim=1).unsqueeze(dim=1) w_abs_sum[w_abs_sum == 0.0] = 1.0 self.w *= self.alpha / w_abs_sum def update(self) -> None: if self.learning_rule is not None: self.learning_rule.run() def run(self) -> None: raise NotImplementedError class LinearSynapse(Synapse): def __init__(self, source: n3ml.population.Population, target: n3ml.population.Population, w: torch.Tensor = None, w_min: float = 0.0, w_max: float = 1.0, alpha: float = None, learning_rule: n3ml.learning.LearningRule = None, initializer: torch.distributions.distribution.Distribution = None) -> None: if w is None: w = torch.zeros(size=(target.neurons, source.neurons)) super().__init__(source, target, w, w_min, w_max, alpha, learning_rule, initializer) def run(self) -> torch.Tensor: """ Non batch processing self.w.size: [self.target.neurons, self.source.neurons] self.source.s.size: [self.source.neurons] """ return torch.matmul(self.w, self.source.s) class ConvSynapse(Synapse): pass
[ "torch.zeros", "torch.matmul" ]
1.6.0
chatterboy/n3ml
28b4e25a277e55e734e6054e8239237a5ff7d1f1
1.5
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import datetime import json import random import time from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler import datasets import util.misc as utils from datasets import build_dataset, get_coco_api_from_dataset from engine import evaluate, train_one_epoch from models import build_model def get_args_parser(): parser = argparse.ArgumentParser('Set transformer detector', add_help=False) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--lr_backbone', default=1e-5, type=float) parser.add_argument('--batch_size', default=2, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--lr_drop', default=200, type=int) parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm') # Model parameters parser.add_argument('--frozen_weights', type=str, default=None, help="Path to the pretrained model. If set, only the mask head will be trained") # * Backbone parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use") parser.add_argument('--dilation', action='store_true', help="If true, we replace stride with dilation in the last convolutional block (DC5)") parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features") # * Transformer parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer") parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer") parser.add_argument('--dim_feedforward', default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks") parser.add_argument('--hidden_dim', default=256, type=int, help="Size of the embeddings (dimension of the transformer)") parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer") parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads inside the transformer's attentions") parser.add_argument('--num_queries', default=100, type=int, help="Number of query slots") parser.add_argument('--pre_norm', action='store_true') # * Segmentation parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided") # Loss parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)") # * Matcher parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost") parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost") parser.add_argument('--set_cost_giou', default=2, type=float, help="giou box coefficient in the matching cost") # * Loss coefficients parser.add_argument('--mask_loss_coef', default=1, type=float) parser.add_argument('--dice_loss_coef', default=1, type=float) parser.add_argument('--bbox_loss_coef', default=5, type=float) parser.add_argument('--giou_loss_coef', default=2, type=float) parser.add_argument('--eos_coef', default=0.1, type=float, help="Relative classification weight of the no-object class") # dataset parameters parser.add_argument('--dataset_file', default='coco') parser.add_argument('--coco_path', type=str) parser.add_argument('--coco_panoptic_path', type=str) parser.add_argument('--remove_difficult', action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=42, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true') parser.add_argument('--num_workers', default=2, type=int) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) # dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val', args=args) # if args.distributed: # sampler_train = DistributedSampler(dataset_train) # sampler_val = DistributedSampler(dataset_val, shuffle=False) # else: # sampler_train = torch.utils.data.RandomSampler(dataset_train) # sampler_val = torch.utils.data.SequentialSampler(dataset_val) # batch_sampler_train = torch.utils.data.BatchSampler( # sampler_train, args.batch_size, drop_last=True) sampler_val = torch.utils.data.SequentialSampler(dataset_val) # data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, # collate_fn=utils.collate_fn, num_workers=args.num_workers) data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn_leimao, num_workers=args.num_workers) for inputs, labels in data_loader_val: print("---------------------") print(inputs.shape) print(labels) # for input_m in inputs.tensors: # print(input_m.shape) if __name__ == '__main__': parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
[ "torch.device", "torch.utils.data.SequentialSampler", "torch.manual_seed", "torch.utils.data.DataLoader" ]
1.5.0
leimao/detr
cd88c4ea01257831ac677b6268e1aef7cd37eca4
1.10
# Copyright 2020 Nagoya University (Tomoki Hayashi) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) # Adapted by Florian Lux 2021 import numpy as np import pyworld import torch import torch.nn.functional as F from scipy.interpolate import interp1d from Utility.utils import pad_list class Dio(torch.nn.Module): """ F0 estimation with dio + stonemask algortihm. This is f0 extractor based on dio + stonemask algorithm introduced in https://doi.org/10.1587/transinf.2015EDP7457 """ def __init__(self, fs=16000, n_fft=1024, hop_length=256, f0min=40, f0max=400, use_token_averaged_f0=True, use_continuous_f0=False, use_log_f0=False, reduction_factor=1): super().__init__() self.fs = fs self.n_fft = n_fft self.hop_length = hop_length self.frame_period = 1000 * hop_length / fs self.f0min = f0min self.f0max = f0max self.use_token_averaged_f0 = use_token_averaged_f0 self.use_continuous_f0 = use_continuous_f0 self.use_log_f0 = use_log_f0 if use_token_averaged_f0: assert reduction_factor >= 1 self.reduction_factor = reduction_factor def output_size(self): return 1 def get_parameters(self): return dict(fs=self.fs, n_fft=self.n_fft, hop_length=self.hop_length, f0min=self.f0min, f0max=self.f0max, use_token_averaged_f0=self.use_token_averaged_f0, use_continuous_f0=self.use_continuous_f0, use_log_f0=self.use_log_f0, reduction_factor=self.reduction_factor) def forward(self, input_waves, input_waves_lengths=None, feats_lengths=None, durations=None, durations_lengths=None, norm_by_average=True, text=None): # If not provided, we assume that the inputs have the same length if input_waves_lengths is None: input_waves_lengths = (input_waves.new_ones(input_waves.shape[0], dtype=torch.long) * input_waves.shape[1]) # F0 extraction pitch = [self._calculate_f0(x[:xl]) for x, xl in zip(input_waves, input_waves_lengths)] # (Optional): Adjust length to match with the mel-spectrogram if feats_lengths is not None: pitch = [self._adjust_num_frames(p, fl).view(-1) for p, fl in zip(pitch, feats_lengths)] # (Optional): Average by duration to calculate token-wise f0 if self.use_token_averaged_f0: pitch = [self._average_by_duration(p, d, text).view(-1) for p, d in zip(pitch, durations)] pitch_lengths = durations_lengths else: pitch_lengths = input_waves.new_tensor([len(p) for p in pitch], dtype=torch.long) # Padding pitch = pad_list(pitch, 0.0) # Return with the shape (B, T, 1) if norm_by_average: average = pitch[0][pitch[0] != 0.0].mean() pitch = pitch / average return pitch.unsqueeze(-1), pitch_lengths def _calculate_f0(self, input): x = input.cpu().numpy().astype(np.double) f0, timeaxis = pyworld.dio(x, self.fs, f0_floor=self.f0min, f0_ceil=self.f0max, frame_period=self.frame_period) f0 = pyworld.stonemask(x, f0, timeaxis, self.fs) if self.use_continuous_f0: f0 = self._convert_to_continuous_f0(f0) if self.use_log_f0: nonzero_idxs = np.where(f0 != 0)[0] f0[nonzero_idxs] = np.log(f0[nonzero_idxs]) return input.new_tensor(f0.reshape(-1), dtype=torch.float) @staticmethod def _adjust_num_frames(x, num_frames): if num_frames > len(x): x = F.pad(x, (0, num_frames - len(x))) elif num_frames < len(x): x = x[:num_frames] return x @staticmethod def _convert_to_continuous_f0(f0: np.array): if (f0 == 0).all(): return f0 # padding start and end of f0 sequence start_f0 = f0[f0 != 0][0] end_f0 = f0[f0 != 0][-1] start_idx = np.where(f0 == start_f0)[0][0] end_idx = np.where(f0 == end_f0)[0][-1] f0[:start_idx] = start_f0 f0[end_idx:] = end_f0 # get non-zero frame index nonzero_idxs = np.where(f0 != 0)[0] # perform linear interpolation interp_fn = interp1d(nonzero_idxs, f0[nonzero_idxs]) f0 = interp_fn(np.arange(0, f0.shape[0])) return f0 def _average_by_duration(self, x, d, text=None): assert 0 <= len(x) - d.sum() < self.reduction_factor d_cumsum = F.pad(d.cumsum(dim=0), (1, 0)) x_avg = [ x[start:end].masked_select(x[start:end].gt(0.0)).mean(dim=0) if len(x[start:end].masked_select(x[start:end].gt(0.0))) != 0 else x.new_tensor(0.0) for start, end in zip(d_cumsum[:-1], d_cumsum[1:])] # find tokens that are not phones and set pitch to 0 if text is not None: for i, vector in enumerate(text): if vector[13] == 0: # idx 13 corresponds to 'phoneme' feature x_avg[i] = torch.tensor(0.0) return torch.stack(x_avg)
[ "torch.stack", "torch.tensor" ]
1.10.1
Adamantcat/IMS-Toucan
1ae02026a2a3233aaacc9d3a63d391918a2581e8
1.0
import csv import os import os.path import shutil import tempfile import unittest from unittest import mock import torch import pandas as pd from jiant import evaluate import jiant.tasks.tasks as tasks from jiant.models import MultiTaskModel from jiant.__main__ import evaluate_and_write from jiant.allennlp_mods.numeric_field import NumericField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data import Instance, Token, vocabulary from allennlp.data.fields import LabelField, ListField, MetadataField, TextField def model_forward(task, batch, predict=True): if task.name == "sts-b": logits = torch.Tensor([0.6, 0.4]) labels = torch.Tensor([0.875, 0.6]) out = {"logits": logits, "labels": labels, "n_exs": 2, "preds": [1.0, 0.8]} elif task.name == "wic": logits = torch.Tensor([[0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]) labels = torch.LongTensor([0, 1, 1, 0]) out = {"logits": logits, "labels": labels, "n_exs": 4, "preds": [0, 1, 1, 1]} else: raise ValueError("Unexpected task found") task.update_metrics(out, batch) return out class TestWritePreds(unittest.TestCase): def sentence_to_text_field(self, sent, indexers): """ Helper function to map a sequence of tokens into a sequence of AllenNLP Tokens, then wrap in a TextField with the given indexers """ return TextField(list(map(Token, sent)), token_indexers=indexers) def setUp(self): """ Since we're testing write_preds, we need to mock model predictions and the parts of the model, arguments, and trainer needed to write to predictions. Unlike in update_metrics tests, the actual contents of the examples in val_data is not the most important as long as it adheres to the API necessary for examples of that task. """ self.temp_dir = tempfile.mkdtemp() self.path = os.path.join(self.temp_dir, "temp_dataset.tsv") self.stsb = tasks.STSBTask(self.temp_dir, 100, "sts-b", tokenizer_name="MosesTokenizer") self.wic = tasks.WiCTask(self.temp_dir, 100, "wic", tokenizer_name="MosesTokenizer") stsb_val_preds = pd.DataFrame( data=[ { "idx": 0, "labels": 1.00, "preds": 1.00, "sent1_str": "A man with a hard hat is dancing.", "sent2_str": "A man wearing a hard hat is dancing", }, { "idx": 1, "labels": 0.950, "preds": 0.34, "sent1_str": "A young child is riding a horse.", "sent2_str": "A child is riding a horse.", }, ] ) wic_val_preds = pd.DataFrame( data=[ { "idx": 0, "sent1": "Room and board. ", "sent2": "He nailed boards across the windows.", "labels": 0, "preds": 0, }, { "idx": 1, "sent1": "Hook a fish", "sent2": "He hooked a snake accidentally.", "labels": 1, "preds": 1, }, ] ) indexers = {"bert_cased": SingleIdTokenIndexer("bert-xe-cased")} self.wic.set_instance_iterable( "val", [ Instance( { "sent1_str": MetadataField("Room and board."), "sent2_str": MetadataField("He nailed boards"), "idx": LabelField(0, skip_indexing=True), "idx2": NumericField(2), "idx1": NumericField(3), "inputs": self.sentence_to_text_field( [ "[CLS]", "Room", "and", "Board", ".", "[SEP]", "He", "nailed", "boards", "[SEP]", ], indexers, ), "labels": LabelField(0, skip_indexing=1), } ), Instance( { "sent1_str": MetadataField("C ##ir ##culate a rumor ."), "sent2_str": MetadataField("This letter is being circulated"), "idx": LabelField(1, skip_indexing=True), "idx2": NumericField(2), "idx1": NumericField(3), "inputs": self.sentence_to_text_field( [ "[CLS]", "C", "##ir", "##culate", "a", "rumor", "[SEP]", "This", "##let", "##ter", "is", "being", "c", "##ir", "##culated", "[SEP]", ], indexers, ), "labels": LabelField(0, skip_indexing=1), } ), Instance( { "sent1_str": MetadataField("Hook a fish'"), "sent2_str": MetadataField("He hooked a snake accidentally"), "idx": LabelField(2, skip_indexing=True), "idx2": NumericField(2), "idx1": NumericField(3), "inputs": self.sentence_to_text_field( [ "[CLS]", "Hook", "a", "fish", "[SEP]", "He", "hooked", "a", "snake", "accidentally", "[SEP]", ], indexers, ), "labels": LabelField(1, skip_indexing=1), } ), Instance( { "sent1_str": MetadataField("For recreation he wrote poetry."), "sent2_str": MetadataField("Drug abuse is often regarded as recreation ."), "idx": LabelField(3, skip_indexing=True), "idx2": NumericField(2), "idx1": NumericField(3), "inputs": self.sentence_to_text_field( [ "[CLS]", "For", "re", "##creation", "he", "wrote", "poetry", "[SEP]", "Drug", "abuse", "is", "often", "re", "##garded", "as", "re", "##creation", "[SEP]", ], indexers, ), "labels": LabelField(1, skip_indexing=1), } ), ], ) self.val_preds = {"sts-b": stsb_val_preds, "wic": wic_val_preds} self.vocab = vocabulary.Vocabulary.from_instances(self.wic.get_instance_iterable("val")) self.vocab.add_token_to_namespace("True", "wic_tags") for data in self.wic.get_instance_iterable("val"): data.index_fields(self.vocab) self.glue_tasks = [self.stsb, self.wic] self.args = mock.Mock() self.args.batch_size = 4 self.args.cuda = -1 self.args.run_dir = self.temp_dir self.args.exp_dir = "" def test_write_preds_does_run(self): evaluate.write_preds( self.glue_tasks, self.val_preds, self.temp_dir, "test", strict_glue_format=True ) assert os.path.exists(self.temp_dir + "/STS-B.tsv") and os.path.exists( self.temp_dir + "/WiC.jsonl" ) def test_write_preds_glue(self): evaluate.write_preds( self.glue_tasks, self.val_preds, self.temp_dir, "test", strict_glue_format=True ) stsb_predictions = pd.read_csv(self.temp_dir + "/STS-B.tsv", sep="\t") assert "index" in stsb_predictions.columns and "prediction" in stsb_predictions.columns assert stsb_predictions.iloc[0]["prediction"] == 5.00 assert stsb_predictions.iloc[1]["prediction"] == 1.7 def test_write_preds_superglue(self): """ Ensure that SuperGLUE write predictions for test is saved to the correct file format. """ evaluate.write_preds( [self.wic], self.val_preds, self.temp_dir, "test", strict_glue_format=True ) wic_predictions = pd.read_json(self.temp_dir + "/WiC.jsonl", lines=True) assert "idx" in wic_predictions.columns and "label" in wic_predictions.columns assert wic_predictions.iloc[0]["label"] == "false" assert wic_predictions.iloc[1]["label"] == "true" @mock.patch("jiant.models.MultiTaskModel.forward", side_effect=model_forward) def test_evaluate_and_write_does_run(self, model_forward_function): """ Testing that evaluate_and_write runs without breaking. """ with mock.patch("jiant.models.MultiTaskModel") as MockModel: MockModel.return_value.eval.return_value = None MockModel.return_value.forward = model_forward MockModel.use_bert = 1 model = MockModel() evaluate_and_write(self.args, model, [self.wic], splits_to_write="val", cuda_device=-1) def tear_down(self): shutil.rmtree(self.temp_dir)
[ "torch.LongTensor", "torch.Tensor" ]
1.0
YianZhang/jiant-v1-legacy-online-code
b6b1066de7cdbe1b95ca1ae3de6989d07b2e9629
1.0
import unittest import torch from jiant.metrics.nli_metrics import NLITwoClassAccuracy class TestNLIMetric(unittest.TestCase): def test_two_class_acc_w_two_class_data_and_model(self): nli_scorer = NLITwoClassAccuracy() # Note: predictions are of shape num_batches x batch_size x num_classes predictions = torch.Tensor([[[0, 1], [0, 1]], [[1, 0], [1, 0]]]) true_labels = torch.Tensor([[1, 1], [0, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 predictions = torch.Tensor([[[1, 0], [1, 0]], [[1, 0], [0, 1]]]) true_labels = torch.Tensor([[1, 1], [0, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 / 4.0 def test_two_class_acc_w_two_class_data(self): nli_scorer = NLITwoClassAccuracy() # Note: predictions are of shape num_batches x batch_size x num_classes predictions = torch.Tensor([[[0, 1, 0], [0, 1, 0]], [[0, 0, 1], [1, 0, 0]]]) true_labels = torch.Tensor([[1, 1], [0, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 predictions = torch.Tensor([[[1, 0, 0], [1, 0, 0]], [[0, 0, 1], [0, 1, 0]]]) true_labels = torch.Tensor([[1, 1], [0, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 / 4.0 def test_two_class_acc_w_two_class_model(self): nli_scorer = NLITwoClassAccuracy() # Note: predictions are of shape num_batches x batch_size x num_classes predictions = torch.Tensor([[[0, 1], [0, 1]], [[1, 0], [1, 0]]]) true_labels = torch.Tensor([[1, 1], [2, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 predictions = torch.Tensor([[[1, 0], [1, 0]], [[1, 0], [0, 1]]]) true_labels = torch.Tensor([[1, 1], [2, 0]]) nli_scorer(predictions, true_labels) acc = nli_scorer.get_metric(reset=True) assert acc == 1.0 / 4.0
[ "torch.Tensor" ]
1.0
YianZhang/jiant-v1-legacy-online-code
b6b1066de7cdbe1b95ca1ae3de6989d07b2e9629
1.8
import torch from ...utils import box_coder_utils, box_utils from .point_head_template import PointHeadTemplate class PointIntraPartOffsetHead(PointHeadTemplate): """ Point-based head for predicting the intra-object part locations. Reference Paper: https://arxiv.org/abs/1907.03670 From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network """ def __init__(self, num_class, input_channels, model_cfg, predict_boxes_when_training=False, **kwargs): super().__init__(model_cfg=model_cfg, num_class=num_class) self.predict_boxes_when_training = predict_boxes_when_training self.cls_layers = self.make_fc_layers( fc_cfg=self.model_cfg.CLS_FC, input_channels=input_channels, output_channels=num_class ) self.part_reg_layers = self.make_fc_layers( fc_cfg=self.model_cfg.PART_FC, input_channels=input_channels, output_channels=3 ) target_cfg = self.model_cfg.TARGET_CONFIG if target_cfg.get('BOX_CODER', None) is not None: self.box_coder = getattr(box_coder_utils, target_cfg.BOX_CODER)( **target_cfg.BOX_CODER_CONFIG ) self.box_layers = self.make_fc_layers( fc_cfg=self.model_cfg.REG_FC, input_channels=input_channels, output_channels=self.box_coder.code_size ) else: self.box_layers = None def assign_targets(self, input_dict): """ Args: input_dict: point_features: (N1 + N2 + N3 + ..., C) batch_size: point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] gt_boxes (optional): (B, M, 8) Returns: point_cls_labels: (N1 + N2 + N3 + ...), long type, 0:background, -1:ignored point_part_labels: (N1 + N2 + N3 + ..., 3) """ point_coords = input_dict['point_coords'] gt_boxes = input_dict['gt_boxes'] assert gt_boxes.shape.__len__() == 3, 'gt_boxes.shape=%s' % str(gt_boxes.shape) assert point_coords.shape.__len__() in [2], 'points.shape=%s' % str(point_coords.shape) batch_size = gt_boxes.shape[0] extend_gt_boxes = box_utils.enlarge_box3d( gt_boxes.view(-1, gt_boxes.shape[-1]), extra_width=self.model_cfg.TARGET_CONFIG.GT_EXTRA_WIDTH ).view(batch_size, -1, gt_boxes.shape[-1]) targets_dict = self.assign_stack_targets( points=point_coords, gt_boxes=gt_boxes, extend_gt_boxes=extend_gt_boxes, set_ignore_flag=True, use_ball_constraint=False, ret_part_labels=True, ret_box_labels=(self.box_layers is not None) ) return targets_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict point_loss_cls, tb_dict = self.get_cls_layer_loss(tb_dict) point_loss_part, tb_dict = self.get_part_layer_loss(tb_dict) point_loss = point_loss_cls + point_loss_part if self.box_layers is not None: point_loss_box, tb_dict = self.get_box_layer_loss(tb_dict) point_loss += point_loss_box return point_loss, tb_dict def forward(self, batch_dict): """ Args: batch_dict: batch_size: point_features: (N1 + N2 + N3 + ..., C) or (B, N, C) point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] point_labels (optional): (N1 + N2 + N3 + ...) gt_boxes (optional): (B, M, 8) Returns: batch_dict: point_cls_scores: (N1 + N2 + N3 + ..., 1) point_part_offset: (N1 + N2 + N3 + ..., 3) """ point_features = batch_dict['point_features'] point_cls_preds = self.cls_layers(point_features) # (total_points, num_class) point_part_preds = self.part_reg_layers(point_features) ret_dict = { 'point_cls_preds': point_cls_preds, 'point_part_preds': point_part_preds, } if self.box_layers is not None: point_box_preds = self.box_layers(point_features) ret_dict['point_box_preds'] = point_box_preds point_cls_scores = torch.sigmoid(point_cls_preds) point_part_offset = torch.sigmoid(point_part_preds) batch_dict['point_cls_scores'], _ = point_cls_scores.max(dim=-1) batch_dict['point_part_offset'] = point_part_offset if self.training: targets_dict = self.assign_targets(batch_dict) ret_dict['point_cls_labels'] = targets_dict['point_cls_labels'] ret_dict['point_part_labels'] = targets_dict.get('point_part_labels') ret_dict['point_box_labels'] = targets_dict.get('point_box_labels') if self.box_layers is not None and (not self.training or self.predict_boxes_when_training): point_cls_preds, point_box_preds = self.generate_predicted_boxes( points=batch_dict['point_coords'][:, 1:4], point_cls_preds=point_cls_preds, point_box_preds=ret_dict['point_box_preds'] ) batch_dict['batch_cls_preds'] = point_cls_preds batch_dict['batch_box_preds'] = point_box_preds batch_dict['batch_index'] = batch_dict['point_coords'][:, 0] batch_dict['cls_preds_normalized'] = False self.forward_ret_dict = ret_dict return batch_dict
[ "torch.sigmoid" ]
1.8
Gltina/OpenPCDet
e32dc7f8f903a3f0e1c93effc68d74dbe16766e2
1.8
import os import torch import torch.nn as nn from ...ops.iou3d_nms import iou3d_nms_utils from .. import backbones_2d, backbones_3d, dense_heads, roi_heads from ..backbones_2d import map_to_bev from ..backbones_3d import pfe, vfe from ..model_utils import model_nms_utils class Detector3DTemplate(nn.Module): def __init__(self, model_cfg, num_class, dataset): super().__init__() self.model_cfg = model_cfg self.num_class = num_class self.dataset = dataset self.class_names = dataset.class_names self.register_buffer('global_step', torch.LongTensor(1).zero_()) self.module_topology = [ 'vfe', 'backbone_3d', 'map_to_bev_module', 'pfe', 'backbone_2d', 'dense_head', 'point_head', 'roi_head' ] @property def mode(self): return 'TRAIN' if self.training else 'TEST' def update_global_step(self): self.global_step += 1 def build_networks(self): model_info_dict = { 'module_list': [], 'num_rawpoint_features': self.dataset.point_feature_encoder.num_point_features, 'num_point_features': self.dataset.point_feature_encoder.num_point_features, 'grid_size': self.dataset.grid_size, 'point_cloud_range': self.dataset.point_cloud_range, 'voxel_size': self.dataset.voxel_size } for module_name in self.module_topology: module, model_info_dict = getattr(self, 'build_%s' % module_name)( model_info_dict=model_info_dict ) self.add_module(module_name, module) return model_info_dict['module_list'] def build_vfe(self, model_info_dict): if self.model_cfg.get('VFE', None) is None: return None, model_info_dict vfe_module = vfe.__all__[self.model_cfg.VFE.NAME]( model_cfg=self.model_cfg.VFE, num_point_features=model_info_dict['num_rawpoint_features'], point_cloud_range=model_info_dict['point_cloud_range'], voxel_size=model_info_dict['voxel_size'] ) model_info_dict['num_point_features'] = vfe_module.get_output_feature_dim() model_info_dict['module_list'].append(vfe_module) return vfe_module, model_info_dict def build_backbone_3d(self, model_info_dict): if self.model_cfg.get('BACKBONE_3D', None) is None: return None, model_info_dict backbone_3d_module = backbones_3d.__all__[self.model_cfg.BACKBONE_3D.NAME]( model_cfg=self.model_cfg.BACKBONE_3D, input_channels=model_info_dict['num_point_features'], grid_size=model_info_dict['grid_size'], voxel_size=model_info_dict['voxel_size'], point_cloud_range=model_info_dict['point_cloud_range'] ) model_info_dict['module_list'].append(backbone_3d_module) model_info_dict['num_point_features'] = backbone_3d_module.num_point_features return backbone_3d_module, model_info_dict def build_map_to_bev_module(self, model_info_dict): if self.model_cfg.get('MAP_TO_BEV', None) is None: return None, model_info_dict map_to_bev_module = map_to_bev.__all__[self.model_cfg.MAP_TO_BEV.NAME]( model_cfg=self.model_cfg.MAP_TO_BEV, grid_size=model_info_dict['grid_size'] ) model_info_dict['module_list'].append(map_to_bev_module) model_info_dict['num_bev_features'] = map_to_bev_module.num_bev_features return map_to_bev_module, model_info_dict def build_backbone_2d(self, model_info_dict): if self.model_cfg.get('BACKBONE_2D', None) is None: return None, model_info_dict backbone_2d_module = backbones_2d.__all__[self.model_cfg.BACKBONE_2D.NAME]( model_cfg=self.model_cfg.BACKBONE_2D, input_channels=model_info_dict['num_bev_features'] ) model_info_dict['module_list'].append(backbone_2d_module) model_info_dict['num_bev_features'] = backbone_2d_module.num_bev_features return backbone_2d_module, model_info_dict def build_pfe(self, model_info_dict): if self.model_cfg.get('PFE', None) is None: return None, model_info_dict pfe_module = pfe.__all__[self.model_cfg.PFE.NAME]( model_cfg=self.model_cfg.PFE, voxel_size=model_info_dict['voxel_size'], point_cloud_range=model_info_dict['point_cloud_range'], num_bev_features=model_info_dict['num_bev_features'], num_rawpoint_features=model_info_dict['num_rawpoint_features'] ) model_info_dict['module_list'].append(pfe_module) model_info_dict['num_point_features'] = pfe_module.num_point_features model_info_dict['num_point_features_before_fusion'] = pfe_module.num_point_features_before_fusion return pfe_module, model_info_dict def build_dense_head(self, model_info_dict): if self.model_cfg.get('DENSE_HEAD', None) is None: return None, model_info_dict dense_head_module = dense_heads.__all__[self.model_cfg.DENSE_HEAD.NAME]( model_cfg=self.model_cfg.DENSE_HEAD, input_channels=model_info_dict['num_bev_features'], num_class=self.num_class if not self.model_cfg.DENSE_HEAD.CLASS_AGNOSTIC else 1, class_names=self.class_names, grid_size=model_info_dict['grid_size'], point_cloud_range=model_info_dict['point_cloud_range'], predict_boxes_when_training=self.model_cfg.get('ROI_HEAD', False) ) model_info_dict['module_list'].append(dense_head_module) return dense_head_module, model_info_dict def build_point_head(self, model_info_dict): if self.model_cfg.get('POINT_HEAD', None) is None: return None, model_info_dict if self.model_cfg.POINT_HEAD.get('USE_POINT_FEATURES_BEFORE_FUSION', False): num_point_features = model_info_dict['num_point_features_before_fusion'] else: num_point_features = model_info_dict['num_point_features'] point_head_module = dense_heads.__all__[self.model_cfg.POINT_HEAD.NAME]( model_cfg=self.model_cfg.POINT_HEAD, input_channels=num_point_features, num_class=self.num_class if not self.model_cfg.POINT_HEAD.CLASS_AGNOSTIC else 1, predict_boxes_when_training=self.model_cfg.get('ROI_HEAD', False) ) model_info_dict['module_list'].append(point_head_module) return point_head_module, model_info_dict def build_roi_head(self, model_info_dict): if self.model_cfg.get('ROI_HEAD', None) is None: return None, model_info_dict point_head_module = roi_heads.__all__[self.model_cfg.ROI_HEAD.NAME]( model_cfg=self.model_cfg.ROI_HEAD, input_channels=model_info_dict['num_point_features'], num_class=self.num_class if not self.model_cfg.ROI_HEAD.CLASS_AGNOSTIC else 1, ) model_info_dict['module_list'].append(point_head_module) return point_head_module, model_info_dict def forward(self, **kwargs): raise NotImplementedError def post_processing(self, batch_dict): """ Args: batch_dict: batch_size: batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1) or [(B, num_boxes, num_class1), (B, num_boxes, num_class2) ...] multihead_label_mapping: [(num_class1), (num_class2), ...] batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C) cls_preds_normalized: indicate whether batch_cls_preds is normalized batch_index: optional (N1+N2+...) has_class_labels: True/False roi_labels: (B, num_rois) 1 .. num_classes batch_pred_labels: (B, num_boxes, 1) Returns: """ post_process_cfg = self.model_cfg.POST_PROCESSING batch_size = batch_dict['batch_size'] recall_dict = {} pred_dicts = [] for index in range(batch_size): if batch_dict.get('batch_index', None) is not None: assert batch_dict['batch_box_preds'].shape.__len__() == 2 batch_mask = (batch_dict['batch_index'] == index) else: assert batch_dict['batch_box_preds'].shape.__len__() == 3 batch_mask = index box_preds = batch_dict['batch_box_preds'][batch_mask] src_box_preds = box_preds if not isinstance(batch_dict['batch_cls_preds'], list): cls_preds = batch_dict['batch_cls_preds'][batch_mask] src_cls_preds = cls_preds assert cls_preds.shape[1] in [1, self.num_class] if not batch_dict['cls_preds_normalized']: cls_preds = torch.sigmoid(cls_preds) else: cls_preds = [x[batch_mask] for x in batch_dict['batch_cls_preds']] src_cls_preds = cls_preds if not batch_dict['cls_preds_normalized']: cls_preds = [torch.sigmoid(x) for x in cls_preds] if post_process_cfg.NMS_CONFIG.MULTI_CLASSES_NMS: if not isinstance(cls_preds, list): cls_preds = [cls_preds] multihead_label_mapping = [torch.arange(1, self.num_class, device=cls_preds[0].device)] else: multihead_label_mapping = batch_dict['multihead_label_mapping'] cur_start_idx = 0 pred_scores, pred_labels, pred_boxes = [], [], [] for cur_cls_preds, cur_label_mapping in zip(cls_preds, multihead_label_mapping): assert cur_cls_preds.shape[1] == len(cur_label_mapping) cur_box_preds = box_preds[cur_start_idx: cur_start_idx + cur_cls_preds.shape[0]] cur_pred_scores, cur_pred_labels, cur_pred_boxes = model_nms_utils.multi_classes_nms( cls_scores=cur_cls_preds, box_preds=cur_box_preds, nms_config=post_process_cfg.NMS_CONFIG, score_thresh=post_process_cfg.SCORE_THRESH ) cur_pred_labels = cur_label_mapping[cur_pred_labels] pred_scores.append(cur_pred_scores) pred_labels.append(cur_pred_labels) pred_boxes.append(cur_pred_boxes) cur_start_idx += cur_cls_preds.shape[0] final_scores = torch.cat(pred_scores, dim=0) final_labels = torch.cat(pred_labels, dim=0) final_boxes = torch.cat(pred_boxes, dim=0) else: cls_preds, label_preds = torch.max(cls_preds, dim=-1) if batch_dict.get('has_class_labels', False): label_key = 'roi_labels' if 'roi_labels' in batch_dict else 'batch_pred_labels' label_preds = batch_dict[label_key][index] else: label_preds = label_preds + 1 selected, selected_scores = model_nms_utils.class_agnostic_nms( box_scores=cls_preds, box_preds=box_preds, nms_config=post_process_cfg.NMS_CONFIG, score_thresh=post_process_cfg.SCORE_THRESH ) if post_process_cfg.OUTPUT_RAW_SCORE: max_cls_preds, _ = torch.max(src_cls_preds, dim=-1) selected_scores = max_cls_preds[selected] final_scores = selected_scores final_labels = label_preds[selected] final_boxes = box_preds[selected] recall_dict = self.generate_recall_record( box_preds=final_boxes if 'rois' not in batch_dict else src_box_preds, recall_dict=recall_dict, batch_index=index, data_dict=batch_dict, thresh_list=post_process_cfg.RECALL_THRESH_LIST ) record_dict = { 'pred_boxes': final_boxes, 'pred_scores': final_scores, 'pred_labels': final_labels } pred_dicts.append(record_dict) return pred_dicts, recall_dict @staticmethod def generate_recall_record(box_preds, recall_dict, batch_index, data_dict=None, thresh_list=None): if 'gt_boxes' not in data_dict: return recall_dict rois = data_dict['rois'][batch_index] if 'rois' in data_dict else None gt_boxes = data_dict['gt_boxes'][batch_index] if recall_dict.__len__() == 0: recall_dict = {'gt': 0} for cur_thresh in thresh_list: recall_dict['roi_%s' % (str(cur_thresh))] = 0 recall_dict['rcnn_%s' % (str(cur_thresh))] = 0 cur_gt = gt_boxes k = cur_gt.__len__() - 1 while k > 0 and cur_gt[k].sum() == 0: k -= 1 cur_gt = cur_gt[:k + 1] if cur_gt.shape[0] > 0: if box_preds.shape[0] > 0: iou3d_rcnn = iou3d_nms_utils.boxes_iou3d_gpu(box_preds[:, 0:7], cur_gt[:, 0:7]) else: iou3d_rcnn = torch.zeros((0, cur_gt.shape[0])) if rois is not None: iou3d_roi = iou3d_nms_utils.boxes_iou3d_gpu(rois[:, 0:7], cur_gt[:, 0:7]) for cur_thresh in thresh_list: if iou3d_rcnn.shape[0] == 0: recall_dict['rcnn_%s' % str(cur_thresh)] += 0 else: rcnn_recalled = (iou3d_rcnn.max(dim=0)[0] > cur_thresh).sum().item() recall_dict['rcnn_%s' % str(cur_thresh)] += rcnn_recalled if rois is not None: roi_recalled = (iou3d_roi.max(dim=0)[0] > cur_thresh).sum().item() recall_dict['roi_%s' % str(cur_thresh)] += roi_recalled recall_dict['gt'] += cur_gt.shape[0] else: gt_iou = box_preds.new_zeros(box_preds.shape[0]) return recall_dict def load_params_from_file(self, filename, logger, to_cpu=False): if not os.path.isfile(filename): raise FileNotFoundError logger.info('==> Loading parameters from checkpoint %s to %s' % (filename, 'CPU' if to_cpu else 'GPU')) loc_type = torch.device('cpu') if to_cpu else None checkpoint = torch.load(filename, map_location=loc_type) model_state_disk = checkpoint['model_state'] if 'version' in checkpoint: logger.info('==> Checkpoint trained from version: %s' % checkpoint['version']) update_model_state = {} for key, val in model_state_disk.items(): if key in self.state_dict() and self.state_dict()[key].shape == model_state_disk[key].shape: update_model_state[key] = val # logger.info('Update weight %s: %s' % (key, str(val.shape))) state_dict = self.state_dict() state_dict.update(update_model_state) self.load_state_dict(state_dict) for key in state_dict: if key not in update_model_state: logger.info('Not updated weight %s: %s' % (key, str(state_dict[key].shape))) logger.info('==> Done (loaded %d/%d)' % (len(update_model_state), len(self.state_dict()))) def load_params_with_optimizer(self, filename, to_cpu=False, optimizer=None, logger=None): if not os.path.isfile(filename): raise FileNotFoundError logger.info('==> Loading parameters from checkpoint %s to %s' % (filename, 'CPU' if to_cpu else 'GPU')) loc_type = torch.device('cpu') if to_cpu else None checkpoint = torch.load(filename, map_location=loc_type) epoch = checkpoint.get('epoch', -1) it = checkpoint.get('it', 0.0) self.load_state_dict(checkpoint['model_state']) if optimizer is not None: if 'optimizer_state' in checkpoint and checkpoint['optimizer_state'] is not None: logger.info('==> Loading optimizer parameters from checkpoint %s to %s' % (filename, 'CPU' if to_cpu else 'GPU')) optimizer.load_state_dict(checkpoint['optimizer_state']) else: assert filename[-4] == '.', filename src_file, ext = filename[:-4], filename[-3:] optimizer_filename = '%s_optim.%s' % (src_file, ext) if os.path.exists(optimizer_filename): optimizer_ckpt = torch.load(optimizer_filename, map_location=loc_type) optimizer.load_state_dict(optimizer_ckpt['optimizer_state']) if 'version' in checkpoint: print('==> Checkpoint trained from version: %s' % checkpoint['version']) logger.info('==> Done') return it, epoch
[ "torch.zeros", "torch.device", "torch.cat", "torch.sigmoid", "torch.arange", "torch.max", "torch.LongTensor", "torch.load" ]
1.8
Gltina/OpenPCDet
e32dc7f8f903a3f0e1c93effc68d74dbe16766e2
1.3
""" Training augmented model """ import os import torch import torch.nn as nn import numpy as np from tensorboardX import SummaryWriter from config import AugmentConfig import utils from models.augment_cnn import AugmentCNN import copy config = AugmentConfig() device = torch.device("cuda") # tensorboard writer = SummaryWriter(log_dir=os.path.join(config.path, "tb")) writer.add_text('config', config.as_markdown(), 0) logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name))) config.print_params(logger.info) class Architect(): """ Compute gradients of alphas """ def __init__(self, net, w_momentum, w_weight_decay): """ Args: net w_momentum: weights momentum """ self.net = net self.v_net = copy.deepcopy(net) self.w_momentum = w_momentum self.w_weight_decay = w_weight_decay def virtual_step(self, trn_X, trn_y, xi, w_optim, model, Likelihood, batch_size, step): """ Compute unrolled weight w' (virtual step) Step process: 1) forward 2) calc loss 3) compute gradient (by backprop) 4) update gradient Args: xi: learning rate for virtual gradient step (same as weights lr) w_optim: weights optimizer """ # forward & calc loss dataIndex = len(trn_y)+step*batch_size ignore_crit = nn.CrossEntropyLoss(reduction='none').cuda() # forward logits,_ = self.net(trn_X) # sigmoid loss loss = torch.dot(torch.sigmoid(Likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y))/(torch.sigmoid(Likelihood[step*batch_size:dataIndex]).sum()) loss.backward() dtloss_ll = Likelihood.grad dtloss_w = [] # do virtual step (update gradient) # below operations do not need gradient tracking with torch.no_grad(): # dict key is not the value, but the pointer. So original network weight have to # be iterated also. for w, vw in zip(self.net.weights(), self.v_net.weights()): m = w_optim.state[w].get('momentum_buffer', 0.) * self.w_momentum if w.grad is not None: vw.copy_(w - xi * (m + w.grad )) dtloss_w.append(m + w.grad ) elif w.grad is None: dtloss_w.append(w.grad ) return dtloss_w, dtloss_ll # 1399:[48, 3, 3, 3], 1:25000 def unrolled_backward(self, trn_X, trn_y, val_X, val_y, xi, w_optim, model, likelihood, Likelihood_optim, batch_size, step): """ Compute unrolled loss and backward its gradients Args: xi: learning rate for virtual gradient step (same as net lr) w_optim: weights optimizer - for virtual step """ # do virtual step (calc w`) dtloss_w, dtloss_ll = self.virtual_step(trn_X, trn_y, xi, w_optim, model, likelihood, batch_size, step) logits, aux_logits = self.v_net(val_X) # calc unrolled loss ignore_crit = nn.CrossEntropyLoss(reduction='none').to(device) dataIndex = len(trn_y)+step*batch_size loss = torch.dot(torch.sigmoid(likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y)) loss = loss/(torch.sigmoid(likelihood[step*batch_size:dataIndex]).sum()) # L_val(w`) # compute gradient loss.backward() dvloss_tloss = 0 for v, dt in zip(self.v_net.weights(), dtloss_w): if v.grad is not None: grad_valw_d_trainw = torch.div(v.grad, dt) grad_valw_d_trainw[torch.isinf(grad_valw_d_trainw)] = 0 grad_valw_d_trainw[torch.isnan(grad_valw_d_trainw)] = 0 grad_val_train = torch.sum(grad_valw_d_trainw) # print(grad_val_train) dvloss_tloss += grad_val_train dlikelihood = dvloss_tloss* dtloss_ll vprec1, vprec5 = utils.accuracy(logits, val_y, topk=(1, 5)) Likelihood_optim.zero_grad() likelihood.grad = dlikelihood print(dvloss_tloss) print(dtloss_ll) print('likelihood gradient is:', likelihood.grad) Likelihood_optim.step() return likelihood, Likelihood_optim, loss, vprec1, vprec5 def main(): logger.info("Logger is set - training start") # set default gpu device id torch.cuda.set_device(config.gpus[0]) # set seed np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) torch.backends.cudnn.benchmark = True # get data with meta info input_size, input_channels, n_classes, train_val_data, test_data = utils.get_data( config.dataset, config.data_path, config.cutout_length, validation=True) criterion = nn.CrossEntropyLoss().to(device) use_aux = config.aux_weight > 0. model = AugmentCNN(input_size, input_channels, config.init_channels, n_classes, config.layers, use_aux, config.genotype).to(device) #single GPU # model = nn.DataParallel(model, device_ids=config.gpus).to(device) # model size mb_params = utils.param_size(model) logger.info("Model size = {:.3f} MB".format(mb_params)) # weights optimizer with SGD optimizer = torch.optim.SGD(model.parameters(), config.lr, momentum=config.momentum, weight_decay=config.weight_decay) n_train = len(train_val_data) split = n_train // 2 indices = list(range(n_train)) # each train data is endowed with a weight Likelihood = torch.nn.Parameter(torch.ones(len(indices[:split])).cuda(),requires_grad=True) Likelihood_optim = torch.optim.SGD({Likelihood}, config.lr) # data split train_data = torch.utils.data.Subset(train_val_data, indices[:split]) valid_data = torch.utils.data.Subset(train_val_data, indices[split:]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=False) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=False) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs) architect = Architect(model, 0.9, 3e-4) best_top1 = 0. # training loop for epoch in range(config.epochs): lr_scheduler.step() lr = lr_scheduler.get_lr()[0] drop_prob = config.drop_path_prob * epoch / config.epochs model.drop_path_prob(drop_prob) # training train(train_loader, valid_loader, model, architect, optimizer, criterion, lr, epoch, Likelihood, Likelihood_optim, config.batch_size) # validation cur_step = (epoch+1) * len(train_loader) top1 = validate(valid_loader, model, criterion, epoch, cur_step) # save if best_top1 < top1: best_top1 = top1 is_best = True else: is_best = False utils.save_checkpoint(model, config.path, is_best) print("") logger.info("Final best Prec@1 = {:.4%}".format(best_top1)) def train(train_loader, valid_loader, model, architect, optimizer, criterion, lr, epoch, Likelihood, Likelihood_optim, batch_size): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() standard_losses = utils.AverageMeter() valid_losses = utils.AverageMeter() cur_step = epoch*len(train_loader) cur_lr = optimizer.param_groups[0]['lr'] logger.info("Epoch {} LR {}".format(epoch, cur_lr)) writer.add_scalar('train/lr', cur_lr, cur_step) model.train() for step, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_loader, valid_loader)): trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True) val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True) N = trn_X.size(0) M = val_X.size(0) # phase 2. Likelihood step (Likelihood) Likelihood_optim.zero_grad() Likelihood, Likelihood_optim, valid_loss, vprec1, vprec5= architect.unrolled_backward(trn_X, trn_y, val_X, val_y, lr, optimizer, model, Likelihood, Likelihood_optim, batch_size, step) # phase 1. network weight step (w) optimizer.zero_grad() logits, aux_logits = model(trn_X) ignore_crit = nn.CrossEntropyLoss(reduction='none').to(device) dataIndex = len(trn_y)+step*batch_size loss = torch.dot(torch.sigmoid(Likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y)) loss = loss/(torch.sigmoid(Likelihood[step*batch_size:dataIndex]).sum()) ''' if config.aux_weight > 0.: loss += config.aux_weight * criterion(aux_logits, y) ''' loss.backward() # gradient clipping nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip) # update network weight on train data optimizer.step() #compare normal loss without weighted standard_loss = criterion(logits, trn_y) prec1, prec5 = utils.accuracy(logits, trn_y, topk=(1, 5)) losses.update(loss.item(), N) standard_losses.update(standard_loss.item(), N) valid_losses.update(valid_loss.item(), M) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step % config.print_freq == 0 or step == len(train_loader)-1: logger.info( "Train: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} standard Loss {slosses.avg:.3f} Valid Loss {vlosses.avg:.3f}" " Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, len(train_loader)-1, losses=losses, slosses=standard_losses, vlosses=valid_losses, top1=top1, top5=top5)) writer.add_scalar('train/loss', loss.item(), cur_step) writer.add_scalar('train/top1', prec1.item(), cur_step) writer.add_scalar('train/top5', prec5.item(), cur_step) writer.add_scalar('val/loss', valid_loss.item(), cur_step) writer.add_scalar('train/top1', vprec1.item(), cur_step) writer.add_scalar('train/top5', vprec5.item(), cur_step) cur_step += 1 logger.info("Train: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg)) def validate(valid_loader, model, criterion, epoch, cur_step): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() model.eval() with torch.no_grad(): for step,(X, y) in enumerate(valid_loader): X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True) N = X.size(0) logits, _ = model(X) loss = criterion(logits, y) prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5)) losses.update(loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step % config.print_freq == 0 or step == len(valid_loader)-1: logger.info( "Test: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, len(valid_loader)-1, losses=losses, top1=top1, top5=top5)) writer.add_scalar('test/loss', losses.avg, cur_step) writer.add_scalar('test/top1', top1.avg, cur_step) writer.add_scalar('test/top5', top5.avg, cur_step) logger.info("Test: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg)) return top1.avg if __name__ == "__main__": main()
[ "torch.device", "torch.sigmoid", "torch.cuda.manual_seed_all", "torch.isnan", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.no_grad", "torch.optim.SGD", "torch.manual_seed", "torch.cuda.set_device", "torch.utils.data.DataLoader", "torch.isinf", "torch.utils.data.Subset", "torch.div", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.3
jkooy/darts_ignoring
7ae7c769cffe81441af9e1a0e0b92552245ae1d1
1.8
# CLI interface to decode task import argparse import sys from argparse import ArgumentDefaultsHelpFormatter as ArgFormatter import torch from pathlib import Path from rtg import TranslationExperiment as Experiment, log, yaml from rtg.module.decoder import Decoder, ReloadEvent from rtg.utils import IO def parse_args(): parser = argparse.ArgumentParser(prog="rtg.decode", description="Decode using NMT model", formatter_class=ArgFormatter) parser.add_argument("work_dir", help="Working directory", type=str) parser.add_argument("model_path", type=str, nargs='*', help="Path to model's checkpoint. " "If not specified, a best model (based on the score on validation set)" " from the experiment directory will be used." " If multiple paths are specified, then an ensembling is performed by" " averaging the param weights") parser.add_argument("-if", '--input', default=sys.stdin, type=argparse.FileType('r', encoding='utf-8', errors='ignore'), help='Input file path. default is STDIN') parser.add_argument("-of", '--output', default=sys.stdout, type=argparse.FileType('w', encoding='utf-8', errors='ignore'), help='Output File path. default is STDOUT') parser.add_argument("-bs", '--beam-size', type=int, default=5, help='Beam size. beam_size=1 is greedy, ' 'In theory: higher beam is better approximation but expensive. ' 'But in practice, higher beam doesnt always increase.') parser.add_argument("-bc", '--batch-size', type=int, default=1, help='Number of source tokens in a batch, approximately. ' 'tries to fit in atleast one sentence => so even if you set 0 or 1, ' 'there will be atleast one sentence in batch. ' '1 sentence seems better in CPU but larger number is better on GPUs') parser.add_argument("-lp", '--lp-alpha', type=float, default=0.6, help='Length penalty alpha. to disable set <= 0.0 ' 'Ideally in the range [0.0, 1.0] but you are allowed to ' 'experiment beyond > 1.0 but not less than 0.0') parser.add_argument("-ml", '--max-len', type=int, default=60, help='Maximum output sequence length. ' 'Example: if max_len=10 and if source_len is 50, ' 'then decoder goes up to 50+10 time steps in search of EOS token.') parser.add_argument("-msl", '--max-src-len', type=int, help='max source len; longer seqs will be truncated') parser.add_argument("-nh", '--num-hyp', type=int, default=1, help='Number of hypothesis to output. This should be smaller than beam_size') parser.add_argument("--prepared", dest="prepared", action='store_true', default=None, help='Each token is a valid integer which is an index to embedding,' ' so skip indexifying again') parser.add_argument("-bp", '--binmt-path', type=str, default=None, choices=['E1D1', 'E2D2', 'E1D2E2D1', 'E2D2E1D2', 'E1D2', 'E2D1'], help='Sub module path inside BiNMT. applicable only when model is BiNMT') parser.add_argument("-it", '--interactive', action='store_true', help='Open interactive shell with decoder') parser.add_argument("-sc", '--skip-check', action='store_true', help='Skip Checking whether the experiment dir is prepared and trained') parser.add_argument("-en", '--ensemble', type=int, default=1, help='Ensemble best --ensemble models by averaging them') parser.add_argument("-cb", '--sys-comb', type=Path, help='System combine models at the softmax layer using the weights' ' specified in this file. When this argument is supplied, model_path ' 'argument is ignored.') args = vars(parser.parse_args()) return args def validate_args(args, exp: Experiment): if not args.pop('skip_check'): # if --skip-check is not requested assert exp.has_prepared(), \ f'Experiment dir {exp.work_dir} is not ready to train. Please run "prep" sub task' assert exp.has_trained(), \ f'Experiment dir {exp.work_dir} is not ready to decode.' \ f' Please run "train" sub task or --skip-check to ignore this' weights_file = exp.work_dir / 'combo-weights.yml' if not args.get('sys_comb') and weights_file.exists(): log.warning("Found default combo weights, switching to combo mode") args['sys_comb'] = weights_file if args.get("sys_comb"): with IO.reader(args['sys_comb']) as fh: weights = yaml.load(fh)['weights'] args['model_path'], args['weights'] = zip(*weights.items()) for model in args['model_path']: assert Path(model).exists(), model assert abs(sum(args['weights']) - 1) < 1e-3, \ f'Weights from --sys-comb file should sum to 1.0, given={args["weights"]}' def main(): # No grads required torch.set_grad_enabled(False) args = parse_args() gen_args = {} exp = Experiment(args.pop('work_dir'), read_only=True) validate_args(args, exp) if exp.model_type == 'binmt': if not args.get('path'): Exception('--binmt-path argument is needed for BiNMT model.') gen_args['path'] = args.pop('binmt_path') weights = args.get('weights') if weights: decoder = Decoder.combo_new(exp, model_paths=args.pop('model_path'), weights=weights) else: decoder = Decoder.new(exp, gen_args=gen_args, model_paths=args.pop('model_path', None), ensemble=args.pop('ensemble', 1)) if args.pop('interactive'): if weights: log.warning("Interactive shell not reloadable for combo mode. FIXME: TODO:") if args['input'] != sys.stdin or args['output'] != sys.stdout: log.warning('--input and --output args are not applicable in --interactive mode') args.pop('input') args.pop('output') while True: try: # an hacky way to unload and reload model when user tries to switch models decoder.decode_interactive(**args) break # exit loop if there is no request for reload except ReloadEvent as re: decoder = Decoder.new(exp, gen_args=gen_args, model_paths=re.model_paths) args = re.state # go back to loop and redo interactive shell else: return decoder.decode_file(args.pop('input'), args.pop('output'), **args) if __name__ == '__main__': main()
[ "torch.set_grad_enabled" ]
1.8.0
XuezheMax/rtg
a4bfc81dc1874c6f43765eb588d1026a2296aa2f
0.19
import os import os.path import sys sys.path.append('../..') from utils.preprocessSMD import load_SMD from transformers import (AdamW,WEIGHTS_NAME, CONFIG_NAME) from utils.hugging_face import load_model,get_parser,top_filtering, SPECIAL_TOKENS, add_special_tokens_, average_distributed_scalar, make_logdir, build_input_from_segments,add_token_bAbI from argparse import ArgumentParser import torch import torch.nn.functional as F from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint from ignite.metrics import Accuracy, Loss, MetricsLambda, RunningAverage from ignite.contrib.handlers import ProgressBar, PiecewiseLinear from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OutputHandler, OptimizerParamsHandler import math from pprint import pformat import random from utils.eval_metrics import moses_multi_bleu, compute_prf, compute_prf_SMD import numpy as np from tqdm import tqdm import warnings import json import jsonlines from collections import defaultdict def sample_sequence(history, graph,tokenizer, model, args, current_output=None): special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS) padding = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[-1]) if current_output is None: current_output = [] if(args.flatten_KB): history += graph['edges'] for i in range(args.max_length): instance = build_input_from_segments(args,history,current_output,graph,tokenizer, with_eos=False) input_ids = torch.tensor(instance["input_ids"], device=args.device).unsqueeze(0) token_type_ids = torch.tensor(instance["token_type_ids"], device=args.device).unsqueeze(0) nodes_ids = None if (args.graph or args.edge_list) and len(instance["input_graph_ids"])>0: max_c = max(len(col) for col in instance["input_graph_ids"]) temp = [] for clmn in instance["input_graph_ids"]: temp.append(clmn + [padding] * (max_c - len(clmn))) nodes_ids = torch.tensor([temp], device=args.device) att_mask = None logits = model(input_ids, token_type_ids=token_type_ids, nodes=nodes_ids, attention_mask=att_mask) if isinstance(logits, tuple): # for gpt2 and maybe others logits = logits[0] logits = logits[0, -1, :] / args.temperature logits = top_filtering(logits, top_k=args.top_k, top_p=args.top_p) probs = F.softmax(logits, dim=-1) prev = torch.topk(probs, 1)[1] if args.no_sample else torch.multinomial(probs, 1) if i < args.min_length and prev.item() in special_tokens_ids: while prev.item() in special_tokens_ids: if probs.max().item() == 1: warnings.warn("Warning: model generating special token with probability 1.") break # avoid infinitely looping over special token prev = torch.multinomial(probs, num_samples=1) if prev.item() in special_tokens_ids: break current_output.append(prev.item()) return current_output if __name__ == "__main__": args = get_parser() random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # Get model and tokenizer model, tokenizer = load_model(args,load=True) print("Load Data") test, _ = load_SMD(args, tokenizer, test_flag=True) j_output = defaultdict(list) for i, conv in tqdm(enumerate(test),total=len(test)): for sample in conv['dialogue']: out_ids = sample_sequence(sample['history'],sample["graph"] if args.dataset == "DIALKG" else conv,tokenizer, model, args) out_text = tokenizer.decode(out_ids, skip_special_tokens=True) j_output[conv["id"]].append({"spk":sample['spk'],"text":out_text}) with open(args.model_checkpoint+'/result.json', 'w') as fp: json.dump(j_output, fp, indent=4)
[ "torch.cuda.manual_seed", "torch.random.manual_seed", "torch.multinomial", "torch.tensor", "torch.nn.functional.softmax", "torch.topk" ]
0.19.5
HLTCHKUST/ke-dialogue
cb73237889860adedcfd381b28813feb267cef81
1.10
import datetime import os import pprint import time import threading import torch as th from types import SimpleNamespace as SN from utils.logging import Logger from utils.timehelper import time_left, time_str from os.path import dirname, abspath from learners import REGISTRY as le_REGISTRY from runners import REGISTRY as r_REGISTRY from controllers import REGISTRY as mac_REGISTRY from components.episode_buffer import ReplayBuffer from components.transforms import OneHot def run(_run, _config, _log): # check args sanity _config = args_sanity_check(_config, _log) args = SN(**_config) args.device = "cuda" if args.use_cuda else "cpu" # setup loggers logger = Logger(_log) _log.info("Experiment Parameters:") experiment_params = pprint.pformat(_config, indent=4, width=1) _log.info("\n\n" + experiment_params + "\n") # configure tensorboard logger unique_token = "{}__{}".format(args.name, datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) args.unique_token = unique_token if args.use_tensorboard: tb_logs_direc = os.path.join(dirname(dirname(abspath(__file__))), "results", "tb_logs") tb_exp_direc = os.path.join(tb_logs_direc, "{}").format(unique_token) logger.setup_tb(tb_exp_direc) # sacred is on by default logger.setup_sacred(_run) # Run and train run_sequential(args=args, logger=logger) # Clean up after finishing print("Exiting Main") print("Stopping all threads") for t in threading.enumerate(): if t.name != "MainThread": print("Thread {} is alive! Is daemon: {}".format(t.name, t.daemon)) t.join(timeout=1) print("Thread joined") print("Exiting script") # Making sure framework really exits os._exit(os.EX_OK) def evaluate_sequential(args, runner): for _ in range(args.test_nepisode): runner.run(test_mode=True) if args.save_replay: runner.save_replay() runner.close_env() def run_sequential(args, logger): # Init runner so we can get env info runner = r_REGISTRY[args.runner](args=args, logger=logger) # Set up schemes and groups here env_info = runner.get_env_info() args.n_agents = env_info["n_agents"] args.n_actions = env_info["n_actions"] args.state_shape = env_info["state_shape"] # Default/Base scheme scheme = { "state": {"vshape": env_info["state_shape"]}, "obs": {"vshape": env_info["obs_shape"], "group": "agents"}, "actions": {"vshape": (1,), "group": "agents", "dtype": th.long}, "adj_matrix": {"vshape":(args.n_agents,), "group": "agents", "dtype":th.int}, "avail_actions": {"vshape": (env_info["n_actions"],), "group": "agents", "dtype": th.int}, "reward": {"vshape": (1,)}, "terminated": {"vshape": (1,), "dtype": th.uint8}, } groups = { "agents": args.n_agents } preprocess = { "actions": ("actions_onehot", [OneHot(out_dim=args.n_actions)]) } buffer = ReplayBuffer(scheme, groups, args.buffer_size, env_info["episode_limit"] + 1, preprocess=preprocess, device="cpu" if args.buffer_cpu_only else args.device) # Setup multiagent controller here mac = mac_REGISTRY[args.mac](buffer.scheme, groups, args) # Give runner the scheme runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac) # Learner learner = le_REGISTRY[args.learner](mac, buffer.scheme, logger, args) if args.use_cuda: learner.cuda() if args.checkpoint_path != "": timesteps = [] timestep_to_load = 0 if not os.path.isdir(args.checkpoint_path): logger.console_logger.info("Checkpoint directiory {} doesn't exist".format(args.checkpoint_path)) return # Go through all files in args.checkpoint_path for name in os.listdir(args.checkpoint_path): full_name = os.path.join(args.checkpoint_path, name) # Check if they are dirs the names of which are numbers if os.path.isdir(full_name) and name.isdigit(): timesteps.append(int(name)) if args.load_step == 0: # choose the max timestep timestep_to_load = max(timesteps) else: # choose the timestep closest to load_step timestep_to_load = min(timesteps, key=lambda x: abs(x - args.load_step)) model_path = os.path.join(args.checkpoint_path, str(timestep_to_load)) logger.console_logger.info("Loading model from {}".format(model_path)) learner.load_models(model_path) runner.t_env = timestep_to_load if args.evaluate or args.save_replay: evaluate_sequential(args, runner) return # start training episode = 0 last_test_T = -args.test_interval - 1 last_log_T = 0 model_save_time = 0 start_time = time.time() last_time = start_time logger.console_logger.info("Beginning training for {} timesteps".format(args.t_max)) while runner.t_env <= args.t_max: # Run for a whole episode at a time episode_batch = runner.run(test_mode=False) buffer.insert_episode_batch(episode_batch) if buffer.can_sample(args.batch_size): episode_sample = buffer.sample(args.batch_size) # Truncate batch to only filled timesteps max_ep_t = episode_sample.max_t_filled() episode_sample = episode_sample[:, :max_ep_t] if episode_sample.device != args.device: episode_sample.to(args.device) learner.train(episode_sample, runner.t_env, episode) # Execute test runs once in a while n_test_runs = max(1, args.test_nepisode // runner.batch_size) if (runner.t_env - last_test_T) / args.test_interval >= 1.0: logger.console_logger.info("t_env: {} / {}".format(runner.t_env, args.t_max)) logger.console_logger.info("Estimated time left: {}. Time passed: {}".format( time_left(last_time, last_test_T, runner.t_env, args.t_max), time_str(time.time() - start_time))) last_time = time.time() last_test_T = runner.t_env for _ in range(n_test_runs): runner.run(test_mode=True) if args.save_model and (runner.t_env - model_save_time >= args.save_model_interval or model_save_time == 0): model_save_time = runner.t_env save_path = os.path.join(args.local_results_path, "models", args.unique_token, str(runner.t_env)) #"results/models/{}".format(unique_token) os.makedirs(save_path, exist_ok=True) logger.console_logger.info("Saving models to {}".format(save_path)) # learner should handle saving/loading -- delegate actor save/load to mac, # use appropriate filenames to do critics, optimizer states learner.save_models(save_path) episode += args.batch_size_run if (runner.t_env - last_log_T) >= args.log_interval: logger.log_stat("episode", episode, runner.t_env) logger.print_recent_stats() last_log_T = runner.t_env runner.close_env() logger.console_logger.info("Finished Training") def args_sanity_check(config, _log): # set CUDA flags # config["use_cuda"] = True # Use cuda whenever possible! if config["use_cuda"] and not th.cuda.is_available(): config["use_cuda"] = False _log.warning("CUDA flag use_cuda was switched OFF automatically because no CUDA devices are available!") if config["test_nepisode"] < config["batch_size_run"]: config["test_nepisode"] = config["batch_size_run"] else: config["test_nepisode"] = (config["test_nepisode"]//config["batch_size_run"]) * config["batch_size_run"] return config
[ "torch.cuda.is_available" ]
1.10.0
hex-plex/GNN-MARL
ebe964a4eb749fd8d2780af18aead85e342d2988
1.7
import torch.nn.functional as F import torch import json # Setting the seed for Torch import yaml from fltk.nets import Cifar10CNN, FashionMNISTCNN, Cifar100ResNet, FashionMNISTResNet, Cifar10ResNet, Cifar100VGG SEED = 1 torch.manual_seed(SEED) class Arguments: def __init__(self, logger): self.logger = logger self.batch_size = 10 self.test_batch_size = 1000 self.epochs = 1 self.lr = 0.001 self.momentum = 0.9 self.cuda = False self.shuffle = False self.log_interval = 10 self.kwargs = {} self.contribution_measurement_round = 1 self.contribution_measurement_metric = 'Influence' self.scheduler_step_size = 50 self.scheduler_gamma = 0.5 self.min_lr = 1e-10 self.round_worker_selection_strategy = None self.round_worker_selection_strategy_kwargs = None self.save_model = False self.save_temp_model = False self.save_epoch_interval = 1 self.save_model_path = "models" self.epoch_save_start_suffix = "start" self.epoch_save_end_suffix = "end" self.get_poison_effort = 'half' self.num_workers = 50 # self.num_poisoned_workers = 10 self.rank = 0 self.world_size = 0 self.data_sampler = None self.distributed = False self.available_nets = { "Cifar100ResNet" : Cifar100ResNet, "Cifar100VGG" : Cifar100VGG, "Cifar10CNN" : Cifar10CNN, "Cifar10ResNet" : Cifar10ResNet, "FashionMNISTCNN" : FashionMNISTCNN, "FashionMNISTResNet" : FashionMNISTResNet } self.net = None self.set_net_by_name('Cifar10CNN') # self.net = FashionMNISTCNN # self.net = Cifar100ResNet # self.net = FashionMNISTResNet # self.net = Cifar10ResNet # self.net = Cifar10ResNet self.dataset_name = 'cifar10' self.train_data_loader_pickle_path = { 'cifar10': 'data_loaders/cifar10/train_data_loader.pickle', 'fashion-mnist': 'data_loaders/fashion-mnist/train_data_loader.pickle', 'cifar100': 'data_loaders/cifar100/train_data_loader.pickle', } self.test_data_loader_pickle_path = { 'cifar10': 'data_loaders/cifar10/test_data_loader.pickle', 'fashion-mnist': 'data_loaders/fashion-mnist/test_data_loader.pickle', 'cifar100': 'data_loaders/cifar100/test_data_loader.pickle', } # self.train_data_loader_pickle_path = "data_loaders/cifar10/train_data_loader.pickle" # self.test_data_loader_pickle_path = "data_loaders/cifar10/test_data_loader.pickle" # self.train_data_loader_pickle_path = "data_loaders/fashion-mnist/train_data_loader.pickle" # self.test_data_loader_pickle_path = "data_loaders/fashion-mnist/test_data_loader.pickle" # self.train_data_loader_pickle_path = "data_loaders/cifar100/train_data_loader.pickle" # self.test_data_loader_pickle_path = "data_loaders/cifar100/test_data_loader.pickle" self.loss_function = torch.nn.CrossEntropyLoss self.default_model_folder_path = "default_models" self.data_path = "data" def get_distributed(self): return self.distributed def get_rank(self): return self.rank def get_world_size(self): return self.world_size def set_sampler(self, sampler): self.data_sampler = sampler def get_sampler(self): return self.data_sampler def get_round_worker_selection_strategy(self): return self.round_worker_selection_strategy def get_round_worker_selection_strategy_kwargs(self): return self.round_worker_selection_strategy_kwargs def set_round_worker_selection_strategy_kwargs(self, kwargs): self.round_worker_selection_strategy_kwargs = kwargs def set_client_selection_strategy(self, strategy): self.round_worker_selection_strategy = strategy def get_data_path(self): return self.data_path def get_epoch_save_start_suffix(self): return self.epoch_save_start_suffix def get_epoch_save_end_suffix(self): return self.epoch_save_end_suffix def get_dataloader_list(self): return list(self.train_data_loader_pickle_path.keys()) def get_nets_list(self): return list(self.available_nets.keys()) def set_train_data_loader_pickle_path(self, path, name='cifar10'): self.train_data_loader_pickle_path[name] = path def get_train_data_loader_pickle_path(self): return self.train_data_loader_pickle_path[self.dataset_name] def set_test_data_loader_pickle_path(self, path, name='cifar10'): self.test_data_loader_pickle_path[name] = path def get_test_data_loader_pickle_path(self): return self.test_data_loader_pickle_path[self.dataset_name] def set_net_by_name(self, name: str): self.net = self.available_nets[name] # net_dict = { # 'cifar10-cnn': Cifar10CNN, # 'fashion-mnist-cnn': FashionMNISTCNN, # 'cifar100-resnet': Cifar100ResNet, # 'fashion-mnist-resnet': FashionMNISTResNet, # 'cifar10-resnet': Cifar10ResNet, # 'cifar100-vgg': Cifar100VGG, # } # self.net = net_dict[name] def get_cuda(self): return self.cuda def get_scheduler_step_size(self): return self.scheduler_step_size def get_scheduler_gamma(self): return self.scheduler_gamma def get_min_lr(self): return self.min_lr def get_default_model_folder_path(self): return self.default_model_folder_path def get_num_epochs(self): return self.epochs def set_num_poisoned_workers(self, num_poisoned_workers): self.num_poisoned_workers = num_poisoned_workers def set_num_workers(self, num_workers): self.num_workers = num_workers def set_model_save_path(self, save_model_path): self.save_model_path = save_model_path def get_logger(self): return self.logger def get_loss_function(self): return self.loss_function def get_net(self): return self.net def get_num_workers(self): return self.num_workers def get_num_poisoned_workers(self): return self.num_poisoned_workers def get_poison_effort(self): return self.get_poison_effort def get_learning_rate(self): return self.lr def get_momentum(self): return self.momentum def get_shuffle(self): return self.shuffle def get_batch_size(self): return self.batch_size def get_test_batch_size(self): return self.test_batch_size def get_log_interval(self): return self.log_interval def get_save_model_folder_path(self): return self.save_model_path def get_learning_rate_from_epoch(self, epoch_idx): lr = self.lr * (self.scheduler_gamma ** int(epoch_idx / self.scheduler_step_size)) if lr < self.min_lr: self.logger.warning("Updating LR would place it below min LR. Skipping LR update.") return self.min_lr self.logger.debug("LR: {}".format(lr)) return lr def get_contribution_measurement_round(self): return self.contribution_measurement_round def get_contribution_measurement_metric(self): return self.contribution_measurement_metric def should_save_model(self, epoch_idx): """ Returns true/false models should be saved. :param epoch_idx: current training epoch index :type epoch_idx: int """ if not self.save_model: return False if epoch_idx == 1 or epoch_idx % self.save_epoch_interval == 0: return True def log(self): """ Log this arguments object to the logger. """ self.logger.debug("Arguments: {}", str(self)) def __str__(self): return "\nBatch Size: {}\n".format(self.batch_size) + \ "Test Batch Size: {}\n".format(self.test_batch_size) + \ "Epochs: {}\n".format(self.epochs) + \ "Learning Rate: {}\n".format(self.lr) + \ "Momentum: {}\n".format(self.momentum) + \ "CUDA Enabled: {}\n".format(self.cuda) + \ "Shuffle Enabled: {}\n".format(self.shuffle) + \ "Log Interval: {}\n".format(self.log_interval) + \ "Scheduler Step Size: {}\n".format(self.scheduler_step_size) + \ "Scheduler Gamma: {}\n".format(self.scheduler_gamma) + \ "Scheduler Minimum Learning Rate: {}\n".format(self.min_lr) + \ "Client Selection Strategy: {}\n".format(self.round_worker_selection_strategy) + \ "Client Selection Strategy Arguments: {}\n".format(json.dumps(self.round_worker_selection_strategy_kwargs, indent=4, sort_keys=True)) + \ "Model Saving Enabled: {}\n".format(self.save_model) + \ "Model Saving Interval: {}\n".format(self.save_epoch_interval) + \ "Model Saving Path (Relative): {}\n".format(self.save_model_path) + \ "Epoch Save Start Prefix: {}\n".format(self.epoch_save_start_suffix) + \ "Epoch Save End Suffix: {}\n".format(self.epoch_save_end_suffix) + \ "Number of Clients: {}\n".format(self.num_workers) + \ "Number of Poisoned Clients: {}\n".format(self.num_poisoned_workers) + \ "NN: {}\n".format(self.net) + \ "Train Data Loader Path: {}\n".format(self.train_data_loader_pickle_path) + \ "Test Data Loader Path: {}\n".format(self.test_data_loader_pickle_path) + \ "Loss Function: {}\n".format(self.loss_function) + \ "Default Model Folder Path: {}\n".format(self.default_model_folder_path) + \ "Data Path: {}\n".format(self.data_path) + \ "Dataset Name: {}\n".format(self.dataset_name)
[ "torch.manual_seed" ]
1.7.1
tudelft-eemcs-dml/fltk-testbed-gr-5
72afa24a37cd1f8f5f49665c83ccbd730d76ad21
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import import argparse import csv import logging import os import random import sys from io import open import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME from pytorch_transformers.modeling_bert import BertForMultipleChoice, BertConfig from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) class SwagExample(object): """A single training/test example for the SWAG dataset.""" def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label = None): self.swag_id = swag_id self.context_sentence = context_sentence self.start_ending = start_ending self.endings = [ ending_0, ending_1, ending_2, ending_3, ] self.label = label def __str__(self): return self.__repr__() def __repr__(self): l = [ "swag_id: {}".format(self.swag_id), "context_sentence: {}".format(self.context_sentence), "start_ending: {}".format(self.start_ending), "ending_0: {}".format(self.endings[0]), "ending_1: {}".format(self.endings[1]), "ending_2: {}".format(self.endings[2]), "ending_3: {}".format(self.endings[3]), ] if self.label is not None: l.append("label: {}".format(self.label)) return ", ".join(l) class InputFeatures(object): def __init__(self, example_id, choices_features, label ): self.example_id = example_id self.choices_features = [ { 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids } for _, input_ids, input_mask, segment_ids in choices_features ] self.label = label def read_swag_examples(input_file, is_training): with open(input_file, 'r', encoding='utf-8') as f: reader = csv.reader(f) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) if is_training and lines[0][-1] != 'label': raise ValueError( "For training, the input file must contain a label column." ) examples = [ SwagExample( swag_id = line[2], context_sentence = line[4], start_ending = line[5], # in the swag dataset, the # common beginning of each # choice is stored in "sent2". ending_0 = line[7], ending_1 = line[8], ending_2 = line[9], ending_3 = line[10], label = int(line[11]) if is_training else None ) for line in lines[1:] # we skip the line with the column names ] return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): """Loads a data file into a list of `InputBatch`s.""" # Swag is a multiple choice task. To perform this task using Bert, # we will use the formatting proposed in "Improving Language # Understanding by Generative Pre-Training" and suggested by # @jacobdevlin-google in this issue # https://github.com/google-research/bert/issues/38. # # Each choice will correspond to a sample on which we run the # inference. For a given Swag example, we will create the 4 # following inputs: # - [CLS] context [SEP] choice_1 [SEP] # - [CLS] context [SEP] choice_2 [SEP] # - [CLS] context [SEP] choice_3 [SEP] # - [CLS] context [SEP] choice_4 [SEP] # The model will output a single value for each input. To get the # final decision of the model, we will run a softmax over these 4 # outputs. features = [] for example_index, example in enumerate(examples): context_tokens = tokenizer.tokenize(example.context_sentence) start_ending_tokens = tokenizer.tokenize(example.start_ending) choices_features = [] for ending_index, ending in enumerate(example.endings): # We create a copy of the context tokens in order to be # able to shrink it according to ending_tokens context_tokens_choice = context_tokens[:] ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) # Modifies `context_tokens_choice` and `ending_tokens` in # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length choices_features.append((tokens, input_ids, input_mask, segment_ids)) label = example.label if example_index < 5: logger.info("*** Example ***") logger.info("swag_id: {}".format(example.swag_id)) for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("tokens: {}".format(' '.join(tokens))) logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) logger.info("input_mask: {}".format(' '.join(map(str, input_mask)))) logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids)))) if is_training: logger.info("label: {}".format(label)) features.append( InputFeatures( example_id = example.swag_id, choices_features = choices_features, label = label ) ) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def select_field(features, field): return [ [ choice[field] for choice in feature.choices_features ] for feature in features ] def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .csv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) # Prepare model model = BertForMultipleChoice.from_pretrained(args.bert_model, cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)), num_choices=4) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) if args.do_train: # Prepare data loader train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True) train_features = convert_examples_to_features( train_examples, tokenizer, args.max_seq_length, True) all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() # Prepare optimizer param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids, token_types_ids=segment_ids, attention_mask=input_mask, labels=label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.fp16 and args.loss_scale != 1.0: # rescale loss for fp16 training # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if args.fp16: optimizer.backward(loss) else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.do_train: # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = BertForMultipleChoice.from_pretrained(args.output_dir, num_choices=4) tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) else: model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4) model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True) eval_features = convert_examples_to_features( eval_examples, tokenizer, args.max_seq_length, True) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): tmp_eval_loss = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() tmp_eval_accuracy = accuracy(logits, label_ids) eval_loss += tmp_eval_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'global_step': global_step, 'loss': tr_loss/global_step} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
[ "torch.distributed.get_world_size", "torch.utils.data.RandomSampler", "torch.cuda.is_available", "torch.nn.DataParallel", "torch.distributed.init_process_group", "torch.manual_seed", "torch.tensor", "torch.utils.data.DataLoader", "torch.distributed.get_rank", "torch.device", "torch.cuda.manual_seed_all", "torch.utils.data.SequentialSampler", "torch.cuda.device_count", "torch.cuda.set_device", "torch.utils.data.TensorDataset", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
1.0.0
nabihach/pytorch-transformers
4c99a4eda5459e36ebb45355fa789bb6cc0bce71
1.0
import collections from typing import Iterable, List import torch from torch import nn as nn from torch.distributions import Normal from torch.nn import ModuleList from scvi.models.utils import one_hot def reparameterize_gaussian(mu, var): return Normal(mu, var.sqrt()).rsample() class FCLayers(nn.Module): r"""A helper class to build fully-connected layers for a neural network. :param n_in: The dimensionality of the input :param n_out: The dimensionality of the output :param n_cat_list: A list containing, for each category of interest, the number of categories. Each category will be included using a one-hot encoding. :param n_layers: The number of fully-connected hidden layers :param n_hidden: The number of nodes per hidden layer :param dropout_rate: Dropout rate to apply to each of the hidden layers :param use_batch_norm: Whether to have `BatchNorm` layers or not :param use_relu: Whether to have `ReLU` layers or not :param bias: Whether to learn bias in linear layers or not """ def __init__( self, n_in: int, n_out: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, dropout_rate: float = 0.1, use_batch_norm: bool = True, use_relu: bool = True, bias: bool = True, ): super().__init__() layers_dim = [n_in] + (n_layers - 1) * [n_hidden] + [n_out] if n_cat_list is not None: # n_cat = 1 will be ignored self.n_cat_list = [n_cat if n_cat > 1 else 0 for n_cat in n_cat_list] else: self.n_cat_list = [] self.fc_layers = nn.Sequential( collections.OrderedDict( [ ( "Layer {}".format(i), nn.Sequential( nn.Linear(n_in + sum(self.n_cat_list), n_out, bias=bias), # Below, 0.01 and 0.001 are the default values for `momentum` and `eps` from # the tensorflow implementation of batch norm; we're using those settings # here too so that the results match our old tensorflow code. The default # setting from pytorch would probably be fine too but we haven't tested that. nn.BatchNorm1d(n_out, momentum=0.01, eps=0.001) if use_batch_norm else None, nn.ReLU() if use_relu else None, nn.Dropout(p=dropout_rate) if dropout_rate > 0 else None, ), ) for i, (n_in, n_out) in enumerate( zip(layers_dim[:-1], layers_dim[1:]) ) ] ) ) def forward(self, x: torch.Tensor, *cat_list: int, instance_id: int = 0): r"""Forward computation on ``x``. :param x: tensor of values with shape ``(n_in,)`` :param cat_list: list of category membership(s) for this sample :param instance_id: Use a specific conditional instance normalization (batchnorm) :return: tensor of shape ``(n_out,)`` :rtype: :py:class:`torch.Tensor` """ one_hot_cat_list = [] # for generality in this list many indices useless. assert len(self.n_cat_list) <= len( cat_list ), "nb. categorical args provided doesn't match init. params." for n_cat, cat in zip(self.n_cat_list, cat_list): assert not ( n_cat and cat is None ), "cat not provided while n_cat != 0 in init. params." if n_cat > 1: # n_cat = 1 will be ignored - no additional information if cat.size(1) != n_cat: one_hot_cat = one_hot(cat, n_cat) else: one_hot_cat = cat # cat has already been one_hot encoded one_hot_cat_list += [one_hot_cat] for layers in self.fc_layers: for layer in layers: if layer is not None: if isinstance(layer, nn.BatchNorm1d): if x.dim() == 3: x = torch.cat( [(layer(slice_x)).unsqueeze(0) for slice_x in x], dim=0 ) else: x = layer(x) else: if isinstance(layer, nn.Linear): if x.dim() == 3: one_hot_cat_list = [ o.unsqueeze(0).expand( (x.size(0), o.size(0), o.size(1)) ) for o in one_hot_cat_list ] x = torch.cat((x, *one_hot_cat_list), dim=-1) x = layer(x) return x # Encoder class Encoder(nn.Module): r"""Encodes data of ``n_input`` dimensions into a latent space of ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. :param n_input: The dimensionality of the input (data space) :param n_output: The dimensionality of the output (latent space) :param n_cat_list: A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding :param n_layers: The number of fully-connected hidden layers :param n_hidden: The number of nodes per hidden layer :dropout_rate: Dropout rate to apply to each of the hidden layers """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, dropout_rate: float = 0.1, ): super().__init__() self.encoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.mean_encoder = nn.Linear(n_hidden, n_output) self.var_encoder = nn.Linear(n_hidden, n_output) def forward(self, x: torch.Tensor, *cat_list: int): r"""The forward computation for a single sample. #. Encodes the data into latent space using the encoder network #. Generates a mean \\( q_m \\) and variance \\( q_v \\) (clamped to \\( [-5, 5] \\)) #. Samples a new value from an i.i.d. multivariate normal \\( \\sim N(q_m, \\mathbf{I}q_v) \\) :param x: tensor with shape (n_input,) :param cat_list: list of category membership(s) for this sample :return: tensors of shape ``(n_latent,)`` for mean and var, and sample :rtype: 3-tuple of :py:class:`torch.Tensor` """ # Parameters for latent distribution q = self.encoder(x, *cat_list) q_m = self.mean_encoder(q) q_v = torch.exp(self.var_encoder(q)) + 1e-4 latent = reparameterize_gaussian(q_m, q_v) return q_m, q_v, latent # Multi-Encoder class Multi_Encoder(nn.Module): def __init__( self, RNA_input: int, ATAC_input, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, dropout_rate: float = 0.1, ): super().__init__() self.scRNA_encoder = FCLayers( n_in=RNA_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.scATAC_encoder = FCLayers( n_in=ATAC_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.concat1 = nn.Linear(2 * n_hidden, n_hidden) self.concat2 = nn.Linear(n_hidden, n_hidden) self.mean_encoder = nn.Linear(n_hidden, n_output) self.var_encoder = nn.Linear(n_hidden, n_output) def forward(self, x: list, *cat_list: int): # Parameters for latent distribution if x.__len__() != 2: raise ValueError("Input training data should be 2 data types(RNA and ATAC)," "but input was only {}.format(x.__len__())" ) if not torch.is_tensor(x[0]): raise ValueError("training data should be a tensor!" ) q1 = self.scRNA_encoder(x[0], *cat_list) q2 = self.scATAC_encoder(x[1], *cat_list) q = self.concat2(self.concat1(torch.cat((q1, q2), 1))) q_m = self.mean_encoder(q) q_v = torch.exp(self.var_encoder(q)) + 1e-4 latent = reparameterize_gaussian(q_m, q_v) return q_m, q_v, latent # Multi-Encoder class Multi_Decoder(nn.Module): def __init__( self, n_input: int, RNA_output: int, ATAC_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 256, dropout_rate: float = 0, ): super().__init__() # RNA-seq decoder self.scRNA_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) # mean gamma self.rna_scale_decoder = nn.Sequential( nn.Linear(n_hidden, RNA_output), nn.Softmax(dim=-1) ) # dispersion: here we only deal with gene-cell dispersion case self.rna_r_decoder = nn.Linear(n_hidden, RNA_output) # dropout self.rna_dropout_decoder = nn.Linear(n_hidden, RNA_output) # ATAC decoder self.scATAC_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) # mean possion self.atac_scale_decoder = nn.Sequential( nn.Linear(n_hidden, ATAC_output), nn.Softmax(dim=-1) ) # dispersion: here we only deal with gene-cell dispersion case self.atac_r_decoder = nn.Linear(n_hidden, ATAC_output) # dropout self.atac_dropout_decoder = nn.Linear(n_hidden, ATAC_output) # libaray scale for each cell self.libaray_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.libaray_rna_scale_decoder = nn.Linear(n_hidden, 1) self.libaray_atac_scale_decoder = nn.Linear(n_hidden, 1) def forward(self, z: torch.Tensor, z_c: torch.Tensor, *cat_list: int): # The decoder returns values for the parameters of the ZINB distribution of scRNA-seq p_rna = self.scRNA_decoder(z, *cat_list) p_rna_scale = self.rna_scale_decoder(p_rna) p_rna_dropout = self.rna_dropout_decoder(p_rna) libaray_temp = self.libaray_decoder(z_c, *cat_list) libaray_gene = self.libaray_rna_scale_decoder(libaray_temp) p_rna_rate = torch.exp(libaray_gene.clamp(max=12)) * p_rna_scale # torch.clamp( , max=12) #p_rna_rate.clamp(max=12) # maybe it is unnecessary p_rna_r = self.rna_r_decoder(p_rna) # The decoder returns values for the parameters of the ZIP distribution of scATAC-seq p_atac = self.scATAC_decoder(z, *cat_list) p_atac_scale = self.atac_scale_decoder(p_atac) p_atac_r = self.atac_r_decoder(p_atac) p_atac_dropout = self.atac_dropout_decoder(p_atac) libaray_atac = self.libaray_atac_scale_decoder(libaray_temp) p_atac_mean = torch.exp(libaray_atac.clamp(13)) * p_atac_scale # for zinp and zip loss #p_atac_mean = libaray_atac * p_atac_scale # for binary loss return p_rna_scale, p_rna_r, p_rna_rate, p_rna_dropout, p_atac_scale, p_atac_r, p_atac_mean, p_atac_dropout # Decoder class DecoderSCVI(nn.Module): r"""Decodes data from latent space of ``n_input`` dimensions ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. :param n_input: The dimensionality of the input (latent space) :param n_output: The dimensionality of the output (data space) :param n_cat_list: A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding :param n_layers: The number of fully-connected hidden layers :param n_hidden: The number of nodes per hidden layer :param dropout_rate: Dropout rate to apply to each of the hidden layers """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, ): super().__init__() self.px_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=0, ) # mean gamma self.px_scale_decoder = nn.Sequential( nn.Linear(n_hidden, n_output), nn.Softmax(dim=-1) ) # dispersion: here we only deal with gene-cell dispersion case self.px_r_decoder = nn.Linear(n_hidden, n_output) # dropout self.px_dropout_decoder = nn.Linear(n_hidden, n_output) def forward( self, dispersion: str, z: torch.Tensor, library: torch.Tensor, *cat_list: int ): r"""The forward computation for a single sample. #. Decodes the data from the latent space using the decoder network #. Returns parameters for the ZINB distribution of expression #. If ``dispersion != 'gene-cell'`` then value for that param will be ``None`` :param dispersion: One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell :param z: tensor with shape ``(n_input,)`` :param library: library size :param cat_list: list of category membership(s) for this sample :return: parameters for the ZINB distribution of expression :rtype: 4-tuple of :py:class:`torch.Tensor` """ # The decoder returns values for the parameters of the ZINB distribution px = self.px_decoder(z, *cat_list) px_scale = self.px_scale_decoder(px) px_dropout = self.px_dropout_decoder(px) # Clamp to high value: exp(12) ~ 160000 to avoid nans (computational stability) px_rate = torch.exp(library) * px_scale # torch.clamp( , max=12) px_r = self.px_r_decoder(px) if dispersion == "gene-cell" else None return px_scale, px_r, px_rate, px_dropout class LinearDecoderSCVI(nn.Module): def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, ): super(LinearDecoderSCVI, self).__init__() # mean gamma self.n_batches = n_cat_list[0] # Just try a simple case for now if self.n_batches > 1: self.batch_regressor = nn.Linear(self.n_batches - 1, n_output, bias=False) else: self.batch_regressor = None self.factor_regressor = nn.Linear(n_input, n_output) # dropout self.px_dropout_decoder = nn.Linear(n_input, n_output) def forward( self, dispersion: str, z: torch.Tensor, library: torch.Tensor, *cat_list: int ): # The decoder returns values for the parameters of the ZINB distribution p1_ = self.factor_regressor(z) if self.n_batches > 1: one_hot_cat = one_hot(cat_list[0], self.n_batches)[:, :-1] p2_ = self.batch_regressor(one_hot_cat) raw_px_scale = p1_ + p2_ else: raw_px_scale = p1_ px_scale = torch.softmax(raw_px_scale, dim=-1) px_dropout = self.px_dropout_decoder(z) px_rate = torch.exp(library) * px_scale px_r = None return px_scale, px_r, px_rate, px_dropout # Decoder class Decoder(nn.Module): r"""Decodes data from latent space of ``n_input`` dimensions to ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. Output is the mean and variance of a multivariate Gaussian :param n_input: The dimensionality of the input (latent space) :param n_output: The dimensionality of the output (data space) :param n_cat_list: A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding :param n_layers: The number of fully-connected hidden layers :param n_hidden: The number of nodes per hidden layer :param dropout_rate: Dropout rate to apply to each of the hidden layers """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, ): super().__init__() self.decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=0, ) self.mean_decoder = nn.Linear(n_hidden, n_output) self.var_decoder = nn.Linear(n_hidden, n_output) def forward(self, x: torch.Tensor, *cat_list: int): r"""The forward computation for a single sample. #. Decodes the data from the latent space using the decoder network #. Returns tensors for the mean and variance of a multivariate distribution :param x: tensor with shape ``(n_input,)`` :param cat_list: list of category membership(s) for this sample :return: Mean and variance tensors of shape ``(n_output,)`` :rtype: 2-tuple of :py:class:`torch.Tensor` """ # Parameters for latent distribution p = self.decoder(x, *cat_list) p_m = self.mean_decoder(p) p_v = torch.exp(self.var_decoder(p)) return p_m, p_v class MultiEncoder(nn.Module): def __init__( self, n_heads: int, n_input_list: List[int], n_output: int, n_hidden: int = 128, n_layers_individual: int = 1, n_layers_shared: int = 2, n_cat_list: Iterable[int] = None, dropout_rate: float = 0.1, ): super().__init__() self.encoders = ModuleList( [ FCLayers( n_in=n_input_list[i], n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers_individual, n_hidden=n_hidden, dropout_rate=dropout_rate, use_batch_norm=True, ) for i in range(n_heads) ] ) self.encoder_shared = FCLayers( n_in=n_hidden, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers_shared, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.mean_encoder = nn.Linear(n_hidden, n_output) self.var_encoder = nn.Linear(n_hidden, n_output) def forward(self, x: torch.Tensor, head_id: int, *cat_list: int): q = self.encoders[head_id](x, *cat_list) q = self.encoder_shared(q, *cat_list) q_m = self.mean_encoder(q) q_v = torch.exp(self.var_encoder(q)) latent = reparameterize_gaussian(q_m, q_v) return q_m, q_v, latent class MultiDecoder(nn.Module): def __init__( self, n_input: int, n_output: int, n_hidden_conditioned: int = 32, n_hidden_shared: int = 128, n_layers_conditioned: int = 1, n_layers_shared: int = 1, n_cat_list: Iterable[int] = None, dropout_rate: float = 0.2, ): super().__init__() n_out = n_hidden_conditioned if n_layers_shared else n_hidden_shared if n_layers_conditioned: self.px_decoder_conditioned = FCLayers( n_in=n_input, n_out=n_out, n_cat_list=n_cat_list, n_layers=n_layers_conditioned, n_hidden=n_hidden_conditioned, dropout_rate=dropout_rate, use_batch_norm=True, ) n_in = n_out else: self.px_decoder_conditioned = None n_in = n_input if n_layers_shared: self.px_decoder_final = FCLayers( n_in=n_in, n_out=n_hidden_shared, n_cat_list=[], n_layers=n_layers_shared, n_hidden=n_hidden_shared, dropout_rate=dropout_rate, use_batch_norm=True, ) n_in = n_hidden_shared else: self.px_decoder_final = None self.px_scale_decoder = nn.Sequential( nn.Linear(n_in, n_output), nn.Softmax(dim=-1) ) self.px_r_decoder = nn.Linear(n_in, n_output) self.px_dropout_decoder = nn.Linear(n_in, n_output) def forward( self, z: torch.Tensor, dataset_id: int, library: torch.Tensor, dispersion: str, *cat_list: int ): px = z if self.px_decoder_conditioned: px = self.px_decoder_conditioned(px, *cat_list, instance_id=dataset_id) if self.px_decoder_final: px = self.px_decoder_final(px, *cat_list) px_scale = self.px_scale_decoder(px) px_dropout = self.px_dropout_decoder(px) px_rate = torch.exp(library) * px_scale px_r = self.px_r_decoder(px) if dispersion == "gene-cell" else None return px_scale, px_r, px_rate, px_dropout class DecoderTOTALVI(nn.Module): r"""Decodes data from latent space of ``n_input`` dimensions ``n_output`` dimensions using a linear decoder :param n_input: The dimensionality of the input (latent space) :param n_output_genes: The dimensionality of the output (gene space) :param n_output_proteins: The dimensionality of the output (protein space) :param n_cat_list: A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding """ def __init__( self, n_input: int, n_output_genes: int, n_output_proteins: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 256, dropout_rate: float = 0, ): super().__init__() self.n_output_genes = n_output_genes self.n_output_proteins = n_output_proteins super().__init__() self.px_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) # mean gamma self.px_scale_decoder = nn.Sequential( nn.Linear(n_hidden + n_input, n_output_genes), nn.Softmax(dim=-1) ) # background mean first decoder self.py_back_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) # background mean parameters second decoder self.py_back_mean_log_alpha = nn.Linear(n_hidden + n_input, n_output_proteins) self.py_back_mean_log_beta = nn.Linear(n_hidden + n_input, n_output_proteins) # foreground increment decoder step 1 self.py_fore_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) # foreground increment decoder step 2 self.py_fore_scale_decoder = nn.Sequential( nn.Linear(n_hidden + n_input, n_output_proteins), nn.ReLU() ) # dropout (mixture component for proteins, ZI probability for genes) self.sigmoid_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.px_dropout_decoder_gene = nn.Linear(n_hidden + n_input, n_output_genes) self.py_background_decoder = nn.Linear(n_hidden + n_input, n_output_proteins) def forward(self, z: torch.Tensor, library_gene: torch.Tensor, *cat_list: int): r"""The forward computation for a single sample. #. Decodes the data from the latent space using the decoder network #. Returns local parameters for the ZINB distribution for genes #. Returns local parameters for the Mixture NB distribution for proteins We use the dictionary `px_` to contain the parameters of the ZINB/NB for genes. The rate refers to the mean of the NB, dropout refers to Bernoulli mixing parameters. `scale` refers to the quanity upon which differential expression is performed. For genes, this can be viewed as the mean of the underlying gamma distribution. We use the dictionary `py_` to contain the parameters of the Mixture NB distribution for proteins. `rate_fore` refers to foreground mean, while `rate_back` refers to background mean. `scale` refers to foreground mean adjusted for background probability and scaled to reside in simplex. `back_alpha` and `back_beta` are the posterior parameters for `rate_back`. `fore_scale` is the scaling factor that enforces `rate_fore` > `rate_back`. :param z: tensor with shape ``(n_input,)`` :param library_gene: library size :param cat_list: list of category membership(s) for this sample :return: parameters for the ZINB distribution of expression :rtype: 3-tuple (first 2-tuple :py:class:`dict`, last :py:class:`torch.Tensor`) """ px_ = {} py_ = {} px = self.px_decoder(z, *cat_list) px_cat_z = torch.cat([px, z], dim=-1) px_["scale"] = self.px_scale_decoder(px_cat_z) px_["rate"] = library_gene * px_["scale"] py_back = self.py_back_decoder(z, *cat_list) py_back_cat_z = torch.cat([py_back, z], dim=-1) py_["back_alpha"] = self.py_back_mean_log_alpha(py_back_cat_z) py_["back_beta"] = torch.exp(self.py_back_mean_log_beta(py_back_cat_z)) log_pro_back_mean = Normal(py_["back_alpha"], py_["back_beta"]).rsample() py_["rate_back"] = torch.exp(log_pro_back_mean) py_fore = self.py_fore_decoder(z, *cat_list) py_fore_cat_z = torch.cat([py_fore, z], dim=-1) py_["fore_scale"] = self.py_fore_scale_decoder(py_fore_cat_z) + 1 py_["rate_fore"] = py_["rate_back"] * py_["fore_scale"] p_mixing = self.sigmoid_decoder(z, *cat_list) p_mixing_cat_z = torch.cat([p_mixing, z], dim=-1) px_["dropout"] = self.px_dropout_decoder_gene(p_mixing_cat_z) py_["mixing"] = self.py_background_decoder(p_mixing_cat_z) return (px_, py_, log_pro_back_mean) # Encoder class EncoderTOTALVI(nn.Module): r"""Encodes data of ``n_input`` dimensions into a latent space of ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. :param n_input: The dimensionality of the input (data space) :param n_output: The dimensionality of the output (latent space) :param n_cat_list: A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding :param n_layers: The number of fully-connected hidden layers :param n_hidden: The number of nodes per hidden layer :dropout_rate: Dropout rate to apply to each of the hidden layers :distribution: Distribution of the latent space, one of * ``'normal'`` - Normal distribution * ``'ln'`` - Logistic normal """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 2, n_hidden: int = 256, dropout_rate: float = 0.1, distribution: str = "ln", ): super().__init__() self.encoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.z_encoder = nn.Sequential( nn.Linear(n_hidden, n_hidden), nn.BatchNorm1d(n_hidden), nn.ReLU(), nn.Dropout(p=dropout_rate), ) self.z_mean_encoder = nn.Linear(n_hidden, n_output) self.z_var_encoder = nn.Linear(n_hidden, n_output) self.l_gene_encoder = nn.Sequential( nn.Linear(n_hidden, n_hidden), nn.BatchNorm1d(n_hidden), nn.ReLU(), nn.Dropout(p=dropout_rate), ) self.l_gene_mean_encoder = nn.Linear(n_hidden, 1) self.l_gene_var_encoder = nn.Linear(n_hidden, 1) self.distribution = distribution def identity(x): return x if distribution == "ln": self.z_transformation = nn.Softmax(dim=-1) else: self.z_transformation = identity self.l_transformation = torch.exp def reparameterize_transformation(self, mu, var): untran_z = Normal(mu, var.sqrt()).rsample() z = self.z_transformation(untran_z) return z, untran_z def forward(self, data: torch.Tensor, *cat_list: int): r"""The forward computation for a single sample. #. Encodes the data into latent space using the encoder network #. Generates a mean \\( q_m \\) and variance \\( q_v \\) #. Samples a new value from an i.i.d. latent distribution The dictionary `latent` contains the samples of the latent variables, while `untran_latent` contains the untransformed versions of these latent variables. For example, the library size is log normally distributed, so `untran_latent["l"]` gives the normal sample that was later exponentiated to become `latent["l"]`. The logistic normal distribution is equivalent to applying softmax to a normal sample. :param data: tensor with shape (n_input,) :param cat_list: list of category membership(s) for this sample :return: tensors of shape ``(n_latent,)`` for mean and var, and sample :rtype: 6-tuple. First 4 of :py:class:`torch.Tensor`, next 2 are `dict` of :py:class:`torch.Tensor` """ # Parameters for latent distribution q = self.encoder(data, *cat_list) qz = self.z_encoder(q) qz_m = self.z_mean_encoder(qz) qz_v = torch.exp(self.z_var_encoder(qz)) + 1e-4 z, untran_z = self.reparameterize_transformation(qz_m, qz_v) ql_gene = self.l_gene_encoder(q) ql_m = self.l_gene_mean_encoder(ql_gene) ql_v = torch.exp(self.l_gene_var_encoder(ql_gene)) + 1e-4 log_library_gene = torch.clamp(reparameterize_gaussian(ql_m, ql_v), max=15) library_gene = self.l_transformation(log_library_gene) latent = {} untran_latent = {} latent["z"] = z latent["l"] = library_gene untran_latent["z"] = untran_z untran_latent["l"] = log_library_gene return qz_m, qz_v, ql_m, ql_v, latent, untran_latent
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.nn.Softmax", "torch.is_tensor", "torch.distributions.Normal", "torch.softmax", "torch.nn.ReLU", "torch.nn.BatchNorm1d", "torch.exp" ]
1.0.1
lgyzngc/scvi
b4472e7d02a3889c405078cdd7ab4d4378309c2c
1.4
import torch from speechjoey.embeddings import Embeddings from .test_helpers import TensorTestCase class TestEmbeddings(TensorTestCase): def setUp(self): self.emb_size = 10 self.vocab_size = 11 self.pad_idx = 1 seed = 42 torch.manual_seed(seed) def test_size(self): emb = Embeddings(embedding_dim=self.emb_size, vocab_size=self.vocab_size, padding_idx=self.pad_idx) self.assertEqual(emb.lut.weight.shape, torch.Size([self.vocab_size, self.emb_size])) def test_pad_zeros(self): emb = Embeddings(embedding_dim=self.emb_size, vocab_size=self.vocab_size, padding_idx=self.pad_idx) # pad embedding should be zeros self.assertTensorEqual(emb.lut.weight[self.pad_idx], torch.zeros([self.emb_size])) def test_freeze(self): encoder = Embeddings(embedding_dim=self.emb_size, vocab_size=self.vocab_size, padding_idx=self.pad_idx, freeze=True) for n, p in encoder.named_parameters(): self.assertFalse(p.requires_grad) def test_forward(self): # fix the embedding weights weights = self._get_random_embedding_weights() emb = Embeddings(embedding_dim=self.emb_size, vocab_size=self.vocab_size, padding_idx=self.pad_idx) self._fill_embeddings(emb, weights) indices = torch.Tensor([0, 1, self.pad_idx, 9]).long() embedded = emb.forward(x=indices) # embedding operation is just slicing from weights matrix self.assertTensorEqual(embedded, torch.index_select(input=weights, index=indices, dim=0)) # after embedding, representations for PAD should still be zero self.assertTensorEqual(embedded[2], torch.zeros([self.emb_size])) def test_scale(self): # fix the embedding weights weights = self._get_random_embedding_weights() emb = Embeddings(embedding_dim=self.emb_size, vocab_size=self.vocab_size, padding_idx=self.pad_idx, scale=True) emb.lut.weight.data = weights indices = torch.Tensor([0, 1, self.pad_idx, 9]).long() embedded = emb.forward(x=indices) # now scaled self.assertTensorNotEqual( torch.index_select(input=weights, index=indices, dim=0), embedded) self.assertTensorEqual( torch.index_select(input=weights, index=indices, dim=0)* (self.emb_size**0.5), embedded) def _fill_embeddings(self, embeddings, weights): embeddings.lut.weight.data = weights def _get_random_embedding_weights(self): weights = torch.rand([self.vocab_size, self.emb_size]) weights[self.pad_idx] = torch.zeros([self.emb_size]) return weights
[ "torch.Size", "torch.rand", "torch.zeros", "torch.manual_seed", "torch.index_select", "torch.Tensor" ]
1.4.0
B-Czarnetzki/speechjoey
97b0b98137bfaf0ffe15db9de6b38e37c7fb5572
1.4
from torch.nn import GRU, LSTM import torch from torch import nn import numpy as np from speechjoey.encoders import RecurrentEncoder from .test_helpers import TensorTestCase from speechjoey.model import build_model from speechjoey.vocabulary import Vocabulary import copy class TestModelInit(TensorTestCase): def setUp(self): self.seed = 42 vocab_size = 30 tokens = ["tok{:02d}".format(i) for i in range(vocab_size)] self.vocab = Vocabulary(tokens=tokens) self.hidden_size = 64 self.cfg = { "model": { "tied_embeddings": False, "tied_softmax": False, "encoder": { "type": "transformer", "hidden_size": self.hidden_size, "embeddings": {"embedding_dim": self.hidden_size}, "num_layers": 1, }, "decoder": { "type": "transformer", "hidden_size": self.hidden_size, "embeddings": {"embedding_dim": self.hidden_size}, "num_layers": 1, }, } } def test_transformer_layer_norm_init(self): torch.manual_seed(self.seed) cfg = copy.deepcopy(self.cfg) src_vocab = trg_vocab = self.vocab model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab) def check_layer_norm(m: nn.Module): for name, child in m.named_children(): if isinstance(child, nn.LayerNorm): self.assertTensorEqual(child.weight, torch.ones([self.hidden_size])) self.assertTensorEqual(child.bias, torch.zeros([self.hidden_size])) else: check_layer_norm(child) check_layer_norm(model)
[ "torch.manual_seed", "torch.zeros", "torch.ones" ]
1.4.0
B-Czarnetzki/speechjoey
97b0b98137bfaf0ffe15db9de6b38e37c7fb5572
1.5
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch from scipy.optimize import linear_sum_assignment from torch import nn from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou from IPython import embed class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" @torch.no_grad() def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) embed(header='matcher') # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -out_prob[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] def build_matcher(args): return HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou)
[ "torch.cat", "torch.no_grad", "torch.as_tensor", "torch.cdist" ]
1.5.0
xieenze/detr
13bdf0bf59fead571cd793a01eae50e7620fc6a2
1.8
import torch import torch.nn.functional as F import cv2 as cv import numpy as np import os from glob import glob from icecream import ic from scipy.spatial.transform import Rotation as Rot from scipy.spatial.transform import Slerp import pickle import diffoptics as optics from diffoptics import Rays import sys # Path to your local clone of the magis simulator SIMULATOR_PATH = '/sdf/home/s/sgaz/Magis-simulator' sys.path.insert(0, SIMULATOR_PATH) from magis.main_helpers import make_scene, get_sensor_index_positions, get_positions from magis.mirror_utils import get_views_given_fixed_mirrors_smooth class Dataset: def __init__(self, conf): super(Dataset, self).__init__() print('Load data: Begin') self.device = torch.device('cuda') self.conf = conf self.dset_name = conf['dset_path'] self.calib_name = conf['calib_path'] with open(self.dset_name,'rb') as f: in_dataset = pickle.load(f) #with open(calib_name, 'rb') as f: # calib_dict = pickle.load(f) self.H, self.W = in_dataset.shape[1:3] self.image_pixels = self.H * self.W in_dataset = in_dataset.reshape(in_dataset.shape[0], -1, 6) assert in_dataset.shape == (in_dataset.shape[0], self.H*self.W, 1+1+1+3) self.in_dataset = torch.from_numpy(in_dataset) self.n_images = len(self.in_dataset) #Let's try to put a MAGIS scene in here # Get mirror parameters m = conf['m'] f = conf['f'] xm,ym,zm,mirror_radii,angles,theta,phi,foc,obj = get_views_given_fixed_mirrors_smooth( m = m, f = f * 100, fn = 1.23, sv = 24/10, sh = 24/10, skipmirrs=5, extreme_view_angle = np.radians(55), window_pos = 3.0, fixed_radii = [.25], num_mirrors = [500]) #assert len(angles) == self.in_dataset.shape[0] normals = torch.zeros((len(angles), 3)) for i in range(len(theta)): normal_angles = angles normal = optics.vector(np.cos(normal_angles[i]), np.cos(theta[i]) * np.sin(normal_angles[i]), np.sin(theta[i]) * np.sin(normal_angles[i])) normals[i] = optics.normalize_vector(normal) mirror_parameters = normals, torch.tensor(xm / 100, dtype=torch.float), torch.tensor(ym / 100, dtype=torch.float), torch.tensor(zm / 100, dtype=torch.float), torch.tensor(mirror_radii / 100, dtype=torch.float) # @Todo check sensor parameters pixel_size = conf['pixel_size'] self.scene = make_scene(object_x_pos=obj/100, f=f, m=m, na=1 / 1.4, nb_mirror=None, sensor_resolution=(conf['sensor_resolution_x'],conf['sensor_resolution_y']), sensor_pixel_size=(pixel_size, pixel_size), poisson_noise_mean=2, quantum_efficiency=0.77, mirror_parameters=mirror_parameters) self.continuous_positions = get_positions(self.scene) rad = conf['rad'] trans_mat = torch.eye(4) trans_mat[0][3] = -obj/100* 1/rad scale_mat = torch.eye(4) scale_mat[0][0] = 1/rad scale_mat[1][1] = 1/rad scale_mat[2][2] = 1/rad full_scale_mat = torch.matmul(trans_mat, scale_mat)[:-1] self.full_scale_mat = full_scale_mat object_bbox_min = np.array([-1.01, -1.01, -1.01, 1.0]) object_bbox_max = np.array([ 1.01, 1.01, 1.01, 1.0]) self.object_bbox_min = object_bbox_min[:, None][:3, 0] self.object_bbox_max = object_bbox_max[:, None][:3, 0] print('Load data: End') def gen_rays_at(self, img_idx, resolution_level=1): """ Generate rays at world space from one camera. """ l = resolution_level tx = torch.linspace(0, self.W - 1, self.W // l) ty = torch.linspace(0, self.H - 1, self.H // l) pixels_x, pixels_y = torch.meshgrid(tx, ty) p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3 p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3 rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3 rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3 rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape) # W, H, 3 return rays_o.transpose(0, 1), rays_v.transpose(0, 1) def gen_random_rays_at(self, img_idx, batch_size): """ Generate random rays at world space from one camera. """ pixels_x = torch.randint(low=0, high=self.W, size=[batch_size]) pixels_y = torch.randint(low=0, high=self.H, size=[batch_size]) color = self.images[img_idx][(pixels_y, pixels_x)] # batch_size, 3 mask = self.masks[img_idx][(pixels_y, pixels_x)] # batch_size, 3 p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float() # batch_size, 3 p = torch.matmul(self.intrinsics_all_inv[img_idx, None, :3, :3], p[:, :, None]).squeeze() # batch_size, 3 rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # batch_size, 3 rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze() # batch_size, 3 rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) # batch_size, 3 return torch.cat([rays_o.cpu(), rays_v.cpu(), color, mask[:, :1]], dim=-1).cuda() # batch_size, 10 def gen_rays_between(self, idx_0, idx_1, ratio, resolution_level=1): """ Interpolate pose between two cameras. """ l = resolution_level tx = torch.linspace(0, self.W - 1, self.W // l) ty = torch.linspace(0, self.H - 1, self.H // l) pixels_x, pixels_y = torch.meshgrid(tx, ty) p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3 p = torch.matmul(self.intrinsics_all_inv[0, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3 rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3 trans = self.pose_all[idx_0, :3, 3] * (1.0 - ratio) + self.pose_all[idx_1, :3, 3] * ratio pose_0 = self.pose_all[idx_0].detach().cpu().numpy() pose_1 = self.pose_all[idx_1].detach().cpu().numpy() pose_0 = np.linalg.inv(pose_0) pose_1 = np.linalg.inv(pose_1) rot_0 = pose_0[:3, :3] rot_1 = pose_1[:3, :3] rots = Rot.from_matrix(np.stack([rot_0, rot_1])) key_times = [0, 1] slerp = Slerp(key_times, rots) rot = slerp(ratio) pose = np.diag([1.0, 1.0, 1.0, 1.0]) pose = pose.astype(np.float32) pose[:3, :3] = rot.as_matrix() pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3] pose = np.linalg.inv(pose) rot = torch.from_numpy(pose[:3, :3]).cuda() trans = torch.from_numpy(pose[:3, 3]).cuda() rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3 rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3 return rays_o.transpose(0, 1), rays_v.transpose(0, 1) def near_far_from_sphere(self, rays_o, rays_d): a = torch.sum(rays_d**2, dim=-1, keepdim=True) b = 2.0 * torch.sum(rays_o * rays_d, dim=-1, keepdim=True) mid = 0.5 * (-b) / a near = mid - 1.0 far = mid + 1.0 return near, far def image_at(self, idx, resolution_level): #img = cv.imread(self.images_lis[idx]) img = self.in_dataset[idx, :, -3:].reshape((self.W,self.W, 3)).numpy()*256 return (cv.resize(img, (self.W // resolution_level, self.W // resolution_level))).clip(0, 255).astype(np.uint8) #return (cv.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255) def gen_rays_at_magis(self, lens, mirror, data_id, mirror_id): """ Generate rays at world space from one camera. """ ind = torch.arange(self.H*self.W) # Sampling rays from the sensor to the lens origins = torch.zeros(ind.shape[0], 3, device=self.device) origins[:, 0] = self.continuous_positions[mirror_id][0] origins[:, 1] = self.in_dataset[data_id, ind, 1] origins[:, 2] = self.in_dataset[data_id, ind, 2] points_on_lens = lens.sample_points_on_lens(ind.shape[0], device=self.device) directions = optics.batch_vector(points_on_lens[:, 0] - origins[:, 0], points_on_lens[:, 1]*0 - origins[:, 1], points_on_lens[:, 2]*0 - origins[:, 2]) rays_sensor_to_lens = Rays(origins, directions, device=self.device, meta = {'target' : self.in_dataset[data_id, ind, -3:].to(self.device), 'ind' : ind}) # Intersection with lens t1 = lens.get_ray_intersection(rays_sensor_to_lens) mask_t1 = ~torch.isnan(t1) ray_lens_to_mirror = lens.intersect(rays_sensor_to_lens.get_at(mask_t1), t1[mask_t1]) # Intersection with mirror t2 = mirror.get_ray_intersection(ray_lens_to_mirror) mask = ~torch.isnan(t2) assert mask.shape[0] == ind[mask_t1].shape[0] #rays_mirror_to_object = mirror.intersect(ray_lens_to_mirror.get_at(mask), t2[mask]) rays_mirror_to_object = mirror.intersect(ray_lens_to_mirror, t2) color = self.in_dataset[data_id, ind[mask_t1], -3:] rays_mirror_to_object.origins = torch.matmul(self.full_scale_mat, torch.cat((rays_mirror_to_object.origins, torch.ones((rays_mirror_to_object.origins.shape[0],1))), dim=1)[:, :, np.newaxis]).squeeze(dim=-1) rays_mirror_to_object.directions = torch.matmul(self.full_scale_mat, torch.cat((rays_mirror_to_object.directions, torch.zeros((rays_mirror_to_object.origins.shape[0],1))), dim=1)[:, :, np.newaxis]).squeeze(dim=-1) rays_mirror_to_object.directions = rays_mirror_to_object.directions/torch.sqrt(torch.sum(rays_mirror_to_object.directions**2, dim=1, keepdim=True)) return rays_mirror_to_object, color.cuda() def gen_random_rays_at_magis(self, lens, mirror, ind, data_id, mirror_id): """ Generate random rays at world space from one camera. """ # Sampling rays from the sensor to the lens origins = torch.zeros(ind.shape[0], 3, device=self.device) origins[:, 0] = self.continuous_positions[mirror_id][0] origins[:, 1] = self.in_dataset[data_id, ind, 1] origins[:, 2] = self.in_dataset[data_id, ind, 2] points_on_lens = lens.sample_points_on_lens(ind.shape[0], device=self.device) directions = optics.batch_vector(points_on_lens[:, 0] - origins[:, 0], points_on_lens[:, 1]*0 - origins[:, 1], points_on_lens[:, 2]*0 - origins[:, 2]) rays_sensor_to_lens = Rays(origins, directions, device=self.device, meta = {'target' : self.in_dataset[data_id, ind, -3:].to(self.device), 'ind' : ind}) # Intersection with lens t1 = lens.get_ray_intersection(rays_sensor_to_lens) mask_t1 = ~torch.isnan(t1) ray_lens_to_mirror = lens.intersect(rays_sensor_to_lens.get_at(mask_t1), t1[mask_t1]) # Intersection with mirror t2 = mirror.get_ray_intersection(ray_lens_to_mirror) mask = ~torch.isnan(t2) assert mask.shape[0] == ind[mask_t1].shape[0] rays_mirror_to_object = mirror.intersect(ray_lens_to_mirror.get_at(mask), t2[mask]) color = self.in_dataset[data_id, ind[mask_t1][mask], -3:] rays_mirror_to_object.origins = torch.matmul(self.full_scale_mat, torch.cat((rays_mirror_to_object.origins, torch.ones((rays_mirror_to_object.origins.shape[0],1))), dim=1)[:, :, np.newaxis]).squeeze(dim=-1) rays_mirror_to_object.directions = torch.matmul(self.full_scale_mat, torch.cat((rays_mirror_to_object.directions, torch.zeros((rays_mirror_to_object.origins.shape[0],1))), dim=1)[:, :, np.newaxis]).squeeze(dim=-1) rays_mirror_to_object.directions = rays_mirror_to_object.directions/torch.sqrt(torch.sum(rays_mirror_to_object.directions**2, dim=1, keepdim=True)) return rays_mirror_to_object, color.cuda()
[ "torch.isnan", "torch.ones", "torch.eye", "torch.meshgrid", "torch.sum", "torch.randint", "torch.tensor", "torch.zeros", "torch.device", "torch.linspace", "torch.matmul", "torch.arange", "torch.from_numpy", "torch.ones_like", "torch.linalg.norm" ]
1.8.0
magis-slac/NeuS
f3ef3c089b2076ea8d73679bf37a94ef44a08939
1.0
"""AttentionWalk class.""" import torch import numpy as np import pandas as pd from tqdm import trange from utils import read_graph, feature_calculator, adjacency_opposite_calculator class AttentionWalkLayer(torch.nn.Module): """ Attention Walk Layer. For details see the paper. """ def __init__(self, args, shapes): """ Setting up the layer. :param args: Arguments object. :param shapes: Shape of the target tensor. """ super(AttentionWalkLayer, self).__init__() self.args = args self.shapes = shapes self.define_weights() self.initialize_weights() def define_weights(self): """ Define the model weights. """ half_dim = int(self.args.dimensions/2) self.left_factors = torch.nn.Parameter(torch.Tensor(self.shapes[1], half_dim)) self.right_factors = torch.nn.Parameter(torch.Tensor(half_dim, self.shapes[1])) self.attention = torch.nn.Parameter(torch.Tensor(self.shapes[0], 1)) def initialize_weights(self): """ Initializing the weights. """ torch.nn.init.uniform_(self.left_factors, -0.01, 0.01) torch.nn.init.uniform_(self.right_factors, -0.01, 0.01) torch.nn.init.uniform_(self.attention, -0.01, 0.01) def forward(self, weighted_target_tensor, adjacency_opposite): """ Doing a forward propagation pass. :param weighted_target_tensor: Target tensor factorized. :param adjacency_opposite: No-edge indicator matrix. :return loss: Loss being minimized. """ self.attention_probs = torch.nn.functional.softmax(self.attention, dim=0) probs = self.attention_probs.unsqueeze(1).expand_as(weighted_target_tensor) weighted_target_tensor = weighted_target_tensor * probs weighted_tar_mat = torch.sum(weighted_target_tensor, dim=0) weighted_tar_mat = weighted_tar_mat.view(self.shapes[1], self.shapes[2]) estimate = torch.mm(self.left_factors, self.right_factors) loss_on_target = - weighted_tar_mat* torch.log(torch.sigmoid(estimate)) loss_opposite = -adjacency_opposite * torch.log(1-torch.sigmoid(estimate)) loss_on_mat = self.args.num_of_walks*weighted_tar_mat.shape[0]*loss_on_target+loss_opposite abs_loss_on_mat = torch.abs(loss_on_mat) average_loss_on_mat = torch.mean(abs_loss_on_mat) norms = torch.mean(torch.abs(self.left_factors))+torch.mean(torch.abs(self.right_factors)) loss_on_regularization = self.args.beta * (self.attention.norm(2)**2) loss = average_loss_on_mat + loss_on_regularization + self.args.gamma*norms return loss class AttentionWalkTrainer(object): """ Class for training the AttentionWalk model. """ def __init__(self, args): """ Initializing the training object. :param args: Arguments object. """ self.args = args self.graph = read_graph(self.args.edge_path) self.initialize_model_and_features() def initialize_model_and_features(self): """ Creating data tensors and factroization model. """ self.target_tensor = feature_calculator(self.args, self.graph) self.target_tensor = torch.FloatTensor(self.target_tensor) self.adjacency_opposite = adjacency_opposite_calculator(self.graph) self.adjacency_opposite = torch.FloatTensor(self.adjacency_opposite) self.model = AttentionWalkLayer(self.args, self.target_tensor.shape) def fit(self): """ Fitting the model """ print("\nTraining the model.\n") self.model.train() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate) self.epochs = trange(self.args.epochs, desc="Loss") for _ in self.epochs: self.optimizer.zero_grad() loss = self.model(self.target_tensor, self.adjacency_opposite) loss.backward() self.optimizer.step() self.epochs.set_description("Attention Walk (Loss=%g)" % round(loss.item(), 4)) def save_model(self): """ Saving the embedding and attention vector. """ self.save_embedding() self.save_attention() def save_embedding(self): """ Saving the embedding matrices as one unified embedding. """ print("\nSaving the model.\n") left = self.model.left_factors.detach().numpy() right = self.model.right_factors.detach().numpy().T indices = np.array([range(len(self.graph))]).reshape(-1, 1) embedding = np.concatenate([indices, left, right], axis=1) columns = ["id"] + ["x_" + str(x) for x in range(self.args.dimensions)] embedding = pd.DataFrame(embedding, columns=columns) embedding.to_csv(self.args.embedding_path, index=None) def save_attention(self): """ Saving the attention vector. """ attention = self.model.attention_probs.detach().numpy() indices = np.array([range(self.args.window_size)]).reshape(-1, 1) attention = np.concatenate([indices, attention], axis=1) attention = pd.DataFrame(attention, columns=["Order", "Weight"]) attention.to_csv(self.args.attention_path, index=None)
[ "torch.sigmoid", "torch.FloatTensor", "torch.mm", "torch.abs", "torch.nn.functional.softmax", "torch.nn.init.uniform_", "torch.Tensor", "torch.mean", "torch.sum" ]
1.0.0
erdiolmezogullari/AttentionWalk
d8c8297018374d965c0a024c3f1833f54347504e
1.1
import torch import torch.nn as nn import torch.nn.functional as F class DummyNet(nn.Module): def __init__(self): super(DummyNet, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5, padding=2) self.conv2 = nn.Conv2d(10, 5, kernel_size=5, padding=2) self.softmax = nn.Softmax2d() def forward(self, x): x = F.relu(self.conv1(x)) x = self.conv2(x) x = self.softmax(x) return x
[ "torch.nn.Conv2d", "torch.nn.Softmax2d" ]
1.1.0
LendelTheGreat/weak-segmentation
0ff6015f1af741cfb50ef8fb6f55cea822f68f7a
1.6
from abc import ABCMeta, abstractmethod from typing import Any, Optional, Sequence import numpy as np import torch from torch.optim import Optimizer from ...augmentation import AugmentationPipeline from ...gpu import Device from ...models.builders import ( create_categorical_policy, create_squashed_normal_policy, create_value_function, ) from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.torch import ( CategoricalPolicy, Policy, SquashedNormalPolicy, ValueFunction, squash_action, ) from ...preprocessing import ActionScaler, Scaler from ...torch_utility import augmentation_api, eval_api, torch_api, train_api from .base import TorchImplBase class AWRBaseImpl(TorchImplBase, metaclass=ABCMeta): _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _use_gpu: Optional[Device] _v_func: Optional[ValueFunction] _policy: Optional[Policy] _critic_optim: Optional[Optimizer] _actor_optim: Optional[Optimizer] def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], augmentation: AugmentationPipeline, ): super().__init__( observation_shape, action_size, scaler, action_scaler, augmentation ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = actor_encoder_factory self._critic_encoder_factory = critic_encoder_factory self._use_gpu = use_gpu # initialized in build self._v_func = None self._policy = None self._critic_optim = None self._actor_optim = None def build(self) -> None: # setup torch models self._build_critic() self._build_actor() if self._use_gpu: self.to_gpu(self._use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() def _build_critic(self) -> None: self._v_func = create_value_function( self._observation_shape, self._critic_encoder_factory ) def _build_critic_optim(self) -> None: assert self._v_func is not None self._critic_optim = self._critic_optim_factory.create( self._v_func.parameters(), lr=self._critic_learning_rate ) @abstractmethod def _build_actor(self) -> None: pass def _build_actor_optim(self) -> None: assert self._policy is not None self._actor_optim = self._actor_optim_factory.create( self._policy.parameters(), lr=self._actor_learning_rate ) @train_api @torch_api(scaler_targets=["observation"]) def update_critic( self, observation: torch.Tensor, value: torch.Tensor ) -> np.ndarray: assert self._critic_optim is not None self._critic_optim.zero_grad() loss = self.compute_critic_loss(observation, value) loss.backward() self._critic_optim.step() return loss.cpu().detach().numpy() @augmentation_api(targets=["observation"]) def compute_critic_loss( self, observation: torch.Tensor, value: torch.Tensor ) -> torch.Tensor: assert self._v_func is not None return self._v_func.compute_error(observation, value) @train_api @torch_api(scaler_targets=["observation"], action_scaler_targets=["action"]) def update_actor( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> np.ndarray: assert self._actor_optim is not None self._actor_optim.zero_grad() loss = self.compute_actor_loss(observation, action, weight) loss.backward() self._actor_optim.step() return loss.cpu().detach().numpy() @augmentation_api(targets=["observation"]) def compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: return self._compute_actor_loss(observation, action, weight) @abstractmethod def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: pass def _predict_best_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.best_action(x) def _sample_action(self, x: torch.Tensor) -> torch.Tensor: assert self._policy is not None return self._policy.sample(x) @eval_api @torch_api(scaler_targets=["x"]) def predict_value( self, x: torch.Tensor, *args: Any, **kwargs: Any ) -> np.ndarray: assert self._v_func is not None with torch.no_grad(): return self._v_func(x).view(-1).cpu().detach().numpy() class AWRImpl(AWRBaseImpl): _policy: Optional[SquashedNormalPolicy] def _build_actor(self) -> None: self._policy = create_squashed_normal_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) # unnormalize action via inverse tanh function unnormalized_action = torch.atanh(action.clamp(-0.999999, 0.999999)) # compute log probability _, log_probs = squash_action(dist, unnormalized_action) return -(weight * log_probs).mean() class DiscreteAWRImpl(AWRBaseImpl): _policy: Optional[CategoricalPolicy] def _build_actor(self) -> None: self._policy = create_categorical_policy( self._observation_shape, self._action_size, self._actor_encoder_factory, ) def _compute_actor_loss( self, observation: torch.Tensor, action: torch.Tensor, weight: torch.Tensor, ) -> torch.Tensor: assert self._policy is not None dist = self._policy.dist(observation) log_probs = dist.log_prob(action).view(observation.shape[0], -1) return -(weight * log_probs.sum(dim=1, keepdim=True)).mean()
[ "torch.no_grad" ]
1.6.0
YangRui2015/d3rlpy
da778b2a2b0afbafe25395296baecd0d4d0cd0d5
1.6
import gym import numpy as np import pytest import torch from d3rlpy.dataset import Episode, MDPDataset from d3rlpy.preprocessing import ( MinMaxScaler, PixelScaler, StandardScaler, create_scaler, ) @pytest.mark.parametrize("scaler_type", ["pixel", "min_max", "standard"]) def test_create_scaler(scaler_type): scaler = create_scaler(scaler_type) if scaler_type == "pixel": assert isinstance(scaler, PixelScaler) elif scaler_type == "min_max": assert isinstance(scaler, MinMaxScaler) elif scaler_type == "standard": assert isinstance(scaler, StandardScaler) @pytest.mark.parametrize("observation_shape", [(4, 84, 84)]) def test_pixel_scaler(observation_shape): scaler = PixelScaler() x = torch.randint(high=255, size=observation_shape) y = scaler.transform(x) assert torch.all(y == x.float() / 255.0) assert scaler.get_type() == "pixel" assert scaler.get_params() == {} assert torch.all(scaler.reverse_transform(y) == x) @pytest.mark.parametrize("observation_shape", [(100,)]) @pytest.mark.parametrize("batch_size", [32]) def test_min_max_scaler(observation_shape, batch_size): shape = (batch_size,) + observation_shape observations = np.random.random(shape).astype("f4") max = observations.max(axis=0) min = observations.min(axis=0) scaler = MinMaxScaler(maximum=max, minimum=min) # check range y = scaler.transform(torch.tensor(observations)) assert np.all(y.numpy() >= 0.0) assert np.all(y.numpy() <= 1.0) x = torch.rand((batch_size,) + observation_shape) y = scaler.transform(x) ref_y = (x.numpy() - min.reshape((1, -1))) / (max - min).reshape((1, -1)) assert np.allclose(y.numpy(), ref_y) assert scaler.get_type() == "min_max" params = scaler.get_params() assert np.all(params["minimum"] == min) assert np.all(params["maximum"] == max) assert torch.allclose(scaler.reverse_transform(y), x) @pytest.mark.parametrize("observation_shape", [(100,)]) @pytest.mark.parametrize("batch_size", [32]) def test_min_max_scaler_with_episode(observation_shape, batch_size): shape = (batch_size,) + observation_shape observations = np.random.random(shape).astype("f4") actions = np.random.random((batch_size, 1)) rewards = np.random.random(batch_size) terminals = np.random.randint(2, size=batch_size) terminals[-1] = 1.0 dataset = MDPDataset( observations=observations, actions=actions, rewards=rewards, terminals=terminals, ) max = observations.max(axis=0) min = observations.min(axis=0) scaler = MinMaxScaler() scaler.fit(dataset.episodes) x = torch.rand((batch_size,) + observation_shape) y = scaler.transform(x) ref_y = (x.numpy() - min.reshape((1, -1))) / (max - min).reshape((1, -1)) assert np.allclose(y.numpy(), ref_y) def test_min_max_scaler_with_env(): env = gym.make("BreakoutNoFrameskip-v4") scaler = MinMaxScaler() scaler.fit_with_env(env) x = torch.tensor(env.reset().reshape((1,) + env.observation_space.shape)) y = scaler.transform(x) assert torch.all(x / 255.0 == y) @pytest.mark.parametrize("observation_shape", [(100,)]) @pytest.mark.parametrize("batch_size", [32]) def test_standard_scaler(observation_shape, batch_size): shape = (batch_size,) + observation_shape observations = np.random.random(shape).astype("f4") mean = observations.mean(axis=0) std = observations.std(axis=0) scaler = StandardScaler(mean=mean, std=std) x = torch.rand((batch_size,) + observation_shape) y = scaler.transform(x) ref_y = (x.numpy() - mean.reshape((1, -1))) / std.reshape((1, -1)) assert np.allclose(y.numpy(), ref_y) assert scaler.get_type() == "standard" params = scaler.get_params() assert np.all(params["mean"] == mean) assert np.all(params["std"] == std) assert torch.allclose(scaler.reverse_transform(y), x, atol=1e-6) @pytest.mark.parametrize("observation_shape", [(100,)]) @pytest.mark.parametrize("batch_size", [32]) def test_standard_scaler_with_episode(observation_shape, batch_size): shape = (batch_size,) + observation_shape observations = np.random.random(shape).astype("f4") actions = np.random.random((batch_size, 1)).astype("f4") rewards = np.random.random(batch_size).astype("f4") terminals = np.random.randint(2, size=batch_size) terminals[-1] = 1.0 dataset = MDPDataset( observations=observations, actions=actions, rewards=rewards, terminals=terminals, ) mean = observations.mean(axis=0) std = observations.std(axis=0) scaler = StandardScaler() scaler.fit(dataset.episodes) x = torch.rand((batch_size,) + observation_shape) y = scaler.transform(x) ref_y = (x.numpy() - mean.reshape((1, -1))) / std.reshape((1, -1)) assert np.allclose(y.numpy(), ref_y, atol=1e-6)
[ "torch.rand", "torch.randint", "torch.all", "torch.tensor" ]
1.6.0
YangRui2015/d3rlpy
da778b2a2b0afbafe25395296baecd0d4d0cd0d5
1.7
# -*- coding: utf-8 -*- """CBOW Embedding""" import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models from models.base_model import BaseModel from models.networks.cbow_embedder import Net as CBOW class Net(nn.Module): """Network for CBOW""" """ CBOW """ def __init__(self, embedder): super().__init__() """ Args: vocab_size emb_size """ self.embedding = embedder.embedding self.embedding.weight.requires_grad = False self.emb_size = embedder.emb_size self.vocab_size = embedder.vocab_size self.net = nn.Sequential( nn.Linear(self.emb_size, 128, bias=False), nn.Dropout(p=0.2, inplace=False), nn.Linear(128, self.vocab_size, bias=False), nn.Softmax(dim=-1) ) def forward(self, x): x = self.embedding(x) x = torch.sum(x, dim=1) x = self.net(x) return x class SimpleNN(BaseModel): """SimpleNN""" def __init__(self, cfg: object) -> None: """Initialization Build model. Args: cfg: Config. """ super().__init__(cfg) self.embedder = CBOW(vocab_size=self.cfg.model.embedder.vocab_size, emb_size=self.cfg.model.embedder.emb_size) ckpt_path = self.cfg.model.embedder.initial_ckpt if torch.cuda.is_available(): ckpt = torch.load(ckpt_path) else: ckpt = torch.load(ckpt_path, torch.device('cpu')) self.embedder.load_state_dict(ckpt['model_state_dict']) self.num_class = self.cfg.data.dataset.num_class self.network = Net(embedder=self.embedder) self.build()
[ "torch.nn.Linear", "torch.device", "torch.nn.Dropout", "torch.nn.Softmax", "torch.cuda.is_available", "torch.load", "torch.sum" ]
1.7.1
Piko-Piko-Pon-Taro/navict-recommender
7eeaf0f77e500c1c0ecb15f9613aa08c2ef5c83c
1.7
import torch.nn as nn class Network(nn.Module): def __init__(self): super().__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=8, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(num_features=8), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=8, out_channels=16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(num_features=16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc1 = nn.Sequential( nn.Linear(in_features=7*7*16, out_features=128), nn.BatchNorm1d(num_features=128), nn.Dropout(0.2), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(in_features=128, out_features=64), nn.BatchNorm1d(num_features=64), nn.ReLU() ) self.out = nn.Linear(in_features=64, out_features=10) def forward(self, t): t = self.layer1(t) t = self.layer2(t) t = t.reshape(t.size(0), -1) t = self.fc1(t) t = self.fc2(t) t = self.out(t) return t
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.MaxPool2d", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.BatchNorm1d" ]
1.7.0
priyavrat-misra/fashion-mnist
9e9d18612b7556dbff5849be87cb35c296993d9e
1.1
from __future__ import print_function, absolute_import import argparse import os.path as osp import random import numpy as np import sys from sklearn.cluster import KMeans from sklearn.preprocessing import normalize import torch from torch import nn from torch.backends import cudnn from torch.utils.data import DataLoader from mmt import datasets from mmt import models from mmt.trainers import MMTTrainer from mmt.evaluators import Evaluator, extract_features from mmt.utils.data import IterLoader from mmt.utils.data import transforms as T from mmt.utils.data.sampler import RandomMultipleGallerySampler from mmt.utils.data.preprocessor import Preprocessor from mmt.utils.logging import Logger from mmt.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict import os best_mAP = 0 def get_data(name, data_dir): root = osp.join(data_dir, name) dataset = datasets.create(name, root) return dataset def get_train_loader(dataset, height, width, batch_size, workers, num_instances, iters): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.RandomHorizontalFlip(p=0.5), T.Pad(10), T.RandomCrop((height, width)), T.ToTensor(), normalizer, T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406]) ]) train_set = sorted(dataset.train, key=lambda x:x[1]) rmgs_flag = num_instances > 0 if rmgs_flag: sampler = RandomMultipleGallerySampler(train_set, num_instances) else: sampler = None train_loader = IterLoader( DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform=train_transformer, mutual=True), batch_size=batch_size, num_workers=workers, sampler=sampler, shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters) return train_loader def get_test_loader(dataset, height, width, batch_size, workers, testset=None): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) test_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.ToTensor(), normalizer ]) if (testset is None): testset = list(set(dataset.query) | set(dataset.gallery)) test_loader = DataLoader( Preprocessor(testset, root=dataset.images_dir, transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) else: test_loader = DataLoader( Preprocessor(testset, root=dataset.images_dir, transform=test_transformer, mutual=False, cluster=True), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) return test_loader def create_model(args): model_1 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_2 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_1_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_2_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=args.num_clusters) model_1.cuda() model_2.cuda() model_1_ema.cuda() model_2_ema.cuda() model_1 = nn.DataParallel(model_1) model_2 = nn.DataParallel(model_2) model_1_ema = nn.DataParallel(model_1_ema) model_2_ema = nn.DataParallel(model_2_ema) initial_weights = load_checkpoint(args.init_1) copy_state_dict(initial_weights['state_dict'], model_1) copy_state_dict(initial_weights['state_dict'], model_1_ema) model_1_ema.module.classifier.weight.data.copy_(model_1.module.classifier.weight.data) initial_weights = load_checkpoint(args.init_2) copy_state_dict(initial_weights['state_dict'], model_2) copy_state_dict(initial_weights['state_dict'], model_2_ema) model_2_ema.module.classifier.weight.data.copy_(model_2.module.classifier.weight.data) for param in model_1_ema.parameters(): param.detach_() for param in model_2_ema.parameters(): param.detach_() return model_1, model_2, model_1_ema, model_2_ema def main(): args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # CUDA environment if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True main_worker(args) def main_worker(args): global best_mAP cudnn.benchmark = True sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt')) print("==========\nArgs:{}\n==========".format(args)) # Create data loaders iters = args.iters if (args.iters>0) else None dataset_target = get_data(args.dataset_target, args.data_dir) test_loader_target = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers) cluster_loader = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers, testset=dataset_target.train) # Create model model_1, model_2, model_1_ema, model_2_ema = create_model(args) # Evaluator evaluator_1_ema = Evaluator(model_1_ema) evaluator_2_ema = Evaluator(model_2_ema) for epoch in range(args.epochs): dict_f, _ = extract_features(model_1_ema, cluster_loader, print_freq=50) cf_1 = torch.stack(list(dict_f.values())).numpy() dict_f, _ = extract_features(model_2_ema, cluster_loader, print_freq=50) cf_2 = torch.stack(list(dict_f.values())).numpy() cf = (cf_1+cf_2)/2 print('\n Clustering into {} classes \n'.format(args.num_clusters)) km = KMeans(n_clusters=args.num_clusters, random_state=args.seed, n_jobs=2).fit(cf) model_1.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_2.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_1_ema.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) model_2_ema.module.classifier.weight.data.copy_(torch.from_numpy(normalize(km.cluster_centers_, axis=1)).float().cuda()) target_label = km.labels_ # change pseudo labels for i in range(len(dataset_target.train)): dataset_target.train[i] = list(dataset_target.train[i]) dataset_target.train[i][2] = int(target_label[i]) ## change dataset_target.train[i][1] --> [2] dataset_target.train[i] = tuple(dataset_target.train[i]) # the place to re-compute cluster centers (e.g.500) with re-assigned pseudo labels # based on the memory slot which contains the features of each target training images train_loader_target = get_train_loader(dataset_target, args.height, args.width, args.batch_size, args.workers, args.num_instances, iters) # Optimizer params = [] for key, value in model_1.named_parameters(): if not value.requires_grad: continue params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}] for key, value in model_2.named_parameters(): if not value.requires_grad: continue params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}] optimizer = torch.optim.Adam(params) # Trainer ## trainer = MMTTrainer(model_1, model_2, model_1_ema, model_2_ema, num_cluster=args.num_clusters, alpha=args.alpha, cf=cf, f_memory_label=target_label) ## train_loader_target.new_epoch() trainer.train(epoch, train_loader_target, optimizer, ce_soft_weight=args.soft_ce_weight, tri_soft_weight=args.soft_tri_weight, print_freq=args.print_freq, train_iters=len(train_loader_target)) def save_model(model_ema, is_best, best_mAP, mid): save_checkpoint({ 'state_dict': model_ema.state_dict(), 'epoch': epoch + 1, 'best_mAP': best_mAP, }, is_best, fpath=osp.join(args.logs_dir, 'model'+str(mid)+'_checkpoint.pth.tar')) if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)): mAP_1 = evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False) mAP_2 = evaluator_2_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False) is_best = (mAP_1>best_mAP) or (mAP_2>best_mAP) best_mAP = max(mAP_1, mAP_2, best_mAP) save_model(model_1_ema, (is_best and (mAP_1>mAP_2)), best_mAP, 1) save_model(model_2_ema, (is_best and (mAP_1<=mAP_2)), best_mAP, 2) print('\n * Finished epoch {:3d} model no.1 mAP: {:5.1%} model no.2 mAP: {:5.1%} best: {:5.1%}{}\n'. format(epoch, mAP_1, mAP_2, best_mAP, ' *' if is_best else '')) print ('Test on the best model.') checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar')) model_1_ema.load_state_dict(checkpoint['state_dict']) evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description="MMT Training") # data parser.add_argument('-dt', '--dataset-target', type=str, default='market1501', choices=datasets.names()) parser.add_argument('-b', '--batch-size', type=int, default=64) parser.add_argument('-j', '--workers', type=int, default=4) parser.add_argument('--num-clusters', type=int, default=500) parser.add_argument('--height', type=int, default=256, help="input height") parser.add_argument('--width', type=int, default=128, help="input width") parser.add_argument('--num-instances', type=int, default=4, help="each minibatch consist of " "(batch_size // num_instances) identities, and " "each identity has num_instances instances, " "default: 0 (NOT USE)") # model parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.names()) parser.add_argument('--features', type=int, default=0) parser.add_argument('--dropout', type=float, default=0) # optimizer parser.add_argument('--lr', type=float, default=0.00035, help="learning rate of new parameters, for pretrained " "parameters it is 10 times smaller than this") parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--alpha', type=float, default=0.999) parser.add_argument('--moving-avg-momentum', type=float, default=0) parser.add_argument('--weight-decay', type=float, default=5e-4) parser.add_argument('--soft-ce-weight', type=float, default=0.5) parser.add_argument('--soft-tri-weight', type=float, default=0.8) parser.add_argument('--epochs', type=int, default=40) parser.add_argument('--iters', type=int, default=800) # training configs parser.add_argument('--init-1', type=str, default='', metavar='PATH') parser.add_argument('--init-2', type=str, default='', metavar='PATH') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--print-freq', type=int, default=1) parser.add_argument('--eval-step', type=int, default=1) # path working_dir = osp.dirname(osp.abspath(__file__)) parser.add_argument('--data-dir', type=str, metavar='PATH', default=osp.join(working_dir, 'data')) parser.add_argument('--logs-dir', type=str, metavar='PATH', default=osp.join(working_dir, 'logs')) #parser.add_argument('--memory_size', type=int, default=12936) main()
[ "torch.optim.Adam", "torch.manual_seed", "torch.nn.DataParallel" ]
1.1.0
Dingyuan-Zheng/ctf-UDA
3e3c67f68d7eb0b52a16a259e5a77e153062c4fd
1.6
import torch from torch import nn from transformers import BertModel, ElectraModel from transformers.models.bert.modeling_bert import BertLayer from capreolus import ConfigOption, Dependency from capreolus.reranker import Reranker class PTParade_Class(nn.Module): def __init__(self, extractor, config, *args, **kwargs): super().__init__(*args, **kwargs) self.extractor = extractor self.config = config if config["pretrained"] == "electra-base-msmarco": self.bert = ElectraModel.from_pretrained("Capreolus/electra-base-msmarco") elif config["pretrained"] == "bert-base-msmarco": self.bert = BertModel.from_pretrained("Capreolus/bert-base-msmarco") elif config["pretrained"] == "bert-base-uncased": self.bert = BertModel.from_pretrained("bert-base-uncased") else: raise ValueError( f"unsupported model: {config['pretrained']}; need to ensure correct tokenizers will be used before arbitrary hgf models are supported" ) self.transformer_layer_1 = BertLayer(self.bert.config) self.transformer_layer_2 = BertLayer(self.bert.config) self.num_passages = extractor.config["numpassages"] self.maxseqlen = extractor.config["maxseqlen"] self.linear = nn.Linear(self.bert.config.hidden_size, 1) if config["aggregation"] == "max": raise NotImplementedError() elif config["aggregation"] == "avg": raise NotImplementedError() elif config["aggregation"] == "attn": raise NotImplementedError() elif config["aggregation"] == "transformer": self.aggregation = self.aggregate_using_transformer input_embeddings = self.bert.get_input_embeddings() # TODO hardcoded CLS token id cls_token_id = torch.tensor([[101]]) self.initial_cls_embedding = input_embeddings(cls_token_id).view(1, self.bert.config.hidden_size) self.full_position_embeddings = torch.zeros( (1, self.num_passages + 1, self.bert.config.hidden_size), requires_grad=True, dtype=torch.float ) torch.nn.init.normal_(self.full_position_embeddings, mean=0.0, std=0.02) self.initial_cls_embedding = nn.Parameter(self.initial_cls_embedding, requires_grad=True) self.full_position_embeddings = nn.Parameter(self.full_position_embeddings, requires_grad=True) else: raise ValueError(f"unknown aggregation type: {self.config['aggregation']}") def aggregate_using_transformer(self, cls): expanded_cls = cls.view(-1, self.num_passages, self.bert.config.hidden_size) # TODO make sure batch size here is correct batch_size = expanded_cls.shape[0] tiled_initial_cls = self.initial_cls_embedding.repeat(batch_size, 1) merged_cls = torch.cat((tiled_initial_cls.view(batch_size, 1, self.bert.config.hidden_size), expanded_cls), dim=1) merged_cls = merged_cls + self.full_position_embeddings (transformer_out_1,) = self.transformer_layer_1(merged_cls, None, None, None) (transformer_out_2,) = self.transformer_layer_2(transformer_out_1, None, None, None) aggregated = transformer_out_2[:, 0, :] return aggregated def forward(self, doc_input, doc_mask, doc_seg): batch_size = doc_input.shape[0] doc_input = doc_input.view((batch_size * self.num_passages, self.maxseqlen)) doc_mask = doc_mask.view((batch_size * self.num_passages, self.maxseqlen)) doc_seg = doc_seg.view((batch_size * self.num_passages, self.maxseqlen)) cls = self.bert(doc_input, attention_mask=doc_mask, token_type_ids=doc_seg)[0][:, 0, :] aggregated = self.aggregation(cls) return self.linear(aggregated) @Reranker.register class PTParade(Reranker): """ PyTorch implementation of PARADE. PARADE: Passage Representation Aggregation for Document Reranking. Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. arXiv 2020. https://arxiv.org/pdf/2008.09093.pdf """ module_name = "ptparade" dependencies = [ Dependency(key="extractor", module="extractor", name="pooledbertpassage"), Dependency(key="trainer", module="trainer", name="pytorch"), ] config_spec = [ ConfigOption( "pretrained", "bert-base-uncased", "Pretrained model: bert-base-uncased, bert-base-msmarco, or electra-base-msmarco" ), ConfigOption("aggregation", "transformer"), ] def build_model(self): if not hasattr(self, "model"): self.model = PTParade_Class(self.extractor, self.config) return self.model def score(self, d): return [ self.model(d["pos_bert_input"], d["pos_mask"], d["pos_seg"]).view(-1), self.model(d["neg_bert_input"], d["neg_mask"], d["neg_seg"]).view(-1), ] def test(self, d): return self.model(d["pos_bert_input"], d["pos_mask"], d["pos_seg"]).view(-1)
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Parameter", "torch.nn.init.normal_", "torch.tensor" ]
1.6.0
nimasadri11/capreolus
27b081ec1a37d2af6afa6b61eb1cb7cc4ec9db1c
1.7
import os from imageio import imread, imsave import numpy as np import matplotlib.pyplot as plt import torch import torch.nn.functional as F def plot_text(txt, size=224): fig = plt.figure(figsize=(1,1), dpi=size) fontsize = size//len(txt) if len(txt) < 15 else 8 plt.text(0.5, 0.5, txt, fontsize=fontsize, ha='center', va='center', wrap=True) plt.axis('off') fig.tight_layout(pad=0) fig.canvas.draw() img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return img def txt_clean(txt): return txt.translate(str.maketrans(dict.fromkeys(list("\n',.—|!?/:;\\"), ""))).replace(' ', '_').replace('"', '') def basename(file): return os.path.splitext(os.path.basename(file))[0] def file_list(path, ext=None, subdir=None): if subdir is True: files = [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] else: files = [os.path.join(path, f) for f in os.listdir(path)] if ext is not None: if isinstance(ext, list): files = [f for f in files if os.path.splitext(f.lower())[1][1:] in ext] elif isinstance(ext, str): files = [f for f in files if f.endswith(ext)] else: print(' Unknown extension/type for file list!') return sorted([f for f in files if os.path.isfile(f)]) def img_list(path, subdir=None): if subdir is True: files = [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] else: files = [os.path.join(path, f) for f in os.listdir(path)] files = [f for f in files if os.path.splitext(f.lower())[1][1:] in ['jpg', 'jpeg', 'png', 'ppm', 'tif']] return sorted([f for f in files if os.path.isfile(f)]) def img_read(path): img = imread(path) # 8bit to 256bit if (img.ndim == 2) or (img.shape[2] == 1): img = np.dstack((img,img,img)) # rgba to rgb if img.shape[2] == 4: img = img[:,:,:3] return img def img_save(path, img, norm=True): if norm == True and not np.issubdtype(img.dtype.kind, np.integer): img = (img*255).astype(np.uint8) imsave(path, img) def minmax(x, torch=True): if torch: mn = torch.min(x).detach().cpu().numpy() mx = torch.max(x).detach().cpu().numpy() else: mn = np.min(x.detach().cpu().numpy()) mx = np.max(x.detach().cpu().numpy()) return (mn, mx) # Tiles an array around two points, allowing for pad lengths greater than the input length # NB: if symm=True, every second tile is mirrored = messed up in GAN # adapted from https://discuss.pytorch.org/t/symmetric-padding/19866/3 def tile_pad(xt, padding, symm=False): h, w = xt.shape[-2:] left, right, top, bottom = padding def tile(x, minx, maxx): rng = maxx - minx if symm is True: # triangular reflection double_rng = 2*rng mod = np.fmod(x - minx, double_rng) normed_mod = np.where(mod < 0, mod+double_rng, mod) out = np.where(normed_mod >= rng, double_rng - normed_mod, normed_mod) + minx else: # repeating tiles mod = np.remainder(x - minx, rng) out = mod + minx return np.array(out, dtype=x.dtype) x_idx = np.arange(-left, w+right) y_idx = np.arange(-top, h+bottom) x_pad = tile(x_idx, -0.5, w-0.5) y_pad = tile(y_idx, -0.5, h-0.5) xx, yy = np.meshgrid(x_pad, y_pad) return xt[..., yy, xx] def pad_up_to(x, size, type='centr'): sh = x.shape[2:][::-1] if list(x.shape[2:]) == list(size): return x padding = [] for i, s in enumerate(size[::-1]): if 'side' in type.lower(): padding = padding + [0, s-sh[i]] else: # centr p0 = (s-sh[i]) // 2 p1 = s-sh[i] - p0 padding = padding + [p0,p1] y = tile_pad(x, padding, symm = ('symm' in type.lower())) return y def load_config(config_path, display=False): config = OmegaConf.load(config_path) if display: print(yaml.dump(OmegaConf.to_container(config))) return config def load_vqgan(config, ckpt_path=None): model = VQModel(**config.model.params) if ckpt_path is not None: sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] missing, unexpected = model.load_state_dict(sd, strict=False) return model.eval() def vqgan_image(model, z): x = model.decode(z) x = (x+1.)/2. return x def makevid(seq_dir, size=None): out_video = seq_dir + '.mp4' moviepy.editor.ImageSequenceClip(img_list(seq_dir), fps=25).write_videofile(out_video, verbose=False) data_url = "data:video/mp4;base64," + b64encode(open(out_video,'rb').read()).decode() wh = '' if size is None else 'width=%d height=%d' % (size, size) return """<video %s controls><source src="%s" type="video/mp4"></video>""" % (wh, data_url)
[ "torch.min", "torch.max", "torch.load" ]
1.7.1
Adamkomar95/gans-clip-pw
14694abd3a793b3e0fdfed76e2e12908e91ea484
1.7
import torch import math from torch_geometric.nn.pool import fps from lightconvpoint.knn import knn import importlib knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') if knn_c_func_spec is not None: knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) knn_c_func_spec.loader.exec_module(knn_c_func) def sampling_fps(points: torch.Tensor, nqueries: int): if knn_c_func_spec is not None: return knn_c_func.sampling_fps(points, nqueries) bs, dim, nx = points.shape ratio = nqueries / nx batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) x = points.transpose(1,2).reshape(-1, dim) batch_x = batch_x.view(-1) indices_queries = fps(x, batch_x, ratio) indices_queries = indices_queries.view(bs, -1) assert(indices_queries.shape[1] == nqueries) return indices_queries def sampling_knn_fps(points: torch.Tensor, nqueries: int, K: int): if knn_c_func_spec is not None: return knn_c_func.sampling_knn_fps(points, nqueries, K) bs, dim, nx = points.shape ratio = nqueries / nx batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) x = points.transpose(1,2).reshape(-1, dim) batch_x = batch_x.view(-1) indices_queries = fps(x, batch_x, ratio) points_queries = x[indices_queries] indices_queries = indices_queries.view(bs, -1) points_queries = points_queries.view(bs,-1,3) points_queries = points_queries.transpose(1,2) assert(indices_queries.shape[1] == nqueries) indices_knn = knn(points, points_queries, K) return indices_queries, indices_knn, points_queries
[ "torch.arange" ]
1.7.1
valeoai/3DGenZ
3368585e10f127f7a0d71af98994a6cff5235dab
0.4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 19 18:40:39 2020 @author: kratochvila """ import torch import torch.nn as nn import torch.nn.functional as F from base.base_net import BaseNet class MY_LeNet(BaseNet): def __init__(self): super().__init__() self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 80 * 60, self.rep_dim, bias=False) # 20 * 15 def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.fc1(x) return x class MY_LeNet_Autoencoder(BaseNet): def __init__(self): super().__init__() self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) # Encoder (must match the Deep SVDD network above) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 80 * 60, self.rep_dim, bias=False) self.bn1d = nn.BatchNorm1d(self.rep_dim, eps=1e-04, affine=False) # Decoder self.deconv1 = nn.ConvTranspose2d(int(self.rep_dim / (4 * 4)), 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d4 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d5 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.deconv3 = nn.ConvTranspose2d(64, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d6 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.deconv4 = nn.ConvTranspose2d(32, 3, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv4.weight, gain=nn.init.calculate_gain('leaky_relu')) def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.bn1d(self.fc1(x)) x = x.view(x.size(0), int(self.rep_dim / (4 * 4)), 4, 4) x = F.leaky_relu(x) x = self.deconv1(x) x = F.interpolate(F.leaky_relu(self.bn2d4(x)), scale_factor=2) x = self.deconv2(x) x = F.interpolate(F.leaky_relu(self.bn2d5(x)), scale_factor=2) x = self.deconv3(x) x = F.interpolate(F.leaky_relu(self.bn2d6(x)), scale_factor=2) x = self.deconv4(x) x = torch.sigmoid(x) return x
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.MaxPool2d", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.Conv2d", "torch.nn.BatchNorm1d", "torch.nn.init.calculate_gain", "torch.nn.functional.leaky_relu" ]
0.4.1
LukasKratochvila/Deep-SVDD-PyTorch
a94bd9b6be4d953706daf969b061ddf55d6cbf4c
1.6
import unittest from onmt.translate import GeneratorLM import torch class TestGeneratorLM(unittest.TestCase): def test_split_src_to_prevent_padding_target_prefix_is_none_when_equal_size( # noqa: E501 self, ): src = torch.randint(0, 10, (5, 6)) src_lengths = 5 * torch.ones(5) ( src, src_lengths, target_prefix, ) = GeneratorLM.split_src_to_prevent_padding(src, src_lengths) self.assertIsNone(target_prefix) def test_split_src_to_prevent_padding_target_prefix_is_ok_when_different_size( # noqa: E501 self, ): default_length = 5 src = torch.randint(0, 10, (default_length, 6)) src_lengths = default_length * torch.ones(6, dtype=torch.int) new_length = 4 src_lengths[1] = new_length ( src, src_lengths, target_prefix, ) = GeneratorLM.split_src_to_prevent_padding(src, src_lengths) self.assertTupleEqual(src.shape, (new_length, 6)) self.assertTupleEqual(target_prefix.shape, (1, 6)) self.assertTrue( src_lengths.equal(new_length * torch.ones(6, dtype=torch.int)) )
[ "torch.randint", "torch.ones" ]
1.6.0
l-k-11235/OpenNMT-py
4815f07fcd482af9a1fe1d3b620d144197178bc5
1.6
import torch class PenaltyBuilder(object): """Returns the Length and Coverage Penalty function for Beam Search. Args: length_pen (str): option name of length pen cov_pen (str): option name of cov pen Attributes: has_cov_pen (bool): Whether coverage penalty is None (applying it is a no-op). Note that the converse isn't true. Setting beta to 0 should force coverage length to be a no-op. has_len_pen (bool): Whether length penalty is None (applying it is a no-op). Note that the converse isn't true. Setting alpha to 1 should force length penalty to be a no-op. coverage_penalty (callable[[FloatTensor, float], FloatTensor]): Calculates the coverage penalty. length_penalty (callable[[int, float], float]): Calculates the length penalty. """ def __init__(self, cov_pen, length_pen): self.has_cov_pen = not self._pen_is_none(cov_pen) self.coverage_penalty = self._coverage_penalty(cov_pen) self.has_len_pen = not self._pen_is_none(length_pen) self.length_penalty = self._length_penalty(length_pen) @staticmethod def _pen_is_none(pen): return pen == "none" or pen is None def _coverage_penalty(self, cov_pen): if cov_pen == "wu": return self.coverage_wu elif cov_pen == "summary": return self.coverage_summary elif self._pen_is_none(cov_pen): return self.coverage_none else: raise NotImplementedError("No '{:s}' coverage penalty.".format( cov_pen)) def _length_penalty(self, length_pen): if length_pen == "wu": return self.length_wu elif length_pen == "avg": return self.length_average elif self._pen_is_none(length_pen): return self.length_none else: raise NotImplementedError("No '{:s}' length penalty.".format( length_pen)) # Below are all the different penalty terms implemented so far. # Subtract coverage penalty from topk log probs. # Divide topk log probs by length penalty. def coverage_wu(self, cov, beta=0.): """GNMT coverage re-ranking score. See "Google's Neural Machine Translation System" :cite:`wu2016google`. ``cov`` is expected to be sized ``(*, seq_len)``, where ``*`` is probably ``batch_size x beam_size`` but could be several dimensions like ``(batch_size, beam_size)``. If ``cov`` is attention, then the ``seq_len`` axis probably sums to (almost) 1. """ penalty = -torch.min(cov, cov.clone().fill_(1.0)).log().sum(-1) return beta * penalty def coverage_summary(self, cov, beta=0.): """Our summary penalty.""" penalty = torch.max(cov, cov.clone().fill_(1.0)).sum(-1) penalty -= cov.size(-1) return beta * penalty def coverage_none(self, cov, beta=0.): """Returns zero as penalty""" none = torch.zeros((1,), device=cov.device, dtype=torch.float) if cov.dim() == 3: none = none.unsqueeze(0) return none def length_wu(self, cur_len, alpha=0.): """GNMT length re-ranking score. See "Google's Neural Machine Translation System" :cite:`wu2016google`. """ return ((5 + cur_len) / 6.0) ** alpha def length_average(self, cur_len, alpha=0.): """Returns the current sequence length.""" return cur_len def length_none(self, cur_len, alpha=0.): """Returns unmodified scores.""" return 1.0
[ "torch.zeros" ]
1.6.0
l-k-11235/OpenNMT-py
4815f07fcd482af9a1fe1d3b620d144197178bc5
1.0
from torch import nn class PositionWise(nn.Module): def __init__(self, dim_m, dim_i, dropout=0.1): """Position-wise Feed-Forward Network. Args: dim_m (int): input and output dimension. dim_i (int): inner dimension. dropout (float, optional): dropout probability. Inputs: - **input** of shape `(batch, *, dim_m)`: a float tensor. Outputs: - **output** of shape `(batch, *, dim_m)`: a float tensor. """ super(PositionWise, self).__init__() self.feedforward = nn.Sequential( nn.Linear(dim_m, dim_i), nn.ReLU(), nn.Linear(dim_i, dim_m), nn.Dropout(dropout)) self.normalization = nn.LayerNorm(dim_m, eps=1e-12) def forward(self, input): # There's nothing difficult here. residual = input output = self.feedforward(input) output = self.normalization(output + residual) return output
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.nn.ReLU" ]
1.0.0
khucnam/Efflux_TransVAE
7da1cc614f016d5520648f4853e34e2362181aa7
1.4
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import shutil import tempfile import unittest from test.generic.config_utils import get_fast_test_task_config, get_test_task_config from test.generic.utils import compare_model_state, compare_samples, compare_states import torch from classy_vision.dataset import build_dataset from classy_vision.generic.util import get_checkpoint_dict from classy_vision.hooks import CheckpointHook, LossLrMeterLoggingHook from classy_vision.losses import build_loss from classy_vision.models import build_model from classy_vision.optim import build_optimizer from classy_vision.tasks import ClassificationTask, build_task from classy_vision.trainer import LocalTrainer class TestClassificationTask(unittest.TestCase): def _compare_model_state(self, model_state_1, model_state_2, check_heads=True): compare_model_state(self, model_state_1, model_state_2, check_heads) def _compare_samples(self, sample_1, sample_2): compare_samples(self, sample_1, sample_2) def _compare_states(self, state_1, state_2, check_heads=True): compare_states(self, state_1, state_2) def setUp(self): # create a base directory to write checkpoints to self.base_dir = tempfile.mkdtemp() def tearDown(self): # delete all the temporary data created shutil.rmtree(self.base_dir) def test_build_task(self): config = get_test_task_config() task = build_task(config) self.assertTrue(isinstance(task, ClassificationTask)) def test_hooks_config_builds_correctly(self): config = get_test_task_config() config["hooks"] = [{"name": "loss_lr_meter_logging"}] task = build_task(config) self.assertTrue(len(task.hooks) == 1) self.assertTrue(isinstance(task.hooks[0], LossLrMeterLoggingHook)) def test_get_state(self): config = get_test_task_config() loss = build_loss(config["loss"]) task = ( ClassificationTask() .set_num_epochs(1) .set_loss(loss) .set_model(build_model(config["model"])) .set_optimizer(build_optimizer(config["optimizer"])) ) for phase_type in ["train", "test"]: dataset = build_dataset(config["dataset"][phase_type]) task.set_dataset(dataset, phase_type) task.prepare() task = build_task(config) task.prepare() def test_synchronize_losses_non_distributed(self): """ Tests that synchronize losses has no side effects in a non-distributed setting. """ test_config = get_fast_test_task_config() task = build_task(test_config) task.prepare() old_losses = copy.deepcopy(task.losses) task.synchronize_losses() self.assertEqual(old_losses, task.losses) def test_synchronize_losses_when_losses_empty(self): config = get_fast_test_task_config() task = build_task(config) task.prepare() task.set_use_gpu(torch.cuda.is_available()) # Losses should be empty when creating task self.assertEqual(len(task.losses), 0) task.synchronize_losses() def test_checkpointing(self): """ Tests checkpointing by running train_steps to make sure the train_steps run the same way after loading from a checkpoint. """ config = get_fast_test_task_config() task = build_task(config).set_hooks([LossLrMeterLoggingHook()]) task_2 = build_task(config).set_hooks([LossLrMeterLoggingHook()]) task.set_use_gpu(torch.cuda.is_available()) # prepare the tasks for the right device task.prepare() # test in both train and test mode for _ in range(2): task.advance_phase() # set task's state as task_2's checkpoint task_2._set_checkpoint_dict(get_checkpoint_dict(task, {}, deep_copy=True)) task_2.prepare() # task 2 should have the same state self._compare_states(task.get_classy_state(), task_2.get_classy_state()) # this tests that both states' iterators return the same samples sample = next(task.get_data_iterator()) sample_2 = next(task_2.get_data_iterator()) self._compare_samples(sample, sample_2) # test that the train step runs the same way on both states # and the loss remains the same task.train_step() task_2.train_step() self._compare_states(task.get_classy_state(), task_2.get_classy_state()) def test_final_train_checkpoint(self): """Test that a train phase checkpoint with a where of 1.0 can be loaded""" config = get_fast_test_task_config() task = build_task(config).set_hooks( [CheckpointHook(self.base_dir, {}, phase_types=["train"])] ) task_2 = build_task(config) task.set_use_gpu(torch.cuda.is_available()) trainer = LocalTrainer() trainer.train(task) # make sure fetching the where raises an exception, which means that # where is >= 1.0 with self.assertRaises(Exception): task.where # set task_2's state as task's final train checkpoint task_2.set_checkpoint(self.base_dir) task_2.prepare() # we should be able to train the task trainer.train(task_2) def test_test_only_checkpointing(self): """ Tests checkpointing by running train_steps to make sure the train_steps run the same way after loading from a training task checkpoint on a test_only task. """ train_config = get_fast_test_task_config() train_config["num_epochs"] = 10 test_config = get_fast_test_task_config() test_config["test_only"] = True train_task = build_task(train_config).set_hooks([LossLrMeterLoggingHook()]) test_only_task = build_task(test_config).set_hooks([LossLrMeterLoggingHook()]) # prepare the tasks for the right device train_task.prepare() # test in both train and test mode trainer = LocalTrainer() trainer.train(train_task) # set task's state as task_2's checkpoint test_only_task._set_checkpoint_dict( get_checkpoint_dict(train_task, {}, deep_copy=True) ) test_only_task.prepare() test_state = test_only_task.get_classy_state() # We expect the phase idx to be different for a test only task self.assertEqual(test_state["phase_idx"], -1) # We expect that test only state is test, no matter what train state is self.assertFalse(test_state["train"]) # Num updates should be 0 self.assertEqual(test_state["num_updates"], 0) # train_phase_idx should -1 self.assertEqual(test_state["train_phase_idx"], -1) # Verify task will run trainer = LocalTrainer() trainer.train(test_only_task) def test_test_only_task(self): """ Tests the task in test mode by running train_steps to make sure the train_steps run as expected on a test_only task """ test_config = get_fast_test_task_config() test_config["test_only"] = True # delete train dataset del test_config["dataset"]["train"] test_only_task = build_task(test_config).set_hooks([LossLrMeterLoggingHook()]) test_only_task.prepare() test_state = test_only_task.get_classy_state() # We expect that test only state is test, no matter what train state is self.assertFalse(test_state["train"]) # Num updates should be 0 self.assertEqual(test_state["num_updates"], 0) # Verify task will run trainer = LocalTrainer() trainer.train(test_only_task) def test_train_only_task(self): """ Tests that the task runs when only a train dataset is specified. """ test_config = get_fast_test_task_config() # delete the test dataset from the config del test_config["dataset"]["test"] task = build_task(test_config).set_hooks([LossLrMeterLoggingHook()]) task.prepare() # verify the the task can still be trained trainer = LocalTrainer() trainer.train(task) @unittest.skipUnless(torch.cuda.is_available(), "This test needs a gpu to run") def test_checkpointing_different_device(self): config = get_fast_test_task_config() task = build_task(config) task_2 = build_task(config) for use_gpu in [True, False]: task.set_use_gpu(use_gpu) task.prepare() # set task's state as task_2's checkpoint task_2._set_checkpoint_dict(get_checkpoint_dict(task, {}, deep_copy=True)) # we should be able to run the trainer using state from a different device trainer = LocalTrainer() task_2.set_use_gpu(not use_gpu) trainer.train(task_2)
[ "torch.cuda.is_available" ]
1.4
jlin27/ClassyVision-1
113ddb0b66471eb84add9af53751d9067786a7f0
1.6
import os from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader from pl_bolts.datasets.imagenet_dataset import UnlabeledImagenet from pl_bolts.transforms.dataset_normalizations import imagenet_normalization from pl_bolts.utils import _TORCHVISION_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _TORCHVISION_AVAILABLE: from torchvision import transforms as transform_lib else: warn_missing_pkg('torchvision') # pragma: no-cover class SSLImagenetDataModule(LightningDataModule): # pragma: no cover name = 'imagenet' def __init__( self, data_dir, meta_dir=None, num_workers=16, batch_size: int = 32, shuffle: bool = False, pin_memory: bool = False, drop_last: bool = False, *args, **kwargs, ): super().__init__(*args, **kwargs) if not _TORCHVISION_AVAILABLE: raise ModuleNotFoundError( # pragma: no-cover 'You want to use ImageNet dataset loaded from `torchvision` which is not installed yet.' ) self.data_dir = data_dir self.num_workers = num_workers self.meta_dir = meta_dir self.batch_size = batch_size self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last @property def num_classes(self): return 1000 def _verify_splits(self, data_dir, split): dirs = os.listdir(data_dir) if split not in dirs: raise FileNotFoundError( f'a {split} Imagenet split was not found in {data_dir}, make sure the' f' folder contains a subfolder named {split}' ) def prepare_data(self): # imagenet cannot be downloaded... must provide path to folder with the train/val splits self._verify_splits(self.data_dir, 'train') self._verify_splits(self.data_dir, 'val') for split in ['train', 'val']: files = os.listdir(os.path.join(self.data_dir, split)) if 'meta.bin' not in files: raise FileNotFoundError( """ no meta.bin present. Imagenet is no longer automatically downloaded by PyTorch. To get imagenet: 1. download yourself from http://www.image-net.org/challenges/LSVRC/2012/downloads 2. download the devkit (ILSVRC2012_devkit_t12.tar.gz) 3. generate the meta.bin file using the devkit 4. copy the meta.bin file into both train and val split folders To generate the meta.bin do the following: from pl_bolts.datamodules.imagenet_dataset import UnlabeledImagenet path = '/path/to/folder/with/ILSVRC2012_devkit_t12.tar.gz/' UnlabeledImagenet.generate_meta_bins(path) """ ) def train_dataloader(self, num_images_per_class=-1, add_normalize=False): transforms = self._default_transforms() if self.train_transforms is None else self.train_transforms dataset = UnlabeledImagenet( self.data_dir, num_imgs_per_class=num_images_per_class, meta_dir=self.meta_dir, split='train', transform=transforms ) loader = DataLoader( dataset, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader def val_dataloader(self, num_images_per_class=50, add_normalize=False): transforms = self._default_transforms() if self.val_transforms is None else self.val_transforms dataset = UnlabeledImagenet( self.data_dir, num_imgs_per_class_val_split=num_images_per_class, meta_dir=self.meta_dir, split='val', transform=transforms ) loader = DataLoader( dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader def test_dataloader(self, num_images_per_class, add_normalize=False): transforms = self._default_transforms() if self.test_transforms is None else self.test_transforms dataset = UnlabeledImagenet( self.data_dir, num_imgs_per_class=num_images_per_class, meta_dir=self.meta_dir, split='test', transform=transforms ) loader = DataLoader( dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader def _default_transforms(self): mnist_transforms = transform_lib.Compose([transform_lib.ToTensor(), imagenet_normalization()]) return mnist_transforms
[ "torch.utils.data.DataLoader" ]
1.6
btwardow/pytorch-lightning-bolts
4a7b6ffe0fcbeee37f8bac6af1e926469b2052bf
1.8
import torch.nn as nn import torch.nn.functional as F import torch def get_loss(loss_type): if loss_type == 'focal_loss': return FocalLoss(ignore_index=255, size_average=True) elif loss_type == 'cross_entropy': return nn.CrossEntropyLoss(ignore_index=255, reduction='mean') class FocalLoss(nn.Module): def __init__(self, alpha=1, gamma=2, size_average=True, ignore_index=255): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.ignore_index=ignore_index self.size_average=size_average def forward(self, inputs, targets): ce_loss = F.cross_entropy(inputs, targets, reduction='none', ignore_index=self.ignore_index) pt = torch.exp(-ce_loss) focal_loss = self.alpha * (1-pt)**self.gamma * ce_loss if self.size_average: return focal_loss.mean() else: return focal_loss.sum() class BCEWithLogitsLossWithIgnoreIndex(nn.Module): def __init__(self, reduction='mean', ignore_index=255): super().__init__() self.reduction = reduction self.ignore_index = ignore_index def forward(self, inputs, targets): # inputs of size B x C x H x W n_cl = torch.tensor(inputs.shape[1]).to(inputs.device) labels_new = torch.where(targets != self.ignore_index, targets, n_cl) # replace ignore with numclasses + 1 (to enable one hot and then remove it) targets = F.one_hot(labels_new, inputs.shape[1] + 1).float().permute(0, 3, 1, 2) targets = targets[:, :inputs.shape[1], :, :] # remove 255 from 1hot # targets is B x C x H x W so shape[1] is C loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') # loss has shape B x C x H x W loss = loss.sum(dim=1) # sum the contributions of the classes if self.reduction == 'mean': # if targets have only zeros, we skip them return torch.masked_select(loss, targets.sum(dim=1) != 0).mean() elif self.reduction == 'sum': return torch.masked_select(loss, targets.sum(dim=1) != 0).sum() else: return loss * targets.sum(dim=1) class IcarlLoss(nn.Module): def __init__(self, reduction='mean', ignore_index=255, bkg=False): super().__init__() self.reduction = reduction self.ignore_index = ignore_index self.bkg = bkg def forward(self, inputs, targets, output_old): # inputs of size B x C x H x W n_cl = torch.tensor(inputs.shape[1]).to(inputs.device) labels_new = torch.where(targets != self.ignore_index, targets, n_cl) # replace ignore with numclasses + 1 (to enable one hot and then remove it) targets = F.one_hot(labels_new, inputs.shape[1] + 1).float().permute(0, 3, 1, 2) targets = targets[:, :inputs.shape[1], :, :] # remove 255 from 1hot if self.bkg: targets[:, 1:output_old.shape[1], :, :] = output_old[:, 1:, :, :] else: targets[:, :output_old.shape[1], :, :] = output_old # targets is B x C x H x W so shape[1] is C loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') # loss has shape B x C x H x W loss = loss.sum(dim=1) # sum the contributions of the classes if self.reduction == 'mean': # if targets have only zeros, we skip them return loss.mean() elif self.reduction == 'sum': return loss.sum() else: return loss class UnbiasedCrossEntropy(nn.Module): def __init__(self, old_cl=None, reduction='mean', ignore_index=255): super().__init__() self.reduction = reduction self.ignore_index = ignore_index self.old_cl = old_cl def forward(self, inputs, targets): old_cl = self.old_cl outputs = torch.zeros_like(inputs) # B, C (1+V+N), H, W den = torch.logsumexp(inputs, dim=1) # B, H, W den of softmax outputs[:, 0] = torch.logsumexp(inputs[:, 0:old_cl], dim=1) - den # B, H, W p(O) outputs[:, old_cl:] = inputs[:, old_cl:] - den.unsqueeze(dim=1) # B, N, H, W p(N_i) labels = targets.clone() # B, H, W labels[targets < old_cl] = 0 # just to be sure that all labels old belongs to zero loss = F.nll_loss(outputs, labels, ignore_index=self.ignore_index, reduction=self.reduction) return loss class UnbiasedFocalLoss(nn.Module): def __init__(self, old_cl=None, reduction="mean", ignore_index=255, alpha=1, gamma=2): super().__init__() self.reduction = reduction self.ignore_index = ignore_index self.old_cl = old_cl self.alpha = alpha self.gamma = gamma def forward(self, inputs, targets): old_cl = self.old_cl outputs = torch.zeros_like(inputs) # B, C (1+V+N), H, W den = torch.logsumexp(inputs, dim=1) # B, H, W den of softmax outputs[:, 0] = torch.logsumexp(inputs[:, 0:old_cl], dim=1) - den # B, H, W p(O) outputs[:, old_cl:] = inputs[:, old_cl:] - den.unsqueeze(dim=1) # B, N, H, W p(N_i) labels = targets.clone() # B, H, W labels[targets < old_cl] = 0 # just to be sure that all labels old belongs to zero ce = F.nll_loss(outputs, labels, ignore_index=self.ignore_index, reduction="none") pt = torch.exp(-ce) loss = self.alpha * (1-pt)**self.gamma * ce return loss class KnowledgeDistillationLoss(nn.Module): def __init__(self, reduction='mean', alpha=1.): super().__init__() self.reduction = reduction self.alpha = alpha def forward(self, inputs, targets, mask=None): inputs = inputs.narrow(1, 0, targets.shape[1]) outputs = torch.log_softmax(inputs, dim=1) labels = torch.softmax(targets * self.alpha, dim=1) loss = (outputs * labels).mean(dim=1) if mask is not None: loss = loss * mask.float() if self.reduction == 'mean': outputs = -torch.mean(loss) elif self.reduction == 'sum': outputs = -torch.sum(loss) else: outputs = -loss return outputs class UnbiasedKnowledgeDistillationLoss(nn.Module): def __init__(self, reduction='mean', alpha=1.): super().__init__() self.reduction = reduction self.alpha = alpha def forward(self, inputs, targets, mask=None): new_cl = inputs.shape[1] - targets.shape[1] targets = targets * self.alpha new_bkg_idx = torch.tensor([0] + [x for x in range(targets.shape[1], inputs.shape[1])]).to(inputs.device) den = torch.logsumexp(inputs, dim=1) # B, H, W outputs_no_bgk = inputs[:, 1:-new_cl] - den.unsqueeze(dim=1) # B, OLD_CL, H, W outputs_bkg = torch.logsumexp(torch.index_select(inputs, index=new_bkg_idx, dim=1), dim=1) - den # B, H, W labels = torch.softmax(targets, dim=1) # B, BKG + OLD_CL, H, W # make the average on the classes 1/n_cl \sum{c=1..n_cl} L_c loss = (labels[:, 0] * outputs_bkg + (labels[:, 1:] * outputs_no_bgk).sum(dim=1)) / targets.shape[1] if mask is not None: loss = loss * mask.float() if self.reduction == 'mean': outputs = -torch.mean(loss) elif self.reduction == 'sum': outputs = -torch.sum(loss) else: outputs = -loss return outputs
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.nn.functional.one_hot", "torch.log_softmax", "torch.softmax", "torch.logsumexp", "torch.sum", "torch.mean", "torch.nn.functional.cross_entropy", "torch.tensor", "torch.zeros_like", "torch.nn.functional.nll_loss", "torch.exp", "torch.nn.CrossEntropyLoss", "torch.where", "torch.index_select" ]
1.8.1
edornd/satellite-mib
a4423dc866ecfb77dc62548764917c048006dd8a
0.4
import os import sys import yaml import time import shutil import torch import random import argparse import datetime import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # import torchvision.models as models # import torchvision import matplotlib.pyplot as plt import matplotlib.cm as cm from mpl_toolkits.mplot3d import Axes3D from sklearn.manifold import TSNE from sklearn.decomposition import PCA from PIL import Image # from visdom import Visdom _path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'utils') sys.path.append(_path) from torch.utils import data from tqdm import tqdm from data import create_dataset from models import create_model from utils.utils import get_logger from augmentations import get_composed_augmentations from models.adaptation_model import CustomModel, CustomMetrics from optimizers import get_optimizer from schedulers import get_scheduler from metrics import runningScore, averageMeter from loss import get_loss_function from utils import sync_batchnorm from tensorboardX import SummaryWriter def test(cfg, writer, logger): torch.manual_seed(cfg.get('seed', 1337)) torch.cuda.manual_seed(cfg.get('seed', 1337)) np.random.seed(cfg.get('seed', 1337)) random.seed(cfg.get('seed', 1337)) ## create dataset default_gpu = cfg['model']['default_gpu'] device = torch.device("cuda:{}".format(default_gpu) if torch.cuda.is_available() else 'cpu') datasets = create_dataset(cfg, writer, logger) #source_train\ target_train\ source_valid\ target_valid + _loader model = CustomModel(cfg, writer, logger) running_metrics_val = runningScore(cfg['data']['target']['n_class']) source_running_metrics_val = runningScore(cfg['data']['target']['n_class']) val_loss_meter = averageMeter() source_val_loss_meter = averageMeter() time_meter = averageMeter() loss_fn = get_loss_function(cfg) path = cfg['test']['path'] checkpoint = torch.load(path) model.adaptive_load_nets(model.BaseNet, checkpoint['DeepLab']['model_state']) validation( model, logger, writer, datasets, device, running_metrics_val, val_loss_meter, loss_fn,\ source_val_loss_meter, source_running_metrics_val, iters = model.iter ) def validation(model, logger, writer, datasets, device, running_metrics_val, val_loss_meter, loss_fn,\ source_val_loss_meter, source_running_metrics_val, iters): iters = iters _k = -1 model.eval(logger=logger) torch.cuda.empty_cache() with torch.no_grad(): validate( datasets.target_valid_loader, device, model, running_metrics_val, val_loss_meter, loss_fn ) writer.add_scalar('loss/val_loss', val_loss_meter.avg, iters+1) logger.info("Iter %d Loss: %.4f" % (iters + 1, val_loss_meter.avg)) writer.add_scalar('loss/source_val_loss', source_val_loss_meter.avg, iters+1) logger.info("Iter %d Source Loss: %.4f" % (iters + 1, source_val_loss_meter.avg)) score, class_iou = running_metrics_val.get_scores() for k, v in score.items(): print(k, v) logger.info('{}: {}'.format(k, v)) writer.add_scalar('val_metrics/{}'.format(k), v, iters+1) for k, v in class_iou.items(): logger.info('{}: {}'.format(k, v)) writer.add_scalar('val_metrics/cls_{}'.format(k), v, iters+1) val_loss_meter.reset() running_metrics_val.reset() source_val_loss_meter.reset() source_running_metrics_val.reset() torch.cuda.empty_cache() return score["Mean IoU : \t"] def validate(valid_loader, device, model, running_metrics_val, val_loss_meter, loss_fn): for (images_val, labels_val, filename) in tqdm(valid_loader): images_val = images_val.to(device) labels_val = labels_val.to(device) _, _, feat_cls, outs = model.forward(images_val) outputs = F.interpolate(outs, size=images_val.size()[2:], mode='bilinear', align_corners=True) val_loss = loss_fn(input=outputs, target=labels_val) pred = outputs.data.max(1)[1].cpu().numpy() gt = labels_val.data.cpu().numpy() running_metrics_val.update(gt, pred) val_loss_meter.update(val_loss.item()) if __name__ == "__main__": parser = argparse.ArgumentParser(description="config") parser.add_argument( "--config", nargs="?", type=str, # default="configs/pspnet_cityscapes.yml", # default="configs/pspnet_gta5.yml", default='configs/test_from_gta_to_city.yml', help="Configuration file to use" ) args = parser.parse_args() with open(args.config) as fp: cfg = yaml.load(fp) run_id = random.randint(1, 100000) # path = cfg['training']['save_path'] logdir = os.path.join('runs', os.path.basename(args.config)[:-4], str(run_id)) writer = SummaryWriter(log_dir=logdir) print('RUNDIR: {}'.format(logdir)) shutil.copy(args.config, logdir) logger = get_logger(logdir) logger.info('Let the games begin') # train(cfg, writer, logger) test(cfg, writer, logger)
[ "torch.cuda.empty_cache", "torch.cuda.is_available", "torch.no_grad", "torch.load" ]
0.4.1
RogerZhangzz/CAG_UDA
422f99e2e0a5cb26a40d4f17ee5832f81580f7f0
0.4
import os import abc import sys from copy import deepcopy from functools import reduce import numpy as np import torch from torchvision import utils as vutils from tqdm.autonotebook import tqdm from autokeras.constant import Constant from autokeras.utils import get_device class ModelTrainerBase(abc.ABC): def __init__(self, loss_function, train_data, test_data=None, metric=None, verbose=False): self.device = get_device() self.metric = metric self.verbose = verbose self.loss_function = loss_function self.train_loader = train_data self.test_loader = test_data @abc.abstractmethod def train_model(self, max_iter_num=Constant.MAX_ITER_NUM, max_no_improvement_num=Constant.MAX_NO_IMPROVEMENT_NUM): pass class ModelTrainer(ModelTrainerBase): """A class that is used to train the model. This class can train a Pytorch model with the given data loaders. The metric, loss_function, and model must be compatible with each other. Please see the details in the Attributes. Attributes: device: A string. Indicating the device to use. 'cuda' or 'cpu'. model: An instance of Pytorch Module. The model that will be trained. train_loader: Training data wrapped in batches in Pytorch Dataloader. test_loader: Testing data wrapped in batches in Pytorch Dataloader. loss_function: A function with two parameters (prediction, target). There is no specific requirement for the types of the parameters, as long as they are compatible with the model and the data loaders. The prediction should be the output of the model for a batch. The target should be a batch of targets packed in the data loaders. optimizer: The optimizer is chosen to use the Pytorch Adam optimizer. early_stop: An instance of class EarlyStop. metric: It should be a subclass of class autokeras.metric.Metric. In the compute(prediction, target) function, prediction and targets are all numpy arrays converted from the output of the model and the targets packed in the data loaders. verbose: Verbosity mode. """ def __init__(self, model, path, **kwargs): """Init the ModelTrainer with `model`, `x_train`, `y_train`, `x_test`, `y_test`, `verbose`""" super().__init__(**kwargs) self.model = model self.model.to(self.device) self.optimizer = None self.early_stop = None self.current_epoch = 0 self.current_metric_value = 0 self.temp_model_path = os.path.join(path, 'temp_model') def train_model(self, max_iter_num=None, max_no_improvement_num=None): """Train the model. Args: max_iter_num: An integer. The maximum number of epochs to train the model. The training will stop when this number is reached. max_no_improvement_num: An integer. The maximum number of epochs when the loss value doesn't decrease. The training will stop when this number is reached. """ if max_iter_num is None: max_iter_num = Constant.MAX_ITER_NUM if max_no_improvement_num is None: max_no_improvement_num = Constant.MAX_NO_IMPROVEMENT_NUM self.early_stop = EarlyStop(max_no_improvement_num) self.early_stop.on_train_begin() test_metric_value_list = [] test_loss_list = [] self.optimizer = torch.optim.Adam(self.model.parameters()) for epoch in range(max_iter_num): self._train() test_loss, metric_value = self._test() self.current_metric_value = metric_value test_metric_value_list.append(metric_value) test_loss_list.append(test_loss) decreasing = self.early_stop.on_epoch_end(test_loss) if self.early_stop.no_improvement_count == 0: self._save_model() if not decreasing: if self.verbose: print('\nNo loss decrease after {} epochs.\n'.format(max_no_improvement_num)) self._load_model() break last_num = min(max_no_improvement_num, max_iter_num) return (sum(test_loss_list[-last_num:]) / last_num, sum(test_metric_value_list[-last_num:]) / last_num) def _train(self): self.model.train() loader = self.train_loader self.current_epoch += 1 if self.verbose: progress_bar = tqdm(total=len(loader), desc='Epoch-' + str(self.current_epoch) + ', Current Metric - ' + str(self.current_metric_value), file=sys.stdout, leave=False, ncols=100, position=0, unit=' batch') else: progress_bar = None for batch_idx, (inputs, targets) in enumerate(deepcopy(loader)): inputs, targets = inputs.to(self.device), targets.to(self.device) self.optimizer.zero_grad() outputs = self.model(inputs) loss = self.loss_function(outputs, targets) loss.backward() self.optimizer.step() if self.verbose: if batch_idx % 10 == 0: progress_bar.update(10) if self.verbose: progress_bar.close() def _test(self): self.model.eval() test_loss = 0 all_targets = [] all_predicted = [] loader = self.test_loader with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(deepcopy(loader)): inputs, targets = inputs.to(self.device), targets.to(self.device) outputs = self.model(inputs) # cast tensor to float test_loss += float(self.loss_function(outputs, targets)) all_predicted.append(outputs.cpu().numpy()) all_targets.append(targets.cpu().numpy()) all_predicted = reduce(lambda x, y: np.concatenate((x, y)), all_predicted) all_targets = reduce(lambda x, y: np.concatenate((x, y)), all_targets) return test_loss, self.metric.compute(all_predicted, all_targets) def _save_model(self): torch.save(self.model.state_dict(), self.temp_model_path) def _load_model(self): self.model.load_state_dict(torch.load(self.temp_model_path)) class GANModelTrainer(ModelTrainerBase): def __init__(self, g_model, d_model, train_data, loss_function, verbose, gen_training_result=None): """Init the ModelTrainer with `model`, `x_train`, `y_train`, `x_test`, `y_test`, `verbose`""" super().__init__(loss_function, train_data, verbose=verbose) self.d_model = d_model self.g_model = g_model self.d_model.to(self.device) self.g_model.to(self.device) self.outf = None self.out_size = 0 if gen_training_result is not None: self.outf, self.out_size = gen_training_result self.sample_noise = torch.randn(self.out_size, self.g_model.nz, 1, 1, device=self.device) self.optimizer_d = None self.optimizer_g = None def train_model(self, max_iter_num=Constant.MAX_ITER_NUM, max_no_improvement_num=Constant.MAX_NO_IMPROVEMENT_NUM): self.optimizer_d = torch.optim.Adam(self.d_model.parameters()) self.optimizer_g = torch.optim.Adam(self.g_model.parameters()) if self.verbose: progress_bar = tqdm(total=max_iter_num, desc=' Model ', file=sys.stdout, ncols=75, position=1, unit=' epoch') else: progress_bar = None for epoch in range(max_iter_num): self._train(epoch) if self.verbose: progress_bar.update(1) if self.verbose: progress_bar.close() def _train(self, epoch): # put model into train mode self.d_model.train() # TODO: why? cp_loader = deepcopy(self.train_loader) if self.verbose: progress_bar = tqdm(total=len(cp_loader), desc='Current Epoch', file=sys.stdout, leave=False, ncols=75, position=0, unit=' Batch') else: progress_bar = None real_label = 1 fake_label = 0 for batch_idx, inputs in enumerate(cp_loader): # Update Discriminator network maximize log(D(x)) + log(1 - D(G(z))) # train with real self.optimizer_d.zero_grad() inputs = inputs.to(self.device) batch_size = inputs.size(0) outputs = self.d_model(inputs) label = torch.full((batch_size,), real_label, device=self.device) loss_d_real = self.loss_function(outputs, label) loss_d_real.backward() # train with fake noise = torch.randn((batch_size, self.g_model.nz, 1, 1,), device=self.device) fake_outputs = self.g_model(noise) label.fill_(fake_label) outputs = self.d_model(fake_outputs.detach()) loss_g_fake = self.loss_function(outputs, label) loss_g_fake.backward() self.optimizer_d.step() # (2) Update G network: maximize log(D(G(z))) self.g_model.zero_grad() label.fill_(real_label) outputs = self.d_model(fake_outputs) loss_g = self.loss_function(outputs, label) loss_g.backward() self.optimizer_g.step() if self.verbose: if batch_idx % 10 == 0: progress_bar.update(10) if self.outf is not None and batch_idx % 100 == 0: fake = self.g_model(self.sample_noise) vutils.save_image( fake.detach(), '%s/fake_samples_epoch_%03d.png' % (self.outf, epoch), normalize=True) if self.verbose: progress_bar.close() class EarlyStop: def __init__(self, max_no_improvement_num=Constant.MAX_NO_IMPROVEMENT_NUM, min_loss_dec=Constant.MIN_LOSS_DEC): super().__init__() self.training_losses = [] self.minimum_loss = None self.no_improvement_count = 0 self._max_no_improvement_num = max_no_improvement_num self._done = False self._min_loss_dec = min_loss_dec def on_train_begin(self): self.training_losses = [] self.no_improvement_count = 0 self._done = False self.minimum_loss = float('inf') def on_epoch_end(self, loss): self.training_losses.append(loss) if self._done and loss > (self.minimum_loss - self._min_loss_dec): return False if loss > (self.minimum_loss - self._min_loss_dec): self.no_improvement_count += 1 else: self.no_improvement_count = 0 self.minimum_loss = loss if self.no_improvement_count > self._max_no_improvement_num: self._done = True return True
[ "torch.no_grad", "torch.full", "torch.load", "torch.randn" ]
0.4.1
wpsliu123/AUTOKERAS
172fb3cf705126e4c3d86b41292463e30ecf3c15
1.6
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn class MLPRepresentation(nn.Module): """ Deep Q network. Choose multi-layer full connection with dropout as the basic network architecture. """ def __init__(self, name: str, input_dim: int, hidden_dims: [int], output_dim: int, dropout_p: float): """ Init deep Q network. Args: name (str): Network name. input_dim (int): Network input dimension. hidden_dims ([int]): Network hiddenlayer dimension. The length of `hidden_dims` means the hidden layer number, which requires larger than 1. output_dim (int): Network output dimension. dropout_p (float): Dropout parameter. """ super().__init__() self._name = name self._dropout_p = dropout_p self._input_dim = input_dim self._hidden_dims = hidden_dims if hidden_dims is not None else [] self._output_dim = output_dim self._layers = self._build_layers([input_dim] + self._hidden_dims) if len(self._hidden_dims) == 0: self._head = nn.Linear(self._input_dim, self._output_dim) else: self._head = nn.Linear(hidden_dims[-1], self._output_dim) self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self._net = nn.Sequential(*self._layers, self._head).to(self._device) def forward(self, x): return self._net(x.to(self._device)).double() @property def input_dim(self): return self._input_dim @property def name(self): return self._name @property def output_dim(self): return self._output_dim def _build_basic_layer(self, input_dim, output_dim): """ Build basic layer. BN -> Linear -> LeakyReLU -> Dropout """ return nn.Sequential(nn.Linear(input_dim, output_dim), nn.LeakyReLU(), nn.Dropout(p=self._dropout_p)) def _build_layers(self, layer_dims: []): """ Build multi basic layer. BasicLayer1 -> BasicLayer2 -> ... """ layers = [] for input_dim, output_dim in zip(layer_dims, layer_dims[1:]): layers.append(self._build_basic_layer(input_dim, output_dim)) return layers
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.Sequential", "torch.nn.LeakyReLU", "torch.cuda.is_available" ]
1.6.0
zhawan/maro
d8c98deea4296cdcb90efd1fb59bc571cec3a2ef
1.4
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import logging import math import os import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from torch.nn.functional import gelu from transformers.configuration_gpt2 import GPT2Config from transformers.file_utils import add_start_docstrings from transformers.modeling_utils import Conv1D, PreTrainedModel, SequenceSummary, prune_conv1d_layer logger = logging.getLogger(__name__) GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = { "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin", "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin", "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin", "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-pytorch_model.bin", "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-pytorch_model.bin", } def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """ Load tf checkpoints in a pytorch model """ try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False): super().__init__() self.output_attentions = config.output_attentions n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.n_head, self.split_size // self.n_head) heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) nd, ns = w.size(-2), w.size(-1) b = self.bias[:, :, ns - nd : ns, :ns] w = w * b - 1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking attn_outputs = self._attn(query, key, value, attention_mask, head_mask) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a, present] + attn_outputs[1:] return outputs # a, present, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = gelu self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super().__init__() nx = config.n_embd self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.attn = Attention(nx, n_ctx, config, scale) self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): output_attn = self.attn( self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask ) a = output_attn[0] # output_attn: a, present, (attentions) x = x + a m = self.mlp(self.ln_2(x)) x = x + m outputs = [x] + output_attn[1:] return outputs # x, present, (attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in `Language Models are Unsupervised Multitask Learners`_ by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~40 GB of text data. This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. .. _`Language Models are Unsupervised Multitask Learners`: https://openai.com/blog/better-language-models/ .. _`torch.nn.Module`: https://pytorch.org/docs/stable/nn.html#module Parameters: config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using :class:`transformers.GPT2Tokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **past**: list of ``torch.FloatTensor`` (one for each layer): that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``: Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. """ @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the last layer of the model. **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super().__init__(config) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.output_past = config.output_past self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.init_weights() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: attention_mask = attention_mask.view(-1, input_shape[-1]) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.n_layer if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () all_attentions = [] all_hidden_states = () for i, (block, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i] ) hidden_states, present = outputs[:2] if self.output_past: presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_past: outputs = outputs + (presents,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, (presents), (all hidden_states), (attentions) @add_start_docstrings( """The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, logits = outputs[:2] """ def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.init_weights() def get_output_embeddings(self): return self.lm_head def prepare_inputs_for_generation(self, input_ids, **kwargs): # only last token for inputs_ids if past is defined in kwargs if "past" in kwargs and kwargs["past"]: input_ids = input_ids[:, -1].unsqueeze(-1) inputs = {"input_ids": input_ids} inputs.update(kwargs) return inputs def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): transformer_outputs = self.transformer( input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = (lm_logits,) + transformer_outputs[1:] if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() # print('shift_logits {}'.format(shift_logits)) shift_labels = labels[..., 1:].contiguous() # print('shift_labels {}'.format(shift_labels)) # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) @add_start_docstrings( """The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING, ) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): r""" **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``: Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Multiple choice classification loss. **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTe로nsor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2DoubleHeadsModel.from_pretrained('gpt2') # Add a [CLS] to the vocabulary (we should train it also!) tokenizer.add_special_tokens({'cls_token': '[CLS]'}) model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] encoded_choices = [tokenizer.encode(s) for s in choices] cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 outputs = model(input_ids, mc_token_ids=mc_token_ids) lm_prediction_scores, mc_prediction_scores = outputs[:2] """ def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) #(n_embd, vocab_size) self.multiple_choice_head = SequenceSummary(config) self.init_weights() def get_output_embeddings(self): return self.lm_head def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, lm_labels=None, mc_labels=None, ): transformer_outputs = self.transformer( input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) # Language Model Head mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) # Multiple Classification Head outputs = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) outputs = (loss,) + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.nn.LayerNorm", "torch.nn.Softmax", "torch.arange", "torch.nn.CrossEntropyLoss", "torch.ones", "torch.from_numpy", "torch.matmul", "torch.nn.Embedding" ]
1.4.0
kimhyoil/KoGPT2_Ai_Eassay
da7d160f6815dc8ec3dfd635495978409c2a897c
1.2
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Utilities file This file contains utility functions for bookkeeping, logging, and data loading. Methods which directly affect training should either go in layers, the model, or train_fns.py. ''' from __future__ import print_function import sys import os import numpy as np import time import datetime import json import pickle from argparse import ArgumentParser import animal_hash import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import datasets as dset def prepare_parser(): usage = 'Parser for all scripts.' parser = ArgumentParser(description=usage) ### Dataset/Dataloader stuff ### parser.add_argument( '--dataset', type=str, default='I128_hdf5', help='Which Dataset to train on, out of I128, I256, C10, C100;' 'Append "_hdf5" to use the hdf5 version for ISLVRC ' '(default: %(default)s)') parser.add_argument( '--augment', action='store_true', default=False, help='Augment with random crops and flips (default: %(default)s)') parser.add_argument( '--num_workers', type=int, default=8, help='Number of dataloader workers; consider using less for HDF5 ' '(default: %(default)s)') parser.add_argument( '--no_pin_memory', action='store_false', dest='pin_memory', default=True, help='Pin data into memory through dataloader? (default: %(default)s)') parser.add_argument( '--shuffle', action='store_true', default=True,#TODOFalse, help='Shuffle the data (strongly recommended)? (default: %(default)s)') parser.add_argument( '--load_in_mem', action='store_true', default=False, help='Load all data into memory? (default: %(default)s)') parser.add_argument( '--use_multiepoch_sampler', action='store_true', default=True,#TODOFalse, help='Use the multi-epoch sampler for dataloader? (default: %(default)s)') ### Model stuff ### parser.add_argument( '--model', type=str, default='BigGAN', help='Name of the model module (default: %(default)s)') parser.add_argument( '--G_param', type=str, default='SN', help='Parameterization style to use for G, spectral norm (SN) or SVD (SVD)' ' or None (default: %(default)s)') parser.add_argument( '--D_param', type=str, default='SN', help='Parameterization style to use for D, spectral norm (SN) or SVD (SVD)' ' or None (default: %(default)s)') parser.add_argument( '--G_ch', type=int, default=96, #TODO 64, help='Channel multiplier for G (default: %(default)s)') parser.add_argument( '--D_ch', type=int, default=96, #TODO64, help='Channel multiplier for D (default: %(default)s)') parser.add_argument( '--G_depth', type=int, default=1, help='Number of resblocks per stage in G? (default: %(default)s)') parser.add_argument( '--D_depth', type=int, default=1, help='Number of resblocks per stage in D? (default: %(default)s)') parser.add_argument( '--D_thin', action='store_false', dest='D_wide', default=True, help='Use the SN-GAN channel pattern for D? (default: %(default)s)') parser.add_argument( '--G_shared', action='store_true', default=True,#TODOFalse, help='Use shared embeddings in G? (default: %(default)s)') parser.add_argument( '--shared_dim', type=int, default=128,#TODO0, help='G''s shared embedding dimensionality; if 0, will be equal to dim_z. ' '(default: %(default)s)') parser.add_argument( '--dim_z', type=int, default=120,#TODO128, help='Noise dimensionality: %(default)s)') parser.add_argument( '--z_var', type=float, default=1.0, help='Noise variance: %(default)s)') parser.add_argument( '--hier', action='store_true', default=True,#TODOFalse, help='Use hierarchical z in G? (default: %(default)s)') parser.add_argument( '--cross_replica', action='store_true', default=False, help='Cross_replica batchnorm in G?(default: %(default)s)') parser.add_argument( '--mybn', action='store_true', default=False, help='Use my batchnorm (which supports standing stats?) %(default)s)') parser.add_argument( '--G_nl', type=str, default='inplace_relu',#TODO'relu', help='Activation function for G (default: %(default)s)') parser.add_argument( '--D_nl', type=str, default='inplace_relu',#TODO'relu', help='Activation function for D (default: %(default)s)') parser.add_argument( '--G_attn', type=str, default='64', help='What resolutions to use attention on for G (underscore separated) ' '(default: %(default)s)') parser.add_argument( '--D_attn', type=str, default='64', help='What resolutions to use attention on for D (underscore separated) ' '(default: %(default)s)') parser.add_argument( '--norm_style', type=str, default='bn', help='Normalizer style for G, one of bn [batchnorm], in [instancenorm], ' 'ln [layernorm], gn [groupnorm] (default: %(default)s)') ### Model init stuff ### parser.add_argument( '--seed', type=int, default=0, help='Random seed to use; affects both initialization and ' ' dataloading. (default: %(default)s)') parser.add_argument( '--G_init', type=str, default='ortho', help='Init style to use for G (default: %(default)s)') parser.add_argument( '--D_init', type=str, default='ortho', help='Init style to use for D(default: %(default)s)') parser.add_argument( '--skip_init', action='store_true', default=True,#TODOFalse, help='Skip initialization, ideal for testing when ortho init was used ' '(default: %(default)s)') ### Optimizer stuff ### parser.add_argument( '--G_lr', type=float, default=1e-4,#TODO5e-5, help='Learning rate to use for Generator (default: %(default)s)') parser.add_argument( '--D_lr', type=float, default=4e-4,#TODO2e-4, help='Learning rate to use for Discriminator (default: %(default)s)') parser.add_argument( '--G_B1', type=float, default=0.0, help='Beta1 to use for Generator (default: %(default)s)') parser.add_argument( '--D_B1', type=float, default=0.0, help='Beta1 to use for Discriminator (default: %(default)s)') parser.add_argument( '--G_B2', type=float, default=0.999, help='Beta2 to use for Generator (default: %(default)s)') parser.add_argument( '--D_B2', type=float, default=0.999, help='Beta2 to use for Discriminator (default: %(default)s)') ### Batch size, parallel, and precision stuff ### parser.add_argument( '--batch_size', type=int, default=256,#TODO64, help='Default overall batchsize (default: %(default)s)') parser.add_argument( '--G_batch_size', type=int, default=512,#TODO0, help='Batch size to use for G; if 0, same as D (default: %(default)s)') parser.add_argument( '--num_G_accumulations', type=int, default=8,#TODO1, help='Number of passes to accumulate G''s gradients over ' '(default: %(default)s)') parser.add_argument( '--num_D_steps', type=int, default=1,#TODO2, help='Number of D steps per G step (default: %(default)s)') parser.add_argument( '--num_D_accumulations', type=int, default=8,#TODO1, help='Number of passes to accumulate D''s gradients over ' '(default: %(default)s)') parser.add_argument( '--split_D', action='store_true', default=False, help='Run D twice rather than concatenating inputs? (default: %(default)s)') parser.add_argument( '--num_epochs', type=int, default=100, help='Number of epochs to train for (default: %(default)s)') parser.add_argument( '--parallel', action='store_true', default=True, #TODOFalse, help='Train with multiple GPUs (default: %(default)s)') parser.add_argument( '--G_fp16', action='store_true', default=False, help='Train with half-precision in G? (default: %(default)s)') parser.add_argument( '--D_fp16', action='store_true', default=False, help='Train with half-precision in D? (default: %(default)s)') parser.add_argument( '--D_mixed_precision', action='store_true', default=False, help='Train with half-precision activations but fp32 params in D? ' '(default: %(default)s)') parser.add_argument( '--G_mixed_precision', action='store_true', default=False, help='Train with half-precision activations but fp32 params in G? ' '(default: %(default)s)') parser.add_argument( '--accumulate_stats', action='store_true', default=False, help='Accumulate "standing" batchnorm stats? (default: %(default)s)') parser.add_argument( '--num_standing_accumulations', type=int, default=16, help='Number of forward passes to use in accumulating standing stats? ' '(default: %(default)s)') ### Bookkeping stuff ### parser.add_argument( '--G_eval_mode', action='store_true', default=True,#TODOFalse, help='Run G in eval mode (running/standing stats?) at sample/test time? ' '(default: %(default)s)') parser.add_argument( '--save_every', type=int, default=1000,#TODO2000, help='Save every X iterations (default: %(default)s)') parser.add_argument( '--num_save_copies', type=int, default=2, help='How many copies to save (default: %(default)s)') parser.add_argument( '--num_best_copies', type=int, default=5,#TODO2, help='How many previous best checkpoints to save (default: %(default)s)') parser.add_argument( '--which_best', type=str, default='IS', help='Which metric to use to determine when to save new "best"' 'checkpoints, one of IS or FID (default: %(default)s)') parser.add_argument( '--no_fid', action='store_true', default=False, help='Calculate IS only, not FID? (default: %(default)s)') parser.add_argument( '--test_every', type=int, default=2000,#TODO5000, help='Test every X iterations (default: %(default)s)') parser.add_argument( '--num_inception_images', type=int, default=50000, help='Number of samples to compute inception metrics with ' '(default: %(default)s)') parser.add_argument( '--hashname', action='store_true', default=False, help='Use a hash of the experiment name instead of the full config ' '(default: %(default)s)') parser.add_argument( '--base_root', type=str, default='', help='Default location to store all weights, samples, data, and logs ' ' (default: %(default)s)') parser.add_argument( '--data_root', type=str, default='data', help='Default location where data is stored (default: %(default)s)') parser.add_argument( '--weights_root', type=str, default='weights', help='Default location to store weights (default: %(default)s)') parser.add_argument( '--logs_root', type=str, default='logs', help='Default location to store logs (default: %(default)s)') parser.add_argument( '--samples_root', type=str, default='samples', help='Default location to store samples (default: %(default)s)') parser.add_argument( '--pbar', type=str, default='mine', help='Type of progressbar to use; one of "mine" or "tqdm" ' '(default: %(default)s)') parser.add_argument( '--name_suffix', type=str, default='', help='Suffix for experiment name for loading weights for sampling ' '(consider "best0") (default: %(default)s)') parser.add_argument( '--experiment_name', type=str, default='', help='Optionally override the automatic experiment naming with this arg. ' '(default: %(default)s)') parser.add_argument( '--config_from_name', action='store_true', default=False, help='Use a hash of the experiment name instead of the full config ' '(default: %(default)s)') ### EMA Stuff ### parser.add_argument( '--ema', action='store_true', default=True,#TODOFalse, help='Keep an ema of G''s weights? (default: %(default)s)') parser.add_argument( '--ema_decay', type=float, default=0.9999, help='EMA decay rate (default: %(default)s)') parser.add_argument( '--use_ema', action='store_true', default=True,#TODOFalse, help='Use the EMA parameters of G for evaluation? (default: %(default)s)') parser.add_argument( '--ema_start', type=int, default=20000,#TODO0, help='When to start updating the EMA weights (default: %(default)s)') ### Numerical precision and SV stuff ### parser.add_argument( '--adam_eps', type=float, default=1e-6,#TODO1e-8, help='epsilon value to use for Adam (default: %(default)s)') parser.add_argument( '--BN_eps', type=float, default=1e-5, help='epsilon value to use for BatchNorm (default: %(default)s)') parser.add_argument( '--SN_eps', type=float, default=1e-6,#TODO1e-8, help='epsilon value to use for Spectral Norm(default: %(default)s)') parser.add_argument( '--num_G_SVs', type=int, default=1, help='Number of SVs to track in G (default: %(default)s)') parser.add_argument( '--num_D_SVs', type=int, default=1, help='Number of SVs to track in D (default: %(default)s)') parser.add_argument( '--num_G_SV_itrs', type=int, default=1, help='Number of SV itrs in G (default: %(default)s)') parser.add_argument( '--num_D_SV_itrs', type=int, default=1, help='Number of SV itrs in D (default: %(default)s)') ### Ortho reg stuff ### parser.add_argument( '--G_ortho', type=float, default=0.0, # 1e-4 is default for BigGAN help='Modified ortho reg coefficient in G(default: %(default)s)') parser.add_argument( '--D_ortho', type=float, default=0.0, help='Modified ortho reg coefficient in D (default: %(default)s)') parser.add_argument( '--toggle_grads', action='store_true', default=True, help='Toggle D and G''s "requires_grad" settings when not training them? ' ' (default: %(default)s)') ### Which train function ### parser.add_argument( '--which_train_fn', type=str, default='GAN', help='How2trainyourbois (default: %(default)s)') ### Resume training stuff parser.add_argument( '--load_weights', type=str, default='', help='Suffix for which weights to load (e.g. best0, copy0) ' '(default: %(default)s)') parser.add_argument( '--resume', action='store_true', default=False, help='Resume training? (default: %(default)s)') ### Log stuff ### parser.add_argument( '--logstyle', type=str, default='%3.3e', help='What style to use when logging training metrics?' 'One of: %#.#f/ %#.#e (float/exp, text),' 'pickle (python pickle),' 'npz (numpy zip),' 'mat (MATLAB .mat file) (default: %(default)s)') parser.add_argument( '--log_G_spectra', action='store_true', default=False, help='Log the top 3 singular values in each SN layer in G? ' '(default: %(default)s)') parser.add_argument( '--log_D_spectra', action='store_true', default=False, help='Log the top 3 singular values in each SN layer in D? ' '(default: %(default)s)') parser.add_argument( '--sv_log_interval', type=int, default=10, help='Iteration interval for logging singular values ' ' (default: %(default)s)') return parser # Arguments for sample.py; not presently used in train.py def add_sample_parser(parser): parser.add_argument( '--sample_npz', action='store_true', default=True,#TODOFalse, help='Sample "sample_num_npz" images and save to npz? ' '(default: %(default)s)') parser.add_argument( '--sample_num_npz', type=int, default=50000, help='Number of images to sample when sampling NPZs ' '(default: %(default)s)') parser.add_argument( '--sample_sheets', action='store_true', default=True,#TODOFalse, help='Produce class-conditional sample sheets and stick them in ' 'the samples root? (default: %(default)s)') parser.add_argument( '--sample_interps', action='store_true', default=True,#TODOFalse, help='Produce interpolation sheets and stick them in ' 'the samples root? (default: %(default)s)') parser.add_argument( '--sample_sheet_folder_num', type=int, default=-1, help='Number to use for the folder for these sample sheets ' '(default: %(default)s)') parser.add_argument( '--sample_random', action='store_true', default=True,#TODOFalse, help='Produce a single random sheet? (default: %(default)s)') parser.add_argument( '--sample_trunc_curves', type=str, default='0.05_0.05_1.0',#TODO'', help='Get inception metrics with a range of variances?' 'To use this, specify a startpoint, step, and endpoint, e.g. ' '--sample_trunc_curves 0.2_0.1_1.0 for a startpoint of 0.2, ' 'endpoint of 1.0, and stepsize of 1.0. Note that this is ' 'not exactly identical to using tf.truncated_normal, but should ' 'have approximately the same effect. (default: %(default)s)') parser.add_argument( '--sample_inception_metrics', action='store_true', default=True,#TODOFalse, help='Calculate Inception metrics with sample.py? (default: %(default)s)') return parser def make_sure_dir(file_or_path, str_type='dir'): if str_type == 'file': file_or_path = os.path.dirname(os.path.abspath(file_or_path)) if not os.path.exists(file_or_path): os.makedirs(file_or_path) def save_config_to_json(config, filename): ''' Save the dictyionary config to a json file in the fiven path Args: config: dict, to be saved filename: str, the path to save ''' assert filename.endswith('.json'), 'the filename for the saving of config should be end with .josn' make_sure_dir(filename, str_type='file') config_ = {} for k in config: if isinstance(config[k], (str, list, int, float, bool)): config_[k] = config[k] else: config_[k] = str(config[k]) with open(filename, 'w') as f: # f.write(json.dumps(config_)) json.dump(config_, f, indent=4) print('Config file saved to {}'.format(filename)) # Convenience dicts dset_dict = {'I32': dset.ImageFolder, 'I64': dset.ImageFolder, 'I128': dset.ImageFolder, 'I256': dset.ImageFolder, 'I32_hdf5': dset.ILSVRC_HDF5, 'I64_hdf5': dset.ILSVRC_HDF5, 'I128_hdf5': dset.ILSVRC_HDF5, 'I256_hdf5': dset.ILSVRC_HDF5, 'C10': dset.CIFAR10, 'C100': dset.CIFAR100} imsize_dict = {'I32': 32, 'I32_hdf5': 32, 'I64': 64, 'I64_hdf5': 64, 'I128': 128, 'I128_hdf5': 128, 'I256': 256, 'I256_hdf5': 256, 'C10': 32, 'C100': 32} root_dict = {'I32': 'ImageNet', 'I32_hdf5': 'ILSVRC32.hdf5', 'I64': 'ImageNet', 'I64_hdf5': 'ILSVRC64.hdf5', 'I128': 'ImageNet', 'I128_hdf5': 'ILSVRC128.hdf5', 'I256': 'ImageNet', 'I256_hdf5': 'ILSVRC256.hdf5', 'C10': 'cifar', 'C100': 'cifar'} nclass_dict = {'I32': 1000, 'I32_hdf5': 1000, 'I64': 1000, 'I64_hdf5': 1000, 'I128': 1000, 'I128_hdf5': 1000, 'I256': 1000, 'I256_hdf5': 1000, 'C10': 10, 'C100': 100} # Number of classes to put per sample sheet classes_per_sheet_dict = {'I32': 50, 'I32_hdf5': 50, 'I64': 50, 'I64_hdf5': 50, 'I128': 20, 'I128_hdf5': 20, 'I256': 20, 'I256_hdf5': 20, 'C10': 10, 'C100': 100} activation_dict = {'inplace_relu': nn.ReLU(inplace=True), 'relu': nn.ReLU(inplace=False), 'ir': nn.ReLU(inplace=True),} class CenterCropLongEdge(object): """Crops the given PIL Image on the long edge. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ return transforms.functional.center_crop(img, min(img.size)) def __repr__(self): return self.__class__.__name__ class RandomCropLongEdge(object): """Crops the given PIL Image on the long edge with a random start point. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ size = (min(img.size), min(img.size)) # Only step forward along this edge if it's the long edge i = (0 if size[0] == img.size[0] else np.random.randint(low=0,high=img.size[0] - size[0])) j = (0 if size[1] == img.size[1] else np.random.randint(low=0,high=img.size[1] - size[1])) return transforms.functional.crop(img, i, j, size[0], size[1]) def __repr__(self): return self.__class__.__name__ # multi-epoch Dataset sampler to avoid memory leakage and enable resumption of # training from the same sample regardless of if we stop mid-epoch class MultiEpochSampler(torch.utils.data.Sampler): r"""Samples elements randomly over multiple epochs Arguments: data_source (Dataset): dataset to sample from num_epochs (int) : Number of times to loop over the dataset start_itr (int) : which iteration to begin from """ def __init__(self, data_source, num_epochs, start_itr=0, batch_size=128): self.data_source = data_source self.num_samples = len(self.data_source) self.num_epochs = num_epochs self.start_itr = start_itr self.batch_size = batch_size if not isinstance(self.num_samples, int) or self.num_samples <= 0: raise ValueError("num_samples should be a positive integeral " "value, but got num_samples={}".format(self.num_samples)) def __iter__(self): n = len(self.data_source) # Determine number of epochs num_epochs = int(np.ceil((n * self.num_epochs - (self.start_itr * self.batch_size)) / float(n))) # Sample all the indices, and then grab the last num_epochs index sets; # This ensures if we're starting at epoch 4, we're still grabbing epoch 4's # indices out = [torch.randperm(n) for epoch in range(self.num_epochs)][-num_epochs:] # Ignore the first start_itr % n indices of the first epoch out[0] = out[0][(self.start_itr * self.batch_size % n):] # if self.replacement: # return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64).tolist()) # return iter(.tolist()) output = torch.cat(out).tolist() print('Length dataset output is %d' % len(output)) return iter(output) def __len__(self): return len(self.data_source) * self.num_epochs - self.start_itr * self.batch_size # Convenience function to centralize all data loaders def get_data_loaders(dataset, data_root=None, augment=False, batch_size=64, num_workers=8, shuffle=True, load_in_mem=False, hdf5=False, pin_memory=True, drop_last=True, start_itr=0, num_epochs=500, use_multiepoch_sampler=False, **kwargs): # Append /FILENAME.hdf5 to root if using hdf5 data_root += '/%s' % root_dict[dataset] print('Using dataset root location %s' % data_root) which_dataset = dset_dict[dataset] norm_mean = [0.5,0.5,0.5] norm_std = [0.5,0.5,0.5] image_size = imsize_dict[dataset] # For image folder datasets, name of the file where we store the precomputed # image locations to avoid having to walk the dirs every time we load. dataset_kwargs = {'index_filename': '%s_imgs.npz' % dataset} # HDF5 datasets have their own inbuilt transform, no need to train_transform if 'hdf5' in dataset: train_transform = None else: if augment: print('Data will be augmented...') if dataset in ['C10', 'C100']: train_transform = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()] else: train_transform = [RandomCropLongEdge(), transforms.Resize(image_size), transforms.RandomHorizontalFlip()] else: print('Data will not be augmented...') if dataset in ['C10', 'C100']: train_transform = [] else: train_transform = [CenterCropLongEdge(), transforms.Resize(image_size)] # train_transform = [transforms.Resize(image_size), transforms.CenterCrop] train_transform = transforms.Compose(train_transform + [ transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std)]) train_set = which_dataset(root=data_root, transform=train_transform, load_in_mem=load_in_mem, **dataset_kwargs) # Prepare loader; the loaders list is for forward compatibility with # using validation / test splits. loaders = [] if use_multiepoch_sampler: print('Using multiepoch sampler from start_itr %d...' % start_itr) loader_kwargs = {'num_workers': num_workers, 'pin_memory': pin_memory} sampler = MultiEpochSampler(train_set, num_epochs, start_itr, batch_size) train_loader = DataLoader(train_set, batch_size=batch_size, sampler=sampler, **loader_kwargs) else: loader_kwargs = {'num_workers': num_workers, 'pin_memory': pin_memory, 'drop_last': drop_last} # Default, drop last incomplete batch train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=shuffle, **loader_kwargs) loaders.append(train_loader) return loaders # Utility file to seed rngs def seed_rng(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) # Utility to peg all roots to a base root # If a base root folder is provided, peg all other root folders to it. def update_config_roots(config): if config['base_root']: print('Pegging all root folders to base root %s' % config['base_root']) for key in ['data', 'weights', 'logs', 'samples']: config['%s_root' % key] = '%s/%s' % (config['base_root'], key) return config # Utility to prepare root folders if they don't exist; parent folder must exist def prepare_root(config): for key in ['weights_root', 'logs_root', 'samples_root']: if not os.path.exists(config[key]): print('Making directory %s for %s...' % (config[key], key)) os.mkdir(config[key]) # Simple wrapper that applies EMA to a model. COuld be better done in 1.0 using # the parameters() and buffers() module functions, but for now this works # with state_dicts using .copy_ class ema(object): def __init__(self, source, target, decay=0.9999, start_itr=0): self.source = source self.target = target self.decay = decay # Optional parameter indicating what iteration to start the decay at self.start_itr = start_itr # Initialize target's params to be source's self.source_dict = self.source.state_dict() self.target_dict = self.target.state_dict() print('Initializing EMA parameters to be source parameters...') with torch.no_grad(): for key in self.source_dict: self.target_dict[key].data.copy_(self.source_dict[key].data) # target_dict[key].data = source_dict[key].data # Doesn't work! def update(self, itr=None): # If an iteration counter is provided and itr is less than the start itr, # peg the ema weights to the underlying weights. if itr and itr < self.start_itr: decay = 0.0 else: decay = self.decay with torch.no_grad(): for key in self.source_dict: self.target_dict[key].data.copy_(self.target_dict[key].data * decay + self.source_dict[key].data * (1 - decay)) # Apply modified ortho reg to a model # This function is an optimized version that directly computes the gradient, # instead of computing and then differentiating the loss. def ortho(model, strength=1e-4, blacklist=[]): with torch.no_grad(): for param in model.parameters(): # Only apply this to parameters with at least 2 axes, and not in the blacklist if len(param.shape) < 2 or any([param is item for item in blacklist]): continue w = param.view(param.shape[0], -1) grad = (2 * torch.mm(torch.mm(w, w.t()) * (1. - torch.eye(w.shape[0], device=w.device)), w)) param.grad.data += strength * grad.view(param.shape) # Default ortho reg # This function is an optimized version that directly computes the gradient, # instead of computing and then differentiating the loss. def default_ortho(model, strength=1e-4, blacklist=[]): with torch.no_grad(): for param in model.parameters(): # Only apply this to parameters with at least 2 axes & not in blacklist if len(param.shape) < 2 or param in blacklist: continue w = param.view(param.shape[0], -1) grad = (2 * torch.mm(torch.mm(w, w.t()) - torch.eye(w.shape[0], device=w.device), w)) param.grad.data += strength * grad.view(param.shape) # Convenience utility to switch off requires_grad def toggle_grad(model, on_or_off): for param in model.parameters(): param.requires_grad = on_or_off # Function to join strings or ignore them # Base string is the string to link "strings," while strings # is a list of strings or Nones. def join_strings(base_string, strings): return base_string.join([item for item in strings if item]) # Save a model's weights, optimizer, and the state_dict def save_weights(G, D, state_dict, weights_root, experiment_name, name_suffix=None, G_ema=None): root = '/'.join([weights_root, experiment_name]) if not os.path.exists(root): os.mkdir(root) if name_suffix: print('Saving weights to %s/%s...' % (root, name_suffix)) else: print('Saving weights to %s...' % root) torch.save(G.state_dict(), '%s/%s.pth' % (root, join_strings('_', ['G', name_suffix]))) torch.save(G.optim.state_dict(), '%s/%s.pth' % (root, join_strings('_', ['G_optim', name_suffix]))) torch.save(D.state_dict(), '%s/%s.pth' % (root, join_strings('_', ['D', name_suffix]))) torch.save(D.optim.state_dict(), '%s/%s.pth' % (root, join_strings('_', ['D_optim', name_suffix]))) torch.save(state_dict, '%s/%s.pth' % (root, join_strings('_', ['state_dict', name_suffix]))) if G_ema is not None: torch.save(G_ema.state_dict(), '%s/%s.pth' % (root, join_strings('_', ['G_ema', name_suffix]))) def load_state_dict(model, state_dict, strict=True): keys_p = list(state_dict.keys()) keys_r = list(model.state_dict().keys()) keys_r_miss = [k for k in keys_r if k not in keys_p] keys_p_miss = [k for k in keys_p if k not in keys_r] model.load_state_dict(state_dict, strict=strict) if len(keys_r_miss) > 0: print("No param in provided state dict: {}".format(str(keys_r_miss))) if len(keys_p_miss) > 0: print("No param in the model: {}".format(str(keys_p_miss))) # Load a model's weights, optimizer, and the state_dict def load_weights(G, D, state_dict, weights_root, experiment_name, name_suffix=None, G_ema=None, strict=True, load_optim=True): root = '/'.join([weights_root, experiment_name]) if name_suffix: print('Loading %s weights from %s...' % (name_suffix, root)) else: print('Loading weights from %s...' % root) if G is not None: G.load_state_dict( torch.load('%s/%s.pth' % (root, join_strings('_', ['G', name_suffix]))), strict=strict) if load_optim: G.optim.load_state_dict( torch.load('%s/%s.pth' % (root, join_strings('_', ['G_optim', name_suffix])))) if D is not None: D.load_state_dict( torch.load('%s/%s.pth' % (root, join_strings('_', ['D', name_suffix]))), strict=strict) if load_optim: D.optim.load_state_dict( torch.load('%s/%s.pth' % (root, join_strings('_', ['D_optim', name_suffix])))) # Load state dict for item in state_dict: state_dict[item] = torch.load('%s/%s.pth' % (root, join_strings('_', ['state_dict', name_suffix])))[item] if G_ema is not None: G_ema.load_state_dict( torch.load('%s/%s.pth' % (root, join_strings('_', ['G_ema', name_suffix]))), strict=strict) ''' MetricsLogger originally stolen from VoxNet source code. Used for logging inception metrics''' class MetricsLogger(object): def __init__(self, fname, reinitialize=False): self.fname = fname self.reinitialize = reinitialize if os.path.exists(self.fname): if self.reinitialize: print('{} exists, deleting...'.format(self.fname)) os.remove(self.fname) def log(self, record=None, **kwargs): """ Assumption: no newlines in the input. """ if record is None: record = {} record.update(kwargs) record['_stamp'] = time.time() with open(self.fname, 'a') as f: f.write(json.dumps(record, ensure_ascii=True) + '\n') # Logstyle is either: # '%#.#f' for floating point representation in text # '%#.#e' for exponent representation in text # 'npz' for output to npz # NOT YET SUPPORTED # 'pickle' for output to a python pickle # NOT YET SUPPORTED # 'mat' for output to a MATLAB .mat file # NOT YET SUPPORTED class MyLogger(object): def __init__(self, fname, reinitialize=False, logstyle='%3.3f'): self.root = fname if not os.path.exists(self.root): os.mkdir(self.root) self.reinitialize = reinitialize self.metrics = [] self.logstyle = logstyle # One of '%3.3f' or like '%3.3e' # Delete log if re-starting and log already exists def reinit(self, item): if os.path.exists('%s/%s.log' % (self.root, item)): if self.reinitialize: # Only print the removal mess if 'sv' in item : if not any('sv' in item for item in self.metrics): print('Deleting singular value logs...') else: print('{} exists, deleting...'.format('%s_%s.log' % (self.root, item))) os.remove('%s/%s.log' % (self.root, item)) # Log in plaintext; this is designed for being read in MATLAB(sorry not sorry) def log(self, itr, **kwargs): for arg in kwargs: if arg not in self.metrics: if self.reinitialize: self.reinit(arg) self.metrics += [arg] if self.logstyle == 'pickle': print('Pickle not currently supported...') # with open('%s/%s.log' % (self.root, arg), 'a') as f: # pickle.dump(kwargs[arg], f) elif self.logstyle == 'mat': print('.mat logstyle not currently supported...') else: with open('%s/%s.log' % (self.root, arg), 'a') as f: f.write('%d: %s\n' % (itr, self.logstyle % kwargs[arg])) # Write some metadata to the logs directory def write_metadata(logs_root, experiment_name, config, state_dict): with open(('%s/%s/metalog.txt' % (logs_root, experiment_name)), 'w') as writefile: writefile.write('datetime: %s\n' % str(datetime.datetime.now())) writefile.write('config: %s\n' % str(config)) writefile.write('state: %s\n' %str(state_dict)) """ Very basic progress indicator to wrap an iterable in. Author: Jan Schlüter Andy's adds: time elapsed in addition to ETA, makes it possible to add estimated time to 1k iters instead of estimated time to completion. """ def progress(items, desc='', total=None, min_delay=0.1, displaytype='s1k'): """ Returns a generator over `items`, printing the number and percentage of items processed and the estimated remaining processing time before yielding the next item. `total` gives the total number of items (required if `items` has no length), and `min_delay` gives the minimum time in seconds between subsequent prints. `desc` gives an optional prefix text (end with a space). """ total = total or len(items) t_start = time.time() t_last = 0 for n, item in enumerate(items): t_now = time.time() if t_now - t_last > min_delay: print("\r%s%d/%d (%6.2f%%)" % ( desc, n+1, total, n / float(total) * 100), end=" ") if n > 0: if displaytype == 's1k': # minutes/seconds for 1000 iters next_1000 = n + (1000 - n%1000) t_done = t_now - t_start t_1k = t_done / n * next_1000 outlist = list(divmod(t_done, 60)) + list(divmod(t_1k - t_done, 60)) print("(TE/ET1k: %d:%02d / %d:%02d)" % tuple(outlist), end=" ") else:# displaytype == 'eta': t_done = t_now - t_start t_total = t_done / n * total outlist = list(divmod(t_done, 60)) + list(divmod(t_total - t_done, 60)) print("(TE/ETA: %d:%02d / %d:%02d)" % tuple(outlist), end=" ") sys.stdout.flush() t_last = t_now yield item t_total = time.time() - t_start print("\r%s%d/%d (100.00%%) (took %d:%02d)" % ((desc, total, total) + divmod(t_total, 60))) # Sample function for use with inception metrics def sample(G, z_, y_, config): with torch.no_grad(): z_.sample_() y_.sample_() if config['parallel']: G_z = nn.parallel.data_parallel(G, (z_, G.shared(y_))) else: G_z = G(z_, G.shared(y_)) return G_z, y_ # Sample function for sample sheets def sample_sheet(G, classes_per_sheet, num_classes, samples_per_class, parallel, samples_root, experiment_name, folder_number, z_=None): # Prepare sample directory if not os.path.isdir('%s/%s' % (samples_root, experiment_name)): os.mkdir('%s/%s' % (samples_root, experiment_name)) if not os.path.isdir('%s/%s/%d' % (samples_root, experiment_name, folder_number)): os.mkdir('%s/%s/%d' % (samples_root, experiment_name, folder_number)) # loop over total number of sheets for i in range(num_classes // classes_per_sheet): ims = [] y = torch.arange(i * classes_per_sheet, (i + 1) * classes_per_sheet, device='cuda') for j in range(samples_per_class): if (z_ is not None) and hasattr(z_, 'sample_') and classes_per_sheet <= z_.size(0): z_.sample_() else: z_ = torch.randn(classes_per_sheet, G.dim_z, device='cuda') with torch.no_grad(): if parallel: o = nn.parallel.data_parallel(G, (z_[:classes_per_sheet], G.shared(y))) else: o = G(z_[:classes_per_sheet], G.shared(y)) ims += [o.data.cpu()] # This line should properly unroll the images out_ims = torch.stack(ims, 1).view(-1, ims[0].shape[1], ims[0].shape[2], ims[0].shape[3]).data.float().cpu() # The path for the samples image_filename = '%s/%s/%d/samples%d.jpg' % (samples_root, experiment_name, folder_number, i) torchvision.utils.save_image(out_ims, image_filename, nrow=samples_per_class, normalize=True) # Interp function; expects x0 and x1 to be of shape (shape0, 1, rest_of_shape..) def interp(x0, x1, num_midpoints): """ x0: [bs, 1, d] x1: [bs, 1, d] """ lerp = torch.linspace(0, 1.0, num_midpoints + 2, device='cuda').to(x0.dtype) # [num_midpoints+2] return ((x0 * (1 - lerp.view(1, -1, 1))) + (x1 * lerp.view(1, -1, 1))) # interp sheet function # Supports full, class-wise and intra-class interpolation def interp_sheet(G, num_per_sheet, num_midpoints, num_classes, parallel, samples_root, experiment_name, folder_number, sheet_number=0, fix_z=False, fix_y=False, device='cuda'): # Prepare zs and ys if fix_z: # If fix Z, only sample 1 z per row zs = torch.randn(num_per_sheet, 1, G.dim_z, device=device) zs = zs.repeat(1, num_midpoints + 2, 1).view(-1, G.dim_z) else: zs = interp(torch.randn(num_per_sheet, 1, G.dim_z, device=device), torch.randn(num_per_sheet, 1, G.dim_z, device=device), num_midpoints).view(-1, G.dim_z) if fix_y: # If fix y, only sample 1 z per row ys = sample_1hot(num_per_sheet, num_classes) ys = G.shared(ys).view(num_per_sheet, 1, -1) ys = ys.repeat(1, num_midpoints + 2, 1).view(num_per_sheet * (num_midpoints + 2), -1) else: ys = interp(G.shared(sample_1hot(num_per_sheet, num_classes)).view(num_per_sheet, 1, -1), G.shared(sample_1hot(num_per_sheet, num_classes)).view(num_per_sheet, 1, -1), num_midpoints).view(num_per_sheet * (num_midpoints + 2), -1) # Run the net--note that we've already passed y through G.shared. if G.fp16: zs = zs.half() with torch.no_grad(): if parallel: out_ims = nn.parallel.data_parallel(G, (zs, ys)).data.cpu() else: out_ims = G(zs, ys).data.cpu() interp_style = '' + ('Z' if not fix_z else '') + ('Y' if not fix_y else '') image_filename = '%s/%s/%d/interp%s%d.jpg' % (samples_root, experiment_name, folder_number, interp_style, sheet_number) torchvision.utils.save_image(out_ims, image_filename, nrow=num_midpoints + 2, normalize=True) # Convenience debugging function to print out gradnorms and shape from each layer # May need to rewrite this so we can actually see which parameter is which def print_grad_norms(net): gradsums = [[float(torch.norm(param.grad).item()), float(torch.norm(param).item()), param.shape] for param in net.parameters()] order = np.argsort([item[0] for item in gradsums]) print(['%3.3e,%3.3e, %s' % (gradsums[item_index][0], gradsums[item_index][1], str(gradsums[item_index][2])) for item_index in order]) # Get singular values to log. This will use the state dict to find them # and substitute underscores for dots. def get_SVs(net, prefix): d = net.state_dict() return {('%s_%s' % (prefix, key)).replace('.', '_') : float(d[key].item()) for key in d if 'sv' in key} # Name an experiment based on its config def name_from_config(config): name = '_'.join([ item for item in [ 'Big%s' % config['which_train_fn'], config['dataset'], config['model'] if config['model'] != 'BigGAN' else None, 'seed%d' % config['seed'], 'Gch%d' % config['G_ch'], 'Dch%d' % config['D_ch'], 'Gd%d' % config['G_depth'] if config['G_depth'] > 1 else None, 'Dd%d' % config['D_depth'] if config['D_depth'] > 1 else None, 'bs%d' % config['batch_size'], 'Gfp16' if config['G_fp16'] else None, 'Dfp16' if config['D_fp16'] else None, 'nDs%d' % config['num_D_steps'] if config['num_D_steps'] > 1 else None, 'nDa%d' % config['num_D_accumulations'] if config['num_D_accumulations'] > 1 else None, 'nGa%d' % config['num_G_accumulations'] if config['num_G_accumulations'] > 1 else None, 'Glr%2.1e' % config['G_lr'], 'Dlr%2.1e' % config['D_lr'], 'GB%3.3f' % config['G_B1'] if config['G_B1'] !=0.0 else None, 'GBB%3.3f' % config['G_B2'] if config['G_B2'] !=0.999 else None, 'DB%3.3f' % config['D_B1'] if config['D_B1'] !=0.0 else None, 'DBB%3.3f' % config['D_B2'] if config['D_B2'] !=0.999 else None, 'Gnl%s' % config['G_nl'], 'Dnl%s' % config['D_nl'], 'Ginit%s' % config['G_init'], 'Dinit%s' % config['D_init'], 'G%s' % config['G_param'] if config['G_param'] != 'SN' else None, 'D%s' % config['D_param'] if config['D_param'] != 'SN' else None, 'Gattn%s' % config['G_attn'] if config['G_attn'] != '0' else None, 'Dattn%s' % config['D_attn'] if config['D_attn'] != '0' else None, 'Gortho%2.1e' % config['G_ortho'] if config['G_ortho'] > 0.0 else None, 'Dortho%2.1e' % config['D_ortho'] if config['D_ortho'] > 0.0 else None, config['norm_style'] if config['norm_style'] != 'bn' else None, 'cr' if config['cross_replica'] else None, 'Gshared' if config['G_shared'] else None, 'hier' if config['hier'] else None, 'ema' if config['ema'] else None, config['name_suffix'] if config['name_suffix'] else None, ] if item is not None]) # dogball if config['hashname']: return hashname(name) else: return name # A simple function to produce a unique experiment name from the animal hashes. def hashname(name): h = hash(name) a = h % len(animal_hash.a) h = h // len(animal_hash.a) b = h % len(animal_hash.b) h = h // len(animal_hash.c) c = h % len(animal_hash.c) return animal_hash.a[a] + animal_hash.b[b] + animal_hash.c[c] # Get GPU memory, -i is the index def query_gpu(indices): os.system('nvidia-smi -i 0 --query-gpu=memory.free --format=csv') # Convenience function to count the number of parameters in a module def count_parameters(module): print('Number of parameters: {}'.format( sum([p.data.nelement() for p in module.parameters()]))) # Convenience function to sample an index, not actually a 1-hot def sample_1hot(batch_size, num_classes, device='cuda'): return torch.randint(low=0, high=num_classes, size=(batch_size,), device=device, dtype=torch.int64, requires_grad=False) # A highly simplified convenience class for sampling from distributions # One could also use PyTorch's inbuilt distributions package. # Note that this class requires initialization to proceed as # x = Distribution(torch.randn(size)) # x.init_distribution(dist_type, **dist_kwargs) # x = x.to(device,dtype) # This is partially based on https://discuss.pytorch.org/t/subclassing-torch-tensor/23754/2 class Distribution(torch.Tensor): # Init the params of the distribution def init_distribution(self, dist_type, **kwargs): self.dist_type = dist_type self.dist_kwargs = kwargs if self.dist_type == 'normal': self.mean, self.var = kwargs['mean'], kwargs['var'] elif self.dist_type == 'categorical': self.num_categories = kwargs['num_categories'] # if given the number of category ids, and each number of sampls for each categroy, # the conditional y will be generated in the given manner if 'num_categories_to_sample' in kwargs and 'per_category_to_sample' in kwargs: if kwargs['num_categories_to_sample'] is not None and kwargs['per_category_to_sample'] is not None: self.num_categories_to_sample = kwargs['num_categories_to_sample'] self.per_category_to_sample = kwargs['per_category_to_sample'] if self.num_categories_to_sample <= 0: self.categories_to_sample = list(range(self.num_categories)) else: categories = list(range(self.num_categories)) np.random.shuffle(categories) self.categories_to_sample = categories[:self.num_categories_to_sample] self.count = 0 self.total_count = len(self.categories_to_sample) * self.per_category_to_sample self.next = True def sample_(self): if self.dist_type == 'normal': self.normal_(self.mean, self.var) elif self.dist_type == 'categorical': if hasattr(self, 'categories_to_sample') and hasattr(self, 'per_category_to_sample'): batch_size = self.shape[0] count_cur = self.count + batch_size cate_idx_pre = self.count // self.per_category_to_sample cate_idx_cur = count_cur // self.per_category_to_sample cate_id = self.categories_to_sample[cate_idx_pre:cate_idx_cur+1] cate_id = torch.tensor(cate_id).unsqueeze(dim=1).repeat(1, self.per_category_to_sample).view(-1) start_idx = self.count - self.per_category_to_sample * max(0, cate_idx_pre) end_idx = start_idx + batch_size if end_idx > cate_id.shape[0]: cate_id = torch.cat((cate_id, cate_id), dim=0) self.copy_(cate_id[start_idx:end_idx]) self.count = count_cur self.next = self.count < self.total_count else: # generate the category label randomly self.random_(0, self.num_categories) # return self.variable # Silly hack: overwrite the to() method to wrap the new object # in a distribution as well def to(self, *args, **kwargs): new_obj = Distribution(self) new_obj.init_distribution(self.dist_type, **self.dist_kwargs) new_obj.data = super().to(*args, **kwargs) return new_obj # Convenience function to prepare a z and y vector def prepare_z_y(G_batch_size, dim_z, nclasses, device='cuda', fp16=False,z_var=1.0, per_category_to_sample=None, num_categories_to_sample=None): z_ = Distribution(torch.randn(G_batch_size, dim_z, requires_grad=False)) z_.init_distribution('normal', mean=0, var=z_var) z_ = z_.to(device,torch.float16 if fp16 else torch.float32) if fp16: z_ = z_.half() y_ = Distribution(torch.zeros(G_batch_size, requires_grad=False)) y_.init_distribution('categorical',num_categories=nclasses, per_category_to_sample=per_category_to_sample, num_categories_to_sample=num_categories_to_sample) y_ = y_.to(device, torch.int64) return z_, y_ def initiate_standing_stats(net): for module in net.modules(): if hasattr(module, 'accumulate_standing'): module.reset_stats() module.accumulate_standing = True def accumulate_standing_stats(net, z, y, nclasses, num_accumulations=16): initiate_standing_stats(net) net.train() for i in range(num_accumulations): with torch.no_grad(): z.normal_() y.random_(0, nclasses) x = net(z, net.shared(y)) # No need to parallelize here unless using syncbn # Set to eval mode net.eval() # This version of Adam keeps an fp32 copy of the parameters and # does all of the parameter updates in fp32, while still doing the # forwards and backwards passes using fp16 (i.e. fp16 copies of the # parameters and fp16 activations). # # Note that this calls .float().cuda() on the params. import math from torch.optim.optimizer import Optimizer class Adam16(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,weight_decay=0): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) params = list(params) super(Adam16, self).__init__(params, defaults) # Safety modification to make sure we floatify our state def load_state_dict(self, state_dict): super(Adam16, self).load_state_dict(state_dict) for group in self.param_groups: for p in group['params']: self.state[p]['exp_avg'] = self.state[p]['exp_avg'].float() self.state[p]['exp_avg_sq'] = self.state[p]['exp_avg_sq'].float() self.state[p]['fp32_p'] = self.state[p]['fp32_p'].float() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = grad.new().resize_as_(grad).zero_() # Exponential moving average of squared gradient values state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_() # Fp32 copy of the weights state['fp32_p'] = p.data.float() exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], state['fp32_p']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 state['fp32_p'].addcdiv_(-step_size, exp_avg, denom) p.data = state['fp32_p'].half() return loss
[ "torch.cat", "torch.cuda.manual_seed", "torch.stack", "torch.randperm", "torch.eye", "torch.nn.parallel.data_parallel", "torch.norm", "torch.manual_seed", "torch.randint", "torch.utils.data.DataLoader", "torch.tensor", "torch.zeros", "torch.linspace", "torch.nn.ReLU", "torch.arange", "torch.no_grad", "torch.randn" ]
1.2.0
liuqk3/BigGAN-PyTorch
9b4491f5d68f34a1fe55bc0e8171fa3d3ad7bb08
1.6
import logging from typing import List, Dict, Any, Optional, TYPE_CHECKING import torch from allennlp.training.callbacks.callback import TrainerCallback from allennlp.training.util import get_train_and_validation_metrics from allennlp.data import TensorDict if TYPE_CHECKING: from allennlp.training.trainer import GradientDescentTrainer logger = logging.getLogger(__name__) @TrainerCallback.register("console_logger") class ConsoleLoggerCallback(TrainerCallback): def __init__( self, serialization_dir: str, should_log_inputs: bool = False, ) -> None: super().__init__(serialization_dir) self._should_log_inputs = should_log_inputs def on_batch( self, trainer: "GradientDescentTrainer", batch_inputs: List[TensorDict], batch_outputs: List[Dict[str, Any]], batch_metrics: Dict[str, Any], epoch: int, batch_number: int, is_training: bool, is_primary: bool = True, batch_grad_norm: Optional[float] = None, **kwargs, ) -> None: if not is_primary: return None # We only want to do this for the first batch in the first epoch. if batch_number == 1 and epoch == 0 and self._should_log_inputs: logger.info("Batch inputs") for b, batch in enumerate(batch_inputs): self._log_fields(batch, log_prefix="batch_input") # type: ignore def _log_fields(self, fields: Dict, log_prefix: str = ""): for key, val in fields.items(): key = log_prefix + "/" + key if isinstance(val, dict): self._log_fields(val, key) elif isinstance(val, torch.Tensor): torch.set_printoptions(threshold=2) logger.info("%s (Shape: %s)\n%s", key, " x ".join([str(x) for x in val.shape]), val) torch.set_printoptions(threshold=1000) elif isinstance(val, List): logger.info('Field : "%s" : (Length %d of type "%s")', key, len(val), type(val[0])) elif isinstance(val, str): logger.info('Field : "{}" : "{:20.20} ..."'.format(key, val)) else: logger.info('Field : "%s" : %s', key, val) def on_epoch( self, trainer: "GradientDescentTrainer", metrics: Dict[str, Any], epoch: int, is_primary: bool = True, **kwargs, ) -> None: if not is_primary: return None train_metrics, val_metrics = get_train_and_validation_metrics(metrics) metric_names = set(train_metrics.keys()) if val_metrics is not None: metric_names.update(val_metrics.keys()) val_metrics = val_metrics or {} dual_message_template = "%s | %8.3f | %8.3f" no_val_message_template = "%s | %8.3f | %8s" no_train_message_template = "%s | %8s | %8.3f" header_template = "%s | %-10s" name_length = max(len(x) for x in metric_names) logger.info(header_template, "Training".rjust(name_length + 13), "Validation") for name in sorted(metric_names): train_metric = train_metrics.get(name) val_metric = val_metrics.get(name) if val_metric is not None and train_metric is not None: logger.info( dual_message_template, name.ljust(name_length), train_metric, val_metric ) elif val_metric is not None: logger.info(no_train_message_template, name.ljust(name_length), "N/A", val_metric) elif train_metric is not None: logger.info(no_val_message_template, name.ljust(name_length), train_metric, "N/A")
[ "torch.set_printoptions" ]
1.6.0
jbrry/allennlp
d906175d953bebcc177567ec0157220c3bd1b9ad
1.6
# The MIT License # # Copyright (c) 2020 Vincent Liu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import torch import torch.nn as nn from modules.loss import GinormousCompositeLoss from modules.layers import AdaptiveInstanceNorm2d, LayerNorm2d class ResidualBlock(nn.Module): ''' Implements a residual block with (Adaptive) Instance Normalization ''' def __init__(self, channels, s_dim=None, h_dim=None): super().__init__() self.conv1 = nn.Sequential( nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, channels, kernel_size=3) ), ) self.conv2 = nn.Sequential( nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, channels, kernel_size=3) ), ) self.use_style = s_dim is not None and h_dim is not None if self.use_style: self.norm1 = AdaptiveInstanceNorm2d(channels, s_dim, h_dim) self.norm2 = AdaptiveInstanceNorm2d(channels, s_dim, h_dim) else: self.norm1 = nn.InstanceNorm2d(channels) self.norm2 = nn.InstanceNorm2d(channels) self.activation = nn.ReLU() def forward(self, x, s=None): x_id = x x = self.conv1(x) x = self.norm1(x, s) if self.use_style else self.norm1(x) x = self.activation(x) x = self.conv2(x) x = self.norm2(x, s) if self.use_style else self.norm2(x) return x + x_id class ContentEncoder(nn.Module): ''' Implements a MUNIT encoder for content ''' def __init__(self, base_channels=64, n_downsample=2, n_res_blocks=4): super().__init__() channels = base_channels # input convolutional layer layers = [ nn.ReflectionPad2d(3), nn.utils.spectral_norm( nn.Conv2d(3, channels, kernel_size=7) ), nn.InstanceNorm2d(channels), nn.ReLU(inplace=True), ] # downsampling layers for i in range(n_downsample): layers += [ nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, 2 * channels, kernel_size=4, stride=2) ), nn.InstanceNorm2d(2 * channels), nn.ReLU(inplace=True), ] channels *= 2 # residual blocks with non-adaptive instance normalization layers += [ ResidualBlock(channels) for _ in range(n_res_blocks) ] self.layers = nn.Sequential(*layers) self.out_channels = channels def forward(self, x): return self.layers(x) @property def channels(self): return self.out_channels class StyleEncoder(nn.Module): ''' Implements a MUNIT encoder for style ''' n_deepen_layers = 2 def __init__(self, base_channels=64, n_downsample=4, s_dim=8): super().__init__() channels = base_channels # input convolutional layer layers = [ nn.ReflectionPad2d(3), nn.utils.spectral_norm( nn.Conv2d(3, channels, kernel_size=7, padding=0) ), nn.ReLU(inplace=True), ] # downsampling layers for i in range(self.n_deepen_layers): layers += [ nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, 2 * channels, kernel_size=4, stride=2) ), nn.ReLU(inplace=True), ] channels *= 2 for i in range(n_downsample - self.n_deepen_layers): layers += [ nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, channels, kernel_size=4, stride=2) ), nn.ReLU(inplace=True), ] # apply global pooling and pointwise convolution to style_channels layers += [ nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, s_dim, kernel_size=1), ] self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class Decoder(nn.Module): ''' Decoder Class Values: in_channels: number of channels from encoder output, a scalar n_upsample: number of upsampling layers, a scalar n_res_blocks: number of residual blocks, a scalar s_dim: the dimension of the style tensor (s), a scalar h_dim: the hidden dimension of the MLP, a scalar ''' def __init__(self, in_channels, n_upsample=2, n_res_blocks=4, s_dim=8, h_dim=256): super().__init__() channels = in_channels # residual blocks with adaptive instance norm self.res_blocks = nn.ModuleList([ ResidualBlock(channels, s_dim) for _ in range(n_res_blocks) ]) # upsampling blocks layers = [] for i in range(n_upsample): layers += [ nn.Upsample(scale_factor=2), nn.ReflectionPad2d(2), nn.utils.spectral_norm( nn.Conv2d(channels, channels // 2, kernel_size=5) ), LayerNorm2d(channels // 2), ] channels //= 2 layers += [ nn.ReflectionPad2d(3), nn.utils.spectral_norm( nn.Conv2d(channels, 3, kernel_size=7) ), nn.Tanh(), ] self.layers = nn.Sequential(*layers) def forward(self, x, s): for res_block in self.res_blocks: x = res_block(x, s=s) x = self.layers(x) return x class Generator(nn.Module): ''' Implements a MUNIT generator ''' def __init__( self, base_channels: int = 64, n_c_downsample: int = 2, n_s_downsample: int = 4, n_res_blocks: int = 4, s_dim: int = 8, h_dim: int = 256, ): super().__init__() self.c_enc = ContentEncoder( base_channels=base_channels, n_downsample=n_c_downsample, n_res_blocks=n_res_blocks, ) self.s_enc = StyleEncoder( base_channels=base_channels, n_downsample=n_s_downsample, s_dim=s_dim, ) self.dec = Decoder( self.c_enc.channels, n_upsample=n_c_downsample, n_res_blocks=n_res_blocks, s_dim=s_dim, h_dim=h_dim, ) def encode(self, x): content = self.c_enc(x) style = self.s_enc(x) return (content, style) def decode(self, content, style): return self.dec(content, style) class Discriminator(nn.Module): ''' Implements a MUNIT discriminator ''' def __init__( self, base_channels: int = 64, n_layers: int = 3, n_discriminators: int = 3, ): super().__init__() self.discriminators = nn.ModuleList([ self.patchgan_discriminator(base_channels, n_layers) for _ in range(n_discriminators) ]) self.downsample = nn.AvgPool2d(3, stride=2, padding=1, count_include_pad=False) @staticmethod def patchgan_discriminator(base_channels, n_layers): ''' Function that constructs and returns one PatchGAN discriminator module. ''' channels = base_channels # input convolutional layer layers = [ nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(3, channels, kernel_size=4, stride=2), ), nn.LeakyReLU(0.2, inplace=True), ] # hidden convolutional layers for _ in range(n_layers): layers += [ nn.ReflectionPad2d(1), nn.utils.spectral_norm( nn.Conv2d(channels, 2 * channels, kernel_size=4, stride=2) ), nn.LeakyReLU(0.2, inplace=True), ] channels *= 2 # output projection layer layers += [ nn.utils.spectral_norm( nn.Conv2d(channels, 1, kernel_size=1) ), ] return nn.Sequential(*layers) def forward(self, x): outputs = [] for discriminator in self.discriminators: outputs.append(discriminator(x)) x = self.downsample(x) return outputs class MUNIT(nn.Module): ''' Implements the MUNIT model in full ''' def __init__( self, gen_channels: int = 64, n_c_downsample: int = 2, n_s_downsample: int = 4, n_res_blocks: int = 4, s_dim: int = 8, h_dim: int = 256, dis_channels: int = 64, n_layers: int = 3, n_discriminators: int = 3, scale_loss_weights_to_one: bool = True, ): super().__init__() self.gen_a = Generator( base_channels=gen_channels, n_c_downsample=n_c_downsample, n_s_downsample=n_s_downsample, n_res_blocks=n_res_blocks, s_dim=s_dim, h_dim=h_dim, ) self.gen_b = Generator( base_channels=gen_channels, n_c_downsample=n_c_downsample, n_s_downsample=n_s_downsample, n_res_blocks=n_res_blocks, s_dim=s_dim, h_dim=h_dim, ) self.dis_a = Discriminator( base_channels=dis_channels, n_layers=n_layers, n_discriminators=n_discriminators, ) self.dis_b = Discriminator( base_channels=dis_channels, n_layers=n_layers, n_discriminators=n_discriminators, ) self.s_dim = s_dim self.loss = GinormousCompositeLoss self.scale_loss_weights_to_one = scale_loss_weights_to_one def forward(self, x_a: torch.tensor, x_b: torch.tensor): s_a = torch.randn(x_a.size(0), self.s_dim, 1, 1, device=x_a.device).to(x_a.dtype) s_b = torch.randn(x_b.size(0), self.s_dim, 1, 1, device=x_b.device).to(x_b.dtype) # encode real x and compute image reconstruction loss x_a_loss, c_a, s_a_fake = self.loss.image_recon_loss(x_a, self.gen_a) x_b_loss, c_b, s_b_fake = self.loss.image_recon_loss(x_b, self.gen_b) # decode real (c, s) and compute latent reconstruction loss c_b_loss, s_a_loss, x_ba = self.loss.latent_recon_loss(c_b, s_a, self.gen_a) c_a_loss, s_b_loss, x_ab = self.loss.latent_recon_loss(c_a, s_b, self.gen_b) # compute adversarial losses gen_a_adv_loss = self.loss.adversarial_loss(x_ba, self.dis_a, False) gen_b_adv_loss = self.loss.adversarial_loss(x_ab, self.dis_b, False) # sum up losses for gen gen_loss = ( 10 * x_a_loss + c_b_loss + s_a_loss + gen_a_adv_loss + \ 10 * x_b_loss + c_a_loss + s_b_loss + gen_b_adv_loss ) if self.scale_loss_weights_to_one: gen_loss = gen_loss * 0.1 # sum up losses for dis dis_loss = ( self.loss.adversarial_loss(x_ba.detach(), self.dis_a, False) + \ self.loss.adversarial_loss(x_a.detach(), self.dis_a, True) + \ self.loss.adversarial_loss(x_ab.detach(), self.dis_b, False) + \ self.loss.adversarial_loss(x_b.detach(), self.dis_b, True) ) return gen_loss, dis_loss, x_ab, x_ba def infer(self, x_a: torch.tensor, x_b: torch.tensor, encode_style: bool = True): self.eval() if not encode_style: s_a = torch.ones(x_a.shape, self.z_dim, 1, 1, device=x_a.device).to(x_a.dtype) s_b = torch.ones(x_b.shape, self.z_dim, 1, 1, device=x_b.device).to(x_b.dtype) c_a, _ = self.gen_a.encode(x_a) c_b, _ = self.gen_b.encode(x_b) else: c_a, s_a = self.gen_a.encode(x_a) c_b, s_b = self.gen_b.encode(x_b) x_ba = self.gen_a.decode(c_b, s_a) x_ab = self.gen_b.decode(c_a, s_b) return x_ba, x_ab
[ "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.ones", "torch.nn.ReLU", "torch.nn.Upsample", "torch.nn.Conv2d", "torch.nn.ReflectionPad2d", "torch.nn.InstanceNorm2d", "torch.nn.AdaptiveAvgPool2d" ]
1.6.0
vliu15/munit
5789d96590519d729f89c9501eba7692fa7054ef
0.1
# -*- coding: utf-8 -*- import os from glob import glob from os.path import join from datetime import datetime import torch import torchvision import transformers import more_itertools import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.transforms as T from tqdm.auto import tqdm from einops import rearrange from . import utils from .model.utils import get_attention_mask, get_t2t_attention_mask def generate_codebooks( text, tokenizer, model, top_k, top_p, images_num, image_prompts=None, temperature=1.0, bs=8, seed=None, use_cache=True, ): # TODO docstring if seed is not None: utils.seed_everything(seed) else: seed = int((datetime.utcnow().timestamp() * 10 ** 6) % (2 ** 32 - 1)) utils.seed_everything(seed) vocab_size = model.get_param('vocab_size') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') image_seq_length = model.get_param('image_seq_length') total_seq_length = l_text_seq_length + image_seq_length + r_text_seq_length device = model.get_param('device') text = text.lower().strip() encoded = tokenizer.encode_text(text, text_seq_length=r_text_seq_length) codebooks = [] for chunk in more_itertools.chunked(range(images_num), bs): chunk_bs = len(chunk) with torch.no_grad(): attention_mask = torch.tril(torch.ones((chunk_bs, 1, total_seq_length, total_seq_length), device=device)) out = encoded.unsqueeze(0).repeat(chunk_bs, 1).to(device) has_cache = False if image_prompts is not None: prompts_idx, prompts = image_prompts.image_prompts_idx, image_prompts.image_prompts prompts = prompts.repeat(chunk_bs, 1) for idx in tqdm(range(l_text_seq_length, l_text_seq_length + image_seq_length)): idx -= l_text_seq_length if image_prompts is not None and idx in prompts_idx: out = torch.cat((out, prompts[:, idx].unsqueeze(1)), dim=-1) else: logits, has_cache = model(out, attention_mask, has_cache=has_cache, use_cache=use_cache, return_loss=False) logits = logits[:, -1, vocab_size:] logits /= temperature filtered_logits = transformers.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = torch.nn.functional.softmax(filtered_logits, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) codebooks.append(out[:, -image_seq_length:]) return torch.cat(codebooks) def generate_captions( pil_img, tokenizer, model, vae, template='', top_k=32, top_p=0.6, captions_num=128, temperature=1.0, bs=64, seed=None, use_cache=True, ): if seed is None: seed = int((datetime.utcnow().timestamp() * 10 ** 6) % (2 ** 32 - 1)) utils.seed_everything(seed) vocab_size = model.get_param('vocab_size') image_tokens_per_dim = model.get_param('image_tokens_per_dim') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') image_seq_length = model.get_param('image_seq_length') device = model.get_param('device') image_transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.RandomResizedCrop(image_tokens_per_dim * 8, scale=(1., 1.), ratio=(1., 1.)), T.ToTensor() ]) img = image_transform(pil_img) template = template.lower().strip() template_encoded = tokenizer.encode_text(template, text_seq_length=r_text_seq_length) template_size = (template_encoded != 0).sum() - 1 # eos template_encoded = template_encoded[:template_size] generated_tokens = [] for chunk in more_itertools.chunked(range(captions_num), bs): chunk_bs = len(chunk) with torch.no_grad(): masks = torch.ones(chunk_bs, r_text_seq_length, dtype=torch.int32) attention_mask = get_attention_mask(masks, chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device) images = img.unsqueeze(0).repeat((chunk_bs, 1, 1, 1)).to(device) image_input_ids = vae.get_codebook_indices(images) out = torch.cat(( torch.zeros((chunk_bs, l_text_seq_length), dtype=torch.int64).to(device), image_input_ids, template_encoded.repeat(chunk_bs, 1).to(device), ), dim=1) has_cache = False for _ in tqdm(range( l_text_seq_length + image_seq_length + template_size, l_text_seq_length + image_seq_length + r_text_seq_length )): logits, has_cache = model(out, attention_mask, has_cache=has_cache, use_cache=use_cache, return_loss=False) logits = logits[:, -1, :vocab_size] logits /= temperature filtered_logits = transformers.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = torch.nn.functional.softmax(filtered_logits, dim=-1) sample = torch.multinomial(probs, 1) indexes = torch.where(sample >= vocab_size - l_text_seq_length) sample[indexes] = 3 out = torch.cat((out, sample), dim=-1) generated_tokens.append(out[:, -r_text_seq_length:]) generated_tokens = torch.cat(generated_tokens) texts = set() for tokens in generated_tokens: end = torch.where(tokens == 3)[0].shape[0] or tokens.shape[0] text = tokenizer.decode_text(tokens[:end]).strip() if text: texts.add(text) return list(texts) def show(pil_images, nrow=4, size=14, save_dir=None, show=True): """ :param pil_images: list of images in PIL :param nrow: number of rows :param size: size of the images :param save_dir: dir for separately saving of images, example: save_dir='./pics' """ if save_dir is not None: os.makedirs(save_dir, exist_ok=True) count = len(glob(join(save_dir, 'img_*.png'))) for i, pil_image in enumerate(pil_images): pil_image.save(join(save_dir, f'img_{count+i}.png')) pil_images = [pil_image.convert('RGB') for pil_image in pil_images] imgs = torchvision.utils.make_grid(utils.pil_list_to_torch_tensors(pil_images), nrow=nrow) if not isinstance(imgs, list): imgs = [imgs.cpu()] fix, axs = plt.subplots(ncols=len(imgs), squeeze=False, figsize=(size, size)) for i, img in enumerate(imgs): img = img.detach() img = torchvision.transforms.functional.to_pil_image(img) if save_dir is not None: count = len(glob(join(save_dir, 'group_*.png'))) img.save(join(save_dir, f'group_{count+i}.png')) if show: axs[0, i].imshow(np.asarray(img)) axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) if show: fix.show() plt.show() def self_reranking_by_text( text, codebooks, tokenizer, model, bs=64, ): vocab_size = model.get_param('vocab_size') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') image_seq_length = model.get_param('image_seq_length') image_tokens_per_dim = model.get_param('image_tokens_per_dim') device = model.get_param('device') text = text.lower().strip() encoded = tokenizer.encode_text(text, text_seq_length=r_text_seq_length) mask = torch.zeros(r_text_seq_length, dtype=torch.int64) mask[encoded != 0] = 1 ppl_text, ppl_image = [], [] for chunk in more_itertools.chunked(codebooks, bs): chunk_bs = len(chunk) with torch.no_grad(): attention_mask = get_attention_mask( mask.unsqueeze(0).repeat(chunk_bs, 1).to(device), chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device ) input_ids = torch.cat(( torch.zeros((chunk_bs, l_text_seq_length), dtype=torch.int64).to(device), torch.stack(chunk), encoded.unsqueeze(0).repeat(chunk_bs, 1).to(device), ), dim=1) logits, _ = model(input_ids, attention_mask, has_cache=False, use_cache=False, return_loss=False) logits = rearrange(logits, 'b n c -> b c n') image_logits = logits[:, vocab_size:, l_text_seq_length:l_text_seq_length + image_seq_length - 1].contiguous().float() r_text_logits = logits[:, :vocab_size, -r_text_seq_length:-1].contiguous().float() input_ids = input_ids.contiguous().long() ppl_image.append( ce_to_ppl(F.cross_entropy( image_logits, input_ids[:, l_text_seq_length + 1:l_text_seq_length + image_seq_length], reduction='none', )) ) ppl_text.append( ce_to_ppl(F.cross_entropy( r_text_logits, input_ids[:, -(r_text_seq_length - 1):], ignore_index=0, reduction='none', )) ) return torch.cat(ppl_text), torch.cat(ppl_image) def self_reranking_by_image( texts, pil_img, tokenizer, model, vae, bs=64, seed=42, ): if seed is not None: utils.seed_everything(seed) vocab_size = model.get_param('vocab_size') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') image_seq_length = model.get_param('image_seq_length') image_tokens_per_dim = model.get_param('image_tokens_per_dim') device = model.get_param('device') image_transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.RandomResizedCrop(image_tokens_per_dim * 8, scale=(1., 1.), ratio=(1., 1.)), T.ToTensor() ]) img = image_transform(pil_img) ppl_text, ppl_image = [], [] for chunk in more_itertools.chunked(texts, bs): chunk_bs = len(chunk) with torch.no_grad(): chunk_encoded, masks = [], [] for text in chunk: text = text.lower().strip() encoded = tokenizer.encode_text(text, text_seq_length=r_text_seq_length) mask = torch.zeros(r_text_seq_length, dtype=torch.int64) mask[encoded != 0] = 1 chunk_encoded.append(encoded) masks.append(mask) chunk_encoded = torch.stack(chunk_encoded) masks = torch.stack(masks) attention_mask = get_attention_mask( masks.to(device), chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device ) images = img.unsqueeze(0).repeat((chunk_bs, 1, 1, 1)).to(device) image_input_ids = vae.get_codebook_indices(images) input_ids = torch.cat(( chunk_encoded.to(device), image_input_ids, chunk_encoded.to(device), ), dim=1) logits, _ = model(input_ids, attention_mask, has_cache=False, use_cache=False, return_loss=False) logits = rearrange(logits, 'b n c -> b c n') image_logits = logits[:, vocab_size:, l_text_seq_length:l_text_seq_length + image_seq_length - 1].contiguous().float() l_text_logits = logits[:, :vocab_size, :l_text_seq_length - 1].contiguous().float() input_ids = input_ids.contiguous().long() ppl_image.append( ce_to_ppl(F.cross_entropy( image_logits, input_ids[:, l_text_seq_length + 1:l_text_seq_length + image_seq_length], reduction='none', )) ) ppl_text.append( ce_to_ppl(F.cross_entropy( l_text_logits, input_ids[:, 1:l_text_seq_length], ignore_index=0, reduction='none', )) ) ppl_text = torch.cat(ppl_text) ppl_image = torch.cat(ppl_image) return ppl_text, ppl_image def zs_clf(pil_img, classes, model, tokenizer, vae, bs=8, template=None): """ classes - list of strings template - prefix template """ template = template or '{}' vocab_size = model.get_param('vocab_size') image_tokens_per_dim = model.get_param('image_tokens_per_dim') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') device = model.get_param('device') image_transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.RandomResizedCrop(image_tokens_per_dim * 8, scale=(1., 1.), ratio=(1., 1.)), T.ToTensor() ]) encoded, masks = [], [] for _class in classes: text = template.format(_class).lower().strip() class_encoded = tokenizer.encode_text(text, text_seq_length=r_text_seq_length) encoded.append(class_encoded) mask = torch.zeros(r_text_seq_length, dtype=torch.int64) mask[class_encoded != 0] = 1 masks.append(mask) encoded = torch.stack(encoded, 0) masks = torch.stack(masks, 0) with torch.no_grad(): img = image_transform(pil_img) images = img.unsqueeze(0).to(device) image_input_ids = vae.get_codebook_indices(images) ppl_text, ppl_image = [], [] # noqa for indexes in more_itertools.chunked(range(len(classes)), bs): chunk_encoded = encoded[indexes] chunk_masks = masks[indexes] chunk_bs = chunk_encoded.shape[0] attention_mask = get_attention_mask(chunk_masks, chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device) input_ids = torch.cat(( torch.zeros(l_text_seq_length, dtype=torch.int64).repeat(chunk_bs, 1).to(device), image_input_ids.repeat(chunk_bs, 1), chunk_encoded.to(device), ), dim=1) logits, _ = model(input_ids, attention_mask, has_cache=False, use_cache=False, return_loss=False) logits = rearrange(logits, 'b n c -> b c n') r_text_logits = logits[:, :vocab_size, -r_text_seq_length:-1].contiguous() chunk_ppl_text = ce_to_ppl(F.cross_entropy( r_text_logits[:, :, :], input_ids[:, -(r_text_seq_length - 1):], ignore_index=0, reduction='none', )) ppl_text.append(chunk_ppl_text) ppl_text = torch.cat(ppl_text) ppl_text = ppl_text / ppl_text.norm(dim=0, keepdim=True) scores = ppl_text.softmax(0) pred = scores.argmin().item() return { 'label': pred, 'class': classes[pred], 'scores': scores.cpu().numpy(), } def generate_texts( tokenizer, model, template='', top_k=32, top_p=0.8, texts_num=128, temperature=1.0, bs=64, seed=None, use_cache=True, ): if seed is None: seed = int((datetime.utcnow().timestamp() * 10 ** 6) % (2 ** 32 - 1)) utils.seed_everything(seed) vocab_size = model.get_param('vocab_size') image_tokens_per_dim = model.get_param('image_tokens_per_dim') l_text_seq_length = model.get_param('l_text_seq_length') r_text_seq_length = model.get_param('r_text_seq_length') device = model.get_param('device') template = template.lower().strip() template_encoded = tokenizer.encode_text(template, text_seq_length=l_text_seq_length) template_size = (template_encoded != 0).sum() - 1 # eos template_encoded = template_encoded[:template_size] generated_tokens = [] for chunk in more_itertools.chunked(range(texts_num), bs): chunk_bs = len(chunk) with torch.no_grad(): attention_mask = get_t2t_attention_mask(chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device) out = template_encoded.repeat(chunk_bs, 1).to(device) has_cache = False for _ in tqdm(range(template_size, l_text_seq_length)): logits, has_cache = model(out, attention_mask, has_cache=has_cache, use_cache=use_cache, return_loss=False) logits = logits[:, -1, :vocab_size] logits /= temperature filtered_logits = transformers.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = torch.nn.functional.softmax(filtered_logits, dim=-1) sample = torch.multinomial(probs, 1) indexes = torch.where(sample > vocab_size - l_text_seq_length) sample[indexes] = 3 out = torch.cat((out, sample), dim=-1) generated_tokens.append(out[:, :l_text_seq_length]) generated_tokens = torch.cat(generated_tokens) texts = set() for tokens in generated_tokens: end = torch.where(tokens == 3)[0].shape[0] or tokens.shape[0] text = tokenizer.decode_text(tokens[:end]).strip() if text: texts.add(text) texts = list(texts) ppl_text = [] for chunk in more_itertools.chunked(texts, bs): chunk_bs = len(chunk) with torch.no_grad(): chunk_encoded = [] for text in chunk: text = text.lower().strip() encoded = tokenizer.encode_text(text, text_seq_length=l_text_seq_length) chunk_encoded.append(encoded) chunk_encoded = torch.stack(chunk_encoded) attention_mask = get_t2t_attention_mask( chunk_bs, l_text_seq_length, image_tokens_per_dim, r_text_seq_length, device ) input_ids = chunk_encoded.to(device) logits, _ = model(input_ids, attention_mask, has_cache=False, use_cache=False, return_loss=False) logits = rearrange(logits, 'b n c -> b c n') l_text_logits = logits[:, :vocab_size, :l_text_seq_length - 1].contiguous().float() input_ids = input_ids.contiguous().long() ppl_text.append( ce_to_ppl(F.cross_entropy( l_text_logits, input_ids[:, 1:l_text_seq_length], ignore_index=0, reduction='none', )) ) ppl_text = torch.cat(ppl_text) result = [] for idx in ppl_text.argsort(): idx = idx.item() result.append({ 'text': texts[idx], 'ppl': round(ppl_text[idx].item(), 2), }) return result def ce_to_ppl(ce): indexes = torch.where(ce) ce[indexes] = torch.exp(ce[indexes]) ppl = ce.sum(1) / torch.unique(indexes[0], return_counts=True)[1] return ppl
[ "torch.zeros", "torch.cat", "torch.stack", "torch.unique", "torch.no_grad", "torch.ones", "torch.multinomial", "torch.nn.functional.cross_entropy", "torch.nn.functional.softmax", "torch.exp", "torch.where" ]
0.1.3
WildGenie/ru-dolph
c80a320a60dcb60ccb66b86c3421e16e33235d97
1.7
import os import json import torch import onir from onir import util, spec, predictors, datasets from onir.interfaces import trec, plaintext @predictors.register('reranker') class Reranker(predictors.BasePredictor): name = None @staticmethod def default_config(): return { 'batch_size': 64, 'gpu': True, 'gpu_determ': True, 'preload': False, 'run_threshold': 0, 'measures': 'map,ndcg,p@20,ndcg@20,mrr', 'source': 'run' } def __init__(self, config, ranker, trainer, dataset, vocab, logger, random): self.config = config self.ranker = ranker self.trainer = trainer self.dataset = dataset self.logger = logger self.vocab = vocab self.random = random self.input_spec = ranker.input_spec() def _iter_batches(self, device): fields = set(self.input_spec['fields']) | {'query_id', 'doc_id'} it = datasets.record_iter(self.dataset, fields=fields, source=self.config['source'], run_threshold=self.config['run_threshold'], minrel=None, shuf=False, random=self.random, inf=False) for batch_items in util.chunked(it, self.config['batch_size']): batch = {} for record in batch_items: for k, seq in record.items(): batch.setdefault(k, []).append(seq) batch = spec.apply_spec_batch(batch, self.input_spec, device) # ship 'em yield batch def _preload_batches(self, device): with self.logger.duration('loading evaluation data'): batches = list(self.logger.pbar(self._iter_batches(device), desc='preloading eval data (batches)')) while True: yield batches def _reload_batches(self, device): while True: it = self._iter_batches(device) yield it def pred_ctxt(self): device = util.device(self.config, self.logger) if self.config['preload']: datasource = self._preload_batches(device) else: datasource = self._reload_batches(device) return PredictorContext(self, datasource, device) def iter_scores(self, ranker, datasource, device): if ranker.name == 'trivial' and not ranker.config['neg'] and not ranker.config['qsum'] and not ranker.config['max']: for qid, values in self.dataset.run().items(): for did, score in values.items(): yield qid, did, score return if ranker.name == 'trivial' and not ranker.config['neg'] and not ranker.config['qsum'] and ranker.config['max']: qrels = self.dataset.qrels() for qid, values in self.dataset.run().items(): q_qrels = qrels.get(qid, {}) for did in values: yield qid, did, q_qrels.get(did, -1) return with torch.no_grad(): ranker.eval() ds = next(datasource, None) total = None if isinstance(ds, list): total = sum(len(d['query_id']) for d in ds) elif self.config['source'] == 'run': if self.config['run_threshold'] > 0: total = sum(min(len(v), self.config['run_threshold']) for v in self.dataset.run().values()) else: total = sum(len(v) for v in self.dataset.run().values()) elif self.config['source'] == 'qrels': total = sum(len(v) for v in self.dataset.qrels().values()) with self.logger.pbar_raw(total=total, desc='pred', quiet=True) as pbar: for batch in util.background(ds): batch = {k: (v.to(device) if torch.is_tensor(v) else v) for k, v in batch.items()} rel_scores = self.ranker(**batch).cpu() if len(rel_scores.shape) == 2: rel_scores = rel_scores[:, 0] triples = list(zip(batch['query_id'], batch['doc_id'], rel_scores)) for qid, did, score in triples: yield qid, did, score.item() pbar.update(len(batch['query_id'])) def rerank_dict(self, ranker, device): datasource = self._reload_batches(device) result = {} for qid, did, score in self.iter_scores(ranker, datasource, device): result.setdefault(qid, {})[did] = score return result class PredictorContext: def __init__(self, pred, datasource, device): self.pred = pred self.datasource = datasource self.device = device def __call__(self, ctxt): cached = True epoch = ctxt['epoch'] base_path = os.path.join(ctxt['base_path'], self.pred.dataset.path_segment()) if self.pred.config['source'] == 'run' and self.pred.config['run_threshold'] > 0: base_path = '{p}_runthreshold-{run_threshold}'.format(p=base_path, **self.pred.config) os.makedirs(os.path.join(base_path, 'runs'), exist_ok=True) with open(os.path.join(base_path, 'config.json'), 'wt') as f: json.dump(self.pred.dataset.config, f) run_path = os.path.join(base_path, 'runs', f'{epoch}.run') if os.path.exists(run_path): run = trec.read_run_dict(run_path) else: if self.pred.config['source'] == 'run' and self.pred.config['run_threshold'] > 0: official_run = self.pred.dataset.run('dict') else: official_run = {} run = {} ranker = ctxt['ranker']().to(self.device) this_qid = None these_docs = {} with util.finialized_file(run_path, 'wt') as f: #print(ranker, self.datasource) for qid, did, score in self.pred.iter_scores(ranker, self.datasource, self.device): if qid != this_qid: if this_qid is not None: these_docs = self._apply_threshold(these_docs, official_run.get(this_qid, {})) trec.write_run_dict(f, {this_qid: these_docs}) this_qid = qid these_docs = {} these_docs[did] = score if this_qid is not None: these_docs = self._apply_threshold(these_docs, official_run.get(this_qid, {})) trec.write_run_dict(f, {this_qid: these_docs}) cached = False result = { 'epoch': epoch, 'run': run, 'run_path': run_path, 'base_path': base_path, 'cached': cached } result['metrics'] = {m: None for m in self.pred.config['measures'].split(',') if m} result['metrics_by_query'] = {m: None for m in result['metrics']} #print(result['metrics']) missing_metrics = self.load_metrics(result) if missing_metrics: #print("MISSING",missing_metrics) measures = set(missing_metrics) result['cached'] = False qrels = self.pred.dataset.qrels() calculated_metrics = onir.metrics.calc(qrels, run_path, measures) result['metrics_by_query'].update(calculated_metrics) result['metrics'].update(onir.metrics.mean(calculated_metrics)) self.write_missing_metrics(result, missing_metrics) try: if ctxt['ranker']().config.get('add_runscore'): result['metrics']['runscore_alpha'] = torch.sigmoid(ctxt['ranker']().runscore_alpha).item() rs_alpha_f = os.path.join(ctxt['base_path'], 'runscore_alpha.txt') with open(rs_alpha_f, 'at') as f: plaintext.write_tsv(rs_alpha_f, [(str(epoch), str(result['metrics']['runscore_alpha']))]) except FileNotFoundError: pass # model may no longer exist, ignore return result def load_metrics(self, ctxt): missing = set() epoch = ctxt['epoch'] for metric in list(ctxt['metrics']): path_agg = os.path.join(ctxt['base_path'], metric, 'agg.txt') path_epoch = os.path.join(ctxt['base_path'], metric, f'{epoch}.txt') if os.path.exists(path_agg) and os.path.exists(path_epoch): ctxt['metrics'][metric] = [float(v) for k, v in plaintext.read_tsv(path_agg) if int(k) == epoch][0] ctxt['metrics_by_query'][metric] = {k: float(v) for k, v in plaintext.read_tsv(path_epoch)} else: #print(os.path.exists(path_agg), path_agg) #print(os.path.exists(path_epoch), path_epoch) missing.add(metric) return missing def write_missing_metrics(self, ctxt, missing_metrics): epoch = ctxt['epoch'] for metric in missing_metrics: os.makedirs(os.path.join(ctxt['base_path'], metric), exist_ok=True) path_agg = os.path.join(ctxt['base_path'], metric, 'agg.txt') path_epoch = os.path.join(ctxt['base_path'], metric, f'{epoch}.txt') with open(path_agg, 'at') as f: plaintext.write_tsv(f, [(str(epoch), str(ctxt['metrics'][metric]))]) plaintext.write_tsv(path_epoch, ctxt['metrics_by_query'][metric].items()) def _apply_threshold(self, these_docs, original_scores): min_score = min(these_docs.values()) missing_docs = original_scores.keys() - these_docs.keys() for i, did in enumerate(sorted(missing_docs, key=lambda did: original_scores[did], reverse=True)): these_docs[did] = min_score - i - 1 return these_docs
[ "torch.is_tensor", "torch.no_grad" ]
1.7.1
tgeral68/OpenNIR
225b26185bd67fdc00f24de3ef70d35768e22243
1.6
import numpy as np import torch import pytest import copy from unittest.mock import Mock from d3rlpy.algos.torch.utility import soft_sync, hard_sync from d3rlpy.algos.torch.utility import set_eval_mode, set_train_mode from d3rlpy.algos.torch.utility import freeze, unfreeze from d3rlpy.algos.torch.utility import torch_api, train_api, eval_api from d3rlpy.algos.torch.utility import map_location from d3rlpy.algos.torch.utility import get_state_dict, set_state_dict from d3rlpy.algos.torch.utility import compute_augmentation_mean @pytest.mark.parametrize('tau', [0.05]) @pytest.mark.parametrize('input_size', [32]) @pytest.mark.parametrize('output_size', [32]) def test_soft_sync(tau, input_size, output_size): module = torch.nn.Linear(input_size, output_size) targ_module = torch.nn.Linear(input_size, output_size) original = copy.deepcopy(targ_module) soft_sync(targ_module, module, tau) module_params = module.parameters() targ_params = targ_module.parameters() original_params = original.parameters() for p, targ_p, orig_p in zip(module_params, targ_params, original_params): assert torch.allclose(p * tau + orig_p * (1.0 - tau), targ_p) @pytest.mark.parametrize('input_size', [32]) @pytest.mark.parametrize('output_size', [32]) def test_hard_sync(input_size, output_size): module = torch.nn.Linear(input_size, output_size) targ_module = torch.nn.Linear(input_size, output_size) hard_sync(targ_module, module) for p, targ_p in zip(module.parameters(), targ_module.parameters()): assert torch.allclose(targ_p, p) def test_map_location_with_cpu(): assert map_location('cpu:0') == 'cpu' def test_map_location_with_cuda(): fn = map_location('cuda:0') dummy = Mock() dummy.cuda = Mock() fn(dummy, '') dummy.cuda.assert_called_with('cuda:0') class DummyImpl: def __init__(self): self.fc1 = torch.nn.Linear(100, 100) self.fc2 = torch.nn.Linear(100, 100) self.optim = torch.optim.Adam(self.fc1.parameters()) self.device = 'cpu:0' @torch_api() def torch_api_func(self, x): assert isinstance(x, torch.Tensor) @torch_api(scaler_targets=['x']) def torch_api_func_with_scaler(self, x, y, ref_x, ref_y): assert isinstance(x, torch.Tensor) assert torch.allclose(x, torch.tensor(ref_x, dtype=torch.float32)) assert torch.allclose(y, torch.tensor(ref_y, dtype=torch.float32)) @train_api def train_api_func(self): assert self.fc1.training assert self.fc2.training @eval_api def eval_api_func(self): assert not self.fc1.training assert not self.fc2.training def check_if_same_dict(a, b): for k, v in a.items(): if isinstance(v, torch.Tensor): assert (b[k] == v).all() else: assert b[k] == v def test_get_state_dict(): impl = DummyImpl() state_dict = get_state_dict(impl) check_if_same_dict(state_dict['fc1'], impl.fc1.state_dict()) check_if_same_dict(state_dict['fc2'], impl.fc2.state_dict()) check_if_same_dict(state_dict['optim'], impl.optim.state_dict()) def test_set_state_dict(): impl1 = DummyImpl() impl2 = DummyImpl() impl1.optim.step() assert not (impl1.fc1.weight == impl2.fc1.weight).all() assert not (impl1.fc1.bias == impl2.fc1.bias).all() assert not (impl1.fc2.weight == impl2.fc2.weight).all() assert not (impl1.fc2.bias == impl2.fc2.bias).all() chkpt = get_state_dict(impl1) set_state_dict(impl2, chkpt) assert (impl1.fc1.weight == impl2.fc1.weight).all() assert (impl1.fc1.bias == impl2.fc1.bias).all() assert (impl1.fc2.weight == impl2.fc2.weight).all() assert (impl1.fc2.bias == impl2.fc2.bias).all() def test_eval_mode(): impl = DummyImpl() impl.fc1.train() impl.fc2.train() set_eval_mode(impl) assert not impl.fc1.training assert not impl.fc2.training def test_train_mode(): impl = DummyImpl() impl.fc1.eval() impl.fc2.eval() set_train_mode(impl) assert impl.fc1.training assert impl.fc2.training @pytest.mark.skip(reason='no way to test this') def test_to_cuda(): pass @pytest.mark.skip(reason='no way to test this') def test_to_cpu(): pass def test_freeze(): impl = DummyImpl() freeze(impl) for p in impl.fc1.parameters(): assert not p.requires_grad for p in impl.fc2.parameters(): assert not p.requires_grad def test_unfreeze(): impl = DummyImpl() freeze(impl) unfreeze(impl) for p in impl.fc1.parameters(): assert p.requires_grad for p in impl.fc2.parameters(): assert p.requires_grad def test_compute_augmentation_mean(): class DummyAugmentation: def __init__(self): self.n = 1 def transform(self, x): y = x + self.n self.n += 1 return y aug = DummyAugmentation() def func(x): return x x = np.random.random((100, 100)) y = compute_augmentation_mean(aug, 2, func, {'x': x}, 'x') assert np.allclose(y, x + 1.5) def test_torch_api(): impl = DummyImpl() impl.scaler = None x = np.random.random((100, 100)) impl.torch_api_func(x) def test_torch_api_with_scaler(): impl = DummyImpl() class DummyScaler: def transform(self, x): return x + 0.1 scaler = DummyScaler() impl.scaler = scaler x = np.random.random((100, 100)) y = np.random.random((100, 100)) impl.torch_api_func_with_scaler(x, y, ref_x=x + 0.1, ref_y=y) def test_train_api(): impl = DummyImpl() impl.fc1.eval() impl.fc2.eval() impl.train_api_func() def test_eval_api(): impl = DummyImpl() impl.fc1.train() impl.fc2.train() impl.eval_api_func()
[ "torch.nn.Linear", "torch.tensor", "torch.allclose" ]
1.6.0
alxlampe/d3rlpy
af7e6bd018a51f95138d121f59c50dc36ec87e3a
1.0
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task. """ import collections import gc import inspect import math import os import re import shutil import sys import time import warnings from logging import StreamHandler from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split default_hp_search_backend, get_reporting_integration_callbacks, hp_params, is_fairscale_available, is_optuna_available, is_ray_tune_available, run_hp_search_optuna, run_hp_search_ray, init_deepspeed, ) import numpy as np import torch from packaging import version from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler, SequentialSampler from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from .file_utils import ( WEIGHTS_NAME, is_apex_available, is_datasets_available, is_in_notebook, is_sagemaker_distributed_available, is_torch_tpu_available, is_training_run_on_sagemaker, ) from .modeling_utils import PreTrainedModel, unwrap_model from .optimization import Adafactor, AdamW, get_scheduler from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedSamplerWithLoop, DistributedTensorGatherer, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, distributed_broadcast_scalars, distributed_concat, get_parameter_names, nested_concat, nested_detach, nested_numpify, nested_xla_mesh_reduce, reissue_pt_warnings, ) from .trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalPrediction, HPSearchBackend, PredictionOutput, ShardedDDPOption, TrainerMemoryTracker, TrainOutput, default_compute_objective, default_hp_space, denumpify_detensorize, get_last_checkpoint, set_seed, speed_metrics, ) from .training_args import ParallelMode, TrainingArguments from .utils import logging from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES _is_native_amp_available = False DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from .utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback if is_apex_available(): from apex import amp if version.parse(torch.__version__) >= version.parse("1.6"): _is_native_amp_available = True from torch.cuda.amp import autocast if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl if is_fairscale_available(): import fairscale from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if version.parse(fairscale.__version__) >= version.parse("0.3"): from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP from fairscale.nn.wrap import auto_wrap else: FullyShardedDDP = None if is_sagemaker_distributed_available(): import smdistributed.dataparallel.torch.distributed as dist from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP else: import torch.distributed as dist if is_training_run_on_sagemaker(): logging.add_handler(StreamHandler(sys.stdout)) if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`): The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed. .. note:: :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel` provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. args (:class:`~transformers.TrainingArguments`, `optional`): The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided. data_collator (:obj:`DataCollator`, `optional`): The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise. train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. tokenizer (:class:`PreTrainedTokenizerBase`, `optional`): The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`): A function that instantiates the model to be used. If provided, each call to :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function. The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in :doc:`here <callback>`. If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method. optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of :class:`~transformers.AdamW` on your model and a scheduler given by :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`. Important attributes: - **model** -- Always points to the core model. If using a transformers model, it will be a :class:`~transformers.PreTrainedModel` subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``, the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to :obj:`False` if model parallel or deepspeed is used, or if the default ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` . - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called while in ``train``) """ from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state def __init__( self, model: Union[PreTrainedModel, torch.nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, tokenizer: Optional["PreTrainedTokenizerBase"] = None, model_init: Callable[[], PreTrainedModel] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) self.args = args # Seed must be set before instantiating the model when using model set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # force device and distributed setup init explicitly args._setup_devices if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. " "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.", FutureWarning, ) self.model_init = model_init if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel: self.is_model_parallel = True else: self.is_model_parallel = False # Setup Sharded DDP training self.sharded_ddp = None if len(args.sharded_ddp) > 0: if args.deepspeed: raise ValueError( "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if args.local_rank == -1: raise ValueError("Using sharded DDP only works in distributed training.") elif not is_fairscale_available(): raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.") elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None: raise ImportError( "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found " f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`." ) elif ShardedDDPOption.SIMPLE in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.SIMPLE elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_2 elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_3 # one place to sort out whether to place the model on device or not self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or (args.deepspeed and args.do_train) or (args.fp16_full_eval and not args.do_train) or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3]) ): self.place_model_on_device = False default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.tokenizer = tokenizer # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment if self.place_model_on_device: model = model.to(args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1 # later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument." "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) # Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create output directory if needed if self.is_world_process_zero(): os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") # Enforce rules on using datasets with no __len__ if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0: raise ValueError("train_dataset does not implement __len__, max_steps has to be specified") if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") self._signature_columns = None if is_datasets_available(): if isinstance(train_dataset, datasets.Dataset): self._remove_unused_columns(self.train_dataset, description="training") if isinstance(eval_dataset, datasets.Dataset): self._remove_unused_columns(self.eval_dataset, description="evaluation") # Mixed precision setup self.use_apex = False self.use_amp = False self.fp16_backend = None if args.fp16: if args.fp16_backend == "auto": self.fp16_backend = "amp" if _is_native_amp_available else "apex" else: self.fp16_backend = args.fp16_backend logger.info(f"Using {self.fp16_backend} fp16 backend") if args.fp16 and not args.deepspeed: # deepspeed manages its own fp16 if self.fp16_backend == "amp": self.use_amp = True self.scaler = ShardedGradScaler() if self.sharded_ddp is not None else torch.cuda.amp.GradScaler() else: if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex." ) self.use_apex = True # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.state = TrainerState() self.control = TrainerControl() # Internal variable for total_flos used to count as tensors (for distributed + TPU), will be sent in the # state at each call to self.log. self._total_flos = None self.hp_search_backend = None self.use_tune_checkpoints = False default_label_names = ( ["start_positions", "end_positions"] if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values() else ["labels"] ) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) # very last self._memory_tracker.stop_and_update_metrics() def add_callback(self, callback): """ Add a callback to the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it. If the callback is not found, returns :obj:`None` (and no error is raised). Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will pop the first member of that class found in the list of callbacks. Returns: :class:`~transformer.TrainerCallback`: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. signature = inspect.signature(self.model.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += ["label", "label_ids"] columns = [k for k in self._signature_columns if k in dataset.column_names] ignored_columns = list(set(dataset.column_names) - set(self._signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set " logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." ) dataset.set_format(type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]) def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]: if isinstance(self.train_dataset, torch.utils.data.IterableDataset) or not isinstance( self.train_dataset, collections.abc.Sized ): return None # Build the sampler. if self.args.group_by_length: model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None if self.args.world_size <= 1: return LengthGroupedSampler( self.train_dataset, self.args.train_batch_size, model_input_name=model_input_name ) else: return DistributedLengthGroupedSampler( self.train_dataset, self.args.train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, model_input_name=model_input_name, ) else: if self.args.world_size <= 1: return RandomSampler(self.train_dataset) elif self.args.parallel_mode == ParallelMode.TPU and not self.args.dataloader_drop_last: # Use a loop for TPUs when drop_last is False to have all batches have the same size. return DistributedSamplerWithLoop( self.train_dataset, batch_size=self.args.per_device_train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, ) else: return DistributedSampler( self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index ) def get_train_dataloader(self) -> DataLoader: """ Returns the training :class:`~torch.utils.data.DataLoader`. Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_sampler = self._get_train_sampler() return DataLoader( self.train_dataset, batch_size=self.args.train_batch_size, sampler=train_sampler, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]: if is_torch_tpu_available(): return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) elif self.args.local_rank != -1: return SequentialDistributedSampler(eval_dataset) else: return SequentialSampler(eval_dataset) def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: """ Returns the evaluation :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") elif eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") elif is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): self._remove_unused_columns(eval_dataset, description="evaluation") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset eval_sampler = self._get_eval_sampler(eval_dataset) return DataLoader( eval_dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if not isinstance(test_dataset, collections.abc.Sized): raise ValueError("test_dataset must implement __len__") elif is_datasets_available() and isinstance(test_dataset, datasets.Dataset): self._remove_unused_columns(test_dataset, description="test") test_sampler = self._get_eval_sampler(test_dataset) # We use the same batch_size as for eval. return DataLoader( test_dataset, sampler=test_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, pin_memory=self.args.dataloader_pin_memory, ) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: decay_parameters = get_parameter_names(self.model, [torch.nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if n in decay_parameters], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if self.lr_scheduler is None: warmup_steps = ( self.args.warmup_steps if self.args.warmup_steps > 0 else math.ceil(num_training_steps * self.args.warmup_ratio) ) self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps, ) def num_examples(self, dataloader: DataLoader) -> int: """ Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset. Will raise an exception if the underlying dataset dese not implement method :obj:`__len__` """ return len(dataloader.dataset) def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """ HP search setup code """ self._trial = trial if self.hp_search_backend is None or trial is None: return params = self.hp_space(trial) if self.hp_search_backend == HPSearchBackend.OPTUNA else trial for key, value in params.items(): if not hasattr(self.args, key): raise AttributeError( f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`." ) old_attr = getattr(self.args, key, None) # Casting value to the proper type if old_attr is not None: value = type(old_attr)(value) setattr(self.args, key, value) if self.hp_search_backend == HPSearchBackend.OPTUNA: logger.info("Trial:", trial.params) def _report_to_hp_search( self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float] ): if self.hp_search_backend is None or trial is None: return self.objective = self.compute_objective(metrics.copy()) if self.hp_search_backend == HPSearchBackend.OPTUNA: import optuna trial.report(self.objective, epoch) if trial.should_prune(): raise optuna.TrialPruned() elif self.hp_search_backend == HPSearchBackend.RAY: from ray import tune if self.control.should_save: self._tune_save_checkpoint() tune.report(objective=self.objective, **metrics) def _tune_save_checkpoint(self): from ray import tune if not self.use_tune_checkpoints: return with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir: output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}") self.save_model(output_dir) if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) def call_model_init(self, trial=None): model_init_argcount = len(inspect.signature(self.model_init).parameters) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(trial) else: raise RuntimeError("model_init should have 0 or 1 argument.") if model is None: raise RuntimeError("model_init should not return None.") return model def _wrap_model(self, model, training=True): # already initialized its own DDP and AMP if self.deepspeed: return self.deepspeed # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again if unwrap_model(model) is not model: return model # Mixed precision training with apex (torch < 1.6) if self.use_apex and training: model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level) # Multi-gpu training (should be after apex fp16 initialization) if self.args.n_gpu > 1: model = torch.nn.DataParallel(model) # Note: in torch.distributed mode, there's no point in wrapping the model # inside a DistributedDataParallel as we'll be under `no_grad` anyways. if not training: return model # Distributed training (should be after apex fp16 initialization) if self.sharded_ddp is not None: # Sharded DDP! if self.sharded_ddp == ShardedDDPOption.SIMPLE: model = ShardedDDP(model, self.optimizer) else: mixed_precision = self.args.fp16 cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3 # XXX: Breaking the self.model convention but I see no way around it for now. if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp: model = auto_wrap(model) self.model = model = FullyShardedDDP( model, mixed_precision=mixed_precision, reshard_after_forward=zero_3, cpu_offload=cpu_offload, ).to(self.args.device) elif is_sagemaker_distributed_available(): model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) elif self.args.local_rank != -1: if self.args.ddp_find_unused_parameters is not None: find_unused_parameters = self.args.ddp_find_unused_parameters elif isinstance(model, PreTrainedModel): # find_unused_parameters breaks checkpointing as per # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021 find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False) else: find_unused_parameters = True model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[self.args.local_rank], output_device=self.args.local_rank, find_unused_parameters=find_unused_parameters, ) return model def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): The trial run or the hyperparameter dictionary for hyperparameter search. kwargs: Additional keyword arguments used to hide deprecated arguments """ # memory metrics - must set up as early as possible self._memory_tracker.start() self.is_in_train = True if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. set_seed(self.args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(self.args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({self.args.output_dir})") if resume_from_checkpoint is not None and os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): logger.info(f"Loading model from {resume_from_checkpoint}).") if isinstance(self.model, PreTrainedModel): self.model = self.model.from_pretrained(resume_from_checkpoint) model_reloaded = True else: state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)) self.model.load_state_dict(state_dict) # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self.model = self.model.to(self.args.device) self.model_wrapped = self.model # Keeping track whether we can can len() on the dataset or not train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) # Data loader and number of training steps train_dataloader = self.get_train_dataloader() # Setting up training control variables: # number of training epochs: num_train_epochs # number of training steps per epoch: num_update_steps_per_epoch # total number of training steps to execute: max_steps if train_dataset_is_sized: num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) if self.args.max_steps > 0: max_steps = self.args.max_steps num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int( self.args.max_steps % num_update_steps_per_epoch > 0 ) else: max_steps = math.ceil(self.args.num_train_epochs * num_update_steps_per_epoch) num_train_epochs = math.ceil(self.args.num_train_epochs) else: # see __init__. max_steps is set when the dataset has no __len__ max_steps = self.args.max_steps num_train_epochs = 1 num_update_steps_per_epoch = max_steps delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE if self.args.deepspeed: model, optimizer, lr_scheduler = init_deepspeed(self, num_training_steps=max_steps) self.model = model.module self.model_wrapped = model # will get further wrapped in DDP self.deepspeed = model # DeepSpeedEngine object self.optimizer = optimizer self.lr_scheduler = lr_scheduler elif not delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) self.state = TrainerState() self.state.is_hyper_param_search = trial is not None model = self._wrap_model(self.model_wrapped) # for the rest of this function `model` is the outside model, whether it was wrapped or not if model is not self.model: self.model_wrapped = model if delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) # Check if saved optimizer or scheduler states exist self._load_optimizer_and_scheduler(resume_from_checkpoint) # important: at this point: # self.model is the Transformers Model # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. # Train! if is_torch_tpu_available(): world_size = xm.xrt_world_size() elif self.args.local_rank != -1: world_size = dist.get_world_size() else: world_size = 1 total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps * world_size num_examples = ( self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * self.args.max_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_steps}") self.state.epoch = 0 start_time = time.time() epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if resume_from_checkpoint is not None and os.path.isfile( os.path.join(resume_from_checkpoint, "trainer_state.json") ): self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json")) epochs_trained = self.state.global_step // num_update_steps_per_epoch if not self.args.ignore_data_skip: steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) steps_trained_in_current_epoch *= self.args.gradient_accumulation_steps else: steps_trained_in_current_epoch = 0 logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {self.state.global_step}") if not self.args.ignore_data_skip: logger.info( f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " "batches in the first epoch." ) # Update the references self.callback_handler.model = self.model self.callback_handler.optimizer = self.optimizer self.callback_handler.lr_scheduler = self.lr_scheduler self.callback_handler.train_dataloader = train_dataloader self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None self.state.trial_params = hp_params(trial) if trial is not None else None # This should be the same if the state has been saved but in case the training arguments changed, it's safer # to set this after the load. self.state.max_steps = max_steps self.state.num_train_epochs = num_train_epochs self.state.is_local_process_zero = self.is_local_process_zero() self.state.is_world_process_zero = self.is_world_process_zero() # tr_loss is a tensor to avoid synchronization of TPUs through .item() tr_loss = torch.tensor(0.0).to(self.args.device) # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses self._total_loss_scalar = 0.0 self._globalstep_last_logged = self.state.global_step self._total_flos = self.state.total_flos model.zero_grad() self.control = self.callback_handler.on_train_begin(self.args, self.state, self.control) # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. if not self.args.ignore_data_skip: for epoch in range(epochs_trained): # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break for epoch in range(epochs_trained, num_train_epochs): if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch) if is_torch_tpu_available(): parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader( self.args.device ) epoch_iterator = parallel_loader else: epoch_iterator = train_dataloader # Reset the past mems state at the beginning of each epoch if necessary. if self.args.past_index >= 0: self._past = None steps_in_epoch = ( len(epoch_iterator) if train_dataset_is_sized else self.args.max_steps * self.args.gradient_accumulation_steps ) self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue if (step + 1) % self.args.gradient_accumulation_steps == 0: self.control = self.callback_handler.on_step_begin(self.args, self.state, self.control) if ( ((step + 1) % self.args.gradient_accumulation_steps != 0) and self.args.local_rank != -1 and self.args._no_sync_in_gradient_accumulation ): # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): tr_loss += self.training_step(model, inputs) else: tr_loss += self.training_step(model, inputs) self._total_flos += float(self.floating_point_ops(inputs)) # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps if self.deepspeed: self.deepspeed.step() if (step + 1) % self.args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps steps_in_epoch <= self.args.gradient_accumulation_steps and (step + 1) == steps_in_epoch ): # Gradient clipping if self.args.max_grad_norm is not None and self.args.max_grad_norm > 0 and not self.deepspeed: # deepspeed does its own clipping if self.use_amp: # AMP: gradients need unscaling self.scaler.unscale_(self.optimizer) if hasattr(self.optimizer, "clip_grad_norm"): # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping self.optimizer.clip_grad_norm(self.args.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): # Some models (like FullyShardedDDP) have a specific way to do gradient clipping model.clip_grad_norm_(self.args.max_grad_norm) else: # Revert to normal clipping otherwise, handling Apex or full precision torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer) if self.use_apex else model.parameters(), self.args.max_grad_norm, ) # Optimizer step if self.deepspeed: pass # called outside the loop elif is_torch_tpu_available(): xm.optimizer_step(self.optimizer) elif self.use_amp: self.scaler.step(self.optimizer) self.scaler.update() else: self.optimizer.step() if not self.deepspeed: self.lr_scheduler.step() model.zero_grad() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_in_epoch self.control = self.callback_handler.on_step_end(self.args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(self.args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.args.tpu_metrics_debug or self.args.debug: if is_torch_tpu_available(): # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) else: logger.warning( "You enabled PyTorch/XLA debug metrics but you don't have a TPU " "configured. Check your training configuration if this is unexpected." ) if self.control.should_training_stop: break if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") if self.args.load_best_model_at_end and self.state.best_model_checkpoint is not None: # Wait for everyone to get here so we are sur the model has been saved by process 0. if is_torch_tpu_available(): xm.rendezvous("load_best_model_at_end") elif self.args.local_rank != -1: dist.barrier() logger.info( f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." ) if isinstance(self.model, PreTrainedModel): self.model = self.model.from_pretrained(self.state.best_model_checkpoint) if self.place_model_on_device: self.model = self.model.to(self.args.device) else: state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)) self.model.load_state_dict(state_dict) if self.deepspeed: self.deepspeed.load_checkpoint( self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False ) metrics = speed_metrics("train", start_time, self.state.max_steps) if self._total_flos is not None: self.store_flos() metrics["total_flos"] = self.state.total_flos self.log(metrics) self.control = self.callback_handler.on_train_end(self.args, self.state, self.control) # add remaining tr_loss self._total_loss_scalar += tr_loss.item() if self.deepspeed: # free up any memory that might be useful for eval self.deepspeed = None self.optimizer = None self.lr_scheduler = None self.model_wrapped = self.model gc.collect() # force memory release # to restore normal behavior outside of train replay the place_model_on_device logic w/o deepspeed self.place_model_on_device = self.args.place_model_on_device if self.is_model_parallel: self.place_model_on_device = False self.is_in_train = False self._memory_tracker.stop_and_update_metrics(metrics) return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics) def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch): if self.control.should_log: logs: Dict[str, float] = {} tr_loss_scalar = tr_loss.item() # reset tr_loss to zero tr_loss -= tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._total_loss_scalar += tr_loss_scalar self._globalstep_last_logged = self.state.global_step self.log(logs) metrics = None if self.control.should_evaluate: metrics = self.evaluate() self._report_to_hp_search(trial, epoch, metrics) if self.control.should_save: self._save_checkpoint(model, trial, metrics=metrics) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def _save_checkpoint(self, model, trial, metrics=None): # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we # want to save except FullyShardedDDP. # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model" # Save model checkpoint checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" if self.hp_search_backend is not None and trial is not None: if self.hp_search_backend == HPSearchBackend.OPTUNA: run_id = trial.number else: from ray import tune run_id = tune.get_trial_id() run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}" run_dir = os.path.join(self.args.output_dir, run_name) else: run_dir = self.args.output_dir self.store_flos() output_dir = os.path.join(run_dir, checkpoint_folder) self.save_model(output_dir) if self.deepspeed: self.deepspeed.save_checkpoint(output_dir) # Save optimizer and scheduler if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer.consolidate_state_dict() if is_torch_tpu_available(): xm.rendezvous("saving_optimizer_states") xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) elif self.is_world_process_zero() and not self.deepspeed: # deepspeed.save_checkpoint above saves model/optim/sched torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) # Determine the new best metric / best model checkpoint if metrics is not None and self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics[metric_to_check] operator = np.greater if self.args.greater_is_better else np.less if ( self.state.best_metric is None or self.state.best_model_checkpoint is None or operator(metric_value, self.state.best_metric) ): self.state.best_metric = metric_value self.state.best_model_checkpoint = output_dir # Save the Trainer state if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) # Maybe delete some older checkpoints. if self.is_world_process_zero(): self._rotate_checkpoints(use_mtime=True, output_dir=run_dir) def _load_optimizer_and_scheduler(self, checkpoint): """If optimizer and scheduler states exist, load them.""" if checkpoint is None: return if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile( os.path.join(checkpoint, "scheduler.pt") ): # Load in optimizer and scheduler states if is_torch_tpu_available(): # On TPU we have to take some extra precautions to properly load the states on the right device. optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu") with warnings.catch_warnings(record=True) as caught_warnings: lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu") reissue_pt_warnings(caught_warnings) xm.send_cpu_data_to_device(optimizer_state, self.args.device) xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device) self.optimizer.load_state_dict(optimizer_state) self.lr_scheduler.load_state_dict(lr_scheduler_state) else: self.optimizer.load_state_dict( torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=self.args.device) ) with warnings.catch_warnings(record=True) as caught_warnings: self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt"))) reissue_pt_warnings(caught_warnings) if self.deepspeed: # Not sure how to check if there is a saved deepspeed checkpoint, but since it just return None if it fails to find a deepspeed checkpoint this is sort of a check-n-load function self.deepspeed.load_checkpoint(checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True) def hyperparameter_search( self, hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None, compute_objective: Optional[Callable[[Dict[str, float]], float]] = None, n_trials: int = 20, direction: str = "minimize", backend: Optional[Union["str", HPSearchBackend]] = None, hp_name: Optional[Callable[["optuna.Trial"], str]] = None, **kwargs, ) -> BestRun: """ Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise. .. warning:: To use this method, you need to have provided a ``model_init`` when initializing your :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler. Args: hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`): A function that defines the hyperparameter search space. Will default to :func:`~transformers.trainer_utils.default_hp_space_optuna` or :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend. compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`): A function computing the objective to minimize or maximize from the metrics returned by the :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`. n_trials (:obj:`int`, `optional`, defaults to 100): The number of trial runs to test. direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`): Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or several metrics. backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`): The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna. kwargs: Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For more information see: - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ Returns: :class:`transformers.trainer_utils.BestRun`: All the information about the best run. """ if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError( "At least one of optuna or ray should be installed. " "To install optuna run `pip install optuna`." "To install ray run `pip install ray[tune]`." ) backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and not is_optuna_available(): raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.") if backend == HPSearchBackend.RAY and not is_ray_tune_available(): raise RuntimeError( "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`." ) self.hp_search_backend = backend if self.model_init is None: raise RuntimeError( "To use hyperparameter search, you need to pass your model through a model_init function." ) self.hp_space = default_hp_space[backend] if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray best_run = run_hp_search(self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if self.state.epoch is not None: logs["epoch"] = round(self.state.epoch, 2) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output) self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs) def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if isinstance(v, torch.Tensor): inputs[k] = v.to(self.args.device) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.args.gradient_accumulation_steps > 1 and not self.deepspeed: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: # loss gets scaled under gradient_accumulation_steps in deepspeed loss = self.deepspeed.backward(loss) else: loss.backward() return loss.detach() def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss def is_local_process_zero(self) -> bool: """ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. """ if is_torch_tpu_available(): return xm.is_master_ordinal(local=True) else: return self.args.local_rank in [-1, 0] def is_world_process_zero(self) -> bool: """ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be :obj:`True` for one process). """ if is_torch_tpu_available(): return xm.is_master_ordinal(local=False) else: return self.args.local_rank == -1 or dist.get_rank() == 0 def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. Will only save from the main process. """ if is_torch_tpu_available(): self._save_tpu(output_dir) elif ( ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp ): state_dict = self.model.state_dict() if self.is_world_process_zero(): self._save(output_dir, state_dict=state_dict) elif self.is_world_process_zero(): self._save(output_dir) def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info("Saving model checkpoint to %s", output_dir) if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained( output_dir, save_config=self.is_world_process_zero(), state_dict=self.model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save) if self.tokenizer is not None and self.is_world_process_zero(): self.tokenizer.save_pretrained(output_dir) def _save(self, output_dir: Optional[str] = None, state_dict=None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info("Saving model checkpoint to %s", output_dir) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): if state_dict is None: state_dict = self.model.state_dict() unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") if state_dict is None: state_dict = self.model.state_dict() torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, state_dict=state_dict) if self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def store_flos(self): # Storing the number of floating-point operations that went into the model if self._total_flos is not None: if self.args.local_rank != -1: self.state.total_flos = distributed_broadcast_scalars([self._total_flos]).sum().item() else: self.state.total_flos = self._total_flos def _sorted_checkpoints( self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False ) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")] for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match and regex_match.groups(): ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] # Make sure we don't delete the best model. if self.state.best_model_checkpoint is not None: best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint))) checkpoints_sorted[best_model_index], checkpoints_sorted[-1] = ( checkpoints_sorted[-1], checkpoints_sorted[best_model_index], ) return checkpoints_sorted def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None: if self.args.save_total_limit is None or self.args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir) if len(checkpoints_sorted) <= self.args.save_total_limit: return number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint)) shutil.rmtree(checkpoint) def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ # memory metrics - must set up as early as possible self._memory_tracker.start() if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() output = self.prediction_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset) output.metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples)) self.log(output.metrics) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval" ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:obj:`Dataset`): Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__` ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) .. note:: If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ # memory metrics - must set up as early as possible self._memory_tracker.start() if test_dataset is not None and not isinstance(test_dataset, collections.abc.Sized): raise ValueError("test_dataset must implement __len__") test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() output = self.prediction_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) output.metrics.update(speed_metrics(metric_key_prefix, start_time, len(test_dataset))) self._memory_tracker.stop_and_update_metrics(output.metrics) return output def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) if self.args.deepspeed and not self.args.do_train: # no harm, but flagging to the user that deepspeed config is ignored for eval # flagging only for when --do_train wasn't passed as only then it's redundant logger.info("Detected the deepspeed argument but it will not be used for evaluation") model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, half it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info("***** Running %s *****", description) logger.info(" Num examples = %d", num_examples) logger.info(" Batch size = %d", batch_size) losses_host: torch.Tensor = None preds_host: Union[torch.Tensor, List[torch.Tensor]] = None labels_host: Union[torch.Tensor, List[torch.Tensor]] = None world_size = max(1, self.args.world_size) eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size) if not prediction_loss_only: preds_gatherer = DistributedTensorGatherer(world_size, num_examples) labels_gatherer = DistributedTensorGatherer(world_size, num_examples) model.eval() if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None self.callback_handler.eval_dataloader = dataloader for step, inputs in enumerate(dataloader): loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) if loss is not None: losses = loss.repeat(batch_size) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) eval_loss = eval_losses_gatherer.finalize() preds = preds_gatherer.finalize() if not prediction_loss_only else None label_ids = labels_gatherer.finalize() if not prediction_loss_only else None if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if eval_loss is not None: metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def _gather_and_numpify(self, tensors, name): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): tensors = nested_xla_mesh_reduce(tensors, name) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return nested_numpify(tensors) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if has_labels: loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] return (loss, logits, labels) def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]): """ For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method. Args: inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. Returns: :obj:`int`: The number of floating-point operations. """ if hasattr(self.model, "floating_point_ops"): return self.model.floating_point_ops(inputs) else: return 0
[ "torch.distributed.get_world_size", "torch.cat", "torch.utils.data.sampler.RandomSampler", "torch.utils.data.dataloader.DataLoader", "torch.cuda.amp.autocast", "torch.no_grad", "torch.nn.parallel.DistributedDataParallel", "torch.utils.data.sampler.SequentialSampler", "torch.tensor", "torch.utils.data.distributed.DistributedSampler", "torch.cuda.amp.GradScaler", "torch.distributed.get_rank", "torch.distributed.barrier", "torch.distributed.get_local_rank", "torch.nn.DataParallel" ]
1.0
rmroczkowski/transformers
c988db5af2a5f1ccfcb5ad19bd735b6a77516637