version
stringclasses
24 values
code
stringlengths
396
135k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
6
64
hexsha
stringlengths
40
40
1.8
import numpy as np import torch from discrete_network.network import KNNet, KNNetParameters, KNNetState from discrete_network.method.force_method import ForceParameters, ForceLearn from discrete_network.device import device import matplotlib.pyplot as plt print(f"Device = {device.type}") # params_spiking = KNNetParameters(eps = 0.015, beta = 0.0, d = 0.26, a = 0.25, J = 0.1081 + 0.1) # params_spiking = KNNetParameters(eps = 0.015, beta = 0.03, d = 0.26, a = 0.25, J = 0.1081 + 0.1) # params_spiking = KNNetParameters(eps = 0.015, beta = 0.05, d = 0.26, a = 0.25, J = 0.15) # normal spike # params_spiking = KNNetParameters(eps = 0.02, beta = 0.0, d = 0.26, a = 0.25, J = 0.1081 + 0.1) # params_spiking = KNNetParameters(eps = 0.03, beta = 0.035, d = 0.26, a = 0.25, J = 0.1081 + 0.1) def one_neuron(x0, y0, iteration, p: KNNetParameters): """The dynamics of one neuron. Return x, y.""" x, y = np.zeros(iteration), np.zeros(iteration) x[0], y[0] = x0, y0 for i in range(iteration - 1): x[i + 1] = ( x[i] + x[i] * (x[i] - p.a) * (1 - x[i]) - p.beta * (x[i] > p.d) - y[i] ) y[i + 1] = y[i] + p.eps * (x[i] - p.J) return x, y imin = 0; icrit = 20000; nt = 21000 input_size = 0 hidden_size = 2000 output_size = 2 eps_start = 0.01 eps_stop = 0.1 eps = eps_start + (eps_stop - eps_start) * torch.rand(hidden_size, 1).to(device) a = 0.25 J = (1 + a - torch.sqrt(1 + a * a - a + 3 * eps)) / 3 J = J.to(device) p = KNNetParameters( eps=eps, a=torch.as_tensor(a), J=J, q=1.1, g=0.1, x_th=torch.as_tensor(0.65), beta=torch.as_tensor(0.0) ) bifparams = [] bifparams_second = [] for i in np.arange(0.03, 0.04, 0.001): for j in np.arange(0.025, 0.1, 0.002): params_spiking = KNNetParameters(eps = j, beta = i, d = 0.26, a = 0.25, J = 0.1081 + 0.1) f_out_x, f_out_y = one_neuron(0.3, 0, nt, params_spiking) f_out = np.concatenate([[f_out_x], [f_out_y]], 0).T x_initial = 0.9 * torch.rand(hidden_size, 1).to(device) y_initial = torch.zeros(hidden_size, 1).to(device) z_initial = torch.zeros(hidden_size, 1).to(device) ISPC_initial = torch.zeros(hidden_size, 1).to(device) initial_state = KNNetState(x=x_initial, y=y_initial, z=z_initial, ISPC=ISPC_initial) net = KNNet(input_size, hidden_size, output_size, p=p) net.to_device(device) lp = ForceParameters(stop_learning=icrit, start_learning=imin) fl = ForceLearn(net=net, lp=lp, save_states=True) train_logs, states = fl.train(target_outputs=f_out, state=initial_state) L2 = torch.linalg.norm(train_logs[-1000:, 0, 0] - f_out[-1000:, 0]) L2_second = torch.linalg.norm(train_logs[-1000:, 1, 0] - f_out[-1000:, 1]) print(torch.log(L2)) bifparams.append([i, j, torch.log(L2).item()]) bifparams_second.append([i, j, torch.log(L2_second).item()]) print(f'1dim: {bifparams[-1]}, 2dim: {bifparams_second[-1]}') bifparams = np.array(bifparams) bifparams_second = np.array(bifparams_second) np.save('./betaeps_3', bifparams) np.save('./betaeps_second_3', bifparams_second)
[ "torch.rand", "torch.sqrt", "torch.zeros", "torch.linalg.norm", "torch.as_tensor", "torch.log" ]
1.8.2
aw02m/Spiking_neural_networks
4c23c50b52b15a9e5709cb672fd18cd22218b9f2
1.7
#!/usr/bin/env python # -*- coding: utf-8 -*- """ created by Halo 2020/10/28 11:28 https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter03_DL-basics/3.12_weight-decay """ import torch import torch.nn as nn import numpy as np import mytorch.d2lzh_pytorch as d2l n_train, n_test, num_inputs = 20, 100, 200 true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05 features = torch.randn((n_train + n_test, num_inputs)) labels = torch.matmul(features, true_w) + true_b labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float) train_features, test_features = features[:n_train, :], features[n_train:, :] train_labels, test_labels = labels[:n_train], labels[n_train:] def init_params(): w = torch.randn((num_inputs, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) return [w, b] def l2_penalty(w): return (w ** 2).sum() / 2 batch_size, num_epochs, lr = 1, 100, 0.003 net, loss = d2l.linreg, d2l.squared_loss dataset = torch.utils.data.TensorDataset(train_features, train_labels) train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) def fit_and_plot(lambd): w, b = init_params() train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: l = loss(net(X, w, b), y) + lambd * l2_penalty(w) l = l.sum() if w.grad is not None: w.grad.data.zero_() b.grad.data.zero_() l.backward() d2l.sgd([w, b], lr, batch_size) train_ls.append(loss(net(train_features, w, b), train_labels).mean().item()) test_ls.append(loss(net(test_features, w, b), test_labels).mean().item()) d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('L2 norm of w:', w.norm().item()) # 权重衰减可以通过优化器中的weight_decay超参数来指定。 def fit_and_plot_pytorch(wd): net = nn.Linear(num_inputs, 1) nn.init.normal_(net.weight, mean=0, std=1) nn.init.normal_(net.bias, mean=0, std=1) optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减 optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr) # 不对偏差参数衰减 train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: l = loss(net(X), y).mean() optimizer_w.zero_grad() optimizer_b.zero_grad() l.backward() # 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差 optimizer_w.step() optimizer_b.step() train_ls.append(loss(net(train_features), train_labels).mean().item()) test_ls.append(loss(net(test_features), test_labels).mean().item()) d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('L2 norm of w:', net.weight.data.norm().item()) fit_and_plot(lambd=0) fit_and_plot(lambd=3) fit_and_plot_pytorch(0) fit_and_plot_pytorch(3)
[ "torch.zeros", "torch.nn.Linear", "torch.optim.SGD", "torch.ones", "torch.randn", "torch.nn.init.normal_", "torch.utils.data.DataLoader", "torch.matmul", "torch.utils.data.TensorDataset" ]
1.7.0
Halo1236/Dive-into-DL-PyTorch
586b4e9ca77b2121ce5f5bec8b0a893b33f1b574
1.4
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from torch.nn import functional as F from detectron2.layers import paste_masks_in_image from detectron2.structures import Instances def detector_postprocess(results, output_height, output_width, mask_threshold=0.5): """ Resize the output instances. The input images are often resized when entering an object detector. As a result, we often need the outputs of the detector in a different resolution from its inputs. This function will resize the raw outputs of an R-CNN detector to produce outputs according to the desired output resolution. Args: results (Instances): the raw outputs from the detector. `results.image_size` contains the input image resolution the detector sees. This object might be modified in-place. output_height, output_width: the desired output resolution. Returns: Instances: the resized output from the model, based on the output resolution """ scale_x, scale_y = (output_width / results.image_size[1], output_height / results.image_size[0]) results = Instances((output_height, output_width), **results.get_fields()) if results.has("pred_boxes"): output_boxes = results.pred_boxes elif results.has("proposal_boxes"): output_boxes = results.proposal_boxes output_boxes.scale(scale_x, scale_y) output_boxes.clip(results.image_size) results = results[output_boxes.nonempty()] if results.has("pred_masks"): results.pred_masks = paste_masks_in_image( results.pred_masks[:, 0, :, :], # N, 1, M, M results.pred_boxes, results.image_size, threshold=mask_threshold, ) if results.has("pred_keypoints"): results.pred_keypoints[:, :, 0] *= scale_x results.pred_keypoints[:, :, 1] *= scale_y return results, output_boxes.nonempty() def sem_seg_postprocess(result, img_size, output_height, output_width): """ Return semantic segmentation predictions in the original resolution. The input images are often resized when entering semantic segmentor. Moreover, in same cases, they also padded inside segmentor to be divisible by maximum network stride. As a result, we often need the predictions of the segmentor in a different resolution from its inputs. Args: result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), where C is the number of classes, and H, W are the height and width of the prediction. img_size (tuple): image size that segmentor is taking as input. output_height, output_width: the desired output resolution. Returns: semantic segmentation prediction (Tensor): A tensor of the shape (C, output_height, output_width) that contains per-pixel soft predictions. """ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) result = F.interpolate( result, size=(output_height, output_width), mode="bilinear", align_corners=False )[0] return result
[ "torch.nn.functional.interpolate" ]
1.4.0
aleSuglia/py-bottom-up-attention
a97142ad3526c11272c471ee7d610494f1247b7b
1.0
"""Training utilities.""" import os from typing import Any, Dict, Union import pytorch_lightning as pl import torch from loguru import logger from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from .dataset import ( DATASETS, EnzymaticReactionDataset, EnzymaticReactionLightningDataModule, ) from .model import EnzymaticReactionLightningModule def get_data_module( dataset_args: Dict[str, Union[float, str, int]], ) -> EnzymaticReactionLightningDataModule: """ Get a data module for enzymatic reactions. Args: dataset_args: dictionary containing all the necessary parameters for the dataset creation. Returns: data module for enzymatic reactions. """ return EnzymaticReactionLightningDataModule( dataset_args, DATASETS.get( str(dataset_args.get("dataset_type", "enzymatic")), EnzymaticReactionDataset ), ) def train( model_args: Dict[str, Union[float, str, int]], model_architecture: Dict[str, Union[float, str, int]], dataset_args: Dict[str, Union[float, str, int]], trainer_args: Dict[str, Any], ) -> None: """ Train a model. Args: model_args: dictionary containing all the parameters for the mode configuration. model_architecture: dictionary containing the information related to the architecture of the model. dataset_args: dictionary containing all the necessary parameters for the dataset creation. training_args: dictionary containing all the necessary parameters for the training routine. """ data_module = get_data_module(dataset_args) model_architecture["vocab_size"] = data_module.train_dataset.tokenizer.vocab_size model = EnzymaticReactionLightningModule(model_args, model_architecture) log_dir = trainer_args["log_dir"] os.makedirs(log_dir, exist_ok=True) del trainer_args["log_dir"] lightning_logger = WandbLogger( name="mlm-logger", save_dir=log_dir, log_model=True, project="rxn-aa-mapper" ) trainer_args["logger"] = lightning_logger if not torch.cuda.is_available(): del trainer_args["gpus"] if not isinstance(trainer_args["val_check_interval"], int): trainer_args["val_check_interval"] = 10000 logger.warning( f"please set trainer['val_check_interval'] to an integer value, defaulting to {trainer_args['val_check_interval']}" ) if ( "accelerator" not in trainer_args or trainer_args.get("accelerator", "ddp") == "ddp_spawn" ): trainer_args["accelerator"] = "ddp" logger.warning( f"ddp_spawn not supported because of pickle issues, defaulting to {trainer_args['accelerator']}" ) # gather the callbacks trainer_args["callbacks"] = [] if "early_stopping_callback" in trainer_args: callback: Callback = EarlyStopping(**trainer_args["early_stopping_callback"]) del trainer_args["early_stopping_callback"] trainer_args["callbacks"].append(callback) if "model_checkpoint_callback" in trainer_args: callback = ModelCheckpoint(**trainer_args["model_checkpoint_callback"]) del trainer_args["model_checkpoint_callback"] trainer_args["callbacks"].append(callback) trainer = pl.Trainer(**trainer_args) trainer.fit(model, data_module) def checkpoint_to_module( input_checkpoint: str, model_args: Dict[str, Union[float, str, int]], model_architecture: Dict[str, Union[float, str, int]], ) -> EnzymaticReactionLightningModule: """ Transform a checkpoint into a module. Args: input_checkpoint: model checkpoint. model_args: dictionary containing all the parameters for the mode configuration. model_architecture: dictionary containing the information related to the architecture of the model. Returns: the ligthining module. """ return EnzymaticReactionLightningModule.load_from_checkpoint( checkpoint_path=input_checkpoint, model_args=model_args, model_architecture=model_architecture, )
[ "torch.cuda.is_available" ]
1.0
yvesnana/rxnaamapper
48fb6a6f45f5ec087f99cedbac34eda2a65e14a3
1.9
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** # This file has been modified to enable CPU inference! import torch from torch.autograd import Variable import torch.nn.functional as F def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class WaveGlowLoss(torch.nn.Module): def __init__(self, sigma=1.0): super(WaveGlowLoss, self).__init__() self.sigma = sigma def forward(self, model_output): z, log_s_list, log_det_W_list = model_output for i, log_s in enumerate(log_s_list): if i == 0: log_s_total = torch.sum(log_s) log_det_W_total = log_det_W_list[i] else: log_s_total = log_s_total + torch.sum(log_s) log_det_W_total += log_det_W_list[i] loss = torch.sum(z * z) / (2 * self.sigma * self.sigma) - log_s_total - log_det_W_total return loss / (z.size(0) * z.size(1) * z.size(2)) class Invertible1x1Conv(torch.nn.Module): """ The layer outputs both the convolution, and the log determinant of its weight matrix. If reverse=True it does convolution with inverse """ def __init__(self, c): super(Invertible1x1Conv, self).__init__() self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, bias=False) # Sample a random orthonormal matrix to initialize weights W = torch.qr(torch.FloatTensor(c, c).normal_())[0] # Ensure determinant is 1.0 not -1.0 if torch.det(W) < 0: W[:, 0] = -1 * W[:, 0] W = W.view(c, c, 1) self.conv.weight.data = W def forward(self, z, reverse=False): # shape batch_size, group_size, n_of_groups = z.size() W = self.conv.weight.squeeze() if reverse: if not hasattr(self, "W_inverse"): # Reverse computation W_inverse = W.float().inverse() W_inverse = Variable(W_inverse[..., None]) if z.type() == "torch.cuda.HalfTensor": W_inverse = W_inverse.half() self.W_inverse = W_inverse z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z else: # Forward computation log_det_W = batch_size * n_of_groups * torch.logdet(W) z = self.conv(z) return z, log_det_W class WN(torch.nn.Module): """ This is the WaveNet like layer for the affine coupling. The primary difference from WaveNet is the convolutions need not be causal. There is also no dilation size reset. The dilation only doubles on each layer """ def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size): super(WN, self).__init__() assert kernel_size % 2 == 1 assert n_channels % 2 == 0 self.n_layers = n_layers self.n_channels = n_channels self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() start = torch.nn.Conv1d(n_in_channels, n_channels, 1) start = torch.nn.utils.weight_norm(start, name="weight") self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = 2 ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * n_channels else: res_skip_channels = n_channels res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, forward_input): audio, spect = forward_input audio = self.start(audio) output = torch.zeros_like(audio) n_channels_tensor = torch.IntTensor([self.n_channels]) spect = self.cond_layer(spect) for i in range(self.n_layers): spect_offset = i * 2 * self.n_channels acts = fused_add_tanh_sigmoid_multiply( self.in_layers[i](audio), spect[:, spect_offset : spect_offset + 2 * self.n_channels, :], n_channels_tensor, ) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: audio = audio + res_skip_acts[:, : self.n_channels, :] output = output + res_skip_acts[:, self.n_channels :, :] else: output = output + res_skip_acts return self.end(output) class WaveGlow(torch.nn.Module): def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, n_early_size, WN_config): super(WaveGlow, self).__init__() self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, n_mel_channels, 1024, stride=256) assert n_group % 2 == 0 self.n_flows = n_flows self.n_group = n_group self.n_early_every = n_early_every self.n_early_size = n_early_size self.WN = torch.nn.ModuleList() self.convinv = torch.nn.ModuleList() n_half = int(n_group / 2) # Set up layers with the right sizes based on how many dimensions # have been output already n_remaining_channels = n_group for k in range(n_flows): if k % self.n_early_every == 0 and k > 0: n_half = n_half - int(self.n_early_size / 2) n_remaining_channels = n_remaining_channels - self.n_early_size self.convinv.append(Invertible1x1Conv(n_remaining_channels)) self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) self.n_remaining_channels = n_remaining_channels # Useful during inference def forward(self, forward_input): """ forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames forward_input[1] = audio: batch x time """ spect, audio = forward_input # Upsample spectrogram to size of audio spect = self.upsample(spect) assert spect.size(2) >= audio.size(1) if spect.size(2) > audio.size(1): spect = spect[:, :, : audio.size(1)] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) output_audio = [] log_s_list = [] log_det_W_list = [] for k in range(self.n_flows): if k % self.n_early_every == 0 and k > 0: output_audio.append(audio[:, : self.n_early_size, :]) audio = audio[:, self.n_early_size :, :] audio, log_det_W = self.convinv[k](audio) log_det_W_list.append(log_det_W) n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k]((audio_0, spect)) log_s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = torch.exp(log_s) * audio_1 + b log_s_list.append(log_s) audio = torch.cat([audio_0, audio_1], 1) output_audio.append(audio) return torch.cat(output_audio, 1), log_s_list, log_det_W_list def infer(self, spect, sigma=1.0): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) if spect.type() == "torch.cuda.HalfTensor": audio = torch.cuda.HalfTensor(spect.size(0), self.n_remaining_channels, spect.size(2)).normal_() else: if torch.cuda.is_available(): audio = torch.cuda.FloatTensor(spect.size(0), self.n_remaining_channels, spect.size(2)).normal_() else: audio = torch.FloatTensor(spect.size(0), self.n_remaining_channels, spect.size(2)).normal_() audio = torch.autograd.Variable(sigma * audio) for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k]((audio_0, spect)) s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k](audio, reverse=True) if k % self.n_early_every == 0 and k > 0: if spect.type() == "torch.cuda.HalfTensor": z = torch.cuda.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() else: if torch.cuda.is_available(): z = torch.cuda.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() else: z = torch.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() audio = torch.cat((sigma * z, audio), 1) audio = audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data return audio @staticmethod def remove_weightnorm(model): waveglow = model for WN in waveglow.WN: WN.start = torch.nn.utils.remove_weight_norm(WN.start) WN.in_layers = remove(WN.in_layers) WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) WN.res_skip_layers = remove(WN.res_skip_layers) return waveglow def remove(conv_list): new_conv_list = torch.nn.ModuleList() for old_conv in conv_list: old_conv = torch.nn.utils.remove_weight_norm(old_conv) new_conv_list.append(old_conv) return new_conv_list
[ "torch.sigmoid", "torch.cat", "torch.nn.ConvTranspose1d", "torch.nn.ModuleList", "torch.nn.Conv1d", "torch.IntTensor", "torch.autograd.Variable", "torch.nn.utils.remove_weight_norm", "torch.FloatTensor", "torch.det", "torch.nn.functional.conv1d", "torch.cuda.is_available", "torch.logdet", "torch.zeros_like", "torch.tanh", "torch.nn.utils.weight_norm", "torch.exp", "torch.sum" ]
1.9.0
brooklynbagel/Voice-Cloning-App
6e0034dc0b4e21f669d28753b5f30b32cca382ad
1.8
import warnings from typing import Any, Dict, Optional, Type, Union import numpy as np import torch as th from mod_gym.gym import spaces from torch.nn import functional as F from mod_stable_baselines3.stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm from mod_stable_baselines3.stable_baselines3.common.policies import ActorCriticPolicy from mod_stable_baselines3.stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule from mod_stable_baselines3.stable_baselines3.common.utils import explained_variance, get_schedule_fn class PPO(OnPolicyAlgorithm): """ Proximal Policy Optimization algorithm (PPO) (clip version) Paper: https://arxiv.org/abs/1707.06347 Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/) https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and and Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines) Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: The environment to learn from (if registered in Gym, can be str) :param learning_rate: The learning rate, it can be a function of the current progress remaining (from 1 to 0) :param n_steps: The number of steps to run for each environment per update (i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization) See https://github.com/pytorch/pytorch/issues/29372 :param batch_size: Minibatch size :param n_epochs: Number of epoch when optimizing the surrogate loss :param gamma: Discount factor :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator :param clip_range: Clipping parameter, it can be a function of the current progress remaining (from 1 to 0). :param clip_range_vf: Clipping parameter for the value function, it can be a function of the current progress remaining (from 1 to 0). This is a parameter specific to the OpenAI implementation. If None is passed (default), no clipping will be done on the value function. IMPORTANT: this clipping depends on the reward scaling. :param ent_coef: Entropy coefficient for the loss calculation :param vf_coef: Value function coefficient for the loss calculation :param max_grad_norm: The maximum value for the gradient clipping :param use_sde: Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param target_kl: Limit the KL divergence between updates, because the clipping is not enough to prevent large update see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit on the kl div. :param tensorboard_log: the log location for tensorboard (if None, no logging) :param create_eval_env: Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param policy_kwargs: additional arguments to be passed to the policy on creation :param verbose: the verbosity level: 0 no output, 1 info, 2 debug :param seed: Seed for the pseudo random generators :param device: Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: Whether or not to build the network at the creation of the instance """ def __init__( self, policy: Union[str, Type[ActorCriticPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, n_steps: int = 2048, batch_size: Optional[int] = 64, n_epochs: int = 10, gamma: float = 0.99, gae_lambda: float = 0.95, clip_range: Union[float, Schedule] = 0.2, clip_range_vf: Union[None, float, Schedule] = None, ent_coef: float = 0.0, vf_coef: float = 0.5, max_grad_norm: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, target_kl: Optional[float] = None, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, ): super(PPO, self).__init__( policy, env, learning_rate=learning_rate, n_steps=n_steps, gamma=gamma, gae_lambda=gae_lambda, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, use_sde=use_sde, sde_sample_freq=sde_sample_freq, tensorboard_log=tensorboard_log, policy_kwargs=policy_kwargs, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, _init_setup_model=False, supported_action_spaces=( spaces.Box, spaces.Discrete, spaces.MultiDiscrete, spaces.MultiBinary, ), ) # Sanity check, otherwise it will lead to noisy gradient and NaN # because of the advantage normalization assert ( batch_size > 1 ), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440" if self.env is not None: # Check that `n_steps * n_envs > 1` to avoid NaN # when doing advantage normalization buffer_size = self.env.num_envs * self.n_steps assert ( buffer_size > 1 ), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}" # Check that the rollout buffer size is a multiple of the mini-batch size untruncated_batches = buffer_size // batch_size if buffer_size % batch_size > 0: warnings.warn( f"You have specified a mini-batch size of {batch_size}," f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`," f" after every {untruncated_batches} untruncated mini-batches," f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n" f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n" f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})" ) self.batch_size = batch_size self.n_epochs = n_epochs self.clip_range = clip_range self.clip_range_vf = clip_range_vf self.target_kl = target_kl if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super(PPO, self)._setup_model() # Initialize schedules for policy/value clipping self.clip_range = get_schedule_fn(self.clip_range) if self.clip_range_vf is not None: if isinstance(self.clip_range_vf, (float, int)): assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping" self.clip_range_vf = get_schedule_fn(self.clip_range_vf) def train(self) -> None: """ Update policy using the currently gathered rollout buffer. """ # Update optimizer learning rate self._update_learning_rate(self.policy.optimizer) # Compute current clip range clip_range = self.clip_range(self._current_progress_remaining) # Optional: clip range for the value function if self.clip_range_vf is not None: clip_range_vf = self.clip_range_vf(self._current_progress_remaining) entropy_losses = [] pg_losses, value_losses = [], [] clip_fractions = [] continue_training = True # train for n_epochs epochs for epoch in range(self.n_epochs): approx_kl_divs = [] # Do a complete pass on the rollout buffer for rollout_data in self.rollout_buffer.get(self.batch_size): actions = rollout_data.actions if isinstance(self.action_space, spaces.Discrete): # Convert discrete action from float to long actions = rollout_data.actions.long().flatten() # Re-sample the noise matrix because the log_std has changed # TODO: investigate why there is no issue with the gradient # if that line is commented (as in SAC) if self.use_sde: self.policy.reset_noise(self.batch_size) values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions) values = values.flatten() # Normalize advantage advantages = rollout_data.advantages advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) # ratio between old and new policy, should be one at the first iteration ratio = th.exp(log_prob - rollout_data.old_log_prob) # clipped surrogate loss policy_loss_1 = advantages * ratio policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) policy_loss = -th.min(policy_loss_1, policy_loss_2).mean() # Logging pg_losses.append(policy_loss.item()) clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item() clip_fractions.append(clip_fraction) if self.clip_range_vf is None: # No clipping values_pred = values else: # Clip the different between old and new value # NOTE: this depends on the reward scaling values_pred = rollout_data.old_values + th.clamp( values - rollout_data.old_values, -clip_range_vf, clip_range_vf ) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(rollout_data.returns, values_pred) value_losses.append(value_loss.item()) # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -th.mean(-log_prob) else: entropy_loss = -th.mean(entropy) entropy_losses.append(entropy_loss.item()) loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss # Calculate approximate form of reverse KL Divergence for early stopping # see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417 # and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419 # and Schulman blog: http://joschu.net/blog/kl-approx.html with th.no_grad(): log_ratio = log_prob - rollout_data.old_log_prob approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy() approx_kl_divs.append(approx_kl_div) if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl: continue_training = False if self.verbose >= 1: print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}") break # Optimization step self.policy.optimizer.zero_grad() loss.backward() # Clip grad norm th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) self.policy.optimizer.step() if not continue_training: break self._n_updates += self.n_epochs explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten()) # Logs self.logger.record("train/entropy_loss", np.mean(entropy_losses)) self.logger.record("train/policy_gradient_loss", np.mean(pg_losses)) self.logger.record("train/value_loss", np.mean(value_losses)) self.logger.record("train/approx_kl", np.mean(approx_kl_divs)) self.logger.record("train/clip_fraction", np.mean(clip_fractions)) self.logger.record("train/loss", loss.item()) self.logger.record("train/explained_variance", explained_var) if hasattr(self.policy, "log_std"): self.logger.record("train/std", th.exp(self.policy.log_std).mean().item()) self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/clip_range", clip_range) if self.clip_range_vf is not None: self.logger.record("train/clip_range_vf", clip_range_vf) def learn( self, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 1, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "PPO", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True, ) -> "PPO": return super(PPO, self).learn( total_timesteps=total_timesteps, callback=callback, log_interval=log_interval, eval_env=eval_env, eval_freq=eval_freq, n_eval_episodes=n_eval_episodes, tb_log_name=tb_log_name, eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps, )
[ "torch.min", "torch.no_grad", "torch.clamp", "torch.nn.functional.mse_loss", "torch.abs", "torch.exp", "torch.mean" ]
1.8.1
Practical-Formal-Methods/mod_stable_baselines3
08bdb0a529c8ab446ac7973f2a02f832c0c3f454
1.8
# Copyright 2021 cstsunfu. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.nn as nn import torch from typing import Dict, List from . import module_register, module_config_register, Module from dlk.utils.config import BaseConfig @module_config_register("biaffine") class BiAffineConfig(BaseConfig): """Config for BiAffine Config Example: >>> { >>> "config": { >>> "input_size": 256, >>> "output_size": 2, >>> "dropout": 0.0, //generally no need dropout >>> "bias": true, // use bias or not in biaffine >>> }, >>> "_name": "biaffine", >>> } """ def __init__(self, config: Dict): super(BiAffineConfig, self).__init__(config) config = config['config'] self.input_size = config['input_size'] self.output_size = config['output_size'] self.dropout = float(config['dropout']) self.bias = config['bias'] self.post_check(config, used=[ "input_size", "output_size", "dropout", "bias", ]) @module_register("biaffine") class BiAffine(Module): """wrap for nn.BiAffine""" def __init__(self, config: BiAffineConfig): super(BiAffine, self).__init__() if config.bias: self.biaffine = nn.Parameter(torch.randn(config.input_size+1, config.output_size, config.input_size+1)) else: self.biaffine = nn.Parameter(torch.randn(config.input_size, config.output_size, config.input_size)) self.dropout = nn.Dropout(p=float(config.dropout)) self.config = config def init_weight(self, method): """init the weight of submodules by 'method' Args: method: init method Returns: None """ torch.nn.init.xavier_uniform_(self.biaffine) def forward(self, input_a: torch.Tensor, input_b: torch.Tensor)->torch.Tensor: """do forward on a mini batch Args: input_a: a mini batch inputs_a, shape==(batch_size, input_a_len, input_size) input_b: a mini batch inputs_b, shape==(batch_size, input_b_len, input_size) Returns: input_a x biaffine x input_b, shape==(batch_size, input_a_len, input_b_len, output_size) """ if self.config.bias: output = self.dropout(torch.einsum('bmi,ioj,bnj->bmno', torch.cat((input_a, torch.ones_like(input_a[..., :1])), dim=-1), self.biaffine, torch.cat((input_b, torch.ones_like(input_b[..., :1])), dim=-1) )) else: output = self.dropout(torch.einsum('bmi,ioj,bnj->bmno', input_a, self.biaffine, input_b, )) return output
[ "torch.ones_like", "torch.nn.init.xavier_uniform_", "torch.randn", "torch.einsum" ]
1.8.2
cstsunfu/dlkit
69e0efd372fa5c0ae5313124d0ba1ef55b535196
1.8
''' Accelerate demo with fp16 and multi-gpu support. Single CPU: python accelerate_demo.py --cpu 16-bit Floating Point: python accelerate_demo.py --fp16 Model from timm: python accelerate_demo.py --timm Singe-GPU: python accelerate_demo.py Multi-GPU or Multi-CPU: accelerate config accelerate launch accelerate_demo.py ''' import torch import wandb import datetime import timm import torchvision import argparse from torch.optim import SGD from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader from torchvision import datasets, transforms from ui import progress_bar from accelerate import Accelerator def init_wandb(): wandb.login() config = { "learning_rate": 0.1, "epochs": 100, "batch_size": 128, "dataset": "cifar10" } run = wandb.init(project="accelerate-options-project", entity="upeee", config=config) return run def run_experiment(args): accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu) _ = init_wandb() # With timm, no need to manually replace the classifier head. # Just initialize the model with the correct number of classes. # However, timm model has a lower accuracy (TODO: why?) if args.timm: model = timm.create_model('resnet18', pretrained=False, num_classes=10) else: model = torchvision.models.resnet18(pretrained=False, progress=True) model.fc = torch.nn.Linear(model.fc.in_features, 10) # wandb will automatically log the model gradients. wandb.watch(model) loss = torch.nn.CrossEntropyLoss() optimizer = SGD(model.parameters(), lr=wandb.config.learning_rate) scheduler = CosineAnnealingLR(optimizer, T_max=wandb.config.epochs) x_train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) x_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) train_loader = DataLoader(x_train, batch_size=wandb.config.batch_size, shuffle=True, num_workers=2) test_loader = DataLoader(x_test, batch_size=wandb.config.batch_size, shuffle=False, num_workers=2) label_human = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] table_test = wandb.Table(columns=['Image', "Ground Truth", "Initial Pred Label",]) image, label = iter(test_loader).next() image = image.to(accelerator.device) # Accelerate API model = accelerator.prepare(model) optimizer = accelerator.prepare(optimizer) scheduler = accelerator.prepare(scheduler) train_loader = accelerator.prepare(train_loader) test_loader = accelerator.prepare(test_loader) model.eval() with torch.no_grad(): pred = torch.argmax(model(image), dim=1).cpu().numpy() for i in range(8): table_test.add_data(wandb.Image(image[i]), label_human[label[i]], label_human[pred[i]]) accelerator.print(label_human[label[i]], "vs. ", label_human[pred[i]]) start_time = datetime.datetime.now() best_acc = 0 for epoch in range(wandb.config["epochs"]): train_acc, train_loss = train(epoch, model, optimizer, scheduler, train_loader, loss, accelerator) test_acc, test_loss = test(model, test_loader, loss, accelerator) if test_acc > best_acc: wandb.run.summary["Best accuracy"] = test_acc best_acc = test_acc if args.fp16: accelerator.save(model.state_dict(), "./resnet18_best_acc_fp16.pth") else: accelerator.save(model, "./resnet18_best_acc.pth") wandb.log({ "Train accuracy": train_acc, "Test accuracy": test_acc, "Train loss": train_loss, "Test loss": test_loss, "Learning rate": optimizer.param_groups[0]['lr'] }) elapsed_time = datetime.datetime.now() - start_time accelerator.print("Elapsed time: %s" % elapsed_time) wandb.run.summary["Elapsed train time"] = str(elapsed_time) wandb.run.summary["Fp16 enabled"] = str(args.fp16) wandb.run.summary["Using timm"] = str(args.timm) wandb.run.summary["Using CPU"] = str(args.cpu) model.eval() with torch.no_grad(): pred = torch.argmax(model(image), dim=1).cpu().numpy() final_pred = [] for i in range(8): final_pred.append(label_human[pred[i]]) accelerator.print(label_human[label[i]], "vs. ", final_pred[i]) table_test.add_column(name="Final Pred Label", data=final_pred) wandb.log({"Test data": table_test}) wandb.finish() def train(epoch, model, optimizer, scheduler, train_loader, loss, accelerator): model.train() train_loss = 0 correct = 0 train_samples = 0 # sample a batch. compute loss and backpropagate for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss_value = loss(output, target) accelerator.backward(loss_value) optimizer.step() scheduler.step(epoch) train_loss += loss_value.item() train_samples += len(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() if batch_idx % 10 == 0: accuracy = 100. * correct / len(train_loader.dataset) progress_bar(batch_idx, len(train_loader), 'Train Epoch: {}, Loss: {:0.2e}, Acc: {:.2f}%'.format(epoch+1, train_loss/train_samples, accuracy)) train_loss /= len(train_loader.dataset) accuracy = 100. * correct / len(train_loader.dataset) return accuracy, train_loss def test(model, test_loader, loss, accelerator): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += loss(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) accelerator.print('\nTest Loss: {:.4f}, Acc: {:.2f}%\n'.format(test_loss, accuracy)) return accuracy, test_loss def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--timm", action="store_true", help="If passed, build model using timm library.") parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") # Seems that this is not supported in the Accelerator version installed parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() run_experiment(args) if __name__ == "__main__": main()
[ "torch.nn.Linear", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.no_grad", "torch.utils.data.DataLoader", "torch.nn.CrossEntropyLoss" ]
1.8.0
Cahlil-Togonon/Deep-Learning-Experiments
501ae610b0a8fb7fb75a53dcfdab71be49274b58
1.3
import platform import pytest import torch from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Subset import tests.base.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate def test_fit_train_loader_only(tmpdir): model = EvalModelTemplate() train_dataloader = model.train_dataloader() model.train_dataloader = None model.val_dataloader = None model.test_dataloader = None model.validation_step = None model.validation_epoch_end = None model.test_step = None model.test_epoch_end = None trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, train_dataloader=train_dataloader) def test_fit_val_loader_only(tmpdir): model = EvalModelTemplate() train_dataloader = model.train_dataloader() val_dataloader = model.val_dataloader() model.train_dataloader = None model.val_dataloader = None model.test_dataloader = None model.test_step = None model.test_epoch_end = None trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader) @pytest.mark.parametrize("dataloader_options", [ dict(train_percent_check=-0.1), dict(train_percent_check=1.1), dict(val_check_interval=1.1), dict(val_check_interval=10000), ]) def test_dataloader_config_errors(tmpdir, dataloader_options): model = EvalModelTemplate() # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, **dataloader_options, ) with pytest.raises(ValueError): trainer.fit(model) def test_multiple_val_dataloader(tmpdir): """Verify multiple val_dataloader.""" model = EvalModelTemplate() model.val_dataloader = model.val_dataloader__multiple model.validation_step = model.validation_step__multiple_dataloaders # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=1.0, ) result = trainer.fit(model) # verify training completed assert result == 1 # verify there are 2 val loaders assert len(trainer.val_dataloaders) == 2, \ 'Multiple val_dataloaders not initiated properly' # make sure predictions are good for each val set for dataloader in trainer.val_dataloaders: tutils.run_prediction(dataloader, trainer.model) def test_multiple_test_dataloader(tmpdir): """Verify multiple test_dataloader.""" model = EvalModelTemplate() model.test_dataloader = model.test_dataloader__multiple model.test_step = model.test_step__multiple_dataloaders # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) trainer.fit(model) trainer.test() # verify there are 2 test loaders assert len(trainer.test_dataloaders) == 2, \ 'Multiple test_dataloaders not initiated properly' # make sure predictions are good for each test set for dataloader in trainer.test_dataloaders: tutils.run_prediction(dataloader, trainer.model) # run the test method trainer.test() def test_train_dataloader_passed_to_fit(tmpdir): """Verify that train dataloader can be passed to fit """ # only train passed to fit model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) fit_options = dict(train_dataloader=model.dataloader(train=True)) result = trainer.fit(model, **fit_options) assert result == 1 def test_train_val_dataloaders_passed_to_fit(tmpdir): """ Verify that train & val dataloader can be passed to fit """ # train, val passed to fit model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) fit_options = dict(train_dataloader=model.dataloader(train=True), val_dataloaders=model.dataloader(train=False)) result = trainer.fit(model, **fit_options) assert result == 1 assert len(trainer.val_dataloaders) == 1, \ f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}' def test_all_dataloaders_passed_to_fit(tmpdir): """Verify train, val & test dataloader(s) can be passed to fit and test method""" model = EvalModelTemplate() # train, val and test passed to fit trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) fit_options = dict(train_dataloader=model.dataloader(train=True), val_dataloaders=model.dataloader(train=False)) test_options = dict(test_dataloaders=model.dataloader(train=False)) result = trainer.fit(model, **fit_options) trainer.test(**test_options) assert result == 1 assert len(trainer.val_dataloaders) == 1, \ f'val_dataloaders` not initiated properly, got {trainer.val_dataloaders}' assert len(trainer.test_dataloaders) == 1, \ f'test_dataloaders` not initiated properly, got {trainer.test_dataloaders}' def test_multiple_dataloaders_passed_to_fit(tmpdir): """Verify that multiple val & test dataloaders can be passed to fit.""" model = EvalModelTemplate() model.validation_step = model.validation_step__multiple_dataloaders model.test_step = model.test_step__multiple_dataloaders # train, multiple val and multiple test passed to fit trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) fit_options = dict(train_dataloader=model.dataloader(train=True), val_dataloaders=[model.dataloader(train=False), model.dataloader(train=False)]) test_options = dict(test_dataloaders=[model.dataloader(train=False), model.dataloader(train=False)]) trainer.fit(model, **fit_options) trainer.test(**test_options) assert len(trainer.val_dataloaders) == 2, \ f'Multiple `val_dataloaders` not initiated properly, got {trainer.val_dataloaders}' assert len(trainer.test_dataloaders) == 2, \ f'Multiple `test_dataloaders` not initiated properly, got {trainer.test_dataloaders}' def test_mixing_of_dataloader_options(tmpdir): """Verify that dataloaders can be passed to fit""" model = EvalModelTemplate() trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) # fit model trainer = Trainer(**trainer_options) results = trainer.fit(model, val_dataloaders=model.dataloader(train=False)) assert results # fit model trainer = Trainer(**trainer_options) results = trainer.fit(model, val_dataloaders=model.dataloader(train=False)) assert results trainer.test(test_dataloaders=model.dataloader(train=False)) assert len(trainer.val_dataloaders) == 1, \ f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}' assert len(trainer.test_dataloaders) == 1, \ f'`test_dataloaders` not initiated properly, got {trainer.test_dataloaders}' def test_train_inf_dataloader_error(tmpdir): """Test inf train data loader (e.g. IterableDataset)""" model = EvalModelTemplate() model.train_dataloader = model.train_dataloader__infinite trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=0.5) with pytest.raises(MisconfigurationException, match='infinite DataLoader'): trainer.fit(model) def test_val_inf_dataloader_error(tmpdir): """Test inf train data loader (e.g. IterableDataset)""" model = EvalModelTemplate() model.val_dataloader = model.val_dataloader__infinite trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.5) with pytest.raises(MisconfigurationException, match='infinite DataLoader'): trainer.fit(model) def test_test_inf_dataloader_error(tmpdir): """Test inf train data loader (e.g. IterableDataset)""" model = EvalModelTemplate() model.test_dataloader = model.test_dataloader__infinite trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, test_percent_check=0.5) with pytest.raises(MisconfigurationException, match='infinite DataLoader'): trainer.test(model) @pytest.mark.parametrize('check_interval', [50, 1.0]) def test_inf_train_dataloader(tmpdir, check_interval): """Test inf train data loader (e.g. IterableDataset)""" model = EvalModelTemplate() model.train_dataloader = model.train_dataloader__infinite trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_check_interval=check_interval ) result = trainer.fit(model) # verify training completed assert result == 1 @pytest.mark.parametrize('check_interval', [1.0]) def test_inf_val_dataloader(tmpdir, check_interval): """Test inf val data loader (e.g. IterableDataset)""" model = EvalModelTemplate() model.val_dataloader = model.val_dataloader__infinite # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, val_check_interval=check_interval, ) result = trainer.fit(model) # verify training completed assert result == 1 def test_error_on_zero_len_dataloader(tmpdir): """ Test that error is raised if a zero-length dataloader is defined """ model = EvalModelTemplate() model.train_dataloader = model.train_dataloader__zero_length # fit model with pytest.raises(ValueError): trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, test_percent_check=0.5 ) trainer.fit(model) @pytest.mark.skipif(platform.system() == 'Windows', reason='Does not apply to Windows platform.') def test_warning_with_few_workers(tmpdir): """ Test that error is raised if dataloader with only a few workers is used """ model = EvalModelTemplate() # logger file to get meta trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, val_percent_check=0.1, train_percent_check=0.2 ) fit_options = dict(train_dataloader=model.dataloader(train=True), val_dataloaders=model.dataloader(train=False)) test_options = dict(test_dataloaders=model.dataloader(train=False)) trainer = Trainer(**trainer_options) # fit model with pytest.warns(UserWarning, match='train'): trainer.fit(model, **fit_options) with pytest.warns(UserWarning, match='val'): trainer.fit(model, **fit_options) with pytest.warns(UserWarning, match='test'): trainer.test(**test_options) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason='Test requires multiple GPUs') def test_dataloader_reinit_for_subclass(): class CustomDataLoader(torch.utils.data.DataLoader): def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, dummy_kwarg=None): super().__init__(dataset, batch_size, shuffle, sampler, batch_sampler, num_workers, collate_fn, pin_memory, drop_last, timeout, worker_init_fn) self.dummy_kwarg = dummy_kwarg trainer = Trainer( gpus=[0, 1], num_nodes=1, distributed_backend='ddp', ) class CustomDummyObj: sampler = None result = trainer.auto_add_sampler(CustomDummyObj(), train=True) assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader" result = trainer.auto_add_sampler(CustomDataLoader(list(range(1000))), train=True) assert isinstance(result, torch.utils.data.DataLoader) assert isinstance(result, CustomDataLoader) assert hasattr(result, 'dummy_kwarg') @pytest.mark.skipif(torch.cuda.device_count() < 3, reason='Test requires multiple GPUs') def test_batch_size_smaller_than_num_gpus(): # we need at least 3 gpus for this test num_gpus = 3 batch_size = 3 class CurrentTestModel(EvalModelTemplate): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # batch norm doesn't work with batch size 1, we replace it self.c_d1_bn = torch.nn.ReLU() def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) loss = output['loss'] # we make sure to add some metrics to the output dict, # this is essential for this test output['progress_bar'] = {'train_loss': loss} return output def train_dataloader(self): dataloader = super().train_dataloader() # construct a dataset with a size that is not divisible by num_gpus # therefore the last batch will have a size < num_gpus size = num_gpus * batch_size + (num_gpus - 1) dataset = Subset(dataloader.dataset, range(size)) dataloader = DataLoader( dataset, batch_size=self.hparams.batch_size, drop_last=False, ) return dataloader hparams = EvalModelTemplate.get_default_hparams() hparams.batch_size = batch_size model = CurrentTestModel(hparams) trainer = Trainer( max_epochs=1, val_percent_check=0, gpus=num_gpus, ) # we expect the reduction for the metrics also to happen on the last batch # where we will get fewer metrics than gpus result = trainer.fit(model) assert 1 == result
[ "torch.nn.ReLU", "torch.utils.data.dataloader.DataLoader", "torch.cuda.device_count" ]
1.3
binshengliu/pytorch-lightning
8f6b7a2b4fea9b7bd0b873f5973e6364b3981412
0.4
''' Script to train the ranker Should add some sort of image pool someday...? ''' import time from options.train_options import TrainOptions from data import CreateDataLoader from models import create_model from util.visualizer import Visualizer from models import networks import pdb import torch from collections import OrderedDict def load_chkpt(network, fname): chkpt = torch.load(fname) new_chkpt = OrderedDict() for k, v in chkpt.items(): name = 'module.' + k # add `module` new_chkpt[name] = v network.load_state_dict(new_chkpt) if __name__ == '__main__': opt = TrainOptions().parse() data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) model = create_model(opt) model.setup(opt) visualizer = Visualizer(opt) total_steps = 0 ''' chkpt_D = torch.load('checkpoints/streetview_throttled/15_net_D.pth') chkpt_G = torch.load('checkpoints/streetview_throttled/15_net_G.pth') new_chkpt_D = OrderedDict() new_chkpt_G = OrderedDict() for k, v in chkpt_D.items(): name = 'module.' + k # add `module` new_chkpt_D[name] = v for k, v in chkpt_G.items(): name = 'module.' + k # add `module` new_chkpt_G[name] = v model.netD.load_state_dict(new_chkpt_D) model.netG.load_state_dict(new_chkpt_G) ''' G_model_chkpts = ['checkpoints/street_decaythrottle45_halflr/1_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/2_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/3_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/4_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/5_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/6_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/7_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/8_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/9_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/10_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/11_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/12_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/13_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/14_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/15_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/16_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/17_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/18_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/19_net_G.pth', 'checkpoints/street_decaythrottle45_halflr/20_net_G.pth'] G_networks = [] for i in range(len(G_model_chkpts)): netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, opt.gpu_ids) load_chkpt(netG, G_model_chkpts[i]) G_networks.append(netG) netGs = networks.RandomNetwork(G_networks) #load_chkpt(model.netG, 'checkpoints/streetview_throttled/15_net_G.pth') model.netG = netGs load_chkpt(model.netD, 'checkpoints/street_decaythrottle45_halflr/20_net_D.pth') for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset): iter_start_time = time.time() if total_steps % opt.print_freq == 0: t_data = iter_start_time - iter_data_time visualizer.reset() total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # optimize only discriminator model.forward() model.set_requires_grad(model.netD, True) model.optimizer_D.zero_grad() model.backward_D() model.optimizer_D.step() model.set_requires_grad(model.netD, False) # need this to prevent logger from complaining # because it wants to log the G loss, even though # we aren't updating it model.backward_G() if total_steps % opt.display_freq == 0: save_result = total_steps % opt.update_html_freq == 0 visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_steps % opt.print_freq == 0: losses = model.get_current_losses() t = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, opt, losses) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_networks('latest', saveG=False) iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save_networks('latest', saveG=False) model.save_networks(epoch, saveG=False) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate()
[ "torch.load" ]
0.4.0
dangeng/infiniteGANorama
92c9cbe0638cf9fcdc05020759772e36aebf788c
1.5
#!/usr/bin/env python """ Simple implementation for mixup. The loss and onehot functions origin from: https://github.com/moskomule/mixup.pytorch Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz: mixup: Beyond Empirical Risk Minimization https://arxiv.org/abs/1710.09412 """ __all__ = [ 'mixup_cross_entropy_loss', 'mixup' ] import numpy as np import torch from torch.autograd import Variable def mixup_cross_entropy_loss(input, target, size_average=True): """Origin: https://github.com/moskomule/mixup.pytorch in PyTorch's cross entropy, targets are expected to be labels so to predict probabilities this loss is needed suppose q is the target and p is the input loss(p, q) = -\sum_i q_i \log p_i """ assert input.size() == target.size() assert isinstance(input, Variable) and isinstance(target, Variable) input = torch.log(torch.nn.functional.softmax(input, dim=1).clamp(1e-5, 1)) # input = input - torch.log(torch.sum(torch.exp(input), dim=1)).view(-1, 1) loss = - torch.sum(input * target) return loss / input.size()[0] if size_average else loss def onehot(targets, num_classes): """Origin: https://github.com/moskomule/mixup.pytorch convert index tensor into onehot tensor :param targets: index tensor :param num_classes: number of classes """ assert isinstance(targets, torch.LongTensor) return torch.zeros(targets.size()[0], num_classes).scatter_(1, targets.view(-1, 1), 1) def mixup(inputs, targets, num_classes, alpha=2): """Mixup on 1x32x32 mel-spectrograms. """ s = inputs.size()[0] weight = torch.Tensor(np.random.beta(alpha, alpha, s)) index = np.random.permutation(s) x1, x2 = inputs, inputs[index, :, :, :] y1, y2 = onehot(targets, num_classes), onehot(targets[index,], num_classes) weight = weight.view(s, 1, 1, 1) inputs = weight*x1 + (1-weight)*x2 weight = weight.view(s, 1) targets = weight*y1 + (1-weight)*y2 return inputs, targets
[ "torch.nn.functional.softmax", "torch.sum" ]
1.5.1
bozliu/E2E-Keyword-Spotting
64fc6fe414370a12a22fdf8ca5c8379d2c60b64e
0.4
""" A :class:`~allennlp.training.trainer.Trainer` is responsible for training a :class:`~allennlp.models.model.Model`. Typically you might create a configuration file specifying the model and training parameters and then use :mod:`~allennlp.commands.train` rather than instantiating a ``Trainer`` yourself. """ # pylint: disable=too-many-lines import logging import os import shutil import time import re import datetime import traceback from typing import Dict, Optional, List, Tuple, Union, Iterable, Any, Set import torch import torch.optim.lr_scheduler from torch.nn.parallel import replicate, parallel_apply from torch.nn.parallel.scatter_gather import scatter_kwargs, gather from tensorboardX import SummaryWriter from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.common.util import peak_memory_mb, gpu_memory_mb from allennlp.common.tqdm import Tqdm from allennlp.data.instance import Instance from allennlp.data.iterators.data_iterator import DataIterator from allennlp.models.model import Model from allennlp.nn import util from allennlp.training.learning_rate_schedulers import LearningRateScheduler from allennlp.training.optimizers import Optimizer logger = logging.getLogger(__name__) # pylint: disable=invalid-name def is_sparse(tensor): return tensor.is_sparse def sparse_clip_norm(parameters, max_norm, norm_type=2) -> float: """Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Supports sparse gradients. Parameters ---------- parameters : ``(Iterable[torch.Tensor])`` An iterable of Tensors that will have gradients normalized. max_norm : ``float`` The max norm of the gradients. norm_type : ``float`` The type of the used p-norm. Can be ``'inf'`` for infinity norm. Returns ------- Total norm of the parameters (viewed as a single vector). """ # pylint: disable=invalid-name,protected-access parameters = list(filter(lambda p: p.grad is not None, parameters)) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == float('inf'): total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: if is_sparse(p.grad): # need to coalesce the repeated indices before finding norm grad = p.grad.data.coalesce() param_norm = grad._values().norm(norm_type) else: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm ** norm_type total_norm = total_norm ** (1. / norm_type) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for p in parameters: if is_sparse(p.grad): p.grad.data._values().mul_(clip_coef) else: p.grad.data.mul_(clip_coef) return total_norm def move_optimizer_to_cuda(optimizer): """ Move the optimizer state to GPU, if necessary. After calling, any parameter specific state in the optimizer will be located on the same device as the parameter. """ for param_group in optimizer.param_groups: for param in param_group['params']: if param.is_cuda: param_state = optimizer.state[param] for k in param_state.keys(): if isinstance(param_state[k], torch.Tensor): param_state[k] = param_state[k].cuda(device=param.get_device()) class TensorboardWriter: """ Wraps a pair of ``SummaryWriter`` instances but is a no-op if they're ``None``. Allows Tensorboard logging without always checking for Nones first. """ def __init__(self, train_log: SummaryWriter = None, validation_log: SummaryWriter = None) -> None: self._train_log = train_log self._validation_log = validation_log @staticmethod def _item(value: Any): if hasattr(value, 'item'): val = value.item() else: val = value return val def add_train_scalar(self, name: str, value: float, global_step: int) -> None: # get the scalar if self._train_log is not None: self._train_log.add_scalar(name, self._item(value), global_step) def add_train_histogram(self, name: str, values: torch.Tensor, global_step: int) -> None: if self._train_log is not None: if isinstance(values, torch.Tensor): values_to_write = values.cpu().data.numpy().flatten() self._train_log.add_histogram(name, values_to_write, global_step) def add_validation_scalar(self, name: str, value: float, global_step: int) -> None: if self._validation_log is not None: self._validation_log.add_scalar(name, self._item(value), global_step) def time_to_str(timestamp: int) -> str: """ Convert seconds past Epoch to human readable string. """ datetimestamp = datetime.datetime.fromtimestamp(timestamp) return '{:04d}-{:02d}-{:02d}-{:02d}-{:02d}-{:02d}'.format( datetimestamp.year, datetimestamp.month, datetimestamp.day, datetimestamp.hour, datetimestamp.minute, datetimestamp.second ) def str_to_time(time_str: str) -> datetime.datetime: """ Convert human readable string to datetime.datetime. """ pieces: Any = [int(piece) for piece in time_str.split('-')] return datetime.datetime(*pieces) class Trainer: def __init__(self, model: Model, optimizer: torch.optim.Optimizer, iterator: DataIterator, train_dataset: Iterable[Instance], validation_dataset: Optional[Iterable[Instance]] = None, patience: Optional[int] = None, validation_metric: str = "-loss", validation_iterator: DataIterator = None, num_epochs: int = 20, serialization_dir: Optional[str] = None, num_serialized_models_to_keep: int = 20, keep_serialized_model_every_num_seconds: int = None, model_save_interval: float = None, cuda_device: Union[int, List] = -1, grad_norm: Optional[float] = None, grad_clipping: Optional[float] = None, learning_rate_scheduler: Optional[LearningRateScheduler] = None, summary_interval: int = 100, histogram_interval: int = None) -> None: """ Parameters ---------- model : ``Model``, required. An AllenNLP model to be optimized. Pytorch Modules can also be optimized if their ``forward`` method returns a dictionary with a "loss" key, containing a scalar tensor representing the loss function to be optimized. optimizer : ``torch.nn.Optimizer``, required. An instance of a Pytorch Optimizer, instantiated with the parameters of the model to be optimized. iterator : ``DataIterator``, required. A method for iterating over a ``Dataset``, yielding padded indexed batches. train_dataset : ``Dataset``, required. A ``Dataset`` to train on. The dataset should have already been indexed. validation_dataset : ``Dataset``, optional, (default = None). A ``Dataset`` to evaluate on. The dataset should have already been indexed. patience : Optional[int] > 0, optional (default=None) Number of epochs to be patient before early stopping: the training is stopped after ``patience`` epochs with no improvement. If given, it must be ``> 0``. If None, early stopping is disabled. validation_metric : str, optional (default="loss") Validation metric to measure for whether to stop training using patience and whether to serialize an ``is_best`` model each epoch. The metric name must be prepended with either "+" or "-", which specifies whether the metric is an increasing or decreasing function. validation_iterator : ``DataIterator``, optional (default=None) An iterator to use for the validation set. If ``None``, then use the training `iterator`. num_epochs : int, optional (default = 20) Number of training epochs. serialization_dir : str, optional (default=None) Path to directory for saving and loading model files. Models will not be saved if this parameter is not passed. num_serialized_models_to_keep : ``int``, optional (default=20) Number of previous model checkpoints to retain. Default is to keep 20 checkpoints. A value of None or -1 means all checkpoints will be kept. keep_serialized_model_every_num_seconds : ``int``, optional (default=None) If num_serialized_models_to_keep is not None, then occasionally it's useful to save models at a given interval in addition to the last num_serialized_models_to_keep. To do so, specify keep_serialized_model_every_num_seconds as the number of seconds between permanently saved checkpoints. Note that this option is only used if num_serialized_models_to_keep is not None, otherwise all checkpoints are kept. model_save_interval : ``float``, optional (default=None) If provided, then serialize models every ``model_save_interval`` seconds within single epochs. In all cases, models are also saved at the end of every epoch if ``serialization_dir`` is provided. cuda_device : ``int``, optional (default = -1) An integer specifying the CUDA device to use. If -1, the CPU is used. grad_norm : ``float``, optional, (default = None). If provided, gradient norms will be rescaled to have a maximum of this value. grad_clipping : ``float``, optional (default = ``None``). If provided, gradients will be clipped `during the backward pass` to have an (absolute) maximum of this value. If you are getting ``NaNs`` in your gradients during training that are not solved by using ``grad_norm``, you may need this. learning_rate_scheduler : ``PytorchLRScheduler``, optional, (default = None) A Pytorch learning rate scheduler. The learning rate will be decayed with respect to this schedule at the end of each epoch. If you use :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`, this will use the ``validation_metric`` provided to determine if learning has plateaued. To support updating the learning rate on every batch, this can optionally implement ``step_batch(batch_num_total)`` which updates the learning rate given the batch number. summary_interval: ``int``, optional, (default = 100) Number of batches between logging scalars to tensorboard histogram_interval : ``int``, optional, (default = ``None``) If not None, then log histograms to tensorboard every ``histogram_interval`` batches. When this parameter is specified, the following additional logging is enabled: * Histograms of model parameters * The ratio of parameter update norm to parameter norm * Histogram of layer activations We log histograms of the parameters returned by ``model.get_parameters_for_histogram_tensorboard_logging``. The layer activations are logged for any modules in the ``Model`` that have the attribute ``should_log_activations`` set to ``True``. Logging histograms requires a number of GPU-CPU copies during training and is typically slow, so we recommend logging histograms relatively infrequently. Note: only Modules that return tensors, tuples of tensors or dicts with tensors as values currently support activation logging. """ self._model = model self._iterator = iterator self._validation_iterator = validation_iterator self._optimizer = optimizer self._train_data = train_dataset self._validation_data = validation_dataset if patience is None: # no early stopping if validation_dataset: logger.warning('You provided a validation dataset but patience was set to None, ' 'meaning that early stopping is disabled') elif (not isinstance(patience, int)) or patience <= 0: raise ConfigurationError('{} is an invalid value for "patience": it must be a positive integer ' 'or None (if you want to disable early stopping)'.format(patience)) self._patience = patience self._num_epochs = num_epochs self._serialization_dir = serialization_dir self._num_serialized_models_to_keep = num_serialized_models_to_keep self._keep_serialized_model_every_num_seconds = keep_serialized_model_every_num_seconds self._serialized_paths: List[Any] = [] self._last_permanent_saved_checkpoint_time = time.time() self._model_save_interval = model_save_interval self._grad_norm = grad_norm self._grad_clipping = grad_clipping self._learning_rate_scheduler = learning_rate_scheduler increase_or_decrease = validation_metric[0] if increase_or_decrease not in ["+", "-"]: raise ConfigurationError("Validation metrics must specify whether they should increase " "or decrease by pre-pending the metric name with a +/-.") self._validation_metric = validation_metric[1:] self._validation_metric_decreases = increase_or_decrease == "-" if not isinstance(cuda_device, int) and not isinstance(cuda_device, list): raise ConfigurationError("Expected an int or list for cuda_device, got {}".format(cuda_device)) if isinstance(cuda_device, list): logger.info(f"WARNING: Multiple GPU support is experimental not recommended for use. " "In some cases it may lead to incorrect results or undefined behavior.") self._multiple_gpu = True self._cuda_devices = cuda_device # data_parallel will take care of transfering to cuda devices, # so the iterator keeps data on CPU. self._iterator_device = -1 else: self._multiple_gpu = False self._cuda_devices = [cuda_device] self._iterator_device = cuda_device if self._cuda_devices[0] != -1: self._model = self._model.cuda(self._cuda_devices[0]) self._log_interval = 10 # seconds self._summary_interval = summary_interval self._histogram_interval = histogram_interval self._log_histograms_this_batch = False # We keep the total batch number as a class variable because it # is used inside a closure for the hook which logs activations in # ``_enable_activation_logging``. self._batch_num_total = 0 self._last_log = 0.0 # time of last logging if serialization_dir is not None: train_log = SummaryWriter(os.path.join(serialization_dir, "log", "train")) validation_log = SummaryWriter(os.path.join(serialization_dir, "log", "validation")) self._tensorboard = TensorboardWriter(train_log, validation_log) else: self._tensorboard = TensorboardWriter() self._warned_tqdm_ignores_underscores = False def _enable_gradient_clipping(self) -> None: if self._grad_clipping is not None: # Pylint is unable to tell that we're in the case that _grad_clipping is not None... # pylint: disable=invalid-unary-operand-type clip_function = lambda grad: grad.clamp(-self._grad_clipping, self._grad_clipping) for parameter in self._model.parameters(): if parameter.requires_grad: parameter.register_hook(clip_function) def _enable_activation_logging(self) -> None: """ Log activations to tensorboard """ if self._histogram_interval is not None: # To log activation histograms to the forward pass, we register # a hook on forward to capture the output tensors. # This uses a closure on self._log_histograms_this_batch to # determine whether to send the activations to tensorboard, # since we don't want them on every call. for _, module in self._model.named_modules(): if not getattr(module, 'should_log_activations', False): # skip it continue def hook(module_, inputs, outputs): # pylint: disable=unused-argument,cell-var-from-loop log_prefix = 'activation_histogram/{0}'.format(module_.__class__) if self._log_histograms_this_batch: if isinstance(outputs, torch.Tensor): log_name = log_prefix self._tensorboard.add_train_histogram(log_name, outputs, self._batch_num_total) elif isinstance(outputs, (list, tuple)): for i, output in enumerate(outputs): log_name = "{0}_{1}".format(log_prefix, i) self._tensorboard.add_train_histogram(log_name, output, self._batch_num_total) elif isinstance(outputs, dict): for k, tensor in outputs.items(): log_name = "{0}_{1}".format(log_prefix, k) self._tensorboard.add_train_histogram(log_name, tensor, self._batch_num_total) else: # skip it pass module.register_forward_hook(hook) def _rescale_gradients(self) -> Optional[float]: """ Performs gradient rescaling. Is a no-op if gradient rescaling is not enabled. """ if self._grad_norm: parameters_to_clip = [p for p in self._model.parameters() if p.grad is not None] return sparse_clip_norm(parameters_to_clip, self._grad_norm) return None def _data_parallel(self, batch): """ Do the forward pass using multiple GPUs. This is a simplification of torch.nn.parallel.data_parallel to support the allennlp model interface. """ inputs, module_kwargs = scatter_kwargs((), batch, self._cuda_devices, 0) used_device_ids = self._cuda_devices[:len(inputs)] replicas = replicate(self._model, used_device_ids) outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids) # Only the 'loss' is needed. # a (num_gpu, ) tensor with loss on each GPU losses = gather([output['loss'].unsqueeze(0) for output in outputs], used_device_ids[0], 0) return {'loss': losses.mean()} def _batch_loss(self, batch: torch.Tensor, for_training: bool) -> torch.Tensor: """ Does a forward pass on the given batch and returns the ``loss`` value in the result. If ``for_training`` is `True` also applies regularization penalty. """ if self._multiple_gpu: output_dict = self._data_parallel(batch) else: output_dict = self._model(**batch) try: loss = output_dict["loss"] if for_training: loss += self._model.get_regularization_penalty() except KeyError: if for_training: raise RuntimeError("The model you are trying to optimize does not contain a" " 'loss' key in the output of model.forward(inputs).") loss = None return loss def _get_metrics(self, total_loss: float, num_batches: int, reset: bool = False) -> Dict[str, float]: """ Gets the metrics but sets ``"loss"`` to the total loss divided by the ``num_batches`` so that the ``"loss"`` metric is "average loss per batch". """ metrics = self._model.get_metrics(reset=reset) metrics["loss"] = float(total_loss / num_batches) if num_batches > 0 else 0.0 return metrics def _train_epoch(self, epoch: int) -> Dict[str, float]: """ Trains one epoch and returns metrics. """ logger.info("Epoch %d/%d", epoch, self._num_epochs - 1) logger.info(f"Peak CPU memory usage MB: {peak_memory_mb()}") for gpu, memory in gpu_memory_mb().items(): logger.info(f"GPU {gpu} memory usage MB: {memory}") train_loss = 0.0 # Set the model to "train" mode. self._model.train() # Get tqdm for the training batches train_generator = self._iterator(self._train_data, num_epochs=1, cuda_device=self._iterator_device) num_training_batches = self._iterator.get_num_batches(self._train_data) train_generator_tqdm = Tqdm.tqdm(train_generator, total=num_training_batches) self._last_log = time.time() last_save_time = time.time() batches_this_epoch = 0 if self._batch_num_total is None: self._batch_num_total = 0 if self._histogram_interval is not None: histogram_parameters = set(self._model.get_parameters_for_histogram_tensorboard_logging()) logger.info("Training") for batch in train_generator_tqdm: batches_this_epoch += 1 self._batch_num_total += 1 batch_num_total = self._batch_num_total self._log_histograms_this_batch = self._histogram_interval is not None and ( batch_num_total % self._histogram_interval == 0) self._optimizer.zero_grad() loss = self._batch_loss(batch, for_training=True) loss.backward() train_loss += loss.item() batch_grad_norm = self._rescale_gradients() # This does nothing if batch_num_total is None or you are using an # LRScheduler which doesn't update per batch. if self._learning_rate_scheduler: self._learning_rate_scheduler.step_batch(batch_num_total) if self._log_histograms_this_batch: # get the magnitude of parameter updates for logging # We need a copy of current parameters to compute magnitude of updates, # and copy them to CPU so large models won't go OOM on the GPU. param_updates = {name: param.detach().cpu().clone() for name, param in self._model.named_parameters()} self._optimizer.step() for name, param in self._model.named_parameters(): param_updates[name].sub_(param.detach().cpu()) update_norm = torch.norm(param_updates[name].view(-1, )) param_norm = torch.norm(param.view(-1, )) self._tensorboard.add_train_scalar("gradient_update/" + name, update_norm / (param_norm + 1e-7), batch_num_total) else: self._optimizer.step() # Update the description with the latest metrics metrics = self._get_metrics(train_loss, batches_this_epoch) description = self._description_from_metrics(metrics) train_generator_tqdm.set_description(description, refresh=False) # Log parameter values to Tensorboard if batch_num_total % self._summary_interval == 0: self._parameter_and_gradient_statistics_to_tensorboard(batch_num_total, batch_grad_norm) self._tensorboard.add_train_scalar("loss/loss_train", metrics["loss"], batch_num_total) self._metrics_to_tensorboard(batch_num_total, {"epoch_metrics/" + k: v for k, v in metrics.items()}) if self._log_histograms_this_batch: self._histograms_to_tensorboard(batch_num_total, histogram_parameters) # Save model if needed. if self._model_save_interval is not None and ( time.time() - last_save_time > self._model_save_interval ): last_save_time = time.time() self._save_checkpoint( '{0}.{1}'.format(epoch, time_to_str(int(last_save_time))), [], is_best=False ) return self._get_metrics(train_loss, batches_this_epoch, reset=True) def _should_stop_early(self, metric_history: List[float]) -> bool: """ uses patience and the validation metric to determine if training should stop early """ if self._patience and self._patience < len(metric_history): # Pylint can't figure out that in this branch `self._patience` is an int. # pylint: disable=invalid-unary-operand-type # Is the best score in the past N epochs worse than or equal the best score overall? if self._validation_metric_decreases: return min(metric_history[-self._patience:]) >= min(metric_history[:-self._patience]) else: return max(metric_history[-self._patience:]) <= max(metric_history[:-self._patience]) return False def _parameter_and_gradient_statistics_to_tensorboard(self, # pylint: disable=invalid-name epoch: int, batch_grad_norm: float) -> None: """ Send the mean and std of all parameters and gradients to tensorboard, as well as logging the average gradient norm. """ # Log parameter values to Tensorboard for name, param in self._model.named_parameters(): self._tensorboard.add_train_scalar("parameter_mean/" + name, param.data.mean(), epoch) self._tensorboard.add_train_scalar("parameter_std/" + name, param.data.std(), epoch) if param.grad is not None: if is_sparse(param.grad): # pylint: disable=protected-access grad_data = param.grad.data._values() else: grad_data = param.grad.data # skip empty gradients if torch.prod(torch.tensor(grad_data.shape)).item() > 0: # pylint: disable=not-callable self._tensorboard.add_train_scalar("gradient_mean/" + name, grad_data.mean(), epoch) self._tensorboard.add_train_scalar("gradient_std/" + name, grad_data.std(), epoch) else: # no gradient for a parameter with sparse gradients logger.info("No gradient for %s, skipping tensorboard logging.", name) # norm of gradients if batch_grad_norm is not None: self._tensorboard.add_train_scalar("gradient_norm", batch_grad_norm, epoch) def _histograms_to_tensorboard(self, epoch: int, histogram_parameters: Set[str]) -> None: """ Send histograms of parameters to tensorboard. """ for name, param in self._model.named_parameters(): if name in histogram_parameters: self._tensorboard.add_train_histogram("parameter_histogram/" + name, param, epoch) def _metrics_to_tensorboard(self, epoch: int, train_metrics: dict, val_metrics: dict = None) -> None: """ Sends all of the train metrics (and validation metrics, if provided) to tensorboard. """ metric_names = set(train_metrics.keys()) if val_metrics is not None: metric_names.update(val_metrics.keys()) val_metrics = val_metrics or {} for name in metric_names: train_metric = train_metrics.get(name) if train_metric is not None: self._tensorboard.add_train_scalar(name, train_metric, epoch) val_metric = val_metrics.get(name) if val_metric is not None: self._tensorboard.add_validation_scalar(name, val_metric, epoch) def _metrics_to_console(self, # pylint: disable=no-self-use train_metrics: dict, val_metrics: dict = None) -> None: """ Logs all of the train metrics (and validation metrics, if provided) to the console. """ val_metrics = val_metrics or {} dual_message_template = "Training %s : %3f Validation %s : %3f " message_template = "%s %s : %3f " metric_names = set(train_metrics.keys()) if val_metrics: metric_names.update(val_metrics.keys()) for name in metric_names: train_metric = train_metrics.get(name) val_metric = val_metrics.get(name) if val_metric is not None and train_metric is not None: logger.info(dual_message_template, name, train_metric, name, val_metric) elif val_metric is not None: logger.info(message_template, "Validation", name, val_metric) elif train_metric is not None: logger.info(message_template, "Training", name, train_metric) def _validation_loss(self) -> Tuple[float, int]: """ Computes the validation loss. Returns it and the number of batches. """ logger.info("Validating") self._model.eval() if self._validation_iterator is not None: val_iterator = self._validation_iterator else: val_iterator = self._iterator val_generator = val_iterator(self._validation_data, num_epochs=1, cuda_device=self._iterator_device) num_validation_batches = val_iterator.get_num_batches(self._validation_data) val_generator_tqdm = Tqdm.tqdm(val_generator, total=num_validation_batches) batches_this_epoch = 0 val_loss = 0 for batch in val_generator_tqdm: loss = self._batch_loss(batch, for_training=False) if loss is not None: # You shouldn't necessarily have to compute a loss for validation, so we allow for # `loss` to be None. We need to be careful, though - `batches_this_epoch` is # currently only used as the divisor for the loss function, so we can safely only # count those batches for which we actually have a loss. If this variable ever # gets used for something else, we might need to change things around a bit. batches_this_epoch += 1 val_loss += loss.detach().cpu().numpy() # Update the description with the latest metrics val_metrics = self._get_metrics(val_loss, batches_this_epoch) description = self._description_from_metrics(val_metrics) val_generator_tqdm.set_description(description, refresh=False) return val_loss, batches_this_epoch def train(self) -> Dict[str, Any]: """ Trains the supplied model with the supplied parameters. """ try: epoch_counter, validation_metric_per_epoch = self._restore_checkpoint() except RuntimeError: traceback.print_exc() raise ConfigurationError("Could not recover training from the checkpoint. Did you mean to output to " "a different serialization directory or delete the existing serialization " "directory?") self._enable_gradient_clipping() self._enable_activation_logging() logger.info("Beginning training.") train_metrics: Dict[str, float] = {} val_metrics: Dict[str, float] = {} epochs_trained = 0 training_start_time = time.time() for epoch in range(epoch_counter, self._num_epochs): epoch_start_time = time.time() train_metrics = self._train_epoch(epoch) if self._validation_data is not None: with torch.no_grad(): # We have a validation set, so compute all the metrics on it. val_loss, num_batches = self._validation_loss() val_metrics = self._get_metrics(val_loss, num_batches, reset=True) # Check validation metric for early stopping this_epoch_val_metric = val_metrics[self._validation_metric] # Check validation metric to see if it's the best so far is_best_so_far = self._is_best_so_far(this_epoch_val_metric, validation_metric_per_epoch) validation_metric_per_epoch.append(this_epoch_val_metric) if self._should_stop_early(validation_metric_per_epoch): logger.info("Ran out of patience. Stopping training.") break else: # No validation set, so just assume it's the best so far. is_best_so_far = True val_metrics = {} this_epoch_val_metric = None self._save_checkpoint(epoch, validation_metric_per_epoch, is_best=is_best_so_far) self._metrics_to_tensorboard(epoch, train_metrics, val_metrics=val_metrics) self._metrics_to_console(train_metrics, val_metrics) if self._learning_rate_scheduler: # The LRScheduler API is agnostic to whether your schedule requires a validation metric - # if it doesn't, the validation metric passed here is ignored. self._learning_rate_scheduler.step(this_epoch_val_metric, epoch) epoch_elapsed_time = time.time() - epoch_start_time logger.info("Epoch duration: %s", time.strftime("%H:%M:%S", time.gmtime(epoch_elapsed_time))) if epoch < self._num_epochs - 1: training_elapsed_time = time.time() - training_start_time estimated_time_remaining = training_elapsed_time * \ ((self._num_epochs - epoch_counter) / float(epoch - epoch_counter + 1) - 1) formatted_time = time.strftime("%H:%M:%S", time.gmtime(estimated_time_remaining)) logger.info("Estimated training time remaining: %s", formatted_time) epochs_trained += 1 training_elapsed_time = time.time() - training_start_time metrics = { "training_duration": time.strftime("%H:%M:%S", time.gmtime(training_elapsed_time)), "training_start_epoch": epoch_counter, "training_epochs": epochs_trained } for key, value in train_metrics.items(): metrics["training_" + key] = value for key, value in val_metrics.items(): metrics["validation_" + key] = value if validation_metric_per_epoch: # We may not have had validation data, so we need to hide this behind an if. if self._validation_metric_decreases: best_validation_metric = min(validation_metric_per_epoch) else: best_validation_metric = max(validation_metric_per_epoch) metrics[f"best_validation_{self._validation_metric}"] = best_validation_metric metrics['best_epoch'] = [i for i, value in enumerate(validation_metric_per_epoch) if value == best_validation_metric][-1] return metrics def _is_best_so_far(self, this_epoch_val_metric: float, validation_metric_per_epoch: List[float]): if not validation_metric_per_epoch: return True elif self._validation_metric_decreases: return this_epoch_val_metric < min(validation_metric_per_epoch) else: return this_epoch_val_metric > max(validation_metric_per_epoch) def _description_from_metrics(self, metrics: Dict[str, float]) -> str: if (not self._warned_tqdm_ignores_underscores and any(metric_name.startswith("_") for metric_name in metrics)): logger.warning("Metrics with names beginning with \"_\" will " "not be logged to the tqdm progress bar.") self._warned_tqdm_ignores_underscores = True return ', '.join(["%s: %.4f" % (name, value) for name, value in metrics.items() if not name.startswith("_")]) + " ||" def _save_checkpoint(self, epoch: Union[int, str], val_metric_per_epoch: List[float], is_best: Optional[bool] = None) -> None: """ Saves a checkpoint of the model to self._serialization_dir. Is a no-op if self._serialization_dir is None. Parameters ---------- epoch : Union[int, str], required. The epoch of training. If the checkpoint is saved in the middle of an epoch, the parameter is a string with the epoch and timestamp. is_best: bool, optional (default = None) A flag which causes the model weights at the given epoch to be copied to a "best.th" file. The value of this flag should be based on some validation metric computed by your model. """ if self._serialization_dir is not None: model_path = os.path.join(self._serialization_dir, "model_state_epoch_{}.th".format(epoch)) model_state = self._model.state_dict() torch.save(model_state, model_path) training_state = {'epoch': epoch, 'val_metric_per_epoch': val_metric_per_epoch, 'optimizer': self._optimizer.state_dict(), 'batch_num_total': self._batch_num_total} training_path = os.path.join(self._serialization_dir, "training_state_epoch_{}.th".format(epoch)) torch.save(training_state, training_path) if is_best: logger.info("Best validation performance so far. " "Copying weights to '%s/best.th'.", self._serialization_dir) shutil.copyfile(model_path, os.path.join(self._serialization_dir, "best.th")) if self._num_serialized_models_to_keep and self._num_serialized_models_to_keep >= 0: self._serialized_paths.append([time.time(), model_path, training_path]) if len(self._serialized_paths) > self._num_serialized_models_to_keep: paths_to_remove = self._serialized_paths.pop(0) # Check to see if we should keep this checkpoint, if it has been longer # then self._keep_serialized_model_every_num_seconds since the last # kept checkpoint. remove_path = True if self._keep_serialized_model_every_num_seconds is not None: save_time = paths_to_remove[0] time_since_checkpoint_kept = save_time - self._last_permanent_saved_checkpoint_time if time_since_checkpoint_kept > self._keep_serialized_model_every_num_seconds: # We want to keep this checkpoint. remove_path = False self._last_permanent_saved_checkpoint_time = save_time if remove_path: for fname in paths_to_remove[1:]: os.remove(fname) def find_latest_checkpoint(self) -> Tuple[str, str]: """ Return the location of the latest model and training state files. If there isn't a valid checkpoint then return None. """ have_checkpoint = (self._serialization_dir is not None and any("model_state_epoch_" in x for x in os.listdir(self._serialization_dir))) if not have_checkpoint: return None serialization_files = os.listdir(self._serialization_dir) model_checkpoints = [x for x in serialization_files if "model_state_epoch" in x] # Get the last checkpoint file. Epochs are specified as either an # int (for end of epoch files) or with epoch and timestamp for # within epoch checkpoints, e.g. 5.2018-02-02-15-33-42 found_epochs = [ # pylint: disable=anomalous-backslash-in-string re.search("model_state_epoch_([0-9\.\-]+)\.th", x).group(1) for x in model_checkpoints ] int_epochs: Any = [] for epoch in found_epochs: pieces = epoch.split('.') if len(pieces) == 1: # Just a single epoch without timestamp int_epochs.append([int(pieces[0]), 0]) else: # has a timestamp int_epochs.append([int(pieces[0]), pieces[1]]) last_epoch = sorted(int_epochs, reverse=True)[0] if last_epoch[1] == 0: epoch_to_load = str(last_epoch[0]) else: epoch_to_load = '{0}.{1}'.format(last_epoch[0], last_epoch[1]) model_path = os.path.join(self._serialization_dir, "model_state_epoch_{}.th".format(epoch_to_load)) training_state_path = os.path.join(self._serialization_dir, "training_state_epoch_{}.th".format(epoch_to_load)) return (model_path, training_state_path) def _restore_checkpoint(self) -> Tuple[int, List[float]]: """ Restores a model from a serialization_dir to the last saved checkpoint. This includes an epoch count and optimizer state, which is serialized separately from model parameters. This function should only be used to continue training - if you wish to load a model for inference/load parts of a model into a new computation graph, you should use the native Pytorch functions: `` model.load_state_dict(torch.load("/path/to/model/weights.th"))`` If ``self._serialization_dir`` does not exist or does not contain any checkpointed weights, this function will do nothing and return 0. Returns ------- epoch: int The epoch at which to resume training, which should be one after the epoch in the saved training state. """ latest_checkpoint = self.find_latest_checkpoint() if latest_checkpoint is None: # No checkpoint to restore, start at 0 return 0, [] model_path, training_state_path = latest_checkpoint # Load the parameters onto CPU, then transfer to GPU. # This avoids potential OOM on GPU for large models that # load parameters onto GPU then make a new GPU copy into the parameter # buffer. The GPU transfer happens implicitly in load_state_dict. model_state = torch.load(model_path, map_location=util.device_mapping(-1)) training_state = torch.load(training_state_path, map_location=util.device_mapping(-1)) self._model.load_state_dict(model_state) self._optimizer.load_state_dict(training_state["optimizer"]) move_optimizer_to_cuda(self._optimizer) # We didn't used to save `validation_metric_per_epoch`, so we can't assume # that it's part of the trainer state. If it's not there, an empty list is all # we can do. if "val_metric_per_epoch" not in training_state: logger.warning("trainer state `val_metric_per_epoch` not found, using empty list") val_metric_per_epoch: List[float] = [] else: val_metric_per_epoch = training_state["val_metric_per_epoch"] if isinstance(training_state["epoch"], int): epoch_to_return = training_state["epoch"] + 1 else: epoch_to_return = int(training_state["epoch"].split('.')[0]) + 1 # For older checkpoints with batch_num_total missing, default to old behavior where # it is unchanged. batch_num_total = training_state.get('batch_num_total') if batch_num_total is not None: self._batch_num_total = batch_num_total return epoch_to_return, val_metric_per_epoch # Requires custom from_params. @classmethod def from_params(cls, model: Model, serialization_dir: str, iterator: DataIterator, train_data: Iterable[Instance], validation_data: Optional[Iterable[Instance]], params: Params, validation_iterator: DataIterator = None) -> 'Trainer': patience = params.pop_int("patience", None) validation_metric = params.pop("validation_metric", "-loss") num_epochs = params.pop_int("num_epochs", 20) cuda_device = params.pop_int("cuda_device", -1) grad_norm = params.pop_float("grad_norm", None) grad_clipping = params.pop_float("grad_clipping", None) lr_scheduler_params = params.pop("learning_rate_scheduler", None) if cuda_device >= 0: model = model.cuda(cuda_device) parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad] optimizer = Optimizer.from_params(parameters, params.pop("optimizer")) if lr_scheduler_params: scheduler = LearningRateScheduler.from_params(optimizer, lr_scheduler_params) else: scheduler = None num_serialized_models_to_keep = params.pop_int("num_serialized_models_to_keep", 20) keep_serialized_model_every_num_seconds = params.pop_int( "keep_serialized_model_every_num_seconds", None) model_save_interval = params.pop_float("model_save_interval", None) summary_interval = params.pop_int("summary_interval", 100) histogram_interval = params.pop_int("histogram_interval", None) params.assert_empty(cls.__name__) return Trainer(model, optimizer, iterator, train_data, validation_data, patience=patience, validation_metric=validation_metric, validation_iterator=validation_iterator, num_epochs=num_epochs, serialization_dir=serialization_dir, cuda_device=cuda_device, grad_norm=grad_norm, grad_clipping=grad_clipping, learning_rate_scheduler=scheduler, num_serialized_models_to_keep=num_serialized_models_to_keep, keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds, model_save_interval=model_save_interval, summary_interval=summary_interval, histogram_interval=histogram_interval)
[ "torch.nn.parallel.replicate", "torch.no_grad", "torch.save", "torch.nn.parallel.scatter_gather.scatter_kwargs", "torch.tensor", "torch.nn.parallel.parallel_apply" ]
0.4.0
albert-dot-ai/allennlp
580dc8b0e2c6491d4d75b54c3b15b34b462e0c67
1.9
""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import math from typing import List, Tuple, Optional import fastmri import torch import torch.nn as nn import torch.nn.functional as F from fastmri.data import transforms from .unet import Unet class NormUnet(nn.Module): """ Normalized U-Net model. This is the same as a regular U-Net, but with normalization applied to the input before the U-Net. This keeps the values more numerically stable during training. """ def __init__( self, chans: int, num_pools: int, in_chans: int = 2, out_chans: int = 2, drop_prob: float = 0.0, ): """ Args: chans: Number of output channels of the first convolution layer. num_pools: Number of down-sampling and up-sampling layers. in_chans: Number of channels in the input to the U-Net model. out_chans: Number of channels in the output to the U-Net model. drop_prob: Dropout probability. """ super().__init__() self.unet = Unet( in_chans=in_chans, out_chans=out_chans, chans=chans, num_pool_layers=num_pools, drop_prob=drop_prob, ) def complex_to_chan_dim(self, x: torch.Tensor) -> torch.Tensor: b, c, h, w, two = x.shape assert two == 2 return x.permute(0, 4, 1, 2, 3).reshape(b, 2 * c, h, w) def chan_complex_to_last_dim(self, x: torch.Tensor) -> torch.Tensor: b, c2, h, w = x.shape assert c2 % 2 == 0 c = c2 // 2 return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1).contiguous() def norm(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # group norm b, c, h, w = x.shape x = x.view(b, 2, c // 2 * h * w) mean = x.mean(dim=2).view(b, 2, 1, 1) std = x.std(dim=2).view(b, 2, 1, 1) x = x.view(b, c, h, w) return (x - mean) / std, mean, std def unnorm( self, x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor ) -> torch.Tensor: return x * std + mean def pad( self, x: torch.Tensor ) -> Tuple[torch.Tensor, Tuple[List[int], List[int], int, int]]: _, _, h, w = x.shape w_mult = ((w - 1) | 15) + 1 h_mult = ((h - 1) | 15) + 1 w_pad = [math.floor((w_mult - w) / 2), math.ceil((w_mult - w) / 2)] h_pad = [math.floor((h_mult - h) / 2), math.ceil((h_mult - h) / 2)] # TODO: fix this type when PyTorch fixes theirs # the documentation lies - this actually takes a list # https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L3457 # https://github.com/pytorch/pytorch/pull/16949 x = F.pad(x, w_pad + h_pad) return x, (h_pad, w_pad, h_mult, w_mult) def unpad( self, x: torch.Tensor, h_pad: List[int], w_pad: List[int], h_mult: int, w_mult: int, ) -> torch.Tensor: return x[..., h_pad[0] : h_mult - h_pad[1], w_pad[0] : w_mult - w_pad[1]] def forward(self, x: torch.Tensor) -> torch.Tensor: if not x.shape[-1] == 2: raise ValueError("Last dimension must be 2 for complex.") # get shapes for unet and normalize x = self.complex_to_chan_dim(x) x, mean, std = self.norm(x) x, pad_sizes = self.pad(x) x = self.unet(x) # get shapes back and unnormalize x = self.unpad(x, *pad_sizes) x = self.unnorm(x, mean, std) x = self.chan_complex_to_last_dim(x) return x class SensitivityModel(nn.Module): """ Model for learning sensitivity estimation from k-space data. This model applies an IFFT to multichannel k-space data and then a U-Net to the coil images to estimate coil sensitivities. It can be used with the end-to-end variational network. """ def __init__( self, chans: int, num_pools: int, in_chans: int = 2, out_chans: int = 2, drop_prob: float = 0.0, mask_center: bool = True, ): """ Args: chans: Number of output channels of the first convolution layer. num_pools: Number of down-sampling and up-sampling layers. in_chans: Number of channels in the input to the U-Net model. out_chans: Number of channels in the output to the U-Net model. drop_prob: Dropout probability. mask_center: Whether to mask center of k-space for sensitivity map calculation. """ super().__init__() self.mask_center = mask_center self.norm_unet = NormUnet( chans, num_pools, in_chans=in_chans, out_chans=out_chans, drop_prob=drop_prob, ) def chans_to_batch_dim(self, x: torch.Tensor) -> Tuple[torch.Tensor, int]: b, c, h, w, comp = x.shape return x.view(b * c, 1, h, w, comp), b def batch_chans_to_chan_dim(self, x: torch.Tensor, batch_size: int) -> torch.Tensor: bc, _, h, w, comp = x.shape c = bc // batch_size return x.view(batch_size, c, h, w, comp) def divide_root_sum_of_squares(self, x: torch.Tensor) -> torch.Tensor: return x / fastmri.rss_complex(x, dim=1).unsqueeze(-1).unsqueeze(1) def get_pad_and_num_low_freqs( self, mask: torch.Tensor, num_low_frequencies: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor]: if num_low_frequencies is None: # get low frequency line locations and mask them out squeezed_mask = mask[:, 0, 0, :, 0].to(torch.int8) cent = squeezed_mask.shape[1] // 2 # running argmin returns the first non-zero left = torch.argmin(squeezed_mask[:, :cent].flip(1), dim=1) right = torch.argmin(squeezed_mask[:, cent:], dim=1) num_low_frequencies_tensor = torch.max( 2 * torch.min(left, right), torch.ones_like(left) ) # force a symmetric center unless 1 else: num_low_frequencies_tensor = num_low_frequencies * torch.ones( mask.shape[0], dtype=mask.dtype, device=mask.device ) pad = (mask.shape[-2] - num_low_frequencies_tensor + 1) // 2 return pad, num_low_frequencies_tensor def forward( self, masked_kspace: torch.Tensor, mask: torch.Tensor, num_low_frequencies: Optional[int] = None, ) -> torch.Tensor: if self.mask_center: pad, num_low_freqs = self.get_pad_and_num_low_freqs( mask, num_low_frequencies ) masked_kspace = transforms.batched_mask_center( masked_kspace, pad, pad + num_low_freqs ) # convert to image space images, batches = self.chans_to_batch_dim(fastmri.ifft2c(masked_kspace)) # estimate sensitivities return self.divide_root_sum_of_squares( self.batch_chans_to_chan_dim(self.norm_unet(images), batches) ) class VarNet(nn.Module): """ A full variational network model. This model applies a combination of soft data consistency with a U-Net regularizer. To use non-U-Net regularizers, use VarNetBlock. """ def __init__( self, num_cascades: int = 12, sens_chans: int = 8, sens_pools: int = 4, chans: int = 18, pools: int = 4, mask_center: bool = True, ): """ Args: num_cascades: Number of cascades (i.e., layers) for variational network. sens_chans: Number of channels for sensitivity map U-Net. sens_pools Number of downsampling and upsampling layers for sensitivity map U-Net. chans: Number of channels for cascade U-Net. pools: Number of downsampling and upsampling layers for cascade U-Net. mask_center: Whether to mask center of k-space for sensitivity map calculation. """ super().__init__() self.sens_net = SensitivityModel( chans=sens_chans, num_pools=sens_pools, mask_center=mask_center, ) self.cascades = nn.ModuleList( [VarNetBlock(NormUnet(chans, pools)) for _ in range(num_cascades)] ) def forward( self, masked_kspace: torch.Tensor, mask: torch.Tensor, num_low_frequencies: Optional[int] = None, ) -> torch.Tensor: sens_maps = self.sens_net(masked_kspace, mask, num_low_frequencies) kspace_pred = masked_kspace.clone() for cascade in self.cascades: kspace_pred = cascade(kspace_pred, masked_kspace, mask, sens_maps) return fastmri.rss(fastmri.complex_abs(fastmri.ifft2c(kspace_pred)), dim=1) class VarNetBlock(nn.Module): """ Model block for end-to-end variational network. This model applies a combination of soft data consistency with the input model as a regularizer. A series of these blocks can be stacked to form the full variational network. """ def __init__(self, model: nn.Module): """ Args: model: Module for "regularization" component of variational network. """ super().__init__() self.model = model self.dc_weight = nn.Parameter(torch.ones(1)) def sens_expand(self, x: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor: return fastmri.fft2c(fastmri.complex_mul(x, sens_maps)) def sens_reduce(self, x: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor: x = fastmri.ifft2c(x) return fastmri.complex_mul(x, fastmri.complex_conj(sens_maps)).sum( dim=1, keepdim=True ) def forward( self, current_kspace: torch.Tensor, ref_kspace: torch.Tensor, mask: torch.Tensor, sens_maps: torch.Tensor, ) -> torch.Tensor: zero = torch.zeros(1, 1, 1, 1, 1).to(current_kspace) soft_dc = torch.where(mask, current_kspace - ref_kspace, zero) * self.dc_weight model_term = self.sens_expand( self.model(self.sens_reduce(current_kspace, sens_maps)), sens_maps ) return current_kspace - soft_dc - model_term
[ "torch.zeros", "torch.min", "torch.argmin", "torch.ones", "torch.ones_like", "torch.nn.functional.pad", "torch.where" ]
1.9.0
vigsivan/fastMRI
0f6c4c0176ff74bf2761d20ec62facb01c9038f8
1.13
import csv import decimal import os import threading import time from typing import List import torch import torch.distributed as dist import torch.distributed.rpc as rpc import torch.multiprocessing as mp from torch.distributed import rpc from .trpc_server import TRPCCOMMServicer from ..base_com_manager import BaseCommunicationManager from ..message import Message from ..observer import Observer import logging lock = threading.Lock() WORKER = "worker{}" class TRPCCommManager(BaseCommunicationManager): def __init__( self, trpc_master_config_path, process_id=0, world_size=0, ): logging.info("using TRPC backend") with open(trpc_master_config_path, newline="") as csv_file: csv_reader = csv.reader(csv_file) # skip header line next(csv_reader) master_address, master_port = next(csv_reader) self.master_address = master_address self.master_port = master_port self.process_id = process_id self.world_size = world_size self._observers: List[Observer] = [] if process_id == 0: self.node_type = "server" else: self.node_type = "client" print(f"Worker rank {process_id} initializing RPC") self.trpc_servicer = TRPCCOMMServicer( master_address, master_port, self.world_size, process_id ) logging.info(os.getcwd()) os.environ["MASTER_ADDR"] = self.master_address os.environ["MASTER_PORT"] = self.master_port self._init_torch_rpc_tp( master_address, master_port, process_id, self.world_size ) self.is_running = True print("server started. master address: " + str(master_address)) def _init_torch_rpc_pg( self, master_addr, master_port, worker_idx, worker_num, ): # https://github.com/pytorch/pytorch/issues/55615 # [BC-Breaking][RFC] Retire ProcessGroup Backend for RPC #55615 str_init_method = "tcp://" + str(master_addr) + ":" + str(master_port) logging.info("str_init_method = {}".format(str_init_method)) options = rpc.ProcessGroupRpcBackendOptions( num_send_recv_threads=4, init_method=str_init_method, rpc_timeout=60.0 ) rpc.init_rpc( WORKER.format(worker_idx), backend=dist.rpc.BackendType.PROCESS_GROUP, rank=worker_idx, world_size=worker_num, rpc_backend_options=options, ) # torch.distributed.rpc.init_rpc('worker', rank=self.global_rank, world_size=self.world_size) logging.info("_init_rpc_with_process_group finished.") def _init_torch_rpc_tp( self, master_addr, master_port, worker_idx, worker_num, ): # https://github.com/pytorch/pytorch/issues/55615 # [BC-Breaking][RFC] Retire ProcessGroup Backend for RPC #55615 str_init_method = "tcp://" + str(master_addr) + ":10000" logging.info("str_init_method = {}".format(str_init_method)) options = rpc.TensorPipeRpcBackendOptions( num_worker_threads=16, rpc_timeout=1800, init_method=str_init_method, _transports=["uv"], ) rpc.init_rpc( WORKER.format(worker_idx), backend=rpc.BackendType.TENSORPIPE, rank=worker_idx, world_size=worker_num, rpc_backend_options=options, ) logging.info("_init_torch_rpc_tp finished.") def send_message(self, msg: Message): receiver_id = msg.get_receiver_id() logging.info("sending message to {}".format(receiver_id)) # Should I wait? rpc.rpc_sync( WORKER.format(receiver_id), TRPCCOMMServicer.sendMessage, args=(self.process_id, msg), ) logging.debug("sent") def add_observer(self, observer: Observer): self._observers.append(observer) def remove_observer(self, observer: Observer): self._observers.remove(observer) def handle_receive_message(self): thread = threading.Thread(target=self.message_handling_subroutine) thread.start() def message_handling_subroutine(self): while self.is_running: if self.trpc_servicer.message_q.qsize() > 0: lock.acquire() msg = self.trpc_servicer.message_q.get() self.notify(msg) lock.release() return def stop_receive_message(self): rpc.shutdown() self.is_running = False def notify(self, message: Message): msg_type = message.get_type() for observer in self._observers: observer.receive_message(msg_type, message) def run_worker(rank, world_size): r""" A wrapper function that initializes RPC, calls the function, and shuts down RPC. """ if rank == 1: com_manager_client = TRPCCommManager( "./trpc_master_config.csv", rank, world_size ) start = time.time() tensor = torch.ones(1000, 1000) message = Message(type="test", sender_id=rank, receiver_id="1") message.add_params("THE_TENSOR", tensor) TRPCCOMMServicer.sendMessage("worker0", message) message_values = [] message = Message(type="test", sender_id=rank, receiver_id="1") message2 = Message(type="test", sender_id=rank, receiver_id="1") message.add_params("THE_TENSOR", tensor) for i in range(100): print("###############################") print("Measuring for Single Message") for size in [100, 1000, 10000]: # for size in [100, 1000]: print(f"======= size = {size} =====") tensor = torch.ones(size, size) start = time.time() TRPCCOMMServicer.sendMessageTest1("worker0", message) end = time.time() duration = end - start message_values.append(duration) # print(f"Message tensor size={size} duration={str(duration)}", flush=True) print("###############################") print("Measuring for Message with separate Tensor") sinle_tensor_values = [] start = time.time() for size in [100, 1000, 10000]: # for size in [100, 1000]: print(f"======= size = {size} =====") tensor = torch.ones(size, size) # message = Message(type="test", sender_id=rank, receiver_id="1") # message.add_params("THE_TENSOR", tensor) start = time.time() TRPCCOMMServicer.sendMessageTest2( "worker0", message2.get_params(), tensor ) end = time.time() duration = end - start # print(f"Single tensor size={size} duration={str(duration)}", flush=True) sinle_tensor_values.append(duration) print( "mean message: " + str(decimal.Decimal(sum(message_values) / len(message_values))) ) print( "mean single tensor: " + str(decimal.Decimal(sum(sinle_tensor_values) / len(sinle_tensor_values))) ) # ret = rpc.rpc_sync("worker1", TRPCCOMMServicer., args=(torch.ones(2), torch.ones(2))) else: # parameter server does nothing com_manager_client = TRPCCommManager( "./trpc_master_config.csv", rank, world_size ) rpc.shutdown() if __name__ == "__main__": world_size = 2 # run_worker(0,1) mp.spawn(run_worker, args=(world_size,), nprocs=world_size, join=True)
[ "torch.distributed.rpc.TensorPipeRpcBackendOptions", "torch.multiprocessing.spawn", "torch.distributed.rpc.ProcessGroupRpcBackendOptions", "torch.ones", "torch.distributed.rpc.shutdown" ]
1.13.1
eliaskousk/FedML
e30d5dd3cc84c8a369c828a6f6ef097b3cf67b1a
1.3
# General structure from https://github.com/pytorch/examples/blob/master/mnist/main.py from __future__ import print_function import argparse import os import math import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import CosineAnnealingLR import torch.autograd as autograd args = None class GetSubnet(autograd.Function): @staticmethod def forward(ctx, scores, k): # Get the supermask by sorting the scores and using the top k% out = scores.clone() _, idx = scores.flatten().sort() j = int((1 - k) * scores.numel()) # flat_out and out access the same memory. flat_out = out.flatten() flat_out[idx[:j]] = 0 flat_out[idx[j:]] = 1 return out @staticmethod def backward(ctx, g): # send the gradient g straight-through on the backward pass. return g, None class SupermaskConv(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # initialize the scores self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) # NOTE: initialize the weights like this. nn.init.kaiming_normal_(self.weight, mode="fan_in", nonlinearity="relu") # NOTE: turn the gradient on the weights off self.weight.requires_grad = False def forward(self, x): subnet = GetSubnet.apply(self.scores.abs(), args.sparsity) w = self.weight * subnet x = F.conv2d( x, w, self.bias, self.stride, self.padding, self.dilation, self.groups ) return x class SupermaskLinear(nn.Linear): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # initialize the scores self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) # NOTE: initialize the weights like this. nn.init.kaiming_normal_(self.weight, mode="fan_in", nonlinearity="relu") # NOTE: turn the gradient on the weights off self.weight.requires_grad = False def forward(self, x): subnet = GetSubnet.apply(self.scores.abs(), args.sparsity) w = self.weight * subnet return F.linear(x, w, self.bias) return x # NOTE: not used here but we use NON-AFFINE Normalization! # So there is no learned parameters for your nomralization layer. class NonAffineBatchNorm(nn.BatchNorm2d): def __init__(self, dim): super(NonAffineBatchNorm, self).__init__(dim, affine=False) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = SupermaskConv(1, 32, 3, 1, bias=False) self.conv2 = SupermaskConv(32, 64, 3, 1, bias=False) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = SupermaskLinear(9216, 128, bias=False) self.fc2 = SupermaskLinear(128, 10, bias=False) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(model, device, train_loader, optimizer, criterion, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, criterion, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target) pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): global args # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Momentum (default: 0.9)') parser.add_argument('--wd', type=float, default=0.0005, metavar='M', help='Weight decay (default: 0.0005)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--data', type=str, default='../data', help='Location to store data') parser.add_argument('--sparsity', type=float, default=0.5, help='how sparse is each layer') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") print (device) kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(args.data, 'mnist'), train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST(os.path.join(args.data, 'mnist'), train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) # NOTE: only pass the parameters where p.requires_grad == True to the optimizer! Important! optimizer = optim.SGD( [p for p in model.parameters() if p.requires_grad], lr=args.lr, momentum=args.momentum, weight_decay=args.wd, ) criterion = nn.CrossEntropyLoss().to(device) scheduler = CosineAnnealingLR(optimizer, T_max=args.epochs) for epoch in range(1, args.epochs + 1): train(model, device, train_loader, optimizer, criterion, epoch) test(model, device, criterion, test_loader) scheduler.step() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
[ "torch.device", "torch.flatten", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.no_grad", "torch.nn.init.kaiming_normal_", "torch.nn.functional.log_softmax", "torch.manual_seed", "torch.nn.Dropout2d", "torch.nn.functional.linear", "torch.cuda.is_available", "torch.nn.functional.relu", "torch.nn.functional.max_pool2d", "torch.nn.functional.conv2d", "torch.nn.CrossEntropyLoss" ]
1.3.0
weizhonz/hid
3ee3aeeaf12baeadf3d85c1bb86296073bba3fbe
1.6
import dataclasses import itertools from typing import List, Optional, Tuple import nltk import torch from .downloader import load_trained_model from ..parse_base import BaseParser, BaseInputExample from ..ptb_unescape import ptb_unescape, guess_space_after TOKENIZER_LOOKUP = { "en": "english", "de": "german", "fr": "french", "pl": "polish", "sv": "swedish", } LANGUAGE_GUESS = { "ar": ("X", "XP", "WHADVP", "WHNP", "WHPP"), "zh": ("VSB", "VRD", "VPT", "VNV"), "en": ("WHNP", "WHADJP", "SINV", "SQ"), "de": ("AA", "AP", "CCP", "CH", "CNP", "VZ"), "fr": ("P+", "P+D+", "PRO+", "PROREL+"), "he": ("PREDP", "SYN_REL", "SYN_yyDOT"), "pl": ("formaczas", "znakkonca"), "sv": ("PSEUDO", "AVP", "XP"), } def guess_language(label_vocab): """Guess parser language based on its syntactic label inventory. The parser training scripts are designed to accept arbitrary input tree files with minimal language-specific behavior, but at inference time we may need to know the language identity in order to invoke other pipeline elements, such as tokenizers. """ for language, required_labels in LANGUAGE_GUESS.items(): if all(label in label_vocab for label in required_labels): return language return None @dataclasses.dataclass class InputSentence(BaseInputExample): """Parser input for a single sentence. At least one of `words` and `escaped_words` is required for each input sentence. The remaining fields are optional: the parser will attempt to derive the value for any missing fields using the fields that are provided. `words` and `space_after` together form a reversible tokenization of the input text: they represent, respectively, the Unicode text for each word and an indicator for whether the word is followed by whitespace. These are used as inputs by the parser. `tags` is a list of part-of-speech tags, if available prior to running the parser. The parser does not actually use these tags as input, but it will pass them through to its output. If `tags` is None, the parser will perform its own part of speech tagging (if the parser was not trained to also do tagging, "UNK" part-of-speech tags will be used in the output instead). `escaped_words` are the representations of each leaf to use in the output tree. If `words` is provided, `escaped_words` will not be used by the neural network portion of the parser, and will only be incorporated when constructing the output tree. Therefore, `escaped_words` may be used to accommodate any dataset-specific text encoding, such as transliteration. Here is an example of the differences between these fields for English PTB: (raw text): "Fly safely." words: " Fly safely . " space_after: False True False False False tags: `` VB RB . '' escaped_words: `` Fly safely . '' """ words: Optional[List[str]] = None space_after: Optional[List[bool]] = None tags: Optional[List[str]] = None escaped_words: Optional[List[str]] = None @property def tree(self): return None def leaves(self): return self.escaped_words def pos(self): if self.tags is not None: return list(zip(self.escaped_words, self.tags)) else: return [(word, "UNK") for word in self.escaped_words] class Parser: """Berkeley Neural Parser (benepar), integrated with NLTK. Use this class to apply the Berkeley Neural Parser to pre-tokenized datasets and treebanks, or when integrating the parser into an NLP pipeline that already performs tokenization, sentence splitting, and (optionally) part-of-speech tagging. For parsing starting with raw text, it is strongly encouraged that you use spaCy and benepar.BeneparComponent instead. Sample usage: >>> parser = benepar.Parser("benepar_en3") >>> input_sentence = benepar.InputSentence( words=['"', 'Fly', 'safely', '.', '"'], space_after=[False, True, False, False, False], tags=['``', 'VB', 'RB', '.', "''"], escaped_words=['``', 'Fly', 'safely', '.', "''"], ) >>> parser.parse(input_sentence) Not all fields of benepar.InputSentence are required, but at least one of `words` and `escaped_words` must not be None. The parser will attempt to guess the value for missing fields. For example, >>> input_sentence = benepar.InputSentence( words=['"', 'Fly', 'safely', '.', '"'], ) >>> parser.parse(input_sentence) Although this class is primarily designed for use with data that has already been tokenized, to help with interactive use and debugging it also accepts simple text string inputs. However, using this class to parse from raw text is STRONGLY DISCOURAGED for any application where parsing accuracy matters. When parsing from raw text, use spaCy and benepar.BeneparComponent instead. The reason is that parser models do not ship with a tokenizer or sentence splitter, and some models may not include a part-of-speech tagger either. A toolkit must be used to fill in these pipeline components, and spaCy outperforms NLTK in all of these areas (sometimes by a large margin). >>> parser.parse('"Fly safely."') # For debugging/interactive use only. """ def __init__(self, name, batch_size=64, language_code=None): """Load a trained parser model. Args: name (str): Model name, or path to pytorch saved model batch_size (int): Maximum number of sentences to process per batch language_code (str, optional): language code for the parser (e.g. 'en', 'he', 'zh', etc). Our official trained models will set this automatically, so this argument is only needed if training on new languages or treebanks. """ self._parser = load_trained_model(name) if torch.cuda.is_available(): self._parser.cuda() if language_code is not None: self._language_code = language_code else: self._language_code = guess_language(self._parser.config["label_vocab"]) self._tokenizer_lang = TOKENIZER_LOOKUP.get(self._language_code, None) self.batch_size = batch_size def parse(self, sentence): """Parse a single sentence Args: sentence (InputSentence or List[str] or str): Sentence to parse. If the input is of List[str], it is assumed to be a sequence of words and will behave the same as only setting the `words` field of InputSentence. If the input is of type str, the sentence will be tokenized using the default NLTK tokenizer (not recommended: if parsing from raw text, use spaCy and benepar.BeneparComponent instead). Returns: nltk.Tree """ return list(self.parse_sents([sentence]))[0] def parse_sents(self, sents): """Parse multiple sentences in batches. Args: sents (Iterable[InputSentence]): An iterable of sentences to be parsed. `sents` may also be a string, in which case it will be segmented into sentences using the default NLTK sentence splitter (not recommended: if parsing from raw text, use spaCy and benepar.BeneparComponent instead). Otherwise, each element of `sents` will be treated as a sentence. The elements of `sents` may also be List[str] or str: see Parser.parse() for documentation regarding these cases. Yields: nltk.Tree objects, one per input sentence. """ if isinstance(sents, str): if self._tokenizer_lang is None: raise ValueError( "No tokenizer available for this language. " "Please split into individual sentences and tokens " "before calling the parser." ) sents = nltk.sent_tokenize(sents, self._tokenizer_lang) end_sentinel = object() for batch_sents in itertools.zip_longest( *([iter(sents)] * self.batch_size), fillvalue=end_sentinel ): batch_inputs = [] for sent in batch_sents: if sent is end_sentinel: break elif isinstance(sent, str): if self._tokenizer_lang is None: raise ValueError( "No word tokenizer available for this language. " "Please tokenize before calling the parser." ) escaped_words = nltk.word_tokenize(sent, self._tokenizer_lang) sent = InputSentence(escaped_words=escaped_words) elif isinstance(sent, (list, tuple)): sent = InputSentence(words=sent) elif not isinstance(sent, InputSentence): raise ValueError( "Sentences must be one of: InputSentence, list, tuple, or str" ) batch_inputs.append(self._with_missing_fields_filled(sent)) for inp, output in zip( batch_inputs, self._parser.parse(batch_inputs, return_compressed=True) ): # If pos tags are provided as input, ignore any tags predicted # by the parser. if inp.tags is not None: output = output.without_predicted_tags() yield output.to_tree( inp.pos(), self._parser.decoder.label_from_index, self._parser.tag_from_index, ) def _with_missing_fields_filled(self, sent): if not isinstance(sent, InputSentence): raise ValueError("Input is not an instance of InputSentence") if sent.words is None and sent.escaped_words is None: raise ValueError("At least one of words or escaped_words is required") elif sent.words is None: sent = dataclasses.replace(sent, words=ptb_unescape(sent.escaped_words)) elif sent.escaped_words is None: escaped_words = [ word.replace("(", "-LRB-") .replace(")", "-RRB-") .replace("{", "-LCB-") .replace("}", "-RCB-") .replace("[", "-LSB-") .replace("]", "-RSB-") for word in sent.words ] sent = dataclasses.replace(sent, escaped_words=escaped_words) else: if len(sent.words) != len(sent.escaped_words): raise ValueError( f"Length of words ({len(sent.words)}) does not match " f"escaped_words ({len(sent.escaped_words)})" ) if sent.space_after is None: if self._language_code == "zh": space_after = [False for _ in sent.words] elif self._language_code in ("ar", "he"): space_after = [True for _ in sent.words] else: space_after = guess_space_after(sent.words) sent = dataclasses.replace(sent, space_after=space_after) elif len(sent.words) != len(sent.space_after): raise ValueError( f"Length of words ({len(sent.words)}) does not match " f"space_after ({len(sent.space_after)})" ) assert len(sent.words) == len(sent.escaped_words) == len(sent.space_after) return sent
[ "torch.cuda.is_available" ]
1.6.0
thomaslu2000/Incremental-Parsing-Representations
1b0ec638e85f0e521a12b53d8b309191c40fe0d3
1.5
# Copyright Contributors to the Pyro project. # Copyright (c) 2020, YosefLab. # SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause """ The data preprocessing code in this script is adapted from: https://github.com/YosefLab/scvi-tutorials/blob/50dd3269abfe0c375ec47114f2c20725a016736f/seed_labeling.ipynb """ import math import numpy as np from scipy import sparse import torch import torch.nn as nn class BatchDataLoader(object): """ This custom DataLoader serves mini-batches that are either fully-observed (i.e. labeled) or partially-observed (i.e. unlabeled) but never mixed. """ def __init__(self, data_x, data_y, batch_size, num_classes=4, missing_label=-1): super().__init__() self.data_x = data_x self.data_y = data_y self.batch_size = batch_size self.num_classes = num_classes self.unlabeled = torch.where(data_y == missing_label)[0] self.num_unlabeled = self.unlabeled.size(0) self.num_unlabeled_batches = math.ceil(self.num_unlabeled / self.batch_size) self.labeled = torch.where(data_y != missing_label)[0] self.num_labeled = self.labeled.size(0) self.num_labeled_batches = math.ceil(self.num_labeled / self.batch_size) assert self.data_x.size(0) == self.data_y.size(0) assert len(self) > 0 @property def size(self): return self.data_x.size(0) def __len__(self): return self.num_unlabeled_batches + self.num_labeled_batches def _sample_batch_indices(self): batch_order = torch.randperm(len(self)).tolist() unlabeled_idx = self.unlabeled[torch.randperm(self.num_unlabeled)] labeled_idx = self.labeled[torch.randperm(self.num_labeled)] slices = [] for i in range(self.num_unlabeled_batches): _slice = unlabeled_idx[i * self.batch_size: (i + 1) * self.batch_size] slices.append((_slice, False)) for i in range(self.num_labeled_batches): _slice = labeled_idx[i * self.batch_size: (i + 1) * self.batch_size] slices.append((_slice, True)) return slices, batch_order def __iter__(self): slices, batch_order = self._sample_batch_indices() for i in range(len(batch_order)): _slice = slices[batch_order[i]] if _slice[1]: # labeled yield self.data_x[_slice[0]], \ nn.functional.one_hot(self.data_y[_slice[0]], num_classes=self.num_classes) else: # unlabeled yield self.data_x[_slice[0]], None def _get_score(normalized_adata, gene_set): """ Returns the score per cell given a dictionary of + and - genes """ score = np.zeros(normalized_adata.n_obs) for gene in gene_set['positive']: expression = np.array(normalized_adata[:, gene].X) score += expression.flatten() for gene in gene_set['negative']: expression = np.array(normalized_adata[:, gene].X) score -= expression.flatten() return score def _get_cell_mask(normalized_adata, gene_set): """ Calculates the score per cell for a list of genes, then returns a mask for the cells with the highest 50 scores. """ score = _get_score(normalized_adata, gene_set) cell_idx = score.argsort()[-50:] mask = np.zeros(normalized_adata.n_obs) mask[cell_idx] = 1 return mask.astype(bool) def get_data(dataset="pbmc", batch_size=100, cuda=False): """ Does the necessary preprocessing and returns a BatchDataLoader for the PBMC dataset. """ assert dataset in ['pbmc', 'mock'] # create mock dataset for CI if dataset == 'mock': num_genes = 17 num_data = 200 X = torch.distributions.Poisson(rate=10.0).sample(sample_shape=(num_data, num_genes)) Y = torch.zeros(num_data, dtype=torch.long) Y[50:100] = 1 Y[100:] = -1 if cuda: X, Y = X.cuda(), Y.cuda() return BatchDataLoader(X, Y, batch_size), num_genes, 2.0, 1.0, None import scvi import scanpy as sc adata = scvi.data.purified_pbmc_dataset(subset_datasets=["regulatory_t", "naive_t", "memory_t", "naive_cytotoxic"]) gene_subset = ["CD4", "FOXP3", "TNFRSF18", "IL2RA", "CTLA4", "CD44", "TCF7", "CD8B", "CCR7", "CD69", "PTPRC", "S100A4"] normalized = adata.copy() sc.pp.normalize_total(normalized, target_sum=1e4) sc.pp.log1p(normalized) normalized = normalized[:, gene_subset].copy() sc.pp.scale(normalized) # hand curated list of genes for identifying ground truth cd4_reg_geneset = {"positive": ["TNFRSF18", "CTLA4", "FOXP3", "IL2RA"], "negative": ["S100A4", "PTPRC", "CD8B"]} cd8_naive_geneset = {"positive": ["CD8B", "CCR7"], "negative": ["CD4"]} cd4_naive_geneset = {"positive": ["CCR7", "CD4"], "negative": ["S100A4", "PTPRC", "FOXP3", "IL2RA", "CD69"]} cd4_mem_geneset = {"positive": ["S100A4"], "negative": ["IL2RA", "FOXP3", "TNFRSF18", "CCR7"]} cd4_reg_mask = _get_cell_mask(normalized, cd4_reg_geneset) cd8_naive_mask = _get_cell_mask(normalized, cd8_naive_geneset) cd4_naive_mask = _get_cell_mask(normalized, cd4_naive_geneset) cd4_mem_mask = _get_cell_mask(normalized, cd4_mem_geneset) # these will be our seed labels seed_labels = -np.ones(cd4_mem_mask.shape[0]) seed_labels[cd8_naive_mask] = 0 # "CD8 Naive T cell" seed_labels[cd4_naive_mask] = 1 # "CD4 Naive T cell" seed_labels[cd4_mem_mask] = 2 # "CD4 Memory T cell" seed_labels[cd4_reg_mask] = 3 # "CD4 Regulatory T cell" # this metadata will be used for plotting seed_colors = ['lightgray'] * seed_labels.shape[0] seed_sizes = [0.05] * seed_labels.shape[0] for i in range(len(seed_colors)): if seed_labels[i] == 0: seed_colors[i] = 'lightcoral' elif seed_labels[i] == 1: seed_colors[i] = 'limegreen' elif seed_labels[i] == 2: seed_colors[i] = 'deepskyblue' elif seed_labels[i] == 3: seed_colors[i] = 'mediumorchid' if seed_labels[i] != -1: seed_sizes[i] = 25 adata.obs['seed_labels'] = seed_labels adata.obs['seed_colors'] = seed_colors adata.obs['seed_marker_sizes'] = seed_sizes # filter out non-variable genes adata_filter = adata.copy() sc.pp.normalize_per_cell(adata_filter, counts_per_cell_after=1e4) sc.pp.log1p(adata_filter) sc.pp.highly_variable_genes(adata_filter, min_mean=0.0125, max_mean=3.0, min_disp=0.5) highly_variable_genes = adata_filter.var["highly_variable"] Y = torch.from_numpy(seed_labels).long() X = torch.from_numpy(sparse.csr_matrix.todense(adata.X)).float() # the prior mean and scale for the log count latent variable `l` # is set using the empirical mean and variance of the observed log counts log_counts = X.sum(-1).log() l_mean, l_scale = log_counts.mean().item(), log_counts.std().item() if cuda: X, Y = X.cuda(), Y.cuda() # subsample and remove ~50% of the unlabeled cells labeled = torch.where(Y != -1)[0] unlabeled = torch.where(Y == -1)[0] unlabeled = unlabeled[torch.randperm(unlabeled.size(0))[:19800]] idx = torch.cat([labeled, unlabeled]) num_genes = X.size(-1) adata = adata[idx.data.cpu().numpy(), highly_variable_genes] adata.raw = adata return BatchDataLoader(X[idx], Y[idx], batch_size), num_genes, l_mean, l_scale, adata
[ "torch.zeros", "torch.cat", "torch.nn.functional.one_hot", "torch.randperm", "torch.from_numpy", "torch.distributions.Poisson", "torch.where" ]
1.5.0
akihironitta/pyro
0ab6e474330942ff4ec2a87a6cc0c671943fc5cd
1.9
import os import glob import random import cv2 import numpy as np import torch import matplotlib.pyplot as plt import open3d from skimage import io, img_as_float32 from scipy import ndimage from torch_geometric.data import Data, DataListLoader from torch_geometric.loader import DataLoader as GraphLevelDataLoader from torch.utils.data import DataLoader, Dataset from torchvision import transforms import transform from typing import List from easydict import EasyDict from utils import math_utils, data_utils, unit_tests class ImageGraphTextureDataSet(Dataset): def __init__(self, image_files, end_level, is_train, benchmark, img_size, crop_half_width, circle_radius, num_circles=4, max_items=None, no_train_cropped=False, transform=None, random_mask=False): self._is_train = is_train self._benchmark = benchmark self.img_size = img_size self.crop_half_width = crop_half_width self._end_level = end_level self._transform = transform self._no_train_cropped = no_train_cropped self.image_files = np.array(image_files) self.random_mask = random_mask self.circle_radius = circle_radius self.num_circles = num_circles self.circle = torch.zeros((self.circle_radius * 2, self.circle_radius * 2, 1), dtype=torch.bool) for row in range(self.circle.shape[0]): for col in range(self.circle.shape[1]): if abs(row - self.circle_radius) ** 2 + abs(col - self.circle_radius) ** 2 <= self.circle_radius ** 2: self.circle[row, col] = True self.traces_list = [] self.edge_indices_list = [] self.num_vertices_list = [] self.decimation = 2 # Build fake traces for level in range(self._end_level): level_img_size = self.img_size // (self.decimation ** level) num_verties = level_img_size ** 2 self.num_vertices_list.append(num_verties) if level > 0: trace = np.arange(num_verties).reshape(level_img_size, level_img_size) trace = np.repeat(trace, self.decimation, axis=1).repeat(self.decimation, axis=0) trace = np.reshape(trace, (-1,)) #trace = torch.from_numpy(trace) #trace = torch.cat((trace, trace + level_img_size * level_img_size), dim=0) print(level, 'Trace shape:', trace.shape) self.traces_list.append(trace) # Build fake decimated edges for level in range(self._end_level): level_img_size = self.img_size // (self.decimation ** level) edge_indices = self._generate_image_graph_edges(level_img_size) #edge_indices = torch.from_numpy(edge_indices) #edge_indices = torch.cat((edge_indices, edge_indices + level_img_size * level_img_size), dim=0) #edge_indices = edge_indices.t().contiguous() print(level, 'Number of edge indices:', edge_indices.shape) self.edge_indices_list.append(edge_indices) def _generate_image_graph_edges(self, img_size): def double_set_add(s, a, b): s.add((a, b)) s.add((b, a)) def get_neighbor_coords_list(r, c, max_size): coords_list = [] # TODO: Should we add self-loops? # Maybe not since most graph algorithms explicitly include the vertex they're operating on #coords_list.append((r, c)) if r > 0: coords_list.append((r - 1, c + 0)) #if c > 0: # coords_list.append((r - 1, c - 1)) #if c < max_size - 1: # coords_list.append((r - 1, c + 1)) if c > 0: coords_list.append((r + 0, c - 1)) if c < max_size - 1: coords_list.append((r + 0, c + 1)) if r < max_size - 1: coords_list.append((r + 1, c + 0)) #if c > 0: # coords_list.append((r + 1, c - 1)) #if c < max_size - 1: # coords_list.append((r + 1, c + 1)) return coords_list edge_indices = set() for r in range(img_size): for c in range(img_size): index = r * img_size + c neighbor_coords = get_neighbor_coords_list(r, c, img_size) for neighbor_coord in neighbor_coords: neighbor_index = neighbor_coord[0] * img_size + neighbor_coord[1] double_set_add(edge_indices, index, neighbor_index) edge_indices = np.asarray(list(edge_indices)) return edge_indices def __len__(self): return len(self.image_files) def __getitem__(self, index: int): img_path = self.image_files[index] img = io.imread(img_path) img = np.array(img) sample = {'color': img} if self._transform: sample = self._transform(sample) img = sample['color'] # Create circular masks mask = torch.zeros((self.img_size, self.img_size, 1), dtype=torch.bool) for i in range(self.num_circles): if self._is_train and self.random_mask: x_offset = int((self.img_size / 2 - self.crop_half_width) * (random.random() * 2.0 - 1.0) * 0.95) y_offset = int((self.img_size / 2 - self.crop_half_width) * (random.random() * 2.0 - 1.0) * 0.95) else: x_offset = ((i % 2) * 2 - 1) * self.img_size // 4 y_offset = ((i // 2) * 2 - 1) * self.img_size // 4 row_start = self.img_size//2-self.circle_radius + x_offset row_end = self.img_size//2+self.circle_radius + x_offset col_start = self.img_size//2-self.circle_radius + y_offset col_end = self.img_size//2+self.circle_radius + y_offset mask[row_start:row_end, col_start:col_end] += self.circle img = torch.reshape(img, (-1, 3)) mask = torch.reshape(mask, (-1, 1)) sample = data_utils.HierarchicalData(x=torch.cat([img * ~mask, mask], dim=-1), color=img, mask=mask, edge_index=torch.from_numpy(self.edge_indices_list[0]).t().contiguous(), #num_vertices=self.num_vertices_list, ) ##sample.num_vertices = torch.tensor(self.num_vertices_list) num_vertices = [sample.x.shape[0]] sample.num_vertices = torch.tensor(self.num_vertices_list, dtype=torch.int) for level in range(1, self._end_level): setattr(sample, f"hierarchy_edge_index_{level}", torch.from_numpy(self.edge_indices_list[level]).t().contiguous()) setattr(sample, f"hierarchy_trace_index_{level}", torch.from_numpy(self.traces_list[level - 1])) num_vertices.append(int(sample[f"hierarchy_trace_index_{level}"].max() + 1)) sample.num_vertices = torch.tensor(num_vertices, dtype=torch.int) return sample class Normalize(object): """Normalize color images between [-1,1].""" def __call__(self, sample): color_image = sample['color'] # NOTE: Don't normalize input_image. It's just a matrix of coordinates color_image = img_as_float32(color_image) color_image = (color_image * 2.0) - 1 #color_image = color_image - 0.5 return {'color': color_image} class Rescale(object): """Rescale the image in a sample to a given size. Args: output_size (tuple or int): Desired output size. If tuple, output is matched to output_size. If int, smaller of image edges is matched to output_size keeping aspect ratio the same. """ def __init__(self, min_size, max_size): # For now size is defined as the smaller size of an image assert isinstance(min_size, int) assert isinstance(max_size, int) assert min_size <= max_size self.min_size = min_size self.max_size = max_size def __call__(self, sample): input_image = sample['color'] h, w = input_image.shape[:2] output_size = np.random.randint(self.min_size, self.max_size + 1) if isinstance(output_size, int): if h > w: new_h, new_w = output_size * h / w, output_size else: new_h, new_w = output_size, output_size * w / h else: new_h, new_w = output_size new_h, new_w = int(new_h), int(new_w) # TODO: Use pillow library for resizing images # Nearest neighbor for input_image since we can't interpolate across discontinuities in uv coordinates #input_image = transform.resize(input_image, (new_h, new_w)) #input_image = cv2.resize(input_image, (new_w, new_h), interpolation=cv2.INTER_NEAREST) input_image = cv2.resize(input_image, (new_w, new_h), interpolation=cv2.INTER_AREA) return {'color': input_image} class CenterCrop(object): def __init__(self, crop_size): assert isinstance(crop_size, tuple) self.crop_size = crop_size def __call__(self, sample): input_image = sample['color'] # Assuming input_image and color_image are the same shape h, w, _ = input_image.shape size_crop_h, size_crop_w = self.crop_size # Get a valid starting and end positions h_start = int((h - size_crop_h) / 2) w_start = int((w - size_crop_w) / 2) h_end = h_start + size_crop_h w_end = w_start + size_crop_w # Crop the input and target input_image = input_image[h_start:h_end, w_start:w_end, :] return {'color': input_image} class RandomRotation(object): def __init__(self): self.angles = [0, 90, 180, 270] def __call__(self, sample): input_image = sample['color'] angle = random.choice(self.angles) input_image = ndimage.rotate(input_image, angle, reshape=False, mode='constant') return {'color': input_image} class RandomFlip(object): def __init__(self, flip_axis): self.flip_axis = flip_axis def __call__(self, sample): input_image = sample['color'] if np.random.choice(a=[False, True]): input_image = np.flip(input_image, axis=self.flip_axis).copy() return {'color': input_image} class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample): input_image = sample['color'] # NOTE: Axis swapping is not necessary for uv coords since # it is not an image, but rather a matrix of coordinates # swap color axis because # numpy image: H x W x C # torch image: C X H X W #input_image = input_image.transpose((2, 0, 1)) return {'color': torch.from_numpy(input_image)} class ImageGraphTextureDataLoader: def __init__(self, config, multi_gpu): self.config = EasyDict(config) self.train_files = self._load(os.path.join(self.config.root_dir, 'train')) self.val_files = self._load(os.path.join(self.config.root_dir, 'val')) len_train_files, len_val_files = len(self.train_files), len(self.val_files) total_num_files = len_train_files + len_val_files frac_train_files = len_train_files / total_num_files if 0 <= self.config.max_items <= total_num_files: max_train_files = int(self.config.max_items * frac_train_files) max_val_files = int(self.config.max_items * (1 - frac_train_files)) else: max_train_files = int(total_num_files * frac_train_files) max_val_files = int(total_num_files * (1 - frac_train_files)) self.train_files = self.train_files[:max_train_files] self.val_files = self.val_files[:max_val_files] transf_list_train = [ Normalize(), Rescale(self.config.img_size, self.config.img_size), CenterCrop((self.config.img_size, self.config.img_size)), ] if self.config.random_augmentation: transf_list_train += [ RandomRotation(), RandomFlip(flip_axis=1), ] transf_list_train.append(ToTensor()) # Build val/test transformation transf_list_valid = [ Normalize(), Rescale(self.config.img_size, self.config.img_size), CenterCrop((self.config.img_size, self.config.img_size)), #RandomFlip(flip_axis=1), ToTensor() ] transf_train = transforms.Compose(transf_list_train) transf_valid = transforms.Compose(transf_list_valid) if multi_gpu: dataloader_class = DataListLoader else: dataloader_class = GraphLevelDataLoader self.train_dataset = ImageGraphTextureDataSet(self.train_files, self.config.end_level, is_train=True, circle_radius=self.config.circle_radius, transform=transf_train, random_mask=self.config.random_mask, no_train_cropped=self.config.no_train_cropped, benchmark=False, img_size=self.config.img_size, max_items=self.config.max_items, crop_half_width=self.config.crop_half_width) print('train dataset len', len(self.train_dataset)) self.train_loader = dataloader_class(self.train_dataset, batch_size=self.config.train_batch_size, shuffle=True, pin_memory=True, persistent_workers=self.config.num_workers > 0, num_workers=self.config.num_workers) self.sample_train_loader = dataloader_class(self.train_dataset, batch_size=self.config.train_batch_size, shuffle=False, pin_memory=True, num_workers=self.config.num_workers) self.sample_train_dataset = torch.utils.data.Subset(self.train_dataset, np.arange(min(self.config.num_static_samples, len(self.train_dataset)))) self.sample_train_loader = dataloader_class(self.sample_train_dataset, batch_size=self.config.train_batch_size, shuffle=False, pin_memory=True, num_workers=self.config.num_workers) # TODO: Update val dataset so that it doesn't have to be treated like a train dataset # includes is_train=False and no_train_cropped=self.config.no_train_cropped self.val_dataset = ImageGraphTextureDataSet(self.val_files, self.config.end_level, is_train=False, circle_radius=self.config.circle_radius, transform=transf_valid, benchmark=False, no_train_cropped=self.config.no_train_cropped, img_size=self.config.img_size, max_items=self.config.max_items, crop_half_width=self.config.crop_half_width) print('val dataset len', len(self.val_dataset)) #unit_tests.compare_train_val(self.train_colors, self.val_colors) self.val_loader = dataloader_class(self.val_dataset, batch_size=self.config.test_batch_size, shuffle=False, pin_memory=True, persistent_workers=self.config.num_workers > 0, num_workers=self.config.num_workers) self.sample_val_dataset = torch.utils.data.Subset(self.val_dataset, np.arange(min(self.config.num_static_samples, len(self.val_dataset)))) self.sample_val_loader = dataloader_class(self.sample_val_dataset, batch_size=self.config.test_batch_size, shuffle=False, pin_memory=True, num_workers=self.config.num_workers) def _load(self, root_dir, seed=42) -> List[str]: filenames = glob.glob(f"{root_dir}/*.png") filenames = sorted(filenames) random.Random(seed).shuffle(filenames) return filenames
[ "torch.zeros", "torch.cat", "torch.from_numpy", "torch.tensor", "torch.reshape" ]
1.9.1
johnpeterflynn/surface-texture-inpainting-net
b2de05eaa47c9bcca53b9aee12b6012ac2c05156
1.3
import os import random import sys from unittest.mock import patch import numpy as np import pytest import torch import torch.nn as nn from torch.optim import SGD from torch.utils.data import BatchSampler, DataLoader, RandomSampler import ignite.distributed as idist from ignite.engine import Events from ignite.engine.deterministic import ( DeterministicEngine, ReproducibleBatchSampler, keep_random_state, update_dataloader, ) from ignite.utils import manual_seed from tests.ignite.engine import BatchChecker, setup_sampler def test_dengine_setup_seed_div_by_zero(): with pytest.raises(ValueError, match=r"iter_counter should be positive value"): DeterministicEngine(lambda e, b: None)._setup_seed(iter_counter=0) def test_update_dataloader(): def _test(sampler_type=None): num_epochs = 3 total_batch_size = 4 num_iters = 17 data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) num_workers = 2 sampler, batch_size = setup_sampler(sampler_type, num_iters, total_batch_size) dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) torch.manual_seed(12) seen_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in dataloader: t.append(b) seen_batches.append(t) sampler, batch_size = setup_sampler(sampler_type, num_iters, total_batch_size) dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) batch_sampler = dataloader.batch_sampler new_dataloader = update_dataloader(dataloader, ReproducibleBatchSampler(batch_sampler)) torch.manual_seed(12) new_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in new_dataloader: t.append(b) new_batches.append(t) for i in range(num_epochs): assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], new_batches[i])]) _test() _test("weighted") _test("distributed") def test_reproducible_batch_sampler_wrong_input(): with pytest.raises(TypeError, match=r"Argument batch_sampler should be torch.utils.data.sampler.BatchSampler"): ReproducibleBatchSampler("abc") def test_reproducible_batch_sampler(): data = list(range(100)) dataloader = DataLoader(data, batch_size=12, num_workers=0, shuffle=True, drop_last=True) torch.manual_seed(12 + 0) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) seen_batches = [] num_epochs = 3 for i in range(num_epochs): t = [] for b in dataloader_: t.append(b) seen_batches.append(t) torch.manual_seed(12 + i + 1) for i in range(num_epochs - 1): for j in range(i + 1, num_epochs): assert not all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], seen_batches[j])]) for resume_epoch in range(num_epochs): torch.manual_seed(12 + resume_epoch) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) resumed_seen_batches = [] for b in dataloader_: resumed_seen_batches.append(b) assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[resume_epoch], resumed_seen_batches)]) def _test_keep_random_state(with_numpy): manual_seed(54) true_values = [] for _ in range(5): t = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: t.append(torch.from_numpy(np.random.rand(2))) true_values.append(t) @keep_random_state def user_handler(): manual_seed(22) _ = [ random.random(), torch.rand(2), ] if with_numpy: _ = np.random.rand(2) manual_seed(54) res_values = [] for _ in range(5): r = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: r.append(torch.from_numpy(np.random.rand(2))) res_values.append(r) user_handler() for a, b in zip(true_values, res_values): for i, j in zip(a, b): assert (i == j).all() def test_keep_random_state(): _test_keep_random_state(with_numpy=True) def test_keep_random_state_without_numpy(): with patch.dict("sys.modules", {"numpy": None}): _test_keep_random_state(with_numpy=False) def test_strict_resume_from_iter(): def _test(epoch_length=None): max_epochs = 5 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 4): batch_checker = BatchChecker(data, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_iteration} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) @engine.on(Events.EPOCH_COMPLETED) def check_iteration(_): assert engine.state.iteration == batch_checker.counter resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_strict_resume_from_epoch(): def _test(epoch_length=None): max_epochs = 10 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): batch_checker = BatchChecker(data, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def _test_resume_random_dataloader_from_epoch(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 5 total_batch_size = 4 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs, 2): for num_workers in [0, 2]: sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) orig_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) torch.manual_seed(87) engine.run( orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) resume_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) assert batch_checker.check( batch ), f"{num_workers} {resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(87) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() if sampler_type != "distributed": _test(60) _test(15) @pytest.mark.skipif("win" in sys.platform, reason="Skip extremely slow test on Windows/MacOSX") def test_resume_random_dataloader_from_epoch(): _test_resume_random_dataloader_from_epoch("cpu", setup_sampler) _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="distributed") class AugmentedData: def __init__(self, data, enabled=True): self.data = data self.enabled = enabled def __getitem__(self, i): dp = self.data[i] r = torch.randint_like(dp, -100, 100) if self.enabled else 0.0 return dp + r * 0.01 def __len__(self): return len(self.data) def _test_resume_random_dataloader_from_iter(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 3 total_batch_size = 4 num_iters = 17 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 13): for num_workers in [0, 2]: sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) orig_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) torch.manual_seed(12) engine.run( orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) resume_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) cfg_msg = f"{num_workers} {resume_iteration}" assert batch_checker.check( batch ), f"{cfg_msg} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(12) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert ( engine.state.iteration == epoch_length * max_epochs ), f"{num_workers}, {resume_iteration} | {engine.state.iteration} vs {epoch_length * max_epochs}" _test() if sampler_type != "distributed": _test(40) _test(11) @pytest.mark.skipif("win" in sys.platform, reason="Skip extremely slow test on Windows/MacOSX") def test_resume_random_dataloader_from_iter(): _test_resume_random_dataloader_from_iter("cpu", setup_sampler) _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="distributed") def _test_resume_random_data_iterator_from_epoch(device): def _test(epoch_length=None): max_epochs = 5 batch_size = 4 num_iters = 21 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): seen_batchs = [] def update_fn(_, batch): # if there is a random op when using data batch etc, we can not resume correctly # torch.rand(1) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(121) engine.run( infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(121) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_resume_random_data_iterator_from_epoch(): _test_resume_random_data_iterator_from_epoch("cpu") def _test_resume_random_data_iterator_from_iter(device): def _test(epoch_length=None): max_epochs = 3 batch_size = 4 num_iters = 17 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_iteration in range(1, min(num_iters * max_epochs, epoch_length * max_epochs), 7): seen_batchs = [] def update_fn(_, batch): seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(24) engine.run( infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_iteration} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(24) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert ( engine.state.iteration == epoch_length * max_epochs ), f"{resume_iteration} | {engine.state.iteration} vs {epoch_length * max_epochs}" _test() _test(50) _test(11) def test_resume_random_data_iterator_from_iter(): _test_resume_random_data_iterator_from_iter("cpu") @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.xfail @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") def test_concepts_snippet_resume(): # Commented imports required in the snippet # import torch # from torch.utils.data import DataLoader # from ignite.engine import DeterministicEngine # from ignite.utils import manual_seed seen_batches = [] manual_seed(seed=15) def random_train_data_loader(size): data = torch.arange(0, size) return DataLoader(data, batch_size=4, shuffle=True) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) seen_batches.append(batch) trainer = DeterministicEngine(print_train_data) print("Original Run") manual_seed(56) trainer.run(random_train_data_loader(40), max_epochs=2, epoch_length=5) original_batches = list(seen_batches) seen_batches = [] print("Resumed Run") trainer.load_state_dict({"epoch": 1, "epoch_length": 5, "max_epochs": 2, "rng_states": None}) manual_seed(56) trainer.run(random_train_data_loader(40)) resumed_batches = list(seen_batches) seen_batches = [] for b1, b2 in zip(original_batches[5:], resumed_batches): assert (b1 == b2).all() def test_concepts_snippet_warning(): def random_train_data_generator(): while True: yield torch.randint(0, 100, size=(1,)) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) trainer = DeterministicEngine(print_train_data) @trainer.on(Events.ITERATION_COMPLETED(every=3)) def user_handler(_): # handler synchronizes the random state torch.manual_seed(12) a = torch.rand(1) trainer.run(random_train_data_generator(), max_epochs=3, epoch_length=5) def _test_gradients_on_resume( dirname, device, with_dropout=True, with_dataaugs=True, data_size=24, batch_size=4, save_iter=None, save_epoch=None ): debug = False def random_train_data_loader(size): d = AugmentedData(torch.rand(size, 3, 32, 32), enabled=with_dataaugs) return DataLoader(d, batch_size=batch_size, shuffle=True, num_workers=2) def _train(save_iter=None, save_epoch=None, sd=None): w_norms = [] grad_norms = [] data = [] chkpt = [] manual_seed(12) arch = [ nn.Conv2d(3, 10, 3), nn.ReLU(), nn.Conv2d(10, 10, 3), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 2), ] if with_dropout: arch.insert(2, nn.Dropout2d()) arch.insert(-2, nn.Dropout()) model = nn.Sequential(*arch).to(device) opt = SGD(model.parameters(), lr=0.001) def proc_fn(e, b): from ignite.engine.deterministic import _get_rng_states, _repr_rng_state s = _repr_rng_state(_get_rng_states()) model.train() opt.zero_grad() y = model(b.to(device)) y.sum().backward() opt.step() if debug: print( trainer.state.iteration, trainer.state.epoch, "proc_fn - b.shape", b.shape, torch.norm(y).item(), s ) trainer = DeterministicEngine(proc_fn) if save_iter is not None: ev = Events.ITERATION_COMPLETED(once=save_iter) elif save_epoch is not None: ev = Events.EPOCH_COMPLETED(once=save_epoch) save_iter = save_epoch * (data_size // batch_size) @trainer.on(ev) def save_chkpt(_): if debug: print(trainer.state.iteration, "save_chkpt") fp = os.path.join(dirname, "test.pt") from ignite.engine.deterministic import _repr_rng_state tsd = trainer.state_dict() if debug: print("->", _repr_rng_state(tsd["rng_states"])) torch.save([model.state_dict(), opt.state_dict(), tsd], fp) chkpt.append(fp) def log_event_filter(_, event): if (event // save_iter == 1) and 1 <= (event % save_iter) <= 5: return True return False @trainer.on(Events.ITERATION_COMPLETED(event_filter=log_event_filter)) def write_data_grads_weights(e): x = e.state.batch i = e.state.iteration data.append([i, x.mean().item(), x.std().item()]) total = [0.0, 0.0] out1 = [] out2 = [] for p in model.parameters(): n1 = torch.norm(p).item() n2 = torch.norm(p.grad).item() out1.append(n1) out2.append(n2) total[0] += n1 total[1] += n2 w_norms.append([i, total[0]] + out1) grad_norms.append([i, total[1]] + out2) if sd is not None: sd = torch.load(sd) model.load_state_dict(sd[0]) opt.load_state_dict(sd[1]) from ignite.engine.deterministic import _repr_rng_state if debug: print("-->", _repr_rng_state(sd[2]["rng_states"])) trainer.load_state_dict(sd[2]) manual_seed(32) trainer.run(random_train_data_loader(size=data_size), max_epochs=5) return {"sd": chkpt, "data": data, "grads": grad_norms, "weights": w_norms} out_original = _train(save_iter=save_iter, save_epoch=save_epoch) assert len(out_original["sd"]) > 0 out_resumed = _train(save_iter=save_iter, save_epoch=save_epoch, sd=out_original["sd"][0]) if debug: print("Original:") print(" data:", out_original["data"]) print("grads:", out_original["grads"]) print(" W:", out_original["weights"]) print("Resume:") print(" data:", out_resumed["data"]) print("grads:", out_resumed["grads"]) print(" W:", out_resumed["weights"]) # check data: for d1, d2 in zip(out_original["data"], out_resumed["data"]): assert d1 == d2 # check grads: for d1, d2 in zip(out_original["grads"], out_resumed["grads"]): assert d1 == d2 # check weights: for d1, d2 in zip(out_original["weights"], out_resumed["weights"]): assert d1 == d2 def test_gradients_on_resume_cpu(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_iter=25) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_iter=25) # resume from epoch _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_epoch=3) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_epoch=3) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_gradients_on_resume_on_cuda(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True, save_iter=25) with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False, save_iter=25) # resume from epoch _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True, save_epoch=3) _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False, save_epoch=3) def test_engine_with_dataloader_no_auto_batching(): # tests https://github.com/pytorch/ignite/issues/941 data = torch.rand(64, 4, 10) data_loader = DataLoader( data, batch_size=None, sampler=BatchSampler(RandomSampler(data), batch_size=8, drop_last=True) ) counter = [0] def foo(e, b): print(f"{e.state.epoch}-{e.state.iteration}: {b}") counter[0] += 1 engine = DeterministicEngine(foo) engine.run(data_loader, epoch_length=10, max_epochs=5) assert counter[0] == 50 def test_run_finite_iterator_no_epoch_length(): # FR: https://github.com/pytorch/ignite/issues/871 unknown_size = 11 def finite_unk_size_data_iter(): for i in range(unknown_size): yield i bc = BatchChecker(data=list(range(unknown_size))) engine = DeterministicEngine(lambda e, b: bc.check(b)) @engine.on(Events.DATALOADER_STOP_ITERATION) def restart_iter(): engine.state.dataloader = finite_unk_size_data_iter() data_iter = finite_unk_size_data_iter() engine.run(data_iter, max_epochs=5) assert engine.state.epoch == 5 assert engine.state.iteration == unknown_size * 5 class OldDataLoader(DataLoader): def __init__(self, dl, *args, **kwargs): self.dl = dl self.sampler = self.dl.sampler self.batch_sampler = self.dl.batch_sampler def __len__(self): return len(self.dl) def __iter__(self): return iter(self.dl) def test_dataloader_no_dataset_kind(): # tests issue : https://github.com/pytorch/ignite/issues/1022 engine = DeterministicEngine(lambda e, b: None) data = torch.randint(0, 1000, size=(100 * 4,)) dataloader = DataLoader(data, batch_size=4) dataloader = OldDataLoader(dataloader) engine.run(dataloader)
[ "torch.nn.Linear", "torch.utils.data.RandomSampler", "torch.cuda.is_available", "torch.load", "torch.randint_like", "torch.norm", "torch.manual_seed", "torch.randint", "torch.utils.data.DataLoader", "torch.nn.Flatten", "torch.device", "torch.nn.Sequential", "torch.cuda.device_count", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.rand", "torch.nn.Dropout", "torch.arange", "torch.nn.AdaptiveAvgPool2d", "torch.nn.Dropout2d" ]
1.3
Juddd/ignite
00a208a4e7a7783e9ddac18931085fca2f0dec47
1.3
import os import pytest import torch from ignite.distributed.comp_models import has_xla_support if not has_xla_support: pytest.skip("Skip if no XLA support", allow_module_level=True) else: from ignite.distributed.comp_models.xla import _XlaDistModel @pytest.mark.tpu @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_model(): available_backends = _XlaDistModel.available_backends assert "xla-tpu" in available_backends with pytest.raises(ValueError, match=r"Backend should be one of"): _XlaDistModel.create_from_backend("abc") def _test_xla_spawn_fn(local_rank, world_size, device): from ignite.distributed.utils import _model assert isinstance(_model, _XlaDistModel), f"{type(_model)} vs _XlaDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size d = _model.device() assert isinstance(d, torch.device) and d.type == device assert _model.get_rank() == local_rank assert _model.get_nproc_per_node() == world_size assert _model.get_node_rank() == 0 assert _model.get_nnodes() == 1 @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_spawn_one_proc(): try: _XlaDistModel.spawn( _test_xla_spawn_fn, args=(1, "xla"), kwargs_dict={}, nproc_per_node=1, ) except SystemExit: pass @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_spawn_n_procs(): n = int(os.environ["NUM_TPU_WORKERS"]) try: _XlaDistModel.spawn( _test_xla_spawn_fn, args=(n, "xla"), kwargs_dict={}, nproc_per_node=n, ) except SystemExit: pass def _assert_model(model, true_conf): assert model.device() == true_conf["device"] assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_backend(): # without spawn model = _XlaDistModel.create_from_backend("xla-tpu") import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_context(): # without spawn model = _XlaDistModel.create_from_context() assert model.backend() == "xla-tpu" import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) def _test__xla_dist_model_create_from_context_in_child_proc(index): model = _XlaDistModel.create_from_context() assert model.backend() == "xla-tpu" import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": index, "rank": xm.get_ordinal(), "world_size": xm.xrt_world_size(), "node_index": 0, "nnodes": 1, "nproc_per_node": xm.xrt_world_size(), }, ) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_context_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test__xla_dist_model_create_from_context_in_child_proc, args=(), nprocs=n) def main_fold(fold): import time import torch.nn as nn import torch.optim as optim import torch_xla.core.xla_model as xm from ignite.engine import Engine device = xm.xla_device(fold) comp_model = _XlaDistModel.create_from_context() assert comp_model.device() == device model = nn.Linear(100, 10) model.to(device) # Move model before creating optimizer optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) def training_step(engine, _): data = torch.rand(4, 100, device=device) model.train() data = data.to(device) optimizer.zero_grad() output = model(data) loss = output.sum() loss.backward() xm.optimizer_step(optimizer, barrier=True) return loss.item() trainer = Engine(training_step) # THIS CAN BE A CAUSE OF CRASH if DEVICE is OTHER THAN device tensor = torch.tensor([fold + 1.0], dtype=torch.float).to(comp_model.device()) xm.all_reduce("max", [tensor,]) time.sleep(0.01 * fold) trainer.run([0] * 100, max_epochs=2) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_run_parallel_n_threads_without_sync(): # tests issue : https://github.com/pytorch/ignite/issues/1096 import torch_xla.core.xla_model as xm from joblib import Parallel, delayed devices = xm.get_xla_supported_devices() folds = 1 d = 0 if len(devices) > 5: folds = 5 d = 1 Parallel(n_jobs=folds, backend="threading")(delayed(main_fold)(i + d) for i in range(folds))
[ "torch.nn.Linear", "torch.rand", "torch.tensor" ]
1.3
Juddd/ignite
00a208a4e7a7783e9ddac18931085fca2f0dec47
1.3
import torch import math from . import Encoder, Decoder, STFTFB # noqa from .stft_fb import perfect_synthesis_window from . import transforms from ..dsp.consistency import mixture_consistency def griffin_lim(mag_specgram, stft_enc, angles=None, istft_dec=None, n_iter=6, momentum=0.9): """Estimates matching phase from magnitude spectogram using the 'fast' Griffin Lim algorithm [1]. Args: mag_specgram (torch.Tensor): (any, dim, ension, freq, frames) as returned by `Encoder(STFTFB)`, the magnitude spectrogram to be inverted. stft_enc (Encoder[STFTFB]): The `Encoder(STFTFB())` object that was used to compute the input `mag_spec`. angles (None or Tensor): Angles to use to initialize the algorithm. If None (default), angles are init with uniform ditribution. istft_dec (None or Decoder[STFTFB]): Optional Decoder to use to get back to the time domain. If None (default), a perfect reconstruction Decoder is built from `stft_enc`. n_iter (int): Number of griffin-lim iterations to run. momentum (float): The momentum of fast Griffin-Lim. Original Griffin-Lim is obtained for momentum=0. Returns: torch.Tensor: estimated waveforms of shape (any, dim, ension, time). Examples >>> stft = Encoder(STFTFB(n_filters=256, kernel_size=256, stride=128)) >>> wav = torch.randn(2, 1, 8000) >>> spec = stft(wav) >>> masked_spec = spec * torch.sigmoid(torch.randn_like(spec)) >>> mag = transforms.mag(masked_spec, -2) >>> est_wav = griffin_lim(mag, stft, n_iter=32) References - [1] Perraudin et al. "A fast Griffin-Lim algorithm," WASPAA 2013. - [2] D. W. Griffin and J. S. Lim: "Signal estimation from modified short-time Fourier transform," ASSP 1984. """ # We can create perfect iSTFT from STFT Encoder if istft_dec is None: # Compute window for perfect resynthesis syn_win = perfect_synthesis_window(stft_enc.filterbank.window, stft_enc.stride) istft_dec = Decoder(STFTFB(**stft_enc.get_config(), window=syn_win)) # If no intitial phase is provided initialize uniformly if angles is None: angles = 2 * math.pi * torch.rand_like(mag_specgram, device=mag_specgram.device) else: angles = angles.view(*mag_specgram.shape) # Initialize rebuilt (useful to use momentum) rebuilt = 0.0 for _ in range(n_iter): prev_built = rebuilt # Go to the time domain complex_specgram = transforms.from_magphase(mag_specgram, angles) waveform = istft_dec(complex_specgram) # And back to TF domain rebuilt = stft_enc(waveform) # Update phase estimates (with momentum) diff = rebuilt - momentum / (1 + momentum) * prev_built angles = transforms.angle(diff) final_complex_spec = transforms.from_magphase(mag_specgram, angles) return istft_dec(final_complex_spec) def misi( mixture_wav, mag_specgrams, stft_enc, angles=None, istft_dec=None, n_iter=6, momentum=0.0, src_weights=None, dim=1, ): """Jointly estimates matching phase from magnitude spectograms using the Multiple Input Spectrogram Inversion (MISI) algorithm [1]. Args: mixture_wav (torch.Tensor): (batch, time) mag_specgrams (torch.Tensor): (batch, n_src, freq, frames) as returned by `Encoder(STFTFB)`, the magnitude spectrograms to be jointly inverted using MISI (modified or not). stft_enc (Encoder[STFTFB]): The `Encoder(STFTFB())` object that was used to compute the input `mag_spec`. angles (None or Tensor): Angles to use to initialize the algorithm. If None (default), angles are init with uniform ditribution. istft_dec (None or Decoder[STFTFB]): Optional Decoder to use to get back to the time domain. If None (default), a perfect reconstruction Decoder is built from `stft_enc`. n_iter (int): Number of MISI iterations to run. momentum (float): Momentum on updates (this argument comes from GriffinLim). Defaults to 0 as it was never proposed anywhere. src_weights (None or torch.Tensor): Consistency weight for each source. Shape needs to be broadcastable to `istft_dec(mag_specgrams)`. We make sure that the weights sum up to 1 along dim `dim`. If `src_weights` is None, compute them based on relative power. dim (int): Axis which contains the sources in `mag_specgrams`. Used for consistency constraint. Returns: torch.Tensor: estimated waveforms of shape (batch, n_src, time). Examples >>> stft = Encoder(STFTFB(n_filters=256, kernel_size=256, stride=128)) >>> wav = torch.randn(2, 3, 8000) >>> specs = stft(wav) >>> masked_specs = specs * torch.sigmoid(torch.randn_like(specs)) >>> mag = transforms.mag(masked_specs, -2) >>> est_wav = misi(wav.sum(1), mag, stft, n_iter=32) References [1] Gunawan and Sen, "Iterative Phase Estimation for the Synthesis of Separated Sources From Single-Channel Mixtures," in IEEE Signal Processing Letters, 2010. [2] Wang, LeRoux et al. “End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction.” Interspeech 2018 (2018) """ # We can create perfect iSTFT from STFT Encoder if istft_dec is None: # Compute window for perfect resynthesis syn_win = perfect_synthesis_window(stft_enc.filterbank.window, stft_enc.stride) istft_dec = Decoder(STFTFB(**stft_enc.get_config(), window=syn_win)) # If no intitial phase is provided initialize uniformly if angles is None: angles = 2 * math.pi * torch.rand_like(mag_specgrams, device=mag_specgrams.device) # wav_dim is used in mixture_consistency. # Transform spec src dim to wav src dim for positive and negative dim wav_dim = dim if dim >= 0 else dim + 1 # We forward/backward the mixture through STFT to have matching shapes # with the input spectrograms as well as account for potential modulations # if the window were not chosen to enable perfect reconstruction. mixture_wav = istft_dec(stft_enc(mixture_wav)) # Initialize rebuilt (useful to use momentum) rebuilt = 0.0 for _ in range(n_iter): prev_built = rebuilt # Go to the time domain complex_specgram = transforms.from_magphase(mag_specgrams, angles) wavs = istft_dec(complex_specgram) # Make wavs sum up to the mixture consistent_wavs = mixture_consistency( mixture_wav, wavs, src_weights=src_weights, dim=wav_dim ) # Back to TF domain rebuilt = stft_enc(consistent_wavs) # Update phase estimates (with momentum). Keep the momentum here # in case. Was shown useful in GF, might be here. We'll see. diff = rebuilt - momentum / (1 + momentum) * prev_built angles = transforms.angle(diff) # Final source estimates final_complex_spec = transforms.from_magphase(mag_specgrams, angles) return istft_dec(final_complex_spec)
[ "torch.rand_like" ]
1.3.0
mcernak/asteroid
ed25e166a3bd338547248938116ba614ecfa4b3e
1.3
import torch from .. import complex_nn from ..filterbanks.transforms import from_torchaudio from ..masknn.recurrent import DCCRMaskNet from .dcunet import BaseDCUNet class DCCRNet(BaseDCUNet): """DCCRNet as proposed in [1]. Args: architecture (str): The architecture to use, must be "DCCRN-CL". stft_kernel_size (int): STFT frame length to use stft_stride (int, optional): STFT hop length to use. sample_rate (float): Sampling rate of the model. masknet_kwargs (optional): Passed to :class:`DCCRMaskNet` References - [1] : "DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement", Yanxin Hu et al. https://arxiv.org/abs/2008.00264 """ masknet_class = DCCRMaskNet def __init__(self, *args, stft_kernel_size=512, **masknet_kwargs): masknet_kwargs.setdefault("n_freqs", stft_kernel_size // 2) super().__init__( *args, stft_kernel_size=stft_kernel_size, **masknet_kwargs, ) def forward_encoder(self, wav): tf_rep = self.encoder(wav) # Remove Nyquist frequency bin return complex_nn.as_torch_complex(tf_rep)[..., :-1, :] def apply_masks(self, tf_rep, est_masks): masked_tf_rep = est_masks * tf_rep.unsqueeze(1) # Pad Nyquist frequency bin return from_torchaudio( torch.view_as_real(torch.nn.functional.pad(masked_tf_rep, (0, 0, 0, 1))) )
[ "torch.nn.functional.pad" ]
1.3.0
mcernak/asteroid
ed25e166a3bd338547248938116ba614ecfa4b3e
1.0
""" Inference algorithms and utilities used in the RSA example models. Adapted from: http://dippl.org/chapters/03-enumeration.html """ from __future__ import absolute_import, division, print_function import collections import six import torch from six.moves import queue import pyro import pyro.distributions as dist import pyro.poutine as poutine from pyro.infer.abstract_infer import TracePosterior from pyro.poutine.runtime import NonlocalExit if six.PY3: import functools else: import functools32 as functools def memoize(fn=None, **kwargs): if fn is None: return lambda _fn: memoize(_fn, **kwargs) return functools.lru_cache(**kwargs)(fn) def factor(name, value): """ Like factor in webPPL, adds a scalar weight to the log-probability of the trace """ value = value if torch.is_tensor(value) else torch.tensor(value) d = dist.Bernoulli(logits=value) pyro.sample(name, d, obs=torch.ones(value.size())) class HashingMarginal(dist.Distribution): """ :param trace_dist: a TracePosterior instance representing a Monte Carlo posterior Marginal histogram distribution. Turns a TracePosterior object into a Distribution over the return values of the TracePosterior's model. """ def __init__(self, trace_dist, sites=None): assert isinstance(trace_dist, TracePosterior), \ "trace_dist must be trace posterior distribution object" if sites is None: sites = "_RETURN" assert isinstance(sites, (str, list)), \ "sites must be either '_RETURN' or list" self.sites = sites super(HashingMarginal, self).__init__() self.trace_dist = trace_dist has_enumerate_support = True @memoize(maxsize=10) def _dist_and_values(self): # XXX currently this whole object is very inefficient values_map, logits = collections.OrderedDict(), collections.OrderedDict() for tr, logit in zip(self.trace_dist.exec_traces, self.trace_dist.log_weights): if isinstance(self.sites, str): value = tr.nodes[self.sites]["value"] else: value = {site: tr.nodes[site]["value"] for site in self.sites} if not torch.is_tensor(logit): logit = torch.tensor(logit) if torch.is_tensor(value): value_hash = hash(value.cpu().contiguous().numpy().tobytes()) elif isinstance(value, dict): value_hash = hash(self._dict_to_tuple(value)) else: value_hash = hash(value) if value_hash in logits: # Value has already been seen. logits[value_hash] = dist.util.logsumexp(torch.stack([logits[value_hash], logit]), dim=-1) else: logits[value_hash] = logit values_map[value_hash] = value logits = torch.stack(list(logits.values())).contiguous().view(-1) logits = logits - dist.util.logsumexp(logits, dim=-1) d = dist.Categorical(logits=logits) return d, values_map def sample(self): d, values_map = self._dist_and_values() ix = d.sample() return list(values_map.values())[ix] def log_prob(self, val): d, values_map = self._dist_and_values() if torch.is_tensor(val): value_hash = hash(val.cpu().contiguous().numpy().tobytes()) elif isinstance(val, dict): value_hash = hash(self._dict_to_tuple(val)) else: value_hash = hash(val) return d.log_prob(torch.tensor([list(values_map.keys()).index(value_hash)])) def enumerate_support(self): d, values_map = self._dist_and_values() return list(values_map.values())[:] def _dict_to_tuple(self, d): """ Recursively converts a dictionary to a list of key-value tuples Only intended for use as a helper function inside HashingMarginal!! May break when keys cant be sorted, but that is not an expected use-case """ if isinstance(d, dict): return tuple([(k, self._dict_to_tuple(d[k])) for k in sorted(d.keys())]) else: return d def _weighted_mean(self, value, dim=0): weights = self._log_weights.reshape([-1] + (value.dim() - 1) * [1]) max_weight = weights.max(dim=dim)[0] relative_probs = (weights - max_weight).exp() return (value * relative_probs).sum(dim=dim) / relative_probs.sum(dim=dim) @property def mean(self): samples = torch.stack(list(self._dist_and_values()[1].values())) return self._weighted_mean(samples) @property def variance(self): samples = torch.stack(list(self._dist_and_values()[1].values())) deviation_squared = torch.pow(samples - self.mean, 2) return self._weighted_mean(deviation_squared) ######################## # Exact Search inference ######################## class Search(TracePosterior): """ Exact inference by enumerating over all possible executions """ def __init__(self, model, max_tries=int(1e6), **kwargs): self.model = model self.max_tries = max_tries super(Search, self).__init__(**kwargs) def _traces(self, *args, **kwargs): q = queue.Queue() q.put(poutine.Trace()) p = poutine.trace( poutine.queue(self.model, queue=q, max_tries=self.max_tries)) while not q.empty(): tr = p.get_trace(*args, **kwargs) yield tr, tr.log_prob_sum() ############################################### # Best-first Search Inference ############################################### def pqueue(fn, queue): def sample_escape(tr, site): return (site["name"] not in tr) and \ (site["type"] == "sample") and \ (not site["is_observed"]) def _fn(*args, **kwargs): for i in range(int(1e6)): assert not queue.empty(), \ "trying to get() from an empty queue will deadlock" priority, next_trace = queue.get() try: ftr = poutine.trace(poutine.escape(poutine.replay(fn, next_trace), functools.partial(sample_escape, next_trace))) return ftr(*args, **kwargs) except NonlocalExit as site_container: site_container.reset_stack() for tr in poutine.util.enum_extend(ftr.trace.copy(), site_container.site): # add a little bit of noise to the priority to break ties... queue.put((tr.log_prob_sum().item() - torch.rand(1).item() * 1e-2, tr)) raise ValueError("max tries ({}) exceeded".format(str(1e6))) return _fn class BestFirstSearch(TracePosterior): """ Inference by enumerating executions ordered by their probabilities. Exact (and results equivalent to Search) if all executions are enumerated. """ def __init__(self, model, num_samples=None, **kwargs): if num_samples is None: num_samples = 100 self.num_samples = num_samples self.model = model super(BestFirstSearch, self).__init__(**kwargs) def _traces(self, *args, **kwargs): q = queue.PriorityQueue() # add a little bit of noise to the priority to break ties... q.put((torch.zeros(1).item() - torch.rand(1).item() * 1e-2, poutine.Trace())) q_fn = pqueue(self.model, queue=q) for i in range(self.num_samples): if q.empty(): # num_samples was too large! break tr = poutine.trace(q_fn).get_trace(*args, **kwargs) # XXX should block yield tr, tr.log_prob_sum()
[ "torch.zeros", "torch.rand", "torch.stack", "torch.is_tensor", "torch.tensor", "torch.pow" ]
1.0.0
gavincangan/pyro
d9115a6da7edd7e3fecd6b89a850cc137d7e7e9a
1.0
from __future__ import absolute_import, division, print_function import torch import torch.nn as nn from torch.distributions import constraints from pyro.distributions.torch_transform import TransformModule from pyro.distributions.util import copy_docs_from # This helper function clamps gradients but still passes through the gradient in clamped regions def clamp_preserve_gradients(x, min, max): return x + (x.clamp(min, max) - x).detach() @copy_docs_from(TransformModule) class InverseAutoregressiveFlow(TransformModule): """ An implementation of Inverse Autoregressive Flow, using Eq (10) from Kingma Et Al., 2016, :math:`\\mathbf{y} = \\mu_t + \\sigma_t\\odot\\mathbf{x}` where :math:`\\mathbf{x}` are the inputs, :math:`\\mathbf{y}` are the outputs, :math:`\\mu_t,\\sigma_t` are calculated from an autoregressive network on :math:`\\mathbf{x}`, and :math:`\\sigma_t>0`. Together with `TransformedDistribution` this provides a way to create richer variational approximations. Example usage: >>> from pyro.nn import AutoRegressiveNN >>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10)) >>> iaf = InverseAutoregressiveFlow(AutoRegressiveNN(10, [40])) >>> pyro.module("my_iaf", iaf) # doctest: +SKIP >>> iaf_dist = dist.TransformedDistribution(base_dist, [iaf]) >>> iaf_dist.sample() # doctest: +SKIP tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986]) The inverse of the Bijector is required when, e.g., scoring the log density of a sample with `TransformedDistribution`. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from `TransformedDistribution`. However, if the cached value isn't available, either because it was overwritten during sampling a new value or an arbitary value is being scored, it will calculate it manually. Note that this is an operation that scales as O(D) where D is the input dimension, and so should be avoided for large dimensional uses. So in general, it is cheap to sample from IAF and score a value that was sampled by IAF, but expensive to score an arbitrary value. :param autoregressive_nn: an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple :type autoregressive_nn: nn.Module :param log_scale_min_clip: The minimum value for clipping the log(scale) from the autoregressive NN :type log_scale_min_clip: float :param log_scale_max_clip: The maximum value for clipping the log(scale) from the autoregressive NN :type log_scale_max_clip: float References: 1. Improving Variational Inference with Inverse Autoregressive Flow [arXiv:1606.04934] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, Max Welling 2. Variational Inference with Normalizing Flows [arXiv:1505.05770] Danilo Jimenez Rezende, Shakir Mohamed 3. MADE: Masked Autoencoder for Distribution Estimation [arXiv:1502.03509] Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle """ domain = constraints.real codomain = constraints.real bijective = True event_dim = 1 def __init__(self, autoregressive_nn, log_scale_min_clip=-5., log_scale_max_clip=3.): super(InverseAutoregressiveFlow, self).__init__(cache_size=1) self.arn = autoregressive_nn self._cached_log_scale = None self.log_scale_min_clip = log_scale_min_clip self.log_scale_max_clip = log_scale_max_clip def _call(self, x): """ :param x: the input into the bijection :type x: torch.Tensor Invokes the bijection x=>y; in the prototypical context of a TransformedDistribution `x` is a sample from the base distribution (or the output of a previous flow) """ mean, log_scale = self.arn(x) log_scale = clamp_preserve_gradients(log_scale, self.log_scale_min_clip, self.log_scale_max_clip) self._cached_log_scale = log_scale scale = torch.exp(log_scale) y = scale * x + mean return y def _inverse(self, y): """ :param y: the output of the bijection :type y: torch.Tensor Inverts y => x. Uses a previously cached inverse if available, otherwise performs the inversion afresh. """ x_size = y.size()[:-1] perm = self.arn.permutation input_dim = y.size(-1) x = [torch.zeros(x_size, device=y.device)] * input_dim # NOTE: Inversion is an expensive operation that scales in the dimension of the input for idx in perm: mean, log_scale = self.arn(torch.stack(x, dim=-1)) inverse_scale = torch.exp(-clamp_preserve_gradients( log_scale[..., idx], min=self.log_scale_min_clip, max=self.log_scale_max_clip)) mean = mean[..., idx] x[idx] = (y[..., idx] - mean) * inverse_scale x = torch.stack(x, dim=-1) log_scale = clamp_preserve_gradients(log_scale, min=self.log_scale_min_clip, max=self.log_scale_max_clip) self._cached_log_scale = log_scale return x def log_abs_det_jacobian(self, x, y): """ Calculates the elementwise determinant of the log jacobian """ if self._cached_log_scale is not None: log_scale = self._cached_log_scale else: _, log_scale = self.arn(x) log_scale = clamp_preserve_gradients(log_scale, self.log_scale_min_clip, self.log_scale_max_clip) return log_scale.sum(-1) @copy_docs_from(TransformModule) class InverseAutoregressiveFlowStable(TransformModule): """ An implementation of an Inverse Autoregressive Flow, using Eqs (13)/(14) from Kingma Et Al., 2016, :math:`\\mathbf{y} = \\sigma_t\\odot\\mathbf{x} + (1-\\sigma_t)\\odot\\mu_t` where :math:`\\mathbf{x}` are the inputs, :math:`\\mathbf{y}` are the outputs, :math:`\\mu_t,\\sigma_t` are calculated from an autoregressive network on :math:`\\mathbf{x}`, and :math:`\\sigma_t` is restricted to :math:`(0,1)`. This variant of IAF is claimed by the authors to be more numerically stable than one using Eq (10), although in practice it leads to a restriction on the distributions that can be represented, presumably since the input is restricted to rescaling by a number on :math:`(0,1)`. Example usage: >>> from pyro.nn import AutoRegressiveNN >>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10)) >>> iaf = InverseAutoregressiveFlowStable(AutoRegressiveNN(10, [40])) >>> iaf_module = pyro.module("my_iaf", iaf) >>> iaf_dist = dist.TransformedDistribution(base_dist, [iaf]) >>> iaf_dist.sample() # doctest: +SKIP tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986]) See `InverseAutoregressiveFlow` docs for a discussion of the running cost. :param autoregressive_nn: an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple :type autoregressive_nn: nn.Module :param sigmoid_bias: bias on the hidden units fed into the sigmoid; default=`2.0` :type sigmoid_bias: float References: 1. Improving Variational Inference with Inverse Autoregressive Flow [arXiv:1606.04934] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, Max Welling 2. Variational Inference with Normalizing Flows [arXiv:1505.05770] Danilo Jimenez Rezende, Shakir Mohamed 3. MADE: Masked Autoencoder for Distribution Estimation [arXiv:1502.03509] Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle """ domain = constraints.real codomain = constraints.real bijective = True event_dim = 1 def __init__(self, autoregressive_nn, sigmoid_bias=2.0): super(InverseAutoregressiveFlowStable, self).__init__(cache_size=1) self.arn = autoregressive_nn self.sigmoid = nn.Sigmoid() self.logsigmoid = nn.LogSigmoid() self.sigmoid_bias = sigmoid_bias self._cached_log_scale = None def _call(self, x): """ :param x: the input into the bijection :type x: torch.Tensor Invokes the bijection x=>y; in the prototypical context of a TransformedDistribution `x` is a sample from the base distribution (or the output of a previous flow) """ mean, logit_scale = self.arn(x) logit_scale = logit_scale + self.sigmoid_bias scale = self.sigmoid(logit_scale) log_scale = self.logsigmoid(logit_scale) self._cached_log_scale = log_scale y = scale * x + (1 - scale) * mean return y def _inverse(self, y): """ :param y: the output of the bijection :type y: torch.Tensor Inverts y => x. """ x_size = y.size()[:-1] perm = self.arn.permutation input_dim = y.size(-1) x = [torch.zeros(x_size, device=y.device)] * input_dim # NOTE: Inversion is an expensive operation that scales in the dimension of the input for idx in perm: mean, logit_scale = self.arn(torch.stack(x, dim=-1)) inverse_scale = 1 + torch.exp(-logit_scale[..., idx] - self.sigmoid_bias) x[idx] = inverse_scale * y[..., idx] + (1 - inverse_scale) * mean[..., idx] self._cached_log_scale = inverse_scale x = torch.stack(x, dim=-1) return x def log_abs_det_jacobian(self, x, y): """ Calculates the elementwise determinant of the log jacobian """ if self._cached_log_scale is not None: log_scale = self._cached_log_scale else: _, logit_scale = self.arn(x) log_scale = self.logsigmoid(logit_scale + self.sigmoid_bias) return log_scale.sum(-1)
[ "torch.zeros", "torch.stack", "torch.nn.Sigmoid", "torch.nn.LogSigmoid", "torch.exp" ]
1.0.0
gavincangan/pyro
d9115a6da7edd7e3fecd6b89a850cc137d7e7e9a
1.0
from __future__ import absolute_import, division, print_function import logging from collections import defaultdict, namedtuple import pytest import torch import pyro.distributions as dist from pyro.contrib.gp.kernels import Cosine, Matern32, RBF, WhiteNoise from pyro.contrib.gp.likelihoods import Gaussian from pyro.contrib.gp.models import (GPLVM, GPRegression, SparseGPRegression, VariationalGP, VariationalSparseGP) from pyro.contrib.gp.util import train from pyro.infer.mcmc.hmc import HMC from pyro.infer.mcmc.mcmc import MCMC from tests.common import assert_equal logger = logging.getLogger(__name__) T = namedtuple("TestGPModel", ["model_class", "X", "y", "kernel", "likelihood"]) X = torch.tensor([[1., 5., 3.], [4., 3., 7.]]) y1D = torch.tensor([2., 1.]) y2D = torch.tensor([[1., 2.], [3., 3.], [1., 4.], [-1., 1.]]) noise = torch.tensor(1e-7) def _kernel(): return RBF(input_dim=3, variance=torch.tensor(3.), lengthscale=torch.tensor(2.)) def _likelihood(): return Gaussian(torch.tensor(1e-7)) def _TEST_CASES(): TEST_CASES = [ T( GPRegression, X, y1D, _kernel(), noise ), T( GPRegression, X, y2D, _kernel(), noise ), T( SparseGPRegression, X, y1D, _kernel(), noise ), T( SparseGPRegression, X, y2D, _kernel(), noise ), T( VariationalGP, X, y1D, _kernel(), _likelihood() ), T( VariationalGP, X, y2D, _kernel(), _likelihood() ), T( VariationalSparseGP, X, y1D, _kernel(), _likelihood() ), T( VariationalSparseGP, X, y2D, _kernel(), _likelihood() ), ] return TEST_CASES TEST_IDS = [t[0].__name__ + "_y{}D".format(str(t[2].dim())) for t in _TEST_CASES()] @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_model(model_class, X, y, kernel, likelihood): if model_class is SparseGPRegression or model_class is VariationalSparseGP: gp = model_class(X, None, kernel, X, likelihood) else: gp = model_class(X, None, kernel, likelihood) loc, var = gp.model() if model_class is VariationalGP or model_class is VariationalSparseGP: assert_equal(loc.norm().item(), 0) assert_equal(var, torch.ones(var.shape[-1]).expand(var.shape)) else: assert_equal(loc.norm().item(), 0) assert_equal(var, kernel(X).diag()) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_forward(model_class, X, y, kernel, likelihood): if model_class is SparseGPRegression or model_class is VariationalSparseGP: gp = model_class(X, y, kernel, X, likelihood) else: gp = model_class(X, y, kernel, likelihood) # test shape Xnew = torch.tensor([[2.0, 3.0, 1.0]]) loc0, cov0 = gp(Xnew, full_cov=True) loc1, var1 = gp(Xnew, full_cov=False) assert loc0.dim() == y.dim() assert loc0.shape[-1] == Xnew.shape[0] # test latent shape assert loc0.shape[:-1] == y.shape[:-1] assert cov0.shape[:-2] == y.shape[:-1] assert cov0.shape[-1] == cov0.shape[-2] assert cov0.shape[-1] == Xnew.shape[0] assert_equal(loc0, loc1) n = Xnew.shape[0] cov0_diag = torch.stack([mat.diag() for mat in cov0.view(-1, n, n)]).reshape(var1.shape) assert_equal(cov0_diag, var1) # test trivial forward: Xnew = X loc, cov = gp(X, full_cov=True) if model_class is VariationalGP or model_class is VariationalSparseGP: assert_equal(loc.norm().item(), 0) assert_equal(cov, torch.eye(cov.shape[-1]).expand(cov.shape)) else: assert_equal(loc, y) assert_equal(cov.norm().item(), 0) # test same input forward: Xnew[0,:] = Xnew[1,:] = ... Xnew = torch.tensor([[2.0, 3.0, 1.0]]).expand(10, 3) loc, cov = gp(Xnew, full_cov=True) loc_diff = loc - loc[..., :1].expand(y.shape[:-1] + (10,)) assert_equal(loc_diff.norm().item(), 0) cov_diff = cov - cov[..., :1, :1].expand(y.shape[:-1] + (10, 10)) assert_equal(cov_diff.norm().item(), 0) # test noise kernel forward: kernel = WhiteNoise gp.kernel = WhiteNoise(input_dim=3, variance=torch.tensor(10.)) loc, cov = gp(X, full_cov=True) assert_equal(loc.norm().item(), 0) assert_equal(cov, torch.eye(cov.shape[-1]).expand(cov.shape) * 10) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_forward_with_empty_latent_shape(model_class, X, y, kernel, likelihood): # regression models don't use latent_shape, no need for test if model_class is GPRegression or model_class is SparseGPRegression: return elif model_class is VariationalGP: gp = model_class(X, y, kernel, likelihood, latent_shape=torch.Size([])) else: # model_class is VariationalSparseGP gp = model_class(X, y, kernel, X, likelihood, latent_shape=torch.Size([])) # test shape Xnew = torch.tensor([[2.0, 3.0, 1.0]]) loc0, cov0 = gp(Xnew, full_cov=True) loc1, var1 = gp(Xnew, full_cov=False) assert loc0.shape[-1] == Xnew.shape[0] assert cov0.shape[-1] == cov0.shape[-2] assert cov0.shape[-1] == Xnew.shape[0] # test latent shape assert loc0.shape[:-1] == torch.Size([]) assert cov0.shape[:-2] == torch.Size([]) assert_equal(loc0, loc1) assert_equal(cov0.diag(), var1) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) @pytest.mark.init(rng_seed=0) def test_inference(model_class, X, y, kernel, likelihood): # skip variational GP models because variance/lengthscale highly # depend on variational parameters if model_class is VariationalGP or model_class is VariationalSparseGP: return elif model_class is GPRegression: gp = model_class(X, y, RBF(input_dim=3), likelihood) else: # model_class is SparseGPRegression gp = model_class(X, y, RBF(input_dim=3), X, likelihood) # fix inducing points because variance/lengthscale highly depend on it gp.Xu.requires_grad_(False) generator = dist.MultivariateNormal(torch.zeros(X.shape[0]), kernel(X)) target_y = generator(sample_shape=torch.Size([1000])).detach() gp.set_data(X, target_y) train(gp) y_cov = gp.kernel(X) target_y_cov = kernel(X) assert_equal(y_cov, target_y_cov, prec=0.1) @pytest.mark.init(rng_seed=0) def test_inference_sgpr(): N = 1000 X = dist.Uniform(torch.zeros(N), torch.ones(N)*5).sample() y = 0.5 * torch.sin(3*X) + dist.Normal(torch.zeros(N), torch.ones(N)*0.5).sample() kernel = RBF(input_dim=1) Xu = torch.arange(0., 5.5, 0.5) sgpr = SparseGPRegression(X, y, kernel, Xu) train(sgpr) Xnew = torch.arange(0., 5.05, 0.05) loc, var = sgpr(Xnew, full_cov=False) target = 0.5 * torch.sin(3*Xnew) assert_equal((loc - target).abs().mean().item(), 0, prec=0.07) @pytest.mark.init(rng_seed=0) def test_inference_vsgp(): N = 1000 X = dist.Uniform(torch.zeros(N), torch.ones(N)*5).sample() y = 0.5 * torch.sin(3*X) + dist.Normal(torch.zeros(N), torch.ones(N)*0.5).sample() kernel = RBF(input_dim=1) Xu = torch.arange(0., 5.5, 0.5) vsgp = VariationalSparseGP(X, y, kernel, Xu, Gaussian()) optimizer = torch.optim.Adam(vsgp.parameters(), lr=0.03) train(vsgp, optimizer) Xnew = torch.arange(0., 5.05, 0.05) loc, var = vsgp(Xnew, full_cov=False) target = 0.5 * torch.sin(3*Xnew) assert_equal((loc - target).abs().mean().item(), 0, prec=0.06) @pytest.mark.init(rng_seed=0) def test_inference_whiten_vsgp(): N = 1000 X = dist.Uniform(torch.zeros(N), torch.ones(N)*5).sample() y = 0.5 * torch.sin(3*X) + dist.Normal(torch.zeros(N), torch.ones(N)*0.5).sample() kernel = RBF(input_dim=1) Xu = torch.arange(0., 5.5, 0.5) vsgp = VariationalSparseGP(X, y, kernel, Xu, Gaussian(), whiten=True) train(vsgp) Xnew = torch.arange(0., 5.05, 0.05) loc, var = vsgp(Xnew, full_cov=False) target = 0.5 * torch.sin(3*Xnew) assert_equal((loc - target).abs().mean().item(), 0, prec=0.07) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_inference_with_empty_latent_shape(model_class, X, y, kernel, likelihood): # regression models don't use latent_shape (default=torch.Size([])) if model_class is GPRegression or model_class is SparseGPRegression: return elif model_class is VariationalGP: gp = model_class(X, y, kernel, likelihood, latent_shape=torch.Size([])) else: # model_class is SparseVariationalGP gp = model_class(X, y, kernel, X.clone(), likelihood, latent_shape=torch.Size([])) train(gp, num_steps=1) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_inference_with_whiten(model_class, X, y, kernel, likelihood): # regression models don't use whiten if model_class is GPRegression or model_class is SparseGPRegression: return elif model_class is VariationalGP: gp = model_class(X, y, kernel, likelihood, whiten=True) else: # model_class is SparseVariationalGP gp = model_class(X, y, kernel, X.clone(), likelihood, whiten=True) train(gp, num_steps=1) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_hmc(model_class, X, y, kernel, likelihood): if model_class is SparseGPRegression or model_class is VariationalSparseGP: gp = model_class(X, y, kernel, X.clone(), likelihood) else: gp = model_class(X, y, kernel, likelihood) if model_class is GPRegression: model_name = "GPR" elif model_class is SparseGPRegression: model_name = "SGPR" elif model_class is VariationalGP: model_name = "VGP" else: model_name = "VSGP" kernel.set_prior("variance", dist.Uniform(torch.tensor(0.5), torch.tensor(1.5))) kernel.set_prior("lengthscale", dist.Uniform(torch.tensor(1.0), torch.tensor(3.0))) hmc_kernel = HMC(gp.model, step_size=1) mcmc_run = MCMC(hmc_kernel, num_samples=10) post_trace = defaultdict(list) for trace, _ in mcmc_run._traces(): variance_name = "{}/RBF/variance".format(model_name) post_trace["variance"].append(trace.nodes[variance_name]["value"]) lengthscale_name = "{}/RBF/lengthscale".format(model_name) post_trace["lengthscale"].append(trace.nodes[lengthscale_name]["value"]) if model_class is VariationalGP: f_name = "VGP/f" post_trace["f"].append(trace.nodes[f_name]["value"]) if model_class is VariationalSparseGP: u_name = "VSGP/u" post_trace["u"].append(trace.nodes[u_name]["value"]) for param in post_trace: param_mean = torch.mean(torch.stack(post_trace[param]), 0) logger.info("Posterior mean - {}".format(param)) logger.info(param_mean) def test_inference_deepGP(): gp1 = GPRegression(X, None, RBF(input_dim=3, variance=torch.tensor(3.), lengthscale=torch.tensor(2.))) Z, _ = gp1.model() gp2 = VariationalSparseGP(Z, y2D, Matern32(input_dim=3), Z.clone(), Gaussian(torch.tensor(1e-6))) class DeepGP(torch.nn.Module): def __init__(self, gp1, gp2): super(DeepGP, self).__init__() self.gp1 = gp1 self.gp2 = gp2 def model(self): Z, _ = self.gp1.model() self.gp2.set_data(Z, y2D) self.gp2.model() def guide(self): self.gp1.guide() self.gp2.guide() deepgp = DeepGP(gp1, gp2) train(deepgp, num_steps=1) @pytest.mark.parametrize("model_class, X, y, kernel, likelihood", _TEST_CASES(), ids=TEST_IDS) def test_gplvm(model_class, X, y, kernel, likelihood): if model_class is SparseGPRegression or model_class is VariationalSparseGP: gp = model_class(X, y, kernel, X.clone(), likelihood) else: gp = model_class(X, y, kernel, likelihood) gplvm = GPLVM(gp) # test inference train(gplvm, num_steps=1) # test forward gplvm(Xnew=X) def _pre_test_mean_function(): def f(x): return 2 * x + 3 + 5 * torch.sin(7 * x) X = torch.arange(100, dtype=torch.Tensor().dtype) y = f(X) Xnew = torch.arange(100, 150, dtype=torch.Tensor().dtype) ynew = f(Xnew) kernel = Cosine(input_dim=1) class Trend(torch.nn.Module): def __init__(self): super(Trend, self).__init__() self.a = torch.nn.Parameter(torch.tensor(0.)) self.b = torch.nn.Parameter(torch.tensor(1.)) def forward(self, x): return self.a * x + self.b trend = Trend() return X, y, Xnew, ynew, kernel, trend def _mape(y_true, y_pred): return ((y_pred - y_true) / y_true).abs().mean() def _post_test_mean_function(gpmodule, Xnew, y_true): assert_equal(gpmodule.mean_function.a.item(), 2, prec=0.02) assert_equal(gpmodule.mean_function.b.item(), 3, prec=0.02) y_pred, _ = gpmodule(Xnew) assert_equal(_mape(y_true, y_pred).item(), 0, prec=0.02) def test_mean_function_GPR(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() gpmodule = GPRegression(X, y, kernel, mean_function=mean_fn) train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_SGPR(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() gpmodule = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn) train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_SGPR_DTC(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() gpmodule = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn, approx="DTC") train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_SGPR_FITC(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() gpmodule = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn, approx="FITC") train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_VGP(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() likelihood = Gaussian() gpmodule = VariationalGP(X, y, kernel, likelihood, mean_function=mean_fn) train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_VGP_whiten(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() likelihood = Gaussian() gpmodule = VariationalGP(X, y, kernel, likelihood, mean_function=mean_fn, whiten=True) optimizer = torch.optim.Adam(gpmodule.parameters(), lr=0.1) train(gpmodule, optimizer) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_VSGP(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() likelihood = Gaussian() gpmodule = VariationalSparseGP(X, y, kernel, Xu, likelihood, mean_function=mean_fn) optimizer = torch.optim.Adam(gpmodule.parameters(), lr=0.02) train(gpmodule, optimizer) _post_test_mean_function(gpmodule, Xnew, ynew) def test_mean_function_VSGP_whiten(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() likelihood = Gaussian() gpmodule = VariationalSparseGP(X, y, kernel, Xu, likelihood, mean_function=mean_fn, whiten=True) optimizer = torch.optim.Adam(gpmodule.parameters(), lr=0.1) train(gpmodule, optimizer) _post_test_mean_function(gpmodule, Xnew, ynew)
[ "torch.Size", "torch.zeros", "torch.stack", "torch.sin", "torch.arange", "torch.ones", "torch.tensor", "torch.eye", "torch.Tensor" ]
1.0.0
gavincangan/pyro
d9115a6da7edd7e3fecd6b89a850cc137d7e7e9a
1.0
from __future__ import absolute_import, division, print_function import math import torch import pyro from pyro import poutine from pyro.contrib.autoguide import mean_field_guide_entropy from pyro.contrib.oed.search import Search from pyro.contrib.util import lexpand from pyro.infer import EmpiricalMarginal, Importance, SVI from pyro.util import torch_isnan, torch_isinf def vi_ape(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None): """Estimates the average posterior entropy (APE) loss function using variational inference (VI). The APE loss function estimated by this method is defined as :math:`APE(d)=E_{Y\\sim p(y|\\theta, d)}[H(p(\\theta|Y, d))]` where :math:`H[p(x)]` is the `differential entropy <https://en.wikipedia.org/wiki/Differential_entropy>`_. The APE is related to expected information gain (EIG) by the equation :math:`EIG(d)=H[p(\\theta)]-APE(d)` in particular, minimising the APE is equivalent to maximising EIG. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param dict vi_parameters: Variational inference parameters which should include: `optim`: an instance of :class:`pyro.Optim`, `guide`: a guide function compatible with `model`, `num_steps`: the number of VI steps to make, and `loss`: the loss function to use for VI :param dict is_parameters: Importance sampling parameters for the marginal distribution of :math:`Y`. May include `num_samples`: the number of samples to draw from the marginal. :param pyro.distributions.Distribution y_dist: (optional) the distribution assumed for the response variable :math:`Y` :return: Loss function estimate :rtype: `torch.Tensor` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if target_labels is not None and isinstance(target_labels, str): target_labels = [target_labels] def posterior_entropy(y_dist, design): # Important that y_dist is sampled *within* the function y = pyro.sample("conditioning_y", y_dist) y_dict = {label: y[i, ...] for i, label in enumerate(observation_labels)} conditioned_model = pyro.condition(model, data=y_dict) SVI(conditioned_model, **vi_parameters).run(design) # Recover the entropy return mean_field_guide_entropy(vi_parameters["guide"], [design], whitelist=target_labels) if y_dist is None: y_dist = EmpiricalMarginal(Importance(model, **is_parameters).run(design), sites=observation_labels) # Calculate the expected posterior entropy under this distn of y loss_dist = EmpiricalMarginal(Search(posterior_entropy).run(y_dist, design)) loss = loss_dist.mean return loss def naive_rainforth_eig(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None): """ Naive Rainforth (i.e. Nested Monte Carlo) estimate of the expected information gain (EIG). The estimate is .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log p(y_n | \\theta_n, d) - \\log \\left(\\frac{1}{M}\\sum_{m=1}^M p(y_n | \\theta_m, d)\\right) Monte Carlo estimation is attempted for the :math:`\\log p(y | \\theta, d)` term if the parameter `M_prime` is passed. Otherwise, it is assumed that that :math:`\\log p(y | \\theta, d)` can safely be read from the model itself. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int N: Number of outer expectation samples. :param int M: Number of inner expectation samples for `p(y|d)`. :param int M_prime: Number of samples for `p(y | theta, d)` if required. :return: EIG estimate :rtype: `torch.Tensor` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] # Take N samples of the model expanded_design = lexpand(design, N) trace = poutine.trace(model).get_trace(expanded_design) trace.compute_log_prob() if M_prime is not None: y_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in observation_labels} theta_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in target_labels} theta_dict.update(y_dict) # Resample M values of u and compute conditional probabilities conditional_model = pyro.condition(model, data=theta_dict) # Not acceptable to use (M_prime, 1) here - other variables may occur after # theta, so need to be sampled conditional upon it reexpanded_design = lexpand(design, M_prime, N) retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() conditional_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M_prime) else: # This assumes that y are independent conditional on theta # Furthermore assume that there are no other variables besides theta conditional_lp = sum(trace.nodes[l]["log_prob"] for l in observation_labels) y_dict = {l: lexpand(trace.nodes[l]["value"], M) for l in observation_labels} # Resample M values of theta and compute conditional probabilities conditional_model = pyro.condition(model, data=y_dict) # Using (M, 1) instead of (M, N) - acceptable to re-use thetas between ys because # theta comes before y in graphical model reexpanded_design = lexpand(design, M, 1) retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() marginal_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M) return (conditional_lp - marginal_lp).sum(0)/N def donsker_varadhan_eig(model, design, observation_labels, target_labels, num_samples, num_steps, T, optim, return_history=False, final_design=None, final_num_samples=None): """ Donsker-Varadhan estimate of the expected information gain (EIG). The Donsker-Varadhan representation of EIG is .. math:: \\sup_T E_{p(y, \\theta | d)}[T(y, \\theta)] - \\log E_{p(y|d)p(\\theta)}[\\exp(T(\\bar{y}, \\bar{\\theta}))] where :math:`T` is any (measurable) function. This methods optimises the loss function over a pre-specified class of functions `T`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function or torch.nn.Module T: optimisable function `T` for use in the Donsker-Varadhan loss function. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisatio history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = donsker_varadhan_loss(model, T, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def barber_agakov_ape(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None): """ Barber-Agakov estimate of average posterior entropy (APE). The Barber-Agakov representation of APE is :math:`sup_{q}E_{p(y, \\theta | d)}[\\log q(\\theta | y, d)]` where :math:`q` is any distribution on :math:`\\theta`. This method optimises the loss over a given guide family `guide` representing :math:`q`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function guide: guide family for use in the (implicit) posterior estimation. The parameters of `guide` are optimised to maximise the Barber-Agakov objective. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisatio history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = barber_agakov_loss(model, guide, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def opt_eig_ape_loss(design, loss_fn, num_samples, num_steps, optim, return_history=False, final_design=None, final_num_samples=None): if final_design is None: final_design = design if final_num_samples is None: final_num_samples = num_samples params = None history = [] for step in range(num_steps): if params is not None: pyro.infer.util.zero_grads(params) agg_loss, loss = loss_fn(design, num_samples) agg_loss.backward() if return_history: history.append(loss) params = [value.unconstrained() for value in pyro.get_param_store().values()] optim(params) _, loss = loss_fn(final_design, final_num_samples) if return_history: return torch.stack(history), loss else: return loss def donsker_varadhan_loss(model, T, observation_labels, target_labels): ewma_log = EwmaLog(alpha=0.90) try: pyro.module("T", T) except AssertionError: pass def loss_fn(design, num_particles): expanded_design = lexpand(design, num_particles) # Unshuffled data unshuffled_trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: unshuffled_trace.nodes[l]["value"] for l in observation_labels} # Shuffled data # Not actually shuffling, resimulate for safety conditional_model = pyro.condition(model, data=y_dict) shuffled_trace = poutine.trace(conditional_model).get_trace(expanded_design) T_joint = T(expanded_design, unshuffled_trace, observation_labels, target_labels) T_independent = T(expanded_design, shuffled_trace, observation_labels, target_labels) joint_expectation = T_joint.sum(0)/num_particles A = T_independent - math.log(num_particles) s, _ = torch.max(A, dim=0) independent_expectation = s + ewma_log((A - s).exp().sum(dim=0), s) loss = joint_expectation - independent_expectation # Switch sign, sum over batch dimensions for scalar loss agg_loss = -loss.sum() return agg_loss, loss return loss_fn def barber_agakov_loss(model, guide, observation_labels, target_labels): def loss_fn(design, num_particles): expanded_design = lexpand(design, num_particles) # Sample from p(y, theta | d) trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: trace.nodes[l]["value"] for l in observation_labels} theta_dict = {l: trace.nodes[l]["value"] for l in target_labels} # Run through q(theta | y, d) conditional_guide = pyro.condition(guide, data=theta_dict) cond_trace = poutine.trace(conditional_guide).get_trace( y_dict, expanded_design, observation_labels, target_labels) cond_trace.compute_log_prob() loss = -sum(cond_trace.nodes[l]["log_prob"] for l in target_labels).sum(0)/num_particles agg_loss = loss.sum() return agg_loss, loss return loss_fn class _EwmaLogFn(torch.autograd.Function): @staticmethod def forward(ctx, input, ewma): ctx.save_for_backward(ewma) return input.log() @staticmethod def backward(ctx, grad_output): ewma, = ctx.saved_tensors return grad_output / ewma, None _ewma_log_fn = _EwmaLogFn.apply class EwmaLog(object): """Logarithm function with exponentially weighted moving average for gradients. For input `inputs` this function return :code:`inputs.log()`. However, it computes the gradient as :math:`\\frac{\\sum_{t=0}^{T-1} \\alpha^t}{\\sum_{t=0}^{T-1} \\alpha^t x_{T-t}}` where :math:`x_t` are historical input values passed to this function, :math:`x_T` being the most recently seen value. This gradient may help with numerical stability when the sequence of inputs to the function form a convergent sequence. """ def __init__(self, alpha): self.alpha = alpha self.ewma = 0. self.n = 0 self.s = 0. def __call__(self, inputs, s, dim=0, keepdim=False): """Updates the moving average, and returns :code:`inputs.log()`. """ self.n += 1 if torch_isnan(self.ewma) or torch_isinf(self.ewma): ewma = inputs else: ewma = inputs * (1. - self.alpha) / (1 - self.alpha**self.n) \ + torch.exp(self.s - s) * self.ewma \ * (self.alpha - self.alpha**self.n) / (1 - self.alpha**self.n) self.ewma = ewma.detach() self.s = s.detach() return _ewma_log_fn(inputs, ewma)
[ "torch.stack", "torch.exp", "torch.max" ]
1.0.0
gavincangan/pyro
d9115a6da7edd7e3fecd6b89a850cc137d7e7e9a
1.8
# -*- encoding: utf-8 -*- # ----- # Created Date: 2021/7/16 # Author: Hanjing Wang # ----- # Last Modified: # Modified By: # ----- # Copyright (c) 2020 MARL @ SJTU # ----- import os import ray import copy import pytest import torch import time from malib.backend.datapool.parameter_server import ( Parameter, ParameterDescription, ParameterDescription, ParameterServer, PARAMETER_TABLE_NAME_GEN, ) class MLP(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.layers = torch.nn.Sequential( torch.nn.Linear(in_channels, 64), torch.nn.ReLU(inplace=True), torch.nn.Linear(64, 64), torch.nn.ReLU(inplace=True), torch.nn.Linear(64, out_channels), ) for p in self.layers.parameters(): torch.nn.init.normal_(p) def forward(self, x): return self.layers(x) def test_dump_and_load(): mlp1 = MLP(in_channels=10, out_channels=20) mlp2 = MLP(in_channels=15, out_channels=20) x1 = torch.rand(size=(16, 10)) x2 = torch.rand(size=(16, 15)) with torch.no_grad(): y1 = mlp1(x1) y2 = mlp2(x2) exp_cfg = {"group": "test_parameter_server", "name": "dump_and_load"} # dump ray.init(address=None) parameter_server_config = { # configuration for dumping parameters at /tmp/ "quit_job": { "dump_when_closed": True, # must ended with slash to indicate it is a directory "path": "/tmp/test_ps/", } } parameter_server = ParameterServer.options( name="ParameterServer", max_concurrency=1000 ).remote(test_mode=True, **parameter_server_config, exp_cfg=exp_cfg) param_desc1 = ParameterDescription( time_stamp=time.time(), identify="test_agent_1", env_id="test_env", id="mlp1", type=ParameterDescription.Type.PARAMETER, lock=False, description={"registered_name": "MLP"}, data=None, ) param_desc2 = copy.copy(param_desc1) param_desc1.data = mlp1.state_dict() expected_table_name1 = ( PARAMETER_TABLE_NAME_GEN( env_id=param_desc1.env_id, agent_id=param_desc1.identify, pid=param_desc1.id, policy_type=param_desc1.description["registered_name"], ) + ".pkl" ) status = ray.get(parameter_server.push.remote(param_desc1)) print(status) param_desc2.identify = "test_agent_2" param_desc2.id = "mlp2" param_desc2.data = mlp2.state_dict() expected_table_name2 = ( PARAMETER_TABLE_NAME_GEN( env_id=param_desc2.env_id, agent_id=param_desc2.identify, pid=param_desc2.id, policy_type=param_desc2.description["registered_name"], ) + ".pkl" ) status = ray.get(parameter_server.push.remote(param_desc2)) print(status) # wait for the ps to dump the data _ = ray.get(parameter_server.shutdown.remote()) parameter_server = None # check the existence of dumped file files = os.listdir(parameter_server_config["quit_job"]["path"]) assert expected_table_name1 in files assert expected_table_name2 in files parameter_server_config.update( { # load the dumped parameters "init_job": { "load_when_start": True, "path": parameter_server_config["quit_job"]["path"], }, # clean the properties of quitting schedule "quit_job": {}, } ) parameter_server = ParameterServer.options( name="ParameterServerRec", max_concurrency=1000 ).remote(test_mode=True, **parameter_server_config, exp_cfg=exp_cfg) epsilon = 1e-8 # clean data param_desc1.data = None status, mlp1_param = ray.get( parameter_server.pull.remote(param_desc1, keep_return=True) ) assert mlp1_param.data mlp1.load_state_dict(mlp1_param.data) with torch.no_grad(): y1_rec = mlp1(x1) res = torch.sub(y1, y1_rec) assert torch.all(res < epsilon).item() param_desc2.data = None status, mlp2_param = ray.get( parameter_server.pull.remote(param_desc2, keep_return=True) ) mlp2.load_state_dict(mlp2_param.data) with torch.no_grad(): y2_rec = mlp2(x2) res = torch.sub(y2, y2_rec) assert torch.all(res < epsilon).item() _ = ray.get(parameter_server.shutdown.remote()) ray.shutdown()
[ "torch.nn.Linear", "torch.rand", "torch.sub", "torch.no_grad", "torch.nn.ReLU", "torch.nn.init.normal_", "torch.all" ]
1.8.1
apexrl/malib
3785309e9b695ff359131fbbecabb6b5a52ef559
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning import LightningDataModule, LightningModule, Trainer from pytorch_lightning.metrics.functional import accuracy from pytorch_lightning.utilities import DistributedType from tests.helpers import BoringModel from tests.helpers.utils import get_default_logger, load_model_from_checkpoint, reset_seed def run_model_test_without_loggers( trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50 ): reset_seed() # fit model trainer = Trainer(**trainer_options) trainer.fit(model, datamodule=data) # correct result and ok accuracy assert trainer.state.finished, f"Training failed with {trainer.state}" model2 = load_model_from_checkpoint(trainer.logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model2.test_dataloader() if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model2, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model2, dataloader, min_acc=min_acc) def run_model_test( trainer_options, model: LightningModule, data: LightningDataModule = None, on_gpu: bool = True, version=None, with_hpc: bool = True, min_acc: float = 0.25 ): reset_seed() save_dir = trainer_options['default_root_dir'] # logger file to get meta logger = get_default_logger(save_dir, version=version) trainer_options.update(logger=logger) trainer = Trainer(**trainer_options) initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) trainer.fit(model, datamodule=data) post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) assert trainer.state.finished, f"Training failed with {trainer.state}" # Check that the model is actually changed post-training change_ratio = torch.norm(initial_values - post_train_values) assert change_ratio > 0.1, f"the model is changed of {change_ratio}" # test model loading pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader() if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model, dataloader, min_acc=min_acc) if with_hpc: if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2): # on hpc this would work fine... but need to hack it for the purpose of the test trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \ trainer.init_optimizers(pretrained_model) # test HPC saving trainer.checkpoint_connector.hpc_save(save_dir, logger) # test HPC loading checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(save_dir) trainer.checkpoint_connector.hpc_load(checkpoint_path, on_gpu=on_gpu) @torch.no_grad() def run_prediction_eval_model_template(trained_model, dataloader, min_acc=0.50): # run prediction on 1 batch trained_model.cpu() trained_model.eval() batch = next(iter(dataloader)) x, y = batch x = x.flatten(1) y_hat = trained_model(x) acc = accuracy(y_hat.cpu(), y.cpu(), top_k=2).item() assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"
[ "torch.abs", "torch.norm", "torch.no_grad" ]
1.4
jbuckman/pytorch-lightning
cc74fb717a7127fecd4dbb9c743ba28b40de7f64
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentParser from unittest import mock import pytest import torch from torch.utils.data import DataLoader import tests.helpers.pipelines as tpipes import tests.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.accelerators import TPUAccelerator from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.core.step_result import Result from pytorch_lightning.plugins import TPUSpawnPlugin from pytorch_lightning.utilities import _TPU_AVAILABLE from pytorch_lightning.utilities.distributed import ReduceOp from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel, RandomDataset from tests.helpers.runif import RunIf from tests.helpers.utils import pl_multi_process_test if _TPU_AVAILABLE: import torch_xla import torch_xla.distributed.xla_multiprocessing as xmp SERIAL_EXEC = xmp.MpSerialExecutor() _LARGER_DATASET = RandomDataset(32, 2000) # 8 cores needs a big dataset def _serial_train_loader(): return DataLoader(_LARGER_DATASET, batch_size=32) class SerialLoaderBoringModel(BoringModel): def train_dataloader(self): return DataLoader(RandomDataset(32, 2000), batch_size=32) def val_dataloader(self): return DataLoader(RandomDataset(32, 2000), batch_size=32) @RunIf(tpu=True) @pl_multi_process_test def test_model_tpu_cores_1(tmpdir): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=2, tpu_cores=1, limit_train_batches=4, limit_val_batches=4, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.parametrize('tpu_core', [1, 5]) @RunIf(tpu=True) @pl_multi_process_test def test_model_tpu_index(tmpdir, tpu_core): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=2, tpu_cores=[tpu_core], limit_train_batches=4, limit_val_batches=4, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}' @RunIf(tpu=True) @pl_multi_process_test def test_model_tpu_cores_8(tmpdir): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=8, limit_train_batches=4, limit_val_batches=4, ) # 8 cores needs a big dataset model = SerialLoaderBoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False, min_acc=0.05) @RunIf(tpu=True) @pl_multi_process_test def test_model_16bit_tpu_cores_1(tmpdir): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=2, tpu_cores=1, limit_train_batches=8, limit_val_batches=2, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False) assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" @pytest.mark.parametrize('tpu_core', [1, 5]) @RunIf(tpu=True) @pl_multi_process_test def test_model_16bit_tpu_index(tmpdir, tpu_core): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=2, tpu_cores=[tpu_core], limit_train_batches=4, limit_val_batches=2, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False) assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}' assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" @RunIf(tpu=True) @pl_multi_process_test def test_model_16bit_tpu_cores_8(tmpdir): """Make sure model trains on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=8, limit_train_batches=4, limit_val_batches=4, ) # 8 cores needs a big dataset model = SerialLoaderBoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False, min_acc=0.05) @RunIf(tpu=True) @pl_multi_process_test def test_model_tpu_early_stop(tmpdir): """Test if single TPU core training works""" class CustomBoringModel(BoringModel): def validation_step(self, *args, **kwargs): out = super().validation_step(*args, **kwargs) self.log('val_loss', out['x']) return out tutils.reset_seed() model = CustomBoringModel() trainer = Trainer( callbacks=[EarlyStopping(monitor='val_loss')], default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=2, limit_train_batches=2, limit_val_batches=2, tpu_cores=8, ) trainer.fit(model) trainer.test(test_dataloaders=DataLoader(RandomDataset(32, 2000), batch_size=32)) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_grad_norm(tmpdir): """Test if grad_norm works on TPU.""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=4, tpu_cores=1, limit_train_batches=0.4, limit_val_batches=0.4, gradient_clip_val=0.5, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_clip_grad_by_value(tmpdir): """Test if clip_gradients by value works on TPU""" tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=4, tpu_cores=1, limit_train_batches=10, limit_val_batches=10, gradient_clip_val=0.5, gradient_clip_algorithm='value' ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @RunIf(tpu=True) @pl_multi_process_test def test_dataloaders_passed_to_fit(tmpdir): """Test if dataloaders passed to trainer works on TPU""" tutils.reset_seed() model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, tpu_cores=8, ) trainer.fit( model, train_dataloader=model.train_dataloader(), val_dataloaders=model.val_dataloader(), ) assert trainer.state.finished, f"Training failed with {trainer.state}" @pytest.mark.parametrize( ['tpu_cores', 'expected_tpu_id'], [pytest.param(1, None), pytest.param(8, None), pytest.param([1], 1), pytest.param([8], 8)], ) @RunIf(tpu=True) def test_tpu_id_to_be_as_expected(tpu_cores, expected_tpu_id): """Test if trainer.tpu_id is set as expected""" assert Trainer(tpu_cores=tpu_cores).accelerator_connector.tpu_id == expected_tpu_id def test_tpu_misconfiguration(): """Test if trainer.tpu_id is set as expected""" with pytest.raises(MisconfigurationException, match="`tpu_cores` can only be"): Trainer(tpu_cores=[1, 8]) @pytest.mark.skipif(_TPU_AVAILABLE, reason="test requires missing TPU") def test_exception_when_no_tpu_found(tmpdir): """Test if exception is thrown when xla devices are not available""" with pytest.raises(MisconfigurationException, match='No TPU devices were found.'): Trainer(tpu_cores=8) @pytest.mark.parametrize('tpu_cores', [1, 8, [1]]) @RunIf(tpu=True) def test_distributed_backend_set_when_using_tpu(tmpdir, tpu_cores): """Test if distributed_backend is set to `tpu` when tpu_cores is not None""" assert Trainer(tpu_cores=tpu_cores).distributed_backend == "tpu" @RunIf(tpu=True) @pl_multi_process_test def test_broadcast_on_tpu(): """ Checks if an object from the master process is broadcasted to other processes correctly""" def test_broadcast(rank): trainer = Trainer(tpu_cores=8) assert isinstance(trainer.accelerator, TPUAccelerator) assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin) obj = ("ver_0.5", "logger_name", rank) result = trainer.training_type_plugin.broadcast(obj) assert result == ("ver_0.5", "logger_name", 0) xmp.spawn(test_broadcast, nprocs=8, start_method='fork') @pytest.mark.parametrize( ["tpu_cores", "expected_tpu_id", "error_expected"], [ pytest.param(1, None, False), pytest.param(8, None, False), pytest.param([1], 1, False), pytest.param([8], 8, False), pytest.param("1,", 1, False), pytest.param("1", None, False), pytest.param("9, ", 9, True), pytest.param([9], 9, True), pytest.param([0], 0, True), pytest.param(2, None, True), pytest.param(10, None, True), ], ) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_choice(tmpdir, tpu_cores, expected_tpu_id, error_expected): if error_expected: with pytest.raises(MisconfigurationException, match=r".*tpu_cores` can only be 1, 8 or [<1-8>]*"): Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores) else: trainer = Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores) assert trainer.accelerator_connector.tpu_id == expected_tpu_id @pytest.mark.parametrize( ['cli_args', 'expected'], [pytest.param('--tpu_cores=8', {'tpu_cores': 8}), pytest.param("--tpu_cores=1,", {'tpu_cores': '1,'})] ) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_cores_with_argparse(cli_args, expected): """Test passing tpu_cores in command line""" cli_args = cli_args.split(' ') if cli_args else [] with mock.patch("argparse._sys.argv", ["any.py"] + cli_args): parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) args = Trainer.parse_argparser(parser) for k, v in expected.items(): assert getattr(args, k) == v assert Trainer.from_argparse_args(args) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_reduce(): """Test tpu spawn reduce operation """ def test_reduce(rank): trainer = Trainer(tpu_cores=8) # faster this way reduce_ops = ["mean", "AVG", "undefined", "sum", ReduceOp.SUM, ReduceOp.MAX] for reduce_op in reduce_ops: if reduce_op == "undefined" or reduce_op == ReduceOp.MAX: with pytest.raises(MisconfigurationException, match="TPUSpawn TrainingTypePlugin only support"): result = trainer.training_type_plugin.reduce(1, reduce_op) else: result = trainer.training_type_plugin.reduce(1, reduce_op) if isinstance(reduce_op, str) and reduce_op.lower() in ("mean", "avg"): assert result.item() == 1 else: assert result.item() == 8 xmp.spawn(test_reduce, nprocs=8, start_method='fork') @RunIf(tpu=True) @pl_multi_process_test @pytest.mark.parametrize("clip_val", [10]) @mock.patch("torch.nn.utils.clip_grad_norm_") def test_tpu_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir): """ Ensure that clip gradients is only called if the value is greater than 0. TODO: Fix (test fails with parametrize) """ tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=1, precision=16, limit_train_batches=4, limit_val_batches=4, gradient_clip_val=clip_val, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) if clip_val > 0: mock_clip_grad_norm.assert_called() else: mock_clip_grad_norm.assert_not_called() @RunIf(tpu=True) @pl_multi_process_test def test_if_test_works_with_checkpoint_false(tmpdir): """Ensure that model trains properly when `checkpoint_callback` is set to False.""" # Train a model on TPU model = BoringModel() trainer = Trainer(max_epochs=1, tpu_cores=8, default_root_dir=tmpdir, fast_dev_run=True, checkpoint_callback=False) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" @RunIf(tpu=True) @pl_multi_process_test def test_tpu_sync_dist(): """Test tpu spawn sync dist operation """ def test_sync_dist(rank): tensor = torch.tensor([1.0]) training_type_plugin = TPUSpawnPlugin() res = Result() res.log( "test_tensor", tensor, sync_fn=training_type_plugin.reduce, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM ) assert res["test_tensor"].item() == 8, "Result-Log does not work properly with TPU Spawn and Tensors" xmp.spawn(test_sync_dist, nprocs=8, start_method='fork') @RunIf(tpu=True) @pl_multi_process_test def test_tpu_debug_mode(tmpdir): """Test if debug mode works on TPU.""" class DebugModel(BoringModel): def on_train_start(self): assert os.environ.get("PT_XLA_DEBUG") == str(1), "PT_XLA_DEBUG was not set in environment variables" def teardown(self, stage): assert "PT_XLA_DEBUG" not in os.environ tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=4, tpu_cores=8, limit_train_batches=0.4, limit_val_batches=0.4, plugins=TPUSpawnPlugin(debug=True), ) model = DebugModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @RunIf(tpu=True) @pl_multi_process_test def test_tpu_host_world_size(tmpdir): """Test Host World size env setup on TPU.""" class DebugModel(BoringModel): def on_train_start(self): assert os.environ.get("XRT_HOST_WORLD_SIZE") == str(1) def teardown(self, stage): assert "XRT_HOST_WORLD_SIZE" not in os.environ tutils.reset_seed() trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=4, tpu_cores=8, limit_train_batches=0.4, limit_val_batches=0.4, ) model = DebugModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
[ "torch.tensor", "torch.utils.data.DataLoader" ]
1.4
jbuckman/pytorch-lightning
cc74fb717a7127fecd4dbb9c743ba28b40de7f64
1.6
import torch import torch.nn as nn from transformers import BertModel, BertPreTrainedModel class FCLayer(nn.Module): def __init__(self, input_dim, output_dim, dropout_rate=0.0, use_activation=True): super(FCLayer, self).__init__() self.use_activation = use_activation self.dropout = nn.Dropout(dropout_rate) self.linear = nn.Linear(input_dim, output_dim) self.tanh = nn.Tanh() def forward(self, x): x = self.dropout(x) if self.use_activation: x = self.tanh(x) return self.linear(x) class RBERT(BertPreTrainedModel): def __init__(self, config, args): super(RBERT, self).__init__(config) self.bert = BertModel(config=config) # Load pretrained bert self.num_labels = config.num_labels self.cls_fc_layer = FCLayer(config.hidden_size, config.hidden_size, args.dropout_rate) self.entity_fc_layer = FCLayer(config.hidden_size, config.hidden_size, args.dropout_rate) self.label_classifier = FCLayer( config.hidden_size * 3, config.num_labels, args.dropout_rate, use_activation=False, ) @staticmethod def entity_average(hidden_output, e_mask): """ Average the entity hidden state vectors (H_i ~ H_j) :param hidden_output: [batch_size, j-i+1, dim] :param e_mask: [batch_size, max_seq_len] e.g. e_mask[0] == [0, 0, 0, 1, 1, 1, 0, 0, ... 0] :return: [batch_size, dim] """ e_mask_unsqueeze = e_mask.unsqueeze(1) # [b, 1, j-i+1] length_tensor = (e_mask != 0).sum(dim=1).unsqueeze(1) # [batch_size, 1] # [b, 1, j-i+1] * [b, j-i+1, dim] = [b, 1, dim] -> [b, dim] sum_vector = torch.bmm(e_mask_unsqueeze.float(), hidden_output).squeeze(1) avg_vector = sum_vector.float() / length_tensor.float() # broadcasting return avg_vector def forward(self, input_ids, attention_mask, token_type_ids, labels, e1_mask, e2_mask): outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids ) # sequence_output, pooled_output, (hidden_states), (attentions) sequence_output = outputs[0] pooled_output = outputs[1] # [CLS] # Average e1_h = self.entity_average(sequence_output, e1_mask) e2_h = self.entity_average(sequence_output, e2_mask) # Dropout -> tanh -> fc_layer (Share FC layer for e1 and e2) pooled_output = self.cls_fc_layer(pooled_output) e1_h = self.entity_fc_layer(e1_h) e2_h = self.entity_fc_layer(e2_h) # Concat -> fc_layer concat_h = torch.cat([pooled_output, e1_h, e2_h], dim=-1) logits = self.label_classifier(concat_h) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here # Softmax if labels is not None: if self.num_labels == 1: loss_fct = nn.MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions)
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.nn.MSELoss", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss" ]
1.6.0
isotrforever/R-BERT
99e986cab12f2d91f2445c651908c8a18c8c9efe
1.0
############################################################################### # Language Modeling on Penn Tree Bank # # This file generates new sentences sampled from the language model # ############################################################################### import argparse import torch import data parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model') # Model parameters. parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--checkpoint', type=str, default='./model.pt', help='model checkpoint to use') parser.add_argument('--outf', type=str, default='generated.txt', help='output file for generated text') parser.add_argument('--words', type=int, default='1000', help='number of words to generate') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, help='reporting interval') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if args.temperature < 1e-3: parser.error("--temperature has to be greater or equal 1e-3") with open(args.checkpoint, 'rb') as f: model = torch.load(f) model.eval() if args.cuda: model.cuda() else: model.cpu() corpus = data.Corpus(args.data) ntokens = len(corpus.dictionary) hidden = model.init_hidden(1) with torch.no_grad(): input = torch.rand(1, 1).mul(ntokens).long() if args.cuda: input = input.cuda() with open(args.outf, 'w') as outf: for i in range(args.words): output, hidden = model(input, hidden) word_weights = output.squeeze().float().data.div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] input.data.fill_(word_idx) word = corpus.dictionary.idx2word[word_idx] outf.write(word + ('\n' if i % 20 == 19 else ' ')) if i % args.log_interval == 0: print('| Generated {}/{} words'.format(i, args.words))
[ "torch.rand", "torch.no_grad", "torch.manual_seed", "torch.multinomial", "torch.cuda.is_available", "torch.load" ]
1.0
Cubbee/apex
0a991543846966d5f586540dc2441e512139e9fc
1.0
""" Group all tests cases for layers""" import pytest import torch from polaris.network.layers import SqueezeExcitation, ResidualBlock2D def test_squeeze_excitation(): X = torch.tensor([[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]]) se = SqueezeExcitation(channels=1, ratio=1) se.dense_linear_1.weight.data = torch.tensor([[4.0]]) se.dense_linear_1.bias.data = torch.tensor([[2.0]]) se.dense_linear_2.weight.data = torch.tensor([[-0.1], [2.0]]) se.dense_linear_2.bias.data = torch.tensor([0.1, -3]) output = se(X) expected = torch.tensor([[[[41.109, 41.218, 41.327], [41.436, 41.545, 41.655], [41.764, 41.873, 41.982]]]]) assert pytest.approx(expected.detach().numpy(), abs=1e-3) == output.detach().numpy() def test_residual_block(): X = torch.tensor([[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]]) rb = ResidualBlock2D(channels=1, kernel_size=3, se_ratio=1) rb.conv_layer_1.weight.data = torch.tensor([[[[0.0, 1, 0.0], [1, 2, 1], [0.0, 1, 0.0]]]]) rb.conv_layer_2.weight.data = torch.tensor([[[[0.0, 1, 0.0], [1, 1, 1], [0.0, 1, 0.0]]]]) rb.batch_norm_1.weight.data = torch.tensor([0.1]) rb.batch_norm_2.weight.data = torch.tensor([1.0]) rb.squeeze_ex.dense_linear_1.weight.data = torch.tensor([[0.0]]) rb.squeeze_ex.dense_linear_1.bias.data = torch.tensor([[0.0]]) rb.squeeze_ex.dense_linear_2.weight.data = torch.tensor([[1.0], [1.0]]) rb.squeeze_ex.dense_linear_2.bias.data = torch.tensor([1.0, 0.0]) output = rb(X) expected = torch.tensor([[[[0.000, 1.351, 2.282], [3.535, 5.685, 6.340], [7.018, 9.076, 9.823]]]]) assert pytest.approx(expected.detach().numpy(), abs=1e-3) == output.detach().numpy()
[ "torch.tensor" ]
1.0
leelastar/leelastar-training
b6b4a36c48c418fcc0bd3ccb7f9c2e95e29f26c9
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RoBERTa model. """ import math import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_roberta import RobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "roberta-base" _CONFIG_FOR_DOC = "RobertaConfig" _TOKENIZER_FOR_DOC = "RobertaTokenizer" ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "roberta-base", "roberta-large", "roberta-large-mnli", "distilroberta-base", "roberta-base-openai-detector", "roberta-large-openai-detector", # See all RoBERTa models at https://huggingface.co/models?filter=roberta ] class RobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids( input_ids, self.padding_idx, past_key_values_length ).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta class RobertaSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class RobertaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta class RobertaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = RobertaSelfAttention(config) self.output = RobertaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class RobertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class RobertaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta class RobertaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RobertaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = RobertaAttention(config) self.intermediate = RobertaIntermediate(config) self.output = RobertaOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta class RobertaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class RobertaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class RobertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaConfig base_model_prefix = "roberta" # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ROBERTA_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_START_DOCSTRING, ) class RobertaModel(RobertaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 """ _keys_to_ignore_on_load_missing = [r"position_ids"] # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RobertaEmbeddings(config) self.encoder = RobertaEncoder(config) self.pooler = RobertaPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """, ROBERTA_START_DOCSTRING ) class RobertaForCausalLM(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig >>> import torch >>> tokenizer = RobertaTokenizer.from_pretrained('roberta-base') >>> config = RobertaConfig.from_pretrained("roberta-base") >>> config.is_decoder = True >>> model = RobertaForCausalLM.from_pretrained('roberta-base', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING) class RobertaForMaskedLM(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x @add_start_docstrings( """ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForSequenceClassification(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForMultipleChoice(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForTokenClassification(RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_START_DOCSTRING, ) class RobertaForQuestionAnswering(RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cat", "torch.nn.MSELoss", "torch.arange", "torch.nn.Softmax", "torch.einsum", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.ones", "torch.tensor", "torch.tanh", "torch.matmul", "torch.nn.Embedding", "torch.cumsum" ]
1.0
reichang182/Transformer
6f90c29eaaba898919b7689ab7e2cfce1604cdb8
1.0
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RAG model implementation.""" from dataclasses import dataclass from typing import Callable, List, Optional, Tuple import torch from ...configuration_utils import PretrainedConfig from ...file_utils import add_start_docstrings_to_model_forward, replace_return_docstrings from ...generation_beam_search import BeamSearchScorer from ...modeling_outputs import ModelOutput from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class RetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Language modeling loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see :obj:`retrieved_doc_embeds`) and :obj:`question_encoder_last_hidden_state`. past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs, hidden_size)`, `optional`, returned when `output_retrieved=True`): Embedded documents retrieved by the retriever. Is used with ``question_encoder_last_hidden_state`` to compute the ``doc_scores``. retrieved_doc_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, config.n_docs)`, `optional`, returned when `output_retrieved=True`): The indexes of the embedded documents retrieved by the retriever. context_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Attention mask post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. question_encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class RetrievAugLMOutput(ModelOutput): """ Args: logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see :obj:`retrieved_doc_embeds`) and :obj:`question_encoder_last_hidden_state`. past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs, hidden_size)`, `optional`, returned when `output_retrieved=True`): Embedded documents retrieved by the retriever. Is used with ``question_encoder_last_hidden_state`` to compute the ``doc_scores``. retrieved_doc_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, config.n_docs)`, `optional`, returned when `output_retrieved=True`): The indexes of the embedded documents retrieved by the retriever. context_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Attention mask post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. question_encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class RagPreTrainedModel(PreTrainedModel): r""" RAG models were released with the paper `Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks <https://arxiv.org/abs/2005.11401>`_ by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" _keys_to_ignore_on_load_missing = [r"position_ids"] @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, *model_args, **kwargs ) -> PreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using :obj:`model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with :obj:`model.train()`. Params: question_encoder_pretrained_model_name_or_path (:obj: `str`, `optional`, defaults to `None`): Information necessary to initiate the question encoder. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. generator_pretrained_model_name_or_path (:obj: `str`, `optional`, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. retriever (:class:`~transformers.RagRetriever`, `optional`): The retriever to use. kwwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., ``output_attentions=True``). - To update the question_encoder configuration, use the prefix `question_encoder_` for each configuration parameter. - To update the generator configuration, use the prefix `generator_` for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a :obj:`config` is provided or automatically loaded. Example:: >>> from transformers import RagModel >>> # initialize a RAG from two pretrained models. >>> model = RagModel.from_question_encoder_generator_pretrained('facebook/dpr-question_encoder-single-nq-base', 't5-small') >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load fine-tuned model >>> model = RagModel.from_pretrained("./rag") """ kwargs_question_encoder = { argument[len("question_question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert ( question_encoder_pretrained_model_name_or_path is not None ), "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to be defined" from ..auto.modeling_auto import AutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) kwargs_question_encoder["config"] = question_encoder_config question_encoder = AutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, *model_args, **kwargs_question_encoder ) generator = kwargs_generator.pop("model", None) if generator is None: assert ( generator_pretrained_model_name_or_path is not None ), "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has to be defined" from ..auto.modeling_auto import AutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) kwargs_generator["config"] = generator_config generator = AutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, **kwargs_generator ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any `autoencoding` model, preferably :class:`~transformers.DPRQuestionEncoder`, and the generator can be any `seq2seq` model, preferably :class:`~transformers.BartForConditionalGeneration`. The model can be initialized with a :class:`~transformers.RagRetriever` for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any `autoencoding` model as the ``question_encoder`` and any `seq2seq` model with language model head as the ``generator``. It has been tested with :class:`~transformers.DPRQuestionEncoder` as the ``question_encoder`` and :class:`~transformers.BartForConditionalGeneration` or :class:`~transformers.T5ForConditionalGeneration` as the ``generator``. This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config (:class:`~transformers.RagConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. question_encoder (:class:`transformers.PreTrainedModel`): An encoder model compatible with the faiss index encapsulated by the ``retriever``. generator (:class:`transformers.PreTrainedModel`): A seq2seq model used as the generator in the RAG architecture. retriever (:class:`~transformers.RagRetriever`): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. :class:`~transformers.RagConfig`, used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`) Tuple consists of (:obj:`generator_enc_last_hidden_state`, `optional`: :obj:`generator_enc_hidden_states`, `optional`: :obj:`generator_enc_attentions`). :obj:`generator_enc_last_hidden_state` of shape :obj:`(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the (:class:`~transformers.RagModel`) model during decoding. decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will also be used by default. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`): Tuple consists of two elements: :obj:`encoder_outputs` of the RAG model (see :obj:`encoder_outputs`) and :obj:`past_key_values` of the underlying generator. Can be used to speed up decoding. :obj:`past_key_values` are used in the (:class:`~transformers.RagTokenForGeneration`) model during decoding. doc_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see :obj:`retrieved_doc_embeds`) and :obj:`question_encoder_last_hidden_state`. If the model has is not initialized with a ``retriever`` :obj:`doc_scores` has to be provided to the forward pass. :obj:`doc_scores` can be computed via :obj:`question_encoder_last_hidden_state` and :obj:`retrieved_doc_embeds`, see examples for more information. context_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Input IDs post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. If the model has is not initialized with a ``retriever`` :obj:`context_input_ids` has to be provided to the forward pass. :obj:`context_input_ids` are returned by :meth:`~transformers.RagRetriever.__call__`. context_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Attention mask post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. If the model has is not initialized with a ``retriever`` :obj:`context_attention_mask` has to be provided to the forward pass. :obj:`context_attention_mask` are returned by :meth:`~transformers.RagRetriever.__call__`. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. output_retrieved(:obj:`bool`, `optional`): Whether or not to return the :obj:`retrieved_doc_embeds`, :obj:`retrieved_doc_ids`, :obj:`context_input_ids` and :obj:`context_attention_mask`. See returned tensors for more detail. n_docs (:obj:`int`, `optional`, defaults to :obj:`config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class RagModel(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional = None, # or maybe just use a `set_retriever(...)` method **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config) if question_encoder is None: from ..auto.modeling_auto import AutoModel question_encoder = AutoModel.from_config(config.question_encoder) if generator is None: from ..auto.modeling_auto import AutoModelForSeq2SeqLM generator = AutoModelForSeq2SeqLM.from_config(config.generator) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, doc_scores=None, context_input_ids=None, context_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None, n_docs=None, ): r""" Returns: Example:: >>> from transformers import RagTokenizer, RagRetriever, RagModel >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> outputs = model(input_ids=inputs["input_ids"]) """ n_docs = n_docs if n_docs is not None else self.config.n_docs use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True ) question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm( question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2) ).squeeze(1) else: assert ( context_input_ids is not None ), "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can set a retriever using the `set_retriever(...)` function." assert ( context_attention_mask is not None ), "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you can set a retriever using the `set_retriever(...)` function." assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a retriever using the `set_retriever(...)` function." assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert ( doc_scores.shape[1] % n_docs ) == 0, f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is {context_input_ids.shape[0]}." # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0) gen_outputs = self.generator( input_ids=context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, return_dict=True, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return RetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, generator_cross_attentions=gen_outputs.cross_attentions, ) @add_start_docstrings_to_model_forward( """ A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagSequenceForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, context_input_ids=None, context_attention_mask=None, doc_scores=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None, exclude_bos_score=None, reduce_loss=None, labels=None, n_docs=None, **kwargs # needs kwargs for generation ): r""" exclude_bos_score (:obj:`bool`, `optional`): Only relevant if ``labels`` is passed. If :obj:`True`, the score of the BOS token is disregarded when computing the loss. reduce_loss (:obj:`bool`, `optional`): Only relevant if ``labels`` is passed. If :obj:`True`, the NLL loss is reduced using the ``torch.Tensor.sum`` operation. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Legacy dictionary, which is required so that model can use `generate()` function. Returns: Example:: >>> from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> with tokenizer.as_target_tokenizer(): ... targets = tokenizer("In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1) >>> # 3. Forward to generator >>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=labels) """ n_docs = n_docs if n_docs is not None else self.config.n_docs exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, decoder_input_ids, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, exclude_bos_score=exclude_bos_score, n_docs=n_docs, ) return RetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, do_deduplication=None, # defaults to True num_return_sequences=None, # defaults to 1 num_beams=None, # defaults to 1 n_docs=None, **model_kwargs ): """ Implements RAG sequence "thorough" decoding. Read the :meth:`~transformers.PreTrainedModel.generate`` documentation for more information on how to set other generate input parameters. Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): The sequence used as a prompt for the generation. If :obj:`input_ids` is not passed, then :obj:`context_input_ids` has to be provided. attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ context_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Attention mask post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. If the model is not initialized with a ``retriever`` or ``input_ids`` is not given, :obj:`context_input_ids` and :obj:`context_attention_mask` have to be provided to the forward pass. They are returned by :meth:`~transformers.RagRetriever.__call__`. doc_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see :obj:`retrieved_doc_embeds`) and :obj:`question_encoder_last_hidden_state`. If the model is not initialized with a ``retriever`` or ``input_ids`` is not given, :obj:`doc_scores` has to be provided to the forward pass. :obj:`doc_scores` are returned by :meth:`~transformers.RagRetriever.__call__`. do_deduplication (:obj:`bool`, `optional`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to :obj:`False` if used while training with distributed backend. num_return_sequences(:obj:`int`, `optional`, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the ``generator``'s `:func:`~transformers.PreTrainedModel.generate`` function, where we set ``num_return_sequences`` to :obj:`num_beams`. num_beams (:obj:`int`, `optional`, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (:obj:`int`, `optional`, defaults to :obj:`config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs: Additional kwargs will be passed to :meth:`~transformers.PreTrainedModel.generate`. Return: :obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to :obj:`max_length` or shorter if all batches finished early due to the :obj:`eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", )["context_input_ids"] # set to correct device context_input_ids = context_input_ids.to(input_ids) hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication, max_output_len output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert ( context_attention_mask is not None ), "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you can set a retriever using the `set_retriever(...)` function." assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a retriever using the `set_retriever(...)` function." individual_input_ids = generator_input_ids.repeat( num_candidates, 1 ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs] outputs = self( context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1] # add hypothesis hypos.append(output_sequences[top_cand_inds]) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) n_docs = n_docs if n_docs is not None else self.config.n_docs # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all() def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) # seq_logits dim = (batch*n_docs, tgt_len , #vocabs) seq_logprobs = torch.nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) # batch_size x n_docs x tgt_len x #vocab_size doc_logprobs = torch.nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1) # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2) # calculate loss target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2) smooth_obj = smooth_obj.sum(2) ll = ll.logsumexp(1) # logsumexp over docs smooth_obj = smooth_obj.logsumexp(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss @staticmethod def _cat_and_pad(tensors, pad_token_id): output = ( tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id) ) ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]] = t ind += t.shape[0] return output @add_start_docstrings_to_model_forward( """ A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagTokenForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever def prepare_inputs_for_generation( self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs ): if past is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _reorder_cache(past, beam_idx): """Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs""" def _reorder_stacked(hidden_states, new_order): n_docs = hidden_states.shape[0] // new_order.shape[0] hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:]) hidden_states = hidden_states.index_select(0, new_order) result = hidden_states.view(-1, *hidden_states.shape[2:]) return result reordered_past = () for layer_past in past: # get the correct batch idx from decoder layer's batch dim for cross and self-attn reordered_past += (tuple(_reorder_stacked(past_state, beam_idx) for past_state in layer_past),) return reordered_past def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = torch.nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) doc_logprobs = torch.log_softmax(doc_scores, dim=1) log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1) return torch.logsumexp(log_prob_sum, dim=1) @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, context_input_ids=None, context_attention_mask=None, doc_scores=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None, do_marginalize=None, reduce_loss=None, labels=None, n_docs=None, **kwargs # needs kwargs for generation ): r""" do_marginalize (:obj:`bool`, `optional`): If :obj:`True`, the logits are marginalized over all documents by making use of ``torch.nn.functional.log_softmax``. reduce_loss (:obj:`bool`, `optional`): Only relevant if ``labels`` is passed. If :obj:`True`, the NLL loss is reduced using the ``torch.Tensor.sum`` operation. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Legacy dictionary, which is required so that model can use `generate()` function. Returns: Example:: >>> from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> with tokenizer.as_target_tokenizer(): ... targets = tokenizer("In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1) >>> # 3. Forward to generator >>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=labels) >>> # or directly generate >>> generated = model.generate(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return RetrievAugLMMarginOutput( loss=loss, logits=logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, max_length=None, min_length=None, early_stopping=None, use_cache=None, num_beams=None, num_beam_groups=None, diversity_penalty=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, encoder_no_repeat_ngram_size=None, repetition_penalty=None, bad_words_ids=None, num_return_sequences=None, decoder_start_token_id=None, n_docs=None, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None, forced_bos_token_id: Optional[int] = None, forced_eos_token_id: Optional[int] = None, remove_invalid_values: Optional[bool] = None, **model_kwargs ): """ Implements RAG token decoding. Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): The sequence used as a prompt for the generation. If :obj:`input_ids` is not passed, then :obj:`context_input_ids` has to be provided. attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ context_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Input IDs post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. If the model has is not initialized with a ``retriever``, :obj:`context_input_ids` has to be provided to the forward pass. :obj:`context_input_ids` are returned by :meth:`~transformers.RagRetriever.__call__`. context_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size * config.n_docs, config.max_combined_length)`, `optional`, returned when `output_retrieved=True`): Attention mask post-processed from the retrieved documents and the question encoder :obj:`input_ids` by the retriever. If the model has is not initialized with a ``retriever``, :obj:`context_input_ids` has to be provided to the forward pass. :obj:`context_input_ids` are returned by :meth:`~transformers.RagRetriever.__call__`. doc_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see :obj:`retrieved_doc_embeds`) and :obj:`question_encoder_last_hidden_state`. If the model has is not initialized with a ``retriever``, :obj:`context_input_ids` has to be provided to the forward pass. :obj:`context_input_ids` are returned by :meth:`~transformers.RagRetriever.__call__`. max_length (:obj:`int`, `optional`, defaults to 20): The maximum length of the sequence to be generated. min_length (:obj:`int`, `optional`, defaults to 10): The minimum length of the sequence to be generated. early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to stop the beam search when at least ``num_beams`` sentences are finished per batch or not. use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding. pad_token_id (:obj:`int`, `optional`): The id of the `padding` token. bos_token_id (:obj:`int`, `optional`): The id of the `beginning-of-sequence` token. eos_token_id (:obj:`int`, `optional`): The id of the `end-of-sequence` token. length_penalty (:obj:`float`, `optional`, defaults to 1.0): Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences. no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0): If set to int > 0, all ngrams of that size can only occur once. encoder_no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0): If set to int > 0, all ngrams of that size that occur in the ``encoder_input_ids`` cannot occur in the ``decoder_input_ids``. bad_words_ids(:obj:`List[int]`, `optional`): List of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`. num_beams (:obj:`int`, `optional`, defaults to 1): Number of beams for beam search. 1 means no beam search. num_beam_groups (:obj:`int`, `optional`, defaults to 1): Number of groups to divide :obj:`num_beams` into in order to ensure diversity among different groups of beams. `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details. diversity_penalty (:obj:`float`, `optional`, defaults to 0.0): This value is subtracted from a beam's score if it generates a token same as any beam from other group at a particular time. Note that :obj:`diversity_penalty` is only effective if ``group beam search`` is enabled. num_return_sequences(:obj:`int`, `optional`, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the ``generator``'s `:func:`~transformers.PreTrainedModel.generate` function, where we set ``num_return_sequences`` to :obj:`num_beams`. decoder_start_token_id (:obj:`int`, `optional`): If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token. n_docs (:obj:`int`, `optional`, defaults to :obj:`config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. prefix_allowed_tokens_fn: (:obj:`Callable[[int, torch.Tensor], List[int]]`, `optional`): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments :obj:`inputs_ids` and the batch ID :obj:`batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokens :obj:`inputs_ids` and the batch ID :obj:`batch_id`. This argument is useful for constrained generation conditioned on the prefix, as described in `Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__. forced_bos_token_id (:obj:`int`, `optional`): The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to be the target language token. forced_eos_token_id (:obj:`int`, `optional`): The id of the token to force as the last generated token when :obj:`max_length` is reached. remove_invalid_values (:obj:`bool`, `optional`): Whether to remove possible `nan` and `inf` outputs of the model to prevent the generation method to crash. Note that using ``remove_invalid_values`` can slow down generation. Return: :obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or shorter if all batches finished early due to the :obj:`eos_token_id`. """ # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs num_beams = num_beams if num_beams is not None else self.config.num_beams num_beam_groups = num_beam_groups if num_beam_groups is not None else self.config.num_beam_groups max_length = max_length if max_length is not None else self.config.max_length num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) bos_token_id = bos_token_id if bos_token_id is not None else self.config.generator.bos_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.generator.eos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.generator.pad_token_id use_cache = use_cache if use_cache is not None else self.config.use_cache decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.generator.decoder_start_token_id ) remove_invalid_values = ( remove_invalid_values if remove_invalid_values is not None else self.config.remove_invalid_values ) # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) assert ( context_input_ids.shape[0] % n_docs ) == 0, f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is {context_input_ids.shape[0]}." # batch_size batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True) input_ids = torch.full( (batch_size * num_beams, 1), decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): # split into `batch_size`, `num_beams`, `num_docs` tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:]) # repeat same last hidden states over `num_beams` dimension tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:]) # merge `batch_size`, `num_beams`, `num_docs` dims again return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:]) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output(last_hidden_state, num_beams=num_beams) doc_scores = doc_scores.repeat_interleave(num_beams, dim=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size, encoder_input_ids=context_input_ids, bad_words_ids=bad_words_ids, min_length=min_length, max_length=max_length, eos_token_id=eos_token_id, forced_bos_token_id=forced_bos_token_id, forced_eos_token_id=forced_eos_token_id, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, num_beams=num_beams, num_beam_groups=num_beam_groups, diversity_penalty=diversity_penalty, remove_invalid_values=remove_invalid_values, ) if num_beams == 1: if num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {num_return_sequences} when doing greedy search." ) return self.greedy_search( input_ids, logits_processor=pre_processor, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, **model_kwargs, ) elif num_beams > 1: length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping if num_return_sequences > num_beams: raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.") beam_scorer = BeamSearchScorer( batch_size=batch_size, max_length=max_length, num_beams=num_beams, device=self.device, length_penalty=length_penalty, do_early_stopping=early_stopping, num_beam_hyps_to_keep=num_return_sequences, ) return self.beam_search( input_ids, beam_scorer, logits_processor=pre_processor, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, **model_kwargs, ) else: raise ValueError(f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {num_beams}") def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.rag.generator.set_output_embeddings(new_embeddings) def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.config.decoder_start_token_id shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = start_token_id return shifted_input_ids def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) target = target.unsqueeze(-1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) ll = ll.sum(1) # sum over tokens smooth_obj = smooth_obj.sum(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss
[ "torch.cat", "torch.log_softmax", "torch.no_grad", "torch.nn.functional.log_softmax", "torch.logsumexp" ]
1.0
reichang182/Transformer
6f90c29eaaba898919b7689ab7e2cfce1604cdb8
1.2
import os import time import logging import argparse import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.nn as nn from util import dataset, transform, config from util.util import AverageMeter, intersectionAndUnion, check_makedirs, colorize cv2.ocl.setUseOpenCL(False) label_mapping = { 7: 0, 8: 1, 11: 2, 12: 3, 13: 4, 17: 5, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 31: 16, 32: 17, 33: 18} def get_parser(): parser = argparse.ArgumentParser(description='PyTorch Semantic Segmentation') parser.add_argument('--config', type=str, default='config/cityscapes/cityscapes_deeplab50mem.yaml', help='config file') parser.add_argument('opts', help='see config/ade20k/ade20k_pspnet50.yaml for all options', default=None, nargs=argparse.REMAINDER) args = parser.parse_args() assert args.config is not None cfg = config.load_cfg_from_cfg_file(args.config) if args.opts is not None: cfg = config.merge_cfg_from_list(cfg, args.opts) return cfg def get_logger(): logger_name = "main-logger" logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) handler = logging.StreamHandler() fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s" handler.setFormatter(logging.Formatter(fmt)) logger.addHandler(handler) return logger def check(args): assert args.classes > 1 assert args.zoom_factor in [1, 2, 4, 8] assert args.split in ['train', 'val', 'test'] if args.arch == 'psp': assert (args.train_h - 1) % 8 == 0 and (args.train_w - 1) % 8 == 0 elif args.arch == "deeplabv3": assert args.train_h % 1 == 0 and args.train_w % 1 == 0 elif args.arch == 'psa': if args.compact: args.mask_h = (args.train_h - 1) // (8 * args.shrink_factor) + 1 args.mask_w = (args.train_w - 1) // (8 * args.shrink_factor) + 1 else: assert (args.mask_h is None and args.mask_w is None) or (args.mask_h is not None and args.mask_w is not None) if args.mask_h is None and args.mask_w is None: args.mask_h = 2 * ((args.train_h - 1) // (8 * args.shrink_factor) + 1) - 1 args.mask_w = 2 * ((args.train_w - 1) // (8 * args.shrink_factor) + 1) - 1 else: assert (args.mask_h % 2 == 1) and (args.mask_h >= 3) and ( args.mask_h <= 2 * ((args.train_h - 1) // (8 * args.shrink_factor) + 1) - 1) assert (args.mask_w % 2 == 1) and (args.mask_w >= 3) and ( args.mask_w <= 2 * ((args.train_h - 1) // (8 * args.shrink_factor) + 1) - 1) else: raise Exception('architecture not supported yet'.format(args.arch)) def main(): global args, logger args = get_parser() # check(args) logger = get_logger() os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu) logger.info(args) logger.info("=> creating model ...") logger.info("Classes: {}".format(args.classes)) value_scale = 255 mean = [0.485, 0.456, 0.406] # mean = [0.39068785, 0.40521392, 0.41434407] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] # std = [0.29652068, 0.30514979, 0.30080369] std = [item * value_scale for item in std] gray_folder = os.path.join(args.save_folder, 'gray') color_folder = os.path.join(args.save_folder, 'color') test_transform = transform.Compose([transform.ToTensor()]) test_data = dataset.SemData(split=args.split, data_root=args.data_root, data_list=args.test_list, transform=test_transform) index_start = args.index_start if args.index_step == 0: index_end = len(test_data.data_list) else: index_end = min(index_start + args.index_step, len(test_data.data_list)) test_data.data_list = test_data.data_list[index_start:index_end] test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) colors = np.loadtxt(args.colors_path).astype('uint8') names = [line.rstrip('\n') for line in open(args.names_path)] criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label) if not args.has_prediction: if args.arch == 'psp': from model.pspnet import PSPNet model = PSPNet(backbone=args.backbone, output_stride=args.output_stride, layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, pretrained=False) elif args.arch == 'psa': from model.psanet import PSANet model = PSANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, compact=args.compact, shrink_factor=args.shrink_factor, mask_h=args.mask_h, mask_w=args.mask_w, normalization_factor=args.normalization_factor, psa_softmax=args.psa_softmax, pretrained=False) elif args.arch == 'deeplabv3': from model.deeplabv3 import Deeplabv3 model = Deeplabv3(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, backbone=args.backbone, output_stride=args.output_stride, pretrained=False, criterion=criterion) elif args.arch == 'danet': from model.danet import DANet model = DANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, backbone=args.backbone, output_stride=args.output_stride, pretrained=False, criterion=criterion) elif args.arch == 'trseg': from model.transformnet import TransformNet model = TransformNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, backbone=args.backbone, output_stride=args.output_stride, pretrained=False, criterion=criterion) elif args.arch == 'hrnet': from model.hrnet import HighResolutionNet model = HighResolutionNet(args) logger.info(model) model = torch.nn.DataParallel(model).cuda() # model = model.cuda() cudnn.benchmark = True # if os.path.isfile(args.model_path): # logger.info("=> loading checkpoint '{}'".format(args.model_path)) # checkpoint = torch.load(args.model_path) # model.load_state_dict(checkpoint['state_dict'], strict=True) # logger.info("=> loaded checkpoint '{}'".format(args.model_path)) # else: # raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path)) eval(test_loader, test_data.data_list, model, args.classes, mean, std, args.base_size, args.test_h, args.test_w, args.scales, gray_folder, color_folder, colors) if args.split != 'test': cal_acc(test_data.data_list, gray_folder, args.classes, names) def net_process(model, image, mean, std=None, flip=True): input = torch.from_numpy(image.transpose((2, 0, 1))).float() if std is None: for t, m in zip(input, mean): t.sub_(m) else: for t, m, s in zip(input, mean, std): t.sub_(m).div_(s) input = input.unsqueeze(0).cuda() if flip: input = torch.cat([input, input.flip(3)], 0) with torch.no_grad(): output = model(input) _, _, h_i, w_i = input.shape _, _, h_o, w_o = output.shape if (h_o != h_i) or (w_o != w_i): output = F.interpolate(output, (h_i, w_i), mode='bilinear', align_corners=True) output = F.softmax(output, dim=1) if flip: output = (output[0] + output[1].flip(2)) / 2 else: output = output[0] output = output.data.cpu().numpy() output = output.transpose(1, 2, 0) return output def scale_process(model, image, classes, crop_h, crop_w, h, w, mean, std=None, stride_rate=2/3): ori_h, ori_w, _ = image.shape pad_h = max(crop_h - ori_h, 0) pad_w = max(crop_w - ori_w, 0) pad_h_half = int(pad_h / 2) pad_w_half = int(pad_w / 2) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=mean) new_h, new_w, _ = image.shape stride_h = int(np.ceil(crop_h*stride_rate)) stride_w = int(np.ceil(crop_w*stride_rate)) grid_h = int(np.ceil(float(new_h-crop_h)/stride_h) + 1) grid_w = int(np.ceil(float(new_w-crop_w)/stride_w) + 1) prediction_crop = np.zeros((new_h, new_w, classes), dtype=float) count_crop = np.zeros((new_h, new_w), dtype=float) for index_h in range(0, grid_h): for index_w in range(0, grid_w): s_h = index_h * stride_h e_h = min(s_h + crop_h, new_h) s_h = e_h - crop_h s_w = index_w * stride_w e_w = min(s_w + crop_w, new_w) s_w = e_w - crop_w image_crop = image[s_h:e_h, s_w:e_w].copy() count_crop[s_h:e_h, s_w:e_w] += 1 prediction_crop[s_h:e_h, s_w:e_w, :] += net_process(model, image_crop, mean, std) prediction_crop /= np.expand_dims(count_crop, 2) prediction_crop = prediction_crop[pad_h_half:pad_h_half+ori_h, pad_w_half:pad_w_half+ori_w] prediction = cv2.resize(prediction_crop, (w, h), interpolation=cv2.INTER_LINEAR) return prediction def trainID2labelID(img): temp = np.copy(img) for k, v in label_mapping.items(): temp[img == v] = k return temp def labelID2trainID(img): temp = np.copy(img) for k, v in label_mapping.items(): temp[img == k] = v return temp def eval(test_loader, data_list, model, classes, mean, std, base_size, crop_h, crop_w, scales, gray_folder, color_folder, colors): logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>') data_time = AverageMeter() batch_time = AverageMeter() model.eval() end = time.time() for i, (input, _) in enumerate(test_loader): data_time.update(time.time() - end) input = np.squeeze(input.numpy(), axis=0) image = np.transpose(input, (1, 2, 0)) h, w, _ = image.shape prediction = np.zeros((h, w, classes), dtype=float) for scale in scales: long_size = round(scale * base_size) new_h = long_size new_w = long_size if h > w: new_w = round(long_size/float(h)*w) else: new_h = round(long_size/float(w)*h) image_scale = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR) prediction += scale_process(model, image_scale, classes, crop_h, crop_w, h, w, mean, std) prediction /= len(scales) prediction = np.argmax(prediction, axis=2) batch_time.update(time.time() - end) end = time.time() if ((i + 1) % 10 == 0) or (i + 1 == len(test_loader)): logger.info('Test: [{}/{}] ' 'Data {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}).'.format(i + 1, len(test_loader), data_time=data_time, batch_time=batch_time)) check_makedirs(gray_folder) check_makedirs(color_folder) gray = np.uint8(prediction) color = colorize(gray, colors) image_path, _ = data_list[i] image_name = image_path.split('/')[-1].split('.')[0] gray_path = os.path.join(gray_folder, image_name + '.png') color_path = os.path.join(color_folder, image_name + '.png') if args.split == 'test': gray_labelid = trainID2labelID(gray) # save_gray_path = gray_path.replace('_leftImg8bit','*') cv2.imwrite(gray_path, gray_labelid) # if make_video: else: cv2.imwrite(gray_path, gray) color.save(color_path) logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<') def cal_acc(data_list, pred_folder, classes, names): intersection_meter = AverageMeter() union_meter = AverageMeter() target_meter = AverageMeter() for i, (image_path, target_path) in enumerate(data_list): image_name = image_path.split('/')[-1].split('.')[0] pred = cv2.imread(os.path.join(pred_folder, image_name+'.png'), cv2.IMREAD_GRAYSCALE) target = cv2.imread(target_path, cv2.IMREAD_GRAYSCALE) if "RELLIS" in target_path: target = dataset.rellis_labelID2trainID(target) intersection, union, target = intersectionAndUnion(pred, target, classes) intersection_meter.update(intersection) union_meter.update(union) target_meter.update(target) accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10) logger.info('Evaluating {0}/{1} on image {2}, accuracy {3:.4f}.'.format(i + 1, len(data_list), image_name+'.png', accuracy)) iou_class = intersection_meter.sum / (union_meter.sum + 1e-10) accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10) mIoU = np.mean(iou_class) mAcc = np.mean(accuracy_class) allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10) logger.info('Eval result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc)) for i in range(classes): logger.info('Class_{} result: iou/accuracy {:.4f}/{:.4f}, name: {}.'.format(i, iou_class[i], accuracy_class[i], names[i])) if __name__ == '__main__': main()
[ "torch.nn.DataParallel", "torch.no_grad", "torch.nn.functional.interpolate", "torch.utils.data.DataLoader", "torch.nn.functional.softmax", "torch.nn.CrossEntropyLoss" ]
1.2.0
youngsjjn/MemSeg
a3daf8039dc2c763d366f4bfd07c87416cf8ec81
1.2
from __future__ import absolute_import from __future__ import division import torch from torch import nn from torch.nn import functional as F import torchvision from ..utils.torchtools import weights_init_kaiming __all__ = ['ResNet50', 'ResNet101', 'ResNet50M', 'ResNet50B'] class ResNet50(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(ResNet50, self).__init__() self.loss = loss resnet50 = torchvision.models.resnet50(pretrained=True) self.base = nn.Sequential(*list(resnet50.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss)) class ResNet101(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(ResNet101, self).__init__() self.loss = loss resnet101 = torchvision.models.resnet101(pretrained=True) self.base = nn.Sequential(*list(resnet101.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 # feature dimension def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss)) class ResNet50M(nn.Module): """ResNet50 + mid-level features. Reference: Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching. arXiv:1711.08106. """ def __init__(self, num_classes=0, loss={'xent'}, **kwargs): super(ResNet50M, self).__init__() self.loss = loss resnet50 = torchvision.models.resnet50(pretrained=True) base = nn.Sequential(*list(resnet50.children())[:-2]) self.layers1 = nn.Sequential(base[0], base[1], base[2]) self.layers2 = nn.Sequential(base[3], base[4]) self.layers3 = base[5] self.layers4 = base[6] self.layers5a = base[7][0] self.layers5b = base[7][1] self.layers5c = base[7][2] self.fc_fuse = nn.Sequential(nn.Linear(4096, 1024), nn.BatchNorm1d(1024), nn.ReLU()) self.classifier = nn.Linear(3072, num_classes) self.feat_dim = 3072 # feature dimension def forward(self, x): x1 = self.layers1(x) x2 = self.layers2(x1) x3 = self.layers3(x2) x4 = self.layers4(x3) x5a = self.layers5a(x4) x5b = self.layers5b(x5a) x5c = self.layers5c(x5b) x5a_feat = F.avg_pool2d(x5a, x5a.size()[2:]).view(x5a.size(0), x5a.size(1)) x5b_feat = F.avg_pool2d(x5b, x5b.size()[2:]).view(x5b.size(0), x5b.size(1)) x5c_feat = F.avg_pool2d(x5c, x5c.size()[2:]).view(x5c.size(0), x5c.size(1)) midfeat = torch.cat((x5a_feat, x5b_feat), dim=1) midfeat = self.fc_fuse(midfeat) combofeat = torch.cat((x5c_feat, midfeat), dim=1) if not self.training: return combofeat prelogits = self.classifier(combofeat) if self.loss == {'xent'}: return prelogits elif self.loss == {'xent', 'htri'}: return prelogits, combofeat else: raise KeyError("Unsupported loss: {}".format(self.loss)) class ResNet50B(nn.Module): """Resnet50+bottleneck Reference: https://github.com/L1aoXingyu/reid_baseline """ def __init__(self, num_classes=0, loss={'xent'}, **kwargs): super(ResNet50B, self).__init__() self.loss = loss resnet50 = torchvision.models.resnet50(pretrained=True) resnet50.layer4[0].conv2.stride = (1, 1) resnet50.layer4[0].downsample[0].stride = (1, 1) self.base = nn.Sequential(*list(resnet50.children())[:-2]) self.in_planes = 2048 self.bottleneck = nn.Sequential( nn.Linear(self.in_planes, 512), nn.BatchNorm1d(512), nn.LeakyReLU(0.1), nn.Dropout(p=0.5)) self.bottleneck.apply(weights_init_kaiming) self.classifier = nn.Linear(512, num_classes) self.classifier.apply(weights_init_kaiming) def forward(self, x): global_feat = self.base(x) global_feat = F.avg_pool2d(global_feat, global_feat.size()[-2:]) global_feat = global_feat.view(global_feat.size(0), -1) if not self.training: return global_feat else: feat = self.bottleneck(global_feat) y = self.classifier(feat) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, global_feat else: raise KeyError("Unsupported loss: {}".format(self.loss))
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.nn.Sequential", "torch.nn.LeakyReLU", "torch.nn.ReLU", "torch.nn.BatchNorm1d" ]
1.2.0
Shengyuan-Z/AGRL.pytorch
6107fe0e4df5c8048a65f811bab46d2fb4624783
1.2
from __future__ import absolute_import from __future__ import division import torch import torch.nn as nn import gc import time def cur_time(): return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) def adjust_learning_rate(optimizer, base_lr, epoch, stepsize, gamma=0.1): # decay learning rate by 'gamma' for every 'stepsize' lr = base_lr * (gamma ** (epoch // stepsize)) for param_group in optimizer.param_groups: param_group['lr'] = lr def set_bn_to_eval(m): # 1. no update for running mean and var # 2. scale and shift parameters are still trainable classname = m.__class__.__name__ if classname.find('BatchNorm') != -1: m.eval() def set_wd(optim, num): assert isinstance(num, (int, float)), '{} is not int or float'.format(num) for group in optim.param_groups: if group['weight_decay'] != num: group['weight_decay'] = num def count_num_param(model): num_param = sum(p.numel() for p in model.parameters()) / 1e+06 if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module): # we ignore the classifier because it is unused at test time num_param -= sum(p.numel() for p in model.classifier.parameters()) / 1e+06 return num_param def flip_tensor(x, dim): indices = [slice(None)] * x.dim() indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device) return x[tuple(indices)] def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out') if m.bias is not None: nn.init.constant_(m.bias, 0) elif classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') if m.bias is not None: nn.init.constant_(m.bias, 0) elif classname.find('BatchNorm') != -1: if m.affine: nn.init.normal_(m.weight, 1.0, 0.001) nn.init.constant_(m.bias, 0.0) def weights_init_xavier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif classname.find('Conv') != -1: nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif classname.find('BatchNorm') != -1: if m.affine: nn.init.normal_(m.weight, 1.0, 0.001) nn.init.constant_(m.bias, 0.0) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.normal_(m.weight.data, std=0.001) if m.bias is not None: nn.init.constant_(m.bias.data, 0.0) def mem_report(): """Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported""" def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' print('Storage on %s' %(mem_type)) print('-'*LEN) total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) print('%s\t\t%s\t\t%.2f' % ( element_type, size, mem) ) print('-'*LEN) print('Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (total_numel, total_mem) ) print('-'*LEN) LEN = 65 print('='*LEN) objects = gc.get_objects() print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN)
[ "torch.nn.init.constant_", "torch.is_tensor", "torch.nn.init.kaiming_normal_", "torch.nn.init.normal_", "torch.nn.init.xavier_normal_" ]
1.2.0
Shengyuan-Z/AGRL.pytorch
6107fe0e4df5c8048a65f811bab46d2fb4624783
1.7
import sys import torch import argparse from datetime import timedelta import logging sys.path.append("../") sys.path.append("../../") sys.path.append("../../../") sys.path.append("../../../../") sys.path.append("../../../../../") from experiments.utils import evaluate_mnist_uncertainty from src.data import * from src.trainer import Trainer from src.models import ModelFactory from src.losses import LOSS_FACTORY import src.utils as utils parser = argparse.ArgumentParser("mnist_classifier") parser.add_argument('--task', type=str, default='classification', help='the main task; defines loss') parser.add_argument('--model', type=str, default='conv_lenet_bbb', help='the model that we want to train') parser.add_argument('--learning_rate', type=float, default=0.001, help='init learning rate') parser.add_argument('--loss_scaling', type=str, default='batch', help='smoothing factor') parser.add_argument('--weight_decay', type=float, default=0.0, help='weight decay') parser.add_argument('--data', type=str, default='./../../../data/', help='location of the data corpus') parser.add_argument('--dataset', type=str, default='mnist', help='dataset') parser.add_argument('--batch_size', type=int, default=256, help='batch size') parser.add_argument('--valid_portion', type=float, default=0.1, help='portion of training data') parser.add_argument('--gamma', type=float, default=.1, help='portion of training data') parser.add_argument('--sigma_prior', type=float, default=.1, help='portion of training data') parser.add_argument('--epochs', type=int, default=100, help='num of training epochs') parser.add_argument('--input_size', nargs='+', default=[1, 1, 28, 28], help='input size') parser.add_argument('--output_size', type=int, default=10, help='output size') parser.add_argument('--samples', type=int, default=20, help='output size') parser.add_argument('--save', type=str, default='EXP', help='experiment name') parser.add_argument('--save_last', action='store_true', default=True, help='whether to just save the last model') parser.add_argument('--num_workers', type=int, default=16, help='number of workers') parser.add_argument('--seed', type=int, default=1, help='random seed') parser.add_argument('--debug', action='store_true', help='whether we are currently debugging') parser.add_argument('--report_freq', type=float, default=50, help='report frequency') parser.add_argument('--gpu', type=int, default = 0, help='gpu device ids') parser.add_argument('--q', action='store_true', help='whether to do post training quantisation') parser.add_argument('--at', action='store_true', help='whether to do training aware quantisation') def main(): args = parser.parse_args() load = False if args.save!='EXP': load=True args, writer = utils.parse_args(args) logging.info('# Start Re-training #') criterion = LOSS_FACTORY[args.task](args, args.loss_scaling) model_temp = ModelFactory.get_model logging.info('## Downloading and preparing data ##') train_loader, valid_loader= get_train_loaders(args) if not load: model= model_temp(args.model, args.input_size, args.output_size, args.at, args) logging.info('## Model created: ##') logging.info(model.__repr__()) logging.info('### Loading model to parallel GPUs ###') model = utils.model_to_gpus(model, args) logging.info('### Preparing schedulers and optimizers ###') optimizer = torch.optim.Adam( model.parameters(), args.learning_rate, weight_decay = args.weight_decay) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, args.epochs) logging.info('## Downloading and preparing data ##') train_loader, valid_loader= get_train_loaders(args) logging.info('## Beginning Training ##') train = Trainer(model, criterion, optimizer, scheduler, args) best_error, train_time, val_time = train.train_loop( train_loader, valid_loader, writer) logging.info('## Finished training, the best observed validation error: {}, total training time: {}, total validation time: {} ##'.format( best_error, timedelta(seconds=train_time), timedelta(seconds=val_time))) logging.info('## Beginning Plotting ##') del model with torch.no_grad(): model = model_temp(args.model, args.input_size, args.output_size, args.q, args) utils.load_model(model, args.save+"/weights.pt") logging.info('## Model re-created: ##') logging.info(model.__repr__()) model = utils.model_to_gpus(model, args) model.eval() evaluate_mnist_uncertainty(model, args) logging.info('# Finished #') if __name__ == '__main__': main()
[ "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.no_grad" ]
1.7.0
tjiagoM/quantised-bayesian-nets
c6ff1db376c366633afa2845b7527cc144ffd3b2
1.6
"""Modules containing pytorch classes to fit 3D meshes to images using differentiable rendering.""" import copy import numpy as np import scipy.sparse.linalg import scipy.spatial.transform.rotation import torch from . import CameraPytorch, LaplacianRigidEnergyPytorch, Scene3DPytorch from .triangulated_mesh_pytorch import ColoredTriMeshPytorch as ColoredTriMesh from .triangulated_mesh_pytorch import TriMeshPytorch as TriMesh from .. import LaplacianRigidEnergy def print_grad(name): # to visualize the gradient of a variable use # variable_name.register_hook(print_grad('variable_name')) def hook(grad): print(f"grad {name} = {grad}") return hook def qrot(q, v): qr = q[None, :].repeat(v.shape[0], 1) qvec = qr[:, :-1] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return v + 2 * (qr[:, [3]] * uv + uuv) class MeshDepthFitterEnergy(torch.nn.Module): """Pytorch module to fit a deformable mesh to a depth image.""" def __init__(self, vertices, faces, euler_init, translation_init, cregu=2000): super(MeshDepthFitterEnergy, self).__init__() self.mesh = TriMesh( faces[:, ::-1].copy(), vertices ) # we do a copy to avoid negative stride not supported by pytorch object_center = vertices.mean(axis=0) object_radius = np.max(np.std(vertices, axis=0)) self.camera_center = object_center + np.array([-0.5, 0, 5]) * object_radius self.scene = Scene3DPytorch() self.scene.set_mesh(self.mesh) self.rigid_energy = LaplacianRigidEnergyPytorch(self.mesh, vertices, cregu) self.Vinit = copy.copy(self.mesh.vertices) self.Hfactorized = None self.Hpreconditioner = None self.transform_quaternion_init = scipy.spatial.transform.Rotation.from_euler( "zyx", euler_init ).as_quat() self.transform_translation_init = translation_init self._vertices = torch.nn.Parameter( torch.tensor(self.Vinit, dtype=torch.float64) ) self.quaternion = torch.nn.Parameter( torch.tensor(self.transform_quaternion_init, dtype=torch.float64) ) self.translation = torch.nn.Parameter( torch.tensor(self.transform_translation_init, dtype=torch.float64) ) def set_max_depth(self, max_depth): self.scene.max_depth = max_depth self.scene.set_background( np.full((self.height, self.width, 1), max_depth, dtype=np.float) ) def set_depth_scale(self, depth_scale): self.depthScale = depth_scale def set_image(self, hand_image, focal=None, distortion=None): self.width = hand_image.shape[1] self.height = hand_image.shape[0] assert hand_image.ndim == 2 self.hand_image = hand_image if focal is None: focal = 2 * self.width rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) t = -rot.T.dot(self.camera_center) intrinsic = np.array( [[focal, 0, self.width / 2], [0, focal, self.height / 2], [0, 0, 1]] ) extrinsic = np.column_stack((rot, t)) self.camera = CameraPytorch( extrinsic=extrinsic, intrinsic=intrinsic, distortion=distortion ) self.iter = 0 def forward(self): q_normalized = self.quaternion / self.quaternion.norm() print(self.quaternion.norm()) vertices_centered = self._vertices - torch.mean(self._vertices, dim=0)[None, :] v_transformed = qrot(q_normalized, vertices_centered) + self.translation self.mesh.set_vertices(v_transformed) depth_scale = 1 * self.depthScale depth = self.scene.render_depth( self.CameraMatrix, width=self.width, height=self.height, depth_scale=depth_scale, ) depth = torch.clamp(depth, 0, self.scene.max_depth) diff_image = torch.sum( (depth - torch.tensor(self.hand_image[:, :, None])) ** 2, dim=2 ) self.depth = depth self.diff_image = diff_image energy_data = torch.sum(diff_image) energy_rigid = self.rigid_energy.evaluate( self._vertices, return_grad=False, return_hessian=False ) energy = energy_data + energy_rigid self.loss = energy_data + energy_rigid print("Energy=%f : EData=%f E_rigid=%f" % (energy, energy_data, energy_rigid)) return self.loss class MeshDepthFitterPytorchOptim: """Pytorch optimizer to fit a deformable mesh to an image.""" def __init__( self, vertices, faces, euler_init, translation_init, cregu=2000, lr=0.8 ): self.energy = MeshDepthFitterEnergy( vertices, faces, euler_init, translation_init, cregu ) params = self.energy.parameters() self.optimizer = torch.optim.LBFGS(params, lr=0.8, max_iter=1) # self.optimizer = torch.optim.SGD(params, lr=0.000005, momentum=0.1, # dampening=0.1 ) # self.optimizer =torch.optim.RMSprop(params, lr=1e-3, alpha=0.99, eps=1e-8, # weight_decay=0, momentum=0.001) # self.optimizer = torch.optim.Adadelta(params, lr=0.1, rho=0.95, # eps=1e-6, weight_decay=0) # self.optimizer = torch.optim.Adagrad(self.energy.parameters(), lr=0.02) def set_image(self, depth_image, focal): self.energy.set_image(depth_image, focal=focal) def set_max_depth(self, max_depth): self.energy.set_max_depth(max_depth) def set_depth_scale(self, depth_scale): self.energy.set_depth_scale(depth_scale) def step(self): def closure(): self.optimizer.zero_grad() loss = self.energy() loss.backward() return loss self.optimizer.step(closure) # self.iter += 1 return ( self.energy.loss, self.energy.Depth[:, :, 0].detach().numpy(), self.energy.diffImage.detach().numpy(), ) class MeshDepthFitter: """Class to fit a deformable mesh to a depth image.""" def __init__( self, vertices, faces, euler_init, translation_init, cregu=2000, inertia=0.96, damping=0.05, ): self.cregu = cregu self.inertia = inertia self.damping = damping self.step_factor_vertices = 0.0005 self.step_max_vertices = 0.5 self.step_factor_quaternion = 0.00006 self.step_max_quaternion = 0.1 self.step_factor_translation = 0.00005 self.step_max_translation = 0.1 self.mesh = TriMesh( faces.copy() ) # we do a copy to avoid negative stride not support by pytorch object_center = vertices.mean(axis=0) + translation_init object_radius = np.max(np.std(vertices, axis=0)) self.camera_center = object_center + np.array([-0.5, 0, 5]) * object_radius self.scene = Scene3DPytorch() self.scene.set_mesh(self.mesh) self.rigid_energy = LaplacianRigidEnergy(self.mesh, vertices, cregu) self.vertices_init = torch.tensor(copy.copy(vertices)) self.Hfactorized = None self.Hpreconditioner = None self.set_mesh_transform_init(euler=euler_init, translation=translation_init) self.reset() def set_mesh_transform_init(self, euler, translation): self.transform_quaternion_init = scipy.spatial.transform.Rotation.from_euler( "zyx", euler ).as_quat() self.transform_translation_init = translation def reset(self): self.vertices = copy.copy(self.vertices_init) self.speed_vertices = np.zeros(self.vertices_init.shape) self.transform_quaternion = copy.copy(self.transform_quaternion_init) self.transform_translation = copy.copy(self.transform_translation_init) self.speed_translation = np.zeros(3) self.speed_quaternion = np.zeros(4) def set_max_depth(self, max_depth): self.scene.max_depth = max_depth self.scene.set_background( np.full((self.height, self.width, 1), max_depth, dtype=np.float) ) def set_depth_scale(self, depth_scale): self.depthScale = depth_scale def set_image(self, hand_image, focal=None, distortion=None): self.width = hand_image.shape[1] self.height = hand_image.shape[0] assert hand_image.ndim == 2 self.hand_image = hand_image if focal is None: focal = 2 * self.width rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) trans = -rot.T.dot(self.camera_center) intrinsic = np.array( [[focal, 0, self.width / 2], [0, focal, self.height / 2], [0, 0, 1]] ) extrinsic = np.column_stack((rot, trans)) self.camera = CameraPytorch( extrinsic=extrinsic, intrinsic=intrinsic, width=self.width, height=self.height, distortion=distortion, ) self.iter = 0 def step(self): self.vertices = self.vertices - torch.mean(self.vertices, dim=0)[None, :] # vertices_with_grad = self.vertices.clone().requires_grad(True) vertices_with_grad = self.vertices.clone().detach().requires_grad_(True) vertices_with_grad_centered = ( vertices_with_grad - torch.mean(vertices_with_grad, dim=0)[None, :] ) quaternion_with_grad = torch.tensor( self.transform_quaternion, dtype=torch.float64, requires_grad=True ) translation_with_grad = torch.tensor( self.transform_translation, dtype=torch.float64, requires_grad=True ) q_normalized = ( quaternion_with_grad / quaternion_with_grad.norm() ) # that will lead to a gradient that is in the tangeant space vertices_with_grad_transformed = ( qrot(q_normalized, vertices_with_grad_centered) + translation_with_grad ) self.mesh.set_vertices(vertices_with_grad_transformed) depth_scale = 1 * self.depthScale depth = self.scene.render_depth( self.camera, width=self.width, height=self.height, depth_scale=depth_scale ) depth = torch.clamp(depth, 0, self.scene.max_depth) diff_image = torch.sum( (depth - torch.tensor(self.hand_image[:, :, None])) ** 2, dim=2 ) loss = torch.sum(diff_image) loss.backward() energy_data = loss.detach().numpy() grad_data = vertices_with_grad.grad.numpy() ( energy_rigid, grad_rigidity, approx_hessian_rigidity, ) = self.rigid_energy.evaluate(self.vertices.numpy()) energy = energy_data + energy_rigid print("Energy=%f : EData=%f E_rigid=%f" % (energy, energy_data, energy_rigid)) # update v grad = grad_data + grad_rigidity def mult_and_clamp(x, a, t): return np.minimum(np.maximum(x * a, -t), t) # update vertices step_vertices = mult_and_clamp( -grad, self.step_factor_vertices, self.step_max_vertices ) self.speed_vertices = (1 - self.damping) * ( self.speed_vertices * self.inertia + (1 - self.inertia) * step_vertices ) self.vertices = self.vertices + torch.tensor(self.speed_vertices) # update rotation step_quaternion = mult_and_clamp( -quaternion_with_grad.grad.numpy(), self.step_factor_quaternion, self.step_max_quaternion, ) self.speed_quaternion = (1 - self.damping) * ( self.speed_quaternion * self.inertia + (1 - self.inertia) * step_quaternion ) self.transform_quaternion = self.transform_quaternion + self.speed_quaternion self.transform_quaternion = self.transform_quaternion / np.linalg.norm( self.transform_quaternion ) # update translation step_translation = mult_and_clamp( -translation_with_grad.grad.numpy(), self.step_factor_translation, self.step_max_translation, ) self.speed_translation = (1 - self.damping) * ( self.speed_translation * self.inertia + (1 - self.inertia) * step_translation ) self.transform_translation = self.transform_translation + self.speed_translation self.iter += 1 return energy, depth[:, :, 0].detach().numpy(), diff_image.detach().numpy() class MeshRGBFitterWithPose: """Class to fit a deformable mesh to a color image.""" def __init__( self, vertices, faces, euler_init, translation_init, default_color, default_light, cregu=2000, inertia=0.96, damping=0.05, update_lights=True, update_color=True, ): self.cregu = cregu self.inertia = inertia self.damping = damping self.step_factor_vertices = 0.0005 self.step_max_vertices = 0.5 self.step_factor_quaternion = 0.00006 self.step_max_quaternion = 0.05 self.step_factor_translation = 0.00005 self.step_max_translation = 0.1 self.default_color = default_color self.default_light = default_light self.update_lights = update_lights self.update_color = update_color self.mesh = ColoredTriMesh( faces.copy() ) # we do a copy to avoid negative stride not support by pytorch object_center = vertices.mean(axis=0) + translation_init object_radius = np.max(np.std(vertices, axis=0)) self.camera_center = object_center + np.array([0, 0, 9]) * object_radius self.scene = Scene3DPytorch() self.scene.set_mesh(self.mesh) self.rigid_energy = LaplacianRigidEnergyPytorch(self.mesh, vertices, cregu) self.vertices_init = torch.tensor(copy.copy(vertices)) self.Hfactorized = None self.Hpreconditioner = None self.set_mesh_transform_init(euler=euler_init, translation=translation_init) self.reset() def set_background_color(self, background_color): self.scene.set_background( np.tile(background_color[None, None, :], (self.height, self.width, 1)) ) def set_mesh_transform_init(self, euler, translation): self.transform_quaternion_init = scipy.spatial.transform.Rotation.from_euler( "zyx", euler ).as_quat() self.transform_translation_init = translation def reset(self): self.vertices = copy.copy(self.vertices_init) self.speed_vertices = np.zeros(self.vertices.shape) self.transform_quaternion = copy.copy(self.transform_quaternion_init) self.transform_translation = copy.copy(self.transform_translation_init) self.speed_translation = np.zeros(3) self.speed_quaternion = np.zeros(4) self.hand_color = copy.copy(self.default_color) self.light_directional = copy.copy(self.default_light["directional"]) self.light_ambient = copy.copy(self.default_light["ambient"]) self.speed_light_directional = np.zeros(self.light_directional.shape) self.speed_light_ambient = np.zeros(self.light_ambient.shape) self.speed_hand_color = np.zeros(self.hand_color.shape) def set_image(self, hand_image, focal=None, distortion=None): self.width = hand_image.shape[1] self.height = hand_image.shape[0] assert hand_image.ndim == 3 self.hand_image = hand_image if focal is None: focal = 2 * self.width rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) trans = -rot.T.dot(self.camera_center) intrinsic = np.array( [[focal, 0, self.width / 2], [0, focal, self.height / 2], [0, 0, 1]] ) extrinsic = np.column_stack((rot, trans)) self.camera = CameraPytorch( extrinsic=extrinsic, intrinsic=intrinsic, width=self.width, height=self.height, distortion=distortion, ) self.iter = 0 def step(self): self.vertices = self.vertices - torch.mean(self.vertices, dim=0)[None, :] vertices_with_grad = self.vertices.clone().detach().requires_grad_(True) vertices_with_grad_centered = ( vertices_with_grad - torch.mean(vertices_with_grad, dim=0)[None, :] ) quaternion_with_grad = torch.tensor( self.transform_quaternion, dtype=torch.float64, requires_grad=True ) translation_with_grad = torch.tensor( self.transform_translation, dtype=torch.float64, requires_grad=True ) light_directional_with_grad = torch.tensor( self.light_directional, dtype=torch.float64, requires_grad=True ) light_ambient_with_grad = torch.tensor( self.light_ambient, dtype=torch.float64, requires_grad=True ) hand_color_with_grad = torch.tensor( self.hand_color, dtype=torch.float64, requires_grad=True ) q_normalized = ( quaternion_with_grad / quaternion_with_grad.norm() ) # that will lead to a gradient that is in the tangeant space vertices_with_grad_transformed = ( qrot(q_normalized, vertices_with_grad_centered) + translation_with_grad ) self.mesh.set_vertices(vertices_with_grad_transformed) self.scene.set_light( light_directional=light_directional_with_grad, light_ambient=light_ambient_with_grad, ) self.mesh.set_vertices_colors( hand_color_with_grad.repeat([self.mesh.nb_vertices, 1]) ) image = self.scene.render(self.camera) diff_image = torch.sum((image - torch.tensor(self.hand_image)) ** 2, dim=2) loss = torch.sum(diff_image) loss.backward() energy_data = loss.detach().numpy() grad_data = vertices_with_grad.grad ( energy_rigid, grad_rigidity, approx_hessian_rigidity, ) = self.rigid_energy.evaluate(self.vertices) energy = energy_data + energy_rigid.numpy() print("Energy=%f : EData=%f E_rigid=%f" % (energy, energy_data, energy_rigid)) # update v grad = grad_data + grad_rigidity def mult_and_clamp(x, a, t): return np.minimum(np.maximum(x * a, -t), t) inertia = self.inertia # update vertices step_vertices = mult_and_clamp( -grad.numpy(), self.step_factor_vertices, self.step_max_vertices ) self.speed_vertices = (1 - self.damping) * ( self.speed_vertices * inertia + (1 - inertia) * step_vertices ) self.vertices = self.vertices + torch.tensor(self.speed_vertices) # update rotation step_quaternion = mult_and_clamp( -quaternion_with_grad.grad.numpy(), self.step_factor_quaternion, self.step_max_quaternion, ) self.speed_quaternion = (1 - self.damping) * ( self.speed_quaternion * inertia + (1 - inertia) * step_quaternion ) self.transform_quaternion = self.transform_quaternion + self.speed_quaternion self.transform_quaternion = self.transform_quaternion / np.linalg.norm( self.transform_quaternion ) # update translation step_translation = mult_and_clamp( -translation_with_grad.grad.numpy(), self.step_factor_translation, self.step_max_translation, ) self.speed_translation = (1 - self.damping) * ( self.speed_translation * inertia + (1 - inertia) * step_translation ) self.transform_translation = self.transform_translation + self.speed_translation # update directional light step = -light_directional_with_grad.grad.numpy() * 0.0001 self.speed_light_directional = (1 - self.damping) * ( self.speed_light_directional * inertia + (1 - inertia) * step ) self.light_directional = self.light_directional + self.speed_light_directional # update ambient light step = -light_ambient_with_grad.grad.numpy() * 0.0001 self.speed_light_ambient = (1 - self.damping) * ( self.speed_light_ambient * inertia + (1 - inertia) * step ) self.light_ambient = self.light_ambient + self.speed_light_ambient # update hand color step = -hand_color_with_grad.grad.numpy() * 0.00001 self.speed_hand_color = (1 - self.damping) * ( self.speed_hand_color * inertia + (1 - inertia) * step ) self.hand_color = self.hand_color + self.speed_hand_color self.iter += 1 return energy, image.detach().numpy(), diff_image.detach().numpy()
[ "torch.clamp", "torch.tensor", "torch.cross", "torch.optim.LBFGS", "torch.mean", "torch.sum" ]
1.6.0
synapticarbors/DEODR
e67f1792de90669b9adbf1a8103a9ca3b2c2c3dc
1.6
import numpy as np from .downloader import load_trained_model from ..parse_base import BaseParser, BaseInputExample from .spacy_extensions import ConstituentData, NonConstituentException import torch class PartialConstituentData: def __init__(self): self.starts = [np.array([], dtype=int)] self.ends = [np.array([], dtype=int)] self.labels = [np.array([], dtype=int)] def finalize(self, doc, label_vocab): self.starts = np.hstack(self.starts) self.ends = np.hstack(self.ends) self.labels = np.hstack(self.labels) # TODO(nikita): Python for loops aren't very fast loc_to_constituent = np.full(len(doc), -1, dtype=int) prev = None for position in range(self.starts.shape[0]): if self.starts[position] != prev: prev = self.starts[position] loc_to_constituent[self.starts[position]] = position return ConstituentData( self.starts, self.ends, self.labels, loc_to_constituent, label_vocab ).serialize() class SentenceWrapper(BaseInputExample): TEXT_NORMALIZATION_MAPPING = { "`": "'", "«": '"', "»": '"', "‘": "'", "’": "'", "“": '"', "”": '"', "„": '"', "‹": "'", "›": "'", "—": "--", # em dash } def __init__(self, spacy_sent): self.sent = spacy_sent @property def words(self): return [ self.TEXT_NORMALIZATION_MAPPING.get(token.text, token.text) for token in self.sent ] @property def space_after(self): return [bool(token.whitespace_) for token in self.sent] @property def tree(self): return None def leaves(self): return self.words def pos(self): return [(word, "UNK") for word in self.words] class BeneparComponent: """ Berkeley Neural Parser (benepar) component for spaCy. Sample usage: >>> nlp = spacy.load('en_core_web_md') >>> if spacy.__version__.startswith('2'): nlp.add_pipe(BeneparComponent("benepar_en3")) else: nlp.add_pipe("benepar", config={"model": "benepar_en3"}) >>> doc = nlp("The quick brown fox jumps over the lazy dog.") >>> sent = list(doc.sents)[0] >>> print(sent._.parse_string) This component is only responsible for constituency parsing and (for some trained models) part-of-speech tagging. It should be preceded in the pipeline by other components that can, at minimum, perform tokenization and sentence segmentation. """ name = "benepar" def __init__( self, name, subbatch_max_tokens=500, disable_tagger=False, batch_size="ignored", ): """Load a trained parser model. Args: name (str): Model name, or path to pytorch saved model subbatch_max_tokens (int): Maximum number of tokens to process in each batch disable_tagger (bool, default False): Unless disabled, the parser will set predicted part-of-speech tags for the document, overwriting any existing tags provided by spaCy models or previous pipeline steps. This option has no effect for parser models that do not have a part-of-speech tagger built in. batch_size: deprecated and ignored; use subbatch_max_tokens instead """ self._parser = load_trained_model(name) if torch.cuda.is_available(): self._parser.cuda() self.subbatch_max_tokens = subbatch_max_tokens self.disable_tagger = disable_tagger self._label_vocab = self._parser.config["label_vocab"] label_vocab_size = max(self._label_vocab.values()) + 1 self._label_from_index = [()] * label_vocab_size for label, i in self._label_vocab.items(): if label: self._label_from_index[i] = tuple(label.split("::")) else: self._label_from_index[i] = () self._label_from_index = tuple(self._label_from_index) if not self.disable_tagger: tag_vocab = self._parser.config["tag_vocab"] tag_vocab_size = max(tag_vocab.values()) + 1 self._tag_from_index = [()] * tag_vocab_size for tag, i in tag_vocab.items(): self._tag_from_index[i] = tag self._tag_from_index = tuple(self._tag_from_index) else: self._tag_from_index = None def __call__(self, doc): """Update the input document with predicted constituency parses.""" # TODO(https://github.com/nikitakit/self-attentive-parser/issues/16): handle # tokens that consist entirely of whitespace. constituent_data = PartialConstituentData() wrapped_sents = [SentenceWrapper(sent) for sent in doc.sents] for sent, parse in zip( doc.sents, self._parser.parse( wrapped_sents, return_compressed=True, subbatch_max_tokens=self.subbatch_max_tokens, ), ): constituent_data.starts.append(parse.starts + sent.start) constituent_data.ends.append(parse.ends + sent.start) constituent_data.labels.append(parse.labels) if parse.tags is not None and not self.disable_tagger: for i, tag_id in enumerate(parse.tags): sent[i].tag_ = self._tag_from_index[tag_id] doc._._constituent_data = constituent_data.finalize(doc, self._label_from_index) return doc def create_benepar_component( nlp, name, model: str, subbatch_max_tokens: int, disable_tagger: bool, ): return BeneparComponent( model, subbatch_max_tokens=subbatch_max_tokens, disable_tagger=disable_tagger, ) def register_benepar_component_factory(): # Starting with spaCy 3.0, nlp.add_pipe no longer directly accepts # BeneparComponent instances. We must instead register a component factory. import spacy if spacy.__version__.startswith("2"): return from spacy.language import Language Language.factory( "benepar", default_config={ "subbatch_max_tokens": 500, "disable_tagger": False, }, func=create_benepar_component, ) try: register_benepar_component_factory() except ImportError: pass
[ "torch.cuda.is_available" ]
1.6.0
boehm-e/self-attentive-parser
24a50b529d38cc182082e4e72bbf79d1b24ec1da
1.9
""" Tests ideas are taken mostly from https://github.com/dalab/hyperbolic_nn/blob/master/util.py with some changes """ import torch import random import numpy as np import pytest import warnings import itertools import geoopt from geoopt.manifolds import stereographic @pytest.fixture(scope="function", autouse=True, params=range(30, 40)) def seed(request): seed = request.param torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) return seed @pytest.fixture( scope="function", params=[torch.float64, torch.float32], ids=["float64", "float32"] ) def dtype(request): return request.param def tolerant_allclose_check(a, b, strict=True, **tolerance): if strict: np.testing.assert_allclose(a.detach(), b.detach(), **tolerance) else: try: np.testing.assert_allclose(a.detach(), b.detach(), **tolerance) except AssertionError as e: assert not torch.isnan(a).any(), "Found nans" assert not torch.isnan(b).any(), "Found nans" warnings.warn( "Unstable numerics: " + " | ".join(str(e).splitlines()[3:6]), RuntimeWarning, ) @pytest.fixture(params=[True, False], ids=["negative", "positive"]) def negative(request): return request.param @pytest.fixture() def strict(seed, dtype, negative): return seed in {30, 31} and dtype == torch.float64 or negative # c = -k @pytest.fixture def c(seed, dtype, negative): # test broadcasted and non broadcasted versions if seed == 30: # strict seed c = torch.tensor(0.0).to(dtype) elif seed == 31: # strict seed too c = torch.tensor(1.0).to(dtype) elif seed == 39: c = 10 ** torch.arange(-15, 1, dtype=dtype)[:, None] elif seed == 35: c = torch.zeros(100, 1, dtype=dtype) elif seed > 35: c = torch.rand(100, 1, dtype=dtype) else: c = torch.tensor(random.random()).to(dtype) if not negative: c = -c return c.requires_grad_(True) @pytest.fixture def k(c): return -c @pytest.fixture def manifold(k): return stereographic.Stereographic(k=k, learnable=True) @pytest.fixture def B(c): if c.dim() > 1: return c.shape[0] else: return 100 @pytest.fixture def a(seed, c, manifold, B, dtype): r = manifold.radius a = torch.empty(B, 10, dtype=dtype).normal_(-1, 1) a /= a.norm(dim=-1, keepdim=True) a *= torch.where(torch.isfinite(r), r, torch.ones((), dtype=dtype)).clamp_max_(100) a *= torch.rand_like(a) return manifold.projx(a).detach().requires_grad_(True) @pytest.fixture def b(seed, c, manifold, B, dtype): r = manifold.radius a = torch.empty(B, 10, dtype=dtype).normal_(-1, 1) a /= a.norm(dim=-1, keepdim=True) a *= torch.where(torch.isfinite(r), r, torch.ones((), dtype=dtype)).clamp_max_(100) a *= torch.rand_like(a) return manifold.projx(a).detach().requires_grad_(True) @pytest.fixture def logunif_input(dtype): inp = 10 ** torch.arange(-15, 1, dtype=dtype) inp = torch.cat([-inp.flip(0), torch.zeros([1], dtype=dtype), inp]) return inp.requires_grad_(True) def test_tanh_grad(logunif_input): stereographic.math.tanh(logunif_input).sum().backward() assert torch.isfinite(logunif_input.grad).all() def test_artanh_grad(logunif_input): stereographic.math.artanh(logunif_input).sum().backward() assert torch.isfinite(logunif_input.grad).all() def test_arsinh_grad(logunif_input): stereographic.math.arsinh(logunif_input).sum().backward() assert torch.isfinite(logunif_input.grad).all() def test_tan_k_grad(logunif_input): k = logunif_input.detach().clone().requires_grad_() stereographic.math.tan_k(logunif_input[None], k[:, None]).sum().backward() assert torch.isfinite(logunif_input.grad).all() assert torch.isfinite(k.grad).all() def test_artan_k_grad(logunif_input): k = logunif_input.detach().clone().requires_grad_() stereographic.math.artan_k(logunif_input[None], k[:, None]).sum().backward() assert torch.isfinite(logunif_input.grad).all() assert torch.isfinite(k.grad).all() def test_arsin_k_grad(logunif_input): k = logunif_input.detach().clone().requires_grad_() stereographic.math.arsin_k(logunif_input[None], k[:, None]).sum().backward() assert torch.isfinite(logunif_input.grad).all() assert torch.isfinite(k.grad).all() def test_sin_k_grad(logunif_input): k = logunif_input.detach().clone().requires_grad_() stereographic.math.sin_k(logunif_input[None], k[:, None]).sum().backward() assert torch.isfinite(logunif_input.grad).all() assert torch.isfinite(k.grad).all() def test_project_k_grad(logunif_input): vec = logunif_input[:, None] * torch.ones(logunif_input.shape[0], 10) k = logunif_input.detach().clone().requires_grad_() stereographic.math.project(vec, k=k[:, None]).sum().backward() assert torch.isfinite(logunif_input.grad).all() assert torch.isfinite(k.grad).all() def test_mobius_addition_left_cancelation(a, b, manifold, dtype): res = manifold.mobius_add(-a, manifold.mobius_add(a, b)) tolerance = {torch.float32: dict(atol=5e-5, rtol=5e-4), torch.float64: dict()} np.testing.assert_allclose(res.detach(), b.detach(), **tolerance[dtype]) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobius_addition_zero_a(b, manifold): a = torch.zeros_like(b) res = manifold.mobius_add(a, b) np.testing.assert_allclose(res.detach(), b.detach()) res.sum().backward() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobius_addition_zero_b(a, c, manifold): b = torch.zeros_like(a) res = manifold.mobius_add(a, b) np.testing.assert_allclose(res.detach(), a.detach()) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobius_addition_negative_cancellation(a, manifold, dtype): res = manifold.mobius_add(a, -a) tolerance = { torch.float32: dict(atol=1e-4, rtol=1e-6), torch.float64: dict(atol=1e-6), } np.testing.assert_allclose(res.detach(), torch.zeros_like(res), **tolerance[dtype]) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobius_negative_addition(a, b, manifold, dtype): res = manifold.mobius_add(-b, -a) res1 = -manifold.mobius_add(b, a) tolerance = { torch.float32: dict(atol=1e-7, rtol=1e-6), torch.float64: dict(atol=1e-10), } np.testing.assert_allclose(res.detach(), res1.detach(), **tolerance[dtype]) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() @pytest.mark.parametrize("n", list(range(5))) def test_n_additions_via_scalar_multiplication(n, a, dtype, negative, manifold, strict): n = torch.as_tensor(n, dtype=a.dtype).requires_grad_() y = torch.zeros_like(a) for _ in range(int(n.item())): y = manifold.mobius_add(a, y) ny = manifold.mobius_scalar_mul(n, a) if negative: tolerance = { torch.float32: dict(atol=4e-5, rtol=1e-3), torch.float64: dict(atol=1e-5, rtol=1e-3), } else: tolerance = { torch.float32: dict(atol=2e-6, rtol=1e-3), torch.float64: dict(atol=1e-5, rtol=1e-3), } tolerant_allclose_check(y, ny, strict=strict, **tolerance[dtype]) ny.sum().backward() assert torch.isfinite(n.grad).all() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() @pytest.fixture def r1(seed, dtype, B): if seed % 3 == 0: return ( torch.tensor(random.uniform(-1, 1), dtype=dtype) .detach() .requires_grad_(True) ) else: return (torch.rand(B, 1, dtype=dtype) * 2 - 1).detach().requires_grad_(True) @pytest.fixture def r2(seed, dtype, B): if seed % 3 == 1: return ( torch.tensor(random.uniform(-1, 1), dtype=dtype) .detach() .requires_grad_(True) ) else: return (torch.rand(B, 1, dtype=dtype) * 2 - 1).detach().requires_grad_(True) def test_scalar_multiplication_distributive(a, r1, r2, manifold, dtype): res = manifold.mobius_scalar_mul(r1 + r2, a) res1 = manifold.mobius_add( manifold.mobius_scalar_mul(r1, a), manifold.mobius_scalar_mul(r2, a), ) res2 = manifold.mobius_add( manifold.mobius_scalar_mul(r1, a), manifold.mobius_scalar_mul(r2, a), ) tolerance = { torch.float32: dict(atol=5e-6, rtol=1e-4), torch.float64: dict(atol=1e-7, rtol=1e-4), } np.testing.assert_allclose(res1.detach(), res.detach(), **tolerance[dtype]) np.testing.assert_allclose(res2.detach(), res.detach(), **tolerance[dtype]) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(r1.grad).all() assert torch.isfinite(r2.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_scalar_multiplication_associative(a, r1, r2, manifold, dtype): res = manifold.mobius_scalar_mul(r1 * r2, a) res1 = manifold.mobius_scalar_mul(r1, manifold.mobius_scalar_mul(r2, a)) res2 = manifold.mobius_scalar_mul(r2, manifold.mobius_scalar_mul(r1, a)) tolerance = { torch.float32: dict(atol=1e-5, rtol=1e-5), torch.float64: dict(atol=1e-7, rtol=1e-7), } np.testing.assert_allclose(res1.detach(), res.detach(), **tolerance[dtype]) np.testing.assert_allclose(res2.detach(), res.detach(), **tolerance[dtype]) res.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(r1.grad).all() assert torch.isfinite(r2.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_scaling_property(a, r1, manifold, dtype): x1 = a / a.norm(dim=-1, keepdim=True) ra = manifold.mobius_scalar_mul(r1, a) x2 = manifold.mobius_scalar_mul(abs(r1), a) / ra.norm(dim=-1, keepdim=True) tolerance = { torch.float32: dict(rtol=1e-5, atol=1e-6), torch.float64: dict(atol=1e-10), } np.testing.assert_allclose(x1.detach(), x2.detach(), **tolerance[dtype]) x2.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(r1.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_geodesic_borders(a, b, manifold, dtype): geo0 = manifold.geodesic(torch.tensor(0.0, dtype=dtype), a, b) geo1 = manifold.geodesic(torch.tensor(1.0, dtype=dtype), a, b) tolerance = { torch.float32: dict(rtol=1e-5, atol=5e-5), torch.float64: dict(atol=1e-10), } np.testing.assert_allclose(geo0.detach(), a.detach(), **tolerance[dtype]) np.testing.assert_allclose(geo1.detach(), b.detach(), **tolerance[dtype]) (geo0 + geo1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_geodesic_segment_length_property(a, b, manifold, dtype): extra_dims = len(a.shape) segments = 12 t = torch.linspace(0, 1, segments + 1, dtype=dtype).view( (segments + 1,) + (1,) * extra_dims ) gamma_ab_t = manifold.geodesic(t, a, b) gamma_ab_t0 = gamma_ab_t[:-1] gamma_ab_t1 = gamma_ab_t[1:] dist_ab_t0mt1 = manifold.dist(gamma_ab_t0, gamma_ab_t1, keepdim=True) speed = manifold.dist(a, b, keepdim=True).unsqueeze(0).expand_as(dist_ab_t0mt1) # we have exactly 12 line segments tolerance = { torch.float32: dict(rtol=1e-5, atol=5e-3), torch.float64: dict(rtol=1e-5, atol=5e-3), } length = speed / segments np.testing.assert_allclose( dist_ab_t0mt1.detach(), length.detach(), **tolerance[dtype] ) (length + dist_ab_t0mt1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_geodesic_segement_unit_property(a, b, manifold, dtype): extra_dims = len(a.shape) segments = 12 t = torch.linspace(0, 1, segments + 1, dtype=dtype).view( (segments + 1,) + (1,) * extra_dims ) gamma_ab_t = manifold.geodesic_unit(t, a, b) gamma_ab_t0 = gamma_ab_t[:1] gamma_ab_t1 = gamma_ab_t dist_ab_t0mt1 = manifold.dist(gamma_ab_t0, gamma_ab_t1, keepdim=True) true_distance_travelled = t.expand_as(dist_ab_t0mt1) # we have exactly 12 line segments tolerance = { torch.float32: dict(atol=2e-4, rtol=5e-5), torch.float64: dict(atol=1e-10), } np.testing.assert_allclose( dist_ab_t0mt1.detach(), true_distance_travelled.detach(), **tolerance[dtype] ) (true_distance_travelled + dist_ab_t0mt1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_expmap_logmap(a, b, manifold, dtype): # this test appears to be numerical unstable once a and b may appear on the opposite sides bh = manifold.expmap(x=a, u=manifold.logmap(a, b)) tolerance = {torch.float32: dict(rtol=1e-5, atol=5e-5), torch.float64: dict()} np.testing.assert_allclose(bh.detach(), b.detach(), **tolerance[dtype]) bh.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_expmap0_logmap0(a, manifold, dtype): # this test appears to be numerical unstable once a and b may appear on the opposite sides v = manifold.logmap0(a) norm = manifold.norm(torch.zeros_like(v), v, keepdim=True) dist = manifold.dist0(a, keepdim=True) bh = manifold.expmap0(v) tolerance = {torch.float32: dict(atol=1e-5, rtol=1e-5), torch.float64: dict()} np.testing.assert_allclose(bh.detach(), a.detach(), **tolerance[dtype]) np.testing.assert_allclose(norm.detach(), dist.detach(), **tolerance[dtype]) (bh.sum() + dist.sum()).backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_matvec_zeros(a, manifold): mat = a.new_zeros((3, a.shape[-1])) z = manifold.mobius_matvec(mat, a) np.testing.assert_allclose(z.detach(), 0.0) z.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_matvec_via_equiv_fn_apply(a, negative, manifold, strict, dtype): mat = a.new(3, a.shape[-1]).normal_() y = manifold.mobius_fn_apply(lambda x: x @ mat.transpose(-1, -2), a) y1 = manifold.mobius_matvec(mat, a) tolerance = {torch.float32: dict(atol=1e-5, rtol=1e-5), torch.float64: dict()} tolerant_allclose_check(y, y1, strict=strict, **tolerance[dtype]) y.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobiusify(a, c, negative, strict, dtype): mat = a.new(3, a.shape[-1]).normal_() @stereographic.math.mobiusify def matvec(x): return x @ mat.transpose(-1, -2) y = matvec(a, k=-c) y1 = stereographic.math.mobius_matvec(mat, a, k=-c) tolerance = {torch.float32: dict(atol=1e-5, rtol=1e-5), torch.float64: dict()} tolerant_allclose_check(y, y1, strict=strict, **tolerance[dtype]) y.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(c.grad).all() def test_matvec_chain_via_equiv_fn_apply(a, negative, manifold, dtype): mat1 = a.new(a.shape[-1], a.shape[-1]).normal_() mat2 = a.new(a.shape[-1], a.shape[-1]).normal_() y = manifold.mobius_fn_apply_chain( a, lambda x: x @ mat1.transpose(-1, -2), lambda x: x @ mat2.transpose(-1, -2), ) y1 = manifold.mobius_matvec(mat1, a) y1 = manifold.mobius_matvec(mat2, y1) tolerance = {torch.float32: dict(atol=1e-5, rtol=1e-5), torch.float64: dict()} tolerant_allclose_check(y, y1, strict=negative, **tolerance[dtype]) y.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_transp0_preserves_inner_products(a, manifold): # pointing to the center v_0 = torch.rand_like(a) + 1e-5 u_0 = torch.rand_like(a) + 1e-5 zero = torch.zeros_like(a) v_a = manifold.transp0(a, v_0) u_a = manifold.transp0(a, u_0) # compute norms vu_0 = manifold.inner(zero, v_0, u_0, keepdim=True) vu_a = manifold.inner(a, v_a, u_a, keepdim=True) np.testing.assert_allclose(vu_a.detach(), vu_0.detach(), atol=1e-6, rtol=1e-6) (vu_0 + vu_a).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_transp0_is_same_as_usual(a, manifold): # pointing to the center v_0 = torch.rand_like(a) + 1e-5 zero = torch.zeros_like(a) v_a = manifold.transp0(a, v_0) v_a1 = manifold.transp(zero, a, v_0) # compute norms np.testing.assert_allclose(v_a.detach(), v_a1.detach(), atol=1e-6, rtol=1e-6) (v_a + v_a1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_transp_a_b(a, b, manifold): # pointing to the center v_0 = torch.rand_like(a) u_0 = torch.rand_like(a) v_1 = manifold.transp(a, b, v_0) u_1 = manifold.transp(a, b, u_0) # compute norms vu_1 = manifold.inner(b, v_1, u_1, keepdim=True) vu_0 = manifold.inner(a, v_0, u_0, keepdim=True) np.testing.assert_allclose(vu_0.detach(), vu_1.detach(), atol=1e-6, rtol=1e-6) (vu_0 + vu_1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_add_infinity_and_beyond(a, b, c, negative, manifold, dtype): _a = a if torch.isclose(c, c.new_zeros(())).any(): pytest.skip("zero not checked") infty = b * 10000000 for i in range(100): z = manifold.expmap(a, infty, project=False) z = manifold.projx(z) assert not torch.isnan(z).any(), ("Found nans", i, z) assert torch.isfinite(z).all(), ("Found Infs", i, z) z = manifold.mobius_scalar_mul( torch.tensor(1000.0, dtype=z.dtype), z, project=False ) z = manifold.projx(z) assert not torch.isnan(z).any(), ("Found nans", i, z) assert torch.isfinite(z).all(), ("Found Infs", i, z) infty = manifold.transp(a, z, infty) assert torch.isfinite(infty).all(), (i, infty) a = z z = manifold.expmap(a, -infty) # they just need to be very far, exact answer is not supposed tolerance = { torch.float32: dict(rtol=3e-1, atol=2e-1), torch.float64: dict(rtol=1e-1, atol=1e-3), } if negative: np.testing.assert_allclose(z.detach(), -a.detach(), **tolerance[dtype]) else: assert not torch.isnan(z).any(), "Found nans" assert not torch.isnan(a).any(), "Found nans" def test_mobius_coadd(a, b, negative, manifold, strict): # (a \boxplus_c b) \ominus_c b = a ah = manifold.mobius_sub(manifold.mobius_coadd(a, b), b) tolerant_allclose_check(a, ah, strict=strict, atol=5e-5) ah.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_mobius_cosub(a, b, negative, manifold, strict): # (a \oplus_c b) \boxminus b = a ah = manifold.mobius_cosub(manifold.mobius_add(a, b), b) tolerant_allclose_check(a, ah, strict=strict, atol=1e-5) ah.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(b.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_distance2plane(a, manifold): v = torch.rand_like(a).requires_grad_() vr = v / manifold.norm(a, v, keepdim=True) z = manifold.expmap(a, vr) dist1 = manifold.dist(a, z) dist = manifold.dist2plane(z, a, vr) np.testing.assert_allclose(dist.detach(), dist1.detach(), atol=2e-4, rtol=1e-4) (dist + dist1).sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(v.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_sproj(manifold, a): ma = manifold.sproj(manifold.inv_sproj(a)) np.testing.assert_allclose(ma.detach(), a.detach(), atol=1e-5) ma.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() def test_antipode(manifold, negative, a, dtype, seed): if seed == 39: pytest.skip("This is amazingly unstable when tested against extreme values") ma = manifold.antipode(a) if manifold.k.le(0).all(): np.testing.assert_allclose(ma.detach(), -a.detach()) else: s = manifold.inv_sproj(a) ms = manifold.inv_sproj(ma) tolerance = {torch.float32: dict(atol=1e-5), torch.float64: dict(atol=1e-6)} np.testing.assert_allclose(ms.detach(), -s.detach(), **tolerance[dtype]) ma.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() @pytest.mark.parametrize("_k,lincomb", itertools.product([-1, 0, 1], [True, False])) def test_weighted_midpoint(_k, lincomb): manifold = stereographic.Stereographic(_k, learnable=True) a = geoopt.ManifoldParameter(manifold.random(2, 3, 10)) mid = manifold.weighted_midpoint(a, lincomb=lincomb) assert torch.isfinite(mid).all() assert mid.shape == (a.shape[-1],) mid.sum().backward() assert torch.isfinite(a.grad).all() assert not torch.isclose(manifold.k.grad, manifold.k.new_zeros(())) @pytest.mark.parametrize("_k,lincomb", itertools.product([-1, 0, 1], [True, False])) def test_weighted_midpoint_reduce_dim(_k, lincomb): manifold = stereographic.Stereographic(_k, learnable=True) a = geoopt.ManifoldParameter(manifold.random(2, 3, 10)) mid = manifold.weighted_midpoint(a, reducedim=[0], lincomb=lincomb) assert mid.shape == a.shape[-2:] assert torch.isfinite(mid).all() mid.sum().backward() assert torch.isfinite(a.grad).all() assert not torch.isclose(manifold.k.grad, manifold.k.new_zeros(())) @pytest.mark.parametrize("_k,lincomb", itertools.product([-1, 0, 1], [True, False])) def test_weighted_midpoint_weighted(_k, lincomb): manifold = stereographic.Stereographic(_k, learnable=True) a = geoopt.ManifoldParameter(manifold.random(2, 3, 10)) mid = manifold.weighted_midpoint( a, reducedim=[0], lincomb=lincomb, weights=torch.rand_like(a[..., 0]) ) assert mid.shape == a.shape[-2:] assert torch.isfinite(mid).all() mid.sum().backward() assert torch.isfinite(a.grad).all() assert not torch.isclose(manifold.k.grad, manifold.k.new_zeros(())) @pytest.mark.parametrize("_k,lincomb", itertools.product([-1, 0, 1], [True, False])) def test_weighted_midpoint_zero(_k, lincomb): manifold = stereographic.Stereographic(_k, learnable=True) a = geoopt.ManifoldParameter(manifold.random(2, 3, 10)) mid = manifold.weighted_midpoint( a, reducedim=[0], lincomb=lincomb, weights=torch.zeros_like(a[..., 0]) ) assert mid.shape == a.shape[-2:] assert torch.allclose(mid, torch.zeros_like(mid)) mid.sum().backward() assert torch.isfinite(a.grad).all() assert torch.isfinite(manifold.k.grad).all() @pytest.mark.parametrize("lincomb", [True, False]) def test_weighted_midpoint_euclidean(lincomb): manifold = stereographic.Stereographic(0) a = geoopt.ManifoldParameter(manifold.random(2, 3, 10)) mid = manifold.weighted_midpoint(a, reducedim=[0], lincomb=lincomb) assert mid.shape == a.shape[-2:] if lincomb: assert torch.allclose(mid, a.sum(0)) else: assert torch.allclose(mid, a.mean(0)) @pytest.mark.parametrize("_k,lincomb", itertools.product([-1, 0, 1], [True, False])) def test_weighted_midpoint_weighted_zero_sum(_k, lincomb): manifold = stereographic.Stereographic(_k, learnable=True) a = geoopt.ManifoldParameter( manifold.expmap0(torch.eye(3, 10)).detach(), manifold=manifold ) weights = torch.rand_like(a[..., 0]) weights = weights - weights.sum() / weights.numel() mid = manifold.weighted_midpoint( a, lincomb=lincomb, weights=weights, posweight=True ) if _k == 0 and lincomb: np.testing.assert_allclose( mid.detach(), torch.cat([weights, torch.zeros(a.size(-1) - a.size(0))]), atol=1e-6, ) assert mid.shape == a.shape[-1:] assert torch.isfinite(mid).all() mid.sum().backward() assert torch.isfinite(a.grad).all()
[ "torch.zeros", "torch.rand", "torch.rand_like", "torch.arange", "torch.isnan", "torch.linspace", "torch.isfinite", "torch.ones", "torch.manual_seed", "torch.tensor", "torch.eye", "torch.zeros_like", "torch.as_tensor", "torch.empty" ]
1.9.0
leonMatzner/geoopt
4a7058e43bf78ab5012b862076a74bec175df221
1.5
''' source:https://github.com/WolffyChen/PytorchToCaffe/blob/master/pytorch_to_caffe.py ''' import torch import torch.nn as nn import traceback from Caffe import caffe_net import torch.nn.functional as F from torch.autograd import Variable from Caffe import layer_param from torch.nn.modules.utils import _pair import numpy as np """ How to support a new layer type: layer_name=log.add_layer(layer_type_name) top_blobs=log.add_blobs(<output of that layer>) layer=caffe_net.Layer_param(xxx) <set layer parameters> [<layer.add_data(*datas)>] log.cnet.add_layer(layer) Please MUTE the inplace operations to avoid not find in graph 注意:只有torch.nn.functional中的函数才能转换为caffe中的层 """ # TODO: support the inplace output of the layers class Blob_LOG(): def __init__(self): self.data = {} def __setitem__(self, key, value): self.data[key] = value def __getitem__(self, key): return self.data[key] def __len__(self): return len(self.data) NET_INITTED = False # 转换原理解析:通过记录 class TransLog(object): def __init__(self): """ doing init() with inputs Variable before using it """ self.layers = {} self.detail_layers = {} self.detail_blobs = {} self._blobs = Blob_LOG() self._blobs_data = [] self.cnet = caffe_net.Caffemodel('') self.debug = True def init(self, inputs): """ :param inputs: is a list of input variables """ self.layers['data'] = 'data' self.add_blobs(inputs, 'data', False) def add_layer(self, name='layer'): if name in self.layers: return self.layers[name] if name not in self.detail_layers.keys(): self.detail_layers[name] = 0 self.detail_layers[name] += 1 name = '{}{}'.format(name,self.detail_layers[name]) self.layers[name] = name if self.debug: print('{} was added to layers'.format(self.layers[name])) return self.layers[name] def add_blobs(self, blobs, name='blob', with_num=True): rst=[] for blob in blobs: self._blobs_data.append(blob) # to block the memory address be rewrited blob_id=int(id(blob)) if name not in self.detail_blobs.keys(): self.detail_blobs[name] = 0 self.detail_blobs[name] += 1 if with_num: rst.append('{}{}'.format(name, self.detail_blobs[name])) else: rst.append('{}'.format(name)) if self.debug: print("{}:{} was added to blobs".format(blob_id, rst[-1])) #print('Add blob {} : {}'.format(rst[-1].center(21),blob.size())) self._blobs[blob_id] = rst[-1] return rst def blobs(self, var): var = id(var) #if self.debug: # print("{}:{} getting".format(var, self._blobs[var])) try: return self._blobs[var] except: print("WARNING: CANNOT FOUND blob {}".format(var)) return None def inplace_flag(self, name='layer'): key_list = ['add', 'sub', 'mul'] for kl in key_list: if kl in name: return False key_num = 3 vl = list(self.layers.values()) if vl.count(name) >= key_num: return False return True log = TransLog() layer_names = {} def _conv2d(raw,input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): print('conv: ', log.blobs(input)) x = raw(input, weight, bias, stride, padding, dilation, groups) name = log.add_layer(name='conv') log.add_blobs([x], name='conv') layer = caffe_net.Layer_param(name=name, type='Convolution', bottom=[log.layers[log.blobs(input)]], top=[log.blobs(x)]) layer.conv_param(x.size()[1], weight.size()[2:], stride=_pair(stride), pad=_pair(padding), dilation=_pair(dilation), bias_term=bias is not None, groups=groups) if bias is not None: layer.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy()) else: layer.param.convolution_param.bias_term = False layer.add_data(weight.cpu().data.numpy()) log.cnet.add_layer(layer) return x def _conv_transpose2d(raw,input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1): x = raw(input, weight, bias, stride, padding, output_padding, groups, dilation) name = log.add_layer(name='conv_transpose') log.add_blobs([x], name='conv_transpose') layer = caffe_net.Layer_param(name=name, type='Deconvolution', bottom=[log.layers[log.blobs(input)]], top=[log.blobs(x)]) layer.conv_param(x.size()[1], weight.size()[2:], stride=_pair(stride), pad=_pair(padding), dilation=_pair(dilation), bias_term=bias is not None, groups=groups) if bias is not None: layer.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy()) else: layer.param.convolution_param.bias_term = False layer.add_data(weight.cpu().data.numpy()) log.cnet.add_layer(layer) return x def _linear(raw,input, weight, bias=None): x = raw(input,weight,bias) layer_name = log.add_layer(name='fc') top_blobs = log.add_blobs([x],name='fc') layer = caffe_net.Layer_param(name=layer_name, type='InnerProduct', bottom=[log.layers[log.blobs(input)]], top=top_blobs) layer.fc_param(x.size()[1], has_bias=bias is not None) if bias is not None: layer.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy()) else: layer.add_data(weight.cpu().data.numpy()) log.cnet.add_layer(layer) return x def _split(raw,input, split_size, dim=0): # split in pytorch is slice in caffe x = raw(input, split_size, dim) layer_name = log.add_layer('split') top_blobs = log.add_blobs([x], name='split') layer = caffe_net.Layer_param(name=layer_name, type='Slice', bottom=[log.layers[log.blobs(input)]], top=top_blobs) slice_num = int(np.floor(input.size()[dim] / split_size)) slice_param = caffe_net.pb.SliceParameter(axis=dim, slice_point=[split_size * i for i in range(1, slice_num)]) layer.param.slice_param.CopyFrom(slice_param) log.cnet.add_layer(layer) return x def _pool(type,raw,input, x, kernel_size, stride, padding, ceil_mode): # TODO dilation,ceil_mode,return indices layer_name = log.add_layer(name='{}_pool'.format(type)) top_blobs = log.add_blobs([x], name='{}_pool'.format(type)) layer = caffe_net.Layer_param(name=layer_name, type='Pooling', bottom=[log.layers[log.blobs(input)]], top=top_blobs) # TODO w,h different kernel, stride and padding # processing ceil mode layer.pool_param(kernel_size=kernel_size, stride=kernel_size if stride is None else stride, pad=padding, type=type.upper(), ceil_mode=ceil_mode) log.cnet.add_layer(layer) if ceil_mode == False and stride is not None: oheight = (input.size()[2] - _pair(kernel_size)[0] + 2 * _pair(padding)[0]) % (_pair(stride)[0]) owidth = (input.size()[3] - _pair(kernel_size)[1] + 2 * _pair(padding)[1]) % (_pair(stride)[1]) if oheight != 0 or owidth != 0: caffe_out = raw(input, kernel_size, stride, padding, ceil_mode=True) print("WARNING: the output shape miss match at {}: " "input {} output---Pytorch:{}---Caffe:{}\n" "This is caused by the different implementation that ceil mode in caffe and the floor mode in pytorch.\n" "You can add the clip layer in caffe prototxt manually if shape mismatch error is caused in caffe. ".format(layer_name, input.size(), x.size(), caffe_out.size())) def _max_pool2d(raw,input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): x = raw(input, kernel_size, stride, padding, dilation,ceil_mode, return_indices) _pool('max',raw,input, x, kernel_size, stride, padding,ceil_mode) return x def _avg_pool2d(raw,input, kernel_size, stride = None, padding = 0, ceil_mode = False, count_include_pad=True): x = raw(input, kernel_size, stride, padding, ceil_mode, count_include_pad) _pool('ave',raw,input, x, kernel_size, stride, padding,ceil_mode) return x def _adaptive_pool(type,raw,input, x, kernel_size, stride): layer_name = log.add_layer(name='{}_pool'.format(type)) top_blobs = log.add_blobs([x], name='{}_pool'.format(type)) layer = caffe_net.Layer_param(name=layer_name, type='Pooling', bottom=[log.layers[log.blobs(input)]], top=top_blobs) # TODO w,h different kernel, stride and padding # processing ceil mode layer.pool_param(kernel_size=kernel_size, stride=kernel_size if stride is None else stride, pad=0, type=type.upper(), ceil_mode='ceil') log.cnet.add_layer(layer) def _adaptive_max_pool2d(raw,input, output_size=(1, 1)): x = raw(input, output_size) _adaptive_pool('max',raw,input, x, input.size(2), 1) return x def _adaptive_avg_pool2d(raw,input, output_size=(1, 1)): x = raw(input, output_size) _adaptive_pool('ave',raw,input, x, input.size(2), 1) return x def _flatten(raw,*args): x = raw(*args) if len(args) == 1: # TODO assert NotImplementedError else: layer_name = log.add_layer(name='flatten') top_blobs = log.add_blobs([x],name='flatten') layer = caffe_net.Layer_param(name=layer_name, type='Reshape', bottom=[log.layers[log.blobs(args[0])]], top=top_blobs) dims = list([0, 1]) dims[0] = 0 # the first dim should be batch_size for s in x.size()[1:]: dims[1] *= s layer.param.reshape_param.shape.CopyFrom(caffe_net.pb.BlobShape(dim=dims)) log.cnet.add_layer(layer) return x def _max(raw,*args): x = raw(*args) if len(args) == 1: # TODO max in one tensor assert NotImplementedError else: bottom_blobs = [] for arg in args: bottom_blobs.append(log.layers[log.blobs(arg)]) layer_name = log.add_layer(name='max') top_blobs = log.add_blobs([x], name='max') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=bottom_blobs, top=top_blobs) layer.param.eltwise_param.operation = 2 log.cnet.add_layer(layer) return x def _cat(raw,inputs, dimension=0): x = raw(inputs, dimension) bottom_blobs = [] for input in inputs: bottom_blobs.append(log.layers[log.blobs(input)]) layer_name = log.add_layer(name='cat') top_blobs = log.add_blobs([x], name='cat') layer = caffe_net.Layer_param(name=layer_name, type='Concat', bottom=bottom_blobs, top=top_blobs) layer.param.concat_param.axis = dimension log.cnet.add_layer(layer) return x def _dropout(raw,input, p=0.5, training=False, inplace=False): x = raw(input, p, training) bottom_blobs = [log.layers[log.blobs(input)]] layer_name = log.add_layer(name='dropout') top_blobs = log.add_blobs([x], name='dropout') layer = caffe_net.Layer_param(name=layer_name, type='Dropout', bottom=bottom_blobs, top=bottom_blobs) layer.param.dropout_param.dropout_ratio = p layer.param.include.extend([caffe_net.pb.NetStateRule(phase=1)]) # 1 for test, 0 for train log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _threshold(raw,input, threshold, value, inplace=False): # for threshold or relu if threshold == 0 and value == 0: x = raw(input, threshold, value) bottom_blobs = [log.layers[log.blobs(input)]] name = log.add_layer(name='relu') log.add_blobs([x], name='relu') layer = caffe_net.Layer_param(name=name, type='ReLU', bottom=bottom_blobs, top=bottom_blobs) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x if value!=0: raise NotImplemented("value !=0 not implemented in caffe") x = raw(input, threshold, value, inplace) bottom_blobs = [log.layers[log.blobs(input)]] layer_name = log.add_layer(name='threshold') top_blobs = log.add_blobs([x], name='threshold') layer = caffe_net.Layer_param(name=layer_name, type='Threshold', bottom=bottom_blobs, top=bottom_blobs) layer.param.threshold_param.threshold = threshold log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _relu(raw,input, inplace=False): # for threshold or prelu x = raw(input) name = log.add_layer(name='relu') log.add_blobs([x], name='relu') layer = caffe_net.Layer_param(name=name, type='ReLU', bottom=[log.layers[log.blobs(input)]], top=[log.layers[log.blobs(input)]]) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _prelu(raw,input, weight): # for threshold or prelu x = raw(input, weight) bottom_blobs = [log.layers[log.blobs(input)]] name = log.add_layer(name='prelu') log.add_blobs([x], name='prelu') layer = caffe_net.Layer_param(name=name, type='PReLU', bottom=bottom_blobs, top=bottom_blobs) if weight.size()[0] == 1: layer.param.prelu_param.channel_shared = True layer.add_data(weight.cpu().data.numpy()[0]) else: layer.add_data(weight.cpu().data.numpy()) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _leaky_relu(raw,input, negative_slope=0.01, inplace=False): x = raw(input, negative_slope) name = log.add_layer(name='leaky_relu') log.add_blobs([x], name='leaky_relu') layer = caffe_net.Layer_param(name=name, type='ReLU', bottom=[log.layers[log.blobs(input)]], top=[log.layers[log.blobs(input)]]) layer.param.relu_param.negative_slope = negative_slope log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _tanh(raw,input): # for tanh activation x = raw(input) name = log.add_layer(name='tanh') log.add_blobs([x], name='tanh') layer = caffe_net.Layer_param(name=name, type='TanH', bottom=[log.layers[log.blobs(input)]], top=[log.layers[log.blobs(input)]]) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _softmax(raw,input, dim=None, _stacklevel=3): # for F.softmax x = raw(input, dim=dim) if dim is None: dim = F._get_softmax_dim('softmax', input.dim(), _stacklevel) bottom_blobs = [log.layers[log.blobs(input)]] name = log.add_layer(name='softmax') log.add_blobs([x], name='softmax') layer = caffe_net.Layer_param(name=name, type='Softmax', bottom=bottom_blobs, top=[log.blobs(x)]) layer.param.softmax_param.axis = dim log.cnet.add_layer(layer) return x def _batch_norm(raw,input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-5): # because the runing_mean and runing_var will be changed after the _batch_norm operation, we first save the parameters x = raw(input, running_mean, running_var, weight, bias, training, momentum, eps) bottom_blobs = [log.layers[log.blobs(input)]] layer_name1 = log.add_layer(name='batch_norm') top_blobs = log.add_blobs([x], name='batch_norm') if log.inplace_flag(log.layers[log.blobs(input)]): top_blobs = bottom_blobs layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm', bottom=bottom_blobs, top=top_blobs) if running_mean is None or running_var is None: # not use global_stats, normalization is performed over the current mini-batch layer1.batch_norm_param(use_global_stats=0, eps=eps) else: layer1.batch_norm_param(use_global_stats=1, eps=eps) running_mean_clone = running_mean.clone() running_var_clone = running_var.clone() layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0])) log.cnet.add_layer(layer1) if weight is not None and bias is not None: layer_name2 = log.add_layer(name='bn_scale') layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale', bottom=top_blobs, top=top_blobs) layer2.param.scale_param.bias_term = True layer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy()) log.cnet.add_layer(layer2) if log.inplace_flag(log.layers[log.blobs(input)]): log.layers[layer_name2] = log.layers[log.blobs(input)] else: log.layers[layer_name2] = log.layers[log.blobs(x)] if log.inplace_flag(log.layers[log.blobs(input)]): log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x def _instance_norm(raw,input, running_mean=None, running_var=None, weight=None, bias=None, use_input_stats=True, momentum=0.1, eps=1e-5): # TODO: the batch size!=1 view operations print("WARNING: The Instance Normalization transfers to Caffe using BatchNorm, so the batch size should be 1") if running_var is not None or weight is not None: # TODO: the affine=True or track_running_stats=True case raise NotImplementedError("not implement the affine=True or track_running_stats=True case InstanceNorm") x= torch.batch_norm(input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps,torch.backends.cudnn.enabled) bottom_blobs = [log.layers[log.blobs(input)]] layer_name1 = log.add_layer(name='instance_norm') top_blobs = log.add_blobs([x], name='instance_norm') if log.inplace_flag(log.layers[log.blobs(input)]): top_blobs = bottom_blobs layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm', bottom=bottom_blobs, top=top_blobs) if running_mean is None or running_var is None: # not use global_stats, normalization is performed over the current mini-batch layer1.batch_norm_param(use_global_stats=0,eps=eps) running_mean = torch.zeros(input.size()[1]) running_var = torch.ones(input.size()[1]) else: layer1.batch_norm_param(use_global_stats=1, eps=eps) running_mean_clone = running_mean.clone() running_var_clone = running_var.clone() layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0])) log.cnet.add_layer(layer1) if weight is not None and bias is not None: layer_name2 = log.add_layer(name='bn_scale') layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale', bottom=top_blobs, top=top_blobs) layer2.param.scale_param.bias_term = True layer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy()) log.cnet.add_layer(layer2) if log.inplace_flag(log.layers[log.blobs(input)]): log.layers[layer_name2] = log.layers[log.blobs(input)] else: log.layers[layer_name2] = log.layers[log.blobs(x)] if log.inplace_flag(log.layers[log.blobs(input)]): log.layers[log.blobs(x)] = log.layers[log.blobs(input)] return x #upsample layer def _interpolate(raw,input, size=None, scale_factor=None, mode='nearest', align_corners=None): # 定义的参数包括 scale,即输出与输入的尺寸比例,如 2;scale_h、scale_w, # 同 scale,分别为 h、w 方向上的尺寸比例;pad_out_h、pad_out_w,仅在 scale 为 2 时 # 有用,对输出进行额外 padding 在 h、w 方向上的数值;upsample_h、upsample_w,输 # 出图像尺寸的数值。在 Upsample 的相关代码中,推荐仅仅使用 upsample_h、 # upsample_w 准确定义 Upsample 层的输出尺寸,其他所有的参数都不推荐继续使用。 # for nearest _interpolate if mode != "nearest" or align_corners != None: raise NotImplementedError("not implement F.interpolate totoaly") x = raw(input,size , scale_factor ,mode) layer_name = log.add_layer(name='upsample') top_blobs = log.add_blobs([x], name='upsample'.format(type)) layer = caffe_net.Layer_param(name=layer_name, type='Upsample', bottom=[log.layers[log.blobs(input)]], top=top_blobs) layer.upsample_param(size =(input.size(2),input.size(3)), scale_factor= scale_factor) log.cnet.add_layer(layer) return x #sigmid layer def _sigmoid(raw,input): # Applies the element-wise function: # Sigmoid(x)= 1/(1+exp(−x)) x = raw(input) name = log.add_layer(name='sigmoid') log.add_blobs([x], name='sigmoid') layer = caffe_net.Layer_param(name=name, type='Sigmoid', bottom=[log.layers[log.blobs(input)]], top=[log.layers[log.blobs(input)]]) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] #tanh layer def _tanh(raw,input): # Applies the element-wise function: # torch.nn.Tanh x = raw(input) name = log.add_layer(name='tanh') log.add_blobs([x], name='tanh') layer = caffe_net.Layer_param(name=name, type='TanH', bottom=[log.layers[log.blobs(input)]], top=[log.layers[log.blobs(input)]]) log.cnet.add_layer(layer) log.layers[log.blobs(x)] = log.layers[log.blobs(input)] def _hardtanh(raw, input, min_val, max_val, inplace): # Applies the element-wise function: # torch.nn.ReLu6 print('relu6: ', log.blobs(input)) x = raw(input, min_val, max_val) name = log.add_layer(name='relu6') log.add_blobs([x], name='relu6_blob') layer = caffe_net.Layer_param(name=name, type='ReLU6', bottom=[log.blobs(input)], top=[log.blobs(x)]) log.cnet.add_layer(layer) return x #L2Norm layer def _l2Norm(raw, input, weight, eps): # Applies the element-wise function: # L2Norm in vgg_ssd x = raw(input, weight, eps) name = log.add_layer(name='normalize') log.add_blobs([x], name='normalize_blob') layer = caffe_net.Layer_param(name=name, type='Normalize', bottom=[log.blobs(input)], top=[log.blobs(x)]) layer.norm_param(eps) layer.add_data(weight.cpu().data.numpy()) log.cnet.add_layer(layer) return x def _div(raw,inputs, inputs2): x=raw(inputs, inputs2) log.add_blobs([x],name='div_blob') return x # ----- for Variable operations -------- def _view(input,*args): x = raw_view(input, *args) if not NET_INITTED: return x layer_name = log.add_layer(name='view') top_blobs = log.add_blobs([x],name='view') layer = caffe_net.Layer_param(name=layer_name, type='Reshape', bottom=[log.layers[log.blobs(input)]], top=top_blobs) # TODO: reshpae added to nn_tools layer dims = list(args) dims[0] = 0 # the first dim should be batch_size layer.param.reshape_param.shape.CopyFrom(caffe_net.pb.BlobShape(dim=dims)) log.cnet.add_layer(layer) return x def _mean(input,*args,**kwargs): x = raw_mean(input, *args,**kwargs) if not NET_INITTED: return x layer_name = log.add_layer(name='mean') top_blobs = log.add_blobs([x],name='mean') layer = caffe_net.Layer_param(name=layer_name, type='Reduction', bottom=[log.layers[log.blobs(input)]], top=top_blobs) if len(args)==1: dim = args[0] elif 'dim' in kwargs: dim = kwargs['dim'] else: raise NotImplementedError('mean operation must specify a dim') layer.param.reduction_param.operation = 4 layer.param.reduction_param.axis = dim log.cnet.add_layer(layer) return x def _add(input,*args): x = raw__add__(input, *args) if not NET_INITTED: return x layer_name = log.add_layer(name='add') top_blobs = log.add_blobs([x], name='add') if log.blobs(args[0]) == None: log.add_blobs([args[0]], name='extra') else: layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)],log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 1 # sum is 1 log.cnet.add_layer(layer) return x def _iadd(input,*args): x = raw__iadd__(input, *args) if not NET_INITTED: return x x = x.clone() layer_name = log.add_layer(name='add') top_blobs = log.add_blobs([x], name='add') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)],log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 1 # sum is 1 log.cnet.add_layer(layer) return x def _sub(input,*args): x = raw__sub__(input, *args) if not NET_INITTED: return x layer_name = log.add_layer(name='sub') top_blobs = log.add_blobs([x], name='sub') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)],log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 1 # sum is 1 layer.param.eltwise_param.coeff.extend([1.,-1.]) log.cnet.add_layer(layer) return x def _isub(input,*args): x = raw__isub__(input, *args) if not NET_INITTED: return x x = x.clone() layer_name = log.add_layer(name='sub') top_blobs = log.add_blobs([x], name='sub') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)],log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 1 # sum is 1 log.cnet.add_layer(layer) return x def _mul(input,*args): x = raw__mul__(input, *args) if not NET_INITTED: return x layer_name = log.add_layer(name='mul') top_blobs = log.add_blobs([x], name='mul') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)], log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 0 # product is 1 log.cnet.add_layer(layer) return x def _imul(input,*args): x = raw__imul__(input, *args) if not NET_INITTED: return x x = x.clone() layer_name = log.add_layer(name='mul') top_blobs = log.add_blobs([x], name='mul') layer = caffe_net.Layer_param(name=layer_name, type='Eltwise', bottom=[log.layers[log.blobs(input)], log.layers[log.blobs(args[0])]], top=top_blobs) layer.param.eltwise_param.operation = 0 # product is 1 layer.param.eltwise_param.coeff.extend([1., -1.]) log.cnet.add_layer(layer) return x #Permute layer def _permute(input,*args): x = raw__permute__(input, *args) name = log.add_layer(name='permute') log.add_blobs([x], name='permute') layer = caffe_net.Layer_param(name=name, type='Permute', bottom=[log.blobs(input)], top=[log.blobs(x)]) order1 = args[0] order2 = args[1] order3 = args[2] order4 = args[3] layer.permute_param(order1, order2, order3, order4) log.cnet.add_layer(layer) return x #contiguous def _contiguous(input,*args): x = raw__contiguous__(input, *args) name = log.add_layer(name='contiguous') log.add_blobs([x], name='contiguous') layer = caffe_net.Layer_param(name=name, type='NeedRemove', bottom=[log.blobs(input)], top=[log.blobs(x)]) log.cnet.add_layer(layer) return x #pow def _pow(input,*args): x = raw__pow__(input, *args) log.add_blobs([x], name='pow') return x #sum def _sum(input,*args): x = raw__sum__(input, *args) log.add_blobs([x], name='sum') return x # sqrt def _sqrt(input,*args): x = raw__sqrt__(input, *args) log.add_blobs([x], name='sqrt') return x # unsqueeze def _unsqueeze(input,*args): x = raw__unsqueeze__(input, *args) log.add_blobs([x], name='unsqueeze') return x # sqrt def _expand_as(input,*args): x = raw__expand_as__(input, *args) log.add_blobs([x], name='expand_as') return x # 核心组件,通过该类,实现对torch的function中的operators的输入,输出以及参数的读取 class Rp(object): def __init__(self, raw, replace, **kwargs): # replace the raw function to replace function self.obj = replace self.raw = raw def __call__(self, *args, **kwargs): if not NET_INITTED: return self.raw(*args, **kwargs) for stack in traceback.walk_stack(None): if 'self' in stack[0].f_locals: layer = stack[0].f_locals['self'] if layer in layer_names: log.pytorch_layer_name = layer_names[layer] print(layer_names[layer]) break out = self.obj(self.raw,*args,**kwargs) # if isinstance(out,Variable): # out = [out] return out F.conv2d = Rp(F.conv2d, _conv2d) F.linear = Rp(F.linear, _linear) F.relu = Rp(F.relu, _relu) F.leaky_relu = Rp(F.leaky_relu, _leaky_relu) F.max_pool2d = Rp(F.max_pool2d, _max_pool2d) F.avg_pool2d = Rp(F.avg_pool2d, _avg_pool2d) F.dropout = Rp(F.dropout, _dropout) F.threshold = Rp(F.threshold, _threshold) F.prelu = Rp(F.prelu, _prelu) F.batch_norm = Rp(F.batch_norm, _batch_norm) F.instance_norm = Rp(F.instance_norm, _instance_norm) F.softmax = Rp(F.softmax, _softmax) F.conv_transpose2d = Rp(F.conv_transpose2d, _conv_transpose2d) F.interpolate = Rp(F.interpolate, _interpolate) F.sigmoid = Rp(F.sigmoid, _sigmoid) F.tanh = Rp(F.tanh, _tanh) F.hardtanh = Rp(F.hardtanh, _hardtanh) # F.l2norm = Rp(F.l2norm, _l2Norm) F.adaptive_max_pool2d = Rp(F.adaptive_max_pool2d, _adaptive_max_pool2d) F.adaptive_avg_pool2d = Rp(F.adaptive_avg_pool2d, _adaptive_avg_pool2d) torch.split = Rp(torch.split, _split) torch.max = Rp(torch.max, _max) torch.cat = Rp(torch.cat, _cat) torch.div = Rp(torch.div, _div) torch.flatten = Rp(torch.flatten, _flatten) # TODO: other types of the view function try: raw_view = Variable.view Variable.view = _view raw_mean = Variable.mean Variable.mean = _mean raw__add__ = Variable.__add__ Variable.__add__ = _add raw__iadd__ = Variable.__iadd__ Variable.__iadd__ = _iadd raw__sub__ = Variable.__sub__ Variable.__sub__ = _sub raw__isub__ = Variable.__isub__ Variable.__isub__ = _isub raw__mul__ = Variable.__mul__ Variable.__mul__ = _mul raw__imul__ = Variable.__imul__ Variable.__imul__ = _imul except: # for new version 0.4.0 and later version for t in [torch.Tensor]: raw_view = t.view t.view = _view raw_mean = t.mean t.mean = _mean raw__add__ = t.__add__ t.__add__ = _add raw__iadd__ = t.__iadd__ t.__iadd__ = _iadd raw__sub__ = t.__sub__ t.__sub__ = _sub raw__isub__ = t.__isub__ t.__isub__ = _isub raw__mul__ = t.__mul__ t.__mul__=_mul raw__imul__ = t.__imul__ t.__imul__ = _imul raw__permute__ = t.permute t.permute = _permute raw__contiguous__ = t.contiguous t.contiguous = _contiguous raw__pow__ = t.pow t.pow = _pow raw__sum__ = t.sum t.sum = _sum raw__sqrt__ = t.sqrt t.sqrt = _sqrt raw__unsqueeze__ = t.unsqueeze t.unsqueeze = _unsqueeze raw__expand_as__ = t.expand_as t.expand_as = _expand_as def trans_net(net,input_var, name='TransferedPytorchModel'): print('Starting Transform, This will take a while') log.init([input_var]) log.cnet.net.name = name log.cnet.net.input.extend([log.blobs(input_var)]) log.cnet.net.input_dim.extend(input_var.size()) # layer = caffe_net.Layer_param(name='data', type='Input', top=['data']) # layer.input_param(input_var.data.numpy().shape) # log.cnet.add_layer(layer) global NET_INITTED NET_INITTED = True for name,layer in net.named_modules(): layer_names[layer] = name print("torch ops name:", layer_names) out = net.forward(input_var) print('Transform Completed') for key in log.layers: print('{} {}'.format(key, log.layers[key])) def save_prototxt(save_name): # log.cnet.remove_layer_by_type("NeedRemove") log.cnet.save_prototxt(save_name) def save_caffemodel(save_name): log.cnet.save(save_name)
[ "torch.batch_norm", "torch.nn.modules.utils._pair" ]
1.5.1
pandamax/carrier-of-tricks-for-classification-pytorch
283a9f644b43d4800217bd10c1ab2accf1a787c6
1.5
import torch from torch.autograd import Function from torch import nn from .alias_multinomial import AliasMethod import math class NCEFunction(Function): @staticmethod def forward(self, x, y, memory, idx, params): K = int(params[0].item()) T = params[1].item() Z = params[2].item() momentum = params[3].item() batchSize = x.size(0) outputSize = memory.size(0) inputSize = memory.size(1) # sample positives & negatives idx.select(1,0).copy_(y.data) # sample correspoinding weights weight = torch.index_select(memory, 0, idx.view(-1)) weight.resize_(batchSize, K+1, inputSize) # inner product out = torch.bmm(weight, x.data.resize_(batchSize, inputSize, 1)) out.div_(T).exp_() # batchSize * self.K+1 x.data.resize_(batchSize, inputSize) if Z < 0: params[2] = out.mean() * outputSize Z = params[2].item() print("normalization constant Z is set to {:.1f}".format(Z)) out.div_(Z).resize_(batchSize, K+1) self.save_for_backward(x, memory, y, weight, out, params) return out @staticmethod def backward(self, gradOutput): x, memory, y, weight, out, params = self.saved_tensors K = int(params[0].item()) T = params[1].item() Z = params[2].item() momentum = params[3].item() batchSize = gradOutput.size(0) # gradients d Pm / d linear = exp(linear) / Z gradOutput.data.mul_(out.data) # add temperature gradOutput.data.div_(T) gradOutput.data.resize_(batchSize, 1, K+1) # gradient of linear gradInput = torch.bmm(gradOutput.data, weight) gradInput.resize_as_(x) # update the non-parametric data weight_pos = weight.select(1, 0).resize_as_(x) weight_pos.mul_(momentum) weight_pos.add_(torch.mul(x.data, 1-momentum)) w_norm = weight_pos.pow(2).sum(1, keepdim=True).pow(0.5) updated_weight = weight_pos.div(w_norm) memory.index_copy_(0, y, updated_weight) return gradInput, None, None, None, None class NCEAverage(nn.Module): def __init__(self, inputSize, outputSize, K, T=0.07, momentum=0.5, Z=None): super(NCEAverage, self).__init__() self.nLem = outputSize self.unigrams = torch.ones(self.nLem) self.multinomial = AliasMethod(self.unigrams) self.multinomial.cuda() self.K = K self.register_buffer('params',torch.tensor([K, T, -1, momentum])); stdv = 1. / math.sqrt(inputSize/3) self.register_buffer('memory', torch.rand(outputSize, inputSize).mul_(2*stdv).add_(-stdv)) def forward(self, x, y): batchSize = x.size(0) idx = self.multinomial.draw(batchSize * (self.K+1)).view(batchSize, -1) out = NCEFunction.apply(x, y, self.memory, idx, self.params) return out
[ "torch.rand", "torch.mul", "torch.bmm", "torch.ones", "torch.tensor" ]
1.5.0
xmengli999/self_supervised
b2d40d452d203f60330c84fb213c3ba848468366
1.10
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import glob import hashlib import importlib import os import re import shutil import uuid import torch import torch.utils.cpp_extension from torch.utils.file_baton import FileBaton #---------------------------------------------------------------------------- # Global options. verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full' #---------------------------------------------------------------------------- # Internal helper funcs. def _find_compiler_bindir(): # patch here. To add VS 2022 x64 support. patterns = [ 'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin', 'C:/Program Files/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64', 'C:/Program Files/Microsoft Visual Studio */vc/bin', ] for pattern in patterns: matches = sorted(glob.glob(pattern)) if len(matches): return matches[-1] return None #---------------------------------------------------------------------------- def _get_mangled_gpu_name(): name = torch.cuda.get_device_name().lower() out = [] for c in name: if re.match('[a-z0-9_-]+', c): out.append(c) else: out.append('-') return ''.join(out) #---------------------------------------------------------------------------- # Main entry point for compiling and loading C++/CUDA plugins. _cached_plugins = dict() def get_plugin(module_name, sources, headers=None, source_dir=None, **build_kwargs): assert verbosity in ['none', 'brief', 'full'] if headers is None: headers = [] if source_dir is not None: sources = [os.path.join(source_dir, fname) for fname in sources] headers = [os.path.join(source_dir, fname) for fname in headers] # Already cached? if module_name in _cached_plugins: return _cached_plugins[module_name] # Print status. if verbosity == 'full': print(f'Setting up PyTorch plugin "{module_name}"...') elif verbosity == 'brief': print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True) verbose_build = (verbosity == 'full') # Compile and load. try: # pylint: disable=too-many-nested-blocks # Make sure we can find the necessary compiler binaries. if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0: compiler_bindir = _find_compiler_bindir() if compiler_bindir is None: raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".') os.environ['PATH'] += ';' + compiler_bindir # Some containers set TORCH_CUDA_ARCH_LIST to a list that can either # break the build or unnecessarily restrict what's available to nvcc. # Unset it to let nvcc decide based on what's available on the # machine. os.environ['TORCH_CUDA_ARCH_LIST'] = '' # Incremental build md5sum trickery. Copies all the input source files # into a cached build directory under a combined md5 digest of the input # source files. Copying is done only if the combined digest has changed. # This keeps input file timestamps and filenames the same as in previous # extension builds, allowing for fast incremental rebuilds. # # This optimization is done only in case all the source files reside in # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR # environment variable is set (we take this as a signal that the user # actually cares about this.) # # EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work # around the *.cu dependency bug in ninja config. # all_source_files = sorted(sources + headers) all_source_dirs = set(os.path.dirname(fname) for fname in all_source_files) if len(all_source_dirs) == 1: # and ('TORCH_EXTENSIONS_DIR' in os.environ): # Compute combined hash digest for all source files. hash_md5 = hashlib.md5() for src in all_source_files: with open(src, 'rb') as f: hash_md5.update(f.read()) # Select cached build directory name. source_digest = hash_md5.hexdigest() build_top_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access cached_build_dir = os.path.join(build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}') if not os.path.isdir(cached_build_dir): tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}' os.makedirs(tmpdir) for src in all_source_files: shutil.copyfile(src, os.path.join(tmpdir, os.path.basename(src))) try: os.replace(tmpdir, cached_build_dir) # atomic except OSError: # source directory already exists, delete tmpdir and its contents. shutil.rmtree(tmpdir) if not os.path.isdir(cached_build_dir): raise # Compile. cached_sources = [os.path.join(cached_build_dir, os.path.basename(fname)) for fname in sources] torch.utils.cpp_extension.load(name=module_name, build_directory=cached_build_dir, verbose=verbose_build, sources=cached_sources, **build_kwargs) else: torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs) # Load. module = importlib.import_module(module_name) except: if verbosity == 'brief': print('Failed!') raise # Print status and add to cache dict. if verbosity == 'full': print(f'Done setting up PyTorch plugin "{module_name}".') elif verbosity == 'brief': print('Done.') _cached_plugins[module_name] = module return module #----------------------------------------------------------------------------
[ "torch.utils.cpp_extension.load", "torch.cuda.get_device_name", "torch.utils.cpp_extension._get_build_directory" ]
1.10
One-sixth/fid-helper-pytorch
1d74e9e7e4622bd0ccb209a01a2cc10c74c73c01
1.4
import os import abc import json import logging import time from tempfile import NamedTemporaryFile import numpy as np import torch import torch.distributed as dist from pycocotools.cocoeval import COCOeval from .distributed import synchronize, is_main_process, all_gather_container # FIXME experimenting with speedups for OpenImages eval, it's slow #import pyximport; py_importer, pyx_importer = pyximport.install(pyimport=True) import effdet.evaluation.detection_evaluator as tfm_eval #pyximport.uninstall(py_importer, pyx_importer) _logger = logging.getLogger(__name__) __all__ = ['CocoEvaluator', 'PascalEvaluator', 'OpenImagesEvaluator', 'RadioGalaxyEvaluator' 'create_evaluator'] class Evaluator: def __init__(self, distributed=False, pred_yxyx=False, score_thresh=0.001): self.distributed = distributed self.distributed_device = None self.pred_yxyx = pred_yxyx self.img_indices = [] self.predictions = [] self.score_thresh = score_thresh def add_predictions(self, detections, target): if self.distributed: if self.distributed_device is None: # cache for use later to broadcast end metric self.distributed_device = detections.device synchronize() detections = all_gather_container(detections) img_indices = all_gather_container(target['img_idx']) if not is_main_process(): return else: img_indices = target['img_idx'] detections = detections.cpu().numpy() img_indices = img_indices.cpu().numpy() for img_idx, img_dets in zip(img_indices, detections): self.img_indices.append(img_idx) self.predictions.append(img_dets) def _coco_predictions(self): # generate coco-style predictions coco_predictions = [] coco_ids = [] for img_idx, img_dets in zip(self.img_indices, self.predictions): img_id = self._dataset.img_ids[img_idx] coco_ids.append(img_id) if self.pred_yxyx: # to xyxy img_dets[:, 0:4] = img_dets[:, [1, 0, 3, 2]] # to xywh img_dets[:, 2] -= img_dets[:, 0] img_dets[:, 3] -= img_dets[:, 1] for det in img_dets: score = float(det[4]) if score < self.score_thresh: # stop when below this threshold, scores in descending order break coco_det = dict( image_id=int(img_id), bbox=det[0:4].tolist(), score=score, category_id=int(det[5])) coco_predictions.append(coco_det) return coco_predictions, coco_ids @abc.abstractmethod def evaluate(self, output_result_file=''): pass def save(self, result_file): # save results in coco style, override to save in a alternate form if not self.distributed or dist.get_rank() == 0: assert len(self.predictions) coco_predictions, coco_ids = self._coco_predictions() json.dump(coco_predictions, open(result_file, 'w'), indent=4) class CocoEvaluator(Evaluator): def __init__(self, dataset, distributed=False, pred_yxyx=False): super().__init__(distributed=distributed, pred_yxyx=pred_yxyx) self._dataset = dataset.parser self.coco_api = dataset.parser.coco def reset(self): self.img_indices = [] self.predictions = [] def evaluate(self, output_result_file=''): if not self.distributed or dist.get_rank() == 0: assert len(self.predictions) coco_predictions, coco_ids = self._coco_predictions() if output_result_file: json.dump(coco_predictions, open(output_result_file, 'w'), indent=4) results = self.coco_api.loadRes(output_result_file) else: with NamedTemporaryFile(prefix='coco_', suffix='.json', delete=False, mode='w') as tmpfile: json.dump(coco_predictions, tmpfile, indent=4) results = self.coco_api.loadRes(tmpfile.name) try: os.unlink(tmpfile.name) except OSError: pass coco_eval = COCOeval(self.coco_api, results, 'bbox') coco_eval.params.imgIds = coco_ids # score only ids we've used coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() metric = coco_eval.stats[0] # mAP 0.5-0.95 if self.distributed: dist.broadcast(torch.tensor(metric, device=self.distributed_device), 0) else: metric = torch.tensor(0, device=self.distributed_device) dist.broadcast(metric, 0) metric = metric.item() self.reset() return metric class RadioGalaxyEvaluator(Evaluator): def __init__(self, dataset, distributed=False, pred_yxyx=False, score_thresh=0.1): super().__init__(distributed=distributed, pred_yxyx=pred_yxyx, score_thresh=score_thresh) self._dataset = dataset.parser self.coco_api = dataset.parser.coco def reset(self): self.img_indices = [] self.predictions = [] def evaluate(self, output_result_file=''): if not self.distributed or dist.get_rank() == 0: assert len(self.predictions) coco_predictions, coco_ids = self._coco_predictions() if output_result_file: json.dump(coco_predictions, open(output_result_file, 'w'), indent=4) results = self.coco_api.loadRes(output_result_file) else: with NamedTemporaryFile(prefix='coco_', suffix='.json', delete=False, mode='w') as tmpfile: json.dump(coco_predictions, tmpfile, indent=4) results = self.coco_api.loadRes(tmpfile.name) try: os.unlink(tmpfile.name) except OSError: pass coco_eval = COCOeval(self.coco_api, results, 'bbox') coco_eval.params.imgIds = coco_ids # score only ids we've used coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() metric = coco_eval.stats[0] # mAP 0.5-0.95 if self.distributed: dist.broadcast(torch.tensor(metric, device=self.distributed_device), 0) else: metric = torch.tensor(0, device=self.distributed_device) dist.broadcast(metric, 0) metric = metric.item() self.reset() return metric class TfmEvaluator(Evaluator): """ Tensorflow Models Evaluator Wrapper """ def __init__( self, dataset, distributed=False, pred_yxyx=False, evaluator_cls=tfm_eval.ObjectDetectionEvaluator): super().__init__(distributed=distributed, pred_yxyx=pred_yxyx) self._evaluator = evaluator_cls(categories=dataset.parser.cat_dicts) self._eval_metric_name = self._evaluator._metric_names[0] self._dataset = dataset.parser def reset(self): self._evaluator.clear() self.img_indices = [] self.predictions = [] def evaluate(self, output_result_file=''): if not self.distributed or dist.get_rank() == 0: for img_idx, img_dets in zip(self.img_indices, self.predictions): gt = self._dataset.get_ann_info(img_idx) self._evaluator.add_single_ground_truth_image_info(img_idx, gt) bbox = img_dets[:, 0:4] if self.pred_yxyx else img_dets[:, [1, 0, 3, 2]] det = dict(bbox=bbox, score=img_dets[:, 4], cls=img_dets[:, 5]) self._evaluator.add_single_detected_image_info(img_idx, det) metrics = self._evaluator.evaluate() _logger.info('Metrics:') for k, v in metrics.items(): _logger.info(f'{k}: {v}') map_metric = metrics[self._eval_metric_name] if self.distributed: dist.broadcast(torch.tensor(map_metric, device=self.distributed_device), 0) else: map_metric = torch.tensor(0, device=self.distributed_device) wait = dist.broadcast(map_metric, 0, async_op=True) while not wait.is_completed(): # wait without spinning the cpu @ 100%, no need for low latency here time.sleep(0.5) map_metric = map_metric.item() if output_result_file: self.save(output_result_file) self.reset() return map_metric class PascalEvaluator(TfmEvaluator): def __init__(self, dataset, distributed=False, pred_yxyx=False): super().__init__( dataset, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.PascalDetectionEvaluator) class OpenImagesEvaluator(TfmEvaluator): def __init__(self, dataset, distributed=False, pred_yxyx=False): super().__init__( dataset, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.OpenImagesDetectionEvaluator) def create_evaluator(name, dataset, distributed=False, pred_yxyx=False, score_thresh=0.001): # FIXME support OpenImages Challenge2019 metric w/ image level label consideration if 'coco' in name: return CocoEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx) elif 'openimages' in name: return OpenImagesEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx) elif 'radiogalaxy' in name: return RadioGalaxyEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx, score_thresh=score_thresh) else: return PascalEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx)
[ "torch.distributed.get_rank", "torch.tensor", "torch.distributed.broadcast" ]
1.4.0
SKA-INAF/efficientdet-pytorch
8967bab88288d11e5547a7efa391adc0c987be47
1.5
# Copyright (c) 2019 Eric Steinberger import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from PokerRL.rl.neural.CardEmbedding import CardEmbedding from PokerRL.rl.neural.LayerNorm import LayerNorm class MainPokerModuleFLAT_Baseline(nn.Module): def __init__(self, env_bldr, device, mpm_args, ): super().__init__() self._args = mpm_args self._env_bldr = env_bldr self._device = device self._board_start = self._env_bldr.obs_board_idxs[0] self._board_stop = self._board_start + len(self._env_bldr.obs_board_idxs) self.dropout = nn.Dropout(p=mpm_args.dropout) self.card_emb = CardEmbedding(env_bldr=env_bldr, dim=mpm_args.dim, device=device) if mpm_args.deep: self.cards_fc_1 = nn.Linear(in_features=self.card_emb.out_size * 2, out_features=mpm_args.dim * 3) self.cards_fc_2 = nn.Linear(in_features=mpm_args.dim * 3, out_features=mpm_args.dim * 3) self.cards_fc_3 = nn.Linear(in_features=mpm_args.dim * 3, out_features=mpm_args.dim) self.history_1 = nn.Linear(in_features=self._env_bldr.pub_obs_size - self._env_bldr.obs_size_board, out_features=mpm_args.dim) self.history_2 = nn.Linear(in_features=mpm_args.dim, out_features=mpm_args.dim) self.comb_1 = nn.Linear(in_features=2 * mpm_args.dim, out_features=mpm_args.dim) self.comb_2 = nn.Linear(in_features=mpm_args.dim, out_features=mpm_args.dim) else: self.layer_1 = nn.Linear(in_features=self.card_emb.out_size * 2 + self._env_bldr.pub_obs_size - self._env_bldr.obs_size_board, out_features=mpm_args.dim) self.layer_2 = nn.Linear(in_features=mpm_args.dim, out_features=mpm_args.dim) self.layer_3 = nn.Linear(in_features=mpm_args.dim, out_features=mpm_args.dim) if self._args.normalize: self.norm = LayerNorm(mpm_args.dim) self.to(device) # print("n parameters:", sum(p.numel() for p in self.parameters() if p.requires_grad)) @property def output_units(self): return self._args.dim @property def device(self): return self._device def forward(self, pub_obses, range_idxs): """ 1. do list -> padded 2. feed through pre-processing fc layers 3. PackedSequence (sort, pack) 4. rnn 5. unpack (unpack re-sort) 6. cut output to only last entry in sequence Args: pub_obses (list): list of np arrays of shape [np.arr([history_len, n_features]), ...) range_idxs (LongTensor): range_idxs (one for each pub_obs) tensor([2, 421, 58, 912, ...]) """ if isinstance(pub_obses, list): pub_obses = torch.from_numpy(np.array(pub_obses)).to(self._device, torch.float32) hist_o = torch.cat([ pub_obses[:, :self._board_start], pub_obses[:, self._board_stop:] ], dim=-1) # """"""""""""""""""""""" # Card embeddings # """"""""""""""""""""""" range_idxs_0 = range_idxs // 10000 # Big hack! See LearnedBaselineSampler for the reverse opp range_idxs_1 = range_idxs % 10000 card_o_0 = self.card_emb(pub_obses=pub_obses, range_idxs=torch.where(range_idxs_0 == 8888, torch.zeros_like(range_idxs_0), range_idxs_0)) card_o_0 = torch.where(range_idxs_0.unsqueeze(1).expand_as(card_o_0) == 8888, torch.full_like(card_o_0, fill_value=-1), card_o_0, ) card_o_1 = self.card_emb(pub_obses=pub_obses, range_idxs=torch.where(range_idxs_1 == 8888, torch.zeros_like(range_idxs_1), range_idxs_1)) card_o_1 = torch.where(range_idxs_1.unsqueeze(1).expand_as(card_o_0) == 8888, torch.full_like(card_o_1, fill_value=-1), card_o_1, ) card_o = torch.cat([card_o_0, card_o_1], dim=-1) # """"""""""""""""""""""" # Network # """"""""""""""""""""""" if self._args.dropout > 0: A = lambda x: self.dropout(F.relu(x)) else: A = lambda x: F.relu(x) if self._args.deep: card_o = A(self.cards_fc_1(card_o)) card_o = A(self.cards_fc_2(card_o) + card_o) card_o = A(self.cards_fc_3(card_o)) hist_o = A(self.history_1(hist_o)) hist_o = A(self.history_2(hist_o) + hist_o) y = A(self.comb_1(torch.cat([card_o, hist_o], dim=-1))) y = A(self.comb_2(y) + y) else: y = torch.cat([hist_o, card_o], dim=-1) y = A(self.layer_1(y)) y = A(self.layer_2(y) + y) y = A(self.layer_3(y) + y) # """"""""""""""""""""""" # Normalize last layer # """"""""""""""""""""""" if self._args.normalize: y = self.norm(y) return y class MPMArgsFLAT_Baseline: def __init__(self, deep=True, dim=128, dropout=0.0, normalize=True, ): self.deep = deep self.dim = dim self.dropout = dropout self.normalize = normalize def get_mpm_cls(self): return MainPokerModuleFLAT_Baseline
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.full_like", "torch.zeros_like", "torch.nn.functional.relu" ]
1.5
EricSteinberger/DREAM
bfe21bbb0f60ab27a1af9774308efbbbd41e68c4
1.8
import torch import unittest from fusion.model import AE class TestAE(unittest.TestCase): def test_forward(self): # define parameters dim_in = 1 dim_l = 4 input_size = 32 architecture = 'DcganAutoEncoder' architecture_params = dict( input_size = input_size, dim_in = [dim_in], dim_h = 2, dim_l = dim_l ) sources = [0] batch_size = 2 # create model model = AE(sources, architecture, architecture_params) # create input x = [torch.rand(batch_size, dim_in, input_size, input_size)] # forward pass output = model(x) # check outputs for _, z in output.z.items(): self.assertEqual(z.size(1), dim_l) self.assertEqual(output.attrs['x'][0].size(), x[0].size()) self.assertEqual(output.attrs['x_hat'][0].size(), x[0].size()) if __name__ == '__main__': unittest.main()
[ "torch.rand" ]
1.8.1
Mrinal18/fusion
34e563f2e50139385577c3880c5de11f8a73f220
1.3
import copy import os import torch from torch import nn from torch import optim from ray.tune import Trainable N_LBFGS_STEPS_VALIDATION = 15 class PytorchTrainable(Trainable): """Abstract Trainable class for Pytorch models, which checkpoints the model and the optimizer. Subclass must initialize self.model and self.optimizer in _setup. """ def _save(self, checkpoint_dir): checkpoint_path = os.path.join(checkpoint_dir, "model_optimizer.pth") state = {'model': self.model.state_dict(), 'optimizer': self.optimizer.state_dict()} torch.save(state, checkpoint_path) return checkpoint_path def _restore(self, checkpoint_path): if hasattr(self, 'device'): checkpoint = torch.load(checkpoint_path, self.device) else: checkpoint = torch.load(checkpoint_path) self.model.load_state_dict(checkpoint['model']) self.optimizer.load_state_dict(checkpoint['optimizer']) class TrainableFixedData(PytorchTrainable): """Abstract Trainable class for Pytorch models with fixed data. Subclass must initialize self.model, self.optimizer, and self.n_steps_per_epoch in _setup, and have to implement self.loss(). """ def loss(self): raise NotImplementedError def _train(self): for _ in range(self.n_steps_per_epoch): self.optimizer.zero_grad() loss = self.loss() loss.backward() self.optimizer.step() return {'negative_loss': -loss.item()} class TrainableMatrixFactorization(TrainableFixedData): """Abstract Trainable class for Pytorch models that factor a target matrix. Subclass must initialize self.model, self.optimizer, self.n_steps_per_epoch, self.n_epochs_per_validation, self.target_matrix, and self.input in _setup, and may override self.freeze() to freeze model (e.g. taking argmax of logit instead of logit). """ def forward(self): return self.model(self.input) def loss(self): # Take transpose since the transform acts on the rows of the input output = self.forward().transpose(0, 1) if self.target_matrix.dim() == 2 and output.dim() == 3: # Real target matrix, take real part output = output[:, :, 0] return nn.functional.mse_loss(output, self.target_matrix) def freeze(self): pass def polish(self, nmaxsteps=50, patience=5, threshold=1e-10, save_to_self_model=False): if not save_to_self_model: model_bak = self.model self.model = copy.deepcopy(self.model) self.freeze() optimizer = optim.LBFGS(filter(lambda p: p.requires_grad, self.model.parameters())) def closure(): optimizer.zero_grad() loss = self.loss() loss.backward() return loss n_bad_steps = 0 best_loss = float('inf') for i in range(nmaxsteps): loss = optimizer.step(closure) if loss.item() < best_loss - threshold: best_loss = loss.item() n_bad_steps = 0 else: n_bad_steps += 1 if n_bad_steps > patience: break if not save_to_self_model: self.model = model_bak return loss.item() def _train(self): for _ in range(self.n_steps_per_epoch): self.optimizer.zero_grad() loss = self.loss() loss.backward() self.optimizer.step() loss = loss.item() if (self._iteration + 1) % self.n_epochs_per_validation == 0: loss = min(loss, self.polish(N_LBFGS_STEPS_VALIDATION, save_to_self_model=False)) return {'negative_loss': -loss, 'mean_loss': loss, 'nparameters': self.nparameters}
[ "torch.nn.functional.mse_loss", "torch.save", "torch.load" ]
1.3
sfox14/butterfly
13cc15cee5bdb7adaf376219aaf20fab0459e9ef
1.6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright 2019 Kakao Brain # # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Checkpointing with preceding recomputation. PyTorch already provides the official checkpointing utilities in :mod:`torch.utils.checkpoint`. The official checkpointing combines recomputation and recursive backpropagation into one autograd function named ``CheckpointFunction``. Hence, the recomputation can be started only when the gradients arrive to the function. In Pipe, the recomputation needs to precede the gradient arrival to minimize the GPU idle time. We solve this problem by introducing separate autograd functions named :class:`Recompute` and :class:`Checkpoint`. Each function represents recomputation and recursive backpropagation, respectively. We can manipulate the control flow in aspect of both the autograd engine and CUDA with a pair of the functions. Specifically, we place CUDA stream synchronization between :class:`Recompute` and :class:`Checkpoint` to delay only :class:`Checkpoint` until the gradient is copied entirely. """ from collections import deque from contextlib import contextmanager import threading from typing import TYPE_CHECKING, Deque, Generator, List, Optional, Tuple, Union import torch from torch import ByteTensor, Tensor import torch.autograd from .dependency import fork, join from .microbatch import Batch from .phony import get_phony __all__ = ["is_checkpointing", "is_recomputing"] Tensors = Tuple[Tensor, ...] TensorOrTensors = Union[Tensor, Tensors] # Types for shared memory between Checkpoint and Recompute. Recomputed = Tuple[TensorOrTensors, Tensors] # (output, input_leaf) RNGStates = Tuple[ByteTensor, Optional[ByteTensor]] # (cpu_rng_state, gpu_rng_state) if TYPE_CHECKING: from typing_extensions import Protocol else: Protocol = object # Protocol with __call__ instead of Callable can be used as an attribute type. # See: https://github.com/python/mypy/issues/708#issuecomment-561735949 class Function(Protocol): def __call__(self, input: TensorOrTensors) -> TensorOrTensors: ... class Checkpointing: """Generates a pair of :class:`Checkpoint` and :class:`Recompute`.""" def __init__(self, function: Function, batch: Batch) -> None: self.function = function self.batch = batch # Shared memory between Checkpoint and Recompute. 1-length deque is # used for mutability and length limitation. self.recomputed: Deque[Recomputed] = deque(maxlen=1) self.rng_states: Deque[RNGStates] = deque(maxlen=1) def checkpoint(self) -> Batch: """Returns a batch applied by :class:`Checkpoint`.""" input_atomic = self.batch.atomic input = tuple(self.batch) # Use a phony which requires grad to ensure that Checkpoint can be # tracked by the autograd engine even when none of the input tensors # require grad. phony = get_phony(self.batch[0].device, requires_grad=True) output = Checkpoint.apply(phony, self.recomputed, self.rng_states, self.function, input_atomic, *input) # Gradients are only supported for float Tensors. if isinstance(output, tuple): output = tuple([x if x.is_floating_point() else x.detach() for x in output]) return Batch(output, self.batch.index) def recompute(self, batch: Batch) -> None: """Applies :class:`Recompute` to the batch in place.""" input_atomic = self.batch.atomic input = tuple(self.batch) # batch[0] is always requiring grad, because it has been passed # checkpoint with a phony requiring grad. batch[0], phony = fork(batch[0]) phony = Recompute.apply(phony, self.recomputed, self.rng_states, self.function, input_atomic, *input) batch[0] = join(batch[0], phony) class ThreadLocal(threading.local): def __init__(self) -> None: self.is_checkpointing = False self.is_recomputing = False thread_local = ThreadLocal() @contextmanager def enable_checkpointing() -> Generator[None, None, None]: """Makes :func:`is_checkpointing` return :data:`True` within a context.""" orig = thread_local.is_checkpointing thread_local.is_checkpointing = True try: yield finally: thread_local.is_checkpointing = orig @contextmanager def enable_recomputing() -> Generator[None, None, None]: """Makes :func:`is_recomputing` return :data:`True` within a context.""" orig = thread_local.is_recomputing thread_local.is_recomputing = True try: yield finally: thread_local.is_recomputing = orig def is_checkpointing() -> bool: """Whether the current forward propagation is under checkpointing. Returns: bool: :data:`True` if it's under checkpointing. """ return thread_local.is_checkpointing def is_recomputing() -> bool: """Whether the current forward propagation is under checkpoint recomputation. Use this to prevent duplicated side-effects at forward propagation:: class Counter(nn.Module): def __init__(self): super().__init__() self.counter = 0 def forward(self, input): if not is_recomputing(): self.counter += 1 return input Returns: bool: :data:`True` if it's under checkpoint recomputation. .. seealso:: :ref:`Detecting Recomputation` """ return thread_local.is_recomputing class Context: """The common interface between the :class:`Checkpoint` and :class:`Recompute` context. """ recomputed: Deque[Recomputed] rng_states: Deque[RNGStates] function: Function input_atomic: bool saved_tensors: Tuple[Tensor, ...] def save_for_backward(self, *tensors: Tensor) -> None: # pragma: no cover pass def save_rng_states(device: torch.device, rng_states: Deque[RNGStates],) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == "cuda": gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.clear() rng_states.append((cpu_rng_state, gpu_rng_state)) @contextmanager def restore_rng_states(device: torch.device, rng_states: Deque[RNGStates],) -> Generator[None, None, None]: """:meth:`Recompute.backward` restores the random number generator states captured by :func:`save_rng_states` within its context. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state, gpu_rng_state = rng_states[0] gpu_devices: List[torch.device] = [] if device.type == "cuda": gpu_devices.append(device) with torch.random.fork_rng(gpu_devices): torch.set_rng_state(cpu_rng_state) if gpu_rng_state is not None: torch.cuda.set_rng_state(gpu_rng_state, device) yield class Checkpoint(torch.autograd.Function): @staticmethod # type: ignore def forward( ctx: Context, phony: Tensor, recomputed: Deque[Recomputed], rng_states: Deque[RNGStates], function: Function, input_atomic: bool, *input: Tensor, ) -> TensorOrTensors: ctx.recomputed = recomputed ctx.rng_states = rng_states save_rng_states(input[0].device, ctx.rng_states) ctx.function = function ctx.input_atomic = input_atomic ctx.save_for_backward(*input) with torch.no_grad(), enable_checkpointing(): output = function(input[0] if input_atomic else input) return output @staticmethod def backward(ctx: Context, *grad_output: Tensor,) -> Tuple[Optional[Tensor], ...]: # pragma: no cover output, input_leaf = ctx.recomputed.pop() if isinstance(output, tuple): tensors = output else: tensors = (output,) if any(y.requires_grad for y in tensors): tensors = tuple([x for x in tensors if x.requires_grad]) torch.autograd.backward(tensors, grad_output) grad_input: List[Optional[Tensor]] = [None, None, None, None, None] grad_input.extend(x.grad for x in input_leaf) return tuple(grad_input) class Recompute(torch.autograd.Function): @staticmethod # type: ignore def forward( ctx: Context, phony: Tensor, recomputed: Deque[Recomputed], rng_states: Deque[RNGStates], function: Function, input_atomic: bool, *input: Tensor, ) -> Tensor: ctx.recomputed = recomputed ctx.rng_states = rng_states ctx.function = function ctx.input_atomic = input_atomic ctx.save_for_backward(*input) return phony @staticmethod def backward(ctx: Context, *grad_output: Tensor) -> Tuple[None, ...]: # pragma: no cover input = ctx.saved_tensors input_leaf = tuple(x.detach().requires_grad_(x.requires_grad) for x in input) with restore_rng_states(input[0].device, ctx.rng_states): with torch.enable_grad(), enable_recomputing(): output = ctx.function(input_leaf[0] if ctx.input_atomic else input_leaf) ctx.recomputed.append((output, input_leaf)) grad_input: List[None] = [None, None, None, None, None] grad_input.extend(None for _ in ctx.saved_tensors) return tuple(grad_input)
[ "torch.autograd.backward", "torch.get_rng_state", "torch.no_grad", "torch.enable_grad", "torch.cuda.set_rng_state", "torch.cuda.get_rng_state", "torch.set_rng_state", "torch.random.fork_rng" ]
1.6.0
zhaojuanmao/fairscale
61ece000bd1b70029270e2dccab66ffa2ca16d51
1.6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from threading import Event, Lock, Thread from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import torch from torch import nn from torch.distributed import ProcessGroup, rpc from torch.distributed.distributed_c10d import _get_global_rank from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group from .async_pipe import AsyncPipe from .types import EVENT_LOOP_QUEUE, PipeMessage, TensorOrTensors DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 PipeModel: AsyncPipe PipeResult: TensorOrTensors SizeOrSizes = Union[torch.Size, List[torch.Size]] DtypeOrDtypes = Union[torch.dtype, List[torch.dtype]] def set_device_based_on_group(group: ProcessGroup) -> None: # torch.cuda.set_device(group.rank() % torch.cuda.device_count()) torch.cuda.set_device(torch.distributed.get_rank() % torch.cuda.device_count()) def get_shapes(tensor: TensorOrTensors) -> SizeOrSizes: if isinstance(tensor, torch.Tensor): return tensor.shape else: return [t.shape for t in tensor] def get_dtype(tensor: TensorOrTensors) -> DtypeOrDtypes: if isinstance(tensor, torch.Tensor): return tensor.dtype else: return [t.dtype for t in tensor] def get_global_ranks_from_group(group: ProcessGroup) -> List[int]: return [_get_global_rank(group, r) for r in range(group.size())] class PipeBackRedirect(torch.autograd.Function): @staticmethod # type: ignore def forward(ctx, inputs, dest, event, message, transport, futures): ctx.dest = dest ctx.event = event ctx.message = message ctx.transport = transport ctx.futures = futures return inputs @staticmethod # type: ignore def backward(ctx, *grad): ctx.message.tensors = tuple(grad) ctx.transport.send_message(ctx.message, sync=False, skip_header=True) ctx.event.set() # torch.futures.wait_all(ctx.futures) return (None, None, None, None, None, None) def callback_with_model(callback: Callable[[Any, AsyncPipe], None], ctx: Any) -> None: try: group = get_pipeline_parallel_group() # FIXME(tom) handle dynamic group set_device_based_on_group(group) with PipeModel.lock: callback(ctx, PipeModel) except Exception as e: print(f"callback_with_model got {e}") class PipeRPCWrapper(nn.Module): """A wrapper for Pipe to control the entire pipeline from a single process. Typical usecase would have rank 0 construct `PipeRPCWrapper` and run the training loop as normal, and all other ranks would call `torch.distributed.rpc.shutdown()` To run code on each worker, e.g. to run the optimizer, use `foreach_worker` """ def __init__(self, *args: Any, **kwargs: Any): super().__init__() self.group = cast(ProcessGroup, kwargs.get("group")) or get_pipeline_parallel_group() assert self.group.rank() == 0 self.lock = Lock() if True: assert ( self.group == get_pipeline_parallel_group() ), "Can't pickle groups, so group must be `get_pipeline_parallel_group()`" kwargs["group"] = None else: kwargs["group"] = self.group kwargs["input_device"] = torch.device("cuda", torch.cuda.current_device()) self.model = AsyncPipe(*args, **kwargs) self.worker_map = kwargs["worker_map"] self._foreach_worker(self._register_remote_model, args=(args, kwargs)) self.model.cuda() def _get_rpc_name(self, rank: int) -> str: return self.worker_map[_get_global_rank(self.group, rank)] def _foreach_worker(self, callback: Callable, args: Any = None) -> None: futures = [rpc.rpc_async(self._get_rpc_name(rank), callback, args=args) for rank in range(1, self.group.size())] futures = [f.wait() for f in futures] def foreach_worker( self, callback: Callable[[Any, AsyncPipe], None], ctx: Any = None, *, include_self: bool = False ) -> None: """Call `callback` on each worker with the `ctx` and model local to that worker. e.g. def register_optimizer(ctx, model): args, kwargs = ctx model.optimizer = torch.optim.SGD(model.parameters(), *args, **kwargs) pipe_model = PipeRPCWrapper( ... ) pipe_model.foreach_worker( register_optimizer, ([], {"lr" : 0.01, "momentum" : 0.9}) ) """ self._foreach_worker(callback_with_model, args=(callback, ctx)) if include_self: with self.model.lock: callback(ctx, self.model) def forward(self, tensor: TensorOrTensors) -> TensorOrTensors: # type: ignore shape = get_shapes(tensor) dtype = get_dtype(tensor) if isinstance(tensor, torch.Tensor): num_tensors = 1 else: num_tensors = len(tensor) futures = [ rpc.rpc_async(self._get_rpc_name(rank), self._model_forward, args=(self.model.training, shape, dtype)) for rank in range(1, self.group.size()) ] if self.model.final_stage: return self.model(tensor) else: event = Event() t = Thread(target=self._model_forward_first_stage, args=(tensor, event)) t.start() shape, dtype = futures.pop().wait() dest_rank = self.group.size() - 1 dest = self._get_rpc_name(dest_rank) dest_global_rank = _get_global_rank(self.group, dest_rank) src_global_rank = torch.distributed.get_rank() queue = EVENT_LOOP_QUEUE activations = PipeMessage(dest_global_rank, src_global_rank, queue_name=queue, tensor_count=num_tensors) grads = PipeMessage(src_global_rank, dest_global_rank, queue_name=queue, tensor_count=num_tensors) back_fut = rpc.rpc_async( dest, self._send_result_and_do_backwards, args=(self.model.training, activations, grads) ) futures.append(back_fut) result = self._recv_result(self.model, shape, dtype, activations) if isinstance(result, torch.Tensor): result.requires_grad_() else: for r in result: r.requires_grad_() assert self.model.pipeline return PipeBackRedirect.apply( result, dest_global_rank, event, grads, self.model.pipeline.transport, futures ) @property def final_stage(self) -> bool: return self.model.final_stage @staticmethod def _recv_result( model: AsyncPipe, shapes: SizeOrSizes, dtypes: DtypeOrDtypes, message: PipeMessage ) -> TensorOrTensors: group = get_pipeline_parallel_group() set_device_based_on_group(group) assert model.pipeline transport = model.pipeline.transport if isinstance(shapes, torch.Size): message.tensor_shapes = [cast(torch.Size, shapes)] message.tensor_dtypes = [cast(torch.dtype, dtypes)] message = transport.recv_message_tensors(message) return message.tensors[0] else: message.tensor_shapes = cast(List[torch.Size], shapes) message.tensor_dtypes = cast(List[torch.dtype], dtypes) message = transport.recv_message_tensors(message) return message.tensors @staticmethod def _send_result_and_do_backwards(training: bool, message: PipeMessage, grads_message: PipeMessage) -> None: group = get_pipeline_parallel_group() set_device_based_on_group(group) result = PipeResult model = PipeModel if isinstance(result, torch.Tensor): result = tuple([result]) message.tensors = tuple(result) assert model.pipeline transport = model.pipeline.transport transport.send_message(message, sync=False, skip_header=True) if training: grads_message.tensor_shapes = [r.shape for r in result] grads_message.tensor_dtypes = [r.dtype for r in result] grads_message = transport.recv_message_tensors(grads_message) with model.lock: torch.autograd.backward(result, grads_message.tensors, retain_graph=True) @staticmethod def _register_remote_model(args: List[Any], kwargs: Dict[str, Any]) -> None: group = get_pipeline_parallel_group() # FIXME(tom) handle dynamic group set_device_based_on_group(group) kwargs["group"] = group kwargs["input_device"] = torch.device("cuda", torch.cuda.current_device()) model = AsyncPipe(*args, **kwargs) model.cuda() global PipeModel PipeModel = model @staticmethod def _model_forward( training: bool, shape: torch.Size, dtype: torch.dtype ) -> Optional[Tuple[SizeOrSizes, DtypeOrDtypes]]: try: if isinstance(shape, torch.Size): tensor = torch.empty(shape, dtype=dtype) else: tensor = tuple([torch.empty(s, dtype=d) for s, d in zip(shape, dtype)]) model = PipeModel assert model.group set_device_based_on_group(model.group) model.train(training) result = model(tensor) if model.final_stage: global PipeResult PipeResult = result return (get_shapes(result), get_dtype(result)) return None except Exception as e: print(f"_model_forward got {e}") raise e def _model_forward_first_stage(self, tensor: TensorOrTensors, event: Event) -> None: try: assert self.model.group set_device_based_on_group(self.model.group) self.model(tensor, event=event) except Exception as e: print(f"_model_forward got {e}") raise e
[ "torch.autograd.backward", "torch.cuda.current_device", "torch.cuda.device_count", "torch.distributed.rpc.rpc_async", "torch.distributed.get_rank", "torch.empty", "torch.distributed.distributed_c10d._get_global_rank" ]
1.6.0
zhaojuanmao/fairscale
61ece000bd1b70029270e2dccab66ffa2ca16d51
1.6
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from fairscale.nn.model_parallel import initialize as mpu from fairscale.nn.model_parallel import random from fairscale.nn.model_parallel.random import get_cuda_rng_tracker, model_parallel_cuda_manual_seed from fairscale.utils.testing import dist_init, spawn_for_all_world_sizes def run_test_set_cuda_rng_state(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) if torch.distributed.get_rank() == 0: print("> testing set_rng_state with size {} ...".format(model_parallel_size)) mpu.initialize_model_parallel(model_parallel_size) model_parallel_size = mpu.get_model_parallel_world_size() size = 123 seed = 1234 torch.cuda.manual_seed(1234) tensor = torch.cuda.FloatTensor(size) # Get the state rng_state = torch.cuda.get_rng_state() rng_state_copy = rng_state.clone() # Do some stuff. for _ in range(5): torch.randn(size, out=tensor) result_1 = tensor.clone() assert rng_state.sub(rng_state_copy).max() == 0 assert torch.cuda.get_rng_state().sub(rng_state_copy).max() > 0 # State should be different. new_rng_state = torch.cuda.get_rng_state() max_diff = new_rng_state.sub(rng_state).max() print( " max diff in rng state (should be non-zero) on global rank {}: {}".format( torch.distributed.get_rank(), max_diff ) ) assert max_diff > 0 # Reset the rng state and do the same stuff. random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) result_2 = tensor.clone() # Results should be the same error = result_2.sub(result_1).abs().max() print( " max error in generated tensors (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Input state should have remained intact. error = rng_state.sub(rng_state_copy).max() print( " max error in rng state (should be zero) on global rank {}: {}".format(torch.distributed.get_rank(), error) ) assert error == 0 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def run_test_cuda_rng_tracker(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) if torch.distributed.get_rank() == 0: print("> testing cuda rng tracker with size {} ...".format(model_parallel_size)) mpu.initialize_model_parallel(model_parallel_size) model_parallel_size = mpu.get_model_parallel_world_size() seed_1 = 1234 seed_2 = 4321 size = [12, 21] tensor = torch.cuda.FloatTensor(size) # Set to seed_1 and generate two tensors. torch.cuda.manual_seed(seed_1) torch.randn(size, out=tensor) target_11 = tensor.clone() torch.randn(size, out=tensor) target_12 = tensor.clone() # Set to seed_2 and generate two tensors. torch.cuda.manual_seed(seed_2) torch.randn(size, out=tensor) target_21 = tensor.clone() torch.randn(size, out=tensor) target_22 = tensor.clone() # Now if we interleave seed_1 and seed_2, # we should still get the same tensors torch.cuda.manual_seed(seed_1) get_cuda_rng_tracker().add("test", seed_2) torch.randn(size, out=tensor) result_11 = tensor.clone() with get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_21 = tensor.clone() torch.randn(size, out=tensor) result_12 = tensor.clone() with get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_22 = tensor.clone() diff = result_11.sub(result_21).abs().max() diff = min(diff, result_12.sub(result_22).abs().max()) print( " max diff in generated tensors (should be non-zero) on global rank {}: {}".format( torch.distributed.get_rank(), diff ) ) assert diff > 1.0e-6 error = max(result_11.sub(target_11).abs().max(), result_12.sub(target_12).abs().max()) error = max(error, result_21.sub(target_21).abs().max()) error = max(error, result_22.sub(target_22).abs().max()) print( " max error in generated tensors (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Reset the tracker get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def run_test_model_parallel_cuda_manual_seed(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) if torch.distributed.get_rank() == 0: print("> testing model parallel cuda manual seed with size {} ...".format(model_parallel_size)) mpu.initialize_model_parallel(model_parallel_size) model_parallel_size = mpu.get_model_parallel_world_size() model_parallel_cuda_manual_seed(12345) assert torch.cuda.initial_seed() == 12345 with get_cuda_rng_tracker().fork(): assert torch.cuda.initial_seed() == (12345 + 2718 + mpu.get_model_parallel_rank()) # Reset the tracker get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def test_set_cuda_rng_state(): spawn_for_all_world_sizes(run_test_set_cuda_rng_state) def test_cuda_rng_tracker(): spawn_for_all_world_sizes(run_test_cuda_rng_tracker) def test_model_parallel_cuda_manual_seed(): spawn_for_all_world_sizes(run_test_model_parallel_cuda_manual_seed)
[ "torch.cuda.manual_seed", "torch.cuda.get_rng_state", "torch.cuda.initial_seed", "torch.cuda.FloatTensor", "torch.distributed.get_rank", "torch.distributed.barrier", "torch.randn" ]
1.6.0
zhaojuanmao/fairscale
61ece000bd1b70029270e2dccab66ffa2ca16d51
1.6
import torch import torch.nn as nn import random as rd import sys sys.path.insert(0, 'networks') from Attention import TempAttention from memory_rand import MemoryRamTwoStreamModule, MemoryRamModule, MMModule class HME(nn.Module): def __init__(self, vid_encoder, qns_encoder, ans_decoder, max_len_v, max_len_q, device, input_drop_p=0.2): """ Heterogeneous memory enhanced multimodal attention model for video question answering (CVPR19) """ super(HME, self).__init__() self.vid_encoder = vid_encoder self.qns_encoder = qns_encoder self.ans_decoder = ans_decoder dim = qns_encoder.dim_hidden self.temp_att_a = TempAttention(dim * 2, dim * 2, hidden_dim=256) self.temp_att_m = TempAttention(dim * 2, dim * 2, hidden_dim=256) self.mrm_vid = MemoryRamTwoStreamModule(dim, dim, max_len_v, device) self.mrm_txt = MemoryRamModule(dim, dim, max_len_q, device) self.mm_module_v1 = MMModule(dim, input_drop_p, device) self.linear_vid = nn.Linear(dim*2, dim) self.linear_qns = nn.Linear(dim*2, dim) self.linear_mem = nn.Linear(dim*2, dim) self.vq2word_hme = nn.Linear(dim*3, dim*2) self._init_weights() self.device = device def _init_weights(self): """ initialize the linear weights :return: """ nn.init.xavier_normal_(self.linear_vid.weight) nn.init.xavier_normal_(self.linear_qns.weight) nn.init.xavier_normal_(self.linear_mem.weight) nn.init.xavier_normal_(self.vq2word_hme.weight) def forward(self, vid_feats, qns, qns_lengths, ans, ans_lengths, teacher_force_ratio=0.5, iter_num=3, mode='train'): """ """ outputs_app_l1, outputs_app_l2, outputs_motion_l1, outputs_motion_l2 = self.vid_encoder(vid_feats) #(batch_size, fnum, feat_dim) outputs_app = torch.cat((outputs_app_l1, outputs_app_l2), dim=-1) outputs_motion = torch.cat((outputs_motion_l1, outputs_motion_l2), dim=-1) batch_size, fnum, vid_feat_dim = outputs_app.size() qns_output, qns_hidden = self.qns_encoder(qns, qns_lengths) # print(qns_output.shape, qns_hidden[0].shape) #torch.Size([10, 23, 256]) torch.Size([2, 10, 256]) # qns_output = qns_output.permute(1, 0, 2) batch_size, seq_len, qns_feat_dim = qns_output.size() qns_embed = qns_hidden[0].permute(1, 0, 2).contiguous().view(batch_size, -1) #(batch_size, feat_dim) # Apply temporal attention att_app, beta_app = self.temp_att_a(qns_embed, outputs_app) att_motion, beta_motion = self.temp_att_m(qns_embed, outputs_motion) tmp_app_motion = torch.cat((outputs_app_l2[:, -1, :], outputs_motion_l2[:, -1, :]), dim=-1) mem_output = torch.zeros(batch_size, vid_feat_dim).to(self.device) for bs in range(batch_size): mem_ram_vid = self.mrm_vid(outputs_app_l2[bs], outputs_motion_l2[bs], fnum) cur_qns = qns_output[bs][:qns_lengths[bs]] mem_ram_txt = self.mrm_txt(cur_qns, qns_lengths[bs]) #should remove padded zeros mem_output[bs] = self.mm_module_v1(tmp_app_motion[bs].unsqueeze(0), mem_ram_vid, mem_ram_txt, iter_num) """ (64, 256) (22, 256) (1, 512) """ app_trans = torch.tanh(self.linear_vid(att_app)) motion_trans = torch.tanh(self.linear_vid(att_motion)) mem_trans = torch.tanh(self.linear_mem(mem_output)) encoder_outputs = torch.cat((app_trans, motion_trans, mem_trans), dim=1) decoder_inputs = self.vq2word_hme(encoder_outputs) hidden = qns_hidden if mode == 'train': vocab_size = self.ans_decoder.vocab_size ans_len = ans.shape[1] input = ans[:, 0] outputs = torch.zeros(batch_size, ans_len, vocab_size).to(self.device) for t in range(0, ans_len): output, hidden = self.ans_decoder(decoder_inputs, hidden, input) outputs[:, t] = output teacher_force = rd.random() < teacher_force_ratio top1 = output.argmax(1) input = ans[:, t] if teacher_force else top1 else: start = torch.LongTensor([1] * batch_size).to(self.device) outputs = self.ans_decoder.sample(decoder_inputs, hidden, start) return outputs
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.LongTensor", "torch.nn.init.xavier_normal_" ]
1.6.0
doc-doc/NExT-OE
a45d81a48ab5ccc45ff6f7bea60597cc59bc546e
1.5
from torch import nn from torch.autograd import Variable import torch from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence import numpy as np # from models.vgg_tro_channel1 import vgg16_bn from models.vgg_tro_channel3 import vgg16_bn, vgg19_bn # torch.cuda.set_device(1) DROP_OUT = False LSTM = False SUM_UP = True PRE_TRAIN_VGG = True class Encoder(nn.Module): def __init__(self, hidden_size, height, width, bgru, step, flip): super(Encoder, self).__init__() self.hidden_size = hidden_size self.height = height self.width = width self.bi = bgru self.step = step self.flip = flip self.n_layers = 2 self.dropout = 0.5 # self.layer = vgg16_bn(PRE_TRAIN_VGG) self.layer = vgg19_bn(PRE_TRAIN_VGG) if DROP_OUT: self.layer_dropout = nn.Dropout2d(p=0.5) if self.step is not None: # self.output_proj = nn.Linear((((((self.height-2)//2)-2)//2-2-2-2)//2)*128*self.step, self.hidden_size) self.output_proj = nn.Linear( self.height // 16 * 512 * self.step, self.height // 16 * 512 ) if LSTM: RNN = nn.LSTM else: RNN = nn.GRU if self.bi: # 8: 3 MaxPool->2**3 128: last hidden_size of layer4 self.rnn = RNN( self.height // 16 * 512, self.hidden_size, self.n_layers, dropout=self.dropout, bidirectional=True, ) if SUM_UP: self.enc_out_merge = ( lambda x: x[:, :, : x.shape[-1] // 2] + x[:, :, x.shape[-1] // 2 :] ) self.enc_hidden_merge = lambda x: (x[0] + x[1]).unsqueeze(0) else: self.rnn = RNN( self.height // 16 * 512, self.hidden_size, self.n_layers, dropout=self.dropout, bidirectional=False, ) # (32, 1, 80, 1400) def forward(self, in_data, in_data_len, hidden=None): batch_size = in_data.shape[0] out = self.layer(in_data) # torch.Size([32, 512, 4, 63]) if DROP_OUT and self.training: out = self.layer_dropout(out) # out.register_hook(print) out = out.permute(3, 0, 2, 1) # (width, batch, height, channels) out.contiguous() # out = out.view(-1, batch_size, (((((self.height-2)//2)-2)//2-2-2-2)//2)*128) # (t, b, f) (173, 32, 1024) out = out.reshape(-1, batch_size, self.height // 16 * 512) if self.step is not None: time_step, batch_size, n_feature = out.shape[0], out.shape[1], out.shape[2] out_short = Variable( torch.zeros(time_step // self.step, batch_size, n_feature * self.step) ).cuda() # t//STEP, b, f*STEP for i in range(0, time_step // self.step): part_out = [out[j] for j in range(i * self.step, (i + 1) * self.step)] # reverse the image feature map out_short[i] = torch.cat(part_out, 1) # b, f*STEP out = self.output_proj(out_short) # t//STEP, b, hidden_size width = out.shape[0] src_len = in_data_len.numpy() * (width / self.width) src_len = src_len + 0.999 # in case of 0 length value from float to int src_len = src_len.astype("int") out = pack_padded_sequence(out, src_len.tolist(), batch_first=False) output, hidden = self.rnn(out, hidden) # output: t, b, f*2 hidden: 2, b, f output, output_len = pad_packed_sequence(output, batch_first=False) if self.bi and SUM_UP: output = self.enc_out_merge(output) # hidden = self.enc_hidden_merge(hidden) # # output: t, b, f hidden: b, f odd_idx = [1, 3, 5, 7, 9, 11] hidden_idx = odd_idx[: self.n_layers] final_hidden = hidden[hidden_idx] # if self.flip: # hidden = output[-1] # #hidden = hidden.permute(1, 0, 2) # b, 2, f # #hidden = hidden.contiguous().view(batch_size, -1) # b, f*2 # else: # hidden = output[0] # b, f*2 return output, final_hidden # t, b, f*2 b, f*2 # matrix: b, c, h, w lens: list size of batch_size def conv_mask(self, matrix, lens): lens = np.array(lens) width = matrix.shape[-1] lens2 = lens * (width / self.width) lens2 = lens2 + 0.999 # in case le == 0 lens2 = lens2.astype("int") matrix_new = matrix.permute(0, 3, 1, 2) # b, w, c, h matrix_out = Variable(torch.zeros(matrix_new.shape)).cuda() for i, le in enumerate(lens2): if self.flip: matrix_out[i, -le:] = matrix_new[i, -le:] else: matrix_out[i, :le] = matrix_new[i, :le] matrix_out = matrix_out.permute(0, 2, 3, 1) # b, c, h, w return matrix_out if __name__ == "__main__": print(vgg16_bn())
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.nn.utils.rnn.pad_packed_sequence", "torch.nn.Dropout2d" ]
1.5.1
MattAlexMiracle/SmartPatch
c485cb433d8e085d6eae10a335ee19f5e6c1a41c
1.7
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 3 13:23:59 2021 @author: th """ import torch from torch.nn import ReLU, Linear, Softmax, SmoothL1Loss, Tanh, LeakyReLU from torch_geometric.nn import GCNConv, global_max_pool, global_mean_pool, SGConv, GNNExplainer, SAGEConv, GATConv, FastRGCNConv, GraphConv import numpy as np import matplotlib.pyplot as plt import sys import torch.nn.functional as F import torch_optimizer as optim import gnn_torch_models import random from sklearn.preprocessing import StandardScaler as SS # torch.set_default_dtype(torch.float) def standardscaler_transform(sc_feat_pure): scaler = SS() scaler.fit(sc_feat_pure) transformed=scaler.transform(sc_feat_pure) return transformed, scaler def batch_split(nodes_cp, full_index, ii): test_x = nodes_cp[ii] train_idx=np.setxor1d(full_index, ii) train_x = nodes_cp[train_idx] if(len(train_x[0].shape)==1): train_concat = flatten_list_1d(train_x) else: train_concat = [] for jj, x in enumerate(train_x): if(jj==0): train_concat = x else: train_concat= np.vstack((train_concat, x)) return train_concat, test_x def make_diag_batch_FC(FCs): count=0 for FC in FCs: count+=FC.shape[0] #gen mat batch_FC = np.zeros((count,count)) size_log = 0 for FC in FCs: size = FC.shape[0] batch_FC[size_log:size_log+size, size_log:size_log+size]=FC size_log += size return batch_FC def flatten_list_1d(act_ratio): ph = np.empty((1,0)) ph = np.squeeze(ph) for entry in act_ratio: ph = np.concatenate((ph, entry)) return ph def batch_split_x(nodes_cp, full_index, ii, chip_ids): nodes_cp = np.array(nodes_cp) test_x = nodes_cp[ii] train_idx=np.setxor1d(full_index, chip_ids) train_x = nodes_cp[train_idx] if(len(train_x[0].shape)==1): train_concat = flatten_list_1d(train_x) else: train_concat = [] for jj, x in enumerate(train_x): if(jj==0): train_concat = x else: train_concat= np.vstack((train_concat, x)) return train_concat, test_x def evaluate(out, labels): """ Calculates the accuracy between the prediction and the ground truth. :param out: predicted outputs of the explainer :param labels: ground truth of the data :returns: int accuracy """ acc = torch.mean(torch.square(out-labels)) return acc def evaluate_mae(out, labels): """ Calculates the accuracy between the prediction and the ground truth. :param out: predicted outputs of the explainer :param labels: ground truth of the data :returns: int accuracy """ acc = torch.mean(torch.abs(out-labels)) return acc def evaluate_acc(out, labels): """ Calculates the accuracy between the prediction and the ground truth. :param out: predicted outputs of the explainer :param labels: ground truth of the data :returns: int accuracy """ out_cl = torch.max(out,1)[1] lab_cl = torch.max(labels,1)[1] diff_sum = torch.sum(torch.abs(out_cl-lab_cl)) acc = 1- (diff_sum/out.shape[0]) return acc def gen_gridparams(dropout_probs, learning_rates, weight_decays, hidden_dims): fit_param_list = [] for prob in dropout_probs: for rate in learning_rates: for decay in weight_decays: for hd in hidden_dims: fit_params= dict() fit_params['dropout_prob']=prob fit_params['learning_rate']=rate fit_params['weight_decay']=decay fit_params['hidden_dims']=hd fit_param_list.append(fit_params) return fit_param_list def run_gridsearch_batch_x(nodes, FCs, target_frs, epoch_n, iter_n, model_string, fit_param_list, device, chip_ids): fit_result=[] for entry in fit_param_list: fit_params= dict() fit_params['dropout_prob']=entry['dropout_prob'] fit_params['learning_rate']=entry['learning_rate'] fit_params['weight_decay']=entry['weight_decay'] fit_params['hidden_dims']=entry['hidden_dims'] fit_params['fit_result']=run_GNN_batch_x(nodes, FCs, target_frs, epoch_n, iter_n, model_string, fit_params, device, chip_ids, 1) fit_result.append(fit_params) return fit_result def standard_scale(features,train_idx, validate_idx, test_idx): features_wip = np.copy(features) if(len(features_wip.shape)==1): X_train, X_scaler = standardscaler_transform(features_wip[train_idx].reshape(-1,1)) X_validate = X_scaler.transform(features_wip[validate_idx].reshape(-1,1)) X_test = X_scaler.transform(features_wip[test_idx].reshape(-1,1)) features_wip[train_idx] = np.squeeze(X_train) features_wip[validate_idx] = np.squeeze(X_validate) features_wip[test_idx] = np.squeeze(X_test) else: X_train, X_scaler = standardscaler_transform(features_wip[train_idx, :]) X_validate = X_scaler.transform(features_wip[validate_idx, :]) X_test = X_scaler.transform(features_wip[test_idx, :]) features_wip[train_idx, :] = X_train features_wip[validate_idx, :] = X_validate features_wip[test_idx, :] = X_test return features_wip def make_rgcn_mat(train_FC, device): edge_idx = np.array(np.where(train_FC!=0)) edge_idx = torch.tensor(edge_idx, device= device) edge_type = train_FC[np.where(train_FC!=0)] types = np.unique(edge_type) edge_class = np.squeeze(np.zeros((edge_type.shape[0],1))) for jj, typ in enumerate(types): idx = np.where(edge_type==typ)[0] edge_class[idx]=jj edge_weight = torch.tensor(edge_class, device=device).type(torch.LongTensor) return edge_idx, edge_weight def match_network_param(sage_params_uniq, chip_ids): uniq_chip = np.unique(chip_ids) uniq_indices=[] for uniq_c in uniq_chip: indices = np.where(np.array(chip_ids)==uniq_c)[0] uniq_indices.append(indices[0]) sage_params = dict() for k,v in sage_params_uniq.items(): sage_params[k] = [] # get the sequence straight seq = np.argsort(uniq_indices) for k,v in sage_params_uniq.items(): for zz, idx in enumerate(seq): st_p=uniq_indices[idx] n_same = len(np.where(np.array(chip_ids)==np.array(chip_ids[st_p]))[0]) for _ in range(n_same): sage_params[k].append(sage_params_uniq[k][zz]) return sage_params def run_GNN_batch_x(nodes, FCs, target_frs, n_epoch, iter_n, model_string, fit_params_list, device, chip_ids, gridsearch=0): # compute GCN assuming same nodes #seeds np.random.seed(42) random.seed(42) num_features= nodes[0].shape[1] #number of classes if(len(target_frs[0].shape)==1): num_classes=1 else: num_classes = target_frs[0].shape[1] per_network=[] for ii in range(len(target_frs)): train_acc_vec=[] train_mae_vec=[] model_params_vec=[] test_acc_vec=[] test_mae_vec=[] validate_curves_list =[] train_curves_list=[] # prep x,y target_cp = np.copy(target_frs) full_index= np.arange(len(target_frs)) #get target y first test_y = target_cp[ii] # make x nodes_cp = np.copy(nodes) # FC FC_cp = np.copy(FCs) #params if(gridsearch==0): fit_params = fit_params_list[ii] else: fit_params = fit_params_list for iter_ in range(iter_n): # targets test_y = target_cp[ii] # val_y = target_cp[val_idx] #get idx from same chips same_chip = np.where(np.array(chip_ids) == chip_ids[ii])[0] if(gridsearch==0): train_idx=np.setxor1d(full_index, same_chip) # got rid of it else: train_idx = np.setxor1d(full_index, ii) train_y = target_cp[train_idx] train_y = flatten_list_1d(train_y) # make x #features (input) if(gridsearch==0): train_x, test_x= batch_split_x(nodes_cp, full_index, ii, same_chip) #identical function to wp1_data_description, wp1_data class else: train_x, test_x= batch_split(nodes_cp, full_index, ii) #stack train and val for scaling #scale them scaled_x, train_scaler_x=standardscaler_transform(train_x) test_x = train_scaler_x.transform(test_x) train_x = train_scaler_x.transform(train_x) # val_x = train_scaler_x.transform(val_x) # scale y scaled_y, train_scaler_y=standardscaler_transform(train_y.reshape(-1,1)) train_y = train_scaler_y.transform(train_y.reshape(-1,1)) test_y = train_scaler_y.transform(test_y.reshape(-1,1)) # val_y = train_scaler_y.transform(val_y.reshape(-1,1)) # FCs train_FC= make_diag_batch_FC(FC_cp[train_idx]) test_FC = FC_cp[ii] # put into cuda train_x = torch.tensor(train_x, device = device, dtype=float) train_y = torch.tensor(train_y, device = device, dtype=float) test_x = torch.tensor(test_x, device = device, dtype=float) test_y = torch.tensor(test_y, device = device, dtype=float) if(num_classes==1): train_y = torch.reshape(train_y, (train_y.shape[0], 1)) test_y = torch.reshape(test_y, (test_y.shape[0], 1)) edge_idx= dict() edge_weight =dict() edge_idx['train'] = np.array(np.where(train_FC>0)) edge_idx['train'] = torch.tensor(edge_idx['train'], device = device) edge_weight['train'] = train_FC[np.where(train_FC>0)] edge_weight['train'] = torch.tensor(edge_weight['train'], device = device, dtype=float) #prep for testing edge_idx['test'] = np.array(np.where(test_FC>0)) edge_idx['test'] = torch.tensor(edge_idx['test'], device = device) edge_weight['test'] = test_FC[np.where(test_FC>0)] edge_weight['test'] = torch.tensor(edge_weight['test'], device = device, dtype=float) model = gnn_torch_models.return_model(model_string, num_features, num_classes, fit_params['dropout_prob'], fit_params['hidden_dims']) model.to(device, dtype=float) if('rgcn' in model_string): edge_idx= dict() edge_weight =dict() edge_idx['train'], edge_weight['train'] = make_rgcn_mat(train_FC, device) edge_idx['test'], edge_weight['test'] = make_rgcn_mat(test_FC, device) edge_idx['train'] = torch.tensor(edge_idx['train'], device= device) edge_idx['test'] = torch.tensor(edge_idx['test'], device= device) edge_weight['train'] = torch.tensor(edge_weight['train'], device= device, dtype=float) edge_weight['test'] = torch.tensor(edge_weight['test'], device= device, dtype=float) # edge_idx['val'], edge_weight['val'] = make_rgcn_mat(val_FC, device) optimizer = torch.optim.Adam(model.parameters(), lr=fit_params['learning_rate'], weight_decay= fit_params['weight_decay']) if(model_string == 'gcn_class'): criterion = torch.nn.CrossEntropyLoss() else: criterion = torch.nn.MSELoss() train_acc_curve=[] validate_acc_curve=[] #epochs if(gridsearch==0): n_epoch = fit_params['bs_epoch'] for epoch in range(n_epoch): model.train() optimizer.zero_grad() out = model.forward(train_x, edge_idx['train'], edge_weight['train']) # forward loss = criterion(out, train_y) loss.backward() # torch.nn.utils.clip_grad_norm_(model.parameters(), 2.0) optimizer.step() # eval flag model.eval() with torch.no_grad(): out=dict() out['train'] = model(train_x, edge_idx['train'], edge_weight['train']) out['test'] = model(test_x, edge_idx['test'], edge_weight['test']) # out['test'] = model(test_x, edge_idx['test'], edge_weight['test']) # Evaluate train mse=dict() mae=dict() mse['train'] = evaluate(out['train'], train_y) mae['train'] = evaluate_mae(out['train'], train_y) mse['test'] = evaluate(out['test'], test_y) mae['test'] = evaluate_mae(out['test'], test_y) if(epoch% 50==0): print(f"Epoch: {epoch}, train_acc: {mse['train']:.4f}, validate_acc : {mse['test']:.4f}, LR : {optimizer.param_groups[0]['lr']:.8f}") train_acc_curve.append(mse['train'].cpu().numpy()) validate_acc_curve.append(mse['test'].cpu().numpy()) # for each iter train_acc_vec.append(mse['train'].cpu().numpy()) train_mae_vec.append(mae['train'].cpu().numpy()) validate_curves_list.append(np.array(validate_acc_curve)) train_curves_list.append(np.array(train_acc_curve)) model_dict=dict() for k,v in model.state_dict().items(): model_dict[k] =v.cpu() if(gridsearch==0): model_params_vec.append(model_dict) # test with torch.no_grad(): out['test'] = model(test_x, edge_idx['test'], edge_weight['test']) mse['test'] = evaluate(out['test'], test_y) mae['test'] = evaluate_mae(out['test'], test_y) print(f"iteration: {iter_}, test_acc: {mse['test']:.4f}") test_acc_vec.append(mse['test'].cpu().numpy()) test_mae_vec.append(mae['test'].cpu().numpy()) result = dict() result['mse_train']=np.array(train_acc_vec) result['mae_train']=np.array(train_mae_vec) result['mse_test']= np.array(test_acc_vec) result['mae_test'] = np.array(test_mae_vec) result['train_curve']=train_curves_list result['validate_curve']=validate_curves_list per_network.append(result) return per_network def simple_forward_model(model, input_vec, adj_mat, cuda, gpu_id): x = torch.tensor(input_vec) # lab_out = torch.tensor(target_vec) # lab_out = torch.reshape(lab_out, (adj_mat.shape[0], 1)) edge_idx = np.array(np.where(adj_mat>0)) edge_idx = torch.tensor(edge_idx) edge_weight = adj_mat[np.where(adj_mat>0)] edge_weight = torch.tensor(edge_weight) if(cuda): # lab_out=lab_out.cuda(gpu_id) x = x.cuda(gpu_id) edge_idx = edge_idx.cuda(gpu_id) edge_weight=edge_weight.cuda(gpu_id) model = model.cuda(gpu_id) with torch.no_grad(): out = model.forward(x, edge_idx, edge_weight) return out.cpu().detach().numpy()
[ "torch.nn.CrossEntropyLoss", "torch.reshape", "torch.abs", "torch.tensor", "torch.max", "torch.square", "torch.nn.MSELoss", "torch.no_grad" ]
1.7.1
arahangua/gnn_prediction_sn
3b3b8da07ee920c94f1a88fab87472860eec6322
1.9
import os import json import random import argparse from tqdm import tqdm import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as weight_init from torch.utils.data import Dataset, DataLoader DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) class OutlierDataset(Dataset): def __init__(self, X): self.X = X.astype('float') def __getitem__(self, index): x = self.X[index, :] x = torch.tensor(x, dtype=torch.float32) return index, x def __len__(self): return len(self.X) class Model(nn.Module): def __init__(self, input_size, dropout=0.5): super(Model, self).__init__() self.dropout = dropout if self.dropout > 0: self.dropout = nn.Dropout(dropout) self.encode_w1 = nn.Linear(input_size, 64) self.encode_w2 = nn.Linear(64, 32) self.decode_w1 = nn.Linear(32, 64) self.decode_w2 = nn.Linear(64, input_size) def encoder(self, x): x = self.encode_w1(x) x = torch.relu(x) x = self.encode_w2(x) x = torch.relu(x) if self.dropout: x = self.dropout(x) return x def decoder(self, x): x = self.decode_w1(x) x = torch.relu(x) x = self.decode_w2(x) return x def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x class Detector(object): def __init__( self, lr=3e-3, weight_decay=1e-5, batch_size=128, epochs=10 ): self.lr = lr self.weight_decay = weight_decay self.batch_size = batch_size self.epochs = epochs self.threshold = 0.5 def cal_recon_err(self, preds, targets): recon_err = F.mse_loss(preds, targets, reduction='none').mean(axis=-1) return recon_err def cal_loss(self, preds, targets): loss_mse = self.cal_recon_err(preds, targets) return loss_mse.mean() def run_batch(self, batch, train): idx, x = batch inputs = x.to(DEVICE) outputs = self.model(inputs) if train: self.optimizer.zero_grad() train_err = self.cal_recon_err(outputs, inputs) loss = train_err.mean() loss.backward() self.optimizer.step() else: loss = self.cal_loss(outputs, inputs) loss = loss.item() bsz = inputs.size(0) return loss * bsz, bsz, train_err.detach().cpu().tolist() def train(self, epoch=None): self.model.train() total_loss = 0 total_cnt = 0 train_errs = [] for batch_idx, batch in enumerate(self.train_iter): loss, bsz, train_err = self.run_batch(batch, train=True) total_loss += loss total_cnt += bsz train_errs += train_err status = {'total_loss':total_loss/total_cnt} mean = np.mean(train_errs) std = np.std(train_errs) self.threshold = mean + 2*std return status def get_model(self, input_size): self.model = Model(input_size=input_size).to(DEVICE) self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) def fit(self, X): dataset = OutlierDataset(X) self.train_iter = DataLoader(dataset=dataset, batch_size=self.batch_size, shuffle=True) self.get_model(X.shape[1]) wait = 0 best_loss = 1e9 iteration = tqdm(range(1, self.epochs + 1)) for epoch in iteration: epoch_status = self.train(epoch) if best_loss > epoch_status['total_loss']: best_loss = epoch_status['total_loss'] wait = 0 else: wait += 1 if wait > 3: break return self def extract(self, X): dataset = OutlierDataset(X) outlier_iter = DataLoader(dataset=dataset, batch_size=self.batch_size) outlier_idxs = [] self.model.eval() with torch.no_grad(): for batch in outlier_iter: idx, x = batch inputs = x.to(DEVICE) outputs = self.model(inputs) recon_err = self.cal_recon_err(outputs, inputs) outlier_idx = recon_err > self.threshold outlier_idx = idx[outlier_idx] outlier_idxs += outlier_idx.tolist() return outlier_idxs def fit_extract(self, X, **fit_params): return self.fit(X, **fit_params).extract(X) class OutlierDetector(object): def __init__(self, input_fname, result_path): self.get_data(input_fname) self.input_fname = input_fname self.result_path = result_path def get_data(self, input_fname): data = pd.read_csv(input_fname) num_idx = data.dtypes[data.dtypes != 'object'].index num_vars = [data.columns.get_loc(idx) for idx in num_idx] cat_vars = list(set(range(data.shape[1])) - set(num_vars)) self.data = data self.num_vars = num_vars self.cat_vars = cat_vars def write_json(self, outlier_idxs): obj = {"result": dict()} obj["result"]["num_outliers"] = len(outlier_idxs) obj["result"]["outlier_indices"] = outlier_idxs result_json_fname = os.path.join(self.result_path, "result.json") with open(result_json_fname, "w") as json_file: json.dump(obj, json_file) def run(self): if not os.path.isdir(self.result_path): os.makedirs(self.result_path) X_noise = self.data.iloc[:, self.num_vars] X_noise = StandardScaler().fit_transform(X_noise) detector = Detector() outlier_idxs = detector.fit_extract(X_noise) self.write_json(outlier_idxs) n = self.data.shape[0] idxs = list(range(n)) clear_idxs = list(set(idxs) - set(outlier_idxs)) result_csv_fname = os.path.join(self.result_path, 'result.csv') self.data.iloc[clear_idxs, :].to_csv(result_csv_fname, index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_fname', type=str, default='bank.csv') parser.add_argument('--result_path', type=str, default='bank_outlier') args = parser.parse_args() detector = OutlierDetector(input_fname=args.input_fname, result_path=args.result_path) detector.run()
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cuda.manual_seed_all", "torch.relu", "torch.no_grad", "torch.manual_seed", "torch.nn.functional.mse_loss", "torch.cuda.is_available", "torch.tensor", "torch.utils.data.DataLoader" ]
1.9.0
dohnlee/qufa2021
5fb42caee09ec228358e49768e32c75e3c0094ce
1.1
# -*- coding: UTF-8 -*- # @Author : Chenyang Wang # @Email : [email protected] import os import logging import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from datetime import datetime from models.BaseModel import SequentialModel class TiMiRecLight(SequentialModel): runner = 'TiMiRunner' extra_log_args = ['emb_size', 'attn_size', 'K', 'temp', 'add_pos', 'n_layers'] @staticmethod def parse_model_args(parser): parser.add_argument('--emb_size', type=int, default=64, help='Size of embedding vectors.') parser.add_argument('--attn_size', type=int, default=8, help='Size of attention vectors.') parser.add_argument('--K', type=int, default=2, help='Number of hidden intent.') parser.add_argument('--add_pos', type=int, default=1, help='Whether add position embedding.') parser.add_argument('--temp', type=float, default=1, help='Temperature in knowledge distillation loss.') parser.add_argument('--n_layers', type=int, default=1, help='Number of the projection layer.') parser.add_argument('--stage', type=int, default=3, help='Stage of training: 1-pretrain_extractor, 2-pretrain_predictor, 3-joint_finetune.') return SequentialModel.parse_model_args(parser) def __init__(self, args, corpus): self.emb_size = args.emb_size self.attn_size = args.attn_size self.K = args.K self.add_pos = args.add_pos self.temp = args.temp self.n_layers = args.n_layers self.stage = args.stage self.max_his = args.history_max super().__init__(args, corpus) self.extractor_path = '../model/TiMiRecLight/Extractor__{}__{}__emb_size={}__K={}__add_pos={}.pt'\ .format(corpus.dataset, args.random_seed, self.emb_size, self.K, self.add_pos) self.predictor_path = '../model/TiMiRecLight/Predictor__{}__{}__emb_size={}.pt' \ .format(corpus.dataset, args.random_seed, self.emb_size) if self.stage == 1: self.model_path = self.extractor_path elif self.stage == 2: self.model_path = self.predictor_path def _define_params(self): if self.stage in [1, 3]: self.interest_extractor = MultiInterestExtractor( self.K, self.item_num, self.emb_size, self.attn_size, self.max_his, self.add_pos) if self.stage in [2, 3]: self.intent_predictor = IntentPredictor(self.item_num, self.emb_size) if self.stage == 3: self.proj = nn.Sequential() for i, _ in enumerate(range(self.n_layers - 1)): self.proj.add_module('proj_' + str(i), nn.Linear(self.emb_size, self.emb_size)) self.proj.add_module('dropout_' + str(i), nn.Dropout(p=0.5)) self.proj.add_module('relu_' + str(i), nn.ReLU(inplace=True)) self.proj.add_module('proj_final', nn.Linear(self.emb_size, self.K)) def load_model(self, model_path=None): if model_path is None: model_path = self.model_path model_dict = self.state_dict() state_dict = torch.load(model_path) exist_state_dict = {k: v for k, v in state_dict.items() if k in model_dict} model_dict.update(exist_state_dict) self.load_state_dict(model_dict) logging.info('Load model from ' + model_path) def actions_before_train(self): if self.stage == 3 and os.path.exists(self.extractor_path): self.load_model(self.extractor_path) # self.load_model(self.predictor_path) return logging.info('Train from scratch!') @staticmethod def similarity(a, b): a = F.normalize(a, dim=-1) b = F.normalize(b, dim=-1) return (a * b).sum(dim=-1) @staticmethod def js_div(p, q): kl = nn.KLDivLoss(reduction='none') p, q = p.softmax(-1), q.softmax(-1) log_mean = ((p + q) / 2).log() js = (kl(log_mean, p) + kl(log_mean, q)) / 2 return js def forward(self, feed_dict): self.check_list = [] i_ids = feed_dict['item_id'] # bsz, -1 history = feed_dict['history_items'] # bsz, max_his + 1 lengths = feed_dict['lengths'] # bsz batch_size, seq_len = history.shape out_dict = dict() if self.stage == 1: # pretrain extractor interest_vectors = self.interest_extractor(history, lengths) # bsz, K, emb i_vectors = self.interest_extractor.i_embeddings(i_ids) if feed_dict['phase'] == 'train': target_vector = i_vectors[:, 0] # bsz, emb target_intent = (interest_vectors * target_vector[:, None, :]).sum(-1) # bsz, K idx_select = target_intent.max(-1)[1] # bsz user_vector = interest_vectors[torch.arange(batch_size), idx_select, :] # bsz, emb prediction = (user_vector[:, None, :] * i_vectors).sum(-1) else: prediction = (interest_vectors[:, None, :, :] * i_vectors[:, :, None, :]).sum(-1) # bsz, -1, K prediction = prediction.max(-1)[0] # bsz, -1 elif self.stage == 2: # pretrain predictor his_vector = self.intent_predictor(history, lengths) i_vectors = self.intent_predictor.i_embeddings(i_ids) prediction = (his_vector[:, None, :] * i_vectors).sum(-1) else: # finetune interest_vectors = self.interest_extractor(history, lengths) # bsz, K, emb i_vectors = self.interest_extractor.i_embeddings(i_ids) his_vector = self.intent_predictor(history, lengths) # bsz, K # pred_intent = self.similarity(interest_vectors.detach(), his_vector.unsqueeze(1)) # bsz, K pred_intent = self.proj(his_vector) # bsz, K user_vector = (interest_vectors * pred_intent.softmax(-1)[:, :, None]).sum(-2) # bsz, emb if feed_dict['phase'] == 'train': target_vector = i_vectors[:, 0] # bsz, emb target_intent = self.similarity(interest_vectors, target_vector.unsqueeze(1)) # bsz, K # idx_select = pred_intent.max(-1)[1] # bsz # user_vector = interest_vectors[torch.arange(batch_size), idx_select, :] # bsz, emb out_dict['pred_intent'] = pred_intent out_dict['target_intent'] = target_intent self.check_list.append(('intent', pred_intent.softmax(-1))) self.check_list.append(('target', target_intent.softmax(-1))) prediction = (user_vector[:, None, :] * i_vectors).sum(-1) out_dict['prediction'] = prediction.view(batch_size, -1) # For JS divergence analysis if self.stage != 2 and feed_dict['phase'] == 'test': target_vector = i_vectors[:, 0] # bsz, emb target_intent = self.similarity(interest_vectors, target_vector.unsqueeze(1)) # bsz, K idx = torch.from_numpy(np.arange(batch_size)).to(self.device) rec_vector = i_vectors[idx, prediction.max(-1)[1]] rec_intent = self.similarity(interest_vectors, rec_vector.unsqueeze(1)) # bsz, K out_dict['js'] = self.js_div(target_intent, rec_intent).sum(-1) out_dict['dis'] = (interest_vectors[:, 0, :] - interest_vectors[:, 0, :]).pow(2).sum(-1) for i in range(self.K - 1): for j in range(i + 1, self.K): out_dict['dis'] += (interest_vectors[:, i, :] - interest_vectors[:, j, :]).pow(2).sum(-1) out_dict['dis'] /= (self.K * (self.K - 1) / 2) return out_dict def loss(self, out_dict: dict): if self.stage in [1, 2]: # pretrain loss = super().loss(out_dict) else: # finetune pred_intent = out_dict['pred_intent'] / self.temp target_intent = out_dict['target_intent'].detach() / self.temp # target_intent = out_dict['target_intent'] / self.temp kl_criterion = nn.KLDivLoss(reduction='batchmean') loss = kl_criterion(F.log_softmax(pred_intent, dim=1), F.softmax(target_intent, dim=1)) loss = super().loss(out_dict) + self.temp * self.temp * loss # loss = super().loss(out_dict) return loss class MultiInterestExtractor(nn.Module): def __init__(self, k, item_num, emb_size, attn_size, max_his, add_pos): super(MultiInterestExtractor, self).__init__() self.max_his = max_his self.add_pos = add_pos self.i_embeddings = nn.Embedding(item_num, emb_size) if self.add_pos: self.p_embeddings = nn.Embedding(max_his + 1, emb_size) self.W1 = nn.Linear(emb_size, attn_size) self.W2 = nn.Linear(attn_size, k) def forward(self, history, lengths): batch_size, seq_len = history.shape valid_his = (history > 0).long() his_vectors = self.i_embeddings(history) if self.add_pos: len_range = torch.from_numpy(np.arange(self.max_his)).to(history.device) position = (lengths[:, None] - len_range[None, :seq_len]) * valid_his pos_vectors = self.p_embeddings(position) his_pos_vectors = his_vectors + pos_vectors else: his_pos_vectors = his_vectors # Multi-Interest Extraction attn_score = self.W2(self.W1(his_pos_vectors).tanh()) # bsz, his_max, K attn_score = attn_score.masked_fill(valid_his.unsqueeze(-1) == 0, -np.inf) attn_score = attn_score.transpose(-1, -2) # bsz, K, his_max attn_score = (attn_score - attn_score.max()).softmax(dim=-1) attn_score = attn_score.masked_fill(torch.isnan(attn_score), 0) interest_vectors = (his_vectors[:, None, :, :] * attn_score[:, :, :, None]).sum(-2) # bsz, K, emb return interest_vectors class IntentPredictor(nn.Module): def __init__(self, item_num, emb_size): super(IntentPredictor, self).__init__() self.i_embeddings = nn.Embedding(item_num + 1, emb_size) self.rnn = nn.GRU(input_size=emb_size, hidden_size=emb_size, batch_first=True) def forward(self, history, lengths): his_vectors = self.i_embeddings(history) sort_lengths, sort_idx = torch.topk(lengths, k=len(lengths)) sort_seq = his_vectors.index_select(dim=0, index=sort_idx) seq_packed = torch.nn.utils.rnn.pack_padded_sequence(sort_seq, sort_lengths.cpu(), batch_first=True) output, hidden = self.rnn(seq_packed, None) unsort_idx = torch.topk(sort_idx, k=len(lengths), largest=False)[1] his_vector = hidden[-1].index_select(dim=0, index=unsort_idx) return his_vector
[ "torch.nn.Linear", "torch.nn.functional.normalize", "torch.nn.Dropout", "torch.nn.GRU", "torch.isnan", "torch.nn.functional.softmax", "torch.nn.Sequential", "torch.arange", "torch.nn.functional.log_softmax", "torch.nn.ReLU", "torch.nn.KLDivLoss", "torch.load", "torch.nn.Embedding" ]
1.1.0
Andrewnar/ReChorus
55ceb37beb7b9967a4d18d9899075a8d88d11ddb
1.6
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @file : model.py @author: zijun @contact : [email protected] @date : 2020/11/17 14:57 @version: 1.0 @desc : """ import torch from torch import nn from transformers import AutoModel, AutoConfig from datasets.collate_functions import collate_to_max_length class ExplainableModel(nn.Module): def __init__(self, bert_dir): super().__init__() self.bert_config = AutoConfig.from_pretrained(bert_dir, output_hidden_states=False, num_labels=3) self.intermediate = AutoModel.from_pretrained(bert_dir) self.span_info_collect = SICModel(self.bert_config.hidden_size) self.interpretation = InterpretationModel(self.bert_config.hidden_size) self.output = nn.Linear(self.bert_config.hidden_size, self.bert_config.num_labels) def forward(self, input_ids, start_indexs, end_indexs, span_masks): # generate mask attention_mask = (input_ids != 1).long() # intermediate layer hidden_states = self.intermediate(input_ids, attention_mask=attention_mask).last_hidden_state # output.shape = (bs, length, hidden_size) # span info collecting layer(SIC) h_ij = self.span_info_collect(hidden_states, start_indexs, end_indexs) # interpretation layer H, a_ij = self.interpretation(h_ij, span_masks) # output layer out = self.output(H) return out, a_ij class SICModel(nn.Module): def __init__(self, hidden_size): super().__init__() self.hidden_size = hidden_size self.W_1 = nn.Linear(hidden_size, hidden_size) self.W_2 = nn.Linear(hidden_size, hidden_size) self.W_3 = nn.Linear(hidden_size, hidden_size) self.W_4 = nn.Linear(hidden_size, hidden_size) def forward(self, hidden_states, start_indexs, end_indexs): W1_h = self.W_1(hidden_states) # (bs, length, hidden_size) W2_h = self.W_2(hidden_states) W3_h = self.W_3(hidden_states) W4_h = self.W_4(hidden_states) W1_hi_emb = torch.index_select(W1_h, 1, start_indexs) # (bs, span_num, hidden_size) W2_hj_emb = torch.index_select(W2_h, 1, end_indexs) W3_hi_start_emb = torch.index_select(W3_h, 1, start_indexs) W3_hi_end_emb = torch.index_select(W3_h, 1, end_indexs) W4_hj_start_emb = torch.index_select(W4_h, 1, start_indexs) W4_hj_end_emb = torch.index_select(W4_h, 1, end_indexs) # [w1*hi, w2*hj, w3(hi-hj), w4(hi⊗hj)] span = W1_hi_emb + W2_hj_emb + (W3_hi_start_emb - W3_hi_end_emb) + torch.mul(W4_hj_start_emb, W4_hj_end_emb) h_ij = torch.tanh(span) return h_ij class InterpretationModel(nn.Module): def __init__(self, hidden_size): super().__init__() self.h_t = nn.Linear(hidden_size, 1) def forward(self, h_ij, span_masks): o_ij = self.h_t(h_ij).squeeze(-1) # (ba, span_num) # mask illegal span o_ij = o_ij - span_masks # normalize all a_ij, a_ij sum = 1 a_ij = nn.functional.softmax(o_ij, dim=1) # weight average span representation to get H H = (a_ij.unsqueeze(-1) * h_ij).sum(dim=1) # (bs, hidden_size) return H, a_ij
[ "torch.nn.Linear", "torch.mul", "torch.tanh", "torch.nn.functional.softmax", "torch.index_select" ]
1.6.0
kco4776/Self_Explaining_Structures_Improve_NLP_Models
dbc2d852cbe8bffd22b18425e9a4bac00d557eeb
1.6
print("importing") from datasets import load_dataset from datasets import load_metric from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TrainingArguments, DefaultFlowCallback, PrinterCallback from transformers import Trainer import torch from torch import nn import numpy as np import pickle from sklearn.preprocessing import StandardScaler import random import json sep_token = "[SEP]" # FORDOR maybe many special tokens pretrained_model_name = "roberta-base" # 'bert-base-cased' class my_Bert(nn.Module): def __init__(self, bert): super().__init__() self.bert = bert def forward(self,input_ids,attention_mask=None,labels=None,**kwargs): res = self.bert.forward(input_ids,attention_mask,labels=labels,**kwargs) print(f"FORDOR-input_ids {input_ids}") print(f"FORDOR-inputss {tokenizer.decode(input_ids[0])}") print(f"FORDOR-inputss {tokenizer.decode(input_ids[1])}") print(f"FORDOR-labels {labels}") print(f"FORDOR-res {res}") return res print("starting load") # for i in range(len(dataset["train_eli5"])): # print(f'train= {dataset["train_eli5"][i]["answers"]}') # print(f'valid= {dataset["validation_eli5"][i]["answers"]}') # print(f'test= {dataset["test_eli5"][i]["answers"]}') class ELI5MetricDataset(torch.utils.data.Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item['labels'] = torch.tensor(self.labels[idx]) return item def __len__(self): return len(self.labels) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) def changeArr(input1): # Copy input array into newArray newArray = input1.copy() # Sort newArray[] in ascending order newArray.sort() # Dictionary to store the rank of # the array element ranks = {} rank = 1 for index in range(len(newArray)): element = newArray[index]; # Update rank of element if element not in ranks: ranks[element] = rank rank += 1 # Assign ranks to elements for index in range(len(input1)): element = input1[index] input1[index] = float(ranks[input1[index]]) my_dataset = {} if False:# try: with open("my_dataset.pickle", "rb" ) as f: my_dataset = pickle.load(f) else: # except IOError: print("could not load my_dataset - preprocessing") raw_datasets = load_dataset("eli5") tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) def preprocess_data(split_name): with open(f'{split_name}.json', 'a') as the_file: inputs = [] labels = [] cnt = 0 for example in raw_datasets[split_name]: question = example["title"]+ example["selftext"] #FORDOR add special sep token? for i in range (len (example["answers"]["a_id"])): answer = example["answers"]["text"][i] # question = question.replace('"','\\"') # answer = answer.replace('"','\\"') the_file.write(f'{{"text": {json.dumps(question)}, "summary": {json.dumps(answer)} }}\n') # inputs.append(question + sep_token + answer) # print (f'FORDOR float - {float(example["answers"]["score"][i])} {example["answers"]["score"][i]}') # labels.append(float(example["answers"]["score"][i])) cnt = cnt+1 if cnt > 200000: break # tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) #shuffle data # c = list(zip(inputs, labels)) # random.seed(42) # random.shuffle(c) # inputs, labels = zip(*c) # inputs = list(inputs) # labels = list(labels) # encodings = tokenizer(inputs, padding="max_length", truncation=True) # encodings2 = tokenizer(inputs, padding="max_length", truncation=False) # for i in range(len(encodings)): # if len(encodings[i]) != len( encodings2[i]): # print (print(f"encoding and length {encodings[i]}, {len(encodings[i])} no truncation = {encodings2[i]}, {len(encodings2[i])}")) # # tensor_labels = torch.as_tensor(labels).reshape(-1,1) # scaler = StandardScaler() # scaler.fit(tensor_labels) # scaled_labels = scaler.transform(tensor_labels).astype(np.float32) # changeArr(labels) # my_dataset[split_name] = ELI5MetricDataset(encodings, scaled_labels) # print (f"FORDOR lens {len(encodings)}=={len(labels)}") # assert len(encodings) == len(labels) preprocess_data("train_eli5") preprocess_data("validation_eli5") # pickle.dump( my_dataset, open( "my_dataset.pickle", "wb" ) ) # metric = load_metric("spearmanr") # def compute_metrics(eval_pred): # logits, labels = eval_pred # print(f'logits- {max(logits)}, {min(logits)}') # print(f'labels- {max(labels)}, {min(labels)}') # return metric.compute(predictions=logits, references=labels) # model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name, num_labels=1) # # freezing bert parameters leaving only regression layer # # for param in model.bert.parameters(): # # param.requires_grad = False # # model = my_Bert(model) # # print (f"FORDOR model = {str(model)}") # # print (f'FORDOR debug {raw_datasets["train_eli5"][0]["answers"]} =:= {model(input_ids=my_dataset["train_eli5"][0]["input_ids"].unsqueeze(0), attention_mask=my_dataset["train_eli5"][0]["attention_mask"].unsqueeze(0), token_type_ids=my_dataset["train_eli5"][0]["token_type_ids"].unsqueeze(0))}') # training_args = TrainingArguments("test_trainer", evaluation_strategy="steps", eval_steps=10000, save_steps=10000, per_device_train_batch_size=8, per_device_eval_batch_size=8) # trainer = Trainer(model=model, args=training_args, train_dataset=my_dataset["train_eli5"], eval_dataset=my_dataset["validation_eli5"], compute_metrics=compute_metrics, # callbacks = [ # DefaultFlowCallback(), # PrinterCallback() # ], # ) # #, max_steps=3000 # trainer.train() # # model.eval() # # print (f'FORDOR2 debug {raw_datasets["train_eli5"][0]["answers"]} =:= {model(input_ids=my_dataset["train_eli5"][0]["input_ids"].unsqueeze(0).cuda(), attention_mask=my_dataset["train_eli5"][0]["attention_mask"].unsqueeze(0).cuda(), token_type_ids=my_dataset["train_eli5"][0]["token_type_ids"].unsqueeze(0).cuda())}') # # print (f'FORDOR3 debug {raw_datasets["train_eli5"][0]["answers"]} =:= {model(input_ids=my_dataset["train_eli5"][1]["input_ids"].unsqueeze(0).cuda(), attention_mask=my_dataset["train_eli5"][1]["attention_mask"].unsqueeze(0).cuda(), token_type_ids=my_dataset["train_eli5"][1]["token_type_ids"].unsqueeze(0).cuda())}') # # print (f'FORDOR4 debug {raw_datasets["train_eli5"][1]["answers"]} =:= {model(input_ids=my_dataset["train_eli5"][4]["input_ids"].unsqueeze(0).cuda(), attention_mask=my_dataset["train_eli5"][4]["attention_mask"].unsqueeze(0).cuda(), token_type_ids=my_dataset["train_eli5"][4]["token_type_ids"].unsqueeze(0).cuda())}') # print ("evaluation starting") # print (trainer.evaluate())
[ "torch.tensor" ]
1.6.0
Dorcoh4/BARTScore
e24fd22b80a01ef142ce43e24ec585f1ee8c1ff2
1.0
import argparse import numpy as np import json import torch from torchvision import datasets, transforms from _params import add_common_params, add_decentralized_params from _train_utils import test, plot_learning_curve from _node import Node from _byzantine_node import ByzantineNode from _data_utils import default_transform, MNISTSlice from _logic import * from _krum import krum, _distance from _average import get_average_gradients, get_std_gradients from _attack import setup_lp_norm_attack, byzantine_committee_vote from _trimmed_mean import trimmed_mean def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Decentralized Training') add_common_params(parser) add_decentralized_params(parser) args = parser.parse_args() use_multiprocess = not(args.no_multiprocess) trainset_full = datasets.MNIST('../data', train=True, download=True, transform=default_transform) torch.manual_seed(args.seed) use_cuda = torch.cuda.is_available() kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=default_transform), batch_size=args.test_batch_size, shuffle=True, **kwargs) train_labels = trainset_full.train_labels.numpy() train_data = trainset_full.train_data.numpy() train_label_indices = {} # distribute data across nodes print('setting up the simulation:: creating {} distributed nodes...'.format(args.nodes)) for digit in range(10): train_label_indices[digit] = np.where(train_labels == digit)[0] n_byzantine = int(args.nodes * args.byzantine) expected_n_byzantine_committee = int(np.ceil(args.committee_size * args.expected_byzantine)) expected_n_byzantine_participants = int(np.ceil(args.participants_size * args.expected_byzantine)) nodes = [] byzantine_idx = [] for node_idx in range(args.nodes): node_indices = [] for digit in range(10): node_indices.extend(np.random.choice( train_label_indices[digit], size=int(args.sample_size / 10))) # sample randomly from each label node_data = torch.from_numpy(train_data[node_indices]) node_labels = torch.from_numpy(train_labels[node_indices]) node_trainset = MNISTSlice( root='../data', data=node_data, labels=node_labels, train=True, transform=default_transform, download=True) if node_idx < n_byzantine: # node was chosen as byzantine node byzantine_idx.append(node_idx) node = ByzantineNode.create(mode=args.byzantine_mode)( node_idx, node_trainset, batch_size=args.batch_size, learning_rate=args.lr, momentum=args.momentum, log_interval=args.log_interval, mode=args.byzantine_mode) else: node = Node( node_idx, node_trainset, batch_size=args.batch_size, learning_rate=args.lr, momentum=args.momentum, log_interval=args.log_interval) nodes.append(node) nodes = np.array(nodes) honest_nodes = [n for n in nodes if n.id not in byzantine_idx] print('Created {} Byzantine nodes: {}'.format(len(byzantine_idx), byzantine_idx)) print('Done.') # decentralized training print('starting decentralized training...') print(' ==> expecting {} byzantines in each committee, and {} byzantines in each participants group.'.format( expected_n_byzantine_committee, expected_n_byzantine_participants)) consensus_w = honest_nodes[0].get_weights() align_all_nodes_to_consensus(nodes, consensus_w) learning_curve = [] test_accuracy = [] for i in range(args.epochs): print('epoch:: {} out of {}'.format(i + 1, args.epochs)) while True: participant_ids = select_participants( n_nodes=args.nodes, n_participants=args.participants_size) committe_ids = select_committee( n_nodes=args.nodes, n_committee=args.committee_size, exclude=participant_ids) byzantine_participants_ids = set(participant_ids).intersection(set(byzantine_idx)) print('{} byzantine participants selected...'.format(len(byzantine_participants_ids))) byzantine_committee_ids = set(committe_ids).intersection(set(byzantine_idx)) print('{} byzantine committe selected...'.format(len(byzantine_committee_ids))) if (len(byzantine_participants_ids) < args.participants_size / 2) and (len(byzantine_committee_ids) < args.committee_size / 2): break participants = nodes[participant_ids] committee = nodes[committe_ids] print('training all nodes...') all_train_loss = run_all(participants, multiprocess=use_multiprocess) avg_train_loss = np.mean([loss for id_, loss in all_train_loss if id_ not in byzantine_idx]) # setting up the Lp-norm attack (if there are byzantines) if args.byzantine_mode == 'lp-norm': honest_participants = [n for n in participants if n.id not in byzantine_idx] mu = get_average_gradients(honest_participants) std = get_std_gradients(honest_participants) gamma = setup_lp_norm_attack(participants, byzantine_idx, mu, std, consensus_w, f=expected_n_byzantine_participants) print('Chosen Lp-norm attack gamma: {}'.format(gamma)) if args.aggregator == 'union-consensus': print('collecting weights from participants...') w_array = collect_participants_weights(participants) print('collecting votes from committee...') honest_committee = [n for n in committee if n.id not in byzantine_idx] byzantine_committee = [n for n in committee if n.id in byzantine_idx] votes = collect_committee_votes(honest_committee, w_array, f=expected_n_byzantine_participants, multiprocess=True) byzantine_vote = byzantine_committee_vote(participants, byzantine_idx, f=expected_n_byzantine_participants) [votes.update({n.id: byzantine_vote}) for n in byzantine_committee] print("Votes:", dict([(k, participant_ids[v]) for k, v in votes.items()])) union_consensus, n_unique_recipients = reach_union_consensus(votes, f=expected_n_byzantine_committee) union_consensus_ids = participant_ids[union_consensus] print('reached union consensous of size {}, with {} unique recipients'.format( len(union_consensus), n_unique_recipients)) byzantine_consensus_ids = set(union_consensus_ids).intersection(byzantine_participants_ids) print('Consensus: {}, #Byzantine nodes inside: {} --> {}'.format( union_consensus_ids, len(byzantine_consensus_ids), byzantine_consensus_ids)) consensus_w = get_average_union_consensus(w_array, union_consensus) align_all_nodes_to_consensus(nodes, consensus_w) learning_curve.append({ 'train_loss': avg_train_loss, 'union_size': len(union_consensus), 'n_unique_recipients': n_unique_recipients, 'n_byzantine_participants': len(byzantine_participants_ids), 'n_byzantine_committee': len(byzantine_committee_ids), 'n_byzantine_consensus': len(byzantine_consensus_ids), }) elif args.aggregator == 'krum': print('collecting gradients from participants and running krum...') krum_node_idx, krum_scores = krum(participants, f=expected_n_byzantine_participants) selected_node = participants[krum_node_idx] is_byzantine_selected = int(selected_node.id in byzantine_participants_ids) print('Selected node by krum: {}, is byzantine: {}'.format(selected_node.id, is_byzantine_selected)) print('Krum selected score: {}'.format(krum_scores[krum_node_idx])) consensus_w = selected_node.get_weights() align_all_nodes_to_consensus(nodes, consensus_w) learning_curve.append({ 'train_loss': avg_train_loss, 'selected_node': selected_node.id, 'is_byzantine_selected': is_byzantine_selected, }) elif args.aggregator == 'trimmed-mean': print('collecting gradients from participants and running trimmed mean...') trimmed_mean_grads = trimmed_mean(participants, f=expected_n_byzantine_participants) # simulate the step take by the trimmed mean gradient honest_participants = [n for n in participants if n.id not in byzantine_idx] proxy_node = honest_participants[0] proxy_node.set_weights(consensus_w) proxy_node.set_gradients(trimmed_mean_grads) proxy_node.take_step() consensus_w = proxy_node.get_weights() align_all_nodes_to_consensus(nodes, consensus_w) learning_curve.append({ 'train_loss': avg_train_loss }) else: # average print('collecting gradients from participants and running average...') average_grads = get_average_gradients(participants) # simulate the step take by the average gradient honest_participants = [n for n in participants if n.id not in byzantine_idx] proxy_node = honest_participants[0] proxy_node.set_weights(consensus_w) proxy_node.set_gradients(average_grads) proxy_node.take_step() consensus_w = proxy_node.get_weights() align_all_nodes_to_consensus(nodes, consensus_w) learning_curve.append({ 'train_loss': avg_train_loss }) if args.byzantine_mode == 'lp-norm': learning_curve[-1]['gamma'] = gamma if i % 1 == 0: accuracy, popular_misses = test( args, participants[0]._model, participants[0]._device, test_loader) test_accuracy.append({'accuracy': accuracy, 'popular_misses': popular_misses}) with open('raw_learning_curve__{}.json'.format(args.aggregator), 'w') as f_raw: json.dump( { 'setting': vars(args), 'train': learning_curve, 'evaluation': test_accuracy }, f_raw ) if __name__ == '__main__': main()
[ "torch.from_numpy", "torch.manual_seed", "torch.cuda.is_available" ]
1.0.1
aprilpear/holdout-sgd
fa81bce57fb98aef262536fb2d7a26567d3143f7
1.1
import logging import time logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.INFO, ) logger = logging.getLogger("Main") import os,random import numpy as np import torch from utils_glue import output_modes, processors from pytorch_pretrained_bert.my_modeling import BertConfig from pytorch_pretrained_bert import BertTokenizer from optimization import BERTAdam import config from utils import divide_parameters, load_and_cache_examples from modeling import BertForGLUESimple,BertForGLUESimpleAdaptor from textbrewer import DistillationConfig, TrainingConfig, GeneralDistiller from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler, DistributedSampler from tqdm import tqdm from utils_glue import compute_metrics from functools import partial def args_check(args): if os.path.exists(args.output_dir) and os.listdir(args.output_dir): logger.warning("Output directory () already exists and is not empty.") if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) if not args.do_train and not args.do_predict: raise ValueError("At least one of `do_train` or `do_predict` must be True.") if args.local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() if torch.cuda.is_available() else 0 else: device = torch.device("cuda", args.local_rank) n_gpu = 1 torch.distributed.init_process_group(backend='nccl') logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) args.n_gpu = n_gpu args.device = device return device, n_gpu def predict(model,eval_datasets,step,args): eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_output_dir = args.output_dir results = {} for eval_task,eval_dataset in zip(eval_task_names, eval_datasets): if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) logger.info("Predicting...") logger.info("***** Running predictions *****") logger.info(" task name = %s", eval_task) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.predict_batch_size) eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.predict_batch_size) model.eval() #起始时间 start_time = time.time() pred_logits = [] label_ids = [] for batch in tqdm(eval_dataloader, desc="Evaluating", disable=None): input_ids, input_mask, segment_ids, labels = batch input_ids = input_ids.to(args.device) input_mask = input_mask.to(args.device) segment_ids = segment_ids.to(args.device) with torch.no_grad(): logits = model(input_ids, input_mask, segment_ids) cpu_logits = logits.detach().cpu() for i in range(len(cpu_logits)): pred_logits.append(cpu_logits[i].numpy()) label_ids.append(labels[i]) pred_logits = np.array(pred_logits) label_ids = np.array(label_ids) if args.output_mode == "classification": preds = np.argmax(pred_logits, axis=1) else: # args.output_mode == "regression": preds = np.squeeze(pred_logits) result = compute_metrics(eval_task, preds, label_ids) logger.info(f"task:,{eval_task}") logger.info(f"result: {result}") results.update(result) cost_time = time.time() - start_time logger.info(f"--- 评估{len(eval_dataset)}条数据的总耗时是 {cost_time} seconds, 每条耗时 {cost_time/len(eval_dataset)} seconds ---") output_eval_file = os.path.join(eval_output_dir, "eval_results-%s.txt" % eval_task) with open(output_eval_file, "a") as writer: logger.info("***** Eval results {} task {} *****".format(step, eval_task)) writer.write("step: %d ****\n " % step) for key in sorted(results.keys()): logger.info("%s = %s", key, str(results[key])) writer.write("%s = %s\n" % (key, str(results[key]))) model.train() return results def main(): #parse arguments config.parse() args = config.args for k,v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load bert config bert_config_T = BertConfig.from_json_file(args.bert_config_file_T) bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_T.max_position_embeddings assert args.max_seq_length <= bert_config_S.max_position_embeddings #Prepare GLUE task processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) #read data train_dataset = None eval_datasets = None num_train_steps = None tokenizer = BertTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) # 加载数据集 if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) if args.aux_task_name: aux_train_dataset = load_and_cache_examples(args, args.aux_task_name, tokenizer, evaluate=False, is_aux=True) train_dataset = torch.utils.data.ConcatDataset([train_dataset, aux_train_dataset]) num_train_steps = int(len(train_dataset)/args.train_batch_size) * args.num_train_epochs if args.do_predict: eval_datasets = [] eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) for eval_task in eval_task_names: eval_datasets.append(load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)) logger.info("数据集加载成功") #加载模型,加载teacher和student模型 model_T = BertForGLUESimple(bert_config_T, num_labels=num_labels,args=args) model_S = BertForGLUESimple(bert_config_S, num_labels=num_labels,args=args) #加载teacher模型参数 if args.tuned_checkpoint_T is not None: state_dict_T = torch.load(args.tuned_checkpoint_T, map_location='cpu') model_T.load_state_dict(state_dict_T) model_T.eval() else: assert args.do_predict is True #Load student if args.load_model_type=='bert': assert args.init_checkpoint_S is not None state_dict_S = torch.load(args.init_checkpoint_S, map_location='cpu') if args.only_load_embedding: state_weight = {k[5:]:v for k,v in state_dict_S.items() if k.startswith('bert.embeddings')} missing_keys,_ = model_S.bert.load_state_dict(state_weight,strict=False) logger.info(f"Missing keys {list(missing_keys)}") else: state_weight = {k[5:]:v for k,v in state_dict_S.items() if k.startswith('bert.')} missing_keys,_ = model_S.bert.load_state_dict(state_weight,strict=False) assert len(missing_keys)==0 logger.info("Model loaded") elif args.load_model_type=='all': assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S,map_location='cpu') model_S.load_state_dict(state_dict_S) logger.info("Model loaded") else: logger.info("Student模型没有可加载参数,随机初始化参数 randomly initialized.") model_T.to(device) model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: model_T = torch.nn.DataParallel(model_T) #,output_device=n_gpu-1) model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) #优化器配置 optimizer = BERTAdam(all_trainable_params,lr=args.learning_rate, warmup=args.warmup_proportion,t_total=num_train_steps,schedule=args.schedule, s_opt1=args.s_opt1, s_opt2=args.s_opt2, s_opt3=args.s_opt3) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) ########### DISTILLATION ########### train_config = TrainingConfig( gradient_accumulation_steps = args.gradient_accumulation_steps, ckpt_frequency = args.ckpt_frequency, log_dir = args.output_dir, output_dir = args.output_dir, device = args.device) # 定义了一些固定的matches配置文件 from matches import matches intermediate_matches = None if isinstance(args.matches,(list,tuple)): intermediate_matches = [] for match in args.matches: intermediate_matches += matches[match] logger.info(f"中间层match信息: {intermediate_matches}") distill_config = DistillationConfig( temperature = args.temperature, intermediate_matches=intermediate_matches) logger.info(f"训练配置: {train_config}") logger.info(f"蒸馏配置: {distill_config}") adaptor_T = partial(BertForGLUESimpleAdaptor, no_logits=args.no_logits, no_mask = args.no_inputs_mask) adaptor_S = partial(BertForGLUESimpleAdaptor, no_logits=args.no_logits, no_mask = args.no_inputs_mask) # 支持中间状态匹配的通用蒸馏模型 distiller = GeneralDistiller(train_config = train_config, distill_config = distill_config, model_T = model_T, model_S = model_S, adaptor_T = adaptor_T, adaptor_S = adaptor_S) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size,drop_last=True) callback_func = partial(predict, eval_datasets=eval_datasets, args=args) with distiller: distiller.train(optimizer, scheduler=None, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func) if not args.do_train and args.do_predict: res = predict(model_S,eval_datasets,step=0,args=args) print (res) if __name__ == "__main__": main()
[ "torch.utils.data.ConcatDataset", "torch.device", "torch.cuda.manual_seed_all", "torch.utils.data.RandomSampler", "torch.distributed.init_process_group", "torch.utils.data.DistributedSampler", "torch.utils.data.SequentialSampler", "torch.no_grad", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load", "torch.nn.DataParallel" ]
1.1
johnson7788/TextBrewer
fa7fa4d4a2a8debde5b148d448238f3b4fa1aa9a
1.1
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020/12/23 4:56 下午 # @File : main.trainer_predict_api.py # @Author: johnson # @Contact : github: johnson7788 # @Desc : import logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.INFO, ) logger = logging.getLogger("Main") import os, random, time import numpy as np import torch from pytorch_pretrained_bert.my_modeling import BertConfig from pytorch_pretrained_bert import BertTokenizer from modeling import BertSPCSimple, BertForGLUESimpleAdaptorTraining from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler, DistributedSampler from tqdm import tqdm from utils_glue import InputExample, convert_examples_to_features import argparse from flask import Flask, request, jsonify, abort ###################################################### # 使用没有蒸馏的模型预测,改造成一个flask api, ###################################################### app = Flask(__name__) def load_examples(contents, max_seq_length, tokenizer, label_list): """ :param contents: eg: [('苹果很好用', '苹果')] :param max_seq_length: :param tokenizer: 初始化后的tokenizer :param label_list: :return: """ examples = [] for guid, content in enumerate(contents): sentence, aspect = content examples.append( InputExample(guid=guid, text_a=sentence, text_b=aspect)) features = convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode="classification", cls_token_segment_id=0, pad_token_segment_id=0) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids) return dataset class TorchAsBertModel(object): def __init__(self, verbose=0): self.verbose = verbose self.label_list = ["NEG", "NEU", "POS"] self.num_labels = len(self.label_list) # 判断使用的设备 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.n_gpu = torch.cuda.device_count() if torch.cuda.is_available() else 0 self.tokenizer, self.model = self.load_model() # 句子左右最大truncate序列长度 self.left_max_seq_len = 15 self.right_max_seq_len = 20 self.aspect_max_seq_len = 30 def load_model(self): parser = argparse.ArgumentParser() args = parser.parse_args() args.output_encoded_layers = True args.output_attention_layers = True args.output_att_score = True args.output_att_sum = True self.args = args # 解析配置文件, 教师模型和student模型的vocab是不变的 self.vocab_file = "bert_model/vocab.txt" # 这里是使用的teacher的config和微调后的teacher模型, 也可以换成student的config和蒸馏后的student模型 # student config: config/chinese_bert_config_L4t.json # distil student model: distil_model/gs8316.pkl self.bert_config_file_S = "bert_model/config.json" self.tuned_checkpoint_S = "trained_teacher_model/gs3024.pkl" self.max_seq_length = 70 # 预测的batch_size大小 self.predict_batch_size = 64 # 加载student的配置文件, 校验最大序列长度小于我们的配置中的序列长度 bert_config_S = BertConfig.from_json_file(self.bert_config_file_S) # 加载tokenizer tokenizer = BertTokenizer(vocab_file=self.vocab_file) # 加载模型 model_S = BertSPCSimple(bert_config_S, num_labels=self.num_labels, args=self.args) state_dict_S = torch.load(self.tuned_checkpoint_S, map_location=self.device) model_S.load_state_dict(state_dict_S) if self.verbose: print("模型已加载") return tokenizer, model_S def truncate(self, input_text, max_len, trun_post='post'): """ 实施截断数据 :param input_text: :param max_len: eg: 15 :param trun_post: 截取方向,向前还是向后截取, "pre":截取前面的, "post":截取后面的 :return: """ if max_len is not None and len(input_text) > max_len: if trun_post == "post": return input_text[-max_len:] else: return input_text[:max_len] else: return input_text def clean(self, text_left, aspect, text_right): """ 截断数据 :param text_left: :param aspect: :param text_right: :return: """ text_left = self.truncate(text_left, self.left_max_seq_len) aspect = self.truncate(aspect, self.aspect_max_seq_len) text_right = self.truncate(text_right, self.right_max_seq_len, trun_post="pre") return text_left, aspect, text_right def predict_batch(self, data): """ batch_size数据处理 :param data: 是一个要处理的数据列表 :return: """ contents = [] for one_data in data: content, aspect, aspect_start, aspect_end = one_data text_left = content[:aspect_start] text_right = content[aspect_end:] text_left, aspect, text_right = self.clean(text_left, aspect, text_right) new_content = text_left + aspect + text_right contents.append((new_content, aspect)) eval_dataset = load_examples(contents, self.max_seq_length, self.tokenizer, self.label_list) if self.verbose: print("评估数据集已加载") res = self.do_predict(self.model, eval_dataset) if self.verbose: print(f"预测的结果是: {res}, {[self.label_list[id] for id in res]}") # TODO 输入为一条数据,返回也只返回一条结果即可以了 return res def predict_batch_without_turncate(self, data): """ batch_size数据处理 :param data: 是一个要处理的数据列表[(content,aspect),...,] :return: """ eval_dataset = load_examples(data, self.max_seq_length, self.tokenizer, self.label_list) if self.verbose: print("评估数据集已加载") res = self.do_predict(self.model, eval_dataset) if self.verbose: print(f"预测的结果是: {res}, {[self.label_list[id] for id in res]}") #把id变成标签 result = [self.label_list[r] for r in res] return result def do_predict(self, model, eval_dataset): # 任务名字 results = [] if self.verbose: print("***** 开始预测 *****") print(" 样本数 = %d", len(eval_dataset)) print(" Batch size = %d", self.predict_batch_size) # 评估样本 eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=self.predict_batch_size) model.eval() model.to(self.device) # 起始时间 start_time = time.time() # 存储预测值 pred_logits = [] for batch in tqdm(eval_dataloader, desc="评估中", disable=True): input_ids, input_mask, segment_ids = batch input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) with torch.no_grad(): logits = model(input_ids, input_mask, segment_ids) cpu_logits = logits.detach().cpu() for i in range(len(cpu_logits)): pred_logits.append(cpu_logits[i].numpy()) pred_logits = np.array(pred_logits) # 找到最大的概率label preds = np.argmax(pred_logits, axis=1) if self.verbose: print(f"preds: {preds}") results.extend(preds.tolist()) cost_time = time.time() - start_time if self.verbose: print( f"--- 评估{len(eval_dataset)}条数据的总耗时是 {cost_time} seconds, 每条耗时 {cost_time / len(eval_dataset)} seconds ---") return results @app.route("/api", methods=['POST']) def api(): """ Args: test_data: 需要预测的数据,是一个文字列表, [(content,aspect),...,] Returns: """ jsonres = request.get_json() test_data = jsonres.get('data', None) model = TorchAsBertModel() results = model.predict_batch_without_turncate(test_data) return jsonify(results) if __name__ == "__main__": app.run(host='0.0.0.0', port=5000, debug=True, threaded=True)
[ "torch.no_grad", "torch.utils.data.SequentialSampler", "torch.cuda.device_count", "torch.cuda.is_available", "torch.tensor", "torch.utils.data.DataLoader", "torch.load", "torch.utils.data.TensorDataset" ]
1.1
johnson7788/TextBrewer
fa7fa4d4a2a8debde5b148d448238f3b4fa1aa9a
1.0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) IBM Corporation 2019 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "Tomasz Kornuta & Vincent Marois" import torch from ptp.components.models.model import Model from ptp.data_types.data_definition import DataDefinition class LeNet5(Model): """ A classical LeNet-5 model for MNIST digits classification. """ def __init__(self, name, config): """ Initializes the ``LeNet5`` model, creates the required layers. :param name: Name of the model (taken from the configuration file). :param config: Parameters read from configuration file. :type config: ``ptp.configuration.ConfigInterface`` """ super(LeNet5, self).__init__(name, LeNet5, config) # Get key mappings. self.key_inputs = self.stream_keys["inputs"] self.key_predictions = self.stream_keys["predictions"] # Retrieve prediction size from globals. self.prediction_size = self.globals["prediction_size"] # Create the LeNet-5 layers. self.conv1 = torch.nn.Conv2d(1, 6, kernel_size=(5, 5)) self.maxpool1 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2) self.conv2 = torch.nn.Conv2d(6, 16, kernel_size=(5, 5)) self.maxpool2 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=2) self.conv3 = torch.nn.Conv2d(16, 120, kernel_size=(5, 5)) self.linear1 = torch.nn.Linear(120, 84) self.linear2 = torch.nn.Linear(84, self.prediction_size) def input_data_definitions(self): """ Function returns a dictionary with definitions of input data that are required by the component. :return: dictionary containing input data definitions (each of type :py:class:`ptp.utils.DataDefinition`). """ return { self.key_inputs: DataDefinition([-1, 1, 32, 32], [torch.Tensor], "Batch of images [BATCH_SIZE x IMAGE_DEPTH x IMAGE_HEIGHT x IMAGE WIDTH]"), } def output_data_definitions(self): """ Function returns a dictionary with definitions of output data produced the component. :return: dictionary containing output data definitions (each of type :py:class:`ptp.utils.DataDefinition`). """ return { self.key_predictions: DataDefinition([-1, self.prediction_size], [torch.Tensor], "Batch of predictions, each represented as probability distribution over classes [BATCH_SIZE x PREDICTION_SIZE]") } def forward(self, data_streams): """ Main forward pass of the ``LeNet5`` model. :param data_streams: DataStreams({'images',**}), where: - images: [batch_size, num_channels, width, height] :type data_streams: ``miprometheus.utils.DataStreams`` :return: Predictions [batch_size, num_classes] """ # Add noise to weights #for _, param in self.named_parameters(): # if param.requires_grad: # #print (name, param.data) # #noise = -torch.randn(param.data.shape)*0.3 # noise = 0.3 # param.data = param.data * (1 + noise) # #print (name, param.data) # Unpack DataStreams. img = data_streams[self.key_inputs] # Pass inputs through layers. x = self.conv1(img) x = torch.nn.functional.relu(x) x = self.maxpool1(x) x = self.conv2(x) x = torch.nn.functional.relu(x) x = self.maxpool2(x) x = self.conv3(x) x = torch.nn.functional.relu(x) x = x.view(-1, 120) x = self.linear1(x) x = torch.nn.functional.relu(x) x = self.linear2(x) # Log softmax. predictions = torch.nn.functional.log_softmax(x, dim=1) # Add predictions to datadict. data_streams.publish({self.key_predictions: predictions})
[ "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.functional.log_softmax", "torch.nn.Conv2d", "torch.nn.functional.relu" ]
1.0.1
aasseman/pytorchpipe
9cb17271666061cb19fe24197ecd5e4c8d32c5da
1.0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) IBM Corporation 2019 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "Vincent Marois, Tomasz Kornuta" from os import path,makedirs import yaml import torch from time import sleep from datetime import datetime import ptp.configuration.config_parsing as config_parse import ptp.utils.logger as logging from ptp.workers.worker import Worker from ptp.application.task_manager import TaskManager from ptp.application.pipeline_manager import PipelineManager from ptp.utils.statistics_collector import StatisticsCollector from ptp.utils.statistics_aggregator import StatisticsAggregator class Trainer(Worker): """ Base class for the trainers. Iterates over epochs on the dataset. All other types of trainers (e.g. ``OnlineTrainer`` & ``OfflineTrainer``) should subclass it. """ def __init__(self, name, class_type): """ Base constructor for all trainers: - Adds default trainer command line arguments :param name: Name of the worker :type name: str :param class_type: Class type of the component. """ # Call base constructor to set up app state, registry and add default arguments. super(Trainer, self).__init__(name, class_type) # Add arguments to the specific parser. # These arguments will be shared by all basic trainers. self.parser.add_argument( '--tensorboard', action='store', dest='tensorboard', choices=[0, 1, 2], type=int, help="If present, enable logging to TensorBoard. Available log levels:\n" "0: Log the collected statistics.\n" "1: Add the histograms of the model's biases & weights (Warning: Slow).\n" "2: Add the histograms of the model's biases & weights gradients " "(Warning: Even slower).") self.parser.add_argument( '--saveall', dest='save_intermediate', action='store_true', help='Setting to true results in saving intermediate models during training (DEFAULT: False)') self.parser.add_argument( '--training', dest='training_section_name', type=str, default="training", help='Name of the section defining the training procedure (DEFAULT: training)') self.parser.add_argument( '--validation', dest='validation_section_name', type=str, default="validation", help='Name of the section defining the validation procedure (DEFAULT: validation)') def setup_experiment(self): """ Sets up experiment of all trainers: - Calls base class setup_experiment to parse the command line arguments, - Loads the config file(s) - Set up the log directory path - Add a ``FileHandler`` to the logger - Set random seeds - Creates the pipeline consisting of many components - Creates training task manager - Handles curriculum learning if indicated - Creates validation task manager - Set optimizer - Performs testing of compatibility of both training and validation tasks and created pipeline. """ # Call base method to parse all command line arguments and add default sections. super(Trainer, self).setup_experiment() # "Pass" configuration parameters from the "default_training" section to training section indicated by the section_name. self.config.add_default_params({ self.app_state.args.training_section_name : self.config['default_training'].to_dict()} ) self.config.del_default_params('default_training') # "Pass" configuration parameters from the "default_validation" section to validation section indicated by the section_name. self.config.add_default_params({ self.app_state.args.validation_section_name: self.config['default_validation'].to_dict()} ) self.config.del_default_params('default_validation') # Check the presence of the CUDA-compatible devices. if self.app_state.args.use_gpu and (torch.cuda.device_count() == 0): self.logger.error("Cannot use GPU as there are no CUDA-compatible devices present in the system!") exit(-1) # Check if config file was selected. if self.app_state.args.config == '': print('Please pass configuration file(s) as --c parameter') exit(-2) # Split and make them absolute. root_configs = self.app_state.args.config.replace(" ", "").split(',') # If there are - expand them to absolute paths. abs_root_configs = [path.expanduser(config) for config in root_configs] # Get the list of configurations which need to be loaded. configs_to_load = config_parse.recurrent_config_parse(abs_root_configs, [], self.app_state.absolute_config_path) # Read the YAML files one by one - but in reverse order -> overwrite the first indicated config(s) config_parse.reverse_order_config_load(self.config, configs_to_load) # -> At this point, the Param Registry contains the configuration loaded (and overwritten) from several files. # Log the resulting training configuration. conf_str = 'Loaded (initial) configuration:\n' conf_str += '='*80 + '\n' conf_str += yaml.safe_dump(self.config.to_dict(), default_flow_style=False) conf_str += '='*80 + '\n' print(conf_str) # Get training section. try: tsn = self.app_state.args.training_section_name self.config_training = self.config[tsn] # We must additionally check if it is None - weird behvaiour when using default value. if self.config_training is None: raise KeyError() except KeyError: print("Error: Couldn't retrieve the training section '{}' from the loaded configuration".format(tsn)) exit(-1) # Get training task type. try: training_task_type = self.config_training['task']['type'] except KeyError: print("Error: Couldn't retrieve the task 'type' from the training section '{}' in the loaded configuration".format(tsn)) exit(-1) # Get validation section. try: vsn = self.app_state.args.validation_section_name self.config_validation = self.config[vsn] if self.config_validation is None: raise KeyError() except KeyError: print("Error: Couldn't retrieve the validation section '{}' from the loaded configuration".format(vsn)) exit(-1) # Get validation task type. try: _ = self.config_validation['task']['type'] except KeyError: print("Error: Couldn't retrieve the task 'type' from the validation section '{}' in the loaded configuration".format(vsn)) exit(-1) # Get pipeline section. try: psn = self.app_state.args.pipeline_section_name self.config_pipeline = self.config[psn] if self.config_pipeline is None: raise KeyError() except KeyError: print("Error: Couldn't retrieve the pipeline section '{}' from the loaded configuration".format(psn)) exit(-1) # Get pipeline name. try: pipeline_name = self.config_pipeline['name'] except KeyError: # Using name of the first configuration file from command line. basename = path.basename(root_configs[0]) # Take config filename without extension. pipeline_name = path.splitext(basename)[0] # Set pipeline name, so processor can use it afterwards. self.config_pipeline.add_config_params({'name': pipeline_name}) # Prepare the output path for logging while True: # Dirty fix: if log_dir already exists, wait for 1 second and try again try: time_str = '{0:%Y%m%d_%H%M%S}'.format(datetime.now()) if self.app_state.args.exptag != '': time_str = time_str + "_" + self.app_state.args.exptag self.app_state.log_dir = path.expanduser(self.app_state.args.expdir) + '/' + training_task_type + '/' + pipeline_name + '/' + time_str + '/' # Lowercase dir. self.app_state.log_dir = self.app_state.log_dir.lower() makedirs(self.app_state.log_dir, exist_ok=False) except FileExistsError: sleep(1) else: break # Set log dir. self.app_state.log_file = self.app_state.log_dir + 'trainer.log' # Initialize logger in app state. self.app_state.logger = logging.initialize_logger("AppState") # Add handlers for the logfile to worker logger. logging.add_file_handler_to_logger(self.logger) self.logger.info("Logger directory set to: {}".format(self.app_state.log_dir)) # Set cpu/gpu types. self.app_state.set_types() # Models dir. self.checkpoint_dir = self.app_state.log_dir + 'checkpoints/' makedirs(self.checkpoint_dir, exist_ok=False) # Set random seeds in the training section. self.set_random_seeds('training', self.config_training) # Total number of detected errors. errors =0 ################# TRAINING PROBLEM ################# # Build training task manager. self.training = TaskManager('training', self.config_training) errors += self.training.build() # parse the curriculum learning section in the loaded configuration. if 'curriculum_learning' in self.config_training: # Initialize curriculum learning - with values from loaded configuration. self.training.task.curriculum_learning_initialize(self.config_training['curriculum_learning']) # If the 'must_finish' key is not present in config then then it will be finished by default self.config_training['curriculum_learning'].add_default_params({'must_finish': True}) self.must_finish_curriculum = self.config_training['curriculum_learning']['must_finish'] self.logger.info("Curriculum Learning activated") else: # If not using curriculum learning then it does not have to be finished. self.must_finish_curriculum = False self.curric_done = True ################# VALIDATION PROBLEM ################# # Build validation task manager. self.validation = TaskManager('validation', self.config_validation) errors += self.validation.build() ###################### PIPELINE ###################### # Build the pipeline using the loaded configuration. self.pipeline = PipelineManager(pipeline_name, self.config_pipeline) errors += self.pipeline.build() # Check errors. if errors > 0: self.logger.error('Found {} errors, terminating execution'.format(errors)) exit(-2) # Show pipeline. summary_str = self.pipeline.summarize_all_components_header() summary_str += self.training.task.summarize_io("training") summary_str += self.validation.task.summarize_io("validation") summary_str += self.pipeline.summarize_all_components() self.logger.info(summary_str) # Handshake definitions. self.logger.info("Handshaking training pipeline") defs_training = self.training.task.output_data_definitions() errors += self.pipeline.handshake(defs_training) self.logger.info("Handshaking validation pipeline") defs_valid = self.validation.task.output_data_definitions() errors += self.pipeline.handshake(defs_valid) # Check errors. if errors > 0: self.logger.error('Found {} errors, terminating execution'.format(errors)) exit(-2) ################## MODEL LOAD/FREEZE ################# # Load the pretrained models params from checkpoint. try: # Check command line arguments, then check load option in config. if self.app_state.args.load_checkpoint != "": pipeline_name = self.app_state.args.load_checkpoint msg = "command line (--load)" elif "load" in self.config_pipeline: pipeline_name = self.config_pipeline['load'] msg = "'pipeline' section of the configuration file" else: pipeline_name = "" # Try to load the model. if pipeline_name != "": if path.isfile(pipeline_name): # Load parameters from checkpoint. self.pipeline.load(pipeline_name) else: raise Exception("Couldn't load the checkpoint {} indicated in the {}: file does not exist".format(pipeline_name, msg)) # If we succeeded, we do not want to load the models from the file anymore! else: # Try to load the models parameters - one by one, if set so in the configuration file. self.pipeline.load_models() except KeyError: self.logger.error("File {} indicated in the {} seems not to be a valid model checkpoint".format(pipeline_name, msg)) exit(-5) except Exception as e: self.logger.error(e) # Exit by following the logic: if user wanted to load the model but failed, then continuing the experiment makes no sense. exit(-6) # Finally, freeze the models (that the user wants to freeze). self.pipeline.freeze_models() # Log the model summaries. summary_str = self.pipeline.summarize_models_header() summary_str += self.pipeline.summarize_models() self.logger.info(summary_str) # Move the models in the pipeline to GPU. if self.app_state.args.use_gpu: self.pipeline.cuda() ################# OPTIMIZER ################# # Set the optimizer. optimizer_conf = dict(self.config_training['optimizer']) optimizer_type = optimizer_conf['type'] del optimizer_conf['type'] # Check if there are any models in the pipeline. if len(list(filter(lambda p: p.requires_grad, self.pipeline.parameters()))) == 0: self.logger.error('Cannot proceed with training, as there are no trainable models in the pipeline (or all models are frozen)') exit(-7) # Instantiate the optimizer and filter the model parameters based on if they require gradients. self.optimizer = getattr(torch.optim, optimizer_type)( filter(lambda p: p.requires_grad, self.pipeline.parameters()), **optimizer_conf) log_str = 'Optimizer:\n' + '='*80 + "\n" log_str += " Type: " + optimizer_type + "\n" log_str += " Params: {}".format(optimizer_conf) self.logger.info(log_str) def add_statistics(self, stat_col): """ Calls base method and adds epoch statistics to ``StatisticsCollector``. :param stat_col: ``StatisticsCollector``. """ # Add loss and episode. super(Trainer, self).add_statistics(stat_col) # Add default statistics with formatting. stat_col.add_statistics('epoch', '{:02d}') def add_aggregators(self, stat_agg): """ Adds basic aggregators to to ``StatisticsAggregator`` and extends them with: epoch. :param stat_agg: ``StatisticsAggregator``. """ # Add basic aggregators. super(Trainer, self).add_aggregators(stat_agg) # add 'aggregators' for the epoch. stat_agg.add_aggregator('epoch', '{:02d}') def initialize_statistics_collection(self): """ - Initializes all ``StatisticsCollectors`` and ``StatisticsAggregators`` used by a given worker: \ - For training statistics (adds the statistics of the model & task), - For validation statistics (adds the statistics of the model & task). - Creates the output files (csv). """ # TRAINING. # Create statistics collector for training. self.training_stat_col = StatisticsCollector() self.add_statistics(self.training_stat_col) self.training.task.add_statistics(self.training_stat_col) self.pipeline.add_statistics(self.training_stat_col) # Create the csv file to store the training statistics. self.training_batch_stats_file = self.training_stat_col.initialize_csv_file(self.app_state.log_dir, 'training_statistics.csv') # Create statistics aggregator for training. self.training_stat_agg = StatisticsAggregator() self.add_aggregators(self.training_stat_agg) self.training.task.add_aggregators(self.training_stat_agg) self.pipeline.add_aggregators(self.training_stat_agg) # Create the csv file to store the training statistic aggregations. self.training_set_stats_file = self.training_stat_agg.initialize_csv_file(self.app_state.log_dir, 'training_set_agg_statistics.csv') # VALIDATION. # Create statistics collector for validation. self.validation_stat_col = StatisticsCollector() self.add_statistics(self.validation_stat_col) self.validation.task.add_statistics(self.validation_stat_col) self.pipeline.add_statistics(self.validation_stat_col) # Create the csv file to store the validation statistics. self.validation_batch_stats_file = self.validation_stat_col.initialize_csv_file(self.app_state.log_dir, 'validation_statistics.csv') # Create statistics aggregator for validation. self.validation_stat_agg = StatisticsAggregator() self.add_aggregators(self.validation_stat_agg) self.validation.task.add_aggregators(self.validation_stat_agg) self.pipeline.add_aggregators(self.validation_stat_agg) # Create the csv file to store the validation statistic aggregations. self.validation_set_stats_file = self.validation_stat_agg.initialize_csv_file(self.app_state.log_dir, 'validation_set_agg_statistics.csv') def finalize_statistics_collection(self): """ Finalizes the statistics collection by closing the csv files. """ # Close all files. self.training_batch_stats_file.close() self.training_set_stats_file.close() self.validation_batch_stats_file.close() self.validation_set_stats_file.close() def initialize_tensorboard(self): """ Initializes the TensorBoard writers, and log directories. """ # Create TensorBoard outputs - if TensorBoard is supposed to be used. if self.app_state.args.tensorboard is not None: from tensorboardX import SummaryWriter self.training_batch_writer = SummaryWriter(self.app_state.log_dir + '/training') self.training_stat_col.initialize_tensorboard(self.training_batch_writer) self.training_set_writer = SummaryWriter(self.app_state.log_dir + '/training_set_agg') self.training_stat_agg.initialize_tensorboard(self.training_set_writer) self.validation_batch_writer = SummaryWriter(self.app_state.log_dir + '/validation') self.validation_stat_col.initialize_tensorboard(self.validation_batch_writer) self.validation_set_writer = SummaryWriter(self.app_state.log_dir + '/validation_set_agg') self.validation_stat_agg.initialize_tensorboard(self.validation_set_writer) else: self.training_batch_writer = None self.training_set_writer = None self.validation_batch_writer = None self.validation_set_writer = None def finalize_tensorboard(self): """ Finalizes the operation of TensorBoard writers by closing them. """ # Close the TensorBoard writers. if self.training_batch_writer is not None: self.training_batch_writer.close() if self.training_set_writer is not None: self.training_set_writer.close() if self.validation_batch_writer is not None: self.validation_batch_writer.close() if self.validation_set_writer is not None: self.validation_set_writer.close() def validate_on_batch(self, valid_batch): """ Performs a validation of the model using the provided batch. Additionally logs results (to files, TensorBoard) and handles visualization. :param valid_batch: data batch generated by the task and used as input to the model. :type valid_batch: ``DataStreams`` :return: Validation loss. """ # Turn on evaluation mode. self.pipeline.eval() # Empty the statistics collector. self.validation_stat_col.empty() # Compute the validation loss using the provided data batch. with torch.no_grad(): # Forward pass. self.pipeline.forward(valid_batch) # Collect the statistics. self.collect_all_statistics(self.validation, self.pipeline, valid_batch, self.validation_stat_col) # Export collected statistics. self.export_all_statistics(self.validation_stat_col, '[Partial Validation]') def validate_on_set(self): """ Performs a validation of the model on the whole validation set, using the validation ``DataLoader``. Iterates over the entire validation set (through the `DataLoader``), aggregates the collected statistics \ and logs that to the console, csv and TensorBoard (if set). """ # Get number of samples. num_samples = len(self.validation) self.logger.info('Validating over the entire validation set ({} samples in {} episodes)'.format( num_samples, len(self.validation.dataloader))) # Turn on evaluation mode. self.pipeline.eval() # Reset the statistics. self.validation_stat_col.empty() # Remember global episode number. old_episode = self.app_state.episode with torch.no_grad(): for ep, valid_batch in enumerate(self.validation.dataloader): self.app_state.episode = ep # Forward pass. self.pipeline.forward(valid_batch) # Collect the statistics. self.collect_all_statistics(self.validation, self.pipeline, valid_batch, self.validation_stat_col) # Revert to global episode number. self.app_state.episode = old_episode # Aggregate statistics for the whole set. self.aggregate_all_statistics(self.validation, self.pipeline, self.validation_stat_col, self.validation_stat_agg) # Export aggregated statistics. self.export_all_statistics(self.validation_stat_agg, '[Full Validation]') if __name__ == '__main__': print("The trainer.py file contains only an abstract base class. Please try to use the \ online_trainer (mip-online-trainer) or offline_trainer (mip-offline-trainer) instead.")
[ "torch.no_grad", "torch.cuda.device_count" ]
1.0.1
aasseman/pytorchpipe
9cb17271666061cb19fe24197ecd5e4c8d32c5da
1.4
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import time import sys import torch import numpy as np from parameterized import parameterized from monai.transforms import CopyItemsd from monai.utils import ensure_tuple TEST_CASE_1 = ["img", 1, "img_1"] TEST_CASE_2 = [["img", "seg"], 1, ["img_1", "seg_1"]] TEST_CASE_3 = ["img", 2, ["img_1", "img_2"]] TEST_CASE_4 = [["img", "seg"], 2, ["img_1", "seg_1", "img_2", "seg_2"]] class TestCopyItemsd(unittest.TestCase): @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4]) def test_numpy_values(self, keys, times, names): input_data = {"img": np.array([[0, 1], [1, 2]]), "seg": np.array([[0, 1], [1, 2]])} result = CopyItemsd(keys=keys, times=times, names=names)(input_data) for name in ensure_tuple(names): self.assertTrue(name in result) result[name] += 1 np.testing.assert_allclose(result[name], np.array([[1, 2], [2, 3]])) np.testing.assert_allclose(result["img"], np.array([[0, 1], [1, 2]])) def test_tensor_values(self): device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu:0") input_data = { "img": torch.tensor([[0, 1], [1, 2]], device=device), "seg": torch.tensor([[0, 1], [1, 2]], device=device), } result = CopyItemsd(keys="img", times=1, names="img_1")(input_data) self.assertTrue("img_1" in result) result["img_1"] += 1 torch.testing.assert_allclose(result["img"], torch.tensor([[0, 1], [1, 2]], device=device)) torch.testing.assert_allclose(result["img_1"], torch.tensor([[1, 2], [2, 3]], device=device)) def test_array_values(self): input_data = {"img": [[0, 1], [1, 2]], "seg": [[0, 1], [1, 2]]} result = CopyItemsd(keys="img", times=1, names="img_1")(input_data) self.assertTrue("img_1" in result) result["img_1"][0][0] += 1 np.testing.assert_allclose(result["img"], [[0, 1], [1, 2]]) np.testing.assert_allclose(result["img_1"], [[1, 1], [1, 2]]) if __name__ == "__main__": unittest.main()
[ "torch.device", "torch.cuda.is_available", "torch.tensor" ]
1.4
Scitator/MONAI
a42b563acf0c7504cee18ee84c8af2eff6e948a7
1.4
import glob import json import os import random from torch.utils import data from torch.nn import CrossEntropyLoss from torch.utils.data import Subset from datasets.episode import Episode from datasets.wsd_dataset import WordWSDDataset, MetaWSDDataset from datasets.ner_dataset import NERSampler, read_examples_from_file, get_labels from transformers import BertTokenizer bert_tokenizer = BertTokenizer.from_pretrained('bert-base-cased') def write_json(json_dict, file_name): with open(file_name, 'w', encoding='utf8') as f: json.dump(json_dict, f, indent=4) def read_json(file_name): with open(file_name, 'r', encoding='utf8') as f: json_dict = json.load(f) return json_dict def get_max_batch_len(batch): return max([len(x[0]) for x in batch]) def prepare_batch(batch): max_len = get_max_batch_len(batch) x = [] lengths = [] y = [] for inp_seq, target_seq in batch: lengths.append(len(inp_seq)) target_seq = target_seq + [-1] * (max_len - len(target_seq)) x.append(inp_seq) y.append(target_seq) # print (lengths[0], x[0], y[0]) return x, lengths, y def prepare_bert_batch(batch): x = [] lengths = [] y = [] for sentences, labels in batch: tokens = [] label_ids = [] length = 0 for word, label in zip(sentences, labels): word_tokens = bert_tokenizer.tokenize(word) tokens.extend(word_tokens) label_ids.extend([label] + [-1] * (len(word_tokens) - 1)) length += len(word_tokens) # check # if all([lab == -1 for lab in label_ids]): # print (labels) assert(all([lab == -1 for lab in label_ids]) == False) x.append(tokens) lengths.append(length) y.append(label_ids) max_len = max(lengths) for i in range(len(y)): y[i] = y[i] + [-1] * (max_len - len(y[i])) # print (x[-1]) # print (batch[-1][1]) # print (y[-1]) return x, lengths, y def prepare_task_batch(batch): return batch def generate_semcor_wsd_episodes(wsd_dataset, n_episodes, n_support_examples, n_query_examples, task): word_splits = {k: v for (k, v) in wsd_dataset.word_splits.items() if len(v['sentences']) > (n_support_examples + n_query_examples)} if n_episodes > len(word_splits): raise Exception('Not enough data available to generate {} episodes'.format(n_episodes)) episodes = [] for word in word_splits.keys(): if len(episodes) == n_episodes: break indices = list(range(len(word_splits[word]['sentences']))) random.shuffle(indices) start_index = 0 train_subset = WordWSDDataset(sentences=[word_splits[word]['sentences'][i] for i in indices[start_index: start_index + n_support_examples]], labels=[word_splits[word]['labels'][i] for i in indices[start_index: start_index + n_support_examples]], n_classes=len(wsd_dataset.sense_inventory[word])) support_loader = data.DataLoader(train_subset, batch_size=n_support_examples, collate_fn=prepare_batch) start_index += n_support_examples test_subset = WordWSDDataset(sentences=[word_splits[word]['sentences'][i] for i in indices[start_index: start_index + n_query_examples]], labels=[word_splits[word]['labels'][i] for i in indices[start_index: start_index + n_query_examples]], n_classes=len(wsd_dataset.sense_inventory[word])) query_loader = data.DataLoader(test_subset, batch_size=n_query_examples, collate_fn=prepare_batch) episode = Episode(support_loader=support_loader, query_loader=query_loader, base_task=task, task_id=task + '-' + word, n_classes=train_subset.n_classes) episodes.append(episode) return episodes def generate_wsd_episodes(dir, n_episodes, n_support_examples, n_query_examples, task, meta_train=True): episodes = [] for file_name in glob.glob(os.path.join(dir, '*.json')): if len(episodes) == n_episodes: break word = file_name.split(os.sep)[-1].split('.')[0] word_wsd_dataset = MetaWSDDataset(file_name) train_subset = Subset(word_wsd_dataset, range(0, n_support_examples)) support_loader = data.DataLoader(train_subset, batch_size=n_support_examples, collate_fn=prepare_batch) if meta_train: test_subset = Subset(word_wsd_dataset, range(n_support_examples, n_support_examples + n_query_examples)) else: test_subset = Subset(word_wsd_dataset, range(n_support_examples, len(word_wsd_dataset))) query_loader = data.DataLoader(test_subset, batch_size=n_query_examples, collate_fn=prepare_batch) episode = Episode(support_loader=support_loader, query_loader=query_loader, base_task=task, task_id=task + '-' + word, n_classes=word_wsd_dataset.n_classes) episodes.append(episode) return episodes def generate_ner_episodes(dir, labels_file, n_episodes, n_support_examples, n_query_examples, task, meta_train=True, vectors='bert'): episodes = [] labels = get_labels(labels_file) examples, label_map = read_examples_from_file(dir, labels) # print ('label_map', label_map) ner_dataset = NERSampler(examples, labels, label_map, 6, n_support_examples, n_query_examples, n_episodes) for index, ner_data in enumerate(ner_dataset): tags, sup_sents, query_sents = ner_data # print (len(tags), len(sup_sents.labels), len(query_sents.labels)) if vectors == 'bert': support_loader = data.DataLoader(sup_sents, batch_size=6*n_support_examples, collate_fn=lambda pb: prepare_bert_batch(pb)) query_loader = data.DataLoader(query_sents, batch_size=6*n_query_examples, collate_fn=lambda pb: prepare_bert_batch(pb)) else: support_loader = data.DataLoader(sup_sents, batch_size=6*n_support_examples, collate_fn=prepare_batch) query_loader = data.DataLoader(query_sents, batch_size=6*n_query_examples, collate_fn=prepare_batch) episode = Episode(support_loader=support_loader, query_loader=query_loader, base_task=task, task_id=task + '-' + str(index), n_classes=len(labels)) episodes.append(episode) return episodes
[ "torch.utils.data.DataLoader" ]
1.4.0
muralinba12/MetaLearningForNER
61b5159059e486b8e0b50fcd8089554bc26249f6
1.1
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.nn.functional as F class PointNetEncoder(nn.Module): def __init__(self, in_channel=64): super(PointNetEncoder, self).__init__() self.conv1 = torch.nn.Conv1d(in_channel, 128, 1) self.conv2 = torch.nn.Conv1d(128, 1024, 1) self.bn1 = nn.BatchNorm1d(128) self.bn2 = nn.BatchNorm1d(1024) def forward(self, x): B, D, N = x.size() x = F.relu(self.bn1(self.conv1(x))) pointfeat = x x = F.relu(self.bn2(self.conv2(x))) x = torch.max(x, 2, keepdim=True)[0] x = x.view(-1, 1024) x = x.view(-1, 1024, 1).repeat(1, 1, N) return torch.cat([x, pointfeat], 1) class PointNetBackbone(nn.Module): def __init__(self, in_channel=64): super(PointNetBackbone, self).__init__() self.feat = PointNetEncoder(in_channel=in_channel) self.conv1 = torch.nn.Conv1d(1152, 512, 1) self.conv2 = torch.nn.Conv1d(512, 256, 1) self.conv3 = torch.nn.Conv1d(256, 128, 1) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.bn3 = nn.BatchNorm1d(128) def forward(self, x): batchsize = x.size()[0] n_pts = x.size()[2] x = self.feat(x) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) return x class VotingModule(nn.Module): def __init__(self, in_channel=64, feature_channel=128, num_voting=1): super(VotingModule, self).__init__() self.pointnet = PointNetBackbone(in_channel) self.conv1 = nn.Conv1d(feature_channel, feature_channel, 1, bias=False) self.conv2 = nn.Conv1d(feature_channel, feature_channel, 1, bias=False) self.offset = nn.Conv1d(feature_channel, 2, 1, bias=False) self.stride = nn.Conv1d(feature_channel, 1, 1, bias=False) self.prob = nn.Conv1d(feature_channel, 1, 1, bias=False) self.sigmoid = nn.Sigmoid() self.bn1 = nn.BatchNorm1d(feature_channel) self.bn2 = nn.BatchNorm1d(feature_channel) def forward(self, input_feature): voting_feature = self.pointnet(input_feature) voting_feature = F.relu(self.bn1(self.conv1(voting_feature))) voting_feature = F.relu(self.bn2(self.conv2(voting_feature))) centering_offset = self.offset(voting_feature) stride = F.relu(self.stride(voting_feature)) prob = self.sigmoid(self.prob(voting_feature)) return centering_offset, stride, prob if __name__ == '__main__': model = VotingModule() xyz = torch.rand(12, 64, 6000) data_dict = {'pillar_feature': xyz} output = model(data_dict)
[ "torch.rand", "torch.cat", "torch.nn.Sigmoid", "torch.nn.Conv1d", "torch.max", "torch.nn.BatchNorm1d" ]
1.1
wyddmw/RotPred
18ca1a565fdbf90e8016e51ed5a3b84dc12109f3
1.7
# Copyright (c) 2021. TsumiNa. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. from collections import OrderedDict from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd import pytest from shutil import rmtree import torch import os from xenonpy.model import SequentialLinear from xenonpy.model.training import Trainer from xenonpy.model.training.base import BaseExtension, BaseRunner from xenonpy.model.training.extension import TensorConverter, Validator, Persist from xenonpy.model.utils import regression_metrics, classification_metrics @pytest.fixture(scope='module') def data(): # ignore numpy warning import warnings print('ignore NumPy RuntimeWarning\n') warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ndarray size changed") dir_ = os.path.dirname(os.path.abspath(__file__)) yield try: rmtree(str(Path('.').resolve() / 'test_model')) except: pass try: rmtree(str(Path('.').resolve() / 'test_model@1')) except: pass try: rmtree(str(Path('.').resolve() / 'test_model_1')) except: pass try: rmtree(str(Path('.').resolve() / 'test_model_2')) except: pass try: rmtree(str(Path('.').resolve() / 'test_model_3')) except: pass try: rmtree(str(Path('.').resolve() / Path(os.getcwd()).name)) except: pass print('test over') def test_base_runner_1(): ext = BaseExtension() x, y = 1, 2 assert ext.input_proc(x, y) == (x, y) assert ext.output_proc(y, None) == (y, None) x, y = (1,), 2 assert ext.input_proc(x, y) == (x, y) assert ext.output_proc(y, None) == (y, None) x, y = (1,), (2,) assert ext.input_proc(x, y) == (x, y) assert ext.output_proc(y, y) == (y, y) def test_tensor_converter_1(): class _Trainer(BaseRunner): def __init__(self): super().__init__() self.non_blocking = False def predict(self, x_, y_): # noqa return x_, y_ trainer = _Trainer() arr_1 = [1, 2, 3] np_1 = np.asarray(arr_1) se_1 = pd.Series(arr_1) pd_1 = pd.DataFrame(arr_1) np_ = np.asarray([arr_1, arr_1]) pd_ = pd.DataFrame(np_) tensor_ = torch.Tensor(np_) # test auto reshape; #189 converter = TensorConverter(auto_reshape=False) x, y = converter.input_proc(np_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3,) x, y = converter.input_proc(se_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3,) x, y = converter.input_proc(pd_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3, 1) converter = TensorConverter() x, y = converter.input_proc(np_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3, 1) x, y = converter.input_proc(se_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3, 1) x, y = converter.input_proc(pd_1, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (3, 1) # normal tests x, y = converter.input_proc(np_, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert y is None x, y = converter.input_proc(pd_, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert y is None x, y = converter.input_proc(tensor_, None, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert y is None x, y = converter.input_proc(np_, np_, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert torch.equal(y, tensor_) x, y = converter.input_proc(pd_, pd_, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert torch.equal(y, tensor_) x, y = converter.input_proc(tensor_, tensor_, trainer=trainer) # noqa assert isinstance(x, torch.Tensor) assert x.shape == (2, 3) assert torch.equal(x, tensor_) assert torch.equal(y, tensor_) converter = TensorConverter(x_dtype=torch.long) x, y = converter.input_proc((np_, np_), np_, trainer=trainer) # noqa assert isinstance(x, tuple) assert len(x) == 2 assert x[0].dtype == torch.long assert x[1].dtype == torch.long converter = TensorConverter(x_dtype=(torch.long, torch.float32), y_dtype=torch.long) x, y = converter.input_proc((np_, np_), np_, trainer=trainer) # noqa assert isinstance(x, tuple) assert len(x) == 2 assert x[0].dtype == torch.long assert x[1].dtype == torch.float32 assert y.dtype == torch.long converter = TensorConverter(x_dtype=(torch.long, torch.float32)) x, y = converter.input_proc((pd_, pd_), pd_, trainer=trainer) # noqa assert isinstance(x, tuple) assert len(x) == 2 assert x[0].dtype == torch.long assert x[1].dtype == torch.float32 # for tensor input, dtype change will never be executed converter = TensorConverter(x_dtype=(torch.long, torch.long)) x, y = converter.input_proc((tensor_, tensor_), tensor_, trainer=trainer) # noqa assert isinstance(x, tuple) assert len(x) == 2 assert x[0].dtype == torch.float32 assert x[1].dtype == torch.float32 def test_tensor_converter_2(): class _Trainer(BaseRunner): def __init__(self): super().__init__() self.non_blocking = False def predict(self, x_, y_): return x_, y_ trainer = _Trainer() converter = TensorConverter() np_ = np.asarray([[1, 2, 3], [4, 5, 6]]) pd_ = pd.DataFrame(np_) tensor_ = torch.Tensor(np_) # noqa x, y = converter.input_proc(np_, np_[0], trainer=trainer) # noqa assert isinstance(y, torch.Tensor) assert y.shape == (3, 1) assert torch.equal(y, tensor_[0].unsqueeze(-1)) x, y = converter.input_proc(pd_, pd_.iloc[0], trainer=trainer) # noqa assert isinstance(y, torch.Tensor) assert y.shape == (3, 1) assert torch.equal(y, tensor_[0].unsqueeze(-1)) x, y = converter.input_proc(tensor_, tensor_[0], trainer=trainer) # noqa assert isinstance(y, torch.Tensor) assert y.shape == (3,) assert torch.equal(y, tensor_[0]) def test_tensor_converter_3(): np_ = np.asarray([[1, 2, 3], [4, 5, 6]]) tensor_ = torch.from_numpy(np_) converter = TensorConverter() y, y_ = converter.output_proc(tensor_, None, training=True) assert y_ is None assert isinstance(y, torch.Tensor) assert y.shape == (2, 3) assert torch.equal(y, tensor_) y, y_ = converter.output_proc(tensor_, tensor_, training=True) assert isinstance(y, torch.Tensor) assert isinstance(y_, torch.Tensor) assert y.equal(y_) assert y.shape == (2, 3) assert torch.equal(y, tensor_) y, _ = converter.output_proc((tensor_,), None, training=True) assert isinstance(y, tuple) assert isinstance(y[0], torch.Tensor) assert torch.equal(y[0], tensor_) y, y_ = converter.output_proc(tensor_, tensor_, training=False) assert isinstance(y, np.ndarray) assert isinstance(y_, np.ndarray) assert np.all(y == y_) assert y.shape == (2, 3) assert np.all(y == tensor_.numpy()) y, _ = converter.output_proc((tensor_,), None, training=False) assert isinstance(y, tuple) assert isinstance(y[0], np.ndarray) assert np.all(y[0] == tensor_.numpy()) converter = TensorConverter(argmax=True) y, y_ = converter.output_proc(tensor_, tensor_, training=False) assert isinstance(y, np.ndarray) assert isinstance(y_, np.ndarray) assert y.shape == (2,) assert y_.shape == (2, 3) assert np.all(y == np.argmax(np_, 1)) y, y_ = converter.output_proc((tensor_, tensor_), None, training=False) assert isinstance(y, tuple) assert y_ is None assert y[0].shape == (2,) assert y[0].shape == y[1].shape assert np.all(y[0] == np.argmax(np_, 1)) converter = TensorConverter(probability=True) y, y_ = converter.output_proc(tensor_, tensor_, training=False) assert isinstance(y, np.ndarray) assert isinstance(y_, np.ndarray) assert y.shape == (2, 3) assert y_.shape == (2, 3) assert np.all(y == softmax(np_, 1)) y, y_ = converter.output_proc((tensor_, tensor_), None, training=False) assert isinstance(y, tuple) assert y_ is None assert y[0].shape == (2, 3) assert y[0].shape == y[1].shape assert np.all(y[0] == softmax(np_, 1)) def test_validator_1(): x = np.random.randn(100) # input y = x + np.random.rand() * 0.001 # true values class _Trainer(BaseRunner): def __init__(self): super().__init__() self.x_val = x self.y_val = y self.loss_type = 'train_loss' def predict(self, x_, y_): return x_, y_ val = Validator('regress', each_iteration=False) step_info = OrderedDict(train_loss=0, i_epoch=0) val.step_forward(trainer=_Trainer(), step_info=step_info) # noqa assert 'val_mae' not in step_info step_info = OrderedDict(train_loss=0, i_epoch=1) val.step_forward(trainer=_Trainer(), step_info=step_info) # noqa assert step_info['val_mae'] == regression_metrics(y, x)['mae'] assert set(step_info.keys()) == { 'i_epoch', 'val_mae', 'val_mse', 'val_rmse', 'val_r2', 'val_pearsonr', 'val_spearmanr', 'val_p_value', 'val_max_ae', 'train_loss' } def test_validator_2(): y = np.random.randint(3, size=10) # true labels x = np.zeros((10, 3)) # input for i, j in enumerate(y): x[i, j] = 1 class _Trainer(BaseRunner): def __init__(self): super().__init__() self.x_val = x self.y_val = y self.loss_type = 'train_loss' def predict(self, x_, y_): # noqa return x_, y_ val = Validator('classify', each_iteration=False) step_info = OrderedDict(train_loss=0, i_epoch=0) val.step_forward(trainer=_Trainer(), step_info=step_info) # noqa assert 'val_f1' not in step_info step_info = OrderedDict(train_loss=0, i_epoch=1) val.step_forward(trainer=_Trainer(), step_info=step_info) # noqa assert step_info['val_f1'] == classification_metrics(y, x)['f1'] assert set(step_info.keys()) == { 'i_epoch', 'val_accuracy', 'val_f1', 'val_precision', 'val_recall', 'val_macro_f1', 'val_macro_precision', 'val_macro_recall', 'train_loss' } def test_persist_1(data): class _Trainer(BaseRunner): def __init__(self): super().__init__() self.model = SequentialLinear(50, 2) def predict(self, x_, y_): # noqa return x_, y_ p = Persist() with pytest.raises(ValueError, match='can not access property `path` before training'): p.path p.before_proc(trainer=_Trainer()) assert p.path == str(Path('.').resolve() / Path(os.getcwd()).name) with pytest.raises(ValueError, match='can not reset property `path` after training'): p.path = 'aa' p = Persist('test_model') p.before_proc(trainer=_Trainer()) assert p.path == str(Path('.').resolve() / 'test_model') assert (Path('.').resolve() / 'test_model' / 'describe.pkl.z').exists() assert (Path('.').resolve() / 'test_model' / 'init_state.pth.s').exists() assert (Path('.').resolve() / 'test_model' / 'model.pth.m').exists() assert (Path('.').resolve() / 'test_model' / 'model_structure.pkl.z').exists() p = Persist('test_model', increment=True) p.before_proc(trainer=_Trainer()) assert p.path == str(Path('.').resolve() / 'test_model@1') assert (Path('.').resolve() / 'test_model@1' / 'describe.pkl.z').exists() assert (Path('.').resolve() / 'test_model@1' / 'init_state.pth.s').exists() assert (Path('.').resolve() / 'test_model@1' / 'model.pth.m').exists() assert (Path('.').resolve() / 'test_model@1' / 'model_structure.pkl.z').exists() def test_persist_save_checkpoints(data): class _Trainer(BaseRunner): def __init__(self): super().__init__() self.model = SequentialLinear(50, 2) def predict(self, x_, y_): # noqa return x_, y_ cp_1 = Trainer.checkpoint_tuple( id='cp_1', iterations=111, model_state=SequentialLinear(50, 2).state_dict(), ) cp_2 = Trainer.checkpoint_tuple( id='cp_2', iterations=111, model_state=SequentialLinear(50, 2).state_dict(), ) # save checkpoint p = Persist('test_model_1', increment=False, only_best_states=False) p.before_proc(trainer=_Trainer()) p.on_checkpoint(cp_1, trainer=_Trainer()) p.on_checkpoint(cp_2, trainer=_Trainer()) assert (Path('.').resolve() / 'test_model_1' / 'checkpoints' / 'cp_1.pth.s').exists() assert (Path('.').resolve() / 'test_model_1' / 'checkpoints' / 'cp_2.pth.s').exists() # reduced save checkpoint p = Persist('test_model_2', increment=False, only_best_states=True) p.before_proc(trainer=_Trainer()) p.on_checkpoint(cp_1, trainer=_Trainer()) p.on_checkpoint(cp_2, trainer=_Trainer()) assert (Path('.').resolve() / 'test_model_2' / 'checkpoints' / 'cp.pth.s').exists() assert not (Path('.').resolve() / 'test_model_2' / 'checkpoints' / 'cp_1.pth.s').exists() assert not (Path('.').resolve() / 'test_model_2' / 'checkpoints' / 'cp_2.pth.s').exists() # no checkpoint will be saved p = Persist('test_model_3', increment=False, only_best_states=True) p.before_proc(trainer=_Trainer()) p.on_checkpoint(cp_2, trainer=_Trainer()) assert not (Path('.').resolve() / 'test_model_3' / 'checkpoints' / 'cp.pth.s').exists() assert not (Path('.').resolve() / 'test_model_3' / 'checkpoints' / 'cp_2.pth.s').exists() if __name__ == "__main__": pytest.main()
[ "torch.from_numpy", "torch.equal", "torch.Tensor" ]
1.7.0
mori0711/XenonPy
e36ca0ea112b45ee629cd980c88e80cd6c96c514
1.1
import json import pprint import random import time import torch import torch.multiprocessing as mp from models.nn.resnet import Resnet from data.preprocess import Dataset from importlib import import_module class Eval(object): # tokens STOP_TOKEN = "<<stop>>" SEQ_TOKEN = "<<seg>>" TERMINAL_TOKENS = [STOP_TOKEN, SEQ_TOKEN] def __init__(self, args, manager): # args and manager self.args = args self.manager = manager # load splits with open(self.args.splits) as f: self.splits = json.load(f) pprint.pprint({k: len(v) for k, v in self.splits.items()}) # load model print("Loading: ", self.args.model_path) M = import_module(self.args.model) self.model, optimizer = M.Module.load(self.args.model_path) self.model.share_memory() self.model.eval() # updated args self.model.args.dout = self.args.model_path.replace(self.args.model_path.split('/')[-1], '') self.model.args.data = self.args.data if self.args.data else self.model.args.data # preprocess and save if args.preprocess: print("\nPreprocessing dataset and saving to %s folders ... This is will take a while. Do this once as required:" % self.model.args.pp_folder) self.model.args.fast_epoch = self.args.fast_epoch dataset = Dataset(self.model.args, self.model.vocab) dataset.preprocess_splits(self.splits) # load resnet args.visual_model = 'resnet18' self.resnet = Resnet(args, eval=True, share_memory=True, use_conv_feat=True) # gpu if self.args.gpu: self.model = self.model.to(torch.device('cuda')) # success and failure lists self.create_stats() # set random seed for shuffling random.seed(int(time.time())) def queue_tasks(self): ''' create queue of trajectories to be evaluated ''' task_queue = self.manager.Queue() files = self.splits[self.args.eval_split] # debugging: fast epoch if self.args.fast_epoch: files = files[:16] if self.args.shuffle: random.shuffle(files) for traj in files: task_queue.put(traj) return task_queue def spawn_threads(self): ''' spawn multiple threads to run eval in parallel ''' task_queue = self.queue_tasks() # start threads threads = [] lock = self.manager.Lock() for n in range(self.args.num_threads): thread = mp.Process(target=self.run, args=(self.model, self.resnet, task_queue, self.args, lock, self.successes, self.failures, self.results)) thread.start() threads.append(thread) for t in threads: t.join() # save self.save_results() @classmethod def setup_scene(cls, env, traj_data, r_idx, args, reward_type='dense'): ''' intialize the scene and agent from the task info ''' # scene setup scene_num = traj_data['scene']['scene_num'] object_poses = traj_data['scene']['object_poses'] dirty_and_empty = traj_data['scene']['dirty_and_empty'] object_toggles = traj_data['scene']['object_toggles'] scene_name = 'FloorPlan%d' % scene_num env.reset(scene_name) env.restore_scene(object_poses, object_toggles, dirty_and_empty) # initialize to start position env.step(dict(traj_data['scene']['init_action'])) # print goal instr print("Task: %s" % (traj_data['turk_annotations']['anns'][r_idx]['task_desc'])) # setup task for reward env.set_task(traj_data, args, reward_type=reward_type) @classmethod def run(cls, model, resnet, task_queue, args, lock, successes, failures): raise NotImplementedError() @classmethod def evaluate(cls, env, model, r_idx, resnet, traj_data, args, lock, successes, failures): raise NotImplementedError() def save_results(self): raise NotImplementedError() def create_stats(self): raise NotImplementedError()
[ "torch.multiprocessing.Process", "torch.device" ]
1.1.0
caisarl76/alfred
b73bdc1651e14c02440938b639fa3c7f3ab3d321
1.8
import torch import torch.nn as nn import torch.distributed as dist from torch.utils.tensorboard import SummaryWriter import torch.multiprocessing as mp import torch.distributed as dist import torch.utils.data.distributed import argparse import os import json from models.StyleSpeech import StyleSpeech from models.Discriminators import Discriminator from dataloader import prepare_dataloader from optimizer import ScheduledOptim from evaluate import evaluate import utils def load_checkpoint(checkpoint_path, model, discriminator, G_optim, D_optim, rank, distributed=False): assert os.path.isfile(checkpoint_path) print("Starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cuda:{}'.format(rank)) if 'model' in checkpoint_dict: if distributed: state_dict = {} for k,v in checkpoint_dict['model'].items(): state_dict['module.{}'.format(k)] = v model.load_state_dict(state_dict) else: model.load_state_dict(checkpoint_dict['model']) print('Model is loaded!') if 'discriminator' in checkpoint_dict: if distributed: state_dict = {} for k,v in checkpoint_dict['discriminator'].items(): state_dict['module.{}'.format(k)] = v discriminator.load_state_dict(state_dict) else: discriminator.load_state_dict(checkpoint_dict['discriminator']) print('Discriminator is loaded!') if 'G_optim' in checkpoint_dict or 'optimizer' in checkpoint_dict: if 'optimizer' in checkpoint_dict: G_optim.load_state_dict(checkpoint_dict['optimizer']) if 'G_optim' in checkpoint_dict: G_optim.load_state_dict(checkpoint_dict['G_optim']) print('G_optim is loaded!') if 'D_optim' in checkpoint_dict: D_optim.load_state_dict(checkpoint_dict['D_optim']) print('D_optim is loaded!') current_step = checkpoint_dict['step'] + 1 del checkpoint_dict return model, discriminator, G_optim, D_optim, current_step def main(rank, args, c): print('Use GPU: {} for training'.format(rank)) ngpus = args.ngpus if args.distributed: torch.cuda.set_device(rank % ngpus) dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=rank) # Define model & loss model = StyleSpeech(c).cuda() discriminator = Discriminator(c).cuda() num_param = utils.get_param_num(model) D_num_param = utils.get_param_num(discriminator) if rank==0: print('Number of Meta-StyleSpeech Parameters:', num_param) print('Number of Discriminator Parameters:', D_num_param) with open(os.path.join(args.save_path, "model.txt"), "w") as f_log: f_log.write(str(model)) f_log.write(str(discriminator)) print("Model Has Been Defined") model_without_ddp = model discriminator_without_ddp = discriminator if args.distributed: c.meta_batch_size = c.meta_batch_size // ngpus model = nn.parallel.DistributedDataParallel(model, device_ids=[rank]) model_without_ddp = model.module discriminator = nn.parallel.DistributedDataParallel(discriminator, device_ids=[rank]) discriminator_without_ddp = discriminator.module # Optimizer G_optim = torch.optim.Adam(model.parameters(), betas=c.betas, eps=c.eps) D_optim = torch.optim.Adam(discriminator.parameters(), lr=2e-4, betas=c.betas, eps=c.eps) # Loss Loss = model_without_ddp.get_criterion() adversarial_loss = discriminator_without_ddp.get_criterion() print("Optimizer and Loss Function Defined.") # Get dataset data_loader = prepare_dataloader(args.data_path, "train.txt", batch_size=c.meta_batch_size, meta_learning=True, seed=rank) print("Data Loader is Prepared") # Load checkpoint if exists if args.checkpoint_path is not None: assert os.path.exists(args.checkpoint_path) model, discriminator, G_optim, D_optim, current_step = load_checkpoint( args.checkpoint_path, model, discriminator, G_optim, D_optim, rank, args.distributed) print("\n---Model Restored at Step {}---\n".format(current_step)) else: print("\n---Start New Training---\n") current_step = 0 if rank == 0: checkpoint_path = os.path.join(args.save_path, 'ckpt') os.makedirs(checkpoint_path, exist_ok=True) # scheduled optimizer G_optim = ScheduledOptim(G_optim, c.decoder_hidden, c.n_warm_up_step, current_step) # Init logger if rank == 0: log_path = os.path.join(args.save_path, 'log') logger = SummaryWriter(os.path.join(log_path, 'board')) with open(os.path.join(log_path, "log.txt"), "a") as f_log: f_log.write("Dataset :{}\n Number of Parameters: {}\n".format(c.dataset, num_param)) # Init synthesis directory if rank == 0: synth_path = os.path.join(args.save_path, 'synth') os.makedirs(synth_path, exist_ok=True) model.train() while current_step < args.max_iter: # Get Training Loader for idx, batch in enumerate(data_loader): if current_step == args.max_iter: break losses = {} #### Generator #### G_optim.zero_grad() # Get Support Data sid, text, mel_target, D, log_D, f0, energy, \ src_len, mel_len, max_src_len, max_mel_len = model_without_ddp.parse_batch(batch) # Support Forward mel_output, src_output, style_vector, log_duration_output, f0_output, energy_output, src_mask, mel_mask, _ = model( text, src_len, mel_target, mel_len, D, f0, energy, max_src_len, max_mel_len) src_target, _, _ = model_without_ddp.variance_adaptor.length_regulator(src_output, D) # Reconstruction loss mel_loss, d_loss, f_loss, e_loss = Loss(mel_output, mel_target, log_duration_output, log_D, f0_output, f0, energy_output, energy, src_len, mel_len) losses['G_recon'] = mel_loss losses['d_loss'] = d_loss losses['f_loss'] = f_loss losses['e_loss'] = e_loss #### META LEARNING #### # Get query text B = mel_target.shape[0] perm_idx = torch.randperm(B) q_text, q_src_len = text[perm_idx], src_len[perm_idx] # Generate query speech q_mel_output, q_src_output, q_log_duration_output, \ _, _, q_src_mask, q_mel_mask, q_mel_len = model_without_ddp.inference(style_vector, q_text, q_src_len) # Legulate length of query src q_duration_rounded = torch.clamp(torch.round(torch.exp(q_log_duration_output.detach())-1.), min=0) q_duration = q_duration_rounded.masked_fill(q_src_mask, 0).long() q_src, _, _ = model_without_ddp.variance_adaptor.length_regulator(q_src_output, q_duration) # Adverserial loss t_val, s_val, _= discriminator(q_mel_output, q_src, None, sid, q_mel_mask) losses['G_GAN_query_t'] = adversarial_loss(t_val, is_real=True) losses['G_GAN_query_s'] = adversarial_loss(s_val, is_real=True) # Total generator loss alpha = 10.0 G_loss = alpha*losses['G_recon'] + losses['d_loss'] + losses['f_loss'] + losses['e_loss'] + \ losses['G_GAN_query_t'] + losses['G_GAN_query_s'] # Backward loss G_loss.backward() # Update weights G_optim.step_and_update_lr() #### Discriminator #### D_optim.zero_grad() # Real real_t_pred, real_s_pred, cls_loss = discriminator( mel_target, src_target.detach(), style_vector.detach(), sid, mask=mel_mask) # Fake fake_t_pred, fake_s_pred, _ = discriminator( q_mel_output.detach(), q_src.detach(), None, sid, mask=q_mel_mask) losses['D_t_loss'] = adversarial_loss(real_t_pred, is_real=True) + adversarial_loss(fake_t_pred, is_real=False) losses['D_s_loss'] = adversarial_loss(real_s_pred, is_real=True) + adversarial_loss(fake_s_pred, is_real=False) losses['cls_loss'] = cls_loss # Total discriminator Loss D_loss = losses['D_t_loss'] + losses['D_s_loss'] + losses['cls_loss'] # Backward D_loss.backward() # Update weights D_optim.step() # Print log if current_step % args.log_step == 0 and current_step != 0 and rank == 0 : m_l = losses['G_recon'].item() d_l = losses['d_loss'].item() f_l = losses['f_loss'].item() e_l = losses['e_loss'].item() g_t_l = losses['G_GAN_query_t'].item() g_s_l = losses['G_GAN_query_s'].item() d_t_l = losses['D_t_loss'].item() / 2 d_s_l = losses['D_s_loss'].item() / 2 cls_l = losses['cls_loss'].item() str1 = "Step [{}/{}]:".format(current_step, args.max_iter) str2 = "Mel Loss: {:.4f},\n" \ "Duration Loss: {:.4f}, F0 Loss: {:.4f}, Energy Loss: {:.4f}\n" \ "T G Loss: {:.4f}, T D Loss: {:.4f}, S G Loss: {:.4f}, S D Loss: {:.4f} \n" \ "cls_Loss: {:.4f};" \ .format(m_l, d_l, f_l, e_l, g_t_l, d_t_l, g_s_l, d_s_l, cls_l) print(str1 + "\n" + str2 +"\n") with open(os.path.join(log_path, "log.txt"), "a") as f_log: f_log.write(str1 + "\n" + str2 +"\n") logger.add_scalar('Train/mel_loss', m_l, current_step) logger.add_scalar('Train/duration_loss', d_l, current_step) logger.add_scalar('Train/f0_loss', f_l, current_step) logger.add_scalar('Train/energy_loss', e_l, current_step) logger.add_scalar('Train/G_t_loss', g_t_l, current_step) logger.add_scalar('Train/D_t_loss', d_t_l, current_step) logger.add_scalar('Train/G_s_loss', g_s_l, current_step) logger.add_scalar('Train/D_s_loss', d_s_l, current_step) logger.add_scalar('Train/cls_loss', cls_l, current_step) # Save Checkpoint if current_step % args.save_step == 0 and current_step != 0 and rank == 0: torch.save({'model': model_without_ddp.state_dict(), 'discriminator': discriminator_without_ddp.state_dict(), 'G_optim': G_optim.state_dict(),'D_optim': D_optim.state_dict(), 'step': current_step}, os.path.join(checkpoint_path, 'checkpoint_{}.pth.tar'.format(current_step))) print("*** Save Checkpoint ***") print("Save model at step {}...\n".format(current_step)) if current_step % args.synth_step == 0 and current_step != 0 and rank == 0: length = mel_len[0].item() mel_target = mel_target[0, :length].detach().cpu().transpose(0, 1) mel = mel_output[0, :length].detach().cpu().transpose(0, 1) q_length = q_mel_len[0].item() q_mel = q_mel_output[0, :q_length].detach().cpu().transpose(0, 1) # plotting utils.plot_data([q_mel.numpy(), mel.numpy(), mel_target.numpy()], ['Query Spectrogram', 'Recon Spectrogram', 'Ground-Truth Spectrogram'], filename=os.path.join(synth_path, 'step_{}.png'.format(current_step))) print("Synth audios at step {}...\n".format(current_step)) # Evaluate if current_step % args.eval_step == 0 and current_step != 0 and rank == 0: model.eval() with torch.no_grad(): m_l, d_l, f_l, e_l = evaluate(args, model_without_ddp, current_step) str_v = "*** Validation ***\n" \ "Meta-StyleSpeech Step {},\n" \ "Mel Loss: {}\nDuration Loss:{}\nF0 Loss: {}\nEnergy Loss: {}" \ .format(current_step, m_l, d_l, f_l, e_l) print(str_v + "\n" ) with open(os.path.join(log_path, "eval.txt"), "a") as f_log: f_log.write(str_v + "\n") logger.add_scalar('Validation/mel_loss', m_l, current_step) logger.add_scalar('Validation/duration_loss', d_l, current_step) logger.add_scalar('Validation/f0_loss', f_l, current_step) logger.add_scalar('Validation/energy_loss', e_l, current_step) model.train() current_step += 1 if rank == 0: print("Training Done at Step : {}".format(current_step)) torch.save({'model': model_without_ddp.state_dict(), 'discriminator': discriminator_without_ddp.state_dict(), 'G_optim': G_optim.state_dict(), 'D_optim': D_optim.state_dict(), 'step': current_step}, os.path.join(checkpoint_path, 'checkpoint_last_{}.pth.tar'.format(current_step))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--data_path', default='dataset/LibriTTS/preprocessed') parser.add_argument('--save_path', default='exp_meta_stylespeech') parser.add_argument('--config', default='configs/config.json') parser.add_argument('--max_iter', default=100000, type=int) parser.add_argument('--save_step', default=5000, type=int) parser.add_argument('--synth_step', default=1000, type=int) parser.add_argument('--eval_step', default=5000, type=int) parser.add_argument('--log_step', default=100, type=int) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to pretrained model') parser.add_argument('--dist-url', default='tcp://127.0.0.1:3456', type=str, help='url for setting up distributed training') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='distributed backend') parser.add_argument('--dist-backend', default='nccl', type=str, help='node rank for distributed training') args = parser.parse_args() torch.backends.cudnn.enabled = True with open(args.config) as f: data = f.read() json_config = json.loads(data) config = utils.AttrDict(json_config) utils.build_env(args.config, 'config.json', args.save_path) ngpus = torch.cuda.device_count() args.ngpus = ngpus args.distributed = ngpus > 1 if args.distributed: args.world_size = ngpus mp.spawn(main, nprocs=ngpus, args=(args, config)) else: main(0, args, config)
[ "torch.distributed.init_process_group", "torch.no_grad", "torch.multiprocessing.spawn", "torch.nn.parallel.DistributedDataParallel", "torch.randperm", "torch.cuda.device_count", "torch.cuda.set_device" ]
1.8.1
ishine/StyleSpeech-1
f939cf9cb981db7b738fa9c9c9a7fea2dfdd0766
1.0
""" Checker functions """ import numpy as np import torch PI = 3.1415 DIM = 64.0 SCALE = 255.0 FIXED_CIRCLE = False class CentroidFunction(torch.nn.Module): def __init__(self, bs, ch, sx, sy): super(CentroidFunction, self).__init__() self.x_lin = torch.nn.Parameter(torch.linspace(0, sx, sx).expand(bs, ch, sx, sy)).requires_grad_(False).cuda() self.y_lin = torch.nn.Parameter(torch.linspace(0, sy, sy).expand(bs, ch, sy, sx).transpose(2, 3) ).requires_grad_(False).cuda() def forward(self, img_batch): img_batch = img_batch[:, 0:-1, ...] # Dropping the very last channel. m00_t = img_batch.sum(dim=(2, 3)) m01_t = torch.mul(img_batch, self.x_lin) m10_t = torch.mul(img_batch, self.y_lin) cx_t = torch.sum(m01_t, dim=(2, 3)) / (m00_t + 0.01) cy_t = torch.sum(m10_t, dim=(2, 3)) / (m00_t + 0.01) return cx_t, cy_t def p1_fn(x, torch=True): #print(x.size()) if torch: if FIXED_CIRCLE: return x.mean(dim=(1,2,3)).unsqueeze(1) else: #return x.mean(dim=(2,3)) return x[:, 0:-1, ...].mean(dim=(2,3)) # Dropping the very last channel. else: return x.mean(axis=(1,2,3)) def p2_fn(x, torch=True): pass
[ "torch.mul", "torch.linspace", "torch.sum" ]
1.0.0
chomd90/invnet
0d359e57b66f2e738812b5d660563fb4b3ab8f4a
1.7
import torch from torch import nn import torch.nn.functional as F class ContentLoss(nn.Module): """ Content Loss for the neural style transfer algorithm. """ def __init__(self, target: torch.Tensor, device: torch.device) -> None: super(ContentLoss, self).__init__() batch_size, channels, height, width = target.size() target = target.view(batch_size * channels, height * width) self.target = target.detach().to(device) def __str__(self) -> str: return "Content loss" def forward(self, input: torch.Tensor) -> torch.Tensor: batch_size, channels, height, width = input.size() input = input.view(batch_size * channels, height * width) return F.mse_loss(input, self.target) class StyleLoss(nn.Module): """ Style loss for the neural style transfer algorithm. """ def __init__(self, target: torch.Tensor, device: torch.device) -> None: super(StyleLoss, self).__init__() self.target = self.compute_gram_matrix(target).detach().to(device) def __str__(self) -> str: return "Style loss" def forward(self, input: torch.Tensor) -> torch.Tensor: input = self.compute_gram_matrix(input) return F.mse_loss(input, self.target) def compute_gram_matrix(self, input: torch.Tensor) -> torch.Tensor: batch_size, channels, height, width = input.size() input = input.view(batch_size * channels, height * width) return torch.matmul(input, input.T).div(batch_size * channels * height * width)
[ "torch.nn.functional.mse_loss", "torch.matmul" ]
1.7.0
visualCalculus/neural-style-transfer
96f98a642dc9bf7b1ae59729b3712ff467afa38d
1.0
""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import re import importlib import torch from argparse import Namespace import numpy as np from PIL import Image import os import argparse import dill as pickle import util.coco def save_obj(obj, name): with open(name, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with open(name, 'rb') as f: return pickle.load(f) # returns a configuration for creating a generator # |default_opt| should be the opt of the current experiment # |**kwargs|: if any configuration should be overriden, it can be specified here def copyconf(default_opt, **kwargs): conf = argparse.Namespace(**vars(default_opt)) for key in kwargs: print(key, kwargs[key]) setattr(conf, key, kwargs[key]) return conf def tile_images(imgs, picturesPerRow=4): """ Code borrowed from https://stackoverflow.com/questions/26521365/cleanly-tile-numpy-array-of-images-stored-in-a-flattened-1d-format/26521997 """ # Padding if imgs.shape[0] % picturesPerRow == 0: rowPadding = 0 else: rowPadding = picturesPerRow - imgs.shape[0] % picturesPerRow if rowPadding > 0: imgs = np.concatenate([imgs, np.zeros((rowPadding, *imgs.shape[1:]), dtype=imgs.dtype)], axis=0) # Tiling Loop (The conditionals are not necessary anymore) tiled = [] for i in range(0, imgs.shape[0], picturesPerRow): tiled.append(np.concatenate([imgs[j] for j in range(i, i + picturesPerRow)], axis=1)) tiled = np.concatenate(tiled, axis=0) return tiled # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy if image_tensor.dim() == 4: # transform each image in the batch images_np = [] for b in range(image_tensor.size(0)): one_image = image_tensor[b] one_image_np = tensor2im(one_image) images_np.append(one_image_np.reshape(1, *one_image_np.shape)) images_np = np.concatenate(images_np, axis=0) if tile: images_tiled = tile_images(images_np) return images_tiled else: return images_np if image_tensor.dim() == 2: image_tensor = image_tensor.unsqueeze(0) image_numpy = image_tensor.detach().cpu().float().numpy() if normalize: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 else: image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) if image_numpy.shape[2] == 1: image_numpy = image_numpy[:, :, 0] return image_numpy.astype(imtype) # Converts a one-hot tensor into a colorful label map def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False): if label_tensor.dim() == 4: # transform each image in the batch images_np = [] for b in range(label_tensor.size(0)): one_image = label_tensor[b] one_image_np = tensor2label(one_image, n_label, imtype) images_np.append(one_image_np.reshape(1, *one_image_np.shape)) images_np = np.concatenate(images_np, axis=0) if tile: images_tiled = tile_images(images_np) return images_tiled else: images_np = images_np[0] return images_np if label_tensor.dim() == 1: return np.zeros((64, 64, 3), dtype=np.uint8) if n_label == 0: return tensor2im(label_tensor, imtype) label_tensor = label_tensor.cpu().float() if label_tensor.size()[0] > 1: label_tensor = label_tensor.max(0, keepdim=True)[1] label_tensor = Colorize(n_label)(label_tensor) label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) result = label_numpy.astype(imtype) return result def save_image(image_numpy, image_path, create_dir=False): if create_dir: os.makedirs(os.path.dirname(image_path), exist_ok=True) if len(image_numpy.shape) == 2: image_numpy = np.expand_dims(image_numpy, axis=2) if image_numpy.shape[2] == 1: image_numpy = np.repeat(image_numpy, 3, 2) image_pil = Image.fromarray(image_numpy) # save to png image_pil.save(image_path.replace('.jpg', '.png')) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split('(\d+)', text)] def natural_sort(items): items.sort(key=natural_keys) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def find_class_in_module(target_cls_name, module): target_cls_name = target_cls_name.replace('_', '').lower() clslib = importlib.import_module(module) cls = None for name, clsobj in clslib.__dict__.items(): if name.lower() == target_cls_name: cls = clsobj if cls is None: print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) exit(0) return cls def save_network(net, label, epoch, opt): save_filename = '%s_net_%s.pth' % (epoch, label) save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename) torch.save(net.cpu().state_dict(), save_path) if len(opt.gpu_ids) and torch.cuda.is_available(): net.cuda() def load_network(net, label, epoch, opt): save_filename = '%s_net_%s.pth' % (epoch, label) save_dir = os.path.join(opt.checkpoints_dir, opt.name) save_path = os.path.join(save_dir, save_filename) weights = torch.load(save_path) net.load_state_dict(weights) return net ############################################################################### # Code from # https://github.com/ycszen/pytorch-seg/blob/master/transform.py # Modified so it complies with the Citscape label map colors ############################################################################### def uint82bin(n, count=8): """returns the binary of integer n, count refers to amount of bits""" return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)]) def labelcolormap(N): if N == 35: # cityscape cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81), (128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153), (180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)], dtype=np.uint8) else: cmap = np.zeros((N, 3), dtype=np.uint8) for i in range(N): r, g, b = 0, 0, 0 id = i + 1 # let's give 0 a color for j in range(7): str_id = uint82bin(id) r = r ^ (np.uint8(str_id[-1]) << (7 - j)) g = g ^ (np.uint8(str_id[-2]) << (7 - j)) b = b ^ (np.uint8(str_id[-3]) << (7 - j)) id = id >> 3 cmap[i, 0] = r cmap[i, 1] = g cmap[i, 2] = b if N == 182: # COCO important_colors = { 'sea': (54, 62, 167), 'sky-other': (95, 219, 255), 'tree': (140, 104, 47), 'clouds': (170, 170, 170), 'grass': (29, 195, 49) } for i in range(N): name = util.coco.id2label(i) if name in important_colors: color = important_colors[name] cmap[i] = np.array(list(color)) return cmap class Colorize(object): def __init__(self, n=35): self.cmap = labelcolormap(n) self.cmap = torch.from_numpy(self.cmap[:n]) def __call__(self, gray_image): size = gray_image.size() color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) for label in range(0, len(self.cmap)): mask = (label == gray_image[0]).cpu() color_image[0][mask] = self.cmap[label][0] color_image[1][mask] = self.cmap[label][1] color_image[2][mask] = self.cmap[label][2] return color_image
[ "torch.from_numpy", "torch.ByteTensor", "torch.cuda.is_available", "torch.load" ]
1.0.0
atmacvit/meronymnet
47e1a7caadc0f770439bb26a93b885f790f62804
1.0
import re import torch import torch.nn as nn import torch.nn.functional as F from models.networks.sync_batchnorm import SynchronizedBatchNorm2d import torch.nn.utils.spectral_norm as spectral_norm # Returns a function that creates a normalization function # that does not condition on semantic map def get_nonspade_norm_layer(opt, norm_type='instance'): # helper function to get # output channels of the previous layer def get_out_channel(layer): if hasattr(layer, 'out_channels'): return getattr(layer, 'out_channels') return layer.weight.size(0) # this function will be returned def add_norm_layer(layer): nonlocal norm_type if norm_type.startswith('spectral'): layer = spectral_norm(layer) subnorm_type = norm_type[len('spectral'):] if subnorm_type == 'none' or len(subnorm_type) == 0: return layer # remove bias in the previous layer, which is meaningless # since it has no effect after normalization if getattr(layer, 'bias', None) is not None: delattr(layer, 'bias') layer.register_parameter('bias', None) if subnorm_type == 'batch': norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'sync_batch': norm_layer = SynchronizedBatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'instance': norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False) else: raise ValueError('normalization layer %s is not recognized' % subnorm_type) return nn.Sequential(layer, norm_layer) return add_norm_layer class SPADE(nn.Module): def __init__(self, config_text, norm_nc, label_nc): super().__init__() assert config_text.startswith('spade') parsed = re.search('spade(\D+)(\d)x\d', config_text) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) if param_free_norm_type == 'instance': self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'syncbatch': self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'batch': self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False) else: raise ValueError('%s is not a recognized param-free norm type in SPADE' % param_free_norm_type) # The dimension of the intermediate embedding space. Yes, hardcoded. nhidden = 128 pw = ks // 2 self.mlp_shared = nn.Sequential( nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) def forward(self, x, segmap): # Part 1. generate parameter-free normalized activations normalized = self.param_free_norm(x) # Part 2. produce scaling and bias conditioned on semantic map segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') actv = self.mlp_shared(segmap) gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) # apply scale and bias out = normalized * (1 + gamma) + beta return out
[ "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.utils.spectral_norm", "torch.nn.InstanceNorm2d" ]
1.0.0
atmacvit/meronymnet
47e1a7caadc0f770439bb26a93b885f790f62804
1.0
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json, os, random from collections import defaultdict import torch from torch.utils.data import Dataset import torchvision.transforms as T from data.preprocess import * import PIL from PIL import Image from utils.data import imagenet_preprocess, Resize from torch.utils.data import DataLoader class CustomDataset(Dataset): def __init__(self, image_dir, instances_json, stuff_json=None, stuff_only=False, image_size=(64, 64), mask_size=16, normalize_images=False, max_samples=None, include_relationships=True, min_object_size=0.02, min_objects_per_image=3, max_objects_per_image=8, include_other=False, instance_whitelist=None, stuff_whitelist=None, data_mode='train'): """ A PyTorch Dataset for loading Coco and Coco-Stuff annotations and converting them to scene graphs on the fly. Inputs: - image_dir: Path to a directory where images are held - instances_json: Path to a JSON file giving COCO annotations - stuff_json: (optional) Path to a JSON file giving COCO-Stuff annotations - stuff_only: (optional, default True) If True then only iterate over images which appear in stuff_json; if False then iterate over all images in instances_json. - image_size: Size (H, W) at which to load images. Default (64, 64). - mask_size: Size M for object segmentation masks; default 16. - normalize_image: If True then normalize images by subtracting ImageNet mean pixel and dividing by ImageNet std pixel. - max_samples: If None use all images. Other wise only use images in the range [0, max_samples). Default None. - include_relationships: If True then include spatial relationships; if False then only include the trivial __in_image__ relationship. - min_object_size: Ignore objects whose bounding box takes up less than this fraction of the image. - min_objects_per_image: Ignore images which have fewer than this many object annotations. - max_objects_per_image: Ignore images which have more than this many object annotations. - include_other: If True, include COCO-Stuff annotations which have category "other". Default is False, because I found that these were really noisy and pretty much impossible for the system to model. - instance_whitelist: None means use all instance categories. Otherwise a list giving a whitelist of instance category names to use. - stuff_whitelist: None means use all stuff categories. Otherwise a list giving a whitelist of stuff category names to use. """ super(Dataset, self).__init__() class_names = ['cow', 'person', 'sheep', 'bird', 'cat', 'dog', 'horse', 'aeroplane', 'motorbike', 'bicycle'] data_dict = preprocess_make_data(class_names, data_mode) self.data_dict = data_dict if stuff_only and stuff_json is None: print('WARNING: Got stuff_only=True but stuff_json=None.') print('Falling back to stuff_only=False.') self.image_dir = image_dir self.mask_size = mask_size self.max_samples = max_samples self.normalize_images = normalize_images self.include_relationships = include_relationships self.set_image_size(image_size) #with open(instances_json, 'r') as f: # instances_data = json.load(f) #stuff_data = None # if stuff_json is not None and stuff_json != '': # # with open(stuff_json, 'r') as f: # # stuff_data = json.load(f) # # self.image_ids = [] # self.image_id_to_filename = {} # self.image_id_to_size = {} #for image_data in instances_data['images']: # image_id = image_data['id'] # filename = image_data['file_name'] # width = image_data['width'] # height = image_data['height'] # self.image_ids.append(image_id) # self.image_id_to_filename[image_id] = filename # self.image_id_to_size[image_id] = (width, height) self.vocab = { 'object_name_to_idx': {}, 'pred_name_to_idx': {}, } # object_idx_to_name = {} # all_instance_categories = [] # for category_data in instances_data['categories']: # category_id = category_data['id'] # category_name = category_data['name'] # all_instance_categories.append(category_name) # object_idx_to_name[category_id] = category_name # self.vocab['object_name_to_idx'][category_name] = category_id all_stuff_categories = [] #if stuff_data: # for category_data in stuff_data['categories']: # category_name = category_data['name'] # category_id = category_data['id'] # all_stuff_categories.append(category_name) # object_idx_to_name[category_id] = category_name # self.vocab['object_name_to_idx'][category_name] = category_id #if instance_whitelist is None: # instance_whitelist = all_instance_categories #if stuff_whitelist is None: # stuff_whitelist = all_stuff_categories #category_whitelist = set(instance_whitelist) | set(stuff_whitelist) # Add object data from instances #self.image_id_to_objects = defaultdict(list) # for object_data in instances_data['annotations']: # image_id = object_data['image_id'] # _, _, w, h = object_data['bbox'] # W, H = self.image_id_to_size[image_id] # box_area = (w * h) / (W * H) # box_ok = box_area > min_object_size # object_name = object_idx_to_name[object_data['category_id']] # category_ok = object_name in category_whitelist # other_ok = object_name != 'other' or include_other # if box_ok and category_ok and other_ok: # self.image_id_to_objects[image_id].append(object_data) # Add object data from stuff #if stuff_data: # image_ids_with_stuff = set() # for object_data in stuff_data['annotations']: # image_id = object_data['image_id'] # image_ids_with_stuff.add(image_id) # _, _, w, h = object_data['bbox'] # W, H = self.image_id_to_size[image_id] # box_area = (w * h) / (W * H) # box_ok = box_area > min_object_size # object_name = object_idx_to_name[object_data['category_id']] # category_ok = object_name in category_whitelist # other_ok = object_name != 'other' or include_other # if box_ok and category_ok and other_ok: # self.image_id_to_objects[image_id].append(object_data) # if stuff_only: # new_image_ids = [] # for image_id in self.image_ids: # if image_id in image_ids_with_stuff: # new_image_ids.append(image_id) # self.image_ids = new_image_ids # all_image_ids = set(self.image_id_to_filename.keys()) # image_ids_to_remove = all_image_ids - image_ids_with_stuff # for image_id in image_ids_to_remove: # self.image_id_to_filename.pop(image_id, None) # self.image_id_to_size.pop(image_id, None) # self.image_id_to_objects.pop(image_id, None) # COCO category labels start at 1, so use 0 for __image__ self.vocab['object_name_to_idx']['__image__'] = 0 # Build object_idx_to_name # name_to_idx = self.vocab['object_name_to_idx'] # assert len(name_to_idx) == len(set(name_to_idx.values())) # max_object_idx = max(name_to_idx.values()) # idx_to_name = ['NONE'] * (1 + max_object_idx) # for name, idx in self.vocab['object_name_to_idx'].items(): # idx_to_name[idx] = name # self.vocab['object_idx_to_name'] = idx_to_name # self.num_objects = len(self.vocab['object_idx_to_name']) # Prune images that have too few or too many objects # new_image_ids = [] # total_objs = 0 # for image_id in self.image_ids: # num_objs = len(self.image_id_to_objects[image_id]) # total_objs += num_objs # if min_objects_per_image <= num_objs <= max_objects_per_image: # new_image_ids.append(image_id) # self.image_ids = new_image_ids # self.vocab['pred_idx_to_name'] = [ # '__in_image__', # 'left of', # 'right of', # 'above', # 'below', # 'inside', # 'surrounding', # ] # self.vocab['pred_name_to_idx'] = {} # for idx, name in enumerate(self.vocab['pred_idx_to_name']): # self.vocab['pred_name_to_idx'][name] = idx self.num_objects=25 def set_image_size(self, image_size): print('called set_image_size', image_size) transform = [Resize(image_size), T.ToTensor()] if self.normalize_images: transform.append(imagenet_preprocess()) self.transform = T.Compose(transform) self.image_size = image_size def total_objects(self): total_objs = 0 for id in self.data_dict.keys(): total_objs = total_objs + self.data_dict[id]['boxes'].shape[0] return total_objs # for i, image_id in enumerate(self.image_ids): # if self.max_samples and i >= self.max_samples: # break # num_objs = len(self.image_id_to_objects[image_id]) # # total_objs += num_objs # # return total_objs def __len__(self): # if self.max_samples is None: # return len(self.image_ids) # return min(len(self.image_ids), self.max_samples) return len(self.data_dict.keys()) def __getitem__(self, index): """ Get the pixels of an image, and a random synthetic scene graph for that image constructed on-the-fly from its COCO object annotations. We assume that the image will have height H, width W, C channels; there will be O object annotations, each of which will have both a bounding box and a segmentation mask of shape (M, M). There will be T triples in the scene graph. Returns a tuple of: - image: FloatTensor of shape (C, H, W) - objs: LongTensor of shape (O,) - boxes: FloatTensor of shape (O, 4) giving boxes for objects in (x0, y0, x1, y1) format, in a [0, 1] coordinate system - masks: LongTensor of shape (O, M, M) giving segmentation masks for objects, where 0 is background and 1 is object. - triples: LongTensor of shape (T, 3) where triples[t] = [i, p, j] means that (objs[i], p, objs[j]) is a triple. """ image_id = str(index) # filename = self.image_id_to_filename[image_id] # image_path = os.path.join(self.image_dir, filename) #with open(image_path, 'rb') as f: # with PIL.Image.open(f) as image: # WW, HH = image.size # image = self.transform(image.convert('RGB')) img = self.data_dict[image_id]['image'] img = Image.fromarray(np.uint8(img)) #img.save(image_id + '_.png') WW, HH = img.size image = self.transform(img) bbxs = self.data_dict[image_id]['boxes'].tolist() class_name = self.data_dict[image_id]['class'] H, W = self.image_size objs, boxes, masks, obj_to_cls = [], [], [], [] for bbx in bbxs: x0, y0, x1, y1 = bbx #x0 = x0 * 550.0/ WW #y0 = y0 * 550.0/ HH #x1 = x1 * 550.0/ WW #y1 = y1 * 550.0/ HH boxes.append(torch.FloatTensor([x0, y0, x1, y1])) # This will give a numpy array of shape (HH, WW) mask = torch.zeros(1, H, W) # mask = seg_to_mask(object_data['segmentation'], WW, HH) mask[:, round(y0 * H):max(round(y0 * H)+1, round(y1 * H)), round(x0 * W):max(round(x0 * W)+1, round(x1 * W))] = 1 # Crop the mask according to the bounding box, being careful to # ensure that we don't crop a zero-area region # mx0, mx1 = int(round(x)), int(round(x + w)) # my0, my1 = int(round(y)), int(round(y + h)) # mx1 = max(mx0 + 1, mx1) # my1 = max(my0 + 1, my1) # mask = mask[my0:my1, mx0:mx1] # mask = imresize(255 * mask, (self.mask_size, self.mask_size), # mode='constant') # mask = torch.from_numpy((mask > 128).astype(np.int64)) masks.append(mask) obj_to_cls.append(torch.from_numpy(class_name)) for obj in self.data_dict[image_id]['labels']: objs.append(obj) # Add dummy __image__ object # objs.append(self.vocab['object_name_to_idx']['__image__']) # boxes.append(torch.FloatTensor([0, 0, 1, 1])) # masks.append(torch.ones(self.mask_size, self.mask_size).long()) print(objs) # shuffle objs O = len(objs) rand_idx = list(range(O)) random.shuffle(rand_idx) objs = [objs[i] for i in rand_idx] boxes = [boxes[i] for i in rand_idx] masks = [masks[i] for i in rand_idx] obj_to_cls = [obj_to_cls[i] for i in rand_idx] objs = torch.LongTensor(objs) boxes = torch.stack(boxes, dim=0) masks = torch.stack(masks, dim=0) obj_to_cls = torch.stack(obj_to_cls, dim=0) # box_areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Compute centers of all objects # obj_centers = [] # _, MH, MW = masks.size() # for i, obj_idx in enumerate(objs): # x0, y0, x1, y1 = boxes[i] # mask = (masks[i] == 1) # xs = torch.linspace(x0, x1, MW).view(1, MW).expand(MH, MW) # ys = torch.linspace(y0, y1, MH).view(MH, 1).expand(MH, MW) # if mask.sum() == 0: # mean_x = 0.5 * (x0 + x1) # mean_y = 0.5 * (y0 + y1) # else: # mean_x = xs[mask].mean() # mean_y = ys[mask].mean() # obj_centers.append([mean_x, mean_y]) # obj_centers = torch.FloatTensor(obj_centers) # # # Add triples # triples = [] # num_objs = objs.size(0) # __image__ = self.vocab['object_name_to_idx']['__image__'] # real_objs = [] # if num_objs > 1: # real_objs = (objs != __image__).nonzero().squeeze(1) # for cur in real_objs: # choices = [obj for obj in real_objs if obj != cur] # if len(choices) == 0 or not self.include_relationships: # break # other = random.choice(choices) # if random.random() > 0.5: # s, o = cur, other # else: # s, o = other, cur # # # Check for inside / surrounding # sx0, sy0, sx1, sy1 = boxes[s] # ox0, oy0, ox1, oy1 = boxes[o] # d = obj_centers[s] - obj_centers[o] # theta = math.atan2(d[1], d[0]) # # if sx0 < ox0 and sx1 > ox1 and sy0 < oy0 and sy1 > oy1: # p = 'surrounding' # elif sx0 > ox0 and sx1 < ox1 and sy0 > oy0 and sy1 < oy1: # p = 'inside' # elif theta >= 3 * math.pi / 4 or theta <= -3 * math.pi / 4: # p = 'left of' # elif -3 * math.pi / 4 <= theta < -math.pi / 4: # p = 'above' # elif -math.pi / 4 <= theta < math.pi / 4: # p = 'right of' # elif math.pi / 4 <= theta < 3 * math.pi / 4: # p = 'below' # p = self.vocab['pred_name_to_idx'][p] # triples.append([s, p, o]) # Add __in_image__ triples # in_image = self.vocab['pred_name_to_idx']['__in_image__'] # for i in range(O - 1): # triples.append([i, in_image, O - 1]) # # triples = torch.LongTensor(triples) return image, objs, boxes, masks, obj_to_cls, torch.from_numpy(class_name) # def seg_to_mask(seg, width=1.0, height=1.0): # """ # Tiny utility for decoding segmentation masks using the pycocotools API. # """ # if type(seg) == list: # rles = mask_utils.frPyObjects(seg, height, width) # rle = mask_utils.merge(rles) # elif type(seg['counts']) == list: # rle = mask_utils.frPyObjects(seg, height, width) # else: # rle = seg # return mask_utils.decode(rle) def custom_collate_fn(batch): """ Collate function to be used when wrapping CocoSceneGraphDataset in a DataLoader. Returns a tuple of the following: - imgs: FloatTensor of shape (N, C, H, W) - objs: LongTensor of shape (O,) giving object categories - boxes: FloatTensor of shape (O, 4) - masks: FloatTensor of shape (O, M, M) - triples: LongTensor of shape (T, 3) giving triples - obj_to_img: LongTensor of shape (O,) mapping objects to images - triple_to_img: LongTensor of shape (T,) mapping triples to images """ all_imgs, all_classes, all_objs, all_boxes, all_masks, all_obj_to_cls, all_obj_to_img = [], [], [], [], [], [], [] for i, (img, objs, boxes, masks, obj_to_cls, class_name) in enumerate(batch): all_imgs.append(img[None]) O = objs.size(0) all_objs.append(objs) all_boxes.append(boxes) all_masks.append(masks) all_classes.append(class_name[None]) all_obj_to_cls.append(obj_to_cls) all_obj_to_img.append(torch.LongTensor(O).fill_(i)) all_imgs = torch.cat(all_imgs) all_objs = torch.cat(all_objs) all_boxes = torch.cat(all_boxes) all_masks = torch.cat(all_masks) all_classes = torch.cat(all_classes) all_obj_to_cls = torch.cat(all_obj_to_cls) all_obj_to_img = torch.cat(all_obj_to_img) out = (all_imgs, all_objs, all_boxes, all_masks, all_classes, all_obj_to_cls, all_obj_to_img) print("loader obj to class " + str(all_obj_to_cls.shape)) print("loader class shape" + str((all_classes).shape)) return out def get_dataloader(batch_size=10, CUSTOM_DIR='/home/zhaobo/Data/coco', instance_whitelist=None, stuff_whitelist=None, coco_include_other=False): coco_train_image_dir = None#os.path.join(COCO_DIR, 'images/val2017') coco_val_image_dir = None#os.path.join(COCO_DIR, 'images/val2017') coco_train_instances_json = None#os.path.join(COCO_DIR, 'annotations/instances_val2017.json') coco_train_stuff_json = None#os.path.join(COCO_DIR, 'annotations/stuff_train2017.json') coco_val_instances_json = None#os.path.join(COCO_DIR, 'annotations/instances_val2017.json') coco_val_stuff_json = None#os.path.join(COCO_DIR, 'annotations/stuff_val2017.json') min_object_size = 0.02 min_objects_per_image = 3 coco_stuff_only = False mask_size = 32 image_size = (128, 128) num_train_samples = None num_val_samples = None include_relationships = False batch_size = batch_size shuffle_val = False # build datasets dset_kwargs = { 'image_dir': coco_train_image_dir, 'instances_json': coco_train_instances_json, 'stuff_json': coco_train_stuff_json, 'stuff_only': coco_stuff_only, 'image_size': image_size, 'mask_size': mask_size, 'max_samples': num_train_samples, 'min_object_size': min_object_size, 'min_objects_per_image': min_objects_per_image, 'instance_whitelist': instance_whitelist, 'stuff_whitelist': stuff_whitelist, 'include_other': coco_include_other, 'include_relationships': include_relationships, 'data_mode': 'train', } train_dset = CustomDataset(**dset_kwargs) num_objs = train_dset.total_objects() num_imgs = len(train_dset) print('Training dataset has %d images and %d objects' % (num_imgs, num_objs)) print('(%.2f objects per image)' % (float(num_objs) / num_imgs)) dset_kwargs['image_dir'] = coco_val_image_dir dset_kwargs['instances_json'] = coco_val_instances_json dset_kwargs['stuff_json'] = coco_val_stuff_json dset_kwargs['max_samples'] = num_val_samples dset_kwargs['data_mode'] = 'test' val_dset = CustomDataset(**dset_kwargs) #assert train_dset.vocab == val_dset.vocab #vocab = json.loads(json.dumps(train_dset.vocab)) # build dataloader loader_kwargs = { 'batch_size': batch_size, 'num_workers': 1, 'shuffle': True, 'collate_fn': custom_collate_fn, } train_loader = DataLoader(train_dset, **loader_kwargs) loader_kwargs['shuffle'] = shuffle_val loader_kwargs['num_workers'] = 1 val_loader = DataLoader(val_dset, **loader_kwargs) return train_loader, val_loader if __name__ == '__main__': train_loader, val_loader = get_dataloader(batch_size=32) # test reading data for i, batch in enumerate(train_loader): imgs, objs, boxes, masks, classes, obj_to_img = batch print(imgs.shape, objs.shape, boxes.shape, masks.shape, classes, obj_to_img.shape) if i == 20: break
[ "torch.zeros", "torch.cat", "torch.stack", "torch.FloatTensor", "torch.from_numpy", "torch.LongTensor", "torch.utils.data.DataLoader" ]
1.0.0
atmacvit/meronymnet
47e1a7caadc0f770439bb26a93b885f790f62804
1.0
import json, os, random, math from collections import defaultdict import torch from torch.utils.data import Dataset import torchvision.transforms as T import numpy as np import PIL from skimage.transform import resize as imresize import pycocotools.mask as mask_utils from random import shuffle from data.preprocess import * from PIL import Image class CustomDataset(Dataset): def __init__(self, image_dir, instances_json, stuff_json=None, stuff_only=True, image_size=(64, 64), mask_size=16, normalize_images=False, max_samples=None, include_relationships=True, min_object_size=0.02, min_objects_per_image=3, max_objects_per_image=25, left_right_flip=False, include_other=False, instance_whitelist=None, stuff_whitelist=None, data_mode='train', classes=None): """ A PyTorch Dataset for loading Coco and Coco-Stuff annotations and converting them to scene graphs on the fly. Inputs: - image_dir: Path to a directory where images are held - instances_json: Path to a JSON file giving COCO annotations - stuff_json: (optional) Path to a JSON file giving COCO-Stuff annotations - stuff_only: (optional, default True) If True then only iterate over images which appear in stuff_json; if False then iterate over all images in instances_json. - image_size: Size (H, W) at which to load images. Default (64, 64). - mask_size: Size M for object segmentation masks; default 16. - normalize_image: If True then normalize images by subtracting ImageNet mean pixel and dividing by ImageNet std pixel. - max_samples: If None use all images. Other wise only use images in the range [0, max_samples). Default None. - include_relationships: If True then include spatial relationships; if False then only include the trivial __in_image__ relationship. - min_object_size: Ignore objects whose bounding box takes up less than this fraction of the image. - min_objects_per_image: Ignore images which have fewer than this many object annotations. - max_objects_per_image: Ignore images which have more than this many object annotations. - include_other: If True, include COCO-Stuff annotations which have category "other". Default is False, because I found that these were really noisy and pretty much impossible for the system to model. - instance_whitelist: None means use all instance categories. Otherwise a list giving a whitelist of instance category names to use. - stuff_whitelist: None means use all stuff categories. Otherwise a list giving a whitelist of stuff category names to use. """ super(Dataset, self).__init__() class_names = classes if classes is not ['all'] else ['cow', 'person', 'sheep', 'bird', 'cat', 'dog', 'horse', 'aeroplane', 'motorbike', 'bicycle'] data_dict = preprocess_make_data(class_names, data_mode) self.data_dict = data_dict if stuff_only and stuff_json is None: print('WARNING: Got stuff_only=True but stuff_json=None.') print('Falling back to stuff_only=False.') self.image_dir = image_dir self.mask_size = mask_size self.max_samples = max_samples self.max_objects_per_image = max_objects_per_image self.normalize_images = normalize_images self.include_relationships = include_relationships self.left_right_flip = left_right_flip self.set_image_size(image_size) # with open(instances_json, 'r') as f: # instances_data = json.load(f) stuff_data = None # if stuff_json is not None and stuff_json != '': # with open(stuff_json, 'r') as f: # stuff_data = json.load(f) # self.image_ids = [] # self.image_id_to_filename = {} # self.image_id_to_size = {} # for image_data in instances_data['images']: # image_id = image_data['id'] # filename = image_data['file_name'] # width = image_data['width'] # height = image_data['height'] # self.image_ids.append(image_id) # self.image_id_to_filename[image_id] = filename # self.image_id_to_size[image_id] = (width, height) self.vocab = { 'object_name_to_idx': {}, 'pred_name_to_idx': {}, } # COCO category labels start at 1, so use 0 for __image__ self.vocab['object_name_to_idx']['__image__'] = 0 # Build object_idx_to_name # name_to_idx = self.vocab['object_name_to_idx'] # assert len(name_to_idx) == len(set(name_to_idx.values())) # max_object_idx = max(name_to_idx.values()) # idx_to_name = ['NONE'] * (1 + max_object_idx) # for name, idx in self.vocab['object_name_to_idx'].items(): # idx_to_name[idx] = name # self.vocab['object_idx_to_name'] = idx_to_name # Prune images that have too few or too many objects # new_image_ids = [] # total_objs = 0 # for image_id in self.image_ids: # num_objs = len(self.image_id_to_objects[image_id]) # total_objs += num_objs # if min_objects_per_image <= num_objs <= max_objects_per_image: # new_image_ids.append(image_id) # self.image_ids = new_image_ids # self.vocab['pred_idx_to_name'] = [ # '__in_image__', # 'left of', # 'right of', # 'above', # 'below', # 'inside', # 'surrounding', # ] # self.vocab['pred_name_to_idx'] = {} # for idx, name in enumerate(self.vocab['pred_idx_to_name']): # self.vocab['pred_name_to_idx'][name] = idx #self.max_objects_per_image = 25 def set_image_size(self, image_size): print('called set_image_size', image_size) transform = [Resize(image_size), T.ToTensor()] if self.normalize_images: transform.append(imagenet_preprocess()) self.transform = T.Compose(transform) self.image_size = image_size def total_objects(self): total_objs = 0 for id in self.data_dict.keys(): total_objs = total_objs + self.data_dict[id]['boxes'].shape[0] return total_objs def __len__(self): return len(self.data_dict.keys()) def __getitem__(self, index): """ Get the pixels of an image, and a random synthetic scene graph for that image constructed on-the-fly from its COCO object annotations. We assume that the image will have height H, width W, C channels; there will be O object annotations, each of which will have both a bounding box and a segmentation mask of shape (M, M). There will be T triples in the scene graph. Returns a tuple of: - image: FloatTensor of shape (C, H, W) - objs: LongTensor of shape (O,) - boxes: FloatTensor of shape (O, 4) giving boxes for objects in (x0, y0, x1, y1) format, in a [0, 1] coordinate system - masks: LongTensor of shape (O, M, M) giving segmentation masks for objects, where 0 is background and 1 is object. - triples: LongTensor of shape (T, 3) where triples[t] = [i, p, j] means that (objs[i], p, objs[j]) is a triple. """ image_id = str(index) img = self.data_dict[image_id]['image'] #flip = False #if index >= len(self.image_ids): # index = index - len(self.image_ids) # flip = True #image_id = self.image_ids[index] #filename = self.image_id_to_filename[image_id] #image_path = os.path.join(self.image_dir, filename) #with open(image_path, 'rb') as f: # with PIL.Image.open(f) as image: # if flip: # image = PIL.ImageOps.mirror(image) # WW, HH = image.size # image = self.transform(image.convert('RGB')) img = Image.fromarray(np.uint8(img)) WW, HH = img.size image = self.transform(img) bbxs = self.data_dict[image_id]['boxes'].tolist() class_name = self.data_dict[image_id]['class'] H, W = self.image_size objs, boxes, masks = [], [], [] for bbx in bbxs: x0, y0, x1, y1 = bbx #x0 = x0 * 550.0/WW #y0 = y0 * 550.0/HH #x1 = x1 * 550.0/WW #y1 = y1 * 550.0/HH x1 = (x1*550.0 - x0*550.0 + 1.0)/550.0 y1 = (y1*550.0 - y0*550.0 + 1.0)/550.0 boxes.append(torch.FloatTensor([x0, y0, x1, y1])) #boxes.append(torch.FloatTensor([0.0, 0.0, 1.0, 1.0])) # This will give a numpy array of shape (HH, WW) #mask = torch.zeros(1, H, W) # mask = seg_to_mask(object_data['segmentation'], WW, HH) #mask[:, round(y0 * H):max(round(y0 * H)+1, round(y1 * H)), round(x0 * W):max(round(x0 * W)+1, round(x1 * W))] = 1 # Crop the mask according to the bounding box, being careful to # ensure that we don't crop a zero-area region # mx0, mx1 = int(round(x)), int(round(x + w)) # my0, my1 = int(round(y)), int(round(y + h)) # mx1 = max(mx0 + 1, mx1) # my1 = max(my0 + 1, my1) # mask = mask[my0:my1, mx0:mx1] # mask = imresize(255 * mask, (self.mask_size, self.mask_size), # mode='constant') #mask = torch.from_numpy((mask > 128).astype(np.int64)) #masks.append(mask) #obj_to_cls.append(torch.from_numpy(class_name)) for obj in self.data_dict[image_id]['labels']: objs.append(obj) # obj_masks = [] #for object_data in self.image_id_to_objects[image_id]: # objs.append(object_data['category_id']) # x, y, w, h = object_data['bbox'] # x0 = x / WW # y0 = y / HH # x1 = (w) / WW # y1 = (h) / HH # if flip: # x0 = 1 - (x0 + x1) # boxes.append(np.array([x0, y0, x1, y1])) # # This will give a numpy array of shape (HH, WW) # mask = seg_to_mask(object_data['segmentation'], WW, HH) # if flip: # mask = mask[:, ::-1] # x = WW - x - w # # Crop the mask according to the bounding box, being careful to # # ensure that we don't crop a zero-area region # # mx0, mx1 = int(round(x)), int(round(x + w)) # # my0, my1 = int(round(y)), int(round(y + h)) # # mx1 = max(mx0 + 1, mx1) # # my1 = max(my0 + 1, my1) # # obj_mask = mask[my0:my1, mx0:mx1] # # obj_mask = imresize(255.0 * obj_mask, (self.mask_size, self.mask_size), # # mode='constant') # # obj_mask = torch.from_numpy((obj_mask > 128).astype(np.int64)) # # obj_masks.append(obj_mask) # # mask = imresize(255.0 * mask, (self.image_size[0], self.image_size[1]), # mode='constant') # mask = torch.from_numpy((mask > 128).astype(np.int64)) # masks.append(mask) # shuffle(objs) # shuffle(boxes) # shuffle(masks) # Add dummy __image__ object # objs.append(184) # boxes.append(torch.FloatTensor([0, 0, 1, 1])) # masks.append(torch.ones(self.mask_size, self.mask_size).long()) # add 0 for number of objects for _ in range(len(objs), self.max_objects_per_image): objs.append(self.vocab['object_name_to_idx']['__image__']) boxes.append(torch.FloatTensor([0.0, 0.0, 1.0, 1.0])) # masks.append(torch.zeros((self.image_size[0], self.image_size[1])).long()) # obj_masks.append(torch.zeros((self.mask_size, self.mask_size)).long()) #objs = torch.LongTensor(objs) #boxes = np.vstack(boxes) #O = len(objs) #rand_idx = list(range(O)) #random.shuffle(rand_idx) #objs = [objs[i] for i in rand_idx] #boxes = [boxes[i] for i in rand_idx] objs = torch.LongTensor(objs) boxes = torch.stack(boxes, dim=0) # masks = torch.stack(masks, dim=0) # obj_masks = torch.stack(obj_masks, dim=0) # b_map = self.get_bbox_map_p(boxes) # box_areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Compute centers of all objects """ obj_centers = [] _, MH, MW = masks.size() for i, obj_idx in enumerate(objs): x0, y0, x1, y1 = boxes[i] mask = (masks[i] == 1) xs = torch.linspace(x0, x1, MW).view(1, MW).expand(MH, MW) ys = torch.linspace(y0, y1, MH).view(MH, 1).expand(MH, MW) if mask.sum() == 0: mean_x = 0.5 * (x0 + x1) mean_y = 0.5 * (y0 + y1) else: mean_x = xs[mask].mean() mean_y = ys[mask].mean() obj_centers.append([mean_x, mean_y]) obj_centers = torch.FloatTensor(obj_centers) # Add triples triples = [] num_objs = objs.size(0) __image__ = self.vocab['object_name_to_idx']['__image__'] real_objs = [] if num_objs > 1: real_objs = (objs != __image__).nonzero().squeeze(1) for cur in real_objs: choices = [obj for obj in real_objs if obj != cur] if len(choices) == 0 or not self.include_relationships: break other = random.choice(choices) if random.random() > 0.5: s, o = cur, other else: s, o = other, cur # Check for inside / surrounding sx0, sy0, sx1, sy1 = boxes[s] ox0, oy0, ox1, oy1 = boxes[o] d = obj_centers[s] - obj_centers[o] theta = math.atan2(d[1], d[0]) if sx0 < ox0 and sx1 > ox1 and sy0 < oy0 and sy1 > oy1: p = 'surrounding' elif sx0 > ox0 and sx1 < ox1 and sy0 > oy0 and sy1 < oy1: p = 'inside' elif theta >= 3 * math.pi / 4 or theta <= -3 * math.pi / 4: p = 'left of' elif -3 * math.pi / 4 <= theta < -math.pi / 4: p = 'above' elif -math.pi / 4 <= theta < math.pi / 4: p = 'right of' elif math.pi / 4 <= theta < 3 * math.pi / 4: p = 'below' p = self.vocab['pred_name_to_idx'][p] triples.append([s, p, o]) # Add __in_image__ triples O = objs.size(0) in_image = self.vocab['pred_name_to_idx']['__in_image__'] for i in range(O - 1): triples.append([i, in_image, O - 1]) """ cls = torch.from_numpy(class_name) print("Image {}".format(image.shape)) print("Labels {}".format(objs.shape)) print("Bbox {}".format(boxes.shape)) print("Class {}".format(cls.shape)) # triples = torch.LongTensor(triples) return image, objs, boxes, cls## , b_map #, None # obj_masks #, obj_masks # , b_map # masks # , triples def get_bbox_map_p(self, bbox): mapping = np.zeros((len(bbox), self.image_size[0], self.image_size[0])) for idx in range(self.max_objects_per_image): if min(bbox[idx]) < 0: continue line_space = np.linspace(0, self.image_size[0]-1, num=self.image_size[0]) xv, yv = np.meshgrid(line_space, line_space) mapping[idx][(xv < int((bbox[idx][0] + bbox[idx][2]) * self.image_size[0])) * (xv > int(bbox[idx][0] * self.image_size[0])) * (yv < int((bbox[idx][1] + bbox[idx][3]) * self.image_size[0])) * (yv > int(bbox[idx][1] * self.image_size[0]))] = 1 return mapping def seg_to_mask(seg, width=1.0, height=1.0): """ Tiny utility for decoding segmentation masks using the pycocotools API. """ if type(seg) == list: rles = mask_utils.frPyObjects(seg, height, width) rle = mask_utils.merge(rles) elif type(seg['counts']) == list: rle = mask_utils.frPyObjects(seg, height, width) else: rle = seg return mask_utils.decode(rle) def coco_collate_fn(batch): """ Collate function to be used when wrapping CocoSceneGraphDataset in a DataLoader. Returns a tuple of the following: - imgs: FloatTensor of shape (N, C, H, W) - objs: LongTensor of shape (O,) giving object categories - boxes: FloatTensor of shape (O, 4) - masks: FloatTensor of shape (O, M, M) - triples: LongTensor of shape (T, 3) giving triples - obj_to_img: LongTensor of shape (O,) mapping objects to images - triple_to_img: LongTensor of shape (T,) mapping triples to images """ all_imgs, all_objs, all_boxes, all_masks, all_triples = [], [], [], [], [] all_obj_to_img, all_triple_to_img = [], [] obj_offset = 0 for i, (img, objs, boxes, masks, triples) in enumerate(batch): all_imgs.append(img[None]) if objs.dim() == 0 or triples.dim() == 0: continue O, T = objs.size(0), triples.size(0) all_objs.append(objs) all_boxes.append(boxes) all_masks.append(masks) triples = triples.clone() triples[:, 0] += obj_offset triples[:, 2] += obj_offset all_triples.append(triples) all_obj_to_img.append(torch.LongTensor(O).fill_(i)) all_triple_to_img.append(torch.LongTensor(T).fill_(i)) obj_offset += O all_imgs = torch.cat(all_imgs) all_objs = torch.cat(all_objs) all_boxes = torch.cat(all_boxes) all_masks = torch.cat(all_masks) all_triples = torch.cat(all_triples) all_obj_to_img = torch.cat(all_obj_to_img) all_triple_to_img = torch.cat(all_triple_to_img) out = (all_imgs, all_objs, all_boxes, all_masks, all_triples, all_obj_to_img, all_triple_to_img) return out # IMAGENET_MEAN = [0.485, 0.456, 0.406] # IMAGENET_STD = [0.229, 0.224, 0.225] IMAGENET_MEAN = [0.5, 0.5, 0.5] IMAGENET_STD = [0.5, 0.5, 0.5] INV_IMAGENET_MEAN = [-m for m in IMAGENET_MEAN] INV_IMAGENET_STD = [1.0 / s for s in IMAGENET_STD] def imagenet_preprocess(): return T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) def rescale(x): lo, hi = x.min(), x.max() return x.sub(lo).div(hi - lo) def imagenet_deprocess(rescale_image=True): transforms = [ T.Normalize(mean=[0, 0, 0], std=INV_IMAGENET_STD), T.Normalize(mean=INV_IMAGENET_MEAN, std=[1.0, 1.0, 1.0]), ] if rescale_image: transforms.append(rescale) return T.Compose(transforms) def imagenet_deprocess_batch(imgs, rescale=True): """ Input: - imgs: FloatTensor of shape (N, C, H, W) giving preprocessed images Output: - imgs_de: ByteTensor of shape (N, C, H, W) giving deprocessed images in the range [0, 255] """ if isinstance(imgs, torch.autograd.Variable): imgs = imgs.data imgs = imgs.cpu().clone() deprocess_fn = imagenet_deprocess(rescale_image=rescale) imgs_de = [] for i in range(imgs.size(0)): img_de = deprocess_fn(imgs[i])[None] img_de = img_de.mul(255).clamp(0, 255).byte() imgs_de.append(img_de) imgs_de = torch.cat(imgs_de, dim=0) return imgs_de class Resize(object): def __init__(self, size, interp=PIL.Image.BILINEAR): if isinstance(size, tuple): H, W = size self.size = (W, H) else: self.size = (size, size) self.interp = interp def __call__(self, img): return img.resize(self.size, self.interp) def unpack_var(v): if isinstance(v, torch.autograd.Variable): return v.data return v def split_graph_batch(triples, obj_data, obj_to_img, triple_to_img): triples = unpack_var(triples) obj_data = [unpack_var(o) for o in obj_data] obj_to_img = unpack_var(obj_to_img) triple_to_img = unpack_var(triple_to_img) triples_out = [] obj_data_out = [[] for _ in obj_data] obj_offset = 0 N = obj_to_img.max() + 1 for i in range(N): o_idxs = (obj_to_img == i).nonzero().view(-1) t_idxs = (triple_to_img == i).nonzero().view(-1) cur_triples = triples[t_idxs].clone() cur_triples[:, 0] -= obj_offset cur_triples[:, 2] -= obj_offset triples_out.append(cur_triples) for j, o_data in enumerate(obj_data): cur_o_data = None if o_data is not None: cur_o_data = o_data[o_idxs] obj_data_out[j].append(cur_o_data) obj_offset += o_idxs.size(0) return triples_out, obj_data_out
[ "torch.cat", "torch.stack", "torch.FloatTensor", "torch.from_numpy", "torch.LongTensor" ]
1.0.0
atmacvit/meronymnet
47e1a7caadc0f770439bb26a93b885f790f62804
1.0
# coding=utf-8 # Copyright 2021 The UCLA NLP Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch VisualBERT model. """ import math from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, KLDivLoss, LogSoftmax from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MultipleChoiceModelOutput, SequenceClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_visual_bert import VisualBertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisualBertConfig" _CHECKPOINT_FOR_DOC = "uclanlp/visualbert-vqa-coco-pre" VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uclanlp/visualbert-vqa", "uclanlp/visualbert-vqa-pre", "uclanlp/visualbert-vqa-coco-pre", "uclanlp/visualbert-vcr", "uclanlp/visualbert-vcr-pre", "uclanlp/visualbert-vcr-coco-pre", "uclanlp/visualbert-nlvr2", "uclanlp/visualbert-nlvr2-pre", "uclanlp/visualbert-nlvr2-coco-pre" # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert ] class VisualBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings and visual embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) # For Visual Features # Token type and position embedding for image features self.visual_token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.visual_position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.special_visual_initialize: self.visual_token_type_embeddings.weight.data = nn.Parameter( self.token_type_embeddings.weight.data.clone(), requires_grad=True ) self.visual_position_embeddings.weight.data = nn.Parameter( self.position_embeddings.weight.data.clone(), requires_grad=True ) self.visual_projection = nn.Linear(config.visual_embedding_dim, config.hidden_size) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, visual_embeds=None, visual_token_type_ids=None, image_text_alignment=None, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings # Absolute Position Embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if visual_embeds is not None: if visual_token_type_ids is None: visual_token_type_ids = torch.ones( visual_embeds.size()[:-1], dtype=torch.long, device=self.position_ids.device ) visual_embeds = self.visual_projection(visual_embeds) visual_token_type_embeddings = self.visual_token_type_embeddings(visual_token_type_ids) if image_text_alignment is not None: # image_text_alignment = Batch x image_length x alignment_number. # Each element denotes the position of the word corresponding to the image feature. -1 is the padding value. dtype = token_type_embeddings.dtype image_text_alignment_mask = (image_text_alignment != -1).long() # Get rid of the -1. image_text_alignment = image_text_alignment_mask * image_text_alignment # Batch x image_length x alignment length x dim visual_position_embeddings = self.position_embeddings(image_text_alignment) visual_position_embeddings *= image_text_alignment_mask.to(dtype=dtype).unsqueeze(-1) visual_position_embeddings = visual_position_embeddings.sum(2) # We want to averge along the alignment_number dimension. image_text_alignment_mask = image_text_alignment_mask.to(dtype=dtype).sum(2) if (image_text_alignment_mask == 0).sum() != 0: image_text_alignment_mask[image_text_alignment_mask == 0] = 1 # Avoid divide by zero error logger.warning( "Found 0 values in `image_text_alignment_mask`. Setting them to 1 to avoid divide-by-zero error." ) visual_position_embeddings = visual_position_embeddings / image_text_alignment_mask.unsqueeze(-1) visual_position_ids = torch.zeros( *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device ) # When fine-tuning the detector , the image_text_alignment is sometimes padded too long. if visual_position_embeddings.size(1) != visual_embeds.size(1): if visual_position_embeddings.size(1) < visual_embeds.size(1): raise ValueError( f"Visual position embeddings length: {visual_position_embeddings.size(1)}" f"should be the same as `visual_embeds` length: {visual_embeds.size(1)}" ) visual_position_embeddings = visual_position_embeddings[:, : visual_embeds.size(1), :] visual_position_embeddings = visual_position_embeddings + self.visual_position_embeddings( visual_position_ids ) else: visual_position_ids = torch.zeros( *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device ) visual_position_embeddings = self.visual_position_embeddings(visual_position_ids) visual_embeddings = visual_embeds + visual_position_embeddings + visual_token_type_embeddings embeddings = torch.cat((embeddings, visual_embeddings), dim=1) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class VisualBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in VisualBertSelfAttentionModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->VisualBert class VisualBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class VisualBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = VisualBertSelfAttention(config) self.output = VisualBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->VisualBert class VisualBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->VisualBert class VisualBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class VisualBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VisualBertAttention(config) self.intermediate = VisualBertIntermediate(config) self.output = VisualBertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class VisualBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([VisualBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->VisualBert class VisualBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->VisualBert class VisualBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->VisualBert class VisualBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = VisualBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->VisualBert class VisualBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = VisualBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class VisualBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VisualBertConfig base_model_prefix = "visual_bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @dataclass class VisualBertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.VisualBertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the sentence-image prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the sentence-image prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None VISUAL_BERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.VisualBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ VISUAL_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. visual_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, visual_seq_length, visual_embedding_dim)`, `optional`): The embedded representation of the visual inputs, generally derived using using an object detector. visual_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, visual_seq_length)`, `optional`): Mask to avoid performing attention on visual embeddings. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ visual_token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, visual_seq_length)`, `optional`): Segment token indices to indicate different portions of the visual embeds. `What are token type IDs? <../glossary.html#token-type-ids>`_ The authors of VisualBERT set the `visual_token_type_ids` to `1` for all tokens. image_text_alignment (:obj:`torch.LongTensor` of shape :obj:`(batch_size, visual_seq_length, alignment_number)`, `optional`): Image-Text alignment uses to decide the position IDs of the visual embeddings. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare VisualBert Model transformer outputting raw hidden-states without any specific head on top.", VISUAL_BERT_START_DOCSTRING, ) class VisualBertModel(VisualBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = VisualBertEmbeddings(config) self.encoder = VisualBertEncoder(config) self.pooler = VisualBertPooler(config) if add_pooling_layer else None self.bypass_transformer = config.bypass_transformer if self.bypass_transformer: self.additional_layer = VisualBertLayer(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example:: >>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image. >>> from transformers import BertTokenizer, VisualBertModel >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertModel.from_pretrained('uclanlp/visualbert-vqa-coco-pre') >>> inputs = tokenizer("The capital of France is Paris.", return_tensors="pt") >>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) #example >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> inputs.update({{ ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask ... }}) >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if visual_embeds is None: raise ValueError( f"`visual_embeds` can not be of type {type(visual_embeds)} when using a VisualBert Model." ) device = input_ids.device if input_ids is not None else inputs_embeds.device visual_input_shape = visual_embeds.size()[:-1] if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if visual_attention_mask is None: visual_attention_mask = torch.ones(visual_input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. combined_attention_mask = torch.cat((attention_mask, visual_attention_mask), dim=-1) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( combined_attention_mask, [batch_size, input_shape + visual_input_shape], device ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, ) if self.bypass_transformer and visual_embeds is not None: text_length = input_ids.size(1) text_embedding_output = embedding_output[:, :text_length, :] visual_embedding_output = embedding_output[:, text_length:, :] text_extended_attention_mask = extended_attention_mask[:, :, text_length, :text_length] encoded_outputs = self.encoder( text_embedding_output, attention_mask=text_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoded_outputs[0] concatenated_input = torch.cat((sequence_output, visual_embedding_output), dim=1) sequence_output = self.additional_layer(concatenated_input, extended_attention_mask) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `sentence-image prediction (classification)` head. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForPreTraining(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.cls = VisualBertPreTrainingHeads(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=VisualBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, sentence_image_labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape ``(batch_size, total_sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` sentence_image_labels (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the sentence-image prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a matching pair of sequence A for the given image, - 1 indicates sequence B is a random sequence w.r.t A for the given image. Returns: Example:: >>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. >>> from transformers import BertTokenizer, VisualBertForPreTraining >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertForPreTraining.from_pretrained('uclanlp/visualbert-vqa-coco-pre') >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") >>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) #example >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> inputs.update({{ ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask ... }}) >>> max_length = inputs["input_ids"].shape[-1]+visual_embeds.shape[-2] >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length)["input_ids"] >>> sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size >>> outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels) >>> loss = outputs.loss >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and sentence_image_labels is not None: total_size = attention_mask.size(-1) + visual_attention_mask.size(-1) if labels.size(-1) != total_size: raise ValueError( f"The labels provided should have same sequence length as total attention mask." f"Found labels with sequence length {labels.size(-1)}, expected {total_size}." ) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sentence_image_loss = loss_fct(seq_relationship_score.view(-1, 2), sentence_image_labels.view(-1)) total_loss = masked_lm_loss + sentence_image_loss if labels is not None and sentence_image_labels is None: total_size = attention_mask.size(-1) + visual_attention_mask.size(-1) if labels.size(-1) != total_size: raise ValueError( f"The labels provided should have same sequence length as total attention mask." f"Found labels with sequence length {labels.size(-1)}, expected {total_size}." ) loss_fct = CrossEntropyLoss() total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return VisualBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for VCR tasks. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForMultipleChoice(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward( VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) Returns: Example:: >>> from transformers import BertTokenizer, VisualBertForMultipleChoice >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertForMultipleChoice.from_pretrained('uclanlp/visualbert-vcr') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> visual_embeds = get_visual_embeddings(image) >>> # (batch_size, num_choices, visual_seq_length, visual_embedding_dim) >>> visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> # batch size is 1 >>> inputs_dict = {{k: v.unsqueeze(0) for k,v in encoding.items()}} >>> inputs_dict.update({{ ... visual_embeds=visual_embeds, ... visual_attention_mask=visual_attention_mask, ... visual_token_type_ids=visual_token_type_ids, ... labels=labels ... }}) >>> outputs = model(**inputs_dict) >>> loss = outputs.loss >>> logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) visual_embeds = ( visual_embeds.view(-1, visual_embeds.size(-2), visual_embeds.size(-1)) if visual_embeds is not None else None ) visual_attention_mask = ( visual_attention_mask.view(-1, visual_attention_mask.size(-1)) if visual_attention_mask is not None else None ) visual_token_type_ids = ( visual_token_type_ids.view(-1, visual_token_type_ids.size(-1)) if visual_token_type_ids is not None else None ) outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) _, pooled_output = outputs[0], outputs[1] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a classification/regression head on top (a dropout and a linear layer on top of the pooled output) for VQA. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForQuestionAnswering(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, total_sequence_length)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits. Returns: Example:: >>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. >>> from transformers import BertTokenizer, VisualBertForQuestionAnswering >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertForQuestionAnswering.from_pretrained('uclanlp/visualbert-vqa') >>> text = "Who is eating the apple?" >>> inputs = tokenizer(text, return_tensors='pt') >>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) #example >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> inputs.update({{ ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask ... }}) >>> labels = torch.tensor([[0.0,1.0]]).unsqueeze(0) # Batch size 1, Num labels 2 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> scores = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get the index of the last text token index_to_gather = attention_mask.sum(1) - 2 # as in original code outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # TO-CHECK: From the original code index_to_gather = ( index_to_gather.unsqueeze(-1).unsqueeze(-1).expand(index_to_gather.size(0), 1, sequence_output.size(-1)) ) pooled_output = torch.gather(sequence_output, 1, index_to_gather) pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.view(-1, self.num_labels) loss = None if labels is not None: loss_fct = nn.KLDivLoss(reduction="batchmean") log_softmax = nn.LogSoftmax(dim=-1) reshaped_logits = log_softmax(reshaped_logits) loss = loss_fct(reshaped_logits, labels.contiguous()) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a sequence classification head on top (a dropout and a linear layer on top of the pooled output) for Visual Reasoning e.g. for NLVR task. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForVisualReasoning(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, config.num_labels) # 2 self.init_weights() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. A classification loss is computed (Cross-Entropy) against these labels. Returns: Example:: >>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. >>> from transformers import BertTokenizer, VisualBertForVisualReasoning >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertForVisualReasoning.from_pretrained('uclanlp/visualbert-nlvr2') >>> text = "Who is eating the apple?" >>> inputs = tokenizer(text, return_tensors='pt') >>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) #example >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> inputs.update({{ ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask ... }}) >>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> scores = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # sequence_output = outputs[0] pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.contiguous() loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class VisualBertRegionToPhraseAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = 1 # config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query, key, attention_mask): attention_mask = attention_mask.to(query.dtype) attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = (1.0 - attention_mask) * -10000.0 mixed_query_layer = self.query(query) mixed_key_layer = self.key(key) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_scores = attention_scores + attention_mask attention_scores = attention_scores.squeeze(1) return attention_scores @add_start_docstrings( """ VisualBert Model with a Masked Language Modeling head and an attention layer on top for Region-to-Phrase Alignment e.g. for Flickr30 Entities task. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = VisualBertPreTrainingHeads(config) self.attention = VisualBertRegionToPhraseAttention(config) self.init_weights() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, region_to_phrase_position=None, labels=None, ): r""" region_to_phrase_position (:obj:`torch.LongTensor` of shape ``(batch_size, total_sequence_length)``, `optional`): The positions depicting the position of the image embedding corresponding to the textual tokens. labels (:obj:`torch.LongTensor` of shape ``(batch_size, total_sequence_length, visual_sequence_length)``, `optional`): Labels for computing the masked language modeling loss. KLDivLoss is computed against these labels and the outputs from the attention layer. Returns: Example:: >>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. >>> from transformers import BertTokenizer, VisualBertForRegionToPhraseAlignment >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = VisualBertForRegionToPhraseAlignment.from_pretrained('uclanlp/visualbert-vqa-coco-pre') >>> text = "Who is eating the apple?" >>> inputs = tokenizer(text, return_tensors='pt') >>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) #example >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2])) >>> inputs.update({{ ... "region_to_phrase_position": region_to_phrase_position, ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask ... }}) >>> labels = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2], visual_embeds.shape[-2])) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> scores = outputs.logits """ if region_to_phrase_position is None: raise ValueError("`region_to_phrase_position` should not be None when using Flickr Model.") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] region_to_phrase_position_mask = (region_to_phrase_position != -1).long() # Make the -1 become 0 region_to_phrase_position = region_to_phrase_position * region_to_phrase_position_mask # Selected_positions = batch x selected position x dim expanded_region_to_phrase_positions = region_to_phrase_position.unsqueeze(2).expand( region_to_phrase_position.size(0), region_to_phrase_position.size(1), sequence_output.size(2) ) selected_positions = sequence_output.gather(1, expanded_region_to_phrase_positions) # Visual Features = batch x visual_feature_length x dim # This will need separate image and visual masks. visual_features = sequence_output[:, attention_mask.size(1) :] if visual_features.size(1) != visual_attention_mask.size(1): raise ValueError( f"Visual features length :{visual_features.size(1)} should be the same" f" as visual attention mask length: {visual_attention_mask.size(1)}." ) logits = self.attention(selected_positions, visual_features, visual_attention_mask) loss = None if labels is not None: # scores = batch x selected position x visual_feature # scores = selected_positions.bmm(visual_features.transpose(1,2)) # label = batch x selected_postion x needed position loss_fct = KLDivLoss(reduction="batchmean") log_softmax = LogSoftmax(dim=-1) scores = log_softmax(logits) labels = labels.contiguous() loss = loss_fct(scores, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cat", "torch.nn.LogSoftmax", "torch.nn.Softmax", "torch.gather", "torch.arange", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.ones", "torch.nn.KLDivLoss", "torch.matmul", "torch.nn.Embedding" ]
1.0
diiogofernands/transformers
f5cd27694a0c7d0036954c8350f774a5c1181a57
1.7
import torch from kge import Config, Dataset from kge.model.kge_model import RelationalScorer, KgeModel class ComplExScorer(RelationalScorer): r"""Implementation of the ComplEx KGE scorer. Reference: Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier and Guillaume Bouchard: Complex Embeddings for Simple Link Prediction. ICML 2016. `<http://proceedings.mlr.press/v48/trouillon16.pdf>`_ """ def __init__(self, config: Config, dataset: Dataset, configuration_key=None): super().__init__(config, dataset, configuration_key) def score_emb(self, s_emb, p_emb, o_emb, combine: str): n = p_emb.size(0) # Here we use a fast implementation of computing the ComplEx scores using # Hadamard products, as in Eq. (11) of paper. # # Split the relation and object embeddings into real part (first half) and # imaginary part (second half). p_emb_re, p_emb_im = (t.contiguous() for t in p_emb.chunk(2, dim=1)) o_emb_re, o_emb_im = (t.contiguous() for t in o_emb.chunk(2, dim=1)) # combine them again to create a column block for each required combination s_all = torch.cat((s_emb, s_emb), dim=1) # re, im, re, im r_all = torch.cat((p_emb_re, p_emb, -p_emb_im), dim=1) # re, re, im, -im o_all = torch.cat((o_emb, o_emb_im, o_emb_re), dim=1) # re, im, im, re if combine == "spo": out = (s_all * o_all * r_all).sum(dim=1) elif combine == "sp_": out = (s_all * r_all).mm(o_all.transpose(0, 1)) elif combine == "_po": out = (r_all * o_all).mm(s_all.transpose(0, 1)) else: return super().score_emb(s_emb, p_emb, o_emb, combine) return out.view(n, -1) class ComplEx(KgeModel): r"""Implementation of the ComplEx KGE model.""" def __init__( self, config: Config, dataset: Dataset, configuration_key=None, init_for_load_only=False, ): super().__init__( config=config, dataset=dataset, scorer=ComplExScorer, configuration_key=configuration_key, init_for_load_only=init_for_load_only, )
[ "torch.cat" ]
1.7.1
alexgaskell10/encoded_kge
2959c058125515a3e0e0b811ffe8086d6699006c
1.7
import os from collections import OrderedDict import sys import torch import csv import yaml import socket import copy from kge.job import Trace from kge import Config ## EXPORTED METHODS ##################################################################### def add_dump_parsers(subparsers): # 'kge dump' can have associated sub-commands which can have different args parser_dump = subparsers.add_parser("dump", help="Dump objects to stdout") subparsers_dump = parser_dump.add_subparsers( title="dump_command", dest="dump_command" ) subparsers_dump.required = True _add_dump_trace_parser(subparsers_dump) _add_dump_checkpoint_parser(subparsers_dump) _add_dump_config_parser(subparsers_dump) def dump(args): """Execute the 'kge dump' commands. """ if args.dump_command == "trace": _dump_trace(args) elif args.dump_command == "checkpoint": _dump_checkpoint(args) elif args.dump_command == "config": _dump_config(args) else: raise ValueError() def get_config_for_job_id(job_id, folder_path): config = Config(load_default=True) if job_id: config_path = os.path.join( folder_path, "config", job_id.split("-")[0] + ".yaml" ) else: config_path = os.path.join(folder_path, "config.yaml") if os.path.isfile(config_path): config.load(config_path, create=True) else: raise Exception("Could not find config file for {}".format(job_id)) return config ### DUMP CHECKPOINT ##################################################################### def _add_dump_checkpoint_parser(subparsers_dump): parser_dump_checkpoint = subparsers_dump.add_parser( "checkpoint", help=("Dump information stored in a checkpoint") ) parser_dump_checkpoint.add_argument( "source", help="A path to either a checkpoint or a job folder (then uses best or, " "if not present, last checkpoint).", nargs="?", default=".", ) parser_dump_checkpoint.add_argument( "--keys", "-k", type=str, nargs="*", help="List of keys to include (separated by space)", ) def _dump_checkpoint(args): """Execute the 'dump checkpoint' command.""" # Determine checkpoint to use if os.path.isfile(args.source): checkpoint_file = args.source else: checkpoint_file = Config.best_or_last_checkpoint_file(args.source) # Load the checkpoint and strip some fieleds checkpoint = torch.load(checkpoint_file, map_location="cpu") # Dump it print(f"# Dump of checkpoint: {checkpoint_file}") print(f"parameter_names: {list(checkpoint['model'][0].keys())}") excluded_keys = {"model", "optimizer_state_dict"} if args.keys is not None: excluded_keys = {key for key in excluded_keys if key not in args.keys} excluded_keys = excluded_keys.union( {key for key in checkpoint if key not in args.keys} ) excluded_keys = {key for key in excluded_keys if key in checkpoint} for key in excluded_keys: del checkpoint[key] if excluded_keys: print(f"# Excluded keys: {excluded_keys}") yaml.dump(checkpoint, sys.stdout) ### DUMP TRACE ########################################################################## def _add_dump_trace_parser(subparsers_dump): parser_dump_trace = subparsers_dump.add_parser( "trace", help=( "Dump the trace of a job to stdout as CSV (default) or YAML. The tracefile" " is processed backwards starting from the last entry. Further options" " allow to start processing from a particular checkpoint, job_id, or" " epoch number." ), ) parser_dump_trace.add_argument( "source", help="A path to either a checkpoint or a job folder.", nargs="?", default=".", ) parser_dump_trace.add_argument( "--train", action="store_const", const=True, default=False, help=( "Include entries from training jobs (enabled when none of --train, --valid," " or --test is specified)." ), ) parser_dump_trace.add_argument( "--valid", action="store_const", const=True, default=False, help=( "Include entries from validation or evaluation jobs on the valid split" " (enabled when none of --train, --valid, or --test is specified)." ), ) parser_dump_trace.add_argument( "--test", action="store_const", const=True, default=False, help=( "Include entries from evaluation on the test data split (enabled when " " none of --train, --valid, or --test is specified)." ), ) parser_dump_trace.add_argument( "--search", action="store_const", const=True, default=False, help=( "Dump the tracefile of a search job. The best result of every " " search trial is dumped. The options --train, --valid, --test," " --truncate, --job_id, --checkpoint, --batch, and --example are not" " applicable." ), ) parser_dump_trace.add_argument( "--keysfile", default=False, help=( "A path to a file which contains lines in the format" " 'new_key_name'='key_name'. For every line in the keys file, the command" " searches the value of 'key_name' in the trace entries (first) and" " config (second) and adds a respective column in the CSV file with name" " 'new_key_name'. Additionally, for 'key_name' the special keys '$folder'," " '$machine' '$checkpoint' and '$base_model' can be used." ), ) parser_dump_trace.add_argument( "--keys", "-k", nargs="*", type=str, help=( "A list of 'key' entries (separated by space). Each 'key' has form" " 'new_key_name=key_name' or 'key_name'. This adds a column as in the" " --keysfile option. When only 'key_name' is provided, it is also used as" " the column name in the CSV file." ), ) parser_dump_trace.add_argument( "--checkpoint", default=False, action="store_const", const=True, help=( "If source is a path to a job folder and --checkpoint is set, the best" " (if present) or last checkpoint is used to determine the job_id from" " where the tracefile is processed backwards." ), ) parser_dump_trace.add_argument( "--job_id", default=False, help=( "Specifies the training job_id in the tracefile from where to start" " processing backwards when no checkpoint is specified. If not provided," " the job_id of the last training job entry in the tracefile is used." ), ) parser_dump_trace.add_argument( "--truncate", action="store", default=False, const=True, nargs="?", help=( "Takes an integer argument which defines the maximum epoch number from" " where the tracefile is processed backwards. If not provided, all epochs" " are included (the epoch number can still be bounded by a specified" " job_id or checkpoint). When a checkpoint is specified, (by providing one" " explicitly as source or by using --checkpoint), --truncate can" " additionally be enabled without an argument which sets the maximum epoch" " number to the epoch provided by the checkpoint." ), ) parser_dump_trace.add_argument( "--yaml", action="store_const", const=True, default=False, help="Dump YAML instead of CSV.", ) parser_dump_trace.add_argument( "--batch", action="store_const", const=True, default=False, help="Include entries on batch level.", ) parser_dump_trace.add_argument( "--example", action="store_const", const=True, default=False, help="Include entries on example level.", ) parser_dump_trace.add_argument( "--no-header", action="store_const", const=True, default=False, help="Exclude column names (header) from the CSV file.", ) parser_dump_trace.add_argument( "--no-default-keys", "-K", action="store_const", const=True, default=False, help="Exclude default keys from the CSV file.", ) parser_dump_trace.add_argument( "--list-keys", action="store", const=True, default=False, nargs="?", help="Output the CSV default keys and all usable keys for --keysfile and --keys" " for the given configuration of options. Takes an optional string argument" " which separates the listed keys (default comma), e.g. use $'\\n' to display" " every key on a new line.", ) def _dump_trace(args): """Execute the 'dump trace' command.""" if ( args.train or args.valid or args.test or args.truncate or args.job_id or args.checkpoint or args.batch or args.example ) and args.search: sys.exit( "--search and any of --train, --valid, --test, --truncate, --job_id," " --checkpoint, --batch, --example are mutually exclusive" ) entry_type_specified = True if not (args.train or args.valid or args.test or args.search): entry_type_specified = False args.train = True args.valid = True args.test = True truncate_flag = False truncate_epoch = None if isinstance(args.truncate, bool) and args.truncate: truncate_flag = True elif not isinstance(args.truncate, bool): if not args.truncate.isdigit(): sys.exit("Integer argument or no argument for --truncate must be used") truncate_epoch = int(args.truncate) checkpoint_path = None if ".pt" in os.path.split(args.source)[-1]: checkpoint_path = args.source folder_path = os.path.split(args.source)[0] else: # determine job_id and epoch from last/best checkpoint automatically if args.checkpoint: checkpoint_path = Config.best_or_last_checkpoint_file(args.source) folder_path = args.source if not checkpoint_path and truncate_flag: sys.exit( "--truncate can only be used as a flag when a checkpoint is specified." " Consider specifying a checkpoint or use an integer argument for the" " --truncate option" ) if checkpoint_path and args.job_id: sys.exit( "--job_id cannot be used together with a checkpoint as the checkpoint" " already specifies the job_id" ) trace = os.path.join(folder_path, "trace.yaml") if not os.path.isfile(trace): sys.exit(f"No file 'trace.yaml' found at {os.path.abspath(folder_path)}") # process additional keys from --keys and --keysfile keymap = OrderedDict() additional_keys = [] if args.keysfile: with open(args.keysfile, "r") as keyfile: additional_keys = keyfile.readlines() if args.keys: additional_keys += args.keys for line in additional_keys: line = line.rstrip("\n").replace(" ", "") name_key = line.split("=") if len(name_key) == 1: name_key += name_key keymap[name_key[0]] = name_key[1] job_id = None # use job_id and truncate_epoch from checkpoint if checkpoint_path and truncate_flag: checkpoint = torch.load(f=checkpoint_path, map_location="cpu") job_id = checkpoint["job_id"] truncate_epoch = checkpoint["epoch"] # only use job_id from checkpoint elif checkpoint_path: checkpoint = torch.load(f=checkpoint_path, map_location="cpu") job_id = checkpoint["job_id"] # no checkpoint specified job_id might have been set manually elif args.job_id: job_id = args.job_id # don't restrict epoch number in case it has not been specified yet if not truncate_epoch: truncate_epoch = float("inf") entries, job_epochs = [], {} if not args.search: entries, job_epochs = Trace.grep_training_trace_entries( tracefile=trace, train=args.train, test=args.test, valid=args.valid, example=args.example, batch=args.batch, job_id=job_id, epoch_of_last=truncate_epoch, ) if not entries and (args.search or not entry_type_specified): entries = Trace.grep_entries(tracefile=trace, conjunctions=[f"scope: train"]) truncate_epoch = None if entries: args.search = True if not entries and entry_type_specified: sys.exit( "No relevant trace entries found. If this was a trace from a search" " job, dont use any of --train --valid --test." ) elif not entries: sys.exit("No relevant trace entries found.") if args.list_keys: all_trace_keys = set() if not args.yaml: csv_writer = csv.writer(sys.stdout) # dict[new_name] = (lookup_name, where) # if where=="config"/"trace" it will be looked up automatically # if where=="sep" it must be added in in the write loop separately if args.no_default_keys: default_attributes = OrderedDict() else: default_attributes = OrderedDict( [ ("job_id", ("job_id", "sep")), ("dataset", ("dataset.name", "config")), ("model", ("model", "sep")), ("reciprocal", ("reciprocal", "sep")), ("job", ("job", "sep")), ("job_type", ("type", "trace")), ("split", ("split", "sep")), ("epoch", ("epoch", "trace")), ("avg_loss", ("avg_loss", "trace")), ("avg_penalty", ("avg_penalty", "trace")), ("avg_cost", ("avg_cost", "trace")), ("metric_name", ("valid.metric", "config")), ("metric", ("metric", "sep")), ] ) if args.search: default_attributes["child_folder"] = ("folder", "trace") default_attributes["child_job_id"] = ("child_job_id", "sep") if not (args.no_header or args.list_keys): csv_writer.writerow( list(default_attributes.keys()) + [key for key in keymap.keys()] ) # store configs for job_id's s.t. they need to be loaded only once configs = {} warning_shown = False for entry in entries: current_epoch = entry.get("epoch") job_type = entry.get("job") job_id = entry.get("job_id") if truncate_epoch and not current_epoch <= float(truncate_epoch): continue # filter out entries not relevant to the unique training sequence determined # by the options; not relevant for search if job_type == "train": if current_epoch > job_epochs[job_id]: continue elif job_type == "eval": if "resumed_from_job_id" in entry: if current_epoch > job_epochs[entry.get("resumed_from_job_id")]: continue elif "parent_job_id" in entry: if current_epoch > job_epochs[entry.get("parent_job_id")]: continue # find relevant config file child_job_id = entry.get("child_job_id") if "child_job_id" in entry else None config_key = ( entry.get("folder") + "/" + str(child_job_id) if args.search else job_id ) if config_key in configs.keys(): config = configs[config_key] else: if args.search: if not child_job_id and not warning_shown: # This warning is from Dec 19, 2019. TODO remove print( "Warning: You are dumping the trace of an older search job. " "This is fine only if " "the config.yaml files in each subfolder have not been modified " "after running the corresponding training job.", file=sys.stderr, ) warning_shown = True config = get_config_for_job_id( child_job_id, os.path.join(folder_path, entry.get("folder")) ) entry["type"] = config.get("train.type") else: config = get_config_for_job_id(job_id, folder_path) configs[config_key] = config if args.list_keys: all_trace_keys.update(entry.keys()) continue new_attributes = OrderedDict() # when training was reciprocal, use the base_model as model if config.get_default("model") == "reciprocal_relations_model": model = config.get_default("reciprocal_relations_model.base_model.type") # the string that substitutes $base_model in keymap if it exists subs_model = "reciprocal_relations_model.base_model" reciprocal = 1 else: model = config.get_default("model") subs_model = model reciprocal = 0 # search for the additional keys from --keys and --keysfile for new_key in keymap.keys(): lookup = keymap[new_key] # search for special keys value = None if lookup == "$folder": value = os.path.abspath(folder_path) elif lookup == "$checkpoint" and checkpoint_path: value = os.path.abspath(checkpoint_path) elif lookup == "$machine": value = socket.gethostname() if "$base_model" in lookup: lookup = lookup.replace("$base_model", subs_model) # search for ordinary keys; start searching in trace entry then config if not value: value = entry.get(lookup) if not value: try: value = config.get_default(lookup) except: pass # value stays None; creates empty field in csv if value and isinstance(value, bool): value = 1 elif not value and isinstance(value, bool): value = 0 new_attributes[new_key] = value if not args.yaml: # find the actual values for the default attributes actual_default = default_attributes.copy() for new_key in default_attributes.keys(): lookup, where = default_attributes[new_key] if where == "config": actual_default[new_key] = config.get(lookup) elif where == "trace": actual_default[new_key] = entry.get(lookup) # keys with separate treatment # "split" in {train,test,valid} for the datatype # "job" in {train,eval,valid,search} if job_type == "train": if "split" in entry: actual_default["split"] = entry.get("split") else: actual_default["split"] = "train" actual_default["job"] = "train" elif job_type == "eval": if "split" in entry: actual_default["split"] = entry.get("split") # test or valid else: # deprecated actual_default["split"] = entry.get("data") # test or valid if entry.get("resumed_from_job_id"): actual_default["job"] = "eval" # from "kge eval" else: actual_default["job"] = "valid" # child of training job else: actual_default["job"] = job_type if "split" in entry: actual_default["split"] = entry.get("split") else: # deprecated actual_default["split"] = entry.get("data") # test or valid actual_default["job_id"] = job_id.split("-")[0] actual_default["model"] = model actual_default["reciprocal"] = reciprocal # lookup name is in config value is in trace actual_default["metric"] = entry.get(config.get_default("valid.metric")) if args.search: actual_default["child_job_id"] = entry.get("child_job_id").split("-")[0] for key in list(actual_default.keys()): if key not in default_attributes: del actual_default[key] csv_writer.writerow( [actual_default[new_key] for new_key in actual_default.keys()] + [new_attributes[new_key] for new_key in new_attributes.keys()] ) else: entry.update({"reciprocal": reciprocal, "model": model}) if keymap: entry.update(new_attributes) print(entry) if args.list_keys: # only one config needed config = configs[list(configs.keys())[0]] options = Config.flatten(config.options) options = sorted( filter(lambda opt: "+++" not in opt, options), key=lambda opt: opt.lower() ) if isinstance(args.list_keys, bool): sep = ", " else: sep = args.list_keys print("Default keys for CSV: ") print(*default_attributes.keys(), sep=sep) print("") print("Special keys: ") print(*["$folder", "$checkpoint", "$machine", "$base_model"], sep=sep) print("") print("Keys found in trace: ") print(*sorted(all_trace_keys), sep=sep) print("") print("Keys found in config: ") print(*options, sep=sep) ### DUMP CONFIG ######################################################################## def _add_dump_config_parser(subparsers_dump): parser_dump_config = subparsers_dump.add_parser( "config", help=("Dump a configuration") ) parser_dump_config.add_argument( "source", help="A path to either a checkpoint, a config file, or a job folder.", nargs="?", default=".", ) parser_dump_config.add_argument( "--minimal", "-m", default=False, action="store_const", const=True, help="Only dump configuration options different from the default configuration (default)", ) parser_dump_config.add_argument( "--raw", "-r", default=False, action="store_const", const=True, help="Dump the config as is", ) parser_dump_config.add_argument( "--full", "-f", default=False, action="store_const", const=True, help="Add all values from the default configuration before dumping the config", ) parser_dump_config.add_argument( "--include", "-i", type=str, nargs="*", help="List of keys to include (separated by space). " "All subkeys are also included. Cannot be used with --raw.", ) parser_dump_config.add_argument( "--exclude", "-e", type=str, nargs="*", help="List of keys to exclude (separated by space). " "All subkeys are also exluded. Applied after --include. " "Cannot be used with --raw.", ) def _dump_config(args): """Execute the 'dump config' command.""" if not (args.raw or args.full or args.minimal): args.minimal = True if args.raw + args.full + args.minimal != 1: raise ValueError("Exactly one of --raw, --full, or --minimal must be set") if args.raw and (args.include or args.exclude): raise ValueError( "--include and --exclude cannot be used with --raw " "(use --full or --minimal instead)." ) config = Config() config_file = None if os.path.isdir(args.source): config_file = os.path.join(args.source, "config.yaml") config.load(config_file) elif ".yaml" in os.path.split(args.source)[-1]: config_file = args.source config.load(config_file) else: # a checkpoint checkpoint = torch.load(args.source, map_location="cpu") if args.raw: config = checkpoint["config"] else: config.load_config(checkpoint["config"]) def print_options(options): # drop all arguments that are not included if args.include: args.include = set(args.include) options_copy = copy.deepcopy(options) for key in options_copy.keys(): prefix = key keep = False while True: if prefix in args.include: keep = True break else: last_dot_index = prefix.rfind(".") if last_dot_index < 0: break else: prefix = prefix[:last_dot_index] if not keep: del options[key] # remove all arguments that are excluded if args.exclude: args.exclude = set(args.exclude) options_copy = copy.deepcopy(options) for key in options_copy.keys(): prefix = key while True: if prefix in args.exclude: del options[key] break else: last_dot_index = prefix.rfind(".") if last_dot_index < 0: break else: prefix = prefix[:last_dot_index] # convert the remaining options to a Config and print it config = Config(load_default=False) config.set_all(options, create=True) print(yaml.dump(config.options)) if args.raw: if config_file: with open(config_file, "r") as f: print(f.read()) else: print_options(config.options) elif args.full: print_options(config.options) else: # minimal default_config = Config() imports = config.get("import") if imports is not None: if not isinstance(imports, list): imports = [imports] for module_name in imports: default_config._import(module_name) default_options = Config.flatten(default_config.options) new_options = Config.flatten(config.options) minimal_options = {} for option, value in new_options.items(): if option not in default_options or default_options[option] != value: minimal_options[option] = value # always retain all imports if imports is not None: minimal_options["import"] = list(set(imports)) print_options(minimal_options)
[ "torch.load" ]
1.7.1
alexgaskell10/encoded_kge
2959c058125515a3e0e0b811ffe8086d6699006c
1.3
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence from stanza.models.common.biaffine import BiaffineScorer from stanza.models.common.hlstm import HighwayLSTM from stanza.models.common.dropout import WordDropout from stanza.models.common.vocab import CompositeVocab from stanza.models.common.char_model import CharacterModel class Tagger(nn.Module): def __init__(self, args, vocab, emb_matrix=None, share_hid=False): super().__init__() self.vocab = vocab self.args = args self.share_hid = share_hid self.unsaved_modules = [] def add_unsaved_module(name, module): self.unsaved_modules += [name] setattr(self, name, module) # input layers input_size = 0 if self.args['word_emb_dim'] > 0: # frequent word embeddings self.word_emb = nn.Embedding(len(vocab['word']), self.args['word_emb_dim'], padding_idx=0) input_size += self.args['word_emb_dim'] if not share_hid: # upos embeddings self.upos_emb = nn.Embedding(len(vocab['upos']), self.args['tag_emb_dim'], padding_idx=0) if self.args['char'] and self.args['char_emb_dim'] > 0: self.charmodel = CharacterModel(args, vocab) self.trans_char = nn.Linear(self.args['char_hidden_dim'], self.args['transformed_dim'], bias=False) input_size += self.args['transformed_dim'] if self.args['pretrain']: # pretrained embeddings, by default this won't be saved into model file add_unsaved_module('pretrained_emb', nn.Embedding.from_pretrained(torch.from_numpy(emb_matrix), freeze=True)) self.trans_pretrained = nn.Linear(emb_matrix.shape[1], self.args['transformed_dim'], bias=False) input_size += self.args['transformed_dim'] # recurrent layers self.taggerlstm = HighwayLSTM(input_size, self.args['hidden_dim'], self.args['num_layers'], batch_first=True, bidirectional=True, dropout=self.args['dropout'], rec_dropout=self.args['rec_dropout'], highway_func=torch.tanh) self.drop_replacement = nn.Parameter(torch.randn(input_size) / np.sqrt(input_size)) self.taggerlstm_h_init = nn.Parameter(torch.zeros(2 * self.args['num_layers'], 1, self.args['hidden_dim'])) self.taggerlstm_c_init = nn.Parameter(torch.zeros(2 * self.args['num_layers'], 1, self.args['hidden_dim'])) # classifiers self.upos_hid = nn.Linear(self.args['hidden_dim'] * 2, self.args['deep_biaff_hidden_dim']) self.upos_clf = nn.Linear(self.args['deep_biaff_hidden_dim'], len(vocab['upos'])) self.upos_clf.weight.data.zero_() self.upos_clf.bias.data.zero_() if share_hid: clf_constructor = lambda insize, outsize: nn.Linear(insize, outsize) else: self.xpos_hid = nn.Linear(self.args['hidden_dim'] * 2, self.args['deep_biaff_hidden_dim'] if not isinstance(vocab['xpos'], CompositeVocab) else self.args['composite_deep_biaff_hidden_dim']) self.ufeats_hid = nn.Linear(self.args['hidden_dim'] * 2, self.args['composite_deep_biaff_hidden_dim']) clf_constructor = lambda insize, outsize: BiaffineScorer(insize, self.args['tag_emb_dim'], outsize) if isinstance(vocab['xpos'], CompositeVocab): self.xpos_clf = nn.ModuleList() for l in vocab['xpos'].lens(): self.xpos_clf.append(clf_constructor(self.args['composite_deep_biaff_hidden_dim'], l)) else: self.xpos_clf = clf_constructor(self.args['deep_biaff_hidden_dim'], len(vocab['xpos'])) if share_hid: self.xpos_clf.weight.data.zero_() self.xpos_clf.bias.data.zero_() self.ufeats_clf = nn.ModuleList() for l in vocab['feats'].lens(): if share_hid: self.ufeats_clf.append(clf_constructor(self.args['deep_biaff_hidden_dim'], l)) self.ufeats_clf[-1].weight.data.zero_() self.ufeats_clf[-1].bias.data.zero_() else: self.ufeats_clf.append(clf_constructor(self.args['composite_deep_biaff_hidden_dim'], l)) # criterion self.crit = nn.CrossEntropyLoss(ignore_index=0) # ignore padding self.drop = nn.Dropout(args['dropout']) self.worddrop = WordDropout(args['word_dropout']) def forward(self, word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained, word_orig_idx, sentlens, wordlens): def pack(x): return pack_padded_sequence(x, sentlens, batch_first=True) inputs = [] if self.args['word_emb_dim'] > 0: word_emb = self.word_emb(word) word_emb = pack(word_emb) inputs += [word_emb] if self.args['pretrain']: pretrained_emb = self.pretrained_emb(pretrained) pretrained_emb = self.trans_pretrained(pretrained_emb) pretrained_emb = pack(pretrained_emb) inputs += [pretrained_emb] def pad(x): return pad_packed_sequence(PackedSequence(x, word_emb.batch_sizes), batch_first=True)[0] if self.args['char'] and self.args['char_emb_dim'] > 0: char_reps = self.charmodel(wordchars, wordchars_mask, word_orig_idx, sentlens, wordlens) char_reps = PackedSequence(self.trans_char(self.drop(char_reps.data)), char_reps.batch_sizes) inputs += [char_reps] lstm_inputs = torch.cat([x.data for x in inputs], 1) lstm_inputs = self.worddrop(lstm_inputs, self.drop_replacement) lstm_inputs = self.drop(lstm_inputs) lstm_inputs = PackedSequence(lstm_inputs, inputs[0].batch_sizes) lstm_outputs, _ = self.taggerlstm(lstm_inputs, sentlens, hx=(self.taggerlstm_h_init.expand(2 * self.args['num_layers'], word.size(0), self.args['hidden_dim']).contiguous(), self.taggerlstm_c_init.expand(2 * self.args['num_layers'], word.size(0), self.args['hidden_dim']).contiguous())) lstm_outputs = lstm_outputs.data upos_hid = F.relu(self.upos_hid(self.drop(lstm_outputs))) upos_pred = self.upos_clf(self.drop(upos_hid)) preds = [pad(upos_pred).max(2)[1]] upos = pack(upos).data loss = self.crit(upos_pred.view(-1, upos_pred.size(-1)), upos.view(-1)) if self.share_hid: xpos_hid = upos_hid ufeats_hid = upos_hid clffunc = lambda clf, hid: clf(self.drop(hid)) else: xpos_hid = F.relu(self.xpos_hid(self.drop(lstm_outputs))) ufeats_hid = F.relu(self.ufeats_hid(self.drop(lstm_outputs))) if self.training: upos_emb = self.upos_emb(upos) else: upos_emb = self.upos_emb(upos_pred.max(1)[1]) clffunc = lambda clf, hid: clf(self.drop(hid), self.drop(upos_emb)) xpos = pack(xpos).data if isinstance(self.vocab['xpos'], CompositeVocab): xpos_preds = [] for i in range(len(self.vocab['xpos'])): xpos_pred = clffunc(self.xpos_clf[i], xpos_hid) loss += self.crit(xpos_pred.view(-1, xpos_pred.size(-1)), xpos[:, i].view(-1)) xpos_preds.append(pad(xpos_pred).max(2, keepdim=True)[1]) preds.append(torch.cat(xpos_preds, 2)) else: xpos_pred = clffunc(self.xpos_clf, xpos_hid) loss += self.crit(xpos_pred.view(-1, xpos_pred.size(-1)), xpos.view(-1)) preds.append(pad(xpos_pred).max(2)[1]) ufeats_preds = [] ufeats = pack(ufeats).data for i in range(len(self.vocab['feats'])): ufeats_pred = clffunc(self.ufeats_clf[i], ufeats_hid) loss += self.crit(ufeats_pred.view(-1, ufeats_pred.size(-1)), ufeats[:, i].view(-1)) ufeats_preds.append(pad(ufeats_pred).max(2, keepdim=True)[1]) preds.append(torch.cat(ufeats_preds, 2)) return loss, preds
[ "torch.nn.Linear", "torch.nn.utils.rnn.PackedSequence", "torch.nn.Dropout", "torch.cat", "torch.zeros", "torch.nn.ModuleList", "torch.from_numpy", "torch.randn", "torch.nn.utils.rnn.pack_padded_sequence", "torch.nn.CrossEntropyLoss" ]
1.3.0
danielhers/stanza
d747a7b781da203c286ec51e3842fecb8b0abb15
0.4
### execute this function to train and test the vae-model from vaemodel import Model import numpy as np import pickle import torch import os import argparse def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() parser.add_argument('--dataset') parser.add_argument('--num_shots',type=int) parser.add_argument('--generalized', type = str2bool) args = parser.parse_args() ######################################## # the basic hyperparameters ######################################## hyperparameters = { 'num_shots': 0, 'device': 'cuda', 'model_specifics': {'cross_reconstruction': True, 'name': 'CADA', 'distance': 'wasserstein', 'warmup': {'beta': {'factor': 0.25, 'end_epoch': 93, 'start_epoch': 0}, 'cross_reconstruction': {'factor': 2.37, 'end_epoch': 75, 'start_epoch': 21}, 'distance': {'factor': 8.13, 'end_epoch': 22, 'start_epoch': 6}}}, 'lr_gen_model': 0.00015, 'generalized': True, 'batch_size': 50, 'xyu_samples_per_class': {'SUN': (200, 0, 400, 0), 'APY': (200, 0, 400, 0), 'CUB': (200, 0, 400, 0), 'AWA2': (200, 0, 400, 0), 'FLO': (200, 0, 400, 0), 'plant': (200, 0, 400, 0), 'AWA1': (200, 0, 400, 0)}, 'epochs': 100, 'loss': 'l1', 'auxiliary_data_source' : 'attributes', 'lr_cls': 0.001, 'dataset': 'CUB', 'hidden_size_rule': {'resnet_features': (1560, 1660), 'attributes': (1450, 665), 'sentences': (1450, 665) }, 'latent_size': 64 } # The training epochs for the final classifier, for early stopping, # as determined on the validation spit cls_train_steps = [ {'dataset': 'SUN', 'num_shots': 0, 'generalized': True, 'cls_train_steps': 21}, {'dataset': 'SUN', 'num_shots': 0, 'generalized': False, 'cls_train_steps': 30}, {'dataset': 'SUN', 'num_shots': 1, 'generalized': True, 'cls_train_steps': 22}, {'dataset': 'SUN', 'num_shots': 1, 'generalized': False, 'cls_train_steps': 96}, {'dataset': 'SUN', 'num_shots': 5, 'generalized': True, 'cls_train_steps': 29}, {'dataset': 'SUN', 'num_shots': 5, 'generalized': False, 'cls_train_steps': 78}, {'dataset': 'SUN', 'num_shots': 2, 'generalized': True, 'cls_train_steps': 29}, {'dataset': 'SUN', 'num_shots': 2, 'generalized': False, 'cls_train_steps': 61}, {'dataset': 'SUN', 'num_shots': 10, 'generalized': True, 'cls_train_steps': 79}, {'dataset': 'SUN', 'num_shots': 10, 'generalized': False, 'cls_train_steps': 94}, {'dataset': 'AWA1', 'num_shots': 0, 'generalized': True, 'cls_train_steps': 33}, {'dataset': 'AWA1', 'num_shots': 0, 'generalized': False, 'cls_train_steps': 25}, {'dataset': 'AWA1', 'num_shots': 1, 'generalized': True, 'cls_train_steps': 40}, {'dataset': 'AWA1', 'num_shots': 1, 'generalized': False, 'cls_train_steps': 81}, {'dataset': 'AWA1', 'num_shots': 5, 'generalized': True, 'cls_train_steps': 89}, {'dataset': 'AWA1', 'num_shots': 5, 'generalized': False, 'cls_train_steps': 62}, {'dataset': 'AWA1', 'num_shots': 2, 'generalized': True, 'cls_train_steps': 56}, {'dataset': 'AWA1', 'num_shots': 2, 'generalized': False, 'cls_train_steps': 59}, {'dataset': 'AWA1', 'num_shots': 10, 'generalized': True, 'cls_train_steps': 100}, {'dataset': 'AWA1', 'num_shots': 10, 'generalized': False, 'cls_train_steps': 50}, {'dataset': 'CUB', 'num_shots': 0, 'generalized': True, 'cls_train_steps': 23}, {'dataset': 'CUB', 'num_shots': 0, 'generalized': False, 'cls_train_steps': 22}, {'dataset': 'CUB', 'num_shots': 1, 'generalized': True, 'cls_train_steps': 34}, {'dataset': 'CUB', 'num_shots': 1, 'generalized': False, 'cls_train_steps': 46}, {'dataset': 'CUB', 'num_shots': 5, 'generalized': True, 'cls_train_steps': 64}, {'dataset': 'CUB', 'num_shots': 5, 'generalized': False, 'cls_train_steps': 73}, {'dataset': 'CUB', 'num_shots': 2, 'generalized': True, 'cls_train_steps': 39}, {'dataset': 'CUB', 'num_shots': 2, 'generalized': False, 'cls_train_steps': 31}, {'dataset': 'CUB', 'num_shots': 10, 'generalized': True, 'cls_train_steps': 85}, {'dataset': 'CUB', 'num_shots': 10, 'generalized': False, 'cls_train_steps': 67}, {'dataset': 'AWA2', 'num_shots': 0, 'generalized': True, 'cls_train_steps': 29}, {'dataset': 'AWA2', 'num_shots': 0, 'generalized': False, 'cls_train_steps': 39}, {'dataset': 'AWA2', 'num_shots': 1, 'generalized': True, 'cls_train_steps': 44}, {'dataset': 'AWA2', 'num_shots': 1, 'generalized': False, 'cls_train_steps': 96}, {'dataset': 'AWA2', 'num_shots': 5, 'generalized': True, 'cls_train_steps': 99}, {'dataset': 'AWA2', 'num_shots': 5, 'generalized': False, 'cls_train_steps': 100}, {'dataset': 'AWA2', 'num_shots': 2, 'generalized': True, 'cls_train_steps': 69}, {'dataset': 'AWA2', 'num_shots': 2, 'generalized': False, 'cls_train_steps': 79}, {'dataset': 'AWA2', 'num_shots': 10, 'generalized': True, 'cls_train_steps': 86}, {'dataset': 'AWA2', 'num_shots': 10, 'generalized': False, 'cls_train_steps': 78}, {'dataset': 'plant', 'num_shots': 0, 'generalized': True, 'cls_train_steps': 86} ] ################################## # change some hyperparameters here ################################## hyperparameters['dataset'] = args.dataset hyperparameters['num_shots']= args.num_shots hyperparameters['generalized']= args.generalized hyperparameters['cls_train_steps'] = [x['cls_train_steps'] for x in cls_train_steps if all([hyperparameters['dataset']==x['dataset'], hyperparameters['num_shots']==x['num_shots'], hyperparameters['generalized']==x['generalized'] ])][0] print('***') print(hyperparameters['cls_train_steps'] ) if hyperparameters['generalized']: if hyperparameters['num_shots']==0: hyperparameters['samples_per_class'] = {'CUB': (200, 0, 400, 0), 'SUN': (200, 0, 400, 0), 'APY': (200, 0, 400, 0), 'AWA1': (200, 0, 400, 0), 'AWA2': (200, 0, 400, 0), 'FLO': (200, 0, 400, 0), 'plant': (200, 0, 400, 0)} else: hyperparameters['samples_per_class'] = {'CUB': (200, 0, 200, 200), 'SUN': (200, 0, 200, 200), 'APY': (200, 0, 200, 200), 'AWA1': (200, 0, 200, 200), 'AWA2': (200, 0, 200, 200), 'FLO': (200, 0, 200, 200)} else: if hyperparameters['num_shots']==0: hyperparameters['samples_per_class'] = {'CUB': (0, 0, 200, 0), 'SUN': (0, 0, 200, 0), 'APY': (0, 0, 200, 0), 'AWA1': (0, 0, 200, 0), 'AWA2': (0, 0, 200, 0), 'FLO': (0, 0, 200, 0)} else: hyperparameters['samples_per_class'] = {'CUB': (0, 0, 200, 200), 'SUN': (0, 0, 200, 200), 'APY': (0, 0, 200, 200), 'AWA1': (0, 0, 200, 200), 'AWA2': (0, 0, 200, 200), 'FLO': (0, 0, 200, 200)} model = Model( hyperparameters) model.to(hyperparameters['device']) """ ######################################## ### load model where u left ######################################## saved_state = torch.load('./saved_models/CADA_trained.pth.tar') model.load_state_dict(saved_state['state_dict']) for d in model.all_data_sources_without_duplicates: model.encoder[d].load_state_dict(saved_state['encoder'][d]) model.decoder[d].load_state_dict(saved_state['decoder'][d]) ######################################## """ losses = model.train_vae() u,s,h,history = model.train_classifier() if hyperparameters['generalized']==True: acc = [hi[2] for hi in history] elif hyperparameters['generalized']==False: acc = [hi[1] for hi in history] print(acc[-1]) state = { 'state_dict': model.state_dict() , 'hyperparameters':hyperparameters, 'encoder':{}, 'decoder':{} } for d in model.all_data_sources: state['encoder'][d] = model.encoder[d].state_dict() state['decoder'][d] = model.decoder[d].state_dict() torch.save(state, 'CADA_trained.pth.tar') print('>> saved')
[ "torch.save" ]
0.4.1
sanixa/CADA-VAE-pytorch
9383c3067ce84f351c72a285d6da5724dcd710a6
1.4
import torch import argparse import os import torch.nn as nn import torch.nn.functional as F import torchvision from auto_LiRPA import BoundedModule, BoundedTensor from auto_LiRPA.perturbations import * parser = argparse.ArgumentParser() args, unknown = parser.parse_known_args() class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, x): return x.view((x.shape[0], -1)) class cnn_model(nn.Module): def __init__(self, layers, padding, stride): super(cnn_model, self).__init__() self.module_list = [] channel = 1 length = 28 for i in range(layers): self.module_list.append(nn.Conv2d(channel, 3, 4, stride = stride, padding = padding)) channel = 3 length = (length + 2 * padding - 4)//stride + 1 assert length > 0 self.module_list.append(nn.ReLU()) self.module_list.append(Flatten()) self.module_list.append(nn.Linear(3 * length * length, 256)) self.module_list.append(nn.Linear(256, 10)) self.model = nn.Sequential(*self.module_list) def forward(self, x): x = self.model(x) return x def test(): torch.manual_seed(1) torch.cuda.manual_seed_all(1) models = [2, 3] paddings = [1, 2] strides = [1, 3] N = 2 n_classes = 10 image = torch.randn(N, 1, 28, 28) image = image.to(torch.float32) / 255.0 for layer_num in models: for padding in paddings: for stride in strides: # print(layer_num, padding, stride) try: model_ori = cnn_model(layer_num, padding, stride) except: continue model = BoundedModule(model_ori, torch.empty_like(image), device="cpu", bound_opts={"conv_mode": "patches"}) eps = 0.3 norm = np.inf ptb = PerturbationLpNorm(norm=norm, eps=eps) image = BoundedTensor(image, ptb) pred = model(image) lb, ub = model.compute_bounds() model = BoundedModule(model_ori, torch.empty_like(image), device="cpu", bound_opts={"conv_mode": "matrix"}) pred = model(image) lb_ref, ub_ref = model.compute_bounds() assert lb.shape == ub.shape == torch.Size((N, n_classes)) assert torch.allclose(lb, lb_ref) assert torch.allclose(ub, ub_ref) # print("passed") if __name__ == '__main__': test()
[ "torch.nn.Linear", "torch.Size", "torch.cuda.manual_seed_all", "torch.nn.Sequential", "torch.manual_seed", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.allclose", "torch.randn", "torch.empty_like" ]
1.4
Qiming-Wu/auto_LiRPA
7e1fbf12d857ef8d411d80eef1bd73d9ae4ba3be
1.9
import settings import pandas as pd from loader.DWY_Neighbor import NeighborsLoader from loader.DBP15k import DBP15kLoader from script.preprocess.get_token import Token from settings import * import numpy as np import torch class NeighborToken(object): def __init__(self, dbpToken, loader): self.loader = loader self.id_features_dict = dbpToken.id_features_dict self.id_adj_tensor_dict = {} def get_adj(valid_len): adj = torch.zeros(NEIGHBOR_SIZE, NEIGHBOR_SIZE).bool() for i in range(0, valid_len): adj[i, i] = 1 adj[0, i] = 1 adj[i, 0] = 1 return adj def get_token(): id_neighbors_dict = {} loader_id_neighbors_dict_copy = self.loader.id_neighbors_dict for entity_id, neighbors_dict in loader_id_neighbors_dict_copy.items(): id_neighbors_dict[entity_id]=[] id_neighbors_dict[entity_id].append(self.id_features_dict[entity_id]) for rel, neighbor in neighbors_dict.items(): for neigh in neighbor: id_neighbors_dict[entity_id].append(self.id_features_dict[neigh]) for k, v in id_neighbors_dict.items(): if len(v) < NEIGHBOR_SIZE: self.id_adj_tensor_dict[k] = get_adj(len(v)) id_neighbors_dict[k] = v + [[ord(' ')]*TOKEN_LEN] * (NEIGHBOR_SIZE - len(v)) else: self.id_adj_tensor_dict[k] = get_adj(NEIGHBOR_SIZE) id_neighbors_dict[k] = v[:NEIGHBOR_SIZE] return id_neighbors_dict self.id_neighbors_dict = get_token()
[ "torch.zeros" ]
1.9.0
Yasuo-orphan/SelfKG
52f71c186ab4ad2db8de6cadf4e498d6e563ee96
1.6
import numpy as np import torch import torch.nn as nn from ..loss import * class Criterion(object): def __init__(self, device=0, target_opt=['1'], loss_opt=[['WeightedBCE']], loss_weight=[[1.]], regu_opt=[], regu_weight=[]): self.device = device self.target_opt = target_opt self.loss_opt = loss_opt self.loss_weight = loss_weight self.num_target = len(target_opt) self.num_regu = len(regu_opt) self.loss = self.get_loss() self.loss_w = loss_weight self.regu = self.get_regu(regu_opt) self.regu_w = regu_weight def get_regu(self, regu_opt=[]): regu = None if len(regu_opt)>0: regu = [None]*len(regu_opt) for i in range(len(regu_opt)): if regu_opt[i] == 0: regu[i] = nn.L1Loss() elif regu_opt[i] == 'BinaryReg': regu[i] = BinaryReg() return regu def get_loss(self): out = [None]*self.num_target for i in range(self.num_target): out[i] = [None]*len(self.loss_opt[i]) for j,lopt in enumerate(self.loss_opt[i]): if lopt == 'WeightedMSE': out[i][j] = WeightedMSE() elif lopt == 'WeightedBCE': out[i][j] = WeightedBCE() elif lopt == 'JaccardLoss': out[i][j] = JaccardLoss() elif lopt == 'DiceLoss': out[i][j] = DiceLoss() elif lopt == 'WeightedCE': out[i][j] = WeightedCE() else: print('Unknown loss option {}'.format(lopt)) return out def to_torch(self, data): return torch.from_numpy(data).to(self.device) def eval(self, pred, target, weight): # target, weight: numpy # pred: torch # compute loss loss = 0 cid = 0 # channel index for prediction for i in range(self.num_target): # for each target numC = self.get_num_channel(i, target) target_t = self.to_torch(target[i]) for j in range(len(self.loss[i])): if weight[i][j].shape[-1] == 1: # placeholder for no weight loss += self.loss_weight[i][j]*self.loss_w[i][j]*self.loss[i][j](pred[:,cid:cid+numC], target_t) else: loss += self.loss_weight[i][j]*self.loss_w[i][j]*self.loss[i][j](pred[:,cid:cid+numC], target_t, self.to_torch(weight[i][j])) cid += numC for i in range(self.num_regu): loss += self.regu[i](pred)*self.regu_w[i] return loss def get_num_channel(self, i, target): topt = self.target_opt[i] if topt[0] == '9': # generic segmantic segmentation numC = topt.split('-')[1] numC = int(numC) else: numC = target[i].shape[1] return numC
[ "torch.nn.L1Loss", "torch.from_numpy" ]
1.6.0
matinraayai/pytorch_connectomics
b11a2f7e71a8d1442fb05f7a6edfaaaa7b0d9205
1.8
import json import torch from nltk.tokenize import word_tokenize from graph4nlp.pytorch.data.dataset import Text2TextDataItem, Text2TextDataset from graph4nlp.pytorch.modules.utils.padding_utils import pad_2d_vals, pad_2d_vals_no_size class CNNDataset(Text2TextDataset): def __init__( self, root_dir, topology_subdir, graph_name, static_or_dynamic="static", tokenizer=word_tokenize, lower_case=True, pretrained_word_emb_name="840B", pretrained_word_emb_url=None, target_pretrained_word_emb_name=None, target_pretrained_word_emb_url=None, pretrained_word_emb_cache_dir=".vector_cache/", use_val_for_vocab=False, seed=1234, thread_number=4, port=9000, timeout=15000, edge_strategy=None, share_vocab=True, word_emb_size=300, dynamic_init_graph_name=None, dynamic_init_topology_builder=None, dynamic_init_topology_aux_args=None, for_inference=False, reused_vocab_model=None, **kwargs ): super(CNNDataset, self).__init__( root_dir=root_dir, topology_subdir=topology_subdir, graph_name=graph_name, static_or_dynamic=static_or_dynamic, tokenizer=tokenizer, lower_case=lower_case, pretrained_word_emb_name=pretrained_word_emb_name, pretrained_word_emb_url=pretrained_word_emb_url, target_pretrained_word_emb_name=target_pretrained_word_emb_name, target_pretrained_word_emb_url=target_pretrained_word_emb_url, pretrained_word_emb_cache_dir=pretrained_word_emb_cache_dir, use_val_for_vocab=use_val_for_vocab, seed=seed, thread_number=thread_number, port=port, timeout=timeout, edge_strategy=edge_strategy, share_vocab=share_vocab, word_emb_size=word_emb_size, dynamic_init_graph_name=dynamic_init_graph_name, dynamic_init_topology_builder=dynamic_init_topology_builder, dynamic_init_topology_aux_args=dynamic_init_topology_aux_args, for_inference=for_inference, reused_vocab_model=reused_vocab_model, **kwargs ) @property def raw_file_names(self): """ 3 reserved keys: 'train', 'val' (optional), 'test'. Represent the split of dataset. """ return {"train": "train_3w.json", "val": "val.json", "test": "test.json"} @property def processed_file_names(self): """At least 2 reserved keys should be fiiled: 'vocab' and 'data'.""" return {"vocab": "vocab.pt", "data": "data.pt"} def download(self): return def parse_file(self, file_path): """ Read and parse the file specified by `file_path`. The file format is specified by each individual task-specific base class. Returns all the indices of data items in this file w.r.t. the whole dataset. For Text2TextDataset, the format of the input file should contain lines of input, each line representing one record of data. The input and output is separated by a tab(\t). Parameters ---------- file_path: str The path of the input file. Returns ------- list The indices of data items in the file w.r.t. the whole dataset. """ data = [] with open(file_path, "r") as f: examples = json.load(f) for example_dict in examples: input = " ".join(" ".join(example_dict["article"]).split()[:400]).lower() output = " ".join( " ".join( ["<t> " + sent[0] + " . </t>" for sent in example_dict["highlight"]] ).split()[:99] ).lower() if input == "" or output == "": continue data_item = Text2TextDataItem( input_text=input, output_text=output, tokenizer=self.tokenizer, share_vocab=self.share_vocab, ) data.append(data_item) return data @staticmethod def collate_fn(data_list: [Text2TextDataItem]): graph_data = [item.graph for item in data_list] max_node_len = 0 for graph_item in graph_data: max_node_len = max(max_node_len, graph_item.node_features["token_id"].size()[1]) for graph_item in graph_data: token_id_numpy = graph_item.node_features["token_id"].numpy() token_id_pad = pad_2d_vals(token_id_numpy, token_id_numpy.shape[0], max_node_len) graph_item.node_features["token_id"] = torch.from_numpy(token_id_pad).long() from graph4nlp.pytorch.data.data import to_batch big_graph = to_batch(graph_data) output_numpy = [item.output_np for item in data_list] output_str = [item.output_text.lower().strip() for item in data_list] output_pad = pad_2d_vals_no_size(output_numpy) tgt_seq = torch.from_numpy(output_pad).long() return {"graph_data": big_graph, "tgt_seq": tgt_seq, "output_str": output_str}
[ "torch.from_numpy" ]
1.8.0
cminusQAQ/graph4nlp
d980e897131f1b9d3766750c06316d94749904fa
1.8
import torch CORENLP_TIMEOUT_SIGNATURE = "CoreNLP request timed out. Your document may be too long." def convert_adj_to_graph(graph, adj, reverse_adj, mask_off_val): slides = (adj != mask_off_val).nonzero(as_tuple=False) batch_nodes_tensor = torch.Tensor([0] + graph._batch_num_nodes).to(slides.device) batch_prefix = batch_nodes_tensor.view(-1, 1).expand(-1, batch_nodes_tensor.shape[0]) batch_prefix = batch_prefix.triu().long().sum(0) src = slides[:, 1] + batch_prefix.index_select(dim=0, index=slides[:, 0]) tgt = slides[:, 2] + batch_prefix.index_select(dim=0, index=slides[:, 0]) graph_data = graph graph_data.remove_all_edges() # remove all existing edges graph_data.add_edges(src.detach().cpu().numpy().tolist(), tgt.detach().cpu().numpy().tolist()) value = adj[slides[:, 0], slides[:, 1], slides[:, 2]] reverse_value = reverse_adj[slides[:, 0], slides[:, 1], slides[:, 2]] graph_data.edge_features["edge_weight"] = value graph_data.edge_features["reverse_edge_weight"] = reverse_value return graph_data
[ "torch.Tensor" ]
1.8.0
cminusQAQ/graph4nlp
d980e897131f1b9d3766750c06316d94749904fa
1.8
import torch import torch.nn as nn from .....data.data import from_batch from ..base import PoolingBase class MaxPooling(PoolingBase): r"""Apply max pooling over the nodes in the graph. .. math:: r^{(i)} = \max_{k=1}^{N_i}\left( x^{(i)}_k \right) """ def __init__(self, dim=None, use_linear_proj=False): super(MaxPooling, self).__init__() if use_linear_proj: assert dim is not None, "dim should be specified when use_linear_proj is set to True" self.linear = nn.Linear(dim, dim, bias=False) else: self.linear = None def forward(self, graph, feat): r"""Compute max pooling. Parameters ---------- graph : GraphData The graph data. feat : str The feature field name. Returns ------- torch.Tensor The output feature. """ graph_list = from_batch(graph) output_feat = [] for g in graph_list: feat_tensor = g.node_features[feat] if self.linear is not None: feat_tensor = self.linear(feat_tensor) output_feat.append(torch.max(feat_tensor, dim=0)[0]) output_feat = torch.stack(output_feat, 0) return output_feat
[ "torch.nn.Linear", "torch.stack", "torch.max" ]
1.8.0
cminusQAQ/graph4nlp
d980e897131f1b9d3766750c06316d94749904fa
1.5
import numpy as np import torch import torch.nn as nn from torch.distributions import Normal from rl_sandbox.constants import OBS_RMS, CPU from rl_sandbox.model_architectures.actor_critics.actor_critic import ActorCritic from rl_sandbox.model_architectures.shared import Conv2DEncoder, Flatten, Fuse, Split from rl_sandbox.model_architectures.utils import construct_linear_layers class EarlyFusionConv2DGaussianAC(ActorCritic): def __init__(self, img_dim, scalar_feature_dim, action_dim, shared_layers, shared_out_dim, eps=1e-7, device=torch.device(CPU), normalize_obs=False, normalize_value=False): assert len(img_dim) == 4 super().__init__(obs_dim=scalar_feature_dim, norm_dim=(0,), device=device, normalize_obs=normalize_obs, normalize_value=normalize_value) self._eps = eps self._img_dim = img_dim self._scalar_feature_dim = scalar_feature_dim self.split = Split([int(np.product(img_dim)), scalar_feature_dim]) self.fuse = Fuse() self.encoder = Conv2DEncoder(*img_dim[1:], shared_out_dim, shared_layers, nn.LayerNorm(50)) self.action_net = nn.Sequential(nn.Linear(shared_out_dim * self._img_dim[0] + scalar_feature_dim, 256), nn.ReLU(), nn.Linear(256, action_dim * 2)) self.value = nn.Sequential(nn.Linear(shared_out_dim * self._img_dim[0] + scalar_feature_dim, 256), nn.ReLU(), nn.Linear(256, 1)) self.to(self.device) def forward(self, x, h, **kwargs): batch_size = x.shape[0] if self._scalar_feature_dim > 0: (imgs, scalars) = self.split(x) if hasattr(self, OBS_RMS): scalars = self.obs_rms.normalize(scalars) else: imgs = x scalars = torch.empty(batch_size, 0, device=self.device) imgs = imgs.reshape(batch_size * self._img_dim[0], *self._img_dim[1:]).to(self.device) z = self.encoder(imgs) x = self.fuse((z.reshape(batch_size, -1), scalars.to(self.device))) a_mean, a_log_std = torch.chunk(self.action_net(x), chunks=2, dim=1) a_std = torch.nn.functional.softplus(a_log_std) + self._eps dist = Normal(a_mean, a_std) val = self.value(x) return dist, val, h
[ "torch.nn.Linear", "torch.device", "torch.nn.LayerNorm", "torch.nn.functional.softplus", "torch.distributions.Normal", "torch.nn.ReLU", "torch.empty" ]
1.5.1
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
1.5
import argparse import numpy as np import torch import rl_sandbox.constants as c import rl_sandbox.transforms.general_transforms as gt from rl_sandbox.agents.random_agents import UniformContinuousAgent from rl_sandbox.buffers.wrappers.torch_buffer import TorchBuffer from rl_sandbox.envs.wrappers.action_repeat import ActionRepeatWrapper from rl_sandbox.envs.wrappers.augment_action import AugmentActionWrapper from rl_sandbox.envs.wrappers.frame_stack import FrameStackWrapper from rl_sandbox.envs.wrappers.renderer import GymRenderer from rl_sandbox.train.train_sac import train_sac from rl_sandbox.model_architectures.actor_critics.fully_connected_soft_actor_critic import LSTMSquashedGaussianSAC from rl_sandbox.model_architectures.layers_definition import VALUE_BASED_LINEAR_LAYERS # This is for script run parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, required=True, help="Random seed") args = parser.parse_args() seed = args.seed obs_dim = 15 action_dim = 3 min_action = -np.ones(action_dim) max_action = np.ones(action_dim) device = torch.device("cuda:0") # device = torch.device(c.CPU) action_repeat = 1 num_frames = 1 hidden_state_dim = 128 memory_size = 1000000 max_total_steps = 1000000 experiment_setting = { # Auxiliary Tasks c.AUXILIARY_TASKS: {}, # Buffer c.BUFFER_PREPROCESSING: gt.AsType(), c.BUFFER_SETTING: { c.KWARGS: { c.MEMORY_SIZE: memory_size, c.OBS_DIM: (obs_dim,), c.H_STATE_DIM: (hidden_state_dim * 2,), c.ACTION_DIM: (action_dim,), c.REWARD_DIM: (1,), c.INFOS: {c.MEAN: ((action_dim,), np.float32), c.VARIANCE: ((action_dim,), np.float32), c.ENTROPY: ((action_dim,), np.float32), c.LOG_PROB: ((1,), np.float32), c.VALUE: ((1,), np.float32), c.DISCOUNTING: ((1,), np.float32)}, c.BURN_IN_WINDOW: 19, c.PADDING_FIRST: True, c.CHECKPOINT_INTERVAL: 0, c.CHECKPOINT_PATH: None, }, c.STORAGE_TYPE: c.RAM, c.BUFFER_WRAPPERS: [ { c.WRAPPER: TorchBuffer, c.KWARGS: {}, }, ], }, # Environment c.ACTION_DIM: action_dim, c.CLIP_ACTION: True, c.ENV_SETTING: { c.ENV_BASE: { # c.ENV_NAME: "Hopper-v2" c.ENV_NAME: "HopperBulletEnv-v0" }, c.ENV_TYPE: c.GYM, c.ENV_WRAPPERS: [ { c.WRAPPER: GymRenderer, c.KWARGS: {}, }, # { # c.WRAPPER: AugmentActionWrapper, # c.KWARGS: { # c.ACTION_DIM: action_dim, # } # }, { c.WRAPPER: ActionRepeatWrapper, c.KWARGS: { c.ACTION_REPEAT: action_repeat, c.DISCOUNT_FACTOR: 1., c.ENABLE_DISCOUNTING: False, } }, { c.WRAPPER: FrameStackWrapper, c.KWARGS: { c.NUM_FRAMES: num_frames, } } ] }, c.MIN_ACTION: min_action, c.MAX_ACTION: max_action, c.OBS_DIM: obs_dim, # Evaluation c.EVALUATION_FREQUENCY: 5000, c.EVALUATION_RENDER: False, c.EVALUATION_RETURNS: [], c.NUM_EVALUATION_EPISODES: 5, # Exploration c.EXPLORATION_STEPS: 1000, c.EXPLORATION_STRATEGY: UniformContinuousAgent(min_action, max_action, np.random.RandomState(seed)), # General c.DEVICE: device, c.SEED: seed, # Load c.LOAD_MODEL: False, # Logging c.PRINT_INTERVAL: 5000, c.SAVE_INTERVAL: 50000, c.LOG_INTERVAL: 1, # Model c.MODEL_SETTING: { c.MODEL_ARCHITECTURE: LSTMSquashedGaussianSAC, c.KWARGS: { c.OBS_DIM: obs_dim, c.HIDDEN_STATE_DIM: hidden_state_dim, c.ACTION_DIM: action_dim, c.SHARED_LAYERS: VALUE_BASED_LINEAR_LAYERS(in_dim=obs_dim), c.INITIAL_ALPHA: 1., c.DEVICE: device, c.NORMALIZE_OBS: False, c.NORMALIZE_VALUE: False, }, }, c.OPTIMIZER_SETTING: { c.POLICY: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, c.QS: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, c.ALPHA: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, }, c.EVALUATION_PREPROCESSING: gt.Identity(), c.TRAIN_PREPROCESSING: gt.Identity(), # SAC c.ACCUM_NUM_GRAD: 1, c.ACTOR_UPDATE_INTERVAL: 1, c.BATCH_SIZE: 256, c.BUFFER_WARMUP: 1000, c.GAMMA: 0.99, c.LEARN_ALPHA: True, c.MAX_GRAD_NORM: 1e10, c.NUM_GRADIENT_UPDATES: 1, c.NUM_PREFETCH: 1, c.REWARD_SCALING: 1., c.STEPS_BETWEEN_UPDATE: 1, c.TARGET_ENTROPY: -action_dim, c.TARGET_UPDATE_INTERVAL: 5000, c.TAU: 1., c.UPDATE_NUM: 0, # Progress Tracking c.CUM_EPISODE_LENGTHS: [0], c.CURR_EPISODE: 1, c.NUM_UPDATES: 0, c.RETURNS: [], # Save c.SAVE_PATH: f"../results/pybullet/hopper/gt-sac-fr-lstm-reg_q_targ/{seed}", # c.SAVE_PATH: None, # train parameters c.MAX_TOTAL_STEPS: max_total_steps, c.TRAIN_RENDER: False, } train_sac(experiment_config=experiment_setting)
[ "torch.device" ]
1.5.1
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
1.5
import numpy as np import torch import rl_sandbox.constants as c import rl_sandbox.transforms.general_transforms as gt from rl_sandbox.agents.random_agents import UniformContinuousAgent from rl_sandbox.buffers.wrappers.torch_buffer import TorchBuffer from rl_sandbox.envs.wrappers.absorbing_state import AbsorbingStateWrapper from rl_sandbox.envs.wrappers.action_repeat import ActionRepeatWrapper from rl_sandbox.envs.wrappers.frame_stack import FrameStackWrapper from rl_sandbox.train.train_dac_sac import train_dac_sac from rl_sandbox.model_architectures.actor_critics.fully_connected_soft_actor_critic import FullyConnectedSeparate, FullyConnectedSquashedGaussianSAC from rl_sandbox.model_architectures.discriminators.fully_connected_discriminators import ActionConditionedFullyConnectedDiscriminator from rl_sandbox.model_architectures.layers_definition import VALUE_BASED_LINEAR_LAYERS, SAC_DISCRIMINATOR_LINEAR_LAYERS seed = 1 obs_dim = 12 action_dim = 3 min_action = -np.ones(action_dim) max_action = np.ones(action_dim) device = torch.device("cuda:0") # device = torch.device(c.CPU) action_repeat = 1 num_frames = 1 memory_size = max_total_steps = 1000000 // action_repeat experiment_setting = { # Auxiliary Tasks c.AUXILIARY_TASKS: {}, # Buffer c.BUFFER_PREPROCESSING: gt.AsType(), c.BUFFER_SETTING: { c.KWARGS: { c.MEMORY_SIZE: memory_size, c.OBS_DIM: (obs_dim,), c.H_STATE_DIM: (1,), c.ACTION_DIM: (action_dim,), c.REWARD_DIM: (1,), c.INFOS: {c.MEAN: ((action_dim,), np.float32), c.VARIANCE: ((action_dim,), np.float32), c.ENTROPY: ((action_dim,), np.float32), c.LOG_PROB: ((1,), np.float32), c.VALUE: ((1,), np.float32), c.DISCOUNTING: ((1,), np.float32)}, c.CHECKPOINT_INTERVAL: 0, c.CHECKPOINT_PATH: None, }, c.STORAGE_TYPE: c.RAM, c.STORE_NEXT_OBSERVATION: True, c.BUFFER_WRAPPERS: [ { c.WRAPPER: TorchBuffer, c.KWARGS: {}, }, ], }, # Environment c.ACTION_DIM: action_dim, c.CLIP_ACTION: True, c.ENV_SETTING: { c.ENV_BASE: { c.ENV_NAME: "Hopper-v2" }, c.ENV_TYPE: c.GYM, c.ENV_WRAPPERS: [ { c.WRAPPER: AbsorbingStateWrapper, c.KWARGS: { c.CREATE_ABSORBING_STATE: True, c.MAX_EPISODE_LENGTH: 1000, } }, { c.WRAPPER: ActionRepeatWrapper, c.KWARGS: { c.ACTION_REPEAT: action_repeat, c.DISCOUNT_FACTOR: 1., c.ENABLE_DISCOUNTING: False, } }, { c.WRAPPER: FrameStackWrapper, c.KWARGS: { c.NUM_FRAMES: num_frames, } } ] }, c.MIN_ACTION: min_action, c.MAX_ACTION: max_action, c.OBS_DIM: obs_dim, # Evaluation c.EVALUATION_FREQUENCY: 5000, c.EVALUATION_RENDER: False, c.EVALUATION_RETURNS: [], c.NUM_EVALUATION_EPISODES: 10, # Exploration c.EXPLORATION_STEPS: 1000, c.EXPLORATION_STRATEGY: UniformContinuousAgent(min_action, max_action, np.random.RandomState(seed)), # General c.DEVICE: device, c.SEED: seed, # Load c.LOAD_MODEL: False, # Logging c.PRINT_INTERVAL: 5000, c.SAVE_INTERVAL: 500000, # Model c.MODEL_SETTING: { c.MODEL_ARCHITECTURE: FullyConnectedSeparate, c.KWARGS: { c.OBS_DIM: obs_dim, c.ACTION_DIM: action_dim, c.SHARED_LAYERS: VALUE_BASED_LINEAR_LAYERS(in_dim=obs_dim), c.INITIAL_ALPHA: 1., c.DEVICE: device, c.NORMALIZE_OBS: False, c.NORMALIZE_VALUE: False, }, }, c.OPTIMIZER_SETTING: { c.POLICY: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 1e-5, }, }, c.QS: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 1e-3, }, }, c.ALPHA: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 1e-3, }, }, c.DISCRIMINATOR: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 1e-3, }, }, }, # DAC c.EXPERT_BUFFER: "./expert_buffers/mujoco/hopper-v2/gt-sac-separate-fix.pkl", c.DISCRIMINATOR_SETTING: { c.MODEL_ARCHITECTURE: ActionConditionedFullyConnectedDiscriminator, c.KWARGS: { c.OBS_DIM: obs_dim, c.ACTION_DIM: action_dim, c.OUTPUT_DIM: 1, c.LAYERS: SAC_DISCRIMINATOR_LINEAR_LAYERS(in_dim=obs_dim + action_dim), c.DEVICE: device, } }, c.DISCRIMINATOR_BATCH_SIZE: 256, c.GRADIENT_PENALTY_LAMBDA: 10., # SAC c.ACCUM_NUM_GRAD: 1, c.BATCH_SIZE: 256, c.BUFFER_WARMUP: 1000, c.EVALUATION_PREPROCESSING: gt.Identity(), c.GAMMA: 0.99, c.LEARN_ALPHA: True, c.MAX_GRAD_NORM: 10, c.NUM_GRADIENT_UPDATES: 1, c.NUM_PREFETCH: 1, c.REWARD_SCALING: 1., c.STEPS_BETWEEN_UPDATE: 1, c.TARGET_ENTROPY: -3., c.TARGET_UPDATE_INTERVAL: 1, c.TAU: 0.005, c.TRAIN_PREPROCESSING: gt.Identity(), c.UPDATE_NUM: 0, # Progress Tracking c.CUM_EPISODE_LENGTHS: [0], c.CURR_EPISODE: 1, c.NUM_UPDATES: 0, c.RETURNS: [], # Save c.SAVE_PATH: "./results/hopper-v2/dac/gt-sac-separate-next_obs", # c.SAVE_PATH: None, # train parameters c.MAX_TOTAL_STEPS: max_total_steps, c.TRAIN_RENDER: False, } train_dac_sac(experiment_config=experiment_setting)
[ "torch.device" ]
1.5.1
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
1.3
import os import torch def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) # first position is score; second position is pred. pred = pred.t() # .t() is T of matrix (256 * 1) -> (1 * 256) correct = pred.eq(target.view(1, -1).expand_as(pred)) # target.view(1,2,2,-1): (256,) -> (1, 2, 2, 64) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def adjust_learning_rate(optimizer, epoch, learning_rate, end_epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" if epoch in [round(end_epoch * 0.333), round(end_epoch * 0.666)]: for param_group in optimizer.param_groups: param_group['lr'] *= 0.2 learning_rate = learning_rate* 0.2 print('Adjust_learning_rate ' + str(epoch)) print('New_LearningRate: {}'.format(learning_rate)) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def save_checkpoint(state, at_type=''): if not os.path.exists('./model'): os.makedirs('./model') epoch = state['epoch'] save_dir = './model/'+at_type+'_' + str(epoch) + '_' + str(round(float(state['prec1']), 4)) torch.save(state, save_dir) print(save_dir)
[ "torch.save" ]
1.3.0
bryant1410/Emotion-FAN
8a4ea4f0eacced38e8f4c50ad37515e84c781ab8
1.2
import math from collections import Counter from pathlib import Path from typing import List, Dict, Any, Tuple import torch import tqdm from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.tensorboard import SummaryWriter from dp.model.model import Model from dp.model.utils import _trim_util_stop from dp.preprocessing.text import Preprocessor from dp.training.dataset import new_dataloader from dp.training.decorators import ignore_exception from dp.training.losses import CrossEntropyLoss, CTCLoss from dp.training.evaluation import evaluate_samples from dp.utils.io import to_device, unpickle_binary class Trainer: """ Performs model training. """ def __init__(self, checkpoint_dir: Path, loss_type='ctc') -> None: """ Initializes a Trainer object. Args: checkpoint_dir (Path): Directory to store the model checkpoints. loss_type (str): Type of loss: 'ctc' for forward transformer models and 'cross_entropy' for autoregressive models. """ self.checkpoint_dir = checkpoint_dir self.checkpoint_dir.mkdir(parents=True, exist_ok=True) self.writer = SummaryWriter(log_dir=str(self.checkpoint_dir / 'logs')) self.loss_type = loss_type if loss_type == 'ctc': self.criterion = CTCLoss() elif loss_type == 'cross_entropy': self.criterion = CrossEntropyLoss() else: raise ValueError(f'Loss not supported: {loss_type}') def train(self, model: Model, checkpoint: Dict[str, Any], store_phoneme_dict_in_model: bool = True) -> None: """ Performs training of a transformer model. Args: model (Model): Model to be trained (can be a fresh model or restored from a checkpoint). checkpoint (Dict[str, Any]): Dictionary with entries 'optimizer': optimizer state dict, 'preprocessor': Preprocessor and 'config': Dict. store_phoneme_dict_in_model (bool): Whether to store a dictionary of word-phoneme mappings in the model checkpoint so that it can be automatically loaded by a Phonemizer object. Returns: None: the checkpoints will be stored in a folder provided when instantiating a Trainer. """ config = checkpoint['config'] data_dir = Path(config['paths']['data_dir']) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = model.to(device) model.train() criterion = self.criterion.to(device) optimizer = Adam(model.parameters()) if 'optimizer' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) for g in optimizer.param_groups: g['lr'] = config['training']['learning_rate'] train_loader = new_dataloader(dataset_file=data_dir / 'train_dataset.pkl', drop_last=True, batch_size=config['training']['batch_size']) val_loader = new_dataloader(dataset_file=data_dir / 'val_dataset.pkl', drop_last=False, batch_size=config['training']['batch_size_val']) if store_phoneme_dict_in_model: phoneme_dict = unpickle_binary(data_dir / 'phoneme_dict.pkl') checkpoint['phoneme_dict'] = phoneme_dict val_batches = sorted([b for b in val_loader], key=lambda x: -x['text_len'][0]) scheduler = ReduceLROnPlateau(optimizer, factor=config['training']['scheduler_plateau_factor'], patience=config['training']['scheduler_plateau_patience'], mode='min') losses = [] best_per = math.inf if 'step' not in checkpoint: checkpoint['step'] = 0 start_epoch = checkpoint['step'] // len(train_loader) for epoch in range(start_epoch + 1, config['training']['epochs'] + 1): pbar = tqdm.tqdm(enumerate(train_loader, 1), total=len(train_loader)) for i, batch in pbar: checkpoint['step'] += 1 step = checkpoint['step'] self._set_warmup_lr(optimizer=optimizer, step=step, config=config) batch = to_device(batch, device) avg_loss = sum(losses) / len(losses) if len(losses) > 0 else math.inf pbar.set_description(desc=f'Epoch: {epoch} | Step {step} ' f'| Loss: {avg_loss:#.4}', refresh=True) pred = model(batch) loss = criterion(pred, batch) if not (torch.isnan(loss) or torch.isinf(loss)): optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() losses.append(loss.item()) self.writer.add_scalar('Loss/train', loss.item(), global_step=step) self.writer.add_scalar('Params/batch_size', config['training']['batch_size'], global_step=step) self.writer.add_scalar('Params/learning_rate', [g['lr'] for g in optimizer.param_groups][0], global_step=step) if step % config['training']['validate_steps'] == 0: val_loss = self._validate(model, val_batches) self.writer.add_scalar('Loss/val', val_loss, global_step=step) if step % config['training']['generate_steps'] == 0: lang_samples = self._generate_samples(model=model, preprocessor=checkpoint['preprocessor'], val_batches=val_batches) eval_result = evaluate_samples(lang_samples=lang_samples) self._write_summaries(lang_samples=lang_samples, eval_result=eval_result, n_generate_samples=config['training']['n_generate_samples'], step=step) if eval_result['mean_per'] is not None and eval_result['mean_per'] < best_per: self._save_model(model=model, optimizer=optimizer, checkpoint=checkpoint, path=self.checkpoint_dir / f'best_model.pt') self._save_model(model=model, optimizer=None, checkpoint=checkpoint, path=self.checkpoint_dir / f'best_model_no_optim.pt') scheduler.step(eval_result['mean_per']) if step % config['training']['checkpoint_steps'] == 0: step = step // 1000 self._save_model(model=model, optimizer=optimizer, checkpoint=checkpoint, path=self.checkpoint_dir / f'model_step_{step}k.pt') losses = [] self._save_model(model=model, optimizer=optimizer, checkpoint=checkpoint, path=self.checkpoint_dir / 'latest_model.pt') def _validate(self, model: Model, val_batches: List[dict]) -> float: device = next(model.parameters()).device criterion = self.criterion.to(device) model.eval() val_losses = [] for batch in val_batches: batch = to_device(batch, device) with torch.no_grad(): pred = model(batch) loss = criterion(pred, batch) if not (torch.isnan(loss) or torch.isinf(loss)): val_losses.append(loss.item()) model.train() return sum(val_losses) / len(val_losses) @ignore_exception def _generate_samples(self, model: Model, preprocessor: Preprocessor, val_batches: List[dict]) -> Dict[str, List[Tuple[List[str], List[str], List[str]]]]: """ Returns a dictionary with entries lang: Tuple of (word, generated, target) """ device = next(model.parameters()).device model.eval() text_tokenizer = preprocessor.text_tokenizer phoneme_tokenizer = preprocessor.phoneme_tokenizer lang_tokenizer = preprocessor.lang_tokenizer lang_prediction_result = dict() for batch in val_batches: batch = to_device(batch, device) generated_batch, _ = model.generate(batch) for i in range(batch['text'].size(0)): text_len = batch['text_len'][i] text = batch['text'][i, :text_len] target = batch['phonemes'][i, :] lang = batch['language'][i] lang = lang_tokenizer.decode(lang.detach().cpu().item()) generated = generated_batch[i, :].cpu() generated = _trim_util_stop(generated, phoneme_tokenizer.end_index) text, target = text.detach().cpu(), target.detach().cpu() text = text_tokenizer.decode(text, remove_special_tokens=True) generated = phoneme_tokenizer.decode(generated, remove_special_tokens=True) target = phoneme_tokenizer.decode(target, remove_special_tokens=True) lang_prediction_result[lang] = lang_prediction_result.get(lang, []) + [(text, generated, target)] model.train() return lang_prediction_result @ignore_exception def _write_summaries(self, lang_samples: Dict[str, List[Tuple[List[str], List[str], List[str]]]], eval_result: Dict[str, Any], n_generate_samples: int, step: int) -> None: self.writer.add_scalar(f'Phoneme_Error_Rate/mean', eval_result['mean_per'], global_step=step) self.writer.add_scalar(f'Word_Error_Rate/mean', eval_result['mean_wer'], global_step=step) for lang in lang_samples.keys(): result = eval_result[lang] self.writer.add_scalar(f'Phoneme_Error_Rate/{lang}', result['per'], global_step=step) self.writer.add_scalar(f'Word_Error_Rate/{lang}', result['wer'], global_step=step) for lang, samples in lang_samples.items(): samples = [(''.join(w), ''.join(p), ''.join(t)) for w, p, t in samples] word_counts = Counter([word for word, _, _ in samples]) samples_dedup = [(w, p, t) for w, p, t in samples if word_counts[w] == 1] log_texts = dict() for word, pred, target in samples_dedup: log_texts[word] = f' {word:<30} {pred:<30} {target:<30}' log_text_items = sorted(log_texts.items(), key=lambda x: -len(x[0])) log_text_list = [v for k, v in log_text_items] log_text = '\n'.join(log_text_list[:n_generate_samples]) self.writer.add_text(f'{lang}/text_prediction_target', log_text, global_step=step) def _save_model(self, model: torch.nn.Module, optimizer: torch.optim, checkpoint: Dict[str, Any], path: Path) -> None: checkpoint['model'] = model.state_dict() if optimizer is not None: checkpoint['optimizer'] = optimizer.state_dict() else: checkpoint['optimizer'] = None torch.save(checkpoint, str(path)) def _set_warmup_lr(self, optimizer: torch.optim, step: int, config: Dict[str, Any]) -> None: warmup_steps = config['training']['warmup_steps'] if warmup_steps > 0 and step <= warmup_steps: warmup_factor = 1.0 - max(warmup_steps - step, 0) / warmup_steps for g in optimizer.param_groups: g['lr'] = config['training']['learning_rate'] * warmup_factor
[ "torch.device", "torch.isnan", "torch.no_grad", "torch.cuda.is_available", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.isinf" ]
1.2.0
ishine/DeepPhonemizer
b8f170764c7648fe2acb552b787099ab4f941e58
0.4
import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch cuda = True if torch.cuda.is_available() else False Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor class Topo_Generator(nn.Module): def __init__(self, latent_dim, img_size, channels, subscripted_views): super(Generator, self).__init__() self.latent_dim = latent_dim self.img_size = img_size self.channels = channels self.subscripted_views = subscripted_views self.transform = UpperDiagonalThresholdedLogTransform(0.1) def get_init(num_elements): transform = UpperDiagonalThresholdedLogTransform(0.1) return transform(pers_dgm_center_init(num_elements)) # self.model = nn.Sequential( # nn.Linear(self.latent_dim, 128), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(128, 256), # nn.BatchNorm1d(256), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(256, 512), # nn.BatchNorm1d(512), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(512, 1024), # nn.BatchNorm1d(1024), # nn.LeakyReLU(0.2, inplace=True), # nn.Linear(1024, self.img_size**2), # nn.Tanh() # ) def get_init(n_elements): transform = UpperDiagonalThresholdedLogTransform(0.1) return transform(pers_dgm_center_init(n_elements)) self.dim_0 = SLayer(150, 2, get_init(150), torch.ones(150, 2) * 3) self.dim_0_ess = SLayer(50, 1) self.dim_1_ess = SLayer(50, 1) self.slayers = [self.dim_0, self.dim_0_ess, self.dim_1_ess ] self.stage_1 = [] stage_1_outs = [75, 25, 25] for i, (n_in, n_out) in enumerate(zip([150, 50, 50], stage_1_outs)): seq = nn.Sequential() seq.add_module('linear_1', nn.Linear(n_in, n_out)) seq.add_module('batch_norm', nn.BatchNorm1d(n_out)) seq.add_module('drop_out_1', nn.Dropout(0.1)) seq.add_module('linear_2', nn.Linear(n_out, n_out)) seq.add_module('relu', nn.ReLU()) seq.add_module('drop_out_2', nn.Dropout(0.1)) self.stage_1.append(seq) self.add_module('stage_1_{}'.format(i), seq) linear_1 = nn.Sequential() linear_1.add_module('linear_1', nn.Linear(sum(stage_1_outs), 200)) linear_1.add_module('batchnorm_1', torch.nn.BatchNorm1d(200)) linear_1.add_module('relu_1', nn.ReLU()) linear_1.add_module('linear_2', nn.Linear(200, 100)) linear_1.add_module('batchnorm_2', torch.nn.BatchNorm1d(100)) linear_1.add_module('drop_out_2', torch.nn.Dropout(0.1)) linear_1.add_module('relu_2', nn.ReLU()) linear_1.add_module('linear_3', nn.Linear(100, 50)) linear_1.add_module('batchnorm_3', nn.BatchNorm1d(50)) linear_1.add_module('relu_3', nn.ReLU()) linear_1.add_module('linear_4', nn.Linear(50, 5)) linear_1.add_module('batchnorm_4', nn.BatchNorm1d(5)) self.linear_1 = linear_1 def forward(self, noise): # import pdb; # img = self.model(noise) # # pdb.set_trace(im) # img = img.view(img.size()[0], self.channels, self.img_size, self.img_size) # # return img x = [batch[n] for n in self.subscripted_views] x = [ [self.transform(dgm) for dgm in x[0]], [reduce_essential_dgm(dgm) for dgm in x[1]], [reduce_essential_dgm(dgm) for dgm in x[2]] ] x_sl = [l(xx) for l, xx in zip(self.slayers, x)] x = [l(xx) for l, xx in zip(self.stage_1, x_sl)] x = torch.cat(x, 1) x = self.linear_1(x) return x class Discriminator(nn.Module): def __init__(self, img_size, latent_dim): super(Discriminator, self).__init__() self.img_size = img_size self.latent_dim = latent_dim self.model = nn.Sequential( nn.Linear(self.img_size**2 + self.latent_dim, 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, img, latent_vector): img_flat = img.view(img.size()[0], -1) validity = self.model(torch.cat([img_flat, latent_vector],1)) return validity class Topo_Decoder(nn.Module): def __init__(self, img_size, latent_dim): super(Decoder, self).__init__() self.img_size = img_size self.latent_dim = latent_dim self.model = nn.Sequential( nn.Linear(self.img_size**2, 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, self.latent_dim), nn.Sigmoid() ) def forward(self, img): # import pdb; pdb.set_trace() img_flat = img.view(img.size()[0], -1) validity = self.model(img_flat) #64x784 return validity def train_discriminator(discriminator, imgs, latent_vector): # imgs = imgs.view(imgs.size()[0], -1) # vector = torch.cat([imgs, latent_vector], 1) # return discriminator(vector) return discriminator(imgs, latent_vector) def get_loss_discriminator(discriminator, fake_imgs, z, real_imgs, fake_z): adversarial_loss = nn.BCELoss() # minibatch_size = discriminator_real.size()[0] minibatch_size = real_imgs.size()[0] valid = Variable(Tensor(minibatch_size, 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(minibatch_size, 1).fill_(0.0), requires_grad=False) real_loss = adversarial_loss(train_discriminator(discriminator, real_imgs, fake_z), valid) fake_loss = adversarial_loss(train_discriminator(discriminator, fake_imgs.detach(), z), fake) return (real_loss + fake_loss) / 2 def get_loss_generator(discriminator, fake_imgs, z, real_imgs, fake_z): objection = nn.BCELoss() minibatch_size = fake_imgs.size()[0] # minibatch_size = self.batch_size valid = Variable(Tensor(minibatch_size, 1).fill_(1.0), requires_grad=False) valid_prediction = train_discriminator(discriminator, fake_imgs, z) # import pdb; pdb.set_trace() return objection(valid_prediction, valid) def get_loss_wasserstein_discriminator(discriminator, fake_imgs, z, real_imgs, fake_z): real_validity = discriminator(real_imgs, fake_z) fake_validity = discriminator(fake_imgs, z) return real_validity - fake_validity def get_loss_wasserstein_generator(discriminator, fake_imgs, z, real_imgs, fake_z): return torch.mean(discriminator(fake_imgs, z))
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.nn.Sigmoid", "torch.nn.Sequential", "torch.nn.LeakyReLU", "torch.ones", "torch.nn.ReLU", "torch.cuda.is_available", "torch.nn.BatchNorm1d", "torch.nn.BCELoss" ]
0.4.0
EmmaNguyen/feature_adversarial_with_topology_signatures
efa7db6d0fdf5b2505d67d4341dcdb2ab05a97a7
1.0
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Run inference for pre-processed data with a trained model. """ import logging import math import os import sys import editdistance import numpy as np import torch from fairseq import checkpoint_utils, options, progress_bar, tasks, utils from fairseq.data.data_utils import post_process from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging.meters import StopwatchMeter, TimeMeter logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def add_asr_eval_argument(parser): parser.add_argument("--kspmodel", default=None, help="sentence piece model") parser.add_argument( "--wfstlm", default=None, help="wfstlm on dictonary output units" ) parser.add_argument( "--rnnt_decoding_type", default="greedy", help="wfstlm on dictonary\ output units", ) try: parser.add_argument( "--lm-weight", type=float, default=0.2, help="weight for lm while interpolating with neural score", ) except: pass parser.add_argument( "--len-penalty", type=float, default=1.0, help="length penalty on word level" ) parser.add_argument( "--w2l-decoder", # choices=["viterbi", "kenlm", "fairseqlm"], help="use a w2l decoder", ) parser.add_argument("--lexicon", help="lexicon for w2l decoder") parser.add_argument("--unit-lm", action="store_true", help="if using a unit lm") parser.add_argument("--kenlm-model", "--lm-model", help="lm model for w2l decoder") parser.add_argument("--beam-threshold", type=float, default=25.0) parser.add_argument("--beam-size-token", type=float, default=100) parser.add_argument("--word-score", type=float, default=1.0) parser.add_argument("--unk-weight", type=float, default=-math.inf) parser.add_argument("--sil-weight", type=float, default=0.0) parser.add_argument( "--dump-emissions", type=str, default=None, help="if present, dumps emissions into this file and exits", ) parser.add_argument( "--dump-features", type=str, default=None, help="if present, dumps features into this file and exits", ) parser.add_argument( "--load-emissions", type=str, default=None, help="if present, loads emissions from this file", ) parser.add_argument( "--eval-temperature", type=float, default=1.0, help="temperature scaling of the logits", ) parser.add_argument( "--eval-upsample", type=float, default=1.0, help="upsample factor", ) return parser def check_args(args): # assert args.path is not None, "--path required for generation!" # assert args.results_path is not None, "--results_path required for generation!" assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.raw_text ), "--replace-unk requires a raw text dataset (--raw-text)" def get_dataset_itr(args, task, models): return task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.batch_size, max_positions=(sys.maxsize, sys.maxsize), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, data_buffer_size=args.data_buffer_size, ).next_epoch_itr(shuffle=False) def process_predictions( args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id ): for hypo in hypos[: min(len(hypos), args.nbest)]: hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu()) if "words" in hypo: hyp_words = " ".join(hypo["words"]) else: hyp_words = post_process(hyp_pieces, args.post_process) if res_files is not None: print( "{} ({}-{})".format(hyp_pieces, speaker, id), file=res_files["hypo.units"], ) print( "{} ({}-{})".format(hyp_words, speaker, id), file=res_files["hypo.words"], ) tgt_pieces = tgt_dict.string(target_tokens) tgt_words = post_process(tgt_pieces, args.post_process) if res_files is not None: print( "{} ({}-{})".format(tgt_pieces, speaker, id), file=res_files["ref.units"], ) print( "{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"] ) # only score top hypothesis if not args.quiet: logger.debug("HYPO:" + hyp_words) logger.debug("TARGET:" + tgt_words) logger.debug("___________________") hyp_words = hyp_words.split() tgt_words = tgt_words.split() return editdistance.eval(hyp_words, tgt_words), len(tgt_words) def prepare_result_files(args): def get_res_file(file_prefix): if args.num_shards > 1: file_prefix = f"{args.shard_id}_{file_prefix}" path = os.path.join( args.results_path, "{}-{}-{}.txt".format( file_prefix, os.path.basename(args.path), args.gen_subset ), ) return open(path, "w", buffering=1) if not args.results_path: return None return { "hypo.words": get_res_file("hypo.word"), "hypo.units": get_res_file("hypo.units"), "ref.words": get_res_file("ref.word"), "ref.units": get_res_file("ref.units"), } def load_models_and_criterions( filenames, data_path, arg_overrides=None, task=None, model_state=None ): models = [] criterions = [] if arg_overrides is None: arg_overrides = {} arg_overrides["wer_args"] = None arg_overrides["data"] = data_path if filenames is None: assert model_state is not None filenames = [0] else: filenames = filenames.split(":") for filename in filenames: if model_state is None: if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = checkpoint_utils.load_checkpoint_to_cpu(filename, arg_overrides) else: state = model_state if "cfg" in state: cfg = state["cfg"] else: cfg = convert_namespace_to_omegaconf(state["args"]) if task is None: if hasattr(cfg.task, "data"): cfg.task.data = data_path task = tasks.setup_task(cfg.task) model = task.build_model(cfg.model) model.load_state_dict(state["model"], strict=True) models.append(model) criterion = task.build_criterion(cfg.criterion) if state.get("criterion", None) is not None: criterion.load_state_dict(state["criterion"], strict=True) criterions.append(criterion) return models, criterions, task def optimize_models(args, use_cuda, models): """Optimize ensemble for generation""" for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() class ExistingEmissionsDecoder(object): def __init__(self, decoder, emissions): self.decoder = decoder self.emissions = emissions def generate(self, models, sample, **unused): ids = sample["id"].cpu().numpy() try: emissions = np.stack(self.emissions[ids]) except: print([x.shape for x in self.emissions[ids]]) raise Exception("invalid sizes") emissions = torch.from_numpy(emissions) return self.decoder.decode(emissions) def get_num_param(model): return sum([p.numel() for p in model.parameters()]) def main(args, task=None, model_state=None): check_args(args) if args.max_tokens is None and args.batch_size is None: args.max_tokens = 4000000 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu logger.info("| decoding with criterion {}".format(args.criterion)) # Load ensemble if args.load_emissions: models, criterions = [], [] task = tasks.setup_task(args) else: # task = tasks.setup_task(args) logger.info("| loading model(s) from {}".format(args.path)) models, criterions, task = load_models_and_criterions( args.path, data_path=args.data, arg_overrides=eval(args.model_overrides), # noqa # task=task, model_state=model_state, ) optimize_models(args, use_cuda, models) for i, model in enumerate(models): logger.info(f"| model {i} size: {get_num_param(model)}") for name, m in model.named_children(): logger.info(f"| | model {i} {name} size: {get_num_param(m)}") for name2, m2 in m.named_children(): logger.info( f"| | | model {i} {name}.{name2} size: {get_num_param(m2)}" ) for name3, m3 in m2.named_children(): logger.info( f"| | | | model {i} {name}.{name2}.{name3} size: {get_num_param(m3)}" ) # Load dataset splits task.load_dataset(args.gen_subset) # Set dictionary tgt_dict = task.target_dictionary logger.info( "| {} {} {} examples".format( args.data, args.gen_subset, len(task.dataset(args.gen_subset)) ) ) # hack to pass transitions to W2lDecoder if args.criterion == "asg_loss": trans = criterions[0].asg.trans.data args.asg_transitions = torch.flatten(trans).tolist() # Load dataset (possibly sharded) itr = get_dataset_itr(args, task, models) # Initialize generator gen_timer = StopwatchMeter() def build_generator(args): w2l_decoder = getattr(args, "w2l_decoder", None) if w2l_decoder == "viterbi": # from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder from slue_toolkit.fairseq_addon.decoder.w2l_decoder_old import ( W2lViterbiDecoder, ) return W2lViterbiDecoder(args, task.target_dictionary) elif w2l_decoder == "kenlm": # from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder from slue_toolkit.fairseq_addon.decoder.w2l_decoder_old import ( W2lKenLMDecoder, ) return W2lKenLMDecoder(args, task.target_dictionary) elif w2l_decoder == "fairseqlm": from slue_toolkit.fairseq_addon.decoder.w2l_decoder_old import ( W2lFairseqLMDecoder, ) return W2lFairseqLMDecoder(args, task.target_dictionary) elif w2l_decoder == "argmax": from slue_toolkit.fairseq_addon.decoder.ctc_decoder import CTCArgMaxDecoder return CTCArgMaxDecoder(args, task.target_dictionary) elif w2l_decoder == "s2s": from fairseq.dataclass.configs import GenerationConfig gen_cfg = GenerationConfig(beam=args.beam) if args.kenlm_model: overrides = dict() lms, _ = checkpoint_utils.load_model_ensemble( [args.kenlm_model], arg_overrides=overrides, task=None ) lms[0].eval() optimize_models(args, use_cuda, lms) extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": args.lm_weight} generator = task.build_generator( [model], gen_cfg, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) print(f"lm model: {generator.lm_model}") else: generator = task.build_generator([model], gen_cfg) return generator else: print( "only wav2letter decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment" ) # please do not touch this unless you test both generate.py and infer.py with audio_pretraining task generator = build_generator(args) if args.load_emissions: generator = ExistingEmissionsDecoder( generator, np.load(args.load_emissions, allow_pickle=True) ) logger.info("loaded emissions from " + args.load_emissions) num_sentences = 0 if args.results_path is not None and not os.path.exists(args.results_path): os.makedirs(args.results_path) max_source_pos = ( utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ) if max_source_pos is not None: max_source_pos = max_source_pos[0] if max_source_pos is not None: max_source_pos = max_source_pos[0] - 1 if args.dump_emissions: emissions = {} if args.dump_features: features = {} models[0].bert.proj = None else: res_files = prepare_result_files(args) errs_t = 0 lengths_t = 0 with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() full_timer = StopwatchMeter() full_timer.start() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample def apply_half(t): if t.dtype is torch.float32: return t.half() return t if args.fp16: sample = utils.apply_to_sample(apply_half, sample) if "net_input" not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample["target"][:, : args.prefix_size] gen_timer.start() if args.dump_emissions: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) emm = models[0].get_normalized_probs(encoder_out, log_probs=True) emm = emm.transpose(0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): emissions[id.item()] = emm[i] continue elif args.dump_features: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) feat = encoder_out["encoder_out"].transpose(0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): padding = ( encoder_out["encoder_padding_mask"][i].cpu().numpy() if encoder_out["encoder_padding_mask"] is not None else None ) features[id.item()] = (feat[i], padding) continue hypos = task.inference_step(generator, models, sample, prefix_tokens) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"].tolist()): speaker = None # id = task.dataset(args.gen_subset).ids[int(sample_id)] id = sample_id toks = ( sample["target"][i, :] if "target_label" not in sample else sample["target_label"][i, :] ) target_tokens = utils.strip_pad(toks, tgt_dict.pad()).int().cpu() # Process top predictions errs, length = process_predictions( args, hypos[i], None, tgt_dict, target_tokens, res_files, speaker, id, ) errs_t += errs lengths_t += length wps_meter.update(num_generated_tokens) t.log({"wps": round(wps_meter.avg)}) num_sentences += ( sample["nsentences"] if "nsentences" in sample else sample["id"].numel() ) full_timer.stop() wer = None if args.dump_emissions: emm_arr = [] for i in range(len(emissions)): emm_arr.append(emissions[i]) np.save(args.dump_emissions, np.array(emm_arr, dtype="object")) logger.info(f"saved {len(emissions)} emissions to {args.dump_emissions}") elif args.dump_features: feat_arr = [] for i in range(len(features)): feat_arr.append(features[i]) np.save(args.dump_features, np.array(feat_arr, dtype="object")) logger.info(f"saved {len(features)} emissions to {args.dump_features}") else: if lengths_t > 0: wer = errs_t * 100.0 / lengths_t logger.info(f"WER: {wer}") logger.info(f"full time used: {full_timer.sum}") logger.info(f"time used: {gen_timer.sum}") logger.info( "| Processed {} sentences ({} tokens) in {:.2f} s ({:.2f}" " sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1.0 / gen_timer.avg, ) ) logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam)) # write the WER info into file in case it's called by infer_multiprocess if args.results_path is not None and not os.path.exists(args.results_path): with open(os.path.join(args.results_path, "wer"), "w") as fw_wer: fw_wer.write(f"{errs_t} {lengths_t}") return task, wer def make_parser(): parser = options.get_generation_parser() parser = add_asr_eval_argument(parser) return parser def cli_main(): parser = make_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
[ "torch.no_grad", "torch.from_numpy", "torch.cuda.is_available", "torch.flatten" ]
1.0.0
siddhu001/slue-toolkit
b8a62ef941a812ce277cf6a4af08d6065af8bec6
1.7
"""This is reservoir sampling, each sample has storage-probability 'buffer samples M / seen samples' """ import torch import torch.nn as nn import torch.optim as optim import random class Net(nn.Module): def __init__(self, n_inputs, n_outputs, n_tasks, args): super(Net, self).__init__() self.net = args.net self.ce = nn.CrossEntropyLoss() self.n_outputs = n_outputs self.opt = optim.SGD(self.parameters(), args.lr) self.n_memories = args.n_memories self.n_sampled_memories = args.n_sampled_memories self.n_constraints = args.n_constraints self.gpu = args.cuda self.batch_size = args.batch_size self.n_iter = args.n_iter # allocate ring buffer self.x_buffer = [] self.y_buffer = [] # allocate counters self.observed_tasks = [] self.old_task = -1 self.seen_cnt = 0 def forward(self, x, t=0): output = self.net(x) return output def observe(self, x, t, y): """ Train. """ # Update ring buffer storing examples from current task bsz = y.data.size(0) # Step over new batch and batch from memory for iter_i in range(self.n_iter): self.zero_grad() x_init = x.clone() y_init = y.clone() if self.gpu: x_init = x_init.cuda() y_init = y_init.cuda() sample_bs = bsz if self.n_memories > 0 and len(self.x_buffer) > 0: # Sample perm = torch.randperm(len(self.x_buffer)) idx = perm[:sample_bs] x_s = torch.stack(self.x_buffer)[idx] y_s = torch.stack(self.y_buffer)[idx] x_s, y_s = (x_s.cuda(), y_s.cuda()) if self.gpu else (x_s.cpu(), y_s.cpu()) x_ext = torch.cat([x_init, x_s]) y_ext = torch.cat([y_init, y_s]) else: x_ext = x_init y_ext = y_init loss = self.ce(self.forward(x_ext), y_ext) loss.backward() self.opt.step() # Update buffers for i in range(bsz): if self.seen_cnt < self.n_memories: self.x_buffer.append(x[i]) self.y_buffer.append(y[i]) else: j = random.randrange(self.seen_cnt) if j < self.n_memories: self.x_buffer[j] = x[i] self.y_buffer[j] = y[i] self.seen_cnt += 1 assert len(self.x_buffer) <= self.n_memories assert len(self.x_buffer) == len(self.y_buffer) def get_hyperparam_list(self, args): return []
[ "torch.cat", "torch.stack", "torch.nn.CrossEntropyLoss" ]
1.7.0
kreimanlab/AugMem
cb0e8d39eb0c469da46c7c550c19229927a2bec5
1.2
import os import gc import time import torch import random import argparse import numpy as np import pandas as pd from glob import glob from tqdm import tqdm from trains import * from config import * from utils.log import * from utils.metricsTop import * from utils.functions import * from models.AMIO import AMIO from trains.ATIO import ATIO from data.load_data import FERDataLoader from sklearn.model_selection import KFold def do_test(args, model, dataloader, mode='test'): model.eval() y_true, y_pred = [], [] metrics = MetricsTop(args).getMetrics(args.metricsName) features = [] with torch.no_grad(): for batch_data in tqdm(dataloader[mode]): data = batch_data['data'].to(args.device) labels = batch_data['labels'].to(args.device) emotions = batch_data['emotions'] # model output = model(data) features.append(output['fer_feature'].cpu().numpy()) y_true.append(labels.cpu().numpy()) features = np.concatenate(features, axis=0) labels = np.concatenate(y_true, axis=0) return features, labels def run(args): if not os.path.exists(args.res_save_path): os.mkdir(args.res_save_path) # get dst dataset params config = Config(args) args = config.get_config() # train_df0 = pd.read_csv(os.path.join(args.label_dir,'train.csv')) # kf = KFold(10,shuffle = False) # for knum, indexs in enumerate(kf.split(train_df0)): # # print(indexs) # args.train_df = train_df0.iloc[indexs[0],:] # args.test_df = train_df0.iloc[indexs[1],:] # break args.train_df = pd.read_csv(os.path.join(args.label_dir,'train.csv')) args.test_df = pd.read_csv(os.path.join(args.label_dir,'test.csv')) # get dataloader dataloader = FERDataLoader(args) # gpu using_cuda = len(args.gpu_ids) > 0 and torch.cuda.is_available() device = torch.device('cuda:%d' % args.gpu_ids[0] if using_cuda else 'cpu') args.device = device # build model model = AMIO(args).to(device) atio = ATIO().getTrain(args) # load best model model_save_pathes = glob(os.path.join(args.model_save_path,\ f'{args.modelName}-{args.datasetName}.pth')) assert len(model_save_pathes) == 1 model.load_state_dict(torch.load(model_save_pathes[0])) # do test mode = 'test' features, labels = do_test(args, model, dataloader, mode=mode) save_path = os.path.join(args.res_save_path, f'{args.modelName}-{args.datasetName}-{mode}.npz') np.savez(save_path, features=features, labels=labels) mode = 'train' features, labels = do_test(args, model, dataloader, mode=mode) save_path = os.path.join(args.res_save_path, f'{args.modelName}-{args.datasetName}-{mode}.npz') np.savez(save_path, features=features, labels=labels) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--tf_mode', type=bool, default=False, help='is transfer test ?') parser.add_argument('--val_mode', type=bool, default=False, help='10 folds cross validation ?') parser.add_argument('--modelName', type=str, default='FER_DCNN', help='support FER_DCNN/Our') parser.add_argument('--datasetName', type=str, default='RAF', help='support RAF/SFEW2/CK+/OULU_CASIA') parser.add_argument('--num_workers', type=int, default=8, help='num workers of loading data') parser.add_argument('--model_save_path', type=str, default='results/bestModels', help='path to save model.') parser.add_argument('--res_save_path', type=str, default='results/Features', help='path to save results.') parser.add_argument('--gpu_ids', type=list, default=[0], help='indicates the gpus will be used.') return parser.parse_args() if __name__ == '__main__': args = parse_args() # args.seeds = [1, 12, 123, 1234, 12345] run(args)
[ "torch.device", "torch.no_grad", "torch.cuda.is_available", "torch.load" ]
1.2.0
thuiar/cmcnn
a18f09fa63baf74bb083779fa0a8881d55226e1a
1.6
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import Sequence from unittest import mock import pytest import torch from torch.utils.data import DataLoader, TensorDataset from torch.utils.data.dataset import Dataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import Sampler, SequentialSampler from pytorch_lightning import Trainer from pytorch_lightning.trainer.supporters import ( _nested_calc_num_data, CombinedDataset, CombinedLoader, CombinedLoaderIterator, CycleIterator, TensorRunningAccum, ) from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.exceptions import MisconfigurationException def test_tensor_running_accum_reset(): """Test that reset would set all attributes to the initialization state.""" window_length = 10 accum = TensorRunningAccum(window_length=window_length) assert accum.last() is None assert accum.mean() is None accum.append(torch.tensor(1.5)) assert accum.last() == torch.tensor(1.5) assert accum.mean() == torch.tensor(1.5) accum.reset() assert accum.window_length == window_length assert accum.memory is None assert accum.current_idx == 0 assert accum.last_idx is None assert not accum.rotated def test_cycle_iterator(): """Test the cycling function of `CycleIterator`""" iterator = CycleIterator(range(100), 1000) assert len(iterator) == 1000 for idx, item in enumerate(iterator): assert item < 100 assert idx == len(iterator) - 1 def test_none_length_cycle_iterator(): """Test the infinite cycling function of `CycleIterator`""" iterator = CycleIterator(range(100)) assert iterator.__len__() == float("inf") # test infinite loop for idx, item in enumerate(iterator): if idx == 1000: break assert item == 0 @pytest.mark.parametrize( ["dataset_1", "dataset_2"], [ ([list(range(10)), list(range(20))]), ([range(10), range(20)]), ([torch.randn(10, 3, 2), torch.randn(20, 5, 6)]), ([TensorDataset(torch.randn(10, 3, 2)), TensorDataset(torch.randn(20, 5, 6))]), ], ) def test_combined_dataset(dataset_1, dataset_2): """Verify the length of the CombinedDataset.""" datasets = [dataset_1, dataset_2] combined_dataset = CombinedDataset(datasets) assert combined_dataset.max_len == 20 assert combined_dataset.min_len == len(combined_dataset) == 10 def test_combined_dataset_length_mode_error(): dset = CombinedDataset([range(10)]) with pytest.raises(MisconfigurationException, match="Invalid Mode"): dset._calc_num_data([range(10)], "test") def test_combined_loader_iterator_dict_min_size(): """Test `CombinedLoaderIterator` given mapping loaders.""" loaders = { "a": torch.utils.data.DataLoader(range(10), batch_size=4), "b": torch.utils.data.DataLoader(range(20), batch_size=5), } combined_iter = CombinedLoaderIterator(loaders) for idx, item in enumerate(combined_iter): assert isinstance(item, dict) assert len(item) == 2 assert "a" in item and "b" in item assert idx == min(len(loaders["a"]), len(loaders["b"])) - 1 def test_combined_loader_init_mode_error(): """Test the ValueError when constructing `CombinedLoader`""" with pytest.raises(MisconfigurationException, match="Invalid Mode"): CombinedLoader([range(10)], "testtt") def test_combined_loader_loader_type_error(): """Test the ValueError when wrapping the loaders.""" with pytest.raises(TypeError, match="Expected data to be int, Sequence or Mapping, but got NoneType"): CombinedLoader(None, "max_size_cycle") def test_combined_loader_calc_length_mode_error(): """Test the ValueError when calculating the number of batches.""" with pytest.raises(TypeError, match="Expected data to be int, Sequence or Mapping, but got NoneType"): CombinedLoader._calc_num_batches(None) def test_combined_loader_dict_min_size(): """Test `CombinedLoader` of mode 'min_size' given mapping loaders.""" loaders = { "a": torch.utils.data.DataLoader(range(10), batch_size=4), "b": torch.utils.data.DataLoader(range(20), batch_size=5), } combined_loader = CombinedLoader(loaders, "min_size") assert len(combined_loader) == min(len(v) for v in loaders.values()) for idx, item in enumerate(combined_loader): assert isinstance(item, dict) assert len(item) == 2 assert "a" in item and "b" in item assert idx == len(combined_loader) - 1 def test_combined_loader_dict_max_size_cycle(): """Test `CombinedLoader` of mode 'max_size_cycle' given mapping loaders.""" loaders = { "a": torch.utils.data.DataLoader(range(10), batch_size=4), "b": torch.utils.data.DataLoader(range(20), batch_size=5), } combined_loader = CombinedLoader(loaders, "max_size_cycle") assert len(combined_loader) == max(len(v) for v in loaders.values()) for idx, item in enumerate(combined_loader): assert isinstance(item, dict) assert len(item) == 2 assert "a" in item and "b" in item assert idx == len(combined_loader) - 1 def test_combined_loader_sequence_min_size(): """Test `CombinedLoader` of mode 'min_size' given sequence loaders.""" loaders = [ torch.utils.data.DataLoader(range(10), batch_size=4), torch.utils.data.DataLoader(range(20), batch_size=5), ] combined_loader = CombinedLoader(loaders, "min_size") assert len(combined_loader) == min(len(v) for v in loaders) for idx, item in enumerate(combined_loader): assert isinstance(item, Sequence) assert len(item) == 2 assert idx == len(combined_loader) - 1 class TestIterableDataset(IterableDataset): def __init__(self, size: int = 10): self.size = size def __iter__(self): self.sampler = SequentialSampler(range(self.size)) self.sampler_iter = iter(self.sampler) return self def __next__(self): return next(self.sampler_iter) @pytest.mark.parametrize("mode", ["min_size", "max_size_cycle"]) @pytest.mark.parametrize("use_multiple_dataloaders", [False, True]) def test_combined_loader_sequence_iterable_dataset(mode, use_multiple_dataloaders): """Test `CombinedLoader` of mode 'min_size' given sequence loaders.""" if use_multiple_dataloaders: loaders = [ torch.utils.data.DataLoader(TestIterableDataset(10), batch_size=2), torch.utils.data.DataLoader(TestIterableDataset(20), batch_size=2), ] else: loaders = [ torch.utils.data.DataLoader(TestIterableDataset(10), batch_size=2), ] combined_loader = CombinedLoader(loaders, mode) has_break = False for idx, item in enumerate(combined_loader): assert isinstance(item, Sequence) assert len(item) == 2 if use_multiple_dataloaders else 1 if not use_multiple_dataloaders and idx == 4: has_break = True break if mode == "max_size_cycle": assert combined_loader.loaders[0].state.done == (not has_break) expected = (10 if mode == "max_size_cycle" else 5) if use_multiple_dataloaders else 5 assert (expected - 1) == idx, (mode, use_multiple_dataloaders) @pytest.mark.parametrize("lengths", [[4, 6], [5, 5], [6, 4]]) def test_combined_loader_sequence_with_map_and_iterable(lengths): class MyIterableDataset(IterableDataset): def __init__(self, size: int = 10): self.size = size def __iter__(self): self.sampler = SequentialSampler(range(self.size)) self.iter_sampler = iter(self.sampler) return self def __next__(self): return next(self.iter_sampler) class MyMapDataset(Dataset): def __init__(self, size: int = 10): self.size = size def __getitem__(self, index): return index def __len__(self): return self.size x, y = lengths loaders = [DataLoader(MyIterableDataset(x)), DataLoader(MyMapDataset(y))] dataloader = CombinedLoader(loaders, mode="max_size_cycle") counter = 0 for _ in dataloader: counter += 1 assert counter == max(x, y) def test_combined_loader_sequence_max_size_cycle(): """Test `CombinedLoader` of mode 'max_size_cycle' given sequence loaders.""" loaders = [ torch.utils.data.DataLoader(range(10), batch_size=4), torch.utils.data.DataLoader(range(20), batch_size=5), ] combined_loader = CombinedLoader(loaders, "max_size_cycle") assert len(combined_loader) == max(len(v) for v in loaders) for idx, item in enumerate(combined_loader): assert isinstance(item, Sequence) assert len(item) == 2 assert idx == len(combined_loader) - 1 @pytest.mark.parametrize( ["input_data", "compute_func", "expected_length"], [ ([*range(10), list(range(1, 20))], min, 0), ([*range(10), list(range(1, 20))], max, 19), ([*range(10), {str(i): i for i in range(1, 20)}], min, 0), ([*range(10), {str(i): i for i in range(1, 20)}], max, 19), ({**{str(i): i for i in range(10)}, "nested": {str(i): i for i in range(1, 20)}}, min, 0), ({**{str(i): i for i in range(10)}, "nested": {str(i): i for i in range(1, 20)}}, max, 19), ({**{str(i): i for i in range(10)}, "nested": list(range(20))}, min, 0), ({**{str(i): i for i in range(10)}, "nested": list(range(20))}, max, 19), ], ) def test_nested_calc_num_data(input_data, compute_func, expected_length): calculated_length = _nested_calc_num_data(input_data, compute_func) assert calculated_length == expected_length @mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1", "PL_TRAINER_GPUS": "2"}) @mock.patch("torch.cuda.device_count", return_value=2) @mock.patch("torch.cuda.is_available", return_value=True) def test_combined_data_loader_validation_test(cuda_available_mock, device_count_mock, tmpdir): """This test makes sure distributed sampler has been properly injected in dataloaders when using CombinedLoader.""" class CustomDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] dataloader = CombinedLoader( { "a": DataLoader(CustomDataset(range(10))), "b": {"c": DataLoader(CustomDataset(range(10))), "d": DataLoader(CustomDataset(range(10)))}, "e": [DataLoader(CustomDataset(range(10))), DataLoader(CustomDataset(range(10)))], } ) trainer = Trainer(replace_sampler_ddp=True, accelerator="ddp", gpus=2) dataloader = trainer.auto_add_sampler(dataloader, shuffle=True) _count = 0 def _assert_distributed_sampler(v): nonlocal _count _count += 1 assert isinstance(v, DistributedSampler) apply_to_collection(dataloader.sampler, Sampler, _assert_distributed_sampler) assert _count == 5
[ "torch.tensor", "torch.randn" ]
1.6
Benjamin-Etheredge/pytorch-lightning
fe572c5911abfa2cc0b806b1c2cfe977d483c7c1
1.10
import csv import pickle import os import logging from tqdm import tqdm, trange from torch.utils.data import TensorDataset import torch.nn.functional as F import numpy as np import torch from collections import OrderedDict from transformers.utils.dummy_tokenizers_objects import BertTokenizerFast logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) # 这就是包内引用吗 import json import re from transformers import AutoTokenizer keyword_files = ["keyword_train.txt", "keyword_dev.txt", "keyword_test.txt"] def tokenize(text, tokenizer): # berts tokenize ways # tokenize the [unused12345678910] D = [f"[unused{i}]" for i in range(10)] textraw = [text] for delimiter in D: ntextraw = [] for i in range(len(textraw)): t = textraw[i].split(delimiter) for j in range(len(t)): ntextraw += [t[j]] if j != len(t)-1: ntextraw += [delimiter] textraw = ntextraw text = [] for t in textraw: if t in D: text += [t] else: tokens = tokenizer.tokenize(t, add_special_tokens=False) for tok in tokens: text += [tok] for idx, t in enumerate(text): if idx + 3 < len(text) and t == "[" and text[idx+1] == "[UNK]" and text[idx+2] == "]": text = text[:idx] + ["[MASK]"] + text[idx+3:] return text n_class = 1 class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None, text_c=None, entity=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.text_c = text_c self.label = label self.entity = entity class InputExampleSST2(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None, text_c=None, entity=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeaturesSST2(object): """A single set of features of data.""" def __init__(self, input_ids, attention_mask, token_type_ids, label_id): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.label_id = label_id class InputExampleWiki80(object): """A single training/test example for span pair classification.""" def __init__(self, guid, sentence, span1, span2, ner1, ner2, label): self.guid = guid self.sentence = sentence self.span1 = span1 self.span2 = span2 self.ner1 = ner1 self.ner2 = ner2 self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, entity=None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.entity = entity class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def __init__(self, data_dir, a): super().__init__() self.data_dir = data_dir def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training, dev and test sets.""" examples = [] text_index = 0 for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[text_index] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, text_c=None, label=label)) return examples class relossProcessor(DataProcessor): #bert_s def __init__(self, data_path="data", use_prompt=False): def is_speaker(a): a = a.split() return len(a) == 2 and a[0] == "speaker" and a[1].isdigit() # replace the speaker with [unused] token def rename(d, x, y): d = d.replace("’","'") d = d.replace("im","i") d = d.replace("...",".") unused = ["[unused1]", "[unused2]"] a = [] if is_speaker(x): a += [x] else: a += [None] if x != y and is_speaker(y): a += [y] else: a += [None] for i in range(len(a)): if a[i] is None: continue d = d.replace(a[i] + ":", unused[i] + " :") if x == a[i]: x = unused[i] if y == a[i]: y = unused[i] return d, x, y self.D = [[], [], []] for sid in range(3): # 分成三个数据集 with open(data_path + "/"+["train.json", "dev.json", "test.json"][sid], "r", encoding="utf8") as f: data = json.load(f) for i in range(len(data)): for j in range(len(data[i][1])): rid = [] for k in range(36): if k+1 in data[i][1][j]["rid"]: rid += [1] else: rid += [0] d, h, t = rename(' '.join(data[i][0]).lower(), data[i][1][j]["x"].lower(), data[i][1][j]["y"].lower()) prompt = f"what is the relation between {h} and {t} ? {t} is the [MASK] {h} ." d = [ prompt + d, h, t, rid, t ] self.D[sid] += [d] logger.info(str(len(self.D[0])) + "," + str(len(self.D[1])) + "," + str(len(self.D[2]))) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[0], "train") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[2], "test") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[1], "dev") def get_labels(self): """See base class.""" return [str(x) for x in range(36)] def _create_examples(self, data, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, d) in enumerate(data): guid = "%s-%s" % (set_type, i) examples.append(InputExample(guid=guid, text_a=data[i][0], text_b=data[i][1], label=data[i][3], text_c=data[i][2], entity=data[i][4])) return examples class bertProcessor(DataProcessor): #bert_s def __init__(self, data_path="data", use_prompt=False): def is_speaker(a): a = a.split() return len(a) == 2 and a[0] == "speaker" and a[1].isdigit() # replace the speaker with [unused] token def rename(d, x, y): d = d.replace("’","'") d = d.replace("im","i") d = d.replace("...",".") unused = ["[unused1]", "[unused2]"] a = [] if is_speaker(x): a += [x] else: a += [None] if x != y and is_speaker(y): a += [y] else: a += [None] for i in range(len(a)): if a[i] is None: continue d = d.replace(a[i] + ":", unused[i] + " :") if x == a[i]: x = unused[i] if y == a[i]: y = unused[i] return d, x, y self.D = [[], [], []] for sid in range(3): # 分成三个数据集 with open(data_path + "/"+["train.json", "dev.json", "test.json"][sid], "r", encoding="utf8") as f: data = json.load(f) sample_idx = 0 for i in range(len(data)): for j in range(len(data[i][1])): rid = [] for k in range(36): if k+1 in data[i][1][j]["rid"]: rid += [1] else: rid += [0] d, h, t = rename(' '.join(data[i][0]).lower(), data[i][1][j]["x"].lower(), data[i][1][j]["y"].lower()) if use_prompt: prompt = f"{h} is the [MASK] {t} ." else: prompt = f"what is the relation between {h} and {t} ?" sample_idx += 1 d = [ prompt + d, h, t, rid, ] self.D[sid] += [d] logger.info(str(len(self.D[0])) + "," + str(len(self.D[1])) + "," + str(len(self.D[2]))) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[0], "train") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[2], "test") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[1], "dev") def get_labels(self): """See base class.""" return [str(x) for x in range(36)] def _create_examples(self, data, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, d) in enumerate(data): guid = "%s-%s" % (set_type, i) examples.append(InputExample(guid=guid, text_a=data[i][0], text_b=data[i][1], label=data[i][3], text_c=data[i][2])) return examples class ptuneProcessor(DataProcessor): #bert_s def __init__(self, data_path="data", use_prompt=False, ptune_k=6): def is_speaker(a): a = a.split() return len(a) == 2 and a[0] == "speaker" and a[1].isdigit() # replace the speaker with [unused] token def rename(d, x, y): d = d.replace("’","'") d = d.replace("im","i") d = d.replace("...",".") unused = ["[unused1]", "[unused2]"] a = [] if is_speaker(x): a += [x] else: a += [None] if x != y and is_speaker(y): a += [y] else: a += [None] for i in range(len(a)): if a[i] is None: continue d = d.replace(a[i] + ":", unused[i] + " :") if x == a[i]: x = unused[i] if y == a[i]: y = unused[i] return d, x, y self.D = [[], [], []] """ TODO, add new samples, every sample if there is a trigger then mask trigger and replace the origin mask with right token, if no trigger in the sentence, random mask a word in the sentence and replace the origin mask with the right token. """ for sid in range(3): # 分成三个数据集 with open(data_path + "/"+["train.json", "dev.json", "test.json"][sid], "r", encoding="utf8") as f: data = json.load(f) sample_idx = 0 for i in range(len(data)): for j in range(len(data[i][1])): rid = [] for k in range(36): if k+1 in data[i][1][j]["rid"]: rid += [1] else: rid += [0] d, h, t = rename(' '.join(data[i][0]).lower(), data[i][1][j]["x"].lower(), data[i][1][j]["y"].lower()) unused_word = " ".join([f"[unused{i}]" for i in range(3, ptune_k+3)]) # st 3,4 ; ed 5,6 st = [f"[unused{i}]" for i in range(3,5)] ed = [f"[unused{i}]" for i in range(5,7)] # 789 as prompt prompt = f"[sub] {st[0]} {h} {st[1]} [sub] [unused7] [unused8] [MASK] [unused9] [obj] {ed[0]} {t} {ed[1]} [obj]." # for temp_i in range(10): # d = d.replace(f"speaker {temp_i}:", f"[speaker{temp_i}]") sample_idx += 1 sample = [ prompt + d, h, t, rid, ] self.D[sid] += [sample] # multi labels, add more data in the training set if i == 0: for idx,trigger in enumerate(data[i][1][j]['t']): if trigger != "": label_token = f"[class{data[i][1][j]['rid'][idx]+1}]" prompt = prompt.replace("[MASK]", label_token) # first assume the model predict the same output in the trigger, ... d = d.replace(trigger, "[MASK]", 1) sample = [ prompt + d, h, t, rid, ] self.D[sid] += [sample] logger.info(str(len(self.D[0])) + "," + str(len(self.D[1])) + "," + str(len(self.D[2]))) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[0], "train") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[2], "test") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[1], "dev") def get_labels(self): """See base class.""" return [str(x) for x in range(36)] def _create_examples(self, data, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, d) in enumerate(data): guid = "%s-%s" % (set_type, i) examples.append(InputExample(guid=guid, text_a=data[i][0], text_b=data[i][1], label=data[i][3], text_c=data[i][2])) return examples class wiki80Processor(DataProcessor): """Processor for the TACRED data set.""" def __init__(self, data_path, use_prompt): super().__init__() self.data_dir = data_path @classmethod def _read_json(cls, input_file): data = [] with open(input_file, "r", encoding='utf-8') as reader: all_lines = reader.readlines() for line in all_lines: ins = eval(line) data.append(ins) return data def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.txt")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "val.txt")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.txt")), "test") def get_labels(self, negative_label="no_relation"): data_dir = self.data_dir """See base class.""" # if 'k-shot' in self.data_dir: # data_dir = os.path.abspath(os.path.join(self.data_dir, "../..")) # else: # data_dir = self.data_dir with open(os.path.join(data_dir,'rel2id.json'), "r", encoding='utf-8') as reader: re2id = json.load(reader) return re2id def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for example in dataset: sentence = example['token'] examples.append(InputExampleWiki80(guid=None, sentence=sentence, # maybe some bugs here, I don't -1 span1=(example['h']['pos'][0], example['h']['pos'][1]), span2=(example['t']['pos'][0], example['t']['pos'][1]), ner1=None, ner2=None, label=example['relation'])) return examples def convert_examples_to_features_for_loss(examples, max_seq_length, tokenizer): print("#examples", len(examples)) features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenize(example.text_a, tokenizer) tokens_b = tokenize(example.text_b, tokenizer) tokens_c = tokenize(example.text_c, tokenizer) # t_tokens = tokenize(example.entity, tokenizer) t_tokens = tokenizer(example.entity, add_special_tokens=False)["input_ids"] _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_seq_length - 4) tokens_b = tokens_b + ["[SEP]"] + tokens_c tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = example.label len_t = len(t_tokens) normal_input_ids = input_ids[:] for idx, input_id in enumerate(input_ids): if idx + len_t < len(input_ids) and input_ids[idx:idx+len_t] == t_tokens: # [MASK] id = 103 for j in range(len_t): input_ids[j+idx] = 103 # append 1 sample with 2 input features.append( [InputFeatures( input_ids=normal_input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, entity = t_tokens ), InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, entity = t_tokens )] ) print('#features', len(features)) return features def convert_examples_to_features_normal(examples, max_seq_length, tokenizer): print("#examples", len(examples)) features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenize(example.text_a, tokenizer) tokens_b = tokenize(example.text_b, tokenizer) tokens_c = tokenize(example.text_c, tokenizer) _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_seq_length - 4) tokens_b = tokens_b + ["[SEP]"] + tokens_c inputs = tokenizer( example.text_a, example.text_b + tokenizer.sep_token + example.text_c, truncation="longest_first", max_length=max_seq_length, padding="max_length", add_special_tokens=True ) # tokens = [] # segment_ids = [] # tokens.append("[CLS]") # segment_ids.append(0) # for token in tokens_a: # tokens.append(token) # segment_ids.append(0) # tokens.append("[SEP]") # segment_ids.append(0) # for token in tokens_b: # tokens.append(token) # segment_ids.append(1) # tokens.append("[SEP]") # segment_ids.append(1) # input_ids = tokenizer.convert_tokens_to_ids(tokens) # # The mask has 1 for real tokens and 0 for padding tokens. Only real # # tokens are attended to. # input_mask = [1] * len(input_ids) # # Zero-pad up to the sequence length. # while len(input_ids) < max_seq_length: # input_ids.append(0) # input_mask.append(0) # segment_ids.append(0) # assert(inputs['input_ids'] == input_ids), print(inputs['input_ids']) # assert len(input_ids) == max_seq_length # assert len(input_mask) == max_seq_length # assert len(segment_ids) == max_seq_length label_id = example.label if ex_index == 0: logger.info(f"input_text : {tokens_a} {tokens_b} {tokens_c}") logger.info(f"input_ids : {inputs['input_ids']}") logger.info(f"token_type_ids : {inputs['token_type_ids']}") # inputs = {} # inputs['input_ids'] = input_ids # inputs['attention_mask'] = input_mask # inputs['token_type_ids'] = segment_ids # append 1 sample with 2 input features.append( InputFeatures( input_ids=inputs['input_ids'], input_mask=inputs['attention_mask'], segment_ids=inputs['token_type_ids'], label_id=label_id, ) ) print('#features', len(features)) return features def convert_examples_to_features(examples, max_seq_length, tokenizer, args, rel2id): """Loads a data file into a list of `InputBatch`s.""" save_file = "data/cached_wiki80.pkl" mode = "text" num_tokens = 0 num_fit_examples = 0 num_shown_examples = 0 instances = [] use_bert = "BertTokenizer" in tokenizer.__class__.__name__ use_gpt = "GPT" in tokenizer.__class__.__name__ assert not (use_bert and use_gpt), "model cannot be gpt and bert together" if False: with open(file=save_file, mode='rb') as fr: instances = pickle.load(fr) print('load preprocessed data from {}.'.format(save_file)) else: print('loading..') for (ex_index, example) in enumerate(examples): """ the relation between SUBJECT and OBJECT is . """ if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens = [] SUBJECT_START = "[subject_start]" SUBJECT_END = "[subject_end]" OBJECT_START = "[object_start]" OBJECT_END = "[object_end]" if mode.startswith("text"): for i, token in enumerate(example.sentence): if i == example.span1[0]: tokens.append(SUBJECT_START) if i == example.span2[0]: tokens.append(OBJECT_START) # for sub_token in tokenizer.tokenize(token): # tokens.append(sub_token) if i == example.span1[1]: tokens.append(SUBJECT_END) if i == example.span2[1]: tokens.append(OBJECT_END) tokens.append(token) SUBJECT = " ".join(example.sentence[example.span1[0]: example.span1[1]]) OBJECT = " ".join(example.sentence[example.span2[0]: example.span2[1]]) SUBJECT_ids = tokenizer(" "+SUBJECT, add_special_tokens=False)['input_ids'] OBJECT_ids = tokenizer(" "+OBJECT, add_special_tokens=False)['input_ids'] if use_gpt: if args.CT_CL: prompt = f"[T1] [T2] [T3] [sub] {OBJECT} [sub] [T4] [obj] {SUBJECT} [obj] [T5] {tokenizer.cls_token}" else: prompt = f"The relation between [sub] {SUBJECT} [sub] and [obj] {OBJECT} [obj] is {tokenizer.cls_token} ." else: # add prompt [T_n] and entity marker [obj] to enrich the context. prompt = f"[sub] {SUBJECT} [sub] {tokenizer.mask_token} [obj] {OBJECT} [obj] ." if ex_index == 0: input_text = " ".join(tokens) logger.info(f"input text : {input_text}") logger.info(f"prompt : {prompt}") logger.info(f"label : {example.label}") inputs = tokenizer( prompt, " ".join(tokens), truncation="longest_first", max_length=max_seq_length, padding="max_length", add_special_tokens=True ) if use_gpt: cls_token_location = inputs['input_ids'].index(tokenizer.cls_token_id) # find the subject and object tokens, choose the first ones sub_st = sub_ed = obj_st = obj_ed = -1 for i in range(len(inputs['input_ids'])): if sub_st == -1 and inputs['input_ids'][i:i+len(SUBJECT_ids)] == SUBJECT_ids: sub_st = i sub_ed = i + len(SUBJECT_ids) if obj_st == -1 and inputs['input_ids'][i:i+len(OBJECT_ids)] == OBJECT_ids: obj_st = i obj_ed = i + len(OBJECT_ids) assert sub_st != -1 and obj_st != -1 num_tokens += sum(inputs['attention_mask']) if sum(inputs['attention_mask']) > max_seq_length: pass # tokens = tokens[:max_seq_length] else: num_fit_examples += 1 x = OrderedDict() x['input_ids'] = inputs['input_ids'] if use_bert: x['token_type_ids'] = inputs['token_type_ids'] x['attention_mask'] = inputs['attention_mask'] x['label'] = rel2id[example.label] if use_gpt: x['cls_token_location'] = cls_token_location x['so'] =[sub_st, sub_ed, obj_st, obj_ed] instances.append(x) with open(file=save_file, mode='wb') as fw: pickle.dump(instances, fw) print('Finish save preprocessed data to {}.'.format( save_file)) input_ids = [o['input_ids'] for o in instances] attention_mask = [o['attention_mask'] for o in instances] if use_bert: token_type_ids = [o['token_type_ids'] for o in instances] if use_gpt: cls_idx = [o['cls_token_location'] for o in instances] labels = [o['label'] for o in instances] so = torch.tensor([o['so'] for o in instances]) input_ids = torch.tensor(input_ids) attention_mask = torch.tensor(attention_mask) if use_gpt: cls_idx = torch.tensor(cls_idx) if use_bert: token_type_ids = torch.tensor(token_type_ids) labels = torch.tensor(labels) logger.info("Average #tokens: %.2f" % (num_tokens * 1.0 / len(examples))) logger.info("%d (%.2f %%) examples can fit max_seq_length = %d" % (num_fit_examples, num_fit_examples * 100.0 / len(examples), max_seq_length)) if use_gpt: dataset = TensorDataset(input_ids, attention_mask, cls_idx, labels) elif use_bert: dataset = TensorDataset(input_ids, attention_mask, token_type_ids, labels, so) else: dataset = TensorDataset(input_ids, attention_mask, labels) return dataset def convert_examples_to_feature_sst2(examples, max_seq_length, tokenizer, args, rel2id): """Loads a data file into a list of `InputBatch`s.""" save_file = "data/cached_wiki80.pkl" mode = "text" num_tokens = 0 num_fit_examples = 0 num_shown_examples = 0 instances = [] if False: with open(file=save_file, mode='rb') as fr: instances = pickle.load(fr) print('load preprocessed data from {}.'.format(save_file)) else: print('loading..') for (ex_index, example) in enumerate(examples): try: prompt = f"[T1] [T2] {tokenizer.mask_token} ." inputs = tokenizer( example.text_a + prompt, truncation="longest_first", max_length=max_seq_length, padding="max_length", add_special_tokens=True ) x = OrderedDict() x['input_ids'] = inputs['input_ids'] x['attention_mask'] = inputs['attention_mask'] if "roberta" not in args.model_name_or_path: x['token_type_ids'] = inputs['token_type_ids'] x['label'] = int(example.label) instances.append(x) except Exception as e: print(e) with open(file=save_file, mode='wb') as fw: pickle.dump(instances, fw) print('Finish save preprocessed data to {}.'.format( save_file)) input_ids = [o['input_ids'] for o in instances] attention_mask = [o['attention_mask'] for o in instances] if "roberta" not in args.model_name_or_path: token_type_ids = [o['token_type_ids'] for o in instances] token_type_ids = torch.tensor(token_type_ids) labels = [o['label'] for o in instances] input_ids = torch.tensor(input_ids) attention_mask = torch.tensor(attention_mask) labels = torch.tensor(labels) logger.info("Average #tokens: %.2f" % (num_tokens * 1.0 / len(examples))) logger.info("%d (%.2f %%) examples can fit max_seq_length = %d" % (num_fit_examples, num_fit_examples * 100.0 / len(examples), max_seq_length)) if "roberta" not in args.model_name_or_path: dataset = TensorDataset(input_ids, attention_mask, token_type_ids, labels) else: dataset = TensorDataset(input_ids, attention_mask, labels) return dataset def _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_length): """Truncates a sequence tuple in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) + len(tokens_c) if total_length <= max_length: break if len(tokens_a) >= len(tokens_b) and len(tokens_a) >= len(tokens_c): tokens_a.pop() elif len(tokens_b) >= len(tokens_a) and len(tokens_b) >= len(tokens_c): tokens_b.pop() else: tokens_c.pop() def get_dataset(mode, args, tokenizer, processor): if mode == "train": examples = processor.get_train_examples(args.data_dir) elif mode == "dev": examples = processor.get_dev_examples(args.data_dir) elif mode == "test": examples = processor.get_test_examples(args.data_dir) else: raise Exception("mode must be in choice [trian, dev, test]") gpt_mode = "wiki80" in args.task_name if "wiki80" in args.task_name: # normal relation extraction task dataset = convert_examples_to_features( examples, args.max_seq_length, tokenizer, args, processor.get_labels() ) return dataset elif "sst" in args.task_name: dataset = convert_examples_to_feature_sst2( examples, args.max_seq_length, tokenizer, args, None ) return dataset else: train_features = convert_examples_to_features_normal( examples, args.max_seq_length, tokenizer ) input_ids = [] input_mask = [] segment_ids = [] label_id = [] entity_id = [] for f in train_features: input_ids.append(f.input_ids) input_mask.append(f.input_mask) segment_ids.append(f.segment_ids) label_id.append(f.label_id) all_input_ids = torch.tensor(input_ids, dtype=torch.long) all_input_mask = torch.tensor(input_mask, dtype=torch.long) all_segment_ids = torch.tensor(segment_ids, dtype=torch.long) all_label_ids = torch.tensor(label_id, dtype=torch.float) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return train_data def collate_fn(batch): pass processors = {"normal": bertProcessor, "reloss": relossProcessor , "ptune": ptuneProcessor, "wiki80": wiki80Processor, "sst-2": Sst2Processor }
[ "torch.tensor", "torch.utils.data.TensorDataset" ]
1.10
johncolezhang/DeepKE
ea4552ec42cb003a835f00fc14fb454f9a9a7183
1.8
import torch import torch.nn as nn from torch.nn.utils.rnn import PackedSequence from src.utils.mapper import configmapper def hotfix_pack_padded_sequence( input, lengths, batch_first=False, enforce_sorted=False ): lengths = torch.as_tensor(lengths, dtype=torch.int64) lengths = lengths.cpu() if enforce_sorted: sorted_indices = None else: lengths, sorted_indices = torch.sort(lengths, descending=True) sorted_indices = sorted_indices.to(input.device) batch_dim = 0 if batch_first else 1 input = input.index_select(batch_dim, sorted_indices) data, batch_sizes = torch._C._VariableFunctions._pack_padded_sequence( input, lengths, batch_first ) return PackedSequence(data, batch_sizes, sorted_indices) # class LSTM(nn.Module): # def __init__( # self, # input_size, # hidden_size, # batch_first=False, # num_layers=1, # bidirectional=False, # dropout=0.2, # ): # super(LSTM, self).__init__() # self.rnn = nn.LSTM( # input_size=input_size, # hidden_size=hidden_size, # num_layers=num_layers, # bidirectional=bidirectional, # batch_first=batch_first, # ) # self.reset_params() # self.dropout = nn.Dropout(p=dropout) # def reset_params(self): # for i in range(self.rnn.num_layers): # nn.init.orthogonal_(getattr(self.rnn, f"weight_hh_l{i}")) # nn.init.kaiming_normal_(getattr(self.rnn, f"weight_ih_l{i}")) # nn.init.constant_(getattr(self.rnn, f"bias_hh_l{i}"), val=0) # nn.init.constant_(getattr(self.rnn, f"bias_ih_l{i}"), val=0) # bias = getattr(self.rnn, f"bias_hh_l{i}").detach() # bias.chunk(4)[1].fill_(1) # with torch.no_grad(): # setattr(self.rnn, f"bias_hh_l{i}", nn.Parameter(bias)) # if self.rnn.bidirectional: # nn.init.orthogonal_(getattr(self.rnn, f"weight_hh_l{i}_reverse")) # nn.init.kaiming_normal_(getattr(self.rnn, f"weight_ih_l{i}_reverse")) # nn.init.constant_(getattr(self.rnn, f"bias_hh_l{i}_reverse"), val=0) # nn.init.constant_(getattr(self.rnn, f"bias_ih_l{i}_reverse"), val=0) # bias = getattr(self.rnn, f"bias_hh_l{i}_reverse").detach() # bias.chunk(4)[1].fill_(1) # with torch.no_grad(): # setattr(self.rnn, f"bias_hh_l{i}_reverse", nn.Parameter(bias)) # def forward(self, x, x_len): # # x: [batch_size, seq_len, dim], x_len:[batch_size] # x_len_sorted, x_idx = torch.sort(x_len, descending=True) # x_sorted = torch.index_select(x, dim=0, index=x_idx) # sorted_x, x_ori_idx = torch.sort(x_idx) # # x_packed = nn.utils.rnn.pack_padded_sequence( # # x_sorted, x_len_sorted, batch_first=True # # ) # x_packed = hotfix_pack_padded_sequence(x_sorted, x_len_sorted, batch_first=True) # x_packed, (hidden, c) = self.rnn(x_packed) # x = nn.utils.rnn.pad_packed_sequence(x_packed, batch_first=True)[0] # x = x.index_select(dim=0, index=x_ori_idx) # hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1) # # hidden = hidden.permute(1, 0, 2).contiguous().view(-1, # # hidden.size(0) * hidden.size(2)).squeeze() # hidden = hidden.index_select(dim=0, index=x_ori_idx) # return hidden, x @configmapper.map("models", "lstm_model") class LstmModel(nn.Module): def __init__( self, vocab_size, embedding_dim, hidden_size, lstm_num_layers, bidirectional, dropout, num_labels, ): super().__init__() self.embedding = nn.Embedding( vocab_size, embedding_dim, padding_idx=0 ) # from_pretrained self.lstm = nn.LSTM( embedding_dim, hidden_size, lstm_num_layers, batch_first=True, bidirectional=bidirectional, dropout=dropout, ) self.hidden_size = hidden_size self.lstm_num_layers = lstm_num_layers self.dropout = nn.Dropout(dropout) self.mult = 2 if bidirectional else 1 self.linear = nn.Linear(hidden_size * self.mult, num_labels) self.num_labels = num_labels def forward(self, inputs, lengths, labels=None): x = self.embedding(inputs) x = self.dropout(x) x_pack = hotfix_pack_padded_sequence(x, lengths, batch_first=True) out_pack, (ht, ct) = self.lstm(x_pack) ht = ht.view(self.lstm_num_layers, self.mult, -1, self.hidden_size) logits = self.linear( self.dropout(torch.cat([ht[-1, 0, :, :], ht[-1, 1, :, :]], dim=-1)) ) if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss, logits return logits
[ "torch.nn.utils.rnn.PackedSequence", "torch.nn.Embedding", "torch.nn.Dropout", "torch.nn.Linear", "torch.nn.LSTM", "torch.cat", "torch.nn.CrossEntropyLoss", "torch._C._VariableFunctions._pack_padded_sequence", "torch.as_tensor", "torch.sort" ]
1.8.1
gchhablani/financial-sentiment-analysis
b18e9072f8edb9f09d0fef697892f2462d6d44e9
1.5
import tqdm import json import torch import random import argparse from orderedset import OrderedSet from collections import defaultdict from outcomes.src.common import init_model def main(): ap = argparse.ArgumentParser() ap.add_argument("--device", default="cpu", type=str, help="cpu or number for GPU device") ap.add_argument("--copa_dir", default="data/copa", type=str, help="COPA data directory") args = ap.parse_args() device = torch.device(f"cuda:{args.device}") if args.device != "cpu" else torch.device("cpu") with open(f"{args.copa_dir}/dev.jsonl") as f_in: events = [json.loads(line.strip())["premise"] for line in f_in] out = defaultdict(lambda: defaultdict(list)) lms = [(lm, *init_model(lm, device)) for lm in ["openai-gpt", "gpt2", "gpt2-xl"]] for event in tqdm.tqdm(random.sample(events, 20)): for lm, model, tokenizer in lms: prefix = f"{event} As a result," preds_topk = generate( tokenizer, model, prefix, device, num_return_sequences=10, max_length=10, k=10) preds_topp = generate( tokenizer, model, prefix, device, num_return_sequences=10, max_length=10, p=0.9) preds_beam = generate( tokenizer, model, prefix, device, num_return_sequences=5, max_length=10, beams=5) out[event][f"{lm}_preds_top10"] = preds_topk out[event][f"{lm}_preds_top0.9"] = preds_topp out[event][f"{lm}_preds_beam5"] = preds_beam print_latex_table(out) def generate(tokenizer, model, prompt, device, num_return_sequences=1, max_length=10, beams=0, p=0, k=0): """ Generate a sequence with models like GPT, GPT2, or XLNet """ context_tokens = tokenizer.encode(prompt) max_length = max_length + len(context_tokens) input_ids = torch.tensor(context_tokens, device=device).unsqueeze(0) eos_token_id = tokenizer.encode(".", add_special_tokens=False)[-1] outputs = model.generate( input_ids=input_ids, do_sample=beams == 0, max_length=max_length, # temperature=temperature, top_p=p if p > 0 else None, top_k=k if k > 0 else None, eos_token_id=eos_token_id, num_beams=beams if beams > 0 else None, early_stopping=True, no_repeat_ngram_size=3, num_return_sequences=num_return_sequences ) preds = [tokenizer.decode(output, skip_special_tokens=True)[len(prompt):].strip() for output in outputs] print(preds) preds = list(OrderedSet([pred.split(".")[0].strip() for pred in preds])) preds = [t for t in preds if len(t) > 0] return preds def print_latex_table(out): """ Print the example generated outcomes """ examples = [(event, fields) for event, fields in out.items() if len(fields) > 0 and all([len(v) > 0 for v in fields.values()])] print("""\\begin{tabular}{lllll}""") print("""\\toprule""") print("""\\textbf{Event} & \\textbf{LM} & \\textbf{Sampling} & \\textbf{Outcome} \\\\""") print("\\midrule") lms = ["openai-gpt", "gpt2", "gpt2-xl"] for event, fields in examples: print("\\multirow{9}{*}{\\textbf{" + event + "}} ") by_lm = {lm: {k.replace(f"{lm}_preds_", ""): v[0] for k, v in fields.items() if lm in k} for lm in lms} for i, lm in enumerate(lms): for j, sampling in enumerate(["top10", "top0.9", "beam5"]): first_col = "\\multirow{3}{*}{" + lm + "} " if j == 0 else "" print(f"& {first_col} & {sampling} & {by_lm[lm][sampling]} \\\\") if sampling == "beam5": print("\\midrule") if i == 2: print("\\midrule") print("\\midrule") print("""\\bottomrule""") print("""\end{tabular}""") if __name__ == '__main__': main()
[ "torch.device", "torch.tensor" ]
1.5.1
vered1986/reporting_bias_lms
f4e3a26f41db30939c899855b413bad1ebe14d21
1.4
import os, sys import imageio from opt import get_opts import torch from collections import defaultdict from torch.utils.data import DataLoader from datasets import dataset_dict # models from models.nerf import Embedding, NeRF from models.rendering import render_rays # optimizer, scheduler, visualization from utils import * # losses from losses import loss_dict # metrics from metrics import * # pytorch-lightning from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.logging import TestTubeLogger to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8) class NeRFSystem(LightningModule): def __init__(self, hparams): super(NeRFSystem, self).__init__() self.hparams = hparams self.loss = loss_dict[hparams.loss_type]() self.embedding_xyz = Embedding(3, 10) # 10 is the default number self.embedding_dir = Embedding(3, 4) # 4 is the default number self.embeddings = [self.embedding_xyz, self.embedding_dir] self.nerf_coarse = NeRF() self.models = [self.nerf_coarse] if hparams.N_importance > 0: self.nerf_fine = NeRF() self.models += [self.nerf_fine] def decode_batch(self, batch): if self.hparams.dataset_name == 'pyredner': all_rgb_gt = batch["rgb"] # (num_images, H*W, 3) all_rgb_gt = all_rgb_gt.reshape(-1, 3) cam_all_rays = batch["cam_ray_bundle"] # (num_images, H*W, 8) cam_all_rays = cam_all_rays.reshape(-1, 8) # light_all_rays = batch["light_ray_bundle"] # (num_images, H*W, 8)? # light_all_rays = light_all_rays.reshape(-1, 8) # shadow_maps = batch["shadow_maps"] # shadow_maps = shadow_maps.reshape(-1, 3) # shadow_maps = None return all_rgb_gt, cam_all_rays, None, None else: rays = batch['rays'] # (B, 8) # print("rays.shape",rays.shape) rgbs = batch['rgbs'] # (B, 3) # print("rgbs.shape",rgbs.shape) # print("decode batch", rays.shape, rgbs.shape) return rays, rgbs def forward(self, rays): """Do batched inference on rays using chunk.""" B = rays.shape[0] results = defaultdict(list) for i in range(0, B, self.hparams.chunk): rendered_ray_chunks = \ render_rays(self.models, self.embeddings, rays[i:i+self.hparams.chunk], self.hparams.N_samples, self.hparams.use_disp, self.hparams.perturb, self.hparams.noise_std, self.hparams.N_importance, self.hparams.chunk, # chunk size is effective in val mode self.train_dataset.white_back) for k, v in rendered_ray_chunks.items(): results[k] += [v] for k, v in results.items(): results[k] = torch.cat(v, 0) return results def prepare_data(self): dataset = dataset_dict[self.hparams.dataset_name] kwargs = {'root_dir': self.hparams.root_dir, 'img_wh': tuple(self.hparams.img_wh), 'hparams': self.hparams } if self.hparams.dataset_name == 'llff': kwargs['spheric_poses'] = self.hparams.spheric_poses kwargs['val_num'] = self.hparams.num_gpus self.train_dataset = dataset(split='train', **kwargs) self.val_dataset = dataset(split='val', **kwargs) def configure_optimizers(self): self.optimizer = get_optimizer(self.hparams, self.models) scheduler = get_scheduler(self.hparams, self.optimizer) return [self.optimizer], [scheduler] def train_dataloader(self): return DataLoader(self.train_dataset, shuffle=True, num_workers=4, batch_size=self.hparams.batch_size, pin_memory=True) def val_dataloader(self): return DataLoader(self.val_dataset, shuffle=False, num_workers=4, batch_size=1, # validate one image (H*W rays) at a time pin_memory=True) def training_step(self, batch, batch_nb): log = {'lr': get_learning_rate(self.optimizer)} if self.hparams.dataset_name == 'pyredner': rgbs, cam_all_rays, _, _ = self.decode_batch(batch) results = self(cam_all_rays) else: rays, rgbs = self.decode_batch(batch) results = self(rays) log['train/loss'] = loss = self.loss(results, rgbs) typ = 'fine' if 'rgb_fine' in results else 'coarse' with torch.no_grad(): psnr_ = psnr(results[f'rgb_{typ}'], rgbs) log['train/psnr'] = psnr_ return {'loss': loss, 'progress_bar': {'train_psnr': psnr_}, 'log': log } def validation_step(self, batch, batch_nb): print("---------------Starting Validation---------------") if self.hparams.dataset_name == 'pyredner': rgbs, cam_all_rays, _, _ = self.decode_batch(batch) rays = cam_all_rays.squeeze() # (H*W, 3) rgbs = rgbs.squeeze() # (H*W, 3) results = self(cam_all_rays) else: rays, rgbs = self.decode_batch(batch) rays = rays.squeeze() # (H*W,3) rgbs = rgbs.squeeze() # (H*W,3) results = self(rays) log = {'val_loss': self.loss(results, rgbs)} typ = 'fine' if 'rgb_fine' in results else 'coarse' if batch_nb == 0: print("---------------Evaluating and saving Images!---------------") W, H = self.hparams.img_wh img = results[f'rgb_{typ}'].view(H, W, 3).cpu() rgb8 = to8b(img.numpy()) gt8 = to8b(rgbs.view(H, W, 3).cpu().numpy()) img = img.permute(2, 0, 1) # (3, H, W) img_gt = rgbs.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W) depth8 = visualize_depth(results[f'depth_{typ}'].view(H, W), to_tensor=False) depth = visualize_depth(results[f'depth_{typ}'].view(H, W)) # (3, H, W) if not os.path.exists(f'logs/{self.hparams.exp_name}/imgs'): os.mkdir(f'logs/{self.hparams.exp_name}/imgs') filename = os.path.join(f'logs/{self.hparams.exp_name}/imgs', 'gt_{:03d}.png'.format(self.current_epoch)) imageio.imwrite(filename, gt8) filename = os.path.join(f'logs/{self.hparams.exp_name}/imgs', 'rgb_{:03d}.png'.format(self.current_epoch)) imageio.imwrite(filename, rgb8) filename = os.path.join(f'logs/{self.hparams.exp_name}/imgs', 'depth_{:03d}.png'.format(self.current_epoch)) imageio.imwrite(filename, depth8) stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W) self.logger.experiment.add_images('val/GT_pred_depth', stack, self.global_step) log['val_psnr'] = psnr(results[f'rgb_{typ}'], rgbs) return log def validation_epoch_end(self, outputs): mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean() mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean() return {'progress_bar': {'val_loss': mean_loss, 'val_psnr': mean_psnr}, 'log': {'val/loss': mean_loss, 'val/psnr': mean_psnr} } if __name__ == '__main__': hparams = get_opts() system = NeRFSystem(hparams) checkpoint_callback = ModelCheckpoint(filepath=os.path.join(f'ckpts/{hparams.exp_name}', '{epoch:d}'), monitor='val/loss', mode='min', save_top_k=5,) logger = TestTubeLogger( save_dir="logs", name=hparams.exp_name, debug=False, create_git_tag=False ) trainer = Trainer(max_epochs=hparams.num_epochs, checkpoint_callback=checkpoint_callback, resume_from_checkpoint=hparams.ckpt_path, logger=logger, early_stop_callback=None, weights_summary=None, progress_bar_refresh_rate=1, gpus=hparams.num_gpus, distributed_backend='ddp' if len(hparams.num_gpus)>1 else None, num_sanity_val_steps=hparams.num_sanity_val_steps, benchmark=True, profiler=hparams.num_gpus==1, auto_scale_batch_size=True) trainer.fit(system)
[ "torch.cat", "torch.stack", "torch.utils.data.DataLoader", "torch.no_grad" ]
1.4.0
ktiwary2/nerf_pl
99d40cba3a2d9a11d6988cb1a74cf29035a1ab5e