version
stringclasses
24 values
code
stringlengths
396
135k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
6
64
hexsha
stringlengths
40
40
1.4
import numpy as np, sys, os, random, pdb, json, uuid, time, argparse from pprint import pprint import logging, logging.config from collections import defaultdict as ddict from ordered_set import OrderedSet # PyTorch related imports import torch from torch.nn import functional as F from torch.nn.init import xavier_normal_ from torch.utils.data import DataLoader from torch.nn import Parameter from torch_scatter import scatter_add np.set_printoptions(precision=4) def set_gpu(gpus): """ Sets the GPU to be used for the run Parameters ---------- gpus: List of GPUs to be used for the run Returns ------- """ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpus def get_logger(name, log_dir, config_dir): """ Creates a logger object Parameters ---------- name: Name of the logger file log_dir: Directory where logger file needs to be stored config_dir: Directory from where log_config.json needs to be read Returns ------- A logger object which writes to both file and stdout """ config_dict = json.load(open( config_dir + 'log_config.json')) config_dict['handlers']['file_handler']['filename'] = log_dir + name.replace('/', '-') logging.config.dictConfig(config_dict) logger = logging.getLogger(name) std_out_format = '%(asctime)s - [%(levelname)s] - %(message)s' consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logging.Formatter(std_out_format)) logger.addHandler(consoleHandler) return logger def get_combined_results(left_results, right_results): results = {} count = float(left_results['count']) results['left_mr'] = round(left_results ['mr'] /count, 5) results['left_mrr'] = round(left_results ['mrr']/count, 5) results['right_mr'] = round(right_results['mr'] /count, 5) results['right_mrr'] = round(right_results['mrr']/count, 5) results['mr'] = round((left_results['mr'] + right_results['mr']) /(2*count), 5) results['mrr'] = round((left_results['mrr'] + right_results['mrr'])/(2*count), 5) for k in range(10): results['left_hits@{}'.format(k+1)] = round(left_results ['hits@{}'.format(k+1)]/count, 5) results['right_hits@{}'.format(k+1)] = round(right_results['hits@{}'.format(k+1)]/count, 5) results['hits@{}'.format(k+1)] = round((left_results['hits@{}'.format(k+1)] + right_results['hits@{}'.format(k+1)])/(2*count), 5) return results def get_param(shape): param = Parameter(torch.Tensor(*shape)); xavier_normal_(param.data) return param def com_mult(a, b): r1, i1 = a[..., 0], a[..., 1] r2, i2 = b[..., 0], b[..., 1] return torch.stack([r1 * r2 - i1 * i2, r1 * i2 + i1 * r2], dim = -1) def conj(a): a[..., 1] = -a[..., 1] return a def cconv(a, b): return torch.irfft(com_mult(torch.rfft(a, 1), torch.rfft(b, 1)), 1, signal_sizes=(a.shape[-1],)) def ccorr(a, b): return torch.irfft(com_mult(conj(torch.rfft(a, 1)), torch.rfft(b, 1)), 1, signal_sizes=(a.shape[-1],))
[ "torch.rfft", "torch.stack", "torch.nn.init.xavier_normal_", "torch.Tensor" ]
1.4.0
syedhamzazaidi/CompGCN
76de7466b18ee39416fd9fc0d45996f0caa60186
1.0
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum import torch.nn as nn import torch.nn.functional as F import torch import os class MnistModel(Enum): MODEL_A = "modelA" MODEL_B = "modelB" MODEL_C = "modelC" MODEL_D = "modelD" MADRY_MODEL = "madry" def __str__(self): return self.value class modelA(nn.Module): def __init__(self): super().__init__() self.num_classes = 10 self.conv1 = nn.Conv2d(1, 64, 5) self.conv2 = nn.Conv2d(64, 64, 5) self.dropout1 = nn.Dropout(0.25) self.fc1 = nn.Linear(64 * 20 * 20, 128) self.dropout2 = nn.Dropout(0.5) self.fc2 = nn.Linear(128, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.dropout1(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) return x class modelB(nn.Module): def __init__(self): super().__init__() self.num_classes = 10 self.dropout1 = nn.Dropout(0.2) self.conv1 = nn.Conv2d(1, 64, 8) self.conv2 = nn.Conv2d(64, 128, 6) self.conv3 = nn.Conv2d(128, 128, 5) self.dropout2 = nn.Dropout(0.5) self.fc = nn.Linear(128 * 12 * 12, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.dropout1(x) x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = self.dropout2(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class modelC(nn.Module): def __init__(self): super().__init__() self.num_classes = 10 self.conv1 = nn.Conv2d(1, 128, 3) self.conv2 = nn.Conv2d(128, 64, 3) self.fc1 = nn.Linear(64 * 5 * 5, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: x = torch.tanh(self.conv1(x)) x = F.max_pool2d(x, 2) x = torch.tanh(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x class modelD(nn.Module): def __init__(self): super().__init__() self.num_classes = 10 self.fc1 = nn.Linear(1 * 28 * 28, 300) self.dropout1 = nn.Dropout(0.5) self.fc2 = nn.Linear(300, 300) self.dropout2 = nn.Dropout(0.5) self.fc3 = nn.Linear(300, 300) self.dropout3 = nn.Dropout(0.5) self.fc4 = nn.Linear(300, 300) self.dropout4 = nn.Dropout(0.5) self.fc5 = nn.Linear(300, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.dropout1(x) x = F.relu(self.fc2(x)) x = self.dropout2(x) x = F.relu(self.fc3(x)) x = self.dropout3(x) x = F.relu(self.fc4(x)) x = self.dropout4(x) x = self.fc5(x) return x __mnist_model_dict__ = { MnistModel.MODEL_A: modelA, MnistModel.MODEL_B: modelB, MnistModel.MODEL_C: modelC, MnistModel.MODEL_D: modelD, } def make_mnist_model(model: MnistModel) -> nn.Module: return __mnist_model_dict__[model]() def load_mnist_classifier( model_type: MnistModel, name: str = None, model_dir: str = None, device=None, eval=False, ) -> nn.Module: if model_type == MnistModel.MADRY_MODEL: from online_attacks.classifiers.madry import load_madry_model filename = os.path.join(model_dir, "mnist", model_type.value, "%s" % name) if os.path.exists(filename): model = load_madry_model("mnist", filename) else: raise OSError("File %s not found !" % filename) # Hack to be able to use some attacker class model.num_classes = 10 elif model_type in __mnist_model_dict__: model = make_mnist_model(model_type) if name is not None: filename = os.path.join( model_dir, "mnist", model_type.value, "%s.pth" % name ) if os.path.exists(filename): state_dict = torch.load(filename, map_location=torch.device("cpu")) model.load_state_dict(state_dict) else: raise OSError("File %s not found !" % filename) else: raise ValueError() if eval: model.eval() return model.to(device)
[ "torch.nn.Linear", "torch.device", "torch.nn.Dropout", "torch.nn.Conv2d", "torch.nn.functional.max_pool2d" ]
1.0.0
hugobb/OnlineAttacks
5cc971eba014e625ec43f67f6c5eadf713c4141c
1.7
import pandas as pd import numpy as np import os import albumentations as A import torch from torch.utils.data import Dataset import random # import cv2 from skimage.io import imread SEED = 42 TRAIN_RATIO = 0.9 class PadChest(Dataset): """ PadChest dataset Hospital San Juan de Alicante - University of Alicante PadChest: A large chest x-ray image dataset with multi-label annotated reports. Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, and Maria de la Iglesia-Vayá. arXiv preprint, 2019. https://arxiv.org/abs/1901.07441 Dataset website: http://bimcv.cipf.es/bimcv-projects/padchest/ Download full size images here: https://academictorrents.com/details/dec12db21d57e158f78621f06dcbe78248d14850 Download resized (224x224) images here (recropped): https://academictorrents.com/details/96ebb4f92b85929eadfb16761f310a6d04105797 """ def __init__(self, path, train=True, aug=None, transform=None, views=["AP", "PA"], unique_patients=False): # def __init__(self, imgpath, # csvpath=os.path.join(thispath, "PADCHEST_chest_x_ray_images_labels_160K_01.02.19.csv.gz"), # views=["PA"], # transform=None, # data_aug=None, # flat_dir=True, # seed=0, # unique_patients=True): super().__init__() # super(PC_Dataset, self).__init__() # np.random.seed(seed) # Reset the seed so all runs are the same. csvpath = os.path.join(path, "PADCHEST_chest_x_ray_images_labels_160K_01.02.19.csv.gz") data_aug = aug self.pathologies = ["Atelectasis", "Consolidation", "Infiltration", "Pneumothorax", "Edema", "Emphysema", "Fibrosis", "Effusion", "Pneumonia", "Pleural_Thickening", "Cardiomegaly", "Nodule", "Mass", "Hernia","Fracture", "Granuloma", "Flattened Diaphragm", "Bronchiectasis", "Aortic Elongation", "Scoliosis", "Hilar Enlargement", "Support Devices" , "Tuberculosis", "Air Trapping", "Costophrenic Angle Blunting", "Aortic Atheromatosis", "Hemidiaphragm Elevation"] self.pathologies = sorted(self.pathologies) mapping = dict() mapping["Infiltration"] = ["infiltrates", "interstitial pattern", "ground glass pattern", "reticular interstitial pattern", "reticulonodular interstitial pattern", "alveolar pattern", "consolidation", "air bronchogram"] mapping["Pleural_Thickening"] = ["pleural thickening"] mapping["Consolidation"] = ["air bronchogram"] mapping["Hilar Enlargement"] = ["adenopathy", "pulmonary artery enlargement"] mapping["Support Devices"] = ["device", "pacemaker"] self.imgpath = path self.transform = transform self.data_aug = data_aug # self.flat_dir = flat_dir self.csvpath = csvpath # self.check_paths_exist() self.csv = pd.read_csv(self.csvpath, low_memory=False) # self.MAXVAL = 65535 # standardize view names self.csv.loc[self.csv["Projection"].isin(["AP_horizontal"]),"Projection"] = "AP Supine" # Keep only the specified views if type(views) is not list: views = [views] self.views = views self.csv["view"] = self.csv['Projection'] # print(self.csv.view.unique()) self.csv = self.csv[self.csv["view"].isin(self.views)] # remove null stuff self.csv = self.csv[~self.csv["Labels"].isnull()] # remove missing files missing = ["216840111366964012819207061112010307142602253_04-014-084.png", "216840111366964012989926673512011074122523403_00-163-058.png", "216840111366964012959786098432011033083840143_00-176-115.png", "216840111366964012558082906712009327122220177_00-102-064.png", "216840111366964012339356563862009072111404053_00-043-192.png", "216840111366964013076187734852011291090445391_00-196-188.png", "216840111366964012373310883942009117084022290_00-064-025.png", "216840111366964012283393834152009033102258826_00-059-087.png", "216840111366964012373310883942009170084120009_00-097-074.png", "216840111366964012819207061112010315104455352_04-024-184.png"] missing.extend([ # "216840111366964012283393834152009033102258826_00-059-087.png", # "216840111366964012339356563862009068084200743_00-045-105.png", # "216840111366964012339356563862009072111404053_00-043-192.png", # "216840111366964012373310883942009117084022290_00-064-025.png", # "216840111366964012373310883942009170084120009_00-097-074.png", # "216840111366964012558082906712009300162151055_00-078-079.png", # "216840111366964012558082906712009327122220177_00-102-064.png", # "216840111366964012819207061112010306085429121_04-020-102.png", # "216840111366964012819207061112010307142602253_04-014-084.png", # "216840111366964012819207061112010315104455352_04-024-184.png", # "216840111366964012959786098432011033083840143_00-176-115.png", # "216840111366964012989926673512011074122523403_00-163-058.png", # "216840111366964012989926673512011101154138555_00-191-086.png", # "216840111366964012989926673512011132200139442_00-157-099.png", # "216840111366964013076187734852011178154626671_00-145-086.png", # "216840111366964013076187734852011291090445391_00-196-188.png", #wrong "216840111366964013829543166512013353113303615_02-092-190.png", "216840111366964012904401302362010337093236130_03-198-079.png", "216840111366964012904401302362010336141343749_03-198-010.png", "216840111366964012989926673512011151082430686_00-157-045.png", "216840111366964012989926673512011083134050913_00-168-009.png", "216840111366964012373310883942009077082646386_00-047-124.png", "216840111366964013686042548532013208193054515_02-026-007.png", "216840111366964013962490064942014134093945580_01-178-104.png", "216840111366964012819207061112010281134410801_00-129-131.png", "216840111366964013590140476722013043111952381_02-065-198.png", "216840111366964012283393834152009027091819347_00-007-136.png", "216840111366964012373310883942009152114636712_00-102-045.png", "216840111366964012283393834152009033140208626_00-059-118.png", "216840111366964013590140476722013058110301622_02-056-111.png", "216840111366964012487858717522009280135853083_00-075-001.png", "216840111366964013590140476722013049100117076_02-063-097.png", "216840111366964013649110343042013092101343018_02-075-146.png", "216840111366964012487858717522009280135853083_00-075-001.png", "216840111366964012819207061112010306085429121_04-020-102.png", "269300710246070740096540277379121868595_e7zsan.png", "216840111366964012373310883942009180082307973_00-097-011.png", ]) self.csv = self.csv[~self.csv["ImageID"].isin(missing)] if unique_patients: self.csv = self.csv.groupby("PatientID").first().reset_index() # Get our classes. self.labels = [] for pathology in self.pathologies: mask = self.csv["Labels"].str.contains(pathology.lower()) if pathology in mapping: for syn in mapping[pathology]: #print("mapping", syn) mask |= self.csv["Labels"].str.contains(syn.lower()) self.labels.append(mask.values) self.labels = np.asarray(self.labels).T self.labels = self.labels.astype(np.float32) ########## add consistent csv values # offset_day_int dt = pd.to_datetime(self.csv["StudyDate_DICOM"], format="%Y%m%d") self.csv["offset_day_int"] = dt.astype(np.int)// 10**9 // 86400 # patientid self.csv["patientid"] = self.csv["PatientID"].astype(str) inds = np.arange(len(self.csv)) rng = np.random.RandomState(SEED) rng.shuffle(inds) # print("Padchest size full" , len(self.csv)) nb_train = int(len(inds) * TRAIN_RATIO) if train: inds = inds[0:nb_train] else: inds = inds[nb_train:] self.csv = self.csv.iloc[inds] self.labels = self.labels[inds] # print("Padchest size" , len(self.csv)) def string(self): return self.__class__.__name__ + " num_samples={} views={} data_aug={}".format(len(self), self.views, self.data_aug) def __len__(self): return len(self.labels) def __getitem__(self, idx): imgid = self.csv['ImageID'].iloc[idx] img_path = os.path.join(self.imgpath,imgid) # try: img = imread(img_path) # except Exception: # print('<<',img_path,'>>') # return torch.zeros((3,224,224)).float(),torch.zeros(27).float() img = img / 65535 # print(img.min(), img.max()) # Check that images are 2D arrays if len(img.shape) > 2: img = img[:, :, 0] if len(img.shape) < 2: print("error, dimension lower than 2 for image") # Add color channel img = img[None, :, :] if self.transform is not None: img = self.transform(img) if self.data_aug is not None: img = self.data_aug(img) img = img * np.ones((3,1,1), dtype="float32") # use 3 channels img = torch.from_numpy(img).float() target = torch.from_numpy(self.labels[idx]).float() return img, target
[ "torch.from_numpy" ]
1.7.0
SLAMPAI/large-scale-pretraining-transfer
730c1f25e56bbe5c70e5933f845824f98c015876
1.8
import torch from all.core import State, StateArray from ._body import Body class FrameStack(Body): def __init__(self, agent, size=4, lazy=False): super().__init__(agent) self._frames = [] self._size = size self._lazy = lazy self._to_cache = TensorDeviceCache() def process_state(self, state): if not self._frames: self._frames = [state.observation] * self._size else: self._frames = self._frames[1:] + [state.observation] if self._lazy: return LazyState.from_state(state, self._frames, self._to_cache) if isinstance(state, StateArray): return state.update('observation', torch.cat(self._frames, dim=1)) return state.update('observation', torch.cat(self._frames, dim=0)) class TensorDeviceCache: ''' To efficiently implement device trasfer of lazy states, this class caches the transfered tensor so that it is not copied multiple times. ''' def __init__(self, max_size=16): self.max_size = max_size self.cache_data = [] def convert(self, value, device): cached = None for el in self.cache_data: if el[0] is value: cached = el[1] break if cached is not None and cached.device == torch.device(device): new_v = cached else: new_v = value.to(device) self.cache_data.append((value, new_v)) if len(self.cache_data) > self.max_size: self.cache_data.pop(0) return new_v class LazyState(State): @classmethod def from_state(cls, state, frames, to_cache): state = LazyState(state, device=frames[0].device) state.to_cache = to_cache state['observation'] = frames return state def __getitem__(self, key): if key == 'observation': v = dict.__getitem__(self, key) if torch.is_tensor(v): return v return torch.cat(dict.__getitem__(self, key), dim=0) return super().__getitem__(key) def update(self, key, value): x = {} for k in self.keys(): if not k == key: x[k] = super().__getitem__(k) x[key] = value state = LazyState(x, device=self.device) state.to_cache = self.to_cache return state def to(self, device): if device == self.device: return self x = {} for key, value in self.items(): if key == 'observation': x[key] = [self.to_cache.convert(v, device) for v in value] # x[key] = [v.to(device) for v in value]#torch.cat(value,axis=0).to(device) elif torch.is_tensor(value): x[key] = value.to(device) else: x[key] = value state = LazyState.from_state(x, x['observation'], self.to_cache) return state
[ "torch.is_tensor", "torch.device", "torch.cat" ]
1.8.0
drozzy/autonomous-learning-library
67b27aa71e6689e3447f1b342296b4360419ac38
1.0
# coding=utf-8 # Copyright 2018 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import gc import math import os import random import re import subprocess import tempfile import unittest from pathlib import Path from unittest.mock import Mock, patch import numpy as np from huggingface_hub import Repository, delete_repo, login from parameterized import parameterized from requests.exceptions import HTTPError from transformers import ( AutoTokenizer, IntervalStrategy, PretrainedConfig, TrainingArguments, is_torch_available, logging, ) from transformers.file_utils import WEIGHTS_NAME, is_apex_available from transformers.testing_utils import ( ENDPOINT_STAGING, PASS, USER, CaptureLogger, TestCasePlus, get_gpu_count, get_tests_dir, is_staging_test, require_optuna, require_ray, require_sentencepiece, require_sigopt, require_tokenizers, require_torch, require_torch_bf16, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, require_torch_tf32, require_torch_up_to_2_gpus, slow, ) from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from transformers.training_args import OptimizerNames from transformers.utils.hp_naming import TrialShortNamer if is_torch_available(): import torch from torch import nn from torch.utils.data import IterableDataset import transformers.optimization from transformers import ( AutoModelForSequenceClassification, EarlyStoppingCallback, GlueDataset, GlueDataTrainingArguments, GPT2Config, GPT2LMHeadModel, LineByLineTextDataset, PreTrainedModel, Trainer, TrainerState, ) from transformers.modeling_utils import unwrap_model PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt" class RegressionDataset: def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): np.random.seed(seed) self.label_names = ["labels"] if label_names is None else label_names self.length = length self.x = np.random.normal(size=(length,)).astype(np.float32) self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names] self.ys = [y.astype(np.float32) for y in self.ys] def __len__(self): return self.length def __getitem__(self, i): result = {name: y[i] for name, y in zip(self.label_names, self.ys)} result["input_x"] = self.x[i] return result @dataclasses.dataclass class RegressionTrainingArguments(TrainingArguments): a: float = 0.0 b: float = 0.0 def __post_init__(self): super().__post_init__() # save resources not dealing with reporting (also avoids the warning when it's not set) self.report_to = [] class RepeatDataset: def __init__(self, x, length=64): self.x = x self.length = length def __len__(self): return self.length def __getitem__(self, i): return {"input_ids": self.x, "labels": self.x} class DynamicShapesDataset: def __init__(self, length=64, seed=42, batch_size=8): self.length = length np.random.seed(seed) sizes = np.random.randint(1, 20, (length // batch_size,)) # For easy batching, we make every batch_size consecutive samples the same size. self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)] self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)] def __len__(self): return self.length def __getitem__(self, i): return {"input_x": self.xs[i], "labels": self.ys[i]} class AlmostAccuracy: def __init__(self, thresh=0.25): self.thresh = thresh def __call__(self, eval_pred): predictions, labels = eval_pred true = np.abs(predictions - labels) <= self.thresh return {"accuracy": true.astype(np.float32).mean().item()} class RegressionModelConfig(PretrainedConfig): def __init__(self, a=0, b=0, double_output=False, **kwargs): super().__init__(**kwargs) self.a = a self.b = b self.double_output = double_output self.hidden_size = 1 if is_torch_available(): class SampleIterableDataset(IterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names) def __iter__(self): for i in range(len(self.dataset)): yield self.dataset[i] class FiniteIterableDataset(SampleIterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): super().__init__(a, b, length, seed, label_names) self.current_sample = 0 def __iter__(self): while self.current_sample < len(self.dataset): yield self.dataset[self.current_sample] self.current_sample += 1 class RegressionModel(nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = nn.Parameter(torch.tensor(a).float()) self.b = nn.Parameter(torch.tensor(b).float()) self.double_output = double_output self.config = None def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if labels is None: return (y, y) if self.double_output else (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y, y) if self.double_output else (loss, y) class RegressionDictModel(nn.Module): def __init__(self, a=0, b=0): super().__init__() self.a = nn.Parameter(torch.tensor(a).float()) self.b = nn.Parameter(torch.tensor(b).float()) self.config = None def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b result = {"output": y} if labels is not None: result["loss"] = nn.functional.mse_loss(y, labels) return result class RegressionPreTrainedModel(PreTrainedModel): config_class = RegressionModelConfig base_model_prefix = "regression" def __init__(self, config): super().__init__(config) self.a = nn.Parameter(torch.tensor(config.a).float()) self.b = nn.Parameter(torch.tensor(config.b).float()) self.double_output = config.double_output def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if labels is None: return (y, y) if self.double_output else (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y, y) if self.double_output else (loss, y) class RegressionRandomPreTrainedModel(PreTrainedModel): config_class = RegressionModelConfig base_model_prefix = "regression" def __init__(self, config): super().__init__(config) self.a = nn.Parameter(torch.tensor(config.a).float()) self.b = nn.Parameter(torch.tensor(config.b).float()) def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b torch_rand = torch.randn(1).squeeze() np_rand = np.random.rand() rand_rand = random.random() y += 0.05 * torch_rand + 0.05 * torch.tensor(np_rand + rand_rand) if labels is None: return (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y) class TstLayer(nn.Module): def __init__(self, hidden_size): super().__init__() self.linear1 = nn.Linear(hidden_size, hidden_size) self.ln1 = nn.LayerNorm(hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.ln2 = nn.LayerNorm(hidden_size) self.bias = nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): h = self.ln1(nn.functional.relu(self.linear1(x))) h = nn.functional.relu(self.linear2(x)) return self.ln2(x + h + self.bias) def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs): label_names = kwargs.get("label_names", None) train_dataset = RegressionDataset(length=train_len, label_names=label_names) eval_dataset = RegressionDataset(length=eval_len, label_names=label_names) model_init = kwargs.pop("model_init", None) if model_init is not None: model = None else: if pretrained: config = RegressionModelConfig(a=a, b=b, double_output=double_output) model = RegressionPreTrainedModel(config) else: model = RegressionModel(a=a, b=b, double_output=double_output) compute_metrics = kwargs.pop("compute_metrics", None) data_collator = kwargs.pop("data_collator", None) optimizers = kwargs.pop("optimizers", (None, None)) output_dir = kwargs.pop("output_dir", "./regression") args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs) return Trainer( model, args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, optimizers=optimizers, model_init=model_init, ) class TrainerIntegrationCommon: def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True): file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"] if is_pretrained: file_list.append("config.json") for step in range(freq, total, freq): checkpoint = os.path.join(output_dir, f"checkpoint-{step}") self.assertTrue(os.path.isdir(checkpoint)) for filename in file_list: self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename))) def check_best_model_has_been_loaded( self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True ): checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}") log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history values = [d[metric] for d in log_history] best_value = max(values) if greater_is_better else min(values) best_checkpoint = (values.index(best_value) + 1) * freq checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}") if is_pretrained: best_model = RegressionPreTrainedModel.from_pretrained(checkpoint) best_model.to(trainer.args.device) else: best_model = RegressionModel() state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME)) best_model.load_state_dict(state_dict) best_model.to(trainer.args.device) self.assertTrue(torch.allclose(best_model.a, trainer.model.a)) self.assertTrue(torch.allclose(best_model.b, trainer.model.b)) metrics = trainer.evaluate() self.assertEqual(metrics[metric], best_value) def check_trainer_state_are_the_same(self, trainer_state, trainer_state1): # We'll pop things so operate on copies. state = trainer_state.copy() state1 = trainer_state1.copy() # Log history main contain different logs for the time metrics (after resuming a training). log_history = state.pop("log_history", None) log_history1 = state1.pop("log_history", None) self.assertEqual(state, state1) skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"] for log, log1 in zip(log_history, log_history1): for key in skip_log_keys: _ = log.pop(key, None) _ = log1.pop(key, None) self.assertEqual(log, log1) @require_torch @require_sentencepiece @require_tokenizers class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon): """ Only tests that want to tap into the auto-pre-run 2 trainings: - self.default_trained_model - self.alternate_trained_model directly, or via check_trained_model """ def setUp(self): super().setUp() args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size trainer = get_regression_trainer(learning_rate=0.1) trainer.train() self.default_trained_model = (trainer.model.a, trainer.model.b) trainer = get_regression_trainer(learning_rate=0.1, seed=314) trainer.train() self.alternate_trained_model = (trainer.model.a, trainer.model.b) def check_trained_model(self, model, alternate_seed=False): # Checks a training seeded with learning_rate = 0.1 (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model self.assertTrue(torch.allclose(model.a, a)) self.assertTrue(torch.allclose(model.b, b)) def test_reproducible_training(self): # Checks that training worked, model trained and seed made a reproducible training. trainer = get_regression_trainer(learning_rate=0.1) trainer.train() self.check_trained_model(trainer.model) # Checks that a different seed gets different (reproducible) results. trainer = get_regression_trainer(learning_rate=0.1, seed=314) trainer.train() self.check_trained_model(trainer.model, alternate_seed=True) def test_trainer_with_datasets(self): import datasets np.random.seed(42) x = np.random.normal(size=(64,)).astype(np.float32) y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)) train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y}) # Base training. Should have the same results as test_reproducible_training model = RegressionModel() args = TrainingArguments("./regression", learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) # Can return tensors. train_dataset.set_format(type="torch", dtype=torch.float32) model = RegressionModel() trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) # Adding one column not used by the model should have no impact z = np.random.normal(size=(64,)).astype(np.float32) train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z}) model = RegressionModel() trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) def test_model_init(self): train_dataset = RegressionDataset() args = TrainingArguments("./regression", learning_rate=0.1) trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel()) trainer.train() self.check_trained_model(trainer.model) # Re-training should restart from scratch, thus lead the same results. trainer.train() self.check_trained_model(trainer.model) # Re-training should restart from scratch, thus lead the same results and new seed should be used. trainer.args.seed = 314 trainer.train() self.check_trained_model(trainer.model, alternate_seed=True) def test_gradient_accumulation(self): # Training with half the batch size but accumulation steps as 2 should give the same results. trainer = get_regression_trainer( gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1 ) trainer.train() self.check_trained_model(trainer.model) def test_training_loss(self): n_gpus = max(1, get_gpu_count()) # With even logs trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus)) trainer.train() log_history = trainer.state.log_history losses = [log["loss"] for log in log_history if "loss" in log] train_loss = log_history[-1]["train_loss"] self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4) # With uneven logs trainer = get_regression_trainer(logging_steps=5) trainer.train() log_history = trainer.state.log_history # Training loss should be the same as before new_train_loss = log_history[-1]["train_loss"] self.assertAlmostEqual(train_loss, new_train_loss, places=4) def test_custom_optimizer(self): train_dataset = RegressionDataset() args = TrainingArguments("./regression") model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=1.0) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0) trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler)) trainer.train() (a, b) = self.default_trained_model self.assertFalse(torch.allclose(trainer.model.a, a)) self.assertFalse(torch.allclose(trainer.model.b, b)) self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0) def test_adafactor_lr_none(self): # test the special case where lr=None, since Trainer can't not have lr_scheduler from transformers.optimization import Adafactor, AdafactorSchedule train_dataset = RegressionDataset() args = TrainingArguments("./regression") model = RegressionModel() optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) lr_scheduler = AdafactorSchedule(optimizer) trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler)) trainer.train() (a, b) = self.default_trained_model self.assertFalse(torch.allclose(trainer.model.a, a)) self.assertFalse(torch.allclose(trainer.model.b, b)) self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0) @require_torch_gpu @require_torch_bf16 def test_mixed_bf16(self): # very basic test trainer = get_regression_trainer(learning_rate=0.1, bf16=True) trainer.train() self.check_trained_model(trainer.model) # --bf16 --half_precision_backend apex can't be used together with self.assertRaises(ValueError): trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex") # will add more specific tests once there are some bugs to fix @require_torch_gpu @require_torch_tf32 def test_tf32(self): # very basic test trainer = get_regression_trainer(learning_rate=0.1, tf32=True) trainer.train() self.check_trained_model(trainer.model) @require_torch @require_sentencepiece @require_tokenizers class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon): def setUp(self): super().setUp() args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_trainer_works_with_dict(self): # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break # anything. train_dataset = RegressionDataset() eval_dataset = RegressionDataset() model = RegressionDictModel() args = TrainingArguments("./regression") trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() _ = trainer.evaluate() _ = trainer.predict(eval_dataset) def test_evaluation_with_keys_to_drop(self): config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4) tiny_gpt2 = GPT2LMHeadModel(config) x = torch.randint(0, 100, (128,)) eval_dataset = RepeatDataset(x) args = TrainingArguments("./test") trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset) # By default the past_key_values are removed result = trainer.predict(eval_dataset) self.assertTrue(isinstance(result.predictions, np.ndarray)) # We can still get them by setting ignore_keys to [] result = trainer.predict(eval_dataset, ignore_keys=[]) self.assertTrue(isinstance(result.predictions, tuple)) self.assertEqual(len(result.predictions), 2) def test_training_arguments_are_left_untouched(self): trainer = get_regression_trainer() trainer.train() args = TrainingArguments("./regression", report_to=[]) dict1, dict2 = args.to_dict(), trainer.args.to_dict() for key in dict1.keys(): # Logging dir can be slightly different as they default to something with the time. if key != "logging_dir": self.assertEqual(dict1[key], dict2[key]) def test_number_of_steps_in_training(self): # Regular training has n_epochs * len(train_dl) steps trainer = get_regression_trainer(learning_rate=0.1) train_output = trainer.train() self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size) # Check passing num_train_epochs works (and a float version too): trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5) train_output = trainer.train() self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size)) # If we pass a max_steps, num_train_epochs is ignored trainer = get_regression_trainer(learning_rate=0.1, max_steps=10) train_output = trainer.train() self.assertEqual(train_output.global_step, 10) def test_logging_inf_nan_filter(self): config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4) tiny_gpt2 = GPT2LMHeadModel(config) x = torch.randint(0, 100, (128,)) train_dataset = RepeatDataset(x) # Trainer without inf/nan filter args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) trainer.train() log_history_no_filter = trainer.state.log_history # Trainer with inf/nan filter args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) trainer.train() log_history_filter = trainer.state.log_history def is_any_loss_nan_or_inf(log_history): losses = [l["loss"] for l in log_history[:-1]] return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses) self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter)) self.assertFalse(is_any_loss_nan_or_inf(log_history_filter)) def test_train_and_eval_dataloaders(self): n_gpu = max(1, torch.cuda.device_count()) trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16) self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu) trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16) self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu) # Check drop_last works trainer = get_regression_trainer( train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32 ) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1) trainer = get_regression_trainer( train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32, dataloader_drop_last=True, ) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu)) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu)) # Check passing a new dataset for evaluation works new_eval_dataset = RegressionDataset(length=128) self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu)) @require_torch_multi_gpu def test_data_is_not_parallelized_when_model_is_parallel(self): model = RegressionModel() # Make the Trainer believe it's a parallelized model model.is_parallelizable = True model.model_parallel = True args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16) trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset()) # Check the Trainer was fooled self.assertTrue(trainer.is_model_parallel) self.assertEqual(trainer.args.n_gpu, 1) # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu self.assertEqual(trainer.get_train_dataloader().batch_size, 16) self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16) self.assertEqual(trainer.get_eval_dataloader().batch_size, 16) self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16) def test_evaluate(self): trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) def test_predict(self): trainer = get_regression_trainer(a=1.5, b=2.5) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With more than one output of the model trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) # With more than one output/label of the model trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"]) outputs = trainer.predict(trainer.eval_dataset) preds = outputs.predictions labels = outputs.label_ids x = trainer.eval_dataset.x self.assertTrue(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0])) self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1])) def test_dynamic_shapes(self): eval_dataset = DynamicShapesDataset(batch_size=self.batch_size) model = RegressionModel(a=2, b=1) args = TrainingArguments("./regression") trainer = Trainer(model, args, eval_dataset=eval_dataset) # Check evaluation can run to completion _ = trainer.evaluate() # Check predictions preds = trainer.predict(eval_dataset) for expected, seen in zip(eval_dataset.ys, preds.label_ids): self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) for expected, seen in zip(eval_dataset.xs, preds.predictions): self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) # Same tests with eval accumulation args = TrainingArguments("./regression", eval_accumulation_steps=2) trainer = Trainer(model, args, eval_dataset=eval_dataset) # Check evaluation can run to completion _ = trainer.evaluate() # Check predictions preds = trainer.predict(eval_dataset) for expected, seen in zip(eval_dataset.ys, preds.label_ids): self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) for expected, seen in zip(eval_dataset.xs, preds.predictions): self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) def test_log_level(self): # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere) logger = logging.get_logger() log_info_string = "Running training" # test with the default log_level - should be info and thus log on the main process with CaptureLogger(logger) as cl: trainer = get_regression_trainer() trainer.train() self.assertIn(log_info_string, cl.out) # test with low log_level - lower than info with CaptureLogger(logger) as cl: trainer = get_regression_trainer(log_level="debug") trainer.train() self.assertIn(log_info_string, cl.out) # test with high log_level - should be quiet with CaptureLogger(logger) as cl: trainer = get_regression_trainer(log_level="error") trainer.train() self.assertNotIn(log_info_string, cl.out) def test_save_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5) trainer.train() self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size)) # With a regular model that is not a PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False) trainer.train() self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False) @require_torch_multi_gpu def test_run_seq2seq_double_train_wrap_once(self): # test that we don't wrap the model more than once # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for # example DataParallel(DataParallel(model)) trainer = get_regression_trainer() trainer.train() model_wrapped_before = trainer.model_wrapped trainer.train() model_wrapped_after = trainer.model_wrapped self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice") @require_torch_up_to_2_gpus def test_can_resume_training(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1) trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check with a later checkpoint that it also works when we span over one epoch checkpoint = os.path.join(tmpdir, "checkpoint-15") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # With a regular model that is not a PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False) trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check with a later checkpoint that it also works when we span over one epoch checkpoint = os.path.join(tmpdir, "checkpoint-15") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check failures # 1. fail to find a bogus checkpoint trainer = get_regression_trainer() with self.assertRaises(Exception) as context: trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus") self.assertTrue("Can't find a valid checkpoint at" in str(context.exception)) # 2. fail to find any checkpoint - due a fresh output_dir output_dir2 = self.get_auto_remove_tmp_dir() trainer = get_regression_trainer(output_dir=output_dir2) with self.assertRaises(Exception) as context: trainer.train(resume_from_checkpoint=True) self.assertTrue("No valid checkpoint found in output directory" in str(context.exception)) @require_torch_non_multi_gpu def test_resume_training_with_randomness(self): # This test will fail flakily for more than 1 GPUs since the result will be slightly more different # TODO: investigate why it fails for 2 GPUs? if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True train_dataset = RegressionDataset(length=128) eval_dataset = RegressionDataset() config = RegressionModelConfig(a=0, b=2) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() model = RegressionRandomPreTrainedModel(config) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15")) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() self.assertAlmostEqual(a, a1, delta=1e-8) self.assertAlmostEqual(b, b1, delta=1e-8) # regression for this issue: https://github.com/huggingface/transformers/issues/12970 def test_training_with_resume_from_checkpoint_false(self): train_dataset = RegressionDataset(length=128) eval_dataset = RegressionDataset() config = RegressionModelConfig(a=0, b=2) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train(resume_from_checkpoint=False) @require_torch_up_to_2_gpus def test_resume_training_with_gradient_accumulation(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, gradient_accumulation_steps=2, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, gradient_accumulation_steps=2, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) @require_torch_up_to_2_gpus def test_resume_training_with_frozen_params(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.model.a.requires_grad_(False) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.model.a.requires_grad_(False) trainer.train(resume_from_checkpoint=checkpoint) self.assertFalse(trainer.model.a.requires_grad) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) def test_load_best_model_at_end(self): total = int(self.n_epochs * 64 / self.batch_size) with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, ) self.assertFalse(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss") with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, metric_for_best_model="accuracy", compute_metrics=AlmostAccuracy(), ) self.assertTrue(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True) with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="accuracy", compute_metrics=AlmostAccuracy(), ) self.assertTrue(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total) self.check_best_model_has_been_loaded( tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True ) # Test this works with a non PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, pretrained=False, ) self.assertFalse(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False) @slow def test_trainer_eval_mrpc(self): MODEL_ID = "bert-base-cased-finetuned-mrpc" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID) data_args = GlueDataTrainingArguments( task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True ) eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev") training_args = TrainingArguments(output_dir="./examples", no_cuda=True) trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset) result = trainer.evaluate() self.assertLess(result["eval_loss"], 0.2) @slow def test_trainer_eval_lm(self): MODEL_ID = "distilroberta-base" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) dataset = LineByLineTextDataset( tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence, ) self.assertEqual(len(dataset), 31) def test_training_iterable_dataset(self): config = RegressionModelConfig() model = RegressionPreTrainedModel(config) train_dataset = SampleIterableDataset() args = RegressionTrainingArguments(output_dir="./examples", max_steps=4) trainer = Trainer(model=model, args=args, train_dataset=train_dataset) trainer.train() self.assertEqual(trainer.state.global_step, 4) loader = trainer.get_train_dataloader() self.assertIsInstance(loader, torch.utils.data.DataLoader) self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler) def test_training_finite_iterable_dataset(self): config = RegressionModelConfig() model = RegressionPreTrainedModel(config) batch_size = 1 num_samples = 10 available_steps = num_samples // batch_size data = FiniteIterableDataset(length=num_samples) train_args = TrainingArguments( ".", max_steps=available_steps + 1, # set a higher number than actually available per_device_train_batch_size=batch_size, ) trainer = Trainer(model, train_dataset=data, args=train_args) with self.assertLogs("transformers.trainer", level="WARNING") as logs: trainer.train() self.assertIn(f"stopping training at step {available_steps}!", logs.output[0]) def test_evaluation_iterable_dataset(self): config = RegressionModelConfig(a=1.5, b=2.5) model = RegressionPreTrainedModel(config) eval_dataset = SampleIterableDataset() args = RegressionTrainingArguments(output_dir="./examples") trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size eval_dataset = SampleIterableDataset(length=66) results = trainer.evaluate(eval_dataset) x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) def test_predict_iterable_dataset(self): config = RegressionModelConfig(a=1.5, b=2.5) model = RegressionPreTrainedModel(config) eval_dataset = SampleIterableDataset() args = RegressionTrainingArguments(output_dir="./examples") trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy()) preds = trainer.predict(trainer.eval_dataset).predictions x = eval_dataset.dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size test_dataset = SampleIterableDataset(length=66) preds = trainer.predict(test_dataset).predictions x = test_dataset.dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) def test_num_train_epochs_in_training(self): # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given. # It should give 1 update step for each epoch. trainer = get_regression_trainer( max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5 ) train_output = trainer.train() self.assertEqual(train_output.global_step, 3) # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if # len(train_dl) < gradient_accumulation_steps. trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5) train_output = trainer.train() self.assertEqual(train_output.global_step, int(self.n_epochs)) def test_early_stopping_callback(self): # early stopping stops training before num_training_epochs with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, num_train_epochs=20, gradient_accumulation_steps=1, per_device_train_batch_size=16, load_best_model_at_end=True, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, compute_metrics=AlmostAccuracy(), metric_for_best_model="accuracy", ) trainer.add_callback(EarlyStoppingCallback(1, 0.0001)) train_output = trainer.train() self.assertLess(train_output.global_step, 20 * 64 / 16) # Invalid inputs to trainer with early stopping callback result in assertion error with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, num_train_epochs=20, gradient_accumulation_steps=1, per_device_train_batch_size=16, evaluation_strategy=IntervalStrategy.EPOCH, compute_metrics=AlmostAccuracy(), metric_for_best_model="accuracy", ) trainer.add_callback(EarlyStoppingCallback(1)) self.assertEqual(trainer.state.global_step, 0) try: trainer.train() except AssertionError: self.assertEqual(trainer.state.global_step, 0) def test_flos_extraction(self): trainer = get_regression_trainer(learning_rate=0.1) def assert_flos_extraction(trainer, wrapped_model_to_check): self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check)) self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0) # with plain model assert_flos_extraction(trainer, trainer.model) # with enforced DataParallel assert_flos_extraction(trainer, nn.DataParallel(trainer.model)) trainer.train() self.assertTrue(isinstance(trainer.state.total_flos, float)) def check_checkpoint_deletion(self, trainer, output_dir, expected): # Make fake checkpoints for n in [5, 10, 15, 20, 25]: os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True) trainer._rotate_checkpoints(output_dir=output_dir) glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")] values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints] self.assertSetEqual(set(values), set(expected)) def test_checkpoint_rotation(self): with tempfile.TemporaryDirectory() as tmp_dir: # Without best model at end trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2) self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25]) # With best model at end trainer = get_regression_trainer( output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2 ) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5") self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25]) # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume # from checkpoint trainer = get_regression_trainer( output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1 ) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25") self.check_checkpoint_deletion(trainer, tmp_dir, [25]) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5") self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25]) def check_mem_metrics(self, trainer, check_func): metrics = trainer.train().metrics check_func("init_mem_cpu_alloc_delta", metrics) check_func("train_mem_cpu_alloc_delta", metrics) if torch.cuda.device_count() > 0: check_func("init_mem_gpu_alloc_delta", metrics) check_func("train_mem_gpu_alloc_delta", metrics) metrics = trainer.evaluate() check_func("eval_mem_cpu_alloc_delta", metrics) if torch.cuda.device_count() > 0: check_func("eval_mem_gpu_alloc_delta", metrics) metrics = trainer.predict(RegressionDataset()).metrics check_func("test_mem_cpu_alloc_delta", metrics) if torch.cuda.device_count() > 0: check_func("test_mem_gpu_alloc_delta", metrics) def test_mem_metrics(self): # with mem metrics enabled trainer = get_regression_trainer(skip_memory_metrics=False) self.check_mem_metrics(trainer, self.assertIn) # with mem metrics disabled trainer = get_regression_trainer(skip_memory_metrics=True) self.check_mem_metrics(trainer, self.assertNotIn) @require_torch_gpu def test_fp16_full_eval(self): # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis. # it's using pretty large safety margins, but small enough to detect broken functionality. debug = 0 n_gpus = get_gpu_count() bs = 8 eval_len = 16 * n_gpus # make the params somewhat big so that there will be enough RAM consumed to be able to # measure things. We should get about 64KB for a+b in fp32 a = torch.ones(1000, bs) + 0.001 b = torch.ones(1000, bs) - 0.001 # 1. with mem metrics enabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False) metrics = trainer.evaluate() del trainer gc.collect() fp32_init = metrics["init_mem_gpu_alloc_delta"] fp32_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp32_init {fp32_init}") print(f"fp32_eval {fp32_eval}") # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram. # perfect world: fp32_init == 64<<10 self.assertGreater(fp32_init, 59_000) # after eval should be no extra memory allocated - with a small margin (other than the peak # memory consumption for the forward calculation that gets recovered) # perfect world: fp32_eval == close to zero self.assertLess(fp32_eval, 5_000) # 2. with mem metrics disabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False) metrics = trainer.evaluate() fp16_init = metrics["init_mem_gpu_alloc_delta"] fp16_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp16_init {fp16_init}") print(f"fp16_eval {fp16_eval}") # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0 # perfect world: fp16_init == close to zero self.assertLess(fp16_init, 5_000) # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back) # perfect world: fp32_init == 32<<10 self.assertGreater(fp16_eval, 27_000) # 3. relative comparison fp32 vs full fp16 # should be about half of fp16_init # perfect world: fp32_init/2 == fp16_eval self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000) @require_torch_gpu @require_torch_bf16 def test_bf16_full_eval(self): # note: most of the logic is the same as test_fp16_full_eval # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis. # it's using pretty large safety margins, but small enough to detect broken functionality. debug = 0 n_gpus = get_gpu_count() bs = 8 eval_len = 16 * n_gpus # make the params somewhat big so that there will be enough RAM consumed to be able to # measure things. We should get about 64KB for a+b in fp32 a = torch.ones(1000, bs) + 0.001 b = torch.ones(1000, bs) - 0.001 # 1. with mem metrics enabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False) metrics = trainer.evaluate() del trainer gc.collect() fp32_init = metrics["init_mem_gpu_alloc_delta"] fp32_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp32_init {fp32_init}") print(f"fp32_eval {fp32_eval}") # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram. # perfect world: fp32_init == 64<<10 self.assertGreater(fp32_init, 59_000) # after eval should be no extra memory allocated - with a small margin (other than the peak # memory consumption for the forward calculation that gets recovered) # perfect world: fp32_eval == close to zero self.assertLess(fp32_eval, 5_000) # 2. with mem metrics disabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False) metrics = trainer.evaluate() bf16_init = metrics["init_mem_gpu_alloc_delta"] bf16_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"bf16_init {bf16_init}") print(f"bf16_eval {bf16_eval}") # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0 # perfect world: bf16_init == close to zero self.assertLess(bf16_init, 5_000) # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back) # perfect world: fp32_init == 32<<10 self.assertGreater(bf16_eval, 27_000) # 3. relative comparison fp32 vs full bf16 # should be about half of bf16_init # perfect world: fp32_init/2 == bf16_eval self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000) def test_no_wd_param_group(self): model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)])) trainer = Trainer(model=model) trainer.create_optimizer_and_scheduler(10) # fmt: off wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight'] # fmt: on wd_params = [p for n, p in model.named_parameters() if n in wd_names] no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names] self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params) self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params) @require_torch @is_staging_test class TrainerIntegrationWithHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = login(username=USER, password=PASS) @classmethod def tearDownClass(cls): for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]: try: delete_repo(token=cls._token, name=model) except HTTPError: pass try: delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org") except HTTPError: pass def test_push_to_hub(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer"), push_to_hub=True, hub_token=self._token, ) url = trainer.push_to_hub() # Extract repo_name from the url re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url) self.assertTrue(re_search is not None) repo_name = re_search.groups()[0] self.assertEqual(repo_name, f"{USER}/test-trainer") model = RegressionPreTrainedModel.from_pretrained(repo_name) self.assertEqual(model.a.item(), trainer.model.a.item()) self.assertEqual(model.b.item(), trainer.model.b.item()) def test_push_to_hub_in_organization(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer(output_dir=tmp_dir) trainer.save_model() trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-org"), push_to_hub=True, hub_model_id="valid_org/test-trainer-org", hub_token=self._token, ) url = trainer.push_to_hub() # Extract repo_name from the url re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url) self.assertTrue(re_search is not None) repo_name = re_search.groups()[0] self.assertEqual(repo_name, "valid_org/test-trainer-org") model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org") self.assertEqual(model.a.item(), trainer.model.a.item()) self.assertEqual(model.b.item(), trainer.model.b.item()) def get_commit_history(self, repo): commit_logs = subprocess.run( "git log".split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=repo, ).stdout commits = commit_logs.split("\n\n")[1::2] return [commit.strip() for commit in commits] def test_push_to_hub_with_saves_each_epoch(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-epoch"), push_to_hub=True, hub_token=self._token, save_strategy="epoch", ) trainer.train() with tempfile.TemporaryDirectory() as tmp_dir: _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", use_auth_token=self._token) commits = self.get_commit_history(tmp_dir) expected_commits = [f"Training in progress, epoch {i}" for i in range(3, 0, -1)] expected_commits.append("initial commit") self.assertListEqual(commits, expected_commits) def test_push_to_hub_with_saves_each_n_steps(self): num_gpus = max(1, get_gpu_count()) if num_gpus > 2: return with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-step"), push_to_hub=True, hub_token=self._token, save_strategy="steps", save_steps=5, ) trainer.train() with tempfile.TemporaryDirectory() as tmp_dir: _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", use_auth_token=self._token) commits = self.get_commit_history(tmp_dir) total_steps = 20 // num_gpus expected_commits = [f"Training in progress, step {i}" for i in range(total_steps, 0, -5)] expected_commits.append("initial commit") self.assertListEqual(commits, expected_commits) @require_torch @require_optuna class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return {} def model_init(trial): if trial is not None: a = trial.suggest_int("a", -4, 4) b = trial.suggest_int("b", -4, 4) else: a = 0 b = 0 config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(config) def hp_name(trial): return MyTrialShortNamer.shortname(trial.params) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4) @require_torch @require_ray class TrainerHyperParameterRayIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def ray_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): from ray import tune return { "a": tune.randint(-4, 4), "b": tune.randint(-4, 4), } def model_init(config): if config is None: a = 0 b = 0 else: a = config["a"] b = config["b"] model_config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(model_config) def hp_name(params): return MyTrialShortNamer.shortname(params) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search( direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4 ) def test_hyperparameter_search(self): self.ray_hyperparameter_search() def test_hyperparameter_search_ray_client(self): import ray from ray.util.client.ray_client_helpers import ray_start_client_server with ray_start_client_server(): assert ray.util.client.ray.is_connected() self.ray_hyperparameter_search() @require_torch @require_sigopt class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return [ {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"}, {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"}, ] def model_init(trial): if trial is not None: a = trial.assignments["a"] b = trial.assignments["b"] else: a = 0 b = 0 config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(config) def hp_name(trial): return MyTrialShortNamer.shortname(trial.assignments) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search( direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4 ) optim_test_params = [] if is_torch_available(): default_adam_kwargs = { "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2), "eps": TrainingArguments.adam_epsilon, "lr": TrainingArguments.learning_rate, } optim_test_params = [ ( OptimizerNames.ADAMW_HF, transformers.optimization.AdamW, default_adam_kwargs, ), ( OptimizerNames.ADAMW_HF.value, transformers.optimization.AdamW, default_adam_kwargs, ), ( OptimizerNames.ADAMW_TORCH, torch.optim.AdamW, default_adam_kwargs, ), ( OptimizerNames.ADAFACTOR, transformers.optimization.Adafactor, { "scale_parameter": False, "relative_step": False, "lr": TrainingArguments.learning_rate, }, ), ] if is_apex_available(): import apex optim_test_params.append( ( OptimizerNames.ADAMW_APEX_FUSED, apex.optimizers.FusedAdam, default_adam_kwargs, ) ) @require_torch class TrainerOptimizerChoiceTest(unittest.TestCase): def check_optim_and_kwargs(self, optim: OptimizerNames, mandatory_kwargs, expected_cls): args = TrainingArguments(optim=optim, output_dir="None") actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(args) self.assertEqual(expected_cls, actual_cls) self.assertIsNotNone(optim_kwargs) for p, v in mandatory_kwargs.items(): self.assertTrue(p in optim_kwargs) actual_v = optim_kwargs[p] self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.") @parameterized.expand(optim_test_params, skip_on_empty=True) def test_optim_supported(self, name: str, expected_cls, mandatory_kwargs): # exercises all the valid --optim options self.check_optim_and_kwargs(name, mandatory_kwargs, expected_cls) trainer = get_regression_trainer(optim=name) trainer.train() def test_fused_adam(self): # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists. # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam, but only has to return a # class called, so mocking apex.optimizers.FusedAdam should be fine for testing and allow # the test to run without requiring an apex installation. mock = Mock() modules = { "apex": mock, "apex.optimizers": mock.optimizers, "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( OptimizerNames.ADAMW_APEX_FUSED, default_adam_kwargs, mock.optimizers.FusedAdam, ) def test_fused_adam_no_apex(self): args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None") # Pretend that apex does not exist, even if installed. By setting apex to None, importing # apex will fail even if apex is installed. with patch.dict("sys.modules", {"apex.optimizers": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args)
[ "torch.nn.Linear", "torch.ones", "torch.cuda.is_available", "torch.allclose", "torch.nn.DataParallel", "torch.nn.LayerNorm", "torch.randint", "torch.tensor", "torch.zeros", "torch.cuda.device_count", "torch.nn.functional.mse_loss", "torch.optim.lr_scheduler.LambdaLR", "torch.randn" ]
1.0
Yokohide0317/transformers
1089c30a4a3c56dcf017e500ba4b44e5c39f68dd
1.0
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import Dataset from .deepspeed import is_deepspeed_zero3_enabled from .trainer import Trainer from .trainer_utils import PredictionOutput from .utils import logging logger = logging.get_logger(__name__) class Seq2SeqTrainer(Trainer): def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", max_length: Optional[int] = None, num_beams: Optional[int] = None, ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init `compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (`Dataset`, *optional*): Pass a dataset if you wish to override `self.eval_dataset`. If it is an `datasets.Dataset`, columns not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__` method. ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ self._max_length = max_length if max_length is not None else self.args.generation_max_length self._num_beams = num_beams if num_beams is not None else self.args.generation_num_beams return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test", max_length: Optional[int] = None, num_beams: Optional[int] = None, ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in `evaluate()`. Args: test_dataset (`Dataset`): Dataset to run the predictions on. If it is an `datasets.Dataset`, columns not accepted by the `model.forward()` method are automatically removed. Has to implement the method `__len__` ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. <Tip> If your predictions or labels have different sequence lengths (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. </Tip> Returns: *NamedTuple* A namedtuple with the following keys: - predictions (`np.ndarray`): The predictions on `test_dataset`. - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some). - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained labels). """ self._max_length = max_length if max_length is not None else self.args.generation_max_length self._num_beams = num_beams if num_beams is not None else self.args.generation_num_beams return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on `model` using `inputs`. Subclass and override to inject custom behavior. Args: model (`nn.Module`): The model to evaluate. inputs (`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument `labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (`bool`): Whether or not to return the loss only. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ if not self.args.predict_with_generate or prediction_loss_only: return super().prediction_step( model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys ) has_labels = "labels" in inputs inputs = self._prepare_inputs(inputs) # XXX: adapt synced_gpus for fairscale as well gen_kwargs = { "max_length": self._max_length if self._max_length is not None else self.model.config.max_length, "num_beams": self._num_beams if self._num_beams is not None else self.model.config.num_beams, "synced_gpus": True if is_deepspeed_zero3_enabled() else False, } # prepare generation inputs # some encoder-decoder models can have varying encder's and thus # varying model input names if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name: generation_inputs = inputs[self.model.encoder.main_input_name] else: generation_inputs = inputs[self.model.main_input_name] generated_tokens = self.model.generate( generation_inputs, attention_mask=inputs.get("attention_mask", None), **gen_kwargs, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) with torch.no_grad(): with self.autocast_smart_context_manager(): outputs = model(**inputs) if has_labels: if self.label_smoother is not None: loss = self.label_smoother(outputs, inputs["labels"]).mean().detach() else: loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach() else: loss = None if self.args.prediction_loss_only: return (loss, None, None) if has_labels: labels = inputs["labels"] if labels.shape[-1] < gen_kwargs["max_length"]: labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) else: labels = None return (loss, generated_tokens, labels) def _pad_tensors_to_max_len(self, tensor, max_length): if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): # If PAD token is not defined at least EOS token has to be defined pad_token_id = ( self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id ) else: if self.model.config.pad_token_id is not None: pad_token_id = self.model.config.pad_token_id else: raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[-1]] = tensor return padded_tensor
[ "torch.no_grad", "torch.ones" ]
1.0
Yokohide0317/transformers
28e091430eea9e0d40839e56fd0d57aec262f5f9
1.0
import torch from transformers import AutoConfig, AutoModelForSeq2SeqLM, BartTokenizer, BartForConditionalGeneration, BartExtendedForConditionalGeneration, BartConfig, BartExtendedModel # Loading trained model PATH = "/home/ec2-user/moymarce/transformers/checkpoints/5-source_oracle-double/" tokenizer = BartTokenizer.from_pretrained(PATH) model = BartExtendedForConditionalGeneration.from_pretrained(PATH) # Generate example ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs. I hope one day they start eating healthier. Maybe a plant-based diet would be enough. <knw> My friends are cool" summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=20, early_stopping=True, use_cache=False) print('Predicted text by model:', [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids], sep='\n') # Add special token tokenizer.add_tokens(['<knw>'], special_tokens=True) # Initialize special tokens knw_token_id = tokenizer.convert_tokens_to_ids(['<knw>'])[0] #50265 pad_id = tokenizer.pad_token # Tokenize inputs into batch ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs. I hope one day they start eating healthier. Maybe a plant-based diet would be enough. <knw> My friends are cool" KNOWLEDGE = "My friends are cool" inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') knowledge_inputs = tokenizer([KNOWLEDGE], max_length=1024, return_tensors='pt') tokenizer([ARTICLE_TO_SUMMARIZE, KNOWLEDGE], max_length=1024, return_tensors='pt') # Masking X = torch.Tensor([[1,2,3,4], [5,6,7,8]]) indexes = ((X == 3) + (X == 6)).nonzero(as_tuple=True) knw_token_id = tokenizer.convert_tokens_to_ids(['<knw>'])[0] #50265 pad_id = tokenizer.pad_token for row, ind in zip(X, indexes[1]): ind = (row == tokenizer.decode('<knw>')).nonzero() print('row', row, ind) print(row[ind:]) row[ind:] = torch.zeros(row[ind:].size())
[ "torch.Tensor" ]
1.0
MarcelGM/transformers
aad1d9b6d5c58fd974618ac0aead1c5bd1119467
1.0
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training and inference using the library models for sequence classification on GLUE (Bert, Albert) with PABEE.""" import argparse import glob import json import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from pabee.modeling_pabee_albert import AlbertForSequenceClassificationWithPabee from pabee.modeling_pabee_bert import BertForSequenceClassificationWithPabee from transformers import ( WEIGHTS_NAME, AdamW, AlbertConfig, AlbertTokenizer, BertConfig, BertTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassificationWithPabee, BertTokenizer), "albert": (AlbertConfig, AlbertForSequenceClassificationWithPabee, AlbertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info( " Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch, ) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } inputs["token_type_ids"] = batch[2] outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="", patience=0): if args.model_type == "albert": model.albert.set_regression_threshold(args.regression_threshold) model.albert.set_patience(patience) model.albert.reset_stats() elif args.model_type == "bert": model.bert.set_regression_threshold(args.regression_threshold) model.bert.set_patience(patience) model.bert.reset_stats() else: raise NotImplementedError() # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } inputs["token_type_ids"] = batch[2] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) print(" %s = %s" % (key, str(result[key]))) writer.write("%s = %s\n" % (key, str(result[key]))) if args.eval_all_checkpoints and patience != 0: if args.model_type == "albert": model.albert.log_stats() elif args.model_type == "bert": model.bert.log_stats() else: raise NotImplementedError() return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name.", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--patience", default="0", type=str, required=False, ) parser.add_argument( "--regression_threshold", default=0, type=float, required=False, ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=1, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank", ) parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) if args.patience != "0" and args.per_gpu_eval_batch_size != 1: raise ValueError("The eval batch size must be 1 with PABEE inference on.") # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) print("Total Model Parameters:", sum(param.numel() for param in model.parameters())) output_layers_param_num = sum(param.numel() for param in model.classifiers.parameters()) print("Output Layers Parameters:", output_layers_param_num) single_output_layer_param_num = sum(param.numel() for param in model.classifiers[0].parameters()) print( "Added Output Layers Parameters:", output_layers_param_num - single_output_layer_param_num, ) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: patience_list = [int(x) for x in args.patience.split(",")] tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) print(f"Evaluation for checkpoint {prefix}") for patience in patience_list: result = evaluate(args, model, tokenizer, prefix=prefix, patience=patience) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results if __name__ == "__main__": main()
[ "torch.distributed.get_world_size", "torch.utils.data.RandomSampler", "torch.cuda.is_available", "torch.load", "torch.nn.DataParallel", "torch.distributed.init_process_group", "torch.manual_seed", "torch.tensor", "torch.utils.data.DataLoader", "torch.distributed.get_rank", "torch.device", "torch.cuda.manual_seed_all", "torch.save", "torch.utils.data.SequentialSampler", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.cuda.set_device", "torch.distributed.barrier", "torch.utils.data.TensorDataset", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
1.0
MarcelGM/transformers
aad1d9b6d5c58fd974618ac0aead1c5bd1119467
1.4
# Copyright 2018 Uber Technologies, Inc. All Rights Reserved. # Modifications copyright (C) 2019 Intel Corporation # Modifications copyright (C) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from distutils.version import LooseVersion import inspect import itertools import os import platform import sys import unittest import warnings import time import json from collections.abc import Iterable import numpy as np import pytest import torch import torch.nn as nn import torch.nn.functional as F import horovod.torch as hvd sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, 'utils')) from common import mpi_env_rank_and_size, skip_or_fail_gpu_test, temppath _1_5_api = LooseVersion(torch.__version__) >= LooseVersion('1.5.0') ccl_supported_types = set([torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor]) # Set environment variable for dynamic timeline API test os.environ["HOROVOD_TIMELINE"] = "DYNAMIC" # Set environment variable to enable adding/removing process sets after initializing Horovod. os.environ["HOROVOD_DYNAMIC_PROCESS_SETS"] = "1" class TorchTests(unittest.TestCase): """ Tests for ops in horovod.torch. """ def __init__(self, *args, **kwargs): super(TorchTests, self).__init__(*args, **kwargs) warnings.simplefilter('module') def convert_cpu_fp16_to_fp32(self, *values): # PyTorch doesn't support any CPU ops on FP16 tensors. # In case we need to do ops, we will convert tensor to FP32 here. result = [] for value in values: if value.dtype in [torch.float16, torch.HalfTensor] and not value.is_cuda: result.append(value.float()) else: result.append(value) return result def cast_and_place(self, tensor, dtype): if dtype.is_cuda: return tensor.cuda(hvd.local_rank()).type(dtype) return tensor.type(dtype) def filter_supported_types(self, types): if 'CCL_ROOT' in os.environ: types = [t for t in types if t in ccl_supported_types] return types def test_gpu_required(self): if not torch.cuda.is_available(): skip_or_fail_gpu_test(self, "No GPUs available") @pytest.mark.skipif(platform.system() == 'Darwin', reason='Reinit not supported on macOS') def test_horovod_reinit(self): """Test that Horovod can init -> shutdown -> init successfully.""" mpi_rank, _ = mpi_env_rank_and_size() gloo_rank = int(os.getenv('HOROVOD_RANK', -1)) is_mpi = gloo_rank == -1 if is_mpi: # Horovod cannot be re-initialized after shutdown when using MPI, so # this test can only be done using the Gloo controller self.skipTest("Gloo is not available") hvd.init() rank, size = hvd.rank(), hvd.size() hvd.shutdown() hvd.init() rank2, size2 = hvd.rank(), hvd.size() assert rank == rank2 assert size == size2 def test_horovod_is_initialized(self): """Test that is_initialized returned by hvd.is_initialized() is correct.""" hvd.init() assert hvd.is_initialized() gloo_rank = int(os.getenv('HOROVOD_RANK', -1)) is_mpi = gloo_rank == -1 if is_mpi: # Only applies for Gloo self.skipTest("Gloo is not available") hvd.shutdown() assert not hvd.is_initialized() hvd.init() def test_horovod_rank(self): """Test that the rank returned by hvd.rank() is correct.""" mpi_rank, _ = mpi_env_rank_and_size() gloo_rank = int(os.getenv('HOROVOD_RANK', -1)) # The mpi rank does not match gloo rank, we need to figure which one # we are using to run the test. is_mpi = gloo_rank == -1 hvd.init() rank = hvd.rank() if is_mpi: assert mpi_rank == rank else: assert gloo_rank == rank def test_horovod_size(self): """Test that the size returned by hvd.size() is correct.""" _, mpi_size = mpi_env_rank_and_size() gloo_size = int(os.getenv('HOROVOD_SIZE', -1)) # The mpi size does not match gloo size, we need to figure which one # we are using to run the test. is_mpi = gloo_size == -1 hvd.init() size = hvd.size() if is_mpi: assert mpi_size == size else: assert gloo_size == size def test_horovod_allreduce(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) summed = hvd.allreduce(tensor, average=False) tensor, summed = self.convert_cpu_fp16_to_fp32(tensor, summed) multiplied = tensor * size # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(summed, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_average(self): """Test that the allreduce correctly averages 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) averaged = hvd.allreduce(tensor, average=True) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(averaged, tensor, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_inplace(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) multiplied = self.cast_and_place(tensor * size, dtype) tensor = self.cast_and_place(tensor, dtype) hvd.allreduce_(tensor, average=False) tensor, multiplied = self.convert_cpu_fp16_to_fp32(tensor, multiplied) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(tensor, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_async_fused(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors with Tensor Fusion.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] tests = [] is_hvd_poll_false_once = False for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) handle = hvd.allreduce_async(tensor, average=False) if not hvd.poll(handle): is_hvd_poll_false_once = True tensor, = self.convert_cpu_fp16_to_fp32(tensor) multiplied = tensor * size tests.append((dtype, multiplied, handle)) # Make sure it's an asynchronous operation. assert is_hvd_poll_false_once, 'hvd.poll() always returns True, not an async op?' for dtype, multiplied, handle in tests: summed = hvd.synchronize(handle) summed, = self.convert_cpu_fp16_to_fp32(summed) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(summed, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_multi_gpu(self): """Test that the allreduce works on multiple GPUs.""" # Only do this test if there are GPUs available. if not torch.cuda.is_available(): self.skipTest("No GPUs available") hvd.init() local_rank = hvd.local_rank() size = hvd.size() # Skip the test if there are not enough GPUs. if torch.cuda.device_count() < hvd.local_size() * 2: self.skipTest("Not enough GPUs available") iter = 0 dtypes = [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): iter += 1 torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) device = local_rank * 2 + (iter + local_rank) % 2 tensor = tensor.cuda(device).type(dtype) multiplied = tensor * size hvd.allreduce_(tensor, average=False) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(tensor, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_prescale(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors with prescaling.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] int_types = [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor] half_types = [torch.HalfTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) np.random.seed(1234) factor = np.random.uniform() tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) summed = hvd.allreduce(tensor, average=False, prescale_factor=factor) factor = torch.tensor(factor, dtype=torch.float64) factor = factor.cuda(hvd.local_rank()) if dtype.is_cuda else factor if dtype.is_cuda and not int(os.environ.get('HOROVOD_MIXED_INSTALL', 0)): # For integer types, scaling done in FP64 factor = factor.type(torch.float64 if dtype in int_types else dtype) tensor = tensor.type(torch.float64 if dtype in int_types else dtype) else: # For integer types, scaling done in FP64, FP32 math for FP16 on CPU factor = factor.type(torch.float32 if dtype in half_types else torch.float64 if dtype in int_types else dtype) tensor = tensor.type(torch.float32 if dtype in half_types else torch.float64 if dtype in int_types else dtype) multiplied = factor * tensor multiplied = multiplied.type(dtype) summed, multiplied = self.convert_cpu_fp16_to_fp32(summed, multiplied) multiplied *= size # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in int_types: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(summed, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_postscale(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors with postscaling.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] int_types = [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor] half_types = [torch.HalfTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) np.random.seed(1234) factor = np.random.uniform() tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) summed = hvd.allreduce(tensor, average=False, postscale_factor=factor) factor = torch.tensor(factor, dtype=torch.float64) factor = factor.cuda(hvd.local_rank()) if dtype.is_cuda else factor if dtype.is_cuda and not int(os.environ.get('HOROVOD_MIXED_INSTALL', 0)): # For integer types, scaling done in FP64 factor = factor.type(torch.float64 if dtype in int_types else dtype) tensor = tensor.type(torch.float64 if dtype in int_types else dtype) else: # For integer types, scaling done in FP64, FP32 math for FP16 on CPU factor = factor.type(torch.float32 if dtype in half_types else torch.float64 if dtype in int_types else dtype) tensor = tensor.type(torch.float32 if dtype in half_types else torch.float64 if dtype in int_types else dtype) multiplied = size * tensor multiplied = multiplied * factor multiplied = multiplied.type(dtype) summed, multiplied = self.convert_cpu_fp16_to_fp32(summed, multiplied) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in int_types: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(summed, multiplied, threshold), 'hvd.allreduce produces incorrect results' def test_horovod_allreduce_process_sets(self): """Test that the allreduce correctly sums 1D, 2D, 3D tensors if restricted to non-global process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) even_rank_tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) odd_rank_tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) if rank in even_ranks: tensor = self.cast_and_place(even_rank_tensor, dtype) summed = hvd.allreduce(tensor, average=False, process_set=even_set) elif rank in odd_ranks: tensor = self.cast_and_place(odd_rank_tensor, dtype) summed = hvd.allreduce(tensor, average=False, process_set=odd_set) tensor, summed = self.convert_cpu_fp16_to_fp32(tensor, summed) if rank in even_ranks: multiplied = tensor * len(even_ranks) elif rank in odd_ranks: multiplied = tensor * len(odd_ranks) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. max_process_set_size = max(len(even_ranks), len(odd_ranks)) if max_process_set_size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif max_process_set_size < 10: threshold = 1e-4 elif max_process_set_size < 15: threshold = 5e-4 else: break assert torch.allclose(summed, multiplied, threshold), 'hvd.allreduce produces incorrect results' hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_allreduce_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different rank or dimension.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # Same rank, different dimension torch.manual_seed(1234) dims = [17 + rank] * 3 tensor = torch.FloatTensor(*dims).random_(-100, 100) try: hvd.allreduce(tensor) assert False, 'hvd.allreduce did not throw error' except (torch.FatalError, RuntimeError): pass # Same number of elements, different rank torch.manual_seed(1234) if rank == 0: dims = [17, 23 * 57] else: dims = [17, 23, 57] tensor = torch.FloatTensor(*dims).random_(-100, 100) try: hvd.allreduce(tensor) assert False, 'hvd.allreduce did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_allreduce_type_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different type.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # Same rank, different dimension dims = [17] * 3 if rank % 2 == 0: tensor = torch.IntTensor(*dims) else: tensor = torch.FloatTensor(*dims) try: hvd.allreduce(tensor) assert False, 'hvd.allreduce did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_allreduce_cpu_gpu_error(self): """Test that the allreduce raises an error if different ranks try to perform reduction on CPU and GPU.""" # Only do this test if there are GPUs available. if not torch.cuda.is_available(): self.skipTest("No GPUs available") if int(os.environ.get('HOROVOD_MIXED_INSTALL', 0)): # Skip if compiled with CUDA but without HOROVOD_GPU_OPERATIONS. self.skipTest("Not compiled with HOROVOD_GPU_OPERATIONS") hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # Same rank, different dimension dims = [17] * 3 if rank % 2 == 0: tensor = torch.cuda.FloatTensor(*dims) else: tensor = torch.FloatTensor(*dims) try: hvd.allreduce(tensor) assert False, 'hvd.allreduce did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_allreduce_duplicate_name_error(self): """Test that the allreduce raises an error if there are two concurrent operations with the same name.""" hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dims = [17] * 3 tensor = torch.FloatTensor(*dims) hvd.allreduce_async(tensor, name='duplicate_name') try: for i in range(10): hvd.allreduce_async(tensor, name='duplicate_name') assert False, 'hvd.allreduce_async did not throw error' except (torch.FatalError, ValueError): pass if LooseVersion(torch.__version__) >= LooseVersion('1.10.0'): # To fix https://github.com/horovod/horovod/issues/3149 hvd.join() def test_horovod_allreduce_grad(self): """Test the correctness of the allreduce gradient.""" hvd.init() size = hvd.size() # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() summed = hvd.allreduce(tensor, average=False) summed.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones([17] * dim) * size err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_allreduce_grad_average(self): """Test the correctness of the allreduce averaged gradient.""" hvd.init() # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() summed = hvd.allreduce(tensor, average=True) summed.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones([17] * dim) err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_allreduce_grad_process_sets(self): """Test the correctness of the allreduce gradient if restricted to non-global process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) even_rank_tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) odd_rank_tensor = torch.FloatTensor(*([17] * dim)).random_(-100, 100) if rank in even_ranks: tensor = self.cast_and_place(even_rank_tensor, dtype) this_set = even_set set_size = len(even_ranks) elif rank in odd_ranks: tensor = self.cast_and_place(odd_rank_tensor, dtype) this_set = odd_set set_size = len(odd_ranks) tensor.requires_grad_() summed = hvd.allreduce(tensor, average=False, process_set=this_set) summed.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones([17] * dim) * set_size err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_grouped_allreduce(self): """Test that the grouped allreduce correctly sums 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] tensors = [self.cast_and_place(tensor, dtype) for tensor in tensors] summed = hvd.grouped_allreduce(tensors, average=False) tensors, summed = zip(*[self.convert_cpu_fp16_to_fp32(t, s) for t, s in zip(tensors, summed)]) multiplied = [tensor * size for tensor in tensors] # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert all([torch.allclose(t1, t2, threshold) for t1, t2 in zip(summed, multiplied)]), \ 'hvd.grouped_allreduce produces incorrect results' def test_horovod_grouped_allreduce_average(self): """Test that the grouped allreduce correctly averages 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] tensors = [self.cast_and_place(tensor, dtype) for tensor in tensors] averaged = hvd.grouped_allreduce(tensors, average=True) tensors, averaged = zip(*[self.convert_cpu_fp16_to_fp32(t, m) for t, m in zip(tensors, averaged)]) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert all([torch.allclose(t1, t2, threshold) for t1, t2 in zip(averaged, tensors)]), \ 'hvd.grouped_allreduce produces incorrect results for average' def test_horovod_grouped_allreduce_inplace(self): """Test that the grouped allreduce correctly sums 1D, 2D, 3D tensors.""" hvd.init() size = hvd.size() dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] multiplied = [self.cast_and_place(tensor * size, dtype) for tensor in tensors] tensors = [self.cast_and_place(tensor, dtype) for tensor in tensors] hvd.grouped_allreduce_(tensors, average=False) tensors, multiplied = zip(*[self.convert_cpu_fp16_to_fp32(t, m) for t, m in zip(tensors, multiplied)]) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert all([torch.allclose(t1, t2, threshold) for t1, t2 in zip(tensors, multiplied)]), \ 'hvd.grouped_allreduce_ produces incorrect results' def test_horovod_grouped_allreduce_process_sets(self): """Test that the grouped allreduce correctly sums 1D, 2D, 3D tensors if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) dtypes = self.filter_supported_types([torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) even_rank_tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] odd_rank_tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] if rank in even_ranks: tensors = [self.cast_and_place(tensor, dtype) for tensor in even_rank_tensors] summed = hvd.grouped_allreduce(tensors, average=False, process_set=even_set) elif rank in odd_ranks: tensors = [self.cast_and_place(tensor, dtype) for tensor in odd_rank_tensors] summed = hvd.grouped_allreduce(tensors, average=False, process_set=odd_set) tensors, summed = zip(*[self.convert_cpu_fp16_to_fp32(t, s) for t, s in zip(tensors, summed)]) if rank in even_ranks: multiplied = [tensor * len(even_ranks) for tensor in tensors] elif rank in odd_ranks: multiplied = [tensor * len(odd_ranks) for tensor in tensors] # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. max_process_set_size = max(len(even_ranks), len(odd_ranks)) if max_process_set_size <= 3 or dtype in [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor]: threshold = 0 elif max_process_set_size < 10: threshold = 1e-4 elif max_process_set_size < 15: threshold = 5e-4 else: break assert all([torch.allclose(t1, t2, threshold) for t1, t2 in zip(summed, multiplied)]), \ 'hvd.grouped_allreduce produces incorrect results' hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_grouped_allreduce_cpu_gpu_error(self): """Test that the grouped allreduce raises an error if the input tensor list contains a mix of tensors on CPU and GPU.""" # Only do this test if there are GPUs available. if not torch.cuda.is_available(): self.skipTest("No GPUs available") hvd.init() tensors = [torch.FloatTensor(10) if i % 2 else torch.cuda.FloatTensor(10) for i in range(5)] try: hvd.grouped_allreduce(tensors, average=False) assert False, 'hvd.allreduce did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_grouped_allreduce_grad(self): """Test the correctness of the grouped allreduce gradient.""" hvd.init() size = hvd.size() # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] tensors = [self.cast_and_place(tensor, dtype) for tensor in tensors] for tensor in tensors: tensor.requires_grad_() summed = hvd.grouped_allreduce(tensors, average=False) for s in summed: s.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grads_out = [tensor.grad.data.cpu().numpy() for tensor in tensors] expected = np.ones([17] * dim) * size for grad_out in grads_out: err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_grouped_allreduce_grad_average(self): """Test the correctness of the grouped allreduce averaged gradient.""" hvd.init() # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] tensors = [self.cast_and_place(tensor, dtype) for tensor in tensors] for tensor in tensors: tensor.requires_grad_() summed = hvd.grouped_allreduce(tensors, average=True) for s in summed: s.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grads_out = [tensor.grad.data.cpu().numpy() for tensor in tensors] expected = np.ones([17] * dim) for grad_out in grads_out: err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_grouped_allreduce_grad_process_sets(self): """Test the correctness of the grouped allreduce gradient if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): torch.manual_seed(1234) even_rank_tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] odd_rank_tensors = [torch.FloatTensor(*([17] * dim)).random_(-100, 100) for _ in range(5)] if rank in even_ranks: tensors = [self.cast_and_place(tensor, dtype) for tensor in even_rank_tensors] this_set = even_set set_size = len(even_ranks) elif rank in odd_ranks: tensors = [self.cast_and_place(tensor, dtype) for tensor in odd_rank_tensors] this_set = odd_set set_size = len(odd_ranks) for tensor in tensors: tensor.requires_grad_() summed = hvd.grouped_allreduce(tensors, average=False, process_set=this_set) for s in summed: s.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grads_out = [tensor.grad.data.cpu().numpy() for tensor in tensors] expected = np.ones([17] * dim) * set_size for grad_out in grads_out: err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_allgather(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors.""" hvd.init() rank = hvd.rank() size = hvd.size() dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) gathered = hvd.allgather(tensor) tensor, gathered = self.convert_cpu_fp16_to_fp32(tensor, gathered) assert list(gathered.shape) == [17 * size] + [17] * (dim - 1) for i in range(size): rank_tensor = gathered[i * 17:(i + 1) * 17] assert list(rank_tensor.shape) == [17] * dim, \ 'hvd.allgather produces incorrect gathered shape' assert rank_tensor.data.min() == i, 'hvd.allgather produces incorrect gathered tensor' assert rank_tensor.data.max() == i, 'hvd.allgather produces incorrect gathered tensor' def test_horovod_allgather_variable_size(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors, even if those tensors have different sizes along the first dim.""" hvd.init() rank = hvd.rank() size = hvd.size() dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): # Support tests up to MPI Size of 35 if size > 35: break tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5 tensor_sizes = tensor_sizes[:size] tensor = torch.FloatTensor( *([tensor_sizes[rank]] + [17] * (dim - 1))).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) gathered = hvd.allgather(tensor) tensor, gathered = self.convert_cpu_fp16_to_fp32(tensor, gathered) expected_size = sum(tensor_sizes) assert list(gathered.shape) == [expected_size] + [17] * (dim - 1) for i in range(size): rank_size = [tensor_sizes[i]] + [17] * (dim - 1) rank_tensor = gathered[sum( tensor_sizes[:i]):sum(tensor_sizes[:i + 1])] assert list(rank_tensor.shape) == rank_size assert rank_tensor.data.min() == i assert rank_tensor.data.max() == i def test_horovod_allgather_async_fused(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors with Tensor Fusion.""" hvd.init() rank = hvd.rank() size = hvd.size() dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] tests = [] is_hvd_poll_false_once = False for dtype, dim in itertools.product(dtypes, dims): rank_shape = [17] * dim tensor = torch.FloatTensor(*(rank_shape)).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) handle = hvd.allgather_async(tensor) if not hvd.poll(handle): is_hvd_poll_false_once = True tests.append((handle, rank_shape)) # Make sure it's an asynchronous operation. assert is_hvd_poll_false_once, 'hvd.poll() always returns True, not an async op?' for handle, rank_shape in tests: gathered = hvd.synchronize(handle) gathered, = self.convert_cpu_fp16_to_fp32(gathered) for i in range(size): rank_tensor = gathered[i * 17:(i + 1) * 17] assert list(rank_tensor.shape) == rank_shape, \ 'hvd.allgather produces incorrect gathered shape' assert rank_tensor.data.min() == i, 'hvd.allgather produces incorrect gathered tensor' assert rank_tensor.data.max() == i, 'hvd.allgather produces incorrect gathered tensor' def test_horovod_allgather_process_sets(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_size = len(even_ranks) set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_size = len(odd_ranks) set_ranks = odd_ranks this_set = odd_set dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) gathered = hvd.allgather(tensor, process_set=this_set) tensor, gathered = self.convert_cpu_fp16_to_fp32(tensor, gathered) assert list(gathered.shape) == [17 * set_size] + [17] * (dim - 1) for i in range(set_size): rank_tensor = gathered[i * 17:(i + 1) * 17] assert list(rank_tensor.shape) == [17] * dim, \ 'hvd.allgather produces incorrect gathered shape' value = set_ranks[i] assert rank_tensor.data.min() == value, 'hvd.allgather produces incorrect gathered tensor' assert rank_tensor.data.max() == value, 'hvd.allgather produces incorrect gathered tensor' hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_allgather_error(self): """Test that the allgather returns an error if any dimension besides the first is different among the tensors being gathered.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") tensor_size = [17] * 3 tensor_size[1] = 10 * (rank + 1) tensor = torch.FloatTensor(*tensor_size).fill_(1).mul_(rank) try: hvd.allgather(tensor) assert False, 'hvd.allgather did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_allgather_type_error(self): """Test that the allgather returns an error if the types being gathered differ among the processes""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") tensor_size = [17] * 3 if rank % 2 == 0: tensor = torch.IntTensor(*tensor_size) else: tensor = torch.FloatTensor(*tensor_size) try: hvd.allgather(tensor) assert False, 'hvd.allgather did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_allgather_duplicate_name_error(self): """Test that the allgather raises an error if there are two concurrent operations with the same name.""" hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dims = [17] * 3 tensor = torch.FloatTensor(*dims) hvd.allgather_async(tensor, name='duplicate_name') try: for i in range(10): hvd.allgather_async(tensor, name='duplicate_name') assert False, 'hvd.allgather_async did not throw error' except (torch.FatalError, ValueError): pass if LooseVersion(torch.__version__) >= LooseVersion('1.10.0'): # To fix https://github.com/horovod/horovod/issues/3149 hvd.join() def test_horovod_allgather_grad(self): """Test the correctness of the allgather gradient.""" hvd.init() rank = hvd.rank() size = hvd.size() # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): # Support tests up to MPI Size of 35 if size > 35: break tensor_sizes = [3, 2, 7, 4, 6, 8, 10] * 5 tensor_sizes = tensor_sizes[:size] tensor = torch.FloatTensor( *([tensor_sizes[rank]] + [17] * (dim - 1))).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() grad_list = [] for r, tensor_size in enumerate(tensor_sizes): grad_list.append(self.cast_and_place( torch.ones([tensor_size] + [17] * (dim - 1)), dtype) * r) grad_ys = torch.cat(grad_list, dim=0) gathered = hvd.allgather(tensor) gathered.backward(grad_ys) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones( [tensor_sizes[rank]] + [17] * (dim - 1) ) * rank err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_allgather_grad_process_sets(self): """Test the correctness of the allgather gradient if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_ranks = odd_ranks this_set = odd_set # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): # Support tests up to MPI Size of 35 if size > 35: break tensor_sizes = [3, 2, 7, 4, 6, 8, 10] * 5 tensor_sizes = tensor_sizes[:size] set_tensor_sizes = [tensor_sizes[rk] for rk in set_ranks] tensor = torch.FloatTensor( *([tensor_sizes[rank]] + [17] * (dim - 1))).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() grad_list = [] for r, tensor_size in zip(set_ranks, set_tensor_sizes): grad_list.append(self.cast_and_place( torch.ones([tensor_size] + [17] * (dim - 1)), dtype) * r) grad_ys = torch.cat(grad_list, dim=0) gathered = hvd.allgather(tensor, process_set=this_set) gathered.backward(grad_ys) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones( [tensor_sizes[rank]] + [17] * (dim - 1) ) * rank err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_broadcast(self): """Test that the broadcast correctly broadcasts 1D, 2D, 3D tensors.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] root_ranks = list(range(size)) for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) root_tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(root_rank) tensor = self.cast_and_place(tensor, dtype) root_tensor = self.cast_and_place(root_tensor, dtype) broadcasted_tensor = hvd.broadcast(tensor, root_rank) tensor, root_tensor, broadcasted_tensor = \ self.convert_cpu_fp16_to_fp32(tensor, root_tensor, broadcasted_tensor) if rank != root_rank: assert (tensor == root_tensor).max() == 0, \ 'hvd.broadcast modifies source tensor' assert (broadcasted_tensor.data == root_tensor).min() == 1, \ 'hvd.broadcast produces incorrect broadcasted tensor' def test_horovod_broadcast_inplace(self): """Test that the broadcast correctly broadcasts 1D, 2D, 3D tensors.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] root_ranks = list(range(size)) for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) root_tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(root_rank) tensor = self.cast_and_place(tensor, dtype) root_tensor = self.cast_and_place(root_tensor, dtype) broadcasted_tensor = hvd.broadcast_(tensor, root_rank) tensor, root_tensor, broadcasted_tensor = \ self.convert_cpu_fp16_to_fp32(tensor, root_tensor, broadcasted_tensor) assert (tensor == broadcasted_tensor).min() == 1, \ 'hvd.broadcast does not modify source tensor' assert (broadcasted_tensor == root_tensor).min() == 1, \ 'hvd.broadcast produces incorrect broadcasted tensor' def test_horovod_broadcast_process_sets(self): """Test that the broadcast correctly broadcasts 1D, 2D, 3D tensors if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_size = len(even_ranks) set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_size = len(odd_ranks) set_ranks = odd_ranks this_set = odd_set dtypes = [torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] root_ranks = list(set_ranks) for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) root_tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(root_rank) tensor = self.cast_and_place(tensor, dtype) root_tensor = self.cast_and_place(root_tensor, dtype) broadcasted_tensor = hvd.broadcast(tensor, root_rank, process_set=this_set) tensor, root_tensor, broadcasted_tensor = \ self.convert_cpu_fp16_to_fp32(tensor, root_tensor, broadcasted_tensor) if rank != root_rank: assert (tensor == root_tensor).max() == 0, \ 'hvd.broadcast modifies source tensor' assert (broadcasted_tensor.data == root_tensor).min() == 1, \ 'hvd.broadcast produces incorrect broadcasted tensor' hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_broadcast_error(self): """Test that the broadcast returns an error if any dimension besides the first is different among the tensors being broadcasted.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") tensor_size = [17] * 3 tensor_size[1] = 10 * (rank + 1) tensor = torch.FloatTensor(*tensor_size).fill_(1).mul_(rank) try: hvd.broadcast(tensor, 0) assert False, 'hvd.broadcast did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_broadcast_type_error(self): """Test that the broadcast returns an error if the types being broadcasted differ among the processes""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") tensor_size = [17] * 3 if rank % 2 == 0: tensor = torch.IntTensor(*tensor_size) else: tensor = torch.FloatTensor(*tensor_size) try: hvd.broadcast(tensor, 0) assert False, 'hvd.broadcast did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_broadcast_rank_error(self): """Test that the broadcast returns an error if different ranks specify different root rank.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") tensor = torch.FloatTensor(*([17] * 3)).fill_(1) try: hvd.broadcast(tensor, rank) assert False, 'hvd.broadcast did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_broadcast_duplicate_name_error(self): """Test that the broadcast raises an error if there are two concurrent operations with the same name.""" hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dims = [17] * 3 tensor = torch.FloatTensor(*dims) hvd.broadcast_async(tensor, root_rank=0, name='duplicate_name') try: for i in range(10): hvd.broadcast_async(tensor, root_rank=0, name='duplicate_name') assert False, 'hvd.broadcast_async did not throw error' except (torch.FatalError, ValueError): pass if LooseVersion(torch.__version__) >= LooseVersion('1.10.0'): # To fix https://github.com/horovod/horovod/issues/3149 hvd.join() def test_horovod_broadcast_grad(self): """Test the correctness of the broadcast gradient.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] root_ranks = list(range(size)) for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() broadcasted_tensor = hvd.broadcast(tensor, root_rank) broadcasted_tensor.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grad_out = tensor.grad.data.cpu().numpy() c = 1 if rank == root_rank else 0 expected = np.ones([17] * dim) * c err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_broadcast_grad_process_sets(self): """Test the correctness of the broadcast gradient if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_size = len(even_ranks) set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_size = len(odd_ranks) set_ranks = odd_ranks this_set = odd_set # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] root_ranks = list(set_ranks) for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks): tensor = torch.FloatTensor(*([17] * dim)).fill_(1).mul_(rank) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() broadcasted_tensor = hvd.broadcast(tensor, root_rank, process_set=this_set) broadcasted_tensor.backward(self.cast_and_place(torch.ones([17] * dim), dtype)) grad_out = tensor.grad.data.cpu().numpy() c = 1 if rank == root_rank else 0 expected = np.ones([17] * dim) * c err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_alltoall(self): """Test that the alltoall correctly distributes 1D, 2D, and 3D tensors.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") dtypes = self.filter_supported_types([torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in range(size): vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) splits = torch.tensor([rank + 1] * size, dtype=torch.int32) tensor = self.cast_and_place(tensor, dtype) collected, received_splits = hvd.alltoall(tensor, splits) tensor, collected = self.convert_cpu_fp16_to_fp32(tensor, collected) assert collected.data.min() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.data.max() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.numel() == size * (size + 1) // 2 * 2**(dim - 1), 'hvd.alltoall collected wrong number of values' self.assertSequenceEqual(received_splits.tolist(), [rk + 1 for rk in range(size)], "hvd.alltoall returned incorrect received_splits") def test_horovod_alltoall_equal_split(self): """Test that the alltoall correctly distributes 1D tensors with default splitting.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") dtypes = self.filter_supported_types([torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in range(size): vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) tensor = self.cast_and_place(tensor, dtype) collected = hvd.alltoall(tensor) tensor, collected = self.convert_cpu_fp16_to_fp32(tensor, collected) assert collected.data.min() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.data.max() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.numel() == size * (size + 1) // 2 * 2**(dim - 1), 'hvd.alltoall collected wrong number of values' def test_horovod_alltoall_splits_on_gpu(self): """Test that the alltoall works correctly when the splits argument is a tensor on GPU.""" hvd.init() rank = hvd.rank() size = hvd.size() if not torch.cuda.is_available(): self.skipTest("No GPUs available") if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") dtypes = self.filter_supported_types([torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in range(size): vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) splits = torch.tensor([rank + 1] * size, dtype=torch.int32, device="cuda") tensor = self.cast_and_place(tensor, dtype) collected, received_splits = hvd.alltoall(tensor, splits) tensor, collected = self.convert_cpu_fp16_to_fp32(tensor, collected) assert collected.data.min() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.data.max() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.numel() == size * (size + 1) // 2 * 2**(dim - 1), 'hvd.alltoall collected wrong number of values' self.assertEqual(received_splits.device.type, "cuda", "received_splits should be on GPU here") self.assertSequenceEqual(received_splits.tolist(), [rk + 1 for rk in range(size)], "hvd.alltoall returned incorrect received_splits") def test_horovod_alltoall_process_sets(self): """Test that the alltoall correctly distributes 1D, 2D, and 3D tensors if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_size = len(even_ranks) set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_size = len(odd_ranks) set_ranks = odd_ranks this_set = odd_set dtypes = self.filter_supported_types([torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor]) if torch.cuda.is_available(): dtypes += [torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.ShortTensor, torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in set_ranks: vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) splits = torch.tensor([rank + 1] * set_size, dtype=torch.int32) tensor = self.cast_and_place(tensor, dtype) collected, received_splits = hvd.alltoall(tensor, splits, process_set=this_set) tensor, collected = self.convert_cpu_fp16_to_fp32(tensor, collected) assert collected.data.min() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.data.max() == rank, 'hvd.alltoall produces incorrect collected tensor' assert collected.numel() == sum(rk + 1 for rk in set_ranks) * 2**(dim - 1), 'hvd.alltoall collected wrong number of values' self.assertSequenceEqual(received_splits.tolist(), [rk + 1 for rk in set_ranks], "hvd.alltoall returned incorrect received_splits") hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_horovod_alltoall_type_error(self): """Test that the alltoall returns an error if the tensor types differ across the processes.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") if rank % 2: tensor = torch.empty(size, dtype=torch.int32) else: tensor = torch.empty(size, dtype=torch.float32) try: hvd.alltoall(tensor) assert False, 'hvd.alltoall did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_alltoall_equal_split_length_error(self): """Test that the alltoall with default splitting returns an error if the tensor length is not a multiple of the number of workers.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") tensor = torch.empty(size + 1) try: hvd.alltoall(tensor) assert False, 'hvd.alltoall did not throw error' except (torch.FatalError, ValueError): pass def test_horovod_alltoall_splits_error(self): """Test that the alltoall returns an error if the sum of the splits entries exceeds the first dimension of the input tensor.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") tensor = torch.empty(size - 1) splits = torch.ones(size, dtype=torch.int32) try: hvd.alltoall(tensor, splits) assert False, 'hvd.alltoall did not throw error' except (torch.FatalError, ValueError): pass def test_horovod_alltoall_splits_type_error(self): """Test that the alltoall returns an error if the splits tensor does not contain 32-bit integers.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") tensor = torch.empty(size) splits = torch.empty(size, dtype=torch.float32) try: hvd.alltoall(tensor, splits) assert False, 'hvd.alltoall did not throw error' except (torch.FatalError, ValueError): pass def test_horovod_alltoall_rank_error(self): """Test that the alltoall returns an error if any dimension besides the first is different among the tensors being processed.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") tensor_size = [2 * size] * 3 tensor_size[1] = 10 * (rank + 1) tensor = torch.ones(tensor_size) try: hvd.alltoall(tensor) assert False, 'hvd.alltoall did not throw error' except (torch.FatalError, RuntimeError): pass def test_horovod_alltoall_grad(self): """Test the correctness of the alltoall gradient.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in range(size): vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() splits = torch.tensor([rank + 1] * size, dtype=torch.int32) collected, received_splits = hvd.alltoall(tensor, splits) collected.backward(self.cast_and_place(torch.ones(collected.shape), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones(tensor.shape) err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_alltoall_equal_split_grad(self): """Test the correctness of the alltoall gradient with default splitting.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in range(size): vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() collected = hvd.alltoall(tensor) collected.backward(self.cast_and_place(torch.ones(collected.shape), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones(tensor.shape) err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) def test_horovod_alltoall_grad_process_sets(self): """Test the correctness of the alltoall gradient if restricted to process sets.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if NCCL version < 2.7.0 if hvd.nccl_built() and hvd.nccl_built() < 2700: self.skipTest("NCCL-based Alltoall requires NCCL version >= 2.7.0.") if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, size) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, size) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if rank in even_ranks: set_size = len(even_ranks) set_ranks = even_ranks this_set = even_set elif rank in odd_ranks: set_size = len(odd_ranks) set_ranks = odd_ranks this_set = odd_set # Only Tensors of floating point dtype can require gradients dtypes = [torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): vals = [] for i in set_ranks: vals += [i] * (rank + 1) tensor = torch.Tensor(vals) for _ in range(dim - 1): tensor = tensor.unsqueeze(1) tensor = torch.cat((tensor, tensor), dim=1) tensor = self.cast_and_place(tensor, dtype) tensor.requires_grad_() splits = torch.tensor([rank + 1] * set_size, dtype=torch.int32) collected, received_splits = hvd.alltoall(tensor, splits, process_set=this_set) collected.backward(self.cast_and_place(torch.ones(collected.shape), dtype)) grad_out = tensor.grad.data.cpu().numpy() expected = np.ones(tensor.shape) err = np.linalg.norm(expected - grad_out) self.assertLess(err, 0.00000001, "gradient %s differs from expected %s, " "error: %s" % (grad_out, expected, str(err))) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_broadcast_state(self): hvd.init() N, D_in, H, D_out = 64, 100, 10, 10 x = torch.randn(N, D_in).requires_grad_() y = torch.randn(N, D_out).requires_grad_() def new_optimizer(cls, opt_params, model): p = { k: v for k, v in opt_params.items() if k in inspect.getargspec(cls.__init__).args } return cls(model.parameters(), **p) def create_model(opt_class, opt_params): model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) optimizer = new_optimizer(opt_class, opt_params, model) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters()) return model, optimizer def get_model_param_values(model): params = sorted(model.state_dict().items()) return [(k, v.clone()) for k, v in params] def get_optimizer_param_values(optimizer): results = [] state_dict = optimizer.state_dict() for group in state_dict['param_groups']: for param_id in group['params']: if param_id not in state_dict['state']: continue params = sorted(state_dict['state'][param_id].items()) for k, v in params: results.append( (k, v.clone() if torch.is_tensor(v) else v)) return results # L-BFGS is currently unsupported, as are sparse tensors, which are # required by SparseAdam optimizer optimizers = [ (subclass.__name__, subclass) for subclass in torch.optim.Optimizer.__subclasses__() if subclass.__module__.startswith('torch.optim') and subclass != torch.optim.LBFGS and subclass != torch.optim.SparseAdam ] optimizers.sort(key=lambda tup: tup[0]) opt_params_list = [ dict(lr=0.2, momentum=0.9, weight_decay=0.1, centered=True), dict(lr=0.2) ] for (opt_name, opt_class), opt_params in itertools.product(optimizers, opt_params_list): model, optimizer = create_model(opt_class, opt_params) y_pred = model(x) loss = F.mse_loss(y_pred, y, size_average=False) optimizer.zero_grad() loss.backward() optimizer.step() model_param_values = get_model_param_values(model) for name, model_param_value in model_param_values: hvd.broadcast_(model_param_value, root_rank=0) opt_param_values_updated = [] opt_param_values = get_optimizer_param_values(optimizer) for name, opt_param_value in opt_param_values: is_tensor = torch.is_tensor(opt_param_value) if is_tensor: hvd.broadcast_(opt_param_value, root_rank=0) else: opt_param_value = hvd.broadcast_object(opt_param_value, name=name) opt_param_values_updated.append((name, opt_param_value)) opt_param_values = opt_param_values_updated with temppath() as fname: if hvd.rank() == 0: state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), } torch.save(state, fname) model, optimizer = create_model(opt_class, opt_params) if hvd.rank() == 0: checkpoint = torch.load(fname) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) hvd.broadcast_parameters(model.state_dict(), root_rank=0) model_param_value_after = get_model_param_values(model) for before, after in zip(model_param_values, model_param_value_after): name, model_param_value = before name_after, model_param_value_after = after self.assertEqual(name, name_after) self.assertEqual(type(model_param_value), type(model_param_value_after)) self.assertTrue( (model_param_value == model_param_value_after).all()) expected_tensors = hvd.broadcast_object(len(optimizer.state_dict()['state'].values())) hvd.broadcast_optimizer_state(optimizer, root_rank=0) self.assertEqual(len(optimizer.state_dict()['state'].values()), expected_tensors) opt_param_values_after = get_optimizer_param_values(optimizer) for before, after in zip(opt_param_values, opt_param_values_after): name, opt_param_value = before name_after, opt_param_value_after = after self.assertEqual(name, name_after) self.assertEqual(type(opt_param_value), type(opt_param_value_after)) if torch.is_tensor(opt_param_value): self.assertTrue( (opt_param_value == opt_param_value_after).all()) else: self.assertEqual(opt_param_value, opt_param_value_after) # TODO: investigate why this hangs on K80s @unittest.skip def test_broadcast_state_gpu(self): # Only do this test if there are GPUs available. if not torch.cuda.is_available(): self.skipTest("No GPUs available") # Set default tensor type, ensuring optimizer tensor-wrapping is robust # to this setting. try: torch.set_default_tensor_type(torch.cuda.FloatTensor) self.test_broadcast_state() finally: torch.set_default_tensor_type(torch.FloatTensor) def test_broadcast_state_options(self): hvd.init() N, D_in, H, D_out = 64, 100, 10, 10 x = torch.randn(N, D_in).requires_grad_() y = torch.randn(N, D_out).requires_grad_() params_0 = dict(lr=0.1, momentum=0.8, weight_decay=0.2, nesterov=True, betas=(0.9, 0.999), etas=(0.8, 2.4), step_sizes=(1e-5, 100)) params_1 = dict(lr=0.2, momentum=0.9, weight_decay=0.1, nesterov=False, betas=(0.8, 0.9), etas=(0.25, 1.75), step_sizes=(1e-7, 5)) def create_model(opt_class): model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) params = params_0 if hvd.rank() == 0 else params_1 p = { k: v for k, v in params.items() if k in inspect.getargspec(opt_class.__init__).args } opt = opt_class(model.parameters(), **p) opt = hvd.DistributedOptimizer(opt, named_parameters=model.named_parameters()) return model, opt # Include subclass name so we can sort them lexicographically, otherwise different # ranks will have different optimizer orderings optimizers = [ (subclass.__name__, subclass) for subclass in torch.optim.Optimizer.__subclasses__() if subclass.__module__.startswith('torch.optim') and subclass != torch.optim.LBFGS and subclass != torch.optim.SparseAdam ] optimizers.sort(key=lambda tup: tup[0]) for _, opt_class in optimizers: model, optimizer = create_model(opt_class) y_pred = model(x) loss = F.mse_loss(y_pred, y, size_average=False) optimizer.zero_grad() loss.backward() optimizer.step() hvd.broadcast_optimizer_state(optimizer, root_rank=0) p0 = { k: v for k, v in params_0.items() if k in inspect.getargspec(opt_class.__init__).args } for k, p in p0.items(): p_actual = optimizer.param_groups[0][k] if not isinstance(p, Iterable): p_actual = [p_actual] p = [p] for i in range(len(p)): self.assertEqual(type(p_actual[i]), type(p[i])) self.assertAlmostEqual(p_actual[i], p[i], delta=1e-5) # Ensure that the parameter option types are compatible with ops y_pred = model(x) loss = F.mse_loss(y_pred, y, size_average=False) optimizer.zero_grad() loss.backward() optimizer.step() def test_broadcast_state_no_grad(self): class ModelNoGrad(nn.Module): def __init__(self, a, b): super(ModelNoGrad, self).__init__() self.a = nn.Parameter(a.int(), requires_grad=False) self.b = nn.Parameter(b) def forward(self, x): return torch.index_select(self.b, 0, self.a.long()) * x hvd.init() a = torch.Tensor([1, 3]) b = torch.rand(4) model = ModelNoGrad(a, b) optimizer = torch.optim.SGD(model.parameters(), lr=0.001, weight_decay=1e-6, momentum=0.9, nesterov=True) optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters()) hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) grad = optimizer.param_groups[0]['params'][1].grad bgrad = hvd.broadcast(grad, root_rank=0) assert optimizer.param_groups[0]['params'][0].grad is None assert torch.all(torch.eq(grad, bgrad)).item() def test_broadcast_object(self): hvd.init() expected_obj = { 'hello': 123, 0: [1, 2] } obj = expected_obj if hvd.rank() == 0 else {} obj = hvd.broadcast_object(obj, root_rank=0) self.assertDictEqual(obj, expected_obj) def test_broadcast_object_process_sets(self): hvd.init() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if hvd.size() == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if hvd.rank() in even_ranks: set_ranks = even_ranks this_set = even_set elif hvd.rank() in odd_ranks: set_ranks = odd_ranks this_set = odd_set expected_obj = { 'hello': 123, 0: [1, 2] } obj = expected_obj if hvd.rank() == set_ranks[0] else {} obj = hvd.broadcast_object(obj, root_rank=set_ranks[0], process_set=this_set) self.assertDictEqual(obj, expected_obj) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_allgather_object(self): hvd.init() d = {'metric_val_1': hvd.rank()} if hvd.rank() == 1: d['metric_val_2'] = 42 results = hvd.allgather_object(d) expected = [{'metric_val_1': i} for i in range(hvd.size())] if hvd.size() > 1: expected[1] = {'metric_val_1': 1, 'metric_val_2': 42} self.assertEqual(len(results), hvd.size()) self.assertListEqual(results, expected) def test_compression_fp16(self): valid_dtypes = [torch.float32, torch.float64] invalid_dtypes = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64] tensor_size = [5] * 3 compression = hvd.Compression.fp16 for dtype in valid_dtypes: tensor = torch.ones(tensor_size, dtype=dtype) tensor_compressed, ctx = compression.compress(tensor) self.assertEqual(tensor_compressed.dtype, torch.float16) tensor_decompressed = compression.decompress(tensor_compressed, ctx) self.assertEqual(tensor_decompressed.dtype, dtype) expected = np.ones(tensor_size) err = np.linalg.norm(expected - tensor_decompressed.data.numpy()) self.assertLess(err, 0.00000001) for dtype in invalid_dtypes: tensor = torch.ones(tensor_size, dtype=dtype) tensor_compressed, ctx = compression.compress(tensor) self.assertEqual(tensor_compressed.dtype, dtype) tensor_decompressed = compression.decompress(tensor_compressed, ctx) self.assertEqual(tensor_decompressed.dtype, dtype) if dtype != torch.int8: # Cannot cast to NumPy with a CharTensor expected = np.ones(tensor_size) err = np.linalg.norm(expected - tensor_decompressed.data.numpy()) self.assertLess(err, 0.00000001) def test_force_allreduce(self): """Test that allreduce is forced on all gradients during opt.step().""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") N, D_in, H, D_out = 64, 100, 10, 10 x = torch.randn(N, D_in).requires_grad_() y = torch.randn(N, D_out).requires_grad_() def new_optimizer(cls, opt_params, model): p = { k: v for k, v in opt_params.items() if k in inspect.getargspec(cls.__init__).args } return cls(model.parameters(), **p) class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = torch.nn.Linear(D_in, H) self.fc2 = torch.nn.Linear(H, D_out) self.fc3 = torch.nn.Linear(D_out, D_out) def forward(self, x_): x_ = F.relu(self.fc1(x_)) x1_ = self.fc2(x_) x2_ = self.fc3(F.relu(x1_)) return x1_, x2_ def create_model(opt_class, opt_params): model = Net() hvd.broadcast_parameters(model.state_dict(), root_rank=0) opt = new_optimizer(opt_class, opt_params, model) opt = hvd.DistributedOptimizer( opt, named_parameters=model.named_parameters()) return model, opt # L-BFGS is currently unsupported, as are sparse tensors, which are # required by SparseAdam optimizer optimizers = [ (subclass.__name__, subclass) for subclass in torch.optim.Optimizer.__subclasses__() if subclass.__module__.startswith('torch.optim') and subclass != torch.optim.LBFGS and subclass != torch.optim.SparseAdam ] optimizers.sort(key=lambda tup: tup[0]) opt_params_list = [ dict(lr=0.2, momentum=0.9, weight_decay=0.1, centered=True), dict(lr=0.2) ] for (opt_name, opt_class), opt_params in itertools.product(optimizers, opt_params_list): model, optimizer = create_model(opt_class, opt_params) y_pred1, y_pred2 = model(x) if rank == 0: loss = F.mse_loss(y_pred1, y, size_average=False) else: loss = F.mse_loss(y_pred2, y, size_average=False) optimizer.zero_grad() loss.backward() optimizer.step() def test_model_parallelism(self): """Test that tensors on different GPUs are supported.""" # Only do this test if there are GPUs available. if not torch.cuda.is_available(): self.skipTest("No GPUs available") hvd.init() local_rank = hvd.local_rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") # Skip the test if there are not enough GPUs. if torch.cuda.device_count() < hvd.local_size() * 2: self.skipTest("Not enough GPUs available") first_device = local_rank * 2 second_device = local_rank * 2 + 1 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() # Place parts of model on different GPUs. self.conv1 = torch.nn.Conv2d(1, 100, 1).cuda(first_device) self.conv2 = torch.nn.Conv2d(100, 1, 1).cuda(second_device) def forward(self, x): x = x.cuda(first_device) x = self.conv1(x) x = x.cuda(second_device) x = self.conv2(x) return x model = Net() inp = torch.rand([1, 1, 1000, 1000]) opt = torch.optim.SGD(model.parameters(), lr=0.1) opt = hvd.DistributedOptimizer(opt, named_parameters=model.named_parameters()) loss = model(inp).sum() opt.zero_grad() loss.backward() opt.step() def test_delta_optimizer(self): """Test that delta optimizer.""" hvd.init() # TODO support non-MPI Adasum operation # Only do this test if there are GPUs available. if not hvd.mpi_enabled() or not torch.cuda.is_available(): self.skipTest("No GPUs available") local_rank = hvd.local_rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 100, 1).cuda(local_rank) self.conv2 = torch.nn.Conv2d(100, 1, 1).cuda(local_rank) def forward(self, x): x = x.cuda(local_rank) x = self.conv1(x) x = x.cuda(local_rank) x = self.conv2(x) return x model = Net() inp = torch.rand([1, 1, 1000, 1000]) opt = torch.optim.SGD(model.parameters(), lr=0.1) opt = hvd.DistributedOptimizer(opt, named_parameters=model.named_parameters(), op=hvd.Adasum) loss = model(inp).sum() opt.zero_grad() loss.backward() opt.step() def test_duplicate_names(self): """Test that passing duplicate names to optimizer will fail.""" net1 = torch.nn.Conv2d(1, 1, 1) net2 = torch.nn.Conv2d(1, 1, 1) parameters = itertools.chain(net1.parameters(), net2.parameters()) opt = torch.optim.SGD(parameters, lr=0.1) # This will have duplicate names, since both net1 and net2 have 'weight' and 'bias' named_parameters = itertools.chain(net1.named_parameters(), net2.named_parameters()) try: hvd.DistributedOptimizer(opt, named_parameters=named_parameters) assert False, 'hvd.DistributedOptimizer did not throw error' except ValueError: pass def test_dynamic_requires_grad(self): """Test that makes sure that gradients can be turned off/on dynamically.""" hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") gen = torch.nn.Conv2d(1, 10, 1) disc = torch.nn.Conv2d(10, 1, 1) inp = torch.rand([1, 1, 100, 100]) gen_opt = torch.optim.SGD(gen.parameters(), lr=0.1) gen_opt = hvd.DistributedOptimizer(gen_opt, named_parameters=gen.named_parameters()) disc_opt = torch.optim.SGD(disc.parameters(), lr=0.1) disc_opt = hvd.DistributedOptimizer(disc_opt, named_parameters=disc.named_parameters()) def train_step(train_generator=False, train_discriminator=False): for p in gen.parameters(): p.requires_grad_(train_generator) for p in disc.parameters(): p.requires_grad_(train_discriminator) gen_opt.zero_grad() disc_opt.zero_grad() loss = disc(gen(inp)).sum() loss.backward() for p in gen.parameters(): assert train_generator == (p.grad is not None and p.grad.max().is_nonzero()), \ 'Gradient for generator is zero but it should be trained or vice versa.' for p in disc.parameters(): assert train_discriminator == (p.grad is not None and p.grad.max().is_nonzero()), \ 'Gradient for discriminator is zero but it should be trained or vice versa.' if train_generator: gen_opt.step() if train_discriminator: disc_opt.step() for x in range(10): # Step 1: train generator. train_step(train_generator=True) # Step 2: train discriminator. train_step(train_discriminator=True) def test_gradient_clipping(self): """Test gradient clipping example.""" hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") x = torch.ones(1, 1).requires_grad_() y = torch.ones(1, 1).requires_grad_() model = torch.nn.Linear(1, 1) model.weight = torch.nn.Parameter(torch.zeros(1, 1) + 0.5) model.bias = torch.nn.Parameter(torch.zeros(1)) hvd.broadcast_parameters(model.state_dict(), root_rank=0) optimizer = torch.optim.SGD(model.parameters(), lr=0.1) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters()) y_pred = model(x) loss = F.mse_loss(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.synchronize() prior_grad = model.weight.grad.item() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) clipped_grad = model.weight.grad.item() assert abs(prior_grad) > abs(clipped_grad) with optimizer.skip_synchronize(): optimizer.step() def test_synchronize_step_warning(self): """ Test that .synchronize() followed by .step() without optimizer.skip_synchronize() context will produce a warning. """ hvd.init() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") x = torch.zeros(1, 1).requires_grad_() y = torch.ones(1, 1).requires_grad_() model = torch.nn.Linear(1, 1) hvd.broadcast_parameters(model.state_dict(), root_rank=0) optimizer = torch.optim.SGD(model.parameters(), lr=0.1) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters()) y_pred = model(x) loss = F.mse_loss(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.synchronize() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) with warnings.catch_warnings(record=True) as ws: optimizer.step() assert len(ws) == 1 assert 'optimizer.step() called without optimizer.skip_synchronize()' \ in str(ws[0].message) def test_no_named_parameters(self): """Test that leaving the default named_parameters=None will not throw an error.""" hvd.init() class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 100, 1) self.conv2 = torch.nn.Conv2d(100, 1, 1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x model = Net() inp = torch.rand([1, 1, 1000, 1000]) opt = torch.optim.SGD(model.parameters(), lr=0.1) opt = hvd.DistributedOptimizer(opt) loss = model(inp).sum() opt.zero_grad() loss.backward() opt.step() def test_missing_named_parameters(self): """Test that naming half of the model parameters will throw an error.""" hvd.init() class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 100, 1) self.conv2 = torch.nn.Conv2d(100, 1, 1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x model = Net() opt = torch.optim.SGD(model.parameters(), lr=0.1) try: hvd.DistributedOptimizer(opt, named_parameters=list(model.named_parameters())[0:1]) assert False, 'hvd.DistributedOptimizer did not throw error' except ValueError: pass def test_horovod_join_allreduce(self): """Test Join op with allreduce.""" hvd.init() rank = hvd.rank() size = hvd.size() dtypes = [torch.IntTensor, torch.LongTensor, torch.FloatTensor, torch.DoubleTensor] if torch.cuda.is_available(): dtypes += [torch.cuda.IntTensor, torch.cuda.LongTensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor] integral_types = [torch.IntTensor, torch.LongTensor, torch.cuda.IntTensor, torch.cuda.LongTensor] dims = [1, 2, 3] first_join_ranks = [0, 1] cachings = [False, True] for dtype, dim, first_join_rank, caching in itertools.product(dtypes, dims, first_join_ranks, cachings): torch.manual_seed(1234) def div(t, s): if _1_5_api and dtype in integral_types: return t.floor_divide(s) return t / s # Use two tensors to test fusion tensor_a = torch.FloatTensor(*([5] * dim)).random_(-100, 100) tensor_a = self.cast_and_place(tensor_a, dtype) tensor_b = torch.FloatTensor(*([17] * dim)).random_(-100, 100) tensor_b = self.cast_and_place(tensor_b, dtype) if caching: handle_a = hvd.allreduce_async(tensor_a, name="tensor_a", average=True) handle_b = hvd.allreduce_async(tensor_b, name="tensor_b", average=True) averaged_a = hvd.synchronize(handle_a) averaged_b = hvd.synchronize(handle_b) if rank == first_join_rank: if dtype.is_cuda: ret = hvd.join(hvd.local_rank()) else: ret = hvd.join() else: handle_a = hvd.allreduce_async(tensor_a, name="tensor_a", average=True) handle_b = hvd.allreduce_async(tensor_b, name="tensor_b", average=True) averaged_a = hvd.synchronize(handle_a) averaged_b = hvd.synchronize(handle_b) if dtype.is_cuda: ret = hvd.join(hvd.local_rank()) else: ret = hvd.join() # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3 or dtype in integral_types: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break assert torch.allclose(averaged_a, div(tensor_a * (size - 1), size), threshold), \ 'hvd.join with hvd.allreduce produces incorrect results' assert torch.allclose(averaged_b, div(tensor_b * (size - 1), size), threshold), \ 'hvd.join with hvd.allreduce produces incorrect results' self.assertNotEqual(ret, first_join_rank, msg="The return value of hvd.join() may not be equal to first_join_rank") ret_values = hvd.allgather_object(ret) self.assertSequenceEqual(ret_values, [ret] * size, msg="hvd.join() did not return the same value on each rank") def test_horovod_join_allgather(self): """Test Join op with allgather.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dims = [17] * 3 tensor = torch.FloatTensor(*dims) if rank == 0: if torch.cuda.is_available(): ret = hvd.join(hvd.local_rank()) else: ret = hvd.join() else: try: hvd.allgather(tensor) assert False, 'hvd.allgather did not throw error' except (torch.FatalError, RuntimeError): pass ret = hvd.join(hvd.local_rank()) self.assertNotEqual(ret, 0, msg="The return value of hvd.join() may not be equal to 0 because that would be the first rank to join") ret_values = hvd.allgather_object(ret) self.assertSequenceEqual(ret_values, [ret] * size, msg="hvd.join() did not return the same value on each rank") def test_horovod_join_broadcast(self): """Test Join op with broadcast.""" hvd.init() rank = hvd.rank() size = hvd.size() # This test does not apply if there is only one worker. if size == 1: self.skipTest("Only one worker available") dims = [17] * 3 tensor = torch.FloatTensor(*dims) if rank == 0: ret = hvd.join(hvd.local_rank()) else: try: broadcasted_tensor = hvd.broadcast(tensor, 1, name="test_horovod_join_broadcast") assert False, 'hvd.broadcast did not throw error' except (torch.FatalError, RuntimeError): pass if torch.cuda.is_available(): ret = hvd.join(hvd.local_rank()) else: ret = hvd.join() self.assertNotEqual(ret, 0, msg="The return value of hvd.join() may not be equal to 0 because that would be the first rank to join") ret_values = hvd.allgather_object(ret) self.assertSequenceEqual(ret_values, [ret] * size, msg="hvd.join() did not return the same value on each rank") def test_horovod_sync_batch_norm(self): """Tests Horovod version of SyncBatchNorm.""" if not torch.cuda.is_available(): self.skipTest("No GPUs available") hvd.init() ts_list = [ torch.stack([ torch.tensor([ [r, r + 1], [r * 2, r * 2 + 1], [r * 3, r * 3 + 1], [r * 4, r * 4 + 1] ]) for r in range(hvd.size()) ]), torch.stack([ torch.tensor([ [r + 1], [r * 2 + 1], [r * 3 + 1], [r * 4 + 1] ]) for r in range(hvd.size()) ]), ] for ts in ts_list: sync_bn = hvd.SyncBatchNorm(num_features=4) sync_bn.cuda(hvd.local_rank()) bn = torch.nn.BatchNorm1d(num_features=4) bn.cuda(hvd.local_rank()) ts = ts.cuda(hvd.local_rank()).float() ts1 = ts.clone().requires_grad_() ts2 = ts.clone().requires_grad_() # Training sync_bn_out = sync_bn(ts1[hvd.rank()].unsqueeze(0)) bn_out = bn(ts2) assert torch.allclose(sync_bn_out, bn_out[hvd.rank()].unsqueeze(0), 1e-6) assert torch.allclose(sync_bn.running_mean, bn.running_mean, 1e-6) assert torch.allclose(sync_bn.running_var, bn.running_var, 1e-6) # Gradients sync_bn_out.sum().backward() bn_out.mean(dim=0).sum().backward() assert torch.allclose(hvd.allreduce(sync_bn.weight.grad, name='sync_bn.weight.grad'), bn.weight.grad, 1e-6) assert torch.allclose(hvd.allreduce(sync_bn.bias.grad, name='sync_bn.bias.grad'), bn.bias.grad, 1e-6) assert torch.allclose(hvd.allreduce(ts1.grad, name='ts1.grad'), ts2.grad, 1e-6) @pytest.mark.skip(reason='https://github.com/horovod/horovod/issues/2496') def test_timeline_api(self): hvd.init() def check_file(fname, check_cycle=True): if hvd.rank() == 0: with open(fname, 'r') as timeline_file: timeline_text = timeline_file.read() assert 'allreduce.test_allreduce' in timeline_text, timeline_text assert 'start_time_since_epoch_in_micros' in timeline_text, timeline_text assert 'NEGOTIATE_ALLREDUCE' in timeline_text, timeline_text assert 'ALLREDUCE' in timeline_text, timeline_text json_obj = json.loads(timeline_text) assert json_obj is not None if check_cycle: assert 'CYCLE_START' in timeline_text, timeline_text with temppath() as fname1: hvd.start_timeline(fname1, mark_cycles=True) hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy(); # stop timeline will immediately stop events to be registered in timeline. We are providing some time # before calling stop so that mark_cycle events can be registered in timeline file. time.sleep(0.2) hvd.stop_timeline() check_file(fname1) # Test resuming with a different filename. with temppath() as fname2: hvd.start_timeline(fname2, mark_cycles=True) time.sleep(0.2) hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy(); # stop timeline will immediately stop events to be registered in timeline. We are providing some time # before calling stop so that cycle events can be registered in timeline file. time.sleep(0.2) hvd.stop_timeline() check_file(fname2) # Test resuming with a different filename, but mark_cycles=False with temppath() as fname3: # Make sure that last stop timeline has been processed. hvd.start_timeline(fname3, mark_cycles=False) time.sleep(0.2) hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy(); # stop timeline will immediately stop events to be registered in timeline. We are providing some time # before calling stop so that events can be registered in timeline file. hvd.stop_timeline() check_file(fname3, check_cycle=False) # Test resuming with a different filename, but mark_cycles=True with temppath() as fname4: # Make sure that last stop timeline has been processed. hvd.start_timeline(fname4, mark_cycles=True) time.sleep(0.2) hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy(); # stop timeline will immediately stop events to be registered in timeline. We are providing some time # before calling stop so that cycle events can be registered in timeline file. time.sleep(0.2) hvd.stop_timeline() check_file(fname4, check_cycle=True) with temppath() as fname5: # Make sure that last stop timeline has been processed. hvd.start_timeline(fname5, mark_cycles=False) hvd.start_timeline(fname5, mark_cycles=False) time.sleep(0.2) hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy() hvd.allreduce(torch.tensor([1, 2, 3], dtype=torch.float32), name='test_allreduce').numpy() time.sleep(0.2) hvd.stop_timeline() check_file(fname5, check_cycle=False) hvd.shutdown() def test_optimizer_no_named_parameters(self): hvd.init() model = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10)) optimizer = torch.optim.SGD( [{"params": model[0].parameters()}, {"params": model[1].parameters()}, ], lr=0.001, ) optimizer = hvd.DistributedOptimizer(optimizer) params = optimizer._parameter_names self.assertEqual(len(params), len(set(params.values()))) # Make sure all workers have the same set of parameter names all_param_names = hvd.allgather_object(set(params.values())) self.assertEqual(len(all_param_names), hvd.size()) for param_names in all_param_names: self.assertEqual(all_param_names[0], param_names) def test_sparse_embeddings(self): """Test that Horovod will correctly aggregate sparse gradients.""" hvd.init() for sparse_as_dense in [False, True]: class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.embedding = nn.Embedding(10, 3, sparse=True) def forward(self, x): x = self.embedding(x) return x model = Net() if hvd.rank() == 0: inp = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]) else: inp = torch.LongTensor([[1, 3, 4], [4, 7, 9]]) # list() see: https://github.com/pytorch/pytorch/issues/47594 opt = torch.optim.SparseAdam(list(model.parameters()), lr=0.1) opt = hvd.DistributedOptimizer(opt, sparse_as_dense=sparse_as_dense) loss = model(inp).sum() opt.zero_grad() loss.backward() opt.step() def test_async_sparse_allreduce(self): """Test that allgather over indices and values is equivalent to allreduce.""" hvd.init() # Generate random tensors, then convert them to sparse def random_sparse_tensor(*shape): t = torch.rand(*shape) t[t < 0.8] = 0 return t.to_sparse() tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5 tensors = [random_sparse_tensor(d0, 10) for d0 in tensor_sizes] allreduced_tensors = [hvd.allreduce(t.to_dense()) for t in tensors] handles = [hvd.sparse_allreduce_async(t, op=hvd.Average, name=str(i)) for i, t in enumerate(tensors)] allgathered_tensors = [handle() for handle in handles] for reduced, gathered in zip(allreduced_tensors, allgathered_tensors): assert torch.allclose(reduced, gathered.to_dense(), 1e-6) def test_async_sparse_allreduce_process_sets(self): """Test that allgather over indices and values is equivalent to allreduce if restricted to process sets.""" hvd.init() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if hvd.size() == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if hvd.rank() in even_ranks: set_ranks = even_ranks this_set = even_set elif hvd.rank() in odd_ranks: set_ranks = odd_ranks this_set = odd_set # Generate random tensors, then convert them to sparse def random_sparse_tensor(*shape): t = torch.rand(*shape) t[t < 0.8] = 0 return t.to_sparse() tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5 tensors = [random_sparse_tensor(d0, 10) for d0 in tensor_sizes] allreduced_tensors = [hvd.allreduce(t.to_dense(), process_set=this_set) for t in tensors] handles = [hvd.sparse_allreduce_async(t, op=hvd.Average, name=str(i), process_set=this_set) for i, t in enumerate(tensors)] allgathered_tensors = [handle() for handle in handles] for reduced, gathered in zip(allreduced_tensors, allgathered_tensors): assert torch.allclose(reduced, gathered.to_dense(), 1e-6) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) def test_optimizer_process_sets(self): """Test DistributedOptimizer restricted to a process set for an entire model. Note that this test makes the most sense when running with > 2 processes.""" hvd.init() if hvd.ccl_built(): self.skipTest("Multiple process sets currently do not support CCL.") # This test does not apply if there is only one worker. if hvd.size() == 1: self.skipTest("Only one worker available") even_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 0] odd_ranks = [rk for rk in range(0, hvd.size()) if rk % 2 == 1] even_set = hvd.add_process_set(even_ranks) odd_set = hvd.add_process_set(odd_ranks) if hvd.rank() in even_ranks: this_set = even_set elif hvd.rank() in odd_ranks: this_set = odd_set N, D_in, H, D_out = 64, 100, 10, 10 torch.manual_seed(hvd.rank()) x = torch.randn(N, D_in).requires_grad_() y = torch.randn(N, D_out).requires_grad_() def new_optimizer(cls, opt_params, model): p = { k: v for k, v in opt_params.items() if k in inspect.getargspec(cls.__init__).args } return cls(model.parameters(), **p) def create_model(opt_class, opt_params, process_set): model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) optimizer = new_optimizer(opt_class, opt_params, model) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), process_set=process_set) return model, optimizer model, optimizer = create_model(torch.optim.SGD, dict(lr=0.2, momentum=0.9, weight_decay=0.1, centered=True), even_set) hvd.broadcast_parameters(model.state_dict(), root_rank=0) y_pred = model(x) loss = F.mse_loss(y_pred, y, size_average=False) optimizer.zero_grad() loss.backward() optimizer.step() v = model.state_dict()["2.weight"] all_v = hvd.allgather(v, process_set=this_set) if this_set == even_set: for start in range(0, all_v.numel(), v.numel()): assert torch.allclose(v.flatten(), all_v.flatten()[start:start+v.numel()]) else: for start in range(0, all_v.numel(), v.numel()): if start // v.numel() == this_set.rank(): continue # They might randomly agree by chance, but that's extremely unlikely: assert not torch.allclose(v.flatten(), all_v.flatten()[start:start + v.numel()]) hvd.remove_process_set(odd_set) hvd.remove_process_set(even_set) if __name__ == "__main__": unittest.main()
[ "torch.nn.Linear", "torch.cat", "torch.ones", "torch.nn.Parameter", "torch.cuda.is_available", "torch.LongTensor", "torch.cuda.FloatTensor", "torch.load", "torch.allclose", "torch.IntTensor", "torch.is_tensor", "torch.FloatTensor", "torch.manual_seed", "torch.optim.Optimizer.__subclasses__", "torch.tensor", "torch.nn.functional.relu", "torch.empty", "torch.Tensor", "torch.nn.Embedding", "torch.zeros", "torch.set_default_tensor_type", "torch.optim.SGD", "torch.save", "torch.cuda.device_count", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.rand", "torch.eq", "torch.nn.functional.mse_loss", "torch.nn.BatchNorm1d", "torch.randn" ]
1.4.0
xinyual/horovod
65ae9afd05b854bc0dc9719dc246454edadf9487
1.5
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from itertools import product from typing import Tuple import onnx import pytest import torch from nncf import NNCFConfig from nncf.torch.quantization.layers import PTQuantizerSpec from nncf.torch.quantization.layers import QUANTIZATION_MODULES from nncf.torch.quantization.layers import QuantizationMode from nncf.torch.quantization.layers import QuantizerExportMode from tests.torch.helpers import get_nodes_by_type from tests.torch.helpers import register_bn_adaptation_init_args from tests.torch.helpers import resolve_constant_node_inputs_to_values from tests.torch.test_helpers import TwoConvTestModel from tests.torch.test_helpers import load_exported_onnx_version def get_config_for_export_mode(should_be_onnx_standard: bool) -> NNCFConfig: nncf_config = NNCFConfig() nncf_config.update({ "input_info": { "sample_size": [1, 1, 4, 4] }, "compression": { "algorithm": "quantization", "export_to_onnx_standard_ops": should_be_onnx_standard } }) register_bn_adaptation_init_args(nncf_config) return nncf_config def test_onnx_export_to_fake_quantize(tmp_path): model = TwoConvTestModel() nncf_config = get_config_for_export_mode(should_be_onnx_standard=False) onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) num_fq = 0 num_model_nodes = 0 num_other_nodes = 0 # pylint:disable=no-member for node in onnx_model_proto.graph.node: op_type = node.op_type if op_type == 'FakeQuantize': num_fq += 1 elif op_type in ['Conv', 'Constant']: num_model_nodes += 1 else: num_other_nodes += 1 assert num_fq == 4 assert num_other_nodes == 0 def test_onnx_export_to_quantize_dequantize(tmp_path): # It doesn't work with CPU target_device because # per-channel quantization is not supported in onnxruntime. model = TwoConvTestModel() nncf_config = get_config_for_export_mode(should_be_onnx_standard=True) nncf_config['target_device'] = 'TRIAL' onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) num_q = 0 num_dq = 0 num_model_nodes = 0 num_other_nodes = 0 # pylint:disable=no-member for node in onnx_model_proto.graph.node: op_type = node.op_type if op_type == 'QuantizeLinear': num_q += 1 elif op_type == 'DequantizeLinear': num_dq += 1 elif op_type in ['Conv', 'Constant']: num_model_nodes += 1 else: num_other_nodes += 1 assert num_q == 4 assert num_q == num_dq assert num_other_nodes == 0 INPUT_TENSOR_SHAPE = (2, 64, 15, 10) PER_CHANNEL_AQ_SCALE_SHAPE = (1, INPUT_TENSOR_SHAPE[1], 1, 1) @pytest.mark.parametrize('per_channel, qmode, export_mode', product( [True, False], [QuantizationMode.SYMMETRIC, QuantizationMode.ASYMMETRIC], [QuantizerExportMode.FAKE_QUANTIZE, QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS] )) def test_onnx_export_to_quantize_dequantize_per_channel(per_channel: bool, qmode: QuantizationMode, export_mode: QuantizerExportMode): scale_shape = PER_CHANNEL_AQ_SCALE_SHAPE if per_channel else (1,) qspec = PTQuantizerSpec( scale_shape=scale_shape, num_bits=8, mode=qmode, signedness_to_force=None, logarithm_scale=False, narrow_range=False, half_range=False, ) q_cls = QUANTIZATION_MODULES.get(qmode) quantizer = q_cls(qspec) if qmode is QuantizationMode.SYMMETRIC: quantizer.scale = torch.nn.Parameter(torch.rand_like(quantizer.scale)) else: quantizer.input_low = torch.nn.Parameter(torch.rand_like(quantizer.input_low)) quantizer.input_range = torch.nn.Parameter(torch.rand_like(quantizer.input_range)) # pylint: disable=protected-access quantizer._export_mode = export_mode x = torch.rand(INPUT_TENSOR_SHAPE) if quantizer.per_channel and export_mode is QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS: with pytest.raises(RuntimeError): quantizer.run_export_quantization(x) else: quantizer.run_export_quantization(x) class TargetCompressionIdxTestModel(torch.nn.Module): CONV2D_TARGET_CHANNEL_COUNT = 5 CONV2D_TRANSPOSE_TARGET_CHANNEL_COUNT = 10 def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(in_channels=1, out_channels=self.CONV2D_TARGET_CHANNEL_COUNT, kernel_size=(1, 1)) self.conv_t = torch.nn.ConvTranspose2d(in_channels=self.CONV2D_TARGET_CHANNEL_COUNT, out_channels=self.CONV2D_TRANSPOSE_TARGET_CHANNEL_COUNT, kernel_size=(1, 1)) def forward(self, x): x = self.conv(x) x = self.conv_t(x) return x def get_weight_fq_for_conv_node(node: onnx.NodeProto, graph: onnx.GraphProto): weight_input_tensor_id = node.input[1] matches = [x for x in graph.node if weight_input_tensor_id in x.output] assert len(matches) == 1 match = next(iter(matches)) assert match.op_type == "FakeQuantize" return match def get_input_low_input_high_for_wfq_node(wfq_node: onnx.NodeProto, graph: onnx.GraphProto) \ -> Tuple[onnx.AttributeProto, onnx.AttributeProto]: assert wfq_node.op_type == "FakeQuantize" conv_wfq_inputs = list(resolve_constant_node_inputs_to_values(wfq_node, graph).values()) return conv_wfq_inputs[1], conv_wfq_inputs[2] def test_target_compression_idx(tmp_path): model = TargetCompressionIdxTestModel() nncf_config = get_config_for_export_mode(should_be_onnx_standard=False) onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) onnx_graph = onnx_model_proto.graph # pylint:disable=no-member conv_nodes = get_nodes_by_type(onnx_model_proto, "Conv") assert len(conv_nodes) == 1 conv_node = next(iter(conv_nodes)) conv_wfq_node = get_weight_fq_for_conv_node(conv_node, onnx_graph) input_low_attr, input_high_attr = get_input_low_input_high_for_wfq_node(conv_wfq_node, onnx_graph) assert input_low_attr.shape == (TargetCompressionIdxTestModel.CONV2D_TARGET_CHANNEL_COUNT, 1, 1, 1) assert input_low_attr.shape == input_high_attr.shape conv_t_nodes = get_nodes_by_type(onnx_model_proto, "ConvTranspose") assert len(conv_t_nodes) == 1 conv_t_node = next(iter(conv_t_nodes)) conv_t_wfq_node = get_weight_fq_for_conv_node(conv_t_node, onnx_graph) input_low_t_attr, input_high_t_attr = get_input_low_input_high_for_wfq_node(conv_t_wfq_node, onnx_graph) assert input_low_t_attr.shape == (1, TargetCompressionIdxTestModel.CONV2D_TRANSPOSE_TARGET_CHANNEL_COUNT, 1, 1) assert input_low_t_attr.shape == input_high_t_attr.shape
[ "torch.rand", "torch.nn.Conv2d", "torch.nn.ConvTranspose2d", "torch.rand_like" ]
1.5.0
sarthakpati/nncf
29ad62c664c1dd53b3c8c50fc001a1b36bd1e8ac
1.5
""" Copyright (c) 2019-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import inspect from collections import OrderedDict from enum import Enum from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import TypeVar import functools import torch from copy import deepcopy from torch import nn from nncf.common.graph.definitions import MODEL_INPUT_OP_NAME from nncf.common.graph.definitions import MODEL_OUTPUT_OP_NAME from nncf.common.graph import NNCFNode from nncf.common.graph import NNCFNodeName from nncf.common.graph.model_transformer import ModelTransformer from nncf.common.graph.transformations.commands import TargetType from nncf.common.graph.transformations.commands import TransformationPriority from nncf.common.insertion_point_graph import InsertionPointGraph from nncf.common.insertion_point_graph import PostHookInsertionPoint from nncf.common.insertion_point_graph import PreHookInsertionPoint from nncf.common.utils.logger import logger as nncf_logger from nncf.common.utils.ordered_enum import OrderedEnum from nncf.torch.debug import CombinedDebugInterface from nncf.torch.debug import debuggable_forward from nncf.common.utils.debug import is_debug from nncf.torch.dynamic_graph.context import TracingContext from nncf.torch.dynamic_graph.graph import DynamicGraph from nncf.torch.dynamic_graph.graph import ShapeIgnoringTensorMetaComparator from nncf.torch.dynamic_graph.graph_tracer import GraphTracer from nncf.torch.dynamic_graph.graph_tracer import ModelInputInfo from nncf.torch.dynamic_graph.graph_tracer import PostGraphBuildActing from nncf.torch.dynamic_graph.graph_tracer import create_dummy_forward_fn from nncf.torch.dynamic_graph.io_handling import InputInfoWrapManager from nncf.torch.dynamic_graph.io_handling import replicate_same_tensors from nncf.torch.dynamic_graph.io_handling import wrap_nncf_model_outputs_with_objwalk from nncf.torch.dynamic_graph.operation_address import OperationAddress from nncf.torch.dynamic_graph.patch_pytorch import ignore_scope from nncf.torch.dynamic_graph.scope import Scope from nncf.torch.dynamic_graph.trace_tensor import TracedTensor from nncf.torch.dynamic_graph.transform_graph import replace_modules_by_nncf_modules from nncf.torch.graph.graph import PTNNCFGraph from nncf.torch.graph.graph_builder import GraphBuilder from nncf.torch.graph.graph_builder import GraphConverter from nncf.torch.graph.operator_metatypes import SplitMetatype from nncf.torch.graph.transformations.commands import PTInsertionCommand from nncf.torch.graph.transformations.commands import PTTargetPoint from nncf.torch.graph.transformations.layout import PTTransformationLayout from nncf.torch.knowledge_distillation.knowledge_distillation_handler import KnowledgeDistillationLossHandler from nncf.torch.layers import NNCF_MODULES from nncf.torch.layers import NNCF_WRAPPED_USER_MODULES_DICT from nncf.torch.module_operations import UpdateWeight from nncf.torch.quantization.layers import QUANTIZATION_MODULES from nncf.torch.utils import compute_FLOPs_hook from nncf.torch.utils import get_all_modules_by_type from nncf.torch.utils import get_state_dict_names_with_modules from nncf.torch.nested_objects_traversal import objwalk MODEL_WRAPPED_BY_NNCF_ATTR_NAME = 'nncf_module' LEGACY_ACT_STORAGE_NAME = "activation_quantizers" EXTERNAL_QUANTIZERS_STORAGE_NAME = "external_quantizers" Module = TypeVar('Module', bound=nn.Module) class ExtraCompressionModuleType(Enum): EXTERNAL_QUANTIZER = 0 class LoadStateListener: """ Resets the initialization flags (`initialized`) for all quantization modules on `load_state_dict` call. These flags are used to update not loaded params (from checkpoint or model's state) on initialization stage of algorithm. Flags reset is required on each call of `load_state_dict`, because internal method (`build_graph`) restores model state by calling this method. """ def __init__(self, model, all_quantizations): # pylint: disable=protected-access self.hook = model._register_load_state_dict_pre_hook( functools.partial(self.hook_fn, quantize_modules=all_quantizations.values())) def hook_fn(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, quantize_modules): for module in quantize_modules: module.initialized = False def close(self): self.hook.remove() class PTInsertionType(OrderedEnum): NNCF_MODULE_PRE_OP = 0 NNCF_MODULE_POST_OP = 1 OPERATOR_PRE_HOOK = 2 OPERATOR_POST_HOOK = 3 class PTInsertionPoint: TARGET_TYPE_VS_PT_INSERTION_TYPE_DICT = { TargetType.PRE_LAYER_OPERATION: PTInsertionType.NNCF_MODULE_PRE_OP, TargetType.POST_LAYER_OPERATION: PTInsertionType.NNCF_MODULE_POST_OP, TargetType.OPERATION_WITH_WEIGHTS: PTInsertionType.NNCF_MODULE_PRE_OP, TargetType.OPERATOR_PRE_HOOK: PTInsertionType.OPERATOR_PRE_HOOK, TargetType.OPERATOR_POST_HOOK: PTInsertionType.OPERATOR_POST_HOOK } def _get_pt_insertion_type(self, target_type: TargetType) -> PTInsertionType: if target_type not in PTInsertionPoint.TARGET_TYPE_VS_PT_INSERTION_TYPE_DICT: raise RuntimeError("Unsupported target type for PyTorch: {}".format(target_type)) return PTInsertionPoint.TARGET_TYPE_VS_PT_INSERTION_TYPE_DICT[target_type] def __init__(self, target_type: TargetType, op_address: OperationAddress, input_port_id: int = None): self.insertion_type = self._get_pt_insertion_type(target_type) self.op_address = op_address self.module_scope = op_address.scope_in_model self.input_port_id = input_port_id def __eq__(self, other: 'PTInsertionPoint'): return self.insertion_type == other.insertion_type and \ self.op_address == other.op_address and \ self.module_scope == other.module_scope and \ self.input_port_id == other.input_port_id def __str__(self): return ' '.join([str(v) for v in self.__dict__.values()]) def __hash__(self): return hash(str(self)) # pylint: disable=too-many-public-methods @ignore_scope class NNCFNetwork(nn.Module, PostGraphBuildActing): MODEL_STATE_VERSION_ATTR = '_nncf_model_state_version' MODEL_STATE_VERSION = 1 def __init__(self, module, input_infos: List[ModelInputInfo], dummy_forward_fn=None, wrap_inputs_fn=None, scopes_without_shape_matching=None, ignored_scopes=None, target_scopes=None, reset: bool = False, wrap_outputs_fn=None, original_model_accuracy=None): super().__init__() self._set_nncf_wrapped_model(module) self._forward_signature = inspect.signature(module.forward) self.input_infos = input_infos self._original_model_accuracy = original_model_accuracy self.ignored_scopes = ignored_scopes self.target_scopes = target_scopes self._user_dummy_forward_fn = dummy_forward_fn self._kd_loss_handler = None try: device = next(module.parameters()).device except StopIteration: # Param-less model, assume CPU device = 'cpu' if wrap_inputs_fn is not None: self._wrap_inputs_fn = wrap_inputs_fn else: self.__input_infos_based_input_wrapper = InputInfoWrapManager(self.input_infos, self._forward_signature, module_ref_for_device=self) self._wrap_inputs_fn = self.__input_infos_based_input_wrapper.wrap_inputs if wrap_outputs_fn is not None: self._wrap_outputs_fn = wrap_outputs_fn else: self._wrap_outputs_fn = wrap_nncf_model_outputs_with_objwalk self._nncf_module_scopes = [] # type: List[Scope] self.scopes_without_shape_matching = scopes_without_shape_matching self.debug_interface = CombinedDebugInterface() if is_debug() else None self._extra_module_types = [] # type: List[ExtraCompressionModuleType] # pylint:disable=line-too-long self._insertions_into_original_graph = {} # type: Dict[PTTargetPoint, List[Tuple[Callable, TransformationPriority]]] _orig_graph_build_forward_fn = self._get_dummy_forward_fn_for_graph_building(with_input_tracing=True, with_output_tracing=True) nncf_wrapped_model = self.get_nncf_wrapped_model() eval_only_op_scopes = self._collect_eval_only_op_scopes(nncf_wrapped_model, _orig_graph_build_forward_fn) # all modules called in eval mode should be replaced prior to graph building self._replace_modules_by_nncf_modules(device, eval_only_op_scopes, reset) _orig_context = TracingContext() _orig_context.add_node_comparators([MODEL_INPUT_OP_NAME], ShapeIgnoringTensorMetaComparator()) _orig_context.add_node_comparators([MODEL_OUTPUT_OP_NAME], ShapeIgnoringTensorMetaComparator()) if self.scopes_without_shape_matching: _orig_context.add_node_comparators(scopes_without_shape_matching, ShapeIgnoringTensorMetaComparator()) self._original_dynamic_graph = GraphTracer(_orig_graph_build_forward_fn).trace_graph(nncf_wrapped_model, _orig_context, as_eval=True) self._original_graph = GraphConverter.convert(self._original_dynamic_graph, input_infos=self.input_infos) self._compressed_graph = None # type: PTNNCFGraph self._compressed_context = TracingContext() self._dummy_forward_fn = self._get_dummy_forward_fn_for_graph_building(with_input_tracing=False, with_output_tracing=False) self._in_user_dummy_forward = False self._compressed_context.add_node_comparators([MODEL_INPUT_OP_NAME], ShapeIgnoringTensorMetaComparator()) self._compressed_context.add_node_comparators([MODEL_OUTPUT_OP_NAME], ShapeIgnoringTensorMetaComparator()) if self.scopes_without_shape_matching: self._compressed_context.add_node_comparators(scopes_without_shape_matching, ShapeIgnoringTensorMetaComparator()) self._load_listener = None @debuggable_forward def forward(self, *args, **kwargs): with self._compressed_context as ctx: # type: TracingContext ctx.base_module_thread_local_replica = self args, kwargs = replicate_same_tensors((args, kwargs)) if not self._in_user_dummy_forward: # If a user supplies own dummy forward, he is responsible for # correctly wrapping inputs inside it as well. args, kwargs = self._strip_traced_tensors(args, kwargs) args, kwargs = self._wrap_inputs_fn(args, kwargs) retval = self.get_nncf_wrapped_model()(*args, **kwargs) retval = replicate_same_tensors(retval) if not self._in_user_dummy_forward: retval = self._wrap_outputs_fn(retval) if self._kd_loss_handler is not None and self.get_nncf_wrapped_model().training: self._kd_loss_handler(retval, *args, **kwargs) return retval def _strip_traced_tensors(self, args: Tuple, kwargs: Dict) -> Tuple[Tuple, Dict]: """ Required to guard against new forward calls on tensors that have already passed through NNCF's forward once and got turned into TracedTensors by reference access. """ is_traced_tensor_predicate = lambda x: isinstance(x, TracedTensor) def strip_fn(tensor: TracedTensor) -> torch.Tensor: if hasattr(torch.Tensor, 'as_subclass'): return torch.Tensor.as_subclass(tensor, torch.Tensor) # Torch < 1.7.0 fallback return torch.tensor(tensor, device=tensor.device, requires_grad=tensor.requires_grad) args = objwalk(args, is_traced_tensor_predicate, strip_fn) kwargs = objwalk(kwargs, is_traced_tensor_predicate, strip_fn) return args, kwargs def create_knowledge_distillation_loss_handler(self, kd_original_model: nn.Module, calculate_fn)\ -> KnowledgeDistillationLossHandler: """ Creates KnowledgeDistillationLossHandler instance for enabling Knowledge Distillation feature. Also returns created KnowledgeDistillationLossHandler for control over Knowledge Distillation logic. :param kd_original_model: original non compressed model used for distillation :param calculate_fn: function used to parse model outputs and calculate knowledge distillation loss :return: KnowledgeDistillationLossHandler instance """ device = next(self.get_nncf_wrapped_model().parameters()).device self._kd_loss_handler = KnowledgeDistillationLossHandler(self._compressed_context, kd_original_model, calculate_fn, device) return self._kd_loss_handler # Cannnot use property syntax here, otherwise the wrapped module will end up # being twice in the same checkpoint with different prefixes def get_nncf_wrapped_model(self): return getattr(self, MODEL_WRAPPED_BY_NNCF_ATTR_NAME) def _set_nncf_wrapped_model(self, value): setattr(self, MODEL_WRAPPED_BY_NNCF_ATTR_NAME, value) def get_clean_shallow_copy(self) -> 'NNCFNetwork': # WARNING: Will reset pre- and post-ops of the underlying model. Use save_nncf_module_additions # and load_nncf_module_additions to preserve these, or temporary_clean_view(). from nncf.torch.utils import save_module_state, load_module_state saved_state = save_module_state(self) model_copy = NNCFNetwork(self.get_nncf_wrapped_model(), self.input_infos, self._user_dummy_forward_fn, self._wrap_inputs_fn, self.scopes_without_shape_matching, self.ignored_scopes, self.target_scopes, reset=True) load_module_state(model_copy, saved_state) return model_copy def get_modules_in_nncf_modules_by_type(self, types) -> Dict[Scope, nn.Module]: nncf_modules = self.get_nncf_modules() retval = {} for nncf_module_scope, nncf_module in nncf_modules.items(): nncf_module_scope.pop() for relative_scope, target_module in get_all_modules_by_type(nncf_module, types).items(): retval[nncf_module_scope + relative_scope] = target_module return retval def insert_at_point(self, point: PTInsertionPoint, fn_list: List[Callable]): if point.insertion_type == PTInsertionType.OPERATOR_PRE_HOOK: self._compressed_context.register_pre_hooks(fn_list, point.op_address, point.input_port_id) elif point.insertion_type == PTInsertionType.OPERATOR_POST_HOOK: self._compressed_context.register_post_hooks(fn_list, point.op_address) elif point.insertion_type in [PTInsertionType.NNCF_MODULE_PRE_OP, PTInsertionType.NNCF_MODULE_POST_OP]: norm_target_scope = self._normalize_variable_recurrent_scope(point.module_scope) norm_nncf_scopes = [self._normalize_variable_recurrent_scope(x) for x in self._nncf_module_scopes] assert norm_target_scope in norm_nncf_scopes # Required for proper Recurrent/VariableRecurrent addressing nncf_module = self.get_module_by_scope(point.module_scope) if point.insertion_type == PTInsertionType.NNCF_MODULE_PRE_OP: for fn in fn_list: nncf_module.register_pre_forward_operation(fn) elif point.insertion_type == PTInsertionType.NNCF_MODULE_POST_OP: for fn in fn_list: nncf_module.register_post_forward_operation(fn) else: raise RuntimeError("Unsupported insertion type: {}".format(point.insertion_type)) def __getattr__(self, name): wrapped_module = super().__getattr__(MODEL_WRAPPED_BY_NNCF_ATTR_NAME) if hasattr(wrapped_module, name): return getattr(wrapped_module, name) return super().__getattr__(name) def get_graph(self) -> PTNNCFGraph: if self._compressed_context.graph.get_nodes_count() == 0 or self._compressed_graph is None: self.rebuild_graph() return self._compressed_graph def get_dynamic_graph(self) -> DynamicGraph: return self._compressed_context.graph def get_original_graph(self) -> PTNNCFGraph: return self._original_graph def get_tracing_context(self) -> TracingContext: return self._compressed_context def enable_dynamic_graph_building(self): self._compressed_context.enable_node_additions() def disable_dynamic_graph_building(self): self._compressed_context.disable_node_additions() def _get_dummy_forward_fn_for_graph_building(self, with_input_tracing, with_output_tracing): if self._user_dummy_forward_fn is None: return create_dummy_forward_fn(self.input_infos, with_input_tracing=with_input_tracing, wrap_inputs_fn=self._wrap_inputs_fn, wrap_outputs_fn=self._wrap_outputs_fn, with_output_tracing=with_output_tracing) def wrapped_user_dummy_forward_fn(*args, **kwargs): self._in_user_dummy_forward = True retval = self._user_dummy_forward_fn(*args, **kwargs) self._in_user_dummy_forward = False return retval return wrapped_user_dummy_forward_fn def _replace_modules_by_nncf_modules(self, device, eval_only_op_scopes: List[Scope] = None, reset: bool = False): module, self._nncf_module_scopes = replace_modules_by_nncf_modules( self.get_nncf_wrapped_model(), ignored_scopes=self.ignored_scopes, target_scopes=self.target_scopes, eval_op_scopes=eval_only_op_scopes, reset=reset) self._set_nncf_wrapped_model(module.to(device)) def get_nncf_module_scopes(self) -> List[Scope]: return self._nncf_module_scopes def get_nncf_modules(self) -> Dict[Scope, torch.nn.Module]: nncf_module_names_list = NNCF_MODULES + [x.__name__ for x in NNCF_WRAPPED_USER_MODULES_DICT.values()] return get_all_modules_by_type(self.get_nncf_wrapped_model(), nncf_module_names_list) def get_weighted_original_graph_nodes(self, nncf_module_names: List[str] = None) -> List[NNCFNode]: retval = [] for nncf_module_scope in self._nncf_module_scopes: if nncf_module_names is not None: module_name = nncf_module_scope[-1].calling_module_class_name if module_name not in nncf_module_names: continue nodes_in_scope = self._original_graph.get_op_nodes_in_scope(nncf_module_scope) for node in nodes_in_scope: if node.layer_attributes is not None: # TODO(vshampor): implement more explicit filtering retval.append(node) return retval def get_nncf_modules_by_module_names(self, nncf_module_names_list: List[str]) -> Dict["Scope", torch.nn.Module]: return get_all_modules_by_type(self.get_nncf_wrapped_model(), nncf_module_names_list) def rebuild_graph(self, *input_args): self._compressed_context.reset_graph() dummy_forward_fn = self._get_dummy_forward_fn_for_graph_building(with_input_tracing=False, with_output_tracing=False) builder = GraphBuilder(dummy_forward_fn) self._compressed_graph = builder.build_graph(self, self._compressed_context, input_infos=self.input_infos) def post_build_graph_actions(self): # Reset initialization flags (`initialized`) for all quantization modules # after dummy `load_state_dict` call. quantization_types = [class_type.__name__ for class_type in QUANTIZATION_MODULES.registry_dict.values()] all_quantizations = get_state_dict_names_with_modules(self, quantization_types) for module in all_quantizations.values(): module.initialized = False def is_scope_in_nncf_module_scope(self, scope: Scope): # TODO: optimize norm_nncf_scopes = [self._normalize_variable_recurrent_scope(x) for x in self._nncf_module_scopes] norm_op_scope = self._normalize_variable_recurrent_scope(scope) for nncf_scope in norm_nncf_scopes: if norm_op_scope in nncf_scope: return True return False def register_compression_module_type(self, compression_module_type: ExtraCompressionModuleType): attr_name = self._compression_module_type_to_attr_name(compression_module_type) if compression_module_type in self._extra_module_types: raise RuntimeError("Module type {} is already registered".format(compression_module_type)) self.__setattr__(attr_name, nn.ModuleDict()) self._extra_module_types.append(compression_module_type) def add_compression_module(self, module_key: str, module: nn.Module, compression_module_type: ExtraCompressionModuleType): attr_name = self._compression_module_type_to_attr_name(compression_module_type) if compression_module_type not in self._extra_module_types: raise RuntimeError("Module type {} was not registered".format(compression_module_type)) storage = self.__getattr__(attr_name) if module_key in storage: raise RuntimeError("Module {} is already registered under {}".format(module_key, attr_name)) storage[module_key] = module def get_compression_modules_by_type(self, compression_module_type: ExtraCompressionModuleType) -> nn.ModuleDict: attr_name = self._compression_module_type_to_attr_name(compression_module_type) if compression_module_type not in self._extra_module_types: raise RuntimeError("Module type {} was not registered".format(compression_module_type)) return self.__getattr__(attr_name) @staticmethod def _compression_module_type_to_attr_name(compression_module_type: ExtraCompressionModuleType): """ Required for backward compatibility with checkpoints that store function and activation quantizers directly under corresponding attributes of NNCFNetwork. """ if compression_module_type == ExtraCompressionModuleType.EXTERNAL_QUANTIZER: return EXTERNAL_QUANTIZERS_STORAGE_NAME raise RuntimeError("Unknown extra module type") def sort_compression_modules(self, compression_module_type: ExtraCompressionModuleType): attr_name = self._compression_module_type_to_attr_name(compression_module_type) if compression_module_type not in self._extra_module_types: raise RuntimeError("Module type {} was not registered".format(compression_module_type)) module_dict = self.__getattr__(attr_name) # pylint: disable=protected-access module_dict._modules = OrderedDict(sorted(module_dict._modules.items())) self.__setattr__(attr_name, module_dict) @staticmethod def _normalize_variable_recurrent_scope(scope: Scope): """ Two scopes pointing to an NNCF module that only differ in a Recurrent/VariableRecurrent/VariableRecurrentReverse scope node actually point to one and the same module. """ ret_scope = scope.copy() for scope_element in ret_scope: if scope_element.calling_module_class_name in ["Recurrent", "VariableRecurrent", "VariableRecurrentReverse"]: scope_element.calling_module_class_name = "NormalizedName_Recurrent" return ret_scope def do_dummy_forward(self, force_eval=False): """ Attention: If run with force_eval=False, this may spoil the batchnorm statistics, and an eval run of the model will perform much worse than the train run. """ if force_eval: train_mode = self.training self.eval() with torch.no_grad(): with self._compressed_context as ctx: ctx.base_module_thread_local_replica = self self._dummy_forward_fn(self) if force_eval: if train_mode: self.train() def get_insertion_point_graph(self) -> InsertionPointGraph: # Set up a pre- and post-hooks on almost every op in PyTorch nncf_graph = self.get_original_graph() pre_hooks = [] # type: List[PreHookInsertionPoint] post_hooks = [] # type: List[PostHookInsertionPoint] for node in nncf_graph.get_all_nodes(): # Pre-hook insertion point nodes # Will insert a pre-hook IP for each input edge. The input edge must be marked with # a port ID attribute. in_edges = nncf_graph.get_input_edges(node) for edge in in_edges: port_id = edge.input_port_id pre_hook_ip = PreHookInsertionPoint(target_node_name=node.node_name, input_port_id=port_id) pre_hooks.append(pre_hook_ip) if issubclass(node.metatype, SplitMetatype): # chunk returns a tuple of tensors, which can only be handled in NNCF # once post-hook ports are enabled. Work around it for now by disallowing post-hook # insertion for chunks # TODO: enable post-hook ports and remove this continue # Post-hook insertion point nodes post_hook_ip = PostHookInsertionPoint(node.node_name) post_hooks.append(post_hook_ip) weighted_nodes = self.get_weighted_original_graph_nodes() weighted_node_names = [weighted_node.node_name for weighted_node in weighted_nodes] ip_graph = InsertionPointGraph(self._original_graph, weight_modifiable_node_names=weighted_node_names, allowed_pre_hook_insertion_points=pre_hooks, allowed_post_hook_insertion_points=post_hooks) return ip_graph def get_module_by_scope(self, scope: Scope) -> Optional[torch.nn.Module]: curr_module = self.get_nncf_wrapped_model() for scope_element in scope[1:]: # omit first scope element which corresponds to base module if scope_element.calling_field_name is None: # The module used is being created in-place every time and never stored in the model, # happens for nn.Softmax in BERT implementations. return None # pylint: disable=protected-access next_module = curr_module._modules.get(scope_element.calling_field_name) if next_module is None: raise RuntimeError("Could not find a {} module member in {} module of scope {} during node search" .format(scope_element.calling_field_name, scope_element.calling_module_class_name, str(scope))) curr_module = next_module return curr_module def get_containing_module(self, node_name: NNCFNodeName) -> torch.nn.Module: if self._compressed_graph is not None: try: scope = self._compressed_graph.get_scope_by_node_name(node_name) except RuntimeError: nncf_logger.debug("Node {} not found in compressed graph when trying to determine containing module, " "trying the original graph to see if the node was present there " "during graph building") scope = self._original_graph.get_scope_by_node_name(node_name) else: scope = self._original_graph.get_scope_by_node_name(node_name) return self.get_module_by_scope(scope) def get_parameters_count_in_model(self): """ Return total amount of model parameters. """ count = 0 for param in self.parameters(): count = count + param.numel() return count def get_flops_per_module(self) -> Dict[NNCFNodeName, int]: """ Calculates FLOPS count for modules. """ model = self flops_count_dict = {} def get_hook(name): return functools.partial(compute_FLOPs_hook, dict_to_save=flops_count_dict, module_node_name=name) hook_list = [] for nncf_node in self._original_graph.get_all_nodes(): node_module = self.get_containing_module(nncf_node.node_name) hook_list.append(node_module.register_forward_hook(get_hook(nncf_node.node_name))) model.do_dummy_forward(force_eval=True) for h in hook_list: h.remove() return flops_count_dict def get_MACs_in_model(self): """ Calculates MAC units count for model. """ flops_count_dict = self.get_flops_per_module() total_MACs_count = sum(v // 2 for v in flops_count_dict.values()) return total_MACs_count def get_input_infos(self) -> List[ModelInputInfo]: return deepcopy(self.input_infos) def save_nncf_module_additions(self) -> Dict[Scope, Tuple[torch.nn.ModuleDict, torch.nn.ModuleDict]]: retval = {} for module_scope, nncf_module in self.get_nncf_modules().items(): retval[module_scope] = (deepcopy(nncf_module.pre_ops), deepcopy(nncf_module.post_ops)) return retval def load_nncf_module_additions(self, scope_vs_pre_post_ops_dict: Dict[Scope, Tuple[torch.nn.ModuleDict, torch.nn.ModuleDict]]): for module_scope, nncf_module in self.get_nncf_modules().items(): nncf_module.pre_ops = scope_vs_pre_post_ops_dict[module_scope][0] nncf_module.post_ops = scope_vs_pre_post_ops_dict[module_scope][1] def temporary_clean_view(self): class Mgr: def __init__(self, model: NNCFNetwork): self.model = model self.storage_dict = {} def __enter__(self): self.storage_dict = self.model.save_nncf_module_additions() clean_model = self.model.get_clean_shallow_copy() return clean_model def __exit__(self, exc_type, exc_val, exc_tb): self.model.load_nncf_module_additions(self.storage_dict) return Mgr(self) def _collect_eval_only_op_scopes(self, model: nn.Module, dummy_forward_fn: Callable) -> List[Scope]: """ Returns scopes of the modules which are executed in evaluation mode only. """ tracer = GraphTracer(dummy_forward_fn) result = [] eval_graph = tracer.trace_graph(model, as_eval=True) for dyn_graph_node in eval_graph.get_all_nodes(): result.append(dyn_graph_node.op_exec_context.scope_in_model) return result @property def original_model_accuracy(self): return self._original_model_accuracy def get_node_to_op_address_mapping(self) -> Dict[NNCFNodeName, OperationAddress]: # The IDs of corresponding nodes of the original dynamic graph and original NNCF graph # must be equal for this to work. retval = {} for node in self._original_dynamic_graph.get_all_nodes(): node_id = node.node_id op_address = node.op_exec_context.op_address nncf_node = self._original_graph.get_node_by_id(node_id) retval[nncf_node.node_name] = op_address return retval class PTModelTransformer(ModelTransformer): def __init__(self, model: NNCFNetwork): super().__init__(model) self._node_to_op_address_mapping = model.get_node_to_op_address_mapping() def transform(self, transformation_layout: PTTransformationLayout) -> NNCFNetwork: fns_grouped_by_points = {} # type: Dict[PTInsertionPoint, List[Tuple[Callable, TransformationPriority]]] for transformation_command in transformation_layout.transformations: # type: PTInsertionCommand target_point = transformation_command.target_point # type: PTTargetPoint target_node_name = target_point.target_node_name pt_ip = PTInsertionPoint(target_type=target_point.target_type, op_address=self._node_to_op_address_mapping[target_node_name], input_port_id=target_point.input_port_id) fn = transformation_command.fn if target_point.type is TargetType.OPERATION_WITH_WEIGHTS: fn = UpdateWeight(fn) tup = (fn, transformation_command.priority) if pt_ip not in fns_grouped_by_points: fns_grouped_by_points[pt_ip] = [tup] else: fns_grouped_by_points[pt_ip].append(tup) for pt_ip, fn_list_with_priority in fns_grouped_by_points.items(): fn_list_with_priority = sorted(fn_list_with_priority, key=lambda x: x[1]) self._model.insert_at_point(pt_ip, [x[0] for x in fn_list_with_priority]) return self._model
[ "torch.nn.ModuleDict", "torch.no_grad", "torch.tensor", "torch.Tensor.as_subclass" ]
1.5.0
sarthakpati/nncf
29ad62c664c1dd53b3c8c50fc001a1b36bd1e8ac
1.5
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os from functools import partial from openvino.inference_engine import IENetwork, IEPlugin, get_version from nncf.config import NNCFConfig from nncf.torch.dynamic_graph.graph_tracer import create_input_infos from tools.ir_utils import get_ir_paths def getExecNet(plugin, net): return plugin.load(network=net) argparser = argparse.ArgumentParser() argparser.add_argument("-m", "--model", help="input IR name", required=True) argparser.add_argument("--bin", help="Input *.bin file name") argparser.add_argument("-o", "--output-dir", help="Output directory to dump weights", required=True) argparser.add_argument("-c", "--config", type=str, help="Model's config", required=True) argparser.add_argument("--cuda", help="inference PyTorch model on CUDA", action='store_true') argparser.add_argument('--data', metavar='DIR', help='path to dataset', required=True) argparser.add_argument('--cpu-plugin-dir', metavar='DIR', help='path to the directory with CPU Plugin and CPU Extension libraries', required=True) argparser.add_argument("-n", "--num-layers", type=int, default=-1, help="Dump activations for given number of layers") argparser.add_argument("--dump", action='store_true', help="Enables dump of activations") args = argparser.parse_args() def validate_torch_model(output_dir, config, num_layers, dump, val_loader=None, cuda=False): from tools.debug.common import load_torch_model, register_print_hooks if not os.path.exists(output_dir): os.makedirs(output_dir) model = load_torch_model(config, cuda) model_e = model.eval() if dump: register_print_hooks(output_dir, model_e, num_layers=num_layers, data_to_compare=None, dump_activations=True) validate_general(val_loader, model_e, infer_pytorch_model, cuda) def main(): model_bin, model_xml = get_ir_paths(args.model, args.bin) config = NNCFConfig.from_json(args.config) input_infos_list = create_input_infos(config) image_size = input_infos_list[0].shape[-1] size = int(image_size / 0.875) print('IE version: {}'.format(get_version())) # NOTE: importing torch after loading IE to plugin to avoid issue with built-in MKLDNN of PyTorch plugin = IEPlugin(device='CPU', plugin_dirs=args.cpu_plugin_dir) plugin.add_cpu_extension(os.path.join(args.cpu_plugin_dir, "libcpu_extension.so")) net = IENetwork(model=model_xml, weights=model_bin) exec_net = getExecNet(plugin, net) from torch.utils.data import DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms val_loader = DataLoader( datasets.ImageFolder(args.data, transforms.Compose([ transforms.Resize(size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])), batch_size=1, shuffle=False, num_workers=4, pin_memory=True) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) config['log_dir'] = args.output_dir infer_fn = partial(infer_ie_model, net=net) validate_general(val_loader, exec_net, infer_fn) validate_torch_model(os.path.join(args.output_dir, "PTH"), config=config, num_layers=args.num_layers, dump=args.dump, val_loader=val_loader, cuda=args.cuda) def infer_ie_model(exec_net, inputs, net): input_cpu = inputs.numpy() input_name = next(iter(net.inputs)) output_name = next(iter(net.outputs)) res = exec_net.infer(inputs={input_name: input_cpu}) output = res[output_name] import torch torch_output = torch.from_numpy(output) return torch_output def infer_pytorch_model(model, inputs): return model(inputs) def validate_general(val_loader, model, infer_model_fn, cuda=False): from examples.torch.classification.main import AverageMeter, accuracy top1 = AverageMeter() top5 = AverageMeter() for i, (input_, target) in enumerate(val_loader): # compute output output = infer_model_fn(model, input_) if cuda: target = target.cuda(None, non_blocking=True) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) top1.update(acc1, input_.size(0)) top5.update(acc5, input_.size(0)) if i % 10 == 0: print('IE Test : [{0}/{1}]\t' 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(i, len(val_loader), top1=top1, top5=top5)) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg, top5.avg if __name__ == '__main__': main()
[ "torch.from_numpy" ]
1.5.0
sarthakpati/nncf
29ad62c664c1dd53b3c8c50fc001a1b36bd1e8ac
0.27
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """ Tests a variety of export options with our surgery methods applied, including torchscript, torch.fx, and ONNX. """ import os import pathlib from typing import Any, Callable, Type import pytest import torch import torch.fx from composer.algorithms.blurpool.blurpool import BlurPool from composer.algorithms.channels_last.channels_last import ChannelsLast from composer.algorithms.factorize.factorize import Factorize from composer.algorithms.ghost_batchnorm.ghost_batchnorm import GhostBatchNorm from composer.algorithms.squeeze_excite.squeeze_excite import SqueezeExcite from composer.algorithms.stochastic_depth.stochastic_depth import StochasticDepth from composer.core.algorithm import Algorithm from composer.functional import (apply_blurpool, apply_channels_last, apply_factorization, apply_ghost_batchnorm, apply_squeeze_excite, apply_stochastic_depth) from tests.algorithms.algorithm_settings import get_alg_kwargs, get_alg_model, get_algs_with_marks algo_kwargs = { apply_stochastic_depth: { 'stochastic_method': 'block', 'target_layer_name': 'ResNetBottleneck' }, apply_ghost_batchnorm: { 'ghost_batch_size': 2 } } @pytest.fixture def input(): # input batch to ComposerModel is (input, target) tuple return (torch.rand(4, 3, 112, 112), torch.Tensor()) torchscript_algs_with_marks = [ x for x in get_algs_with_marks() if x.values[0] in (BlurPool, Factorize, GhostBatchNorm, SqueezeExcite, StochasticDepth, ChannelsLast) ] # <--- torchscript export ---> def get_surgery_method(alg_cls: Type[Algorithm]) -> Callable: if alg_cls is BlurPool: return apply_blurpool if alg_cls is Factorize: return apply_factorization if alg_cls is GhostBatchNorm: return apply_ghost_batchnorm if alg_cls is SqueezeExcite: return apply_squeeze_excite if alg_cls is StochasticDepth: return apply_stochastic_depth if alg_cls is ChannelsLast: return apply_channels_last raise ValueError(f'Unknown algorithm class {alg_cls}') @pytest.mark.timeout(10) @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchscript_train(input: Any, alg_cls: Type[Algorithm]): """Tests torchscript model in train mode.""" if alg_cls in (Factorize, GhostBatchNorm, StochasticDepth): pytest.xfail('Unsupported') alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) surgery_method = get_surgery_method(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) scripted_func = torch.jit.script(model) scripted_func.train() # type: ignore (third-party) model.train() torch.testing.assert_allclose(scripted_func(input), model(input)) # type: ignore (third-party) @pytest.mark.timeout(10) @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchscript_eval(input: Any, alg_cls: Type[Algorithm]): """Tests torchscript model in eval mode.""" if alg_cls is Factorize: pytest.xfail('Unsupported') surgery_method = get_surgery_method(alg_cls) alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) scripted_func = torch.jit.script(model) scripted_func.eval() # type: ignore (third-party) model.eval() torch.testing.assert_allclose(scripted_func(input), model(input)) # type: ignore (third-party) # <--- torch.fx export ---> @pytest.mark.timeout(10) @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchfx_eval( input: Any, alg_cls: Type[Algorithm], ): """Tests torch.fx model in eval mode.""" alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) surgery_method = get_surgery_method(alg_cls) if alg_cls in (BlurPool, GhostBatchNorm): pytest.xfail('Control flow') alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) model.eval() traced_func = torch.fx.symbolic_trace(model) torch.testing.assert_allclose(traced_func(input), model(input)) # type: ignore (third-party) # <--- onnx export ---> @pytest.mark.timeout(10) @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) @pytest.mark.filterwarnings( r'ignore:Converting a tensor to a Python .* might cause the trace to be incorrect:torch.jit._trace.TracerWarning') def test_surgery_onnx( input: Any, alg_cls: Type[Algorithm], tmp_path: pathlib.Path, ): """Tests onnx export and runtime""" pytest.importorskip('onnx') import onnx # type: ignore import onnxruntime as ort # type: ignore surgery_method = get_surgery_method(alg_cls) model = get_alg_model(alg_cls) alg_kwargs = get_alg_kwargs(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) model.eval() onnx_path = os.path.join(tmp_path, 'model.onnx') torch.onnx.export( model, (input,), onnx_path, input_names=['input'], output_names=['output'], ) # check onnx model onnx_model = onnx.load(onnx_path) onnx.checker.check_model(onnx_model) # run inference ort_session = ort.InferenceSession(onnx_path) outputs = ort_session.run( None, {'input': input[0].numpy()}, ) torch.testing.assert_allclose( outputs[0], model(input), rtol=1e-4, # lower tolerance for ONNX atol=1e-3, # lower tolerance for ONNX )
[ "torch.rand", "torch.fx.symbolic_trace", "torch.onnx.export", "torch.jit.script", "torch.Tensor" ]
0.27
moinnadeem/composer
bc3f41b766bd4450f05a99f44db4a6b3901ea1c8
0.27
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """Core Exponential Moving Average (EMA) classes and functions.""" from __future__ import annotations import copy import itertools import logging from typing import Any, Dict, List, Optional, Union import torch from composer.core import Algorithm, Event, State, Time, TimeUnit from composer.loggers import Logger log = logging.getLogger(__name__) __all__ = ['EMA', 'compute_ema'] def compute_ema(model: T_Model, ema_model: T_Model, smoothing: float = 0.99): r"""Updates the weights of ``ema_model`` to be closer to the weights of ``model`` according to an exponential weighted average. Weights are updated according to .. math:: W_{ema_model}^{(t+1)} = smoothing\times W_{ema_model}^{(t)}+(1-smoothing)\times W_{model}^{(t)} The update to ``ema_model`` happens in place. The half life of the weights for terms in the average is given by .. math:: t_{1/2} = -\frac{\log(2)}{\log(smoothing)} Therefore to set smoothing to obtain a target half life, set smoothing according to .. math:: smoothing = \exp\left[-\frac{\log(2)}{t_{1/2}}\right] Args: model (torch.nn.Module): the model containing the latest weights to use to update the moving average weights. ema_model (torch.nn.Module): the model containing the moving average weights to be updated. smoothing (float, optional): the coefficient representing the degree to which older observations are kept. Must be in the interval :math:`(0, 1)`. Default: ``0.99``. Example: .. testcode:: import composer.functional as cf from torchvision import models model = models.resnet50() ema_model = models.resnet50() cf.compute_ema(model, ema_model, smoothing=0.9) """ with torch.no_grad(): model_params = itertools.chain(model.parameters(), model.buffers()) ema_model_params = itertools.chain(ema_model.parameters(), ema_model.buffers()) for ema_param, model_param in zip(ema_model_params, model_params): model_param = model_param.detach() ema_param.copy_(ema_param * smoothing + (1. - smoothing) * model_param) class EMA(Algorithm): r"""Maintains a shadow model with weights that follow the exponential moving average of the trained model weights. Weights are updated according to .. math:: W_{ema_model}^{(t+1)} = smoothing\times W_{ema_model}^{(t)}+(1-smoothing)\times W_{model}^{(t)} Where the smoothing is determined from ``half_life`` according to .. math:: smoothing = \exp\left[-\frac{\log(2)}{t_{1/2}}\right] Model evaluation is done with the moving average weights, which can result in better generalization. Because of the shadow models, EMA triples the model's memory consumption. Note that this does not mean that the total memory required doubles, since stored activations and the optimizer state are not duplicated. EMA also uses a small amount of extra compute to update the moving average weights. See the :doc:`Method Card </method_cards/ema>` for more details. Args: half_life (str): The time string specifying the half life for terms in the average. A longer half life means old information is remembered longer, a shorter half life means old information is discared sooner. A half life of ``0`` means no averaging is done, an infinite half life means no update is done. Currently only units of epoch ('ep') and batch ('ba'). Value must be an integer. update_interval (str, optional): The time string specifying the period at which updates are done. For example, an ``update_interval='1ep'`` means updates are done every epoch, while ``update_interval='10ba'`` means updates are done once every ten batches. Units must match the units used to specify ``half_life``. If not specified, ``update_interval`` will default to ``1`` in the units of ``half_life``. Value must be an integer. Default: ``None``. train_with_ema_weights (bool, optional): An experimental feature that uses the ema weights as the training weights. In most cases should be left as ``False``. Default ``False``. Example: .. testcode:: from composer.algorithms import EMA algorithm = EMA(half_life='50ba', update_interval='1ba') trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[algorithm], optimizers=[optimizer] ) """ def __init__(self, half_life: str, update_interval: Optional[str] = None, train_with_ema_weights: bool = False): self.half_life = half_life self.update_interval = update_interval self.train_with_ema_weights = train_with_ema_weights self.ema_model = None self.training_model = None self.serialized_attributes = [ 'ema_model', 'training_model', ] # Check timestrings are parsable and convert into time object try: self.half_life = Time.from_timestring(half_life) except ValueError as error: raise ValueError(f'Invalid time string for parameter half_life') from error # Create the update interval if none is specified if self.update_interval is None: self.update_interval = Time(1, self.half_life.unit) elif type(update_interval) is str: try: self.update_interval = Time.from_timestring(update_interval) except ValueError as error: raise ValueError(f'Invalid time string for parameter update_interval') from error else: raise ValueError(f'update_interval must be None or a time string.') # Verify that the units of half_life and update_interval are compatible if self.half_life.unit != self.update_interval.unit: raise ValueError(f'Units of half_life and update_interval must match.') # Verify that the time strings have supported units. if self.half_life.unit not in [TimeUnit.BATCH, TimeUnit.EPOCH]: raise ValueError(f'Invalid time unit for parameter half_life: ' f'{self.update_interval.unit}') # Calculate the appropriate weighting for the moving average self.smoothing = 2**(-(self.update_interval.value / self.half_life.value)) # Construct the appropriate matching events self.match_events = [Event.FIT_START, Event.EVAL_START, Event.EVAL_END] if self.half_life.unit == TimeUnit.EPOCH: self.match_events.append(Event.EPOCH_END) if self.half_life.unit == TimeUnit.BATCH: self.match_events.append(Event.BATCH_END) def match(self, event: Event, state: State) -> bool: return event in self.match_events def apply(self, event: Event, state: State, logger: Logger) -> None: assert isinstance(self.update_interval, Time) if event == Event.FIT_START: if self.ema_model is not None: _move_shadow_model_to_device(self.ema_model, state.model) if self.training_model is not None: _move_shadow_model_to_device(self.training_model, state.model) if event in [Event.BATCH_END, Event.EPOCH_END]: # Check if an update should happen if state.timestamp.get(self.update_interval.unit).value % self.update_interval.value == 0: # Initialize the shadow models if they don't exist yet if self.ema_model is None: self.ema_model = ShadowModel(state.model) if self.training_model is None and self.train_with_ema_weights is False: self.training_model = ShadowModel(state.model) # Update the ema model compute_ema(state.model, self.ema_model, smoothing=self.smoothing) if self.train_with_ema_weights: # Use the ema weights for further training _copy_model(self.ema_model, state.model) if event == Event.EVAL_START and self.ema_model is not None and self.training_model is not None: # Swap out the training model for the ema model in state _copy_model(state.model, self.training_model) _copy_model(self.ema_model, state.model) if event == Event.EVAL_END and self.training_model is not None: # Swap out the ema model for the training model in state _copy_model(self.training_model, state.model) def get_ema_model(self, model: torch.nn.Module): """Copies ema model parameters and buffers to the input model and returns it. Args: model (torch.nn.Module): the model to convert into the ema model. Returns: model (torch.nn.Module): the input model with parameters and buffers replaced with the averaged parameters and buffers. """ if self.ema_model is None: raise AttributeError('ema model has not been initialized yet') _copy_model(self.ema_model, model) return model def state_dict(self) -> Dict[str, ShadowModel]: state_dict = {} for attribute_name in self.serialized_attributes: shadow_model = getattr(self, attribute_name) state_dict[attribute_name] = {} state_dict[attribute_name]['parameters'] = shadow_model.parameters() state_dict[attribute_name]['buffers'] = shadow_model.buffers() return state_dict def load_shadow_model(self, name, parameters: List, buffers: List): shadow_model = ShadowModel(None) shadow_model.param_list = parameters shadow_model.buffer_list = buffers setattr(self, name, shadow_model) def load_state_dict(self, state: Dict[str, Any], strict: bool = False): for attribute_name, serialized_value in state.items(): self.load_shadow_model(attribute_name, serialized_value['parameters'], serialized_value['buffers']) class ShadowModel: """A shadow model that tracks parameters and buffers from an original source model. Args: model (torch.nn.Module): the source model containing the parameters and buffers to shadow. """ def __init__(self, model: Union[None, torch.nn.Module]): if model is not None: self.param_list = [copy.deepcopy(p.data) for p in model.parameters()] self.buffer_list = [copy.deepcopy(b.data) for b in model.buffers()] else: self.param_list = [] self.buffer_list = [] def parameters(self): return self.param_list def buffers(self): return self.buffer_list T_Model = Union[torch.nn.Module, ShadowModel] def _copy_model(source_model: T_Model, destination_model: T_Model): """Copies parameters and buffers from ``source_model`` to ``destination_model``""" with torch.no_grad(): source_params = itertools.chain(source_model.parameters(), source_model.buffers()) destination_params = itertools.chain(destination_model.parameters(), destination_model.buffers()) for source_param, destination_param in zip(source_params, destination_params): destination_param.data = source_param.data def _move_shadow_model_to_device(shadow_model: ShadowModel, destination_model: torch.nn.Module): """Ensures the tensors of a shadow model are on the same device as a destination model""" with torch.no_grad(): destination_params = destination_model.parameters() shadow_params = shadow_model.parameters() shadow_model.param_list = [s.to(d.device) for s, d in zip(shadow_params, destination_params)] destination_buffers = destination_model.buffers() shadow_buffers = shadow_model.buffers() shadow_model.buffer_list = [s.to(d.device) for s, d in zip(shadow_buffers, destination_buffers)]
[ "torch.no_grad" ]
0.27
moinnadeem/composer
bc3f41b766bd4450f05a99f44db4a6b3901ea1c8
1.4
import torch import torch.nn as nn class CharbonnierLoss(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-6): super(CharbonnierLoss, self).__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.sum(torch.sqrt(diff * diff + self.eps)) return loss # Define GAN loss: [vanilla | lsgan | wgan-gp] class GANLoss(nn.Module): def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0): super(GANLoss, self).__init__() self.gan_type = gan_type.lower() self.real_label_val = real_label_val self.fake_label_val = fake_label_val if self.gan_type == 'gan' or self.gan_type == 'ragan': self.loss = nn.BCEWithLogitsLoss() elif self.gan_type == 'lsgan': self.loss = nn.MSELoss() elif self.gan_type == 'wgan-gp': def wgan_loss(input, target): # target is boolean return -1 * input.mean() if target else input.mean() self.loss = wgan_loss else: raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type)) def get_target_label(self, input, target_is_real): if self.gan_type == 'wgan-gp': return target_is_real if target_is_real: return torch.empty_like(input).fill_(self.real_label_val) else: return torch.empty_like(input).fill_(self.fake_label_val) def forward(self, input, target_is_real): target_label = self.get_target_label(input, target_is_real) loss = self.loss(input, target_label) return loss class GradientPenaltyLoss(nn.Module): def __init__(self, device=torch.device('cpu')): super(GradientPenaltyLoss, self).__init__() self.register_buffer('grad_outputs', torch.Tensor()) self.grad_outputs = self.grad_outputs.to(device) def get_grad_outputs(self, input): if self.grad_outputs.size() != input.size(): self.grad_outputs.resize_(input.size()).fill_(1.0) return self.grad_outputs def forward(self, interp, interp_crit): grad_outputs = self.get_grad_outputs(interp_crit) grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp, grad_outputs=grad_outputs, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_interp = grad_interp.view(grad_interp.size(0), -1) grad_interp_norm = grad_interp.norm(2, dim=1) loss = ((grad_interp_norm - 1)**2).mean() return loss class SpatialGradientLoss(nn.Module): """Super sharp Loss""" def __init__(self): super(SpatialGradientLoss, self).__init__() def diffMap(self, A, alongX): B, N, C, H = A.shape if alongX: return A[:, :, 1:C, :] - A[:, :, 0:C-1, :] return A[:, :, :, 1:H] - A[:, :, :, 0:H-1] def forward(self, A, B): Amap = self.diffMap(A, alongX=True) Bmap = self.diffMap(B, alongX=True) loss = torch.sum((Amap - Bmap) ** 2) Amap = self.diffMap(A, alongX=False) Bmap = self.diffMap(B, alongX=False) loss += torch.sum((Amap - Bmap) ** 2) loss = torch.sqrt(loss) return loss class KLDivergence(nn.Module): """KL loss for VAE regularization""" def __init__(self): super(KLDivergence, self).__init__() def forward(self, X): B, N = X.shape mean = X.mean(dim=0).to(X.device) var = torch.zeros((N, N)).to(X.device) for i in range(B): y = X[i, :] - mean var += torch.mm(y.resize(N, 1), y.resize(1, N)) for i in range(N): if var[i, i] <= 0: print(var[i][i]) var = var.clamp(min=1e-18) / N kl = 0.5 * (-(var.log().trace()) + torch.trace(var) - N + mean.pow(2).sum()) return kl class FrobeniousNorm(nn.Module): def __init__(self, eps=1e-6): super(FrobeniousNorm, self).__init__() self.eps = eps def forward(self, X): B, C, H, W = X.shape return torch.sqrt(torch.sum(X ** 2, dim=(1, 2, 3)) + self.eps)
[ "torch.zeros", "torch.device", "torch.sqrt", "torch.trace", "torch.nn.MSELoss", "torch.empty_like", "torch.autograd.grad", "torch.nn.BCEWithLogitsLoss", "torch.Tensor", "torch.sum" ]
1.4.0
P0lyFish/noise2-series
a21ad1b7cb20e44161393156efd7dcdab729b4a3
1.4
#!/usr/bin/env python3 import argparse import logging import os from typing import Tuple import torch import torchaudio from torchaudio.models.wav2vec2.utils.import_huggingface import import_huggingface_model from greedy_decoder import Decoder TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) if TORCH_VERSION >= (1, 10): import torch.ao.quantization as tq else: import torch.quantization as tq _LG = logging.getLogger(__name__) def _parse_args(): parser = argparse.ArgumentParser( description=__doc__, ) parser.add_argument( '--model', required=True, help='Path to the input pretrained weight file.' ) parser.add_argument( '--output-path', help='Path to the directory, where the Torchscript-ed pipelines are saved.', ) parser.add_argument( '--test-file', help='Path to a test audio file.', ) parser.add_argument( '--quantize', action='store_true', help='Quantize the model.', ) parser.add_argument( '--debug', action='store_true', help=( 'When enabled, individual components are separately tested ' 'for the numerical compatibility and TorchScript compatibility.' ) ) return parser.parse_args() class Loader(torch.nn.Module): def forward(self, audio_path: str) -> torch.Tensor: waveform, sample_rate = torchaudio.load(audio_path) if sample_rate != 16000: waveform = torchaudio.functional.resample(waveform, float(sample_rate), 16000.) return waveform class Encoder(torch.nn.Module): def __init__(self, encoder: torch.nn.Module): super().__init__() self.encoder = encoder def forward(self, waveform: torch.Tensor) -> torch.Tensor: result, _ = self.encoder(waveform) return result[0] def _get_model(model_id): from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor tokenizer = Wav2Vec2Processor.from_pretrained(model_id).tokenizer labels = [k for k, v in sorted(tokenizer.get_vocab().items(), key=lambda kv: kv[1])] original = Wav2Vec2ForCTC.from_pretrained(model_id) model = import_huggingface_model(original) return model.eval(), labels def _get_decoder(labels): return Decoder(labels) def _main(): args = _parse_args() _init_logging(args.debug) _LG.info('Loading model: %s', args.model) model, labels = _get_model(args.model) _LG.info('Labels: %s', labels) _LG.info('Building pipeline') loader = Loader() encoder = Encoder(model) decoder = _get_decoder(labels) _LG.info(encoder) if args.quantize: _LG.info('Quantizing the model') model.encoder.transformer.pos_conv_embed.__prepare_scriptable__() encoder = tq.quantize_dynamic( encoder, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8) _LG.info(encoder) # test if args.test_file: _LG.info('Testing with %s', args.test_file) waveform = loader(args.test_file) emission = encoder(waveform) transcript = decoder(emission) _LG.info(transcript) torch.jit.script(loader).save(os.path.join(args.output_path, 'loader.zip')) torch.jit.script(encoder).save(os.path.join(args.output_path, 'encoder.zip')) torch.jit.script(decoder).save(os.path.join(args.output_path, 'decoder.zip')) def _init_logging(debug=False): level = logging.DEBUG if debug else logging.INFO format_ = ( '%(message)s' if not debug else '%(asctime)s: %(levelname)7s: %(funcName)10s: %(message)s' ) logging.basicConfig(level=level, format=format_) if __name__ == '__main__': _main()
[ "torch.jit.script", "torch.__version__.split", "torch.quantization.quantize_dynamic" ]
1.4.0
albertvillanova/audio
0cd25093626d067e008e1f81ad76e072bd4a1edd
1.4
import math from typing import Optional from itertools import permutations import torch def sdr( estimate: torch.Tensor, reference: torch.Tensor, mask: Optional[torch.Tensor] = None, epsilon: float = 1e-8 ) -> torch.Tensor: """Computes source-to-distortion ratio. 1. scale the reference signal with power(s_est * s_ref) / powr(s_ref * s_ref) 2. compute SNR between adjusted estimate and reference. Args: estimate (torch.Tensor): Estimtaed signal. Shape: [batch, speakers (can be 1), time frame] reference (torch.Tensor): Reference signal. Shape: [batch, speakers, time frame] mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1). Shape: [batch, 1, time frame] epsilon (float, optional): constant value used to stabilize division. Returns: torch.Tensor: scale-invariant source-to-distortion ratio. Shape: [batch, speaker] References: - Single-channel multi-speaker separation using deep clustering Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey, - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation Luo, Yi and Mesgarani, Nima https://arxiv.org/abs/1809.07454 Notes: This function is tested to produce the exact same result as https://github.com/naplab/Conv-TasNet/blob/e66d82a8f956a69749ec8a4ae382217faa097c5c/utility/sdr.py#L34-L56 """ reference_pow = reference.pow(2).mean(axis=2, keepdim=True) mix_pow = (estimate * reference).mean(axis=2, keepdim=True) scale = mix_pow / (reference_pow + epsilon) reference = scale * reference error = estimate - reference reference_pow = reference.pow(2) error_pow = error.pow(2) if mask is None: reference_pow = reference_pow.mean(axis=2) error_pow = error_pow.mean(axis=2) else: denom = mask.sum(axis=2) reference_pow = (mask * reference_pow).sum(axis=2) / denom error_pow = (mask * error_pow).sum(axis=2) / denom return 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow) class PIT(torch.nn.Module): """Applies utterance-level speaker permutation Computes the maxium possible value of the given utility function over the permutations of the speakers. Args: utility_func (function): Function that computes the utility (opposite of loss) with signature of (extimate: torch.Tensor, reference: torch.Tensor) -> torch.Tensor where input Tensors are shape of [batch, speakers, frame] and the output Tensor is shape of [batch, speakers]. References: - Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks Morten Kolbæk, Dong Yu, Zheng-Hua Tan and Jesper Jensen https://arxiv.org/abs/1703.06284 """ def __init__(self, utility_func): super().__init__() self.utility_func = utility_func def forward( self, estimate: torch.Tensor, reference: torch.Tensor, mask: Optional[torch.Tensor] = None, epsilon: float = 1e-8 ) -> torch.Tensor: """Compute utterance-level PIT Loss Args: estimate (torch.Tensor): Estimated source signals. Shape: [bacth, speakers, time frame] reference (torch.Tensor): Reference (original) source signals. Shape: [batch, speakers, time frame] mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1). Shape: [batch, 1, time frame] epsilon (float, optional): constant value used to stabilize division. Returns: torch.Tensor: Maximum criterion over the speaker permutation. Shape: [batch, ] """ assert estimate.shape == reference.shape batch_size, num_speakers = reference.shape[:2] num_permute = math.factorial(num_speakers) util_mat = torch.zeros( batch_size, num_permute, dtype=estimate.dtype, device=estimate.device ) for i, idx in enumerate(permutations(range(num_speakers))): util = self.utility_func(estimate, reference[:, idx, :], mask=mask, epsilon=epsilon) util_mat[:, i] = util.mean(dim=1) # take the average over speaker dimension return util_mat.max(dim=1).values _sdr_pit = PIT(utility_func=sdr) def sdr_pit( estimate: torch.Tensor, reference: torch.Tensor, mask: Optional[torch.Tensor] = None, epsilon: float = 1e-8): """Computes scale-invariant source-to-distortion ratio. 1. adjust both estimate and reference to have 0-mean 2. scale the reference signal with power(s_est * s_ref) / powr(s_ref * s_ref) 3. compute SNR between adjusted estimate and reference. Args: estimate (torch.Tensor): Estimtaed signal. Shape: [batch, speakers (can be 1), time frame] reference (torch.Tensor): Reference signal. Shape: [batch, speakers, time frame] mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1). Shape: [batch, 1, time frame] epsilon (float, optional): constant value used to stabilize division. Returns: torch.Tensor: scale-invariant source-to-distortion ratio. Shape: [batch, speaker] References: - Single-channel multi-speaker separation using deep clustering Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey, - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation Luo, Yi and Mesgarani, Nima https://arxiv.org/abs/1809.07454 Notes: This function is tested to produce the exact same result as the reference implementation, *when the inputs have 0-mean* https://github.com/naplab/Conv-TasNet/blob/e66d82a8f956a69749ec8a4ae382217faa097c5c/utility/sdr.py#L107-L153 """ return _sdr_pit(estimate, reference, mask, epsilon) def sdri( estimate: torch.Tensor, reference: torch.Tensor, mix: torch.Tensor, mask: Optional[torch.Tensor] = None, epsilon: float = 1e-8, ) -> torch.Tensor: """Compute the improvement of SDR (SDRi). This function compute how much SDR is improved if the estimation is changed from the original mixture signal to the actual estimated source signals. That is, ``SDR(estimate, reference) - SDR(mix, reference)``. For computing ``SDR(estimate, reference)``, PIT (permutation invariant training) is applied, so that best combination of sources between the reference signals and the esimate signals are picked. Args: estimate (torch.Tensor): Estimated source signals. Shape: [batch, speakers, time frame] reference (torch.Tensor): Reference (original) source signals. Shape: [batch, speakers, time frame] mix (torch.Tensor): Mixed souce signals, from which the setimated signals were generated. Shape: [batch, speakers == 1, time frame] mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1). Shape: [batch, 1, time frame] epsilon (float, optional): constant value used to stabilize division. Returns: torch.Tensor: Improved SDR. Shape: [batch, ] References: - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation Luo, Yi and Mesgarani, Nima https://arxiv.org/abs/1809.07454 """ sdr_ = sdr_pit(estimate, reference, mask=mask, epsilon=epsilon) # [batch, ] base_sdr = sdr(mix, reference, mask=mask, epsilon=epsilon) # [batch, speaker] return sdr_ - base_sdr.mean(dim=1)
[ "torch.zeros", "torch.log10" ]
1.4.0
albertvillanova/audio
0cd25093626d067e008e1f81ad76e072bd4a1edd
1.10
import argparse import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from mqbench.convert_deploy import convert_deploy from mqbench.prepare_by_platform import prepare_by_platform, BackendType from mqbench.utils.state import enable_calibration, enable_quantization, disable_all model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--train_data', metavar='DIR', help='path to dataset', required=True) parser.add_argument('--val_data', metavar='DIR', help='path to dataset', required=True) parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=100, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') parser.add_argument('--model_path', type=str, default=None) parser.add_argument('--backend', type=str, choices=['tensorrt', 'nnie', 'ppl', 'snpe'], default='tensorrt') parser.add_argument('--optim', type=str, default='sgd') parser.add_argument('--not-quant', action='store_true') parser.add_argument('--deploy', action='store_true') BackendMap = {'tensorrt': BackendType.Tensorrt, 'nnie': BackendType.NNIE, 'ppl': BackendType.PPLW8A16, 'snpe': BackendType.SNPE, 'vitis': BackendType.Vitis} best_acc1 = 0 def main(): args = parser.parse_args() args.quant = not args.not_quant args.backend = BackendMap[args.backend] if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() # for internal cluster if args.model_path: state_dict = torch.load(args.model_path) print(f'load pretrained checkpoint from: {args.model_path}') model.load_state_dict(state_dict) # quantize model if args.quant: model = prepare_by_platform(model, args.backend) if not torch.cuda.is_available(): print('using CPU, this will be slow') elif args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) if args.optim == 'sgd': optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optim == 'adam': optimizer = torch.optim.Adam(model.parameters(), args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.weight_decay, amsgrad=False) # prepare dataset train_loader, train_sampler, val_loader, cali_loader = prepare_dataloader(args) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) state_dict = checkpoint['state_dict'] model_dict = model.state_dict() if 'module.' in list(state_dict.keys())[0] and 'module.' not in list(model_dict.keys())[0]: for k in list(state_dict.keys()): state_dict[k[7:]] = state_dict.pop(k) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {}), acc = {}" .format(args.resume, checkpoint['epoch'], best_acc1)) else: print("=> no checkpoint found at '{}'".format(args.resume)) elif args.quant: enable_calibration(model) calibrate(cali_loader, model, args) cudnn.benchmark = True if args.quant: enable_quantization(model) if args.quant and args.deploy: convert_deploy(model.eval(), args.backend, input_shape_dict={'data': [10, 3, 224, 224]}) return if args.evaluate: if args.quant: from mqbench.convert_deploy import convert_merge_bn convert_merge_bn(model.eval()) validate(val_loader, model, criterion, args) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer' : optimizer.state_dict(), }, is_best) def prepare_dataloader(args): traindir = os.path.join(args.train_data, 'train') valdir = os.path.join(args.val_data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) cali_batch_size = 10 cali_batch = 10 cali_dataset = torch.utils.data.Subset(train_dataset, indices=torch.arange(cali_batch_size * cali_batch)) cali_loader = torch.utils.data.DataLoader(cali_dataset, batch_size=cali_batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, train_sampler, val_loader, cali_loader def calibrate(cali_loader, model, args): model.eval() print("Start calibration ...") print("Calibrate images number = ", len(cali_loader.dataset)) with torch.no_grad(): for i, (images, target) in enumerate(cali_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) output = model(images) print("Calibration ==> ", i+1) print("End calibration.") return def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) if torch.cuda.is_available(): target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) if torch.cuda.is_available(): target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
[ "torch.arange", "torch.distributed.init_process_group", "torch.save", "torch.no_grad", "torch.multiprocessing.spawn", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.set_device", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load", "torch.utils.data.distributed.DistributedSampler", "torch.nn.CrossEntropyLoss", "torch.nn.DataParallel" ]
1.10.0
415905716/MQBench
3f8321ec9ab9fd05d99c21700a901b1ff6a90a1e
1.8
import torch from torch.quantization import FakeQuantizeBase from torch.quantization.observer import MovingAverageMinMaxObserver from torch.quantization.fake_quantize import _is_per_channel, _is_per_tensor from mqbench.utils import is_symmetric_quant class QuantizeBase(FakeQuantizeBase): r""" This is an extension of the FakeQuantize module in fake_quantize.py, which supports more generalized lower-bit quantization and support learning of the scale and zero point parameters through backpropagation. For literature references, please see the class _LearnableFakeQuantizePerTensorOp. In addition to the attributes in the original FakeQuantize module, the _LearnableFakeQuantize module also includes the following attributes to support quantization parameter learning. """ def __init__(self, observer=MovingAverageMinMaxObserver, **observer_kwargs): super().__init__() self.activation_post_process = observer(**observer_kwargs) self.dtype = self.activation_post_process.dtype self.qscheme = self.activation_post_process.qscheme self.quant_min = self.activation_post_process.quant_min self.quant_max = self.activation_post_process.quant_max assert self.quant_min <= self.quant_max, \ 'quant_min must be less than or equal to quant_max' self.pot_scale = self.activation_post_process.pot_scale self.ch_axis = self.activation_post_process.ch_axis \ if hasattr(self.activation_post_process, 'ch_axis') else -1 assert _is_per_channel(self.qscheme) or \ _is_per_tensor(self.qscheme), \ 'Only per channel and per tensor quantization are supported in fake quantize' + \ ' got qscheme: ' + str(self.qscheme) self.is_per_channel = _is_per_channel(self.qscheme) bitrange = torch.tensor(self.quant_max - self.quant_min + 1).double() self.bitwidth = int(torch.log2(bitrange).item()) self.is_symmetric_quant = is_symmetric_quant(self.qscheme) @torch.jit.export def calculate_qparams(self): return self.activation_post_process.calculate_qparams() @torch.jit.export def extra_repr(self): return 'fake_quant_enabled={}, observer_enabled={}, ' \ 'quant_min={}, quant_max={}, dtype={}, qscheme={}, ch_axis={}, '.format( self.fake_quant_enabled, self.observer_enabled, self.quant_min, self.quant_max, self.dtype, self.qscheme, self.ch_axis)
[ "torch.quantization.fake_quantize._is_per_channel", "torch.tensor", "torch.quantization.fake_quantize._is_per_tensor", "torch.log2" ]
1.8.1
415905716/MQBench
3ac8928ef6641e0ea78f9a5f0524b574a835463e
1.3
from abc import ABCMeta, abstractmethod import torch from pfrl.agents.dqn import DQN from pfrl.utils.recurrent import pack_and_forward class AbstractDPP(DQN, metaclass=ABCMeta): """Dynamic Policy Programming. See: https://arxiv.org/abs/1004.2027. """ @abstractmethod def _l_operator(self, qout): raise NotImplementedError() def _compute_target_values(self, exp_batch): batch_next_state = exp_batch["next_state"] if self.recurrent: target_next_qout, _ = pack_and_forward( self.target_model, batch_next_state, exp_batch["next_recurrent_state"], ) else: target_next_qout = self.target_model(batch_next_state) next_q_expect = self._l_operator(target_next_qout) batch_rewards = exp_batch["reward"] batch_terminal = exp_batch["is_state_terminal"] return ( batch_rewards + exp_batch["discount"] * (1 - batch_terminal) * next_q_expect ) def _compute_y_and_t(self, exp_batch): batch_state = exp_batch["state"] batch_size = len(exp_batch["reward"]) if self.recurrent: qout, _ = pack_and_forward( self.model, batch_state, exp_batch["recurrent_state"], ) else: qout = self.model(batch_state) batch_actions = exp_batch["action"] # Q(s_t,a_t) batch_q = qout.evaluate_actions(batch_actions).reshape((batch_size, 1)) with torch.no_grad(): # Compute target values if self.recurrent: target_qout, _ = pack_and_forward( self.target_model, batch_state, exp_batch["recurrent_state"], ) else: target_qout = self.target_model(batch_state) # Q'(s_t,a_t) target_q = target_qout.evaluate_actions(batch_actions).reshape( (batch_size, 1) ) # LQ'(s_t,a) target_q_expect = self._l_operator(target_qout).reshape((batch_size, 1)) # r + g * LQ'(s_{t+1},a) batch_q_target = self._compute_target_values(exp_batch).reshape( (batch_size, 1) ) # Q'(s_t,a_t) + r + g * LQ'(s_{t+1},a) - LQ'(s_t,a) t = target_q + batch_q_target - target_q_expect return batch_q, t class DPP(AbstractDPP): """Dynamic Policy Programming with softmax operator. Args: eta (float): Positive constant. For other arguments, see DQN. """ def __init__(self, *args, **kwargs): self.eta = kwargs.pop("eta", 1.0) super().__init__(*args, **kwargs) def _l_operator(self, qout): return qout.compute_expectation(self.eta) class DPPL(AbstractDPP): """Dynamic Policy Programming with L operator. Args: eta (float): Positive constant. For other arguments, see DQN. """ def __init__(self, *args, **kwargs): self.eta = kwargs.pop("eta", 1.0) super().__init__(*args, **kwargs) def _l_operator(self, qout): return torch.logsumexp(self.eta * qout.q_values, dim=1) / self.eta class DPPGreedy(AbstractDPP): """Dynamic Policy Programming with max operator. This algorithm corresponds to DPP with eta = infinity. """ def _l_operator(self, qout): return qout.max
[ "torch.no_grad", "torch.logsumexp" ]
1.3.0
ummavi/pfrl-1
e856a7cca30fcc3871024cdf7522d066006a5f0c
1.0
import pathlib import sys import torch here = pathlib.Path(__file__).resolve().parent sys.path.append(str(here / '..' / '..')) import controldiffeq class NeuralCDE(torch.nn.Module): """A Neural CDE model. Provides a wrapper around the lower-level cdeint function, to get a flexible Neural CDE model. Specifically, considering the CDE ``` z_t = z_{t_0} + \int_{t_0}^t f(z_s)dX_s ``` where X is determined by the data, and given some terminal time t_N, then this model first computes z_{t_N}, then performs a linear function on it, and then outputs the result. It's known that linear functions on CDEs are universal approximators, so this is a very general type of model. """ def __init__(self, func, input_channels, hidden_channels, output_channels, initial=True): """ Arguments: func: As cdeint. input_channels: How many channels there are in the input. hidden_channels: The number of hidden channels, i.e. the size of z_t. output_channels: How many channels to perform a linear map to at the end. initial: Whether to automatically construct the initial value from data (in which case z0 must not be passed during forward()), or to use the one supplied during forward (in which case z0 must be passed during forward()). """ if isinstance(func, ContinuousRNNConverter): # ugly hack hidden_channels = hidden_channels + input_channels super(NeuralCDE, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.output_channels = output_channels self.func = func self.initial = initial if initial and not isinstance(func, ContinuousRNNConverter): # very ugly hack self.initial_network = torch.nn.Linear(input_channels, hidden_channels) self.linear = torch.nn.Linear(hidden_channels, output_channels) self.sigmoid = nn.Sigmoid() def extra_repr(self): return "input_channels={}, hidden_channels={}, output_channels={}, initial={}" \ "".format(self.input_channels, self.hidden_channels, self.output_channels, self.initial) def forward(self, times, coeffs, final_index, z0=None, stream=False, **kwargs): """ Arguments: times: The times of the observations for the input path X, e.g. as passed as an argument to `controldiffeq.natural_cubic_spline_coeffs`. coeffs: The coefficients describing the input path X, e.g. as returned by `controldiffeq.natural_cubic_spline_coeffs`. final_index: Each batch element may have a different final time. This defines the index within the tensor `times` of where the final time for each batch element is. z0: See the 'initial' argument to __init__. stream: Whether to return the result of the Neural CDE model at all times (True), or just the final time (False). Defaults to just the final time. The `final_index` argument is ignored if stream is True. **kwargs: Will be passed to cdeint. Returns: If stream is False, then this will return the terminal time z_T. If stream is True, then this will return all intermediate times z_t, for those t for which there was data. """ # Extract the sizes of the batch dimensions from the coefficients coeff, _, _, _ = coeffs batch_dims = coeff.shape[:-2] if not stream: assert batch_dims == final_index.shape, "coeff.shape[:-2] must be the same as final_index.shape. " \ "coeff.shape[:-2]={}, final_index.shape={}" \ "".format(batch_dims, final_index.shape) cubic_spline = controldiffeq.NaturalCubicSpline(times, coeffs) if z0 is None: assert self.initial, "Was not expecting to be given no value of z0." if isinstance(self.func, ContinuousRNNConverter): # still an ugly hack z0 = torch.zeros(*batch_dims, self.hidden_channels, dtype=coeff.dtype, device=coeff.device) else: z0 = self.initial_network(cubic_spline.evaluate(times[0])) else: assert not self.initial, "Was expecting to be given a value of z0." if isinstance(self.func, ContinuousRNNConverter): # continuing adventures in ugly hacks z0_extra = torch.zeros(*batch_dims, self.input_channels, dtype=z0.dtype, device=z0.device) z0 = torch.cat([z0_extra, z0], dim=-1) # Figure out what times we need to solve for if stream: t = times else: # faff around to make sure that we're outputting at all the times we need for final_index. sorted_final_index, inverse_final_index = final_index.unique(sorted=True, return_inverse=True) if 0 in sorted_final_index: sorted_final_index = sorted_final_index[1:] final_index = inverse_final_index else: final_index = inverse_final_index + 1 if len(times) - 1 in sorted_final_index: sorted_final_index = sorted_final_index[:-1] t = torch.cat([times[0].unsqueeze(0), times[sorted_final_index], times[-1].unsqueeze(0)]) # Switch default solver if 'method' not in kwargs: kwargs['method'] = 'rk4' if kwargs['method'] == 'rk4': if 'options' not in kwargs: kwargs['options'] = {} options = kwargs['options'] if 'step_size' not in options and 'grid_constructor' not in options: time_diffs = times[1:] - times[:-1] options['step_size'] = time_diffs.min().item() # Actually solve the CDE z_t = controldiffeq.cdeint(dX_dt=cubic_spline.derivative, z0=z0, func=self.func, t=t, **kwargs) # Organise the output if stream: # z_t is a tensor of shape (times, ..., channels), so change this to (..., times, channels) for i in range(len(z_t.shape) - 2, 0, -1): z_t = z_t.transpose(0, i) else: # final_index is a tensor of shape (...) # z_t is a tensor of shape (times, ..., channels) final_index_indices = final_index.unsqueeze(-1).expand(z_t.shape[1:]).unsqueeze(0) z_t = z_t.gather(dim=0, index=final_index_indices).squeeze(0) # Linear map and return pred_y = self.linear(z_t) pred_y = self.sigmoid(pred_y) return pred_y # Note that this relies on the first channel being time class ContinuousRNNConverter(torch.nn.Module): def __init__(self, input_channels, hidden_channels, model): super(ContinuousRNNConverter, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.model = model out_base = torch.zeros(self.input_channels + self.hidden_channels, self.input_channels) for i in range(self.input_channels): out_base[i, i] = 1 self.register_buffer('out_base', out_base) def extra_repr(self): return "input_channels: {}, hidden_channels: {}".format(self.input_channels, self.hidden_channels) def forward(self, z): # z is a tensor of shape (..., input_channels + hidden_channels) x = z[..., :self.input_channels] h = z[..., self.input_channels:] # In theory the hidden state must lie in this region. And most of the time it does anyway! Very occasionally # it escapes this and breaks everything, though. (Even when using adaptive solvers or small step sizes.) Which # is kind of surprising given how similar the GRU-ODE is to a standard negative exponential problem, we'd # expect to get absolute stability without too much difficulty. Maybe there's a bug in the implementation # somewhere, but not that I've been able to find... (and h does only escape this region quite rarely.) h = h.clamp(-1, 1) # model_out is a tensor of shape (..., hidden_channels) model_out = self.model(x, h) batch_dims = model_out.shape[:-1] out = self.out_base.repeat(*batch_dims, 1, 1).clone() out[..., self.input_channels:, 0] = model_out return out
[ "torch.nn.Linear", "torch.cat", "torch.zeros" ]
1.0.0
dungxibo123/NeuralCDE
19f7ed24223f5822142c676127c92d818d290903
0.4
import torch import torch.nn as nn from saliency.saliency import Saliency class DeconvSaliency(Saliency): """docstring for DeconvSaliency.""" def __init__(self, model): super(DeconvSaliency, self).__init__(model) def guided_relu_hook(self, module, grad_in, grad_out): return (torch.nn.functional.relu(grad_in[0]), ) def generate_saliency(self, input, target): input.requires_grad = True self.model.zero_grad() for module in self.model.modules(): if type(module) == nn.ReLU: module.register_backward_hook(self.guided_relu_hook) output = self.model(input) grad_outputs = torch.zeros_like(output) grad_outputs[:, target] = 1 output.backward(gradient = grad_outputs) input.requires_grad = False #print(input) return (input.grad.clone()[0] * input)
[ "torch.zeros_like", "torch.nn.functional.relu" ]
0.4.0
dendisuhubdy/pytorch-saliency
dcb3499be127637435a577cb42161b3e096aa28d
0.4
import torch from saliency.saliency import Saliency import numpy as np from scipy.ndimage import label import torchvision from torch.autograd import Variable from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import torch.optim as optim import matplotlib.pyplot as plt import random import copy class LimeSaliency(Saliency): def __init__(self, model): super(LimeSaliency, self).__init__(model) def generate_saliency(self, input, target): #self.model.zero_grad() output = self.model(input) #index: 0 layer: HP # index: 1 layer: Ship # index: 2 layer: Small Towers # index: 3 layer: Big Towers # index: 4 layer: Small Cities # index: 5 layer: Big Cities # index: 6 layer: Friend # index: 7 layer: Enemy #return (input.grad.clone()[0] * input) input2 = input.clone() image = np.zeros((40, 40)) input2 = input2.view(40, 40, 8) input3 = input.clone() #logical or of the input images to get the original image #only do or over small big cities and towers to get proper coordinates of cities and towers #otherwise it will include enemy ship too if enemy channel is included which will cause object to #be merged with tower or city object for i in range(2,6): image = np.logical_or(image, input2[:, :, i].numpy())*1 #get the number of objects in the image labeled_array, num_objects = label(image) indices = [] for i in range(num_objects): indices.append(np.argwhere(labeled_array == i+1)) #self.generate_file(labeled_array, 'labeled_array') # print('object 1\n') # print(indices[0]) #print('object 2\n') #print(indices[1]) #print('object 3\n') #print(indices[2]) #print('object 4\n') #print(indices[3]) #print('object 5\n') #print(indices[4]) #hp hp_array, hp = label(input2[:, :, 0].numpy()) hp_indices = [] for i in range(hp): hp_indices.append(np.argwhere(hp_array == i+1)) #self.generate_file(hp_array, 'hp_array') #ship #remove agent because we don't want to perturb that ship_image = input2[:, :, 1].clone().numpy() ship_image[19][20] = 0 ship_image[20][20] = 0 ship_image[21][20] = 0 ship_array, ships = label(ship_image) # print('ships ', ships ) ship_indices = [] for i in range(ships): ship_indices.append(np.argwhere(ship_array == i+1)) #self.generate_file(ship_array, 'ship_array') values = torch.zeros(40*40*5) values = values.view(40, 40, 5) input2 = input.clone() input2 = input2.view(40, 40, 8) features = self.generate_features(input2) #print(features) outputs = output[:, target].data.numpy() # index: 0 layer: HP # index: 1 layer: Ship # index: 2 layer: Small Towers # index: 3 layer: Big Towers # index: 4 layer: Small Cities # index: 5 layer: Big Cities # index: 6 layer: Friend # index: 7 layer: Enemy #output layers: #0 HP #1 agent #2 size #3 type #4 friend/enemy #here i refers to the output salient layers #print('num_objects', num_objects) for i in range(5): if i==0:# output HP for j in range(hp): for k in range(hp_indices[j].shape[0]): x = hp_indices[j][k][0] y = hp_indices[j][k][1] temp = 0.3*input2[:, :, 0][x][y] input2[:, :, 0][x][y] += temp perturbed_output = self.model(input2.view(1, 12800)) feature = self.generate_features(input2) features = np.concatenate((features, feature)) outputs = np.concatenate((outputs, perturbed_output[:, target].data.numpy())) input2 = input.clone() input2 = input2.view(40, 40, 8) elif i==1:#output agent for j in range(ships): for k in range(ship_indices[j].shape[0]): x = ship_indices[j][k][0] y = ship_indices[j][k][1] if input2[:, :, 1][x][y] == 1: input2[:, :, 1][x][y] = 0 perturbed_output = self.model(input2.view(1, 12800)) feature = self.generate_features(input2) features = np.concatenate((features, feature)) outputs = np.concatenate((outputs, perturbed_output[:, target].data.numpy())) input2 = input.clone() input2 = input2.view(40, 40, 8) elif i==2: #output size #print('in i== 2') for l in range(2, 6): #print('layer: ',l) for j in range(num_objects): # print('object: ',j) s = 0 for k in range(indices[j].shape[0]): x = indices[j][k][0] y = indices[j][k][1] # print('x: '+str(x)+' y: '+str(y)) # print('Value of input: '+str(input2[:, :, i][x][y])) # print(input2[:, :, l][x][y]) if l == 2 or l==4: #small tower/city if input2[:, :, l][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l+1][x][y] = 1 else: #big tower/city if input2[:, :, l ][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l-1][x][y] = 1 #print(saliency) if s==1: perturbed_output = self.model(input2.view(1, 12800)) feature = self.generate_features(input2) features = np.concatenate((features, feature)) outputs = np.concatenate((outputs, perturbed_output[:, target].data.numpy())) input2 = input.clone() input2 = input2.view(40, 40, 8) #print(saliency[0][target]) elif i==3: #output type for l in range(2, 6): for j in range(num_objects): s = 0 for k in range(indices[j].shape[0]): x = indices[j][k][0] y = indices[j][k][1] # print('x: '+str(x)+' y: '+str(y)) # print('Value of input: '+str(input2[:, :, i][x][y])) if l == 2 or l == 3: #small tower/city if input2[:, :, l][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l+2][x][y] = 1 else: #big tower/city if input2[:, :, l ][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l-2][x][y] = 1 #print(saliency) if s==1: perturbed_output = self.model(input2.view(1, 12800)) feature = self.generate_features(input2) features = np.concatenate((features, feature)) outputs = np.concatenate((outputs, perturbed_output[:, target].data.numpy())) input2 = input.clone() input2 = input2.view(40, 40, 8) else:# output frenemy for l in range(6, 8): for j in range(num_objects): s = 0 for k in range(indices[j].shape[0]): x = indices[j][k][0] y = indices[j][k][1] if l == 6: if input2[:, :, l][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l+1][x][y] = 1 else: if input2[:, :, l][x][y] == 1: s = 1 input2[:, :, l][x][y] = 0 input2[:, :, l-1][x][y] = 1 if s==1: perturbed_output = self.model(input2.view(1, 12800)) feature = self.generate_features(input2) features = np.concatenate((features, feature)) outputs = np.concatenate((outputs, perturbed_output[:, target].data.numpy())) input2 = input.clone() input2 = input2.view(40, 40, 8) #print(features) #print(outputs) linear_model = LinearRegressionModel(21, 1) linear_model.train() criterion = nn.L1Loss() optimiser = torch.optim.SGD(linear_model.parameters(), lr = 0.01) epochs = 5000 for epoch in range(epochs): inputs = Variable(torch.from_numpy(features).float()) labels = Variable(torch.from_numpy(outputs)) optimiser.zero_grad() pred = linear_model.forward(inputs) loss = criterion(pred, labels) loss.backward() optimiser.step() #print('epoch {}, loss {}'.format(epoch,loss.item())) #train_loss = eval_net(features, outputs, linear_model) # print('train_loss: %.5f ' % # (train_loss)) # weights_ = [] # for name, param in linear_model.parameters() : # weights_.append(param.data.numpy()) #new_model = copy.deepcopy(linear_model) weights = linear_model.linear.weight.clone() weights = weights.data.numpy() #print(weights) # print('weights') # print(weights_) # weights_ = np.asarray(weights_) values = self.plot_saliency(weights, input3) return (values.view(1, 40*40*5)) #0 HP #1 enemy ship #2 size #3 type #4 friend/enemy def generate_features(self, input): hp_array, hp = label(input[:, :, 0].numpy()) hp_indices = [] for i in range(hp): hp_indices.append(np.argwhere(hp_array == i+1)) image = np.zeros((40, 40)) for i in range(2,6): image = np.logical_or(image, input[:, :, i].numpy())*1 feature = np.zeros((1, 21)) #put hp of agent. agent will always be object 3 - 1 feature[0][20] = input[:, :, 0][hp_indices[2][0][0]][hp_indices[2][0][1]] #print(feature[0][20]) #self.generate_file(hp_array, 'feature_hp_array') #zero out the agent ship_image = input[:, :, 1].clone().numpy() ship_image[19][20] = 0 ship_image[20][20] = 0 ship_image[21][20] = 0 ship_image, _ = label(ship_image) #self.generate_file(ship_array, 'mod_ship_array') #self.generate_file(image, 'image') #self.generate_file(ship_image, 'ship_image') counter = 0 #slicing the hp_array quadrant vise for i in range(2): for j in range(2): #array = hp_array[0 + 20*i :19 + 20*i, 0 + 20*j :19 + 20*j] #labeled_array, num_objects = label(array) indices = np.argwhere(image[0 + 20*i :20 + 20*i, 0 + 20*j :20 + 20*j] > 0) # print(indices) # print('\n\n') # print(indices[0][0]) # print(indices[0][1]) x = indices[0][0] + 20*i y = indices[0][1] + 20*j # print('x ',x) # print('y ',y) #first feature will be HP feature[0][counter + 0] = input[:, :, 0][x][y] #second feature will be checking prescence of enemy ship _, objs = label(ship_image[0 + 20*i :20 + 20*i, 0 + 20*j :20 + 20*j]) feature[0][counter + 1] = (1 if objs>0 else 0) #third feature check size 1 if big 0 if small feature[0][counter + 2] = (1 if input[:, :, 3][x][y] == 1 or input[:, :, 5][x][y] == 1 else 0) #fourth feature will check type. 1 if city 0 if tower feature[0][counter + 3] = (1 if input[:, :, 4][x][y] == 1 or input[:, :, 5][x][y] == 1 else 0) #fifth feature will check frie\nd/enemy. 1 if friend 0 if enemy feature[0][counter + 4] = (1 if input[:, :, 6][x][y] == 1 else 0) counter += 5 return feature def generate_file(self, array, name): f = open(str(name)+'.txt', 'w') f.write('\n\n\n') for i in range(array.shape[0]): for j in range(array.shape[1]): f.write(str(array[i,j])) f.write('\n') f.close() def plot_saliency(self, feature, input3): print('in plot ') values = torch.zeros(40*40*5) values = values.view(40, 40, 5) input3 = input3.view(40,40,8) feature = torch.from_numpy(feature).float() print('feature: ') print(feature) #this will give you dimensions of only objects image = np.zeros((40, 40)) for i in range(2,6): image = np.logical_or(image, input3[:, :, i].numpy())*1 labeled_array, num_objects = label(image) self.generate_file(image, 'image') ship_image = input3[:, :, 1].clone().numpy() ship_image[19][20] = 0 ship_image[20][20] = 0 ship_image[21][20] = 0 ship_image, _ = label(ship_image) self.generate_file(ship_image, 'ship_image') counter = 0 #slicing the hp_array quadrant vise for i in range(2): for j in range(2): #array = hp_array[0 + 20*i :19 + 20*i, 0 + 20*j :19 + 20*j] #labeled_array, num_objects = label(array) indices = np.argwhere(image[0 + 20*i :20 + 20*i, 0 + 20*j :20 + 20*j] > 0) #second feature will be checking prescence of enemy ship print('i ',i) print('j ',j) print(indices) print('\n\n') # print(indices[0][0]) # print(indices[0][1]) #first take care of HP for k in range(indices.shape[0]): x = indices[k][0] + 20*i y = indices[k][1] + 20*j print('x ',x) print('y ',y) #first feature will be HP values[:, :, 0][x][y] = feature[0][counter + 0] values[:, :, 2][x][y] = feature[0][counter + 2] values[:, :, 3][x][y] = feature[0][counter + 3] values[:, :, 4][x][y] = feature[0][counter + 4] #second feature will be checking prescence of enemy ship _, objs = label(ship_image[0 + 20*i :20 + 20*i, 0 + 20*j :20 + 20*j]) enemytank_indices = np.argwhere(ship_image[0 + 20*i :20 + 20*i, 0 + 20*j :20 + 20*j]>0) if objs > 0: print('objs ') print(objs) for k in range(enemytank_indices.shape[0]): x = enemytank_indices[k][0] + 20*i y = enemytank_indices[k][1] + 20*j print('x ',x) print('y ',y) values[:, :, 1][x][y] = feature[0][counter + 1] values[:, :, 0][x][y] = feature[0][counter + 0] # #third feature check size 1 if big 0 if small # feature[0][counter + 2] = (1 if input[:, :, 3][x][y] == 1 # or input[:, :, 5][x][y] == 1 else 0) # #fourth feature will check type. 1 if city 0 if tower # feature[0][counter + 3] = (1 if input[:, :, 4][x][y] == 1 # or input[:, :, 5][x][y] == 1 else 0) # #fifth feature will check friend/enemy. 1 if friend 0 if enemy # feature[0][counter + 4] = (1 if input[:, :, 6][x][y] == 1 else 0) counter += 5 values[:, :, 0][19][20] = feature[0][20] values[:, :, 0][20][20] = feature[0][20] values[:, :, 0][21][20] = feature[0][20] return values class LinearRegressionModel(nn.Module): def __init__(self, input_dim, output_dim): super(LinearRegressionModel, self).__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x): out = self.linear(x) return out def eval_net(x, y, model): correct = 0 total = 0 total_loss = 0 model.eval() # set model to evaluation mode criterion = nn.L1Loss() for i, (x1, y1) in enumerate(zip(x, y)): inputs = Variable(torch.from_numpy(x1).float()) labels = Variable(torch.from_numpy(y1)) pred = model.forward(inputs) total += labels.size(0) #correct += (pred == labels.data).sum() loss = criterion(pred, labels) total_loss += loss.item() #total_loss += loss.item() model.train() # set model back to train mode return total_loss / total
[ "torch.zeros", "torch.nn.Linear", "torch.nn.L1Loss", "torch.from_numpy" ]
0.4.0
dendisuhubdy/pytorch-saliency
dcb3499be127637435a577cb42161b3e096aa28d
1.7
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Mapping, Sequence, Type, Union import torch import torchvision from pytorch_lightning.metrics import Accuracy from pytorch_lightning.utilities.exceptions import MisconfigurationException from torch import nn from torch.nn import functional as F from flash.core.classification import ClassificationTask from flash.vision.classification.backbones import torchvision_backbone_and_num_features from flash.vision.classification.data import ImageClassificationData, ImageClassificationDataPipeline class ImageClassifier(ClassificationTask): """Task that classifies images. Args: num_classes: Number of classes to classify. backbone: A model to use to compute image features. pretrained: Use a pretrained backbone. loss_fn: Loss function for training, defaults to cross entropy. optimizer: Optimizer to use for training, defaults to `torch.optim.SGD`. metrics: Metrics to compute for training and evaluation. learning_rate: Learning rate to use for training, defaults to `1e-3` """ def __init__( self, num_classes, backbone="resnet18", num_features: int = None, pretrained=True, loss_fn: Callable = F.cross_entropy, optimizer: Type[torch.optim.Optimizer] = torch.optim.SGD, metrics: Union[Callable, Mapping, Sequence, None] = (Accuracy()), learning_rate: float = 1e-3, ): super().__init__( model=None, loss_fn=loss_fn, optimizer=optimizer, metrics=metrics, learning_rate=learning_rate, ) self.save_hyperparameters() self.backbone, num_features = torchvision_backbone_and_num_features(backbone, pretrained) self.head = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(num_features, num_classes), ) def forward(self, x) -> Any: x = self.backbone(x) return self.head(x) @staticmethod def default_pipeline() -> ImageClassificationDataPipeline: return ImageClassificationData.default_pipeline()
[ "torch.nn.Linear", "torch.nn.AdaptiveAvgPool2d", "torch.nn.Flatten" ]
1.7.1
billy-horn/lightning-flash
61c741d37182d137f39b771879254db8fd20308f
1.7
from __future__ import print_function import os import argparse import torch import torch.backends.cudnn as cudnn from PIL import Image import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import numpy as np import time from data.config import cfg_mobilenetv2 from layers.functions.prior_box import PriorBox from utils.nms.py_cpu_nms import py_cpu_nms import cv2 from models.retinaface_mbv2 import RetinaFace import math from math import cos, sin from utils.box_utils import decode, decode_landm from utils.timer import Timer import torch.nn.functional as F import matplotlib.cm import copy from scipy.spatial.transform import Rotation from matplotlib import pyplot as plt parser = argparse.ArgumentParser(description='Test') parser.add_argument('-m', '--trained_model', default='/home/lyp/mos_source_code_open/MOS-Multi-Task-Face-Detect/pt17_pose_weights_mbv2/mobilenetv2_epoch_249.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--network', default='shuffle_0.5', help='Backbone network mobile0.25 or slim or RFB') parser.add_argument('--origin_size', default=True, type=str, help='Whether use origin image size to evaluate') parser.add_argument('--long_side', default=840, help='when origin_size is false, long_side is scaled size(320 or 640 for long side)') parser.add_argument('--save_folder', default='./widerface_evaluate/widerface_txt/', type=str, help='Dir to save txt results') parser.add_argument('--cpu', action="store_true", default=True, help='Use cpu inference') parser.add_argument('--confidence_threshold', default=0.55, type=float, help='confidence_threshold') parser.add_argument('--top_k', default=5000, type=int, help='top_k') parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold') parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k') parser.add_argument('--save_image', action="store_true", default=True, help='show detection results') parser.add_argument('--vis_thres', default=0.55, type=float, help='visualization_threshold') args = parser.parse_args() def get_pose(vertices, twod_landmarks, camera_intrinsics, initial_pose=None): threed_landmarks = vertices twod_landmarks = np.asarray(twod_landmarks).astype("float32") # if initial_pose is provided, use it as a guess to solve new pose if initial_pose is not None: initial_pose = np.asarray(initial_pose) retval, rvecs, tvecs = cv2.solvePnP( threed_landmarks, twod_landmarks, camera_intrinsics, None, rvec=initial_pose[:3], tvec=initial_pose[3:], flags=cv2.SOLVEPNP_EPNP, useExtrinsicGuess=True, ) else: retval, rvecs, tvecs = cv2.solvePnP( threed_landmarks, twod_landmarks, camera_intrinsics, None, flags=cv2.SOLVEPNP_EPNP, ) rotation_mat = np.zeros(shape=(3, 3)) R = cv2.Rodrigues(rvecs, rotation_mat)[0] RT = np.column_stack((R, tvecs)) P = np.matmul(camera_intrinsics, RT) dof = np.append(rvecs, tvecs) return P, dof def bbox_is_dict(bbox): # check if the bbox is a not dict and convert it if needed if not isinstance(bbox, dict): temp_bbox = {} temp_bbox["left"] = bbox[0] temp_bbox["top"] = bbox[1] temp_bbox["right"] = bbox[2] temp_bbox["bottom"] = bbox[3] bbox = temp_bbox return bbox def get_bbox_intrinsics(image_intrinsics, bbox): # crop principle point of view bbox_center_x = bbox["left"] + ((bbox["right"] - bbox["left"]) // 2) bbox_center_y = bbox["top"] + ((bbox["bottom"] - bbox["top"]) // 2) # create a camera intrinsics from the bbox center bbox_intrinsics = image_intrinsics.copy() bbox_intrinsics[0, 2] = bbox_center_x bbox_intrinsics[1, 2] = bbox_center_y return bbox_intrinsics def pose_bbox_to_full_image(pose, image_intrinsics, bbox): # check if bbox is np or dict bbox = bbox_is_dict(bbox) # rotation vector rvec = pose[:3].copy() # translation and scale vector tvec = pose[3:].copy() # get camera intrinsics using bbox bbox_intrinsics = get_bbox_intrinsics(image_intrinsics, bbox) # focal length focal_length = image_intrinsics[0, 0] # bbox_size bbox_width = bbox["right"] - bbox["left"] bbox_height = bbox["bottom"] - bbox["top"] bbox_size = bbox_width + bbox_height # adjust scale tvec[2] *= focal_length / bbox_size # project crop points using the crop camera intrinsics projected_point = bbox_intrinsics.dot(tvec.T) # reverse the projected points using the full image camera intrinsics tvec = projected_point.dot(np.linalg.inv(image_intrinsics.T)) # same for rotation rmat = Rotation.from_rotvec(rvec).as_matrix() # project crop points using the crop camera intrinsics projected_point = bbox_intrinsics.dot(rmat) # reverse the projected points using the full image camera intrinsics rmat = np.linalg.inv(image_intrinsics).dot(projected_point) rvec = Rotation.from_matrix(rmat).as_rotvec() return np.concatenate([rvec, tvec]) def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print('Missing keys:{}'.format(len(missing_keys))) print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) print('Used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(model, pretrained_path, load_to_cpu): print('Loading pretrained model from {}'.format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) # Where (tdx, tdy) is the translation of the face. # For pose we have [pitch yaw roll tdx tdy tdz scale_factor] p = pitch * np.pi / 180 y = -(yaw * np.pi / 180) r = roll * np.pi / 180 if tdx != None and tdy != None: face_x = tdx - 0.50 * size face_y = tdy - 0.50 * size else: height, width = img.shape[:2] face_x = width / 2 - 0.5 * size face_y = height / 2 - 0.5 * size x1 = size * (cos(y) * cos(r)) + face_x y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y x2 = size * (-cos(y) * sin(r)) + face_x y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y x3 = size * (sin(y)) + face_x y3 = size * (-cos(y) * sin(p)) + face_y # Draw base in red cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3) cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3) cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3) cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3) # Draw pillars in blue cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2) cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2) # Draw top in green cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 if tdx != None and tdy != None: tdx = tdx tdy = tdy else: height, width = img.shape[:2] tdx = width / 2 tdy = height / 2 # X-Axis pointing to right. drawn in red x1 = size * (cos(yaw) * cos(roll)) + tdx y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy # Y-Axis | drawn in green # v x2 = size * (-cos(yaw) * sin(roll)) + tdx y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (sin(yaw)) + tdx y3 = size * (-cos(yaw) * sin(pitch)) + tdy cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),3) cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),3) cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4) return img p_in = [] p_out = [] # def hook_fn(module, inputs, outputs): p_in.append(inputs) p_out.append(outputs) def put_heatmap_on_image(ori_image, activation, colormap_name): """ ori_image (PIL image): 原始图像 activation (numpy arr): 即上面得到的p2_logits colormap_name (str): 采用何种matplotlib.cm的colormap """ # colormap color_map = matplotlib.cm.get_cmap(colormap_name) # 把colormap添加到activation,即activation的以何种 # colormap进行显示 no_trans_heatmap = color_map(activation) # 添加alpha通道,即透明度 heatmap = copy.copy(no_trans_heatmap) heatmap[:, :, 3] = 0.4 heatmap = Image.fromarray((heatmap*255).astype(np.uint8)) no_trans_heatmap = Image.fromarray((no_trans_heatmap*255).astype(np.uint8)) # heatmap_on_image = Image.new("RGBA", ori_image.size) heatmap_on_image = Image.alpha_composite( heatmap_on_image, ori_image.convert("RGBA")) heatmap_on_image = Image.alpha_composite( heatmap_on_image, heatmap) return no_trans_heatmap, heatmap_on_image def rot2Euler(imgpath, rotation_vector): # calculate rotation angles theta = cv2.norm(rotation_vector, cv2.NORM_L2) # transformed to quaterniond w = math.cos(theta / 2) x = math.sin(theta / 2) * rotation_vector[0][0] / theta y = math.sin(theta / 2) * rotation_vector[1][0] / theta z = math.sin(theta / 2) * rotation_vector[2][0] / theta ysqr = y * y # pitch (x-axis rotation) t0 = 2.0 * (w * x + y * z) t1 = 1.0 - 2.0 * (x * x + ysqr) print('t0:{}, t1:{}'.format(t0, t1)) pitch = math.atan2(t0, t1) - 0.8356857 # yaw (y-axis rotation) t2 = 2.0 * (w * y - z * x) if t2 > 1.0: t2 = 1.0 if t2 < -1.0: t2 = -1.0 yaw = math.asin(t2) + 0.005409 # roll (z-axis rotation) t3 = 2.0 * (w * z + x * y) t4 = 1.0 - 2.0 * (ysqr + z * z) roll = math.atan2(t3, t4) - 2.573345436 # 单位转换:将弧度转换为度 pitch_degree = int((pitch / math.pi) * 180) yaw_degree = int((yaw / math.pi) * 180) roll_degree = int((roll / math.pi) * 180) #drawResult(imgpath, yaw, pitch, roll, save_dir) print("Radians:") print("Yaw:", yaw_degree) print("Pitch:", pitch_degree) print("Roll:", roll_degree) str_angle=[yaw_degree,pitch_degree,roll_degree] return str_angle # img = cv2.imread(imgpath) # draw = img.copy() # cv2.putText(draw, "Yaw:" + str(yaw), (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) # cv2.putText(draw, "Pitch:" + str(pitch), (20, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) # cv2.putText(draw, "Roll:" + str(roll), (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) # cv2.waitKey() # cv2.imwrite(os.path.splitext(imgpath)[0] + '_pose_estimate1.jpg', draw) # # print("Degrees:") # draw = img.copy() # if yaw_degree > 0: # output_yaw = "face turns left:" + str(abs(yaw_degree)) + " degrees" # cv2.putText(draw, output_yaw, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_yaw) # if yaw_degree < 0: # output_yaw = "face turns right:" + str(abs(yaw_degree)) + " degrees" # cv2.putText(draw, output_yaw, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_yaw) # if pitch_degree < 0: # output_pitch = "face downwards:" + str(abs(pitch_degree)) + " degrees" # cv2.putText(draw, output_pitch, (20, 80), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_pitch) # if pitch_degree > 0: # output_pitch = "face upwards:" + str(abs(pitch_degree)) + " degrees" # cv2.putText(draw, output_pitch, (20, 80), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_pitch) # if roll_degree < 0: # output_roll = "face bends to the right:" + str(abs(roll_degree)) + " degrees" # cv2.putText(draw, output_roll, (20, 120), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_roll) # if roll_degree > 0: # output_roll = "face bends to the left:" + str(abs(roll_degree)) + " degrees" # cv2.putText(draw, output_roll, (20, 120), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print(output_roll) # if abs(yaw) < 0.00001 and abs(pitch) < 0.00001 and abs(roll) < 0.00001: # cv2.putText(draw, "Initial ststus", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 255, 0)) # print("Initial ststus") # cv2.imwrite(save_dir + os.path.splitext(imgpath)[0] + '_pose_estimate2.jpg', draw) def headPosEstimate(imgpath, landmarks): # 3D model points model_3d_points = np.array(([-165.0, 170.0, -115.0], # Left eye [165.0, 170.0, -115.0], # Right eye [0.0, 0.0, 0.0], # Nose tip [-150.0, -150.0, -125.0], # Left Mouth corner [150.0, -150.0, -125.0]), dtype=np.double) # Right Mouth corner) landmarks.dtype = np.double # Camera internals img = cv2.imread(imgpath) img_size = img.shape focal_length = img_size[1] center = [img_size[1]/2, img_size[0]/2] camera_matrix = np.array(([focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1]),dtype=np.double) dist_coeffs = np.array([0,0,0,0], dtype=np.double) found, rotation_vector, translation_vector = cv2.solvePnP(model_3d_points, landmarks, camera_matrix, dist_coeffs) angle_result=rot2Euler(imgpath,rotation_vector) return angle_result if __name__ == '__main__': torch.set_grad_enabled(False) cfg = None net = None cfg = cfg_mobilenetv2 net = RetinaFace(cfg=cfg, phase='test') net = load_model(net, args.trained_model, args.cpu) net.eval() print('Finished loading model!') #print(net) cudnn.benchmark = True #device = torch.device("cpu" if args.cpu else "cuda") device=torch.device("cuda") net = net.to(device) flag = True ################################################## #derface_val_dir = "/home/lyp/paper_experiments/pre_data/code/real_test/shuffilenet_face/data/val/wider_val.txt" #input1 = open(derface_val_dir) #lines1 = input1.readlines() time1 = 0 #cap=cv2.VideoCapture("/home/lyp/Downloads/333.mp4") #fourcc = cv2.VideoWriter_fourcc(*'XVID') #out = cv2.VideoWriter("/home/lyp/o11.avi", fourcc, 25.0, (640, 480)) #while(cap.isOpened()): # ret,frame=cap.read() #for i in range(1): #for iii in range(len(lines1)): #image_path = "/home/lyp/paper_experiments/pre_data/code/real_test/shuffilenet_face/data/val/images" + lines1[iii].strip() image_path = "/home/lyp/mos_source_code_open/MOS-Multi-Task-Face-Detect/figures/4_Dancing_Dancing_4_85.jpg" img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR) img = np.float32(img_raw) # testing scale target_size = args.long_side max_size = args.long_side im_shape = img.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) resize = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(resize * im_size_max) > max_size: resize = float(max_size) / float(im_size_max) if args.origin_size: resize = 1 if resize != 1: img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) # img = cv2.resize(img, (640,480)) img_rgb = img_raw.copy() im_height, im_width, _ = img.shape print(im_height, im_width) scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(device) scale = scale.to(device) tic = time.time() loc, conf, landms, head_cls_y, head_cls_p, head_cls_r = net(img) # forward pass tic1 = time.time() - tic head_cls_y = head_cls_y.squeeze(0) head_cls_p = head_cls_p.squeeze(0) head_cls_r = head_cls_r.squeeze(0) idx_tensor = [idx for idx in range(66)] idx_tensor = torch.FloatTensor(idx_tensor).to(device) head_cls_y = torch.sum(head_cls_y * idx_tensor, 1).to(device) * 3 - 99 head_cls_p = torch.sum(head_cls_p * idx_tensor, 1).to(device) * 3 - 99 head_cls_r = torch.sum(head_cls_r * idx_tensor, 1).to(device) * 3 - 99 priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance']) head_cls_y = head_cls_y.cpu().numpy() head_cls_p = head_cls_p.cpu().numpy() head_cls_r = head_cls_r.cpu().numpy() scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]]) scale1 = scale1.to(device) landms = landms * scale1 / resize landms = landms.cpu().numpy() # ignore low scores inds = np.where(scores > args.confidence_threshold)[0] boxes = boxes[inds] landms = landms[inds] scores = scores[inds] head_cls_y = head_cls_y[inds] head_cls_p = head_cls_p[inds] head_cls_r = head_cls_r[inds] # keep top-K before NMS order = scores.argsort()[::-1][:args.top_k] boxes = boxes[order] landms = landms[order] scores = scores[order] head_cls_y = head_cls_y[order] head_cls_p = head_cls_p[order] head_cls_r = head_cls_r[order] idx_tensor = [idx for idx in range(66)] idx_tensor = np.array(idx_tensor) # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = py_cpu_nms(dets, args.nms_threshold) # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu) dets = dets[keep, :] landms = landms[keep] yaw_predicted = head_cls_y[keep] pitch_predicted = head_cls_p[keep] roll_predicted = head_cls_r[keep] dets = dets[:args.keep_top_k, :] landms = landms[:args.keep_top_k, :] yaw_predicted = yaw_predicted[:args.keep_top_k] pitch_predicted = pitch_predicted[:args.keep_top_k] roll_predicted = roll_predicted[:args.keep_top_k] dets = np.concatenate((dets, landms), axis=1) # fourcc = cv2.VideoWriter_fourcc(*'XVID') # out = cv2.VideoWriter('/home/lyp/output.avi', fourcc, 20.0, (640, 480)) # img_cv = cv2.imread("/home/lyp/paper_experiments/plot_paper_curve/compare_withsota/10_People_Marching_People_Marching_2_514.jpg") # image_new2 = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB)) if args.save_image: for i in range(len(dets)): b = dets[i] if b[4] < args.vis_thres: continue text = "{:.4f}".format(b[4]) b = list(map(int, b)) cv2.rectangle(img_rgb, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 3) cx = b[0] cy = b[1] + 12 # cv2.putText(img_raw, text, (cx, cy), # cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255)) ################################# transfer landmark into pose ################################## # landmark_array=np.asarray([[b[5], b[6]],[b[7], b[8]],[b[9], b[10]],[b[11], b[12]],[b[13], b[14]]]).astype(float) # (w, h) = image_new2.size # bbox_intrinsics = np.array([[w + h, 0, w // 2], [0, w + h, h // 2], [0, 0, 1]]) # P, pose = get_pose(threed_5_points, landmark_array, bbox_intrinsics) # trans_vertices = renderer.transform_vertices(image_new2, [pose]) # image_new2 = renderer.render(image_new2, trans_vertices, alpha=1) # image_new2 = Image.fromarray(image_new2) text = "y:" + str(int(yaw_predicted[i])) # + "," + "p:" + str(int(pitch_predicted[i])) + "," + "r:" + str( # int(roll_predicted[i])) cv2.putText(img_rgb, text, (cx - 10, cy - 25), cv2.FONT_HERSHEY_TRIPLEX, 0.6, (255, 0, 255)) fps_text = "FPS: " + str(int(1 / tic1)) cv2.putText(img_rgb, fps_text, (20, 40), cv2.FONT_HERSHEY_TRIPLEX, 0.6, (0, 255, 0)) # # # landms # cv2.circle(img_rgb, (b[5], b[6]), 1, (0, 0, 255), 4) # cv2.circle(img_rgb, (b[7], b[8]), 1, (0, 255, 255), 4) # cv2.circle(img_rgb, (b[9], b[10]), 1, (255, 0, 255), 4) # cv2.circle(img_rgb, (b[11], b[12]), 1, (0, 255, 0), 4) # cv2.circle(img_rgb, (b[13], b[14]), 1, (255, 0, 0), 4) draw_axis(img_rgb, int(yaw_predicted[i]), int(pitch_predicted[i]), int(roll_predicted[i]), tdx=b[9], tdy=b[10], size=30) # plot_pose_cube(img_raw, int(yaw_predicted[i]), int(pitch_predicted[i]), int(roll_predicted[i]), tdx=b[0]+0.5*(b[2]-b[0]), tdy=b[1]+0.5*(b[3]-b[1]), size=150.) # landmark_array = np.asarray( # [[b[5], b[6]], [b[7], b[8]], [b[9], b[10]], [b[11], b[12]], [b[13], b[14]]]).astype(float) # #imgpath="/home/lyp/paper_experiments/pre_data/code/real_test/shuffilenet_face/data/val/images/1--Handshaking/1_Handshaking_Handshaking_1_567.jpg" # # angle_result=headPosEstimate(image_path, landmark_array) # text = "y:" + str(int(angle_result[0]))# + "," + "p:" + str(int(angle_result[1])) + "," + "r:" + str( # int(angle_result[2])) # cv2.putText(img_rgb, text, (cx - 60, cy - 28), # cv2.FONT_HERSHEY_TRIPLEX, 0.8, (255, 0, 0)) # out.write(frame) cv2.imshow("frame", img_rgb) # if ret == True: # out.write(img_rgb) # else: # break #cv2.imwrite("/home/lyp/paper_experiments/plot_paper_curve/suppm/img/widerface/results/r68.jpg", img_rgb)
[ "torch.cuda.current_device", "torch.load", "torch.sum", "torch.FloatTensor", "torch.Tensor", "torch.device", "torch.from_numpy", "torch.set_grad_enabled" ]
1.7
lyp-deeplearning/MOS-Multi-Task-Face-Detect
1bea754752e13fafdeb06f5fedcba1bd08e836de
1.10
import torch from torch.utils.data import RandomSampler from pathlib import Path import sys FILE = Path(__file__).resolve() ROOT = FILE.parents[0].parents[0] # CogKGE root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add CogKGE root directory to PATH from cogkge import * device=init_cogkge(device_id="0,1,2,3",seed=1) loader =FB15KLoader(dataset_path="../dataset",download=True) train_data, valid_data, test_data = loader.load_all_data() node_lut, relation_lut= loader.load_all_lut() # loader.describe() # train_data.describe() # node_lut.describe() processor = FB15KProcessor(node_lut, relation_lut,reprocess=True) train_dataset = processor.process(train_data) valid_dataset = processor.process(valid_data) test_dataset = processor.process(test_data) node_lut,relation_lut=processor.process_lut() # node_lut.print_table(front=3) # relation_lut.print_table(front=3) train_sampler = RandomSampler(train_dataset) valid_sampler = RandomSampler(valid_dataset) test_sampler = RandomSampler(test_dataset) model = DistMult(entity_dict_len=len(node_lut), relation_dict_len=len(relation_lut), embedding_dim=50) loss = NegLogLikehoodLoss(C=0.1) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0) metric = Link_Prediction(link_prediction_raw=True, link_prediction_filt=False, batch_size=5000000, reverse=True) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', patience=3, threshold_mode='abs', threshold=5, factor=0.5, min_lr=1e-9, verbose=True ) negative_sampler = UnifNegativeSampler(triples=train_dataset, entity_dict_len=len(node_lut), relation_dict_len=len(relation_lut)) trainer = ScoreTrainer( train_dataset=train_dataset, valid_dataset=test_dataset, train_sampler=train_sampler, valid_sampler=test_sampler, model=model, loss=loss, optimizer=optimizer, negative_sampler=negative_sampler, device=device, output_path="../dataset", lookuptable_E= node_lut, lookuptable_R= relation_lut, metric=metric, lr_scheduler=lr_scheduler, log=True, trainer_batch_size=100000, epoch=1000, visualization=False, apex=True, dataloaderX=True, num_workers=4, pin_memory=True, metric_step=100, save_step=100, metric_final_model=True, save_final_model=True, load_checkpoint= None ) trainer.train() evaluator = Evaluator( test_dataset=test_dataset, test_sampler=test_sampler, model=model, device=device, metric=metric, output_path="../dataset", train_dataset=train_dataset, valid_dataset=valid_dataset, lookuptable_E= node_lut, lookuptable_R= relation_lut, log=True, evaluator_batch_size=50000, dataloaderX=True, num_workers= 4, pin_memory=True, trained_model_path=None ) evaluator.evaluate()
[ "torch.utils.data.RandomSampler", "torch.optim.lr_scheduler.ReduceLROnPlateau" ]
1.10.1
CogNLP/CogKGE
70d851d6489600c1e90eb25b0388a3ceba2f078c
1.7
import torch from torch import nn as nn from torch.nn.functional import binary_cross_entropy_with_logits, cross_entropy from bases.nn.conv2d import DenseConv2d from bases.nn.linear import DenseLinear from bases.nn.models.base_model import BaseModel from bases.nn.sequential import DenseSequential from .utils import is_conv, is_fc __all__ = ["Conv2", "Conv4"] class Conv2(BaseModel): def __init__(self, dict_module: dict = None): if dict_module is None: dict_module = dict() features = nn.Sequential(DenseConv2d(1, 32, kernel_size=5, padding=2), # 32x28x28 nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2), # 32x14x14 DenseConv2d(32, 64, kernel_size=5, padding=2), # 64x14x14 nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2)) # 64x7x7 classifier = DenseSequential(DenseLinear(64 * 7 * 7, 2048, mode="fan_out"), nn.ReLU(inplace=True), DenseLinear(2048, 62, mode="fan_out")) dict_module["features"] = features dict_module["classifier"] = classifier super(Conv2, self).__init__(binary_cross_entropy_with_logits, dict_module) def collect_layers(self): self.get_param_layers(self.param_layers, self.param_layer_prefixes) self.prunable_layers = self.param_layers self.prunable_layer_prefixes = self.param_layer_prefixes def forward(self, inputs): outputs = self.features(inputs) outputs = outputs.view(outputs.size(0), -1) outputs = self.classifier(outputs) return outputs def loss(self, inputs, labels) -> torch.Tensor: return self.loss_func(self(inputs), labels) def to_sparse(self): new_features = [ft.to_sparse() if isinstance(ft, DenseConv2d) else ft for ft in self.features] new_module_dict = {"features": nn.Sequential(*new_features), "classifier": self.classifier.to_sparse()} return self.__class__(new_module_dict) def remove_empty_channels(self): list_in_out = [] is_transition = False prev_is_transition = False for idx, (layer, next_layer) in enumerate(zip(self.prunable_layers, self.prunable_layers[1:] + [None])): # works for both conv and fc if is_conv(layer) and is_fc(next_layer): is_transition = True num_out, num_in = layer.weight.size()[:2] if idx == 0 or prev_is_transition: list_remain_in = "all" else: list_remain_in = set() for in_id in range(num_in): mask_slice = layer.mask.index_select(dim=1, index=torch.tensor([in_id])) if not torch.equal(mask_slice, torch.zeros_like(mask_slice)): list_remain_in.add(in_id) if len(list_remain_in) == layer.weight.size()[1]: list_remain_in = "all" if next_layer is None or is_transition: list_remain_out = "all" else: list_remain_out = set() for out_id in range(num_out): mask_slice = layer.mask.index_select(dim=0, index=torch.tensor([out_id])) if not torch.equal(mask_slice, torch.zeros_like(mask_slice)): list_remain_out.add(out_id) if len(list_remain_out) == layer.weight.size()[0]: list_remain_out = "all" list_in_out.append((list_remain_in, list_remain_out)) if prev_is_transition: prev_is_transition = False if is_transition: prev_is_transition = True is_transition = False for ((in_indices, out_indices), (in_indices_next, out_indices_next), layer, next_layer) in zip(list_in_out[:-1], list_in_out[1:], self.prunable_layers[:-1], self.prunable_layers[1:]): if out_indices == "all" or in_indices_next == "all": merged_indices = "all" else: merged_indices = list(out_indices.intersection(in_indices_next)) if merged_indices != "all": layer.weight = nn.Parameter(layer.weight.index_select(dim=0, index=torch.tensor(merged_indices))) layer.mask = layer.mask.index_select(dim=0, index=torch.tensor(merged_indices)) len_merged_indices = len(merged_indices) if layer.bias is not None: layer.bias = nn.Parameter(layer.bias[merged_indices]) if is_conv(layer): layer.out_channels = len_merged_indices elif is_fc(layer): layer.out_features = len_merged_indices next_layer.weight = nn.Parameter( next_layer.weight.index_select(dim=1, index=torch.tensor(merged_indices))) next_layer.mask = next_layer.mask.index_select(dim=1, index=torch.tensor(merged_indices)) if is_conv(next_layer): next_layer.in_channels = len_merged_indices elif is_fc(next_layer): next_layer.in_features = len_merged_indices # class FEMNISTModel(BaseModel): # def __init__(self, dict_module: dict = None): # if dict_module is None: # dict_module = dict() # features = nn.Sequential(DenseConv2d(1, 32, kernel_size=5, padding=2), # 32x28x28 # nn.ReLU(inplace=True), # nn.MaxPool2d(2, stride=2), # 32x14x14 # DenseConv2d(32, 64, kernel_size=5, padding=2), # 64x14x14 # nn.ReLU(inplace=True), # nn.MaxPool2d(2, stride=2)) # 64x7x7 # # classifier = DenseSequential(DenseLinear(64 * 7 * 7, 2048, init_mode="fan_out"), # nn.ReLU(inplace=True), # DenseLinear(2048, 62, init_mode="fan_out")) # # dict_module["features"] = features # dict_module["classifier"] = classifier # # super(FEMNISTModel, self).__init__(binary_cross_entropy_with_logits, dict_module) # # def collect_layers(self): # self.get_param_layers(self.param_layers, self.param_layer_prefixes) # self.prunable_layers = self.param_layers # self.prunable_layer_prefixes = self.param_layer_prefixes # # def forward(self, inputs): # outputs = self.features(inputs) # outputs = outputs.view(outputs.size(0), -1) # outputs = self.classifier(outputs) # return outputs # # def loss(self, inputs, labels) -> torch.Tensor: # return self.loss_func(self(inputs), labels) # # def to_sparse(self): # new_features = [ft.to_sparse() if isinstance(ft, DenseConv2d) else ft for ft in self.features] # new_module_dict = {"features": nn.Sequential(*new_features), "classifier": self.classifier.to_sparse()} # return self.__class__(new_module_dict) # # def remove_empty_channels(self): # list_in_out = [] # is_transition = False # prev_is_transition = False # for idx, (layer, next_layer) in enumerate(zip(self.prunable_layers, self.prunable_layers[1:] + [None])): # # works for both conv and fc # if is_conv(layer) and is_fc(next_layer): # is_transition = True # # num_out, num_in = layer.weight.size()[:2] # # if idx == 0 or prev_is_transition: # list_remain_in = "all" # else: # list_remain_in = set() # for in_id in range(num_in): # mask_slice = layer.mask.index_select(dim=1, index=torch.tensor([in_id])) # if not torch.equal(mask_slice, torch.zeros_like(mask_slice)): # list_remain_in.add(in_id) # if len(list_remain_in) == layer.weight.size()[1]: # list_remain_in = "all" # # if next_layer is None or is_transition: # list_remain_out = "all" # else: # list_remain_out = set() # for out_id in range(num_out): # mask_slice = layer.mask.index_select(dim=0, index=torch.tensor([out_id])) # if not torch.equal(mask_slice, torch.zeros_like(mask_slice)): # list_remain_out.add(out_id) # if len(list_remain_out) == layer.weight.size()[0]: # list_remain_out = "all" # # list_in_out.append((list_remain_in, list_remain_out)) # # if prev_is_transition: # prev_is_transition = False # if is_transition: # prev_is_transition = True # is_transition = False # # for ((in_indices, out_indices), # (in_indices_next, out_indices_next), # layer, # next_layer) in zip(list_in_out[:-1], list_in_out[1:], self.prunable_layers[:-1], # self.prunable_layers[1:]): # # if out_indices == "all" or in_indices_next == "all": # merged_indices = "all" # else: # merged_indices = list(out_indices.intersection(in_indices_next)) # # if merged_indices != "all": # layer.weight = nn.Parameter(layer.weight.index_select(dim=0, index=torch.tensor(merged_indices))) # layer.mask = layer.mask.index_select(dim=0, index=torch.tensor(merged_indices)) # len_merged_indices = len(merged_indices) # if layer.bias is not None: # layer.bias = nn.Parameter(layer.bias[merged_indices]) # if is_conv(layer): # layer.out_channels = len_merged_indices # elif is_fc(layer): # layer.out_features = len_merged_indices # # next_layer.weight = nn.Parameter( # next_layer.weight.index_select(dim=1, index=torch.tensor(merged_indices))) # next_layer.mask = next_layer.mask.index_select(dim=1, index=torch.tensor(merged_indices)) # if is_conv(next_layer): # next_layer.in_channels = len_merged_indices # elif is_fc(next_layer): # next_layer.in_features = len_merged_indices class Conv4(BaseModel): def __init__(self, dict_module: dict = None): if dict_module is None: dict_module = dict() features = nn.Sequential(DenseConv2d(3, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=2), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=2), nn.BatchNorm2d(32), nn.MaxPool2d(2)) classifier = DenseLinear(in_features=32 * 6 * 6, out_features=2) dict_module["features"] = features dict_module["classifier"] = classifier super(Conv4, self).__init__(cross_entropy, dict_module) def collect_layers(self): self.get_param_layers(self.param_layers, self.param_layer_prefixes) prunable_ids = [idx for idx, layer in enumerate(self.param_layers) if not isinstance(layer, nn.BatchNorm2d)] self.prunable_layers = list(self.param_layers[i] for i in prunable_ids) self.prunable_layer_prefixes = list(self.param_layer_prefixes[i] for i in prunable_ids) def forward(self, inputs): outputs = self.features(inputs) outputs = outputs.view(outputs.size(0), -1) outputs = self.classifier(outputs) return outputs def loss(self, inputs, labels) -> torch.Tensor: return self.loss_func(self(inputs), labels) def to_sparse(self): new_features = [ft.to_sparse() if isinstance(ft, DenseConv2d) else ft for ft in self.features] new_module_dict = {"features": nn.Sequential(*new_features), "classifier": self.classifier.to_sparse(transpose=True)} return self.__class__(new_module_dict)
[ "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.Parameter", "torch.nn.ReLU", "torch.tensor", "torch.zeros_like" ]
1.7.1
yeshwanthv5/PruneFL
ad1f7f33b0605d1d79abfbe42ef287fcc613a943
1.1
# Copyright (c) 2019. TsumiNa. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. import torch from torch import nn __all__ = ['ConvLayer', 'CrystalGraphConvNet'] class ConvLayer(nn.Module): """ Convolutional operation on graphs """ def __init__(self, atom_fea_len, nbr_fea_len): """ Initialize ConvLayer. Parameters ---------- atom_fea_len: int Number of atom hidden features. nbr_fea_len: int Number of bond features. """ super(ConvLayer, self).__init__() self.atom_fea_len = atom_fea_len self.nbr_fea_len = nbr_fea_len self.fc_full = nn.Linear(2 * self.atom_fea_len + self.nbr_fea_len, 2 * self.atom_fea_len) self.sigmoid = nn.Sigmoid() self.softplus1 = nn.Softplus() self.bn1 = nn.BatchNorm1d(2 * self.atom_fea_len) self.bn2 = nn.BatchNorm1d(self.atom_fea_len) self.softplus2 = nn.Softplus() def forward(self, atom_in_fea, nbr_fea, nbr_fea_idx): """ Forward pass N: Total number of atoms in the batch M: Max number of neighbors Parameters ---------- atom_in_fea: Variable(torch.Tensor) shape (N, atom_fea_len) Atom hidden features before convolution nbr_fea: Variable(torch.Tensor) shape (N, M, nbr_fea_len) Bond features of each atom's M neighbors nbr_fea_idx: torch.LongTensor shape (N, M) Indices of M neighbors of each atom Returns ------- atom_out_fea: nn.Variable shape (N, atom_fea_len) Atom hidden features after convolution """ # TODO will there be problems with the index zero padding? N, M = nbr_fea_idx.shape # convolution atom_nbr_fea = atom_in_fea[nbr_fea_idx, :] total_nbr_fea = torch.cat( [atom_in_fea.unsqueeze(1).expand(N, M, self.atom_fea_len), atom_nbr_fea, nbr_fea], dim=2) total_gated_fea = self.fc_full(total_nbr_fea) total_gated_fea = self.bn1(total_gated_fea.view( -1, self.atom_fea_len * 2)).view(N, M, self.atom_fea_len * 2) nbr_filter, nbr_core = total_gated_fea.chunk(2, dim=2) nbr_filter = self.sigmoid(nbr_filter) nbr_core = self.softplus1(nbr_core) nbr_sumed = torch.sum(nbr_filter * nbr_core, dim=1) nbr_sumed = self.bn2(nbr_sumed) out = self.softplus2(atom_in_fea + nbr_sumed) return out class CrystalGraphConvNet(nn.Module): """ Create a crystal graph convolutional neural network for predicting total material properties. See Also: [CGCNN]_. .. [CGCNN] `Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties`__ __ https://doi.org/10.1103/PhysRevLett.120.145301 """ def __init__(self, orig_atom_fea_len, nbr_fea_len, atom_fea_len=64, n_conv=3, h_fea_len=128, n_h=1, classification=False): """ Initialize CrystalGraphConvNet. Parameters ---------- orig_atom_fea_len: int Number of atom features in the input. nbr_fea_len: int Number of bond features. atom_fea_len: int Number of hidden atom features in the convolutional layers n_conv: int Number of convolutional layers h_fea_len: int Number of hidden features after pooling n_h: int Number of hidden layers after pooling """ super(CrystalGraphConvNet, self).__init__() self.classification = classification self.embedding = nn.Linear(orig_atom_fea_len, atom_fea_len) self.convs = nn.ModuleList([ConvLayer(atom_fea_len=atom_fea_len, nbr_fea_len=nbr_fea_len) for _ in range(n_conv)]) self.conv_to_fc = nn.Linear(atom_fea_len, h_fea_len) self.conv_to_fc_softplus = nn.Softplus() if n_h > 1: self.fcs = nn.ModuleList([nn.Linear(h_fea_len, h_fea_len) for _ in range(n_h - 1)]) self.softpluses = nn.ModuleList([nn.Softplus() for _ in range(n_h - 1)]) if self.classification: self.fc_out = nn.Linear(h_fea_len, 2) else: self.fc_out = nn.Linear(h_fea_len, 1) if self.classification: self.logsoftmax = nn.LogSoftmax() self.dropout = nn.Dropout() def forward(self, atom_fea, nbr_fea, nbr_fea_idx, crystal_atom_idx): """ Forward pass N: Total number of atoms in the batch M: Max number of neighbors N0: Total number of crystals in the batch Parameters ---------- atom_fea: Variable(torch.Tensor) shape (N, orig_atom_fea_len) Atom features from atom type nbr_fea: Variable(torch.Tensor) shape (N, M, nbr_fea_len) Bond features of each atom's M neighbors nbr_fea_idx: torch.LongTensor shape (N, M) Indices of M neighbors of each atom crystal_atom_idx: list of torch.LongTensor of length N0 Mapping from the crystal idx to atom idx Returns ------- prediction: nn.Variable shape (N, ) Atom hidden features after convolution """ atom_fea = self.embedding(atom_fea) for conv_func in self.convs: atom_fea = conv_func(atom_fea, nbr_fea, nbr_fea_idx) crys_fea = self.pooling(atom_fea, crystal_atom_idx) crys_fea = self.conv_to_fc(self.conv_to_fc_softplus(crys_fea)) crys_fea = self.conv_to_fc_softplus(crys_fea) if self.classification: crys_fea = self.dropout(crys_fea) if hasattr(self, 'fcs') and hasattr(self, 'softpluses'): for fc, softplus in zip(self.fcs, self.softpluses): crys_fea = softplus(fc(crys_fea)) out = self.fc_out(crys_fea) if self.classification: out = self.logsoftmax(out) return out @staticmethod def pooling(atom_fea, crystal_atom_idx): """ Pooling the atom features to crystal features N: Total number of atoms in the batch N0: Total number of crystals in the batch Parameters ---------- atom_fea: Variable(torch.Tensor) shape (N, atom_fea_len) Atom feature vectors of the batch crystal_atom_idx: list of torch.LongTensor of length N0 Mapping from the crystal idx to atom idx """ assert sum([len(idx_map) for idx_map in crystal_atom_idx]) == \ atom_fea.data.shape[0] summed_fea = [torch.mean(atom_fea[idx_map], dim=0, keepdim=True) for idx_map in crystal_atom_idx] return torch.cat(summed_fea, dim=0)
[ "torch.nn.Linear", "torch.nn.LogSoftmax", "torch.cat", "torch.nn.Dropout", "torch.nn.Sigmoid", "torch.nn.BatchNorm1d", "torch.nn.Softplus", "torch.mean", "torch.sum" ]
1.1.0
qi-zh/XenonPy
e91c680c773022982b80686c9faaf962e304916d
1.8
import torch from torch import nn from transformers import BertTokenizer, VisualBertModel, VisualBertConfig import numpy as np class VisualBertClassifier(nn.Module): def __init__(self, visual_bert_model, num_classes: int = 8, initial_visual_embedding_dim: int = 96, final_dropout_rate: float = 0.1): """ pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. @param initial_visual_embedding_dim: """ super().__init__() self.visual_embedding_projection = nn.Linear(initial_visual_embedding_dim, 2048) self.visual_bert = visual_bert_model self.final_dropout = nn.Dropout(final_dropout_rate) self.out = nn.Linear(768, num_classes) def forward(self, text_input_ids, text_token_type_ids, text_attention_mask, visual_embeds, visual_token_type_ids, visual_attention_mask ): visual_embeds = self.visual_embedding_projection(visual_embeds) output = self.visual_bert(input_ids=text_input_ids, token_type_ids=text_token_type_ids, attention_mask=text_attention_mask, visual_embeds=visual_embeds, visual_token_type_ids=visual_token_type_ids, visual_attention_mask=visual_attention_mask) output = self.final_dropout(output.pooler_output) output = self.out(output) return output if __name__ == '__main__': bert_text_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") inputs = bert_text_tokenizer("What is the man eating?", return_tensors="pt") text_input_ids = inputs.data['input_ids'].to('cuda') text_token_type_ids = inputs.data['token_type_ids'].to('cuda') text_attention_mask = inputs.data['attention_mask'].to('cuda') sample_face_body_embedding_path = "/home/gsoykan20/Desktop/self_development/emotion-recognition-drawings/data/emoreccom_face_body_embeddings_96d/train/0_3_4.jpg.npy" sample_face_body_embedding = np.load(sample_face_body_embedding_path) visual_embeds = torch.from_numpy(sample_face_body_embedding) visual_embeds = visual_embeds.to('cuda') visual_embeds = torch.unsqueeze(visual_embeds, 0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long).to('cuda') visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float).to('cuda') classifier = VisualBertClassifier() classifier.to('cuda') classifier.forward(text_input_ids, text_token_type_ids, text_attention_mask, visual_embeds, visual_token_type_ids, visual_attention_mask)
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.unsqueeze", "torch.from_numpy", "torch.ones" ]
1.8.1
inzva/emotion-recognition-drawings
56435f42d76c10c10fa58149ccbcc8d05efccdc0
0.4
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import, division, print_function import argparse import csv import logging import os import random import sys import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from torch.nn import CrossEntropyLoss, MSELoss from scipy.stats import pearsonr, spearmanr from sklearn.metrics import matthews_corrcoef, f1_score from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class SCTProcessor(DataProcessor): """Processor for the SCT data set.""" def get_train_examples(self, data_dir): return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): return ["0", "1"] def _create_examples(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] text_b = line[1] label = "0" if line[2] == "True" else "1" examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): """Loads a data file into a list of `InputBatch`s.""" label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def simple_accuracy(preds, labels): return (preds == labels).mean() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def compute_metrics(task_name, preds, labels): assert len(preds) == len(labels) if task_name == "cola": return {"mcc": matthews_corrcoef(labels, preds)} elif task_name == "sst-2": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mrpc": return acc_and_f1(preds, labels) elif task_name == "sts-b": return pearson_and_spearman(preds, labels) elif task_name == "qqp": return acc_and_f1(preds, labels) elif task_name == "mnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mnli-mm": return {"acc": simple_accuracy(preds, labels)} elif task_name == "qnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "rte": return {"acc": simple_accuracy(preds, labels)} elif task_name == "wnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "sct": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name) def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, "sct": SCTProcessor, } output_modes = { "cola": "classification", "mnli": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", "sct": "classification", } if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_optimization_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() # Prepare model cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)) model = BertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=cache_dir, num_labels=num_labels) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer if args.do_train: param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 nb_tr_steps = 0 tr_loss = 0 if args.do_train: train_features = convert_examples_to_features( train_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch # define a new function to compute loss values for both output_modes logits = model(input_ids, segment_ids, input_mask, labels=None) if output_mode == "classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() loss = loss_fct(logits.view(-1), label_ids.view(-1)) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels) tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) else: model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels) model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask, labels=None) # create eval loss and other metric required by the task if output_mode == "classification": loss_fct = CrossEntropyLoss() tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(task_name, preds, all_label_ids.numpy()) loss = tr_loss/global_step if args.do_train else None result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # hack for MNLI-MM if task_name == "mnli": task_name = "mnli-mm" processor = processors[task_name]() if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir + '-MM'): os.makedirs(args.output_dir + '-MM') eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask, labels=None) loss_fct = CrossEntropyLoss() tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] preds = np.argmax(preds, axis=1) result = compute_metrics(task_name, preds, all_label_ids.numpy()) loss = tr_loss/global_step if args.do_train else None result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
[ "torch.distributed.get_world_size", "torch.utils.data.RandomSampler", "torch.cuda.is_available", "torch.nn.CrossEntropyLoss", "torch.nn.DataParallel", "torch.distributed.init_process_group", "torch.manual_seed", "torch.tensor", "torch.utils.data.DataLoader", "torch.distributed.get_rank", "torch.device", "torch.cuda.manual_seed_all", "torch.utils.data.SequentialSampler", "torch.cuda.device_count", "torch.cuda.set_device", "torch.utils.data.TensorDataset", "torch.nn.MSELoss", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
0.4.1
SebastianMuszynski/pytorch-pretrained-BERT
1892015692a28096859a46243ae458f9f8aa003f
1.3
import numpy as np from torchvision import datasets import torchvision.transforms as transforms import random from torch.utils.data.sampler import SubsetRandomSampler from torch.utils.data import DataLoader, Dataset import torch normalize_birds = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) normalize_mnist = transforms.Normalize(mean=[0.1307], std=[0.3081]) normalize_fiw = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) def get_data_loader(opt): if opt.dataset == "birds": my_transform = transforms.Compose([ transforms.Resize((opt.img_size, opt.img_size)), transforms.ToTensor(), normalize_birds ]) train_dataset = datasets.ImageFolder(root=opt.image_root, transform=my_transform) train_loader = DataLoader(dataset=train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers) test_loader = None val_loader = None elif opt.dataset == "mnist": my_transform = transforms.Compose([ transforms.Resize((opt.img_size, opt.img_size)), transforms.ToTensor(), normalize_mnist ]) train_loader = DataLoader(datasets.MNIST(opt.image_root, train=True, download=True, transform=my_transform), batch_size=opt.batch_size, shuffle=True) test_loader = None val_loader = None elif opt.dataset == "celebA" or opt.dataset == "celebA_reduced": my_transform = transforms.Compose([ transforms.Resize((opt.img_size, opt.img_size)), transforms.CenterCrop(opt.img_size), transforms.ToTensor(), normalize_fiw ]) train_dataset = datasets.ImageFolder(root=opt.image_root_train, transform=my_transform) val_dataset = datasets.ImageFolder(root=opt.image_root_val, transform=my_transform) test_dataset = datasets.ImageFolder(root=opt.image_root_test, transform=my_transform) train_loader = DataLoader(dataset=train_dataset, batch_size=opt.batch_size_train, shuffle=True, num_workers=opt.num_workers) val_loader = DataLoader(dataset=val_dataset, batch_size=opt.batch_size_val, shuffle=False, num_workers=opt.num_workers) test_loader = DataLoader(dataset=test_dataset, batch_size=opt.batch_size_test, shuffle=False, num_workers=opt.num_workers) return train_loader, val_loader, test_loader
[ "torch.utils.data.DataLoader" ]
1.3.1
RicoFio/disentangle_mlp
1fb3b6070b5846051b8b9e9333e8ee61418f4893
1.6
import pytest import torch import numpy as np import gym from d3rlpy.dataset import MDPDataset, Episode from d3rlpy.preprocessing import create_action_scaler from d3rlpy.preprocessing import MinMaxActionScaler @pytest.mark.parametrize("scaler_type", ["min_max"]) def test_create_action_scaler(scaler_type): scaler = create_action_scaler(scaler_type) if scaler_type == "min_max": assert isinstance(scaler, MinMaxActionScaler) @pytest.mark.parametrize("action_size", [10]) @pytest.mark.parametrize("batch_size", [32]) def test_min_max_action_scaler(action_size, batch_size): actions = np.random.random((batch_size, action_size)).astype("f4") max = actions.max(axis=0) min = actions.min(axis=0) scaler = MinMaxActionScaler(maximum=max, minimum=min) # check range y = scaler.transform(torch.tensor(actions)) assert np.all(y.numpy() >= -1.0) assert np.all(y.numpy() <= 1.0) x = torch.rand((batch_size, action_size)) y = scaler.transform(x) ref_y = (x.numpy() - min.reshape((1, -1))) / (max - min).reshape((1, -1)) assert np.allclose(y.numpy(), ref_y * 2.0 - 1.0) assert scaler.get_type() == "min_max" params = scaler.get_params() assert np.all(params["minimum"] == min) assert np.all(params["maximum"] == max) assert torch.allclose(scaler.reverse_transform(y), x, atol=1e-6) @pytest.mark.parametrize("observation_shape", [(100,)]) @pytest.mark.parametrize("action_size", [10]) @pytest.mark.parametrize("batch_size", [32]) def test_min_max_action_scaler_with_episode( observation_shape, action_size, batch_size ): shape = (batch_size,) + observation_shape observations = np.random.random(shape) actions = np.random.random((batch_size, action_size)).astype("f4") rewards = np.random.random(batch_size) terminals = np.random.randint(2, size=batch_size) terminals[-1] = 1.0 dataset = MDPDataset( observations=observations, actions=actions, rewards=rewards, terminals=terminals, ) max = actions.max(axis=0) min = actions.min(axis=0) scaler = MinMaxActionScaler() scaler.fit(dataset.episodes) x = torch.rand((batch_size, action_size)) y = scaler.transform(x) ref_y = (x.numpy() - min.reshape((1, -1))) / (max - min).reshape((1, -1)) assert np.allclose(y.numpy(), ref_y * 2.0 - 1.0) params = scaler.get_params() assert np.all(params["minimum"] == min) assert np.all(params["maximum"] == max) def test_min_max_action_scaler_with_env(): env = gym.make("Pendulum-v0") scaler = MinMaxActionScaler() scaler.fit_with_env(env) assert np.all(scaler._minimum == env.action_space.low) assert np.all(scaler._maximum == env.action_space.high)
[ "torch.rand", "torch.tensor" ]
1.6.0
jamartinh/d3rlpy
87f478451674ef769eb8ce74e3663c4d3b1c325d
1.8
import torch import torch.nn as nn from .midas.midas_net import MidasNet class DoepdNet(torch.nn.Module): """ There are 3 run modes available for this model. 1. Yolo : Trains/Inferences only yolo layer, while ignoring midas and planeRCNN 2. PlaneRCNN : Trains/Inferences only PlaneRCNN layer, while ignoring midas and yolo 3. All : Trains/Inferences every layer """ midas_encoder_layered_output = [] def __init__(self, run_mode, midas_weights = "weights/model-f6b98070.pt", image_size=384): super(DoepdNet, self).__init__() self.run_mode = run_mode self.midas_net = MidasNet(midas_weights) midas_encoder_filters = [256, 256, 512, 512, 1024] # output filters from each layer of resnext 101 if self.run_mode == 'yolo' or self.run_mode == 'all': from .yolo.yolo_decoder import YoloDecoder # Each of the three layers in yolo takes input from last 3 layers of midas self.yolo_decoder = YoloDecoder(midas_encoder_filters, (image_size, image_size)) self.yolo_layers = self.yolo_decoder.yolo_layers self.midas_layer_2_to_yolo_small_obj = nn.Conv2d(in_channels= 512, out_channels = 256, kernel_size = 1, padding = 0) self.midas_layer_3_to_yolo_med_obj = nn.Conv2d(in_channels= 1024, out_channels = 512, kernel_size = 1, padding = 0) self.midas_layer_4_to_yolo_med_obj = nn.Conv2d(in_channels= 2048, out_channels = 512, kernel_size = 1, padding = 0) self.midas_layer_4_to_yolo_large_obj = nn.Conv2d(in_channels= 2048, out_channels = 1024, kernel_size = 1, padding = 0) # if self.run_mode == 'planercnn' or self.run_mode == 'all': # from .planercnn.planercnn_decoder import MaskRCNN # from utils.config import PlaneConfig # import sys # sys.argv=[''] # del sys # from utils.options import parse_args # args = parse_args() # config = PlaneConfig(args) # self.plane_rcnn_decoder = MaskRCNN(config) # Freeze training for midas (encoder) for param in self.midas_net.pretrained.parameters(): param.requires_grad = False def forward(self, x, plane_rcnn_image_meta = None, augment=False, mode='inference_detection', use_nms=2, use_refinement=True, return_feature_map=False): doepd_forward_output = [None, None, None] encoder_layered_outputs = self.midas_net.forward_encoder(x) if self.run_mode == 'yolo' or self.run_mode == 'all': yolo_small = self.midas_layer_2_to_yolo_small_obj(encoder_layered_outputs[1]) # midas resnext 101 layer 2 yolo_med = self.midas_layer_3_to_yolo_med_obj(encoder_layered_outputs[2]) # midas resnext 101 layer 3 yolo_med_before_upsample = self.midas_layer_4_to_yolo_med_obj(encoder_layered_outputs[3]) # midas resnext 101 layer 4 yolo_large = self.midas_layer_4_to_yolo_large_obj(encoder_layered_outputs[3]) # midas resnext 101 layer 4 doepd_forward_output[0] = self.yolo_decoder.forward([yolo_small, yolo_med_before_upsample, yolo_med, yolo_large], augment=augment) if self.run_mode == 'midas' or self.run_mode == 'all': doepd_forward_output[1] = self.midas_net.forward_decoder(encoder_layered_outputs) # if self.run_mode == 'planercnn' or self.run_mode == 'all': # doepd_forward_output[2] = self.plane_rcnn_decoder.predict(x, plane_rcnn_image_meta, mode, encoder_layered_outputs = encoder_layered_outputs, return_feature_map= return_feature_map) return doepd_forward_output def load_doepd_weights(self, device='cpu', scratch=False, train_mode = False, load_mode='all'): yolo_weights = [] chkpt = [None, None] from .yolo.yolo_decoder import load_yolo_decoder_weights if not scratch: # loading yolo weights if self.run_mode == 'yolo' or self.run_mode == 'all': yolo_weight_file = None # loading yolo weights from last/best based on train_mode. Will update to add planercnn weights if train_mode: yolo_weight_file = 'weights/doepd_yolo_last.pt' else: yolo_weight_file = 'weights/doepd_yolo_best.pt' chkpt[0] = torch.load(yolo_weight_file, map_location = "cpu") num_items = 0 for k, v in chkpt[0]['model'].items(): if num_items>=666 and num_items<756: if not k.endswith('num_batches_tracked'): yolo_weights.append(v.detach().numpy()) num_items = num_items + 1 load_yolo_decoder_weights(self.yolo_decoder, yolo_weights) self.midas_layer_2_to_yolo_small_obj.weight = torch.nn.Parameter(chkpt[0]['model']['midas_layer_2_to_yolo_small_obj.weight']) self.midas_layer_2_to_yolo_small_obj.bias = torch.nn.Parameter(chkpt[0]['model']['midas_layer_2_to_yolo_small_obj.bias']) self.midas_layer_3_to_yolo_med_obj.weight = torch.nn.Parameter(chkpt[0]['model']['midas_layer_3_to_yolo_med_obj.weight']) self.midas_layer_3_to_yolo_med_obj.bias = torch.nn.Parameter(chkpt[0]['model']['midas_layer_3_to_yolo_med_obj.bias']) self.midas_layer_4_to_yolo_med_obj.weight = torch.nn.Parameter(chkpt[0]['model']['midas_layer_4_to_yolo_med_obj.weight']) self.midas_layer_4_to_yolo_med_obj.bias = torch.nn.Parameter(chkpt[0]['model']['midas_layer_4_to_yolo_med_obj.bias']) self.midas_layer_4_to_yolo_large_obj.weight = torch.nn.Parameter(chkpt[0]['model']['midas_layer_4_to_yolo_large_obj.weight']) self.midas_layer_4_to_yolo_large_obj.bias = torch.nn.Parameter(chkpt[0]['model']['midas_layer_4_to_yolo_large_obj.bias']) # elif self.run_mode == 'planercnn' or self.run_mode == 'all': # planer_cnn_file = 'weights/planer_checkpoint.pth' # chkpt[1] = torch.load(planer_cnn_file, map_location = "cpu") # num_items = 0 # for k, v in chkpt[1].items(): # if num_items>=728: # # eg k = depth.deconv1.2.running_var # # we need plane_rcnn_decoder.depth.deconv1.2.running_var # self.plane_rcnn_decoder.state_dict()[f'plane_rcnn_decoder.{k}'] = v.data # num_items = num_items + 1 else: # loading yolo_best weights : got from 300 epochs trained in Assignment 13 yolo_weight_file='weights/yolo_old_300.pt' chkpt[0] = torch.load(yolo_weight_file, map_location = device) num_items=0 for k, v in chkpt[0]['model'].items(): if num_items >= 354: if not k.endswith('num_batches_tracked'): if v.shape[0]!=255: yolo_weights.append(v.detach().numpy()) num_items = num_items + 1 load_yolo_decoder_weights(self.yolo_decoder, yolo_weights) return chkpt
[ "torch.nn.Conv2d", "torch.load", "torch.nn.Parameter" ]
1.8.1
namanshrimali/doepd.ai
fc57af2e131965d9d6c89e39a3eeab41c8dff40b
1.1
import torch import torch.nn as nn from mmcv.cnn import normal_init from mmdet.core import distance2bbox, force_fp32, multi_apply, multiclass_nms, multiclass_nms_with_mask from mmdet.ops import ModulatedDeformConvPack from ..builder import build_loss from ..registry import HEADS from ..utils import ConvModule, Scale, bias_init_with_prob, build_norm_layer from IPython import embed import cv2 import numpy as np import math import time INF = 1e8 @HEADS.register_module class PolarMask_Head(nn.Module): def __init__(self, num_classes, in_channels, feat_channels=256, stacked_convs=4, strides=(4, 8, 16, 32, 64), regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), use_dcn=False, mask_nms=False, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_mask=dict(type='MaskIOULoss'), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(PolarMask_Head, self).__init__() self.num_classes = num_classes self.cls_out_channels = num_classes - 1 self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.loss_mask = build_loss(loss_mask) self.loss_centerness = build_loss(loss_centerness) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False # xez add for polarmask self.use_dcn = use_dcn self.mask_nms = mask_nms # debug vis img self.vis_num = 1000 self.count = 0 # test self.angles = torch.range(0, 350, 10).cuda() / 180 * math.pi self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() self.mask_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels if not self.use_dcn: self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.mask_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) else: self.cls_convs.append( ModulatedDeformConvPack( chn, self.feat_channels, 3, stride=1, padding=1, dilation=1, deformable_groups=1, )) if self.norm_cfg: self.cls_convs.append(build_norm_layer(self.norm_cfg, self.feat_channels)[1]) self.cls_convs.append(nn.ReLU(inplace=True)) self.reg_convs.append( ModulatedDeformConvPack( chn, self.feat_channels, 3, stride=1, padding=1, dilation=1, deformable_groups=1, )) if self.norm_cfg: self.reg_convs.append(build_norm_layer(self.norm_cfg, self.feat_channels)[1]) self.reg_convs.append(nn.ReLU(inplace=True)) self.mask_convs.append( ModulatedDeformConvPack( chn, self.feat_channels, 3, stride=1, padding=1, dilation=1, deformable_groups=1, )) if self.norm_cfg: self.mask_convs.append(build_norm_layer(self.norm_cfg, self.feat_channels)[1]) self.mask_convs.append(nn.ReLU(inplace=True)) self.polar_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.polar_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.polar_mask = nn.Conv2d(self.feat_channels, 36, 3, padding=1) self.polar_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales_bbox = nn.ModuleList([Scale(1.0) for _ in self.strides]) self.scales_mask = nn.ModuleList([Scale(1.0) for _ in self.strides]) def init_weights(self): if not self.use_dcn: for m in self.cls_convs: normal_init(m.conv, std=0.01) for m in self.reg_convs: normal_init(m.conv, std=0.01) for m in self.mask_convs: normal_init(m.conv, std=0.01) else: pass bias_cls = bias_init_with_prob(0.01) normal_init(self.polar_cls, std=0.01, bias=bias_cls) normal_init(self.polar_reg, std=0.01) normal_init(self.polar_mask, std=0.01) normal_init(self.polar_centerness, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales_bbox, self.scales_mask) def forward_single(self, x, scale_bbox, scale_mask): cls_feat = x reg_feat = x mask_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.polar_cls(cls_feat) centerness = self.polar_centerness(cls_feat) for reg_layer in self.reg_convs: reg_feat = reg_layer(reg_feat) # scale the bbox_pred of different level # float to avoid overflow when enabling FP16 bbox_pred = scale_bbox(self.polar_reg(reg_feat)).float().exp() for mask_layer in self.mask_convs: mask_feat = mask_layer(mask_feat) mask_pred = scale_mask(self.polar_mask(mask_feat)).float().exp() return cls_score, bbox_pred, centerness, mask_pred @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'mask_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, centernesses, mask_preds, gt_bboxes, gt_labels, img_metas, cfg, gt_masks, gt_bboxes_ignore=None, extra_data=None): assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len(mask_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) labels, bbox_targets, mask_targets = self.polar_target(all_level_points, extra_data) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_mask_preds = [ mask_pred.permute(0, 2, 3, 1).reshape(-1, 36) for mask_pred in mask_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores) # [num_pixel, 80] flatten_bbox_preds = torch.cat(flatten_bbox_preds) # [num_pixel, 4] flatten_mask_preds = torch.cat(flatten_mask_preds) # [num_pixel, 36] flatten_centerness = torch.cat(flatten_centerness) # [num_pixel] flatten_labels = torch.cat(labels).long() # [num_pixel] flatten_bbox_targets = torch.cat(bbox_targets) # [num_pixel, 4] flatten_mask_targets = torch.cat(mask_targets) # [num_pixel, 36] flatten_points = torch.cat([points.repeat(num_imgs, 1) for points in all_level_points]) # [num_pixel,2] pos_inds = flatten_labels.nonzero().reshape(-1) num_pos = len(pos_inds) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) # avoid num_pos is 0 pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] pos_mask_preds = flatten_mask_preds[pos_inds] if num_pos > 0: pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_mask_targets = flatten_mask_targets[pos_inds] pos_centerness_targets = self.polar_centerness_target(pos_mask_targets) pos_points = flatten_points[pos_inds] pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) pos_decoded_target_preds = distance2bbox(pos_points, pos_bbox_targets) # centerness weighted iou loss loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=pos_centerness_targets.sum()) loss_mask = self.loss_mask(pos_mask_preds, pos_mask_targets, weight=pos_centerness_targets, avg_factor=pos_centerness_targets.sum()) loss_centerness = self.loss_centerness(pos_centerness, pos_centerness_targets) else: loss_bbox = pos_bbox_preds.sum() loss_mask = pos_mask_preds.sum() loss_centerness = pos_centerness.sum() return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_mask=loss_mask, loss_centerness=loss_centerness) def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def polar_target(self, points, extra_data): assert len(points) == len(self.regress_ranges) num_levels = len(points) labels_list, bbox_targets_list, mask_targets_list = extra_data.values() # split to per img, per level num_points = [center.size(0) for center in points] labels_list = [labels.split(num_points, 0) for labels in labels_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] mask_targets_list = [ mask_targets.split(num_points, 0) for mask_targets in mask_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_bbox_targets = [] concat_lvl_mask_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) concat_lvl_bbox_targets.append( torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list])) concat_lvl_mask_targets.append( torch.cat( [mask_targets[i] for mask_targets in mask_targets_list])) return concat_lvl_labels, concat_lvl_bbox_targets, concat_lvl_mask_targets def polar_centerness_target(self, pos_mask_targets): # only calculate pos centerness targets, otherwise there may be nan centerness_targets = (pos_mask_targets.min(dim=-1)[0] / pos_mask_targets.max(dim=-1)[0]) return torch.sqrt(centerness_targets) @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) def get_bboxes(self, cls_scores, bbox_preds, centernesses, mask_preds, img_metas, cfg, rescale=None): assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] mask_pred_list = [ mask_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] det_bboxes = self.get_bboxes_single(cls_score_list, bbox_pred_list, mask_pred_list, centerness_pred_list, mlvl_points, img_shape, scale_factor, cfg, rescale) result_list.append(det_bboxes) return result_list def get_bboxes_single(self, cls_scores, bbox_preds, mask_preds, centernesses, mlvl_points, img_shape, scale_factor, cfg, rescale=False): assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] mlvl_masks = [] mlvl_centerness = [] for cls_score, bbox_pred, mask_pred, centerness, points in zip( cls_scores, bbox_preds, mask_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) mask_pred = mask_pred.permute(1, 2, 0).reshape(-1, 36) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] mask_pred = mask_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) masks = distance2mask(points, mask_pred, self.angles, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_masks.append(masks) mlvl_bboxes = torch.cat(mlvl_bboxes) mlvl_masks = torch.cat(mlvl_masks) if rescale: _mlvl_bboxes = mlvl_bboxes / mlvl_bboxes.new_tensor(scale_factor) try: scale_factor = torch.Tensor(scale_factor)[:2].cuda().unsqueeze(1).repeat(1, 36) _mlvl_masks = mlvl_masks / scale_factor except: _mlvl_masks = mlvl_masks / mlvl_masks.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([padding, mlvl_scores], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) centerness_factor = 0.5 # mask centerness is smaller than origin centerness, so add a constant is important or the score will be too low. if self.mask_nms: '''1 mask->min_bbox->nms, performance same to origin box''' a = _mlvl_masks _mlvl_bboxes = torch.stack([a[:, 0].min(1)[0],a[:, 1].min(1)[0],a[:, 0].max(1)[0],a[:, 1].max(1)[0]],-1) det_bboxes, det_labels, det_masks = multiclass_nms_with_mask( _mlvl_bboxes, mlvl_scores, _mlvl_masks, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness + centerness_factor) else: '''2 origin bbox->nms, performance same to mask->min_bbox''' det_bboxes, det_labels, det_masks = multiclass_nms_with_mask( _mlvl_bboxes, mlvl_scores, _mlvl_masks, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness + centerness_factor) return det_bboxes, det_labels, det_masks # test def distance2mask(points, distances, angles, max_shape=None): '''Decode distance prediction to 36 mask points Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 36,from angle 0 to 350. angles (Tensor): max_shape (tuple): Shape of the image. Returns: Tensor: Decoded masks. ''' num_points = points.shape[0] points = points[:, :, None].repeat(1, 1, 36) c_x, c_y = points[:, 0], points[:, 1] sin = torch.sin(angles) cos = torch.cos(angles) sin = sin[None, :].repeat(num_points, 1) cos = cos[None, :].repeat(num_points, 1) x = distances * sin + c_x y = distances * cos + c_y if max_shape is not None: x = x.clamp(min=0, max=max_shape[1] - 1) y = y.clamp(min=0, max=max_shape[0] - 1) res = torch.cat([x[:, None, :], y[:, None, :]], dim=1) return res
[ "torch.cos", "torch.cat", "torch.sqrt", "torch.nn.ModuleList", "torch.sin", "torch.arange", "torch.nn.ReLU", "torch.range", "torch.nn.Conv2d", "torch.meshgrid", "torch.Tensor" ]
1.1
PanAndy/PolarMask
0421f03a66ad4cbf7bdfe7a17a2e47e9fcc53737
0.4
import torch from torch.autograd import Variable import torch.nn.functional as F import torchvision.transforms as transforms import torch.nn as nn import torch.utils.data import numpy as np from opt import opt from dataloader import VideoLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco from yolo.util import write_results, dynamic_write_results from SPPE.src.main_fast_inference import * import os import sys from tqdm import tqdm import time from fn import getTime import cv2 from pPose_nms import pose_nms, write_json args = opt args.dataset = 'coco' if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system') if __name__ == "__main__": videofile = args.video mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc,fps,frameSize) = data_loader.videoinfo() # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.cuda() pose_model.eval() runtime_profile = { 'dt': [], 'pt': [], 'pn': [] } # Data writer save_path = os.path.join(args.outputpath, 'AlphaPose_'+videofile.split('/')[-1].split('.')[0]+'.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j*batchSize:min((j + 1)*batchSize, datalen)].cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu().data writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format( dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn'])) ) print('===========================> Finish Model Running.') if (args.save_img or args.save_video) and not args.vis_fast: print('===========================> Rendering remaining images in the queue...') print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).') while(writer.running()): pass writer.stop() final_result = writer.results() write_json(final_result, args.outputpath)
[ "torch.cat", "torch.no_grad", "torch.multiprocessing.set_start_method", "torch.multiprocessing.set_sharing_strategy" ]
0.4.0
LangwenH/AlphaPose-for-Mice-Behavior
357923f5993a521507fe7359fa763d2b5d2493f7
1.1
import torch.utils.data as data import torch import albumentations import cv2 import numpy as np import random import math from settings import train_png_dir def generate_transforms(image_size): IMAGENET_SIZE = image_size train_transform = albumentations.Compose([ albumentations.Resize(IMAGENET_SIZE, IMAGENET_SIZE), albumentations.Normalize(mean=(0.456, 0.456, 0.456), std=(0.224, 0.224, 0.224), max_pixel_value=255.0, p=1.0) ]) val_transform = albumentations.Compose([ albumentations.Resize(IMAGENET_SIZE, IMAGENET_SIZE), albumentations.Normalize(mean=(0.456, 0.456, 0.456), std=(0.224, 0.224, 0.224), max_pixel_value=255.0, p=1.0) ]) return train_transform, val_transform def generate_random_list(length): new_list = [] for i in range(length): if i <= length/2: weight = int(i/4) else: weight = int((length - i)/4) weight = np.max([1, weight]) new_list += [i]*weight return new_list class RSNA_Dataset_train_by_study_context(data.Dataset): def __init__(self, df = None, name_list = None, transform = None ): self.df = df[df['study_instance_uid'].isin(name_list)] self.name_list = name_list self.transform = transform def __getitem__(self, idx): study_name = self.name_list[idx % len(self.name_list)] study_train_df = self.df[self.df['study_instance_uid']==study_name] print(study_train_df.head()) study_index = random.choice(generate_random_list(study_train_df.shape[0]-1)) slice_id = study_name + '_' + str(study_index) filename = study_train_df[study_train_df['slice_id']==slice_id]['filename'].values[0] if study_index == (study_train_df.shape[0]-1): filename_up = filename else: slice_id_up = study_name + '_' + str(study_index+1) filename_up = study_train_df[study_train_df['slice_id']==slice_id_up]['filename'].values[0] if study_index == 0: filename_down = filename else: slice_id_down = study_name + '_' + str(study_index-1) filename_down = study_train_df[study_train_df['slice_id']==slice_id_down]['filename'].values[0] # print(train_png_dir) # print("\n") # print(filename) image = cv2.imread(train_png_dir + filename, 0) image = cv2.resize(image, (512, 512)) image_up = cv2.imread(train_png_dir + filename_up, 0) image_up = cv2.resize(image_up, (512, 512)) image_down = cv2.imread(train_png_dir + filename_down, 0) image_down = cv2.resize(image_down, (512, 512)) image_cat = np.concatenate([image_up[:,:,np.newaxis], image[:,:,np.newaxis], image_down[:,:,np.newaxis]],2) label = torch.FloatTensor(study_train_df[study_train_df['filename']==filename].loc[:, 'any': 'subdural'].values) if random.random() < 0.5: image_cat = cv2.cvtColor(image_cat, cv2.COLOR_BGR2RGB) image_cat = aug_image(image_cat, is_infer=False) if self.transform is not None: augmented = self.transform(image=image_cat) image_cat = augmented['image'].transpose(2, 0, 1) # print(label) # exit(0) return image_cat, label def __len__(self): return len(self.name_list) * 4 class RSNA_Dataset_val_by_study_context(data.Dataset): def __init__(self, df = None, name_list = None, transform = None ): self.df = df self.name_list = name_list self.transform = transform def __getitem__(self, idx): filename = self.name_list[idx % len(self.name_list)] filename_train_df = self.df[self.df['filename']==filename] study_name = filename_train_df['study_instance_uid'].values[0] study_index = int(filename_train_df['slice_id'].values[0].split('_')[-1]) study_train_df = self.df[self.df['study_instance_uid']==study_name] if study_index == (study_train_df.shape[0]-1): filename_up = filename else: slice_id_up = study_name + '_' + str(study_index+1) filename_up = study_train_df[study_train_df['slice_id']==slice_id_up]['filename'].values[0] if study_index == 0: filename_down = filename else: slice_id_down = study_name + '_' + str(study_index-1) filename_down = study_train_df[study_train_df['slice_id']==slice_id_down]['filename'].values[0] image = cv2.imread(train_png_dir + filename, 0) image = cv2.resize(image, (512, 512)) image_up = cv2.imread(train_png_dir + filename_up, 0) image_up = cv2.resize(image_up, (512, 512)) image_down = cv2.imread(train_png_dir + filename_down, 0) image_down = cv2.resize(image_down, (512, 512)) image_cat = np.concatenate([image_up[:,:,np.newaxis], image[:,:,np.newaxis], image_down[:,:,np.newaxis]],2) label = torch.FloatTensor(study_train_df[study_train_df['filename']==filename].loc[:, 'any':'subdural'].values) image_cat = aug_image(image_cat, is_infer=True) if self.transform is not None: augmented = self.transform(image=image_cat) image_cat = augmented['image'].transpose(2, 0, 1) return image_cat, label def __len__(self): return len(self.name_list) def randomHorizontalFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 1) return image def randomVerticleFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 0) return image def randomRotate90(image, u=0.5): if np.random.random() < u: image[:,:,0:3] = np.rot90(image[:,:,0:3]) return image #===================================================origin============================================================= def random_cropping(image, ratio=0.8, is_random = True): height, width, _ = image.shape target_h = int(height*ratio) target_w = int(width*ratio) if is_random: start_x = random.randint(0, width - target_w) start_y = random.randint(0, height - target_h) else: start_x = ( width - target_w ) // 2 start_y = ( height - target_h ) // 2 zeros = image[start_y:start_y+target_h,start_x:start_x+target_w,:] zeros = cv2.resize(zeros ,(width,height)) return zeros def cropping(image, ratio=0.8, code = 0): height, width, _ = image.shape target_h = int(height*ratio) target_w = int(width*ratio) if code==0: start_x = ( width - target_w ) // 2 start_y = ( height - target_h ) // 2 elif code == 1: start_x = 0 start_y = 0 elif code == 2: start_x = width - target_w start_y = 0 elif code == 3: start_x = 0 start_y = height - target_h elif code == 4: start_x = width - target_w start_y = height - target_h elif code == -1: return image zeros = image[start_y:start_y+target_h,start_x:start_x+target_w,:] zeros = cv2.resize(zeros ,(width,height)) return zeros def random_erasing(img, probability=0.5, sl=0.02, sh=0.4, r1=0.3): if random.uniform(0, 1) > probability: return img for attempt in range(100): area = img.shape[0] * img.shape[1] target_area = random.uniform(sl, sh) * area aspect_ratio = random.uniform(r1, 1 / r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[1] and h < img.shape[0]: x1 = random.randint(0, img.shape[0] - h) y1 = random.randint(0, img.shape[1] - w) if img.shape[2] == 3: img[x1:x1 + h, y1:y1 + w, :] = 0.0 else: print('!!!!!!!! random_erasing dim wrong!!!!!!!!!!!') return return img return img def randomShiftScaleRotate(image, shift_limit=(-0.0, 0.0), scale_limit=(-0.0, 0.0), rotate_limit=(-0.0, 0.0), aspect_limit=(-0.0, 0.0), borderMode=cv2.BORDER_CONSTANT, u=0.5): if np.random.random() < u: height, width, channel = image.shape angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) sx = scale * aspect / (aspect ** 0.5) sy = scale / (aspect ** 0.5) dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width) dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height) cc = np.math.cos(angle / 180 * np.math.pi) * sx ss = np.math.sin(angle / 180 * np.math.pi) * sy rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width / 2, height / 2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx, height / 2 + dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode, borderValue=( 0, 0, 0,)) return image def aug_image(image, is_infer=False): if is_infer: image = randomHorizontalFlip(image, u=0) image = np.asarray(image) image = cropping(image, ratio=0.8, code=0) return image else: image = randomHorizontalFlip(image) height, width, _ = image.shape image = randomShiftScaleRotate(image, shift_limit=(-0.1, 0.1), scale_limit=(-0.1, 0.1), aspect_limit=(-0.1, 0.1), rotate_limit=(-30, 30)) image = cv2.resize(image, (width, height)) image = random_erasing(image, probability=0.5, sl=0.02, sh=0.4, r1=0.3) ratio = random.uniform(0.6,0.99) image = random_cropping(image, ratio=ratio, is_random=True) return image def generate_dataset_loader(df_all, c_train, train_transform, train_batch_size, c_val, val_transform, val_batch_size, workers): train_dataset = RSNA_Dataset_train_by_study_context(df_all, c_train, train_transform) val_dataset = RSNA_Dataset_val_by_study_context(df_all, c_val, val_transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=train_batch_size, shuffle=True, num_workers=workers, pin_memory=True, drop_last=True) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=val_batch_size, shuffle=False, num_workers=workers, pin_memory=True, drop_last=False) return train_loader, val_loader
[ "torch.FloatTensor", "torch.utils.data.DataLoader" ]
1.1.0
BhaveshJP25/RSNA
48d85faf82651b1ae4fdcd829ce2d4978a858d3f
0.4
import torch as th from torch.distributions import Categorical from .epsilon_schedules import DecayThenFlatSchedule REGISTRY = {} class MultinomialActionSelector(): def __init__(self, args): self.args = args self.schedule = DecayThenFlatSchedule(args.epsilon_start, args.epsilon_finish, args.epsilon_anneal_time, decay="linear") self.epsilon = self.schedule.eval(0) self.test_greedy = getattr(args, "test_greedy", True) def select_action(self, agent_inputs, avail_actions, t_env, test_mode=False): masked_policies = agent_inputs.clone() masked_policies[avail_actions == 0.0] = 0.0 self.epsilon = self.schedule.eval(t_env) if test_mode and self.test_greedy: picked_actions = masked_policies.max(dim=2)[1] else: picked_actions = Categorical(masked_policies).sample().long() return picked_actions REGISTRY["multinomial"] = MultinomialActionSelector class EpsilonGreedyActionSelector(): def __init__(self, args): self.args = args self.schedule = DecayThenFlatSchedule(args.epsilon_start, args.epsilon_finish, args.epsilon_anneal_time, decay="linear") self.epsilon = self.schedule.eval(0) def select_action(self, agent_inputs, avail_actions, t_env, test_mode=False): # Assuming agent_inputs is a batch of Q-Values for each agent bav self.epsilon = self.schedule.eval(t_env) if test_mode: # Greedy action selection only self.epsilon = 0.0 # mask actions that are excluded from selection -> use avail_actions for this masked_q_values = agent_inputs.clone() masked_q_values[avail_actions == 0.0] = -float("inf") # should never be selected! # Randomly decide for each agent to go with random action and explore random_numbers = th.rand_like(agent_inputs[:, :, 0]) pick_random = (random_numbers < self.epsilon).long() # pick can either be 0 or 1 (=use random) # Generate random action from available ones random_actions = Categorical(avail_actions.float()).sample().long() # If pick_random = 1 use the random action else use the action chosen by q value (masked by available ones) picked_actions = pick_random * random_actions + (1 - pick_random) * masked_q_values.max(dim=2)[1] return picked_actions REGISTRY["epsilon_greedy"] = EpsilonGreedyActionSelector
[ "torch.distributions.Categorical", "torch.rand_like" ]
0.4.1
PMatthaei/pymarl
eeec978e930c9e36d8102724c3b4d0459547cb36
1.3
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest from sklearn.metrics import accuracy_score as sk_accuracy from torch import tensor from tests.classification.inputs import _input_binary, _input_binary_prob from tests.classification.inputs import _input_multiclass as _input_mcls from tests.classification.inputs import _input_multiclass_prob as _input_mcls_prob from tests.classification.inputs import _input_multidim_multiclass as _input_mdmc from tests.classification.inputs import _input_multidim_multiclass_prob as _input_mdmc_prob from tests.classification.inputs import _input_multilabel as _input_mlb from tests.classification.inputs import _input_multilabel_multidim as _input_mlmd from tests.classification.inputs import _input_multilabel_multidim_prob as _input_mlmd_prob from tests.classification.inputs import _input_multilabel_prob as _input_mlb_prob from tests.helpers import seed_all from tests.helpers.testers import THRESHOLD, MetricTester from torchmetrics import Accuracy from torchmetrics.functional import accuracy from torchmetrics.utilities.checks import _input_format_classification from torchmetrics.utilities.enums import DataType seed_all(42) def _sk_accuracy(preds, target, subset_accuracy): sk_preds, sk_target, mode = _input_format_classification(preds, target, threshold=THRESHOLD) sk_preds, sk_target = sk_preds.numpy(), sk_target.numpy() if mode == DataType.MULTIDIM_MULTICLASS and not subset_accuracy: sk_preds, sk_target = np.transpose(sk_preds, (0, 2, 1)), np.transpose(sk_target, (0, 2, 1)) sk_preds, sk_target = sk_preds.reshape(-1, sk_preds.shape[2]), sk_target.reshape(-1, sk_target.shape[2]) elif mode == DataType.MULTIDIM_MULTICLASS and subset_accuracy: return np.all(sk_preds == sk_target, axis=(1, 2)).mean() elif mode == DataType.MULTILABEL and not subset_accuracy: sk_preds, sk_target = sk_preds.reshape(-1), sk_target.reshape(-1) return sk_accuracy(y_true=sk_target, y_pred=sk_preds) @pytest.mark.parametrize( "preds, target, subset_accuracy", [ (_input_binary_prob.preds, _input_binary_prob.target, False), (_input_binary.preds, _input_binary.target, False), (_input_mlb_prob.preds, _input_mlb_prob.target, True), (_input_mlb_prob.preds, _input_mlb_prob.target, False), (_input_mlb.preds, _input_mlb.target, True), (_input_mlb.preds, _input_mlb.target, False), (_input_mcls_prob.preds, _input_mcls_prob.target, False), (_input_mcls.preds, _input_mcls.target, False), (_input_mdmc_prob.preds, _input_mdmc_prob.target, False), (_input_mdmc_prob.preds, _input_mdmc_prob.target, True), (_input_mdmc.preds, _input_mdmc.target, False), (_input_mdmc.preds, _input_mdmc.target, True), (_input_mlmd_prob.preds, _input_mlmd_prob.target, True), (_input_mlmd_prob.preds, _input_mlmd_prob.target, False), (_input_mlmd.preds, _input_mlmd.target, True), (_input_mlmd.preds, _input_mlmd.target, False), ], ) class TestAccuracies(MetricTester): @pytest.mark.parametrize("ddp", [False, True]) @pytest.mark.parametrize("dist_sync_on_step", [False, True]) def test_accuracy_class(self, ddp, dist_sync_on_step, preds, target, subset_accuracy): self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=Accuracy, sk_metric=partial(_sk_accuracy, subset_accuracy=subset_accuracy), dist_sync_on_step=dist_sync_on_step, metric_args={ "threshold": THRESHOLD, "subset_accuracy": subset_accuracy }, ) def test_accuracy_fn(self, preds, target, subset_accuracy): self.run_functional_metric_test( preds, target, metric_functional=accuracy, sk_metric=partial(_sk_accuracy, subset_accuracy=subset_accuracy), metric_args={ "threshold": THRESHOLD, "subset_accuracy": subset_accuracy }, ) def test_accuracy_differentiability(self, preds, target, subset_accuracy): self.run_differentiability_test( preds=preds, target=target, metric_module=Accuracy, metric_functional=accuracy, metric_args={ "threshold": THRESHOLD, "subset_accuracy": subset_accuracy } ) _l1to4 = [0.1, 0.2, 0.3, 0.4] _l1to4t3 = np.array([_l1to4, _l1to4, _l1to4]) _l1to4t3_mcls = [_l1to4t3.T, _l1to4t3.T, _l1to4t3.T] # The preds in these examples always put highest probability on class 3, second highest on class 2, # third highest on class 1, and lowest on class 0 _topk_preds_mcls = tensor([_l1to4t3, _l1to4t3]).float() _topk_target_mcls = tensor([[1, 2, 3], [2, 1, 0]]) # This is like for MC case, but one sample in each batch is sabotaged with 0 class prediction :) _topk_preds_mdmc = tensor([_l1to4t3_mcls, _l1to4t3_mcls]).float() _topk_target_mdmc = tensor([[[1, 1, 0], [2, 2, 2], [3, 3, 3]], [[2, 2, 0], [1, 1, 1], [0, 0, 0]]]) # Replace with a proper sk_metric test once sklearn 0.24 hits :) @pytest.mark.parametrize( "preds, target, exp_result, k, subset_accuracy", [ (_topk_preds_mcls, _topk_target_mcls, 1 / 6, 1, False), (_topk_preds_mcls, _topk_target_mcls, 3 / 6, 2, False), (_topk_preds_mcls, _topk_target_mcls, 5 / 6, 3, False), (_topk_preds_mcls, _topk_target_mcls, 1 / 6, 1, True), (_topk_preds_mcls, _topk_target_mcls, 3 / 6, 2, True), (_topk_preds_mcls, _topk_target_mcls, 5 / 6, 3, True), (_topk_preds_mdmc, _topk_target_mdmc, 1 / 6, 1, False), (_topk_preds_mdmc, _topk_target_mdmc, 8 / 18, 2, False), (_topk_preds_mdmc, _topk_target_mdmc, 13 / 18, 3, False), (_topk_preds_mdmc, _topk_target_mdmc, 1 / 6, 1, True), (_topk_preds_mdmc, _topk_target_mdmc, 2 / 6, 2, True), (_topk_preds_mdmc, _topk_target_mdmc, 3 / 6, 3, True), ], ) def test_topk_accuracy(preds, target, exp_result, k, subset_accuracy): topk = Accuracy(top_k=k, subset_accuracy=subset_accuracy) for batch in range(preds.shape[0]): topk(preds[batch], target[batch]) assert topk.compute() == exp_result # Test functional total_samples = target.shape[0] * target.shape[1] preds = preds.view(total_samples, 4, -1) target = target.view(total_samples, -1) assert accuracy(preds, target, top_k=k, subset_accuracy=subset_accuracy) == exp_result # Only MC and MDMC with probs input type should be accepted for top_k @pytest.mark.parametrize( "preds, target", [ (_input_binary_prob.preds, _input_binary_prob.target), (_input_binary.preds, _input_binary.target), (_input_mlb_prob.preds, _input_mlb_prob.target), (_input_mlb.preds, _input_mlb.target), (_input_mcls.preds, _input_mcls.target), (_input_mdmc.preds, _input_mdmc.target), (_input_mlmd_prob.preds, _input_mlmd_prob.target), (_input_mlmd.preds, _input_mlmd.target), ], ) def test_topk_accuracy_wrong_input_types(preds, target): topk = Accuracy(top_k=1) with pytest.raises(ValueError): topk(preds[0], target[0]) with pytest.raises(ValueError): accuracy(preds[0], target[0], top_k=1) @pytest.mark.parametrize("top_k, threshold", [(0, 0.5), (None, 1.5)]) def test_wrong_params(top_k, threshold): preds, target = _input_mcls_prob.preds, _input_mcls_prob.target with pytest.raises(ValueError): acc = Accuracy(threshold=threshold, top_k=top_k) acc(preds, target) acc.compute() with pytest.raises(ValueError): accuracy(preds, target, threshold=threshold, top_k=top_k) _ignoreindex_binary_preds = tensor([1, 0, 1, 1, 0, 1, 0]) _ignoreindex_target_preds = tensor([1, 1, 0, 1, 1, 1, 1]) _ignoreindex_binary_preds_prob = tensor([0.3, 0.6, 0.1, 0.3, 0.7, 0.9, 0.4]) _ignoreindex_mc_target = tensor([0, 1, 2]) _ignoreindex_mc_preds = tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) _ignoreindex_ml_target = tensor([[0, 1, 0], [1, 1, 0], [0, 0, 0]]) _ignoreindex_ml_preds = tensor([[0.9, 0.8, 0.75], [0.6, 0.7, 0.1], [0.6, 0.1, 0.2]]) @pytest.mark.parametrize( "preds, target, ignore_index, exp_result, subset_accuracy", [ (_ignoreindex_binary_preds, _ignoreindex_target_preds, 0, 3 / 6, False), (_ignoreindex_binary_preds, _ignoreindex_target_preds, 1, 0, False), (_ignoreindex_binary_preds, _ignoreindex_target_preds, None, 3 / 6, False), (_ignoreindex_binary_preds_prob, _ignoreindex_target_preds, 0, 3 / 6, False), (_ignoreindex_binary_preds_prob, _ignoreindex_target_preds, 1, 1, False), (_ignoreindex_mc_preds, _ignoreindex_mc_target, 0, 1, False), (_ignoreindex_mc_preds, _ignoreindex_mc_target, 1, 1 / 2, False), (_ignoreindex_mc_preds, _ignoreindex_mc_target, 2, 1 / 2, False), (_ignoreindex_ml_preds, _ignoreindex_ml_target, 0, 2 / 3, False), (_ignoreindex_ml_preds, _ignoreindex_ml_target, 1, 2 / 3, False), ] ) def test_ignore_index(preds, target, ignore_index, exp_result, subset_accuracy): ignoreindex = Accuracy(ignore_index=ignore_index, subset_accuracy=subset_accuracy) for batch in range(preds.shape[0]): ignoreindex(preds[batch], target[batch]) assert ignoreindex.compute() == exp_result assert accuracy(preds, target, ignore_index=ignore_index, subset_accuracy=subset_accuracy) == exp_result
[ "torch.tensor" ]
1.3.1
avinashsai/metrics
e383af24085bf7c0bd4e08db2757c25ff4feccdc
1.7
import torch.nn as nn from wilds.common.metrics.loss import ElementwiseLoss, Loss, MultiTaskLoss from wilds.common.metrics.all_metrics import MSE def initialize_loss(config, d_out): if config.get('loss_function') == 'cross_entropy': return ElementwiseLoss(loss_fn=nn.CrossEntropyLoss(reduction='none')) elif config.get('loss_function') == 'lm_cross_entropy': return MultiTaskLoss(loss_fn=nn.CrossEntropyLoss(reduction='none')) elif config.get('loss_function') == 'mse': return MSE(name='loss') elif config.get('loss_function') == 'multitask_bce': return MultiTaskLoss(loss_fn=nn.BCEWithLogitsLoss(reduction='none')) elif config.get('loss_function') == 'fasterrcnn_criterion': from models.detection.fasterrcnn import FasterRCNNLoss return ElementwiseLoss(loss_fn=FasterRCNNLoss(config.get('device'))) else: raise ValueError(f'config.get("loss_function") {config.get("loss_function")} not recognized')
[ "torch.nn.CrossEntropyLoss", "torch.nn.BCEWithLogitsLoss" ]
1.7.0
itsjohnward/wilds
aeafefd01456840c7bd5173d714b184ec86758af
1.10
from abc import ABC, abstractmethod import random import hashlib import os import traceback import pathlib import h5py import torch import numpy as np from nn_analysis import utils def attach_hooks(model, layer_names, get_hook): handles = [] for layer_name, module in model.named_modules(): if layer_name in layer_names: hook = get_hook(layer_name) handle = module.register_forward_hook(hook) handles.append(handle) return handles def remove_hooks(handles): for handle in handles: handle.remove() def compute_sizes(model, layer_names, dataset, device='cpu'): dataloader = torch.utils.data.DataLoader(dataset, batch_size=2) images = next(iter(dataloader))[0].to(device) sizes = {} def get_hook(layer_name): def hook(_0, _1, out): sizes[layer_name] = utils.prod(out.size()[1:]) return hook try: handles = attach_hooks(model, layer_names, get_hook) model.eval() with torch.no_grad(): model(images) finally: remove_hooks(handles) targets = next(iter(dataloader))[1] assert targets.ndim <= 2 if targets.ndim == 1: sizes['target'] = 1 else: sizes['target'] = targets.size()[1] sizes['dataset'] = dataset.shape return sizes def create_group_datasets(grp, model, layer_names, sizes, meta_dicts=None, dtype='float32'): for layer_name, module in model.named_modules(): if layer_name in layer_names: layer_grp = grp.create_group(layer_name) # Must be new, cannot overwrite if meta_dicts is not None: for k, v in meta_dicts[0].items(): if layer_name in v.keys(): layer_grp.attrs[k] = v[layer_name] for k, v in meta_dicts[1].items(): if layer_name in v.keys(): layer_grp[k] = v[layer_name] # Too large to fit in as attribute layer_grp.create_dataset('y', shape=(*sizes['dataset'],sizes[layer_name]), dtype=dtype) # Must be new, cannot overwrite grp.create_dataset('x', shape=(*sizes['dataset'],sizes['target']), dtype=dtype) # Must be new, cannot overwrite def save_dataset(filename, path, model, layer_names, dataset, device='cpu', batch_size=128, postprocessor=None, dtype='float32', log=False): sizes = compute_sizes(model, layer_names, dataset, device=device) if postprocessor is None: postprocess = lambda y, *args, **kwargs: y else: sizes = postprocessor.configure(sizes) postprocess = postprocessor.process meta_dicts = postprocessor.meta_dicts if postprocessor is not None else None with h5py.File(filename, 'a') as f: grp = f[path] create_group_datasets(grp, model, layer_names, sizes, meta_dicts=meta_dicts, dtype=dtype) model.eval() def get_hook(layer_name): def hook(_0, _1, out): y = out.detach() y = y.reshape(y.size(0),-1) activations = postprocess(y,layer_name,device=device,dtype=dtype).cpu() with h5py.File(filename, 'a') as f: # print(f"Activations size: {activations.size()}") # print(f"file size: {os.path.getsize(filename)}") try: f[path][layer_name]['y'][indices] = activations except TypeError as err: # Fancy indexing cannot handle multi-dimensional individual elements inexing for j, index in enumerate(zip(*indices)): f[path][layer_name]['y'][index] = activations[j] return hook try: handles = attach_hooks(model, layer_names, get_hook) dl = torch.utils.data.DataLoader(dataset,batch_size=batch_size,shuffle=False) print_freq = len(dl)//10 if len(dl) > 10 else 1 for i, (images, targets, indices) in enumerate(dl): if i % print_freq == 0: print(f"Processing batch {i}/{len(dl)}") images = images.to(device) if indices.ndim == 1: indices = indices.view(-1,1) indices = tuple(indices.t().long().numpy()) if targets.ndim == 1: targets = targets.view(-1,1) with h5py.File(filename, 'a') as f: try: f[path]['x'][indices] = targets except TypeError as err: # Fancy indexing cannot handle multi-dimensional individual elements inexing for j, index in enumerate(zip(*indices)): f[path]['x'][index] = targets[j] with torch.no_grad(): model(images) finally: remove_hooks(handles) def save(filename, model, model_name, epoch, layer_names, datasets, dataset_names, seeds=None, device='cpu', batch_size=256, postprocessor=None, dtype='float32', log=False): assert len(dataset_names) == len(seeds) pathlib.Path(filename).parent.mkdir(parents=True, exist_ok=True) if epoch is None: model_version = '0000' else: model_version = f'{epoch:04d}' with h5py.File(filename, 'a') as f: model_grp = f.require_group(model_name) model_version_grp = model_grp.require_group(model_version) for i, dataset in enumerate(datasets): print(f"Processing dataset {i}: {dataset_names[i]}") dataset_grp = model_version_grp.require_group(dataset_names[i]) if seeds is not None: dataset_grp.attrs['seed'] = seeds[i] for i, dataset in enumerate(datasets): with h5py.File(filename, 'a') as f: path = f[model_name][model_version][dataset_names[i]].name if seeds is not None: with utils.set_seed(seeds[i]): save_dataset(filename, path, model, layer_names, dataset, device=device, batch_size=batch_size, postprocessor=postprocessor, dtype=dtype, log=log) else: save_dataset(filename, path, model, layer_names, dataset, device=device, batch_size=batch_size, postprocessor=postprocessor, dtype=dtype, log=log) def load(filename, model_name, epoch, dataset_name, layer_name): if epoch is None: model_version = '0000' else: model_version = f'{epoch:04d}' with h5py.File(filename, 'r') as f: grp = f[model_name][model_version][dataset_name] y = grp[layer_name]['y'][...] return y def load_x(filename, model_name, epoch, dataset_name): if epoch is None: model_version = '0000' else: model_version = f'{epoch:04d}' with h5py.File(filename, 'r') as f: grp = f[model_name][model_version][dataset_name] x = grp['x'][...] return x class Processor(ABC): @property @abstractmethod def meta_dicts(self): # List of two dicts, the first one containing meta attributes and the second one containing meta datasets pass @abstractmethod def configure(self, layer_sizes): pass @abstractmethod def process(self, tensor, layer_name, **kwargs): pass class Compose(Processor): def __init__(self, processors): self.processors = processors @property def meta_dicts(self): out = [{},{}] for processor in self.processor: out[0].update(processor.meta_dicts[0]) out[1].update(processor.meta_dicts[1]) return out def configure(self, layer_sizes): for processor in self.processors: layer_sizes = processor.configure(layer_sizes) return layer_sizes def process(self, tensor, layer_name, **kwargs): for processor in self.processors: tensor = processor.process(tensor, layer_name, **kwargs) return tensor class Sampler(Processor): def __init__(self, n_samples, set_seed=True): self.n_samples = n_samples self.indices = {} self.configured = False if set_seed: self.seeds = {} self.set_seed = set_seed @property def meta_dicts(self): if self.set_seed: return [{'seed': self.seeds}, {'indices': self.indices}] return [{}, {'indices': self.indices}] def configure(self, sizes): layer_sizes = {k: v for k, v in sizes.items() if k not in ['target', 'dataset']} output_sizes = {} for layer_name, size in layer_sizes.items(): if self.n_samples > size: self.indices[layer_name] = torch.arange(size) output_sizes[layer_name] = size else: if self.set_seed: seed = int(hashlib.sha256(layer_name.encode('utf-8')).hexdigest(), 16) % (2**32) # Get seed corresponding to layer self.seeds[layer_name] = seed with utils.set_seed(seed): self.indices[layer_name] = torch.from_numpy(np.random.choice(size,size=self.n_samples,replace=False)).long() else: self.indices[layer_name] = torch.from_numpy(np.random.choice(size,size=self.n_samples,replace=False)).long() output_sizes[layer_name] = self.n_samples self.configured = True output_sizes.update({'target': sizes['target'], 'dataset': sizes['dataset']}) return output_sizes def process(self, tensor, layer_name, **kwargs): """ tensor - (batch_size, N) """ assert self.configured assert tensor.ndim == 2 layer_indices = self.indices[layer_name] if tensor.is_cuda: layer_indices.to(tensor.get_device()) return tensor[:,layer_indices]
[ "torch.no_grad", "torch.utils.data.DataLoader", "torch.arange" ]
1.10.1
hchau630/nn-analysis
0fbe7ad7b2b4566b9f88d8f21413a6d405f96bdc
1.10
from argparse import Namespace import torch import torch.nn as nn import torchvision.models as models def off_diagonal(x): # return a flattened view of the off-diagonal elements of a square matrix n, m = x.shape assert n == m return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() class BarlowTwins(nn.Module): def __init__(self, args): super().__init__() self.args = args self.backbone = models.resnet50(zero_init_residual=True) self.backbone.fc = nn.Identity() # projector sizes = [2048] + list(map(int, args.projector.split('-'))) layers = [] for i in range(len(sizes) - 2): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False)) layers.append(nn.BatchNorm1d(sizes[i + 1])) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False)) self.projector = nn.Sequential(*layers) self.projector_sizes = sizes # normalization layer for the representations z1 and z2 self.bn = nn.BatchNorm1d(sizes[-1], affine=False) def forward(self, x): return self.bn(self.projector(self.backbone(x))) def loss_forward(self, y1, y2): z1 = self.projector(self.backbone(y1)) z2 = self.projector(self.backbone(y2)) # empirical cross-correlation matrix c = self.bn(z1).T @ self.bn(z2) # sum the cross-correlation matrix between all gpus c.div_(self.args.batch_size) torch.distributed.all_reduce(c) # use --scale-loss to multiply the loss by a constant factor # see the Issues section of the readme on_diag = torch.diagonal(c).add_(-1).pow_(2).sum().mul(self.args.scale_loss) off_diag = off_diagonal(c).pow_(2).sum().mul(self.args.scale_loss) loss = on_diag + self.args.lambd * off_diag return loss def barlowtwins(projector='8192-8192-8192', batch_size=1024, scale_loss=0.024, lambd=0.0051, **kwargs): args = Namespace(projector=projector, batch_size=batch_size, scale_loss=scale_loss, lambd=lambd, **kwargs) return BarlowTwins(args)
[ "torch.nn.Linear", "torch.nn.Identity", "torch.diagonal", "torch.nn.Sequential", "torch.nn.ReLU", "torch.nn.BatchNorm1d", "torch.distributed.all_reduce" ]
1.10.1
hchau630/nn-analysis
0fbe7ad7b2b4566b9f88d8f21413a6d405f96bdc
1.0
from distutils.version import LooseVersion import logging import math import random import six import numpy as np import torch import torch.nn.functional as F from argparse import Namespace from espnet.nets.ctc_prefix_score import CTCPrefixScore from espnet.nets.ctc_prefix_score import CTCPrefixScoreTH from espnet.nets.e2e_asr_common import end_detect from espnet.nets.pytorch_backend.rnn.attentions import att_to_numpy from espnet.nets.pytorch_backend.nets_utils import mask_by_length from espnet.nets.pytorch_backend.nets_utils import pad_list from espnet.nets.pytorch_backend.nets_utils import th_accuracy from espnet.nets.pytorch_backend.nets_utils import to_device from espnet.nets.scorer_interface import ScorerInterface MAX_DECODER_OUTPUT = 5 CTC_SCORING_RATIO = 1.5 class Decoder(torch.nn.Module, ScorerInterface): """Decoder module :param int eprojs: # encoder projection units :param int odim: dimension of outputs :param str dtype: gru or lstm :param int dlayers: # decoder layers :param int dunits: # decoder units :param int sos: start of sequence symbol id :param int eos: end of sequence symbol id :param torch.nn.Module att: attention module :param int verbose: verbose level :param list char_list: list of character strings :param ndarray labeldist: distribution of label smoothing :param float lsm_weight: label smoothing weight :param float sampling_probability: scheduled sampling probability :param float dropout: dropout rate :param float context_residual: if True, use context vector for token generation :param float replace_sos: use for multilingual (speech/text) translation """ def __init__(self, eprojs, odim, dtype, dlayers, dunits, sos, eos, att, verbose=0, char_list=None, labeldist=None, lsm_weight=0., sampling_probability=0.0, dropout=0.0, context_residual=False, replace_sos=False, num_encs=1): torch.nn.Module.__init__(self) self.dtype = dtype self.dunits = dunits self.dlayers = dlayers self.context_residual = context_residual self.embed = torch.nn.Embedding(odim, dunits) self.dropout_emb = torch.nn.Dropout(p=dropout) self.decoder = torch.nn.ModuleList() self.dropout_dec = torch.nn.ModuleList() self.decoder += [ torch.nn.LSTMCell(dunits + eprojs, dunits) if self.dtype == "lstm" else torch.nn.GRUCell(dunits + eprojs, dunits)] self.dropout_dec += [torch.nn.Dropout(p=dropout)] for _ in six.moves.range(1, self.dlayers): self.decoder += [ torch.nn.LSTMCell(dunits, dunits) if self.dtype == "lstm" else torch.nn.GRUCell(dunits, dunits)] self.dropout_dec += [torch.nn.Dropout(p=dropout)] # NOTE: dropout is applied only for the vertical connections # see https://arxiv.org/pdf/1409.2329.pdf self.ignore_id = -1 if context_residual: self.output = torch.nn.Linear(dunits + eprojs, odim) else: self.output = torch.nn.Linear(dunits, odim) self.loss = None self.att = att self.dunits = dunits self.sos = sos self.eos = eos self.odim = odim self.verbose = verbose self.char_list = char_list # for label smoothing self.labeldist = labeldist self.vlabeldist = None self.lsm_weight = lsm_weight self.sampling_probability = sampling_probability self.dropout = dropout self.num_encs = num_encs # for multilingual translation self.replace_sos = replace_sos self.logzero = -10000000000.0 def zero_state(self, hs_pad): return hs_pad.new_zeros(hs_pad.size(0), self.dunits) def rnn_forward(self, ey, z_list, c_list, z_prev, c_prev): if self.dtype == "lstm": z_list[0], c_list[0] = self.decoder[0](ey, (z_prev[0], c_prev[0])) for l in six.moves.range(1, self.dlayers): z_list[l], c_list[l] = self.decoder[l]( self.dropout_dec[l - 1](z_list[l - 1]), (z_prev[l], c_prev[l])) else: z_list[0] = self.decoder[0](ey, z_prev[0]) for l in six.moves.range(1, self.dlayers): z_list[l] = self.decoder[l](self.dropout_dec[l - 1](z_list[l - 1]), z_prev[l]) return z_list, c_list def forward(self, hs_pad, hlens, ys_pad, strm_idx=0, tgt_lang_ids=None): """Decoder forward :param torch.Tensor hs_pad: batch of padded hidden state sequences (B, Tmax, D) [in multi-encoder case, list of torch.Tensor, [(B, Tmax_1, D), (B, Tmax_2, D), ..., ] ] :param torch.Tensor hlens: batch of lengths of hidden state sequences (B) [in multi-encoder case, list of torch.Tensor, [(B), (B), ..., ] :param torch.Tensor ys_pad: batch of padded character id sequence tensor (B, Lmax) :param int strm_idx: stream index indicates the index of decoding stream. :param torch.Tensor tgt_lang_ids: batch of target language id tensor (B, 1) :return: attention loss value :rtype: torch.Tensor :return: accuracy :rtype: float """ # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: hs_pad = [hs_pad] hlens = [hlens] # TODO(kan-bayashi): need to make more smart way ys = [y[y != self.ignore_id] for y in ys_pad] # parse padded ys # attention index for the attention module # in SPA (speaker parallel attention), att_idx is used to select attention module. In other cases, it is 0. att_idx = min(strm_idx, len(self.att) - 1) # hlens should be list of list of integer hlens = [list(map(int, hlens[idx])) for idx in range(self.num_encs)] self.loss = None # prepare input and output word sequences with sos/eos IDs eos = ys[0].new([self.eos]) sos = ys[0].new([self.sos]) if self.replace_sos: ys_in = [torch.cat([idx, y], dim=0) for idx, y in zip(tgt_lang_ids, ys)] else: ys_in = [torch.cat([sos, y], dim=0) for y in ys] ys_out = [torch.cat([y, eos], dim=0) for y in ys] # padding for ys with -1 # pys: utt x olen ys_in_pad = pad_list(ys_in, self.eos) ys_out_pad = pad_list(ys_out, self.ignore_id) # get dim, length info batch = ys_out_pad.size(0) olength = ys_out_pad.size(1) for idx in range(self.num_encs): logging.info( self.__class__.__name__ + 'Number of Encoder:{}; enc{}: input lengths: {}.'.format(self.num_encs, idx + 1, hlens[idx])) logging.info(self.__class__.__name__ + ' output lengths: ' + str([y.size(0) for y in ys_out])) # initialization c_list = [self.zero_state(hs_pad[0])] z_list = [self.zero_state(hs_pad[0])] for _ in six.moves.range(1, self.dlayers): c_list.append(self.zero_state(hs_pad[0])) z_list.append(self.zero_state(hs_pad[0])) z_all = [] if self.num_encs == 1: att_w = None self.att[att_idx].reset() # reset pre-computation of h else: att_w_list = [None] * (self.num_encs + 1) # atts + han att_c_list = [None] * (self.num_encs) # atts for idx in range(self.num_encs + 1): self.att[idx].reset() # reset pre-computation of h in atts and han # pre-computation of embedding eys = self.dropout_emb(self.embed(ys_in_pad)) # utt x olen x zdim # loop for an output sequence for i in six.moves.range(olength): if self.num_encs == 1: att_c, att_w = self.att[att_idx](hs_pad[0], hlens[0], self.dropout_dec[0](z_list[0]), att_w) else: for idx in range(self.num_encs): att_c_list[idx], att_w_list[idx] = self.att[idx](hs_pad[idx], hlens[idx], self.dropout_dec[0](z_list[0]), att_w_list[idx]) hs_pad_han = torch.stack(att_c_list, dim=1) hlens_han = [self.num_encs] * len(ys_in) att_c, att_w_list[self.num_encs] = self.att[self.num_encs](hs_pad_han, hlens_han, self.dropout_dec[0](z_list[0]), att_w_list[self.num_encs]) if i > 0 and random.random() < self.sampling_probability: logging.info(' scheduled sampling ') z_out = self.output(z_all[-1]) z_out = np.argmax(z_out.detach().cpu(), axis=1) z_out = self.dropout_emb(self.embed(to_device(self, z_out))) ey = torch.cat((z_out, att_c), dim=1) # utt x (zdim + hdim) else: ey = torch.cat((eys[:, i, :], att_c), dim=1) # utt x (zdim + hdim) z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list) if self.context_residual: z_all.append(torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)) # utt x (zdim + hdim) else: z_all.append(self.dropout_dec[-1](z_list[-1])) # utt x (zdim) z_all = torch.stack(z_all, dim=1).view(batch * olength, -1) # compute loss y_all = self.output(z_all) if LooseVersion(torch.__version__) < LooseVersion('1.0'): reduction_str = 'elementwise_mean' else: reduction_str = 'mean' self.loss = F.cross_entropy(y_all, ys_out_pad.view(-1), ignore_index=self.ignore_id, reduction=reduction_str) # compute perplexity ppl = math.exp(self.loss.item()) # -1: eos, which is removed in the loss computation self.loss *= (np.mean([len(x) for x in ys_in]) - 1) acc = th_accuracy(y_all, ys_out_pad, ignore_label=self.ignore_id) logging.info('att loss:' + ''.join(str(self.loss.item()).split('\n'))) # show predicted character sequence for debug if self.verbose > 0 and self.char_list is not None: ys_hat = y_all.view(batch, olength, -1) ys_true = ys_out_pad for (i, y_hat), y_true in zip(enumerate(ys_hat.detach().cpu().numpy()), ys_true.detach().cpu().numpy()): if i == MAX_DECODER_OUTPUT: break idx_hat = np.argmax(y_hat[y_true != self.ignore_id], axis=1) idx_true = y_true[y_true != self.ignore_id] seq_hat = [self.char_list[int(idx)] for idx in idx_hat] seq_true = [self.char_list[int(idx)] for idx in idx_true] seq_hat = "".join(seq_hat) seq_true = "".join(seq_true) logging.info("groundtruth[%d]: " % i + seq_true) logging.info("prediction [%d]: " % i + seq_hat) if self.labeldist is not None: if self.vlabeldist is None: self.vlabeldist = to_device(self, torch.from_numpy(self.labeldist)) loss_reg = - torch.sum((F.log_softmax(y_all, dim=1) * self.vlabeldist).view(-1), dim=0) / len(ys_in) self.loss = (1. - self.lsm_weight) * self.loss + self.lsm_weight * loss_reg return self.loss, acc, ppl def recognize_beam(self, h, lpz, recog_args, char_list, rnnlm=None, strm_idx=0): """beam search implementation :param torch.Tensor h: encoder hidden state (T, eprojs) [in multi-encoder case, list of torch.Tensor, [(T1, eprojs), (T2, eprojs), ...] ] :param torch.Tensor lpz: ctc log softmax output (T, odim) [in multi-encoder case, list of torch.Tensor, [(T1, odim), (T2, odim), ...] ] :param Namespace recog_args: argument Namespace containing options :param char_list: list of character strings :param torch.nn.Module rnnlm: language module :param int strm_idx: stream index for speaker parallel attention in multi-speaker case :return: N-best decoding results :rtype: list of dicts """ # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: h = [h] lpz = [lpz] if self.num_encs > 1 and lpz is None: lpz = [lpz] * self.num_encs for idx in range(self.num_encs): logging.info('Number of Encoder:{}; enc{}: input lengths: {}.'.format(self.num_encs, idx + 1, h[0].size(0))) att_idx = min(strm_idx, len(self.att) - 1) # initialization c_list = [self.zero_state(h[0].unsqueeze(0))] z_list = [self.zero_state(h[0].unsqueeze(0))] for _ in six.moves.range(1, self.dlayers): c_list.append(self.zero_state(h[0].unsqueeze(0))) z_list.append(self.zero_state(h[0].unsqueeze(0))) if self.num_encs == 1: a = None self.att[att_idx].reset() # reset pre-computation of h else: a = [None] * (self.num_encs + 1) # atts + han att_w_list = [None] * (self.num_encs + 1) # atts + han att_c_list = [None] * (self.num_encs) # atts for idx in range(self.num_encs + 1): self.att[idx].reset() # reset pre-computation of h in atts and han # search parms beam = recog_args.beam_size penalty = recog_args.penalty ctc_weight = getattr(recog_args, "ctc_weight", False) # for NMT if lpz[0] is not None and self.num_encs > 1: # weights-ctc, e.g. ctc_loss = w_1*ctc_1_loss + w_2 * ctc_2_loss + w_N * ctc_N_loss weights_ctc_dec = recog_args.weights_ctc_dec / np.sum(recog_args.weights_ctc_dec) # normalize logging.info('ctc weights (decoding): ' + ' '.join([str(x) for x in weights_ctc_dec])) else: weights_ctc_dec = [1.0] # preprate sos if self.replace_sos and recog_args.tgt_lang: y = char_list.index(recog_args.tgt_lang) else: y = self.sos logging.info('<sos> index: ' + str(y)) logging.info('<sos> mark: ' + char_list[y]) vy = h[0].new_zeros(1).long() maxlen = np.amin([h[idx].size(0) for idx in range(self.num_encs)]) if recog_args.maxlenratio != 0: # maxlen >= 1 maxlen = max(1, int(recog_args.maxlenratio * maxlen)) minlen = int(recog_args.minlenratio * maxlen) logging.info('max output length: ' + str(maxlen)) logging.info('min output length: ' + str(minlen)) # initialize hypothesis if rnnlm: hyp = {'score': 0.0, 'yseq': [y], 'c_prev': c_list, 'z_prev': z_list, 'a_prev': a, 'rnnlm_prev': None} else: hyp = {'score': 0.0, 'yseq': [y], 'c_prev': c_list, 'z_prev': z_list, 'a_prev': a} if lpz[0] is not None: ctc_prefix_score = [CTCPrefixScore(lpz[idx].detach().numpy(), 0, self.eos, np) for idx in range(self.num_encs)] hyp['ctc_state_prev'] = [ctc_prefix_score[idx].initial_state() for idx in range(self.num_encs)] hyp['ctc_score_prev'] = [0.0] * self.num_encs if ctc_weight != 1.0: # pre-pruning based on attention scores ctc_beam = min(lpz[0].shape[-1], int(beam * CTC_SCORING_RATIO)) else: ctc_beam = lpz[0].shape[-1] hyps = [hyp] ended_hyps = [] for i in six.moves.range(maxlen): logging.debug('position ' + str(i)) hyps_best_kept = [] for hyp in hyps: vy.unsqueeze(1) vy[0] = hyp['yseq'][i] ey = self.dropout_emb(self.embed(vy)) # utt list (1) x zdim ey.unsqueeze(0) if self.num_encs == 1: att_c, att_w = self.att[att_idx](h[0].unsqueeze(0), [h[0].size(0)], self.dropout_dec[0](hyp['z_prev'][0]), hyp['a_prev']) else: for idx in range(self.num_encs): att_c_list[idx], att_w_list[idx] = self.att[idx](h[idx].unsqueeze(0), [h[idx].size(0)], self.dropout_dec[0](hyp['z_prev'][0]), hyp['a_prev'][idx]) h_han = torch.stack(att_c_list, dim=1) att_c, att_w_list[self.num_encs] = self.att[self.num_encs](h_han, [self.num_encs], self.dropout_dec[0](hyp['z_prev'][0]), hyp['a_prev'][self.num_encs]) ey = torch.cat((ey, att_c), dim=1) # utt(1) x (zdim + hdim) z_list, c_list = self.rnn_forward(ey, z_list, c_list, hyp['z_prev'], hyp['c_prev']) # get nbest local scores and their ids if self.context_residual: logits = self.output(torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)) else: logits = self.output(self.dropout_dec[-1](z_list[-1])) local_att_scores = F.log_softmax(logits, dim=1) if rnnlm: rnnlm_state, local_lm_scores = rnnlm.predict(hyp['rnnlm_prev'], vy) local_scores = local_att_scores + recog_args.lm_weight * local_lm_scores else: local_scores = local_att_scores if lpz[0] is not None: local_best_scores, local_best_ids = torch.topk( local_att_scores, ctc_beam, dim=1) ctc_scores, ctc_states = [None] * self.num_encs, [None] * self.num_encs for idx in range(self.num_encs): ctc_scores[idx], ctc_states[idx] = ctc_prefix_score[idx]( hyp['yseq'], local_best_ids[0], hyp['ctc_state_prev'][idx]) local_scores = \ (1.0 - ctc_weight) * local_att_scores[:, local_best_ids[0]] if self.num_encs == 1: local_scores += ctc_weight * torch.from_numpy(ctc_scores[0] - hyp['ctc_score_prev'][0]) else: for idx in range(self.num_encs): local_scores += ctc_weight * weights_ctc_dec[idx] * torch.from_numpy( ctc_scores[idx] - hyp['ctc_score_prev'][idx]) if rnnlm: local_scores += recog_args.lm_weight * local_lm_scores[:, local_best_ids[0]] local_best_scores, joint_best_ids = torch.topk(local_scores, beam, dim=1) local_best_ids = local_best_ids[:, joint_best_ids[0]] else: local_best_scores, local_best_ids = torch.topk(local_scores, beam, dim=1) for j in six.moves.range(beam): new_hyp = {} # [:] is needed! new_hyp['z_prev'] = z_list[:] new_hyp['c_prev'] = c_list[:] if self.num_encs == 1: new_hyp['a_prev'] = att_w[:] else: new_hyp['a_prev'] = [att_w_list[idx][:] for idx in range(self.num_encs + 1)] new_hyp['score'] = hyp['score'] + local_best_scores[0, j] new_hyp['yseq'] = [0] * (1 + len(hyp['yseq'])) new_hyp['yseq'][:len(hyp['yseq'])] = hyp['yseq'] new_hyp['yseq'][len(hyp['yseq'])] = int(local_best_ids[0, j]) if rnnlm: new_hyp['rnnlm_prev'] = rnnlm_state if lpz[0] is not None: new_hyp['ctc_state_prev'] = [ctc_states[idx][joint_best_ids[0, j]] for idx in range(self.num_encs)] new_hyp['ctc_score_prev'] = [ctc_scores[idx][joint_best_ids[0, j]] for idx in range(self.num_encs)] # will be (2 x beam) hyps at most hyps_best_kept.append(new_hyp) hyps_best_kept = sorted( hyps_best_kept, key=lambda x: x['score'], reverse=True)[:beam] # sort and get nbest hyps = hyps_best_kept logging.debug('number of pruned hypotheses: ' + str(len(hyps))) logging.debug( 'best hypo: ' + ''.join([char_list[int(x)] for x in hyps[0]['yseq'][1:]])) # add eos in the final loop to avoid that there are no ended hyps if i == maxlen - 1: logging.info('adding <eos> in the last position in the loop') for hyp in hyps: hyp['yseq'].append(self.eos) # add ended hypotheses to a final list, and removed them from current hypotheses # (this will be a problem, number of hyps < beam) remained_hyps = [] for hyp in hyps: if hyp['yseq'][-1] == self.eos: # only store the sequence that has more than minlen outputs # also add penalty if len(hyp['yseq']) > minlen: hyp['score'] += (i + 1) * penalty if rnnlm: # Word LM needs to add final <eos> score hyp['score'] += recog_args.lm_weight * rnnlm.final( hyp['rnnlm_prev']) ended_hyps.append(hyp) else: remained_hyps.append(hyp) # end detection if end_detect(ended_hyps, i) and recog_args.maxlenratio == 0.0: logging.info('end detected at %d', i) break hyps = remained_hyps if len(hyps) > 0: logging.debug('remaining hypotheses: ' + str(len(hyps))) else: logging.info('no hypothesis. Finish decoding.') break for hyp in hyps: logging.debug( 'hypo: ' + ''.join([char_list[int(x)] for x in hyp['yseq'][1:]])) logging.debug('number of ended hypotheses: ' + str(len(ended_hyps))) nbest_hyps = sorted( ended_hyps, key=lambda x: x['score'], reverse=True)[:min(len(ended_hyps), recog_args.nbest)] # check number of hypotheses if len(nbest_hyps) == 0: logging.warning('there is no N-best results, perform recognition again with smaller minlenratio.') # should copy because Namespace will be overwritten globally recog_args = Namespace(**vars(recog_args)) recog_args.minlenratio = max(0.0, recog_args.minlenratio - 0.1) if self.num_encs == 1: return self.recognize_beam(h[0], lpz[0], recog_args, char_list, rnnlm) else: return self.recognize_beam(h, lpz, recog_args, char_list, rnnlm) logging.info('total log probability: ' + str(nbest_hyps[0]['score'])) logging.info('normalized log probability: ' + str(nbest_hyps[0]['score'] / len(nbest_hyps[0]['yseq']))) # remove sos return nbest_hyps def recognize_beam_batch(self, h, hlens, lpz, recog_args, char_list, rnnlm=None, normalize_score=True, strm_idx=0, tgt_lang_ids=None): # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: h = [h] hlens = [hlens] lpz = [lpz] if self.num_encs > 1 and lpz is None: lpz = [lpz] * self.num_encs att_idx = min(strm_idx, len(self.att) - 1) for idx in range(self.num_encs): logging.info( 'Number of Encoder:{}; enc{}: input lengths: {}.'.format(self.num_encs, idx + 1, h[idx].size(1))) h[idx] = mask_by_length(h[idx], hlens[idx], 0.0) # search params batch = len(hlens[0]) beam = recog_args.beam_size penalty = recog_args.penalty ctc_weight = getattr(recog_args, "ctc_weight", 0) # for NMT att_weight = 1.0 - ctc_weight ctc_margin = getattr(recog_args, "ctc_window_margin", 0) # use getattr to keep compatibility # weights-ctc, e.g. ctc_loss = w_1*ctc_1_loss + w_2 * ctc_2_loss + w_N * ctc_N_loss if lpz[0] is not None and self.num_encs > 1: weights_ctc_dec = recog_args.weights_ctc_dec / np.sum(recog_args.weights_ctc_dec) # normalize logging.info('ctc weights (decoding): ' + ' '.join([str(x) for x in weights_ctc_dec])) else: weights_ctc_dec = [1.0] n_bb = batch * beam pad_b = to_device(self, torch.arange(batch) * beam).view(-1, 1) max_hlen = np.amin([max(hlens[idx]) for idx in range(self.num_encs)]) if recog_args.maxlenratio == 0: maxlen = max_hlen else: maxlen = max(1, int(recog_args.maxlenratio * max_hlen)) minlen = int(recog_args.minlenratio * max_hlen) logging.info('max output length: ' + str(maxlen)) logging.info('min output length: ' + str(minlen)) # initialization c_prev = [to_device(self, torch.zeros(n_bb, self.dunits)) for _ in range(self.dlayers)] z_prev = [to_device(self, torch.zeros(n_bb, self.dunits)) for _ in range(self.dlayers)] c_list = [to_device(self, torch.zeros(n_bb, self.dunits)) for _ in range(self.dlayers)] z_list = [to_device(self, torch.zeros(n_bb, self.dunits)) for _ in range(self.dlayers)] vscores = to_device(self, torch.zeros(batch, beam)) rnnlm_state = None if self.num_encs == 1: a_prev = [None] att_w_list, ctc_scorer, ctc_state = [None], [None], [None] self.att[att_idx].reset() # reset pre-computation of h else: a_prev = [None] * (self.num_encs + 1) # atts + han att_w_list = [None] * (self.num_encs + 1) # atts + han att_c_list = [None] * (self.num_encs) # atts ctc_scorer, ctc_state = [None] * (self.num_encs), [None] * (self.num_encs) for idx in range(self.num_encs + 1): self.att[idx].reset() # reset pre-computation of h in atts and han if self.replace_sos and recog_args.tgt_lang: logging.info('<sos> index: ' + str(char_list.index(recog_args.tgt_lang))) logging.info('<sos> mark: ' + recog_args.tgt_lang) yseq = [[char_list.index(recog_args.tgt_lang)] for _ in six.moves.range(n_bb)] elif tgt_lang_ids is not None: # NOTE: used for evaluation during training yseq = [[tgt_lang_ids[b // recog_args.beam_size]] for b in six.moves.range(n_bb)] else: logging.info('<sos> index: ' + str(self.sos)) logging.info('<sos> mark: ' + char_list[self.sos]) yseq = [[self.sos] for _ in six.moves.range(n_bb)] accum_odim_ids = [self.sos for _ in six.moves.range(n_bb)] stop_search = [False for _ in six.moves.range(batch)] nbest_hyps = [[] for _ in six.moves.range(batch)] ended_hyps = [[] for _ in range(batch)] exp_hlens = [hlens[idx].repeat(beam).view(beam, batch).transpose(0, 1).contiguous() for idx in range(self.num_encs)] exp_hlens = [exp_hlens[idx].view(-1).tolist() for idx in range(self.num_encs)] exp_h = [h[idx].unsqueeze(1).repeat(1, beam, 1, 1).contiguous() for idx in range(self.num_encs)] exp_h = [exp_h[idx].view(n_bb, h[idx].size()[1], h[idx].size()[2]) for idx in range(self.num_encs)] if lpz[0] is not None: scoring_ratio = CTC_SCORING_RATIO if att_weight > 0.0 and not lpz[0].is_cuda else 0 ctc_scorer = [CTCPrefixScoreTH(lpz[idx], hlens[idx], 0, self.eos, beam, scoring_ratio, margin=ctc_margin) for idx in range(self.num_encs)] for i in six.moves.range(maxlen): logging.debug('position ' + str(i)) vy = to_device(self, torch.LongTensor(self._get_last_yseq(yseq))) ey = self.dropout_emb(self.embed(vy)) if self.num_encs == 1: att_c, att_w = self.att[att_idx](exp_h[0], exp_hlens[0], self.dropout_dec[0](z_prev[0]), a_prev[0]) att_w_list = [att_w] else: for idx in range(self.num_encs): att_c_list[idx], att_w_list[idx] = self.att[idx](exp_h[idx], exp_hlens[idx], self.dropout_dec[0](z_prev[0]), a_prev[idx]) exp_h_han = torch.stack(att_c_list, dim=1) att_c, att_w_list[self.num_encs] = self.att[self.num_encs](exp_h_han, [self.num_encs] * n_bb, self.dropout_dec[0](z_prev[0]), a_prev[self.num_encs]) ey = torch.cat((ey, att_c), dim=1) # attention decoder z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_prev, c_prev) if self.context_residual: logits = self.output(torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)) else: logits = self.output(self.dropout_dec[-1](z_list[-1])) local_scores = att_weight * F.log_softmax(logits, dim=1) # rnnlm if rnnlm: rnnlm_state, local_lm_scores = rnnlm.buff_predict(rnnlm_state, vy, n_bb) local_scores = local_scores + recog_args.lm_weight * local_lm_scores # ctc if ctc_scorer[0]: for idx in range(self.num_encs): att_w = att_w_list[idx] att_w_ = att_w if isinstance(att_w, torch.Tensor) else att_w[0] ctc_state[idx], local_ctc_scores = ctc_scorer[idx](yseq, ctc_state[idx], local_scores, att_w_) local_scores = local_scores + ctc_weight * weights_ctc_dec[idx] * local_ctc_scores local_scores = local_scores.view(batch, beam, self.odim) if i == 0: local_scores[:, 1:, :] = self.logzero # accumulate scores eos_vscores = local_scores[:, :, self.eos] + vscores vscores = vscores.view(batch, beam, 1).repeat(1, 1, self.odim) vscores[:, :, self.eos] = self.logzero vscores = (vscores + local_scores).view(batch, -1) # global pruning accum_best_scores, accum_best_ids = torch.topk(vscores, beam, 1) accum_odim_ids = torch.fmod(accum_best_ids, self.odim).view(-1).data.cpu().tolist() accum_padded_beam_ids = (torch.div(accum_best_ids, self.odim) + pad_b).view(-1).data.cpu().tolist() y_prev = yseq[:][:] yseq = self._index_select_list(yseq, accum_padded_beam_ids) yseq = self._append_ids(yseq, accum_odim_ids) vscores = accum_best_scores vidx = to_device(self, torch.LongTensor(accum_padded_beam_ids)) a_prev = [] num_atts = self.num_encs if self.num_encs == 1 else self.num_encs + 1 for idx in range(num_atts): if isinstance(att_w_list[idx], torch.Tensor): _a_prev = torch.index_select(att_w_list[idx].view(n_bb, *att_w_list[idx].shape[1:]), 0, vidx) elif isinstance(att_w_list[idx], list): # handle the case of multi-head attention _a_prev = [torch.index_select(att_w_one.view(n_bb, -1), 0, vidx) for att_w_one in att_w_list[idx]] else: # handle the case of location_recurrent when return is a tuple _a_prev_ = torch.index_select(att_w_list[idx][0].view(n_bb, -1), 0, vidx) _h_prev_ = torch.index_select(att_w_list[idx][1][0].view(n_bb, -1), 0, vidx) _c_prev_ = torch.index_select(att_w_list[idx][1][1].view(n_bb, -1), 0, vidx) _a_prev = (_a_prev_, (_h_prev_, _c_prev_)) a_prev.append(_a_prev) z_prev = [torch.index_select(z_list[li].view(n_bb, -1), 0, vidx) for li in range(self.dlayers)] c_prev = [torch.index_select(c_list[li].view(n_bb, -1), 0, vidx) for li in range(self.dlayers)] # pick ended hyps if i > minlen: k = 0 penalty_i = (i + 1) * penalty thr = accum_best_scores[:, -1] for samp_i in six.moves.range(batch): if stop_search[samp_i]: k = k + beam continue for beam_j in six.moves.range(beam): if eos_vscores[samp_i, beam_j] > thr[samp_i]: yk = y_prev[k][:] yk.append(self.eos) if len(yk) < min(hlens[idx][samp_i] for idx in range(self.num_encs)): _vscore = eos_vscores[samp_i][beam_j] + penalty_i if rnnlm: _vscore += recog_args.lm_weight * rnnlm.final(rnnlm_state, index=k) _score = _vscore.data.cpu().numpy() ended_hyps[samp_i].append({'yseq': yk, 'vscore': _vscore, 'score': _score}) k = k + 1 # end detection stop_search = [stop_search[samp_i] or end_detect(ended_hyps[samp_i], i) for samp_i in six.moves.range(batch)] stop_search_summary = list(set(stop_search)) if len(stop_search_summary) == 1 and stop_search_summary[0]: break if rnnlm: rnnlm_state = self._index_select_lm_state(rnnlm_state, 0, vidx) if ctc_scorer[0]: for idx in range(self.num_encs): ctc_state[idx] = ctc_scorer[idx].index_select_state(ctc_state[idx], accum_best_ids) torch.cuda.empty_cache() dummy_hyps = [{'yseq': [self.sos, self.eos], 'score': np.array([-float('inf')])}] ended_hyps = [ended_hyps[samp_i] if len(ended_hyps[samp_i]) != 0 else dummy_hyps for samp_i in six.moves.range(batch)] if normalize_score: for samp_i in six.moves.range(batch): for x in ended_hyps[samp_i]: x['score'] /= len(x['yseq']) nbest_hyps = [sorted(ended_hyps[samp_i], key=lambda x: x['score'], reverse=True)[:min(len(ended_hyps[samp_i]), recog_args.nbest)] for samp_i in six.moves.range(batch)] return nbest_hyps def calculate_all_attentions(self, hs_pad, hlen, ys_pad, strm_idx=0, tgt_lang_ids=None): """Calculate all of attentions :param torch.Tensor hs_pad: batch of padded hidden state sequences (B, Tmax, D) [in multi-encoder case, list of torch.Tensor, [(B, Tmax_1, D), (B, Tmax_2, D), ..., ] ] :param torch.Tensor hlen: batch of lengths of hidden state sequences (B) [in multi-encoder case, list of torch.Tensor, [(B), (B), ..., ] :param torch.Tensor ys_pad: batch of padded character id sequence tensor (B, Lmax) :param int strm_idx: stream index for parallel speaker attention in multi-speaker case :param torch.Tensor tgt_lang_ids: batch of target language id tensor (B, 1) :return: attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) multi-encoder case => [(B, Lmax, Tmax1), (B, Lmax, Tmax2), ..., (B, Lmax, NumEncs)] 3) other case => attention weights (B, Lmax, Tmax). :rtype: float ndarray """ # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: hs_pad = [hs_pad] hlen = [hlen] # TODO(kan-bayashi): need to make more smart way ys = [y[y != self.ignore_id] for y in ys_pad] # parse padded ys att_idx = min(strm_idx, len(self.att) - 1) # hlen should be list of list of integer hlen = [list(map(int, hlen[idx])) for idx in range(self.num_encs)] self.loss = None # prepare input and output word sequences with sos/eos IDs eos = ys[0].new([self.eos]) sos = ys[0].new([self.sos]) if self.replace_sos: ys_in = [torch.cat([idx, y], dim=0) for idx, y in zip(tgt_lang_ids, ys)] else: ys_in = [torch.cat([sos, y], dim=0) for y in ys] ys_out = [torch.cat([y, eos], dim=0) for y in ys] # padding for ys with -1 # pys: utt x olen ys_in_pad = pad_list(ys_in, self.eos) ys_out_pad = pad_list(ys_out, self.ignore_id) # get length info olength = ys_out_pad.size(1) # initialization c_list = [self.zero_state(hs_pad[0])] z_list = [self.zero_state(hs_pad[0])] for _ in six.moves.range(1, self.dlayers): c_list.append(self.zero_state(hs_pad[0])) z_list.append(self.zero_state(hs_pad[0])) att_ws = [] if self.num_encs == 1: att_w = None self.att[att_idx].reset() # reset pre-computation of h else: att_w_list = [None] * (self.num_encs + 1) # atts + han att_c_list = [None] * (self.num_encs) # atts for idx in range(self.num_encs + 1): self.att[idx].reset() # reset pre-computation of h in atts and han # pre-computation of embedding eys = self.dropout_emb(self.embed(ys_in_pad)) # utt x olen x zdim # loop for an output sequence for i in six.moves.range(olength): if self.num_encs == 1: att_c, att_w = self.att[att_idx](hs_pad[0], hlen[0], self.dropout_dec[0](z_list[0]), att_w) att_ws.append(att_w) else: for idx in range(self.num_encs): att_c_list[idx], att_w_list[idx] = self.att[idx](hs_pad[idx], hlen[idx], self.dropout_dec[0](z_list[0]), att_w_list[idx]) hs_pad_han = torch.stack(att_c_list, dim=1) hlen_han = [self.num_encs] * len(ys_in) att_c, att_w_list[self.num_encs] = self.att[self.num_encs](hs_pad_han, hlen_han, self.dropout_dec[0](z_list[0]), att_w_list[self.num_encs]) att_ws.append(att_w_list) ey = torch.cat((eys[:, i, :], att_c), dim=1) # utt x (zdim + hdim) z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list) if self.num_encs == 1: # convert to numpy array with the shape (B, Lmax, Tmax) att_ws = att_to_numpy(att_ws, self.att[att_idx]) else: _att_ws = [] for idx, ws in enumerate(zip(*att_ws)): ws = att_to_numpy(ws, self.att[idx]) _att_ws.append(ws) att_ws = _att_ws return att_ws @staticmethod def _get_last_yseq(exp_yseq): last = [] for y_seq in exp_yseq: last.append(y_seq[-1]) return last @staticmethod def _append_ids(yseq, ids): if isinstance(ids, list): for i, j in enumerate(ids): yseq[i].append(j) else: for i in range(len(yseq)): yseq[i].append(ids) return yseq @staticmethod def _index_select_list(yseq, lst): new_yseq = [] for l in lst: new_yseq.append(yseq[l][:]) return new_yseq @staticmethod def _index_select_lm_state(rnnlm_state, dim, vidx): if isinstance(rnnlm_state, dict): new_state = {} for k, v in rnnlm_state.items(): new_state[k] = [torch.index_select(vi, dim, vidx) for vi in v] elif isinstance(rnnlm_state, list): new_state = [] for i in vidx: new_state.append(rnnlm_state[int(i)][:]) return new_state # scorer interface methods def init_state(self, x): # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: x = [x] c_list = [self.zero_state(x[0].unsqueeze(0))] z_list = [self.zero_state(x[0].unsqueeze(0))] for _ in six.moves.range(1, self.dlayers): c_list.append(self.zero_state(x[0].unsqueeze(0))) z_list.append(self.zero_state(x[0].unsqueeze(0))) # TODO(karita): support strm_index for `asr_mix` strm_index = 0 att_idx = min(strm_index, len(self.att) - 1) if self.num_encs == 1: a = None self.att[att_idx].reset() # reset pre-computation of h else: a = [None] * (self.num_encs + 1) # atts + han for idx in range(self.num_encs + 1): self.att[idx].reset() # reset pre-computation of h in atts and han return dict(c_prev=c_list[:], z_prev=z_list[:], a_prev=a, workspace=(att_idx, z_list, c_list)) def score(self, yseq, state, x): # to support mutiple encoder asr mode, in single encoder mode, convert torch.Tensor to List of torch.Tensor if self.num_encs == 1: x = [x] att_idx, z_list, c_list = state["workspace"] vy = yseq[-1].unsqueeze(0) ey = self.dropout_emb(self.embed(vy)) # utt list (1) x zdim if self.num_encs == 1: att_c, att_w = self.att[att_idx]( x[0].unsqueeze(0), [x[0].size(0)], self.dropout_dec[0](state['z_prev'][0]), state['a_prev']) else: att_w = [None] * (self.num_encs + 1) # atts + han att_c_list = [None] * (self.num_encs) # atts for idx in range(self.num_encs): att_c_list[idx], att_w[idx] = self.att[idx](x[idx].unsqueeze(0), [x[idx].size(0)], self.dropout_dec[0](state['z_prev'][0]), state['a_prev'][idx]) h_han = torch.stack(att_c_list, dim=1) att_c, att_w[self.num_encs] = self.att[self.num_encs](h_han, [self.num_encs], self.dropout_dec[0](state['z_prev'][0]), state['a_prev'][self.num_encs]) ey = torch.cat((ey, att_c), dim=1) # utt(1) x (zdim + hdim) z_list, c_list = self.rnn_forward(ey, z_list, c_list, state['z_prev'], state['c_prev']) if self.context_residual: logits = self.output(torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)) else: logits = self.output(self.dropout_dec[-1](z_list[-1])) logp = F.log_softmax(logits, dim=1).squeeze(0) return logp, dict(c_prev=c_list[:], z_prev=z_list[:], a_prev=att_w, workspace=(att_idx, z_list, c_list)) def decoder_for(args, odim, sos, eos, att, labeldist): return Decoder(args.eprojs, odim, args.dtype, args.dlayers, args.dunits, sos, eos, att, args.verbose, args.char_list, labeldist, args.lsm_weight, args.sampling_probability, args.dropout_rate_decoder, getattr(args, "context_residual", False), # use getattr to keep compatibility getattr(args, "replace_sos", False), # use getattr to keep compatibility getattr(args, "num_encs", 1)) # use getattr to keep compatibility
[ "torch.nn.Linear", "torch.cat", "torch.stack", "torch.nn.ModuleList", "torch.LongTensor", "torch.topk", "torch.index_select", "torch.div", "torch.zeros", "torch.nn.LSTMCell", "torch.fmod", "torch.nn.Module.__init__", "torch.nn.functional.log_softmax", "torch.cuda.empty_cache", "torch.nn.GRUCell", "torch.nn.Dropout", "torch.arange", "torch.from_numpy", "torch.nn.Embedding" ]
1.0.1
koso019003/espnet
7735c992b3d71fabbc0f0c48c1d8f78d72785e17
1.5
import logging import os import torch import dill import json import pickle import msgpack from eisen.utils import EisenModuleWrapper from eisen_deploy.utils import encode_data, decode_data logger = logging.getLogger(__name__) def json_file_to_dict(json_file): if not os.path.exists(json_file): raise FileNotFoundError('The JSON file {} cannot be read'.format(json_file)) with open(json_file) as json_file: dictionary = json.load(json_file) return dictionary class EisenServingHandler(object): """ EisenServingHandler is a custom object to handle inference request within TorchServing. It is usually included automatically in the MAR. """ def __init__(self): self.model = None self.device = None self.pre_process_tform = None self.post_process_tform = None self.metadata = None self.initialized = False self.input_name_list = [] self.output_name_list = [] def initialize(self, ctx): """ Initializes the fields of the EisenServingHandler object based on the context. :param ctx: context of an inference request :return: None """ properties = ctx.system_properties self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu") model_dir = properties.get("model_dir") # Model file model_pt_path = os.path.join(model_dir, "model.pt") # Pre processing chain pre_processing_pkl = os.path.join(model_dir, "pre_process_tform.pkl") # Post processing chain post_processing_pkl = os.path.join(model_dir, "post_process_tform.pkl") # unpickle serialized transform chain with open(pre_processing_pkl, "rb") as f: self.pre_process_tform = dill.load(f) with open(post_processing_pkl, "rb") as f: self.post_process_tform = dill.load(f) # Metadata about the model metadata_json = os.path.join(model_dir, "metadata.json") self.metadata = json_file_to_dict(metadata_json) self.input_name_list = self.metadata['model_input_list'] self.output_name_list = self.metadata['model_output_list'] # deserialize pytorch model base_model = torch.load(model_pt_path, map_location=self.device) self.model = EisenModuleWrapper(base_model, self.input_name_list, self.output_name_list) # put model in eval mode self.model.eval() logger.debug('Model file {0} loaded successfully'.format(model_pt_path)) self.initialized = True def get_metadata(self): """ This function returns metadata about the model as JSON :return: list """ return [json.dumps(self.metadata)] def pre_process(self, data): """ Applies pre-processing transform using de-pickled transform chain in the MAR. :param data: dictionary containing a collated batch of data :type data: dict """ input_dict = self.pre_process_tform(data) return input_dict def inference(self, input_dict): """ Performs prediction using the model. Feeds the necessary information to the model starting from the received data and creates an output dictionary as a result. :param input_dict: input batch, in form of a dictionary of collated datapoints :type input_dict: dict :return: dict """ for name in self.model.input_names: input_dict[name] = torch.Tensor(input_dict[name]).to(self.device) output_dict = self.model(**input_dict) for name in self.model.output_names: output_dict[name] = output_dict[name].data.cpu().numpy() return output_dict def post_process(self, output_dict): """ Applies post-processing transform using de-pickled transform chain in the MAR. :param output_dict: dictionary containing the result of inference on a collated batch of data :type output_dict: dict """ prediction = self.post_process_tform(output_dict) return prediction def handle(self, data): """ Handles one request. :param data: dictionary of data :type data: dict :return: list """ input_data = {} for input in self.metadata['inputs']: input_data[input['name']] = data[input['name']] model_input = self.pre_process(input_data) model_out = self.inference(model_input) model_out.update(model_input) # output dictionary still contains inputs (which may be useful for tforms) prediction = self.post_process(model_out) output_data = {} for output in self.metadata['outputs']: output_data[output['name']] = prediction[output['name']] buffer = msgpack.packb(prediction, default=encode_data, use_bin_type=True) return [buffer] _service = EisenServingHandler() def handle(data, context): if not _service.initialized: _service.initialize(context) if data is not None and hasattr(data, '__getitem__') and 'body' in data[0].keys() and len(data[0]['body']) > 0: data = data[0]['body'] else: return _service.get_metadata() data = msgpack.unpackb(data, object_hook=decode_data, raw=False) if not all([key in data.keys() for key in _service.input_name_list]): return _service.get_metadata() else: return _service.handle(data)
[ "torch.cuda.is_available", "torch.Tensor", "torch.load" ]
1.5.0
eisen-ai/eisen-deploy
ab1cdf0f8726cbfbdc7029616b1c753706b0039c
1.2
import csv import errno import hashlib import logging import os import sys import tarfile import threading import zipfile from queue import Queue import torch import urllib from torch.utils.data import Dataset from torch.utils.model_zoo import tqdm def unicode_csv_reader(unicode_csv_data, **kwargs): r"""Since the standard csv library does not handle unicode in Python 2, we need a wrapper. Borrowed and slightly modified from the Python docs: https://docs.python.org/2/library/csv.html#csv-examples Arguments: unicode_csv_data: unicode csv data (see example below) Examples: >>> from torchaudio.datasets.utils import unicode_csv_reader >>> import io >>> with io.open(data_path, encoding="utf8") as f: >>> reader = unicode_csv_reader(f) """ # Fix field larger than field limit error maxInt = sys.maxsize while True: # decrease the maxInt value by factor 10 # as long as the OverflowError occurs. try: csv.field_size_limit(maxInt) break except OverflowError: maxInt = int(maxInt / 10) csv.field_size_limit(maxInt) for line in csv.reader(unicode_csv_data, **kwargs): yield line def makedir_exist_ok(dirpath): """ Python2 support for os.makedirs(.., exist_ok=True) """ try: os.makedirs(dirpath) except OSError as e: if e.errno == errno.EEXIST: pass else: raise def stream_url(url, start_byte=None, block_size=32 * 1024, progress_bar=True): """Stream url by chunk Args: url (str): Url. start_byte (Optional[int]): Start streaming at that point. block_size (int): Size of chunks to stream. progress_bar (bool): Display a progress bar. """ # If we already have the whole file, there is no need to download it again req = urllib.request.Request(url, method="HEAD") url_size = int(urllib.request.urlopen(req).info().get("Content-Length", -1)) if url_size == start_byte: return req = urllib.request.Request(url) if start_byte: req.headers["Range"] = "bytes={}-".format(start_byte) with urllib.request.urlopen(req) as upointer, tqdm( unit="B", unit_scale=True, unit_divisor=1024, total=url_size, disable=not progress_bar, ) as pbar: num_bytes = 0 while True: chunk = upointer.read(block_size) if not chunk: break yield chunk num_bytes += len(chunk) pbar.update(len(chunk)) def download_url( url, download_folder, filename=None, hash_value=None, hash_type="sha256", progress_bar=True, resume=False, ): """Download file to disk. Args: url (str): Url. download_folder (str): Folder to download file. filename (str): Name of downloaded file. If None, it is inferred from the url. hash_value (str): Hash for url. hash_type (str): Hash type, among "sha256" and "md5". progress_bar (bool): Display a progress bar. resume (bool): Enable resuming download. """ req = urllib.request.Request(url, method="HEAD") req_info = urllib.request.urlopen(req).info() # Detect filename filename = filename or req_info.get_filename() or os.path.basename(url) filepath = os.path.join(download_folder, filename) if resume and os.path.exists(filepath): mode = "ab" local_size = os.path.getsize(filepath) elif not resume and os.path.exists(filepath): raise RuntimeError( "{} already exists. Delete the file manually and retry.".format(filepath) ) else: mode = "wb" local_size = None if hash_value and local_size == int(req_info.get("Content-Length", -1)): with open(filepath, "rb") as file_obj: if validate_file(file_obj, hash_value, hash_type): return raise RuntimeError( "The hash of {} does not match. Delete the file manually and retry.".format( filepath ) ) with open(filepath, mode) as fpointer: for chunk in stream_url(url, start_byte=local_size, progress_bar=progress_bar): fpointer.write(chunk) with open(filepath, "rb") as file_obj: if hash_value and not validate_file(file_obj, hash_value, hash_type): raise RuntimeError( "The hash of {} does not match. Delete the file manually and retry.".format( filepath ) ) def validate_file(file_obj, hash_value, hash_type="sha256"): """Validate a given file object with its hash. Args: file_obj: File object to read from. hash_value (str): Hash for url. hash_type (str): Hash type, among "sha256" and "md5". """ if hash_type == "sha256": hash_func = hashlib.sha256() elif hash_type == "md5": hash_func = hashlib.md5() else: raise ValueError while True: # Read by chunk to avoid filling memory chunk = file_obj.read(1024 ** 2) if not chunk: break hash_func.update(chunk) return hash_func.hexdigest() == hash_value def extract_archive(from_path, to_path=None, overwrite=False): """Extract archive. Arguments: from_path: the path of the archive. to_path: the root path of the extraced files (directory of from_path) overwrite: overwrite existing files (False) Returns: List of paths to extracted files even if not overwritten. Examples: >>> url = 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz' >>> from_path = './validation.tar.gz' >>> to_path = './' >>> torchaudio.datasets.utils.download_from_url(url, from_path) >>> torchaudio.datasets.utils.extract_archive(from_path, to_path) """ if to_path is None: to_path = os.path.dirname(from_path) try: with tarfile.open(from_path, "r") as tar: logging.info("Opened tar file {}.".format(from_path)) files = [] for file_ in tar: file_path = os.path.join(to_path, file_.name) if file_.isfile(): files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue tar.extract(file_, to_path) return files except tarfile.ReadError: pass try: with zipfile.ZipFile(from_path, "r") as zfile: logging.info("Opened zip file {}.".format(from_path)) files = zfile.namelist() for file_ in files: file_path = os.path.join(to_path, file_) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue zfile.extract(file_, to_path) return files except zipfile.BadZipFile: pass raise NotImplementedError("We currently only support tar.gz, tgz, and zip achives.") def walk_files(root, suffix, prefix=False, remove_suffix=False): """List recursively all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the full path to each result, otherwise only returns the name of the files found (Default: ``False``) remove_suffix (bool, optional): If true, removes the suffix to each result defined in suffix, otherwise will return the result as found (Default: ``False``). """ root = os.path.expanduser(root) for dirpath, _, files in os.walk(root): for f in files: if f.endswith(suffix): if remove_suffix: f = f[: -len(suffix)] if prefix: f = os.path.join(dirpath, f) yield f class _DiskCache(Dataset): """ Wrap a dataset so that, whenever a new item is returned, it is saved to disk. """ def __init__(self, dataset, location=".cached"): self.dataset = dataset self.location = location self._id = id(self) self._cache = [None] * len(dataset) def __getitem__(self, n): if self._cache[n]: f = self._cache[n] return torch.load(f) f = str(self._id) + "-" + str(n) f = os.path.join(self.location, f) item = self.dataset[n] self._cache[n] = f makedir_exist_ok(self.location) torch.save(item, f) return item def __len__(self): return len(self.dataset) def diskcache_iterator(dataset, location=".cached"): return _DiskCache(dataset, location) class _ThreadedIterator(threading.Thread): """ Prefetch the next queue_length items from iterator in a background thread. Example: >> for i in bg_iterator(range(10)): >> print(i) """ class _End: pass def __init__(self, generator, maxsize): threading.Thread.__init__(self) self.queue = Queue(maxsize) self.generator = generator self.daemon = True self.start() def run(self): for item in self.generator: self.queue.put(item) self.queue.put(self._End) def __iter__(self): return self def __next__(self): next_item = self.queue.get() if next_item == self._End: raise StopIteration return next_item # Required for Python 2.7 compatibility def next(self): return self.__next__() def bg_iterator(iterable, maxsize): return _ThreadedIterator(iterable, maxsize=maxsize)
[ "torch.utils.model_zoo.tqdm", "torch.save", "torch.load" ]
1.2.0
tomassosorio/audio
0f8fa5f82af47543a68f1d3fb8921f8f9b6b15f8
1.0
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: if model.num_outputs != 1: raise UnsupportedError( "Must specify an objective when using a multi-output model." ) objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f.unsqueeze(-1)).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
[ "torch.is_tensor", "torch.sigmoid" ]
1.0.0
shalijiang/bo
af13f0a38b579ab504f49a01f1ced13532a3ad49
1.0
import torch from torch import Tensor import numpy as np import matplotlib.pyplot as plt from botorch.acquisition.analytic import ExpectedImprovement from botorch.models import SingleTaskGP from rollout import rollout, rollout_quad import warnings import time import pickle warnings.filterwarnings("ignore") bound = 1.0 n = 50 x = torch.linspace(-bound, bound, n).view(-1, 1) train_idx = [np.round(n / 3), np.round(n * 2 / 3)] train_idx = [0, n - 1] train_x = x[train_idx] model = SingleTaskGP(train_x, Tensor([0, 0])) model.covar_module.base_kernel.lengthscale = 0.4 model.covar_module.outputscale = 1.0 model.likelihood.noise = 0.0001 model.eval() y_prior = model(x) torch.manual_seed(0) y = y_prior.sample() train_y = y[train_idx] y_best = torch.max(train_y).item() print(train_x) print(train_y) model.set_train_data(train_x, train_y, strict=False) model.eval() y_post = model(x) f, ax = plt.subplots(2, 1, figsize=(6, 12)) with torch.no_grad(): # Initialize plot # Get upper and lower confidence bounds lower, upper = y_post.confidence_region() # Plot training data as black stars ax[0].plot(x.squeeze().numpy(), y.numpy(), "r") ax[0].plot(train_x.squeeze().numpy(), train_y.numpy(), "k*") # Plot predictive means as blue line ax[0].plot(x.squeeze().numpy(), y_post.mean.detach().numpy(), "b") # Shade between the lower and upper confidence bounds ax[0].fill_between(x.squeeze().numpy(), lower.numpy(), upper.numpy(), alpha=0.5) ax[0].set_ylim([-3, 3]) ax[0].legend(["True func", "Observed Data", "Mean", "Confidence"]) ## compute EI expected_improvement = ExpectedImprovement(model, best_f=y_best) with torch.no_grad(): ei_values = expected_improvement(x.unsqueeze(1)) ax[1].plot(x.squeeze().numpy(), ei_values.numpy(), label="EI") ## compute two-step EI two_step_ei = np.zeros((3, n)) times = np.zeros((3, n)) num_y_samples = 100 samples, weights = np.polynomial.hermite.hermgauss(num_y_samples) for i in range(n): print("point", i) this_x = x[i] # start = time.time() # two_step_ei[0, i] = rollout(this_x, model, # best_f=y_best, # bounds=Tensor([-bound, bound]).view(-1, 1), # horizon=2, # quadrature='qmc', # num_y_samples=num_y_samples, # ) # end = time.time() # times[0, i] = end - start # print('qmc', end - start) start = time.time() two_step_ei[1, i] = rollout( this_x, model, best_f=y_best, bounds=Tensor([-bound, bound]).view(-1, 1), horizon=2, x_grid=x, idx=i, quadrature=(samples, weights), num_y_samples=num_y_samples, ) end = time.time() times[1, i] = end - start print("gauss-hermite", end - start) # start = time.time() # two_step_ei[2, i] = rollout_quad(this_x, model, # best_f=y_best, # bounds=Tensor([-bound, bound]).view(-1, 1), # horizon=2, # ) # end = time.time() # times[2, i] = end - start # print('adap-gauss', end - start) mean_time = times.mean(axis=1) with torch.no_grad(): # ax[1].plot(x.squeeze().numpy(), two_step_ei[0], label='two-step EI qmc %.2fs' % mean_time[0]) ax[1].plot( x.squeeze().numpy(), two_step_ei[1], label="two-step EI gauss-hermite %.2fs" % mean_time[1], ) # ax[1].plot(x.squeeze().numpy(), two_step_ei[2], label='two-step EI adap-gauss %.2fs' % mean_time[2]) ax[1].legend() print(times.mean(axis=1)) with open("rollout_test_results", "wb") as f: pickle.dump({"time": times, "ei": two_step_ei}, f) plt.show()
[ "torch.max", "torch.no_grad", "torch.linspace", "torch.manual_seed", "torch.Tensor" ]
1.0.0
shalijiang/bo
af13f0a38b579ab504f49a01f1ced13532a3ad49
1.7
import torch def corner_to_center(xmin, ymin, xmax, ymax): cx, cy = (xmin + xmax) / 2, (ymin + ymax) / 2 w = xmax - xmin h = ymax - ymin return cx, cy, w, h def center_to_corner(cx, cy, w, h): xmin, ymin = cx - 0.5 * w, cy - 0.5 * h xmax, ymax = cx + 0.5 * w, cy + 0.5 * h return xmin, ymin, xmax, ymax def cells_to_bboxes(preds, anchors, S, is_pred): batch_size = preds.shape[0] num_anchors = len(anchors) x_pred, y_pred = preds[..., 1:2], preds[..., 2:3] w_pred, h_pred = preds[..., 3:4], preds[..., 4:5] if is_pred: anchors = anchors.reshape(1, len(anchors), 1, 1, 2) x_pred, y_pred = torch.sigmoid(x_pred), torch.sigmoid(y_pred) w_pred, h_pred = torch.exp(w_pred) * anchors, torch.exp(h_pred) * anchors scores = preds[..., 0:1] best_class = preds[..., 5:6] cell_indices = ( torch.arange(S) .repeat(batch_size, num_anchors, S, 1) .unsqueeze(-1) .to(preds.device) ) x = 1 / S * (x_pred + cell_indices) y = 1 / S * (y_pred + cell_indices.permute(0, 1, 3, 2, 4)) w, h = 1 / S * w_pred, 1 / S * h_pred converted_bboxes = torch.cat((best_class, scores, x, y, w, h), dim=-1).reshape(batch_size, num_anchors * S * S, 6) return converted_bboxes.tolist()
[ "torch.sigmoid", "torch.cat", "torch.exp", "torch.arange" ]
1.7.0
DavianYang/yolo.ai
0856d4f1e84428667046ee27270ff1bf742e658a
1.7
from typing import Sequence, Union, Callable, AnyStr, Any import torch from torch import nn import torch.nn.functional as F from torch import Tensor from yolo.models.modules.activation import get_activation_layer class ConvBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Sequence], stride: Union[int, Sequence] = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = False, activation: Union[Callable, AnyStr] = (lambda: nn.ReLU(inplace=True)) ) -> None: super().__init__() self.activate = (activation is not None) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias ) self.bn = nn.BatchNorm2d(out_channels) if self.activate: self.act = get_activation_layer(activation) def forward(self, x: Tensor) -> Tensor: x = self.bn(self.conv(x)) if self.activate: x = self.act(x) return x class ResBlock(nn.Module): def __init__( self, channels: int, blocks: list ) -> None: super().__init__() conv1 = blocks[0] conv2 = blocks[1] self.resblock = nn.Sequential( ConvBlock(channels, conv1.filters, kernel_size=conv1.kernel_size, stride=conv1.stride, padding=conv1.padding), ConvBlock(conv1.filters, conv2.filters, kernel_size=conv2.kernel_size, stride=conv2.stride, padding=conv2.padding) ) def forward(self, x: Tensor) -> Tensor: x = self.resblock(x) + x return x class Upsample(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Sequence], stride: Union[int, Sequence] = 1, padding: int = 0, ): super().__init__() self.upsample = nn.Sequential( ConvBlock(in_channels, out_channels, kernel_size, stride, padding), nn.Upsample(scale_factor=2, mode="nearest") ) def forward(self, x: Tensor) -> Tensor: return self.upsample(x) class ScalePrediction(nn.Module): def __init__( self, in_channels, num_classes, num_anchors ) -> Any: super().__init__() self.num_classes = num_classes self.num_anchors = num_anchors self.pred = nn.Sequential( ConvBlock(in_channels, 2*in_channels, kernel_size=3, padding=1), nn.Conv2d(2*in_channels, (num_classes + 5) * num_anchors, kernel_size=1) ) def forward(self, x: Tensor) -> Tensor: return ( self.pred(x) .reshape(x.shape[0], self.num_anchors, self.num_classes + 5, x.shape[2], x.shape[3]) .permute(0, 1, 3, 4, 2) # N x num_anchors x 13 x 13 x 5 + num_classes ) class SEBlock(nn.Module): def __init__( self, in_channels: int, squeeze_channels: int, activation: Union[Callable, AnyStr] = (lambda: nn.SiLU()) ) -> None: super().__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, squeeze_channels, kernel_size=1), get_activation_layer(activation), nn.Conv2d(squeeze_channels, in_channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x: Tensor) -> Tensor: return x * self.se(x) class MBConvBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Sequence], stride: Union[int, Sequence], padding: int, expand_ratio: float, reduction: int = 4, # squeeze excitation survival_prob: float = 0.8 # for stochastic depth ) -> None: super().__init__() self.survival_prob = survival_prob self.use_residual = in_channels == out_channels and stride == 1 hidden_dim = in_channels * expand_ratio self.expand = in_channels != hidden_dim squeeze_dim = int(in_channels / reduction) if self.expand: self.expand_conv = ConvBlock( in_channels, hidden_dim, kernel_size=3, stride=1, padding=1, activation='silu' ) self.conv = nn.Sequential( ConvBlock( hidden_dim, hidden_dim, kernel_size, stride, padding, groups=hidden_dim, activation='silu' ), SEBlock(hidden_dim, squeeze_dim), nn.Conv2d(hidden_dim, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, inputs: Tensor) -> Tensor: x = self.expand_conv(inputs) if self.expand else inputs x = self.stochastic_depth(self.conv(x)) + inputs if self.use_residual else self.conv(x) return x def stochastic_depth(self, x: Tensor) -> Tensor: if not self.training: return x binary_tensor = torch.rand(x.shape[0], 1, 1, 1, device=x.device) < self.survival_prob return torch.div(x, self.survival_prob) * binary_tensor
[ "torch.rand", "torch.nn.Sigmoid", "torch.div", "torch.nn.SiLU", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Upsample", "torch.nn.Conv2d", "torch.nn.AdaptiveAvgPool2d" ]
1.7.0
DavianYang/yolo.ai
0856d4f1e84428667046ee27270ff1bf742e658a
1.10
import numpy as np import scipy.stats.stats as sciStats import torch import torch.nn as nn import torch.nn.functional as F import logging from volsim.params import * class CorrelationLoss(nn.modules.loss._Loss): def __init__(self, params:Params, useGPU:bool): super(CorrelationLoss, self).__init__() self.useGPU = useGPU if useGPU: self.epsilon = torch.tensor(0.0000001).cuda() else: self.epsilon = torch.tensor(0.0000001) self.params = params self.corHistoryMode = params.corHistoryMode self.weightMSE = params.lossFacMSE self.weightRelMSE = params.lossFacRelMSE self.weightPearsonCorr = params.lossFacPearsonCorr self.weightSlConvReg = params.lossFacSlConvReg self.weightSizeReg = params.lossFacSizeReg self.sizeRegExp = params.lossSizeExp self.useOnlineMean = params.lossOnlineMean self.aggregateCorr = params.lossCorrAggregate self.resetCorrAcc() self.stepHist = np.zeros(6) self.stepHistCount = 0 self.lastSampleSliceCorr = 0 self.epochHist = {"pred":[], "targ":[], "path":[], "enstd":[], "tempPred":[], "tempTarg":[], "tempPath":[], "tempEnstd":[]} # has to be called after all simulation pairs of one sample are processed # to ensure correct loss computation for next sample def resetCorrAcc(self): self.accX = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) self.accY = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) self.count = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) self.accFinal = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) self.countFinal = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) self.accX.requires_grad = False self.accY.requires_grad = False self.count.requires_grad = False self.accFinal.requires_grad = False self.countFinal.requires_grad = False def forward(self, prediction:torch.Tensor, target:torch.Tensor, path:np.ndarray) -> torch.Tensor: if self.useGPU: prediction = prediction.cuda() target = target.cuda() corr = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) correlation = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) # pearson correlation if self.weightPearsonCorr > 0: corr = self.pearsonCorrOnline(prediction, target) self.lastSampleSliceCorr = torch.mean(corr).item() correlation = self.weightPearsonCorr * 0.5 * (1-corr) # mse l2 = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) if self.weightMSE > 0: l2 = self.weightMSE * self.distanceL2(prediction, target) # relative mse relL2 = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) if self.weightRelMSE > 0: predMean = self.accX.detach() / self.count.detach() targMean = self.accY.detach() / self.count.detach() relL2 = self.weightRelMSE * self.distanceL2(prediction-predMean, target-targMean) # size regularization sizeReg = torch.tensor([0.0]).cuda() if self.useGPU else torch.tensor([0.0]) if self.weightSizeReg > 0: temp = torch.where(prediction > 1, torch.pow(prediction-1, self.sizeRegExp), torch.zeros_like(prediction)) sizeReg = self.weightSizeReg * torch.sum(temp, dim=1) # step history self.stepHist = self.stepHist + np.array([ torch.mean(l2+relL2+correlation+sizeReg).item(), torch.mean(l2).item(), torch.mean(correlation).item(), torch.mean(corr).item(), torch.mean(relL2).item(), torch.mean(sizeReg).item(), ]) self.stepHistCount = self.stepHistCount + 1 # epoch history self.epochHist["tempPred"] += [prediction.cpu().detach().numpy()] self.epochHist["tempTarg"] += [target.cpu().detach().numpy()] self.epochHist["tempPath"] += [np.repeat(path[:,None], target.shape[1], axis=1)] result = torch.mean(l2 + relL2 + correlation + sizeReg) if torch.isnan(result): logging.error("NAN in loss!") logging.error("L2 " + str(l2)) logging.error("Rel L2 " + str(relL2)) logging.error("Corr " + str(corr)) logging.error("Correlation " + str(correlation)) raise ValueError("NAN in loss!") return result def updateMeanAccs(self, x:torch.Tensor, y:torch.Tensor): if self.useGPU: x = x.cuda() y = y.cuda() self.count = self.count + x.shape[1] self.accX = self.accX + torch.sum(x, dim=1, keepdim=True) self.accY = self.accY + torch.sum(y, dim=1, keepdim=True) def pearsonCorrOnline(self, x:torch.Tensor, y:torch.Tensor) -> torch.Tensor: if self.useOnlineMean: self.updateMeanAccs(x, y) if self.count <= 1: return torch.zeros_like(self.accFinal) meanX = self.accX.detach() / self.count.detach() meanY = self.accY.detach() / self.count.detach() xm = x - meanX ym = y - meanY rNum = torch.sum(xm*ym, dim=1, keepdim=True) #manual dot product rDen = torch.norm(xm, 2, dim=1, keepdim=True) * torch.norm(ym, 2, dim=1, keepdim=True) rVal = rNum / torch.max(rDen, self.epsilon) #epsilon for numerical stability if any(torch.isnan(rVal)): logging.error("NAN in correlation computation!") logging.error("x " + str(x)) logging.error("y " + str(y)) logging.error("accX " + str(self.accX)) logging.error("accY " + str(self.accY)) logging.error("count " + str(self.count)) logging.error("meanX " + str(meanX)) logging.error("meanY " + str(meanY)) logging.error("rNum " + str(rNum)) logging.error("rDen " + str(rDen)) logging.error("rVal " + str(rVal)) raise ValueError("NAN in correlation computation!") if self.aggregateCorr: # average over previous pairs from same sample for better stability self.accFinal = self.accFinal.detach() + rVal self.countFinal = self.countFinal.detach() + 1 return self.accFinal / self.countFinal else: return rVal def getStepHistory(self) -> np.ndarray: result = self.stepHist / self.stepHistCount self.stepHist = np.zeros(6) self.stepHistCount = 0 self.resetCorrAcc() # normalize all step distances to [0.1, 1.0] predStep = np.concatenate(self.epochHist["tempPred"], axis=1) #[3,55] dMax = np.max(predStep, axis=1, keepdims=True) #[3,1] dMin = np.min(predStep, axis=1, keepdims=True) #[3,1] if (dMin == dMax).all(): predStep = predStep - dMin + 0.1 elif (dMin == dMax).any(): for i in range(dMin.shape[0]): if dMin[i] == dMax[i]: predStep[i] = predStep[i] - dMin[i] + 0.1 else: predStep[i] = 0.9 * ((predStep[i] - dMin[i]) / (dMax[i] - dMin[i])) + 0.1 else: predStep = 0.9 * ((predStep - dMin) / (dMax - dMin)) + 0.1 self.epochHist["pred"] += [predStep] self.epochHist["targ"] += [np.concatenate(self.epochHist["tempTarg"], axis=1)] self.epochHist["path"] += [np.concatenate(self.epochHist["tempPath"], axis=1)] self.epochHist["tempPred"] = [] self.epochHist["tempTarg"] = [] self.epochHist["tempPath"] = [] return result def getEpochHistory(self, splits:dict=None) -> tuple: predEpoch = np.concatenate(self.epochHist["pred"], axis=0) targEpoch = np.concatenate(self.epochHist["targ"], axis=0) pathEpoch = np.concatenate(self.epochHist["path"], axis=0) corrSplit = {} if splits: for split in splits: idx = np.core.defchararray.find(pathEpoch.astype(str), splits[split]) >= 0 stacked = np.stack([predEpoch[idx], targEpoch[idx]]) if self.corHistoryMode == "pearson": corr = np.corrcoef(stacked)[0,1] elif self.corHistoryMode == "spearman": corr, _ = sciStats.spearmanr(stacked.transpose((1,0))) else: raise ValueError("Invalid ground ") corrSplit[split] = corr stackedAll = np.stack([predEpoch.flatten(), targEpoch.flatten()]) if self.corHistoryMode == "pearson": corrAll = np.corrcoef(stackedAll)[0,1] elif self.corHistoryMode == "spearman": corrAll, _ = sciStats.spearmanr(stackedAll.transpose((1,0))) else: raise ValueError("Invalid ground ") self.epochHist["pred"] = [] self.epochHist["targ"] = [] self.epochHist["path"] = [] return corrAll, corrSplit def distanceL2(self, x:torch.Tensor, y:torch.Tensor) -> torch.Tensor: return F.mse_loss(x, y, reduction='none') def distanceL1(self, x:torch.Tensor, y:torch.Tensor) -> torch.Tensor: return F.l1_loss(x, y, reduction='none')
[ "torch.isnan", "torch.nn.functional.l1_loss", "torch.norm", "torch.max", "torch.zeros_like", "torch.pow", "torch.nn.functional.mse_loss", "torch.tensor", "torch.mean", "torch.sum" ]
1.10.0
tum-pbs/VOLSIM
795a31c813bf072eb88289126d7abd9fba8b0e54
1.9
from gettext import find import torch from ezflow.utils import ( AverageMeter, coords_grid, endpointerror, find_free_port, forward_interpolate, is_port_available, upflow, ) def test_endpointerror(): pred = torch.rand(4, 2, 256, 256) target = torch.rand(4, 2, 256, 256) _ = endpointerror(pred, target) multi_magnitude_epe = endpointerror(pred, target, multi_magnitude=True) assert isinstance(multi_magnitude_epe, dict) target = torch.rand( 4, 3, 256, 256 ) # Ignore valid mask for EPE calculation if target contains it _ = endpointerror(pred, target) def test_forward_interpolate(): flow = torch.rand(2, 256, 256) _ = forward_interpolate(flow) def test_upflow(): flow = torch.rand(2, 2, 256, 256) _ = upflow(flow) def test_coords_grid(): _ = coords_grid(2, 256, 256) def test_AverageMeter(): meter = AverageMeter() meter.update(1) assert meter.avg == 1 meter.reset() assert meter.avg == 0 def test_find_free_port(): assert len(find_free_port()) == 5 def test_is_port_available(): port = find_free_port() assert is_port_available(int(port)) is True
[ "torch.rand" ]
1.9.0
neu-vig/ezflow
1eb6f675e72b1de6db7b35d61ca4ef0082bae890
0.4
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import math import random import numpy import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as Data import torch.nn.functional as F import torch.autograd as autograd import torchvision.transforms as T import torch.optim as optim from conf import * """PyTorch BERT model.""" import os import copy import json import math import logging import tarfile import tempfile import shutil import torch from torch import nn from torch.nn import CrossEntropyLoss from pytorch_pretrained_bert.file_utils import cached_path logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-base-multilingual': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", } CONFIG_NAME = 'bert_config.json' WEIGHTS_NAME = 'pytorch_model.bin' # if gpu is to be used use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor Tensor = FloatTensor random.seed(0) numpy.random.seed(0) torch.manual_seed(args.random_seed) torch.cuda.manual_seed(args.random_seed) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} class BertConfig(object): """Configuration class to store the configuration of a `BertModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r") as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class BertLayerNorm(nn.Module): def __init__(self, config, variance_epsilon=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(config.hidden_size)) self.beta = nn.Parameter(torch.zeros(config.hidden_size)) self.variance_epsilon = variance_epsilon def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() layer = BertLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act self.LayerNorm = BertLayerNorm(config) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0), bias=False) self.decoder.weight = bert_model_embedding_weights self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class PreTrainedBertModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(PreTrainedBertModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.beta.data.normal_(mean=0.0, std=self.config.initializer_range) module.gamma.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. Params: pretrained_model_name: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-base-multilingual` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name] else: archive_file = pretrained_model_name # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) except FileNotFoundError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name)) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info("loading archive file {} from cache at {}".format( archive_file, resolved_archive_file)) tempdir = None if os.path.isdir(resolved_archive_file): serialization_dir = resolved_archive_file else: # Extract archive to temp dir tempdir = tempfile.mkdtemp() logger.info("extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir)) with tarfile.open(resolved_archive_file, 'r:gz') as archive: archive.extractall(tempdir) serialization_dir = tempdir # Load config config_file = os.path.join(serialization_dir, CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) state_dict = torch.load(weights_path) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix='' if hasattr(model, 'bert') else 'bert.') if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if tempdir: # Clean up temp dir shutil.rmtree(tempdir) return model class BertModel(PreTrainedBertModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block, `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) config = modeling.BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class BertForPreTraining(PreTrainedBertModel): """BERT model with pre-training heads. This module comprises the BERT model followed by the two pre-training heads: - the masked language modeling head, and - the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `masked_lm_labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits, and - the next sentence classification logits. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) config = BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = BertForPreTraining(config) masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None): sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss return total_loss else: return prediction_scores, seq_relationship_score class BertForMaskedLM(PreTrainedBertModel): """BERT model with the masked language modeling head. This module comprises the BERT model followed by the masked language modeling head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] Outputs: if `masked_lm_labels` is `None`: Outputs the masked language modeling loss. if `masked_lm_labels` is `None`: Outputs the masked language modeling logits. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) config = BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = BertForMaskedLM(config) masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForMaskedLM, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None): sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) prediction_scores = self.cls(sequence_output) if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) return masked_lm_loss else: return prediction_scores class Network(PreTrainedBertModel): def __init__(self, config,hidden_dimention, output_dimention): super(Network, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) # self.embedding_layer = nn.Embedding(embedding_size, embedding_dimention) # self.embedding_layer.weight.data.copy_(torch.from_numpy(numpy.array(embedding_matrix))) # self.inpt_layer_np = nn.Linear(embedding_dimention,hidden_dimention) # self.inpt_layer_np_bert = nn.Linear(config.hidden_size, hidden_dimention) self.inpt_layer_np_bert = nn.Linear(hidden_dimention, hidden_dimention) self.hidden_layer_np = nn.Linear(hidden_dimention,hidden_dimention) nh = hidden_dimention*2 # self.zp_bert_to_att_layer = nn.Linear(config.hidden_size, nh)#-------------------------------- self.zp_representation_layer = nn.Linear(nh, nh) # -------------------------------- self.np_representation_layer = nn.Linear(hidden_dimention,nh) self.nps_representation_layer = nn.Linear(hidden_dimention,nh) self.feature_representation_layer = nn.Linear(nnargs["feature_dimention"],nh) self.representation_hidden_layer = nn.Linear(hidden_dimention*2,hidden_dimention*2) self.output_layer = nn.Linear(hidden_dimention*2,output_dimention) self.hidden_size = hidden_dimention self.activate = nn.Tanh() self.Attention_np = nn.Linear(256,1,bias=False) self.Attention_zp = nn.Linear(nh,1,bias=False) def forward_zp_pre(self, word_index, hiden_layer,dropout=0.0): dropout_layer = nn.Dropout(dropout) word_embedding = self.embedding_layer(word_index)#.view(-1,word_embedding_rep_dimention) word_embedding = dropout_layer(word_embedding) this_hidden = self.inpt_layer_zp_pre(word_embedding) + self.hidden_layer_zp_pre(hiden_layer) this_hidden = self.activate(this_hidden) this_hidden = dropout_layer(this_hidden) return this_hidden def forward_zp_post(self, word_index, hiden_layer,dropout=0.0): dropout_layer = nn.Dropout(dropout) word_embedding = self.embedding_layer(word_index)#.view(-1,word_embedding_rep_dimention) this_hidden = self.inpt_layer_zp_post(word_embedding) + self.hidden_layer_zp_post(hiden_layer) this_hidden = self.activate(this_hidden) this_hidden = dropout_layer(this_hidden) return this_hidden def forward_np(self, word_index, hiden_layer,dropout=0.0): dropout_layer = nn.Dropout(dropout) word_embedding = self.embedding_layer(word_index) this_hidden = self.inpt_layer_np(word_embedding) + self.hidden_layer_np(hiden_layer) this_hidden = self.activate(this_hidden) this_hidden = dropout_layer(this_hidden) return this_hidden def forward_np_bert(self, bert_out, hiden_layer,dropout=0.0): dropout_layer = nn.Dropout(dropout) # word_embedding = self.embedding_layer(word_index) this_hidden = self.inpt_layer_np_bert(bert_out) + self.hidden_layer_np(hiden_layer) this_hidden = self.activate(this_hidden) this_hidden = dropout_layer(this_hidden) return this_hidden def generate_score(self,zp_pre,zp_post,np,feature,dropout=0.0): dropout_layer = nn.Dropout(dropout) x = self.zp_pre_representation_layer(zp_pre) + self.zp_post_representation_layer(zp_post) + self.np_representation_layer(np)\ + self.feature_representation_layer(feature) x = self.activate(x) x = dropout_layer(x) x = self.representation_hidden_layer(x) x = self.activate(x) x = dropout_layer(x) x = self.output_layer(x) xs = F.softmax(x) return x,xs def generate_score_bert(self,zp,np,feature,dropout=0.0): dropout_layer = nn.Dropout(dropout) x = self.zp_representation_layer(zp) + self.np_representation_layer(np)\ + self.feature_representation_layer(feature) x = self.activate(x) x = dropout_layer(x) x = self.representation_hidden_layer(x) x = self.activate(x) x = dropout_layer(x) x = self.output_layer(x) xs = F.softmax(x,dim=0) return x,xs def initHidden(self,batch=1): return torch.tensor(numpy.zeros((batch, self.hidden_size))).type(torch.cuda.FloatTensor) def get_attention_pre(self,inpt): return self.selfAttentionB_pre(self.activate(self.selfAttentionA_pre(inpt))) def get_attention_post(self,inpt): return self.selfAttentionB_post(self.activate(self.selfAttentionA_post(inpt))) def forward(self,data,dropout=0.0, attention_mask=None, masked_lm_labels=None): # token_type_ids = None#---------- zp_reindex = torch.tensor(data["zp_reindex"]).type(torch.cuda.LongTensor) # zps_sent_bert = [] # zp_i = 0 # for i, zp_reidx in enumerate(zp_reindex): # if zp_i != zp_reidx: # zp_i += 1 # zps_sent_bert.append(data["zp_sent_bert"][zp_i]) # # zps_sent_mask_bert = [] # zp_i = 0 # for i, zp_reidx in enumerate(zp_reindex): # if zp_i != zp_reidx: # zp_i += 1 # zps_sent_mask_bert.append(data["zp_sent_mask_bert"][zp_i]) # # # zp_sent_bert = torch.tensor(data["zp_sent_bert"]).type(torch.cuda.LongTensor) # # zp_sent_mask_bert = torch.tensor(data["zp_sent_mask_bert"]).type(torch.cuda.FloatTensor) # zp_sent_bert = torch.tensor(zps_sent_bert).type(torch.cuda.LongTensor) # zp_sent_mask_bert = torch.tensor(zps_sent_mask_bert).type(torch.cuda.FloatTensor) # # # zp_orig_to_tok_bert = torch.tensor(data["zp_orig_to_tok_bert"]).type(torch.cuda.LongTensor) # #input_ids # sequence_output, _ = self.bert(zp_sent_bert, token_type_ids, zp_sent_mask_bert,output_all_encoded_layers=False) # # # for sent in zp_orig_to_tok_bert: # # for i,ci in enumerate(sent): # # zp_representation = self.zp_bert_to_att_layer(torch.squeeze(sequence_output.narrow(1,0,1),1)) zps_sent_cls_output_bert = [] zp_i = 0 for i, zp_reidx in enumerate(zp_reindex): if zp_i != zp_reidx: zp_i += 1 zps_sent_cls_output_bert.append(data["zp_sent_cls_output_bert"][zp_i]) zp_representation = torch.tensor(zps_sent_cls_output_bert).type(torch.cuda.FloatTensor)[:,:512]#x*768->x*512 candi_reindex = torch.tensor(data["candi_reindex"]).type(torch.cuda.LongTensor) # candi = torch.tensor(data["candi"]).type(torch.cuda.LongTensor) # candi_mask = torch.tensor(data["candi_mask"]).type(torch.cuda.FloatTensor) candi_bert = torch.tensor(data["candi_bert"]).type(torch.cuda.FloatTensor)[:,:,:256]#x*40*768->x*40*256 candi_mask_bert = torch.tensor(data["candi_mask_bert"]).type(torch.cuda.FloatTensor)#why not LongTensor feature = torch.tensor(data["fl"]).type(torch.cuda.FloatTensor) candi_bert = torch.transpose(candi_bert,0,1)#40*x*256 # mask_candi_bert = torch.transpose(candi_mask_bert,0,1) # hidden_candi = self.initHidden() # hiddens_candi = [] # for i in range(len(mask_candi_bert)):#40 # #hidden_candi = self.forward_np_bert(candi_bert[i], hidden_candi, dropout=dropout) * torch.transpose(mask_candi_bert[i:i + 1], 0, 1)#RNN # hidden_candi = candi_bert[i]#choose the max # hiddens_candi.append(hidden_candi) # hiddens_candi = torch.cat(hiddens_candi,1) # hiddens_candi = hiddens_candi.view(-1,len(mask_candi_bert),nnargs["hidden_dimention"]) nps = [] # for npt, zpt in zip(hiddens_candi, zp_representation): # 5*40*256 for npt, zpt in zip(torch.transpose(candi_bert,0,1), zp_representation):#5*40*256,5*512 attention = F.softmax(torch.squeeze(self.activate(self.Attention_np(npt) + self.Attention_zp(zpt))),dim=0) #[8*256]*[256*1]+[1*256]*[256*1]+[1*256]*[256*1]=[8*1]+[1*1]+[1*1]=[8*1]-->[8] average_np = torch.transpose(npt,0,1)*attention average_np = torch.sum(average_np,1,keepdim=True) nps.append(average_np) nps = torch.transpose(torch.cat(nps,1),0,1) candi_representation = nps[candi_reindex] output, softmax_out = self.generate_score_bert(zp_representation, candi_representation,feature) output = torch.squeeze(output) return output,softmax_out
[ "torch.nn.Linear", "torch.cat", "torch.cuda.manual_seed", "torch.ones", "torch.squeeze", "torch.cuda.is_available", "torch.load", "torch.transpose", "torch.nn.CrossEntropyLoss", "torch.sum", "torch.sigmoid", "torch.sqrt", "torch.nn.Softmax", "torch.manual_seed", "torch.tensor", "torch.zeros_like", "torch.zeros", "torch.nn.Tanh", "torch.nn.functional.softmax", "torch.matmul", "torch.nn.Dropout", "torch.arange", "torch.ones_like", "torch.nn.Embedding" ]
0.4.1
mjj1094/Attention_BERT_62
22cae03ab7bcb09cfd3f8b0b9f2239f8e3ba56ce
1.5
import logging import math import os import pickle import random import sys import time from math import ceil, log from pathlib import Path from typing import Dict, List, Set, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn import metrics from torch.autograd import Variable from torch.nn.utils.rnn import (pack_padded_sequence, pack_sequence, pad_packed_sequence, pad_sequence) from torch.utils.data import DataLoader, Dataset, TensorDataset, random_split from src.data import SOURCE_ASSIST0910_ORIG, SOURCE_ASSIST0910_SELF from src.utils import sAsMinutes, timeSince # ========================= # Model # ========================= class _Encoder(nn.Module): def __init__(self, num_embeddings, emb_dim, hid_dim, n_layers, dropout): super().__init__() self.num_embeddings = num_embeddings self.emb_dim = emb_dim self.hid_dim = hid_dim self.n_layers = n_layers self.dropout = dropout # Layers self.embedding = nn.Embedding(num_embeddings, emb_dim) self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout) self.dropout = nn.Dropout(dropout) def forward(self, input): embedded = self.dropout(self.embedding(input)) outputs, (hidden, cell) = self.rnn(embedded) return hidden, cell class _Decoder(nn.Module): def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout): super().__init__() self.emb_dim = emb_dim self.hid_dim = hid_dim self.output_dim = output_dim self.n_layers = n_layers self.dropout = dropout # Layers self.embedding = nn.Embedding(output_dim, emb_dim) # 250->6 self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout) # 6, 100, 1 self.out = nn.Linear(hid_dim, output_dim) # 100, 250 self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, cell): # print(input.shape) # 1, 100 # input = input.unsqueeze(0) # もしx_trg1つだけ取り出して渡すと上のようになるので、unsqueezeする。 embedded = self.dropout(self.embedding(input)) output, (hidden, cell) = self.rnn(embedded, (hidden, cell)) # prediction = self.out(output.squeeze(0)) prediction = self.out(output) return prediction, hidden, cell class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, dev): super().__init__() self.encoder = encoder self.decoder = decoder self.device = dev assert encoder.hid_dim == decoder.hid_dim, \ "Hidden dimensions of encoder and decoder must be equal!" assert encoder.n_layers == decoder.n_layers, \ "Encoder and decoder must have equal number of layers!" def forward(self, src, trg, teacher_forcing_ratio=0.5): max_len = trg.shape[0] # should be 1 batch_size = trg.shape[1] trg_vocab_size = self.decoder.output_dim hidden, cell = self.encoder(src) # print(trg.shape) # 2, 100 # input_trg = trg[-1,:] # should be 1, 100, ? input_trg = trg output, hidden, cell = self.decoder(input_trg, hidden, cell) # print(output.shape) # 1, 100, 250 # outputs = output.unsqueeze(0) outputs = output # Knowledge State o_wro = torch.sigmoid(output[:,:, 2:2+124]) o_cor = torch.sigmoid(output[:,:, 2+124:]) outputs_prob = (o_cor / (o_cor + o_wro)) return outputs, outputs_prob def get_loss_batch_seq2seq(extend_forward, ks_loss): def loss_batch_encdec(model, loss_func, *args, opt=None): # Unpack data from DataLoader xs_src, xs_trg, ys, yq, ya, yp = args input_src = xs_src input_trg = xs_trg target = ys input_src = input_src.permute(1, 0) input_trg = input_trg.permute(1, 0) target = target.permute(1, 0) out, out_prob = model(input_src, input_trg) # print(out.shape, out_prob.shape) # 1, 100, 250; 1, 100, 124 out = out.permute(1, 0, 2) out_prob = out_prob.permute(1, 0, 2) pred = torch.sigmoid(out) # [0, 1]区間にする # --- 指標評価用データ prob = torch.max(out_prob * yq, 2)[0] predicted = prob[:,-1 - extend_forward] actual = ya[:,-1 - extend_forward] predicted_ks = out_prob[:,-1,:].unsqueeze(1) loss = loss_func(prob, ya) if opt: # バックプロバゲーション opt.zero_grad() loss.backward() opt.step() # Returns loss number, batch size return loss.item(), len(ys), predicted, actual, predicted_ks return loss_batch_encdec def get_Seq2Seq(NUM_EMBEDDIGNS, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT, OUTPUT_DIM, DEC_EMB_DIM, DEC_DROPOUT, dev): enc = _Encoder(NUM_EMBEDDIGNS, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT) dec = _Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT) model = Seq2Seq(enc, dec, dev).to(dev) return model
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.Dropout", "torch.nn.LSTM", "torch.max", "torch.nn.Embedding" ]
1.5.0
qqhann/KnowledgeTracing
cecdb9af0c44efffd1ce3359f331d7d7782f551b
1.6
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import csv import os import shutil from PIL import Image import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision import cv2 import numpy as np import time import _init_paths import models from config import cfg from config import update_config from core.function import get_final_preds from utils.transforms import get_affine_transform from models.pose_hrnet import get_pose_net COCO_KEYPOINT_INDEXES = { 0: 'nose', 1: 'left_eye', 2: 'right_eye', 3: 'left_ear', 4: 'right_ear', 5: 'left_shoulder', 6: 'right_shoulder', 7: 'left_elbow', 8: 'right_elbow', 9: 'left_wrist', 10: 'right_wrist', 11: 'left_hip', 12: 'right_hip', 13: 'left_knee', 14: 'right_knee', 15: 'left_ankle', 16: 'right_ankle' } COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] SKELETON = [ [1,3],[1,0],[2,4],[2,0],[0,5],[0,6],[5,7],[7,9],[6,8],[8,10],[5,11],[6,12],[11,12],[11,13],[13,15],[12,14],[14,16] ] CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] NUM_KPTS = 17 CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def draw_pose(keypoints, img): """draw the keypoints and the skeletons. :params keypoints: the shape should be equal to [17,2] :params img: """ assert keypoints.shape == (NUM_KPTS, 2) for i in range(len(SKELETON)): kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1] x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1] x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1] cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1) cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1) cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2) def draw_bbox(box, img): """draw the detected bounding box on the image. :param img: """ cv2.rectangle(img, box[0], box[1], color=(0, 255, 0), thickness=3) def get_person_detection_boxes(model, img, threshold=0.5): pred = model(img) pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes pred_score = list(pred[0]['scores'].detach().cpu().numpy()) if not pred_score or max(pred_score)<threshold: return [] # Get list of index with score greater than threshold pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1] pred_boxes = pred_boxes[:pred_t+1] pred_classes = pred_classes[:pred_t+1] person_boxes = [] for idx, box in enumerate(pred_boxes): if pred_classes[idx] == 'person': person_boxes.append(box) return person_boxes def get_pose_estimation_prediction(pose_model, image, center, scale): rotation = 0 # pose estimation transformation trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE) model_input = cv2.warpAffine( image, trans, (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), flags=cv2.INTER_LINEAR) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # pose estimation inference model_input = transform(model_input).unsqueeze(0) # switch to evaluate mode pose_model.eval() with torch.no_grad(): # compute output heatmap output = pose_model(model_input) preds, _ = get_final_preds( cfg, output.clone().cpu().numpy(), np.asarray([center]), np.asarray([scale])) return preds def box_to_center_scale(box, model_image_width, model_image_height): """convert a box to center,scale information required for pose transformation Parameters ---------- box : list of tuple list of length 2 with two tuples of floats representing bottom left and top right corner of a box model_image_width : int model_image_height : int Returns ------- (numpy array, numpy array) Two numpy arrays, coordinates for the center of the box and the scale of the box """ center = np.zeros((2), dtype=np.float32) bottom_left_corner = box[0] top_right_corner = box[1] box_width = top_right_corner[0]-bottom_left_corner[0] box_height = top_right_corner[1]-bottom_left_corner[1] bottom_left_x = bottom_left_corner[0] bottom_left_y = bottom_left_corner[1] center[0] = bottom_left_x + box_width * 0.5 center[1] = bottom_left_y + box_height * 0.5 aspect_ratio = model_image_width * 1.0 / model_image_height pixel_std = 200 if box_width > aspect_ratio * box_height: box_height = box_width * 1.0 / aspect_ratio elif box_width < aspect_ratio * box_height: box_width = box_height * aspect_ratio scale = np.array( [box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std], dtype=np.float32) if center[0] != -1: scale = scale * 1.25 return center, scale def parse_args(): parser = argparse.ArgumentParser(description='Train keypoints network') # general parser.add_argument('--cfg', type=str, default='./inference-config.yaml') parser.add_argument('--video', type=str) parser.add_argument('--webcam', action='store_true') parser.add_argument('--image', type=str) parser.add_argument('--write', action='store_true') parser.add_argument('--showFps', action='store_true') parser.add_argument('opts', help='Modify config options using the command-line', default=None, nargs=argparse.REMAINDER) args = parser.parse_args() # args expected by supporting codebase args.modelDir = '' args.logDir = '' args.dataDir = '' args.prevModelDir = '' return args def main(): # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED args = parse_args() update_config(cfg, args) box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) box_model.to(CTX) box_model.eval() pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')( cfg, is_train=False ) if cfg.TEST.MODEL_FILE: print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE)) pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False) else: print('expected model defined in config at TEST.MODEL_FILE') # pose_model = get_pose_net(cfg, True) pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS) pose_model.to(CTX) pose_model.eval() # Loading an video or an image or webcam if args.webcam: vidcap = cv2.VideoCapture(0) elif args.video: vidcap = cv2.VideoCapture(args.video) elif args.image: image_bgr = cv2.imread(args.image) else: print('please use --video or --webcam or --image to define the input.') return if args.webcam or args.video: if args.write: save_path = 'output.avi' fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(save_path,fourcc, 24.0, (int(vidcap.get(3)),int(vidcap.get(4)))) while True: ret, image_bgr = vidcap.read() if ret: last_time = time.time() image = image_bgr[:, :, [2, 1, 0]] input = [] img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) img_tensor = torch.from_numpy(img/255.).permute(2,0,1).float().to(CTX) input.append(img_tensor) # object detection box pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9) # pose estimation if len(pred_boxes) >= 1: for box in pred_boxes: center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1]) image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy() pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale) if len(pose_preds)>=1: for kpt in pose_preds: draw_pose(kpt,image_bgr) # draw the poses if args.showFps: fps = 1/(time.time()-last_time) img = cv2.putText(image_bgr, 'fps: '+ "%.2f"%(fps), (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2) if args.write: out.write(image_bgr) cv2.imshow('demo',image_bgr) if cv2.waitKey(1) & 0XFF==ord('q'): break else: print('cannot load the video.') break cv2.destroyAllWindows() vidcap.release() if args.write: print('video has been saved as {}'.format(save_path)) out.release() else: # estimate on the image last_time = time.time() image = image_bgr[:, :, [2, 1, 0]] input = [] img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) img_tensor = torch.from_numpy(img/255.).permute(2,0,1).float().to(CTX) input.append(img_tensor) # object detection box pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9) # pose estimation if len(pred_boxes) >= 1: for box in pred_boxes: center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1]) image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy() pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale) if len(pose_preds)>=1: for kpt in pose_preds: draw_pose(kpt,image_bgr) # draw the poses if args.showFps: fps = 1/(time.time()-last_time) img = cv2.putText(image_bgr, 'fps: '+ "%.2f"%(fps), (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2) if args.write: save_path = 'output.jpg' cv2.imwrite(save_path,image_bgr) print('the result image has been saved as {}'.format(save_path)) cv2.imshow('demo',image_bgr) if cv2.waitKey(0) & 0XFF==ord('q'): cv2.destroyAllWindows() if __name__ == '__main__': main()
[ "torch.device", "torch.no_grad", "torch.from_numpy", "torch.cuda.is_available", "torch.load", "torch.nn.DataParallel" ]
1.6.0
Zhou1993napolun/Pose_enabler
669fffd6cea57fec5fa9bd95868cc48347700f42
1.7
import torch import torch.nn as nn from torchvision import models, transforms from dataset import HCPDataset # from torch.utils.data import DataLoader from torch_geometric.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as F EPOCHS = 120 IS_SEX = True # comment: declare it only here THRESHOLD = 0.3 LR = 0.003 HIDDEN_CHANNELS = 64 COMMENT = 'TEST' class CNN_HCP(nn.Module): def __init__(self, num_classes): super(CNN_HCP, self).__init__() self.conv1 = nn.Conv2d(1, 3, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True) self.conv2 = nn.Conv2d(3, 6, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) self.fc1 = nn.Linear(in_features=6*7*7, out_features=64) self.fc2 = nn.Linear(64, 16) self.fc3 = nn.Linear(16, num_classes) def forward(self, x): x = self.conv1(x) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 6*7*7) x = F.relu(self.fc1(x)) x = F.dropout(x, p=0.5, training=self.training) x = F.relu(self.fc2(x)) x = F.dropout(x, p=0.5, training=self.training) x = F.relu(self.fc3(x)) return x def get_data_hcp(batch_size=64): # load the hcp data and do the normalization required for pretrained cnn models, the value is in range of [0,1] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # use unweighted binary graph dataset = HCPDataset(root='data/hcp', is_sex=IS_SEX, threshold=THRESHOLD, bin=True) # split dataset for training and test dataset_for_training = dataset[:802] dataset_for_training = dataset_for_training.shuffle() test_dataset = dataset[802:] # split the training dataset for validation graphs_training = 702 train_dataset = dataset_for_training[:graphs_training] val_dataset = dataset_for_training[graphs_training:] train_loader = DataLoader(train_dataset, batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size, shuffle=False) test_loader = DataLoader(test_dataset, batch_size, shuffle=False) return train_loader, val_loader, test_loader def train(train_loader, model, criterion, optimizer, batch_size=64): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.train() for data in train_loader: # Iterate in batches over the training dataset. data = data.to(device) if data.x.dim() < 3: # change the dimension of node features into [batch_size, 15, 15] data.x = torch.reshape(data.x, (-1, 15, 15)) # dimension required for conv2d [batch_size, channel_in, h, w] data.x = torch.unsqueeze(data.x, dim=1) # uncomment only for vgg16 # data.x = transforms.Resize((224, 224))(data.x) # dimension of edge to [batch_size, channel_in, h, w] out = model(data.x) # Perform a single forward pass. loss = criterion(out, data.y.long()) # Compute the loss. loss.backward() # Derive gradients. optimizer.step() # Update parameters based on gradients. optimizer.zero_grad() # Clear gradients. def val(loader, model, device=None): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.eval() correct = 0 for data in loader: # Iterate in batches over the training/test dataset. data = data.to(device) if data.x.dim() < 3: # change the dimension into [batch_size, 15, 15] data.x = torch.reshape(data.x, (-1, 15, 15)) data.x = torch.unsqueeze(data.x, dim=1) # uncomment only for vgg16 # data.x = transforms.Resize((224, 224))(data.x) out = model(data.x) pred = out.argmax(dim=1) # Use the class with highest probability. correct += int((pred == data.y).sum()) # Check against ground-truth labels. return correct / len(loader.dataset) # Derive ratio of correct predictions. def main(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_loader, val_loader, test_loader = get_data_hcp(batch_size=16) model = CNN_HCP(num_classes=2 if IS_SEX else 4).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=LR) criterion = torch.nn.CrossEntropyLoss() max_validation_accuracy = 0 tb = SummaryWriter(comment='{}_{}_th={}_lr={}_comment={}'.format( model.__class__.__name__, 'sex' if IS_SEX else 'age', THRESHOLD, LR, COMMENT)) for epoch in range(1, EPOCHS): train(train_loader=train_loader, model=model, criterion=criterion, optimizer=optimizer) train_acc = val(loader=train_loader, model=model) val_acc = val(loader=val_loader, model=model) print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Val Acc: {val_acc:.4f}') max_validation_accuracy = max(max_validation_accuracy, val_acc) tb.add_scalars(f'accuracies', { 'train_acc': train_acc, 'val_acc': val_acc, }, epoch) print('Max validation accuracy: ', max_validation_accuracy) if __name__ == "__main__": main()
[ "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.functional.dropout", "torch.unsqueeze", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.nn.CrossEntropyLoss", "torch.reshape" ]
1.7.1
vimarkova/dggru
019106a491f28f15aa33a3ae1b575794f1a6e1af
1.9
import torch from torch import Tensor, log from ..neko_module import NekoModule class Log(NekoModule): """ The module version of :func:`torch.log` operation. Args: eps (``float``, optional): A bias applied to the input to avoid ``-inf``. Default ``0``. Examples:: >>> log = Log() >>> a = torch.randn(5) >>> a tensor([ 2.3020, -0.8679, -0.2174, 2.4228, -1.2341]) >>> log(a) tensor([0.8338, nan, nan, 0.8849, nan]) """ def __init__(self, eps: float = 0.): super().__init__() self.eps: float = eps def forward(self, x: Tensor) -> Tensor: return log(x) if self.eps == 0 else log(x + self.eps)
[ "torch.log" ]
1.9.0
ControlNet/tensorneko
70dfb2f6395e1703dbdf5d5adcfed7b1334efb8f
1.9
from typing import Union import torch from numpy import ndarray from torch import Tensor def iou_1d(pred: Union[Tensor, ndarray], real: Union[Tensor, ndarray]) -> Tensor: """ Calculate 1D IOU for N proposals with L labels. Args: pred (:class:`~torch.Tensor` | :class:``): The predicted array with [N, 2]. First column is begin, second column is end. real (:class:`~torch.Tensor` | :class:``): The label array with [L, 2]. First column is begin, second column is end. Returns: (:class:`~torch.Tensor` | :class:``): The iou result with [N, L]. """ if type(pred) is ndarray: pred = torch.tensor(pred) if type(real) is ndarray: real = torch.tensor(real) pred_begin = pred[:, 0].unsqueeze(0).T pred_end = pred[:, 1].unsqueeze(0).T real_begin = real[:, 0] real_end = real[:, 1] inner_begin = torch.maximum(pred_begin, real_begin) inner_end = torch.minimum(pred_end, real_end) outer_begin = torch.minimum(pred_begin, real_begin) outer_end = torch.maximum(pred_end, real_end) inter = torch.clamp(inner_end - inner_begin, min=0.) union = outer_end - outer_begin return inter / union
[ "torch.clamp", "torch.tensor", "torch.minimum", "torch.maximum" ]
1.9.0
ControlNet/tensorneko
70dfb2f6395e1703dbdf5d5adcfed7b1334efb8f
1.8
# Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from collections import namedtuple from typing import Any, Dict, List, Optional import torch from layers import LayerType Memory = namedtuple("Memory", "prev_max_mem, cur_mem") def reset_peak_memory_stats(device: torch.device) -> Memory: """Safely resets CUDA peak memory statistics of device if it is a CUDA device. Notes: ``torch.cuda.reset_peak_memory_stats(device)`` will error if no CUDA memory has been allocated to the device. Args: device: A torch.device Returns: max_memory_allocated before resetting the statistics and memory_allocated, both in bytes """ prev_max_memory = torch.cuda.max_memory_allocated(device) memory_allocated = torch.cuda.memory_allocated(device) if prev_max_memory != memory_allocated and prev_max_memory > 0: # raises RuntimeError if no previous allocation occurred torch.cuda.reset_peak_memory_stats(device) assert torch.cuda.max_memory_allocated(device) == memory_allocated return Memory(prev_max_memory, memory_allocated) def get_layer_set(layer: str) -> str: """Layers in the same layer set share a config. Args: layer: Full name of the layer. This will be the PyTorch or Opacus name of the layer in lower case (e.g. linear, rnn, dprnn), prefixed with gsm_ (e.g. gsm_linear, gsm_dprnn) if DP is enabled. MultiheadAttention is abbreviated to mha. Returns: The name of the layer set, where a set of layers are defined as layers that share the same __init__ signature. Notes: All RNN-based models share a config. """ layer_set = layer.replace("gsm_dp", "").replace("gsm_", "").replace("dp", "") # all RNN-based model use the same config if layer_set in ["rnn", "gru", "lstm"]: layer_set = "rnn_base" return layer_set def get_path( layer: LayerType, batch_size: int, num_runs: int, num_repeats: int, random_seed: Optional[int] = None, forward_only: bool = False, root: str = "./results/raw/", suffix: str = "", ) -> str: """Gets the path to the file where the corresponding results are located. File is presumed to be a pickle file. Args: layer: full layer name batch_size: batch size num_runs: number of runs per benchmark num_repeats: how many benchmarks were run random_seed: the initial random seed forward_only: whether backward passes were skipped root: directory to write results to suffix: optional string to append to file name Returns: Path to results pickle file """ pickle_name = f"{layer}_bs_{batch_size}_runs_{num_runs}_repeats_{num_repeats}_seed_{random_seed}" if forward_only: pickle_name += "_forward_only" if len(suffix) and not suffix.startswith("_"): suffix = f"_{suffix}" return f"{root}{pickle_name}{suffix}.pkl" def save_results( layer: LayerType, batch_size: int, num_runs: int, num_repeats: int, results: List[Dict[str, Any]], config: Dict[str, Any], random_seed: Optional[int] = None, forward_only: bool = False, root: str = "./results/raw/", suffix: str = "", ) -> None: """Saves the corresponding results as a pickle file. Args: layer: full layer name batch_size: batch size num_runs: number of runs per benchmark num_repeats: how many benchmarks were run runtimes: list of runtimes of length num_repeats memory: list of memory stats of length num_repeats config: layer config random_seed: the initial random seed forward_only: whether backward passes were skipped root: directory to write results to suffix: optional string to append to file name """ path = get_path( layer=layer, batch_size=batch_size, num_runs=num_runs, num_repeats=num_repeats, random_seed=random_seed, forward_only=forward_only, root=root, suffix=suffix, ) with open(path, "wb") as handle: pickle.dump( { "layer": layer, "batch_size": batch_size, "num_runs": num_runs, "num_repeats": num_repeats, "random_seed": random_seed, "forward_only": forward_only, "results": results, "config": config, }, handle, protocol=pickle.HIGHEST_PROTOCOL, )
[ "torch.cuda.reset_peak_memory_stats", "torch.cuda.max_memory_allocated", "torch.cuda.memory_allocated" ]
1.8
facebookresearch/opacus
5cc574ff877b0be5634dde8fdd5130b7090491a6
1.0
import argparse import atexit import copy import datetime import numpy as np import os import torch import tensorboardX from functools import partial from prob_mbrl import utils, models, algorithms, envs if __name__ == '__main__': parser = argparse.ArgumentParser("Deep-PILCO with moment matching") parser.add_argument('-e', '--env', type=str, default="Cartpole") parser.add_argument('-o', '--output_folder', type=str, default="~/.prob_mbrl/") parser.add_argument('-s', '--seed', type=int, default=1) parser.add_argument('--num_threads', type=int, default=1) parser.add_argument('--n_initial_epi', type=int, default=0) parser.add_argument('--load_from', type=str, default=None) parser.add_argument('--pred_H', type=int, default=15) parser.add_argument('--control_H', type=int, default=40) parser.add_argument('--discount_factor', type=str, default=None) parser.add_argument('--prioritized_replay', action='store_true') parser.add_argument('--timesteps_to_sample', type=utils.load_csv, default=0) parser.add_argument('--mm_groups', type=int, default=None) parser.add_argument('--debug', action='store_true') parser.add_argument('--dyn_lr', type=float, default=1e-4) parser.add_argument('--dyn_opt_iters', type=int, default=2000) parser.add_argument('--dyn_batch_size', type=int, default=100) parser.add_argument('--dyn_drop_rate', type=float, default=0.1) parser.add_argument('--dyn_components', type=int, default=1) parser.add_argument('--dyn_shape', type=utils.load_csv, default=[200, 200]) parser.add_argument('--pol_lr', type=float, default=1e-3) parser.add_argument('--pol_clip', type=float, default=1.0) parser.add_argument('--pol_drop_rate', type=float, default=0.1) parser.add_argument('--pol_opt_iters', type=int, default=1000) parser.add_argument('--pol_batch_size', type=int, default=100) parser.add_argument('--ps_iters', type=int, default=100) parser.add_argument('--pol_shape', type=utils.load_csv, default=[200, 200]) parser.add_argument('--plot_level', type=int, default=0) parser.add_argument('--render', action='store_true') parser.add_argument('--use_cuda', action='store_true') parser.add_argument('--learn_reward', action='store_true') parser.add_argument('--keep_best', action='store_true') parser.add_argument('--stop_when_done', action='store_true') parser.add_argument('--expl_noise', type=float, default=0.0) # parameters args = parser.parse_args() loaded_from = args.load_from if loaded_from is not None: args = torch.load(os.path.join(loaded_from, 'args.pth.tar')) # initialize environment torch.set_num_threads(args.num_threads) torch.manual_seed(args.seed) np.random.seed(args.seed) torch.set_flush_denormal(True) if args.env in envs.__all__: env = envs.__dict__[args.env]() else: import gym env = gym.make(args.env) env_name = env.spec.id if env.spec is not None else env.__class__.__name__ output_folder = os.path.expanduser(args.output_folder) results_folder = os.path.join( output_folder, "mc_pilco_mm", env_name, datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S.%f")) try: os.makedirs(results_folder) except OSError: pass results_filename = os.path.join(results_folder, "experience.pth.tar") torch.save(args, os.path.join(results_folder, 'args.pth.tar')) D = env.observation_space.shape[0] U = env.action_space.shape[0] maxU = env.action_space.high minU = env.action_space.low # initialize reward/cost function if (args.learn_reward or not hasattr(env, 'reward_func') or env.reward_func is None): reward_func = None args.learn_reward = True else: reward_func = env.reward_func # intialize to max episode steps if available if hasattr(env, 'spec'): if hasattr(env.spec, 'max_episode_steps'): args.control_H = env.spec.max_episode_steps args.stop_when_done = True initial_experience = args.control_H * args.n_initial_epi # initialize discount factor if args.discount_factor is not None: if args.discount_factor == 'auto': args.discount_factor = (1.0 / args.control_H)**(2.0 / args.control_H) else: args.discount_factor = float(args.discount_factor) # initialize dynamics model dynE = 2 * (D + 1) if args.learn_reward else 2 * D if args.dyn_components > 1: output_density = models.GaussianMixtureDensity(dynE / 2, args.dyn_components) dynE = (dynE + 1) * args.dyn_components + 1 else: output_density = models.DiagGaussianDensity(dynE / 2) dyn_model = models.mlp( D + U, dynE, args.dyn_shape, dropout_layers=[ models.modules.CDropout(args.dyn_drop_rate * np.ones(hid)) if args.dyn_drop_rate > 0 else None for hid in args.dyn_shape ], nonlin=torch.nn.ReLU) dyn = models.DynamicsModel(dyn_model, reward_func=reward_func, output_density=output_density).float() # initalize policy pol_model = models.mlp(D, 2 * U, args.pol_shape, dropout_layers=[ models.modules.BDropout(args.pol_drop_rate) if args.pol_drop_rate > 0 else None for hid in args.pol_shape ], biases_initializer=None, nonlin=torch.nn.ReLU, output_nonlin=partial(models.DiagGaussianDensity, U)) pol = models.Policy(pol_model, maxU, minU).float() print('args\n', args) print('Dynamics model\n', dyn) print('Policy\n', pol) # initalize experience dataset exp = utils.ExperienceDataset() if loaded_from is not None: utils.load_checkpoint(loaded_from, dyn, pol, exp) # initialize dynamics optimizer opt1 = torch.optim.Adam(dyn.parameters(), args.dyn_lr) # initialize policy optimizer opt2 = torch.optim.Adam(pol.parameters(), args.pol_lr) if args.use_cuda and torch.cuda.is_available(): dyn = dyn.cuda() pol = pol.cuda() writer = tensorboardX.SummaryWriter( logdir=os.path.join(results_folder, "logs")) # callbacks def on_close(): writer.close() atexit.register(on_close) # initial experience data collection env.seed(args.seed) rnd = lambda x, t: env.action_space.sample() # noqa: E731 while exp.n_samples() < initial_experience: ret = utils.apply_controller( env, rnd, min(args.control_H, initial_experience - exp.n_samples() + 1), stop_when_done=args.stop_when_done) exp.append_episode(*ret, policy_params=[]) if initial_experience > 0: exp.policy_parameters[-1] = copy.deepcopy(pol.state_dict()) exp.save(results_filename) # policy learning loop expl_pol = lambda x, t: ( # noqa: E 731 pol(x) + args.expl_noise * rnd(x, t)).clip(minU, maxU) render_fn = (lambda *args, **kwargs: env.render()) if args.render else None for ps_it in range(args.ps_iters): # apply policy new_exp = exp.n_samples() + args.control_H while exp.n_samples() < new_exp: ret = utils.apply_controller(env, expl_pol, min(args.control_H, new_exp - exp.n_samples() + 1), stop_when_done=args.stop_when_done, callback=render_fn) exp.append_episode(*ret, policy_params=[]) exp.policy_parameters[-1] = copy.deepcopy(pol.state_dict()) exp.save(results_filename) # train dynamics X, Y = exp.get_dynmodel_dataset(deltas=True, return_costs=args.learn_reward) dyn.set_dataset(X.to(dyn.X.device, dyn.X.dtype), Y.to(dyn.X.device, dyn.X.dtype)) utils.train_regressor(dyn, args.dyn_opt_iters, args.dyn_batch_size, True, opt1, log_likelihood=dyn.output_density.log_prob, prioritized_sampling=args.prioritized_replay, summary_writer=writer, summary_scope='model_learning/episode_%d' % ps_it) torch.save(dyn.state_dict(), os.path.join(results_folder, 'latest_dynamics.pth.tar')) # sample initial states for policy optimization x0 = exp.sample_states(args.pol_batch_size, timestep=0).to(dyn.X.device, dyn.X.dtype).detach() if args.plot_level > 0: utils.plot_rollout(x0[:25], dyn, pol, args.pred_H * 2) # train policy def on_iteration(i, loss, states, actions, rewards, discount): writer.add_scalar('mc_pilco/episode_%d/training loss' % ps_it, loss, i) print("Policy search iteration %d" % (ps_it + 1)) algorithms.mc_pilco(x0, dyn, pol, args.pred_H, opt2, exp, args.pol_opt_iters, discount=args.discount_factor, pegasus=True, mm_states=True, mm_rewards=True, mm_groups=args.mm_groups, maximize=True, clip_grad=args.pol_clip, step_idx_to_sample=args.timesteps_to_sample, init_state_noise=1e-1 * x0.std(0), prioritized_replay=args.prioritized_replay, on_iteration=on_iteration, debug=args.debug) torch.save(pol.state_dict(), os.path.join(results_folder, 'latest_policy.pth.tar')) if args.plot_level > 0: utils.plot_rollout(x0[:25], dyn, pol, args.pred_H * 2) writer.add_scalar('robot/evaluation_loss', torch.tensor(ret[2]).sum(), ps_it + 1)
[ "torch.manual_seed", "torch.cuda.is_available", "torch.tensor", "torch.set_flush_denormal", "torch.set_num_threads" ]
1.0
gamerDecathlete/prob_mbrl
efba089bb066f32ad9133ac2504099e05aac5846
1.2
#!/usr/bin/env python3 import typing from enum import Enum from inspect import signature from typing import Any, Callable, List, Tuple, Union, cast, overload import torch from torch import Tensor, device from torch.nn import Module from .._utils.typing import Literal, TargetType class ExpansionTypes(Enum): repeat = 1 repeat_interleave = 2 def safe_div(denom: Tensor, quotient: float, default_value: Tensor) -> Tensor: r""" A simple utility function to perform `denom / quotient` if the statement is undefined => result will be `default_value` """ return denom / quotient if quotient != 0.0 else default_value @typing.overload def _is_tuple(inputs: Tensor) -> Literal[False]: ... @typing.overload def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]: ... def _is_tuple(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> bool: return isinstance(inputs, tuple) def _validate_target(num_samples: int, target: TargetType) -> None: if isinstance(target, list) or ( isinstance(target, torch.Tensor) and torch.numel(target) > 1 ): assert num_samples == len(target), ( "The number of samples provied in the" "input {} does not match with the number of targets. {}".format( num_samples, len(target) ) ) @overload def _format_tensor_into_tuples(inputs: None) -> None: ... @overload def _format_tensor_into_tuples( inputs: Union[Tensor, Tuple[Tensor, ...]] ) -> Tuple[Tensor, ...]: ... def _format_tensor_into_tuples( inputs: Union[None, Tensor, Tuple[Tensor, ...]] ) -> Union[None, Tuple[Tensor, ...]]: if inputs is None: return None if not isinstance(inputs, tuple): assert isinstance( inputs, torch.Tensor ), "`inputs` must have type " "torch.Tensor but {} found: ".format(type(inputs)) inputs = (inputs,) return inputs def _format_input(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> Tuple[Tensor, ...]: return _format_tensor_into_tuples(inputs) @overload def _format_additional_forward_args(additional_forward_args: None) -> None: ... @overload def _format_additional_forward_args( additional_forward_args: Union[Tensor, Tuple] ) -> Tuple: ... @overload def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: ... def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: if additional_forward_args is not None and not isinstance( additional_forward_args, tuple ): additional_forward_args = (additional_forward_args,) return additional_forward_args def _expand_additional_forward_args( additional_forward_args: Any, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> Union[None, Tuple]: def _expand_tensor_forward_arg( additional_forward_arg: Tensor, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> Tensor: if len(additional_forward_arg.size()) == 0: return additional_forward_arg if expansion_type == ExpansionTypes.repeat: return torch.cat([additional_forward_arg] * n_steps, dim=0) elif expansion_type == ExpansionTypes.repeat_interleave: return additional_forward_arg.repeat_interleave(n_steps, dim=0) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) if additional_forward_args is None: return None return tuple( _expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type) if isinstance(additional_forward_arg, torch.Tensor) else additional_forward_arg for additional_forward_arg in additional_forward_args ) def _expand_target( target: TargetType, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> TargetType: if isinstance(target, list): if expansion_type == ExpansionTypes.repeat: return target * n_steps elif expansion_type == ExpansionTypes.repeat_interleave: expanded_target = [] for i in target: expanded_target.extend([i] * n_steps) return cast(Union[List[Tuple[int, ...]], List[int]], expanded_target) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) elif isinstance(target, torch.Tensor) and torch.numel(target) > 1: if expansion_type == ExpansionTypes.repeat: return torch.cat([target] * n_steps, dim=0) elif expansion_type == ExpansionTypes.repeat_interleave: return target.repeat_interleave(n_steps, dim=0) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) return target def _run_forward( forward_func: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, additional_forward_args: Any = None, ) -> Tensor: forward_func_args = signature(forward_func).parameters if len(forward_func_args) == 0: output = forward_func() return output if target is None else _select_targets(output, target) # make everything a tuple so that it is easy to unpack without # using if-statements inputs = _format_input(inputs) additional_forward_args = _format_additional_forward_args(additional_forward_args) output = forward_func( *(*inputs, *additional_forward_args) if additional_forward_args is not None else inputs ) return _select_targets(output, target) def _select_targets(output: Tensor, target: TargetType) -> Tensor: if target is None: return output num_examples = output.shape[0] dims = len(output.shape) device = output.device if isinstance(target, (int, tuple)): return _verify_select_column(output, target) elif isinstance(target, torch.Tensor): if torch.numel(target) == 1 and isinstance(target.item(), int): return _verify_select_column(output, cast(int, target.item())) elif len(target.shape) == 1 and torch.numel(target) == num_examples: assert dims == 2, "Output must be 2D to select tensor of targets." return torch.gather(output, 1, target.reshape(len(output), 1)) else: raise AssertionError( "Tensor target dimension %r is not valid. %r" % (target.shape, output.shape) ) elif isinstance(target, list): assert len(target) == num_examples, "Target list length does not match output!" if isinstance(target[0], int): assert dims == 2, "Output must be 2D to select tensor of targets." return torch.gather( output, 1, torch.tensor(target, device=device).reshape(len(output), 1) ) elif isinstance(target[0], tuple): return torch.stack( [ output[(i,) + cast(Tuple, targ_elem)] for i, targ_elem in enumerate(target) ] ) else: raise AssertionError("Target element type in list is not valid.") else: raise AssertionError("Target type %r is not valid." % target) def _verify_select_column( output: Tensor, target: Union[int, Tuple[int, ...]] ) -> Tensor: target = cast(Tuple[int, ...], (target,) if isinstance(target, int) else target) assert ( len(target) <= len(output.shape) - 1 ), "Cannot choose target column with output shape %r." % (output.shape,) return output[(slice(None), *target)] def _extract_device( module: Module, hook_inputs: Union[None, Tensor, Tuple[Tensor, ...]], hook_outputs: Union[None, Tensor, Tuple[Tensor, ...]], ) -> device: params = list(module.parameters()) if ( (hook_inputs is None or len(hook_inputs) == 0) and (hook_outputs is None or len(hook_outputs) == 0) and len(params) == 0 ): raise RuntimeError( """Unable to extract device information for the module {}. Both inputs and outputs to the forward hook and `module.parameters()` are empty. The reason that the inputs to the forward hook are empty could be due to the fact that the arguments to that module {} are all named and are passed as named variables to its forward function. """.format( module, module ) ) if hook_inputs is not None and len(hook_inputs) > 0: return hook_inputs[0].device if hook_outputs is not None and len(hook_outputs) > 0: return hook_outputs[0].device return params[0].device
[ "torch.cat", "torch.tensor", "torch.numel" ]
1.2
vinnamkim/captum
b7429d1561b6018e0d53d68eaafc6632e97ac164
1.10
import torch import pandas as pd class ESXDataset(torch.utils.data.Dataset): def __init__(self, train_X, train_Y, train_T, train_E): self.train_X = torch.from_numpy(train_X).float() self.train_T = torch.from_numpy(train_T).float() # label of treatment status self.train_Y = torch.from_numpy(train_Y).float() # label of conversion self.train_E = torch.from_numpy(train_E).float() # label of randomized self.data_num = len(train_X) def __len__(self): return self.data_num def __getitem__(self, idx): out_x = self.train_X[idx] out_t = self.train_T[idx] out_y = self.train_Y[idx] out_e = self.train_E[idx] return out_x, out_t, out_y, out_e
[ "torch.from_numpy" ]
1.10.1
kailiang-zhong/DESCN
2aab9da518f1426d8bc753e82e2be6d8d54ce537
1.7
import argparse import os import pickle from types import SimpleNamespace from typing import OrderedDict from pytorch_lightning import callbacks from torch._C import device from utils.vocab import build_vocab, load_vocab from utils.data_loader import get_loader from utils import NLGEval from torchvision.transforms import transforms from copy import deepcopy from models import IQ import math import numpy as np import torch from torch import nn import pytorch_lightning as pl from pytorch_lightning.callbacks.early_stopping import EarlyStopping import torch.multiprocessing import math as m # os.environ['CUDA_VISIBLE_DEVICES'] = '1' torch.multiprocessing.set_sharing_strategy('file_system') class TrainIQ(pl.LightningModule): def __init__(self, vocab, args): super().__init__() self.latent_transformer = False self.vocab = vocab self.args = args self.hp_string = "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}. {}".format( args.input_mode, args.emb_dim, "True", args.hidden_dim, args.latent_dim, args.pwffn_dim, args.num_layers, args.num_heads, args.lr, args.batch_size, args.print_note ) self.iter = 0 self.kliter = 0 self.nlge = NLGEval(no_glove=True, no_skipthoughts=True) metrics = { "loss": [], "img": [], "ppl": [], "kld": [], "aux": [], "elbo": [], "rec": [], } self.val_metrics = deepcopy(metrics) self.model = IQ(self.latent_transformer, vocab, args) self.criterion = nn.CrossEntropyLoss( ignore_index=self.vocab.word2idx[self.vocab.SYM_PAD]) self.image_recon_criterion = nn.MSELoss() def token_decode(self, tokenized_tensor_of_ints, sample=5): for i, batch_item in enumerate(tokenized_tensor_of_ints): if i == sample: break sentence_string = " ".join( [self.vocab.idx2word[token.item()] for token in batch_item]) print(sentence_string) print() def forward(self, batch): images, _, questions, posteriors, answers, _, answer_types_for_input, _ = batch.values() images, questions, posteriors, answers, answer_types_for_input = images.cuda( ), questions.to(self.args.device), posteriors.to(self.args.device), answers.to(self.args.device), answer_types_for_input.to(self.args.device) if self.args.input_mode == "ans": output, z, kld_loss, image_recon = self.model( images, answers, posteriors, questions) elif self.args.input_mode == "cat": output, z, kld_loss, image_recon = self.model( images, answer_types_for_input, posteriors, questions) return output, z, kld_loss, image_recon def calculate_losses(self, output, image_recon, kld_loss, z_logit, target): loss_rec = self.criterion( output.reshape(-1, output.size(-1)), target.reshape(-1)) loss_img = self.image_recon_criterion(image_recon[0], image_recon[1]) if not self.latent_transformer: kld_loss = torch.tensor([0]) loss = loss_rec + self.args.image_recon_lambda * loss_img elbo = loss_rec aux = 0 else: z_logit = z_logit.unsqueeze(1).repeat(1, output.size(1), 1) loss_aux = self.criterion( z_logit.reshape(-1, z_logit.size(-1)), target.reshape(-1)) kl_weight = min(math.tanh(6 * self.kliter / self.args.full_kl_step - 3) + 1, 1) aux = loss_aux.item() elbo = loss_rec + kld_loss loss = loss_rec + self.args.kl_ceiling * kl_weight * kld_loss + \ self.args.aux_ceiling*loss_aux + self.args.image_recon_lambda * loss_img return loss, loss_rec.item(), loss_img.item(), math.exp(min(loss_rec.item(), 100)), kld_loss.item(), aux, elbo.item() def training_step(self, batch, batch_idx): # switch to latent transformer if we've reached num_pretraining_steps if self.iter == self.args.num_pretraining_steps: self.latent_transformer = True self.model.switch_GVT_train_mode(self.latent_transformer) self.configure_optimizers() # restart ADAM optimizer output, z_logit, kld_loss, image_recon = self(batch) target = batch["questions"].cuda() loss, loss_rec, loss_img, ppl, kld_loss, aux, elbo = self.calculate_losses( output, image_recon, kld_loss, z_logit, target) if self.latent_transformer: self.kliter += 1 self.log('train loss', loss) self.log('train rec loss', loss_rec) self.log('image recon loss', loss_img) self.log('perplexity', ppl) self.log('kld loss', kld_loss) self.log('aux loss', aux) self.log('elbo', elbo) self.custom_optimizer(self.iter) self.iter += 1 return loss def validation_step(self, batch, batch_idx): target = batch["questions"].cuda() output, z_logit, kld_loss, image_recon = self(batch) loss, loss_rec, loss_img, ppl, kld_loss, aux, elbo = self.calculate_losses( output, image_recon, kld_loss, z_logit, target) self.val_metrics["loss"].append(loss.item()) self.val_metrics["img"].append(self.args.image_recon_lambda * loss_img) self.val_metrics["ppl"].append(ppl) self.val_metrics["kld"].append(kld_loss) self.val_metrics["aux"].append(aux) self.val_metrics["elbo"].append(elbo) self.val_metrics["rec"].append(loss_rec) self.log("val_loss", loss.item()) self.log("val_loss_rec", loss_rec) self.log("val_img_loss", loss_img) self.log("val_ppl", ppl) self.log("val_kld_loss", kld_loss) self.log("val_aux", aux) self.log("val_elbo", elbo) return batch def validation_epoch_end(self, batch) -> None: print("##### End of Epoch validation #####") batch = batch[0] categories = batch["answer_types"].cuda().unsqueeze(-1) images = batch["images"].cuda() image_ids = batch["image_ids"] print("VALIDATION SAMPLE") preds = [] gts = [] decoded_sentences, top_args, top_vals = self.model.decode_greedy( images, categories, max_decode_length=50) for i, greedy_sentence in enumerate(decoded_sentences): list_gt = self.filter_special_tokens( [self.vocab.idx2word[word] for word in batch["questions"][i].tolist()]) list_pred = self.filter_special_tokens(greedy_sentence.split()) gt = " ".join(list_gt) pred = " ".join(list_pred) gts.append(gt) preds.append(pred) if i < 10: print("Image ID:\t", image_ids[i]) print("Context:\t", " ".join( [self.vocab.idx2word[category] for category in categories[i].tolist()])) print("Generated: \t", pred) print("Reference: \t", gt) for j, word in enumerate(greedy_sentence.split()): near_tokens = [self.vocab.idx2word[token.item()] for token in top_args[i, j]] near_tokens_vals = [np.round(val.item(), 4) for val in top_vals[i, j]] print(word, "\t \t", [(token, val) for token, val in list(zip(near_tokens, near_tokens_vals))]) print() scores = self.nlge.compute_metrics(ref_list=[gts], hyp_list=preds) for k, v in self.val_metrics.items(): print(k, "\t", np.round(np.mean(v), 4)) self.val_metrics[k] = [] # reset v for k, v in scores.items(): print(k, "\t", np.round(np.mean(v), 4) * 100) print() print(self.hp_string) def filter_special_tokens(self, decoded_sentence_list): filtered = [] special_tokens = ["<start>", "<end>", "<pad>"] for token in decoded_sentence_list: if token not in special_tokens: filtered.append(token) return filtered def test_step(self, batch, batch_idx): images, questions, answers, categories = batch["images"], batch[ "questions"], batch["answers"], batch["answer_types"] images, questions, answers, categories = images.to(self.args.device), questions.to( self.args.device), answers.to(self.args.device), categories.to(self.args.device) categories = categories.unsqueeze(1) preds = [] gts = [] decoded_sentences = self.model.decode_greedy( images, categories, max_decode_length=50) for i, greedy_sentence in enumerate(decoded_sentences): list_gt = self.filter_special_tokens( [self.vocab.idx2word[word] for word in batch["questions"][i].tolist()]) list_pred = self.filter_special_tokens(greedy_sentence.split()) gt = " ".join(list_gt) pred = " ".join(list_pred) gts.append(gt) preds.append(pred) scores = self.nlge.compute_metrics(ref_list=[gts], hyp_list=preds) for k, v in scores.items(): scores[k] = torch.tensor(v) return scores def test_end(self, all_scores): for k, scores in all_scores.items(): all_scores[k] = scores.detach().cpu().numpy() all_scores[k] = np.mean(all_scores[k]) print(all_scores) print(self.hp_string) return all_scores def custom_optimizer(self, step, warmup_steps=4000): min_arg1 = m.sqrt(1/(step+1)) min_arg2 = step * (warmup_steps**-1.5) lr = m.sqrt(1/self.args.hidden_dim) * min(min_arg1, min_arg2) self.trainer.lightning_optimizers[0].param_groups[0]["lr"] = lr def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.args.lr) return optimizer transform = transforms.Compose([ transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomResizedCrop(224, scale=(1.00, 1.2), ratio=(0.75, 1.3333333333333333)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) class CheckpointEveryNSteps(pl.Callback): """ Save a checkpoint every N steps, instead of Lightning's default that checkpoints based on validation loss. """ def __init__( self, save_step_frequency, prefix="N-Step-Checkpoint", use_modelcheckpoint_filename=False, ): """ Args: save_step_frequency: how often to save in steps prefix: add a prefix to the name, only used if use_modelcheckpoint_filename=False use_modelcheckpoint_filename: just use the ModelCheckpoint callback's default filename, don't use ours. """ self.save_step_frequency = save_step_frequency self.prefix = prefix self.use_modelcheckpoint_filename = use_modelcheckpoint_filename def on_batch_end(self, trainer: pl.Trainer, _): """ Check if we should save a checkpoint after every train batch """ epoch = trainer.current_epoch global_step = trainer.global_step if global_step % self.save_step_frequency == 0: if self.use_modelcheckpoint_filename: filename = trainer.checkpoint_callback.filename else: filename = f"{self.prefix}_{epoch=}_{global_step=}.ckpt" ckpt_path = os.path.join(trainer.checkpoint_callback.dirpath, filename) trainer.save_checkpoint(ckpt_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Model hyperparameters parser.add_argument("--emb_dim", type=int, default=300, help="Embedding dimensionality of the model") parser.add_argument("--hidden_dim", type=int, default=300, help="Hidden dimensionality of the model") parser.add_argument("--latent_dim", type=int, default=300, help="Size of latent dimension") parser.add_argument("--pwffn_dim", type=int, default=600, help="Size of postionwise feedforward network in transformer") parser.add_argument("--num_layers", type=int, default=4, help="Number of transformer layers in encoder and decoder") parser.add_argument("--num_heads", type=int, default=4, help="Number of heads in the multi-head attention") parser.add_argument("--lr", type=float, default=3e-5, help="Learning rate of the network") parser.add_argument("--num_pretraining_steps", type=float, default=12000, help="Number of pretraining steps before turning on latent transformer") parser.add_argument("--total_training_steps", type=int, default=35000, help="Total number of training steps for the model") parser.add_argument("--full_kl_step", type=int, default=15000, help="Number of steps until KLD is annealed") parser.add_argument("--kl_ceiling", type=float, default=0.5) parser.add_argument("--aux_ceiling", type=float, default=1.0) parser.add_argument("--image_recon_lambda", type=float, default=0.1, help="How much to scale the image reconstruction loss by") parser.add_argument("--batch_size", type=int, default=128) # Data args parser.add_argument("--emb_file", type=str, default="vectors/glove.6B.300d.txt", help="Filepath for pretrained embeddings") parser.add_argument("--dataset", type=str, default="data/processed/iq_dataset.hdf5") parser.add_argument("--val_dataset", type=str, default="data/processed/iq_val_dataset.hdf5") parser.add_argument("--vocab", type=str, default="vocab.pkl") parser.add_argument("--use_gpu", type=bool, default=True) parser.add_argument("--num_gpus", type=int, default=1) parser.add_argument("--print_note", type=str, default="") parser.add_argument("--input_mode", type=str, default="ans") args = parser.parse_args() device = torch.device('cuda' if torch.cuda.is_available() and args.use_gpu else 'cpu') args.device = device args.root_dir = os.getcwd() if os.path.exists(args.vocab): vocab = pickle.load(open(args.vocab, "rb")) else: vocab = build_vocab( 'data/vqa/v2_OpenEnded_mscoco_train2014_questions.json', 'data/vqa/iq_dataset.json', 4) data_loader = get_loader(os.path.join( os.getcwd(), args.dataset), transform, 128, shuffle=True, num_workers=8) val_data_loader = get_loader(os.path.join( os.getcwd(), args.val_dataset), transform, 128, shuffle=True, num_workers=8) trainGVT = TrainIQ(vocab, args).to(args.device) trainer = pl.Trainer(max_steps=args.total_training_steps, gradient_clip_val=5, val_check_interval=500, limit_val_batches=100, gpus=args.num_gpus, callbacks=[CheckpointEveryNSteps(400)]) trainer.fit(trainGVT, data_loader, val_data_loader) test_data_loader = get_loader(os.path.join(os.getcwd(), args.val_dataset), transform, 128, shuffle=False, num_workers=8) trainer.test(trainGVT, test_dataloaders=test_data_loader)
[ "torch.nn.MSELoss", "torch.cuda.is_available", "torch.tensor", "torch.nn.CrossEntropyLoss", "torch.multiprocessing.set_sharing_strategy" ]
1.7.0
nihirv/blt-vqg
73ce8510fb2a696b44b686e38418cc0a11982162
0.4
import numpy as np from sklearn.cluster import KMeans import torch import torch.nn as nn from torch.utils.data.dataloader import DataLoader, default_collate from typing import Tuple, Callable, Optional, Union from tqdm import tqdm from ptdec.utils import target_distribution, cluster_accuracy def train( dataset: torch.utils.data.Dataset, model: torch.nn.Module, epochs: int, batch_size: int, optimizer: torch.optim.Optimizer, stopping_delta: Optional[float] = None, collate_fn=default_collate, cuda: bool = True, sampler: Optional[torch.utils.data.sampler.Sampler] = None, silent: bool = False, update_freq: int = 10, evaluate_batch_size: int = 1024, update_callback: Optional[Callable[[float, float], None]] = None, epoch_callback: Optional[Callable[[int, torch.nn.Module], None]] = None, ) -> None: """ Train the DEC model given a dataset, a model instance and various configuration parameters. :param dataset: instance of Dataset to use for training :param model: instance of DEC model to train :param epochs: number of training epochs :param batch_size: size of the batch to train with :param optimizer: instance of optimizer to use :param stopping_delta: label delta as a proportion to use for stopping, None to disable, default None :param collate_fn: function to merge a list of samples into mini-batch :param cuda: whether to use CUDA, defaults to True :param sampler: optional sampler to use in the DataLoader, defaults to None :param silent: set to True to prevent printing out summary statistics, defaults to False :param update_freq: frequency of batches with which to update counter, None disables, default 10 :param evaluate_batch_size: batch size for evaluation stage, default 1024 :param update_callback: optional function of accuracy and loss to update, default None :param epoch_callback: optional function of epoch and model, default None :return: None """ static_dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=collate_fn, pin_memory=False, sampler=sampler, shuffle=False, ) train_dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=collate_fn, sampler=sampler, shuffle=True, ) data_iterator = tqdm( static_dataloader, leave=True, unit="batch", postfix={ "epo": -1, "acc": "%.4f" % 0.0, "lss": "%.8f" % 0.0, "dlb": "%.4f" % -1, }, disable=silent, ) kmeans = KMeans(n_clusters=model.cluster_number, n_init=20) model.train() features = [] actual = [] # form initial cluster centres for index, batch in enumerate(data_iterator): if (isinstance(batch, tuple) or isinstance(batch, list)) and len(batch) == 2: batch, value = batch # if we have a prediction label, separate it to actual actual.append(value) if cuda: batch = batch.cuda(non_blocking=True) features.append(model.encoder(batch).detach().cpu()) actual = torch.cat(actual).long() predicted = kmeans.fit_predict(torch.cat(features).numpy()) predicted_previous = torch.tensor(np.copy(predicted), dtype=torch.long) _, accuracy = cluster_accuracy(predicted, actual.cpu().numpy()) cluster_centers = torch.tensor( kmeans.cluster_centers_, dtype=torch.float, requires_grad=True ) if cuda: cluster_centers = cluster_centers.cuda(non_blocking=True) with torch.no_grad(): # initialise the cluster centers model.state_dict()["assignment.cluster_centers"].copy_(cluster_centers) loss_function = nn.KLDivLoss(reduction="sum") #loss_function = nn.KLDivLoss(size_average=False) delta_label = None for epoch in range(epochs): features = [] data_iterator = tqdm( train_dataloader, leave=True, unit="batch", postfix={ "epo": epoch, "acc": "%.4f" % (accuracy or 0.0), "lss": "%.8f" % 0.0, "dlb": "%.4f" % (delta_label or 0.0), }, disable=silent, ) model.train() for index, batch in enumerate(data_iterator): if (isinstance(batch, tuple) or isinstance(batch, list)) and len( batch ) == 2: batch, _ = batch # if we have a prediction label, strip it away if cuda: batch = batch.cuda(non_blocking=True) output = model(batch) target = target_distribution(output).detach() loss = loss_function(output.log(), target) / output.shape[0] data_iterator.set_postfix( epo=epoch, acc="%.4f" % (accuracy or 0.0), lss="%.8f" % float(loss.item()), dlb="%.4f" % (delta_label or 0.0), ) optimizer.zero_grad() loss.backward() optimizer.step(closure=None) features.append(model.encoder(batch).detach().cpu()) if update_freq is not None and index % update_freq == 0: loss_value = float(loss.item()) data_iterator.set_postfix( epo=epoch, acc="%.4f" % (accuracy or 0.0), lss="%.8f" % loss_value, dlb="%.4f" % (delta_label or 0.0), ) if update_callback is not None: update_callback(accuracy, loss_value, delta_label) predicted, actual = predict( dataset, model, batch_size=evaluate_batch_size, collate_fn=collate_fn, silent=True, return_actual=True, cuda=cuda, ) delta_label = ( float((predicted != predicted_previous).float().sum().item()) / predicted_previous.shape[0] ) if stopping_delta is not None and delta_label < stopping_delta: print( 'Early stopping as label delta "%1.5f" less than "%1.5f".' % (delta_label, stopping_delta) ) break predicted_previous = predicted _, accuracy = cluster_accuracy(predicted.cpu().numpy(), actual.cpu().numpy()) data_iterator.set_postfix( epo=epoch, acc="%.4f" % (accuracy or 0.0), lss="%.8f" % 0.0, dlb="%.4f" % (delta_label or 0.0), ) if epoch_callback is not None: epoch_callback(epoch, model) def predict( dataset: torch.utils.data.Dataset, model: torch.nn.Module, batch_size: int = 1024, collate_fn=default_collate, cuda: bool = True, silent: bool = False, return_actual: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]: """ Predict clusters for a dataset given a DEC model instance and various configuration parameters. :param dataset: instance of Dataset to use for training :param model: instance of DEC model to predict :param batch_size: size of the batch to predict with, default 1024 :param collate_fn: function to merge a list of samples into mini-batch :param cuda: whether CUDA is used, defaults to True :param silent: set to True to prevent printing out summary statistics, defaults to False :param return_actual: return actual values, if present in the Dataset :return: tuple of prediction and actual if return_actual is True otherwise prediction """ dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=False ) data_iterator = tqdm(dataloader, leave=True, unit="batch", disable=silent,) features = [] actual = [] model.eval() for batch in data_iterator: if (isinstance(batch, tuple) or isinstance(batch, list)) and len(batch) == 2: batch, value = batch # unpack if we have a prediction label if return_actual: actual.append(value) elif return_actual: raise ValueError( "Dataset has no actual value to unpack, but return_actual is set." ) if cuda: batch = batch.cuda(non_blocking=True) features.append( model(batch).detach().cpu() ) # move to the CPU to prevent out of memory on the GPU if return_actual: return torch.cat(features).max(1)[1], torch.cat(actual).long() else: return torch.cat(features).max(1)[1]
[ "torch.cat", "torch.utils.data.dataloader.DataLoader", "torch.no_grad", "torch.tensor", "torch.nn.KLDivLoss" ]
0.4.0
giorgosVardakas/pt-dec
c29b9634eb74c828efd9d2b87c613cdb0ddd1dd5
1.9
from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier from sklearn.svm import SVC import numpy as np import pandas as pd import pickle as pi from operator import itemgetter import torch import torch.nn as nn import numpy as np import sys sys.path.append("src/models/") from early_stopping import EarlyStopping class Classifier: def __init__(self, X_train, X_test, y_train, y_test): #Array für alle Ergebnisse self.ergebnis = [] self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test def train_models(self, models): for model in models: #----------------------- #Knn-Classifier #----------------------- if model == 'knn': #Optimalen Knn-Classifier bestimmen error = [] for i in range(1, 250): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(self.X_train, self.y_train) pred_i = knn.predict(self.X_test) error.append([i, np.mean(pred_i != self.y_test)]) #Debug-Print print() print("Debug KNN-Classifier") print("knn n: {}".format(sorted(error, key=itemgetter(1), reverse=False)[0][0])) print("knn error: {}".format(sorted(error, key=itemgetter(1), reverse=False)[0][1])) print() #Optimale Anzahl der n_neighbors übergeben optimal_n = sorted(error, key=itemgetter(1), reverse=False)[0][0] #Knn-Classifier trainieren knnclf = KNeighborsClassifier(n_neighbors=optimal_n) knnclf.fit(self.X_train, self.y_train) #Knn-Classifier Akkuranz bestimmen score = knnclf.score(self.X_test,self.y_test) self.ergebnis.append([knnclf.__class__.__name__, score, knnclf]) #----------------------- #----------------------- #Decision Tree #----------------------- elif model == 'dt': #class_weight gebrauchen für DT und RF #Optimalen Decision Tree bestimmen #Zu testende Decision Tree Parameter dt = DecisionTreeClassifier() tree_para = {'criterion':['gini','entropy'],'max_depth':[i for i in range(1,20)] , 'min_samples_split':[i for i in range (2,10)]} #GridSearchCV grd_clf = GridSearchCV(dt, tree_para, cv=5) grd_clf.fit(self.X_train, self.y_train) #Besten gefundenen Decision Tree übergeben dt_clf = grd_clf.best_estimator_ #Debug-Print print() print("Debug DecisionTreeClassifier") print("dt best parameters: {}".format(grd_clf.best_params_)) print() score = dt_clf.score(self.X_test, self.y_test) self.ergebnis.append([dt_clf.__class__.__name__, score, dt_clf]) #----------------------- #----------------------- #Random Forest #----------------------- elif model == 'rf': #rf = RandomForestClassifier(max_depth=8, criterion="entropy", min_samples_split=9) rf = RandomForestClassifier(n_estimators=100) rf.fit(self.X_train, self.y_train) score = rf.score(self.X_test, self.y_test) self.ergebnis.append([rf.__class__.__name__, score, rf]) #----------------------- #----------------------- #Support Vector Machine #----------------------- elif model == 'svm': svm = SVC(kernel = 'poly', probability=True) svm.fit(self.X_train, self.y_train) score = svm.score(self.X_test, self.y_test) self.ergebnis.append([svm.__class__.__name__, score, svm]) #----------------------- #MLP #----------------------- elif model == 'mlp': mlp = MLPClassifier(hidden_layer_sizes=[100,100], max_iter=5000, solver='sgd' , learning_rate='adaptive', learning_rate_init=0.01, n_iter_no_change=200, early_stopping=True) mlp.fit(self.X_train, self.y_train) score = mlp.score(self.X_test, self.y_test) self.ergebnis.append([mlp.__class__.__name__, score, mlp]) #Debug-Print print() print("Debug MLPClassifier") print("iterations: {}; layers: {}; loss: {}".format(mlp.n_iter_, mlp.n_layers_, mlp.loss_)) print() #epochs = np.linspace(1,mlp.n_iter_, mlp.n_iter_) return self.ergebnis def ensemble_model(self): #Alle inkludierten Modelle werden in eine Liste geladen, die dann als Parameter #dem Voting Classifier übergeben wird. models = list() for model in self.ergebnis: models.append([model[0], model[2]]) voting_clf = VotingClassifier(estimators=models, voting='soft') voting_clf.fit(self.X_train, self.y_train) score = voting_clf.score(self.X_test, self.y_test) self.ergebnis.append([voting_clf.__class__.__name__, score, voting_clf]) return self.ergebnis def neuronal_network(self, epochs, patience_early_stopping, threshold_for_early_stopping): #Funktion für das Ansprechen und Ausführen des Neuronalen Netzes mittels Pytorch #Standardausgabe für Pytorch, auf welcher processing unit gerechnet wird #In meinem Falle nur CPU möglich device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('This Computation is running on {}'.format(device)) #Initialisierung des Neuronalen Netzwerks nn_model = NN_Model() #Als Fehlerfunktion wird CrossEntropyLoss verwendet loss_func = torch.nn.CrossEntropyLoss() #Als Optimizer der Adam-Optimizer mit einer learing rate von 0.001 optimizer = torch.optim.Adam(nn_model.parameters(), lr=0.0001) #Leere Arrays für das Speichern von Fehler-/Akkuranzdaten über die Epochen hinweg epoch_errors = [] epoch_train_accuracy = [] epoch_test_accuracy = [] #Initialisierung des Early Stopping early_stopping = EarlyStopping(patience=patience_early_stopping) #Umsetzen der Trainings- und Testdaten in die benötigten Tensoren-Formate X_Train = torch.from_numpy(self.X_train).float() y_Train = torch.tensor(self.y_train, dtype=torch.long) X_Test = torch.from_numpy(self.X_test).float() y_Test = torch.from_numpy(np.array(self.y_test)).long() #Trainieren des Neuronalen Netzwerks; maximale Anzahl der Epochen als Funktionsparameter übergeben for epoch in range(epochs): #Vorbereiten der Ergebnisse des Neuronalen Netzwerkes #LogSoftmax explizit hier, da diese in der Fehlerfunktion (CrossEntropyLoss) automatisch #angewandt wird! log_sm = torch.nn.LogSoftmax(dim=1) train_nn_model = log_sm(nn_model(X_Train)) test_nn_model = log_sm(nn_model(X_Test)) #Erstellen von leerem Array für das Speichern der einzelnen vom Modell berechneten Ergebnisse #Zusätzlich noch ein Zähler zum Aufsummieren der korrekt vorhergesagten Ergebnisse, mit 0 initialisiert train_pred_ergebnis = [] train_running_correct = 0 test_pred_ergebnis = [] test_running_correct = 0 #Autograd ausschalten für das Berechnen der Ergebnisse zu Validierungszwecken with torch.no_grad(): #Trainings-Akkuranz # Leeren array füllen mit Ergebnissen aus Ergebnis-Tensor # Hierbei werden die probalistischen Werte verglichen und das wahrscheinlichste Ergebnis übergeben # als 0 - Heimsieg, 1 - Unentschieden, 2 - Auswärtssieg for i in range(train_nn_model.shape[0]): ergebnis = 0 if (train_nn_model[i][0] > train_nn_model[i][1] and train_nn_model[i][0] > train_nn_model[i][2]) else 1 if (train_nn_model[i][1] > train_nn_model[i][0] and train_nn_model[i][1] > train_nn_model[i][2]) else 2 train_pred_ergebnis.append(ergebnis) #Test-Akkuranz # Leeren array füllen mit Ergebnissen aus Ergebnis-Tensor # Hierbei werden die probalistischen Werte verglichen und das wahrscheinlichste Ergebnis übergeben # als 0 - Heimsieg, 1 - Unentschieden, 2 - Auswärtssieg for i in range(test_nn_model.shape[0]): ergebnis = 0 if (test_nn_model[i][0] > test_nn_model[i][1] and test_nn_model[i][0] > test_nn_model[i][2]) else 1 if (test_nn_model[i][1] > test_nn_model[i][0] and test_nn_model[i][1] > test_nn_model[i][2]) else 2 test_pred_ergebnis.append(ergebnis) #Arrays in tensor umwandeln train_pred_tensor = torch.tensor(train_pred_ergebnis, dtype=torch.float) test_pred_tensor = torch.tensor(test_pred_ergebnis, dtype=torch.float) #Die korrekten Ergebnisse aus dem Traininsdatensatz werden aufsummiert und #daraus die Akkuranz dieser Epoche berechnet und dem Array epoch_train_accuracy für spätere Auswertung übergeben train_running_correct += (train_pred_tensor == y_Train).sum().item() train_accuracy = train_running_correct*100./y_Train.shape[0] epoch_train_accuracy.append(train_accuracy) #Die korrekten Ergebnisse aus dem Testdatensatz werden aufsummiert und #daraus die Akkuranz dieser Epoche berechnet und dem Array epoch_test_accuracy für spätere Auswertung übergeben test_running_correct += (test_pred_tensor == y_Test).sum().item() test_accuracy = test_running_correct*100./y_Test.shape[0] epoch_test_accuracy.append(test_accuracy) #--------------------------------------------------------------------------------------- #Hier werden nun die entscheidenden Schritte zum Trainineren des NN Modells durchgeführt #--------------------------------------------------------------------------------------- error = loss_func(nn_model(X_Train),y_Train) optimizer.zero_grad() error.backward() epoch_errors.append(error.item()) optimizer.step() #--------------------------------------------------------------------------------------- #Debug-Print Ausgabe der Epoche mit Akkuranzen print("Epoche: {}/{} mit Train-Akkuranz: {} und Test-Akkuranz: {}".format(epoch, epochs, train_accuracy, test_accuracy)) #----------------------------- #Early Stopping #----------------------------- #Loss für Testdaten berechnen error_Test = loss_func(nn_model(X_Test),y_Test) #Aufruf der Early Stopping Funktion # Die Fehlerfunkion der Testdaten dient hier als zentrales Kriterium: # Sinkt diese mit der Rate "delta" eine bestimmte Anzahl Schritte "patience" # hintereinander NICHT MEHR, wird gestoppt. # Zusätzlich wird ein Threshold mit angegeben, sodass erst ab einer bestimmten erreichten # Akkuranz das Early Stopping aktiviert wird. early_stopping(error_Test, nn_model, train_accuracy > threshold_for_early_stopping) #Sollte ein Early Stop erreicht sein, wird das Durchlaufen der Epochen unterbrochen if early_stopping.early_stop: print("Early stopping") break #----------------------------- #Debug-Print finales Loss-Ergebnis #print('Loss nach {} Epochen: {}'.format(epoch+1,error.item())) #Übergabe der Ergebnisdaten and den zentralen Ergebnis-Array self.ergebnis.append([nn_model.__class__.__name__, test_accuracy/100, nn_model]) #Rückgabewerte für weitere Verwendung (Ausgabe, Test) im Hauptprogramm return self.ergebnis, epoch_errors, epoch_train_accuracy, epoch_test_accuracy, test_pred_tensor class NN_Model(torch.nn.Module): def __init__(self): super(NN_Model, self).__init__() self.fc1 = nn.Linear(75,120) self.fc2 = nn.Linear(120,180) self.fc3 = nn.Linear(180,100) self.fc4 = nn.Linear(100,40) self.output = nn.Linear(40,3) def forward(self,x): x = torch.relu(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = torch.relu(self.fc3(x)) x = torch.sigmoid(self.fc4(x)) #Keine Softmax-Funktion benötigt bei output, da CrossEntropyLoss #als Fehlerfunktion dies automatisch tut #Bemerkung: softmax muss aber beim Validieren/Testen angewandt werden! x = self.output(x) return x
[ "torch.nn.Linear", "torch.nn.LogSoftmax", "torch.no_grad", "torch.from_numpy", "torch.cuda.is_available", "torch.tensor", "torch.nn.CrossEntropyLoss" ]
1.9.0
ChristianCKKoch/Projektarbeit_Digethic
80999e48de29106545398252bbc6cea2b8b953ce
1.2
""" This includes: LossComputeBase and the standard NMTLossCompute, and sharded loss compute stuff. """ from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import onmt from onmt.modules.sparse_losses import SparsemaxLoss from onmt.modules.sparse_activations import LogSparsemax def build_loss_compute(model, tgt_field, opt, train=True): """ Returns a LossCompute subclass which wraps around an nn.Module subclass (such as nn.NLLLoss) which defines the loss criterion. The LossCompute object allows this loss to be computed in shards and passes the relevant data to a Statistics object which handles training/validation logging. Currently, the NMTLossCompute class handles all loss computation except for when using a copy mechanism. """ device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu") padding_idx = tgt_field.vocab.stoi[tgt_field.pad_token] unk_idx = tgt_field.vocab.stoi[tgt_field.unk_token] if opt.lambda_coverage != 0: assert opt.coverage_attn, "--coverage_attn needs to be set in " \ "order to use --lambda_coverage != 0" if opt.copy_attn: criterion = onmt.modules.CopyGeneratorLoss( len(tgt_field.vocab), opt.copy_attn_force, unk_index=unk_idx, ignore_index=padding_idx ) elif opt.label_smoothing > 0 and train: criterion = LabelSmoothingLoss( opt.label_smoothing, len(tgt_field.vocab), ignore_index=padding_idx ) elif opt.adalab and train: eos_idx = tgt_field.vocab.stoi[tgt_field.eos_token] criterion = AdaLabLoss( len(tgt_field.vocab), opt.batch_size, ignore_index=padding_idx, reduction='sum', temperature=opt.ada_temp, eos_index=eos_idx ) elif isinstance(model.generator[-1], LogSparsemax): criterion = SparsemaxLoss(ignore_index=padding_idx, reduction='sum') else: criterion = nn.NLLLoss(ignore_index=padding_idx, reduction='sum') # if the loss function operates on vectors of raw logits instead of # probabilities, only the first part of the generator needs to be # passed to the NMTLossCompute. At the moment, the only supported # loss function of this kind is the sparsemax loss. use_raw_logits = isinstance(criterion, SparsemaxLoss) loss_gen = model.generator[0] if use_raw_logits else model.generator if opt.copy_attn: compute = onmt.modules.CopyGeneratorLossCompute( criterion, loss_gen, tgt_field.vocab, opt.copy_loss_by_seqlength, lambda_coverage=opt.lambda_coverage ) else: bidecoder_loss_gen = model.bidecoder_generator compute = AdaLabLossCompute( criterion, loss_gen, bidecoder_loss_gen, lambda_coverage=opt.lambda_coverage) # compute = NMTLossCompute( # criterion, loss_gen, lambda_coverage=opt.lambda_coverage) compute.to(device) return compute class LossComputeBase(nn.Module): """ Class for managing efficient loss computation. Handles sharding next step predictions and accumulating multiple loss computations Users can implement their own loss computation strategy by making subclass of this one. Users need to implement the _compute_loss() and make_shard_state() methods. Args: generator (:obj:`nn.Module`) : module that maps the output of the decoder to a distribution over the target vocabulary. tgt_vocab (:obj:`Vocab`) : torchtext vocab object representing the target output normalzation (str): normalize by "sents" or "tokens" """ def __init__(self, criterion, generator): super(LossComputeBase, self).__init__() self.criterion = criterion self.generator = generator @property def padding_idx(self): return self.criterion.ignore_index def _make_shard_state(self, batch, output, range_, attns=None): """ Make shard state dictionary for shards() to return iterable shards for efficient loss computation. Subclass must define this method to match its own _compute_loss() interface. Args: batch: the current batch. output: the predict output from the model. range_: the range of examples for computing, the whole batch or a trunc of it? attns: the attns dictionary returned from the model. """ return NotImplementedError def _compute_loss(self, batch, output, target, **kwargs): """ Compute the loss. Subclass must define this method. Args: batch: the current batch. output: the predict output from the model. target: the validate target to compare output with. **kwargs(optional): additional info for computing loss. """ return NotImplementedError def __call__(self, batch, output, attns, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None): """Compute the forward loss, possibly in shards in which case this method also runs the backward pass and returns ``None`` as the loss value. Also supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(trunc_start, trunc_start + trunc_size)`. Note sharding is an exact efficiency trick to relieve memory required for the generation buffers. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model `[tgt_len x batch x hidden]` attns (dict) : dictionary of attention distributions `[tgt_len x batch x src_len]` normalization: Optional normalization factor. shard_size (int) : maximum number of examples in a shard trunc_start (int) : starting position of truncation window trunc_size (int) : length of truncation window Returns: A tuple with the loss and a :obj:`onmt.utils.Statistics` instance. """ if trunc_size is None: trunc_size = batch.tgt.size(0) - trunc_start trunc_range = (trunc_start, trunc_start + trunc_size) shard_state = self._make_shard_state(batch, output, trunc_range, attns) if shard_size == 0: loss, stats = self._compute_loss(batch, **shard_state) return loss / float(normalization), stats batch_stats = onmt.utils.Statistics() for shard in shards(shard_state, shard_size): loss, stats = self._compute_loss(batch, **shard) loss.div(float(normalization)).backward() batch_stats.update(stats) return None, batch_stats def _stats(self, loss, scores, target): """ Args: loss (:obj:`FloatTensor`): the loss computed by the loss criterion. scores (:obj:`FloatTensor`): a score for each possible output target (:obj:`FloatTensor`): true targets Returns: :obj:`onmt.utils.Statistics` : statistics for this batch. """ pred = scores.max(1)[1] non_padding = target.ne(self.padding_idx) num_correct = pred.eq(target).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() return onmt.utils.Statistics(loss.item(), num_non_padding, num_correct) def _bottle(self, _v): return _v.view(-1, _v.size(2)) def _unbottle(self, _v, batch_size): return _v.view(-1, batch_size, _v.size(1)) class LabelSmoothingLoss(nn.Module): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__() smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing def forward(self, output, target): """ output (FloatTensor): batch_size x n_classes target (LongTensor): batch_size """ model_prob = self.one_hot.repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='sum') class NMTLossCompute(LossComputeBase): """ Standard NMT Loss Computation. """ def __init__(self, criterion, generator, normalization="sents", lambda_coverage=0.0): super(NMTLossCompute, self).__init__(criterion, generator) self.lambda_coverage = lambda_coverage def _make_shard_state(self, batch, output, bidec_output, range_, attns=None): shard_state = { "output": output, "target": batch.tgt[range_[0] + 1: range_[1], :, 0], } if self.lambda_coverage != 0.0: coverage = attns.get("coverage", None) std = attns.get("std", None) assert attns is not None assert std is not None, "lambda_coverage != 0.0 requires " \ "attention mechanism" assert coverage is not None, "lambda_coverage != 0.0 requires " \ "coverage attention" shard_state.update({ "std_attn": attns.get("std"), "coverage_attn": coverage }) return shard_state def _compute_loss(self, batch, output, target, std_attn=None, coverage_attn=None): bottled_output = self._bottle(output) scores = self.generator(bottled_output) gtruth = target.view(-1) loss = self.criterion(scores, gtruth) if self.lambda_coverage != 0.0: coverage_loss = self._compute_coverage_loss( std_attn=std_attn, coverage_attn=coverage_attn) loss += coverage_loss stats = self._stats(loss.clone(), scores, gtruth) return loss, stats def _compute_coverage_loss(self, std_attn, coverage_attn): covloss = torch.min(std_attn, coverage_attn).sum() covloss *= self.lambda_coverage return covloss def filter_shard_state(state, shard_size=None): for k, v in state.items(): if shard_size is None: yield k, v if v is not None: v_split = [] if isinstance(v, torch.Tensor): for v_chunk in torch.split(v, shard_size): v_chunk = v_chunk.data.clone() v_chunk.requires_grad = v.requires_grad v_split.append(v_chunk) yield k, (v, v_split) def shards(state, shard_size, eval_only=False): """ Args: state: A dictionary which corresponds to the output of *LossCompute._make_shard_state(). The values for those keys are Tensor-like or None. shard_size: The maximum size of the shards yielded by the model. eval_only: If True, only yield the state, nothing else. Otherwise, yield shards. Yields: Each yielded shard is a dict. Side effect: After the last shard, this function does back-propagation. """ if eval_only: yield filter_shard_state(state) else: # non_none: the subdict of the state dictionary where the values # are not None. non_none = dict(filter_shard_state(state, shard_size)) # Now, the iteration: # state is a dictionary of sequences of tensor-like but we # want a sequence of dictionaries of tensors. # First, unzip the dictionary into a sequence of keys and a # sequence of tensor-like sequences. keys, values = zip(*((k, [v_chunk for v_chunk in v_split]) for k, (_, v_split) in non_none.items())) # Now, yield a dictionary for each shard. The keys are always # the same. values is a sequence of length #keys where each # element is a sequence of length #shards. We want to iterate # over the shards, not over the keys: therefore, the values need # to be re-zipped by shard and then each shard can be paired # with the keys. for shard_tensors in zip(*values): yield dict(zip(keys, shard_tensors)) # Assumed backprop'd variables = [] for k, (v, v_split) in non_none.items(): if isinstance(v, torch.Tensor) and state[k].requires_grad: variables.extend(zip(torch.split(state[k], shard_size), [v_chunk.grad for v_chunk in v_split])) inputs, grads = zip(*variables) torch.autograd.backward(inputs, grads) class AdaLabLossCompute(LossComputeBase): """ Standard NMT Loss Computation. """ def __init__(self, criterion, generator, bidecoder_generator, normalization="sents", lambda_coverage=0.0): super(AdaLabLossCompute, self).__init__(criterion, generator) self.lambda_coverage = lambda_coverage self.bidecoder_generator = bidecoder_generator def __call__(self, batch, output, attns, bidec_outputs, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None): """Compute the forward loss, possibly in shards in which case this method also runs the backward pass and returns ``None`` as the loss value. Also supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(trunc_start, trunc_start + trunc_size)`. Note sharding is an exact efficiency trick to relieve memory required for the generation buffers. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model `[tgt_len x batch x hidden]` attns (dict) : dictionary of attention distributions `[tgt_len x batch x src_len]` normalization: Optional normalization factor. shard_size (int) : maximum number of examples in a shard trunc_start (int) : starting position of truncation window trunc_size (int) : length of truncation window Returns: A tuple with the loss and a :obj:`onmt.utils.Statistics` instance. """ if trunc_size is None: trunc_size = batch.tgt.size(0) - trunc_start trunc_range = (trunc_start, trunc_start + trunc_size) shard_state = self._make_shard_state(batch, output, bidec_outputs, trunc_range, attns) if shard_size == 0: loss, stats = self._compute_loss(batch, **shard_state) return loss / float(normalization), stats batch_stats = onmt.utils.Statistics() for shard in shards(shard_state, shard_size): loss, stats = self._compute_loss(batch, **shard) loss.div(float(normalization)).backward() batch_stats.update(stats) return None, batch_stats def _make_shard_state(self, batch, output, bidec_output, range_, attns=None): shard_state = { "output": output, "target": batch.tgt[range_[0] + 1: range_[1], :, 0], "bidec_output": bidec_output, } if self.lambda_coverage != 0.0: coverage = attns.get("coverage", None) std = attns.get("std", None) assert attns is not None assert std is not None, "lambda_coverage != 0.0 requires " \ "attention mechanism" assert coverage is not None, "lambda_coverage != 0.0 requires " \ "coverage attention" shard_state.update({ "std_attn": attns.get("std"), "coverage_attn": coverage }) return shard_state def _compute_loss(self, batch, output, bidec_output, target, std_attn=None, coverage_attn=None): bottled_output = self._bottle(output) scores = self.generator(bottled_output) gtruth = target.view(-1) if self.bidecoder_generator is not None and bidec_output is not None: bidec_bottled_output = self._bottle(bidec_output) bidec_scores = self.bidecoder_generator(bidec_bottled_output) bidec_loss = F.cross_entropy(bidec_scores, gtruth, ignore_index=self.criterion.ignore_index, reduction="sum") else: bidec_scores = None bidec_loss = torch.tensor(0, device=gtruth.device) if isinstance(self.criterion, AdaLabLoss): loss = self.criterion(scores, gtruth, target, bidec_scores) nll_loss = F.nll_loss(scores, gtruth, ignore_index=self.criterion.ignore_index, reduction="sum") else: loss = self.criterion(scores, gtruth) nll_loss = loss # loss = self.criterion(scores, gtruth) if self.lambda_coverage != 0.0: coverage_loss = self._compute_coverage_loss( std_attn=std_attn, coverage_attn=coverage_attn) loss += coverage_loss # stats = self._stats(loss.clone(), scores, gtruth) stats = self._stats(loss.clone(), scores, gtruth, bidec_loss.clone(), bidec_scores, nll_loss.clone()) return loss + bidec_loss, stats def _compute_coverage_loss(self, std_attn, coverage_attn): covloss = torch.min(std_attn, coverage_attn).sum() covloss *= self.lambda_coverage return covloss def _stats(self, loss, scores, target, bidec_loss, bidec_scores, nll_loss): pred = scores.max(1)[1] non_padding = target.ne(self.padding_idx) num_correct = pred.eq(target).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() if bidec_scores is None: bidec_num_correct = 0 else: bidec_pred = bidec_scores.max(1)[1] bidec_num_correct = bidec_pred.eq(target).masked_select(non_padding).sum().item() return onmt.utils.Statistics(loss.item(), num_non_padding, num_correct, bidec_loss.item(), bidec_num_correct, nll_loss.item()) class AdaLabLoss(nn.Module): """ With adaptive label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, tgt_vocab_size, batch_size, ignore_index=-100, device="cuda", reduction='sum', temperature=1, eos_index=3): self.ignore_index = ignore_index self.eos_index = eos_index self.tgt_vocab_size = tgt_vocab_size super(AdaLabLoss, self).__init__() self.device = device self.batch_size = batch_size self.reduction = reduction self.step = 0 self.temperature = temperature self.top_head = 2 self.top_tail = 500 self.margin = 0.2 self.alpha_param = 2 self.topk = 5 def forward(self, output, target, tgt_batch=None, label_scores=None): """ output (FloatTensor): batch_size x n_classes target (LongTensor): batch_size """ v = self._get_v(label_scores, target) epsilon = self._get_epsilon(output, target, v) confidence = 1 - epsilon smoothing_penalty = epsilon.unsqueeze(-1) * v model_prob = torch.zeros_like(output, device=output.device, dtype=torch.float) model_prob.scatter_(1, target.unsqueeze(1), confidence.unsqueeze(1)) model_prob = model_prob + smoothing_penalty model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction=self.reduction) def _bottle(self, _v): return _v.view(-1, _v.size(2)) def _unbottle(self, _v, batch_size): return _v.view(-1, batch_size, _v.size(1)) def _get_epsilon(self, output, target, v): probs = output.detach().clone().exp() prob_max = probs.max(dim=1)[0] prob_gtruth = probs.gather(dim=1, index=target.unsqueeze(1)).squeeze() epsilon = 1 - prob_max maxv = v.max(dim=-1)[0] up_bond = 1 / (1 + maxv) - self.margin mask = epsilon.gt(up_bond) epsilon[mask] = up_bond[mask] alpha = (prob_gtruth / prob_max).pow(self.alpha_param) epsilon = alpha * epsilon return epsilon def _get_v(self, label_scores, target): v = label_scores.detach().clone() v = v / self.temperature v.scatter_(1, target.unsqueeze(1), -float('inf')) v[:, self.ignore_index] = -float('inf') # truncate tail upper_values, upper_indices = torch.topk(v, self.top_tail, dim=1) kth_upper = upper_values[:, -1].view([-1, 1]) kth_upper = kth_upper.repeat([1, v.shape[1]]).float() upper_ignore = torch.lt(v, kth_upper) v = v.masked_fill(upper_ignore, -10000) # truncate head lower_values, lower_indices = torch.topk(v, self.top_head, dim=1) kth_lower = lower_values[:, -1].view([-1, 1]) kth_lower = kth_lower.repeat([1, v.shape[1]]).float() lower_ignore = torch.gt(v, kth_lower) v = v.masked_fill(lower_ignore, -10000) v = v.softmax(dim=-1) return v def _compute_entropy(self, output): entropy = -torch.sum(output.exp() * output, -1) return entropy
[ "torch.nn.NLLLoss", "torch.autograd.backward", "torch.gt", "torch.min", "torch.lt", "torch.split", "torch.nn.functional.kl_div", "torch.full", "torch.nn.functional.cross_entropy", "torch.tensor", "torch.zeros_like", "torch.nn.functional.nll_loss", "torch.topk" ]
1.2
silverriver/AdaLabel
baefd765d79d90869ed4d28f76418c1a39eb0ae8
1.7
"""Internal utilities.""" import functools import numbers import numpy as np import scipy.sparse import torch from pymde.average_distortion import _project_gradient _DEVICE = torch.device("cpu") class SolverError(Exception): pass def get_default_device(): return str(_DEVICE) def _canonical_device(device): if isinstance(device, str): device = torch.device(device) elif not isinstance(device, torch.device): raise ValueError("device must be a str or a torch.device object.") if device.type == "cuda" and device.index is None: device = torch.device("cuda", torch.cuda.current_device()) return device def set_default_device(device): global _DEVICE _DEVICE = _canonical_device(device) def _module_device(module): data = list(module.buffers()) if not data: return None device = str(data[0].device) if any(str(datum.device) != device for datum in data): return None return device def _is_numeric(arg): return ( isinstance(arg, numbers.Number) or isinstance(arg, np.ndarray) or isinstance(arg, np.matrix) or isinstance(arg, torch.Tensor) ) def to_tensor(args, device=None): """Convert an arg or sequence of args to torch Tensors """ singleton = not isinstance(args, (list, tuple)) if singleton: args = [args] tensor_args = [] for arg in args: if isinstance(arg, torch.Tensor): tensor_args.append(arg) elif _is_numeric(arg): if isinstance(arg, np.ndarray) and arg.dtype == np.float64: tensor_args.append( torch.tensor(arg, dtype=torch.float32, device=device) ) else: tensor_args.append(torch.tensor(arg, device=device)) else: raise ValueError("Received non-numeric argument ", arg) return tensor_args[0] if singleton else tensor_args def tensor_arguments(func): """Cast numeric args and kwargs of func to Tensors.""" @functools.wraps(func) def wrapper(*args, **kwargs): tensor_args = to_tensor(args) tensor_kwargs = {} for key, arg in kwargs.items(): if isinstance(arg, torch.Tensor): tensor_kwargs[key] = arg elif _is_numeric(arg): tensor_kwargs[key] = torch.tensor(arg, device=_DEVICE) else: raise ValueError( "Received non-numeric argument (name %s, value %s)" % (key, arg) ) return func(*tensor_args, **tensor_kwargs) return wrapper def all_edges(n): """Return a tensor of all (n choose 2) edges Constructs all possible edges among n items. For example, if ``n`` is 4, the return value will be equal to .. code:: python3 torch.Tensor([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]) """ return torch.triu_indices(n, n, 1).T @tensor_arguments def natural_length(n, m): return (2.0 * n * m / (n - 1)).sqrt() def in_stdemb(X): cov = (1.0 / X.shape[0]) * X.T @ X eye = torch.eye(2, dtype=X.dtype, device=X.device) mean = X.mean(axis=0) zero = torch.tensor(0.0, dtype=X.dtype, device=X.device) return torch.isclose(cov, eye).all() and torch.isclose(mean, zero).all() def proj_standardized(X, demean=False, inplace=False): if demean: if inplace: X.sub_(X.mean(axis=0)) else: X -= X.mean(axis=0) # pytorch 1.8.0 has a bug in which torch.svd fails when requires_grad # is true on the input (even if called under torch.no_grad) requires_grad = X.requires_grad X.requires_grad_(False) n = torch.tensor(X.shape[0], dtype=X.dtype, device=X.device) m = X.shape[1] # TODO: Gracefully handle the rare svd failure # TODO: debug alternative eigenvec approach ... # (evals, V = torch.eig(X.T @ X, eigenvectors=True) # proj = X @ V @ torch.diag(evals[:, 0].sqrt().pow(-1)) ... # proj *= torch.sqrt(n) if inplace: s = torch.zeros(m, device=X.device, dtype=X.dtype) V = torch.zeros((m, m), device=X.device, dtype=X.dtype) try: U, _, V = torch.svd(X, out=(X, s, V)) except RuntimeError as e: X.requires_grad_(requires_grad) raise SolverError(str(e)) torch.matmul(U[:, :m], V.T[:, :m], out=X) X.mul_(torch.sqrt(n)) X.requires_grad_(requires_grad) return X else: try: U, _, V = torch.svd(X) except RuntimeError as e: X.requires_grad_(requires_grad) raise SolverError(str(e)) proj = torch.sqrt(n) * U[:, :m] @ V.T[:, :m] X.requires_grad_(requires_grad) return proj def adjacency_matrix(n, m, edges, weights): if isinstance(weights, torch.Tensor): weights = weights.detach().cpu().numpy() if isinstance(edges, torch.Tensor): edges = edges.detach().cpu().numpy() A = scipy.sparse.coo_matrix( (weights, (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32 ) A = A + A.T return A.tocoo() @tensor_arguments def procrustes(X_source, X_target): """min |X_source Q - X_target|_F s.t. Q^TQ = I""" U, _, V = torch.svd(X_target.T @ X_source) return V @ U.T @tensor_arguments def _rotate_2d(X, degrees): theta = torch.deg2rad(degrees) rot = torch.tensor( [ [torch.cos(theta), -torch.sin(theta)], [torch.sin(theta), torch.cos(theta)], ], device=X.device, ) return X @ rot @tensor_arguments def _rotate_3d(X, alpha, beta, gamma): alpha = torch.deg2rad(alpha.float()) beta = torch.deg2rad(beta.float()) gamma = torch.deg2rad(gamma.float()) rot_x = torch.tensor( [ [1, 0, 0], [0, torch.cos(alpha), torch.sin(alpha)], [0, -torch.sin(alpha), torch.cos(alpha)], ], device=X.device, ) rot_y = torch.tensor( [ [torch.cos(beta), 0.0, -torch.sin(beta)], [0, 1, 0], [torch.sin(beta), 0.0, torch.cos(beta)], ], device=X.device, ) rot_z = torch.tensor( [ [torch.cos(gamma), torch.sin(gamma), 0.0], [-torch.sin(gamma), torch.cos(gamma), 0.0], [0, 0, 1], ], device=X.device, ) rot_3d = rot_x @ rot_y @ rot_z return X @ rot_3d @tensor_arguments def rotate(X, degrees): """Rotate a 2 or 3D embedding Rotates a 2/3D embedding by ``degrees``. If ``X`` is a 2D embedding, ``degrees`` should be a scalar; if it is 3D, ``degrees`` should be a length-3 ``torch.Tensor``, with one angle for each axis (the embedding will be rotated along the x-axis first, then the y-axis, then the z-axis). Arguments --------- X : torch.Tensor The embedding to rotate. degrees: torch.Tensor The angles of rotation. Returns ------- torch.Tensor The rotated embedding """ if X.shape[1] not in [2, 3]: raise ValueError( "Only 2 or 3 dimensional embeddings can be " "rotated using this method." ) if X.shape[1] == 2: if degrees.numel() != 1: raise ValueError("`degrees` must be a scalar.") return _rotate_2d(X, degrees) else: if degrees.numel() != 3: raise ValueError("`degrees` must be a length-3 tensor.") return _rotate_3d(X, degrees[0], degrees[1], degrees[2]) @tensor_arguments def center(X): """Center an embedding Returns a new embedding, equal to the given embedding minus the mean of its rows. """ return X - X.mean(dim=0)[None, :] @tensor_arguments def align(source, target): """Align an source embedding to a target embedding Align the source embedding to another target embedding, via rotation. The alignment is done by solving an orthogonal Procrustes problem. Arguments --------- source: torch.Tensor The embedding to be aligned. target: torch.Tensor The target embedding, of the same shape as source. Returns ------- torch.Tensor The rotation of source best aligned to the target. """ source_mean = source.mean(dim=0) source = source - source_mean[None, :] source_col_rms = source.norm(dim=0) source = source / source_col_rms[None, :] target = center(target) target = target / target.norm(dim=0) Q = procrustes(source, target) rotated = source @ Q return (rotated * source_col_rms[None, :]) + source_mean @tensor_arguments def scale_delta(delta, d_nat): # scale delta so RMS(delta) == d_nat N = delta.nelement() rms = torch.sqrt(1 / N * torch.sum(delta ** 2)) return delta * d_nat / rms class LinearOperator(object): def __init__(self, matvec, device): self._matvec = matvec self.device = device def matvec(self, vecs): return self._matvec(vecs) def make_hvp(f, edges, X, constraint): X_shape = X.shape def avg_dist_flat(X_flat): X_reshaped = X_flat.view(X_shape) if constraint is not None: # a noop in the forward pass, but projects the gradient onto # the tangent space of the constraint in the backward pass X_reshaped = _project_gradient(X_reshaped, constraint) # using custom average distortion yields a zero for hvp, since # gradient graph is disconnected differences = X_reshaped[edges[:, 0]] - X_reshaped[edges[:, 1]] norms = differences.pow(2).sum(dim=1).sqrt() return f(norms).mean() X_flat = X.view(-1).detach() def hvp(vecs): vecs = torch.split(vecs, 1, dim=1) products = [] for v in vecs: _, product = torch.autograd.functional.vhp( avg_dist_flat, X_flat, v.squeeze() ) products.append(product) return torch.stack(products, dim=1) return hvp def hutchpp(linear_operator, dimension, n_queries): A = linear_operator d = dimension m = n_queries S = torch.randn(d, m // 3, device=A.device) G = torch.randn(d, m // 3, device=A.device) Q, _ = torch.qr(A.matvec(S)) proj = G - Q @ (Q.T @ G) return torch.trace(Q.T @ A.matvec(Q)) + (3.0 / m) * torch.trace( proj.T @ A.matvec(proj) ) def random_edges(n, p, seed=0): randomstate = np.random.default_rng(seed) edge_idx = randomstate.choice( int(n * (n - 1) / 2), p, replace=False, shuffle=False ) u = ( n - 2 - np.floor(np.sqrt(-8 * edge_idx + 4 * n * (n - 1) - 7) / 2.0 - 0.5) ) v = edge_idx + u + 1 - n * (n - 1) / 2 + (n - u) * ((n - u) - 1) / 2 return torch.tensor(np.stack([u, v], axis=1).astype(np.int64)) class Distortion(torch.autograd.Function): """Manual implementation of the average distortion gradient, for testing""" @staticmethod def forward(ctx, X, f, A, lhs, rhs): distances = A.T @ X norms = distances.norm(dim=1) with torch.enable_grad(): X.requires_grad_(False) norms.requires_grad_(True) norms.grad = None distortion = f(norms).mean() distortion.backward() g = norms.grad / norms X.requires_grad_(True) D = g.diag() grad_E = A @ (D @ (A.T @ X)) ctx.grad_E = grad_E return distortion def backward(ctx, grad_output): return ctx.grad_E * grad_output, None, None, None, None _distortion = Distortion.apply
[ "torch.stack", "torch.triu_indices", "torch.enable_grad", "torch.cuda.current_device", "torch.eye", "torch.sum", "torch.sqrt", "torch.tensor", "torch.zeros", "torch.device", "torch.cos", "torch.isclose", "torch.matmul", "torch.sin", "torch.split", "torch.deg2rad", "torch.randn", "torch.svd" ]
1.7.1
kruus/pymde
0bfa9c308660bda2fa5161ffce00ce22ef6e773b
1.6
from flash_pytorch import FLASHTransformer from flash_pytorch.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = FLASHTransformer( num_tokens = 256, dim = 512, depth = 8, causal = True, group_size = 256, shift_tokens = True ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str)
[ "torch.no_grad", "torch.utils.data.DataLoader", "torch.from_numpy" ]
1.6
dumpmemory/FLASH-pytorch
8e0d2fd7925c0de9703d666ea2cc004327f6e544
1.0
import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../utils')) import numpy as np import argparse import librosa import matplotlib.pyplot as plt import torch from utilities import create_folder, get_filename from models import * from pytorch_utils import move_data_to_device import config def audio_tagging(args): """Inference audio tagging result of an audio clip. """ # Arugments & parameters sample_rate = args.sample_rate window_size = args.window_size hop_size = args.hop_size mel_bins = args.mel_bins fmin = args.fmin fmax = args.fmax model_type = args.model_type checkpoint_path = args.checkpoint_path audio_path = args.audio_path device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') classes_num = config.classes_num labels = config.labels # Model Model = eval(model_type) model = Model(sample_rate=sample_rate, window_size=window_size, hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, classes_num=classes_num) checkpoint = torch.load(checkpoint_path, map_location=device) model.load_state_dict(checkpoint['model']) # Parallel if 'cuda' in str(device): model.to(device) print('GPU number: {}'.format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) else: print('Using CPU.') # Load audio (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) waveform = waveform[None, :] # (1, audio_length) waveform = move_data_to_device(waveform, device) # Forward with torch.no_grad(): model.eval() batch_output_dict = model(waveform, None) print('batch_output_dict\n', batch_output_dict) clipwise_output = batch_output_dict['clipwise_output'].data.cpu().numpy()[0] """(classes_num,)""" print('clipwise_output:\n', clipwise_output) sorted_indexes = np.argsort(clipwise_output)[::-1] # Print audio tagging top probabilities for k in range(10): print('{}: {:.3f}'.format(np.array(labels)[sorted_indexes[k]], clipwise_output[sorted_indexes[k]])) # Print embedding if 'embedding' in batch_output_dict.keys(): embedding = batch_output_dict['embedding'].data.cpu().numpy()[0] print('embedding: {}'.format(embedding.shape)) return clipwise_output, labels def sound_event_detection(args): """Inference sound event detection result of an audio clip. """ # Arugments & parameters sample_rate = args.sample_rate window_size = args.window_size hop_size = args.hop_size mel_bins = args.mel_bins fmin = args.fmin fmax = args.fmax model_type = args.model_type checkpoint_path = args.checkpoint_path audio_path = args.audio_path device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') classes_num = config.classes_num labels = config.labels frames_per_second = sample_rate // hop_size print('frames_per_second', frames_per_second) # Paths fig_path = os.path.join('results', '{}.png'.format(get_filename(audio_path))) create_folder(os.path.dirname(fig_path)) # Model Model = eval(model_type) model = Model(sample_rate=sample_rate, window_size=window_size, hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, classes_num=classes_num) checkpoint = torch.load(checkpoint_path, map_location=device) model.load_state_dict(checkpoint['model']) # Parallel print('GPU number: {}'.format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) if 'cuda' in str(device): model.to(device) # Load audio (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) waveform = waveform[None, :] # (1, audio_length) waveform = move_data_to_device(waveform, device) # Forward with torch.no_grad(): model.eval() batch_output_dict = model(waveform, None) framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] """(time_steps, classes_num)""" print('framewise_output:', framewise_output[0].argmax()) print('Sound event detection result (time_steps x classes_num): {}'.format( framewise_output.shape)) sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] top_k = 10 # Show top results top_result_mat = framewise_output[:, sorted_indexes[0: top_k]] print('top result mat', top_result_mat) print('frame number', len(top_result_mat)) for idx, frame in enumerate(top_result_mat): if idx % (frames_per_second//2) == 0: if frame[frame.argmax()] > 0.03: print('frame_label', idx/frames_per_second, np.array(labels)[sorted_indexes[0: top_k]][frame.argmax()]) else: print('frame_label', 'None') print(np.array(labels)[sorted_indexes[0: top_k]]) """(time_steps, top_k)""" # Plot result stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=window_size, hop_length=hop_size, window='hann', center=True) frames_num = stft.shape[-1] fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') axs[0].set_ylabel('Frequency bins') axs[0].set_title('Log spectrogram') axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) axs[1].xaxis.set_ticks(np.arange(0, frames_num, frames_per_second)) axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / frames_per_second)) axs[1].yaxis.set_ticks(np.arange(0, top_k)) axs[1].yaxis.set_ticklabels(np.array(labels)[sorted_indexes[0: top_k]]) axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) axs[1].set_xlabel('Seconds') axs[1].xaxis.set_ticks_position('bottom') plt.tight_layout() plt.savefig(fig_path) print('Save sound event detection visualization to {}'.format(fig_path)) return framewise_output, labels if __name__ == '__main__': import time start = time.time() parser = argparse.ArgumentParser(description='Example of parser. ') subparsers = parser.add_subparsers(dest='mode') parser_at = subparsers.add_parser('audio_tagging') parser_at.add_argument('--sample_rate', type=int, default=32000) parser_at.add_argument('--window_size', type=int, default=1024) parser_at.add_argument('--hop_size', type=int, default=320) parser_at.add_argument('--mel_bins', type=int, default=64) parser_at.add_argument('--fmin', type=int, default=50) parser_at.add_argument('--fmax', type=int, default=14000) parser_at.add_argument('--model_type', type=str, required=True) parser_at.add_argument('--checkpoint_path', type=str, required=True) parser_at.add_argument('--audio_path', type=str, required=True) parser_at.add_argument('--cuda', action='store_true', default=False) parser_sed = subparsers.add_parser('sound_event_detection') parser_sed.add_argument('--sample_rate', type=int, default=32000) parser_sed.add_argument('--window_size', type=int, default=1024) parser_sed.add_argument('--hop_size', type=int, default=320) parser_sed.add_argument('--mel_bins', type=int, default=64) parser_sed.add_argument('--fmin', type=int, default=50) parser_sed.add_argument('--fmax', type=int, default=14000) parser_sed.add_argument('--model_type', type=str, required=True) parser_sed.add_argument('--checkpoint_path', type=str, required=True) parser_sed.add_argument('--audio_path', type=str, required=True) parser_sed.add_argument('--cuda', action='store_true', default=False) args = parser.parse_args() if args.mode == 'audio_tagging': audio_tagging(args) elif args.mode == 'sound_event_detection': sound_event_detection(args) else: raise Exception('Error argument!') print("time :", time.time() - start)
[ "torch.device", "torch.no_grad", "torch.cuda.device_count", "torch.cuda.is_available", "torch.load", "torch.nn.DataParallel" ]
1.0.1
rollingman1/audioset_tagging_cnn
5036f772dfa8dd05fbfb0b6fa5bfedcea10cfb10
1.4
""" Split BatchNorm A PyTorch BatchNorm layer that splits input batch into N equal parts and passes each through a separate BN layer. The first split is passed through the parent BN layers with weight/bias keys the same as the original BN. All other splits pass through BN sub-layers under the '.aux_bn' namespace. This allows easily removing the auxiliary BN layers after training to efficiently achieve the 'Auxiliary BatchNorm' as described in the AdvProp Paper, section 4.2, 'Disentangled Learning via An Auxiliary BN' Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn class SplitBatchNorm2d(torch.nn.BatchNorm2d): def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, num_splits=2): super().__init__(num_features, eps, momentum, affine, track_running_stats) assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)' self.num_splits = num_splits self.aux_bn = nn.ModuleList([ nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)]) def forward(self, input: torch.Tensor): if self.training: # aux BN only relevant while training split_size = input.shape[0] // self.num_splits assert input.shape[0] == split_size * self.num_splits, "batch size must be evenly divisible by num_splits" split_input = input.split(split_size) x = [super().forward(split_input[0])] for i, a in enumerate(self.aux_bn): x.append(a(split_input[i + 1])) return torch.cat(x, dim=0) else: return super().forward(input) def convert_splitbn_model(module, num_splits=2): """ Recursively traverse module and its children to replace all instances of ``torch.nn.modules.batchnorm._BatchNorm`` with `SplitBatchnorm2d`. Args: module (torch.nn.Module): input module num_splits: number of separate batchnorm layers to split input across Example:: >>> # model is an instance of torch.nn.Module >>> model = mytimm.models.convert_splitbn_model(model, num_splits=2) """ mod = module if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm): return module if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): mod = SplitBatchNorm2d( module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, num_splits=num_splits) mod.running_mean = module.running_mean mod.running_var = module.running_var mod.num_batches_tracked = module.num_batches_tracked if module.affine: # print("model is affine") mod.weight.data = module.weight.data.clone().detach() mod.bias.data = module.bias.data.clone().detach() # else: # print("ooooooooooooooooooooooooooops") for aux in mod.aux_bn: aux.running_mean = module.running_mean.clone() aux.running_var = module.running_var.clone() aux.num_batches_tracked = module.num_batches_tracked.clone() if module.affine: aux.weight.data = module.weight.data.clone().detach() aux.bias.data = module.bias.data.clone().detach() for name, child in module.named_children(): # print(name, child) mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits)) del module return mod
[ "torch.cat", "torch.nn.BatchNorm2d" ]
1.4.0
wenh18/OnDeviceNAS
d6e39500b794ddd9737ef4bc631cf4f977b47617
1.4
""" EfficientNet, MobileNetV3, etc Blocks Hacked together by / Copyright 2019, Ross Wightman """ import torch import torch.nn as nn from torch.nn import functional as F from .layers import create_conv2d, drop_path, make_divisible, create_act_layer from .layers.activations import sigmoid __all__ = [ 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual'] class SqueezeExcite(nn.Module): """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family Args: in_chs (int): input channels to layer rd_ratio (float): ratio of squeeze reduction act_layer (nn.Module): activation layer of containing block gate_layer (Callable): attention gate function force_act_layer (nn.Module): override block's activation fn if this is set/bound rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs """ def __init__( self, in_chs, rd_ratio=0.25, rd_channels=None, act_layer=nn.ReLU, gate_layer=nn.Sigmoid, force_act_layer=None, rd_round_fn=None): super(SqueezeExcite, self).__init__() if rd_channels is None: rd_round_fn = rd_round_fn or round rd_channels = rd_round_fn(in_chs * rd_ratio) act_layer = force_act_layer or act_layer self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) self.act1 = create_act_layer(act_layer, inplace=True) self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) return x * self.gate(x_se) class ConvBnAct(nn.Module): """ Conv + Norm Layer + Activation w/ optional skip connection """ def __init__( self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='', skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0.): super(ConvBnAct, self).__init__() self.has_residual = skip and stride == 1 and in_chs == out_chs self.drop_path_rate = drop_path_rate self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type) self.bn1 = norm_layer(out_chs) self.act1 = act_layer(inplace=True) def feature_info(self, location): if location == 'expansion': # output of conv after act, same as block coutput info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv.out_channels) return info def forward(self, x): shortcut = x x = self.conv(x) x = self.bn1(x) x = self.act1(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += shortcut return x class DepthwiseSeparableConv(nn.Module): """ DepthwiseSeparable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.): super(DepthwiseSeparableConv, self).__init__() self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv self.drop_path_rate = drop_path_rate self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True) self.bn1 = norm_layer(in_chs) self.act1 = act_layer(inplace=True) # Squeeze-and-excitation self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_layer(out_chs) self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels) return info def forward(self, x): shortcut = x x = self.conv_dw(x) x = self.bn1(x) x = self.act1(x) x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) x = self.act2(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += shortcut return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in * MNasNet - https://arxiv.org/abs/1807.11626 * EfficientNet - https://arxiv.org/abs/1905.11946 * MobileNet-V3 - https://arxiv.org/abs/1905.02244 """ def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, conv_kwargs=None, drop_path_rate=0.): super(InvertedResidual, self).__init__() conv_kwargs = conv_kwargs or {} self.conv_kwargs = conv_kwargs self.pad_type = pad_type self.dilation = dilation mid_chs = make_divisible(in_chs * exp_ratio) self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate self.mid_chs = mid_chs # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_layer(mid_chs) self.act1 = act_layer(inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True, **conv_kwargs) self.bn2 = norm_layer(mid_chs) self.act2 = act_layer(inplace=True) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_layer(out_chs) def feature_info(self, location): if location == 'expansion': # after SE, input to PWL info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): shortcut = x # Point-wise expansion x = self.conv_pw(x) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn3(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += shortcut return x class CondConvResidual(InvertedResidual): """ Inverted residual block w/ CondConv routing""" def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, num_experts=0, drop_path_rate=0.): self.num_experts = num_experts conv_kwargs = dict(num_experts=self.num_experts) super(CondConvResidual, self).__init__( in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type, act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, se_layer=se_layer, norm_layer=norm_layer, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate) self.routing_fn = nn.Linear(in_chs, self.num_experts) def forward(self, x): shortcut = x # CondConv routing pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) # Point-wise expansion x = self.conv_pw(x, routing_weights) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x, routing_weights) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x, routing_weights) x = self.bn3(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += shortcut return x class EdgeResidual(nn.Module): """ Residual block with expansion convolution followed by pointwise-linear w/ stride Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers * MobileDet - https://arxiv.org/abs/2004.14525 * EfficientNet-X - https://arxiv.org/abs/2102.05610 * EfficientNet-V2 - https://arxiv.org/abs/2104.00298 """ def __init__( self, in_chs, out_chs, exp_kernel_size=3, stride=1, dilation=1, pad_type='', force_in_chs=0, noskip=False, exp_ratio=1.0, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.): super(EdgeResidual, self).__init__() if force_in_chs > 0: mid_chs = make_divisible(force_in_chs * exp_ratio) else: mid_chs = make_divisible(in_chs * exp_ratio) self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate self.pad_type = pad_type self.dilation = dilation self.mid_chs = mid_chs self.noskip = noskip # Expansion convolution self.conv_exp = create_conv2d( in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, padding=pad_type) self.bn1 = norm_layer(mid_chs) self.act1 = act_layer(inplace=True) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_layer(out_chs) def feature_info(self, location): if location == 'expansion': # after SE, before PWL info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): shortcut = x # Expansion convolution x = self.conv_exp(x) x = self.bn1(x) x = self.act1(x) # Squeeze-and-excitation x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn2(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += shortcut return x
[ "torch.nn.Linear", "torch.nn.Conv2d", "torch.nn.Identity", "torch.nn.functional.adaptive_avg_pool2d" ]
1.4.0
wenh18/OnDeviceNAS
d6e39500b794ddd9737ef4bc631cf4f977b47617
0.1
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3), padding=1) self.conv1_bn = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=1, stride=2) self.conv2_bn = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 64, (3, 3), padding=1, stride=2) self.conv3_bn = nn.BatchNorm2d(64) self.conv4 = nn.Conv2d(64, 128, (3, 3), padding=1, stride=2) self.conv4_bn = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 256, (3, 3), padding=1, stride=2) self.conv5_bn = nn.BatchNorm2d(256) self.fc1 = nn.Linear(256 * 2 * 2, 2000) self.fc2 = nn.Linear(2000, 2000) self.fc3 = nn.Linear(2000, config['n_classes']) def forward(self, x): # [3, 32, 32] -> [16, 32, 32] x = F.relu(self.conv1_bn(self.conv1(x))) # [16, 32, 32] -> [32, 16, 16] x = F.relu(self.conv2_bn(self.conv2(x))) # [32, 16, 16] -> [64, 8, 8] x = F.relu(self.conv3_bn(self.conv3(x))) # [64, 8, 8] -> [128, 4, 4] x = F.relu(self.conv4_bn(self.conv4(x))) # [128, 4, 4] -> [256, 2, 2] x = F.relu(self.conv5_bn(self.conv5(x))) # [128, 2, 2] -> [512] x = x.view(-1, 256 * 2 * 2) # 1024 -> 2000 x = F.relu(F.dropout((self.fc1(x)), 0.0)) # 2000 -> 2000 # x = F.relu(F.dropout((self.fc2(x)), 0.5)) # 2000 -> 100 x = self.fc3(x) return x def freeze_conv(self): self.conv1.weight.requires_grad = False self.conv1_bn.weight.requires_grad = False self.conv1_bn.bias.requires_grad = False self.conv2.weight.requires_grad = False self.conv2_bn.weight.requires_grad = False self.conv2_bn.bias.requires_grad = False self.conv3.weight.requires_grad = False self.conv3_bn.weight.requires_grad = False self.conv3_bn.bias.requires_grad = False self.conv4.weight.requires_grad = False self.conv4_bn.weight.requires_grad = False self.conv4_bn.bias.requires_grad = False self.conv5.weight.requires_grad = False self.conv5_bn.weight.requires_grad = False self.conv5_bn.bias.requires_grad = False
[ "torch.nn.Linear", "torch.nn.Conv2d", "torch.nn.BatchNorm2d" ]
0.1.2
andrearosasco/DistilledReplay
2a4efa88d22b9afc7016f07549114688f346dbe8
0.1
import importlib import os from collections import OrderedDict import torch from torchvision.transforms import transforms model_config = OrderedDict([ ('arch', 'mlp2'), ('n_classes', 10), ('dropout', 0.5) ]) data_config = OrderedDict([ ('dataset', 'PermutedMNIST'), ('valid', 0.0), ('num_workers', 4), ('train_transform', transforms.Compose([ lambda x: torch.FloatTensor(x), lambda x: x / 255.0, lambda x: (x - 0.1307) / 0.3081, ])), ('test_transform', transforms.Compose([ lambda x: torch.FloatTensor(x), lambda x: x / 255.0, lambda x: (x - 0.1307) / 0.3081, ])) ]) run_config = OrderedDict([ ('experiment', 'run'), # This configuration will be executed by distill.py ('device', 'cuda'), ('tasks', list(range(10))), ('save', 'task1.distilled'), # Path for the distilled dataset ('seed', 1234), ]) log_config = OrderedDict([ ('wandb', True), ('wandb_name', 'joint'), ('print', True), ('images', True), # Save the distilled images ]) param_config = OrderedDict([ ('no_steps', 3), # Training epoch performed by the model on the distilled dataset ('steps', 'epoch'), # epoch or minibatch ('meta_lr', 0.1), # Learning rate for distilling images ('model_lr', 0.05), # Base learning rate for the model ('lr_lr', 0.0), # Learning rate for the lrs of the model at each optimization step ('outer_steps', 0), # Distillation epochs ('inner_steps', 0), # Optimization steps of the model ('batch_size', 128), # Minibatch size used during distillation ('distill_batch_size', 128), ('buffer_size', -1), # Number of examples per class kept in the buffer ]) config = OrderedDict([ ('model_config', model_config), ('param_config', param_config), ('data_config', data_config), ('run_config', run_config), ('log_config', log_config), ]) if __name__ == '__main__': os.environ['CUDA_VISIBLE_DEVICES'] = '3' experiment = importlib.import_module(config['run_config']['experiment']) experiment.run(config)
[ "torch.FloatTensor" ]
0.1.2
andrearosasco/DistilledReplay
2a4efa88d22b9afc7016f07549114688f346dbe8
1.7
from typing import Optional, Any import torch import numpy as np from abc import ABC, abstractmethod from functools import lru_cache from slam.common.utils import check_tensor, assert_debug def torch__spherical_projection(t_pointcloud: torch.Tensor, height: int, width: int, min_vertical_fov: float, max_vertical_fov: float, min_horizontal_fov: float = -180.0, max_horizontal_fov: float = 180.0) -> tuple: """ Computes a spherical projection of the points of a point cloud It will compute the pixel values of the points in t_pointcloud Parameters ---------- t_pointcloud: torch.Tensor [B, N, 3] A batch of tensor to projection to spherical coordinates height: int the height of the destination image width: int the width of the destination image min_vertical_fov: float (angle in degrees) the field of view up of the image max_vertical_fov: float (angle in degrees) the field of view down of the image min_horizontal_fov: float (optional) the horizontal field of view left (of the image) max_horizontal_fov: float (optional) the horizontal field of view right (of the image) Returns ------- (t_row, t_col) : pair of torch.Tensor of size [B, N] (torch.float32) t_row : the pixels' rows as a float for each point in the point cloud t_col : the pixels' cols as a float for each point in the point cloud """ check_tensor(t_pointcloud, [-1, -1, 3]) fov_up = min_vertical_fov / 180.0 * np.pi fov_down = max_vertical_fov / 180.0 * np.pi fov = abs(fov_down) + abs(fov_up) # get depth of all points r = torch.norm(t_pointcloud, p=2, dim=2) # Define a mask of validity to avoid nan mask_0 = (r == 0.0).to(dtype=t_pointcloud.dtype) mask_valid = 1.0 - mask_0 r = mask_0 * 0.001 + mask_valid * r x = t_pointcloud[:, :, 0] y = t_pointcloud[:, :, 1] z = t_pointcloud[:, :, 2] # compute angles theta = - torch.atan2(y, x) phi = torch.asin(z / r) proj_col = 0.5 * (theta / np.pi + 1.0) proj_row = 1.0 - (phi + abs(fov_down)) / fov proj_col *= width proj_row *= height return proj_row * mask_valid - mask_0, proj_col * mask_valid - mask_0, r * mask_valid def xyz_conversion(t_point_cloud: (torch.Tensor, np.ndarray)) -> torch.Tensor: """ Extracts the xyz fields of a point cloud Parameters ---------- t_point_cloud : A [B, N, C >= 3] or a [N, C >= 3] array Extracts the first three channels of a tensor >>> assert (xyz_conversion(np.array([[1.0, 2.0, 3.0, 4.0]])) - np.array([[1.0, 2.0, 3.0]]) == 0.0).all() """ if len(list(t_point_cloud.shape)) == 2: n, c = t_point_cloud.shape assert_debug(c >= 3) return t_point_cloud[:, :3] else: check_tensor(t_point_cloud, [-1, -1, -1]) b, n, c = t_point_cloud.shape assert_debug(c >= 3) return t_point_cloud[:, :, :3] def depth_conversion(t_point_cloud: (torch.Tensor, np.ndarray)) -> (torch.Tensor, np.ndarray): """ Extracts the depth from a point cloud Parameters ---------- t_point_cloud : (torch.Tensor, np.ndarray) [B, N, 3] of [N, 3] A Point cloud which can be either a tensor or a numpy ndarray Returns ------- (torch.Tensor, np.ndarray) : [B, N, 1] A Tensor of the same type as the input tensor >>> check_tensor(depth_conversion(torch.randn(4, 10, 3)), [4, 10, 1]) >>> check_tensor(depth_conversion(np.random.randn(4, 10, 3)), [4, 10, 1]) >>> check_tensor(depth_conversion(np.random.randn(40, 3)), [40, 1]) """ if len(t_point_cloud.shape) == 2: assert_debug(isinstance(t_point_cloud, np.ndarray) and t_point_cloud.shape[1] >= 3) return np.linalg.norm(t_point_cloud, ord=2, axis=1, keepdims=True) else: check_tensor(t_point_cloud, [-1, -1, -1]) if isinstance(t_point_cloud, np.ndarray): return np.linalg.norm(t_point_cloud[:, :, :3], ord=2, axis=2, keepdims=True) else: return torch.norm(t_point_cloud[:, :, :3], p=2, dim=2, keepdim=True) def build_spherical_image(t_point_cloud: torch.Tensor, destination: torch.Tensor, min_vertical_fov: float, max_vertical_fov: float, min_horizontal_fov: float = -180.0, max_horizontal_fov: float = 180.0, conversion_function: callable = lambda x: x): """ Builds a Spherical Image from a Point Cloud in place Parameters ---------- t_point_cloud: torch.Tensor [B, N, C >= 3] The first 3 channels corresponding to the coordinates X, Y, Z destination: torch.Tensor [B, C_dest, H, W] In which the image will be projected. The projection is done in place min_vertical_fov: float in [0.0, 180.0] The angle in degrees of the upward boundary of the fov max_vertical_fov: float in [min_vertical_fov, 180.0] The angle in degrees of the downward boundary of the fov min_horizontal_fov: float in [-180.0, 180.0] The angle in degrees of the leftward boundary of the fov max_horizontal_fov: float in [min_horizontal_fov, 180.0] The angle in degrees of the rightward boundary of the fov conversion_function: callable The function to convert a point cloud [B, N, C] into a point cloud with the specific channels to put in the image [B, N, C_dest] """ check_tensor(destination, [-1, 3, -1, -1]) check_tensor(t_point_cloud, [-1, -1, -1]) # Extract channels to put in destination channels_extracted = conversion_function(t_point_cloud) b, n, c = t_point_cloud.shape assert_debug(c >= 3, "The point cloud must have at least 3 channels") bp, c_dest, height, width = destination.shape assert_debug(bp == b, "Mismatch between the batch size of the destination and the source point cloud") proj_row, proj_col, depth = torch__spherical_projection(t_point_cloud[:, :, :3], height, width, min_vertical_fov, max_vertical_fov, min_horizontal_fov, max_horizontal_fov) proj_row = torch.floor(proj_row) proj_row = proj_row.clamp(min=0, max=height - 1) proj_col = torch.floor(proj_col) proj_col = proj_col.clamp(min=0, max=width - 1) b_idx = torch.arange(b, dtype=torch.int64, device=t_point_cloud.device).view(b, 1).expand(b, n).reshape(b * n) order = torch.argsort(depth, dim=1).reshape(b * n) proj_row = proj_row[b_idx, order].to(torch.int64) proj_col = proj_col[b_idx, order].to(torch.int64) destination[b_idx, :, proj_row, proj_col] = channels_extracted[b_idx, order, :] class Projector(ABC): """ A Projector is an object which can project a PointCloud in an image And construct a PointCloud from a Depth image """ def __init__(self, transform: callable = lambda x: x, height: Optional[int] = None, width: Optional[int] = None): # The transform mapping a pointcloud to a array or tensor of color values # Used to construct an image from the point cloud self.transform = transform self.height: Optional[int] = height self.width: Optional[int] = width @abstractmethod def project_pointcloud(self, pointcloud: torch.Tensor, **kwargs) -> torch.tensor: """ Projects the points of a PointCloud tensor in the image plane Parameters ---------- pointcloud : torch.Tensor [B, N, 3] A Pointcloud tensor (X, Y, Z) to be projected in the image plane kwargs : Additional arguments required for the projection Returns ------- torch.Tensor The tensor of size [B, N, 2] of pixel values (as float) in the image plane The first coordinate is the pixel of the row, and the second the pixel coordinate in the columns When considering the image as a matrix. (The values can be outside of the image plane dimension) """ raise NotImplementedError("") def project_normalized(self, pointcloud: torch.Tensor, height=None, width=None, **kwargs) -> torch.Tensor: """ Parameters ---------- pointcloud : torch.Tensor The point cloud tensor [B, N, 3] to project in the image plane height : int The optional height of the image Uses member height if it is None width : The optional width of the image Uses member width if it is None kwargs Returns ------- torch.Tensor [B, N, 2] A Tensor of pixels normalized between -1, 1 """ height = self.swap(height=height) width = self.swap(width=width) pixels = self.project_pointcloud(pointcloud, height=height, width=width, **kwargs) rows = pixels[:, :, 0] * 2.0 / height cols = pixels[:, :, 1] * 2.0 / width pixels: torch.Tensor = (-1.0 + torch.cat([rows.unsqueeze(2), cols.unsqueeze(2)], dim=2)) return pixels @abstractmethod def rescaled_projector(self, new_height: int, new_width: int): """ Parameters ---------- new_height : int The new height of the projector new_width The new width of the projector Returns ------- Projector A similar Projector, with its dimension reset to new_height and new_width And its appropriate parameters reset (intrinsics) """ raise NotImplementedError("") def rescale_intrinsics(self, new_height: int, new_width: int, **kwargs) -> Any: """ Rescales the intrinsics parameters of the projection from the arguments Parameters ---------- new_height : int The height of the new image new_width : int The width of the new image kwargs arguments to rescale (Depends on the type of the projector) Returns ------- Any The intrinsics rescaled : depends on the type of Projector """ raise NotImplementedError("") @abstractmethod def set_projection_params(self, height: int = None, width: int = None, transform: callable = None, **kwargs): """ Reads projection params from the arguments and set the appropriate parameters All named arguments are optional, and will only be set if they are not None Parameters ---------- height : int The height of the image created from a point cloud width : int The width of the image created from a point cloud transform : callable The transformation applied to a pointcloud to extract color channels to build The projection image from **kwargs : other variables """ if height is not None: self.height = height if width is not None: self.width = width if transform is not None: self.transform = transform def swap(self, **kwargs): for key, value in kwargs.items(): assert_debug(hasattr(self, key)) if value is None: member_value = getattr(self, key) assert_debug(member_value is not None) value = member_value return value def build_projection_map(self, pointcloud: torch.Tensor, default_value: float = 0.0, height: Optional[int] = None, width: Optional[int] = None, transform: Optional[callable] = None, **kwargs) -> torch.Tensor: """ Builds a projection image from a PointCloud (torch.Tensor) Parameters ---------- pointcloud : torch.Tensor A [B, N, C>=3] torch.Tensor with the first 3 channels the cartesian coordinates X, Y, Z default_value : float The default value for the image being built height : int Optional value of the height of the image created (If it is None, the member height will be used) width : int Optional value of the width of the image created (If it is None, the member height will be used) transform : Optional callable The function called on a point cloud which maps the input pointcloud to the channels desired in the image created. Transforms a [B, N, C] pointcloud to a [B, N, C_dest] point cloud kwargs Returns ------- torch.Tensor : [B, C_dest, height, width] An image of size (height, width) (Either the height and width of the parameters or the member height and width) """ height = self.swap(height=height) width = self.swap(width=width) transform = self.swap(transform=transform) check_tensor(pointcloud, [-1, -1, -1]) b, n, _ = pointcloud.shape image_channels = pointcloud if transform is not None: image_channels = transform(image_channels) c_dest = image_channels.shape[2] # Build destination tensor if default_value == 0.: destination_image = torch.zeros(pointcloud.size(0), c_dest, height, width, device=pointcloud.device, dtype=pointcloud.dtype) else: destination_image = torch.ones(pointcloud.size(0), c_dest, height, width, device=pointcloud.device, dtype=pointcloud.dtype) * default_value pixels = self.project_pointcloud(pointcloud, height=height, width=width, **kwargs) r = pointcloud.norm(dim=2) pixel_rows = pixels[:, :, 0].round() pixel_cols = pixels[:, :, 1].round() invalidity_mask = ~((pixel_rows[:] >= 0.0) * \ (pixel_rows[:] <= (height - 1)) * \ (pixel_cols[:] >= 0.0) * \ (pixel_cols[:] <= (width - 1))) b_idx = torch.arange(b, dtype=torch.int64, device=pointcloud.device).view(b, 1).expand(b, n) r[invalidity_mask] = -1.0 order = torch.argsort(r, dim=1, descending=True) order = order.reshape(b, n) b_idx = b_idx.reshape(b, n) mask = r[b_idx, order] > 0.0 order = order[mask] b_idx = b_idx[mask] proj_row = pixel_rows[b_idx, order].to(torch.int64) proj_col = pixel_cols[b_idx, order].to(torch.int64) destination_image[b_idx, :, proj_row, proj_col] = image_channels[b_idx, order, :] # TODO DEAL WITH [0, 0] coordinates clamping problem return destination_image @lru_cache(maxsize=10) def torch_ones(b: int, n: int, dtype: torch.dtype, device: torch.device): return torch.ones(b, n, 1, dtype=dtype, device=device) class SphericalProjector(Projector): """ A SphericalProjector projects a pointcloud in a spherical image Parameters ---------- up_fov : float The field of view upward in degrees [-90, 90] down_fov : float The field of view downward in degrees [-90, up_vertical_fov] """ def __init__(self, height: Optional[int] = None, width: Optional[int] = None, num_channels: Optional[int] = None, up_fov: Optional[float] = None, down_fov: Optional[float] = None, conversion: Optional[callable] = xyz_conversion): super().__init__(transform=conversion, height=height, width=width) self.num_channels = num_channels self.up_fov = up_fov self.down_fov = down_fov self.conversion = conversion def project_pointcloud(self, pointcloud: torch.Tensor, height: Optional[int] = None, width: Optional[int] = None, up_fov: Optional[float] = None, down_fov: Optional[float] = None, **kwargs) -> torch.tensor: """ Project the pointcloud in the Spherical image Parameters ---------- pointcloud : torch.Tensor [B, N, K>=3] height: Optional[int] The height of the spherical image built width: Optional[int] The width of the spherical image built up_fov: Optional[float] down_fov: Optional[float] Returns ------- pixel_tensor : torch.Tensor [B, N, 2] The pixel tensor of the pointcloud projected in the Spherical image plane First coordinates are the row values, Second are the column values """ check_tensor(pointcloud, [-1, -1, -1]) height: int = self.swap(height=height) width = self.swap(width=width) up_fov = self.swap(up_fov=up_fov) down_fov = self.swap(down_fov=down_fov) t_rows, t_cols, r = torch__spherical_projection(pointcloud[:, :, :3], height, width, up_fov, down_fov) return torch.cat([t_rows.unsqueeze(2), t_cols.unsqueeze(2)], dim=2) def rescaled_projector(self, new_height: int, new_width: int): """ Returns a rescaled Spherical projector """ return SphericalProjector(height=new_height, width=new_width, num_channels=self.num_channels, up_fov=self.up_fov, down_fov=self.down_fov, conversion=self.conversion) def rescale_intrinsics(self, new_height: int, new_width: int, **kwargs) -> Any: """ The Spherical projection does not need to rescale its intrinsics parameters """ raise NotImplementedError("") def set_projection_params(self, up_fov: float = None, down_fov: float = None, **kwargs): super().set_projection_params(**kwargs) if up_fov is not None: self.up_fov = up_fov if down_fov is not None: self.down_fov = down_fov
[ "torch.arange", "torch.norm", "torch.argsort", "torch.ones", "torch.floor", "torch.atan2", "torch.asin" ]
1.7.1
Pandinosaurus/pyLiDAR-SLAM
1baa21a67bd32f144f8e17583251ac777f81345e
1.4
''' A module which implements the basic Transformer ''' import uuid import threading import pdb import torch from torch import nn from models.new_attention import NewAttention from models.attention import MultiHeadedAttention from models.embeddings import PositionEmbedding, TokenEmbedding from models.utils import LabelSmoothingLoss, Translator from utils import left_shift, right_shift, triu class TransformerSublayer(nn.Module): ''' Implements a sub layer of the transformer model, which consists of: 1) A sub layer module 2) Followed by dropout 3) Plus a residual connection 4) With layer normalization ''' def __init__(self, sublayer, sublayer_shape, dropout_p=0.1): ''' Initialize the transformer sublayer ''' super(TransformerSublayer, self).__init__() self.sublayer = sublayer self.norm = nn.LayerNorm(sublayer_shape) self.dropout = nn.Dropout(dropout_p, inplace=True) self.reset_parameters() def reset_parameters(self): ''' Reset parameters using xavier initialiation ''' self.norm.reset_parameters() def forward(self, inputs, *sublayer_args, **sublayer_kwargs): # pylint:disable=arguments-differ ''' The forward pass of the sublayer ''' return self.norm(inputs + self.dropout(self.sublayer(*sublayer_args, **sublayer_kwargs))) class TransformerFFN(nn.Module): ''' Implements the Transformer feed-forward network ''' def __init__(self, embedding_size, hidden_dim): super(TransformerFFN, self).__init__() self.relu = nn.ReLU() self.hidden = nn.Linear(embedding_size, hidden_dim) self.output = nn.Linear(hidden_dim, embedding_size) self.reset_parameters() def reset_parameters(self): ''' Reset parameters using xavier initialiation ''' gain = nn.init.calculate_gain('relu') nn.init.xavier_uniform_(self.hidden.weight, gain) nn.init.constant_(self.hidden.bias, 0.) gain = nn.init.calculate_gain('linear') nn.init.xavier_uniform_(self.output.weight, gain) nn.init.constant_(self.output.bias, 0.) def forward(self, inputs): # pylint:disable=arguments-differ ''' The forward pass of the feed-forward network ''' return self.output(self.relu(self.hidden(inputs))) class TransformerEncoderLayer(nn.Module): ''' Implements a single encoder layer in a transformer encoder stack ''' def __init__(self, attn_config, num_heads, dim, hidden_dim, layer_i, dropout_p=0.1): ''' Initialize the transformer layer ''' super(TransformerEncoderLayer, self).__init__() if attn_config['ffn_layer'][layer_i]: self.ffn = TransformerSublayer( TransformerFFN(dim, hidden_dim), dim, dropout_p ) print('enc layer %i has ffn' % layer_i) self.self_attention = TransformerSublayer( NewAttention(attn_config, dim, num_heads), dim, dropout_p ) def reset_parameters(self): ''' Reset the parameters of the module ''' self.ffn.reset_parameters() self.self_attention.reset_parameters() def forward(self, inputs, layer_i): # pylint:disable=arguments-differ ''' The forward pass ''' mask = inputs['mask'] state = inputs['state'] # print("encoder self attention") state = self.self_attention( state, # residual state, state, state, mask, # passed to multiheaded attention layer_i=layer_i ) if hasattr(self, 'ffn'): state = self.ffn( state, # residual state # passed to feed-forward network ) return {'state': state, 'mask': mask} class TransformerDecoderLayer(nn.Module): ''' Implements a single decoder layer in a transformer decoder stack ''' def __init__(self, dec_attn_config, enc_dec_attn_config, num_heads, dim, hidden_dim, layer_i, causal=True, dropout_p=0.1): ''' Initialize the transformer layer ''' super(TransformerDecoderLayer, self).__init__() self.causal = causal self.uuid = uuid.uuid4() self.enc_dec_attn_config = enc_dec_attn_config if dec_attn_config['ffn_layer'][layer_i]: self.ffn = TransformerSublayer( TransformerFFN(dim, hidden_dim), dim, dropout_p ) print('dec layer %i has ffn' % layer_i) self.self_attention = TransformerSublayer( NewAttention(dec_attn_config, dim, num_heads), dim, dropout_p ) if self.enc_dec_attn_config['enc_dec_attn_layer'] == 1 or \ (type(self.enc_dec_attn_config['enc_dec_attn_layer'] is list) and self.enc_dec_attn_config['enc_dec_attn_layer'][layer_i] == 1): if self.enc_dec_attn_config['enc_dec_attn_num_heads'] == -1: src_num_heads = num_heads elif type(self.enc_dec_attn_config['enc_dec_attn_num_heads']) is not list: src_num_heads = self.enc_dec_attn_config['enc_dec_attn_num_heads'] else: src_num_heads = self.enc_dec_attn_config['enc_dec_attn_num_heads'][layer_i] assert src_num_heads != 0 self.source_attention = TransformerSublayer( NewAttention(enc_dec_attn_config, dim, src_num_heads), dim, dropout_p ) print('layer %i num of src heads %i' % (layer_i, src_num_heads)) def reset_parameters(self): ''' Reset the parameters of the module ''' self.ffn.reset_parameters() self.self_attention.reset_parameters() if hasattr(self, 'source_attention'): self.source_attention.reset_parameters() def forward(self, inputs, sources, layer_i): # pylint:disable=arguments-differ ''' The forward pass ''' mask = inputs['mask'] state = inputs['state'] cache = inputs.get('cache') decoder_position = state.shape[1] - 1 kwargs = {'layer_i': layer_i} if self.causal and cache is not None: # If caching, only want the last one sequence values. Requires no causal masking. residual = state[:, -1:] kwargs['decoder_position'] = decoder_position else: # If not caching, use the full sequence and ensure an appropriate causal mask residual = state kwargs['key_mask'] = mask kwargs['attention_mask'] = self.mask(state) # print("decoder self attention") state = self.self_attention( residual, # residual state, state, state, **kwargs # passed to multiheaded attention ) source = sources['state'] # print("source", source) kwargs = {'key_mask': sources['mask'], 'layer_i': layer_i} if self.causal and cache is not None: kwargs['decoder_position'] = decoder_position # print("decoder source attention") if hasattr(self, 'source_attention'): # print("in source, state", state.shape) state = self.source_attention( state, # residual source, source, state, **kwargs # passed to multiheaded attention ) if hasattr(self, 'ffn'): state = self.ffn( state, # residual state # passed to feed-forward network ) if self.causal and cache is not None: cached = cache.get(self.uuid) if cached is None: cache[self.uuid] = state else: # print("cached", cached.shape) # print("state", state.shape) try: state = cache[self.uuid] = torch.cat((cached, state), 1) except: pdb.set_trace() return {'state': state, 'mask': mask, 'cache': cache} _masks = threading.local() def mask(self, inputs): ''' Get a self-attention mask The mask will be of shape [T x T] containing elements from the set {0, -inf} Input shape: (B x T x E) Output shape: (T x T) ''' if not self.causal: return None dim = inputs.shape[1] device = inputs.device mask_store = TransformerDecoderLayer._masks.__dict__ if device not in mask_store: mask = inputs.new_full((dim, dim), float('-inf')) mask_store[device] = triu(mask, 1, 1, 1) mask = mask_store[device] if mask.shape[0] < dim: mask = mask.resize_(dim, dim).fill_(float('-inf')) mask_store[device] = triu(mask, 1, 1, 1) mask = mask_store[device] return mask[None, :dim, :dim] class NewTransformer(nn.Module): ''' The New Transformer module ''' def __init__(self, config, dataset): ''' Initialize the Transformer ''' super(NewTransformer, self).__init__() self.dataset = dataset self.embedding = TokenEmbedding( dataset.vocab_size, config.embedding_size, padding_idx=self.padding_idx ) self.position_embedding = PositionEmbedding(config.embedding_size) self.dropout = nn.Dropout(config.dropout_p, inplace=True) # Uniq attn attributes self.attn_ofs_uniq = list(set( config.enc_attn_offset + config.dec_attn_offset + config.enc_dec_attn_offset)) self.attn_std_uniq = list(set( config.enc_attn_std + config.dec_attn_std + config.enc_dec_attn_std)) # Allow for overriding the encoders and decoders in dervied classes self.encoders = self.create_encoders(config) self.decoders = self.create_decoders(config) self.label_smoothing = LabelSmoothingLoss( config.label_smoothing or 0, ignore_index=self.padding_idx, reduction='none' ) self.cross_entropy = nn.CrossEntropyLoss( ignore_index=self.padding_idx, reduction='none' ) def create_encoders(self, config): ''' Create the transformer encoders ''' kwargs = {'dropout_p': config.dropout_p} if config.ffn_layer == -1: config.ffn_layer = [1] * config.num_layers assert len(config.ffn_layer) == config.num_layers attn_config = {'attn_type': config.enc_attn_type, 'attn_std': config.enc_attn_std, 'attn_offset': config.enc_attn_offset, 'num_layers': config.num_layers, 'num_heads': config.num_heads, 'which_attn': 'encoder', 'attn_threshold': config.enc_attn_threshold, 'attn_window': config.enc_attn_window, 'attn_impl': config.enc_attn_impl, 'ffn_layer': config.ffn_layer, 'attn_ofs_uniq': self.attn_ofs_uniq, 'attn_std_uniq': self.attn_std_uniq} args = [attn_config, config.num_heads, config.embedding_size, config.hidden_dim] encoders = nn.ModuleList([ TransformerEncoderLayer(*args, layer_i, **kwargs) for layer_i in range(config.num_layers) ]) return encoders def create_decoders(self, config): ''' Create the transformer decoders ''' kwargs = {'dropout_p': config.dropout_p} if config.ffn_layer == -1: config.ffn_layer = [1] * config.num_layers assert len(config.ffn_layer) == config.num_layers dec_attn_config = {'attn_type': config.dec_attn_type, 'attn_std': config.dec_attn_std, 'attn_offset': config.dec_attn_offset, 'num_layers': config.num_layers, 'num_heads': config.num_heads, 'which_attn': 'decoder', 'attn_threshold': config.dec_attn_threshold, 'attn_window': config.dec_attn_window, 'attn_impl': config.dec_attn_impl, 'ffn_layer': config.ffn_layer, 'attn_ofs_uniq': self.attn_ofs_uniq, 'attn_std_uniq': self.attn_std_uniq } enc_dec_attn_config = {'attn_type': config.enc_dec_attn_type, 'attn_std': config.enc_dec_attn_std, 'attn_offset': config.enc_dec_attn_offset, 'num_layers': config.num_layers, 'num_heads': config.num_heads, 'word_count_ratio': self.dataset.word_count_ratio, 'which_attn': 'source', 'enc_dec_attn_layer': config.enc_dec_attn_layer, 'enc_dec_attn_num_heads': config.enc_dec_attn_num_heads, 'attn_threshold': config.enc_dec_attn_threshold, 'attn_window': config.enc_dec_attn_window, 'attn_impl': config.enc_dec_attn_impl, 'ffn_layer': config.ffn_layer, 'attn_ofs_uniq': self.attn_ofs_uniq, 'attn_std_uniq': self.attn_std_uniq } args = [dec_attn_config, enc_dec_attn_config, config.num_heads, config.embedding_size, config.hidden_dim] decoders = nn.ModuleList([ TransformerDecoderLayer(*args, layer_i, **kwargs) for layer_i in range(config.num_layers) ]) return decoders @property def sos_idx(self): ''' Return the sos index ''' return self.dataset.sos_idx @property def padding_idx(self): ''' Return the padding index ''' return self.dataset.padding_idx def translator(self, config): ''' Get a translator for this model ''' return Translator(config, self, self.dataset) def reset_named_parameters(self, modules): ''' Get a translator for this model ''' if 'encoder' in modules: for encoder in self.encoders: encoder.reset_parameters() if 'decoder' in modules: for decoder in self.decoders: decoder.reset_parameters() if 'embeddings' in modules: self.embedding.reset_parameters() def forward(self, batch): # pylint:disable=arguments-differ ''' A batch of inputs and targets ''' decoded = self.decode( self.encode(batch['inputs']), right_shift(batch['targets']), input_lens=batch['input_lens'] ) logits = decoded['logits'] dims = list(range(1, logits.dim())) targets = left_shift(batch['targets']) nll = self.cross_entropy(logits, targets).sum(dims[:-1]) smoothed_nll = self.label_smoothing(logits, targets).sum(dims) return smoothed_nll, nll def encode(self, inputs): ''' Encode the inputs ''' word_embedding = self.embed(inputs, self.embedding) encoded = { 'state': word_embedding, 'mask': inputs.eq(self.padding_idx) } for i, encoder in enumerate(self.encoders): encoded = encoder(encoded, i) return encoded def decode(self, encoded, targets, decoders=None, embedding=None, cache=None, mask=None, input_lens=None): ''' Decode the encoded sequence to the targets ''' if decoders is None: decoders = self.decoders if embedding is None: embedding = self.embedding word_embedding = self.embed(targets, embedding) decoded = { 'cache': cache, 'state': word_embedding, 'mask': targets.eq(self.padding_idx) if mask is None else mask } for i, decoder in enumerate(decoders): # print("i", i) decoded = decoder(decoded, encoded, i) # compute projection to the vocabulary state = decoded['state'] if cache is not None: state = state[:, -1:] return { 'cache': decoded.get('cache'), 'logits': embedding(state, transpose=True).transpose(2, 1), # transpose to B x C x ... } def embed(self, inputs, token_embedding): ''' Embed the given inputs ''' return self.dropout(token_embedding(inputs) + self.position_embedding(inputs))
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cat", "torch.nn.init.constant_", "torch.nn.init.xavier_uniform_", "torch.nn.ReLU", "torch.nn.init.calculate_gain", "torch.nn.CrossEntropyLoss" ]
1.4.0
Khoale1096/stupidNMT
894536c16dc7ff958aa5571828a89ecabfcb72d7
1.0
import torchvision from torchvision.models import resnet as vrn import torch.utils.model_zoo as model_zoo from .utils import register class ResNet(vrn.ResNet): 'Deep Residual Network - https://arxiv.org/abs/1512.03385' def __init__(self, layers=[3, 4, 6, 3], bottleneck=vrn.Bottleneck, outputs=[5], groups=1, width_per_group=64, url=None): self.stride = 128 self.bottleneck = bottleneck self.outputs = outputs self.url = url kwargs = {'block': bottleneck, 'layers': layers, 'groups': groups, 'width_per_group': width_per_group} super().__init__(**kwargs) self.unused_modules = ['fc'] def initialize(self): if self.url: self.load_state_dict(model_zoo.load_url(self.url)) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) outputs = [] for i, layer in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]): level = i + 2 if level > max(self.outputs): break x = layer(x) if level in self.outputs: outputs.append(x) return outputs @register def ResNet18C4(): return ResNet(layers=[2, 2, 2, 2], bottleneck=vrn.BasicBlock, outputs=[4], url=vrn.model_urls['resnet18']) @register def ResNet34C4(): return ResNet(layers=[3, 4, 6, 3], bottleneck=vrn.BasicBlock, outputs=[4], url=vrn.model_urls['resnet34'])
[ "torch.utils.model_zoo.load_url" ]
1.0.0
Mo5mami/retinanet-examples
f7ad4ff6a99fe3e66f8a9c8e8a6e03b870f84700
1.8
import argparse import random import numpy as np import torch from tsformer.exp_autoformer import Exp_Main fix_seed = 2021 random.seed(fix_seed) torch.manual_seed(fix_seed) np.random.seed(fix_seed) parser = argparse.ArgumentParser( description='Autoformer & Transformer family for Time Series Forecasting') # basic config parser.add_argument( '--is_training', type=int, required=True, default=1, help='status') parser.add_argument( '--model_id', type=str, required=True, default='test', help='model id') parser.add_argument( '--model', type=str, required=True, default='Autoformer', help='model name, options: [Autoformer, Informer, Transformer]') # data loader parser.add_argument( '--data', type=str, required=True, default='ETTm1', help='dataset type') parser.add_argument( '--root_path', type=str, default='./data/ETT/', help='root path of the data file') parser.add_argument( '--data_path', type=str, default='ETTh1.csv', help='data file') parser.add_argument( '--features', type=str, default='M', help='forecasting task, options:[M, S, MS]') parser.add_argument( '--target', type=str, default='OT', help='target feature in S or MS task') parser.add_argument( '--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly]') parser.add_argument( '--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints') # forecasting task parser.add_argument( '--seq_len', type=int, default=96, help='input sequence length') parser.add_argument( '--label_len', type=int, default=48, help='start token length') parser.add_argument( '--pred_len', type=int, default=96, help='prediction sequence length') # model define parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') parser.add_argument('--c_out', type=int, default=7, help='output size') parser.add_argument( '--d_model', type=int, default=512, help='dimension of model') parser.add_argument('--n_heads', type=int, default=8, help='num of heads') parser.add_argument( '--e_layers', type=int, default=2, help='num of encoder layers') parser.add_argument( '--d_layers', type=int, default=1, help='num of decoder layers') parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') parser.add_argument( '--moving_avg', type=int, default=25, help='window size of moving average') parser.add_argument('--factor', type=int, default=1, help='attn factor') parser.add_argument( '--distil', action='store_false', help='whether to use distilling in encoder,', default=True) parser.add_argument('--dropout', type=float, default=0.05, help='dropout') parser.add_argument( '--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]') parser.add_argument( '--activation', type=str, default='gelu', help='activation') parser.add_argument( '--output_attention', action='store_true', help='whether to output attention in ecoder') parser.add_argument( '--do_predict', action='store_true', help='whether to predict unseen future data') # optimization parser.add_argument( '--num_workers', type=int, default=10, help='data loader num workers') parser.add_argument('--itr', type=int, default=2, help='experiments times') parser.add_argument( '--train_epochs', type=int, default=10, help='train epochs') parser.add_argument( '--batch_size', type=int, default=32, help='batch size of train input data') parser.add_argument( '--patience', type=int, default=3, help='early stopping patience') parser.add_argument( '--learning_rate', type=float, default=0.0001, help='optimizer learning rate') parser.add_argument('--des', type=str, default='test', help='exp description') parser.add_argument('--loss', type=str, default='mse', help='loss function') parser.add_argument( '--lradj', type=str, default='type1', help='adjust learning rate') parser.add_argument( '--use_amp', action='store_true', help='use automatic mixed precision training', default=False) # GPU parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu') parser.add_argument('--gpu', type=int, default=0, help='gpu') parser.add_argument( '--use_multi_gpu', action='store_true', help='use multiple gpus', default=False) parser.add_argument( '--devices', type=str, default='0,1,2,3', help='device ids of multile gpus') args = parser.parse_args() args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False if args.use_gpu and args.use_multi_gpu: args.dvices = args.devices.replace(' ', '') device_ids = args.devices.split(',') args.device_ids = [int(id_) for id_ in device_ids] args.gpu = args.device_ids[0] print('Args in experiment:') print(args) Exp = Exp_Main if args.is_training: for ii in range(args.itr): # setting record of experiments setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format( args.model_id, args.model, args.data, args.features, args.seq_len, args.label_len, args.pred_len, args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.factor, args.embed, args.distil, args.des, ii) exp = Exp(args) # set experiments print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format( setting)) exp.train(setting) print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format( setting)) exp.test(setting) if args.do_predict: print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'. format(setting)) exp.predict(setting, True) torch.cuda.empty_cache() else: ii = 0 setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format( args.model_id, args.model, args.data, args.features, args.seq_len, args.label_len, args.pred_len, args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.factor, args.embed, args.distil, args.des, ii) exp = Exp(args) # set experiments print( '>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) exp.test(setting, test=1) torch.cuda.empty_cache()
[ "torch.manual_seed", "torch.cuda.empty_cache", "torch.cuda.is_available" ]
1.8.0
Fanxingye/TsFormer
da6e7eee1bddb44e2e98f07c9f0d374793e80da6
1.0
import cv2 import numpy as np import torch import torch.nn as nn from torch.nn import functional as F class GuidedBackProp(): def __init__(self, model, use_cuda): self.model = model.eval() self.use_cuda = use_cuda if self.use_cuda: self.model = self.model.cuda() for module in self.model.named_modules(): module[1].register_backward_hook(self.bp_relu) def bp_relu(self, module, grad_in, grad_out): if isinstance(module, nn.ReLU): return (torch.clamp(grad_in[0], min=0.0), ) def __call__(self, x, index=None): x = x.clone() if self.use_cuda: x = x.cuda() x.requires_grad_() output = self.model(x) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot) one_hot.requires_grad_() if self.use_cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) one_hot.backward() result = x.grad.cpu().numpy()[0] result = np.transpose(result, (1,2,0)) return result, index def arrange_img(img): img = np.maximum(img, 0) res = img - img.min() res /= res.max() res = np.uint8(res*255) return res
[ "torch.clamp", "torch.from_numpy", "torch.sum" ]
1.0.0
kamata1729/visualize-pytorch
ec1b3fe0952c5db187a5d4875cd1539a1b7a1270
0.4
import torch as th import torch.nn as nn import torch.nn.functional as F import numpy as np class PointLikeMixer(nn.Module): def __init__(self, args): super(PointLikeMixer, self).__init__() self.args = args self.n_agents = args.n_agents self.n_groups = args.mixing_group_dim self.state_dim = int(np.prod(args.state_shape)) self.embed_dim = args.mixing_embed_dim self.group_dim = args.mixing_group_dim self.hyper_w_1 = nn.Linear(self.state_dim, self.embed_dim * self.n_groups) self.hyper_w_final = nn.Linear(self.state_dim, self.embed_dim) # State dependent bias for hidden layer self.hyper_b_1 = nn.Linear(self.state_dim, self.embed_dim) # V(s) instead of a bias for the last layers self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), nn.ReLU(), nn.Linear(self.embed_dim, 1)) def forward(self, agent_qs, states): bs = agent_qs.size(0) states = states.reshape(-1, self.state_dim) agent_qs = agent_qs.view(-1, self.group_dim, self.n_agents) group_qs = agent_qs.sum(dim=2).view(-1, 1, self.group_dim) # First layer w1 = th.abs(self.hyper_w_1(states)) b1 = self.hyper_b_1(states) w1 = w1.view(-1, self.n_groups, self.embed_dim) b1 = b1.view(-1, 1, self.embed_dim) hidden = F.elu(th.bmm(group_qs, w1) + b1) # Second layer w_final = th.abs(self.hyper_w_final(states)) w_final = w_final.view(-1, self.embed_dim, 1) # State-dependent bias v = self.V(states).view(-1, 1, 1) # Compute final output y = th.bmm(hidden, w_final) + v # Reshape and return q_tot = y.view(bs, -1, 1) return q_tot
[ "torch.nn.Linear", "torch.bmm", "torch.nn.ReLU" ]
0.4.1
wjh720/pymarl
9392407568d440c4808a1c7c98ddf1ef52e0c009
1.8
import torch from pytorchfi.core import fault_injection as pfi_core from .util_test import helper_setUp_CIFAR10_same class TestWeightFIcpu: """ Testing focuses on weight perturbations. """ def setup_class(self): torch.manual_seed(0) self.BATCH_SIZE = 1 self.WORKERS = 1 self.channels = 3 self.img_size = 32 self.USE_GPU = False self.model, self.dataset = helper_setUp_CIFAR10_same( self.BATCH_SIZE, self.WORKERS ) self.dataiter = iter(self.dataset) self.images, self.labels = self.dataiter.next() self.model.eval() with torch.no_grad(): self.output = self.model(self.images) self.p = pfi_core( self.model, self.BATCH_SIZE, input_shape=[self.channels, self.img_size, self.img_size], use_cuda=self.USE_GPU, ) def test_neuronFI_singleElement(self): layer_i = 1 k = 15 c_i = 20 h_i = 2 w_i = 3 inj_value_i = 10000.0 self.inj_model = self.p.declare_weight_fi( layer_num=layer_i, k=k, dim1=c_i, dim2=h_i, dim3=w_i, value=inj_value_i ) self.inj_model.eval() with torch.no_grad(): corrupted_output_1 = self.inj_model(self.images) if torch.all(corrupted_output_1.eq(self.output)): raise AssertionError self.inj_model = self.p.declare_weight_fi( layer_num=layer_i, k=k, dim1=c_i, dim2=h_i, dim3=w_i, value=0.01388985849916935, ) self.inj_model.eval() with torch.no_grad(): uncorrupted_output = self.inj_model(self.images) if not torch.all(uncorrupted_output.eq(self.output)): raise AssertionError self.inj_model = self.p.declare_weight_fi( layer_num=layer_i, k=k, dim1=c_i, dim2=h_i, dim3=w_i, value=inj_value_i * 2, ) self.inj_model.eval() with torch.no_grad(): corrupted_output_2 = self.inj_model(self.images) if torch.all(corrupted_output_2.eq(self.output)): raise AssertionError if not torch.all(corrupted_output_2.eq(corrupted_output_2)): raise AssertionError def test_neuronFI_singleElement_noErr(self): layer_i = 4 k = 153 c_i = 254 h_i = 0 w_i = 0 inj_value_i = 10000.0 self.inj_model = self.p.declare_weight_fi( layer_num=layer_i, k=k, dim1=c_i, dim2=h_i, dim3=w_i, value=inj_value_i ) self.inj_model.eval() with torch.no_grad(): corrupted_output_1 = self.inj_model(self.images) if not torch.all(corrupted_output_1.eq(self.output)): raise AssertionError
[ "torch.manual_seed", "torch.no_grad" ]
1.8.1
TarekAloui/pytorchfi
29915e158941a21fc786e6a59c958ec751a59167
0.4
import json import math import logging import string import nltk import scipy import torch from nltk.stem.porter import * import numpy as np from collections import Counter import os from torch.autograd import Variable import config import pykp from utils import Progbar from pykp.metric.bleu import bleu stemmer = PorterStemmer() def process_predseqs(pred_seqs, oov, id2word, opt): ''' :param pred_seqs: :param src_str: :param oov: :param id2word: :param opt: :return: ''' processed_seqs = [] if_valid = [] for seq in pred_seqs: # print('-' * 50) # print('seq.sentence: ' + str(seq.sentence)) # print('oov: ' + str(oov)) # # for x in seq.sentence[:-1]: # if x >= opt.vocab_size and len(oov)==0: # print('ERROR') # convert to words and remove the EOS token seq_sentence_np = [int(x) for x in seq.sentence] processed_seq = [id2word[x] if x < opt.vocab_size else oov[x - opt.vocab_size] for x in seq_sentence_np[:-1]] # print('processed_seq: ' + str(processed_seq)) # print('%s - %s' % (str(seq.sentence[:-1]), str(processed_seq))) keep_flag = True if len(processed_seq) == 0: keep_flag = False if keep_flag and any([w == pykp.io.UNK_WORD for w in processed_seq]): keep_flag = False if keep_flag and any([w == '.' or w == ',' for w in processed_seq]): keep_flag = False if_valid.append(keep_flag) processed_seqs.append((seq, processed_seq, seq.score)) unzipped = list(zip(*(processed_seqs))) processed_seqs, processed_str_seqs, processed_scores = unzipped if len(processed_seqs) > 0 and len(unzipped) == 3 else ([], [], []) assert len(processed_seqs) == len(processed_str_seqs) == len(processed_scores) == len(if_valid) return if_valid, processed_seqs, processed_str_seqs, processed_scores def post_process_predseqs(seqs, num_oneword_seq=1): processed_seqs = [] # -1 means no filter applied if num_oneword_seq == -1: return seqs for seq, str_seq, score in zip(*seqs): keep_flag = True if len(str_seq) == 1 and num_oneword_seq <= 0: keep_flag = False if keep_flag: processed_seqs.append((seq, str_seq, score)) # update the number of one-word sequeces to keep if len(str_seq) == 1: num_oneword_seq -= 1 unzipped = list(zip(*(processed_seqs))) if len(unzipped) != 3: return ([], [], []) else: return unzipped def if_present_phrase(src_str_tokens, phrase_str_tokens): """ :param src_str_tokens: a list of strings (words) of source text :param phrase_str_tokens: a list of strings (words) of a phrase :return: """ match_pos_idx = -1 for src_start_idx in range(len(src_str_tokens) - len(phrase_str_tokens) + 1): match_flag = True # iterate each word in target, if one word does not match, set match=False and break for seq_idx, seq_w in enumerate(phrase_str_tokens): src_w = src_str_tokens[src_start_idx + seq_idx] if src_w != seq_w: match_flag = False break if match_flag: match_pos_idx = src_start_idx break return match_flag, match_pos_idx def if_present_duplicate_phrases(src_str, trgs_str, do_stemming=True, check_duplicate=True): if do_stemming: src_to_match = stem_word_list(src_str) else: src_to_match = src_str present_indices = [] present_flags = [] phrase_set = set() # some phrases are duplicate after stemming, like "model" and "models" would be same after stemming, thus we ignore the following ones for trg_str in trgs_str: if do_stemming: trg_to_match = stem_word_list(trg_str) else: trg_to_match = trg_str # check if the phrase appears in source text # iterate each word in source match_flag, match_pos_idx = if_present_phrase(src_to_match, trg_to_match) # check if it is duplicate, if true then ignore it if check_duplicate and '_'.join(trg_to_match) in phrase_set: present_flags.append(False) present_indices.append(match_pos_idx) continue else: # if it reaches the end of source and no match, means it doesn't appear in the source present_flags.append(match_flag) present_indices.append(match_pos_idx) phrase_set.add('_'.join(trg_to_match)) assert len(present_flags) == len(present_indices) return present_flags, present_indices def evaluate_beam_search(generator, data_loader, opt, title='', epoch=1, predict_save_path=None): logger = config.init_logging(title, predict_save_path + '/%s.log' % title, redirect_to_stdout=False) progbar = Progbar(logger=logger, title=title, target=len(data_loader.dataset.examples), batch_size=data_loader.batch_size, total_examples=len(data_loader.dataset.examples)) topk_range = [5, 10] score_names = ['precision', 'recall', 'f_score'] example_idx = 0 score_dict = {} # {'precision@5':[],'recall@5':[],'f1score@5':[], 'precision@10':[],'recall@10':[],'f1score@10':[]} for i, batch in enumerate(data_loader): # if i > 5: # break one2many_batch, one2one_batch = batch src_list, src_len, trg_list, _, trg_copy_target_list, src_oov_map_list, oov_list, src_str_list, trg_str_list = one2many_batch if torch.cuda.is_available(): src_list = src_list.cuda() src_oov_map_list = src_oov_map_list.cuda() print("batch size - %s" % str(src_list.size(0))) print("src size - %s" % str(src_list.size())) print("target size - %s" % len(trg_copy_target_list)) pred_seq_list = generator.beam_search(src_list, src_len, src_oov_map_list, oov_list, opt.word2id) ''' process each example in current batch ''' for src, src_str, trg, trg_str_seqs, trg_copy, pred_seq, oov in zip(src_list, src_str_list, trg_list, trg_str_list, trg_copy_target_list, pred_seq_list, oov_list): logger.info('====================== %d =========================' % (i)) print_out = '' print_out += '[Source][%d]: %s \n' % (len(src_str), ' '.join(src_str)) src = src.cpu().data.numpy() if torch.cuda.is_available() else src.data.numpy() print_out += '\nSource Input: \n %s\n' % (' '.join([opt.id2word[x] for x in src[:len(src_str) + 5]])) print_out += 'Real Target String [%d] \n\t\t%s \n' % (len(trg_str_seqs), trg_str_seqs) print_out += 'Real Target Input: \n\t\t%s \n' % str([[opt.id2word[x] for x in t] for t in trg]) print_out += 'Real Target Copy: \n\t\t%s \n' % str([[opt.id2word[x] if x < opt.vocab_size else oov[x - opt.vocab_size] for x in t] for t in trg_copy]) trg_str_is_present_flags, _ = if_present_duplicate_phrases(src_str, trg_str_seqs) # ignore the cases that there's no present phrases if opt.must_appear_in_src and np.sum(trg_str_is_present_flags) == 0: logger.error('found no present targets') continue print_out += '[GROUND-TRUTH] #(present)/#(all targets)=%d/%d\n' % (sum(trg_str_is_present_flags), len(trg_str_is_present_flags)) print_out += '\n'.join(['\t\t[%s]' % ' '.join(phrase) if is_present else '\t\t%s' % ' '.join(phrase) for phrase, is_present in zip(trg_str_seqs, trg_str_is_present_flags)]) print_out += '\noov_list: \n\t\t%s \n' % str(oov) # 1st filtering pred_is_valid_flags, processed_pred_seqs, processed_pred_str_seqs, processed_pred_score = process_predseqs(pred_seq, oov, opt.id2word, opt) # 2nd filtering: if filter out phrases that don't appear in text, and keep unique ones after stemming if opt.must_appear_in_src: pred_is_present_flags, _ = if_present_duplicate_phrases(src_str, processed_pred_str_seqs) filtered_trg_str_seqs = np.asarray(trg_str_seqs)[trg_str_is_present_flags] else: pred_is_present_flags = [True] * len(processed_pred_str_seqs) valid_and_present = np.asarray(pred_is_valid_flags) * np.asarray(pred_is_present_flags) match_list = get_match_result(true_seqs=filtered_trg_str_seqs, pred_seqs=processed_pred_str_seqs) print_out += '[PREDICTION] #(valid)=%d, #(present)=%d, #(retained&present)=%d, #(all)=%d\n' % (sum(pred_is_valid_flags), sum(pred_is_present_flags), sum(valid_and_present), len(pred_seq)) print_out += '' ''' Print and export predictions ''' preds_out = '' for p_id, (seq, word, score, match, is_valid, is_present) in enumerate( zip(processed_pred_seqs, processed_pred_str_seqs, processed_pred_score, match_list, pred_is_valid_flags, pred_is_present_flags)): # if p_id > 5: # break preds_out += '%s\n' % (' '.join(word)) if is_present: print_phrase = '[%s]' % ' '.join(word) else: print_phrase = ' '.join(word) if is_valid: print_phrase = '*%s' % print_phrase if match == 1.0: correct_str = '[correct!]' else: correct_str = '' if any([t >= opt.vocab_size for t in seq.sentence]): copy_str = '[copied!]' else: copy_str = '' print_out += '\t\t[%.4f]\t%s \t %s %s%s\n' % (-score, print_phrase, str(seq.sentence), correct_str, copy_str) ''' Evaluate predictions w.r.t different filterings and metrics ''' processed_pred_seqs = np.asarray(processed_pred_seqs)[valid_and_present] filtered_processed_pred_str_seqs = np.asarray(processed_pred_str_seqs)[valid_and_present] filtered_processed_pred_score = np.asarray(processed_pred_score)[valid_and_present] # 3rd round filtering (one-word phrases) num_oneword_seq = -1 filtered_pred_seq, filtered_pred_str_seqs, filtered_pred_score = post_process_predseqs((processed_pred_seqs, filtered_processed_pred_str_seqs, filtered_processed_pred_score), num_oneword_seq) match_list_exact = get_match_result(true_seqs=filtered_trg_str_seqs, pred_seqs=filtered_pred_str_seqs, type='exact') match_list_soft = get_match_result(true_seqs=filtered_trg_str_seqs, pred_seqs=filtered_pred_str_seqs, type='partial') assert len(filtered_pred_seq) == len(filtered_pred_str_seqs) == len(filtered_pred_score) == len(match_list_exact) == len(match_list_soft) print_out += "\n =======================================================" print_pred_str_seqs = [" ".join(item) for item in filtered_pred_str_seqs] print_trg_str_seqs = [" ".join(item) for item in filtered_trg_str_seqs] # print_out += "\n PREDICTION: " + " / ".join(print_pred_str_seqs) # print_out += "\n GROUND TRUTH: " + " / ".join(print_trg_str_seqs) for topk in topk_range: results_exact = evaluate(match_list_exact, filtered_pred_str_seqs, filtered_trg_str_seqs, topk=topk) for k, v in zip(score_names, results_exact): if '%s@%d_exact' % (k, topk) not in score_dict: score_dict['%s@%d_exact' % (k, topk)] = [] score_dict['%s@%d_exact' % (k, topk)].append(v) print_out += "\n ------------------------------------------------- EXACT, k=%d" % (topk) print_out += "\n --- batch precision, recall, fscore: " + str(results_exact[0]) + " , " + str(results_exact[1]) + " , " + str(results_exact[2]) print_out += "\n --- total precision, recall, fscore: " + str(np.average(score_dict['precision@%d_exact' % (topk)])) + " , " +\ str(np.average(score_dict['recall@%d_exact' % (topk)])) + " , " +\ str(np.average(score_dict['f_score@%d_exact' % (topk)])) for topk in topk_range: results_soft = evaluate(match_list_soft, filtered_pred_str_seqs, filtered_trg_str_seqs, topk=topk) for k, v in zip(score_names, results_soft): if '%s@%d_soft' % (k, topk) not in score_dict: score_dict['%s@%d_soft' % (k, topk)] = [] score_dict['%s@%d_soft' % (k, topk)].append(v) print_out += "\n ------------------------------------------------- SOFT, k=%d" % (topk) print_out += "\n --- batch precision, recall, fscore: " + str(results_soft[0]) + " , " + str(results_soft[1]) + " , " + str(results_soft[2]) print_out += "\n --- total precision, recall, fscore: " + str(np.average(score_dict['precision@%d_soft' % (topk)])) + " , " +\ str(np.average(score_dict['recall@%d_soft' % (topk)])) + " , " +\ str(np.average(score_dict['f_score@%d_soft' % (topk)])) print_out += "\n =======================================================" logger.info(print_out) ''' write predictions to disk ''' if predict_save_path: if not os.path.exists(os.path.join(predict_save_path, title + '_detail')): os.makedirs(os.path.join(predict_save_path, title + '_detail')) with open(os.path.join(predict_save_path, title + '_detail', str(example_idx) + '_print.txt'), 'w') as f_: f_.write(print_out) with open(os.path.join(predict_save_path, title + '_detail', str(example_idx) + '_prediction.txt'), 'w') as f_: f_.write(preds_out) out_dict = {} out_dict['src_str'] = src_str out_dict['trg_str'] = trg_str_seqs out_dict['trg_present_flag'] = trg_str_is_present_flags out_dict['pred_str'] = processed_pred_str_seqs out_dict['pred_score'] = [float(s) for s in processed_pred_score] out_dict['present_flag'] = pred_is_present_flags out_dict['valid_flag'] = pred_is_valid_flags out_dict['match_flag'] = [float(m) for m in match_list] for k,v in out_dict.items(): out_dict[k] = list(v) # print('len(%s) = %d' % (k, len(v))) # print(out_dict) assert len(out_dict['trg_str']) == len(out_dict['trg_present_flag']) assert len(out_dict['pred_str']) == len(out_dict['present_flag']) \ == len(out_dict['valid_flag']) == len(out_dict['match_flag']) == len(out_dict['pred_score']) with open(os.path.join(predict_save_path, title + '_detail', str(example_idx) + '.json'), 'w') as f_: f_.write(json.dumps(out_dict)) progbar.update(epoch, example_idx, [('f_score@5_exact', np.average(score_dict['f_score@5_exact'])), ('f_score@5_soft', np.average(score_dict['f_score@5_soft'])), ('f_score@10_exact', np.average(score_dict['f_score@10_exact'])), ('f_score@10_soft', np.average(score_dict['f_score@10_soft'])),]) example_idx += 1 # print('#(f_score@5#oneword=-1)=%d, sum=%f' % (len(score_dict['f_score@5#oneword=-1']), sum(score_dict['f_score@5#oneword=-1']))) # print('#(f_score@10#oneword=-1)=%d, sum=%f' % (len(score_dict['f_score@10#oneword=-1']), sum(score_dict['f_score@10#oneword=-1']))) # print('#(f_score@5#oneword=1)=%d, sum=%f' % (len(score_dict['f_score@5#oneword=1']), sum(score_dict['f_score@5#oneword=1']))) # print('#(f_score@10#oneword=1)=%d, sum=%f' % (len(score_dict['f_score@10#oneword=1']), sum(score_dict['f_score@10#oneword=1']))) if predict_save_path: # export scores. Each row is scores (precision, recall and f-score) of different way of filtering predictions (how many one-word predictions to keep) with open(predict_save_path + os.path.sep + title + '_result.csv', 'w') as result_csv: csv_lines = [] for mode in ["exact", "soft"]: for topk in topk_range: csv_line = "" for k in score_names: csv_line += ',%f' % np.average(score_dict['%s@%d_%s' % (k, topk, mode)]) csv_lines.append(csv_line + '\n') result_csv.writelines(csv_lines) # precision, recall, f_score = macro_averaged_score(precisionlist=score_dict['precision'], recalllist=score_dict['recall']) # logging.info("Macro@5\n\t\tprecision %.4f\n\t\tmacro recall %.4f\n\t\tmacro fscore %.4f " % (np.average(score_dict['precision@5']), np.average(score_dict['recall@5']), np.average(score_dict['f1score@5']))) # logging.info("Macro@10\n\t\tprecision %.4f\n\t\tmacro recall %.4f\n\t\tmacro fscore %.4f " % (np.average(score_dict['precision@10']), np.average(score_dict['recall@10']), np.average(score_dict['f1score@10']))) # precision, recall, f_score = evaluate(true_seqs=target_all, pred_seqs=prediction_all, topn=5) # logging.info("micro precision %.4f , micro recall %.4f, micro fscore %.4f " % (precision, recall, f_score)) for k,v in score_dict.items(): print('#(%s) = %d' % (k, len(v))) return score_dict def predict_beam_search(generator, data_loader, opt, title='', epoch=1, predict_save_path=None): if predict_save_path: logger = config.init_logging(title, predict_save_path + '/%s.log' % title, redirect_to_stdout=False) else: logger = config.init_logging(title, '', redirect_to_stdout=False) progbar = Progbar(logger=logger, title=title, target=len(data_loader.dataset.examples), batch_size=data_loader.batch_size, total_examples=len(data_loader.dataset.examples)) topk_range = [5, 10] score_names = ['precision', 'recall', 'f_score'] example_idx = 0 score_dict = {} # {'precision@5':[],'recall@5':[],'f1score@5':[], 'precision@10':[],'recall@10':[],'f1score@10':[]} for i, batch in enumerate(data_loader): # if i > 5: # break one2many_batch, one2one_batch = batch src_list, src_len, trg_list, _, trg_copy_target_list, src_oov_map_list, oov_list, src_str_list, trg_str_list = one2many_batch if torch.cuda.is_available(): src_list = src_list.cuda() src_oov_map_list = src_oov_map_list.cuda() print("batch size - %s" % str(src_list.size(0))) print("src size - %s" % str(src_list.size())) print("target size - %s" % len(trg_copy_target_list)) pred_seq_list = generator.beam_search(src_list, src_len, src_oov_map_list, oov_list, opt.word2id) ''' process each example in current batch ''' for src, src_str, trg, trg_str_seqs, trg_copy, pred_seq, oov in zip(src_list, src_str_list, trg_list, trg_str_list, trg_copy_target_list, pred_seq_list, oov_list): logger.info('====================== %d =========================' % (i)) print_out = '' print_out += '[Source][%d]: %s \n' % (len(src_str), ' '.join(src_str)) src = src.cpu().data.numpy() if torch.cuda.is_available() else src.data.numpy() print_out += '\nSource Input: \n %s\n' % (' '.join([opt.id2word[x] for x in src[:len(src_str) + 5]])) print_out += 'Real Target String [%d] \n\t\t%s \n' % (len(trg_str_seqs), trg_str_seqs) print_out += 'Real Target Input: \n\t\t%s \n' % str([[opt.id2word[x] for x in t] for t in trg]) print_out += 'Real Target Copy: \n\t\t%s \n' % str([[opt.id2word[x] if x < opt.vocab_size else oov[x - opt.vocab_size] for x in t] for t in trg_copy]) trg_str_is_present_flags, _ = if_present_duplicate_phrases(src_str, trg_str_seqs) # ignore the cases that there's no present phrases # if opt.must_appear_in_src and np.sum(trg_str_is_present_flags) == 0: # logger.error('found no present targets') # continue print_out += '[GROUND-TRUTH] #(present)/#(all targets)=%d/%d\n' % (sum(trg_str_is_present_flags), len(trg_str_is_present_flags)) print_out += '\n'.join(['\t\t[%s]' % ' '.join(phrase) if is_present else '\t\t%s' % ' '.join(phrase) for phrase, is_present in zip(trg_str_seqs, trg_str_is_present_flags)]) print_out += '\noov_list: \n\t\t%s \n' % str(oov) # 1st filtering pred_is_valid_flags, processed_pred_seqs, processed_pred_str_seqs, processed_pred_score = process_predseqs(pred_seq, oov, opt.id2word, opt) # 2nd filtering: if filter out phrases that don't appear in text, and keep unique ones after stemming if opt.must_appear_in_src: pred_is_present_flags, _ = if_present_duplicate_phrases(src_str, processed_pred_str_seqs) filtered_trg_str_seqs = np.asarray(trg_str_seqs)[trg_str_is_present_flags] else: pred_is_present_flags = [True] * len(processed_pred_str_seqs) valid_and_present = np.asarray(pred_is_valid_flags) * np.asarray(pred_is_present_flags) match_list = get_match_result(true_seqs=filtered_trg_str_seqs, pred_seqs=processed_pred_str_seqs) print_out += '[PREDICTION] #(valid)=%d, #(present)=%d, #(retained&present)=%d, #(all)=%d\n' % (sum(pred_is_valid_flags), sum(pred_is_present_flags), sum(valid_and_present), len(pred_seq)) print_out += '' ''' Print and export predictions ''' preds_out = '' output_keywords = list(map(lambda x:' '.join(x),processed_pred_str_seqs)) return output_keywords return [] def evaluate_greedy(model, data_loader, test_examples, opt): model.eval() logging.info('====================== Checking GPU Availability =========================') if torch.cuda.is_available(): logging.info('Running on GPU!') model.cuda() else: logging.info('Running on CPU!') logging.info('====================== Start Predicting =========================') progbar = Progbar(title='Testing', target=len(data_loader), batch_size=data_loader.batch_size, total_examples=len(data_loader.dataset)) ''' Note here each batch only contains one data example, thus decoder_probs is flattened ''' for i, (batch, example) in enumerate(zip(data_loader, test_examples)): src = batch.src logging.info('====================== %d =========================' % (i + 1)) logging.info('\nSource text: \n %s\n' % (' '.join([opt.id2word[wi] for wi in src.data.numpy()[0]]))) if torch.cuda.is_available(): src.cuda() # trg = Variable(torch.from_numpy(np.zeros((src.size(0), opt.max_sent_length), dtype='int64'))) trg = Variable(torch.LongTensor([[opt.word2id[pykp.io.BOS_WORD]] * opt.max_sent_length])) max_words_pred = model.greedy_predict(src, trg) progbar.update(None, i, []) sentence_pred = [opt.id2word[x] for x in max_words_pred] sentence_real = example['trg_str'] if '</s>' in sentence_real: index = sentence_real.index('</s>') sentence_pred = sentence_pred[:index] logging.info('\t\tPredicted : %s ' % (' '.join(sentence_pred))) logging.info('\t\tReal : %s ' % (sentence_real)) def stem_word_list(word_list): return [stemmer.stem(w.strip().lower()) for w in word_list] def macro_averaged_score(precisionlist, recalllist): precision = np.average(precisionlist) recall = np.average(recalllist) f_score = 0 if(precision or recall): f_score = round((2 * (precision * recall)) / (precision + recall), 2) return precision, recall, f_score def get_match_result(true_seqs, pred_seqs, do_stem=True, type='exact'): ''' :param true_seqs: :param pred_seqs: :param do_stem: :param topn: :param type: 'exact' or 'partial' :return: ''' micro_metrics = [] micro_matches = [] # do processing to baseline predictions match_score = np.asarray([0.0] * len(pred_seqs), dtype='float32') target_number = len(true_seqs) predicted_number = len(pred_seqs) metric_dict = {'target_number': target_number, 'prediction_number': predicted_number, 'correct_number': match_score} # convert target index into string if do_stem: true_seqs = [stem_word_list(seq) for seq in true_seqs] pred_seqs = [stem_word_list(seq) for seq in pred_seqs] for pred_id, pred_seq in enumerate(pred_seqs): if type == 'exact': match_score[pred_id] = 0 for true_id, true_seq in enumerate(true_seqs): match = True if len(pred_seq) != len(true_seq): continue for pred_w, true_w in zip(pred_seq, true_seq): # if one two words are not same, match fails if pred_w != true_w: match = False break # if every word in pred_seq matches one true_seq exactly, match succeeds if match: match_score[pred_id] = 1 break elif type == 'partial': max_similarity = 0. pred_seq_set = set(pred_seq) # use the jaccard coefficient as the degree of partial match for true_id, true_seq in enumerate(true_seqs): true_seq_set = set(true_seq) jaccard = len(set.intersection(*[set(true_seq_set), set(pred_seq_set)])) / float(len(set.union(*[set(true_seq_set), set(pred_seq_set)]))) if jaccard > max_similarity: max_similarity = jaccard match_score[pred_id] = max_similarity elif type == 'bleu': # account for the match of subsequences, like n-gram-based (BLEU) or LCS-based match_score[pred_id] = bleu(pred_seq, true_seqs, [0.1, 0.3, 0.6]) return match_score def evaluate(match_list, predicted_list, true_list, topk=5): if len(match_list) > topk: match_list = match_list[:topk] if len(predicted_list) > topk: predicted_list = predicted_list[:topk] # Micro-Averaged Method micropk = float(sum(match_list)) / float(len(predicted_list)) if len(predicted_list) > 0 else 0.0 micrork = float(sum(match_list)) / float(len(true_list)) if len(true_list) > 0 else 0.0 if micropk + micrork > 0: microf1 = float(2 * (micropk * micrork)) / (micropk + micrork) else: microf1 = 0.0 return micropk, micrork, microf1 def f1_score(prediction, ground_truth): # both prediction and grount_truth should be list of words common = Counter(prediction) & Counter(ground_truth) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction) recall = 1.0 * num_same / len(ground_truth) f1 = (2 * precision * recall) / (precision + recall) return f1 def self_redundancy(_input): # _input shoule be list of list of words if len(_input) == 0: return None _len = len(_input) scores = np.ones((_len, _len), dtype="float32") * -1.0 for i in range(_len): for j in range(_len): if scores[i][j] != -1: continue elif i == j: scores[i][j] = 0.0 else: f1 = f1_score(_input[i], _input[j]) scores[i][j] = f1 scores[j][i] = f1 res = np.max(scores, 1) res = np.mean(res) return res
[ "torch.cuda.is_available", "torch.LongTensor" ]
0.4.0
malarinv/seq2seq-keyphrase-pytorch
14350477867bbaafe285d6ac0e7a814f4cda1bdf
1.4
import torch from torch import Tensor EPS = torch.tensor(1e-8) @torch.jit.script def dist_iou_ab(box_a: Tensor, box_b: Tensor, eps=EPS): """ Args: box_a: tensor of shape [batch_size, boxes_a, 4] box_b: tensor of shape [batch_size, boxes_b, 4] gamma: float eps: float Original: https://github.com/Zzh-tju/CIoU/blob/8995056b1e93b86d03c384f042514391b70e58e0/layers/functions/detection.py#L162 https://github.com/Zzh-tju/CIoU/blob/8995056b1e93b86d03c384f042514391b70e58e0/layers/box_utils.py#L82 """ assert box_a.dim() == 3 assert box_b.dim() == 3 assert box_a.size(0) == box_b.size(0) A, B = box_a.size(1), box_b.size(1) box_a = box_a.unsqueeze(2).expand(-1, -1, A, -1) box_b = box_b.unsqueeze(1).expand(-1, B, -1, -1) inter_yx0 = torch.max(box_a[..., :2], box_b[..., :2]) inter_yx1 = torch.min(box_a[..., 2:4], box_b[..., 2:4]) inter_hw = torch.clamp_min_(inter_yx1 - inter_yx0, 0) inter_area = torch.prod(inter_hw, dim=-1) # del inter_hw, inter_yx0, inter_yx1 hw_a = box_a[..., 2:4] - box_a[..., :2] hw_b = box_b[..., 2:4] - box_b[..., :2] area_a = torch.prod(hw_a, dim=-1) area_b = torch.prod(hw_b, dim=-1) union_area = area_a + area_b - inter_area iou = inter_area / (union_area + eps) # del inter_area, union_area, area_a, area_b, hw_a, hw_b center_a = (box_a[..., :2] + box_a[..., 2:4]) / 2 center_b = (box_b[..., :2] + box_b[..., 2:4]) / 2 inter_diag = torch.pow(center_b - center_a, 2).sum(dim=-1) clos_yx0 = torch.min(box_a[..., :2], box_b[..., :2]) clos_yx1 = torch.max(box_a[..., 2:4], box_b[..., 2:4]) clos_hw = torch.clamp_min_(clos_yx1 - clos_yx0, 0) clos_diag = torch.pow(clos_hw, 2).sum(dim=-1) # del clos_yx0, clos_yx1, clos_hw, center_a, center_b dist = inter_diag / (clos_diag + eps) return iou - dist ** 0.9 def cluster_nms_dist_iou(boxes: Tensor, scores: Tensor, iou_threshold=0.5, top_k=200): assert boxes.dim() == 2 assert scores.dim() == 2 assert boxes.size(0) == scores.size(0) scores, classes = torch.max(scores, dim=1) # scores: [detections] _, idx = scores.sort(descending=True) idx = idx[:top_k] # add batch dim top_k_boxes = boxes[idx][None, ...] # [1, top_k, top_k] -> [top_k, top_k] iou = dist_iou_ab(top_k_boxes, top_k_boxes)[0] iou = iou.triu_(diagonal=1) best_iou = torch.zeros_like(idx) iou_b = iou for i in range(top_k): iou_a = iou_b best_iou, _ = torch.max(iou_b, dim=0) # keep far away boxes keep = (best_iou <= iou_threshold)[:, None].expand_as(iou_b) iou_b = torch.where(keep, iou, torch.zeros_like(iou_b)) if iou_b.eq(iou_a).all(): break idx = idx[best_iou <= iou_threshold] return boxes[idx], scores[idx], classes[idx]
[ "torch.prod", "torch.min", "torch.max", "torch.clamp_min_", "torch.tensor", "torch.zeros_like", "torch.pow" ]
1.4.0
dmitry-vorobiev/kaggle-global-wheat-detection
adf75b73f5955848488477c361c66f1b0510b2bb
0.4
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: """ import os import sys import torch import torch.nn as nn from torch.utils.data.dataset import TensorDataset sys.path.append("..") from rater.datasets.criteo import Criteo from rater.models.ctr.flen import FLEN from rater.models.model import train_model pwd_path = os.path.abspath(os.path.dirname(__file__)) def train(x_idx, x_value, label, features, out_type='binary'): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") X_idx_tensor = torch.LongTensor(x_idx).to(device) X_value_tensor = torch.Tensor(x_value).to(device) y_tensor = torch.Tensor(label).to(device) y_tensor = y_tensor.reshape(-1, 1) X = TensorDataset(X_idx_tensor, y_tensor) model = FLEN(features.feature_size(), features.field_size(), features.feature_size(), field_ranges=features.field_range(), out_type=out_type).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) model_path = os.path.join(pwd_path, 'flen_model.pt') model, loss_history = train_model(model=model, model_path=model_path, dataset=X, loss_func=nn.BCELoss(), optimizer=optimizer, device=device, val_size=0.2, batch_size=32, epochs=10) print(loss_history) if __name__ == '__main__': # load criteo sample dataset dataset = Criteo(n_samples=100) features, X_idx, X_value, y, category_index, continuous_value = dataset.get_features(use_continuous_columns=True, use_category_columns=True) print(features.feature_size(), features.field_size()) print("X_idx[0], X_value[0], y[0] :\n", X_idx[0], X_value[0], y[0]) train(X_idx, X_value, y, features)
[ "torch.utils.data.dataset.TensorDataset", "torch.cuda.is_available", "torch.LongTensor", "torch.nn.BCELoss", "torch.Tensor" ]
0.4.1
shibing624/rater
8437dea8baf0137ab3c07dd19c5f2bb8c15b4435
0.4
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: @reference: https://github.com/tkipf/pygcn; https://github.com/dawnranger/pytorch-AGNN """ from __future__ import division from __future__ import print_function import argparse import time import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from rater.models.graph.agnn import AGNN from rater.models.graph.reader import load_data, accuracy def train(): t_total = time.time() for epoch in range(args.epochs): t = time.time() model.train() optimizer.zero_grad() output = model(features, adj) loss_train = F.nll_loss(output[idx_train], labels[idx_train]) acc_train = accuracy(output[idx_train], labels[idx_train]) loss_train.backward() optimizer.step() if not args.fastmode: # Evaluate validation set performance separately, # deactivates dropout during validation run. model.eval() output = model(features, adj) loss_val = F.nll_loss(output[idx_val], labels[idx_val]) acc_val = accuracy(output[idx_val], labels[idx_val]) print('Epoch: {:04d}'.format(epoch + 1), 'loss_train: {:.4f}'.format(loss_train.item()), 'acc_train: {:.4f}'.format(acc_train.item()), 'loss_val: {:.4f}'.format(loss_val.item()), 'acc_val: {:.4f}'.format(acc_val.item()), 'time: {:.4f}s'.format(time.time() - t)) print("Optimization Finished!") print("Total time elapsed: {:.4f}s".format(time.time() - t_total)) def test(): model.eval() output = model(features, adj) loss_test = F.nll_loss(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) print("Test set results:", "loss= {:.4f}".format(loss_test.item()), "accuracy= {:.4f}".format(acc_test.item())) if __name__ == "__main__": # Training settings parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') parser.add_argument('--fastmode', action='store_true', default=True, help='Validate during training pass.') parser.add_argument('--seed', type=int, default=42, help='Random seed.') parser.add_argument('--epochs', type=int, default=500, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=16, help='Number of hidden units.') parser.add_argument('--layers', type=int, default=3, help='Number of attention layers.') parser.add_argument('--dropout_rate', type=float, default=0.5, help='Dropout rate (1 - keep probability).') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # Load data adj, features, labels, idx_train, idx_val, idx_test = load_data() # Model and optimizer model = AGNN(nfeat=features.shape[1], nhid=args.hidden, nclass=labels.max() + 1, nlayers=args.layers, dropout_rate=args.dropout_rate) # print(model) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.cuda: model.cuda() features = features.cuda() adj = adj.cuda() labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() features, adj, labels = Variable(features), Variable(adj), Variable(labels) train() test()
[ "torch.cuda.manual_seed", "torch.autograd.Variable", "torch.manual_seed", "torch.cuda.is_available", "torch.nn.functional.nll_loss" ]
0.4.1
shibing624/rater
8437dea8baf0137ab3c07dd19c5f2bb8c15b4435
1.4
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import torch import torch.nn.functional as F from fastreid.utils import comm from fastreid.layers import GatherLayer from .utils import concat_all_gather, euclidean_dist, normalize def softmax_weights(dist, mask): max_v = torch.max(dist * mask, dim=1, keepdim=True)[0] diff = dist - max_v Z = torch.sum(torch.exp(diff) * mask, dim=1, keepdim=True) + 1e-6 # avoid division by zero W = torch.exp(diff) * mask / Z return W def hard_example_mining(dist_mat, is_pos, is_neg): """For each anchor, find the hardest positive and negative sample. Args: dist_mat: pair wise distance between samples, shape [N, M] is_pos: positive index with shape [N, M] is_neg: negative index with shape [N, M] Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] p_inds: pytorch LongTensor, with shape [N]; indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1 n_inds: pytorch LongTensor, with shape [N]; indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1 NOTE: Only consider the case in which all labels have same num of samples, thus we can cope with all anchors in parallel. """ assert len(dist_mat.size()) == 2 N = dist_mat.size(0) # `dist_ap` means distance(anchor, positive) # both `dist_ap` and `relative_p_inds` with shape [N, 1] dist_ap, relative_p_inds = torch.max( dist_mat[is_pos].contiguous().view(N, -1), 1, keepdim=True) # `dist_an` means distance(anchor, negative) # both `dist_an` and `relative_n_inds` with shape [N, 1] dist_an, relative_n_inds = torch.min( dist_mat[is_neg].contiguous().view(N, -1), 1, keepdim=True) # shape [N] dist_ap = dist_ap.squeeze(1) dist_an = dist_an.squeeze(1) return dist_ap, dist_an def weighted_example_mining(dist_mat, is_pos, is_neg): """For each anchor, find the weighted positive and negative sample. Args: dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N] is_pos: is_neg: Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] """ assert len(dist_mat.size()) == 2 is_pos = is_pos.float() is_neg = is_neg.float() dist_ap = dist_mat * is_pos dist_an = dist_mat * is_neg weights_ap = softmax_weights(dist_ap, is_pos) weights_an = softmax_weights(-dist_an, is_neg) dist_ap = torch.sum(dist_ap * weights_ap, dim=1) dist_an = torch.sum(dist_an * weights_an, dim=1) return dist_ap, dist_an def triplet_loss(embedding, targets, margin, norm_feat, hard_mining): r"""Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid). Related Triplet Loss theory can be found in paper 'In Defense of the Triplet Loss for Person Re-Identification'.""" if norm_feat: embedding = normalize(embedding, axis=-1) # For distributed training, gather all features from different process. if comm.get_world_size() > 1: all_embedding = torch.cat(GatherLayer.apply(embedding), dim=0) all_targets = concat_all_gather(targets) else: all_embedding = embedding all_targets = targets dist_mat = euclidean_dist(embedding, all_embedding) N, M = dist_mat.size() is_pos = targets.view(N, 1).expand(N, M).eq(all_targets.view(M, 1).expand(M, N).t()) is_neg = targets.view(N, 1).expand(N, M).ne(all_targets.view(M, 1).expand(M, N).t()) if hard_mining: dist_ap, dist_an = hard_example_mining(dist_mat, is_pos, is_neg) else: dist_ap, dist_an = weighted_example_mining(dist_mat, is_pos, is_neg) y = dist_an.new().resize_as_(dist_an).fill_(1) if margin > 0: loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=margin) else: loss = F.soft_margin_loss(dist_an - dist_ap, y) # fmt: off if loss == float('Inf'): loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=0.3) # fmt: on return loss
[ "torch.max", "torch.nn.functional.margin_ranking_loss", "torch.nn.functional.soft_margin_loss", "torch.exp", "torch.sum" ]
1.4.0
tenghehan/reid_without_id
d1d0ff273b1ef19fc6da8cbbf210527779b37455
0.4
# pylint: disable=invalid-name,no-self-use,protected-access from collections import namedtuple import os import pytest from flaky import flaky from numpy.testing import assert_almost_equal import torch from allennlp.common.testing import ModelTestCase from allennlp.training.metrics.wikitables_accuracy import SEMPRE_ABBREVIATIONS_PATH, SEMPRE_GRAMMAR_PATH @pytest.mark.java class WikiTablesMmlSemanticParserTest(ModelTestCase): def setUp(self): self.should_remove_sempre_abbreviations = not os.path.exists(SEMPRE_ABBREVIATIONS_PATH) self.should_remove_sempre_grammar = not os.path.exists(SEMPRE_GRAMMAR_PATH) # The model tests are run with respect to the module root, so check if abbreviations # and grammar already exist there (since we want to clean up module root after test) self.module_root_abbreviations_path = self.MODULE_ROOT / "data" / "abbreviations.tsv" self.module_root_grammar_path = self.MODULE_ROOT / "data" / "grow.grammar" self.should_remove_root_sempre_abbreviations = not os.path.exists(self.module_root_abbreviations_path) self.should_remove_root_sempre_grammar = not os.path.exists(self.module_root_grammar_path) super(WikiTablesMmlSemanticParserTest, self).setUp() self.set_up_model(str(self.FIXTURES_ROOT / "semantic_parsing" / "wikitables" / "experiment.json"), str(self.FIXTURES_ROOT / "data" / "wikitables" / "sample_data.examples")) def tearDown(self): super().tearDown() # We don't want to leave generated files around just from running tests... if self.should_remove_sempre_abbreviations and os.path.exists(SEMPRE_ABBREVIATIONS_PATH): os.remove(SEMPRE_ABBREVIATIONS_PATH) if self.should_remove_sempre_grammar and os.path.exists(SEMPRE_GRAMMAR_PATH): os.remove(SEMPRE_GRAMMAR_PATH) if self.should_remove_root_sempre_abbreviations and os.path.exists(self.module_root_abbreviations_path): os.remove(self.module_root_abbreviations_path) if self.should_remove_root_sempre_grammar and os.path.exists(self.module_root_grammar_path): os.remove(self.module_root_grammar_path) def test_model_can_train_save_and_load(self): self.ensure_model_can_train_save_and_load(self.param_file) def test_mixture_no_features_model_can_train_save_and_load(self): param_file = self.FIXTURES_ROOT / 'semantic_parsing' / 'wikitables' / 'experiment-mixture.json' self.ensure_model_can_train_save_and_load(param_file) @flaky def test_elmo_no_features_can_train_save_and_load(self): param_file = self.FIXTURES_ROOT / 'semantic_parsing' / 'wikitables' / 'experiment-elmo-no-features.json' self.ensure_model_can_train_save_and_load(param_file, tolerance=1e-2) def test_get_neighbor_indices(self): worlds, num_entities = self.get_fake_worlds() tensor = torch.LongTensor([]) neighbor_indices = self.model._get_neighbor_indices(worlds, num_entities, tensor) # Checks for the correct shape meaning dimension 2 has size num_neighbors, # padding of -1 is used, and correct neighbor indices. assert_almost_equal(neighbor_indices.data.numpy(), [[[-1, -1], [3, 4], [3, 4], [1, 2], [1, 2]], [[-1, -1], [2, -1], [1, -1], [-1, -1], [-1, -1]]]) def test_get_type_vector(self): worlds, num_entities = self.get_fake_worlds() tensor = torch.LongTensor([]) type_vector, _ = self.model._get_type_vector(worlds, num_entities, tensor) # Verify that both types are present and padding used for non existent entities. assert_almost_equal(type_vector.data.numpy(), [[0, 1, 1, 3, 3], [0, 1, 3, 0, 0]]) def test_get_linking_probabilities(self): worlds, num_entities = self.get_fake_worlds() # (batch_size, num_question_tokens, num_entities) linking_scores = [[[-2, 1, 0, -3, 2], [4, -1, 5, -3, 4]], [[0, 1, 8, 10, 10], [3, 2, -1, -2, 1]]] linking_scores = torch.FloatTensor(linking_scores) question_mask = torch.LongTensor([[1, 1], [1, 0]]) _, entity_type_dict = self.model._get_type_vector(worlds, num_entities, linking_scores) # (batch_size, num_question_tokens, num_entities) entity_probability = self.model._get_linking_probabilities(worlds, linking_scores, question_mask, entity_type_dict) # The following properties in entity_probability are tested for by true_probability: # (1) It has all 0.0 probabilities when there is no question token, as seen for the # second word in the second batch. # (2) It has 0.0 probabilities when an entity is masked, as seen in the last two entities # for the second batch instance. # (3) The probabilities for entities of the same type with the same question token should # sum to at most 1, but not necessarily 1, because some probability mass goes to the # null entity. We have three entity types here, so each row should sum to at most 3, # and that number will approach 3 as the unnormalized linking scores for each entity # get higher. true_probability = [[[0.1192029, 0.5761169, 0.2119416, 0.0058998, 0.8756006], [0.9820138, 0.0024561, 0.9908675, 0.0008947, 0.9811352]], [[0.5, 0.7310586, 0.9996647, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]]] assert_almost_equal(entity_probability.detach().cpu().numpy(), true_probability) def get_fake_worlds(self): # Generate a toy WikitablesWorld. FakeTable = namedtuple('FakeTable', ['entities', 'neighbors']) FakeWorld = namedtuple('FakeWorld', ['table_graph']) entities = [['0', 'fb:cell.2010', 'fb:cell.2011', 'fb:row.row.year', 'fb:row.row.year2'], ['1', 'fb:cell.2012', 'fb:row.row.year']] neighbors = [{'fb:cell.2010': ['fb:row.row.year', 'fb:row.row.year2'], 'fb:cell.2011': ['fb:row.row.year', 'fb:row.row.year2'], 'fb:row.row.year': ['fb:cell.2010', 'fb:cell.2011'], 'fb:row.row.year2': ['fb:cell.2010', 'fb:cell.2011'], '0': [], }, {'fb:cell.2012': ['fb:row.row.year'], 'fb:row.row.year': ['fb:cell.2012'], '1': [], }] worlds = [FakeWorld(FakeTable(entity_list, entity2neighbors)) for entity_list, entity2neighbors in zip(entities, neighbors)] num_entities = max([len(entity_list) for entity_list in entities]) return worlds, num_entities
[ "torch.FloatTensor", "torch.LongTensor" ]
0.4.1
csbhagav/allennlp
4c99f8e82f7fd70c86652109bfca5282d470e981
1.8
"""Test cases for datahandling.""" import unittest import torch from dfadetect.datasets import AudioDataset from dfadetect.utils import find_wav_files from tests.utils import REAL_PATH, load_real, load_special class TestAudioDataset(unittest.TestCase): def test_loading_audio(self): dataset = load_real() # found all files self.assertEqual(len(dataset), 5) # returns sample rate self.assertEqual(len(dataset[0]), 2) def test_resampling(self): new_rate = 24_000 dataset = load_real(sample_rate=new_rate) for _, sample_rate in dataset: self.assertEqual(sample_rate, new_rate) def test_loading_audio_triming(self): # trimmed dataset = load_real() trim_time = 0. for waveform, _ in dataset: trim_time += waveform.shape[1] # not trimmed dataset = load_real(trim=False) orig_time = 0. for waveform, _ in dataset: orig_time += waveform.shape[1] self.assertGreater(orig_time, trim_time) def test_trimming_entire_file(self): dataset = load_special() # check that we do not trim entire file for waveform, _sr in dataset: self.assertGreater(waveform.size()[1], 0) def test_phone_call(self): dataset = load_special(phone_call=True) for _waveform, sr in dataset: self.assertEqual(sr, 8_000) def test_phone_call_reassigned(self): dataset = load_special() for _waveform, sr in dataset: self.assertEqual(sr, 16_000) dataset.phone_call = True for _waveform, sr in dataset: self.assertEqual(sr, 8_000) def test_list_of_paths(self): ref = load_real() paths = find_wav_files(REAL_PATH) from_paths = AudioDataset(paths) for (file_1, sr_1), (file_2, sr_2) in zip(ref, from_paths): self.assertTrue(torch.allclose(file_1, file_2)) self.assertEqual(sr_1, sr_2) if __name__ == "__main__": unittest.main()
[ "torch.allclose" ]
1.8.1
RUB-SysSec/WaveFake
d52d51b9ccdb0cec3f484e84b228791f06b955be
1.1
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.utils import data import numpy as np from functools import reduce from egg.zoo.objects_game.util import compute_binomial import itertools import os import pathlib class VectorsLoader: def __init__(self, perceptual_dimensions=[4, 4, 4, 4, 4], n_distractors=1, batch_size=32, train_samples=128000, validation_samples=4096, test_samples=1024, shuffle_train_data=False, dump_data_folder=None, load_data_path =None, seed=None): self.perceptual_dimensions = perceptual_dimensions self._n_features = len(self.perceptual_dimensions) self.n_distractors = n_distractors self.batch_size = batch_size self.train_samples = train_samples self.validation_samples = validation_samples self.test_samples = test_samples self.shuffle_train_data = shuffle_train_data self.load_data_path = load_data_path self.dump_data_folder = pathlib.Path(dump_data_folder) if dump_data_folder is not None else None seed = seed if seed else np.random.randint(0, 2 ** 31) self.random_state = np.random.RandomState(seed) @property def n_features(self): return self._n_features @n_features.setter def n_features(self, n_features): self._n_features = n_features def upd_cl_options(self, opts): opts.perceptual_dimensions = self.perceptual_dimensions opts.train_samples = self.train_samples opts.validation_samples = self.validation_samples opts.test_samples = self.test_samples opts.n_distractors = self.n_distractors def load_data(self, data_file): data = np.load(data_file) train, train_labels = data['train'], data['train_labels'] valid, valid_labels = data['valid'], data['valid_labels'] test, test_labels = data['test'], data['test_labels'] # train valid and test are of shape b_size X n_distractors+1 X n_features self.train_samples = train.shape[0] self.validation_samples = valid.shape[0] self.test_samples = test.shape[0] self.n_distractors = train.shape[1] - 1 self.perceptual_dimensions = [-1] * train.shape[-1] self._n_features = len(self.perceptual_dimensions) return (train, train_labels), (valid, valid_labels), (test, test_labels) def _fill_split(self, all_vectors, n_samples, tuple_dict): split_list = [] len_all_vectors = len(all_vectors) tuple_dim = self.n_distractors+1 done = 0 while done < n_samples: candidates_tuple = self.random_state.choice(len_all_vectors, replace=False, size=tuple_dim) key = '' for vector_idx in candidates_tuple: key += f'{str(vector_idx)}-' key = key[:-1] if key not in tuple_dict: tuple_dict[key] = True possible_batch = all_vectors[candidates_tuple] split_list.append(possible_batch) done += 1 else: continue target_idxs = self.random_state.choice(self.n_distractors+1, n_samples) return (np.array(split_list), target_idxs), tuple_dict def generate_tuples(self, data): data = np.array(data) train_data, tuple_dict = self._fill_split(data, self.train_samples, {}) valid_data, tuple_dict = self._fill_split(data, self.validation_samples, tuple_dict) test_data, _ = self._fill_split(data, self.test_samples, tuple_dict) return train_data, valid_data, test_data def collate(self, batch): tuples, target_idxs = [elem[0] for elem in batch], [elem[1] for elem in batch] receiver_input = np.reshape(tuples, (self.batch_size, self.n_distractors+1, -1)) labels = np.array(target_idxs) targets = receiver_input[np.arange(self.batch_size), labels] return torch.from_numpy(targets).float(), torch.from_numpy(labels).long(), torch.from_numpy(receiver_input).float() def get_iterators(self): if self.load_data_path: train, valid, test = self.load_data(self.load_data_path) else: # if load_data_path wasn't given then I need to generate the tuple world_dim = reduce(lambda x, y: x*y, self.perceptual_dimensions) possible_tuples = compute_binomial(world_dim, self.n_distractors+1) list_of_dim = [range(1, elem+1) for elem in self.perceptual_dimensions] all_vectors = list(itertools.product(*list_of_dim)) assert self.train_samples > 0 and self.validation_samples > 0 and self.test_samples > 0, 'Train size, validation size and test size must all be greater than 0' assert possible_tuples > self.train_samples + self.validation_samples + self.test_samples , f'Not enough data for requested split sizes. Reduced split samples or increase perceptual_dimensions' train, valid, test = self.generate_tuples(data=all_vectors) assert self.train_samples >= self.batch_size and self.validation_samples >= self.batch_size and self.test_samples >= self.batch_size, 'Batch size cannot be smaller than any split size' train_dataset = TupleDataset(*train) valid_dataset = TupleDataset(*valid) test_dataset = TupleDataset(*test) train_it = data.DataLoader(train_dataset, batch_size=self.batch_size, collate_fn=self.collate, drop_last=True, shuffle=self.shuffle_train_data) validation_it = data.DataLoader(valid_dataset, batch_size=self.batch_size, collate_fn=self.collate, drop_last=True) test_it = data.DataLoader(test_dataset, batch_size=self.batch_size, collate_fn=self.collate, drop_last=True) if self.dump_data_folder: self.dump_data_folder.mkdir(exist_ok=True) path = self.dump_data_folder / f'{self.perceptual_dimensions}_{self.n_distractors}_distractors' np.savez_compressed(path, train=train[0], train_labels=train[1], valid=valid[0], valid_labels=valid[1], test=test[0], test_labels=test[1], n_distractors=self.n_distractors) return train_it, validation_it, test_it class TupleDataset(data.Dataset): def __init__(self, tuples, target_idxs): self.list_of_tuples = tuples self.target_idxs = target_idxs def __len__(self): return len(self.list_of_tuples) def __getitem__(self, idx): if idx < 0 or idx >= len(self.list_of_tuples): raise RuntimeError('Accessing dataset through wrong index: < 0 or >= max_len') return self.list_of_tuples[idx], self.target_idxs[idx]
[ "torch.from_numpy" ]
1.1.0
Shawn-Guo-CN/EGG
0a5b258108e2cd1c873d7f67e8c92551bb3d809c
1.0
import sys import pytest import numpy as np import torch from numpy.testing import assert_ sys.path.append("../../../") from pycroscopy.learn import Trainer, models def assert_weights_equal(m1, m2): eq_w = [] for p1, p2 in zip(m1.values(), m2.values()): eq_w.append(np.array_equal( p1.detach().cpu().numpy(), p2.detach().cpu().numpy())) return all(eq_w) @pytest.mark.parametrize("dim, size", [(1, [8]), (2, [8, 8]), (3, [8, 8, 8])]) def test_trainer(dim, size): # Initialize a model in_dim = (1, *size) model = models.AutoEncoder( in_dim, layers_per_block=[1, 1], nfilters=2) weights_before = model.state_dict() # Create dummy train set X_train = torch.randn(5, *in_dim) # Initialize trainer t = Trainer(model, X_train, X_train, batch_size=2) # train and compare model params before and after t.fit(num_epochs=2) weights_after = model.state_dict() assert_(not assert_weights_equal(weights_before, weights_after)) @pytest.mark.parametrize("dim, size", [(1, [8]), (2, [8, 8]), (3, [8, 8, 8])]) def test_trainer_determenism(dim, size): in_dim = (1, *size) # Create dummy train set torch.manual_seed(0) X_train = torch.randn(5, *in_dim) # Initialize a model model1 = models.AutoEncoder( in_dim, layers_per_block=[1, 1], nfilters=2, upsampling_mode="nearest") # Initialize trainer t = Trainer(model1, X_train, X_train, batch_size=2) # train t.fit(num_epochs=4) # Reininitiaize model and train again torch.manual_seed(0) X_train = torch.randn(5, *in_dim) model2 = models.AutoEncoder( in_dim, layers_per_block=[1, 1], nfilters=2, upsampling_mode="nearest") t = Trainer(model2, X_train, X_train, batch_size=2) t.fit(num_epochs=4) assert_(assert_weights_equal(model1.state_dict(), model2.state_dict()))
[ "torch.manual_seed", "torch.randn" ]
1.0.0
itsalexis962/pycroscopy
8a6557408ffdc332cef102616be16e26a396532f
1.0
import logging import pytest import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchgeometry as tgm logger = logging.getLogger(__name__) class TestIntegrationFocalLoss: # optimization thresh = 1e-1 lr = 1e-3 num_iterations = 1000 num_classes = 2 # focal loss alpha = 2.0 gamma = 2.0 def generate_sample(self, base_target, std_val=0.1): target = base_target.float() / base_target.max() noise = std_val * torch.rand(1, 1, 6, 5) return target + noise @staticmethod def init_weights(m): if isinstance(m, nn.Conv2d): torch.nn.init.xavier_uniform_(m.weight) def test_conv2d_relu(self): # we generate base sample target = torch.LongTensor(1, 6, 5).fill_(0) for i in range(1, self.num_classes): target[..., i:-i, i:-i] = i m = nn.Sequential( nn.Conv2d(1, self.num_classes, kernel_size=3, padding=1), nn.ReLU(True), ) m.apply(self.init_weights) optimizer = optim.Adam(m.parameters(), lr=self.lr) criterion = tgm.losses.FocalLoss( alpha=self.alpha, gamma=self.gamma, reduction='mean') # NOTE: uncomment to compare against vanilla cross entropy # criterion = nn.CrossEntropyLoss() for iter_id in range(self.num_iterations): sample = self.generate_sample(target) output = m(sample) loss = criterion(output, target) logger.debug("Loss: {}".format(loss.item())) optimizer.zero_grad() loss.backward() optimizer.step() sample = self.generate_sample(target) output_argmax = torch.argmax(m(sample), dim=1) logger.debug("Output argmax: \n{}".format(output_argmax)) # TODO(edgar): replace by IoU or find a more stable solution # for this test. The issue is that depending on # the seed to initialize the weights affects the # final results and slows down the convergence of # the algorithm. val = F.mse_loss(output_argmax.float(), target.float()) if not val.item() < self.thresh: pytest.xfail("Wrong seed or initial weight values.")
[ "torch.rand", "torch.nn.init.xavier_uniform_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.LongTensor" ]
1.0.0
fkluger/torchgeometry
5f1a4dc8ff3647a60901b79aa90a4e799829a7a2
1.0
from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from .one_hot import one_hot # based on: # https://github.com/kevinzakka/pytorch-goodies/blob/master/losses.py class TverskyLoss(nn.Module): r"""Criterion that computes Tversky Coeficient loss. According to [1], we compute the Tversky Coefficient as follows: .. math:: \text{S}(P, G, \alpha; \beta) = \frac{|PG|}{|PG| + \alpha |P \ G| + \beta |G \ P|} where: - :math:`P` and :math:`G` are the predicted and ground truth binary labels. - :math:`\alpha` and :math:`\beta` control the magnitude of the penalties for FPs and FNs, respectively. Notes: - :math:`\alpha = \beta = 0.5` => dice coeff - :math:`\alpha = \beta = 1` => tanimoto coeff - :math:`\alpha + \beta = 1` => F beta coeff Shape: - Input: :math:`(N, C, H, W)` where C = number of classes. - Target: :math:`(N, H, W)` where each value is :math:`0 ≤ targets[i] ≤ C−1`. Examples: >>> N = 5 # num_classes >>> loss = tgm.losses.TverskyLoss(alpha=0.5, beta=0.5) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() References: [1]: https://arxiv.org/abs/1706.05721 """ def __init__(self, alpha, beta) -> None: super(TverskyLoss, self).__init__() self.alpha = alpha self.beta = beta self.eps = 1e-6 def forward( self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: if not torch.is_tensor(input): raise TypeError("Input type is not a torch.Tensor. Got {}" .format(type(input))) if not len(input.shape) == 4: raise ValueError("Invalid input shape, we expect BxNxHxW. Got: {}" .format(input.shape)) if not input.shape[-2:] == target.shape[-2:]: raise ValueError("input and target shapes must be the same. Got: {}" .format(input.shape, input.shape)) if not input.device == target.device: raise ValueError( "input and target must be in the same device. Got: {}" .format( input.device, target.device)) # compute softmax over the classes axis input_soft = F.softmax(input, dim=1) # create the labels one hot tensor target_one_hot = one_hot(target, num_classes=input.shape[1], device=input.device, dtype=input.dtype) # compute the actual dice score dims = (1, 2, 3) intersection = torch.sum(input_soft * target_one_hot, dims) fps = torch.sum(input_soft * (1. - target_one_hot), dims) fns = torch.sum((1. - input_soft) * target_one_hot, dims) numerator = intersection denominator = intersection + self.alpha * fps + self.beta * fns tversky_loss = numerator / (denominator + self.eps) return torch.mean(1. - tversky_loss) ###################### # functional interface ###################### def tversky_loss( input: torch.Tensor, target: torch.Tensor, alpha, beta) -> torch.Tensor: r"""Function that computes Tversky loss. See :class:`~torchgeometry.losses.TverskyLoss` for details. """ return TverskyLoss(alpha, beta)(input, target)
[ "torch.sum", "torch.is_tensor", "torch.mean", "torch.nn.functional.softmax" ]
1.0.0
fkluger/torchgeometry
5f1a4dc8ff3647a60901b79aa90a4e799829a7a2
1.6
import torch from torch.optim import SGD from d3rlpy.models.torch.v_functions import create_value_function from d3rlpy.models.torch.policies import squash_action, create_normal_policy from d3rlpy.models.torch.policies import create_categorical_policy from .utility import torch_api, train_api, eval_api from .utility import compute_augemtation_mean from .base import TorchImplBase class AWRImpl(TorchImplBase): def __init__(self, observation_shape, action_size, actor_learning_rate, critic_learning_rate, momentum, use_batch_norm, use_gpu, scaler, augmentation, n_augmentations, encoder_params): self.observation_shape = observation_shape self.action_size = action_size self.actor_learning_rate = actor_learning_rate self.critic_learning_rate = critic_learning_rate self.use_batch_norm = use_batch_norm self.momentum = momentum self.scaler = scaler self.augmentation = augmentation self.n_augmentations = n_augmentations self.encoder_params = encoder_params self.use_gpu = use_gpu def build(self): # setup torch models self._build_critic() self._build_actor() if self.use_gpu: self.to_gpu(self.use_gpu) else: self.to_cpu() # setup optimizer after the parameters move to GPU self._build_critic_optim() self._build_actor_optim() def _build_critic(self): self.v_func = create_value_function(self.observation_shape, use_batch_norm=self.use_batch_norm, encoder_params=self.encoder_params) def _build_critic_optim(self): self.critic_optim = SGD(self.v_func.parameters(), lr=self.critic_learning_rate, momentum=self.momentum) def _build_actor(self): self.policy = create_normal_policy(self.observation_shape, self.action_size, self.use_batch_norm, encoder_params=self.encoder_params) def _build_actor_optim(self): self.actor_optim = SGD(self.policy.parameters(), lr=self.actor_learning_rate, momentum=self.momentum) @train_api @torch_api(scaler_targets=['observation']) def update_critic(self, observation, value): loss = compute_augemtation_mean(self.augmentation, self.n_augmentations, self._compute_critic_loss, { 'observation': observation, 'value': value }, ['observation']) self.critic_optim.zero_grad() loss.backward() self.critic_optim.step() return loss.cpu().detach().numpy() def _compute_critic_loss(self, observation, value): return self.v_func.compute_error(observation, value) @train_api @torch_api(scaler_targets=['observation']) def update_actor(self, observation, action, weight): loss = compute_augemtation_mean(self.augmentation, self.n_augmentations, self._compute_actor_loss, { 'observation': observation, 'action': action, 'weight': weight }, ['observation']) self.actor_optim.zero_grad() loss.backward() self.actor_optim.step() return loss.cpu().detach().numpy() def _compute_actor_loss(self, observation, action, weight): dist = self.policy.dist(observation) # unnormalize action via inverse tanh function unnormalized_action = torch.atanh(action.clamp(-0.999999, 0.999999)) # compute log probability _, log_probs = squash_action(dist, unnormalized_action) return -(weight * log_probs).mean() def _predict_best_action(self, x): return self.policy.best_action(x) @eval_api @torch_api(scaler_targets=['x']) def predict_value(self, x, *args, **kwargs): with torch.no_grad(): return self.v_func(x).view(-1).cpu().detach().numpy() @eval_api @torch_api(scaler_targets=['x']) def sample_action(self, x): with torch.no_grad(): return self.policy.sample(x).cpu().detach().numpy() class DiscreteAWRImpl(AWRImpl): def _build_actor(self): self.policy = create_categorical_policy( self.observation_shape, self.action_size, self.use_batch_norm, encoder_params=self.encoder_params) def _compute_actor_loss(self, observation, action, weight): dist = self.policy.dist(observation) log_probs = dist.log_prob(action).view(observation.shape[0], -1) return -(weight * log_probs.sum(dim=1, keepdims=True)).mean()
[ "torch.no_grad" ]
1.6.0
DenDen047/d3rlpy
6184518d52f961ba6ca9f045761f810706110aa7
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from contextlib import contextmanager, suppress from copy import copy, deepcopy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.core.step_result import Result from pytorch_lightning.plugins import ParallelPlugin from pytorch_lightning.trainer.supporters import TensorRunningAccum from pytorch_lightning.utilities import _TPU_AVAILABLE, AMPType, DeviceType from pytorch_lightning.utilities.distributed import rank_zero_info from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.finite_checks import detect_nan_parameters from pytorch_lightning.utilities.grads import grad_norm from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.parsing import AttributeDict from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature from pytorch_lightning.utilities.warnings import WarningCache class TrainLoop: def __init__( self, trainer, multiple_trainloader_mode: str, max_epochs: Optional[int], min_epochs: Optional[int], max_steps: Optional[int], min_steps: Optional[int], num_sanity_val_steps: int, ): self.trainer = trainer self.accumulated_loss = None self.warning_cache = WarningCache() self._teardown_already_run = False self.running_loss = TensorRunningAccum(window_length=20) self._multiple_trainloader_mode = multiple_trainloader_mode self._skip_backward = False self.trainer._multiple_trainloader_mode = multiple_trainloader_mode self._optimizer_freq_cumsum = None self.global_step = 0 self.current_epoch = 0 self.trainer.should_stop = False self.total_batch_idx = 0 self.batch_idx = 0 self.trainer.num_training_batches = 0 self.trainer.train_dataloader = None # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000 self.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1 self.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs self.max_steps = max_steps self.min_steps = min_steps if num_sanity_val_steps == -1: self.trainer.num_sanity_val_steps = float("inf") else: self.trainer.num_sanity_val_steps = num_sanity_val_steps @property def num_optimizers(self): num_optimizers = len(self.get_optimizers_iterable()) return num_optimizers @property def optimizer_freq_cumsum(self): if self._optimizer_freq_cumsum is None: self._optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies) return self._optimizer_freq_cumsum def should_skip_training(self) -> bool: should_by_max_steps = self.max_steps is not None and self.global_step >= self.max_steps should_by_epoch = self.max_epochs is not None and self.current_epoch >= self.max_epochs return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0 def on_train_start(self): # hook self.trainer.call_hook("on_train_start") def on_train_end(self): if self._teardown_already_run: return self._teardown_already_run = True # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates # when a checkpoint was saved at the last step self.global_step -= 1 self.check_checkpoint_callback(should_update=True, is_last=True) self.global_step += 1 # hook self.trainer.call_hook("on_train_end") # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers. # It might be related to xla tensors blocked when moving the cpu # kill loggers if self.trainer.logger is not None: self.trainer.logger.finalize("success") # summarize profile results self.trainer.profiler.describe() # give accelerators a chance to finish self.trainer.accelerator.on_train_end() # reset bookkeeping self.trainer.state.stage = None def check_checkpoint_callback(self, should_update, is_last=False): # TODO bake this logic into the ModelCheckpoint callback if should_update and self.trainer.checkpoint_connector.has_trained: callbacks = self.trainer.checkpoint_callbacks if is_last and any(cb.save_last and cb.verbose for cb in callbacks): rank_zero_info("Saving latest checkpoint...") model = self.trainer.lightning_module for cb in callbacks: cb.on_validation_end(self.trainer, model) def on_train_epoch_start(self, epoch): # update training progress in trainer self.current_epoch = epoch model = self.trainer.lightning_module # reset train dataloader if epoch != 0 and self.trainer.reload_dataloaders_every_epoch: self.trainer.reset_train_dataloader(model) # todo: specify the possible exception with suppress(Exception): # set seed for distributed sampler (enables shuffling for each epoch) self.trainer.train_dataloader.sampler.set_epoch(epoch) # changing gradient according accumulation_scheduler self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module) # stores accumulated grad fractions per batch self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches) # hook self.trainer.call_hook("on_epoch_start") self.trainer.call_hook("on_train_epoch_start") def on_train_batch_end(self, epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx): batch_end_outputs = [opt_idx_out for opt_idx_out in batch_end_outputs if len(opt_idx_out)] processed_batch_end_outputs = TrainLoop._prepare_outputs(batch_end_outputs, batch_mode=True) # hook self.trainer.call_hook('on_train_batch_end', processed_batch_end_outputs, batch, batch_idx, dataloader_idx) self.trainer.call_hook('on_batch_end') # figure out what to track for epoch end self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs) # reset batch logger internals self.trainer.logger_connector.on_train_batch_end() def reset_train_val_dataloaders(self, model) -> None: """ Resets train and val dataloaders if none are attached to the trainer. The val dataloader must be initialized before training loop starts, as the training loop inspects the val dataloader to determine whether to run the evaluation loop. """ if self.trainer.train_dataloader is None: self.trainer.reset_train_dataloader(model) if self.trainer.val_dataloaders is None: self.trainer.reset_val_dataloader(model) def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs): hook_overridden = self._should_add_batch_output_to_epoch_output() # track the outputs to reduce at the end of the epoch for opt_idx, opt_outputs in enumerate(batch_end_outputs): sample_output = opt_outputs[-1] # decide if we need to reduce at the end of the epoch automatically auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end if not (hook_overridden or auto_reduce_tng_result): continue # with 1 step (no tbptt) don't use a sequence at epoch end if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result): opt_outputs = opt_outputs[0] epoch_output[opt_idx].append(opt_outputs) def _should_add_batch_output_to_epoch_output(self) -> bool: # We add to the epoch outputs if # 1. The model defines training_epoch_end OR # 2. The model overrides on_train_epoch_end which has `outputs` in the signature # TODO: in v1.5 this only needs to check if training_epoch_end is overridden lightning_module = self.trainer.lightning_module if is_overridden("training_epoch_end", model=lightning_module): return True if is_overridden("on_train_epoch_end", model=lightning_module): model_hook_fx = getattr(lightning_module, "on_train_epoch_end") if is_param_in_hook_signature(model_hook_fx, "outputs"): return True return False def get_optimizers_iterable(self, batch_idx=None): """ Generates an iterable with (idx, optimizer) for each optimizer. """ if not self.trainer.optimizer_frequencies: # call training_step once per optimizer return list(enumerate(self.trainer.optimizers)) if batch_idx is None: batch_idx = self.total_batch_idx optimizers_loop_length = self.optimizer_freq_cumsum[-1] current_place_in_loop = batch_idx % optimizers_loop_length # find optimzier index by looking for the first {item > current_place} in the cumsum list opt_idx = np.argmax(self.optimizer_freq_cumsum > current_place_in_loop) return [[opt_idx, self.trainer.optimizers[opt_idx]]] def on_after_backward(self, training_step_output, batch_idx, untouched_loss): training_step_output.detach() # insert after step hook self.trainer.call_hook("on_after_backward") # when in dev debugging track the losses self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach()) def _check_training_step_output(self, training_step_output): if isinstance(training_step_output, torch.Tensor) and not self.trainer.lightning_module.automatic_optimization: if training_step_output.grad_fn is None: # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ... raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor") def training_step(self, split_batch, batch_idx, opt_idx, hiddens): # give the PL module a result for logging model_ref = self.trainer.lightning_module with self.trainer.profiler.profile("model_forward"): step_kwargs = self._build_kwargs(split_batch, batch_idx, opt_idx, hiddens) # manually capture logged metrics model_ref._current_fx_name = 'training_step' model_ref._results = Result() with self.trainer.profiler.profile("training_step"): training_step_output = self.trainer.accelerator.training_step(step_kwargs) self.trainer.accelerator.post_training_step() self.trainer.logger_connector.cache_logged_metrics() self._check_training_step_output(training_step_output) training_step_output = self.trainer.call_hook("training_step_end", training_step_output) training_step_output_for_epoch_end, training_step_output = self._process_training_step_output( training_step_output, split_batch ) if training_step_output_for_epoch_end is None: return # enable empty loss when using manual opt closure_loss = None untouched_loss = None if self.trainer.lightning_module.automatic_optimization: # accumulate loss. if accumulate_grad_batches==1, no effect closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches # the loss will get scaled for amp. avoid any modifications to it untouched_loss = closure_loss.detach().clone() # result result = AttributeDict( closure_loss=closure_loss, loss=untouched_loss, training_step_output=training_step_output, training_step_output_for_epoch_end=training_step_output_for_epoch_end, ) return result def _process_training_step_output(self, training_step_output, split_batch): training_step_output_for_epoch_end = training_step_output # enable validation_step return None if training_step_output_for_epoch_end is None: return None, None result = self.trainer.lightning_module._results loss = None hiddens = None result["extra"] = {} # handle dict return if isinstance(training_step_output, dict): loss = training_step_output.pop("loss", None) hiddens = training_step_output.pop("hiddens", None) if hiddens is not None: hiddens = hiddens.detach() result["extra"] = training_step_output # handle scalar return elif isinstance(training_step_output, torch.Tensor): loss = training_step_output # map to results under the hood result.minimize = loss self.trainer.hiddens = hiddens # track batch for manual reduction with result result.track_batch_size(len(split_batch)) # track metrics without grads for epoch reduction training_step_output_for_epoch_end = copy(result) training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach() if self.trainer.move_metrics_to_cpu: training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu() return training_step_output_for_epoch_end, result @staticmethod def _prepare_outputs( outputs: List[List[List[Result]]], batch_mode: bool, ) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]: """ Extract required information from batch or epoch end results. Args: outputs: A 3-dimensional list of ``Result`` objects with dimensions: [optimizer outs][batch outs][tbptt steps]. batch_mode: If True, ignore the batch output dimension. Returns: The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will be collapsed. """ processed_outputs = [] for opt_outputs in outputs: # handle an edge case where an optimizer output is the empty list if len(opt_outputs) == 0: continue processed_batch_outputs = [] if batch_mode: opt_outputs = [opt_outputs] for batch_outputs in opt_outputs: processed_tbptt_outputs = [] for tbptt_output in batch_outputs: out = tbptt_output.extra out['loss'] = tbptt_output.minimize processed_tbptt_outputs.append(out) # if there was only one tbptt step then we can collapse that dimension if len(processed_tbptt_outputs) == 1: processed_tbptt_outputs = processed_tbptt_outputs[0] processed_batch_outputs.append(processed_tbptt_outputs) # batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer if batch_mode: processed_batch_outputs = processed_batch_outputs[0] processed_outputs.append(processed_batch_outputs) # if there is only one optimiser then we collapse that dimension if len(processed_outputs) == 1: processed_outputs = processed_outputs[0] return processed_outputs def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure): model_ref = self.trainer.lightning_module is_lbfgs = isinstance(optimizer, torch.optim.LBFGS) using_native_amp = self.trainer.amp_backend == AMPType.NATIVE # native amp + lbfgs is a no go right now if using_native_amp and is_lbfgs: raise MisconfigurationException( 'native PyTorch amp and lbfgs are not compatible.' ' To request, please file a Github issue in PyTorch and tag @mcarilli' ) # wraps into LightningOptimizer only for running step optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx) # model hook model_ref.optimizer_step( self.trainer.current_epoch, batch_idx, optimizer, opt_idx, train_step_and_backward_closure, on_tpu=self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE, using_native_amp=using_native_amp, using_lbfgs=is_lbfgs, ) def on_before_zero_grad(self, optimizer): self.trainer.call_hook('on_before_zero_grad', optimizer) def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx): self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx) def track_and_norm_grad(self, optimizer) -> dict: # track gradient norms grad_norm_dict = self._track_gradient_norm() # clip gradients self.trainer.accelerator.clip_gradients( optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm ) return grad_norm_dict def _track_gradient_norm(self): grad_norm_dict = {} if (self.global_step + 1) % self.trainer.log_every_n_steps == 0: if float(self.trainer.track_grad_norm) > 0: model = self.trainer.lightning_module grad_norm_dict = grad_norm(model, self.trainer.track_grad_norm) return grad_norm_dict def _tbptt_split_batch(self, batch: Any) -> List[Any]: splits = [batch] truncated_bptt_enabled = self._truncated_bptt_enabled() if truncated_bptt_enabled: model_ref = self.trainer.lightning_module with self.trainer.profiler.profile("tbptt_split_batch"): splits = model_ref.tbptt_split_batch(batch, self._truncated_bptt_steps()) return splits def run_training_epoch(self): # modify dataloader if needed (ddp, etc...) train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader) # track epoch output epoch_output = [[] for _ in range(self.num_optimizers)] train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader) dataloader_idx = 0 val_loop_called = False batch_idx = None is_last_batch = None for batch_idx, (batch, is_last_batch) in train_dataloader: self.batch_idx = batch_idx self.trainer.is_last_batch = is_last_batch # ------------------------------------ # TRAINING_STEP + TRAINING_STEP_END # ------------------------------------ with self.trainer.profiler.profile("run_training_batch"): batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx) # when returning -1 from train_step, we end epoch early if batch_output.signal == -1: break # hook # TODO: add outputs to batches self.on_train_batch_end( epoch_output, batch_output.training_step_output_for_epoch_end, batch, batch_idx, dataloader_idx, ) # ----------------------------------------- # SAVE METRICS TO LOGGERS # ----------------------------------------- self.trainer.logger_connector.log_train_step_metrics(batch_output) # ----------------------------------------- # VALIDATE IF NEEDED # ----------------------------------------- should_check_val = self._should_check_val_fx(batch_idx, is_last_batch) if should_check_val: self.trainer.validating = True self.trainer._run_evaluation() self.trainer.training = True val_loop_called = True # ----------------------------------------- # SAVE LOGGERS (ie: Tensorboard, etc...) # ----------------------------------------- self.save_loggers_on_train_batch_end() # update LR schedulers monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics) self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics) self.trainer.checkpoint_connector.has_trained = True # max steps reached, end training if ( self.max_steps is not None and self.max_steps <= self.global_step + 1 and self._accumulated_batches_reached() ): break # end epoch early # stop when the flag is changed or we've gone past the amount # requested in the batches if self.trainer.should_stop: break self.total_batch_idx += 1 # stop epoch if we limited the number of training batches if self._num_training_batches_reached(is_last_batch): break # progress global step according to grads progress self.increment_accumulated_grad_global_step() if batch_idx is None: # dataloader/iterator did not produce a batch return # handle epoch_output on epoch end self.on_train_epoch_end(epoch_output) # log epoch metrics self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output) should_check_val = self._should_check_val_fx(batch_idx, is_last_batch, on_epoch=True) should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(self.trainer.num_val_batches) should_train_only = self.trainer.disable_validation or should_skip_eval # update epoch level lr_schedulers if no val loop outside train loop is triggered if (val_loop_called and not should_check_val) or should_train_only: self.trainer.optimizer_connector.update_learning_rates(interval='epoch') if should_train_only: self.check_checkpoint_callback(True) if should_check_val: self.trainer.validating = True self.trainer._run_evaluation(on_epoch=True) self.trainer.training = True # increment the global step once # progress global step according to grads progress self.increment_accumulated_grad_global_step() def on_train_epoch_end(self, epoch_output: List[List[List[Result]]]) -> None: # inform logger the batch loop has finished self.trainer.logger_connector.on_train_epoch_end() # prepare epoch output processed_epoch_output = TrainLoop._prepare_outputs(epoch_output, batch_mode=False) # get the model and call model.training_epoch_end model = self.trainer.lightning_module if is_overridden('training_epoch_end', model=model): # run training_epoch_end # refresh the result for custom logging at the epoch level model._current_fx_name = 'training_epoch_end' # lightningmodule hook training_epoch_end_output = model.training_epoch_end(processed_epoch_output) if training_epoch_end_output is not None: raise MisconfigurationException( 'training_epoch_end expects a return of None. ' 'HINT: remove the return statement in training_epoch_end' ) # capture logging self.trainer.logger_connector.cache_logged_metrics() # call train epoch end hooks self._on_train_epoch_end_hook(processed_epoch_output) self.trainer.call_hook('on_epoch_end') def _on_train_epoch_end_hook(self, processed_epoch_output) -> None: # We cannot rely on Trainer.call_hook because the signatures might be different across # lightning module and callback # As a result, we need to inspect if the module accepts `outputs` in `on_train_epoch_end` # This implementation is copied from Trainer.call_hook hook_name = "on_train_epoch_end" # set hook_name to model + reset Result obj skip = self.trainer._reset_result_and_set_hook_fx_name(hook_name) # always profile hooks with self.trainer.profiler.profile(hook_name): # first call trainer hook if hasattr(self.trainer, hook_name): trainer_hook = getattr(self.trainer, hook_name) trainer_hook(processed_epoch_output) # next call hook in lightningModule model_ref = self.trainer.lightning_module if is_overridden(hook_name, model_ref): hook_fx = getattr(model_ref, hook_name) if is_param_in_hook_signature(hook_fx, "outputs"): self.warning_cache.warn( "The signature of `ModelHooks.on_train_epoch_end` has changed in v1.3." " `outputs` parameter has been deprecated." " Support for the old signature will be removed in v1.5", DeprecationWarning ) model_ref.on_train_epoch_end(processed_epoch_output) else: model_ref.on_train_epoch_end() # if the PL module doesn't have the hook then call the accelerator # used to auto-reduce things for the user with Results obj elif hasattr(self.trainer.accelerator, hook_name): accelerator_hook = getattr(self.trainer.accelerator, hook_name) accelerator_hook() if not skip: self.trainer._cache_logged_metrics() def run_training_batch(self, batch, batch_idx, dataloader_idx): # track grad norms grad_norm_dict = {} # bookkeeping self.trainer.hiddens = None optimizers = self.prepare_optimizers() # track all outputs across time and num of optimizers batch_outputs = [[] for _ in range(len(optimizers))] if batch is None: self.warning_cache.warn("train_dataloader yielded None. If this was on purpose, ignore this warning...") return AttributeDict( signal=0, grad_norm_dict={}, training_step_output_for_epoch_end=batch_outputs, ) # hook response = self.trainer.call_hook("on_batch_start") if response == -1: return AttributeDict(signal=-1, grad_norm_dict={}) # hook response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx) if response == -1: return AttributeDict(signal=-1, grad_norm_dict={}) # lightning module hook splits = self._tbptt_split_batch(batch) for split_idx, split_batch in enumerate(splits): # create an iterable for optimizers and loop over them for opt_idx, optimizer in optimizers: # toggle model params + set info to logger_connector self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer) result = AttributeDict() if self.should_accumulate(): # For gradient accumulation # ------------------- # calculate loss (train step + train step end) # ------------------- # automatic_optimization=True: perform dpp sync only when performing optimizer_step # automatic_optimization=False: don't block synchronization here with self.block_ddp_sync_behaviour(): result = self.training_step_and_backward( split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens ) # ------------------------------ # BACKWARD PASS # ------------------------------ # gradient update with accumulated gradients else: if self.trainer.lightning_module.automatic_optimization: def train_step_and_backward_closure(): nonlocal result result = self.training_step_and_backward( split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens ) return None if result is None else result.loss # optimizer step self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure) else: result = self.training_step(split_batch, batch_idx, opt_idx, self.trainer.hiddens) if not result: # user decided to skip optimization # make sure to zero grad. continue # todo: Properly aggregate grad_norm accros opt_idx and split_idx grad_norm_dict = result.get("grad_norm_dict", {}) # update running loss + reset accumulated loss self.update_running_loss(result.loss) batch_outputs = self._process_closure_result( opt_closure_result=result, batch_outputs=batch_outputs, opt_idx=opt_idx, ) result = AttributeDict( signal=0, grad_norm_dict=grad_norm_dict, training_step_output_for_epoch_end=batch_outputs, ) return result @contextmanager def block_ddp_sync_behaviour(self, should_block_sync: bool = False): """ automatic_optimization = True Blocks ddp sync gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead automatic_optimization = False do not block ddp gradient sync when using manual optimization as gradients are needed within the training step Returns: context manager with sync behaviour off """ if ( isinstance(self.trainer.training_type_plugin, ParallelPlugin) and (self.trainer.lightning_module.automatic_optimization or should_block_sync) ): with self.trainer.training_type_plugin.block_backward_sync(): yield None else: yield None def _process_closure_result( self, opt_closure_result: Optional[AttributeDict], batch_outputs: list, opt_idx: int ) -> list: if opt_closure_result: # cache metrics self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result) # check if loss or model weights are nan if self.trainer.terminate_on_nan: self._check_finite(opt_closure_result.loss) # track all the outputs across all steps batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0 batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end) return batch_outputs def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens): """Wrap forward, zero_grad and backward in a closure so second order methods work""" with self.trainer.profiler.profile("training_step_and_backward"): # lightning module hook result = self.training_step(split_batch, batch_idx, opt_idx, hiddens) if not self._skip_backward and self.trainer.lightning_module.automatic_optimization: is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0 if is_first_batch_to_accumulate: self.on_before_zero_grad(optimizer) self.optimizer_zero_grad(batch_idx, optimizer, opt_idx) # backward pass if result is not None: with self.trainer.profiler.profile("backward"): self.backward(result, optimizer, opt_idx) # hook - call this hook only # when gradients have finished to accumulate if not self.should_accumulate(): self.on_after_backward(result.training_step_output, batch_idx, result.loss) # check if loss or model weights are nan if self.trainer.terminate_on_nan: self._check_finite(result.loss) else: self.warning_cache.warn( "training_step returned None. If this was on purpose, ignore this warning..." ) if len(self.trainer.optimizers) > 1: # revert back to previous state self.trainer.lightning_module.untoggle_optimizer(opt_idx) return result def _check_finite(self, loss: torch.Tensor) -> None: if not torch.isfinite(loss).all(): raise ValueError(f'The loss returned in `training_step` is {loss}.') model = self.trainer.lightning_module detect_nan_parameters(model) def backward(self, result, optimizer, opt_idx, *args, **kwargs): self.trainer.dev_debugger.track_event("backward_call") should_accumulate = self.should_accumulate() # backward can be called manually in the training loop if isinstance(result, torch.Tensor): self.trainer.accelerator.backward(result, optimizer, opt_idx, should_accumulate, *args, **kwargs) else: result.closure_loss = self.trainer.accelerator.backward( result.closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs ) if not self.should_accumulate(): # track gradients result.grad_norm_dict = self.track_and_norm_grad(optimizer=optimizer) def update_train_loop_lr_schedulers(self, monitor_metrics=None): num_accumulated_batches_reached = self._accumulated_batches_reached() num_training_batches_reached = self._num_training_batches_reached() if num_accumulated_batches_reached or num_training_batches_reached: # update lr self.trainer.optimizer_connector.update_learning_rates( interval="step", monitor_metrics=monitor_metrics, opt_indices=[opt_idx for opt_idx, _ in self.get_optimizers_iterable()], ) def increment_accumulated_grad_global_step(self): num_accumulated_batches_reached = self._accumulated_batches_reached() num_training_batches_reached = self._num_training_batches_reached() # progress global step according to grads progress if num_accumulated_batches_reached or num_training_batches_reached: self.global_step = self.trainer.accelerator.update_global_step(self.total_batch_idx, self.global_step) def _accumulated_batches_reached(self): return (self.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0 def _num_training_batches_reached(self, is_last_batch=False): return (self.batch_idx + 1) == self.trainer.num_training_batches or is_last_batch def should_accumulate(self): # checks if backward or backward + optimizer step (via closure) accumulation_done = self._accumulated_batches_reached() is_final_batch = self._num_training_batches_reached() return not (accumulation_done or is_final_batch) def _should_check_val_fx(self, batch_idx: int, is_last_batch: bool, on_epoch: bool = False) -> bool: """ Decide if we should run validation. """ if not self.trainer.enable_validation: return False # check if this epoch is eligible to run validation if (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch != 0: return False # val_check_batch is inf for iterable datasets with no length defined # TODO: let training/eval loop handle logic around limit_*_batches and val_check_batch is_val_check_batch = False if isinstance(self.trainer.limit_train_batches, int) and self.trainer.val_check_batch == float('inf'): is_val_check_batch = (batch_idx + 1) % self.trainer.limit_train_batches == 0 elif self.trainer.val_check_batch != float('inf'): is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0 # Note: num_training_batches is also inf for iterable datasets with no length defined epoch_end_val_check = (batch_idx + 1) % self.trainer.num_training_batches == 0 is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf") if on_epoch: return ( is_val_check_batch and epoch_end_val_check ) or self.trainer.should_stop or is_last_batch_for_infinite_dataset else: return is_val_check_batch and not epoch_end_val_check def _build_kwargs(self, batch, batch_idx, opt_idx, hiddens): # enable not needing to add opt_idx to training_step step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)]) lightning_module = self.trainer.lightning_module if len(self.trainer.optimizers) > 1: training_step_fx = getattr(lightning_module, "training_step") has_opt_idx_in_train_step = is_param_in_hook_signature(training_step_fx, "optimizer_idx") if has_opt_idx_in_train_step: if not lightning_module.automatic_optimization: self.warning_cache.warn( "`training_step` hook signature has changed in v1.3." " `optimizer_idx` argument has been removed in case of manual optimization. Support for" " the old signature will be removed in v1.5", DeprecationWarning ) step_kwargs['optimizer_idx'] = opt_idx elif not has_opt_idx_in_train_step and self.trainer.lightning_module.automatic_optimization: raise ValueError( f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but" ' `training_step` is missing the `optimizer_idx` argument.' ) # pass hiddens if using tbptt if self._truncated_bptt_enabled(): step_kwargs['hiddens'] = hiddens return step_kwargs def _truncated_bptt_enabled(self) -> bool: """ Temporary tbptt utilities until this flag is fully migrated to the lightning module. """ return self._truncated_bptt_steps() > 0 def _truncated_bptt_steps(self) -> int: lightning_module = self.trainer.lightning_module # Give precedence to the LightningModule as the Trainer flag will be removed in v1.5 if lightning_module.truncated_bptt_steps > 0: return lightning_module.truncated_bptt_steps return self.trainer.truncated_bptt_steps or 0 def save_loggers_on_train_batch_end(self): # when loggers should save to disk should_flush_logs = self.trainer.logger_connector.should_flush_logs if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None: self.trainer.logger.save() def prepare_optimizers(self): # in manual optimization we loop over all optimizers at once optimizers = self.get_optimizers_iterable() if not self.trainer.lightning_module.automatic_optimization: optimizers = [optimizers[0]] return optimizers def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer): # set split_idx to trainer for tracking self.trainer.split_idx = split_idx # make sure only the gradients of the current optimizer's parameters are calculated # in the training step to prevent dangling gradients in multiple-optimizer setup. if self.trainer.lightning_module.automatic_optimization and len(self.trainer.optimizers) > 1: model = self.trainer.lightning_module model.toggle_optimizer(optimizer, opt_idx) # use to track metrics internally self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch) def update_running_loss(self, current_loss: torch.Tensor) -> None: if self.trainer.lightning_module.automatic_optimization: # track total loss for logging (avoid mem leaks) self.accumulated_loss.append(current_loss) accumulated_loss = self.accumulated_loss.mean() if accumulated_loss is not None: # calculate running loss for display self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches) # reset for next set of accumulated grads self.accumulated_loss.reset()
[ "torch.isfinite" ]
1.4
loic-beheshti/pytorch-lightning
6ac16ff34822cef9b3c16e54f872655b585a066a
1.8
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch class _InfiniteSampler(torch.utils.data.Sampler): """Wraps another Sampler to yield an infinite stream.""" def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: for batch in self.sampler: yield batch class InfiniteDataLoader: def __init__(self, dataset, weights, batch_size, num_workers): super().__init__() if weights is not None: sampler = torch.utils.data.WeightedRandomSampler(weights, replacement=True, num_samples=batch_size) else: sampler = torch.utils.data.RandomSampler(dataset, replacement=True) if weights == None: weights = torch.ones(len(dataset)) batch_sampler = torch.utils.data.BatchSampler(sampler, batch_size=batch_size, drop_last=True) self._infinite_iterator = iter( torch.utils.data.DataLoader( dataset, num_workers=num_workers, batch_sampler=_InfiniteSampler(batch_sampler) ) ) def __iter__(self): while True: yield next(self._infinite_iterator) def __len__(self): raise ValueError class FastDataLoader: """DataLoader wrapper with slightly improved speed by not respawning worker processes at every epoch.""" def __init__(self, dataset, batch_size, num_workers): super().__init__() batch_sampler = torch.utils.data.BatchSampler( torch.utils.data.RandomSampler(dataset, replacement=False), batch_size=batch_size, drop_last=False ) self._infinite_iterator = iter( torch.utils.data.DataLoader( dataset, num_workers=num_workers, batch_sampler=_InfiniteSampler(batch_sampler) ) ) self._length = len(batch_sampler) def __iter__(self): for _ in range(len(self)): yield next(self._infinite_iterator) def __len__(self): return self._length
[ "torch.utils.data.WeightedRandomSampler", "torch.utils.data.RandomSampler", "torch.utils.data.BatchSampler" ]
1.8.1
VinAIResearch/mDSDI
8ec49085d8389ab490ec633c3ae4bf66be085366
1.5
import unittest import torch from models import VanillaVAE from torchsummary import summary class TestVAE(unittest.TestCase): def setUp(self) -> None: # self.model2 = VAE(3, 10) self.model = VanillaVAE(3, 10) def test_summary(self): print(summary(self.model, (3, 64, 64), device="cpu")) # print(summary(self.model2, (3, 64, 64), device='cpu')) def test_forward(self): x = torch.randn(16, 3, 64, 64) y = self.model(x) print("Model Output size:", y[0].size()) # print("Model2 Output size:", self.model2(x)[0].size()) def test_loss(self): x = torch.randn(16, 3, 64, 64) result = self.model(x) loss = self.model.loss_function(*result, M_N=0.005) print(loss) if __name__ == "__main__": unittest.main()
[ "torch.randn" ]
1.5.0
threewisemonkeys-as/PyTorch-VAE
4ed0fc7581d4792b435134aa9e06d5e35a5db118
1.5
from typing import List, Optional import torch from torch import nn from torch.nn import functional as F from torchvision.models import vgg19_bn from .base import BaseVAE class DFCVAE(BaseVAE): def __init__( self, in_channels: int, latent_dim: int, hidden_dims: List = None, alpha: float = 1, beta: float = 0.5, lr: float = 0.005, weight_decay: Optional[float] = 0, scheduler_gamma: Optional[float] = 0.95, ) -> None: super(DFCVAE, self).__init__( lr=lr, weight_decay=weight_decay, scheduler_gamma=scheduler_gamma ) self.latent_dim = latent_dim self.alpha = alpha self.beta = beta modules = [] if hidden_dims is None: hidden_dims = [32, 64, 128, 256, 512] # Build Encoder for h_dim in hidden_dims: modules.append( nn.Sequential( nn.Conv2d( in_channels, out_channels=h_dim, kernel_size=3, stride=2, padding=1, ), nn.BatchNorm2d(h_dim), nn.LeakyReLU(), ) ) in_channels = h_dim self.encoder = nn.Sequential(*modules) self.fc_mu = nn.Linear(hidden_dims[-1] * 4, latent_dim) self.fc_var = nn.Linear(hidden_dims[-1] * 4, latent_dim) # Build Decoder modules = [] self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4) hidden_dims.reverse() for i in range(len(hidden_dims) - 1): modules.append( nn.Sequential( nn.ConvTranspose2d( hidden_dims[i], hidden_dims[i + 1], kernel_size=3, stride=2, padding=1, output_padding=1, ), nn.BatchNorm2d(hidden_dims[i + 1]), nn.LeakyReLU(), ) ) self.decoder = nn.Sequential(*modules) self.final_layer = nn.Sequential( nn.ConvTranspose2d( hidden_dims[-1], hidden_dims[-1], kernel_size=3, stride=2, padding=1, output_padding=1, ), nn.BatchNorm2d(hidden_dims[-1]), nn.LeakyReLU(), nn.Conv2d(hidden_dims[-1], out_channels=3, kernel_size=3, padding=1), nn.Tanh(), ) self.feature_network = vgg19_bn(pretrained=True) # Freeze the pretrained feature network for param in self.feature_network.parameters(): param.requires_grad = False self.feature_network.eval() def encode(self, input: torch.Tensor) -> List[torch.Tensor]: """ Encodes the input by passing through the encoder network and returns the latent codes. :param input: (torch.Tensor) Input tensor to encoder [N x C x H x W] :return: (torch.Tensor) List of latent codes """ result = self.encoder(input) result = torch.flatten(result, start_dim=1) # Split the result into mu and var components # of the latent Gaussian distribution mu = self.fc_mu(result) log_var = self.fc_var(result) return [mu, log_var] def decode(self, z: torch.Tensor) -> torch.Tensor: """ Maps the given latent codes onto the image space. :param z: (torch.Tensor) [B x D] :return: (torch.Tensor) [B x C x H x W] """ result = self.decoder_input(z) result = result.view(-1, 512, 2, 2) result = self.decoder(result) result = self.final_layer(result) return result def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor: """ Reparameterization trick to sample from N(mu, var) from N(0,1). :param mu: (torch.Tensor) Mean of the latent Gaussian [B x D] :param logvar: (torch.Tensor) Standard deviation of the latent Gaussian [B x D] :return: (torch.Tensor) [B x D] """ std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def forward(self, input: torch.Tensor, **kwargs) -> List[torch.Tensor]: mu, log_var = self.encode(input) z = self.reparameterize(mu, log_var) recons = self.decode(z) recons_features = self.extract_features(recons) input_features = self.extract_features(input) return [recons, input, recons_features, input_features, mu, log_var] def extract_features( self, input: torch.Tensor, feature_layers: List = None ) -> List[torch.Tensor]: """ Extracts the features from the pretrained model at the layers indicated by feature_layers. :param input: (torch.Tensor) [B x C x H x W] :param feature_layers: List of string of IDs :return: List of the extracted features """ if feature_layers is None: feature_layers = ["14", "24", "34", "43"] features = [] result = input for (key, module) in self.feature_network.features._modules.items(): result = module(result) if key in feature_layers: features.append(result) return features def loss_function(self, *args, **kwargs) -> dict: """ Computes the VAE loss function. KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2} :param args: :param kwargs: :return: """ recons = args[0] input = args[1] recons_features = args[2] input_features = args[3] mu = args[4] log_var = args[5] kld_weight = kwargs["M_N"] # Account for the minibatch samples from the dataset recons_loss = F.mse_loss(recons, input) feature_loss = 0.0 for (r, i) in zip(recons_features, input_features): feature_loss += F.mse_loss(r, i) kld_loss = torch.mean( -0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim=1), dim=0 ) loss = ( self.beta * (recons_loss + feature_loss) + self.alpha * kld_weight * kld_loss ) return {"loss": loss, "Reconstruction_Loss": recons_loss, "KLD": -kld_loss} def sample(self, num_samples: int, current_device: int, **kwargs) -> torch.Tensor: """ Samples from the latent space and return the corresponding image space map. :param num_samples: (Int) Number of samples :param current_device: (Int) Device to run the model :return: (torch.Tensor) """ z = torch.randn(num_samples, self.latent_dim) z = z.to(current_device) samples = self.decode(z) return samples def generate(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Given an input image x, returns the reconstructed image :param x: (torch.Tensor) [B x C x H x W] :return: (torch.Tensor) [B x C x H x W] """ return self.forward(x)[0]
[ "torch.nn.Linear", "torch.nn.Sequential", "torch.nn.Tanh", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.LeakyReLU", "torch.nn.functional.mse_loss", "torch.randn_like", "torch.nn.Conv2d", "torch.flatten", "torch.exp", "torch.randn" ]
1.5.0
threewisemonkeys-as/PyTorch-VAE
4ed0fc7581d4792b435134aa9e06d5e35a5db118
1.5
from typing import List, Optional import torch from torch import nn from torch.distributions import Normal from torch.nn import functional as F from .base import BaseVAE class MIWAE(BaseVAE): def __init__( self, in_channels: int, latent_dim: int, hidden_dims: List = None, num_samples: int = 5, num_estimates: int = 5, lr: float = 0.005, weight_decay: Optional[float] = 0, scheduler_gamma: Optional[float] = 0.95, ) -> None: super(MIWAE, self).__init__( lr=lr, weight_decay=weight_decay, scheduler_gamma=scheduler_gamma ) self.latent_dim = latent_dim self.num_samples = num_samples # K self.num_estimates = num_estimates # M modules = [] if hidden_dims is None: hidden_dims = [32, 64, 128, 256, 512] # Build Encoder for h_dim in hidden_dims: modules.append( nn.Sequential( nn.Conv2d( in_channels, out_channels=h_dim, kernel_size=3, stride=2, padding=1, ), nn.BatchNorm2d(h_dim), nn.LeakyReLU(), ) ) in_channels = h_dim self.encoder = nn.Sequential(*modules) self.fc_mu = nn.Linear(hidden_dims[-1] * 4, latent_dim) self.fc_var = nn.Linear(hidden_dims[-1] * 4, latent_dim) # Build Decoder modules = [] self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4) hidden_dims.reverse() for i in range(len(hidden_dims) - 1): modules.append( nn.Sequential( nn.ConvTranspose2d( hidden_dims[i], hidden_dims[i + 1], kernel_size=3, stride=2, padding=1, output_padding=1, ), nn.BatchNorm2d(hidden_dims[i + 1]), nn.LeakyReLU(), ) ) self.decoder = nn.Sequential(*modules) self.final_layer = nn.Sequential( nn.ConvTranspose2d( hidden_dims[-1], hidden_dims[-1], kernel_size=3, stride=2, padding=1, output_padding=1, ), nn.BatchNorm2d(hidden_dims[-1]), nn.LeakyReLU(), nn.Conv2d(hidden_dims[-1], out_channels=3, kernel_size=3, padding=1), nn.Tanh(), ) def encode(self, input: torch.Tensor) -> List[torch.Tensor]: """ Encodes the input by passing through the encoder network and returns the latent codes. :param input: (torch.Tensor) Input tensor to encoder [N x C x H x W] :return: (torch.Tensor) List of latent codes """ result = self.encoder(input) result = torch.flatten(result, start_dim=1) # Split the result into mu and var components # of the latent Gaussian distribution mu = self.fc_mu(result) log_var = self.fc_var(result) return [mu, log_var] def decode(self, z: torch.Tensor) -> torch.Tensor: """ Maps the given latent codes of S samples onto the image space. :param z: (torch.Tensor) [B x S x D] :return: (torch.Tensor) [B x S x C x H x W] """ B, M, S, D = z.size() z = z.view(-1, self.latent_dim) # [BMS x D] result = self.decoder_input(z) result = result.view(-1, 512, 2, 2) result = self.decoder(result) result = self.final_layer(result) # [BMS x C x H x W ] result = result.view( [B, M, S, result.size(-3), result.size(-2), result.size(-1)] ) # [B x M x S x C x H x W] return result def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor: """ :param mu: (torch.Tensor) Mean of the latent Gaussian :param logvar: (torch.Tensor) Standard deviation of the latent Gaussian :return: """ std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def forward(self, input: torch.Tensor, **kwargs) -> List[torch.Tensor]: mu, log_var = self.encode(input) mu = mu.repeat(self.num_estimates, self.num_samples, 1, 1).permute( 2, 0, 1, 3 ) # [B x M x S x D] log_var = log_var.repeat(self.num_estimates, self.num_samples, 1, 1).permute( 2, 0, 1, 3 ) # [B x M x S x D] z = self.reparameterize(mu, log_var) # [B x M x S x D] eps = (z - mu) / log_var # Prior samples return [self.decode(z), input, mu, log_var, z, eps] def loss_function(self, *args, **kwargs) -> dict: """ KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2} :param args: :param kwargs: :return: """ recons = args[0] input = args[1] mu = args[2] log_var = args[3] z = args[4] eps = args[5] input = input.repeat(self.num_estimates, self.num_samples, 1, 1, 1, 1).permute( 2, 0, 1, 3, 4, 5 ) # [B x M x S x C x H x W] kld_weight = kwargs["M_N"] # Account for the minibatch samples from the dataset log_p_x_z = ( ((recons - input) ** 2).flatten(3).mean(-1) ) # Reconstruction Loss # [B x M x S] kld_loss = -0.5 * torch.sum( 1 + log_var - mu ** 2 - log_var.exp(), dim=3 ) # [B x M x S] # Get importance weights log_weight = log_p_x_z + kld_weight * kld_loss # .detach().data # Rescale the weights (along the sample dim) to lie in [0, 1] and sum to 1 weight = F.softmax(log_weight, dim=-1) # [B x M x S] loss = torch.mean( torch.mean(torch.sum(weight * log_weight, dim=-1), dim=-2), dim=0 ) return { "loss": loss, "Reconstruction_Loss": log_p_x_z.mean(), "KLD": -kld_loss.mean(), } def sample(self, num_samples: int, current_device: int, **kwargs) -> torch.Tensor: """ Samples from the latent space and return the corresponding image space map. :param num_samples: (Int) Number of samples :param current_device: (Int) Device to run the model :return: (torch.Tensor) """ z = torch.randn(num_samples, 1, 1, self.latent_dim) z = z.to(current_device) samples = self.decode(z).squeeze() return samples def generate(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Given an input image x, returns the reconstructed image. Returns only the first reconstructed sample :param x: (torch.Tensor) [B x C x H x W] :return: (torch.Tensor) [B x C x H x W] """ return self.forward(x)[0][:, 0, 0, :]
[ "torch.nn.Linear", "torch.nn.Sequential", "torch.nn.Tanh", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.LeakyReLU", "torch.randn_like", "torch.nn.Conv2d", "torch.nn.functional.softmax", "torch.flatten", "torch.exp", "torch.randn", "torch.sum" ]
1.5.0
threewisemonkeys-as/PyTorch-VAE
4ed0fc7581d4792b435134aa9e06d5e35a5db118
3
import torch import torch.nn as nn from torch3d.nn import functional as F from torch3d.nn.utils import _single class FeaturePropagation(nn.Sequential): """ The feature propagation from the `"PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" <https://arxiv.org/abs/1706.02413>`_ paper. Args: in_channels (int): Number of channels in the input point set out_channels (int): Number of channels produced by the convolution kernel_size (int, optional): Neighborhood size of the convolution kernel. Default: 1 bias (bool, optional): If True, adds a learnable bias to the output. Default: ``True`` """ # noqa def __init__(self, in_channels, out_channels, kernel_size=1, bias=True): self.kernel_size = kernel_size in_channels = in_channels out_channels = _single(out_channels) modules = [] for channels in out_channels: modules.append(nn.Conv1d(in_channels, channels, 1, bias=bias)) modules.append(nn.BatchNorm1d(channels)) modules.append(nn.ReLU(True)) in_channels = channels super(FeaturePropagation, self).__init__(*modules) def forward(self, x, y): p, x = x[:, :3], x[:, 3:] q, y = y[:, :3], y[:, 3:] x = F.interpolate(p, q, x, self.kernel_size) x = torch.cat([x, y], dim=1) x = super(FeaturePropagation, self).forward(x) x = torch.cat([q, x], dim=1) return x class PointDeconv(nn.Module): """ The point deconvolution layer from the `"PointConv: Deep Convolutional Networks on 3D Point Clouds" <https://arxiv.org/abs/1811.07246>`_ paper. Args: in_channels (int): Number of channels in the input point set out_channels (int): Number of channels produced by the convolution kernel_size (int, optional): Neighborhood size of the convolution kernel. Default: 1 bandwidth (float, optional): Bandwidth of kernel density estimation. Default: 1.0 bias (bool, optional): If True, adds a learnable bias to the output. Default: ``True`` """ # noqa def __init__( self, in_channels, out_channels, kernel_size=1, bandwidth=1.0, bias=True ): super(PointDeconv, self).__init__() self.kernel_size = kernel_size self.bandwidth = bandwidth self.scale = nn.Sequential( nn.Conv1d(1, 8, 1, bias=bias), nn.BatchNorm1d(8), nn.ReLU(True), nn.Conv1d(8, 8, 1, bias=bias), nn.BatchNorm1d(8), nn.ReLU(True), nn.Conv1d(8, 1, 1, bias=bias), nn.Sigmoid(), ) self.weight = nn.Sequential( nn.Conv2d(3, 8, 1, bias=bias), nn.BatchNorm2d(8), nn.ReLU(True), nn.Conv2d(8, 8, 1, bias=bias), nn.BatchNorm2d(8), nn.ReLU(True), nn.Conv2d(8, 16, 1, bias=bias), ) in_channels = in_channels out_channels = _single(out_channels) modules = [] for channels in out_channels[:-1]: modules.append(nn.Conv2d(in_channels, channels, 1, bias=bias)) modules.append(nn.BatchNorm2d(channels)) modules.append(nn.ReLU(True)) in_channels = channels self.mlp = nn.Sequential(*modules) self.lin = nn.Sequential( nn.Conv2d(in_channels, out_channels[-1], [16, 1], bias=bias), nn.BatchNorm2d(out_channels[-1]), nn.ReLU(True), ) def forward(self, x, y): batch_size = x.shape[0] p, x = x[:, :3], x[:, 3:] q, y = y[:, :3], y[:, 3:] x = F.interpolate(p, q, x, self.kernel_size) x = torch.cat([x, y], dim=1) in_channels = x.shape[1] s = F.kernel_density(q, self.bandwidth).unsqueeze(1) s = self.scale(torch.reciprocal(s)) # calculate scaling factor _, index = F.knn(q, q, self.kernel_size) index = index.view(batch_size, -1).unsqueeze(1) # Point and density grouping p = torch.gather(q, 2, index.expand(-1, 3, -1)) x = torch.gather(x, 2, index.expand(-1, in_channels, -1)) s = torch.gather(s, 2, index) p = p.view(batch_size, 3, self.kernel_size, -1) x = x.view(batch_size, in_channels, self.kernel_size, -1) s = s.view(batch_size, 1, self.kernel_size, -1) p = p - q.unsqueeze(2).expand(-1, -1, self.kernel_size, -1) w = self.weight(p) x = self.mlp(x * s) x = torch.matmul(w.permute(0, 3, 1, 2), x.permute(0, 3, 2, 1)) x = x.permute(0, 3, 2, 1) x = self.lin(x).squeeze(2) x = torch.cat([q, x], dim=1) return x
[ "torch.cat", "torch.nn.Conv1d", "torch.nn.Sequential", "torch.gather", "torch.nn.Sigmoid", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.BatchNorm1d", "torch.reciprocal" ]
3
zhangmozhe/torch3d
d47e9b243e520f9c0c72a26c271d2c7ad242cb65
1.1
# -*- coding: utf-8 -*- # @Date : 2019-07-25 # @Author : Xinyu Gong ([email protected]) # @Link : None # @Version : 0.0 import comet_ml import os import numpy as np import torch import torch.nn as nn from torchvision.utils import make_grid import torch.nn.functional as F from imageio import imsave from tqdm import tqdm from copy import deepcopy import logging from torch.autograd import Variable from utils.inception_score import get_inception_score from utils.fid_score import calculate_fid_given_paths import models class Log_loss(torch.nn.Module): def __init__(self): # negation is true when you minimize -log(val) super(Log_loss, self).__init__() def forward(self, x, negation=True): # shape of x will be [batch size] log_val = torch.log(x) loss = torch.sum(log_val) if negation: loss = torch.neg(loss) return loss class Itself_loss(torch.nn.Module): def __init__(self): super(Itself_loss, self).__init__() def forward(self, x, negation=True): # shape of x will be [batch size] loss = torch.sum(x) if negation: loss = torch.neg(loss) return loss logger = logging.getLogger(__name__) def train_d2(args, gen_net: nn.Module, dis_net1: nn.Module, dis_net2: nn.Module, gen_optimizer, dis_optimizer1, dis_optimizer2, gen_avg_param, train_loader, epoch, writer_dict, schedulers=None, experiment=None): writer = writer_dict['writer'] gen_step = 0 criterion_log = Log_loss() criterion_itself = Itself_loss() # train mode gen_net = gen_net.train() dis_net1 = dis_net1.train() dis_net2 = dis_net2.train() d_loss1 = 0.0 d_loss2 = 0.0 g_loss = 0.0 for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): global_steps = writer_dict['train_global_steps'] # Adversarial ground truths real_imgs = imgs.type(torch.cuda.FloatTensor) # Sample noise as generator input z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) # --------------------- # Train Discriminator # --------------------- dis_optimizer1.zero_grad() dis_optimizer2.zero_grad() real_validity1 = dis_net1(real_imgs) real_validity2 = dis_net2(real_imgs) fake_imgs = gen_net(z).detach() assert fake_imgs.size() == real_imgs.size() fake_validity1 = dis_net1(fake_imgs.detach()) fake_validity2 = dis_net2(fake_imgs.detach()) d_loss1 = 0.2 * criterion_log(real_validity1) + criterion_itself(fake_validity1, False) d_loss1.backward() d_loss2 = criterion_itself(real_validity2, False) + 0.1*criterion_log(fake_validity2, False) d_loss2.backward() dis_optimizer1.step() dis_optimizer2.step() writer.add_scalar('d_loss1', d_loss1.item(), global_steps) writer.add_scalar('d_loss2', d_loss2.item(), global_steps) # ----------------- # Train Generator # ----------------- if global_steps % args.n_critic == 0: gen_optimizer.zero_grad() gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) gen_imgs = gen_net(gen_z) fake_validity1 = dis_net1(gen_imgs) fake_validity2 = dis_net2(gen_imgs) # cal loss g_loss = criterion_itself(fake_validity1) + 0.1*criterion_log(fake_validity2) g_loss.backward() gen_optimizer.step() # adjust learning rate # if schedulers: # gen_scheduler, dis_scheduler = schedulers # g_lr = gen_scheduler.step(global_steps) # d_lr = dis_scheduler.step(global_steps) # writer.add_scalar('LR/g_lr', g_lr, global_steps) # writer.add_scalar('LR/d_lr', d_lr, global_steps) # moving average weight for p, avg_p in zip(gen_net.parameters(), gen_avg_param): avg_p.mul_(0.999).add_(0.001, p.data) writer.add_scalar('g_loss', g_loss.item(), global_steps) gen_step += 1 # verbose if gen_step and iter_idx % args.print_freq == 0: tqdm.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss1.item(), g_loss.item())) if experiment != None: experiment.log_metric("gen_loss", g_loss.item()) experiment.log_metric("dis_loss1", d_loss1.item()) experiment.log_metric("dis_loss2", d_loss2.item()) writer_dict['train_global_steps'] = global_steps + 1 def train_chainer(args, gen_net: nn.Module, dis_net: nn.Module, gen_optimizer, dis_optimizer, gen_avg_param, train_loader, epoch, writer_dict, schedulers=None, experiment=None): writer = writer_dict['writer'] gen_step = 0 # train mode gen_net = gen_net.train() dis_net = dis_net.train() d_loss = 0.0 g_loss = 0.0 for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): global_steps = writer_dict['train_global_steps'] # Adversarial ground truths real_imgs = imgs.type(torch.cuda.FloatTensor) # Sample noise as generator input z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) # --------------------- # Train Discriminator # --------------------- dis_optimizer.zero_grad() real_validity = dis_net(real_imgs) fake_imgs = gen_net(z).detach() assert fake_imgs.size() == real_imgs.size() fake_validity = dis_net(fake_imgs) # cal loss d_loss = torch.mean(F.softplus(-real_validity)) + \ torch.mean(F.softplus(fake_validity)) d_loss.backward() dis_optimizer.step() writer.add_scalar('d_loss', d_loss.item(), global_steps) # ----------------- # Train Generator # ----------------- if global_steps % args.n_critic == 0: gen_optimizer.zero_grad() gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) gen_imgs = gen_net(gen_z) fake_validity = dis_net(gen_imgs) # cal loss g_loss = torch.mean(F.softplus(-fake_validity)) g_loss.backward() gen_optimizer.step() # adjust learning rate if schedulers: print("schedulars?") gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) writer.add_scalar('LR/g_lr', g_lr, global_steps) writer.add_scalar('LR/d_lr', d_lr, global_steps) # moving average weight # for p, avg_p in zip(gen_net.parameters(), gen_avg_param): # avg_p.mul_(0.999).add_(0.001, p.data) writer.add_scalar('g_loss', g_loss.item(), global_steps) gen_step += 1 # verbose if gen_step and iter_idx % args.print_freq == 0: tqdm.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item())) if experiment != None: experiment.log_metric("gen_loss", g_loss.item()) experiment.log_metric("dis_loss", d_loss.item()) writer_dict['train_global_steps'] = global_steps + 1 def train_wgan(args, gen_net: nn.Module, multiD, gen_optimizer, multiD_opt, gen_avg_param, train_loader, epoch, writer_dict, schedulers=None, experiment=None): writer = writer_dict['writer'] gen_step = 0 n_dis = len(multiD) # train mode gen_net = gen_net.train() d_loss = 0.0 g_loss = 0.0 for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): global_steps = writer_dict['train_global_steps'] for i in range(n_dis): multiD[i].train() for p in multiD[i].parameters(): p.requires_grad = True multiD_opt[i].zero_grad() for p in gen_net.parameters(): p.requires_grad = True # Adversarial ground truths x_real = imgs.type(torch.cuda.FloatTensor) y_real = torch.ones(imgs.shape[0], 1).cuda() # Sample noise as generator input z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) y_fake = torch.zeros(x_real.size()[0], 1).cuda() # --------------------- # Train Discriminator # --------------------- for i in range(n_dis): multiD_opt[i].zero_grad() gen_optimizer.zero_grad() x_fake = gen_net(z) # assert x_fake.size() == x_real.size() flag = True for i in range(n_dis): if flag: D_fake = multiD[i](x_fake) D_real = multiD[i](x_real) flag = False else: D_fake = torch.cat((D_fake, multiD[i](x_fake)), dim = 1) D_real = torch.cat((D_real, multiD[i](x_real)), dim = 1) ind = torch.argmin(D_fake, dim = 1) mask = torch.zeros((x_real.size()[0], n_dis)).cuda() mask2 = torch.zeros((x_real.size()[0], n_dis)).cuda() for i in range(mask.size()[0]): random_checker = np.random.randint(0,10) if random_checker > 7: #100 for no random thingie index = np.random.randint(0,n_dis) mask[i][index] = 1.0 mask2[i][index] = 1.0 else: mask[i][ind[i]] = 1.0 mask2[i][ind[i]] = 1.0 for i in range(mask.size()[0], mask2.size()[0]): mask2[i][np.random.randint(0,n_dis)] = 1.0 alpha = Variable(torch.rand(x_real.size())) alpha = alpha.cuda() x_hat = alpha*x_fake + (1-alpha)*x_real flag = True for i in range(n_dis): if flag: d_x_hat = multiD[i](x_hat) flag = False else: d_x_hat = torch.cat((d_x_hat, multiD[i](x_hat)), dim = 1) d_x_hat = torch.sum(mask*d_x_hat, dim=1) # d_x_hat = multiD[0](x_hat) gradients = torch.autograd.grad(outputs=d_x_hat, inputs=x_hat, grad_outputs=torch.ones(d_x_hat.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True)[0] gradients = gradients.reshape(imgs.shape[0], -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() LAMBDA=10 loss = LAMBDA*gradient_penalty D_fake_output = torch.sum(mask2*D_fake, dim = 1) D_real_output = torch.sum(mask*D_real, dim = 1) # cal loss d_loss = -(torch.mean(D_real_output) - torch.mean(D_fake_output)) d_loss += loss # d_loss = criterion(real_validity, y_real) + criterion(fake_validity, y_fake) d_loss.backward() for i in range(n_dis): multiD_opt[i].step() # for i in range(n_dis): # for p in multiD[i].parameters(): # p.data.clamp_(-0.01, 0.01) writer.add_scalar('d_loss', d_loss.item(), global_steps) # ----------------- # Train Generator # ----------------- if global_steps % args.n_critic == 0: gen_optimizer.zero_grad() gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) fake_img = gen_net(gen_z) critic_fakes = [] lit = np.zeros(n_dis) for i in range(n_dis): for p in multiD[i].parameters(): p.requires_grad = False critic_fake = multiD[i](fake_img) critic_fakes.append(critic_fake) lit[i] = torch.sum(critic_fake).item() loss_sort = np.argsort(lit) weights = np.random.dirichlet(np.ones(n_dis)) weights = np.sort(weights)[::-1] flag = False for i in range(len(critic_fakes)): if flag == False: critic_fake = weights[i]*critic_fakes[loss_sort[i]] flag = True else: critic_fake = torch.add(critic_fake, weights[i]*critic_fakes[loss_sort[i]]) # cal loss g_loss = -torch.mean(critic_fake) # g_loss = criterion(fake_validity, y_fake) g_loss.backward() gen_optimizer.step() # adjust learning rate if schedulers: gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) writer.add_scalar('LR/g_lr', g_lr, global_steps) writer.add_scalar('LR/d_lr', d_lr, global_steps) # moving average weight for p, avg_p in zip(gen_net.parameters(), gen_avg_param): avg_p.mul_(0.999).add_(0.001, p.data) writer.add_scalar('g_loss', g_loss.item(), global_steps) gen_step += 1 # verbose if gen_step and iter_idx % args.print_freq == 0: tqdm.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item())) if experiment != None: experiment.log_metric("gen_loss", g_loss.item()) experiment.log_metric("dis_loss", d_loss.item()) writer_dict['train_global_steps'] = global_steps + 1 # def train_multi(args, gen_net: nn.Module, multiD, gen_optimizer, multiD_opt, gen_avg_param, train_loader, epoch, # writer_dict, schedulers=None, experiment=None): # writer = writer_dict['writer'] # gen_step = 0 # criterion = nn.BCELoss() # n_dis = len(multiD) # # train mode # gen_net = gen_net.train() # d_loss = 0.0 # g_loss = 0.0 # for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): # global_steps = writer_dict['train_global_steps'] # for i in range(n_dis): # multiD[i].train() # for p in multiD[i].parameters(): # p.requires_grad = True # multiD_opt[i].zero_grad() # for p in gen_net.parameters(): # p.requires_grad = True # # Adversarial ground truths # x_real = imgs.type(torch.cuda.FloatTensor) # y_real = torch.ones(imgs.shape[0], 1).cuda() # # Sample noise as generator input # z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) # y_fake = torch.zeros(x_real.size()[0], 1).cuda() # # --------------------- # # Train Discriminator # # --------------------- # for i in range(n_dis): # multiD_opt[i].zero_grad() # gen_optimizer.zero_grad() # x_fake = gen_net(z).detach() # # assert x_fake.size() == x_real.size() # flag = True # for i in range(n_dis): # if flag: # D_fake = multiD[i](x_fake) # D_real = multiD[i](x_real) # flag = False # else: # D_fake = torch.cat((D_fake, multiD[i](x_fake)), dim = 1) # D_real = torch.cat((D_real, multiD[i](x_real)), dim = 1) # ind = torch.argmin(D_fake, dim = 1) # mask = torch.zeros((x_real.size()[0], n_dis)).cuda() # mask2 = torch.zeros((x_fake.size()[0], n_dis)).cuda() # for i in range(mask2.size()[0]): # random_checker = np.random.randint(0,10) # if random_checker > 7: #100 for no random thingie # index = np.random.randint(0,n_dis) # mask[i][index] = 1.0 # mask2[i][index] = 1.0 # else: # mask[i][ind[i]] = 1.0 # mask2[i][ind[i]] = 1.0 # # for i in range(mask2.size()[0], mask.size()[0]): # # id = np.random.randint(0,n_dis) # # if id != ind[i - mask2.size()[0]]: # # mask[i][id] = 1.0 # D_fake_output = torch.sum(mask2*D_fake, dim = 1) # D_real_output = torch.sum(mask*D_real, dim = 1) # #cos = torch.nn.CosineSimilarity() # #dot = cos(D_fake[0], D_fake[1]) # # cal loss # d_loss = torch.mean(nn.ReLU(inplace=True)(1.0 - D_real_output)) + \ # torch.mean(nn.ReLU(inplace=True)(1 + D_fake_output)) # # d_loss = criterion(real_validity, y_real) + criterion(fake_validity, y_fake) # d_loss.backward() # for i in range(n_dis): # multiD_opt[i].step() # writer.add_scalar('d_loss', d_loss.item(), global_steps) # # ----------------- # # Train Generator # # ----------------- # if global_steps % args.n_critic == 0: # gen_optimizer.zero_grad() # gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) # fake_img = gen_net(gen_z) # critic_fakes = [] # lit = np.zeros(n_dis) # for i in range(n_dis): # for p in multiD[i].parameters(): # p.requires_grad = False # critic_fake = multiD[i](fake_img) # critic_fakes.append(critic_fake) # lit[i] = torch.sum(critic_fake).item() # loss_sort = np.argsort(lit) # weights = np.random.dirichlet(np.ones(n_dis)) # weights = np.sort(weights)[::-1] # flag = False # for i in range(len(critic_fakes)): # if flag == False: # critic_fake = weights[i]*critic_fakes[loss_sort[i]] # flag = True # else: # critic_fake = torch.add(critic_fake, weights[i]*critic_fakes[loss_sort[i]]) # # cal loss # g_loss = -torch.mean(critic_fake) # # g_loss = criterion(fake_validity, y_fake) # g_loss.backward() # gen_optimizer.step() # # adjust learning rate # if schedulers: # gen_scheduler, dis_scheduler = schedulers # g_lr = gen_scheduler.step(global_steps) # d_lr = dis_scheduler.step(global_steps) # writer.add_scalar('LR/g_lr', g_lr, global_steps) # writer.add_scalar('LR/d_lr', d_lr, global_steps) # # moving average weight # for p, avg_p in zip(gen_net.parameters(), gen_avg_param): # avg_p.mul_(0.999).add_(0.001, p.data) # writer.add_scalar('g_loss', g_loss.item(), global_steps) # gen_step += 1 # # verbose # if gen_step and iter_idx % args.print_freq == 0: # tqdm.write( # "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % # (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item())) # if experiment != None: # experiment.log_metric("gen_loss", g_loss.item()) # experiment.log_metric("dis_loss", d_loss.item()) # writer_dict['train_global_steps'] = global_steps + 1 def train_multi(args, gen_net: nn.Module, multiD, gen_optimizer, multiD_opt, gen_avg_param, train_loader, epoch, writer_dict, alpha_m, t, check_ep, alpha, schedulers=None, experiment=None): writer = writer_dict['writer'] gen_step = 0 n_dis = len(multiD) def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv2d') != -1: if args.init_type == 'normal': nn.init.normal_(m.weight.data, 0.0, 0.02) elif args.init_type == 'orth': nn.init.orthogonal_(m.weight.data) elif args.init_type == 'xavier_uniform': nn.init.xavier_uniform(m.weight.data, 1.) else: raise NotImplementedError('{} unknown inital type'.format(args.init_type)) elif classname.find('BatchNorm2d') != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) for imgs,_ in train_loader: exemplar = imgs[:15].type(torch.cuda.FloatTensor) break addno = False # check_ep = 10 # check_ep = int(check_ep*t) if n_dis == 1: check_ep = 5 if epoch > 1 and epoch % check_ep == 0: check_ep = int(check_ep*t) exemplar_flag = True with torch.no_grad(): for dis_index in range(n_dis): if exemplar_flag: exemplar_res = multiD[dis_index](exemplar).unsqueeze(0) exemplar_flag = False else: exemplar_res = torch.cat((multiD[dis_index](exemplar).unsqueeze(0), exemplar_res), dim=0) print(exemplar_res.size()) alpha = 1.5 if n_dis > 2: alpha = alpha*alpha_m print('\n',exemplar_res, torch.mean(exemplar_res, dim = 1)) exemplar_max,_ = torch.max(exemplar_res, dim = 1) exemplar_min,_ = torch.min(exemplar_res, dim = 1) print('\n',exemplar_min) # for i in range(n_dis): # if exemplar_min[i].item() > alpha[0]*torch.mean(exemplar_res[i]).item(): # addno = True # print(exemplar_min[i].item(), torch.mean(exemplar_res[i]).item()) # if n_dis > 3: # addno = False # "\nAdd True but N_dis > 4\n" # break # break for i in range(n_dis): if addno: break if exemplar_max[i].item() > alpha*torch.mean(exemplar_res[i]).item(): addno = True print(exemplar_min[i].item(), torch.mean(exemplar_res[i]).item()) # if n_dis > 3: # addno = False # "\nAdd True but N_dis > 4\n" # break break if addno: # print('\n adding D \n') addno = False d_new = eval('models.'+args.model+'.Discriminator')(args=args).cuda() # d_new.apply(weights_init) multiD.append(d_new) multiD_opt.append(torch.optim.Adam(filter(lambda p: p.requires_grad, multiD[n_dis].parameters()), args.d_lr, (args.beta1, args.beta2))) n_dis +=1 # print('\nn_dis: ', n_dis) # dcopy = deepcopy(multiD[n_dis-1]).cpu() # sdict = dcopy.state_dict() # for i, p in enumerate(sdict): # if i <4: # continue # # print(p) # sdict[p] = 0.01*torch.randn(sdict[p].size()) # dcopy.load_state_dict(sdict) # multiD.append(dcopy.cuda()) # sdict = multiD[n_dis-1].state_dict() # for i, p in enumerate(sdict): # # if i <4: # # continue # # print(p) # sdict[p] = sdict[p] + 0.1*torch.randn(sdict[p].size()).cuda() # multiD[n_dis-1].load_state_dict(sdict) # multiD_opt.append(torch.optim.Adam(multiD[n_dis].parameters(), lr = args.lr, betas = (0.5,0.999))) # n_dis = n_dis + 1 # train mode gen_net = gen_net.train() d_loss = 0.0 g_loss = 0.0 for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): global_steps = writer_dict['train_global_steps'] for i in range(n_dis): multiD[i].train() for p in multiD[i].parameters(): p.requires_grad = True multiD_opt[i].zero_grad() for p in gen_net.parameters(): p.requires_grad = True # Adversarial ground truths x_real = imgs.type(torch.cuda.FloatTensor) y_real = torch.ones(imgs.shape[0], 1).cuda() # Sample noise as generator input z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) y_fake = torch.zeros(x_real.size()[0], 1).cuda() # --------------------- # Train Discriminator # --------------------- for i in range(n_dis): multiD_opt[i].zero_grad() gen_optimizer.zero_grad() x_fake = gen_net(z).detach() # assert x_fake.size() == x_real.size() flag = True for i in range(n_dis): if flag: D_fake = multiD[i](x_fake) D_real = multiD[i](x_real) flag = False else: D_fake = torch.cat((D_fake, multiD[i](x_fake)), dim = 1) D_real = torch.cat((D_real, multiD[i](x_real)), dim = 1) ind = torch.argmin(D_fake, dim = 1) mask = torch.zeros((x_real.size()[0], n_dis)).cuda() mask2 = torch.zeros((x_real.size()[0], n_dis)).cuda() for i in range(mask.size()[0]): random_checker = np.random.randint(0,10) if random_checker > 7: #100 for no random thingie index = np.random.randint(0,n_dis) mask[i][index] = 1.0 mask2[i][index] = 1.0 else: mask[i][ind[i]] = 1.0 mask2[i][ind[i]] = 1.0 # for i in range(mask.size()[0], mask2.size()[0]): # mask2[i][np.random.randint(0,n_dis)] = 1.0 D_fake_output = torch.sum(mask2*D_fake, dim = 1) D_real_output = torch.sum(mask*D_real, dim = 1) # cal loss d_loss = torch.mean(nn.ReLU(inplace=True)(1.0 - D_real_output)) + \ torch.mean(nn.ReLU(inplace=True)(1 + D_fake_output)) # d_loss = criterion(real_validity, y_real) + criterion(fake_validity, y_fake) d_loss.backward() for i in range(n_dis): multiD_opt[i].step() writer.add_scalar('d_loss', d_loss.item(), global_steps) # ----------------- # Train Generator # ----------------- if global_steps % args.n_critic == 0: gen_optimizer.zero_grad() gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) fake_img = gen_net(gen_z) critic_fakes = [] lit = np.zeros(n_dis) for i in range(n_dis): for p in multiD[i].parameters(): p.requires_grad = False critic_fake = multiD[i](fake_img) critic_fakes.append(critic_fake) lit[i] = torch.sum(critic_fake).item() loss_sort = np.argsort(lit) weights = np.random.dirichlet(np.ones(n_dis)) weights = np.sort(weights)[::-1] flag = False for i in range(len(critic_fakes)): if flag == False: critic_fake = weights[i]*critic_fakes[loss_sort[i]] flag = True else: critic_fake = torch.add(critic_fake, weights[i]*critic_fakes[loss_sort[i]]) # cal loss g_loss = -torch.mean(critic_fake) # g_loss = criterion(fake_validity, y_fake) g_loss.backward() gen_optimizer.step() # adjust learning rate if schedulers: gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) writer.add_scalar('LR/g_lr', g_lr, global_steps) writer.add_scalar('LR/d_lr', d_lr, global_steps) # moving average weight for p, avg_p in zip(gen_net.parameters(), gen_avg_param): avg_p.mul_(0.999).add_(0.001, p.data) writer.add_scalar('g_loss', g_loss.item(), global_steps) gen_step += 1 # verbose if gen_step and iter_idx % args.print_freq == 0: tqdm.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item())) if experiment != None: experiment.log_metric("gen_loss", g_loss.item()) experiment.log_metric("dis_loss", d_loss.item()) writer_dict['train_global_steps'] = global_steps + 1 return multiD, multiD_opt, check_ep, alpha def train(args, gen_net: nn.Module, dis_net: nn.Module, gen_optimizer, dis_optimizer, gen_avg_param, train_loader, epoch, writer_dict, schedulers=None, experiment=None): writer = writer_dict['writer'] gen_step = 0 criterion = nn.BCELoss() # train mode gen_net = gen_net.train() dis_net = dis_net.train() d_loss = 0.0 g_loss = 0.0 for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)): global_steps = writer_dict['train_global_steps'] # Adversarial ground truths real_imgs = imgs.type(torch.cuda.FloatTensor) y_real = torch.ones(imgs.shape[0], 1).cuda() # Sample noise as generator input z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], args.latent_dim))) y_fake = torch.zeros(real_imgs.size()[0], 1).cuda() # --------------------- # Train Discriminator # --------------------- dis_optimizer.zero_grad() real_validity = dis_net(real_imgs) fake_imgs = gen_net(z).detach() assert fake_imgs.size() == real_imgs.size() fake_validity = dis_net(fake_imgs) # cal loss d_loss = torch.mean(nn.ReLU(inplace=True)(1.0 - real_validity)) + \ torch.mean(nn.ReLU(inplace=True)(1 + fake_validity)) # d_loss = criterion(real_validity, y_real) + criterion(fake_validity, y_fake) d_loss.backward() dis_optimizer.step() writer.add_scalar('d_loss', d_loss.item(), global_steps) # ----------------- # Train Generator # ----------------- if global_steps % args.n_critic == 0: gen_optimizer.zero_grad() gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.gen_batch_size, args.latent_dim))) gen_imgs = gen_net(gen_z) fake_validity = dis_net(gen_imgs) y_fake = torch.zeros(args.gen_batch_size, 1).cuda() # cal loss g_loss = -torch.mean(fake_validity) # g_loss = criterion(fake_validity, y_fake) g_loss.backward() gen_optimizer.step() # adjust learning rate if schedulers: gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) writer.add_scalar('LR/g_lr', g_lr, global_steps) writer.add_scalar('LR/d_lr', d_lr, global_steps) # moving average weight for p, avg_p in zip(gen_net.parameters(), gen_avg_param): avg_p.mul_(0.999).add_(0.001, p.data) writer.add_scalar('g_loss', g_loss.item(), global_steps) gen_step += 1 # verbose if gen_step and iter_idx % args.print_freq == 0: tqdm.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item())) if experiment != None: experiment.log_metric("gen_loss", g_loss.item()) experiment.log_metric("dis_loss", d_loss.item()) writer_dict['train_global_steps'] = global_steps + 1 def validate(args, fixed_z, fid_stat, gen_net: nn.Module, writer_dict): writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] # eval mode gen_net = gen_net.eval() # generate images sample_imgs = gen_net(fixed_z) img_grid = make_grid(sample_imgs, nrow=8, normalize=True, scale_each=True) # get fid and inception score fid_buffer_dir = os.path.join(args.path_helper['sample_path'], 'fid_buffer') try: os.makedirs(fid_buffer_dir) except: pass eval_iter = args.num_eval_imgs // args.eval_batch_size img_list = list() with torch.no_grad(): for iter_idx in tqdm(range(eval_iter), desc='sample images'): z = torch.cuda.FloatTensor(np.random.normal(0, 1, (args.eval_batch_size, args.latent_dim))) # Generate a batch of images gen_imgs = gen_net(z).mul_(127.5).add_(127.5).clamp_(0.0, 255.0).permute(0, 2, 3, 1).to('cpu', torch.uint8).numpy() for img_idx, img in enumerate(gen_imgs): file_name = os.path.join(fid_buffer_dir, f'iter{iter_idx}_b{img_idx}.png') imsave(file_name, img) img_list.extend(list(gen_imgs)) # get inception score logger.info('=> calculate inception score') torch.cuda.empty_cache() mean, std = get_inception_score(img_list) # get fid score logger.info('=> calculate fid score') fid_score = 0 #calculate_fid_given_paths([fid_buffer_dir, fid_stat], inception_path=None) # os.system('rm -r {}'.format(fid_buffer_dir)) writer.add_image('sampled_images', img_grid, global_steps) writer.add_scalar('Inception_score/mean', mean, global_steps) writer.add_scalar('Inception_score/std', std, global_steps) # writer.add_scalar('FID_score', fid_score, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 return mean, fid_score, sample_imgs class LinearLrDecay(object): def __init__(self, optimizer, start_lr, end_lr, decay_start_step, decay_end_step): assert start_lr > end_lr self.optimizer = optimizer self.delta = (start_lr - end_lr) / (decay_end_step - decay_start_step) self.decay_start_step = decay_start_step self.decay_end_step = decay_end_step self.start_lr = start_lr self.end_lr = end_lr def step(self, current_step): if current_step <= self.decay_start_step: lr = self.start_lr elif current_step >= self.decay_end_step: lr = self.end_lr else: lr = self.start_lr - self.delta * (current_step - self.decay_start_step) for param_group in self.optimizer.param_groups: param_group['lr'] = lr return lr def load_params(model, new_param): for p, new_p in zip(model.parameters(), new_param): p.data.copy_(new_p) def copy_params(model): flatten = deepcopy(list(p.data for p in model.parameters())) return flatten
[ "torch.argmin", "torch.ones", "torch.sum", "torch.nn.init.constant_", "torch.nn.init.normal_", "torch.nn.BCELoss", "torch.nn.init.orthogonal_", "torch.neg", "torch.zeros", "torch.nn.functional.softplus", "torch.min", "torch.max", "torch.nn.ReLU", "torch.cuda.empty_cache", "torch.log", "torch.nn.init.xavier_uniform", "torch.no_grad", "torch.add", "torch.mean" ]
1.1.0
gargrohin/sngan.pytorch
58d200c731935360f1b0fdcb1865c366c633e56c
1.6
import argparse import os import random import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils import data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable import torch.nn.functional as F from copy import deepcopy import matplotlib.pyplot as plt import time import loss from torch.utils.tensorboard import SummaryWriter from event_ae import EventAE from chamfer import ChamferDistance, ChamferLoss from dataloader import EventStreamDataset, EventStreamArray from data_utils import * parser = argparse.ArgumentParser() parser.add_argument( "--input_file", type=str, default="data/MSTrain_bytestream.txt", help="training data filename", ) parser.add_argument("--batch_size", type=int, default=1000, help="input batch size") parser.add_argument("--batch_num", type=int, default=50, help="number of batches") parser.add_argument("--data_len", type=int, default=2, help="event element length") parser.add_argument("--tcode", type=bool, default=False, help="consider timestamps") parser.add_argument( "--nepoch", type=int, default=5000, help="number of epochs to train for" ) parser.add_argument("--latent_size", type=int, default=8) parser.add_argument( "--rec_loss", type=str, default="huber", help="type of loss: mse, huber, bce, chamfer", ) parser.add_argument( "--decoder", type=str, default="image", help="decoder type: stream or image" ) parser.add_argument("--outf", type=str, default="weights", help="output folder") parser.add_argument("--model", type=str, default="", help="model path") parser.add_argument( "--norm_type", type=str, default="none", help="normalization type: scale: [0, 1]; center: [-1, 1]", ) parser.add_argument("--arch", type=str, default="vanilla") opt = parser.parse_args() print(opt) def blue(x): return "\033[94m" + x + "\033[0m" opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) try: os.makedirs(opt.outf) except OSError: pass writer = SummaryWriter("runs/str_to_img_test") # Params: # n_events, data_size for stream decoder # Height, width for image decoder H = 32 W = 32 params = [H, W] event_dataset = EventStreamArray( opt.input_file, opt.batch_num, opt.batch_size, opt.data_len ) """ batch_size_total = opt.batch_size * opt.batch_num train_loader = data.DataLoader( event_dataset, batch_size=batch_size_total, shuffle=False, num_workers=0, drop_last=True, ) """ data_utils = EventDataUtils(32, 32, opt.norm_type) enet = EventAE( opt.data_len, opt.latent_size, params, decoder=opt.decoder, norm_type=opt.norm_type ) if opt.model != "": enet.load_state_dict(torch.load(opt.model)) enet.cuda() init = True event_np_stack = np.empty([opt.batch_num, opt.batch_size, 4], dtype=np.float32) frames_stack = np.empty([opt.batch_num, H * W], dtype=np.float32) if opt.data_len == 3: pol = True else: pol = False with torch.no_grad(): for i, data in enumerate(test_loader, 0): # events = data_utils.normalize(EventExtractor(data, batch_num=1)) idx = random.randint(0, 1000000) events = data_utils.normalize(event_array.get_event_stack(idx)) events = Variable(events) events = events.transpose(2, 1) events = events.cuda() recon, z = enet(events) events = events.transpose(2, 1).contiguous() if opt.decoder == "stream": recon = recon.transpose(2, 1).contiguous() data_utils.compare_frames(events, recon)
[ "torch.autograd.Variable", "torch.no_grad", "torch.manual_seed", "torch.load", "torch.utils.tensorboard.SummaryWriter" ]
1.6.0
microsoft/event-vae-rl
cb64c2809bcbfec81e84fff93a912f65c72f73d3
1.10
import torch from torch.utils.data import Dataset import cv2 import numpy as np import pandas as pd __all__ = ['VideoDataset', 'VideoLabelDataset'] class VideoDataset(Dataset): """ Video Dataset for loading video. It will output only path of video (neither video file path or video folder path). However, you can load video as torch.Tensor (C x L x H x W). See below for an example of how to read video as torch.Tensor. Your video dataset can be image frames or video files. Args: csv_file (str): path fo csv file which store path of video file or video folder. the format of csv_file should like: # example_video_file.csv (if the videos of dataset is saved as video file) path ~/path/to/video/file1.mp4 ~/path/to/video/file2.mp4 ~/path/to/video/file3.mp4 ~/path/to/video/file4.mp4 # example_video_folder.csv (if the videos of dataset is saved as image frames) path ~/path/to/video/folder1/ ~/path/to/video/folder2/ ~/path/to/video/folder3/ ~/path/to/video/folder4/ Example: if the videos of dataset is saved as video file >>> import torch >>> from datasets import VideoDataset >>> import transforms >>> dataset = VideoDataset( >>> "example_video_file.csv", >>> transform = transforms.VideoFilePathToTensor() # See more options at transforms.py >>> ) >>> data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True) >>> for videos in data_loader: >>> print(videos.size()) if the video of dataset is saved as frames in video folder The tree like: (The names of the images are arranged in ascending order of frames) ~/path/to/video/folder1 ├── frame-001.jpg ├── frame-002.jpg ├── frame-003.jpg └── frame-004.jpg >>> import torch >>> from datasets import VideoDataset >>> import transforms >>> dataset = VideoDataset( >>> "example_video_folder.csv", >>> transform = transforms.VideoFolderPathToTensor() # See more options at transforms.py >>> ) >>> data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True) >>> for videos in data_loader: >>> print(videos.size()) """ def __init__(self, csv_file, transform=None): self.dataframe = pd.read_csv(csv_file) self.transform = transform def __len__(self): """ Returns: int: number of rows of the csv file (not include the header). """ return len(self.dataframe) def __getitem__(self, index): """ get a video """ video = self.dataframe.iloc[index].path if self.transform: video = self.transform(video) return video class VideoLabelDataset(Dataset): """ Dataset Class for Loading Video. It will output path and label. However, you can load video as torch.Tensor (C x L x H x W). See below for an example of how to read video as torch.Tensor. You can load tensor from video file or video folder by using the same way as VideoDataset. Args: csv_file (str): path fo csv file which store path and label of video file (or video folder). the format of csv_file should like: path, label ~/path/to/video/file1.mp4, 0 ~/path/to/video/file2.mp4, 1 ~/path/to/video/file3.mp4, 0 ~/path/to/video/file4.mp4, 2 Example: >>> import torch >>> import transforms >>> dataset = VideoDataset( >>> "example_video_file_with_label.csv", >>> transform = transforms.VideoFilePathToTensor() # See more options at transforms.py >>> ) >>> data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True) >>> for videos, labels in data_loader: >>> print(videos.size()) """ def __init__(self, csv_file, transform=None): self.dataframe = pd.read_csv(csv_file) self.transform = transform def __len__(self): """ Returns: int: number of rows of the csv file (not include the header). """ return len(self.dataframe) def __getitem__(self, index): """ get a video and its label """ video = self.dataframe.iloc[index].path label = self.dataframe.iloc[index].label if self.transform: video = self.transform(video) return video, label if __name__ == '__main__': import torchvision import PIL import transforms # test for VideoDataset dataset = VideoDataset( './data/example_video_file.csv', ) path = dataset[0] print(path) test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True) for video in test_loader: print(video) # test for VideoLabelDataset dataset = VideoLabelDataset( './data/example_video_file_with_label.csv', transform=torchvision.transforms.Compose([ transforms.VideoFilePathToTensor(max_len=50, fps=10, padding_mode='last'), transforms.VideoRandomCrop([512, 512]), transforms.VideoResize([256, 256]), ]) ) video, label = dataset[0] print(video.size(), label) frame1 = torchvision.transforms.ToPILImage()(video[:, 29, :, :]) frame2 = torchvision.transforms.ToPILImage()(video[:, 39, :, :]) frame1.show() frame2.show() test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True) for videos, labels in test_loader: print(videos.size(), label)
[ "torch.utils.data.DataLoader" ]
1.10.0
Jo951128/2021-2-MIP
511e0a38816d16fdba9631f76cf913ba51c43138
1.1
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json from torch.nn import functional as F import torch.utils.data from torchvision import datasets, transforms import torch.distributions import egg.core as core from egg.zoo.language_bottleneck.mnist_adv.archs import Sender, Receiver from egg.zoo.language_bottleneck.relaxed_channel import AlwaysRelaxedWrapper from egg.core import EarlyStopperAccuracy from egg.zoo.language_bottleneck.mnist_classification.data import DoubleMnist def diff_loss_symbol(_sender_input, _message, _receiver_input, receiver_output, labels): loss = F.nll_loss(receiver_output, labels, reduction='none').mean() acc = (receiver_output.argmax(dim=1) == labels).float() return loss, {'acc': acc} def get_params(params): parser = argparse.ArgumentParser() parser.add_argument('--temperature', type=float, default=1.0, help="GS temperature for the sender (default: 1)") parser.add_argument('--early_stopping_thr', type=float, default=1.0, help="Early stopping threshold on accuracy (default: 1.0)") parser.add_argument('--softmax_non_linearity', type=int, default=0, help="Disable GS training, treat channel as softmax non-linearity (default: 0)") parser.add_argument('--linear_channel', type=int, default=0, help="Disable GS training, treat channel as a linear connection (default: 0)") args = core.init(parser, params) assert not (args.softmax_non_linearity == 1 and args.linear_channel == 1) return args def main(params): opts = get_params(params) print(opts) kwargs = {'num_workers': 1, 'pin_memory': True} if opts.cuda else {} transform = transforms.ToTensor() train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('./data', train=False, download=False, transform=transform) n_classes = 10 label_mapping = torch.LongTensor([x % n_classes for x in range(100)]) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=opts.batch_size, shuffle=True, **kwargs) train_loader = DoubleMnist(train_loader, label_mapping) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16 * 1024, shuffle=False, **kwargs) test_loader = DoubleMnist(test_loader, label_mapping) sender = Sender(vocab_size=opts.vocab_size, linear_channel=opts.linear_channel == 1, softmax_channel=opts.softmax_non_linearity) receiver = Receiver(vocab_size=opts.vocab_size, n_classes=n_classes) if opts.softmax_non_linearity == 0 and opts.linear_channel == 0: sender = AlwaysRelaxedWrapper(sender, temperature=opts.temperature) game = core.SymbolGameGS(sender, receiver, diff_loss_symbol) optimizer = core.build_optimizer(game.parameters()) trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader, validation_data=test_loader, callbacks=[core.ConsoleLogger(as_json=True, print_train_loss=True), EarlyStopperAccuracy(opts.early_stopping_thr)]) trainer.train(n_epochs=opts.n_epochs) core.close() if __name__ == "__main__": import sys main(sys.argv[1:])
[ "torch.nn.functional.nll_loss" ]
1.1.0
Slowika/GameBias-EmeCom2020
5b94c47559f8202bca99c26fc1bcb078dd0509a6