version
stringclasses
24 values
code
stringlengths
396
135k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
6
64
hexsha
stringlengths
40
40
1.6
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import itertools import math import torch from torch.distributions import constraints from torch.distributions.utils import lazy_property from pyro.distributions.torch_distribution import TorchDistribution class SpanningTree(TorchDistribution): """ Distribution over spanning trees on a fixed number ``V`` of vertices. A tree is represented as :class:`torch.LongTensor` ``edges`` of shape ``(V-1,2)`` satisfying the following properties: 1. The edges constitute a tree, i.e. are connected and cycle free. 2. Each edge ``(v1,v2) = edges[e]`` is sorted, i.e. ``v1 < v2``. 3. The entire tensor is sorted in colexicographic order. Use :func:`validate_edges` to verify `edges` are correctly formed. The ``edge_logits`` tensor has one entry for each of the ``V*(V-1)//2`` edges in the complete graph on ``V`` vertices, where edges are each sorted and the edge order is colexicographic:: (0,1), (0,2), (1,2), (0,3), (1,3), (2,3), (0,4), (1,4), (2,4), ... This ordering corresponds to the size-independent pairing function:: k = v1 + v2 * (v2 - 1) // 2 where ``k`` is the rank of the edge ``(v1,v2)`` in the complete graph. To convert a matrix of edge logits to the linear representation used here:: assert my_matrix.shape == (V, V) i, j = make_complete_graph(V) edge_logits = my_matrix[i, j] :param torch.Tensor edge_logits: A tensor of length ``V*(V-1)//2`` containing logits (aka negative energies) of all edges in the complete graph on ``V`` vertices. See above comment for edge ordering. :param dict sampler_options: An optional dict of sampler options including: ``mcmc_steps`` defaulting to a single MCMC step (which is pretty good); ``initial_edges`` defaulting to a cheap approximate sample; ``backend`` one of "python" or "cpp", defaulting to "python". """ arg_constraints = {'edge_logits': constraints.real} support = constraints.nonnegative_integer has_enumerate_support = True def __init__(self, edge_logits, sampler_options=None, validate_args=None): if edge_logits.is_cuda: raise NotImplementedError("SpanningTree does not support cuda tensors") K = len(edge_logits) V = int(round(0.5 + (0.25 + 2 * K)**0.5)) assert K == V * (V - 1) // 2 E = V - 1 event_shape = (E, 2) batch_shape = () self.edge_logits = edge_logits super().__init__(batch_shape, event_shape, validate_args=validate_args) if self._validate_args: if edge_logits.shape != (K,): raise ValueError("Expected edge_logits of shape ({},), but got shape {}" .format(K, edge_logits.shape)) self.num_vertices = V self.sampler_options = {} if sampler_options is None else sampler_options def validate_edges(self, edges): """ Validates a batch of ``edges`` tensors, as returned by :meth:`sample` or :meth:`enumerate_support` or as input to :meth:`log_prob()`. :param torch.LongTensor edges: A batch of edges. :raises: ValueError :returns: None """ if edges.shape[-2:] != self.event_shape: raise ValueError("Invalid edges shape: {}".format(edges.shape)) # Verify canonical ordering. if not ((0 <= edges) & (edges < self.num_vertices)).all(): raise ValueError("Invalid vertex ids:\n{}".format(edges)) if not (edges[..., 0] < edges[..., 1]).all(): raise ValueError("Vertices are not sorted in each edge:\n{}".format(edges)) if not ((edges[..., :-1, 1] < edges[..., 1:, 1]) | ((edges[..., :-1, 1] == edges[..., 1:, 1]) & (edges[..., :-1, 0] < edges[..., 1:, 0]))).all(): raise ValueError("Edges are not sorted colexicographically:\n{}".format(edges)) # Verify tree property, i.e. connectivity. V = self.num_vertices for i in itertools.product(*map(range, edges.shape[:-2])): edges_i = edges[i] connected = torch.eye(V, dtype=torch.float) connected[edges_i[:, 0], edges_i[:, 1]] = 1 connected[edges_i[:, 1], edges_i[:, 0]] = 1 for i in range(int(math.ceil(V ** 0.5))): connected = connected.mm(connected).clamp_(max=1) if not connected.min() > 0: raise ValueError("Edges do not constitute a tree:\n{}".format(edges_i)) @lazy_property def log_partition_function(self): # By Kirchoff's matrix-tree theorem, the partition function is the # determinant of a truncated version of the graph Laplacian matrix. We # use a Cholesky decomposition to compute the log determinant. # See https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem V = self.num_vertices v1, v2 = make_complete_graph(V).unbind(0) logits = self.edge_logits.new_full((V, V), -math.inf) logits[v1, v2] = self.edge_logits logits[v2, v1] = self.edge_logits log_diag = logits.logsumexp(-1) # Numerically stabilize so that laplacian has 1's on the diagonal. shift = 0.5 * log_diag laplacian = torch.eye(V) - (logits - shift - shift[:, None]).exp() truncated = laplacian[:-1, :-1] try: import gpytorch log_det = gpytorch.lazy.NonLazyTensor(truncated).logdet() except ImportError: log_det = torch.cholesky(truncated).diag().log().sum() * 2 return log_det + log_diag[:-1].sum() def log_prob(self, edges): if self._validate_args: self.validate_edges(edges) v1 = edges[..., 0] v2 = edges[..., 1] k = v1 + v2 * (v2 - 1) // 2 return self.edge_logits[k].sum(-1) - self.log_partition_function def sample(self, sample_shape=torch.Size()): """ This sampler is implemented using MCMC run for a small number of steps after being initialized by a cheap approximate sampler. This sampler is approximate and cubic time. This is faster than the classic Aldous-Broder sampler [1,2], especially for graphs with large mixing time. Recent research [3,4] proposes samplers that run in sub-matrix-multiply time but are more complex to implement. **References** [1] `Generating random spanning trees` Andrei Broder (1989) [2] `The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees`, David J. Aldous (1990) [3] `Sampling Random Spanning Trees Faster than Matrix Multiplication`, David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, Sushant Sachdeva (2017) https://arxiv.org/abs/1611.07451 [4] `An almost-linear time algorithm for uniform random spanning tree generation`, Aaron Schild (2017) https://arxiv.org/abs/1711.06455 """ if sample_shape: raise NotImplementedError("SpanningTree does not support batching") edges = sample_tree(self.edge_logits, **self.sampler_options) assert edges.dim() >= 2 and edges.shape[-2:] == self.event_shape return edges def enumerate_support(self, expand=True): """ This is implemented for trees with up to 6 vertices (and 5 edges). """ trees = enumerate_spanning_trees(self.num_vertices) return torch.tensor(trees, dtype=torch.long) ################################################################################ # Sampler implementation. ################################################################################ _cpp_module = None def _get_cpp_module(): """ JIT compiles the cpp_spanning_tree module. """ global _cpp_module if _cpp_module is None: import os from torch.utils.cpp_extension import load path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "spanning_tree.cpp") _cpp_module = load(name="cpp_spanning_tree", sources=[path], extra_cflags=['-O2'], verbose=True) return _cpp_module def make_complete_graph(num_vertices, backend="python"): """ Constructs a complete graph. The pairing function is: ``k = v1 + v2 * (v2 - 1) // 2`` :param int num_vertices: Number of vertices. :returns: a 2 x K grid of (vertex, vertex) pairs. """ if backend == "python": return _make_complete_graph(num_vertices) elif backend == "cpp": return _get_cpp_module().make_complete_graph(num_vertices) else: raise ValueError("unknown backend: {}".format(repr(backend))) def _make_complete_graph(num_vertices): if num_vertices < 2: raise ValueError('PyTorch cannot handle zero-sized multidimensional tensors') V = num_vertices K = V * (V - 1) // 2 v1 = torch.arange(V) v2 = torch.arange(V).unsqueeze(-1) v1, v2 = torch.broadcast_tensors(v1, v2) v1 = v1.contiguous().view(-1) v2 = v2.contiguous().view(-1) mask = (v1 < v2) grid = torch.stack((v1[mask], v2[mask])) assert grid.shape == (2, K) return grid def _remove_edge(grid, edge_ids, neighbors, components, e): """ Remove an edge from a spanning tree. """ k = edge_ids[e] v1 = grid[0, k].item() v2 = grid[1, k].item() neighbors[v1].remove(v2) neighbors[v2].remove(v1) components[v1] = 1 pending = [v1] while pending: v1 = pending.pop() for v2 in neighbors[v1]: if not components[v2]: components[v2] = 1 pending.append(v2) return k def _add_edge(grid, edge_ids, neighbors, components, e, k): """ Add an edge connecting two components to create a spanning tree. """ edge_ids[e] = k v1 = grid[0, k].item() v2 = grid[1, k].item() neighbors[v1].add(v2) neighbors[v2].add(v1) components.fill_(0) def _find_valid_edges(components, valid_edge_ids): """ Find all edges between two components in a complete undirected graph. :param components: A [V]-shaped array of boolean component ids. This assumes there are exactly two nonemtpy components. :param valid_edge_ids: An uninitialized array where output is written. On return, the subarray valid_edge_ids[:end] will contain edge ids k for all valid edges. :returns: The number of valid edges found. """ k = 0 end = 0 for v2, c2 in enumerate(components): for v1 in range(v2): if c2 ^ components[v1]: valid_edge_ids[end] = k end += 1 k += 1 return end @torch.no_grad() def _sample_tree_mcmc(edge_logits, edges): if len(edges) <= 1: return edges E = len(edges) V = E + 1 K = V * (V - 1) // 2 grid = make_complete_graph(V) # Each of E edges in the tree is stored as an id k in [0, K) indexing into # the complete graph. The id of an edge (v1,v2) is k = v1+v2*(v2-1)/2. edge_ids = torch.empty(E, dtype=torch.long) # This maps each vertex to the set of its neighboring vertices. neighbors = {v: set() for v in range(V)} # This maps each vertex to its connected component id (0 or 1). components = torch.zeros(V, dtype=torch.bool) for e in range(E): v1, v2 = map(int, edges[e]) assert v1 < v2 edge_ids[e] = v1 + v2 * (v2 - 1) // 2 neighbors[v1].add(v2) neighbors[v2].add(v1) # This stores ids of edges that are valid candidates for Gibbs moves. valid_edges_buffer = torch.empty(K, dtype=torch.long) # Cycle through all edges in a random order. for e in torch.randperm(E): e = int(e) # Perform a single-site Gibbs update by moving this edge elsewhere. k = _remove_edge(grid, edge_ids, neighbors, components, e) num_valid_edges = _find_valid_edges(components, valid_edges_buffer) valid_edge_ids = valid_edges_buffer[:num_valid_edges] valid_logits = edge_logits[valid_edge_ids] valid_probs = (valid_logits - valid_logits.max()).exp() total_prob = valid_probs.sum() if total_prob > 0: sample = torch.multinomial(valid_probs, 1)[0] k = valid_edge_ids[sample] _add_edge(grid, edge_ids, neighbors, components, e, k) # Convert edge ids to a canonical list of pairs. edge_ids = edge_ids.sort()[0] edges = torch.empty((E, 2), dtype=torch.long) edges[:, 0] = grid[0, edge_ids] edges[:, 1] = grid[1, edge_ids] return edges def sample_tree_mcmc(edge_logits, edges, backend="python"): """ Sample a random spanning tree of a dense weighted graph using MCMC. This uses Gibbs sampling on edges. Consider E undirected edges that can move around a graph of ``V=1+E`` vertices. The edges are constrained so that no two edges can span the same pair of vertices and so that the edges must form a spanning tree. To Gibbs sample, chose one of the E edges at random and move it anywhere else in the graph. After we remove the edge, notice that the graph is split into two connected components. The constraints imply that the edge must be replaced so as to connect the two components. Hence to Gibbs sample, we collect all such bridging (vertex,vertex) pairs and sample from them in proportion to ``exp(edge_logits)``. :param torch.Tensor edge_logits: A length-K array of nonnormalized log probabilities. :param torch.Tensor edges: An E x 2 tensor of initial edges in the form of (vertex,vertex) pairs. Each edge should be sorted and the entire tensor should be lexicographically sorted. :returns: An E x 2 tensor of edges in the form of (vertex,vertex) pairs. Each edge should be sorted and the entire tensor should be lexicographically sorted. :rtype: torch.Tensor """ if backend == "python": return _sample_tree_mcmc(edge_logits, edges) elif backend == "cpp": return _get_cpp_module().sample_tree_mcmc(edge_logits, edges) else: raise ValueError("unknown backend: {}".format(repr(backend))) @torch.no_grad() def _sample_tree_approx(edge_logits): K = len(edge_logits) V = int(round(0.5 + (0.25 + 2 * K)**0.5)) assert K == V * (V - 1) // 2 E = V - 1 grid = make_complete_graph(V) # Each of E edges in the tree is stored as an id k in [0, K) indexing into # the complete graph. The id of an edge (v1,v2) is k = v1+v2*(v2-1)/2. edge_ids = torch.empty((E,), dtype=torch.long) # This maps each vertex to whether it is a member of the cumulative tree. components = torch.zeros(V, dtype=torch.bool) # Sample the first edge at random. probs = (edge_logits - edge_logits.max()).exp() k = torch.multinomial(probs, 1)[0] components[grid[:, k]] = 1 edge_ids[0] = k # Sample edges connecting the cumulative tree to a new leaf. for e in range(1, E): c1, c2 = components[grid] mask = (c1 != c2) valid_logits = edge_logits[mask] probs = (valid_logits - valid_logits.max()).exp() k = mask.nonzero(as_tuple=False)[torch.multinomial(probs, 1)[0]] components[grid[:, k]] = 1 edge_ids[e] = k # Convert edge ids to a canonical list of pairs. edge_ids = edge_ids.sort()[0] edges = torch.empty((E, 2), dtype=torch.long) edges[:, 0] = grid[0, edge_ids] edges[:, 1] = grid[1, edge_ids] return edges def sample_tree_approx(edge_logits, backend="python"): """ Approximately sample a random spanning tree of a dense weighted graph. This is mainly useful for initializing an MCMC sampler. :param torch.Tensor edge_logits: A length-K array of nonnormalized log probabilities. :returns: An E x 2 tensor of edges in the form of (vertex,vertex) pairs. Each edge should be sorted and the entire tensor should be lexicographically sorted. :rtype: torch.Tensor """ if backend == "python": return _sample_tree_approx(edge_logits) elif backend == "cpp": return _get_cpp_module().sample_tree_approx(edge_logits) else: raise ValueError("unknown backend: {}".format(repr(backend))) def sample_tree(edge_logits, init_edges=None, mcmc_steps=1, backend="python"): edges = init_edges if edges is None: edges = sample_tree_approx(edge_logits, backend=backend) for step in range(mcmc_steps): edges = sample_tree_mcmc(edge_logits, edges, backend=backend) return edges ################################################################################ # Enumeration implementation. ################################################################################ # See https://oeis.org/A000272 NUM_SPANNING_TREES = [ 1, 1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691, 61917364224, 1792160394037, 56693912375296, 1946195068359375, 72057594037927936, 2862423051509815793, 121439531096594251776, 5480386857784802185939, ] # These topologically distinct sets of trees generate sets of all trees # under permutation of vertices. See https://oeis.org/A000055 _TREE_GENERATORS = [ [[]], [[]], [[(0, 1)]], [[(0, 1), (0, 2)]], [ [(0, 1), (0, 2), (0, 3)], [(0, 1), (1, 2), (2, 3)], ], [ [(0, 1), (0, 2), (0, 3), (0, 4)], [(0, 1), (0, 2), (0, 3), (1, 4)], [(0, 1), (1, 2), (2, 3), (3, 4)], ], [ [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)], [(0, 1), (0, 2), (0, 3), (0, 4), (1, 5)], [(0, 1), (0, 2), (0, 3), (1, 4), (4, 5)], [(0, 1), (0, 2), (0, 3), (2, 4), (3, 5)], [(0, 1), (0, 2), (0, 3), (3, 4), (3, 5)], [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], ], ] def _permute_tree(perm, tree): edges = [tuple(sorted([perm[u], perm[v]])) for (u, v) in tree] edges.sort(key=lambda uv: (uv[1], uv[0])) return tuple(edges) def _close_under_permutations(V, tree_generators): vertices = list(range(V)) trees = [] for tree in tree_generators: trees.extend(set(_permute_tree(perm, tree) for perm in itertools.permutations(vertices))) trees.sort() return trees def enumerate_spanning_trees(V): """ Compute the set of spanning trees on V vertices. """ if V >= len(_TREE_GENERATORS): raise NotImplementedError( "enumerate_spanning_trees() is implemented only for trees with up to {} vertices" .format(len(_TREE_GENERATORS) - 1)) all_trees = _close_under_permutations(V, _TREE_GENERATORS[V]) assert len(all_trees) == NUM_SPANNING_TREES[V] return all_trees
[ "torch.zeros", "torch.Size", "torch.cholesky", "torch.stack", "torch.arange", "torch.no_grad", "torch.broadcast_tensors", "torch.randperm", "torch.multinomial", "torch.tensor", "torch.eye", "torch.utils.cpp_extension.load", "torch.empty" ]
1.6.0
kashif/pyro
b65b329d8b851c7402acaef9c176a8964caadaf3
1.6
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import torch from pyro.distributions.transforms import Transform from pyro.distributions import constraints class OrderedTransform(Transform): """ Transforms a real vector into an ordered vector. Specifically, enforces monotonically increasing order on the last dimension of a given tensor via the transformation :math:`y_0 = x_0`, :math:`y_i = \\sum_{1 \\le j \\le i} \\exp(x_i)` """ domain = constraints.real_vector codomain = constraints.ordered_vector bijective = True sign = +1 event_dim = 1 def _call(self, x): z = torch.cat([x[..., :1], x[..., 1:].exp()], dim=-1) return torch.cumsum(z, dim=-1) def _inverse(self, y): x = (y[..., 1:] - y[..., :-1]).log() return torch.cat([y[..., :1], x], dim=-1) def log_abs_det_jacobian(self, x, y): return torch.sum(x[..., 1:], dim=-1)
[ "torch.sum", "torch.cat", "torch.cumsum" ]
1.6.0
kashif/pyro
b65b329d8b851c7402acaef9c176a8964caadaf3
1.6
# Copyright (c) Facebook, Inc. and its affiliates. import logging import os import warnings from enum import Enum from typing import Any, Dict, List, Optional, Tuple, Union import mmf import pytorch_lightning as pl import torch from mmf.common.meter import Meter from mmf.common.registry import registry from mmf.datasets.iteration_strategies import ( ConstantIterationStrategy, IterationStrategy, SizeProportionalIterationStrategy, ) from mmf.datasets.processors.processors import Processor from mmf.utils.configuration import Configuration, get_global_config from mmf.utils.distributed import is_dist_initialized, is_master, is_xla, synchronize from mmf.utils.general import get_optimizer_parameters from omegaconf import DictConfig, OmegaConf try: import torch_xla.core.xla_model as xm # noqa import torch_xla.distributed.parallel_loader as xla_pl # noqa except ImportError: xm = None ProcessorDict = Dict[str, Processor] logger = logging.getLogger(__name__) def build_config(configuration: Configuration, *args, **kwargs) -> DictConfig: """Builder function for config. Freezes the configuration and registers configuration object and config DictConfig object to registry. Args: configuration (Configuration): Configuration object that will be used to create the config. Returns: (DictConfig): A config which is of type omegaconf.DictConfig """ configuration.freeze() config = configuration.get_config() registry.register("config", config) registry.register("configuration", configuration) return config def build_trainer(config: DictConfig) -> Any: """Builder function for creating a trainer class. Trainer class name is picked from the config. Args: config (DictConfig): Configuration that will be used to create the trainer. Returns: (BaseTrainer): A trainer instance """ trainer_type = config.training.trainer trainer_cls = registry.get_trainer_class(trainer_type) trainer_obj = trainer_cls(config) return trainer_obj def build_model( config: Union[DictConfig, "mmf.models.base_model.BaseModel.Config"] ) -> "mmf.models.base_model.BaseModel": from mmf.models.base_model import BaseModel # If it is not an OmegaConf object, create the object if not isinstance(config, DictConfig) and isinstance(config, BaseModel.Config): config = OmegaConf.structured(config) model_name = config.model model_class = registry.get_model_class(model_name) if model_class is None: raise RuntimeError(f"No model registered for name: {model_name}") model = model_class(config) if hasattr(model, "build"): """Model build involves checkpoint loading If the checkpoint is not available the underlying methods try to download it. Let master build the model (download the checkpoints) while other ranks wait for the sync message Once the master has downloaded the checkpoint and built the model it sends the sync message, completing the synchronization now other cores can proceed to build the model using already downloaded checkpoint. """ if is_master(): model.load_requirements() model.build() synchronize() else: synchronize() model.build() model.init_losses() return model def build_dataset( dataset_key: str, config=None, dataset_type="train" ) -> torch.utils.data.Dataset: """Builder function for creating a dataset. If dataset_key is passed the dataset is created from default config of the dataset and thus is disable config even if it is passed. Otherwise, we use MultiDatasetLoader to build and return an instance of dataset based on the config Args: dataset_key (str): Key of dataset to build. config (DictConfig, optional): Configuration that will be used to create the dataset. If not passed, dataset's default config will be used. Defaults to {}. dataset_type (str, optional): Type of the dataset to build, train|val|test. Defaults to "train". Returns: (torch.utils.data.Dataset): A dataset instance of type torch Dataset """ from mmf.datasets.base_dataset_builder import BaseDatasetBuilder from mmf.utils.configuration import load_yaml_with_defaults datamodule_instance = build_datamodule(dataset_key) # If config is not provided, we take it from default one if not config: config_path = datamodule_instance.config_path() if config_path is None: # If config path wasn't defined, send an empty config path # but don't force dataset to define a config warnings.warn( f"Config path not defined for {dataset_key}, " + "continuing with empty config" ) config = OmegaConf.create() else: config = load_yaml_with_defaults(config_path) config = OmegaConf.select(config, f"dataset_config.{dataset_key}") if config is None: config = OmegaConf.create() OmegaConf.set_struct(config, True) elif dataset_key in config: # Handle Global config config = config[dataset_key] datamodule_instance.build_dataset(config) dataset = datamodule_instance.load_dataset(config, dataset_type) if hasattr(datamodule_instance, "update_registry_for_model"): datamodule_instance.update_registry_for_model(config) return dataset # TODO: move dataset_type enum to typings def build_datasets( dataset_list: List[str], dataset_config: DictConfig, dataset_type="train" ) -> List[torch.utils.data.Dataset]: datasets = [] for dataset in dataset_list: if dataset in dataset_config: dataset_config = dataset_config[dataset] else: warnings.warn( f"Dataset {dataset} is missing from dataset_config" + " in config. Proceeding with empty config." ) dataset_config = OmegaConf.create() dataset_instance = build_dataset(dataset, dataset_config, dataset_type) if dataset_instance is None: continue datasets.append(dataset_instance) return datasets def build_datamodule(dataset_key) -> pl.LightningDataModule: dataset_builder = registry.get_builder_class(dataset_key) assert dataset_builder, ( f"Key {dataset_key} doesn't have a registered " + "dataset builder" ) builder_instance: pl.LightningDataModule = dataset_builder() return builder_instance def build_multiple_datamodules( dataset_list: List[str], all_dataset_config: DictConfig ) -> Dict[str, pl.LightningDataModule]: datamodules: Dict[str, pl.LightningDataModule] = {} for dataset in dataset_list: datamodule_instance = build_datamodule(dataset) if dataset in all_dataset_config: dataset_config = all_dataset_config[dataset] else: warnings.warn( f"Dataset {dataset} is missing from dataset_config" + " in config. Proceeding with empty config." ) dataset_config = OmegaConf.create() if is_master(): datamodule_instance.prepare_data(dataset_config) synchronize() datamodule_instance.setup(config=dataset_config) if hasattr(datamodule_instance, "update_registry_for_model"): datamodule_instance.update_registry_for_model(dataset_config) datamodules[dataset] = datamodule_instance return datamodules def build_dataloader_and_sampler( dataset_instance: torch.utils.data.Dataset, datamodule_config: DictConfig ) -> Tuple[torch.utils.data.DataLoader, Optional[torch.utils.data.Sampler]]: """Builds and returns a dataloader along with its sample Args: dataset_instance (torch.utils.data.Dataset): Instance of dataset for which dataloader has to be created datamodule_config (omegaconf.DictConfig): Datamodule configuration; required for infering params for dataloader Returns: Tuple[torch.utils.data.DataLoader, Optional[torch.utils.data.Sampler]]: Tuple of Dataloader and Sampler instance """ from mmf.common.batch_collator import BatchCollator training_config = get_global_config("training") # Support params coming in from dataloader params other_args = { "num_workers": datamodule_config.get( "num_workers", training_config.get("num_workers", 4) ), "pin_memory": datamodule_config.get( "pin_memory", training_config.get("pin_memory", False) ), "shuffle": datamodule_config.get("shuffle", None), "batch_size": datamodule_config.get("batch_size", None), } # IterableDataset returns batches directly, so no need to add Sampler # or batch size as user is expected to control those. This is a fine # assumption for now to not support single item based IterableDataset # as it will add unnecessary complexity and config parameters # to the codebase if not isinstance(dataset_instance, torch.utils.data.IterableDataset): other_args = _add_extra_args_for_dataloader(dataset_instance, other_args) else: other_args.pop("shuffle") loader = torch.utils.data.DataLoader( dataset=dataset_instance, collate_fn=BatchCollator( dataset_instance.dataset_name, dataset_instance.dataset_type ), drop_last=is_xla(), # see also MultiDatasetLoader.__len__ **other_args, ) if is_xla(): device = xm.xla_device() loader = xla_pl.MpDeviceLoader(loader, device) if other_args["num_workers"] >= 0: # Suppress leaking semaphore warning os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" loader.dataset_type = dataset_instance.dataset_type return loader, other_args.get("sampler", None) def build_test_reporter( datamodules: List[pl.LightningDataModule], config: DictConfig = None, dataset_type: str = "train", ): test_reporter_key = "default" if config: test_reporter_key = config.get("type", "default") test_reporter_class = registry.get_test_rerporter_class(test_reporter_key) assert ( test_reporter_class ), f"Key {test_reporter_key} doesn't have a registered test_reporter class" if not config: warnings.warn( f"Config not provided for {test_reporter_key}, test_reporter" + "continuing with empty config" ) params_config = OmegaConf.create() else: params_config = config.params return test_reporter_class(datamodules, params_config, dataset_type) def _add_extra_args_for_dataloader( dataset_instance: torch.utils.data.Dataset, other_args: Dict[str, Any] = None ) -> Dict[str, Any]: from mmf.utils.general import get_batch_size dataset_type = dataset_instance.dataset_type if other_args["shuffle"] is None: other_args["shuffle"] = False if dataset_type != "test": other_args["shuffle"] = True # In distributed mode, we use DistributedSampler from PyTorch if is_dist_initialized(): other_args["sampler"] = torch.utils.data.DistributedSampler( dataset_instance, shuffle=other_args["shuffle"] ) # Shuffle is mutually exclusive with sampler, let DistributedSampler # take care of shuffle and pop from main args other_args.pop("shuffle") if is_xla(): other_args["sampler"] = torch.utils.data.DistributedSampler( dataset_instance, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal(), shuffle=other_args["shuffle"], ) other_args.pop("shuffle") if other_args["batch_size"] is None: other_args["batch_size"] = get_batch_size() return other_args def build_optimizer(model, config): optimizer_config = config.optimizer if "type" not in optimizer_config: raise ValueError( "Optimizer attributes must have a 'type' key " "specifying the type of optimizer. " "(Custom or PyTorch, e.g. 'adam_w' or 'SGD')" ) optimizer_type = optimizer_config.type if "params" not in optimizer_config: warnings.warn("optimizer attributes has no params defined, defaulting to {}.") params = optimizer_config.get("params", {}) if hasattr(torch.optim, optimizer_type): optimizer_class = getattr(torch.optim, optimizer_type) else: optimizer_class = registry.get_optimizer_class(optimizer_type) if optimizer_class is None: raise ValueError( "No optimizer class of type {} present in " "either torch or registered to registry" ) parameters = get_optimizer_parameters(model, config) if optimizer_config.get("enable_state_sharding", False): # TODO(vedanuj): Remove once OSS is moved to PT upstream try: from fairscale.optim.oss import OSS except ImportError: print( "Optimizer state sharding requires fairscale. " + "Install using pip install fairscale." ) raise assert ( is_dist_initialized() ), "Optimizer state sharding can only be used in distributed mode." is_fp16 = config.get("training", {}).get("fp16", False) optimizer = OSS( params=parameters, optim=optimizer_class, broadcast_fp16=is_fp16, **params ) else: optimizer = optimizer_class(parameters, **params) return optimizer def build_lightning_optimizers(model, config): optimizer = build_optimizer(model, config) if config.training.lr_scheduler: lr_scheduler = build_scheduler(optimizer, config) return { "optimizer": optimizer, "lr_scheduler": {"scheduler": lr_scheduler, "interval": "step"}, } else: return optimizer def build_scheduler(optimizer, config): scheduler_config = config.get("scheduler", {}) if "type" not in scheduler_config: warnings.warn( "No type for scheduler specified even though lr_scheduler is True, " "setting default to 'Pythia'" ) scheduler_type = scheduler_config.get("type", "pythia") if "params" not in scheduler_config: warnings.warn("scheduler attributes has no params defined, defaulting to {}.") params = scheduler_config.get("params", {}) scheduler_class = registry.get_scheduler_class(scheduler_type) scheduler = scheduler_class(optimizer, **params) return scheduler def build_classifier_layer(config, *args, **kwargs): from mmf.modules.layers import ClassifierLayer classifier = ClassifierLayer(config.type, *args, **config.params, **kwargs) return classifier.module def build_text_encoder(config, *args, **kwargs): """Deprecated, please do not use""" try: from mmf.modules.fb.encoders import TextEncoderFactory except ImportError: from mmf.modules.encoders import TextEncoderFactory text_encoder = TextEncoderFactory(config, *args, **kwargs) return text_encoder.module def build_image_encoder(config, direct_features=False, **kwargs): """Deprecated, please do not use""" from mmf.modules.encoders import ImageEncoderFactory, ImageFeatureEncoderFactory if direct_features: module = ImageFeatureEncoderFactory(config) else: module = ImageEncoderFactory(config) return module.module def build_encoder(config: Union[DictConfig, "mmf.modules.encoders.Encoder.Config"]): from mmf.modules.encoders import Encoder # If it is not an OmegaConf object, create the object if not isinstance(config, DictConfig) and isinstance(config, Encoder.Config): config = OmegaConf.structured(config) if "type" in config: # Support config initialization in form of # encoder: # type: identity # noqa # params: # in_dim: 256 name = config.type if isinstance(name, Enum): name = name.value params = config.get("params", None) else: # Structured Config support name = config.name params = config encoder_cls = registry.get_encoder_class(name) # If params were not passed, try generating them from encoder # class's default config if params is None: params = OmegaConf.structured(getattr(encoder_cls, "Config", {})) return encoder_cls(params) def build_processors( processors_config: DictConfig, registry_key: str = None, *args, **kwargs ) -> ProcessorDict: """Given a processor config, builds the processors present and returns back a dict containing processors mapped to keys as per the config Args: processors_config (omegaconf.DictConfig): OmegaConf DictConfig describing the parameters and type of each processor passed here registry_key (str, optional): If passed, function would look into registry for this particular key and return it back. .format with processor_key will be called on this string. Defaults to None. Returns: ProcessorDict: Dictionary containing key to processor mapping """ from mmf.datasets.processors.processors import Processor processor_dict = {} for processor_key, processor_params in processors_config.items(): if not processor_params: continue processor_instance = None if registry_key is not None: full_key = registry_key.format(processor_key) processor_instance = registry.get(full_key, no_warning=True) if processor_instance is None: processor_instance = Processor(processor_params, *args, **kwargs) # We don't register back here as in case of hub interface, we # want the processors to be instantiate every time. BaseDataset # can register at its own end processor_dict[processor_key] = processor_instance return processor_dict def build_iteration_strategy( config: DictConfig, dataloaders: Dict[str, torch.utils.data.DataLoader], *args, **kwargs, ) -> IterationStrategy: if not config.get("enabled", True): return ConstantIterationStrategy.from_params(dataloaders, *args, **kwargs) else: assert ( "type" in config ), "multitasking config must define 'type' attribute if enabled" # This assumes all dataloaders will have same dataset type iteration_strategy_class = registry.get_iteration_strategy_class(config.type) config = config.get("params", {}) dataset_type = dataloaders[list(dataloaders.keys())[0]].dataset.dataset_type if dataset_type != "train": logger.info( f"{iteration_strategy_class.__name__} updated to size " + f"proportional for {dataset_type}" ) return SizeProportionalIterationStrategy.from_params( dataloaders, *args, **kwargs ) else: return iteration_strategy_class(config, dataloaders, *args, **kwargs) def build_meters(run_type: str) -> List[Meter]: train_meter, val_meter, test_meter = None, None, None if "train" in run_type: train_meter = Meter() # val_meter used for validation after training loop val_meter = Meter() elif "val" in run_type or "inference" in run_type: val_meter = Meter() if "test" in run_type: test_meter = Meter() return train_meter, val_meter, test_meter
[ "torch.utils.data.DistributedSampler" ]
1.6.0
JiesiZhao077/mmf
e20f0d29638c5d05e3e0c385fe67a9bfeef0f921
1.5
import numpy as np import torch import torch.nn as nn import random import torch.distributions as D class GenerativeFlow(nn.Module): """ Generative flow base class For models performing density estimation and matching """ def __init__(self, args): super(GenerativeFlow, self).__init__() self.num_flows = args.num_flows self.z_size = args.z_size self.density_evaluation = args.density_evaluation self.args = args # base distribution for calculation of log prob under the model self.register_buffer('base_dist_mean', torch.randn(self.z_size, device=args.device).normal_(0, 0.1)) self.register_buffer('base_dist_var', 3.0 * torch.ones(self.z_size, device=args.device)) # Normalizing flow layers self.flow_transformation = None # auxiliary if args.cuda: self.FloatTensor = torch.cuda.FloatTensor else: self.FloatTensor = torch.FloatTensor # log-det-jacobian = 0 without flows self.log_det_j = self.FloatTensor(1).zero_() @property def base_dist(self): #rval = D.MultivariateNormal(self.base_dist_mean, self.base_dist_var) rval = D.Normal(self.base_dist_mean, self.base_dist_var) return rval def forward(self): raise NotImplementedError
[ "torch.distributions.Normal", "torch.randn", "torch.ones" ]
1.5.0
robert-giaquinto/gradient-boosted-normalizing-flows
eca3726774f4498f1583bb79d4a9b955b4f51412
1.3
import math import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import GCNConv, GATConv from torch_geometric.nn.conv import MessagePassing from torch_geometric.nn.inits import glorot from torch_geometric.utils import softmax class HGTConv(MessagePassing): def __init__(self, in_dim, out_dim, num_types, num_relations, n_heads, dropout=0.2, use_norm=True, use_RTE=True, **kwargs): super(HGTConv, self).__init__(node_dim=0, aggr='add', **kwargs) self.in_dim = in_dim self.out_dim = out_dim self.num_types = num_types self.num_relations = num_relations self.total_rel = num_types * num_relations * num_types self.n_heads = n_heads self.d_k = out_dim // n_heads self.sqrt_dk = math.sqrt(self.d_k) self.use_norm = use_norm self.use_RTE = use_RTE self.att = None self.k_linears = nn.ModuleList() self.q_linears = nn.ModuleList() self.v_linears = nn.ModuleList() self.a_linears = nn.ModuleList() self.norms = nn.ModuleList() for t in range(num_types): self.k_linears.append(nn.Linear(in_dim, out_dim)) self.q_linears.append(nn.Linear(in_dim, out_dim)) self.v_linears.append(nn.Linear(in_dim, out_dim)) self.a_linears.append(nn.Linear(out_dim, out_dim)) if use_norm: self.norms.append(nn.LayerNorm(out_dim)) ''' TODO: make relation_pri smaller, as not all <st, rt, tt> pair exist in meta relation list. ''' self.relation_pri = nn.Parameter(torch.ones(num_relations, self.n_heads)) self.relation_att = nn.Parameter(torch.Tensor(num_relations, n_heads, self.d_k, self.d_k)) self.relation_msg = nn.Parameter(torch.Tensor(num_relations, n_heads, self.d_k, self.d_k)) self.skip = nn.Parameter(torch.ones(num_types)) self.drop = nn.Dropout(dropout) if self.use_RTE: self.emb = RelTemporalEncoding(in_dim) glorot(self.relation_att) glorot(self.relation_msg) def forward(self, node_inp, node_type, edge_index, edge_type, edge_time): return self.propagate(edge_index, node_inp=node_inp, node_type=node_type, \ edge_type=edge_type, edge_time=edge_time) def message(self, edge_index_i, node_inp_i, node_inp_j, node_type_i, node_type_j, edge_type, edge_time): ''' j: source, i: target; <j, i> ''' data_size = edge_index_i.size(0) ''' Create Attention and Message tensor beforehand. ''' res_att = torch.zeros(data_size, self.n_heads).to(node_inp_i.device) res_msg = torch.zeros(data_size, self.n_heads, self.d_k).to(node_inp_i.device) for source_type in range(self.num_types): sb = (node_type_j == int(source_type)) k_linear = self.k_linears[source_type] v_linear = self.v_linears[source_type] for target_type in range(self.num_types): tb = (node_type_i == int(target_type)) & sb q_linear = self.q_linears[target_type] for relation_type in range(self.num_relations): ''' idx is all the edges with meta relation <source_type, relation_type, target_type> ''' idx = (edge_type == int(relation_type)) & tb if idx.sum() == 0: continue ''' Get the corresponding input node representations by idx. Add tempotal encoding to source representation (j) ''' target_node_vec = node_inp_i[idx] source_node_vec = node_inp_j[idx] if self.use_RTE: source_node_vec = self.emb(source_node_vec, edge_time[idx]) ''' Step 1: Heterogeneous Mutual Attention ''' q_mat = q_linear(target_node_vec).view(-1, self.n_heads, self.d_k) k_mat = k_linear(source_node_vec).view(-1, self.n_heads, self.d_k) k_mat = torch.bmm(k_mat.transpose(1, 0), self.relation_att[relation_type]).transpose(1, 0) res_att[idx] = (q_mat * k_mat).sum(dim=-1) * self.relation_pri[relation_type] / self.sqrt_dk ''' Step 2: Heterogeneous Message Passing ''' v_mat = v_linear(source_node_vec).view(-1, self.n_heads, self.d_k) res_msg[idx] = torch.bmm(v_mat.transpose(1, 0), self.relation_msg[relation_type]).transpose(1, 0) ''' Softmax based on target node's id (edge_index_i). Store attention value in self.att for later visualization. ''' self.att = softmax(res_att, edge_index_i) res = res_msg * self.att.view(-1, self.n_heads, 1) del res_att, res_msg return res.view(-1, self.out_dim) def update(self, aggr_out, node_inp, node_type): ''' Step 3: Target-specific Aggregation x = W[node_type] * gelu(Agg(x)) + x ''' aggr_out = F.gelu(aggr_out) res = torch.zeros(aggr_out.size(0), self.out_dim).to(node_inp.device) for target_type in range(self.num_types): idx = (node_type == int(target_type)) if idx.sum() == 0: continue trans_out = self.drop(self.a_linears[target_type](aggr_out[idx])) ''' Add skip connection with learnable weight self.skip[t_id] ''' alpha = torch.sigmoid(self.skip[target_type]) if self.use_norm: res[idx] = self.norms[target_type](trans_out * alpha + node_inp[idx] * (1 - alpha)) else: res[idx] = trans_out * alpha + node_inp[idx] * (1 - alpha) return res def __repr__(self): return '{}(in_dim={}, out_dim={}, num_types={}, num_types={})'.format( self.__class__.__name__, self.in_dim, self.out_dim, self.num_types, self.num_relations) class DenseHGTConv(MessagePassing): def __init__(self, in_dim, out_dim, num_types, num_relations, n_heads, dropout=0.2, use_norm=True, use_RTE=True, **kwargs): super(DenseHGTConv, self).__init__(node_dim=0, aggr='add', **kwargs) self.in_dim = in_dim self.out_dim = out_dim self.num_types = num_types self.num_relations = num_relations self.total_rel = num_types * num_relations * num_types self.n_heads = n_heads self.d_k = out_dim // n_heads self.sqrt_dk = math.sqrt(self.d_k) self.use_norm = use_norm self.use_RTE = use_RTE self.att = None self.k_linears = nn.ModuleList() self.q_linears = nn.ModuleList() self.v_linears = nn.ModuleList() self.a_linears = nn.ModuleList() self.norms = nn.ModuleList() for t in range(num_types): self.k_linears.append(nn.Linear(in_dim, out_dim)) self.q_linears.append(nn.Linear(in_dim, out_dim)) self.v_linears.append(nn.Linear(in_dim, out_dim)) self.a_linears.append(nn.Linear(out_dim, out_dim)) if use_norm: self.norms.append(nn.LayerNorm(out_dim)) ''' TODO: make relation_pri smaller, as not all <st, rt, tt> pair exist in meta relation list. ''' self.relation_pri = nn.Parameter(torch.ones(num_relations, self.n_heads)) self.relation_att = nn.Parameter(torch.Tensor(num_relations, n_heads, self.d_k, self.d_k)) self.relation_msg = nn.Parameter(torch.Tensor(num_relations, n_heads, self.d_k, self.d_k)) self.drop = nn.Dropout(dropout) if self.use_RTE: self.emb = RelTemporalEncoding(in_dim) glorot(self.relation_att) glorot(self.relation_msg) self.mid_linear = nn.Linear(out_dim, out_dim * 2) self.out_linear = nn.Linear(out_dim * 2, out_dim) self.out_norm = nn.LayerNorm(out_dim) def forward(self, node_inp, node_type, edge_index, edge_type, edge_time): return self.propagate(edge_index, node_inp=node_inp, node_type=node_type, \ edge_type=edge_type, edge_time=edge_time) def message(self, edge_index_i, node_inp_i, node_inp_j, node_type_i, node_type_j, edge_type, edge_time): ''' j: source, i: target; <j, i> ''' data_size = edge_index_i.size(0) ''' Create Attention and Message tensor beforehand. ''' res_att = torch.zeros(data_size, self.n_heads).to(node_inp_i.device) res_msg = torch.zeros(data_size, self.n_heads, self.d_k).to(node_inp_i.device) for source_type in range(self.num_types): sb = (node_type_j == int(source_type)) k_linear = self.k_linears[source_type] v_linear = self.v_linears[source_type] for target_type in range(self.num_types): tb = (node_type_i == int(target_type)) & sb q_linear = self.q_linears[target_type] for relation_type in range(self.num_relations): ''' idx is all the edges with meta relation <source_type, relation_type, target_type> ''' idx = (edge_type == int(relation_type)) & tb if idx.sum() == 0: continue ''' Get the corresponding input node representations by idx. Add tempotal encoding to source representation (j) ''' target_node_vec = node_inp_i[idx] source_node_vec = node_inp_j[idx] if self.use_RTE: source_node_vec = self.emb(source_node_vec, edge_time[idx]) ''' Step 1: Heterogeneous Mutual Attention ''' q_mat = q_linear(target_node_vec).view(-1, self.n_heads, self.d_k) k_mat = k_linear(source_node_vec).view(-1, self.n_heads, self.d_k) k_mat = torch.bmm(k_mat.transpose(1, 0), self.relation_att[relation_type]).transpose(1, 0) res_att[idx] = (q_mat * k_mat).sum(dim=-1) * self.relation_pri[relation_type] / self.sqrt_dk ''' Step 2: Heterogeneous Message Passing ''' v_mat = v_linear(source_node_vec).view(-1, self.n_heads, self.d_k) res_msg[idx] = torch.bmm(v_mat.transpose(1, 0), self.relation_msg[relation_type]).transpose(1, 0) ''' Softmax based on target node's id (edge_index_i). Store attention value in self.att for later visualization. ''' self.att = softmax(res_att, edge_index_i) res = res_msg * self.att.view(-1, self.n_heads, 1) del res_att, res_msg return res.view(-1, self.out_dim) def update(self, aggr_out, node_inp, node_type): ''' Step 3: Target-specific Aggregation x = W[node_type] * Agg(x) + x ''' res = torch.zeros(aggr_out.size(0), self.out_dim).to(node_inp.device) for target_type in range(self.num_types): idx = (node_type == int(target_type)) if idx.sum() == 0: continue trans_out = self.drop(self.a_linears[target_type](aggr_out[idx])) + node_inp[idx] ''' Add skip connection with learnable weight self.skip[t_id] ''' if self.use_norm: trans_out = self.norms[target_type](trans_out) ''' Step 4: Shared Dense Layer x = Out_L(gelu(Mid_L(x))) + x ''' trans_out = self.drop(self.out_linear(F.gelu(self.mid_linear(trans_out)))) + trans_out res[idx] = self.out_norm(trans_out) return res def __repr__(self): return '{}(in_dim={}, out_dim={}, num_types={}, num_types={})'.format( self.__class__.__name__, self.in_dim, self.out_dim, self.num_types, self.num_relations) class RelTemporalEncoding(nn.Module): ''' Implement the Temporal Encoding (Sinusoid) function. ''' def __init__(self, n_hid, max_len=240, dropout=0.2): super(RelTemporalEncoding, self).__init__() position = torch.arange(0., max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, n_hid, 2) * -(math.log(10000.0) / n_hid)) emb = nn.Embedding(max_len, n_hid) emb.weight.data[:, 0::2] = torch.sin(position * div_term) / math.sqrt(n_hid) emb.weight.data[:, 1::2] = torch.cos(position * div_term) / math.sqrt(n_hid) emb.requires_grad = False self.emb = emb self.lin = nn.Linear(n_hid, n_hid) def forward(self, x, t): return x + self.lin(self.emb(t)) class GeneralConv(nn.Module): def __init__(self, conv_name, in_hid, out_hid, num_types, num_relations, n_heads, dropout, use_norm=True, use_RTE=True): super(GeneralConv, self).__init__() self.conv_name = conv_name if self.conv_name == 'hgt': self.base_conv = HGTConv(in_hid, out_hid, num_types, num_relations, n_heads, dropout, use_norm, use_RTE) elif self.conv_name == 'dense_hgt': self.base_conv = DenseHGTConv(in_hid, out_hid, num_types, num_relations, n_heads, dropout, use_norm, use_RTE) elif self.conv_name == 'gcn': self.base_conv = GCNConv(in_hid, out_hid) elif self.conv_name == 'gat': self.base_conv = GATConv(in_hid, out_hid // n_heads, heads=n_heads) def forward(self, meta_xs, node_type, edge_index, edge_type, edge_time): if self.conv_name == 'hgt': return self.base_conv(meta_xs, node_type, edge_index, edge_type, edge_time) elif self.conv_name == 'gcn': return self.base_conv(meta_xs, edge_index) elif self.conv_name == 'gat': return self.base_conv(meta_xs, edge_index) elif self.conv_name == 'dense_hgt': return self.base_conv(meta_xs, node_type, edge_index, edge_type, edge_time)
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cos", "torch.zeros", "torch.nn.ModuleList", "torch.sin", "torch.arange", "torch.nn.functional.gelu", "torch.ones", "torch.Tensor", "torch.nn.Embedding" ]
1.3.0
Suchun-sv/pyHGT
49fb66e04386835d9dc3ba22abba121f8a960469
1.7
import json from functools import namedtuple import random import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import Dataset, DataLoader import pytorch_lightning as pl from omegaconf import DictConfig from cpc.dataset import AudioRawDataset class ConvNetEncoder(nn.Module): def __init__(self, hidden_size=512): super().__init__() self.hidden_size = hidden_size self.conv1 = nn.Conv1d(1, hidden_size, kernel_size=10, stride=5, padding=3) self.bnorm1 = nn.BatchNorm1d(hidden_size) self.conv2 = nn.Conv1d(hidden_size, hidden_size, kernel_size=8, stride=4, padding=2) self.bnorm2 = nn.BatchNorm1d(hidden_size) self.conv3 = nn.Conv1d(hidden_size, hidden_size, kernel_size=4, stride=2, padding=1) self.bnorm3 = nn.BatchNorm1d(hidden_size) self.conv4 = nn.Conv1d(hidden_size, hidden_size, kernel_size=4, stride=2, padding=1) self.bnorm4 = nn.BatchNorm1d(hidden_size) self.conv5 = nn.Conv1d(hidden_size, hidden_size, kernel_size=4, stride=2, padding=1) self.bnorm5 = nn.BatchNorm1d(hidden_size) @property def input_port(self): return ( ('audio_signal', ('B', 'C', 'T')), ) @property def output_port(self): return ( ('encoder_embedding', ('B', 'T', 'C')), ) def forward(self, x): x = F.relu(self.bnorm1(self.conv1(x))) x = F.relu(self.bnorm2(self.conv2(x))) x = F.relu(self.bnorm3(self.conv3(x))) x = F.relu(self.bnorm4(self.conv4(x))) x = F.relu(self.bnorm5(self.conv5(x))) x = x.transpose(1, 2) # Reminder: make the channel last return x class GRUAutoRegressiveModel(nn.Module): def __init__(self, embedding_size=512, hidden_size=256, keep_hidden=False): super().__init__() self.embedding_size = embedding_size self.hidden_size = hidden_size self.keep_hidden = keep_hidden self.hidden = None self.rnn = nn.GRU(self.embedding_size, hidden_size=self.hidden_size, num_layers=1, batch_first=True) def input_port(self): return ( ('encoder_embedding', ('B', 'T', 'C')), ) def output_port(self): return ( ('ar_embedding', ('B', 'T', 'C')), ) def forward(self, x): x, h = self.rnn(x, self.hidden) # (batch, seq_len, hidden_size) if self.keep_hidden: self.hidden = h.detach() return x class LinearPredictionModel(nn.Module): def __init__(self, ar_embedding_size=256, enc_embedding_size=512): super().__init__() self.ar_embedding_size = ar_embedding_size self.linear = nn.Linear(ar_embedding_size, enc_embedding_size, bias=False) def forward(self, x): x = self.linear(x) return x class CPCCriterion(nn.Module): def __init__(self, ar_embedding_size=256, enc_embedding_size=512, n_predictions=12, n_negs=8): super().__init__() self.ar_embedding_size = ar_embedding_size self.enc_embedding_size = enc_embedding_size self.n_predictions = n_predictions # max number of steps for prediction horizon self.n_negs = n_negs # number of negative samples to be sampled self.loss_function = nn.CrossEntropyLoss() # reminder: mean reduction by defualt self.predictors = nn.ModuleList() for _ in range(self.n_predictions): self.predictors.append( LinearPredictionModel(self.ar_embedding_size, self.enc_embedding_size) ) @property def input_port(self): return ( ('encoder_embedding', ('B', 'T', 'C')), ('ar_embedding', ('B', 'T', 'C')), ) @property def output_port(self): return ( ('loss', ('N',)), ('acc', ('N',)) ) def get_random_samples(self, z_features, window_size): samples = [] batch_size, steps, z_dim = z_features.size() # randomly sample n_negs * batch_size for each step z_neg = z_features.contiguous().view(-1, z_dim) sample_idx = torch.randint(low=0, high=batch_size*steps, size=(batch_size*self.n_negs*window_size,), device=z_features.device) z_neg = z_neg[sample_idx].view(batch_size, self.n_negs, window_size, z_dim) labels = torch.zeros(size=(batch_size*window_size,), dtype=torch.long, device=z_features.device) for k in range(1, self.n_predictions + 1): z_pos = z_features[:, k:k+window_size].unsqueeze(1) sample = torch.cat([z_pos, z_neg], dim=1) samples.append(sample) return samples, labels def forward(self, c_features, z_features, window_size): c_features = c_features[:, :window_size] samples, labels = self.get_random_samples(z_features, window_size) losses = [] accs = [] for k in range(self.n_predictions): z_pred = self.predictors[k](c_features) z_pred = z_pred.unsqueeze(1) prediction = (z_pred * samples[k]).sum(dim=3) prediction = prediction.permute(0, 2, 1) prediction = prediction.contiguous().view(-1, prediction.size(2)) ##################################################### # accuracy calculation, direct copy from: facebook/cpc_audio _, pred_index = prediction.max(1) acc = torch.sum(pred_index == labels).float() ##################################################### loss = self.loss_function(prediction, labels) losses.append(loss.view(1, -1)) accs.append(acc.view(1, -1)) return torch.cat(losses, dim=1), torch.cat(accs, dim=1) / labels.size(0) class CPCAudioRawModel(pl.LightningModule): def __init__(self, cfg: DictConfig): super().__init__() self.window_size = cfg.window_size // cfg.downsampling # number of steps in encoded space self.encoder = ConvNetEncoder(**cfg.encoder) self.ar = GRUAutoRegressiveModel(**cfg.ar) self.cpc_criterion = CPCCriterion(**cfg.cpc_criterion) self._train_dataset = None self._validation_dataset = None self._train_dataloader = None self._val_dataloader = None self._optimizers = None self.setup_train_dataloader(cfg.train_data) self.setup_val_dataloader(cfg.validation_data) self.setup_optimizers(cfg.optim) # this will save cfg as hyparams to ckpts and tensorboard self.hparams = cfg def setup_optimizers(self, optim_cfg: DictConfig): self._optimizers = Adam(self.parameters(), **optim_cfg) def setup_train_dataloader(self, train_data_cfg: DictConfig): self._train_dataset = AudioRawDataset( **train_data_cfg.dataset ) self._train_dataloader = DataLoader( self._train_dataset, collate_fn=self._train_dataset.collate_fn, **train_data_cfg.dataloader ) def setup_val_dataloader(self, validation_data_cfg: DictConfig): self._validation_dataset = AudioRawDataset( **validation_data_cfg.dataset ) self._val_dataloader = DataLoader( self._validation_dataset, collate_fn=self._validation_dataset.collate_fn, **validation_data_cfg.dataloader ) def forward(self, audio_signal): z_features = self.encoder(audio_signal) c_features = self.ar(z_features) return z_features, c_features def training_step(self, batch, batch_idx): """ batch: audio_signals; tensor (B, C, L) """ z_features, c_features = self(batch) # c_features = c_features[:, :self.window_size] # random_samples = self.get_random_samples(z_features) losses, accs = self.cpc_criterion(c_features, z_features, self.window_size) total_loss = losses.sum(dim=1) aver_acc = accs.mean(dim=1) self.log('train_aver_acc', aver_acc, on_step=True, prog_bar=True, logger=True) self.log('train_loss', total_loss, on_step=True, prog_bar=True, logger=True) return total_loss def validation_step(self, batch, batch_idx): """ batch: audio_signals; tensor (B, C, L) """ z_features, c_features = self(batch) # c_features = c_features[:, :self.window_size] # random_samples = self.get_random_samples(z_features) losses, accs = self.cpc_criterion(c_features, z_features, self.window_size) total_loss = losses.sum(dim=1) aver_acc = accs.mean(dim=1) self.log('val_aver_acc', aver_acc, on_step=True, prog_bar=True, logger=True) self.log('val_loss', total_loss, on_step=True, prog_bar=True, logger=True) return total_loss def train_dataloader(self): if self._train_dataloader: return self._train_dataloader else: raise AttributeError('Please setup_train_dataloader() first') def val_dataloader(self): if self._val_dataloader: return self._val_dataloader else: raise AttributeError('Please setup_val_dataloader() first') def configure_optimizers(self): if self._optimizers: return self._optimizers else: raise AttributeError('Please setup_optimizers() first')
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.nn.GRU", "torch.nn.ModuleList", "torch.nn.Conv1d", "torch.randint", "torch.nn.BatchNorm1d", "torch.utils.data.DataLoader", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.7.0
lokhiufung/quick-and-dirty-dl
f2e4429451543e9e9a44ed5304e268cf3c2aa888
1.8
r"""Hodgkin-Huxley (HH) benchmark. HH is a widespread non-linear mechanistic model of neural dynamics. References: A quantitative description of membrane current and its application to conduction and excitation in nerve (Hodgkin et al., 1952) https://link.springer.com/article/10.1007/BF02459568 Training deep neural density estimators to identify mechanistic models of neural dynamics (Gonçalves et al., 2020) https://elifesciences.org/articles/56261 Shapes: theta: :math:`(8,)`. x: :math:`(7,)`. """ import numpy as np import torch from numpy import ndarray as Array from torch import Tensor, BoolTensor from typing import * from . import Simulator LABELS = [ f'${l}$' for l in [ r'g_{\mathrm{Na}}', r'g_{\mathrm{K}}', r'g_{\mathrm{M}}', 'g_l', r'\tau_{\max}', 'V_t', r'\sigma', 'E_l', ] ] LOWER, UPPER = torch.tensor([ [0.5, 80.], # g_Na [mS/cm^2] [1e-4, 15.], # g_K [mS/cm^2] [1e-4, .6], # g_M [mS/cm^2] [1e-4, .6], # g_l [mS/cm^2] [50., 3000.], # tau_max [ms] [-90., -40.], # V_t [mV] [1e-4, .15], # sigma [uA/cm^2] [-100., -35.], # E_l [mV] ]).t() class HH(Simulator): r"""Creates an Hodgkin-Huxley (HH) simulator. Arguments: summary: Whether voltage traces are converted to summary statistics or not. seed: A random number generator seed. kwargs: Simulator settings and constants (e.g. duration, inital voltage, ...). """ def __init__(self, summary: bool = True, seed: int = None, **kwargs): super().__init__() # Constants default = { 'duration': 80., # s 'time_step': 0.02, # s 'padding': 10., # s 'initial_voltage': -70., # mV 'current': 5e-4 / (np.pi * 7e-3 ** 2), # uA / cm^2 } self.constants = { k: kwargs.get(k, v) for k, v in default.items() } # Summary statistics self.summary = summary # RNG self.rng = np.random.default_rng(seed) def __call__(self, theta: Array) -> Array: x = voltage_trace(theta, self.constants, self.rng) if self.summary: x = summarize(x, self.constants) return x def voltage_trace( theta: Array, constants: Dict[str, float], rng: np.random.Generator, ) -> Array: r"""Simulates an Hodgkin-Huxley voltage trace. References: https://github.com/mackelab/sbi/blob/main/examples/HH_helper_functions.py """ # Parameters T = constants['duration'] dt = constants['time_step'] pad = constants['padding'] V_0 = constants['initial_voltage'] I = constants['current'] theta = np.expand_dims(theta, axis=0) g_Na, g_K, g_M, g_leak, tau_max, V_t, sigma, E_leak = [ theta[..., i] for i in range(8) ] C = 1. # uF/cm^2 E_Na = 53. # mV E_K = -107. # mV # Kinetics exp = np.exp efun = lambda x: np.where( np.abs(x) < 1e-4, 1 - x / 2, x / (exp(x) - 1) ) alpha_n = lambda x: 0.032 * efun(-0.2 * (x - 15)) / 0.2 beta_n = lambda x: 0.5 * exp(-(x - 10) / 40) tau_n = lambda x: 1 / (alpha_n(x) + beta_n(x)) n_inf = lambda x: alpha_n(x) / (alpha_n(x) + beta_n(x)) alpha_m = lambda x: 0.32 * efun(-0.25 * (x - 13)) / 0.25 beta_m = lambda x: 0.28 * efun(0.2 * (x - 40)) / 0.2 tau_m = lambda x: 1 / (alpha_m(x) + beta_m(x)) m_inf = lambda x: alpha_m(x) / (alpha_m(x) + beta_m(x)) alpha_h = lambda x: 0.128 * exp(-(x - 17) / 18) beta_h = lambda x: 4 / (1 + exp(-0.2 * (x - 40))) tau_h = lambda x: 1 / (alpha_h(x) + beta_h(x)) h_inf = lambda x: alpha_h(x) / (alpha_h(x) + beta_h(x)) tau_p = lambda x: tau_max / (3.3 * exp(0.05 * (x + 35)) + exp(-0.05 * (x + 35))) p_inf = lambda x: 1 / (1 + exp(-0.1 * (x + 35))) # Iterations voltages = [] V = np.full_like(V_t, V_0) V_rel = V - V_t n = n_inf(V_rel) m = m_inf(V_rel) h = h_inf(V_rel) p = p_inf(V) for t in np.arange(0, T, dt): tau_V = C / ( g_Na * m**3 * h + g_K * n**4 + g_M * p + g_leak ) V_inf = tau_V * ( E_Na * g_Na * m**3 * h + E_K * g_K * n**4 + E_K * g_M * p + E_leak * g_leak + I * (pad <= t < T - pad) + sigma * rng.standard_normal(V.shape) / dt**0.5 ) / C V = V_inf + (V - V_inf) * exp(-dt / tau_V) V_rel = V - V_t n = n_inf(V_rel) + (n - n_inf(V_rel)) * exp(-dt / tau_n(V_rel)) m = m_inf(V_rel) + (m - m_inf(V_rel)) * exp(-dt / tau_m(V_rel)) h = h_inf(V_rel) + (h - h_inf(V_rel)) * exp(-dt / tau_h(V_rel)) p = p_inf(V) + (p - p_inf(V)) * exp(-dt / tau_p(V)) voltages.append(V) return np.stack(voltages, axis=-1).squeeze(axis=0) def summarize(x: Array, constants: Dict[str, float]) -> Array: r"""Returns summary statistics of a voltage trace.""" # Constants T = constants['duration'] dt = constants['time_step'] pad = constants['padding'] t = np.arange(0, T, dt) # Number of spikes spikes = np.maximum(x, -10) spikes = np.diff(np.sign(np.diff(spikes))) spikes = np.sum(spikes < 0, axis=-1) # Resting moments rest = x[..., (pad / 2 <= t) * (t < pad)] rest_mean = np.mean(rest, axis=-1) rest_std = np.std(rest, axis=-1) # Moments x = x[..., (pad <= t) * (t < T - pad)] x_mean = np.mean(x, axis=-1) x_std = np.std(x, axis=-1) z = (x - x_mean[..., None]) / x_std[..., None] x_skew = np.mean(z**3, axis=-1) x_kurtosis = np.mean(z**4, axis=-1) return np.stack([ spikes, rest_mean, rest_std, x_mean, x_std, x_skew, x_kurtosis, ], axis=-1)
[ "torch.tensor" ]
1.8.0
francois-rozet/lampe
50e53c767ee5d98502ec8520b3bca554f2169eb7
1.1
""" Implementation of non-negative matrix factorization for GPU """ from datetime import datetime from nimfa.methods.seeding import nndsvd import numpy as np import torch import torch.nn from torch import nn class NMF: def __init__(self, V, rank, max_iterations=100000, tolerance=1e-8, test_conv=1000, gpu_id=0, seed=None, init_method='random', floating_point_precision='double', min_iterations=2000): """ Run non-negative matrix factorisation using GPU. Uses beta-divergence. Args: V: Matrix to be factorised rank: (int) number of latent dimensnions to use in factorisation max_iterations: (int) Maximum number of update iterations to use during fitting tolerance: tolerance to use in convergence tests. Lower numbers give longer times to convergence test_conv: (int) How often to test for convergnce gpu_id: (int) Which GPU device to use seed: random seed, if None (default) datetime is used init_method: how to initialise basis and coefficient matrices, options are: - random (will always be the same if seed != None) - NNDSVD - NNDSVDa (fill in the zero elements with the average), - NNDSVDar (fill in the zero elements with random values in the space [0:average/100]). floating_point_precision: (string or type). Can be `double`, `float` or any type/string which torch can interpret. min_iterations: the minimum number of iterations to execute before termination. Useful when using fp32 tensors as convergence can happen too early. """ torch.cuda.set_device(gpu_id) if seed is None: seed = datetime.now().timestamp() if floating_point_precision == 'float': self._tensor_type = torch.FloatTensor elif floating_point_precision == 'double': self._tensor_type = torch.DoubleTensor else: self._tensor_type = floating_point_precision torch.manual_seed(seed) torch.cuda.manual_seed(seed) self.max_iterations = max_iterations self.min_iterations = min_iterations # If V is not in a batch, put it in a batch of 1 if len(V.shape) == 2: V = V[None, :, :] self._V = V.type(self._tensor_type).cuda() self._fix_neg = nn.Threshold(0., 1e-8) self._tolerance = tolerance self._prev_loss = None self._iter = 0 self._test_conv = test_conv self._gpu_id = gpu_id self._rank = rank self._W, self._H = self._initialise_wh(init_method) def _initialise_wh(self, init_method): """ Initialise basis and coefficient matrices according to `init_method` """ if init_method == 'random': W = torch.rand(self._V.shape[0], self._V.shape[1], self._rank).type(self._tensor_type).cuda() H = torch.rand(self._V.shape[0], self._rank, self._V.shape[2]).type(self._tensor_type).cuda() return W, H elif init_method == 'NNDSVD': nv = nndsvd.Nndsvd() vin = np.mat(self._V.cpu().numpy()) W, H = nv.initialize(vin, self._rank, options={'flag': 0}) elif init_method == 'NNDSVDa': nv = nndsvd.Nndsvd() vin = np.mat(self._V.cpu().numpy()) W, H = nv.initialize(vin, self._rank, options={'flag': 1}) elif init_method == 'NNDSVDar': nv = nndsvd.Nndsvd() vin = np.mat(self._V.cpu().numpy()) W, H = nv.initialize(vin, self._rank, options={'flag': 2}) W = torch.from_numpy(W).type(self._tensor_type).cuda(self._gpu_id) H = torch.from_numpy(H).type(self._tensor_type).cuda(self._gpu_id) return W, H @property def reconstruction(self): return self.W @ self.H @property def W(self): return self._W @property def H(self): return self._H @property def _kl_loss(self): return (self._V * (self._V / self.reconstruction).log()).sum() - self._V.sum() + self.reconstruction.sum() @property def _loss_converged(self): """ Check if loss has converged """ if not self._iter: self._loss_init = self._kl_loss elif ((self._prev_loss - self._kl_loss) / self._loss_init) < self._tolerance: return True self._prev_loss = self._kl_loss return False def fit(self, beta=1): """ Fit the basis (W) and coefficient (H) matrices to the input matrix (V) using multiplicative updates and beta divergence Args: beta: value to use for generalised beta divergence. Default is 1 for KL divergence beta == 2 => Euclidean updates beta == 1 => Generalised Kullback-Leibler updates beta == 0 => Itakura-Saito updates """ with torch.no_grad(): def stop_iterations(): stop = (self._V.shape[0] == 1) and \ (self._iter % self._test_conv == 0) and \ self._loss_converged and \ (self._iter > self.min_iterations) if stop: print("loss converged with {} iterations".format(self._iter)) return stop if beta == 2: for self._iter in range(self.max_iterations): self.H = self.H * (self.W.transpose(1, 2) @ self._V) / (self.W.transpose(1, 2) @ (self.W @ self.H)) self.W = self.W * (self._V @ self.H.transpose(1, 2)) / (self.W @ (self.H @ self.H.transpose(1, 2))) if stop_iterations(): break # Optimisations for the (common) beta=1 (KL) case. elif beta == 1: ones = torch.ones(self._V.shape).type(self._tensor_type).cuda(self._gpu_id) for self._iter in range(self.max_iterations): ht = self.H.transpose(1, 2) numerator = (self._V / (self.W @ self.H)) @ ht denomenator = ones @ ht self._W *= numerator / denomenator wt = self.W.transpose(1, 2) numerator = wt @ (self._V / (self.W @ self.H)) denomenator = wt @ ones self._H *= numerator / denomenator if stop_iterations(): break else: for self._iter in range(self.max_iterations): self.H = self.H * ((self.W.transpose(1, 2) @ (((self.W @ self.H) ** (beta - 2)) * self._V)) / (self.W.transpose(1, 2) @ ((self.W @ self.H)**(beta-1)))) self.W = self.W * (((([email protected])**(beta-2) * self._V) @ self.H.transpose(1, 2)) / (((self.W @ self.H) ** (beta - 1)) @ self.H.transpose(1, 2))) if stop_iterations(): break
[ "torch.rand", "torch.cuda.manual_seed", "torch.no_grad", "torch.nn.Threshold", "torch.from_numpy", "torch.manual_seed", "torch.cuda.set_device", "torch.ones" ]
1.1.0
edawson/SigProfilerExtractor
a9cc43ddba2271ec68ff4d1a6a93399386713325
1.0
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model. """ import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_albert import AlbertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "AlbertConfig" _TOKENIZER_FOR_DOC = "AlbertTokenizer" ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "albert-base-v1", "albert-large-v1", "albert-xlarge-v1", "albert-xxlarge-v1", "albert-base-v2", "albert-large-v2", "albert-xlarge-v2", "albert-xxlarge-v2", # See all ALBERT models at https://huggingface.co/models?filter=albert ] def load_tf_weights_in_albert(model, config, tf_checkpoint_path): """ Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): print(name) for name, array in zip(names, arrays): original_name = name # If saved from the TF HUB module name = name.replace("module/", "") # Renaming and simplifying name = name.replace("ffn_1", "ffn") name = name.replace("bert/", "albert/") name = name.replace("attention_1", "attention") name = name.replace("transform/", "") name = name.replace("LayerNorm_1", "full_layer_layer_norm") name = name.replace("LayerNorm", "attention/LayerNorm") name = name.replace("transformer/", "") # The feed forward layer had an 'intermediate' step which has been abstracted away name = name.replace("intermediate/dense/", "") name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") # ALBERT attention was split between self and output which have been abstracted away name = name.replace("/output/", "/") name = name.replace("/self/", "/") # The pooler is a linear layer name = name.replace("pooler/dense", "pooler") # The classifier was simplified to predictions from cls/predictions name = name.replace("cls/predictions", "predictions") name = name.replace("predictions/attention", "predictions") # Naming was changed to be more explicit name = name.replace("embeddings/attention", "embeddings") name = name.replace("inner_group_", "albert_layers/") name = name.replace("group_", "albert_layer_groups/") # Classifier if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): name = "classifier/" + name # No ALBERT model currently handles the next sentence prediction task if "seq_relationship" in name: name = name.replace("seq_relationship/output_", "sop_classifier/classifier/") name = name.replace("weights", "weight") name = name.split("/") # Ignore the gradients applied by the LAMB/ADAM optimizers. if ( "adam_m" in name or "adam_v" in name or "AdamWeightDecayOptimizer" in name or "AdamWeightDecayOptimizer_1" in name or "global_step" in name ): logger.info("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info("Skipping {}".format("/".join(name))) continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {} from {}".format(name, original_name)) pointer.data = torch.from_numpy(array) return model class AlbertEmbeddings(nn.Module): """ Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class AlbertAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob) self.output_dropout = nn.Dropout(config.hidden_dropout_prob) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pruned_heads = set() # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads ) # Prune linear layers self.query = prune_linear_layer(self.query, index) self.key = prune_linear_layer(self.key, index) self.value = prune_linear_layer(self.value, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params and store pruned heads self.num_attention_heads = self.num_attention_heads - len(heads) self.all_head_size = self.attention_head_size * self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input_ids, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(input_ids) mixed_key_layer = self.key(input_ids) mixed_value_layer = self.value(input_ids) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() # Should find a better way to do this w = ( self.dense.weight.t() .view(self.num_attention_heads, self.attention_head_size, self.hidden_size) .to(context_layer.dtype) ) b = self.dense.bias.to(context_layer.dtype) projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b projected_context_layer_dropout = self.output_dropout(projected_context_layer) layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout) return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,) class AlbertLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = AlbertAttention(config) self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False ): attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions) ffn_output = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[0], ) hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) return (hidden_states,) + attention_output[1:] # add attentions if we output them def ff_chunk(self, attention_output): ffn_output = self.ffn(attention_output) ffn_output = self.activation(ffn_output) ffn_output = self.ffn_output(ffn_output) return ffn_output class AlbertLayerGroup(nn.Module): def __init__(self, config): super().__init__() self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False ): layer_hidden_states = () layer_attentions = () for layer_index, albert_layer in enumerate(self.albert_layers): layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions) hidden_states = layer_output[0] if output_attentions: layer_attentions = layer_attentions + (layer_output[1],) if output_hidden_states: layer_hidden_states = layer_hidden_states + (hidden_states,) outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (layer_hidden_states,) if output_attentions: outputs = outputs + (layer_attentions,) return outputs # last-layer hidden state, (layer hidden states), (layer attentions) class AlbertTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_hidden_states = (hidden_states,) if output_hidden_states else None all_attentions = () if output_attentions else None for i in range(self.config.num_hidden_layers): # Number of layers in a hidden group layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], output_attentions, output_hidden_states, ) hidden_states = layer_group_output[0] if output_attentions: all_attentions = all_attentions + layer_group_output[-1] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class AlbertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AlbertConfig base_model_prefix = "albert" authorized_missing_keys = [r"position_ids"] def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class AlbertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.AlbertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). sop_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None sop_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ALBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ALBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.AlbertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.__call__` and :meth:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModel(AlbertPreTrainedModel): config_class = AlbertConfig load_tf_weights = load_tf_weights_in_albert base_model_prefix = "albert" def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = AlbertEmbeddings(config) self.encoder = AlbertTransformer(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() else: self.pooler = None self.pooler_activation = None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.embeddings.word_embeddings new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.embeddings.word_embeddings = new_embeddings return self.embeddings.word_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, while [2,3] correspond to the two inner groups of the second hidden layer. Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more information about head pruning """ for layer, heads in heads_to_prune.items(): group_idx = int(layer / self.config.inner_group_num) inner_group_idx = int(layer - group_idx * self.config.inner_group_num) self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ Albert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `sentence order prediction (classification)` head. """, ALBERT_START_DOCSTRING, ) class AlbertForPreTraining(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config) self.predictions = AlbertMLMHead(config) self.sop_classifier = AlbertSOPHead(config) self.init_weights() def get_output_embeddings(self): return self.predictions.decoder def get_input_embeddings(self): return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, sentence_order_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` sentence_order_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``. ``0`` indicates original order (sequence A, then sequence B), ``1`` indicates switched order (sequence B, then sequence A). kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example:: >>> from transformers import AlbertTokenizer, AlbertForPreTraining >>> import torch >>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') >>> model = AlbertForPreTraining.from_pretrained('albert-base-v2') >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> sop_logits = outputs.sop_logits """ if "masked_lm_labels" in kwargs: warnings.warn( "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("masked_lm_labels") assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) sop_scores = self.sop_classifier(pooled_output) total_loss = None if labels is not None and sentence_order_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1)) total_loss = masked_lm_loss + sentence_order_loss if not return_dict: output = (prediction_scores, sop_scores) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return AlbertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, sop_logits=sop_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AlbertMLMHead(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.embedding_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.dense = nn.Linear(config.hidden_size, config.embedding_size) self.decoder = nn.Linear(config.embedding_size, config.vocab_size) self.activation = ACT2FN[config.hidden_act] # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.decoder(hidden_states) prediction_scores = hidden_states return prediction_scores class AlbertSOPHead(nn.Module): def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward(self, pooled_output): dropout_pooled_output = self.dropout(pooled_output) logits = self.classifier(dropout_pooled_output) return logits @add_start_docstrings( "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING, ) class AlbertForMaskedLM(AlbertPreTrainedModel): authorized_unexpected_keys = [r"pooler"] def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config, add_pooling_layer=False) self.predictions = AlbertMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.predictions.decoder def get_input_embeddings(self): return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ if "masked_lm_labels" in kwargs: warnings.warn( "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("masked_lm_labels") assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_outputs = outputs[0] prediction_scores = self.predictions(sequence_outputs) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassification(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForTokenClassification(AlbertPreTrainedModel): authorized_unexpected_keys = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ALBERT_START_DOCSTRING, ) class AlbertForQuestionAnswering(AlbertPreTrainedModel): authorized_unexpected_keys = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForMultipleChoice(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="albert-base-v2", output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.nn.MSELoss", "torch.nn.Softmax", "torch.einsum", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.arange", "torch.from_numpy", "torch.ones", "torch.matmul", "torch.nn.Embedding" ]
1.0
ceostroff/transformers
3095ee9dab739f212a8753b5be4e1a72ba42e28e
1.0
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch REFORMER model. """ import sys from collections import namedtuple from dataclasses import dataclass from functools import reduce from operator import mul from typing import List, Optional, Tuple import numpy as np import torch from torch import nn from torch.autograd.function import Function from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( DUMMY_INPUTS, DUMMY_MASK, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward from ...utils import logging from .configuration_reformer import ReformerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ReformerConfig" _TOKENIZER_FOR_DOC = "ReformerTokenizer" REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/reformer-crime-and-punishment", "google/reformer-enwik8", # See all Reformer models at https://huggingface.co/models?filter=reformer ] # Define named tuples for nn.Modules here LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"]) LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"]) AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"]) ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"]) ReformerBackwardOutput = namedtuple( "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"] ) ReformerEncoderOutput = namedtuple( "ReformerEncoderOutput", ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"], ) def _stable_argsort(vector, dim): # this function scales the vector so that torch.argsort is stable. # torch.argsort is not stable on its own scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1) scale_offset = scale_offset.expand(vector.shape) scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim]) return torch.argsort(scaled_vector, dim=dim) def _get_least_common_mult_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == set(["lsh", "local"]): return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( "Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {}. Select attn layer types from ['lsh', 'local'] only.".format( config.attn_layers ) ) def _get_min_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == set(["lsh", "local"]): return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( "Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {}. Select attn layer types from ['lsh', 'local'] only.".format( config.attn_layers ) ) class AxialPositionEmbeddings(nn.Module): """ Constructs axial position embeddings. Useful for very long input sequences to save memory and time. """ def __init__(self, config): super().__init__() self.axial_pos_shape = config.axial_pos_shape self.axial_pos_embds_dim = config.axial_pos_embds_dim self.dropout = config.hidden_dropout_prob self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config) self.weights = nn.ParameterList() assert ( sum(self.axial_pos_embds_dim) == config.hidden_size ), "Make sure that config.axial_pos_embds factors: {} sum to config.hidden_size: {}".format( self.axial_pos_embds_dim, config.hidden_size ) # create weights for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim): # create expanded shapes ax_shape = [1] * len(self.axial_pos_shape) ax_shape[axis] = self.axial_pos_shape[axis] ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,) # create tensor and init self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32))) def forward(self, position_ids): # broadcast weights to correct shape batch_size = position_ids.shape[0] sequence_length = position_ids.shape[1] broadcasted_weights = [ weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights ] if self.training is True: assert ( reduce(mul, self.axial_pos_shape) == sequence_length ), "If training, make sure that config.axial_pos_shape factors: {} multiply to sequence length. Got prod({}) != sequence_length: {}. You might want to consider padding your sequence length to {} or changing config.axial_pos_shape.".format( self.axial_pos_shape, self.axial_pos_shape, sequence_length, reduce(mul, self.axial_pos_shape) ) if self.dropout > 0: weights = torch.cat(broadcasted_weights, dim=-1) # permute weights so that 2D correctly drops dims 1 and 2 transposed_weights = weights.transpose(2, 1) # drop entire matrix of last two dims (prev dims 1 and 2) dropped_transposed_weights = nn.functional.dropout2d( transposed_weights, p=self.dropout, training=self.training ) dropped_weights = dropped_transposed_weights.transpose(2, 1) position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1)) else: position_encodings = torch.cat( [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights], dim=-1, ) else: assert ( reduce(mul, self.axial_pos_shape) >= sequence_length ), "Make sure that config.axial_pos_shape factors: {} multiply at least to max(sequence_length, least_common_mult_chunk_length): max({}, {})".format( self.axial_pos_shape, sequence_length, self.least_common_mult_chunk_length, ) # compute how many columns are needed max_position_id = position_ids.max().item() required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1]) # cut to columns that are needed position_encodings = torch.cat( [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1 ) position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1])) # select correct position encodings position_encodings = torch.cat( [ torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0) for i in range(batch_size) ], dim=0, ) return position_encodings class PositionEmbeddings(nn.Module): """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`.""" def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size) def forward(self, position_ids): position_embeddings = self.embedding(position_ids) position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training) return position_embeddings class ReformerEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.max_position_embeddings = config.max_position_embeddings self.dropout = config.hidden_dropout_prob self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = ( AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config) ) def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0): if input_ids is not None: input_shape = input_ids.size() device = input_ids.device else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device seq_length = input_shape[1] if position_ids is None: position_ids = torch.arange( start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).expand(input_shape) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) assert ( position_ids.shape[-1] <= self.max_position_embeddings ), "Sequence Length: {} has to be larger equal than config.max_position_embeddings: {}".format( position_ids.shape[-1], self.max_position_embeddings ) # dropout embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training) # add positional embeddings position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class EfficientAttentionMixin: """ A few utilities for nn.Modules in Reformer, to be used as a mixin. """ def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after): """ Used to implement attention between consecutive chunks. Args: vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...] num_chunks_before: chunks before current chunk to include in attention num_chunks_after: chunks after current chunk to include in attention Returns: tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after). """ if num_chunks_before == 0 and num_chunks_after == 0: return vectors slices = [] for i in range(-num_chunks_before, num_chunks_after + 1): if i == 0: slices.append(vectors) else: slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2)) return torch.cat(slices, dim=3) def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size): """ splits hidden_size dim into attn_head_size and num_attn_heads """ new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size) x = x.view(*new_x_shape) return x.transpose(2, 1) def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size): """ merges attn_head_size dim and num_attn_heads dim into hidden_size """ x = x.permute(0, 2, 1, 3) return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size)) def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None): """ splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims """ batch_size = vectors.shape[0] split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2) if len(vectors.shape) == 4: return torch.reshape(vectors, split_dim_shape + (attn_head_size,)) elif len(vectors.shape) == 3: return torch.reshape(vectors, split_dim_shape) else: raise ValueError("Input vector rank should be one of [3, 4], but is: {}".format(len(vectors.shape))) class LSHSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.config = config self.chunk_length = config.lsh_attn_chunk_length self.num_hashes = config.num_hashes self.num_buckets = config.num_buckets self.num_chunks_before = config.lsh_num_chunks_before self.num_chunks_after = config.lsh_num_chunks_after self.hash_seed = config.hash_seed self.is_decoder = config.is_decoder self.max_position_embeddings = config.max_position_embeddings self.dropout = config.lsh_attention_probs_dropout_prob self.num_attention_heads = config.num_attention_heads self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) # save mask value here. Need fp32 and fp16 mask values self.register_buffer("self_mask_value_float16", torch.tensor(-1e3)) self.register_buffer("self_mask_value_float32", torch.tensor(-1e5)) self.register_buffer("mask_value_float16", torch.tensor(-1e4)) self.register_buffer("mask_value_float32", torch.tensor(-1e9)) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, buckets=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # num hashes can optionally be overwritten by user num_hashes = num_hashes if num_hashes is not None else self.num_hashes do_cached_attention = use_cache and past_buckets_states[1] is not None # check if cache shall be used and that hidden states are already cached if do_cached_attention: assert ( sequence_length == 1 ), f"At the moment, auto-regressive language generation is only possible one word at a time. Make sure that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed." past_buckets = past_buckets_states[0] past_states = past_buckets_states[1] # get query vector query_vectors = self.query_key(hidden_states) query_vectors = self._split_hidden_size_dim( query_vectors, self.num_attention_heads, self.attention_head_size ) if past_buckets is not None: key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets( query_vectors=query_vectors, attention_mask=attention_mask, num_hashes=num_hashes, hidden_states=hidden_states, past_states=past_states, past_buckets=past_buckets, ) query_key_vectors = self._query_per_attn_head(key_value_hidden_states) value_vectors = self._value_per_attn_head(key_value_hidden_states) # split key & value vectors by num hashes to apply # self attention on each separately query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) # repeat query vectors across hash dimension query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1) else: key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1) query_key_vectors = self.query_key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) else: # project hidden_states to query_key and value query_vectors = None query_key_vectors = self.query_key(hidden_states) value_vectors = self.value(hidden_states) # if query key is not already split if not do_cached_attention or past_buckets is None: query_key_vectors = self._split_hidden_size_dim( query_key_vectors, self.num_attention_heads, self.attention_head_size ) value_vectors = self._split_hidden_size_dim( value_vectors, self.num_attention_heads, self.attention_head_size ) # cache buckets for next incremental decoding if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length: buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) # free memory del hidden_states assert ( query_key_vectors.shape[-1] == self.attention_head_size ), "last dim of query_key_vectors is {} but should be {}.".format( query_key_vectors.shape[-1], self.attention_head_size ) assert ( value_vectors.shape[-1] == self.attention_head_size ), "last dim of value_vectors is {} but should be {}.".format( value_vectors.shape[-1], self.attention_head_size ) do_standard_self_attention = (sequence_length <= self.chunk_length) or ( use_cache and past_buckets_states[1] is not None ) # LSH attention only makes sense if chunked attention should be performed if not do_standard_self_attention: # set `num_buckets` on the fly, recommended way to do it if self.num_buckets is None: self._set_num_buckets(sequence_length) # use cached buckets for backprop only if buckets is None: # hash query key vectors into buckets buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) else: # make sure buckets has correct shape for LSH attention buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length) assert ( int(buckets.shape[-1]) == num_hashes * sequence_length ), "last dim of buckets is {}, but should be {}".format(buckets.shape[-1], num_hashes * sequence_length) sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( sequence_length, buckets, num_hashes ) # make sure bucket idx is not longer then sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length # cluster query key value vectors according to hashed buckets query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes) value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes) query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) if self.chunk_length is None: assert ( self.num_chunks_before == 0 and self.num_chunks_after == 0 ), "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and `config.num_chunks_before` are set to 0." elif do_cached_attention and past_buckets is not None: # use max sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx else: # get sequence length indices sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # scale key vectors key_vectors = self._len_and_dim_norm(query_key_vectors) # set query_vectors to query key vectors if LSH self attention query_vectors = query_vectors if query_vectors is not None else query_key_vectors # free memory del query_key_vectors # get attention probs out_vectors, logits, attention_probs = self._attend( query_vectors=query_vectors, key_vectors=key_vectors, value_vectors=value_vectors, sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, attention_mask=attention_mask, head_mask=head_mask, do_standard_self_attention=do_standard_self_attention, do_cached_attention=do_cached_attention, ) # free memory del key_vectors, value_vectors # re-order out_vectors and logits if not do_standard_self_attention: # sort clusters back to correct ordering out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) if not do_standard_self_attention or (do_cached_attention and past_buckets is not None): # sum up all hash rounds if num_hashes > 1: out_vectors = self._split_seq_length_dim_to( out_vectors, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ) logits = self._split_seq_length_dim_to( logits, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ).unsqueeze(-1) probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) # free memory del probs_vectors # free memory del logits assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ), "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length, config.attention_head_size]`." out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () if buckets is not None: buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1) return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets) def _query_per_attn_head(self, hidden_states): per_head_query_key = self.query_key.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key) return query_key_vectors def _value_per_attn_head(self, hidden_states): per_head_value = self.value.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value) return value_vectors def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False): batch_size = vectors.shape[0] # See https://arxiv.org/pdf/1509.02897.pdf # We sample a different random rotation for each round of hashing to # decrease the probability of hash misses. if isinstance(self.num_buckets, int): assert ( self.num_buckets % 2 == 0 ), "There should be an even number of bucktes, but `self.num_bucktes`: {}".format(self.num_buckets) rotation_size = self.num_buckets num_buckets = self.num_buckets else: # Factorize the hash if self.num_buckets is a list or tuple rotation_size, num_buckets = 0, 1 for bucket_factor in self.num_buckets: assert bucket_factor % 2 == 0, "The number of buckets should be even, but `num_bucket`: {}".format( bucket_factor ) rotation_size = rotation_size + bucket_factor num_buckets = num_buckets * bucket_factor # remove gradient vectors = vectors.detach() if self.hash_seed is not None: # for determinism torch.manual_seed(self.hash_seed) rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2) # create a random self.attention_head_size x num_hashes x num_buckets/2 random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype) # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2 rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations) if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1: rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1) buckets = torch.argmax(rotated_vectors, dim=-1) else: # Get the buckets for them and combine. buckets, cur_sum, cur_product = None, 0, 1 for bucket_factor in self.num_buckets: rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)] cur_sum = cur_sum + bucket_factor // 2 rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1) if buckets is None: buckets = torch.argmax(rotated_vectors_factor, dim=-1) else: buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1)) cur_product = cur_product * bucket_factor if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]): # add an extra bucket for padding tokens only num_buckets = num_buckets + 1 # assign padding tokens extra bucket buckets_mask = attention_mask.to(torch.uint8)[:, None, None, :].expand(buckets.shape) buckets = torch.where( buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device) ) elif increase_num_buckets: num_buckets = num_buckets + 1 # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len). # Next we add offsets so that bucket numbers from different hashing rounds don't overlap. offsets = torch.arange(num_hashes, device=vectors.device) offsets = (offsets * num_buckets).view((1, 1, -1, 1)) # expand to batch size and num attention heads offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:]) offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3) return offset_buckets def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes): # no gradients are needed with torch.no_grad(): # hash-based sort sorted_bucket_idx = _stable_argsort(buckets, dim=-1) # create simple indices to scatter to, to have undo sort indices = ( torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device) .view(1, 1, -1) .expand(sorted_bucket_idx.shape) ) # get undo sort undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size()) undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices) return sorted_bucket_idx, undo_sorted_bucket_idx def _set_num_buckets(self, sequence_length): # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1 # make sure buckets are power of 2 num_buckets = 2 ** num_buckets_pow_2 # factorize `num_buckets` if `num_buckets` becomes too large num_buckets_limit = 2 * max( int((self.max_position_embeddings // self.chunk_length) ** (0.5)), self.chunk_length, ) if num_buckets > num_buckets_limit: num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)] logger.warning("config.num_buckets is not set. Setting config.num_buckets to {}...".format(num_buckets)) # set num buckets in config to be properly saved self.config.num_buckets = num_buckets self.num_buckets = num_buckets def _attend( self, query_vectors, key_vectors, value_vectors, sorted_bucket_idx_per_hash, attention_mask, head_mask, do_standard_self_attention, do_cached_attention, ): # look at previous and following chunks if chunked attention if not do_standard_self_attention: key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) # get logits and dots # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft)) query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors # if chunked attention split bucket idxs to query and key if not do_standard_self_attention: query_bucket_idx = self._split_seq_length_dim_to( sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads ) key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after) elif do_cached_attention and query_key_dots.ndim > 4: key_value_bucket_idx = sorted_bucket_idx_per_hash query_bucket_idx = ( key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max() ) elif do_cached_attention and query_key_dots.ndim <= 4: query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1] key_value_bucket_idx = torch.arange( query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,)) else: query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash # get correct mask values depending on precision if query_key_dots.dtype == torch.float16: self_mask_value = self.self_mask_value_float16.half() mask_value = self.mask_value_float16.half() else: self_mask_value = self.self_mask_value_float32 mask_value = self.mask_value_float32 if not do_cached_attention: mask = self._compute_attn_mask( query_bucket_idx, key_value_bucket_idx, attention_mask, query_key_dots.shape, do_standard_self_attention, ) if mask is not None: query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # Self mask is ALWAYS applied. # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf): # " While attention to the future is not allowed, typical implementations of the # Transformer do allow a position to attend to itself. # Such behavior is undesirable in a shared-QK formulation because the dot-product # of a query vector with itself will almost always be greater than the dot product of a # query vector with a vector at another position. We therefore modify the masking # to forbid a token from attending to itself, except in situations # where a token has no other valid attention targets (e.g. the first token in a sequence) " self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to( query_bucket_idx.device ) # apply self_mask query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value) # free memory del self_mask logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]` attention_probs = torch.exp(query_key_dots - logits) # free memory del query_key_dots # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if out_vectors.ndim > 4: logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1) out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) return out_vectors, logits, attention_probs def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention ): # attention mask for LSH if attention_mask is not None: # if chunked attention, the attention mask has to correspond to LSH order attention_mask = attention_mask.to(torch.uint8)[:, None, :] if not do_standard_self_attention: # expand attn_mask to fit with key_value_bucket_idx shape attention_mask = attention_mask[:, None, :] attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,)) # extract attention mask from LSH sorted key_indices attention_mask = torch.gather(attention_mask, -1, key_indices) attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask def _get_relevant_hid_states_and_buckets( self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets ): # concat hidden states hidden_states = torch.cat([past_states, hidden_states], dim=1) # batch_size hidden batch_size = hidden_states.shape[0] sequence_length = hidden_states.shape[1] # check if cached buckets include pad bucket max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets) # if pad bucket was cached => need to increase num buckets for caching increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1 # retrieve query buckets query_buckets = self._hash_vectors( query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets ) # concat buckets concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1) # hash-based sort bucket_idx = _stable_argsort(concat_buckets, dim=-1) # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength assert bucket_idx.shape == ( batch_size, self.num_attention_heads, num_hashes, sequence_length, ), f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but has shape {bucket_idx.shape}." # find indices of new bucket indices relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero() # expand relevant bucket indices to its chunks relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length) relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))] # adapt bucket_idx for batch and hidden states for index select bucket_idx_batch_offset = sequence_length * ( batch_size * torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long) // relevant_bucket_idx_chunk.shape[-1] ) # add batch offset relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset hidden_states = hidden_states.reshape((-1, self.hidden_size)) # select all relevant hidden states relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch) # reshape hidden states and bucket_idx to correct output relevant_hidden_states = relevant_hidden_states.reshape( batch_size, self.num_attention_heads, -1, self.hidden_size ) relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape( batch_size, self.num_attention_heads, num_hashes, -1 ) assert ( relevant_hidden_states.shape[2] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes ), f"There should be {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`, there are {relevant_hidden_states.shape[2]} `hidden_states`." assert ( relevant_bucket_idx_chunk.shape[-1] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length ), f"There should be {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`." return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length): # get relevant indices of where chunk starts and its size start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after) # expand start indices and add correct chunk offset via arange expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size) chunk_sequence_indices = expanded_start_indices + torch.arange( total_chunk_size, device=indices.device, dtype=torch.long ).unsqueeze(0).expand(indices.shape[0], total_chunk_size) # make sure that circular logic holds via % seq len chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length # expand indices and set indices correctly indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone() indices[:, -1] = chunk_sequence_indices return indices def _len_and_dim_norm(self, vectors): """ length and attention head size dim normalization """ vectors = self._len_norm(vectors) vectors = vectors * torch.rsqrt( torch.tensor(self.attention_head_size, device=vectors.device, dtype=vectors.dtype) ) return vectors def _len_norm(self, x, epsilon=1e-6): """ length normalization """ variance = torch.mean(x ** 2, -1, keepdim=True) norm_x = x * torch.rsqrt(variance + epsilon) return norm_x def _gather_by_expansion(self, vectors, idxs, num_hashes): """ expand dims of idxs and vectors for all hashes and gather """ expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size) vectors = vectors.repeat(1, 1, num_hashes, 1) return torch.gather(vectors, 2, expanded_idxs) class ReverseSort(Function): """ After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here. """ @staticmethod def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx): # save sorted_bucket_idx for backprop with torch.no_grad(): ctx.sorted_bucket_idx = sorted_bucket_idx # undo sort to have correct order for next layer expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape) out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices) logits = torch.gather(logits, 2, undo_sorted_bucket_idx) return out_vectors, logits @staticmethod def backward(ctx, grad_out_vectors, grad_logits): # get parameters saved in ctx sorted_bucket_idx = ctx.sorted_bucket_idx expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape) # reverse sort of forward grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices) grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx) # return grad and `None` fillers for last 2 forward args return grad_out_vectors, grad_logits, None, None class LocalSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.chunk_length = config.local_attn_chunk_length self.num_chunks_before = config.local_num_chunks_before self.num_chunks_after = config.local_num_chunks_after self.is_decoder = config.is_decoder self.pad_token_id = config.pad_token_id self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.dropout = config.local_attention_probs_dropout_prob # save mask value here self.register_buffer("mask_value_float16", torch.tensor(-1e4)) self.register_buffer("mask_value_float32", torch.tensor(-1e9)) def forward( self, hidden_states, attention_mask=None, head_mask=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # check if cache shall be used and that hidden states are already cached if use_cache and past_buckets_states[1] is not None: assert ( past_buckets_states[0] is None ), "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching hidden_states_and_buckets." key_value_hidden_states = self._retrieve_relevant_hidden_states( past_buckets_states[1], self.chunk_length, self.num_chunks_before ) key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1) # only query vector for last token query_vectors = self.query(hidden_states) # compute key and value for relevant chunk key_vectors = self.key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) # free memory del key_value_hidden_states else: # project hidden_states to query, key and value query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) # split last dim into `config.num_attention_heads` and `config.attention_head_size` query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size) key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size) value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size) assert ( query_vectors.shape[-1] == self.attention_head_size ), "last dim of query_key_vectors is {} but should be {}.".format( query_vectors.shape[-1], self.attention_head_size ) assert ( key_vectors.shape[-1] == self.attention_head_size ), "last dim of query_key_vectors is {} but should be {}.".format( key_vectors.shape[-1], self.attention_head_size ) assert ( value_vectors.shape[-1] == self.attention_head_size ), "last dim of query_key_vectors is {} but should be {}.".format( value_vectors.shape[-1], self.attention_head_size ) if self.chunk_length is None: assert ( self.num_chunks_before == 0 and self.num_chunks_after == 0 ), "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and `config.num_chunks_before` are set to 0." # normalize key vectors key_vectors = key_vectors / torch.sqrt( torch.tensor(self.attention_head_size, device=key_vectors.device, dtype=key_vectors.dtype) ) # get sequence length indices indices = torch.arange(sequence_length, device=query_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # if one should do normal n^2 self-attention do_standard_self_attention = sequence_length <= self.chunk_length # if input should be chunked if not do_standard_self_attention: # chunk vectors # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size query_vectors = self._split_seq_length_dim_to( query_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) key_vectors = self._split_seq_length_dim_to( key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) # chunk indices query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) # append chunks before and after key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after) else: query_indices = key_indices = indices # query-key matmul: QK^T query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors mask = self._compute_attn_mask( query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention ) if mask is not None: # get mask tensor depending on half precision or not if query_key_dots.dtype == torch.float16: mask_value = self.mask_value_float16.half() else: mask_value = self.mask_value_float32 query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # softmax logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) attention_probs = torch.exp(query_key_dots - logits) # free memory del logits # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if not do_standard_self_attention: out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ) out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs) def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention ): # chunk attention mask and look before and after if attention_mask is not None: attention_mask = attention_mask.to(torch.uint8)[:, None, :] if not do_standard_self_attention: attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1) attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after) # create attn_mask attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask @staticmethod def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before): start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length return previous_hidden_states[:, start_position:] class ReformerSelfOutput(nn.Module): def __init__(self, config): super().__init__() all_head_size = config.num_attention_heads * config.attention_head_size self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ReformerAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.layer_id = layer_id self.attn_layers = config.attn_layers self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh": self.self_attention = LSHSelfAttention(config) elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local": self.self_attention = LocalSelfAttention(config) elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == set(["lsh", "local"]): # get correct attn layers if self.attn_layers[self.layer_id] == "lsh": self.self_attention = LSHSelfAttention(config) else: self.self_attention = LocalSelfAttention(config) else: raise NotImplementedError( "Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {}. Select attn layer types from ['lsh', 'local'] only.".format( self.attn_layers ) ) self.output = ReformerSelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, buckets=None, ): hidden_states = self.layer_norm(hidden_states) # make sure cached hidden states is set to None for backward pass if past_buckets_states is not None: past_buckets_states_layer = past_buckets_states[self.layer_id] else: past_buckets_states_layer = None # use cached buckets for backprob if buckets not None for LSHSelfAttention self_attention_outputs = self.self_attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states_layer, use_cache=use_cache, output_attentions=output_attentions, buckets=buckets, ) # add buckets if necessary if hasattr(self_attention_outputs, "buckets"): buckets = self_attention_outputs.buckets else: buckets = None # cache hidden states for future use if use_cache: if past_buckets_states[self.layer_id][0] is None: # padded input should not be cached past_buckets = ( buckets[:, :, :, :orig_sequence_length] if (buckets is not None and orig_sequence_length > 1) else buckets ) else: past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1) if past_buckets_states[self.layer_id][1] is None: # padded input should not be cached past_states = hidden_states[:, :orig_sequence_length] else: past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1) past_buckets_states[self.layer_id] = (past_buckets, past_states) # compute attention feed forward output attention_output = self.output(self_attention_outputs.hidden_states) return AttentionOutput( hidden_states=attention_output, attention_probs=self_attention_outputs.attention_probs, buckets=buckets, ) class ReformerFeedForwardDense(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act self.dense = nn.Linear(config.hidden_size, config.feed_forward_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = self.act_fn(hidden_states) return hidden_states class ReformerFeedForwardOutput(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(config.feed_forward_size, config.hidden_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ChunkReformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense = ReformerFeedForwardDense(config) self.output = ReformerFeedForwardOutput(config) def forward(self, attention_output): return apply_chunking_to_forward( self.forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) def forward_chunk(self, hidden_states): hidden_states = self.layer_norm(hidden_states) hidden_states = self.dense(hidden_states) return self.output(hidden_states) class ReformerLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.attention = ReformerAttention(config, layer_id) # dropout requires to have the same # seed for forward and backward pass self.attention_seed = None self.feed_forward_seed = None self.feed_forward = ChunkReformerFeedForward(config) def _init_attention_seed(self): """ This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.attention_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.attention_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.attention_seed) def _init_feed_forward_seed(self): """ This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.feed_forward_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.feed_forward_seed) def forward( self, prev_attn_output, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, ): with torch.no_grad(): # every forward pass we sample a different seed # for dropout and save for forward fn in backward pass # to have correct dropout if self.training: self._init_attention_seed() attn_outputs = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = attn_outputs.hidden_states # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # Y_1 = X_1 + f(X_2) attn_output = prev_attn_output + attn_output # free memory del prev_attn_output # every forward pass we sample a different seed # for dropout and save seed for forward fn in backward # to have correct dropout if self.training: self._init_feed_forward_seed() # Y_2 = X_2 + g(Y_1) hidden_states = hidden_states + self.feed_forward(attn_output) return ReformerOutput( attn_output=attn_output, hidden_states=hidden_states, attention_probs=attn_outputs.attention_probs, buckets=attn_outputs.buckets, ) def backward_pass( self, next_attn_output, hidden_states, grad_attn_output, grad_hidden_states, attention_mask=None, head_mask=None, buckets=None, ): # Implements the backward pass for reversible ResNets. # A good blog post on how this works can be found here: # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py with torch.enable_grad(): next_attn_output.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.feed_forward_seed) # g(Y_1) res_hidden_states = self.feed_forward(next_attn_output) res_hidden_states.backward(grad_hidden_states, retain_graph=True) with torch.no_grad(): # X_2 = Y_2 - g(Y_1) hidden_states = hidden_states - res_hidden_states del res_hidden_states grad_attn_output = grad_attn_output + next_attn_output.grad next_attn_output.grad = None with torch.enable_grad(): hidden_states.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.attention_seed) # f(X_2) # use cached buckets for backprob if buckets not None for LSHSelfAttention output = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, buckets=buckets, ).hidden_states output.backward(grad_attn_output, retain_graph=True) with torch.no_grad(): # X_1 = Y_1 - f(X_2) attn_output = next_attn_output - output del output, next_attn_output grad_hidden_states = grad_hidden_states + hidden_states.grad hidden_states.grad = None hidden_states = hidden_states.detach() return ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) class _ReversibleFunction(Function): """ To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here. This way it is made sure that no memory expensive activations are saved during the forward pass. This function is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py """ @staticmethod def forward( ctx, hidden_states, layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ): all_buckets = () # split duplicated tensor hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1) for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)): if output_hidden_states is True: all_hidden_states.append(hidden_states) layer_outputs = layer( prev_attn_output=attn_output, hidden_states=hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states all_buckets = all_buckets + (layer_outputs.buckets,) if output_attentions: all_attentions.append(layer_outputs.attention_probs) # Add last layer if output_hidden_states is True: all_hidden_states.append(hidden_states) # attach params to ctx for backward ctx.save_for_backward(attn_output.detach(), hidden_states.detach()) ctx.layers = layers ctx.all_buckets = all_buckets ctx.head_mask = head_mask ctx.attention_mask = attention_mask # Concatenate 2 RevNet outputs return torch.cat([attn_output, hidden_states], dim=-1) @staticmethod def backward(ctx, grad_hidden_states): grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1) # retrieve params from ctx for backward attn_output, hidden_states = ctx.saved_tensors # create tuple output = ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) # free memory del grad_attn_output, grad_hidden_states, attn_output, hidden_states layers = ctx.layers all_buckets = ctx.all_buckets head_mask = ctx.head_mask attention_mask = ctx.attention_mask for idx, layer in enumerate(layers[::-1]): # pop last buckets from stack buckets = all_buckets[-1] all_buckets = all_buckets[:-1] # backprop output = layer.backward_pass( next_attn_output=output.attn_output, hidden_states=output.hidden_states, grad_attn_output=output.grad_attn_output, grad_hidden_states=output.grad_hidden_states, head_mask=head_mask[len(layers) - idx - 1], attention_mask=attention_mask, buckets=buckets, ) assert all_buckets == (), "buckets have to be empty after backpropagation" grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1) # num of return vars has to match num of forward() args # return gradient for hidden_states arg and None for other args return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None class ReformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)]) # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_hidden_states=False, output_attentions=False, ): # hidden_states and attention lists to be filled if wished all_hidden_states = [] all_attentions = [] # init cached hidden states if necessary if past_buckets_states is None: past_buckets_states = [((None), (None)) for i in range(len(self.layers))] # concat same tensor for reversible ResNet hidden_states = torch.cat([hidden_states, hidden_states], dim=-1) hidden_states = _ReversibleFunction.apply( hidden_states, self.layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ) # Apply layer norm to concatenated hidden states hidden_states = self.layer_norm(hidden_states) # Apply dropout hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return ReformerEncoderOutput( hidden_states=hidden_states, all_hidden_states=all_hidden_states, all_attentions=all_attentions, past_buckets_states=past_buckets_states, ) class ReformerOnlyLMHead(nn.Module): def __init__(self, config): super().__init__() # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.seq_len_dim = 1 self.chunk_size_lm_head = config.chunk_size_lm_head self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states class ReformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ReformerConfig base_model_prefix = "reformer" @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "input_ids": input_ids, "attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, AxialPositionEmbeddings): for weight in module.weights: torch.nn.init.normal_(weight, std=self.config.axial_norm_std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @dataclass class ReformerModelOutput(ModelOutput): """ Output type of :class:`~transformers.ReformerModel`. Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. ``num_predict`` corresponds to ``target_mapping.shape[1]``. If ``target_mapping`` is ``None``, then ``num_predict`` corresponds to ``sequence_length``. past_buckets_states (:obj:`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`Tuple(torch.LongTensor, torch.FloatTensor` of length :obj:`config.n_layers`, with the first element being the previous `buckets` of shape :obj:`(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous `hidden_states` of shape :obj:`(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see ``past_buckets_states`` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ReformerModelWithLMHeadOutput(ModelOutput): """ Output type of :class:`~transformers.ReformerModelWithLMHead`. Args: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided) Language modeling loss (for next-token prediction). logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``num_predict`` corresponds to ``target_mapping.shape[1]``. If ``target_mapping`` is ``None``, then ``num_predict`` corresponds to ``sequence_length``. past_buckets_states (:obj:`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`Tuple(torch.LongTensor, torch.FloatTensor` of length :obj:`config.n_layers`, with the first element being the previous `buckets` of shape :obj:`(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous `hidden_states` of shape :obj:`(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see ``past_buckets_states`` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): TTuple of :obj:`torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None REFORMER_START_DOCSTRING = r""" Reformer was proposed in `Reformer: The Efficient Transformer <https://arxiv.org/abs/2001.0445>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.ReformerConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ REFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices are automatically padded to be a multiple of the chunk length. Indices can be obtained using :class:`~transformers.ReformerTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. num_hashes (:obj:`int`, `optional`): The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites the default defined in :obj:`config.num_hashes`. For more information, see :obj:`num_hashes` in :class:`~transformers.ReformerConfig`. past_buckets_states (:obj:`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, `optional`): List of :obj:`Tuple(torch.LongTensor, torch.FloatTensor` of length :obj:`config.n_layers`, with the first element being the previous `buckets` of shape :obj:`(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous `hidden_states` of shape :obj:`(batch_size, sequence_length, hidden_size)`). Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed up sequential decoding. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Reformer Model transformer outputting raw hidden-states" "without any specific head on top.", REFORMER_START_DOCSTRING, ) class ReformerModel(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config assert ( self.config.num_hidden_layers > 0 ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']" self.embeddings = ReformerEmbeddings(config) self.encoder = ReformerEncoder(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/reformer-crime-and-punishment", output_type=ReformerModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, num_hashes=None, past_buckets_states=None, use_cache=None, output_hidden_states=None, output_attentions=None, return_dict=None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() # noqa: F841 device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] # noqa: F841 device = inputs_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds") assert ( len(input_shape) == 2 ), "`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {}".format(input_shape) if past_buckets_states is not None: assert not self.training, "`past_buckets_states` can only be used for inference, not for training`." # prepare head mask head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True) # original sequence length for padding orig_sequence_length = input_shape[-1] # if needs padding least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config) min_chunk_length = _get_min_chunk_len(self.config) must_pad_to_match_chunk_length = ( input_shape[-1] % least_common_mult_chunk_length != 0 and input_shape[-1] > min_chunk_length and past_buckets_states is None ) if must_pad_to_match_chunk_length: padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length if self.training is True: raise ValueError( "If training, sequence Length {} has to be a multiple of least common multiple chunk_length {}. Please consider padding the input to a length of {}.".format( input_shape[-1], least_common_mult_chunk_length, input_shape[-1] + padding_length ) ) # pad input input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length( input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, input_shape=input_shape, padding_length=padding_length, padded_seq_length=least_common_mult_chunk_length, device=device, ) # start index for position encoding depends on incremental decoding if past_buckets_states is not None: start_idx_pos_encodings = past_buckets_states[0][1].shape[1] else: start_idx_pos_encodings = 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, start_idx_pos_encodings=start_idx_pos_encodings, ) encoder_outputs = self.encoder( hidden_states=embedding_output, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.hidden_states # if padding was applied if must_pad_to_match_chunk_length: sequence_output = sequence_output[:, :orig_sequence_length] past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None attentions = encoder_outputs.all_attentions if output_attentions else None if not return_dict: return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None) return ReformerModelOutput( last_hidden_state=sequence_output, past_buckets_states=past_buckets_states, hidden_states=hidden_states, attentions=attentions, ) def _pad_to_mult_of_chunk_length( self, input_ids, inputs_embeds=None, attention_mask=None, position_ids=None, input_shape=None, padding_length=None, padded_seq_length=None, device=None, ): logger.info( "Input ids are automatically padded from {} to {} to be a multiple of `config.chunk_length`: {}".format( input_shape[-1], input_shape[-1] + padding_length, padded_seq_length ) ) padded_input_ids = torch.full( (input_shape[0], padding_length), self.config.pad_token_id, device=device, dtype=torch.long, ) # Extend `attention_mask` if attention_mask is not None: pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype) attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1) else: attention_mask = torch.cat( [ torch.ones(input_shape, device=device, dtype=torch.uint8), torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.uint8), ], dim=-1, ) # Extend `input_ids` with padding to match least common multiple chunk_length if input_ids is not None: input_ids = torch.cat([input_ids, padded_input_ids], dim=-1) input_shape = input_ids.size() # Pad position ids if given if position_ids is not None: padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device) padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length) position_ids = torch.cat([position_ids, padded_position_ids], dim=-1) # Extend `inputs_embeds` with padding to match least common multiple chunk_length if inputs_embeds is not None: padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids) inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2) input_shape = inputs_embeds.size() return input_ids, inputs_embeds, attention_mask, position_ids, input_shape @add_start_docstrings("""Reformer Model with a `language modeling` head on top. """, REFORMER_START_DOCSTRING) class ReformerModelWithLMHead(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`." assert ( "local" not in self.config.attn_layers or config.local_num_chunks_after == 0 ), f"If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not {config.local_num_chunks_after}." assert ( "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0 ), f"If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not {config.lsh_num_chunks_after}." self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/reformer-crime-and-punishment", output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, position_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, num_hashes=None, past_buckets_states=None, use_cache=None, output_hidden_states=None, output_attentions=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((loss,) + output) if loss is not None else output return ReformerModelWithLMHeadOutput( loss=loss, logits=logits, past_buckets_states=reformer_outputs.past_buckets_states, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, use_cache=None, num_hashes=None, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past is not None: input_ids = input_ids[:, -1:] inputs_dict = { "input_ids": input_ids, "past_buckets_states": past, "use_cache": use_cache, "num_hashes": num_hashes, } return inputs_dict def _reorder_cache(self, past, beam_idx): reord_past_buckets_states = [] for layer_past in past: # buckets if layer_past[0] is not None: reord_buckets = layer_past[0].index_select(0, beam_idx) else: reord_buckets = None # hidden states reord_hidden_states = layer_past[1].index_select(0, beam_idx) reord_past_buckets_states.append((reord_buckets, reord_hidden_states)) return reord_past_buckets_states @add_start_docstrings("""Reformer Model with a `language modeling` head on top. """, REFORMER_START_DOCSTRING) class ReformerForMaskedLM(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) assert ( not config.is_decoder ), "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention." self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/reformer-crime-and-punishment", output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, position_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, num_hashes=None, labels=None, output_hidden_states=None, output_attentions=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) @add_start_docstrings( """ Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, REFORMER_START_DOCSTRING, ) class ReformerForSequenceClassification(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.reformer = ReformerModel(config) self.classifier = ReformerClassificationHead(config) if config.is_decoder is True: logger.warning("You might want to disable causal masking for sequence classification") self.init_weights() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/reformer-crime-and-punishment", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, position_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, num_hashes=None, labels=None, output_hidden_states=None, output_attentions=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ReformerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, hidden_states, **kwargs): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """ Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`. """, REFORMER_START_DOCSTRING, ) class ReformerForQuestionAnswering(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.reformer = ReformerModel(config) # 2 * config.hidden_size because we use reversible residual layers self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/reformer-crime-and-punishment", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, position_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, num_hashes=None, start_positions=None, end_positions=None, output_hidden_states=None, output_attentions=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + reformer_outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, )
[ "torch.nn.Linear", "torch.cat", "torch.nn.ParameterList", "torch.einsum", "torch.enable_grad", "torch.cuda.current_device", "torch.ones", "torch.seed", "torch.exp", "torch.nn.CrossEntropyLoss", "torch.chunk", "torch.where", "torch.reshape", "torch.rsqrt", "torch.sum", "torch.nn.LayerNorm", "torch.gather", "torch.argsort", "torch.manual_seed", "torch.nn.init.normal_", "torch.tensor", "torch.index_select", "torch.nn.Embedding", "torch.zeros", "torch.nn.functional.dropout", "torch.full", "torch.nn.functional.dropout2d", "torch.mean", "torch.matmul", "torch.argmax", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.arange", "torch.no_grad", "torch.logsumexp", "torch.ones_like", "torch.tanh", "torch.randn" ]
1.0
ceostroff/transformers
3095ee9dab739f212a8753b5be4e1a72ba42e28e
1.0
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLConfig, CTRLLMHeadModel, CTRLModel class CTRLModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 14 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLModel(config=config) model.to(torch_device) model.eval() model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict @require_torch class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else () all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else () test_pruning = True test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = CTRLModelTester(self) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_ctrl_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*config_and_inputs) def test_ctrl_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CTRLModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class CTRLModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_ctrl(self): model = CTRLLMHeadModel.from_pretrained("ctrl") model.to(torch_device) input_ids = torch.tensor( [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device ) # Legal the president is expected_output_ids = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
[ "torch.tensor" ]
1.0
ceostroff/transformers
3095ee9dab739f212a8753b5be4e1a72ba42e28e
1.0
# -*- coding: utf-8 -*- # @Author : William # @Project : TextGAN-william # @FileName : RelGAN_D.py # @Time : Created at 2019-04-25 # @Blog : http://zhiweil.ml/ # @Description : # Copyrights (C) 2018. All Rights Reserved. import math import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import config as cfg from utils.helpers import truncated_normal_ n_heads = 4 n_transformer_layers = 3 class OurGAN_D(nn.Module): def __init__(self, embed_dim, max_seq_len, vocab_size, padding_idx, gpu=False, dropout=0.25): super(OurGAN_D, self).__init__() self.embed_dim = embed_dim self.max_seq_len = max_seq_len self.gpu = gpu self.embeddings = nn.Sequential( nn.Dropout(dropout), nn.Linear(vocab_size, embed_dim, bias=False), nn.Tanh() ) # Returns BxTxD self.transformer = nn.TransformerEncoder( nn.TransformerEncoderLayer(embed_dim, nhead=n_heads), n_transformer_layers, norm=nn.LayerNorm(self.embed_dim) ) self.fc1 = nn.Sequential( nn.Linear(self.embed_dim * self.max_seq_len, self.embed_dim), nn.LeakyReLU(0.2) ) self.fc2 = nn.Sequential( nn.Dropout(dropout), nn.Linear(self.embed_dim, 100), nn.LeakyReLU(0.2) ) self.fc3 = nn.Sequential( nn.Linear(100, 1), nn.Sigmoid() ) self.init_params() self.pos_encoding = self.positional_encoding() def positional_encoding(self): # From Assignment 3 pos_indices = torch.arange(self.max_seq_len)[..., None] dim_indices = torch.arange(self.embed_dim//2)[None, ...] exponents = (2*dim_indices).float()/(self.embed_dim) trig_args = pos_indices / (10000**exponents) sin_terms = torch.sin(trig_args) cos_terms = torch.cos(trig_args) pos_encodings = torch.zeros((self.max_seq_len, self.embed_dim)) pos_encodings[:, 0::2] = sin_terms pos_encodings[:, 1::2] = cos_terms if self.gpu: pos_encodings = pos_encodings.cuda() return pos_encodings def forward(self, inp): """ Get logits of discriminator :param inp: batch_size * seq_len * vocab_size :return logits: [batch_size * num_rep] (1-D tensor) """ emb = self.embeddings(inp) # batch_size * max_seq_len * embed_dim seqlen = inp.size(1) emb = emb + self.pos_encoding[:seqlen] trans = self.transformer(emb) # batch * max_seq_len * embed_dim x = self.fc1(trans.flatten(start_dim=1)) x = self.fc2(x) x = self.fc3(x) return x def init_params(self): for param in self.parameters(): if param.requires_grad and len(param.shape) > 0: stddev = 1 / math.sqrt(param.shape[0]) if cfg.dis_init == 'uniform': torch.nn.init.uniform_(param, a=-0.05, b=0.05) elif cfg.dis_init == 'normal': torch.nn.init.normal_(param, std=stddev) elif cfg.dis_init == 'truncated_normal': truncated_normal_(param, std=stddev)
[ "torch.zeros", "torch.cos", "torch.nn.Dropout", "torch.nn.Linear", "torch.nn.LayerNorm", "torch.sin", "torch.nn.Sigmoid", "torch.arange", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.nn.init.normal_", "torch.nn.init.uniform_", "torch.nn.TransformerEncoderLayer" ]
1.0.0
JustinLokHinWu/TextGAN-PyTorch
427f08890056a96fde7e5b67c26c3bb9f5a420a4
0.4
import torch.utils.data as data import os import os.path import numpy as np from numpy.random import randint import torch from colorama import init from colorama import Fore, Back, Style import random from os import listdir from os.path import join, splitext import numpy as np import torch import torch.nn.functional as F import torchvision.transforms.functional as TF from PIL import Image, ImageFilter, ImageFile from torch.utils.data import DataLoader, Dataset from torchvision import transforms init(autoreset=True) class VideoRecord(object): def __init__(self, row): self._data = row @property def path(self): return self._data[0] @property def num_frames(self): return int(self._data[1]) @property def label(self): return int(self._data[2]) class TSNDataSet(data.Dataset): def __init__(self, root_path, list_file, num_dataload, num_segments=3, new_length=1, modality='RGB', image_tmpl='img_{:05d}.t7', transform=None, force_grayscale=False, random_shift=True, test_mode=False): self.root_path = root_path self.list_file = list_file self.num_segments = num_segments self.new_length = new_length self.modality = modality self.image_tmpl = image_tmpl self.transform = transform self.random_shift = random_shift self.test_mode = test_mode self.num_dataload = num_dataload if self.modality == 'RGBDiff' or self.modality == 'RGBDiff2' or self.modality == 'RGBDiffplus': self.new_length += 1 # Diff needs one more image to calculate diff self._parse_list() # read all the video files def _load_feature(self, directory, idx): if self.modality == 'RGB' or self.modality == 'RGBDiff' or self.modality == 'RGBDiff2' or self.modality == 'RGBDiffplus': feat_path = os.path.join(directory, self.image_tmpl.format(idx)) try: feat = [torch.load(feat_path)] except: print(Back.RED + feat_path) return feat elif self.modality == 'Flow': x_feat = torch.load(os.path.join(directory, self.image_tmpl.format('x', idx))) y_feat = torch.load(os.path.join(directory, self.image_tmpl.format('y', idx))) return [x_feat, y_feat] def _parse_list(self): self.video_list = [VideoRecord(x.strip().split(' ')) for x in open(self.list_file)] # repeat the list if the length is less than num_dataload (especially for target data) n_repeat = self.num_dataload//len(self.video_list) n_left = self.num_dataload%len(self.video_list) self.video_list = self.video_list*n_repeat + self.video_list[:n_left] def _sample_indices(self, record): """ :param record: VideoRecord :return: list """ #np.random.seed(1) average_duration = (record.num_frames - self.new_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments) elif record.num_frames > self.num_segments: offsets = np.sort(randint(record.num_frames - self.new_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments,)) return offsets + 1 def _get_val_indices(self, record): num_min = self.num_segments + self.new_length - 1 num_select = record.num_frames - self.new_length + 1 if record.num_frames >= num_min: tick = float(num_select) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * float(x)) for x in range(self.num_segments)]) else: offsets = np.zeros((self.num_segments,)) return offsets + 1 def _get_test_indices(self, record): num_min = self.num_segments + self.new_length - 1 num_select = record.num_frames - self.new_length + 1 if record.num_frames >= num_min: tick = float(num_select) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * float(x)) for x in range(self.num_segments)]) # pick the central frame in each segment else: # the video clip is too short --> duplicate the last frame id_select = np.array([x for x in range(num_select)]) # expand to the length of self.num_segments with the last element id_expand = np.ones(self.num_segments-num_select,dtype=int)*id_select[id_select[0]-1] offsets = np.append(id_select, id_expand) return offsets + 1 def __getitem__(self, index): record = self.video_list[index] if not self.test_mode: segment_indices = self._sample_indices(record) if self.random_shift else self._get_val_indices(record) else: segment_indices = self._get_test_indices(record) return self.get(record, segment_indices) def get(self, record, indices): frames = list() for seg_ind in indices: p = int(seg_ind) for i in range(self.new_length): seg_feats = self._load_feature(record.path, p) frames.extend(seg_feats) if p < record.num_frames: p += 1 # process_data = self.transform(frames) process_data = torch.stack(frames) return process_data, record.label def __len__(self): return len(self.video_list) class VideoDataset(data.Dataset): def __init__( self, folder, n_frames, frame_size=224, separator="_" ): self.folder = folder self.num_segments = n_frames self.frame_size = frame_size self.data_transform = transforms.Compose( [ transforms.Resize(self.frame_size), transforms.CenterCrop(self.frame_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) self.separator = separator self.classes = [c for c in sorted(listdir(folder))] self.videos_with_classes = [] for c_index, c in enumerate(self.classes): c_path = join(self.folder, c) videos = listdir(c_path) for v in videos: v_path = join(c_path, v) num_frames = len(listdir(v_path)) if num_frames >= self.num_segments: pair = (v_path, c_index) self.videos_with_classes.append(pair) def _get_test_indices(self, num_frames): num_min = self.num_segments num_select = num_frames if num_frames >= num_min: tick = float(num_select) / float(self.num_segments) offsets = np.array( [int(tick / 2.0 + tick * float(x)) for x in range(self.num_segments)] ) # pick the central frame in each segment else: # the video clip is too short --> duplicate the last frame id_select = np.array([x for x in range(num_select)]) # expand to the length of self.num_segments with the last element id_expand = ( np.ones(self.num_segments - num_select, dtype=int) * id_select[id_select[0] - 1] ) offsets = np.append(id_select, id_expand) return offsets def __getitem__(self, index): video, label = self.videos_with_classes[index] frames_temp = sorted( listdir(video), key=lambda path: int(path.split(self.separator)[-1].split(".")[0]), ) frames = [f for f in frames_temp if f.endswith('jpg') or f.endswith('jpeg')] num_frames = len(frames) data = [] segment_indices = self._get_test_indices(num_frames) for index in segment_indices: frame = frames[index] frame_path = join(video, frame) frame_img = Image.open(frame_path) frame_feat = self.data_transform(frame_img) data.append(frame_feat) tensor = torch.stack(data) return tensor, label def __len__(self): return len(self.videos_with_classes)
[ "torch.utils.data.append", "torch.stack", "torch.load" ]
0.4.1
gzaraunitn/TA3N
d83ae5d9c8f4452ff69dd9002bb4016a695a4be8
1.10
import os import torch from transformers import TrainerControl, TrainerState from transformers.file_utils import WEIGHTS_NAME from transformers.modeling_utils import PreTrainedModel from transformers.trainer_callback import TrainerCallback from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from transformers.training_args import TrainingArguments from ruprompts.prompt import Prompt from ruprompts.prompt_embedding import PROMPT_PROVIDER_KEY_NAME try: import omegaconf IS_OMEGACONF_AVAILABLE = True except ImportError: omegaconf = None IS_OMEGACONF_AVAILABLE = False try: import wandb IS_WANDB_AVAILABLE = True except ImportError: wandb = None IS_WANDB_AVAILABLE = False class FreezeTransformerUnfreezePrompt(TrainerCallback): """Freezes all parameters but those of prompt provider.""" def on_train_begin( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: PreTrainedModel, **kwargs, ): for name, param in model.transformer.named_parameters(): if PROMPT_PROVIDER_KEY_NAME in name: param.requires_grad = True else: param.requires_grad = False class ReduceCheckpoint(TrainerCallback): """Reduces the checkpoint size by keeping only the weights of prompt provider.""" def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs ): checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}" output_dir = os.path.join(args.output_dir, checkpoint_folder) weights_path = os.path.join(output_dir, WEIGHTS_NAME) weights = torch.load(weights_path) keys_to_remove = [] for weight_key in weights: if PROMPT_PROVIDER_KEY_NAME not in weight_key: keys_to_remove.append(weight_key) for key in keys_to_remove: weights.pop(key) torch.save(weights, weights_path) class SavePretrainedPrompt(TrainerCallback): """Saves the prompt as pretrained on checkpoint. Args: prompt (# !s!`ruprompts.prompt.Prompt`): Prompt instance to be saved. """ def __init__(self, prompt: Prompt): self.prompt = prompt def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs ): checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}" output_dir = os.path.join(args.output_dir, checkpoint_folder) self.prompt.save_pretrained(output_dir) class WBLogHydraConfig(TrainerCallback): """Logs Hydra config to Weights and Biases on training start. Args: cfg (omegaconf.DictConfig): Config to be logged. """ def __init__(self, cfg): if not (IS_OMEGACONF_AVAILABLE and IS_WANDB_AVAILABLE): raise UserWarning( "WBLogHydraConfig is not available. Install `hydra` and `wandb` " "with `pip install hydra-core wandb`." ) self.cfg = cfg def on_train_begin( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs ): wandb.config.update({"hydra": omegaconf.OmegaConf.to_container(self.cfg)})
[ "torch.save", "torch.load" ]
1.10.0
sberbank-ai/ru-prompts
4eeedae92cb5234c70adc787ace7cfceb76b0be0
1.2
import torch import torch.nn as nn import torch.nn.functional as F from base import BaseModel from model.mem_transformer import MemTransformerLM from model.gru_ae import * import numpy as np class Seq_Attention(BaseModel): def __init__( self, transformer_state_path, num_classes, codes=True, demographics=True, demographics_size=0, div_factor=2, dropout=0.5, ): super(Seq_Attention, self).__init__() self.num_classes = num_classes self.demographics = demographics self.demographics_size = demographics_size self.codes = codes state_dict = torch.load(transformer_state_path) transformer_config = state_dict["config"] state_dict = state_dict["state_dict"] transformer_args = transformer_config["model"]["args"] self.transformer = MemTransformerLM(**transformer_args) self.transformer.load_state_dict(state_dict) self.transformer.eval() self.patient_rep_size = +self.transformer.d_embed * int( self.codes ) + self.demographics_size * int(self.demographics) self.predictor = nn.Sequential( nn.Dropout(p=dropout), nn.Linear( self.patient_rep_size, self.patient_rep_size // div_factor, ), nn.ReLU(inplace=True), nn.Linear(self.patient_rep_size // div_factor, self.num_classes), ) def forward(self, x, device="cuda"): x_codes, x_cl, b_is, demo = x x_codes = x_codes.to(device) x_cl = x_cl.to(device) demo = demo.to(device) b_is = b_is.to(device) #patient_rep = torch.Tensor([]).to(device) patient_rep = None with torch.no_grad(): mem_out = self.transformer._forward(x_codes) mem_out = mem_out[x_cl, b_is, :] if self.codes and self.demographics: patient_rep = torch.cat((mem_out, demo), dim=1) elif self.codes and not self.demographics: patient_rep = mem_out elif not self.codes and self.demographics: patient_rep = demo else: raise ValueError("codes and demographics can be false at the same time") # if self.demographics: # if len(patient_rep.shape) == 0: # patient_rep = demo # else: # if len(patient_rep.shape) == 1: # patient_rep = patient_rep.unsqueeze(dim=0) # patient_rep = torch.cat((patient_rep, demo), dim=1) logits = self.predictor(patient_rep) if self.num_classes > 1: log_probs = F.log_softmax(logits, dim=1).squeeze() else: log_probs = torch.sigmoid(logits) if len(logits) == 1: logits = logits.squeeze(dim=0) log_probs = log_probs.squeeze(dim=0) else: logits = logits.squeeze() log_probs = log_probs.squeeze() return log_probs, logits def __str__(self): """ Model prints with number of trainable parameters """ model_parameters = filter(lambda p: p.requires_grad, self.parameters()) params = sum([np.prod(p.size()) for p in model_parameters if p is not None]) return "\nTrainable parameters: {}".format(params)
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.Dropout", "torch.cat", "torch.no_grad", "torch.nn.functional.log_softmax", "torch.nn.ReLU", "torch.load" ]
1.2.0
empyriumz/TAPER-EHR
fc89a27730a6eb6d4b321832e017c7e9662fa2e3
1.6
from __future__ import print_function from __future__ import division import math import torch import torch.nn as nn from torch.nn import Parameter from torchkit.head.localfc.common import calc_logits class CosFace(nn.Module): """ Implement of CosFace (https://arxiv.org/abs/1801.09414) """ def __init__(self, in_features, out_features, scale=64.0, margin=0.40): """ Args: in_features: size of each input features out_features: size of each output features scale: norm of input feature margin: margin """ super(CosFace, self).__init__() self.in_features = in_features self.out_features = out_features self.scale = scale self.margin = margin self.kernel = Parameter(torch.FloatTensor(in_features, out_features)) # nn.init.xavier_uniform_(self.kernel) nn.init.normal_(self.kernel, std=0.01) # init.kaiming_uniform_(self.kernel, a=math.sqrt(5)) def forward(self, embeddings, labels): cos_theta, origin_cos = calc_logits(embeddings, self.kernel) target_logit = cos_theta[torch.arange(0, embeddings.size(0)), labels].view(-1, 1) final_target_logit = target_logit - self.margin cos_theta.scatter_(1, labels.view(-1, 1).long(), final_target_logit) output = cos_theta * self.scale return output, origin_cos * self.scale
[ "torch.nn.init.normal_", "torch.FloatTensor" ]
1.6.0
sarvex/TFace
490cf90a1f042b86d7d03042f26d0a7cf6b1f0c0
1.1
# ----------------------------------------------------- # Copyright (c) Shanghai Jiao Tong University. All rights reserved. # Written by Jiefeng Li ([email protected]) # ----------------------------------------------------- import torch.nn as nn from .builder import SPPE from .layers.DUC import DUC from .layers.SE_Resnet import SEResnet @SPPE.register_module class FastPose(nn.Module): conv_dim = 128 def __init__(self, norm_layer=nn.BatchNorm2d, **cfg): super(FastPose, self).__init__() self._preset_cfg = cfg['PRESET'] if 'DCN' in cfg.keys(): stage_with_dcn = cfg['STAGE_WITH_DCN'] dcn = cfg['DCN'] self.preact = SEResnet( f"resnet{cfg['NUM_LAYERS']}", dcn=dcn, stage_with_dcn=stage_with_dcn) else: self.preact = SEResnet(f"resnet{cfg['NUM_LAYERS']}") # Imagenet pretrain model import torchvision.models as tm # noqa: F401,F403 assert cfg['NUM_LAYERS'] in [18, 34, 50, 101, 152] x = eval(f"tm.resnet{cfg['NUM_LAYERS']}(pretrained=True)") model_state = self.preact.state_dict() state = {k: v for k, v in x.state_dict().items() if k in self.preact.state_dict() and v.size() == self.preact.state_dict()[k].size()} model_state.update(state) self.preact.load_state_dict(model_state) self.suffle1 = nn.PixelShuffle(2) self.duc1 = DUC(512, 1024, upscale_factor=2, norm_layer=norm_layer) self.duc2 = DUC(256, 512, upscale_factor=2, norm_layer=norm_layer) self.conv_out = nn.Conv2d( self.conv_dim, self._preset_cfg['NUM_JOINTS'], kernel_size=3, stride=1, padding=1) def forward(self, x): out = self.preact(x) out = self.suffle1(out) out = self.duc1(out) out = self.duc2(out) out = self.conv_out(out) return out def _initialize(self): for m in self.conv_out.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) # logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) nn.init.constant_(m.bias, 0)
[ "torch.nn.PixelShuffle", "torch.nn.Conv2d", "torch.nn.init.normal_", "torch.nn.init.constant_" ]
1.1.0
ericwang0701/AlphaPose
1f17dbf4b41ad7452430b69f72d58a0585ed09af
1.1
# ----------------------------------------------------- # Copyright (c) Shanghai Jiao Tong University. All rights reserved. # Written by Jiefeng Li ([email protected]) # ----------------------------------------------------- import os import sys import numpy as np import torch import torch.nn.functional as F from .transforms import get_max_pred_batch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval class DataLogger(object): """Average data logger.""" def __init__(self): self.clear() def clear(self): self.value = 0 self.sum = 0 self.cnt = 0 self.avg = 0 def update(self, value, n=1): self.value = value self.sum += value * n self.cnt += n self._cal_avg() def _cal_avg(self): self.avg = self.sum / self.cnt def calc_iou(pred, target): """Calculate mask iou""" if isinstance(pred, torch.Tensor): pred = pred.cpu().data.numpy() if isinstance(target, torch.Tensor): target = target.cpu().data.numpy() pred = pred >= 0.5 target = target >= 0.5 intersect = (pred == target) * pred * target union = np.maximum(pred, target) if pred.ndim == 2: iou = np.sum(intersect) / np.sum(union) elif pred.ndim == 3 or pred.ndim == 4: n_samples = pred.shape[0] intersect = intersect.reshape(n_samples, -1) union = union.reshape(n_samples, -1) iou = np.mean(np.sum(intersect, axis=1) / np.sum(union, axis=1)) return iou def mask_cross_entropy(pred, target): return F.binary_cross_entropy_with_logits( pred, target, reduction='mean')[None] def evaluate_mAP(res_file, ann_type='bbox', ann_file='person_keypoints_val2017.json', silence=True): """Evaluate mAP result for coco dataset. Parameters ---------- res_file: str Path to result json file. ann_type: str annotation type, including: `bbox`, `segm`, `keypoints`. ann_file: str Path to groundtruth file. silence: bool True: disable running log. """ class NullWriter(object): def write(self, arg): pass ann_file = os.path.join('./data/coco/annotations/', ann_file) if silence: nullwrite = NullWriter() oldstdout = sys.stdout sys.stdout = nullwrite # disable output cocoGt = COCO(ann_file) cocoDt = cocoGt.loadRes(res_file) cocoEval = COCOeval(cocoGt, cocoDt, ann_type) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if silence: sys.stdout = oldstdout # enable output stats_names = ['AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)'] info_str = {} for ind, name in enumerate(stats_names): info_str[name] = cocoEval.stats[ind] return info_str def calc_accuracy(preds, labels): """Calculate heatmap accuracy.""" preds = preds.cpu().data.numpy() labels = labels.cpu().data.numpy() num_joints = preds.shape[1] norm = 1.0 hm_h = preds.shape[2] hm_w = preds.shape[3] preds, _ = get_max_pred_batch(preds) labels, _ = get_max_pred_batch(labels) norm = np.ones((preds.shape[0], 2)) * np.array([hm_w, hm_h]) / 10 dists = calc_dist(preds, labels, norm) acc = 0 sum_acc = 0 cnt = 0 for i in range(num_joints): acc = dist_acc(dists[i]) if acc >= 0: sum_acc += acc cnt += 1 if cnt > 0: return sum_acc / cnt else: return 0 def calc_dist(preds, target, normalize): """Calculate normalized distances""" preds = preds.astype(np.float32) target = target.astype(np.float32) dists = np.zeros((preds.shape[1], preds.shape[0])) for n in range(preds.shape[0]): for c in range(preds.shape[1]): if target[n, c, 0] > 1 and target[n, c, 1] > 1: normed_preds = preds[n, c, :] / normalize[n] normed_targets = target[n, c, :] / normalize[n] dists[c, n] = np.linalg.norm(normed_preds - normed_targets) else: dists[c, n] = -1 return dists def dist_acc(dists, thr=0.5): """Calculate accuracy with given input distance.""" dist_cal = np.not_equal(dists, -1) num_dist_cal = dist_cal.sum() if num_dist_cal > 0: return np.less(dists[dist_cal], thr).sum() * 1.0 / num_dist_cal else: return -1
[ "torch.nn.functional.binary_cross_entropy_with_logits" ]
1.1.0
ericwang0701/AlphaPose
1f17dbf4b41ad7452430b69f72d58a0585ed09af
1.6
# Copyright (c) Facebook, Inc. and its affiliates. import glob import importlib import logging import os import random import sys from datetime import datetime import numpy as np import torch from omegaconf import OmegaConf, open_dict def set_seed(seed): if seed: if seed == -1: # From detectron2 seed = ( os.getpid() + int(datetime.now().strftime("%S%f")) + int.from_bytes(os.urandom(2), "big") ) np.random.seed(seed) torch.manual_seed(seed) random.seed(seed) return seed def import_user_module(user_dir: str): """Given a user dir, this function imports it as a module. This user_module is expected to have an __init__.py at its root. You can use import_files to import your python files easily in __init__.py Args: user_dir (str): directory which has to be imported """ from mmf.common.registry import registry from mmf.utils.general import get_absolute_path # noqa logger = logging.getLogger(__name__) if user_dir: if registry.get("__mmf_user_dir_imported__", no_warning=True): logger.info(f"User dir {user_dir} already imported. Skipping.") return # Allow loading of files as user source if user_dir.endswith(".py"): user_dir = user_dir[:-3] dot_path = ".".join(user_dir.split(os.path.sep)) # In case of abspath which start from "/" the first char # will be "." which turns it into relative module which # find_spec doesn't like if os.path.isabs(user_dir): dot_path = dot_path[1:] try: dot_spec = importlib.util.find_spec(dot_path) except ModuleNotFoundError: dot_spec = None abs_user_dir = get_absolute_path(user_dir) module_parent, module_name = os.path.split(abs_user_dir) # If dot path is found in sys.modules, or path can be directly # be imported, we don't need to play jugglery with actual path if dot_path in sys.modules or dot_spec is not None: module_name = dot_path else: user_dir = abs_user_dir logger.info(f"Importing from {user_dir}") if module_name != dot_path: # Since dot path hasn't been found or can't be imported, # we can try importing the module by changing sys path # to the parent sys.path.insert(0, module_parent) importlib.import_module(module_name) sys.modules["mmf_user_dir"] = sys.modules[module_name] # Register config for user's model and dataset config # relative path resolution config = registry.get("config") if config is None: registry.register( "config", OmegaConf.create({"env": {"user_dir": user_dir}}) ) else: with open_dict(config): config.env.user_dir = user_dir registry.register("__mmf_user_dir_imported__", True) def import_files(file_path: str, module_name: str = None): """The function imports all of the files present in file_path's directory. This is useful for end user in case they want to easily import files without mentioning each of them in their __init__.py. module_name if specified is the full path to module under which all modules will be imported. my_project/ my_models/ my_model.py __init__.py Contents of __init__.py ``` from mmf.utils.env import import_files import_files(__file__, "my_project.my_models") ``` This will then allow you to import `my_project.my_models.my_model` anywhere. Args: file_path (str): Path to file in whose directory everything will be imported module_name (str): Module name if this file under some specified structure """ for file in os.listdir(os.path.dirname(file_path)): if file.endswith(".py") and not file.startswith("_"): import_name = file[: file.find(".py")] if module_name: importlib.import_module(f"{module_name}.{import_name}") else: importlib.import_module(f"{import_name}") def setup_imports(): from mmf.common.registry import registry # First, check if imports are already setup has_already_setup = registry.get("imports_setup", no_warning=True) if has_already_setup: return # Automatically load all of the modules, so that # they register with registry root_folder = registry.get("mmf_root", no_warning=True) if root_folder is None: root_folder = os.path.dirname(os.path.abspath(__file__)) root_folder = os.path.join(root_folder, "..") environment_mmf_path = os.environ.get("MMF_PATH", os.environ.get("PYTHIA_PATH")) if environment_mmf_path is not None: root_folder = environment_mmf_path registry.register("pythia_path", root_folder) registry.register("mmf_path", root_folder) trainer_folder = os.path.join(root_folder, "trainers") trainer_pattern = os.path.join(trainer_folder, "**", "*.py") datasets_folder = os.path.join(root_folder, "datasets") datasets_pattern = os.path.join(datasets_folder, "**", "*.py") model_folder = os.path.join(root_folder, "models") common_folder = os.path.join(root_folder, "common") modules_folder = os.path.join(root_folder, "modules") model_pattern = os.path.join(model_folder, "**", "*.py") common_pattern = os.path.join(common_folder, "**", "*.py") modules_pattern = os.path.join(modules_folder, "**", "*.py") importlib.import_module("mmf.common.meter") files = ( glob.glob(datasets_pattern, recursive=True) + glob.glob(model_pattern, recursive=True) + glob.glob(trainer_pattern, recursive=True) + glob.glob(common_pattern, recursive=True) + glob.glob(modules_pattern, recursive=True) ) for f in files: f = os.path.realpath(f) if f.endswith(".py") and not f.endswith("__init__.py"): splits = f.split(os.sep) import_prefix_index = 0 for idx, split in enumerate(splits): if split == "mmf": import_prefix_index = idx + 1 file_name = splits[-1] module_name = file_name[: file_name.find(".py")] module = ".".join(["mmf"] + splits[import_prefix_index:-1] + [module_name]) importlib.import_module(module) registry.register("imports_setup", True) def setup_torchaudio(): # required for soundfile try: import libfb.py.ctypesmonkeypatch libfb.py.ctypesmonkeypatch.install() except ImportError: pass def teardown_imports(): from mmf.common.registry import registry registry.unregister("pythia_path") registry.unregister("mmf_path") registry.unregister("imports_setup")
[ "torch.manual_seed" ]
1.6.0
dk25021999/mmf
218057265a3fc175f656b5ebe8fb44ef5ccca2e9
1.2
from torch.distributions import Normal import numpy as np from torch import nn from typing import Tuple from tqdm.auto import trange import torch from deepqmc import Molecule from deepqmc.pyscfext import eval_ao_normed, pyscf_from_mol from deepqmc.wf import WaveFunction from deepqmc.wf.paulinet.molorb import MolecularOrbital from deepqmc.wf.paulinet.gto import GTOBasis from deepqmc.physics import pairwise_diffs, local_energy __all__ = ['Pretrainer'] class Pretrainer(nn.Module): r""" Implements the FermiNet wave function Ansatz pretraining based on [pfau2020ab] Provides tools for pretraining the Ansatz. .. math: Usage: wf = FermiNet(mol, n_layers, nf_hidden_single, nf_hidden_pairwise, n_determinants).cuda() pretrainer = Pretrainer(mol).cuda() pretrainer.pretrain(wf) Args: mol (:class:`~deepqmc.Molecule`): molecule whose wave function is represented basis (str): basis for the molecular orbitals """ def __init__(self, mol, basis: str = '6-311g', device: str = 'cuda', dtype: torch.dtype = torch.float32): super(Pretrainer, self).__init__() self.device = device self.dtype = dtype self.atom_positions = [x.cpu().numpy() for x in mol.coords.split(1, dim=0)] self.ne_atoms = [int(i) for i in mol.charges] self.mol = mol self.n_elec = int(mol.charges) self.n_up = (self.n_elec + mol.spin) // 2 self.n_down = (self.n_elec - mol.spin) // 2 self.n_atoms = len(self.mol) self.n_orbitals = max(self.n_up, self.n_down) # if n_orbital is none return max of up or down # cas and workdir set to None self.mf, _ = pyscf_from_mol(mol, basis) def compute_orbital_probability(self, samples: torch.Tensor) -> torch.Tensor: up_dets, down_dets = self.hf_orbitals(samples) spin_ups = up_dets ** 2 spin_downs = down_dets ** 2 p_up = torch.diagonal(spin_ups, dim1=-2, dim2=-1).prod(-1) p_down = torch.diagonal(spin_downs, dim1=-2, dim2=-1).prod(-1) probabilities = p_up * p_down return probabilities.detach() def hf_orbitals(self, samples: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: n_samples = samples.shape[0] # mol = Molecule.from_name('H2O') # mf, _ = pyscf_from_mol(mol, '6-31g') # rs = torch.randn(100, 10, 3).double() # mo = (eval_ao_normed(mf.mol, rs.flatten(end_dim=1).numpy()).reshape(100, 10, -1) @ mf.mo_coeff[:, :5]) # samples = samples.flatten(end_dim=1).cpu().numpy() determinants = (eval_ao_normed(self.mf.mol, samples).reshape(n_samples, self.n_elec, -1) @ self.mf.mo_coeff[:, :self.n_orbitals]) determinants = torch.from_numpy(determinants).to(device=self.device, dtype=self.dtype) up_dets, down_dets = determinants.split([self.n_up, self.n_down], dim=1) up_dets, down_dets = up_dets[:, :, :up_dets.shape[1]], down_dets[:, :, :down_dets.shape[1]] return up_dets, down_dets def pretrain(self, wf: WaveFunction, n_samples: int = 1024, n_steps: int = 1000, lr: float = 1e-4): sampler = MetropolisHastingsPretrain() opt = torch.optim.Adam(list(wf.parameters())[:-1], lr=lr) steps = trange( 0, # init_step = 0 n_steps, initial=0, total=n_steps, desc='pretraining', disable=None, ) samples = initialize_samples(self.ne_atoms, self.atom_positions, n_samples).to(device=self.device, dtype=self.dtype) for step in steps: Es_loc, _, _ = local_energy( samples, wf.sample(False), create_graph=False, keep_graph=False, ) samples = sampler(wf, self, samples) up_dets, down_dets = self.hf_orbitals(samples) up_dets = tile_labels(up_dets, wf.n_determinants) down_dets = tile_labels(down_dets, wf.n_determinants) wf.pretraining = True model_up_dets, model_down_dets = wf(samples) wf.pretraining = False loss = mse_error(up_dets, model_up_dets) loss += mse_error(down_dets, model_down_dets) opt.zero_grad() loss.backward() # in order for hook to work must call backward opt.step() steps.set_postfix(E=f'{Es_loc.mean():.6f}') # print('iteration: ', step, ' energy: ', Es_loc.mean()) def mse_error(targets: torch.Tensor, outputs: torch.Tensor) -> torch.Tensor: return ((targets - outputs)**2).mean(0).sum() def tile_labels(label: torch.Tensor, n_k: int) -> torch.Tensor: x = label.unsqueeze(dim=1).repeat((1, n_k, 1, 1)) return x class RandomWalker(): r""" Creates normal sampler with std of sigma Used to suggest new updates to the positions of the walkers Usage: distr = RandomWalker(sigma.to(device=device, dtype=dtype)) Args: sigma (float): step size of the walkers """ def __init__(self, sigma): self.step_gaussian = Normal(0.0, sigma) def resample(self, prev_sample) -> torch.Tensor: return prev_sample + self.step_gaussian.sample(prev_sample.shape) class Uniform(nn.Module): r""" Creates a uniform sampler between 0 and 1 Used to determine whether moves accepted or rejected Usage: alpha_distr = Uniform(torch.tensor(0.).to(device=device, dtype=dtype), torch.tensor(1.).to(device=device, dtype=dtype)) """ def __init__(self, low=0, high=1): super(Uniform, self).__init__() self.low = torch.tensor(low) if type(low) != torch.Tensor else low self.high = torch.tensor(high) if type(high) != torch.Tensor else high def forward(self, batch_size: int = 1): return self.low + torch.rand(batch_size, device=self.low.device) * (self.high - self.low) def sample(self, batch_size: int = 1): return self(batch_size) class ToProb(nn.Module): def forward(self, amps: torch.Tensor) -> torch.Tensor: return torch.exp(amps) ** 2 def initialize_samples(ne_atoms, atom_positions, n_samples): r""" Initialises samples for pretraining Usage: samples = initialize_samples(ne_atoms, atom_positions, n_samples).to(device=self.device, dtype=self.dtype) Args: ne_atoms (list int): number of electrons assigned to each nucleus atom_positions (list np.array): positions of the nuclei n_samples (int): number of walkers Returns: samples (np.array): walker positions (n_samples, n_elec, 3) """ ups = [] downs = [] for ne_atom, atom_position in zip(ne_atoms, atom_positions): for e in range(ne_atom): if e % 2 == 0: # fill up the orbitals alternating up down curr_sample_up = np.random.normal(loc=atom_position, scale=1., size=(n_samples, 1, 3)) ups.append(curr_sample_up) else: curr_sample_down = np.random.normal(loc=atom_position, scale=1., size=(n_samples, 1, 3)) downs.append(curr_sample_down) ups = np.concatenate(ups, axis=1) downs = np.concatenate(downs, axis=1) curr_sample = np.concatenate([ups, downs], axis=1) # stack the ups first to be consistent with model return torch.from_numpy(curr_sample) class MetropolisHastingsPretrain(nn.Module): r""" Implements MetropolisHastings sampling based on [pfau2020ab] Samples congigurations based on the amplitudes of both the Hartree Fock orbitals and the wave function Ansatz .. math: Usage: sampler = MetropolisHastingsPretrain() Args: sigma (float): step size for the walkers (std of the proposed moves) correlation_length (int): number of steps between sampling each update of the walker positions target_acceptance (float): the target acceptance of the steps Returns: curr_sample (torch.Tensor): walker configurations (n_samples, n_elec, 3) """ def __init__(self, sigma: float = 0.02, correlation_length: int = 10, target_acceptance: float = 0.5, device: str = 'cuda', dtype: torch.dtype = torch.float32): super(MetropolisHastingsPretrain, self).__init__() self.device = device self.dtype = dtype self.sigma = sigma self.correlation_length = correlation_length self.distr = RandomWalker(sigma) self.alpha_distr = Uniform(torch.tensor(0.).to(device=device, dtype=dtype), torch.tensor(1.).to(device=device, dtype=dtype)) self.to_prob = ToProb() self.acceptance = 0.0 self.target_acceptance = target_acceptance print('initialized pretraining sampler') def forward(self, model, pretrainer, curr_sample): n_samples = curr_sample.shape[0] # --- split the walkers and sample half from the hf_orbitals and half from the wave function sams = curr_sample.split([n_samples // 2, n_samples // 2]) curr_sample_model, curr_sample_hf = sams[0].squeeze(), sams[1].squeeze() shape = curr_sample_model.shape curr_log_amp = model(curr_sample_model)[0] curr_prob_model = self.to_prob(curr_log_amp) curr_prob_hf = pretrainer.compute_orbital_probability(curr_sample_hf) acceptance_total_mod = 0. acceptance_total_hf = 0. for _ in range(self.correlation_length): # --- next sample new_sample_model = curr_sample_model + torch.normal(0.0, self.sigma, size=shape, device=self.device, dtype=self.dtype) new_log_amp = model(new_sample_model)[0] new_prob_model = self.to_prob(new_log_amp) new_sample_hf = curr_sample_hf + torch.normal(0.0, self.sigma, size=shape, device=self.device) new_prob_hf = pretrainer.compute_orbital_probability(new_sample_hf).to(self.device) # --- update sample alpha_model = new_prob_model / curr_prob_model alpha_hf = new_prob_hf / curr_prob_hf # --- generate masks mask_model = alpha_model > torch.rand(shape[0], device=self.device, dtype=self.dtype) mask_hf = alpha_hf > torch.rand(shape[0], device=self.device, dtype=self.dtype) curr_sample_model = torch.where(mask_model.unsqueeze(-1).unsqueeze(-1), new_sample_model, curr_sample_model) curr_prob_model = torch.where(mask_model, new_prob_model, curr_prob_model) curr_sample_hf = torch.where(mask_hf.unsqueeze(-1).unsqueeze(-1), new_sample_hf, curr_sample_hf) curr_prob_hf = torch.where(mask_hf, new_prob_hf, curr_prob_hf) acceptance_total_mod += mask_model.type(self.dtype).mean() acceptance_total_hf += mask_hf.type(self.dtype).mean() curr_sample = torch.cat([curr_sample_model, curr_sample_hf], dim=0) # --- randomly permute so some walkers in the next run sample from different distribution than in this run idxs = torch.randperm(len(curr_sample)) curr_sample = curr_sample[idxs] return curr_sample def adjust_sampling_steps(self, acceptance): if acceptance < 0.5: self.sigma += 0.001 else: self.sigma -= 0.001 """ Below is a depreciated version of the pretrainer which works the same """ class Pretrainer_dep(nn.Module): r""" Implements the FermiNet wave function Ansatz pretraining based on [pfau2020ab] Provides tools for pretraining the Ansatz. .. math: Usage: wf = FermiNet(mol, n_layers, nf_hidden_single, nf_hidden_pairwise, n_determinants).cuda() pretrainer = Pretrainer(mol).cuda() pretrainer.pretrain(wf) Args: mol (:class:`~deepqmc.Molecule`): molecule whose wave function is represented basis (str): basis for the molecular orbitals """ def __init__(self, mol, basis: str = '6-311g', device: str = 'cuda', dtype: torch.dtype = torch.float32): super(Pretrainer_dep, self).__init__() self.device = device self.dtype = dtype self.atom_positions = [x.cpu().numpy() for x in mol.coords.split(1, dim=0)] self.ne_atoms = [int(i) for i in mol.charges] self.mol = mol self.n_elec = int(mol.charges) self.n_up = (self.n_elec + mol.spin) // 2 self.n_down = (self.n_elec - mol.spin) // 2 self.n_atoms = len(self.mol) self.n_orbitals = max(self.n_up, self.n_down) # if n_orbital is none return max of up or down # cas and workdir set to None mf, mc = pyscf_from_mol(mol, basis, None, None) basis = GTOBasis.from_pyscf(mf.mol) # basis from molecule from name mol = Molecule( mf.mol.atom_coords(), mf.mol.atom_charges(), mf.mol.charge, mf.mol.spin, ) self.mo = MolecularOrbital( # create the molecular orbital mol, basis, self.n_orbitals, cusp_correction=False) self.mo.init_from_pyscf(mf, freeze_mos=True) self.coords = mol.coords.unsqueeze(0).to(device=device, dtype=dtype) def compute_orbital_probability(self, samples: torch.Tensor) -> torch.Tensor: up_dets, down_dets = self.hf_orbitals(samples) spin_ups = up_dets ** 2 spin_downs = down_dets ** 2 p_up = torch.diagonal(spin_ups, dim1=-2, dim2=-1).prod(-1) p_down = torch.diagonal(spin_downs, dim1=-2, dim2=-1).prod(-1) probabilities = p_up * p_down return probabilities.detach() def hf_orbitals(self, samples: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: samples_hf = samples.view(-1, 1, 3).repeat(1, self.n_atoms, 1) diffs_nuc = pairwise_diffs(torch.cat([self.coords, samples_hf]), self.coords).squeeze(1) determinants = self.mo(diffs_nuc).unsqueeze(1).view(-1, self.n_elec, self.n_orbitals) up_dets, down_dets = determinants.split([self.n_up, self.n_down], dim=1) up_dets, down_dets = up_dets[:, :, :up_dets.shape[1]], down_dets[:, :, :down_dets.shape[1]] return up_dets, down_dets def pretrain(self, wf: WaveFunction, n_samples: int = 1024, n_steps: int = 1000): sampler = MetropolisHastingsPretrain() opt = torch.optim.Adam(list(wf.parameters())[:-3], lr=0.0001) steps = trange( 0, # init_step = 0 n_steps, initial=0, total=n_steps, desc='pretraining', disable=None, ) samples = initialize_samples(self.ne_atoms, self.atom_positions, n_samples).to(device=self.device, dtype=self.dtype) for step in steps: Es_loc, _, _ = local_energy( samples, wf.sample(False), create_graph=False, keep_graph=False, ) samples = sampler(wf, self, samples) up_dets, down_dets = self.hf_orbitals(samples) up_dets = tile_labels(up_dets, wf.n_determinants) down_dets = tile_labels(down_dets, wf.n_determinants) wf.pretraining = True model_up_dets, model_down_dets = wf(samples) wf.pretraining = False loss = mse_error(up_dets, model_up_dets) loss += mse_error(down_dets, model_down_dets) wf.zero_grad() loss.backward() # in order for hook to work must call backward opt.step() print('iteration: ', step, ' energy: ', Es_loc.mean())
[ "torch.rand", "torch.cat", "torch.diagonal", "torch.distributions.Normal", "torch.normal", "torch.from_numpy", "torch.tensor", "torch.exp", "torch.where" ]
1.2
maxiwelian/deepqmc
0d243e2c5f5964a79929294e62e46819653b137b
0.4
from dataset import get_dataloader from common import config from model import get_autoencoder from functional.utils import cycle from agent import get_training_agent from functional.visualization import visulize_motion_in_training import torch import os from collections import OrderedDict from tqdm import tqdm from tensorboardX import SummaryWriter import argparse torch.backends.cudnn.benchmark = True def main(): parser = argparse.ArgumentParser() parser.add_argument('-n', '--name', type=str, choices=['skeleton', 'view', 'full'], required=True, help='which structure to use') # parser.add_argument('-c', '--continue', dest='continue_path', type=str, required=False) parser.add_argument('-g', '--gpu_ids', type=int, default=0, required=False, help="specify gpu ids") parser.add_argument('--disable_triplet', action='store_true', default=False, help="disable triplet loss") parser.add_argument('--use_footvel_loss', action='store_true', default=False, help="use use footvel loss") parser.add_argument('--vis', action='store_true', default=False, help="visualize output in training") args = parser.parse_args() config.initialize(args) net = get_autoencoder(config) print(net) net = net.to(config.device) # create tensorboard writer train_tb = SummaryWriter(os.path.join(config.log_dir, 'train.events')) val_tb = SummaryWriter(os.path.join(config.log_dir, 'val.events')) # create dataloader train_loader = get_dataloader('train', config, config.batch_size, config.num_workers) mean_pose, std_pose = train_loader.dataset.mean_pose, train_loader.dataset.std_pose val_loader = get_dataloader('test', config, config.batch_size, config.num_workers) val_loader = cycle(val_loader) # create training agent tr_agent = get_training_agent(config, net) clock = tr_agent.clock # start training for e in range(config.nr_epochs): # begin iteration pbar = tqdm(train_loader) for b, data in enumerate(pbar): # train step outputs, losses = tr_agent.train_func(data) losses_values = {k:v.item() for k, v in losses.items()} # record loss to tensorboard for k, v in losses_values.items(): train_tb.add_scalar(k, v, clock.step) # visualize if args.vis and clock.step % config.visualize_frequency == 0: imgs = visulize_motion_in_training(outputs, mean_pose, std_pose) for k, img in imgs.items(): train_tb.add_image(k, torch.from_numpy(img), clock.step) pbar.set_description("EPOCH[{}][{}/{}]".format(e, b, len(train_loader))) pbar.set_postfix(OrderedDict({"loss": sum(losses_values.values())})) # validation step if clock.step % config.val_frequency == 0: data = next(val_loader) outputs, losses = tr_agent.val_func(data) losses_values = {k: v.item() for k, v in losses.items()} for k, v in losses_values.items(): val_tb.add_scalar(k, v, clock.step) if args.vis and clock.step % config.visualize_frequency == 0: imgs = visulize_motion_in_training(outputs, mean_pose, std_pose) for k, img in imgs.items(): val_tb.add_image(k, torch.from_numpy(img), clock.step) clock.tick() train_tb.add_scalar('learning_rate', tr_agent.optimizer.param_groups[-1]['lr'], clock.epoch) tr_agent.update_learning_rate() if clock.epoch % config.save_frequency == 0: tr_agent.save_network() tr_agent.save_network('latest.pth.tar') clock.tock() if __name__ == '__main__': main()
[ "torch.from_numpy" ]
0.4.1
diegcr/2D-Motion-Retargeting
2b4acedb45a281d2867c812fce6063dc68b8e88b
1.8
import torch from .base_model import BaseModel class Classifier(BaseModel): def __init__(self, model, **kwargs): super(Classifier, self).__init__(**kwargs) self.model = model self.model_name = self.model.name if self.optimizer is not None: self.optimizer = self.optimizer(self.parameters(), lr= self.lr) self.set_optimizer_params() if self.freeze: for params in self.model.parameters(): params.requires_grad = False if self.device: self.model.to(self.device) def forward(self, x): return self.model(x) def training_step(self, batch): outputs = self.model(batch, self.device) targets = batch['targets'].to(self.device) loss = self.criterion(outputs, targets) loss_dict = {'T': loss.item()} return loss, loss_dict def inference_step(self, batch, return_probs=False): outputs = self.model(batch, self.device) preds = torch.argmax(outputs, dim=1) preds = preds.detach() if return_probs: probs = torch.nn.functional.softmax(outputs, dim=1) probs, _ = torch.max(probs, dim=1) return preds.cpu().numpy(), probs.cpu().numpy() else: return preds.numpy() def evaluate_step(self, batch): outputs = self.model(batch, self.device) targets = batch['targets'].to(self.device) loss = self.criterion(outputs, targets) loss_dict = {'T': loss.item()} self.update_metrics(outputs = outputs, targets = targets) return loss, loss_dict
[ "torch.max", "torch.argmax", "torch.nn.functional.softmax" ]
1.8.1
elviva404/food-detection-yolov5
796a0c1df6e9c9a705dff7782b3f9b213344f11b
1.10
import argparse import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import torch import torch.nn as nn from models.rnn import IDP_test_rnn from models.transformer import IDP_compare_Transformer from idp_methods.utils import * parser = argparse.ArgumentParser() parser.add_argument('-b', '--batch_size', type=int, default=4, help='batch size for training') parser.add_argument('--dataset', type=str, default="d723", help='dataset name') parser.add_argument('--epochs', type=int, default=50, help='total number of epochs') parser.add_argument('--test-predictor', type=str, default='seg', choices=['prediction-disorder-iupl', 'prediction-disorder-iups', 'prediction-disorder-espN', 'prediction-disorder-espX', 'prediction-disorder-espD', 'prediction-disorder-glo', 'cast', 'seg']) args = parser.parse_args() SEED = 42 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(SEED) torch.cuda.manual_seed(SEED) dataset = args.dataset if dataset == 'd723': train_dataset = np.load('./results/mobidb/d723_train2.npy', allow_pickle=True).item() val_dataset = np.load('./results/mobidb/d723_test2.npy', allow_pickle=True).item() print(val_dataset['0'].keys()) predictors = ['prediction-disorder-iupl', 'prediction-disorder-iups', 'prediction-disorder-espN', 'prediction-disorder-espX', 'prediction-disorder-espD', 'prediction-disorder-glo', 'cast', 'seg'] elif dataset == 'mxd494': train_dataset = np.load('./results/mobidb/mxd494_train_pred3.npy', allow_pickle=True).item() val_dataset = np.load('./results/mobidb/mxd494_val_pred3.npy', allow_pickle=True).item() print(val_dataset['0'].keys()) predictors = ['prediction-disorder-iupl', 'prediction-disorder-iups', 'prediction-disorder-espN', 'prediction-disorder-espX', 'prediction-disorder-espD', 'prediction-disorder-glo', 'cast', 'seg','fldpnn'] test_predictor = args.test_predictor predictors.remove(test_predictor) train_predictors = predictors assert len(train_predictors) == len(predictors) def next_number(x, N=20): if x % 20: return x + (N - x % N) else: return 0 m = IDP_test_rnn(input_channels=len(train_predictors)) m =IDP_compare_Transformer(input_channels=len(train_predictors)) train_X = [] trainY = [] for sample in train_dataset: # print(train_dataset[sample].keys()) sample_data = torch.tensor([]) for preds_ in train_predictors: data = torch.from_numpy(train_dataset[sample][preds_]).unsqueeze(0).float() sample_data = torch.cat([sample_data, data]) train_X.append(sample_data.transpose(0, 1).float()) trainY.append(torch.from_numpy(train_dataset[sample][test_predictor]).unsqueeze(0).transpose(0, 1).float()) # print(torch.from_numpy(train_dataset[sample][test_predictor]).unsqueeze(0).shape,sample_data.shape) val_X = [] valY = [] for sample in val_dataset: # print(train_dataset[sample].keys()) sample_data = torch.tensor([]) for preds_ in train_predictors: data = torch.from_numpy(train_dataset[sample][preds_]).unsqueeze(0).float() sample_data = torch.cat([sample_data, data]) val_X.append(sample_data.transpose(0, 1).float()) valY.append(torch.from_numpy(train_dataset[sample][test_predictor]).unsqueeze(0).transpose(0, 1).float()) EPOCHS = 50 optimizer = torch.optim.Adam(m.parameters(), lr=0.5e-3) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") m = m.to(device) loss = nn.CrossEntropyLoss() for i in range(EPOCHS): train_loss = 0.0 val_loss = 0.0 yhat = [] y = [] for batchidx in range(len(train_X)): sample = train_X[batchidx].to(device) out = m(sample.unsqueeze(0)).squeeze(0) target = trainY[batchidx].squeeze(-1).to(device) # print(target.shape,out.shape) loss_sclar = loss(out, target.long()) loss_sclar.backward() optimizer.step() optimizer.zero_grad() train_loss += loss_sclar.item() output = torch.softmax(out, dim=-1) # .squeeze() # print(output.shape) _, output = torch.max(output, 1) # print(output.shape) y += target.squeeze().detach().cpu().numpy().tolist() yhat += output.tolist() #print(f'EPOCH {i} Train Loss {train_loss / (batchidx + 1):.4f}') metrics_, _ = dataset_metrics(yhat, y) print(f'EPOCH {i} Train Loss {train_loss / (batchidx + 1):.4f}') print(f'EPOCH TRAIN METRICS{i}\n{metrics_}') train_loss = 0.0 val_loss = 0.0 yhat = [] y = [] for batchidx in range(len(val_X)): sample = val_X[batchidx].to(device) out = m(sample.unsqueeze(0)).squeeze(0) target = valY[batchidx].squeeze(-1).to(device) # print(target.shape,out.shape) loss_sclar = loss(out, target.long()) loss_sclar.backward() optimizer.step() optimizer.zero_grad() val_loss += loss_sclar.item() output = torch.softmax(out, dim=-1) # .squeeze() # print(output.shape) _, output = torch.max(output, 1) # print(output.shape) y += target.squeeze().detach().cpu().numpy().tolist() yhat += output.tolist() metrics_, _ = dataset_metrics(yhat, y) print(f'EPOCH {i} Val Loss {val_loss / (batchidx + 1):.4f}') print(f'EPOCH VALIDATION METRICS {i}\n{metrics_}') # print(out.shape,sample.shape)
[ "torch.device", "torch.cat", "torch.cuda.manual_seed", "torch.max", "torch.softmax", "torch.from_numpy", "torch.manual_seed", "torch.cuda.is_available", "torch.tensor", "torch.nn.CrossEntropyLoss" ]
1.10.0
iliasprc/IDPMetagenome
519cec77bb55eb91dbb7b243a2d80999742c033d
1.6
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-Task GP models. References .. [Doucet2010sampl] A. Doucet. A Note on Efficient Conditional Simulation of Gaussian Distributions. http://www.stats.ox.ac.uk/~doucet/doucet_simulationconditionalgaussian.pdf, Apr 2010. .. [Maddox2021bohdo] W. Maddox, M. Balandat, A. Wilson, and E. Bakshy. Bayesian Optimization with High-Dimensional Outputs. https://arxiv.org/abs/2106.12997, Jun 2021. """ from __future__ import annotations import math from typing import Any, Dict, List, Optional, Tuple, Union import torch from botorch.acquisition.objective import PosteriorTransform from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL from botorch.models.gpytorch import GPyTorchModel, MultiTaskGPyTorchModel from botorch.models.transforms.input import InputTransform from botorch.models.transforms.outcome import OutcomeTransform from botorch.posteriors.multitask import MultitaskGPPosterior from botorch.utils.containers import TrainingData from gpytorch.constraints import GreaterThan from gpytorch.distributions.multitask_multivariate_normal import ( MultitaskMultivariateNormal, ) from gpytorch.distributions.multivariate_normal import MultivariateNormal from gpytorch.kernels.index_kernel import IndexKernel from gpytorch.kernels.matern_kernel import MaternKernel from gpytorch.kernels.multitask_kernel import MultitaskKernel from gpytorch.kernels.scale_kernel import ScaleKernel from gpytorch.lazy import ( BatchRepeatLazyTensor, CatLazyTensor, DiagLazyTensor, KroneckerProductDiagLazyTensor, KroneckerProductLazyTensor, lazify, RootLazyTensor, ) from gpytorch.likelihoods.gaussian_likelihood import ( FixedNoiseGaussianLikelihood, GaussianLikelihood, ) from gpytorch.likelihoods.multitask_gaussian_likelihood import ( MultitaskGaussianLikelihood, ) from gpytorch.means import MultitaskMean from gpytorch.means.constant_mean import ConstantMean from gpytorch.models.exact_gp import ExactGP from gpytorch.module import Module from gpytorch.priors.lkj_prior import LKJCovariancePrior from gpytorch.priors.prior import Prior from gpytorch.priors.smoothed_box_prior import SmoothedBoxPrior from gpytorch.priors.torch_priors import GammaPrior from gpytorch.settings import detach_test_caches from gpytorch.utils.errors import CachingError from gpytorch.utils.memoize import cached, pop_from_cache from torch import Tensor class MultiTaskGP(ExactGP, MultiTaskGPyTorchModel): r"""Multi-Task GP model using an ICM kernel, inferring observation noise. Multi-task exact GP that uses a simple ICM kernel. Can be single-output or multi-output. This model uses relatively strong priors on the base Kernel hyperparameters, which work best when covariates are normalized to the unit cube and outcomes are standardized (zero mean, unit variance). This model infers the noise level. WARNING: It currently does not support different noise levels for the different tasks. If you have known observation noise, please use `FixedNoiseMultiTaskGP` instead. """ def __init__( self, train_X: Tensor, train_Y: Tensor, task_feature: int, covar_module: Optional[Module] = None, task_covar_prior: Optional[Prior] = None, output_tasks: Optional[List[int]] = None, rank: Optional[int] = None, input_transform: Optional[InputTransform] = None, outcome_transform: Optional[OutcomeTransform] = None, ) -> None: r"""Multi-Task GP model using an ICM kernel, inferring observation noise. Args: train_X: A `n x (d + 1)` or `b x n x (d + 1)` (batch mode) tensor of training data. One of the columns should contain the task features (see `task_feature` argument). train_Y: A `n x 1` or `b x n x 1` (batch mode) tensor of training observations. task_feature: The index of the task feature (`-d <= task_feature <= d`). output_tasks: A list of task indices for which to compute model outputs for. If omitted, return outputs for all task indices. rank: The rank to be used for the index kernel. If omitted, use a full rank (i.e. number of tasks) kernel. task_covar_prior : A Prior on the task covariance matrix. Must operate on p.s.d. matrices. A common prior for this is the `LKJ` prior. input_transform: An input transform that is applied in the model's forward pass. Example: >>> X1, X2 = torch.rand(10, 2), torch.rand(20, 2) >>> i1, i2 = torch.zeros(10, 1), torch.ones(20, 1) >>> train_X = torch.cat([ >>> torch.cat([X1, i1], -1), torch.cat([X2, i2], -1), >>> ]) >>> train_Y = torch.cat(f1(X1), f2(X2)).unsqueeze(-1) >>> model = MultiTaskGP(train_X, train_Y, task_feature=-1) """ with torch.no_grad(): transformed_X = self.transform_inputs( X=train_X, input_transform=input_transform ) self._validate_tensor_args(X=transformed_X, Y=train_Y) all_tasks, task_feature, d = self.get_all_tasks( transformed_X, task_feature, output_tasks ) if outcome_transform is not None: train_Y, _ = outcome_transform(train_Y) # squeeze output dim train_Y = train_Y.squeeze(-1) if output_tasks is None: output_tasks = all_tasks else: if set(output_tasks) - set(all_tasks): raise RuntimeError("All output tasks must be present in input data.") self._output_tasks = output_tasks self._num_outputs = len(output_tasks) # TODO (T41270962): Support task-specific noise levels in likelihood likelihood = GaussianLikelihood(noise_prior=GammaPrior(1.1, 0.05)) # construct indexer to be used in forward self._task_feature = task_feature self._base_idxr = torch.arange(d) self._base_idxr[task_feature:] += 1 # exclude task feature super().__init__( train_inputs=train_X, train_targets=train_Y, likelihood=likelihood ) self.mean_module = ConstantMean() if covar_module is None: self.covar_module = ScaleKernel( base_kernel=MaternKernel( nu=2.5, ard_num_dims=d, lengthscale_prior=GammaPrior(3.0, 6.0) ), outputscale_prior=GammaPrior(2.0, 0.15), ) else: self.covar_module = covar_module num_tasks = len(all_tasks) self._rank = rank if rank is not None else num_tasks self.task_covar_module = IndexKernel( num_tasks=num_tasks, rank=self._rank, prior=task_covar_prior ) if input_transform is not None: self.input_transform = input_transform if outcome_transform is not None: self.outcome_transform = outcome_transform self.to(train_X) def _split_inputs(self, x: Tensor) -> Tuple[Tensor, Tensor]: r"""Extracts base features and task indices from input data. Args: x: The full input tensor with trailing dimension of size `d + 1`. Should be of float/double data type. Returns: 2-element tuple containing - A `q x d` or `b x q x d` (batch mode) tensor with trailing dimension made up of the `d` non-task-index columns of `x`, arranged in the order as specified by the indexer generated during model instantiation. - A `q` or `b x q` (batch mode) tensor of long data type containing the task indices. """ batch_shape, d = x.shape[:-2], x.shape[-1] x_basic = x[..., self._base_idxr].view(batch_shape + torch.Size([-1, d - 1])) task_idcs = ( x[..., self._task_feature] .view(batch_shape + torch.Size([-1, 1])) .to(dtype=torch.long) ) return x_basic, task_idcs def forward(self, x: Tensor) -> MultivariateNormal: if self.training: x = self.transform_inputs(x) x_basic, task_idcs = self._split_inputs(x) # Compute base mean and covariance mean_x = self.mean_module(x_basic) covar_x = self.covar_module(x_basic) # Compute task covariances covar_i = self.task_covar_module(task_idcs) # Combine the two in an ICM fashion covar = covar_x.mul(covar_i) return MultivariateNormal(mean_x, covar) @classmethod def get_all_tasks( cls, train_X: Tensor, task_feature: int, output_tasks: Optional[List[int]] = None, ) -> Tuple[List[int], int, int]: if train_X.ndim != 2: # Currently, batch mode MTGPs are blocked upstream in GPyTorch raise ValueError(f"Unsupported shape {train_X.shape} for train_X.") d = train_X.shape[-1] - 1 if not (-d <= task_feature <= d): raise ValueError(f"Must have that -{d} <= task_feature <= {d}") task_feature = task_feature % (d + 1) all_tasks = train_X[:, task_feature].unique().to(dtype=torch.long).tolist() return all_tasks, task_feature, d @classmethod def construct_inputs(cls, training_data: TrainingData, **kwargs) -> Dict[str, Any]: r"""Construct kwargs for the `Model` from `TrainingData` and other options. Args: training_data: `TrainingData` container with data for single outcome or for multiple outcomes for batched multi-output case. **kwargs: Additional options for the model that pertain to the training data, including: - `task_features`: Indices of the input columns containing the task features (expected list of length 1), - `task_covar_prior`: A GPyTorch `Prior` object to use as prior on the cross-task covariance matrix, - `prior_config`: A dict representing a prior config, should only be used if `prior` is not passed directly. Should contain: `use_LKJ_prior` (whether to use LKJ prior) and `eta` (eta value, float), - `rank`: The rank of the cross-task covariance matrix. """ task_features = kwargs.pop("task_features", None) if task_features is None: raise ValueError(f"`task_features` required for {cls.__name__}.") task_feature = task_features[0] inputs = { "train_X": training_data.X, "train_Y": training_data.Y, "task_feature": task_feature, "rank": kwargs.get("rank"), } prior = kwargs.get("task_covar_prior") prior_config = kwargs.get("prior_config") if prior and prior_config: raise ValueError( "Only one of `prior` and `prior_config` arguments expected." ) if prior_config: if not prior_config.get("use_LKJ_prior"): raise ValueError("Currently only config for LKJ prior is supported.") all_tasks, _, _ = MultiTaskGP.get_all_tasks(training_data.X, task_feature) num_tasks = len(all_tasks) sd_prior = GammaPrior(1.0, 0.15) sd_prior._event_shape = torch.Size([num_tasks]) eta = prior_config.get("eta", 0.5) if not isinstance(eta, float) and not isinstance(eta, int): raise ValueError(f"eta must be a real number, your eta was {eta}.") prior = LKJCovariancePrior(num_tasks, eta, sd_prior) inputs["task_covar_prior"] = prior return inputs class FixedNoiseMultiTaskGP(MultiTaskGP): r"""Multi-Task GP model using an ICM kernel, with known observation noise. Multi-task exact GP that uses a simple ICM kernel. Can be single-output or multi-output. This model uses relatively strong priors on the base Kernel hyperparameters, which work best when covariates are normalized to the unit cube and outcomes are standardized (zero mean, unit variance). This model requires observation noise data (specified in `train_Yvar`). """ def __init__( self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor, task_feature: int, covar_module: Optional[Module] = None, task_covar_prior: Optional[Prior] = None, output_tasks: Optional[List[int]] = None, rank: Optional[int] = None, input_transform: Optional[InputTransform] = None, ) -> None: r"""Multi-Task GP model using an ICM kernel and known observation noise. Args: train_X: A `n x (d + 1)` or `b x n x (d + 1)` (batch mode) tensor of training data. One of the columns should contain the task features (see `task_feature` argument). train_Y: A `n x 1` or `b x n x 1` (batch mode) tensor of training observations. train_Yvar: A `n` or `b x n` (batch mode) tensor of observation noise standard errors. task_feature: The index of the task feature (`-d <= task_feature <= d`). task_covar_prior : A Prior on the task covariance matrix. Must operate on p.s.d. matrices. A common prior for this is the `LKJ` prior. output_tasks: A list of task indices for which to compute model outputs for. If omitted, return outputs for all task indices. rank: The rank to be used for the index kernel. If omitted, use a full rank (i.e. number of tasks) kernel. input_transform: An input transform that is applied in the model's forward pass. Example: >>> X1, X2 = torch.rand(10, 2), torch.rand(20, 2) >>> i1, i2 = torch.zeros(10, 1), torch.ones(20, 1) >>> train_X = torch.cat([ >>> torch.cat([X1, i1], -1), torch.cat([X2, i2], -1), >>> ], dim=0) >>> train_Y = torch.cat(f1(X1), f2(X2)) >>> train_Yvar = 0.1 + 0.1 * torch.rand_like(train_Y) >>> model = FixedNoiseMultiTaskGP(train_X, train_Y, train_Yvar, -1) """ with torch.no_grad(): transformed_X = self.transform_inputs( X=train_X, input_transform=input_transform ) self._validate_tensor_args(X=transformed_X, Y=train_Y, Yvar=train_Yvar) # We'll instatiate a MultiTaskGP and simply override the likelihood super().__init__( train_X=train_X, train_Y=train_Y, covar_module=covar_module, task_feature=task_feature, output_tasks=output_tasks, rank=rank, task_covar_prior=task_covar_prior, input_transform=input_transform, ) self.likelihood = FixedNoiseGaussianLikelihood(noise=train_Yvar.squeeze(-1)) self.to(train_X) @classmethod def construct_inputs(cls, training_data: TrainingData, **kwargs) -> Dict[str, Any]: r"""Construct kwargs for the `Model` from `TrainingData` and other options. Args: training_data: `TrainingData` container with data for single outcome or for multiple outcomes for batched multi-output case. **kwargs: Additional options for the model that pertain to the training data, including: - `task_features`: Indices of the input columns containing the task features (expected list of length 1), - `task_covar_prior`: A GPyTorch `Prior` object to use as prior on the cross-task covariance matrix, - `prior_config`: A dict representing a prior config, should only be used if `prior` is not passed directly. Should contain: use_LKJ_prior` (whether to use LKJ prior) and `eta` (eta value, float), - `rank`: The rank of the cross-task covariance matrix. """ if training_data.Yvar is None: raise ValueError(f"Yvar required for {cls.__name__}.") inputs = super().construct_inputs(training_data=training_data, **kwargs) inputs["train_Yvar"] = training_data.Yvar return inputs class KroneckerMultiTaskGP(ExactGP, GPyTorchModel): """Multi-task GP with Kronecker structure, using an ICM kernel. This model assumes the "block design" case, i.e., it requires that all tasks are observed at all data points. For posterior sampling, this model uses Matheron's rule [Doucet2010sampl] to compute the posterior over all tasks as in [Maddox2021bohdo] by exploiting Kronecker structure. """ def __init__( self, train_X: Tensor, train_Y: Tensor, likelihood: Optional[MultitaskGaussianLikelihood] = None, data_covar_module: Optional[Module] = None, task_covar_prior: Optional[Prior] = None, rank: Optional[int] = None, input_transform: Optional[InputTransform] = None, outcome_transform: Optional[OutcomeTransform] = None, **kwargs: Any, ) -> None: r"""Multi-task GP with Kronecker structure, using a simple ICM kernel. Args: train_X: A `batch_shape x n x d` tensor of training features. train_Y: A `batch_shape x n x m` tensor of training observations. likelihood: A `MultitaskGaussianLikelihood`. If omitted, uses a `MultitaskGaussianLikelihood` with a `GammaPrior(1.1, 0.05)` noise prior. data_covar_module: The module computing the covariance (Kernel) matrix in data space. If omitted, use a `MaternKernel`. task_covar_prior : A Prior on the task covariance matrix. Must operate on p.s.d. matrices. A common prior for this is the `LKJ` prior. If omitted, uses `LKJCovariancePrior` with `eta` parameter as specified in the keyword arguments (if not specified, use `eta=1.5`). rank: The rank of the ICM kernel. If omitted, use a full rank kernel. kwargs: Additional arguments to override default settings of priors, including: - eta: The eta parameter on the default LKJ task_covar_prior. A value of 1.0 is uninformative, values <1.0 favor stronger correlations (in magnitude), correlations vanish as eta -> inf. - sd_prior: A scalar prior over nonnegative numbers, which is used for the default LKJCovariancePrior task_covar_prior. - likelihood_rank: The rank of the task covariance matrix to fit. Defaults to 0 (which corresponds to a diagonal covariance matrix). Example: >>> train_X = torch.rand(10, 2) >>> train_Y = torch.cat([f_1(X), f_2(X)], dim=-1) >>> model = KroneckerMultiTaskGP(train_X, train_Y) """ with torch.no_grad(): transformed_X = self.transform_inputs( X=train_X, input_transform=input_transform ) if outcome_transform is not None: train_Y, _ = outcome_transform(train_Y) self._validate_tensor_args(X=transformed_X, Y=train_Y) self._num_outputs = train_Y.shape[-1] batch_shape, ard_num_dims = train_X.shape[:-2], train_X.shape[-1] num_tasks = train_Y.shape[-1] if rank is None: rank = num_tasks if likelihood is None: noise_prior = GammaPrior(1.1, 0.05) noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate likelihood = MultitaskGaussianLikelihood( num_tasks=num_tasks, batch_shape=batch_shape, noise_prior=noise_prior, noise_constraint=GreaterThan( MIN_INFERRED_NOISE_LEVEL, transform=None, initial_value=noise_prior_mode, ), rank=kwargs.get("likelihood_rank", 0), ) if task_covar_prior is None: task_covar_prior = LKJCovariancePrior( n=num_tasks, eta=kwargs.get("eta", 1.5), sd_prior=kwargs.get( "sd_prior", SmoothedBoxPrior(math.exp(-6), math.exp(1.25), 0.05), ), ) super().__init__(train_X, train_Y, likelihood) self.mean_module = MultitaskMean( base_means=ConstantMean(batch_shape=batch_shape), num_tasks=num_tasks ) if data_covar_module is None: data_covar_module = MaternKernel( nu=2.5, ard_num_dims=ard_num_dims, lengthscale_prior=GammaPrior(3.0, 6.0), batch_shape=batch_shape, ) else: data_covar_module = data_covar_module self.covar_module = MultitaskKernel( data_covar_module=data_covar_module, num_tasks=num_tasks, rank=rank, batch_shape=batch_shape, task_covar_prior=task_covar_prior, ) if outcome_transform is not None: self.outcome_transform = outcome_transform if input_transform is not None: self.input_transform = input_transform self.to(train_X) def forward(self, X: Tensor) -> MultitaskMultivariateNormal: if self.training: X = self.transform_inputs(X) mean_x = self.mean_module(X) covar_x = self.covar_module(X) return MultitaskMultivariateNormal(mean_x, covar_x) @property def _task_covar_matrix(self): res = self.covar_module.task_covar_module.covar_matrix if detach_test_caches.on(): res = res.detach() return res @property @cached(name="train_full_covar") def train_full_covar(self): train_x = self.transform_inputs(self.train_inputs[0]) # construct Kxx \otimes Ktt train_full_covar = self.covar_module(train_x).evaluate_kernel() if detach_test_caches.on(): train_full_covar = train_full_covar.detach() return train_full_covar @property @cached(name="predictive_mean_cache") def predictive_mean_cache(self): train_x = self.transform_inputs(self.train_inputs[0]) train_noise = self.likelihood._shaped_noise_covar(train_x.shape) if detach_test_caches.on(): train_noise = train_noise.detach() train_diff = self.train_targets - self.mean_module(train_x) train_solve = (self.train_full_covar + train_noise).inv_matmul( train_diff.reshape(*train_diff.shape[:-2], -1) ) if detach_test_caches.on(): train_solve = train_solve.detach() return train_solve def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: Union[bool, Tensor] = False, posterior_transform: Optional[PosteriorTransform] = None, **kwargs: Any, ) -> MultitaskGPPosterior: self.eval() if posterior_transform is not None: # this could be very costly, disallow for now raise NotImplementedError( "Posterior transforms currently not supported for " f"{self.__class__.__name__}" ) X = self.transform_inputs(X) train_x = self.transform_inputs(self.train_inputs[0]) # construct Ktt task_covar = self._task_covar_matrix task_rootlt = self._task_covar_matrix.root_decomposition( method="diagonalization" ) task_root = task_rootlt.root if task_covar.batch_shape != X.shape[:-2]: task_covar = BatchRepeatLazyTensor(task_covar, batch_repeat=X.shape[:-2]) task_root = BatchRepeatLazyTensor( lazify(task_root), batch_repeat=X.shape[:-2] ) task_covar_rootlt = RootLazyTensor(task_root) # construct RR' \approx Kxx data_data_covar = self.train_full_covar.lazy_tensors[0] # populate the diagonalziation caches for the root and inverse root # decomposition data_data_evals, data_data_evecs = data_data_covar.diagonalization() # pad the eigenvalue and eigenvectors with zeros if we are using lanczos if data_data_evecs.shape[-1] < data_data_evecs.shape[-2]: cols_to_add = data_data_evecs.shape[-2] - data_data_evecs.shape[-1] zero_evecs = torch.zeros( *data_data_evecs.shape[:-1], cols_to_add, dtype=data_data_evals.dtype, device=data_data_evals.device, ) zero_evals = torch.zeros( *data_data_evecs.shape[:-2], cols_to_add, dtype=data_data_evals.dtype, device=data_data_evals.device, ) data_data_evecs = CatLazyTensor( data_data_evecs, lazify(zero_evecs), dim=-1, output_device=data_data_evals.device, ) data_data_evals = torch.cat((data_data_evals, zero_evals), dim=-1) # construct K_{xt, x} test_data_covar = self.covar_module.data_covar_module(X, train_x) # construct K_{xt, xt} test_test_covar = self.covar_module.data_covar_module(X) # now update root so that \tilde{R}\tilde{R}' \approx K_{(x,xt), (x,xt)} # cloning preserves the gradient history updated_lazy_tensor = data_data_covar.cat_rows( cross_mat=test_data_covar.clone(), new_mat=test_test_covar, method="diagonalization", ) updated_root = updated_lazy_tensor.root_decomposition().root # occasionally, there's device errors so enforce this comes out right updated_root = updated_root.to(data_data_covar.device) # build a root decomposition of the joint train/test covariance matrix # construct (\tilde{R} \otimes M)(\tilde{R} \otimes M)' \approx # (K_{(x,xt), (x,xt)} \otimes Ktt) joint_covar = RootLazyTensor( KroneckerProductLazyTensor(updated_root, task_covar_rootlt.root.detach()) ) # construct K_{xt, x} \otimes Ktt test_obs_kernel = KroneckerProductLazyTensor(test_data_covar, task_covar) # collect y - \mu(x) and \mu(X) train_diff = self.train_targets - self.mean_module(train_x) if detach_test_caches.on(): train_diff = train_diff.detach() test_mean = self.mean_module(X) train_noise = self.likelihood._shaped_noise_covar(train_x.shape) diagonal_noise = isinstance(train_noise, DiagLazyTensor) if detach_test_caches.on(): train_noise = train_noise.detach() test_noise = ( self.likelihood._shaped_noise_covar(X.shape) if observation_noise else None ) # predictive mean and variance for the mvn # first the predictive mean pred_mean = ( test_obs_kernel.matmul(self.predictive_mean_cache).reshape_as(test_mean) + test_mean ) # next the predictive variance, assume diagonal noise test_var_term = KroneckerProductLazyTensor(test_test_covar, task_covar).diag() if diagonal_noise: task_evals, task_evecs = self._task_covar_matrix.diagonalization() # TODO: make this be the default KPMatmulLT diagonal method in gpytorch full_data_inv_evals = ( KroneckerProductDiagLazyTensor( DiagLazyTensor(data_data_evals), DiagLazyTensor(task_evals) ) + train_noise ).inverse() test_train_hadamard = KroneckerProductLazyTensor( test_data_covar.matmul(data_data_evecs).evaluate() ** 2, task_covar.matmul(task_evecs).evaluate() ** 2, ) data_var_term = test_train_hadamard.matmul(full_data_inv_evals).sum(dim=-1) else: # if non-diagonal noise (but still kronecker structured), we have to pull # across the noise because the inverse is not closed form # should be a kronecker lt, R = \Sigma_X^{-1/2} \kron \Sigma_T^{-1/2} # TODO: enforce the diagonalization to return a KPLT for all shapes in # gpytorch or dense linear algebra for small shapes data_noise, task_noise = train_noise.lazy_tensors data_noise_root = data_noise.root_inv_decomposition( method="diagonalization" ) task_noise_root = task_noise.root_inv_decomposition( method="diagonalization" ) # ultimately we need to compute the diagonal of # (K_{x* X} \kron K_T)(K_{XX} \kron K_T + \Sigma_X \kron \Sigma_T)^{-1} # (K_{x* X} \kron K_T)^T # = (K_{x* X} \Sigma_X^{-1/2} Q_R)(\Lambda_R + I)^{-1} # (K_{x* X} \Sigma_X^{-1/2} Q_R)^T # where R = (\Sigma_X^{-1/2T}K_{XX}\Sigma_X^{-1/2} \kron # \Sigma_T^{-1/2T}K_{T}\Sigma_T^{-1/2}) # first we construct the components of R's eigen-decomposition # TODO: make this be the default KPMatmulLT diagonal method in gpytorch whitened_data_covar = ( data_noise_root.transpose(-1, -2) .matmul(data_data_covar) .matmul(data_noise_root) ) w_data_evals, w_data_evecs = whitened_data_covar.diagonalization() whitened_task_covar = ( task_noise_root.transpose(-1, -2) .matmul(self._task_covar_matrix) .matmul(task_noise_root) ) w_task_evals, w_task_evecs = whitened_task_covar.diagonalization() # we add one to the eigenvalues as above (not just for stability) full_data_inv_evals = ( KroneckerProductDiagLazyTensor( DiagLazyTensor(w_data_evals), DiagLazyTensor(w_task_evals) ) .add_jitter(1.0) .inverse() ) test_data_comp = ( test_data_covar.matmul(data_noise_root).matmul(w_data_evecs).evaluate() ** 2 ) task_comp = ( task_covar.matmul(task_noise_root).matmul(w_task_evecs).evaluate() ** 2 ) test_train_hadamard = KroneckerProductLazyTensor(test_data_comp, task_comp) data_var_term = test_train_hadamard.matmul(full_data_inv_evals).sum(dim=-1) pred_variance = test_var_term - data_var_term specialized_mvn = MultitaskMultivariateNormal( pred_mean, DiagLazyTensor(pred_variance) ) if observation_noise: specialized_mvn = self.likelihood(specialized_mvn) posterior = MultitaskGPPosterior( mvn=specialized_mvn, joint_covariance_matrix=joint_covar, test_train_covar=test_obs_kernel, train_diff=train_diff, test_mean=test_mean, train_train_covar=self.train_full_covar, train_noise=train_noise, test_noise=test_noise, ) if hasattr(self, "outcome_transform"): posterior = self.outcome_transform.untransform_posterior(posterior) return posterior def train(self, val=True, *args, **kwargs): if val: fixed_cache_names = ["data_data_roots", "train_full_covar", "task_root"] for name in fixed_cache_names: try: pop_from_cache(self, name) except CachingError: pass return super().train(val, *args, **kwargs)
[ "torch.Size", "torch.zeros", "torch.cat", "torch.arange", "torch.no_grad" ]
1.6
CompRhys/botorch
6965426853b7c2d61244f6874eff3317b3588554
1.8
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RoBERTa model. """ import math import torch import torch.utils.checkpoint import model.lora as lora from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN, gelu from transformers.adapters.model_mixin import ModelWithHeadsAdaptersMixin from transformers.adapters.models.bert import ( BertEncoderAdaptersMixin, BertLayerAdaptersMixin, BertModelAdaptersMixin, BertModelHeadsMixin, BertOutputAdaptersMixin, BertSelfOutputAdaptersMixin, ) from transformers.file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from transformers.utils import logging from .configuration_roberta import RobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "roberta-base" _CONFIG_FOR_DOC = "RobertaConfig" _TOKENIZER_FOR_DOC = "RobertaTokenizer" ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "roberta-base", "roberta-large", "roberta-large-mnli", "distilroberta-base", "roberta-base-openai-detector", "roberta-large-openai-detector", # See all RoBERTa models at https://huggingface.co/models?filter=roberta ] class RobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta class RobertaSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size # self.query = nn.Linear(config.hidden_size, self.all_head_size) # self.key = nn.Linear(config.hidden_size, self.all_head_size) if config.lora: self.query = lora.Linear(config.hidden_size, self.all_head_size, config.lora_r, lora_alpha=config.lora_alpha) # print(config.lora_r) else: self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) if config.lora: self.value = lora.Linear(config.hidden_size, self.all_head_size, config.lora_r, lora_alpha=config.lora_alpha) else: self.value = nn.Linear(config.hidden_size, self.all_head_size) # self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.modeling_bert.BertSelfOutput class RobertaSelfOutput(BertSelfOutputAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self._init_adapter_modules() def forward(self, hidden_states, input_tensor, **kwargs): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.adapters_forward(hidden_states, input_tensor, **kwargs) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta class RobertaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = RobertaSelfAttention(config) self.output = RobertaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, **kwargs ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states, **kwargs) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class RobertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class RobertaOutput(BertOutputAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self._init_adapter_modules() def forward(self, hidden_states, input_tensor, **kwargs): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.adapters_forward(hidden_states, input_tensor, **kwargs) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta class RobertaLayer(BertLayerAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RobertaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = RobertaAttention(config) self.intermediate = RobertaIntermediate(config) self.output = RobertaOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, **kwargs ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, **kwargs, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, **kwargs ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output, **kwargs): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, **kwargs) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta class RobertaEncoder(BertEncoderAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.drop_layer = -1 def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, **kwargs ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # rmlayers = [9,10,11] past_key_value = past_key_values[i] if past_key_values is not None else None # for j in range(i): # past_key_value = past_key_value + past_key_values[j] # if i > 0: # past_key_value = past_key_value + past_key_values[i-1] # if i in rmlayers: # # print(attention_mask) # attention_mask_new = attention_mask[:, :, :, self.config.pre_seq_len:] # else: # attention_mask_new = attention_mask[:] if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, **kwargs, ) hidden_states = layer_outputs[0] attention_mask = self.adjust_attention_mask_for_parallel(hidden_states, attention_mask) if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class RobertaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class RobertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, RobertaEncoder): module.gradient_checkpointing = value def update_keys_to_ignore(self, config, del_keys_to_ignore): """Remove some keys from ignore list""" if not config.tie_word_embeddings: # must make a new list, or the class variable gets modified! self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] self._keys_to_ignore_on_load_missing = [ k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore ] ROBERTA_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_START_DOCSTRING, ) class RobertaModel(BertModelAdaptersMixin, RobertaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 """ _keys_to_ignore_on_load_missing = [r"position_ids"] # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RobertaEmbeddings(config) self.encoder = RobertaEncoder(config) self.pooler = RobertaPooler(config) if add_pooling_layer else None self._init_adapter_modules() self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict self.pre_transformer_forward(**kwargs) if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) embedding_output = self.invertible_adapters_forward(embedding_output) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """Roberta Model transformer with the option to add multiple flexible heads on top.""", ROBERTA_START_DOCSTRING, ) class RobertaModelWithHeads(BertModelHeadsMixin, RobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self._init_head_modules() self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="roberta-base", output_type=ModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, head=None, **kwargs ): input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) # BERT & RoBERTa return the pooled output as second item, we don't need that in these heads if not return_dict: head_inputs = (outputs[0],) + outputs[2:] else: head_inputs = outputs pooled_output = outputs[1] if head or self.active_head: head_outputs = self.forward_head( head_inputs, head_name=head, attention_mask=attention_mask, return_dict=return_dict, pooled_output=pooled_output, **kwargs, ) return head_outputs else: # in case no head is used just return the output of the base model (including pooler output) return outputs @add_start_docstrings( """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """, ROBERTA_START_DOCSTRING ) class RobertaForCausalLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) # The LM head weights require special treatment only when they are tied with the word embeddings self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig >>> import torch >>> tokenizer = RobertaTokenizer.from_pretrained('roberta-base') >>> config = RobertaConfig.from_pretrained("roberta-base") >>> config.is_decoder = True >>> model = RobertaForCausalLM.from_pretrained('roberta-base', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) sequence_output = outputs[0] prediction_scores = self.lm_head( sequence_output, inv_lang_adapter=self.roberta.get_invertible_adapter(), ) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING) class RobertaForMaskedLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) # The LM head weights require special treatment only when they are tied with the word embeddings self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) sequence_output = outputs[0] prediction_scores = self.lm_head( sequence_output, inv_lang_adapter=self.roberta.get_invertible_adapter(), ) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, inv_lang_adapter=None, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) if inv_lang_adapter: x = inv_lang_adapter(x, rev=True) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @add_start_docstrings( """ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForSequenceClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForMultipleChoice(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForTokenClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, adapter_names=adapter_names, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_START_DOCSTRING, ) class RobertaForQuestionAnswering(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, adapter_names=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.cat", "torch.nn.MSELoss", "torch.arange", "torch.nn.Softmax", "torch.einsum", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.ones", "torch.tensor", "torch.nn.BCEWithLogitsLoss", "torch.tanh", "torch.matmul", "torch.nn.Embedding", "torch.cumsum" ]
1.8.1
guanzhchen/PETuning
eb36327713e237ea95a8982ceabb71de5ca4b09d
1.5
# Copyright (c) Facebook, Inc. and its affiliates. from copy import deepcopy import torch from mmf.common.registry import registry from mmf.models.base_model import BaseModel from mmf.modules.encoders import MultiModalEncoderBase from mmf.utils.build import build_classifier_layer class UnimodalBase(MultiModalEncoderBase): def __init__(self, config, *args, **kwargs): super().__init__(config, *args, **kwargs) def build(self): encoders = self._build_encoders(self.config) # Text Encoder mode if "modal_encoder" not in self.config: self.encoder = encoders[0] # Modal encoder mode elif "text_encoder" not in self.config: self.encoder = encoders[1] else: raise RuntimeError( "Unimodal Encoder can't have both text and modal encoder" ) def forward(self, x, *args, **kwargs): x = self.encoder(x, *args, **kwargs) # Case of bert encoder, we only need pooled output if not torch.is_tensor(x) and len(x) == 2: x = x[1] x = torch.flatten(x, start_dim=1) return x @registry.register_model("unimodal_text") class UnimodalText(BaseModel): def __init__(self, config, *args, **kwargs): super().__init__(config) @classmethod def config_path(cls): return "configs/models/unimodal/text.yaml" def build(self): self.base = UnimodalBase(self.config) # As the in_dim is dynamically calculated we need to copy classifier_config classifier_config = deepcopy(self.config.classifier) classifier_config.params.in_dim = self.config.text_hidden_size self.classifier = build_classifier_layer(classifier_config) def forward(self, sample_list): # BERT Based Encoders args = [] if "input_ids" in sample_list: text = sample_list.input_ids args.append(sample_list.input_mask) args.append(sample_list.segment_ids) else: text = sample_list.text embedding = self.base(text, *args) output = {} output["scores"] = self.classifier(embedding) return output @registry.register_model("unimodal_image") class UnimodalModal(BaseModel): def __init__(self, config, *args, **kwargs): super().__init__(config) @classmethod def config_path(cls): return "configs/models/unimodal/image.yaml" def build(self): self.base = UnimodalBase(self.config) self._is_direct_features_input = self.config.direct_features_input num_features = self.config.modal_encoder.params.num_output_features # As the in_dim is dynamically calculated we need to copy classifier_config classifier_config = deepcopy(self.config.classifier) classifier_config.params.in_dim = num_features * self.config.modal_hidden_size self.classifier = build_classifier_layer(classifier_config) def forward(self, sample_list): # BERT Based Encoders args = [] if self._is_direct_features_input: modal = sample_list.image_feature_0 modal = torch.mean(modal, dim=1) else: modal = sample_list.image embedding = self.base(modal, *args) output = {} output["scores"] = self.classifier(embedding) return output
[ "torch.is_tensor", "torch.flatten", "torch.mean" ]
1.5.0
anas-awadalla/mmf
306f8f758831b2abf2c7ef5a8f010670a2cb33ed
1.5
# Copyright (c) Facebook, Inc. and its affiliates. import os import tempfile import unittest import torch from mmf.datasets.processors.processors import ( CaptionProcessor, EvalAIAnswerProcessor, MultiClassFromFile, MultiHotAnswerFromVocabProcessor, TransformerBboxProcessor, ) from mmf.utils.configuration import load_yaml from omegaconf import OmegaConf from ..test_utils import compare_tensors class TestDatasetProcessors(unittest.TestCase): def _get_config(self, path): path = os.path.join(os.path.abspath(__file__), path) config = load_yaml(os.path.abspath(path)) return config def test_caption_processor(self): config = self._get_config("../../../mmf/configs/datasets/coco/defaults.yaml") captioning_config = config.dataset_config.coco caption_processor_config = captioning_config.processors.caption_processor vocab_path = os.path.join( os.path.abspath(__file__), "..", "..", "data", "vocab.txt" ) caption_processor_config.params.vocab.type = "random" caption_processor_config.params.vocab.vocab_file = os.path.abspath(vocab_path) caption_processor = CaptionProcessor(caption_processor_config.params) tokens = [1, 4, 5, 6, 4, 7, 8, 2, 0, 0, 0] caption = caption_processor(tokens) # Test start, stop, pad are removed self.assertNotIn("<s>", caption["tokens"]) self.assertNotIn("</s>", caption["tokens"]) self.assertNotIn("<pad>", caption["tokens"]) # Test caption is correct self.assertEqual(caption["caption"], "a man with a red helmet") def test_multi_hot_answer_from_vocab_processor(self): config = self._get_config("../../../mmf/configs/datasets/clevr/defaults.yaml") clevr_config = config.dataset_config.clevr answer_processor_config = clevr_config.processors.answer_processor # Test num_answers==1 case vocab_path = os.path.join( os.path.abspath(__file__), "..", "..", "data", "vocab.txt" ) answer_processor_config.params.vocab_file = os.path.abspath(vocab_path) answer_processor = MultiHotAnswerFromVocabProcessor( answer_processor_config.params ) processed = answer_processor({"answers": ["helmet"]}) answers_indices = processed["answers_indices"] answers_scores = processed["answers_scores"] self.assertTrue( compare_tensors(answers_indices, torch.tensor([5] * 10, dtype=torch.long)) ) expected_answers_scores = torch.zeros(19, dtype=torch.float) expected_answers_scores[5] = 1.0 self.assertTrue(compare_tensors(answers_scores, expected_answers_scores)) # Test multihot when num answers greater than 1 answer_processor_config.params.vocab_file = os.path.abspath(vocab_path) answer_processor_config.params.num_answers = 3 answer_processor = MultiHotAnswerFromVocabProcessor( answer_processor_config.params ) processed = answer_processor({"answers": ["man", "with", "countryside"]}) answers_indices = processed["answers_indices"] answers_scores = processed["answers_scores"] self.assertTrue( compare_tensors( answers_indices, torch.tensor([2, 3, 15, 2, 3, 15, 2, 3, 15, 2], dtype=torch.long), ) ) expected_answers_scores = torch.zeros(19, dtype=torch.float) expected_answers_scores[2] = 1.0 expected_answers_scores[3] = 1.0 expected_answers_scores[15] = 1.0 self.assertTrue(compare_tensors(answers_scores, expected_answers_scores)) # Test unk processed = answer_processor({"answers": ["test", "answer", "man"]}) answers_indices = processed["answers_indices"] answers_scores = processed["answers_scores"] self.assertTrue( compare_tensors( answers_indices, torch.tensor([0, 0, 2, 0, 0, 2, 0, 0, 2, 0], dtype=torch.long), ) ) expected_answers_scores = torch.zeros(19, dtype=torch.float) expected_answers_scores[2] = 1.0 self.assertTrue(compare_tensors(answers_scores, expected_answers_scores)) def test_evalai_answer_processor(self): evalai_answer_processor = EvalAIAnswerProcessor() # Test number processed = evalai_answer_processor("two") expected = "2" self.assertEqual(processed, expected) # Test article processed = evalai_answer_processor("a building") expected = "building" self.assertEqual(processed, expected) # Test tokenize processed = evalai_answer_processor("snow, mountain") expected = "snow mountain" self.assertEqual(processed, expected) # Test contractions processed = evalai_answer_processor("isnt") expected = "isn't" self.assertEqual(processed, expected) # Test processor processed = evalai_answer_processor("the two mountain's \t \n ") expected = "2 mountain 's" self.assertEqual(processed, expected) def test_transformer_bbox_processor(self): import numpy as np config = { "params": { "bbox_key": "bbox", "image_width_key": "image_width", "image_height_key": "image_height", } } bbox_processor = TransformerBboxProcessor(config) item = { "bbox": np.array([[100, 100, 100, 100]]), "image_width": 100, "image_height": 100, } processed_box = bbox_processor(item)["bbox"] self.assertTrue( torch.equal( processed_box, torch.tensor([[1, 1, 1, 1, 0]], dtype=torch.float) ) ) def test_multi_class_from_file(self): f = tempfile.NamedTemporaryFile(mode="w", delete=False) f.writelines("\n".join(["abc", "bcd", "def", "efg"])) f.close() config = OmegaConf.create({"vocab_file": f.name}) processor = MultiClassFromFile(config) output = processor({"label": "abc"}) self.assertEqual(output["class_index"], 0) output = processor({"label": "efg"}) self.assertEqual(output["class_index"], 3) output = processor("def") self.assertEqual(output["class_index"], 2) self.assertRaises(AssertionError, processor, {"label": "UNK"}) os.unlink(f.name)
[ "torch.zeros", "torch.tensor" ]
1.5.0
anas-awadalla/mmf
306f8f758831b2abf2c7ef5a8f010670a2cb33ed
1.5
# Copyright (c) Facebook, Inc. and its affiliates. import glob import importlib import logging import os import sys import warnings import torch from mmf.common.registry import registry from mmf.utils.configuration import get_mmf_env, load_yaml from mmf.utils.distributed import is_master, synchronize from mmf.utils.download import download_pretrained_model from mmf.utils.file_io import PathManager from mmf.utils.general import updir from omegaconf import OmegaConf try: import git except ImportError: git = None logger = logging.getLogger(__name__) def _hack_imports(): # NOTE: This can probably be made universal to support backwards # compatibility with name "pythia" if needed. sys.modules["pythia"] = importlib.import_module("mmf") sys.modules["pythia.utils.configuration"] = importlib.import_module( "mmf.utils.configuration" ) def load_pretrained_model(model_name_or_path, *args, **kwargs): # If this is a file, then load this directly else download and load if PathManager.exists(model_name_or_path): download_path = model_name_or_path model_name = model_name_or_path else: download_path = download_pretrained_model(model_name_or_path, *args, **kwargs) model_name = model_name_or_path configs = glob.glob(os.path.join(download_path, "*.yaml")) assert len(configs) <= 1, ( "Multiple yaml files with the pretrained model. " + "MMF doesn't know what to do." ) ckpts = [] allowed_ckpt_types = ("*.ckpt", "*.pth", "*.pt") for ckpt_type in allowed_ckpt_types: ckpts.extend(glob.glob(os.path.join(download_path, ckpt_type))) assert ( len(ckpts) == 1 ), "None or multiple checkpoints files. MMF doesn't know what to do." _hack_imports() with PathManager.open(ckpts[0], "rb") as f: ckpt = torch.load(f, map_location=lambda storage, loc: storage) # If configs are not present, will ckpt provide the config? if len(configs) == 0: assert "config" in ckpt, ( "No configs provided with pretrained model " " while checkpoint also doesn't have configuration." ) config = ckpt["config"] else: config = load_yaml(configs[0]) model_config = config.get("model_config", config) ckpt = ckpt.get("model", ckpt) # Also handle the case of model_name is path model_config = model_config.get(model_name.split(os.path.sep)[-1].split(".")[0]) return {"config": model_config, "checkpoint": ckpt, "full_config": config} class Checkpoint: def __init__(self, trainer): """ Generates a path for saving model which can also be used for resuming from a checkpoint. """ self.trainer = trainer self.config = self.trainer.config self.save_dir = get_mmf_env(key="save_dir") self.model_name = self.config.model self.ckpt_foldername = self.save_dir self.device = registry.get("current_device") self.ckpt_prefix = "" if hasattr(self.trainer.model, "get_ckpt_name"): self.ckpt_prefix = self.trainer.model.get_ckpt_name() + "_" self.pth_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + self.model_name + "_final.pth" ) self.models_foldername = os.path.join(self.ckpt_foldername, "models") if not PathManager.exists(self.models_foldername): PathManager.mkdirs(self.models_foldername) self.save_config() self.repo_path = updir(os.path.abspath(__file__), n=3) self.git_repo = None if git and self.config.checkpoint.save_git_details: try: self.git_repo = git.Repo(self.repo_path) except git.exc.InvalidGitRepositoryError: # Not a git repo, don't do anything pass self.max_to_keep = self.config.checkpoint.max_to_keep self.saved_iterations = [] def save_config(self): cfg_file = os.path.join(self.ckpt_foldername, "config.yaml") with PathManager.open(cfg_file, "w") as f: f.write(self.config.pretty(resolve=True)) def load_state_dict(self): ckpt_config = self.config.checkpoint suffix = "best.ckpt" if ckpt_config.resume_best else "current.ckpt" reverse_suffix = "best.ckpt" if not ckpt_config.resume_best else "current.ckpt" ckpt_filepath = os.path.join(self.ckpt_foldername, self.ckpt_prefix + suffix) # In case of interrupts and resume, ckpt_config.resume_file would be there # But, if the checkpoints are already created in the save dir # and resume is true signifying the interrupt resume, we should skip # loading the resume file. if ( ckpt_config.resume_file is not None or ckpt_config.resume_zoo is not None ) and (not ckpt_config.resume or not PathManager.exists(ckpt_filepath)): if ckpt_config.resume_file and PathManager.exists(ckpt_config.resume_file): self._load( ckpt_config.resume_file, load_pretrained=ckpt_config.resume_pretrained, ) return # resume_file doesn't exist, try from zoo now elif ckpt_config.resume_zoo is not None: self._load( ckpt_config.resume_zoo, load_zoo=True, load_pretrained=ckpt_config.resume_pretrained, ) return else: raise RuntimeError(f"{ckpt_config.resume_file} doesn't exist") if ckpt_config.resume: if PathManager.exists(ckpt_filepath): self._load(ckpt_filepath) else: warnings.warn( "Tried to resume but checkpoint filepath {} " "is not present. Trying {}, otherwise skipping.".format( ckpt_filepath, reverse_suffix ) ) ckpt_filepath = ckpt_filepath.replace(suffix, reverse_suffix) if PathManager.exists(ckpt_filepath): self._load(ckpt_filepath) def _load(self, file, force=False, load_zoo=False, load_pretrained=False): ckpt_config = self.config.checkpoint logger.info("Loading checkpoint") if load_zoo: ckpt, should_continue = self._load_from_zoo(file) if not should_continue: return else: ckpt = self._torch_load(file) if "model" in ckpt: ckpt_model = ckpt["model"] else: ckpt_model = ckpt ckpt = {"model": ckpt} pretrained_state_mapping = ckpt_config.pretrained_state_mapping if not load_pretrained or force is True: pretrained_state_mapping = {} new_dict = {} new_dict = self.upgrade_state_dict(ckpt_model) if len(pretrained_state_mapping.items()) == 0: final_dict = new_dict self.trainer.model.load_state_dict(final_dict, strict=False) reset_optimizer = ckpt_config.reset.optimizer or ckpt_config.reset.all if not reset_optimizer: self._load_optimizer(ckpt) self.trainer.early_stop_callback.early_stopping.init_from_checkpoint(ckpt) reset_counts = ckpt_config.reset.all or ckpt_config.reset.counts if not reset_counts: self._load_counts_and_lr_scheduler(ckpt) else: self._load_pretrained(new_dict) logger.info("Checkpoint loaded.") logger.info(f"Current num updates: {self.trainer.num_updates}") logger.info(f"Current iteration: {self.trainer.current_iteration}") logger.info(f"Current epoch: {self.trainer.current_epoch}") def _load_optimizer(self, ckpt): if "optimizer" in ckpt: try: self.trainer.optimizer.load_state_dict(ckpt["optimizer"]) except ValueError: logger.info( "Optimizer failed to load. Try with " + "checkpoint.reset.optimizer=True" ) raise else: warnings.warn( "'optimizer' key is not present in the " "checkpoint asked to be loaded. Skipping." ) def _load_counts_and_lr_scheduler(self, ckpt): ckpt_config = self.trainer.config.checkpoint if "best_update" in ckpt: if ckpt_config.resume_best: self.trainer.num_updates = ckpt.get( "best_update", self.trainer.num_updates ) self.trainer.current_iteration = ckpt.get( "best_iteration", self.trainer.current_iteration ) else: self.trainer.num_updates = ckpt.get( "num_updates", self.trainer.num_updates ) self.trainer.current_iteration = ckpt.get( "current_iteration", self.trainer.current_iteration ) self.trainer.current_epoch = ckpt.get( "current_epoch", self.trainer.current_epoch ) elif "best_iteration" in ckpt: # Preserve old behavior for old checkpoints where we always # load best iteration if ckpt_config.resume_best and "current_iteration" in ckpt: self.trainer.current_iteration = ckpt["current_iteration"] else: self.trainer.current_iteration = ckpt.get( "best_iteration", self.trainer.current_iteration ) self.trainer.num_updates = self.trainer.current_iteration lr_scheduler = self.trainer.lr_scheduler_callback._scheduler if lr_scheduler is not None: if "lr_scheduler" in ckpt: lr_scheduler.load_state_dict(ckpt["lr_scheduler"]) else: warnings.warn( "'lr_scheduler' key is not present in the " "checkpoint asked to be loaded. Setting lr_scheduler's " "last_epoch to current_iteration." ) lr_scheduler.last_epoch = self.trainer.current_iteration registry.register("current_iteration", self.trainer.current_iteration) registry.register("num_updates", self.trainer.num_updates) self.trainer.current_epoch = ckpt.get("best_epoch", self.trainer.current_epoch) registry.register("current_epoch", self.trainer.current_epoch) def _load_pretrained(self, ckpt): model = self.trainer.model own_state = model.state_dict() mapping = self.trainer.config.checkpoint.pretrained_state_mapping for key, value in mapping.items(): key += "." value += "." for attr in ckpt: for own_attr in own_state: if hasattr(model, "format_state_key"): formatted_attr = model.format_state_key(attr) else: formatted_attr = attr if ( key in own_attr and value in formatted_attr and own_attr.replace(key, "") == formatted_attr.replace(value, "") ): logger.info("Copying " + own_attr + " from " + attr) own_state[own_attr].copy_(ckpt[attr]) logger.info("Pretrained model loaded") def upgrade_state_dict(self, state_dict): data_parallel = registry.get("data_parallel") or registry.get("distributed") data_parallel = data_parallel or isinstance( self.trainer.model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel), ) new_dict = {} for attr in state_dict: new_attr = attr if not data_parallel and attr.startswith("module."): # In case the ckpt was actually a data parallel model # replace first module. from dataparallel with empty string new_dict[new_attr.replace("module.", "", 1)] = state_dict[attr] elif data_parallel and not attr.startswith("module."): new_dict["module." + new_attr] = state_dict[attr] else: new_dict[new_attr] = state_dict[attr] return new_dict def _load_from_zoo(self, file): ckpt_config = self.trainer.config.checkpoint zoo_ckpt = load_pretrained_model(file) # If zoo_config_override, load the model directly using `from_pretrained` if ckpt_config.zoo_config_override: model_cls = registry.get_model_class(self.trainer.config.model) self.trainer.model = model_cls.from_pretrained(ckpt_config.resume_zoo) self.trainer.config.model_config = zoo_ckpt["full_config"].model_config return None, False else: return self.upgrade_state_dict(zoo_ckpt["checkpoint"]), True def _torch_load(self, file): # Backwards compatibility to Pythia _hack_imports() with PathManager.open(file, "rb") as f: if "cuda" in str(self.device): return torch.load(f, map_location=self.device) else: return torch.load(f, map_location=lambda storage, loc: storage) def _get_vcs_fields(self): """Returns a dict with git fields of the current repository To reproduce an experiment directly from a checkpoint 1) Export `config` key as a yaml 2) Clone repository and checkout at given commit on given branch 3) Any local change (diff) while running the experiment is stored in the value with key `git/diff`, output the diff to a `path.diff` file and apply the patch to the current state by simply `patch -p0 < path.diff` """ return { "git/branch": self.git_repo.active_branch.name, "git/commit_hash": self.git_repo.head.commit.name_rev, "git/commit_author": self.git_repo.head.commit.author.name, "git/commit_message": self.git_repo.head.commit.message, "git/diff": self.git_repo.git.diff("--no-prefix"), } def save(self, update, iteration=None, update_best=False): # Only save in main process if not is_master(): return if not iteration: iteration = update ckpt_filepath = os.path.join(self.models_foldername, "model_%d.ckpt" % update) best_ckpt_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + "best.ckpt" ) current_ckpt_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + "current.ckpt" ) best_iteration = ( self.trainer.early_stop_callback.early_stopping.best_monitored_iteration ) best_update = ( self.trainer.early_stop_callback.early_stopping.best_monitored_update ) best_metric = ( self.trainer.early_stop_callback.early_stopping.best_monitored_value ) model = self.trainer.model data_parallel = registry.get("data_parallel") or registry.get("distributed") if data_parallel is True: model = model.module ckpt = { "model": model.state_dict(), "optimizer": self.trainer.optimizer.state_dict(), "best_iteration": best_iteration, "current_iteration": iteration, "current_epoch": self.trainer.current_epoch, "num_updates": update, "best_update": best_update, "best_metric_value": best_metric, # Convert to container to avoid any dependencies "config": OmegaConf.to_container(self.config, resolve=True), } lr_scheduler = self.trainer.lr_scheduler_callback._scheduler if lr_scheduler is not None: ckpt["lr_scheduler"] = lr_scheduler.state_dict() if self.git_repo: git_metadata_dict = self._get_vcs_fields() ckpt.update(git_metadata_dict) with PathManager.open(ckpt_filepath, "wb") as f: torch.save(ckpt, f) if update_best: with PathManager.open(best_ckpt_filepath, "wb") as f: torch.save(ckpt, f) # Save current always with PathManager.open(current_ckpt_filepath, "wb") as f: torch.save(ckpt, f) # Remove old checkpoints if max_to_keep is set if self.max_to_keep > 0: if len(self.saved_iterations) == self.max_to_keep: self.remove(self.saved_iterations.pop(0)) self.saved_iterations.append(update) def remove(self, update): ckpt_filepath = os.path.join(self.models_foldername, "model_%d.ckpt" % update) if PathManager.isfile(ckpt_filepath): PathManager.rm(ckpt_filepath) def restore(self): synchronize() logger.info("Restoring checkpoint") best_path = os.path.join(self.ckpt_foldername, self.ckpt_prefix + "best.ckpt") if PathManager.exists(best_path): self._load(best_path, force=True) def finalize(self): if is_master(): with PathManager.open(self.pth_filepath, "wb") as f: torch.save(self.trainer.model.state_dict(), f)
[ "torch.save", "torch.load" ]
1.5.0
anas-awadalla/mmf
306f8f758831b2abf2c7ef5a8f010670a2cb33ed
1.5
# Copyright (c) Facebook, Inc. and its affiliates. import torch from mmf.common.registry import registry from torch import nn from torch.nn.utils.weight_norm import weight_norm class VisDialDiscriminator(nn.Module): def __init__(self, config, embedding): super().__init__() self.config = config self.embedding = embedding self.emb_out_dim = embedding.text_out_dim self.hidden_dim = self.config.hidden_dim self.projection_layer = nn.Linear(self.emb_out_dim, self.hidden_dim) def forward(self, encoder_output, batch): answer_options_len = batch["answer_options_len"] # BATCH_SIZE X DIALOGUES X 100 X SEQ_LEN answer_options = batch["answer_options"] max_seq_len = answer_options.size(-1) batch_size, ndialogues, noptions, seq_len = answer_options.size() # (B X D X 100) X SEQ_LEN answer_options = answer_options.view(-1, max_seq_len) answer_options_len = answer_options_len.view(-1) # (B x D x 100) x EMB_OUT_DIM answer_options = self.embedding(answer_options) # (B x D x 100) x HIDDEN_DIM answer_options = self.projection_layer(answer_options) # (B x D) x 100 x HIDDEN_DIM answer_options = answer_options.view( batch_size * ndialogues, noptions, self.hidden_dim ) # (B x D) x HIDDEN_DIM => (B x D) x 100 x HIDDEN_DIM encoder_output = encoder_output.unsqueeze(1).expand(-1, noptions, -1) # (B x D) x 100 x HIDDEN_DIM * (B x D) x 100 x HIDDEN_DIM = SAME THING # SUM => (B x D) x 100 scores = torch.sum(answer_options * encoder_output, dim=2) return scores class LanguageDecoder(nn.Module): def __init__(self, in_dim, out_dim, **kwargs): super().__init__() self.language_lstm = nn.LSTMCell( in_dim + kwargs["hidden_dim"], kwargs["hidden_dim"], bias=True ) self.fc = weight_norm(nn.Linear(kwargs["hidden_dim"], out_dim)) self.dropout = nn.Dropout(p=kwargs["dropout"]) self.init_weights(kwargs["fc_bias_init"]) def init_weights(self, fc_bias_init): self.fc.bias.data.fill_(fc_bias_init) self.fc.weight.data.uniform_(-0.1, 0.1) def forward(self, weighted_attn): # Get LSTM state state = registry.get(f"{weighted_attn.device}_lstm_state") h1, c1 = state["td_hidden"] h2, c2 = state["lm_hidden"] # Language LSTM h2, c2 = self.language_lstm(torch.cat([weighted_attn, h1], dim=1), (h2, c2)) predictions = self.fc(self.dropout(h2)) # Update hidden state for t+1 state["lm_hidden"] = (h2, c2) return predictions
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.nn.LSTMCell", "torch.sum" ]
1.5.0
anas-awadalla/mmf
306f8f758831b2abf2c7ef5a8f010670a2cb33ed
1.0
from abc import abstractmethod from pandas import DataFrame from os.path import exists from numpy import argmax from torch.nn import Module, Conv2d from torch.nn import functional as F from torch import load as loadModel from cnn.MixedFilter import MixedConvBNWithReLU as MixedConvWithReLU from cnn.uniq_loss import UniqLoss import cnn.statistics from cnn.HtmlLogger import HtmlLogger from UNIQ.quantize import check_quantization # from torch import save as saveModel # from torch import ones, zeros, no_grad, cat, tensor # from torch.nn import CrossEntropyLoss # preForward hook for training weights phase. # when we train weights, we need to quantize staged layers before forward, and remove quantization after forward in order to update by gradient # same for noise, we need to add noise before forward, and remove noise after forward, in order to update by gradient def preForward(self, input): deviceID = input[0].device.index assert (deviceID not in self.hookDevices) self.hookDevices.append(deviceID) assert (self.training is True) # update layers list to new DataParallel layers copies self.layersList = self.buildLayersList() # quantize staged layers self.restoreQuantizationForStagedLayers() # add noise to next to be staged layer if self.nLayersQuantCompleted < self.nLayers(): layer = self.layersList[self.nLayersQuantCompleted] assert (layer.added_noise is True) for op in layer.opsList(): assert (op.noise is True) op.add_noise() def postForward(self, input, __): deviceID = input[0].device.index assert (deviceID in self.hookDevices) self.hookDevices.remove(deviceID) assert (self.training is True) # remove quantization from staged layers self.removeQuantizationFromStagedLayers() # remove noise from next to be staged layer if self.nLayersQuantCompleted < self.nLayers(): layer = self.layersList[self.nLayersQuantCompleted] assert (layer.added_noise is True) for op in layer.opsList(): assert (op.noise is True) op.restore_state() class BaseNet(Module): # init bitwidth of input to model modelInputBitwidth = 8 modelInputnFeatureMaps = 3 # counts the entire model bops in discrete mode def countBopsDiscrete(self): totalBops = 0 # input_bitwidth is a list of bitwidth per feature map input_bitwidth = [self.modelInputBitwidth] * self.modelInputnFeatureMaps for layer in self.layers: totalBops += layer.getBops(input_bitwidth) input_bitwidth = layer.getCurrentOutputBitwidth() totalBops /= 1E9 return totalBops def countBops(self): # wrapper is needed because countBopsFuncs is defined outside __init__() return self.countBopsFunc(self) countBopsFuncs = dict(discrete=countBopsDiscrete) alphasCsvFileName = 'alphas.csv' def buildLayersList(self): layersList = [] for layer in self.layers: layersList.extend(layer.getLayers()) return layersList def __init__(self, args, initLayersParams): super(BaseNet, self).__init__() # init save folder saveFolder = args.save # init layers self.layers = self.initLayers(initLayersParams) # build mixture layers list self.layersList = self.buildLayersList() # set bops counter function self.countBopsFunc = self.countBopsFuncs[args.bopsCounter] # init statistics self.stats = cnn.statistics.Statistics(self.layersList, saveFolder) # collect learnable params (weights) self.learnable_params = [param for param in self.parameters() if param.requires_grad] # init learnable alphas self.learnable_alphas = self.getLearnableAlphas() # init number of layers we have completed its quantization self.nLayersQuantCompleted = 0 # calc init baseline bops baselineBops = self.calcBaselineBops() args.baselineBops = baselineBops[args.baselineBits[0]] # plot baselines bops self.stats.addBaselineBopsData(args, baselineBops) # init criterion self._criterion = UniqLoss(args) self._criterion = self._criterion.cuda() # init hooks handlers list self.hooksList = [] # set hook flag, to make sure hook happens # # turn it on on pre-forward hook, turn it off on post-forward hook # self.hookFlag = False self.hookDevices = [] self.printToFile(saveFolder) # init layers permutation list self.layersPerm = [] # init number of permutations counter self.nPerms = 1 for layer in self.layersList: # add layer numOps range to permutation list self.layersPerm.append(list(range(len(layer.alphas)))) self.nPerms *= len(layer.alphas) # init alphas DataFrame self.alphas_df = None self.__initAlphasDataFrame(saveFolder) @abstractmethod def initLayers(self, params): raise NotImplementedError('subclasses must override initLayers()!') @abstractmethod def forward(self, x): raise NotImplementedError('subclasses must override forward()!') @abstractmethod def switch_stage(self, logger=None): raise NotImplementedError('subclasses must override switch_stage()!') @abstractmethod def loadUNIQPreTrained(self, checkpoint): raise NotImplementedError('subclasses must override loadUNIQPreTrained()!') @abstractmethod def loadSingleOpPreTrained(self, checkpoint): raise NotImplementedError('subclasses must override loadSingleOpPreTrained()!') @abstractmethod def turnOnWeights(self): raise NotImplementedError('subclasses must override turnOnWeights()!') def nLayers(self): return len(self.layersList) def getLearnableAlphas(self): return [layer.alphas for layer in self.layersList if layer.alphas.requires_grad is True] def updateLearnableAlphas(self): self.learnable_alphas = self.getLearnableAlphas() def arch_parameters(self): return self.learnable_alphas # layer_basis is a function of filter quantization, # therefore we have to update its value bases on weight_max_int, which is a function of weights bitwidth def __updateStatistics(self, loggerFuncs=[]): for layer in self.layersList: for op in layer.opsList(): conv = op.getModule(Conv2d) # update layer_basis value based on weights bitwidth conv.layer_basis = conv.initial_clamp_value / op.quantize.weight_max_int for f in loggerFuncs: f('Updated layer_basis according to bitwidth (weight_max_int)') def loadPreTrained(self, path, logger, gpu): # init bool flag whether we loaded ops in the same layer with equal or different weights loadOpsWithDifferentWeights = False loggerRows = [] loadSuccess = None if path is not None: if exists(path): # load checkpoint checkpoint = loadModel(path, map_location=lambda storage, loc: storage.cuda(gpu)) assert (checkpoint['updated_statistics'] is True) chckpntStateDict = checkpoint['state_dict'] # load model state dict keys modelStateDictKeys = set(self.state_dict().keys()) # compare dictionaries dictDiff = modelStateDictKeys.symmetric_difference(set(chckpntStateDict.keys())) # update flag value loadOpsWithDifferentWeights = len(dictDiff) == 0 # decide how to load checkpoint state dict if loadOpsWithDifferentWeights: # load directly, keys are the same self.load_state_dict(chckpntStateDict) else: # use some function to map keys loadFuncs = [self.loadUNIQPreTrained, self.loadSingleOpPreTrained] for func in loadFuncs: loadSuccess = func(chckpntStateDict) if loadSuccess is not False: # update statistics if we don't load ops with different statistics self.__updateStatistics(loggerFuncs=[lambda msg: loggerRows.append(['Statistics update', msg])]) break if loadSuccess is not False: # add info rows about checkpoint loggerRows.append(['Path', '{}'.format(path)]) loggerRows.append(['Validation accuracy', '{:.5f}'.format(checkpoint['best_prec1'])]) loggerRows.append(['checkpoint[updated_statistics]', checkpoint['updated_statistics']]) # check if model includes stats modelIncludesStats = False for key in chckpntStateDict.keys(): if key.endswith('.layer_basis'): modelIncludesStats = True break loggerRows.append(['Includes stats', '{}'.format(modelIncludesStats)]) # # =============================== Load alphas & plots ========================================================== # self.load_alphas_state(checkpoint['alphas']) # loggerRows.append(['Loaded alphas distribution', 'True']) # p = '/home/yochaiz/F-BANNAS/cnn/results/[(2, 2), (2, 4), (3, 3), (8, 8)],[1.0],[cifar10],[20181113-212929]/plots.data' # stats = self.stats # stats.plotsData = loadModel(p) # stats.batchLabels = stats.plotsData['alphas_entropy over epochs']['x'] # # stats.containers[stats.lossAvgKey][0] = stats.plotsData['loss_avg over epochs']['data'][0]['y'] # stats.containers[stats.crossEntropyLossAvgKey][0] = stats.plotsData['cross_entropy_loss_avg over epochs']['data'][0]['y'] # stats.containers[stats.bopsLossAvgKey][0] = stats.plotsData['bops_loss_avg over epochs']['data'][0]['y'] # stats.containers[stats.lossVarianceKey][0] = stats.plotsData['loss_variance over epochs']['data'][0]['y'] # # for i in range(len(stats.containers[stats.entropyKey])): # stats.containers[stats.entropyKey][i] = stats.plotsData['alphas_entropy over epochs']['data'][i]['y'] # # for i in range(len(stats.containers[stats.alphaDistributionKey])): # key = 'alphas_distribution --layer:[{}]-- over epochs'.format(i) # for j in range(len(stats.containers[stats.alphaDistributionKey][i])): # stats.containers[stats.alphaDistributionKey][i][j] = stats.plotsData[key]['data'][j]['y'] # # loggerRows.append(['Loaded plots data', p]) # # ============================================================================================================= else: loggerRows.append(['Path', 'Failed to load pre-trained from [{}], state_dict does not fit'.format(path)]) else: loggerRows.append(['Path', 'Failed to load pre-trained from [{}], path does not exists'.format(path)]) # load pre-trained model if we tried to load pre-trained logger.addInfoTable('Pre-trained model', loggerRows) return loadOpsWithDifferentWeights # load weights for each filter from its uniform model, i.e. load 2-bits filter weights from uniform 2-bits model # weights in uniform models are full-precision, i.e. before quantization def loadUniformPreTrained(self, args, logger): from collections import OrderedDict from cnn.MixedFilter import QuantizedOp from cnn.utils import loadCheckpoint from torch.nn.modules import Linear, BatchNorm2d def b(op, prefix): keysList = [] for name, param in op._parameters.items(): if param is not None: keysList.append(prefix + name) for name, buf in op._buffers.items(): if buf is not None: keysList.append(prefix + name) for name, module in op._modules.items(): if module is not None: keysList.extend(b(module, prefix + name + '.')) return keysList def a(model, dict, prefix=''): for name, module in model._modules.items(): key = None if isinstance(module, QuantizedOp): key = module.getBitwidth() # elif isinstance(module, BatchNorm2d) or isinstance(module, Linear): elif isinstance(module, Linear): key = (32, 32) if key is not None: if key not in dict.keys(): dict[key] = [] dict[key].extend(b(module, prefix + name + '.')) else: a(module, dict, prefix + name + '.') modelDict = OrderedDict() a(self, modelDict) # transform downsamples keys transformMap = [[(2, None), (2, 2)], [(3, None), (3, 3)], [(4, None), (4, 4)], [(8, None), (8, 8)]] for srcBitwidth, dstBitwidth in transformMap: if srcBitwidth in modelDict.keys(): modelDict[dstBitwidth].extend(modelDict[srcBitwidth]) del modelDict[srcBitwidth] keysList = [] for bitwidth, bitwidthKeysList in modelDict.items(): keysList.extend(bitwidthKeysList) modelStateDictKeys = set(self.state_dict().keys()) dictDiff = modelStateDictKeys.symmetric_difference(set(keysList)) assert (len(dictDiff) == 0) stateDict = OrderedDict() token1 = '.ops.' token2 = '.op.' for bitwidth, bitwidthKeysList in modelDict.items(): if bitwidth == (32, 32): continue checkpoint, _ = loadCheckpoint(args.dataset, args.model, bitwidth) assert (checkpoint is not None) chckpntStateDict = checkpoint['state_dict'] for key in bitwidthKeysList: prefix = key[:key.index(token1)] suffix = key[key.rindex(token2):] # convert model key to checkpoint key chckpntKey = prefix + token1 + '0.0' + suffix # add value to dict stateDict[key] = chckpntStateDict[chckpntKey] # # load keys from (32, 32) checkpoint, no need to transform keys bitwidth = (8, 8) checkpoint, _ = loadCheckpoint(args.dataset, args.model, bitwidth) # , filename='model.updated_stats.pth.tar') # checkpoint = loadModel("/home/vista/Desktop/Architecture_Search/ZZ/cifar100/resnet_[2#2,4#3#4#8]/pre_trained_checkpoint.pth.tar") assert (checkpoint is not None) chckpntStateDict = checkpoint['state_dict'] # map = self.buildStateDictMap(chckpntStateDict) # invMap = {v: k for k, v in map.items()} bitwidth = (32, 32) for key in modelDict[bitwidth]: stateDict[key] = chckpntStateDict[key] # prefix = key[:key.rindex('.')] # suffix = key[key.rindex('.'):] # newKey = invMap[prefix] # stateDict[key] = chckpntStateDict[newKey + suffix] dictDiff = modelStateDictKeys.symmetric_difference(set(stateDict.keys())) assert (len(dictDiff) == 0) self.load_state_dict(stateDict) logger.addInfoTable('Pre-trained model', [['Loaded each filter with filter from the corresponding bitwidth uniform model']]) def loss(self, logits, target): return self._criterion(logits, target, self.countBops()) def turnOffAlphas(self): for layer in self.layersList: layer.alphas.grad = None def calcBopsRatio(self): return self._criterion.calcBopsRatio(self.countBops()) def choosePathByAlphas(self, loggerFuncs=[]): for l in self.layers: l.choosePathByAlphas() logMsg = 'Model layers filters partition has been updated by alphas distribution' for f in loggerFuncs: f(logMsg) # set curr_alpha_idx to each filter by alphas values def setFiltersByAlphas(self, loggerFuncs=[]): for layer in self.layersList: layer.setFiltersPartitionByAlphas() logMsg = 'Model layers filters partition has been updated by alphas values' for f in loggerFuncs: f(logMsg) # returns list of layers filters partition def getCurrentFiltersPartition(self): return [layer.getCurrentFiltersPartition() for layer in self.layersList] # partition is list of int tensors # given a partition, set model filters accordingly def setFiltersByPartition(self, partition, loggerFuncs=[]): for layer, p in zip(self.layersList, partition): layer.setFiltersPartition(p) logMsg = 'Model layers filters partition has been updated by given partition' for f in loggerFuncs: f(logMsg) def isQuantized(self): for layerIdx, layer in enumerate(self.layersList): assert (layer.quantized is True) assert (layer.added_noise is False) for opIdx, op in enumerate(layer.opsList()): assert (check_quantization(op.getModule(Conv2d).weight) <= (2 ** op.bitwidth[0])) return True def setWeightsTrainingHooks(self): assert (len(self.hooksList) == 0) # assign pre & post forward hooks self.hooksList = [self.register_forward_pre_hook(preForward), self.register_forward_hook(postForward)] def removeWeightsTrainingHooks(self): for handler in self.hooksList: handler.remove() # clear hooks handlers list self.hooksList.clear() # remove quantization from staged layers before training weights # quantization will be set through pre-forward hook # we keep ActQaunt.qunatize_during_training == True def removeQuantizationFromStagedLayers(self): for layerIdx in range(self.nLayersQuantCompleted): layer = self.layersList[layerIdx] assert (layer.quantized is True) # remove quantization from layer ops for op in layer.opsList(): op.restore_state() # restore quantization for staged layers after training weights # quantization will be set through pre-forward hook # we keep ActQaunt.qunatize_during_training == True def restoreQuantizationForStagedLayers(self): for layerIdx in range(self.nLayersQuantCompleted): layer = self.layersList[layerIdx] assert (layer.quantized is True) # refresh layer ops list. we want ops list to contain the ops DataParallel GPU copies # quantize layer ops for op in layer.opsList(): op.quantizeFunc() assert (check_quantization(op.getModule(Conv2d).weight) <= (2 ** op.bitwidth[0])) def quantizeUnstagedLayers(self): # quantize model layers that haven't switched stage yet # no need to turn gradients off, since with no_grad() does it if self.nLayersQuantCompleted < self.nLayers(): # turn off noise if 1st unstaged layer layer = self.layersList[self.nLayersQuantCompleted] layer.turnOffNoise(self.nLayersQuantCompleted) # quantize all unstaged layers for layerIdx, layer in enumerate(self.layersList[self.nLayersQuantCompleted:]): # quantize layer.quantize(self.nLayersQuantCompleted + layerIdx) assert (self.isQuantized() is True) def unQuantizeUnstagedLayers(self): # restore weights (remove quantization) of model layers that haven't switched stage yet if self.nLayersQuantCompleted < self.nLayers(): for layerIdx, layer in enumerate(self.layersList[self.nLayersQuantCompleted:]): # remove quantization layer.unQuantize(self.nLayersQuantCompleted + layerIdx) # add noise back to 1st unstaged layer layer = self.layersList[self.nLayersQuantCompleted] layer.turnOnNoise(self.nLayersQuantCompleted) def resetForwardCounters(self): for layer in self.layersList: for filter in layer.filters: # reset filter counters filter.resetOpsForwardCounters() # apply some function on baseline models # baseline models are per each filter bitwidth # this function create a map from baseline bitwidth to func() result on baseline model def applyOnBaseline(self, func, applyOnAlphasDistribution=False): baselineBops = {} # save current model filters curr_alpha_idx modelFiltersIdx = [[filter.curr_alpha_idx for filter in layer.filters] for layer in self.layersList] # iterate over model layers for layer in self.layersList: # we want to iterate only over MixedConvWithReLU filters layer if isinstance(layer.filters[0], MixedConvWithReLU): # get layer filters bitwidth list layerBitwidths = layer.getAllBitwidths() # iterate over bitwidth and calc bops for their uniform model for idx, bitwidth in enumerate(layerBitwidths): # calc only for bitwidths that are not in baselineBops dictionary if bitwidth not in baselineBops: # if we need to calc bops for bitwidth uniform model, then we have to set filters curr_alpha_idx for layer2 in self.layersList: # get layer bitwidth list layerBitwidths2 = layer2.getAllBitwidths() # find target bitwidth in bitwidth list if bitwidth in layerBitwidths2: idx = layerBitwidths2.index(bitwidth) else: # if it is a MixedConv layer, then modify the bitwidth we are looking for modifiedBitwidth = (bitwidth[0], None) idx = layerBitwidths2.index(modifiedBitwidth) # set layers curr_alpha_idx to target bitwidth index for filter in layer2.filters: filter.curr_alpha_idx = idx # update bops value in dictionary baselineBops[bitwidth] = func() # apply on current alphas distribution if applyOnAlphasDistribution: self.setFiltersByAlphas() # &#945; is greek alpha symbol in HTML baselineBops['&#945;'] = func() # restore filters curr_alpha_idx for layer, layerFiltersIdx in zip(self.layersList, modelFiltersIdx): for filter, filterIdx in zip(layer.filters, layerFiltersIdx): filter.curr_alpha_idx = filterIdx return baselineBops # calc bops of uniform models, based on filters ops bitwidth def calcBaselineBops(self): return self.applyOnBaseline(self.countBops) # return top k operations per layer def topOps(self, k): top = [] for layer in self.layersList: # calc weights from alphas and sort them weights = F.softmax(layer.alphas, dim=-1) wSorted, wIndices = weights.sort(descending=True) # keep only top-k wSorted = wSorted[:k] wIndices = wIndices[:k] # get layer bitwidths bitwidths = layer.getAllBitwidths() # add to top top.append([(i, w.item(), layer.alphas[i], bitwidths[i]) for w, i in zip(wSorted, wIndices)]) return top # create list of tuples (layer index, layer alphas) def save_alphas_state(self): return [(i, layer.alphas) for i, layer in enumerate(self.layersList)] def load_alphas_state(self, state, loggerFuncs=[]): for layerIdx, alphas in state: layerAlphas = self.layersList[layerIdx].alphas device = layerAlphas.device layerAlphas.data = alphas.data.to(device) logMsg = 'Loaded alphas from checkpoint' # log message to all loggers for f in loggerFuncs: f(logMsg) def __initAlphasDataFrame(self, saveFolder): if saveFolder: # update save path if saveFolder exists self.alphasCsvFileName = '{}/{}'.format(saveFolder, self.alphasCsvFileName) # init DataFrame cols cols = ['Epoch', 'Batch'] cols += ['Layer_{}'.format(i) for i in range(self.nLayers())] self.cols = cols # init DataFrame self.alphas_df = DataFrame([], columns=cols) # set init data data = ['init', 'init'] # save alphas data self.save_alphas_to_csv(data) # save alphas values to csv def save_alphas_to_csv(self, data): if self.alphas_df is not None: data += [[round(e.item(), 5) for e in layer.alphas] for layer in self.layersList] # create new row d = DataFrame([data], columns=self.cols) # add row self.alphas_df = self.alphas_df.append(d) # save DataFrame self.alphas_df.to_csv(self.alphasCsvFileName) def logDominantQuantizedOp(self, k, loggerFuncs=[]): if (not loggerFuncs) or (len(loggerFuncs) == 0): return rows = [['Layer #', 'Alphas']] alphaCols = ['Index', 'Ratio', 'Value', 'Bitwidth'] top = self.topOps(k=k) for i, layerTop in enumerate(top): layerRow = [alphaCols] for idx, w, alpha, bitwidth in layerTop: alphaRow = [idx, '{:.5f}'.format(w), '{:.5f}'.format(alpha), bitwidth] # add alpha data row to layer data table layerRow.append(alphaRow) # add layer data table to model table as row rows.append([i, layerRow]) # apply loggers functions for f in loggerFuncs: f(k, rows) def printToFile(self, saveFolder): logger = HtmlLogger(saveFolder, 'model') layerIdxKey = 'Layer#' nFiltersKey = 'Filters#' bitwidthsKey = 'Bitwidths' filterArchKey = 'Filter Architecture' alphasKey = 'Alphas distribution' logger.createDataTable('Model architecture', [layerIdxKey, nFiltersKey, bitwidthsKey, filterArchKey]) for layerIdx, layer in enumerate(self.layersList): bitwidths = layer.getAllBitwidths() dataRow = {layerIdxKey: layerIdx, nFiltersKey: layer.nFilters(), bitwidthsKey: bitwidths, filterArchKey: next(layer.opsList())} logger.addDataRow(dataRow) # log layers alphas distribution self.logDominantQuantizedOp(len(bitwidths), loggerFuncs=[lambda k, rows: logger.addInfoTable(alphasKey, rows)]) def logForwardCounters(self, loggerFuncs): if (not loggerFuncs) or (len(loggerFuncs) == 0): self.resetForwardCounters() return rows = [['Layer #', 'Counters']] counterCols = ['Prev idx', 'bitwidth', 'Counter'] for layerIdx, layer in enumerate(self.layersList): filter = layer.filters[0] # sum counters of all filters by indices countersByIndices = [[0] * len(filter.opsForwardCounters[0]) for _ in range(len(filter.opsForwardCounters))] for filter in layer.filters: for i, counterList in enumerate(filter.opsForwardCounters): for j, counter in enumerate(counterList): countersByIndices[i][j] += counter # reset filter counters filter.resetOpsForwardCounters() # collect layer counters to 2 arrays: # counters holds the counters values # indices holds the corresponding counter value indices counters, indices = [], [] for i in range(len(countersByIndices)): for j in range(len(countersByIndices[0])): counters.append(countersByIndices[i][j]) indices.append((i, j)) # get layer bitwidths bitwidths = layer.getAllBitwidths() # for each layer, sort counters in descending order layerRows = [counterCols] countersTotal = 0 while len(counters) > 0: # find max counter and print it maxIdx = argmax(counters) i, j = indices[maxIdx] # add counter as new row layerRows.append([i, bitwidths[j], counters[maxIdx]]) # update countersTotal countersTotal += counters[maxIdx] # remove max counter from lists del counters[maxIdx] del indices[maxIdx] # add counters total row layerRows.append(['Total', '', countersTotal]) # add layer row to model table rows.append([layerIdx, layerRows]) # apply loggers functions for f in loggerFuncs: f(rows) # def calcStatistics(self, statistics_queue): # # prepare for collecting statistics, reset register_buffers values # for layer in self.layersList: # for op in layer.opsList: # conv = op.getConv() # # reset conv register_buffer values # conv.layer_b = ones(1).cuda() # conv.layer_basis = ones(1).cuda() # conv.initial_clamp_value = ones(1).cuda() # # get actquant # actQuant = op.getReLU() # if actQuant: # # reset actquant register_buffer values # actQuant.running_mean = zeros(1).cuda() # actQuant.running_std = zeros(1).cuda() # actQuant.clamp_val.data = zeros(1).cuda() # # set actquant to statistics forward # actQuant.forward = actQuant.statisticsForward # # # train for statistics # criterion = CrossEntropyLoss().cuda() # nBatches = 80 # self.eval() # with no_grad(): # for step, (input, target) in enumerate(statistics_queue): # if step >= nBatches: # break # # output = self(input.cuda()) # criterion(output, target.cuda()) # # # apply quantize class statistics functions # for layerIdx, layer in enumerate(self.layersList): # # concat layer feature maps together, in order to get initial_clamp_value identical to NICE # # because initial_clamp_value is calculated based on feature maps weights values # x = tensor([]).cuda() # for op in layer.opsList: # x = cat((x, op.getConv().weight), dim=0) # # for op in layer.opsList: # clamp_value = op.quantize.basic_clamp(x) # conv = op.getConv() # conv.initial_clamp_value = clamp_value # # restore actquant forward function # actQuant = op.getReLU() # # set actquant to standard forward # if actQuant: # op.quantize.get_act_max_value_from_pre_calc_stats([actQuant]) # actQuant.forward = actQuant.standardForward # # print('Layer [{}] - initial_clamp_value:[{}]'.format(layerIdx, conv.initial_clamp_value.item())) # # # for op in layer.opsList: # # opModulesList = list(op.modules()) # # op.quantize.get_act_max_value_from_pre_calc_stats(opModulesList) # # op.quantize.set_weight_basis(opModulesList, None) # # # # conv = op.getConv() # # print(conv.initial_clamp_value) # # # # # updates statistics in checkpoint, in order to avoid calculating statistics when loading model from checkpoint # def updateCheckpointStatistics(self, checkpoint, path, statistics_queue): # needToUpdate = ('updated_statistics' not in checkpoint) or (checkpoint['updated_statistics'] is not True) # if needToUpdate: # # quantize model # self.quantizeUnstagedLayers() # # change self.nLayersQuantCompleted so calcStatistics() won't quantize again # nLayersQuantCompletedOrg = self.nLayersQuantCompleted # self.nLayersQuantCompleted = self.nLayers() # # load checkpoint weights # self.load_state_dict(checkpoint['state_dict']) # # calc weights statistics # self.calcStatistics(statistics_queue) # # update checkpoint # checkpoint['state_dict'] = self.state_dict() # checkpoint['updated_statistics'] = True # # save updated checkpoint # saveModel(checkpoint, path) # # restore nLayersQuantCompleted # self.nLayersQuantCompleted = nLayersQuantCompletedOrg # # return needToUpdate # def __loadStatistics(self, filename): # if exists(filename): # # stats is a list of dicts per layer # stats = loadModel(filename) # print('Loading statistics') # # for i, layer in enumerate(self.layersList): # # get layer dict # layerStats = stats[i] # # iterate over layer filters # for filter in layer.filters: # # iterate over filter modules # for m in filter.modules(): # # create module type as string # moduleType = '{}'.format(type(m)) # NICEprefix = "'NICE." # if NICEprefix in moduleType: # moduleType = moduleType.replace(NICEprefix, "'") # # # check if type string is in dict # if moduleType in layerStats: # # go over dict keys, which is the module variables # for varName in layerStats[moduleType].keys(): # v = getattr(m, varName) # # if variable has value in dict, assign it # if v is not None: # v.data = layerStats[moduleType][varName].data # # select random alpha # def chooseRandomPath(self): # for l in self.layers: # l.chooseRandomPath() # # layerIdx, alphaIdx meaning: self.layersList[layerIdx].curr_alpha_idx = alphaIdx # # def choosePathByAlphas(self, layerIdx=None, alphaIdx=None): # def choosePathByAlphas(self): # for l in self.layers: # l.choosePathByAlphas() # # if (layerIdx is not None) and (alphaIdx is not None): # layer = self.layersList[layerIdx] # layer.curr_alpha_idx = alphaIdx # def evalMode(self): # for l in self.layers: # l.evalMode() # # # calc bops ratio # return self.calcBopsRatio() # def uniformMode(self): # for l in self.layersList: # l.uniformMode(self._criterion.baselineBits) # # # calc bops ratio # return self.calcBopsRatio() # def turnOffAlphas(self): # for layer in self.layersList: # # turn off alphas gradients # layer.alphas.requires_grad = False # # self.learnable_alphas = [] # def turnOnAlphas(self): # self.learnable_alphas = [] # for layer in self.layersList: # # turn on alphas gradients # layer.alphas.requires_grad = True # self.learnable_alphas.append(layer.alphas) # # for op in layer.getOps(): # # turn off noise in op # op.noise = False # # ## ==== for tinyNet ==== # # # set pre & post quantization hooks, from now on we want to quantize these ops # # op.register_forward_pre_hook(save_quant_state) # # op.register_forward_hook(restore_quant_state) # # convert current model to discrete, i.e. keep nOpsPerLayer optimal operations per layer # def toDiscrete(self, nOpsPerLayer=1): # for layer in self.layersList: # # calc weights from alphas and sort them # weights = F.softmax(layer.alphas, dim=-1) # _, wIndices = weights.sort(descending=True) # # update layer alphas # layer.alphas = layer.alphas[wIndices[:nOpsPerLayer]] # # layer.alphas = tensor(tensor(layer.alphas.tolist()).cuda(), requires_grad=True) # layer.alphas = tensor(tensor(layer.alphas.tolist()).cuda()) # # take indices of ops we want to remove from layer # wIndices = wIndices[nOpsPerLayer:] # # convert to list # wIndices = wIndices.tolist() # # sort indices ascending # wIndices.sort() # # remove ops and corresponding bops from layer # for w in reversed(wIndices): # del layer.ops[w] # del layer.bops[w] # def loadBitwidthWeigths(self, stateDict, MaxBopsBits, bitwidth): # # check idx of MaxBopsBits inside bitwidths # maxBopsBitsIdx = bitwidth.index(MaxBopsBits) # maxBopsStateDict = OrderedDict() # opsKey = 'ops.' # for key in stateDict.keys(): # # if operation is for max bops bits idx # if opsKey in key: # keyOp_num = key.split(opsKey)[1][0] # if int(keyOp_num) == maxBopsBitsIdx: # maxBopsKey = key.replace(opsKey + keyOp_num, opsKey + '0') # maxBopsStateDict[maxBopsKey] = stateDict[key] # else: # maxBopsStateDict[key] = stateDict[key] # # self.load_state_dict(maxBopsStateDict) # def _loss(self, input, target): # totalLoss = 0.0 # nIter = min(self.nPerms, 1000) # for _ in range(nIter): # logits = self.forward(input) # # # calc alphas product # alphasProduct = 1.0 # for layer in self.layersList: # probs = F.softmax(layer.alphas) # alphasProduct *= probs[layer.curr_alpha_idx] # # permLoss = alphasProduct * self._criterion(logits, target, self.countBops()) # # permLoss = self._criterion(logits, target, self.countBops()) / nIter # permLoss.backward(retain_graph=True) # # totalLoss += permLoss.item() # # return totalLoss # def _loss(self, input, target): # # sum all paths losses * the path alphas multiplication # totalLoss = 0.0 # nIter = min(self.nPerms, 1000) # for _ in range(nIter): # # for perm in product(*self.layersPerm): # perm = [randint(0, len(layer.alphas) - 1) for layer in self.layersList] # alphasProduct = 1.0 # # set perm index in each layer # for i, p in enumerate(perm): # layer = self.layersList[i] # layer.curr_alpha_idx = p # probs = F.softmax(layer.alphas) # alphasProduct *= probs[p] # # logits = self.forward(input) # # only the alphas are changing... # permLoss = (alphasProduct * self._criterion(logits, target, self.countBops())) # permLoss.backward(retain_graph=True) # totalLoss += permLoss.item() # # # print('totalLoss:[{:.5f}]'.format(totalLoss)) # return totalLoss # # # logits = self.forward(input) # # return self._criterion(logits, target, self.countBops()) # def _loss(self, input, target): # # init how many samples per alpha # nSamples = self.nSamples # # init total loss # totalLoss = 0.0 # # init loss samples list for ALL alphas # allLossSamples = [] # for j, layer in enumerate(self.layersList): # # turn off coin toss for this layer # layer.alphas.requires_grad = False # # init layer alphas gradient # layerAlphasGrad = zeros(len(layer.alphas)).cuda() # # calc layer alphas softmax # probs = F.softmax(layer.alphas, dim=-1) # # for i, alpha in enumerate(layer.alphas): # # select the specific alpha in this layer # layer.curr_alpha_idx = i # # init loss samples list # alphaLossSamples = [] # for _ in range(nSamples): # # forward through some path in model # logits = self(input) # # alphaLoss += self._criterion(logits, target, self.countBops()).detach() # alphaLossSamples.append(self._criterion(logits, target, self.countBops()).detach()) # # # add current alpha loss samples to all loss samples list # allLossSamples.extend(alphaLossSamples) # # calc alpha average loss # alphaAvgLoss = sum(alphaLossSamples) / nSamples # layerAlphasGrad[i] = alphaAvgLoss # # add alpha loss to total loss # totalLoss += (alphaAvgLoss * probs[i]) # # # calc loss samples variance # lossVariance = [((x - alphaAvgLoss) ** 2) for x in alphaLossSamples] # lossVariance = sum(lossVariance) / (nSamples - 1) # # add alpha loss average to statistics # self.stats.containers[self.stats.alphaLossAvgKey][j][i].append(alphaAvgLoss.item()) # # add alpha loss variance to statistics # self.stats.containers[self.stats.alphaLossVarianceKey][j][i].append(lossVariance.item()) # # # turn in coin toss for this layer # layer.alphas.requires_grad = True # # set layer alphas gradient # layer.alphas.grad = layerAlphasGrad # # # add gradNorm to statistics # self.stats.containers[self.stats.gradNormKey][j].append(layerAlphasGrad.norm().item()) # # # average total loss # totalLoss /= self.nLayers() # # calc all loss samples average # nTotalSamples = len(allLossSamples) # allLossSamplesAvg = sum(allLossSamples) / nTotalSamples # # calc all loss samples variance # allLossSamples = [((x - allLossSamplesAvg) ** 2) for x in allLossSamples] # allLossSamplesVariance = (sum(allLossSamples) / (nTotalSamples - 1)).item() # # add all samples average & loss variance to statistics # self.stats.containers[self.stats.allSamplesLossAvgKey][0].append(allLossSamplesAvg) # self.stats.containers[self.stats.allSamplesLossVarianceKey][0].append(allLossSamplesVariance) # # # subtract average total loss from every alpha gradient # for layer in self.layersList: # layer.alphas.grad -= totalLoss # # calc layer alphas softmax # probs = F.softmax(layer.alphas, dim=-1) # # multiply each grad by its probability # layer.alphas.grad *= probs # # return totalLoss
[ "torch.nn.functional.softmax" ]
1.0.0
aqui-tna/darts-UNIQ
293a27b104bc0f53c6093829d1184686b788fba9
1.0
from itertools import groupby from abc import abstractmethod from torch import cat, chunk, tensor, zeros, int32 from torch.nn import ModuleList, BatchNorm2d, Conv2d from torch.distributions.multinomial import Multinomial from torch.nn import functional as F from cnn.MixedFilter import MixedFilter from cnn.block import Block from UNIQ.quantize import check_quantization from NICE.quantize import ActQuant # collects stats from forward output def collectStats(type, val): funcs = [(lambda x: x.argmin(), lambda x: x.min()), (lambda x: '', lambda x: sum(x) / len(x)), (lambda x: x.argmax(), lambda x: x.max())] res = [[['Filter#', filterFunc(val)], ['Value', '{:.5f}'.format(valueFunc(val))]] for filterFunc, valueFunc in funcs] res = [type] + res return res def postForward(self, _, output): assert (False) if self.quantized is True: # calc mean, max value per feature map to stats layerMax = tensor([output.select(1, j).max() for j in range(output.size(1))]) layerAvg = tensor([(output.select(1, j).sum() / output.select(1, j).numel()) for j in range(output.size(1))]) # save min, avg & max values for stats elements = [('Avg', layerAvg), ('Max', layerMax)] self.forwardStats = [collectStats(type, val) for type, val in elements] self.forwardStats.insert(0, ['Type', 'Min', 'Avg', 'Max']) # for i, m in enumerate(layerMax): # if m.item() <= 1E-5: # filter = self.filters[i] # conv = filter.ops[0][filter.curr_alpha_idx].op[0].weight # self.forwardStats.append([['Filter#', i], ['MaxVal', m], ['conv weights', conv]]) else: self.forwardStats = None # alphas = [[-0.55621, -0.33438, 0.99768, -0.80023], [0.29986, 0.06659, 0.44075, -1.50035], [-0.10046, 0.33549, 0.64312, -1.57129], # [0.4849, -0.3104, 0.74277, -1.61042], [0.78503, -0.93497, -0.94867], [0.09668, 0.11817, 0.20924, -1.11723], # [0.01722, 0.46502, 0.33579, -1.51118], [0.04131, -0.74829, -0.39164], [0.16032, 0.38078, 0.15881, -1.39306]] # # alphaIdx = [0] # # # def getAlphas(): # res = tensor(alphas[alphaIdx[0]]).cuda() # alphaIdx[0] = (alphaIdx[0] + 1) % len(alphas) # return res class MixedLayer(Block): def __init__(self, nFilters, createMixedFilterFunc, useResidual=False): super(MixedLayer, self).__init__() # create mixed filters self.filters = ModuleList() for _ in range(nFilters): self.filters.append(createMixedFilterFunc()) # make sure mixed filters are subclasses of MixedFilter assert (isinstance(self.filters[0], MixedFilter)) # init operations alphas (weights) self.alphas = tensor((zeros(self.numOfOps())).cuda(), requires_grad=True) # self.alphas = tensor(getAlphas(), requires_grad=True) self.alphas = self.alphas.cuda() # =========== change alphas distribution ================== if self.numOfOps() > 1: from math import log filter = self.filters[0] p = 1 / ((self.numOfOps() * 2) - 1) logVal = p / (1 - p) * (self.numOfOps() - 1) for i, op in enumerate(filter.opsList()): opBitwidth = op.getBitwidth() if opBitwidth == (8, 8) or opBitwidth == (8, None): self.alphas.data[i].fill_(log(logVal)) # init filters current partition by alphas, i.e. how many filters are for each alpha, from each quantization self.currFiltersPartition = [0] * self.numOfOps() # # set filters distribution # if self.numOfOps() > 1: # self.setAlphas([0.3125, 0.3125, 0.1875, 0.125, 0.0625]) # self.setFiltersPartition() # set forward function self.forwardFunc = self.residualForward if useResidual else self.standardForward # # register post forward hook # self.register_forward_hook(postForward) # self.forwardStats = None # set UNIQ parameters self.quantized = False self.added_noise = False def nFilters(self): return len(self.filters) def getLayers(self): return [self] def quantize(self, layerIdx): assert (self.added_noise is False) for op in self.opsList(): assert (op.noise is False) assert (op.quant is False) op.quant = True op.quantizeFunc() assert (check_quantization(op.getModule(Conv2d).weight) <= (2 ** op.bitwidth[0])) # quantize activations during training for m in op.modules(): if isinstance(m, ActQuant): m.qunatize_during_training = True self.quantized = True print('quantized layer [{}] + quantize activations during training'.format(layerIdx)) def unQuantize(self, layerIdx): assert (self.quantized is True) assert (self.added_noise is False) for op in self.opsList(): assert (op.quant is True) op.quant = False op.restore_state() # remove activations quantization during training for m in op.modules(): if isinstance(m, ActQuant): m.qunatize_during_training = False self.quantized = False print('removed quantization in layer [{}] + removed activations quantization during training'.format(layerIdx)) # just turn on op.noise flag # noise is being added in pre-forward hook def turnOnNoise(self, layerIdx): assert (self.quantized is False) for op in self.opsList(): assert (op.noise is False) op.noise = True self.added_noise = True print('turned on noise in layer [{}]'.format(layerIdx)) def turnOffNoise(self, layerIdx): assert (self.quantized is False) assert (self.added_noise is True) for op in self.opsList(): assert (op.noise is True) op.noise = False self.added_noise = False print('turned off noise in layer [{}]'.format(layerIdx)) # ratio is a list def setAlphas(self, ratio): self.alphas.data = tensor(ratio) # set filters curr_alpha_idx based on partition tensor # partition is IntTensor def setFiltersPartition(self, partition): assert (partition.sum().item() == self.nFilters()) # reset current filters partition by alphas self.currFiltersPartition = [0] * self.numOfOps() # update filters curr_alpha_idx idx = 0 for i, r in enumerate(partition): for _ in range(r): self.filters[idx].curr_alpha_idx = i self.currFiltersPartition[i] += 1 idx += 1 # set filters partition based on ratio # ratio is a tensor def __setFiltersPartitionFromRatio(self, ratio): # calc partition partition = (ratio * self.nFilters()).type(int32) # fix last ratio value to sum to nFilters if partition.sum().item() < self.nFilters(): partition[-1] = self.nFilters() - partition[:-1].sum().item() self.setFiltersPartition(partition) # set filters partition based on alphas ratio def setFiltersPartitionByAlphas(self): probs = F.softmax(self.alphas, dim=-1) self.__setFiltersPartitionFromRatio(probs) def getCurrentFiltersPartition(self): return self.currFiltersPartition # input_bitwidth is a list of bitwidth per feature map def getBops(self, input_bitwidth): bops = 0.0 # init bops map bopsMap = {} for f in self.filters: bops += f.getBops(input_bitwidth, bopsMap) return bops # returns filters current op bitwidth def getCurrentBitwidth(self): # collect filters current bitwidths bitwidths = [f.getCurrentBitwidth() for f in self.filters] # group bitwidths groups = groupby(bitwidths, lambda x: x) # create a list of tuples [bitwidth, number of filters] res = [] for _, g in groups: g = list(g) res.append([g[0], len(g)]) return res # create a list of layer output feature maps bitwidth def getCurrentOutputBitwidth(self): outputBitwidth = [f.getCurrentOutputBitwidth() for f in self.filters] return outputBitwidth def opsList(self): for filter in self.filters: for op in filter.opsList(): yield op def getAllBitwidths(self): # it doesn't matter which filter we take, the attributes are the same in all filters return self.filters[0].getAllBitwidths() def numOfOps(self): # it doesn't matter which filter we take, the attributes are the same in all filters return self.filters[0].numOfOps() def outputLayer(self): return self # select alpha based on alphas distribution def choosePathByAlphas(self): dist = Multinomial(total_count=self.nFilters(), logits=self.alphas) partition = dist.sample().type(int32) self.setFiltersPartition(partition) @abstractmethod def preResidualForward(self, x): raise NotImplementedError('subclasses must override preResidualForward()!') # operations to perform after adding residual def postResidualForward(self, x): out = x # apply ReLU if exists if self.filters[0].postResidualForward: out = [] # split out1 to chunks again x = chunk(x, self.nFilters(), dim=1) # apply selected op in each filter for i, f in enumerate(self.filters): res = f.postResidualForward(x[i]) out.append(res) # concat filters output out = cat(out, 1) return out def forward(self, x): return self.forwardFunc(self, x) # standard forward @staticmethod def standardForward(layer, x): out = layer.preResidualForward(x) out = layer.postResidualForward(out) return out # forward with residual @staticmethod def residualForward(layer, input): x, residual = input out = layer.preResidualForward(x) # add residual out += residual out = layer.postResidualForward(out) return out class MixedLayerNoBN(MixedLayer): def __init__(self, nFilters, createMixedFilterFunc, useResidual=False): super(MixedLayerNoBN, self).__init__(nFilters, createMixedFilterFunc, useResidual) # operations to perform before adding residual def preResidualForward(self, x): out = [] # apply selected op in each filter for f in self.filters: res = f(x) out.append(res) # concat filters output out = cat(out, 1) return out class MixedLayerWithBN(MixedLayer): def __init__(self, nFilters, createMixedFilterFunc, useResidual=False): super(MixedLayerWithBN, self).__init__(nFilters, createMixedFilterFunc, useResidual) # init batch norm self.bn = BatchNorm2d(nFilters) # perform the convolution operation def forwardConv(self, x): out = [] # apply selected op in each filter for f in self.filters: res = f(x) out.append(res) # concat filters output out = cat(out, 1) return out # operations to perform before adding residual def preResidualForward(self, x): out = self.forwardConv(x) # apply batch norm out = self.bn(out) return out # bitwidth list is the same for all filters, therefore we can use the 1st filter list # def getOutputBitwidthList(self): # return self.filters[0].getOutputBitwidthList() # def evalMode(self): # pass # # select random alpha # def chooseRandomPath(self): # pass # # quantize activations during training # def quantActOnTraining(self, layerIdx): # assert (self.quantized is True) # assert (self.added_noise is False) # # for op in self.opsList: # for m in op.modules(): # if isinstance(m, ActQuant): # m.qunatize_during_training = True # # print('turned on qunatize_during_training in layer [{}]'.format(layerIdx)) # # # stop quantize activations during training # def turnOnGradients(self, layerIdx): # assert (self.quantized is False) # assert (self.added_noise is False) # # for op in self.opsList: # for m in op.modules(): # if isinstance(m, ActQuant): # m.qunatize_during_training = False # # print('turned off qunatize_during_training in layer [{}]'.format(layerIdx))
[ "torch.cat", "torch.nn.ModuleList", "torch.nn.BatchNorm2d", "torch.tensor", "torch.nn.functional.softmax" ]
1.0.0
aqui-tna/darts-UNIQ
293a27b104bc0f53c6093829d1184686b788fba9
1.0
from torch import zeros, tensor, no_grad from torch.nn import functional as F from cnn.model_replicator import ModelReplicator, set_device class RandomPath(ModelReplicator): def __init__(self, model, modelClass, args, logger): super(RandomPath, self).__init__(model, modelClass, args, logger) def getModel(self, args): return args[0] def buildArgs(self, inputPerGPU, targetPerGPU, nSamplesPerModel): args = ((cModel, inputPerGPU[gpu], targetPerGPU[gpu], nSamples, gpu) for nSamples, (cModel, gpu) in zip(nSamplesPerModel, self.replications)) return args def lossPerReplication(self, args): cModel, input, target, nSamples, gpu = args # switch to process GPU set_device(gpu) assert (cModel.training is False) with no_grad(): # init total loss totalLoss = 0.0 # init loss samples list for ALL alphas allLossSamples = [] # init layers alphas grad alphasGrad = [] # save stats data gradNorm = [] alphaLossVariance = [] for layerIdx in layersIndices: layer = cModel.layersList[layerIdx] # turn off coin toss for this layer layer.alphas.requires_grad = False # init layer alphas gradient layerAlphasGrad = zeros(len(layer.alphas)).cuda(gpu) # calc layer alphas softmax probs = F.softmax(layer.alphas, dim=-1) for i, alpha in enumerate(layer.alphas): # # select the specific alpha in this layer # layer.curr_alpha_idx = i # init loss samples list alphaLossSamples = [] for _ in range(nSamples): # choose path in model based on alphas distribution, while current layer alpha is [i] cModel.choosePathByAlphas(layerIdx=layerIdx, alphaIdx=i) # forward input in model logits = cModel(input) # alphaLoss += cModel._criterion(logits, target, cModel.countBops()).detach() alphaLossSamples.append(cModel._criterion(logits, target, cModel.countBops()).detach()) # add current alpha loss samples to all loss samples list allLossSamples.extend(alphaLossSamples) # calc alpha average loss alphaAvgLoss = sum(alphaLossSamples) / nSamples layerAlphasGrad[i] = alphaAvgLoss # add alpha loss to total loss totalLoss += (alphaAvgLoss * probs[i]) # calc loss samples variance lossVariance = [((x - alphaAvgLoss) ** 2) for x in alphaLossSamples] lossVariance = sum(lossVariance) / (nSamples - 1) # add alpha loss variance to statistics alphaLossVariance.append((layerIdx, i, alphaAvgLoss.item(), lossVariance.item())) # turn in coin toss for this layer layer.alphas.requires_grad = True # add layer alphas grad to container alphasGrad.append(layerAlphasGrad) # add gradNorm to statistics gradNorm.append((layerIdx, layerAlphasGrad.norm().item())) return alphasGrad, allLossSamples, layersIndices, totalLoss, gradNorm, alphaLossVariance def processResults(self, model, results): stats = model.stats # init total loss totalLoss = tensor(0.0).cuda() # init loss samples list for ALL alphas allLossSamples = [] # process returned results for alphasGrad, partialLossSamples, layersIndices, partialLoss, gradNorm, alphaLossVariance in results: # add alphas loss samples to all loss samples list allLossSamples.extend(partialLossSamples) # calc total loss & total number of samples totalLoss += partialLoss.to(totalLoss.device) # update statistics for layerIdx, v in gradNorm: stats.containers[stats.gradNormKey][layerIdx].append(v) for layerIdx, j, avg, variance in alphaLossVariance: stats.containers[stats.alphaLossAvgKey][layerIdx][j].append(avg) stats.containers[stats.alphaLossVarianceKey][layerIdx][j].append(variance) # update layers alphas gradients for layerAlphasGrads, layerIdx in zip(alphasGrad, layersIndices): alphas = model.layersList[layerIdx].alphas alphas.grad = layerAlphasGrads.to(alphas.device) # average total loss totalLoss /= model.nLayers() # calc all loss samples average nTotalSamples = len(allLossSamples) allLossSamplesAvg = sum(allLossSamples) / nTotalSamples # calc all loss samples variance allLossSamples = [((x - allLossSamplesAvg) ** 2) for x in allLossSamples] allLossSamplesVariance = (sum(allLossSamples) / (nTotalSamples - 1)) # add all samples loss average & variance to statistics stats.containers[stats.allSamplesLossAvgKey][0].append(allLossSamplesAvg) stats.containers[stats.allSamplesLossVarianceKey][0].append(allLossSamplesVariance) # subtract average total loss from every alpha gradient for layerAlphas in model.arch_parameters(): layerAlphas.grad -= totalLoss # calc layer alphas softmax probs = F.softmax(layerAlphas, dim=-1) # multiply each grad by its probability layerAlphas.grad *= probs return totalLoss # subtract average total loss from every alpha gradient # for layer in model.layersList: # layer.alphas.grad -= totalLoss # # calc layer alphas softmax # probs = F.softmax(layer.alphas, dim=-1) # # multiply each grad by its probability # layer.alphas.grad *= probs
[ "torch.no_grad", "torch.tensor", "torch.nn.functional.softmax" ]
1.0.0
aqui-tna/darts-UNIQ
293a27b104bc0f53c6093829d1184686b788fba9
1.6
# Copyright (c) Facebook, Inc. and its affiliates. import logging import warnings import omegaconf import torch from mmf.common.dataset_loader import DatasetLoader from mmf.common.registry import registry from mmf.modules.metrics import Metrics from mmf.trainers.base_trainer import BaseTrainer from mmf.trainers.callbacks.checkpoint import CheckpointCallback from mmf.trainers.callbacks.early_stopping import EarlyStoppingCallback from mmf.trainers.callbacks.logistics import LogisticsCallback from mmf.trainers.callbacks.lr_scheduler import LRSchedulerCallback from mmf.trainers.core.callback_hook import TrainerCallbackHookMixin from mmf.trainers.core.device import TrainerDeviceMixin from mmf.trainers.core.evaluation_loop import TrainerEvaluationLoopMixin from mmf.trainers.core.profiling import TrainerProfilingMixin from mmf.trainers.core.reporting import TrainerReportingMixin from mmf.trainers.core.training_loop import TrainerTrainingLoopMixin from mmf.utils.build import build_model, build_optimizer from mmf.utils.general import print_model_parameters from omegaconf import DictConfig, OmegaConf logger = logging.getLogger(__name__) @registry.register_trainer("mmf") class MMFTrainer( TrainerCallbackHookMixin, TrainerTrainingLoopMixin, TrainerDeviceMixin, TrainerEvaluationLoopMixin, TrainerReportingMixin, TrainerProfilingMixin, BaseTrainer, ): def __init__(self, config: DictConfig): super().__init__(config) def load(self): super().load() self.load_fp16_scaler() # Callbacks self.on_init_start() # Parallize model self.parallelize_model() # Callbacks self.on_init_end() def configure_callbacks(self): self.checkpoint_callback = CheckpointCallback(self.config, self) self.early_stop_callback = EarlyStoppingCallback(self.config, self) self.logistics_callback = LogisticsCallback(self.config, self) self.lr_scheduler_callback = LRSchedulerCallback(self.config, self) # Add callbacks for execution during events self.callbacks.append(self.lr_scheduler_callback) # checkpoint_callback needs to be called after lr_scheduler_callback so that # lr_scheduler_callback._scheduler.step() happens before saving checkpoints # (otherwise the saved last_epoch in scheduler would be wrong) self.callbacks.append(self.checkpoint_callback) self.callbacks.append(self.logistics_callback) def load_datasets(self): logger.info("Loading datasets") self.dataset_loader = DatasetLoader(self.config) self.dataset_loader.load_datasets() self.train_dataset = self.dataset_loader.train_dataset self.val_dataset = self.dataset_loader.val_dataset self.test_dataset = self.dataset_loader.test_dataset self.train_loader = self.dataset_loader.train_loader self.val_loader = self.dataset_loader.val_loader self.test_loader = self.dataset_loader.test_loader def load_model(self): logger.info("Loading model") if self.config.model in self.config.model_config: attributes = self.config.model_config[self.config.model] else: warnings.warn( f"Model {self.config.model}'s config not present. " + "Continuing with empty config" ) attributes = OmegaConf.create() # Easy way to point to config for other model if isinstance(attributes, str): attributes = self.config.model_config[attributes] with omegaconf.open_dict(attributes): attributes.model = self.config.model self.model = build_model(attributes) self.model = self.model.to(self.device) def load_optimizer(self): logger.info("Loading optimizer") self.optimizer = build_optimizer(self.model, self.config) def load_metrics(self) -> None: logger.info("Loading metrics") metrics = self.config.evaluation.get("metrics", []) self.metrics = Metrics(metrics) self.metrics_params = self.metrics.required_params def load_fp16_scaler(self): if self.training_config.fp16: assert ( torch.__version__ >= "1.6" ), "Using fp16 requires torch version >- 1.6" assert self.device != torch.device("cpu"), "fp16 cannot be used on cpu" set_torch_grad_scaler = True if self.training_config.fp16 and self.distributed: try: from fairscale.optim.oss import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if isinstance(self.optimizer, OSS): self.scaler = ShardedGradScaler() set_torch_grad_scaler = False logger.info("Using FairScale ShardedGradScaler") except ImportError: logger.info("Using Pytorch AMP GradScaler") if set_torch_grad_scaler: self.scaler = torch.cuda.amp.GradScaler(enabled=self.training_config.fp16) def train(self): logger.info("===== Model =====") logger.info(self.model) print_model_parameters(self.model) if "train" not in self.run_type: self.inference() return self.on_train_start() self.training_loop() self.on_train_end() self.inference() def inference(self): dataset_type = [] if "val" in self.run_type: dataset_type.append("val") if any(rt in self.run_type for rt in ["inference", "test", "predict"]): dataset_type.append("test") for dataset in dataset_type: if self.config.evaluation.predict: self.on_prediction_start() self.prediction_loop(dataset) self.on_prediction_end() else: self.on_test_start() logger.info(f"Starting inference on {dataset} set") report, meter = self.evaluation_loop(dataset, use_tqdm=True) self.on_test_end(report=report, meter=meter)
[ "torch.cuda.amp.GradScaler", "torch.device" ]
1.6.0
Yui010206/mmf
01e7ccd664a4492f65ba10aeb3eeeafef62c3b87
1.1
# Copyright 2019 FMR LLC <[email protected]> # SPDX-License-Identifer: Apache-2.0 import numpy as np import torch from textwiser.base import BaseFeaturizer from textwiser.utils import convert, OutputType class _BaseTransformation(BaseFeaturizer): def __init__(self, wrap_list_input=True): """Initializes a Transformation. Subclasses must call this __init__ method. Parameters ---------- wrap_list_input : bool If true, any list input to fit, forward, or fit_transform functions will be stacked to a 2D tensor before the functions are called, and will be converted back to a list before being returned. """ super(_BaseTransformation, self).__init__() self.wrap_list_input = wrap_list_input @property def input_types(self): return OutputType.tensor, def _check_input(self, x): if not isinstance(x, tuple(t.value for t in self.input_types)): return convert(x, self.input_types[0]) return x def _forward(self, x): raise NotImplementedError("Transformations should implement the `_forward` method.") def fit(self, x, y=None): x = self._check_input(x) if self.wrap_list_input: if isinstance(x, list): # happens after WordEmbedding x = torch.cat(x, 0) self._fit(x, y) def _wrap_list_input(self, fn, uses_y, x, y=None): sizes = None if isinstance(x, list): # happens after WordEmbedding if len(x) == 0: return [] sizes = [0] sizes.extend([doc.shape[0] for doc in x]) x = torch.cat(x, 0) vec = fn(x, y) if uses_y else fn(x) if sizes: cs = np.cumsum(sizes) vec = [vec[cs[i]:cs[i + 1], :] for i in range(cs.shape[0] - 1)] return vec def forward(self, x): x = self._check_input(x) return self._wrap_list_input(self._forward, False, x) if self.wrap_list_input else self._forward(x) def fit_transform(self, x, y=None): x = self._check_input(x) return self._wrap_list_input(self._fit_transform, True, x, y) if self.wrap_list_input else self._fit_transform(x, y) def _fit_transform(self, x, y=None): x = self._check_input(x) self._fit(x, y) return self._forward(x)
[ "torch.cat" ]
1.1.0
vishalbelsare/textwiser
2c5bdd73c26bd3fb7bd2f324f57d99233aa9c17f
1.0
import numpy as np import pytest import torch from ignite.contrib.handlers.param_scheduler import ( ConcatScheduler, CosineAnnealingScheduler, LinearCyclicalScheduler, LRScheduler, ParamGroupScheduler, PiecewiseLinear, create_lr_scheduler_with_warmup, ) from ignite.engine import Engine, Events def test_linear_scheduler(): with pytest.raises(TypeError, match=r"Argument optimizer should be torch.optim.Optimizer"): LinearCyclicalScheduler({}, "lr", 1, 0, cycle_size=0) tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=1) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 9, max_epochs=2) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, # 0.6, 0.8, ], ) ) scheduler.load_state_dict(state_dict) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, cycle_mult=2) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=3) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ], ) ) scheduler.load_state_dict(state_dict) # With float cycle_size optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler( optimizer, "lr", start_value=1.2, end_value=0.2, cycle_size=10.00000012, cycle_mult=1.0 ) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 9, max_epochs=2) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.4, 0.6, 0.8, 1.0, # Cycle 2 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.4, 0.6, # 0.8, 1.0, ], ) ) scheduler.load_state_dict(state_dict) def test_linear_scheduler_cycle_size_two(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=2) data = [0] * 10 max_epochs = 2 simulated_values = LinearCyclicalScheduler.simulate_values( num_events=len(data) * max_epochs, param_name="lr", start_value=1, end_value=0, cycle_size=2 ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], ) ) assert lrs == pytest.approx([v for i, v in simulated_values]) def test_cosine_annealing_scheduler(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = CosineAnnealingScheduler(optimizer, "lr", 0, 1, 10) state_dict = scheduler.state_dict() data = [0] * 9 max_epochs = 2 simulated_values = CosineAnnealingScheduler.simulate_values( num_events=len(data) * max_epochs, param_name="lr", start_value=0, end_value=1, cycle_size=10 ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ 0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263, 0.5, 0.6545084971874737, 0.7938926261462365, 0.9045084971874737, 0.9755282581475768, 0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263, 0.5, 0.6545084971874737, 0.7938926261462365, # 0.9045084971874737, 0.9755282581475768 ], ) ) scheduler.load_state_dict(state_dict) assert lrs == pytest.approx([v for i, v in simulated_values]) def test_concat_scheduler_asserts(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) with pytest.raises(ValueError): ConcatScheduler(schedulers=[], durations=[]) with pytest.raises(ValueError): ConcatScheduler(schedulers=[scheduler_1], durations=[10]) with pytest.raises(TypeError): ConcatScheduler(schedulers=[scheduler_1, 12], durations=[10]) with pytest.raises(ValueError): ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[10, 5]) with pytest.raises(ValueError): ConcatScheduler(schedulers=[scheduler_1, scheduler_2, scheduler_2], durations=[15, 12.0]) with pytest.raises(ValueError): ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations="abc") with pytest.raises(ValueError): ConcatScheduler.simulate_values( num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names="abc" ) def test_concat_scheduler_state_dict(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=False) state_dict = concat_scheduler.state_dict() assert state_dict["durations"] == durations assert state_dict["_current_duration"] == durations[0] assert state_dict["_scheduler_index"] == 0 for _ in range(20): concat_scheduler(None, None) concat_scheduler.load_state_dict(state_dict) assert concat_scheduler.durations == durations assert concat_scheduler._current_duration == durations[0] assert id(concat_scheduler._current_scheduler) == id(scheduler_1) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): concat_scheduler.load_state_dict({"a": 1}) with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of concatenated schedulers"): concat_scheduler.load_state_dict({"schedulers": []}) def test_concat_scheduler_two_schedulers(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) def _test(duration_vals_as_np_int): scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] if duration_vals_as_np_int: durations = [np.int64(t) for t in durations] concat_scheduler = ConcatScheduler( schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=True ) state_dict = concat_scheduler.state_dict() data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # Cycle 1 of the LinearCyclicalScheduler 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 1 of the CosineAnnealingScheduler 0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263, 0.5, 0.6545084971874737, 0.7938926261462365, 0.9045084971874737, 0.9755282581475768, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) _test(duration_vals_as_np_int=False) _test(duration_vals_as_np_int=True) def test_concat_scheduler_two_linear(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.1, cycle_size=2) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.2, end_value=1.0, cycle_size=2) durations = [5] concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=True) state_dict = concat_scheduler.state_dict() assert concat_scheduler.get_param() == 0.0 data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # first LinearCyclicalScheduler 0.0, 0.1, 0.0, 0.1, 0.0, # second LinearCyclicalScheduler 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) def test_concat_scheduler_3_schedulers(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.5, cycle_size=20) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.45, cycle_size=10) scheduler_3 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.0, cycle_size=20) durations = [10, 5] concat_scheduler = ConcatScheduler( schedulers=[scheduler_1, scheduler_2, scheduler_3], durations=durations, save_history=True ) state_dict = concat_scheduler.state_dict() data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2, scheduler_3], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # Cycle 1 of the first LinearCyclicalScheduler 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, # Cycle 1 of the second LinearCyclicalScheduler 0.5, 0.49, 0.48, 0.47, 0.46, # Cycle 1 of the third LinearCyclicalScheduler 0.5, 0.45, 0.4, 0.35, 0.3, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) def test_save_param_history(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, save_history=True) lrs = [] def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) assert not hasattr(trainer.state, "param_history") trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) trainer.run([0] * 10, max_epochs=2) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs def test_lr_scheduler_asserts(): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) with pytest.raises(ValueError): LRScheduler(lr_scheduler) with pytest.raises(ValueError): LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler) with pytest.raises(TypeError): LRScheduler(123) def test_lr_scheduler(): def _test(torch_lr_scheduler_cls, **kwargs): tensor = torch.zeros([1], requires_grad=True) optimizer1 = torch.optim.SGD([tensor], lr=0.01) optimizer2 = torch.optim.SGD([tensor], lr=0.01) opt_state_dict1 = optimizer1.state_dict() opt_state_dict2 = optimizer2.state_dict() torch_lr_scheduler1 = torch_lr_scheduler_cls(optimizer=optimizer1, **kwargs) scheduler = LRScheduler(torch_lr_scheduler1) state_dict1 = scheduler.state_dict() torch_lr_scheduler2 = torch_lr_scheduler_cls(optimizer=optimizer2, **kwargs) state_dict2 = torch_lr_scheduler2.state_dict() def dummy_update(engine, batch): optimizer1.step() optimizer2.step() trainer = Engine(dummy_update) @trainer.on(Events.ITERATION_STARTED) def save_lr(engine): lrs.append(optimizer1.param_groups[0]["lr"]) @trainer.on(Events.ITERATION_STARTED) def save_true_lr(engine): lrs_true.append(optimizer2.param_groups[0]["lr"]) @trainer.on(Events.ITERATION_COMPLETED) def torch_lr_scheduler_step(engine): torch_lr_scheduler2.step() trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler) for _ in range(2): lrs = [] lrs_true = [] data = [0] * 10 max_epochs = 2 trainer.run(data, max_epochs=max_epochs) assert lrs_true == pytest.approx(lrs), "{}: {} ({}) vs {} ({})".format( _, lrs_true, len(lrs_true), lrs, len(lrs) ) optimizer1.load_state_dict(opt_state_dict1) scheduler.load_state_dict(state_dict1) optimizer2.load_state_dict(opt_state_dict2) torch_lr_scheduler2.load_state_dict(state_dict2) optimizer3 = torch.optim.SGD([tensor], lr=0.01) torch_lr_scheduler3 = torch_lr_scheduler_cls(optimizer=optimizer3, **kwargs) simulated_values = LRScheduler.simulate_values( num_events=len(data) * max_epochs, lr_scheduler=torch_lr_scheduler3 ) assert lrs == pytest.approx([v for i, v in simulated_values]) _test(torch.optim.lr_scheduler.StepLR, step_size=5, gamma=0.5) _test(torch.optim.lr_scheduler.ExponentialLR, gamma=0.78) # test _replicate_lr_scheduler tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.01) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.78) init_lr_scheduler_state = dict(lr_scheduler.state_dict()) copy_lr_scheduler = LRScheduler._replicate_lr_scheduler(lr_scheduler) for _ in range(10): optimizer.step() lr_scheduler.step() assert copy_lr_scheduler.state_dict() == init_lr_scheduler_state with pytest.raises(TypeError): LRScheduler._replicate_lr_scheduler(12) def test_piecewiselinear_asserts(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) with pytest.raises(ValueError): PiecewiseLinear(optimizer, "lr", milestones_values=[]) with pytest.raises(ValueError): PiecewiseLinear(optimizer, "lr", milestones_values=[(0.5,)]) with pytest.raises(ValueError): PiecewiseLinear(optimizer, "lr", milestones_values=[(10, 0.5), (0.6,)]) with pytest.raises(ValueError): PiecewiseLinear(optimizer, "lr", milestones_values=[(10, 0.5), (5, 0.6)]) def test_piecewiselinear(): def _test(milestones_as_np_int): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) milestones_values = [(5, 0.5), (15, 1.0), (25, 0.0), (35, 1.0), (40, 0.5)] if milestones_as_np_int: milestones_values = [(np.int64(t), v) for t, v in milestones_values] scheduler = PiecewiseLinear(optimizer, "lr", milestones_values=milestones_values) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 25, max_epochs=2) assert lrs == list( map( pytest.approx, [ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, ], ) ) scheduler.load_state_dict(state_dict) _test(milestones_as_np_int=True) _test(milestones_as_np_int=False) def test_simulate_and_plot_values(): import matplotlib matplotlib.use("Agg") def _test(scheduler_cls, **scheduler_kwargs): optimizer = None event = Events.ITERATION_STARTED if scheduler_cls == LRScheduler: scheduler_kwargs["optimizer"] = scheduler_kwargs["lr_scheduler"].optimizer optimizer = scheduler_kwargs["optimizer"] event = Events.ITERATION_COMPLETED elif scheduler_cls == ConcatScheduler: optimizer = scheduler_kwargs["optimizer"] del scheduler_kwargs["optimizer"] else: tensor = torch.zeros([1], requires_grad=True) scheduler_kwargs["optimizer"] = torch.optim.SGD([tensor], lr=0.1) optimizer = scheduler_kwargs["optimizer"] max_epochs = 2 data = [0] * 10 # simulated_values = scheduler_cls.simulate_values(num_events=len(data) * max_epochs, **scheduler_kwargs) scheduler = scheduler_cls(**scheduler_kwargs) lrs = [] def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(event, scheduler) trainer.add_event_handler(Events.ITERATION_STARTED, save_lr) trainer.run(data, max_epochs=max_epochs) # assert lrs == pytest.approx([v for i, v in simulated_values]) if scheduler_cls == LRScheduler or scheduler_cls == ConcatScheduler: # As internal state of torch lr scheduler has been changed the following checks will fail return # reexecute to check if no internal changes # simulated_values = scheduler_cls.simulate_values(num_events=len(data) * max_epochs, # save_history=True, # this will be removed # **scheduler_kwargs) # assert lrs == pytest.approx([v for i, v in simulated_values]) # launch plot values scheduler_cls.plot_values(num_events=len(data) * max_epochs, **scheduler_kwargs) # LinearCyclicalScheduler _test(LinearCyclicalScheduler, param_name="lr", start_value=1.0, end_value=0.0, cycle_size=10) # CosineAnnealingScheduler _test(CosineAnnealingScheduler, param_name="lr", start_value=1.0, end_value=0.0, cycle_size=10) # LRScheduler tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.1) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.5) _test(LRScheduler, lr_scheduler=torch_lr_scheduler) # ConcatScheduler = [LinearCyclicalScheduler, CosineAnnealingScheduler] scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=20) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] _test(ConcatScheduler, optimizer=optimizer, schedulers=[scheduler_1, scheduler_2], durations=durations) # ConcatScheduler = [LinearCyclicalScheduler, LRScheduler] tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=1.5) scheduler_1 = LRScheduler(torch_lr_scheduler) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.0, cycle_size=10) durations = [10] _test(ConcatScheduler, optimizer=optimizer, schedulers=[scheduler_1, scheduler_2], durations=durations) # PiecewiseLinear tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) _test( PiecewiseLinear, optimizer=optimizer, param_name="lr", milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)], ) def test_create_lr_scheduler_with_warmup(): with pytest.raises(TypeError, match=r"Argument lr_scheduler should be a subclass of"): create_lr_scheduler_with_warmup(12, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=10) t1 = torch.zeros([1], requires_grad=True) # A) opt lr != warmup_end_value optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) with pytest.raises(ValueError, match=r"Argument warmup_duration should be at least 2 events"): create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=1 ) with pytest.raises(ValueError, match=r"Argument warmup_duration should be at least 2 events"): create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration="abc" ) with pytest.raises(TypeError, match=r"Argument output_simulated_values should be a list of None"): simulated_values = () create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=10, output_simulated_values=simulated_values, ) def _test(lr_scheduler, optimizer, warmup_start_value, warmup_end_value, warmup_duration, warmup_end_next_value): num_iterations = 10 max_epochs = 20 simulated_values = [None] * (num_iterations * max_epochs) scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=warmup_start_value, warmup_end_value=warmup_end_value, warmup_duration=warmup_duration, output_simulated_values=simulated_values, ) if warmup_end_value is None: warmup_end_value = optimizer.param_groups[0]["lr"] state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @trainer.on(Events.ITERATION_STARTED) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) data = [0] * num_iterations for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([v for i, v in simulated_values]) assert lrs[0] == pytest.approx(warmup_start_value), "lrs={}".format(lrs[: warmup_duration + num_iterations]) assert lrs[warmup_duration - 1] == pytest.approx(warmup_end_value), "lrs={}".format( lrs[: warmup_duration + num_iterations] ) assert lrs[warmup_duration] == pytest.approx(warmup_end_next_value), "lrs={}".format( lrs[: warmup_duration + num_iterations] ) scheduler.load_state_dict(state_dict) t1 = torch.zeros([1], requires_grad=True) # A) opt lr != warmup_end_value optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) _test(torch_lr_scheduler, optimizer, 0.01, 0.05, 10, 0.2) optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) _test(torch_lr_scheduler, optimizer, 0.01, 0.05, 2, 0.2) # B) opt lr == warmup_end_value optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) _test(torch_lr_scheduler, optimizer, 0.01, 0.2, 10, 0.2 * 0.98) optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) _test(torch_lr_scheduler, optimizer, 0.01, 0.2, 2, 0.2 * 0.98) # C) lr_scheduler start_value != warmup_end_value t1 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([t1], lr=0.0) lr_scheduler = LinearCyclicalScheduler( optimizer=optimizer, param_name="lr", start_value=0.8, end_value=0.0, cycle_size=10 ) _test(lr_scheduler, optimizer, 0.01, 0.05, 10, 0.8) optimizer = torch.optim.SGD([t1], lr=0.0) lr_scheduler = LinearCyclicalScheduler( optimizer=optimizer, param_name="lr", start_value=0.8, end_value=0.0, cycle_size=10 ) _test(lr_scheduler, optimizer, 0.01, 0.05, 2, 0.8) # D) lr_scheduler start_value == warmup_end_value t1 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([t1], lr=0.0) lr_scheduler = LinearCyclicalScheduler( optimizer=optimizer, param_name="lr", start_value=0.8, end_value=0.0, cycle_size=10 ) _test(lr_scheduler, optimizer, 0.01, 0.8, 10, 0.8 - (0.8 / 5.0)) optimizer = torch.optim.SGD([t1], lr=0.0) lr_scheduler = LinearCyclicalScheduler( optimizer=optimizer, param_name="lr", start_value=0.8, end_value=0.0, cycle_size=10 ) _test(lr_scheduler, optimizer, 0.01, 0.8, 2, 0.8 - (0.8 / 5.0)) # E) warmup_end_value is None: fall back to case B) optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) _test(torch_lr_scheduler, optimizer, 0.01, None, 10, 0.2 * 0.98) def test_create_lr_scheduler_with_warmup_on_combined_scheduler(): # Test with a complex scheduler def _test(save_history): tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) max_epochs = 25 lr_max_value = 0.4 num_iterations_per_epoch = 128 num_iterations = max_epochs * num_iterations_per_epoch warmup_duration = 5 * num_iterations_per_epoch cooldown_duration = 5 * num_iterations_per_epoch scheduler_1 = LinearCyclicalScheduler( optimizer, "lr", start_value=lr_max_value, end_value=lr_max_value * 0.9, cycle_size=(num_iterations - warmup_duration - cooldown_duration) * 2, ) scheduler_2 = LinearCyclicalScheduler( optimizer, "lr", start_value=lr_max_value, end_value=0.0, cycle_size=cooldown_duration * 2 ) lr_scheduler = ConcatScheduler( schedulers=[scheduler_1, scheduler_2], durations=[num_iterations - warmup_duration - cooldown_duration], save_history=False, ) lr_values = [None] * num_iterations scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=0.0, warmup_end_value=lr_max_value, warmup_duration=warmup_duration, save_history=save_history, output_simulated_values=lr_values, ) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) @trainer.on(Events.ITERATION_COMPLETED) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) data = [0] * num_iterations_per_epoch for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([v for i, v in lr_values]) if save_history: param_history = trainer.state.param_history["lr"] assert lrs == pytest.approx([v[0] for v in param_history]) scheduler.load_state_dict(state_dict) _test(save_history=False) _test(save_history=True) def test_create_lr_scheduler_with_warmup_with_real_model(dummy_model_factory): model = dummy_model_factory(with_grads=False, with_frozen_layer=False) init_lr = 0.01 optimizer = torch.optim.SGD(model.parameters(), lr=init_lr) scaled_lr = 0.02 warmup_duration = 5 step_size = 2 gamma = 0.97 output_simulated_values = [None] * 50 create_lr_scheduler_with_warmup( torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma), warmup_start_value=0.0, warmup_end_value=scaled_lr, warmup_duration=warmup_duration, output_simulated_values=output_simulated_values, ) assert output_simulated_values[0] == [0, 0.0] assert output_simulated_values[warmup_duration - 1] == [warmup_duration - 1, scaled_lr] assert output_simulated_values[warmup_duration] == [warmup_duration, init_lr] v = [warmup_duration + step_size, init_lr * gamma] assert output_simulated_values[warmup_duration + step_size] == v def test_param_group_scheduler_asserts(): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler1 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=0, start_value=1.0, end_value=0.0, cycle_size=10 ) lr_scheduler2 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=1, start_value=1.0, end_value=0.0, cycle_size=10 ) with pytest.raises(ValueError): ParamGroupScheduler(schedulers=[0, 1, 2], names=["a", "b", "c"]) with pytest.raises(ValueError): ParamGroupScheduler(schedulers=[lr_scheduler1, "2"], names=["a", "b"]) with pytest.raises(ValueError): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names="ab") with pytest.raises(ValueError): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a"]) scheduler = ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a", "b"]) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): scheduler.load_state_dict({"a": 1}) with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of param group schedulers"): scheduler.load_state_dict({"schedulers": []}) with pytest.raises( ValueError, match=r"Name of scheduler from input state dict does not " r"correspond to required one" ): scheduler.load_state_dict({"schedulers": [("a", lr_scheduler1.state_dict()), ("bad_name", {})]}) def test_param_group_scheduler(): def _test(lr_schedulers, optimizer): num_iterations = 10 max_epochs = 20 scheduler = ParamGroupScheduler(lr_schedulers, names=["s_{}".format(i) for i in range(len(lr_schedulers))]) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) @trainer.on(Events.ITERATION_COMPLETED) def save_lr(engine): lrs.append((optimizer.param_groups[0]["lr"], optimizer.param_groups[1]["lr"])) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) data = [0] * num_iterations for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert [lr[0] for lr in lrs] == pytest.approx([lr[1] for lr in lrs]) scheduler.load_state_dict(state_dict) t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler1 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=0, start_value=1.0, end_value=0.0, cycle_size=10 ) lr_scheduler2 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=1, start_value=1.0, end_value=0.0, cycle_size=10 ) _test([lr_scheduler1, lr_scheduler2], optimizer)
[ "torch.zeros", "torch.optim.lr_scheduler.StepLR", "torch.optim.SGD", "torch.optim.lr_scheduler.ExponentialLR", "torch.ones" ]
1.0
jonrbates/ignite
15eeb8791a2e0c2f55265e1f6b91f91dc35286c5
1.0
import torch from ignite.contrib.metrics.regression._base import _BaseRegression from ignite.exceptions import NotComputableError class GeometricMeanAbsoluteError(_BaseRegression): r""" Calculates the Geometric Mean Absolute Error. :math:`\text{GMAE} = \exp(\frac{1}{n}\sum_{j=1}^n\ln(|A_j - P_j|))` where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - `update` must receive output of the form `(y_pred, y)` or `{'y_pred': y_pred, 'y': y}`. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 """ def reset(self): self._sum_of_errors = 0.0 self._num_examples = 0 def _update(self, output): y_pred, y = output errors = torch.log(torch.abs(y.view_as(y_pred) - y_pred)) self._sum_of_errors += torch.sum(errors) self._num_examples += y.shape[0] def compute(self): if self._num_examples == 0: raise NotComputableError( "GeometricMeanAbsoluteError must have at " "least one example before it can be computed." ) return torch.exp(self._sum_of_errors / self._num_examples).item()
[ "torch.exp", "torch.sum" ]
1.0
jonrbates/ignite
15eeb8791a2e0c2f55265e1f6b91f91dc35286c5
1.1
import torch import torch.nn as nn import torch.nn.functional as F from ..registry import LOSSES from .utils import weight_reduce_loss from icecream import ic def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None): # element-wise losses loss = F.cross_entropy(pred, label, reduction='none') # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_binary_labels(labels, label_weights, label_channels): bin_labels = labels.new_full((labels.size(0), label_channels), 0) inds = torch.nonzero(labels >= 1).squeeze() if inds.numel() > 0: bin_labels[inds, labels[inds] - 1] = 1 if label_weights is None: bin_label_weights = None else: bin_label_weights = label_weights.view(-1, 1).expand( label_weights.size(0), label_channels) return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None): if pred.dim() != label.dim(): label, weight = _expand_binary_labels(label, weight, pred.size(-1)) # weighted element-wise losses if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None): # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, reduction='mean')[None] @LOSSES.register_module class CrossEntropyLoss(nn.Module): def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', loss_weight=1.0): super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.nonzero", "torch.nn.functional.cross_entropy", "torch.arange" ]
1.1
cizhenshi/mmdetection
b0fe89677020ebe9e6a736b98d3e791ca0e6536d
1.4
import argparse import os import sys import time import numpy as np import torch import torch.nn as nn import torch.optim as optim sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from models import curves_pam from utils import utils, alignment, data import models import definitions import copy parser = argparse.ArgumentParser(description='Trains a curve between two neural networks using PAM.') parser.add_argument('--dir', type=str, default='model_dicts/curve_pam_models/', metavar='DIR', help='directory for saving curve models (default: model_dicts/curve_pam_models/)') parser.add_argument('--dir2', type=str, default='model_data/training/curve_pam_models/', metavar='DIR', help='directory for saving curve models data (default: model_data/training/curve_pam_models/)') parser.add_argument('--data_path', type=str, default='data/', metavar='PATH', help='path to datasets location (default: data/)') parser.add_argument('--dir_models', type=str, default='model_dicts/basic_models/', metavar='ENDPOINTS', help='directory to model dicts for the curve endpoints. (default: model_dicts/basic_models/)') parser.add_argument('--dir_alignment', type=str, default='model_dicts/paired_models/', metavar='DIR', help='directory to alignments between the endpoint models (default: model_dicts/paired_models/)') parser.add_argument('--dataset', type=str, default='CIFAR10', metavar='DATASET', help='dataset name (default: CIFAR10)') parser.add_argument('--use_test', action='store_true', default=True, help='switches between validation and test set (default: True)') parser.add_argument('--transform', type=str, default='TinyTen', metavar='TRANSFORM', help='transform name (default: TinyTen)') parser.add_argument('--batch_size', type=int, default=128, metavar='N', help='input batch size (default: 128)') parser.add_argument('--num-workers', type=int, default=4, metavar='N', help='number of workers (default: 4)') parser.add_argument('--model', type=str, default='TinyTen', metavar='MODEL', help='model name (default: None)') parser.add_argument('--curve', type=str, default='Bezier', metavar='CURVE', help='curve type to use (default: Bezier)') parser.add_argument('--num_bends', type=int, default=3, metavar='N', help='number of curve bends (default: 3)') parser.add_argument('--fix_start', dest='fix_start', action='store_true', default=True, help='fix start point (default: True)') parser.add_argument('--fix_end', dest='fix_end', action='store_true', default=True, help='fix end point (default: True)') parser.set_defaults(init_linear=True) parser.add_argument('--init_linear_off', dest='init_linear', action='store_false', help='turns off linear initialization of intermediate points (default: on)') parser.add_argument('--resume', type=str, default=None, metavar='CKPT', help='checkpoint to resume training from (default: None)') parser.add_argument('--outer_iters', type=int, default=1, metavar='N', help='number of PAM iterations to train (default: 1)') parser.add_argument('--inner_iters_perm', type=int, default=20, metavar='N', help='number of epochs to train permutation for each subiteration. (default: 20)') parser.add_argument('--inner_iters_phi', type=int, default=250, metavar='N', help='number of epochs to train curve parameters for each subiteration. (default: 250)') parser.add_argument('--save_freq', type=int, default=270, metavar='N', help='save frequency (default: 270)') parser.add_argument('--lr', type=float, default=1E-1, metavar='LR', help='initial learning rate (default: 0.01)') parser.add_argument('--wd', type=float, default=5e-4, metavar='WD', help='weight decay (default: 5e-4)') parser.add_argument('--lr_decay', type=float, default=0.9996, help='Learning Rate Decay for SGD') parser.add_argument('--lr_drop', type=int, default=20, help='Number of epochs required to decay learning rate') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--seed_a', type=int, default=None, metavar='S', help='random seed for model 0 (default: None)') parser.add_argument('--seed_b', type=int, default=None, metavar='S', help='random seed for model 1(default: None)') parser.add_argument('--epochs_model', type=int, default=200, metavar='EPOCHS', help='Number of epochs the models were trained for') parser.add_argument('--alignment', type=str, default='', help='specify an alignment if the models are to be aligned before curve finding (default: None)') parser.add_argument('--val_freq', nargs='+', type=int, default=[20, 250], help='the rate in epochs at which to evaluate the model on the validation set. (default: [20, 250])') args = parser.parse_args() args.dir = ('%s%s/%s/' % (args.dir, args.model, args.dataset)) args.dir2 = ('%s%s/%s/' % (args.dir2, args.model, args.dataset)) args.dir_models = ('%s%s/%s/' % (args.dir_models, args.model, args.dataset)) args.dir_alignment = ('%s%s/%s/' % (args.dir_alignment, args.model, args.dataset)) project_root = definitions.get_project_root() os.chdir(project_root) os.makedirs(args.dir, exist_ok=True) os.makedirs(args.dir2, exist_ok=True) print('Arguments') for arg in vars(args): print('%s: %s' % (arg, str(getattr(args, arg)))) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") np.random.seed(args.seed) torch.backends.cudnn.benchmark = True torch.manual_seed(args.seed) if use_cuda: torch.cuda.manual_seed(args.seed) loaders, num_classes = data.loaders( args.dataset, args.data_path, args.batch_size, args.num_workers, args.transform, args.use_test, test_batch_size=512 ) model_paths = ['%scheckpoint_seed_%02d-%d.pt' % (args.dir_models, args.seed_a, args.epochs_model), '%scheckpoint_seed_%02d-%d.pt' % (args.dir_models, args.seed_b, args.epochs_model)] state_0 = torch.load(model_paths[0], map_location=device) state_1 = torch.load(model_paths[1], map_location=device) architecture = getattr(models, args.model) model_0 = architecture.base(num_classes=num_classes, device=device, **architecture.kwargs) model_0.load_state_dict(state_0['model_state']) model_1 = architecture.base(num_classes=num_classes, device=device, **architecture.kwargs) model_1.load_state_dict(state_1['model_state']) if args.alignment is not None and args.alignment != '' and args.alignment != 'pam': matching = np.load('%smatch_%s_seeds_%02d_%02d.npy' % (args.dir_alignment, args.alignment, args.seed_a, args.seed_b), allow_pickle=True) if args.model == 'ResNet32': model_1, _ = alignment.align_models_resnet(model_1, matching) elif args.model == 'GoogLeNet': model_1.align_inception(matching) else: model_1 = alignment.align_models(model_1, matching) model_1.to(device) else: matching = None if args.model == 'GoogLeNet': matching_ref = np.load('%smatch_%s_seeds_%02d_%02d.npy' % (args.dir_alignment, 'corr', args.seed_a, args.seed_b), allow_pickle=True) else: matching_ref = None curve = getattr(curves_pam, args.curve) model = curves_pam.CurveNet( num_classes, device, curve, architecture.curve, args.num_bends, args.fix_start, args.fix_end, architecture_kwargs=architecture.kwargs, act_ref=matching_ref ) perm_params = nn.ParameterList() for param in model.permutations.parameters(): if param.requires_grad: perm_params.append(param) optimizer_perm = optim.SGD( perm_params, lr=(args.lr * 5E-1)) optimizer_phi = optim.SGD( filter(lambda param: param.requires_grad, model.curve_learnable_params), lr=args.lr, momentum=0.9, weight_decay=args.wd if args.curve is None else 0.0, nesterov=True) lambda_perm = lambda epoch: 0.5 ** (epoch // 20) * args.lr_decay ** epoch lambda_phi = lambda epoch: 0.5 ** (epoch // args.lr_drop) * args.lr_decay ** epoch scheduler_perm = optim.lr_scheduler.LambdaLR(optimizer_perm, lr_lambda=lambda_perm) scheduler_phi = optim.lr_scheduler.LambdaLR(optimizer_phi, lr_lambda=lambda_phi) if args.resume is None: model.import_base_parameters(model_0, 0) model.import_base_parameters(model_1, 2) if args.init_linear: print('Linear initialization.') model.init_zero() start_epoch = 1 model.to(device) model_turningpt = architecture.base(num_classes=num_classes, device=device) model.export_base_parameters(model_turningpt, 1) if args.model == 'GoogLeNet': criterion = utils.googlenet_criterion else: criterion = nn.CrossEntropyLoss() regularizer = None if args.curve is None else curves_pam.l2_regularizer(args.wd) if args.val_freq is None: args.val_freq = np.nan total_iters = args.outer_iters * (args.inner_iters_perm + args.inner_iters_phi) acc_train = np.ones(total_iters + 1) * np.nan acc_test = np.ones(total_iters + 1) * np.nan loss_train = np.ones(total_iters + 1) * np.nan loss_test = np.ones(total_iters + 1) * np.nan has_bn = utils.check_bn(model) lr = args.lr change_P = np.ones(total_iters + 1) * np.nan number_batches = len(loaders['test']) loss_time = np.ones([total_iters+1, number_batches]) * np.nan acc_time = np.ones([total_iters+1, number_batches]) * np.nan if args.val_freq[0] is None: args.val_freq[0] = np.nan if args.val_freq[1] is None: args.val_freq[1] = np.nan print('Beginning training') for iter in range(start_epoch, args.outer_iters + 1): params_before = [None] * len(optimizer_perm.param_groups[0]['params']) for idx, param in enumerate(optimizer_perm.param_groups[0]['params']): params_before[idx] = param.clone().detach() for epoch in range(1, args.inner_iters_perm + 1): for param in optimizer_perm.param_groups[0]['params']: param.requires_grad = True for param in optimizer_phi.param_groups[0]['params']: param.requires_grad = False test_res = {'loss': np.nan, 'accuracy': np.nan, 'nll': np.nan, 'loss_time': np.nan, 'acc_time': np.nan} time_ep = time.time() if args.curve is None or not has_bn or epoch % args.val_freq[0] == 1 or args.val_freq[0] == 1: test_res = utils.test_perm(loaders['test'], model, criterion, regularizer=regularizer, train_loader=loaders['train'], bn_eval=False, samp_t=True) idx = scheduler_perm.last_epoch + scheduler_phi.last_epoch loss_test[idx] = test_res['loss'] acc_test[idx] = test_res['accuracy'] loss_time[idx, :] = test_res['loss_time'] acc_time[idx, :] = test_res['acc_time'] np.set_printoptions(precision=2) np.set_printoptions(suppress=True) train_res = utils.train_perm(loaders['train'], model, optimizer_perm, scheduler_perm, criterion, params_old=params_before, regularizer=None, nu=1E3, proj_flag=False, pen_flag=True, lp_pen=None, tqdm_summary=False) scheduler_perm.step() time_ep = time.time() - time_ep print('Outer Iteration %2d, Permutation Iteration %2d, Training Loss: %.3E, Training Accuracy: %.2f, ' 'Validation Loss: %.3E, Validation Accuracy: %.2f, Time Elapsed: %.2fs' % (iter, scheduler_perm.last_epoch, train_res['loss'], train_res['accuracy'], test_res['nll'], test_res['accuracy'], time_ep)) idx = scheduler_perm.last_epoch + scheduler_phi.last_epoch loss_train[idx] = train_res['loss'] acc_train[idx] = train_res['accuracy'] print('Doubly Stochastic Matrix', optimizer_perm.param_groups[0]['params'][0].data.cpu().detach().numpy()) utils.sample_permutation(model, optimizer_perm, loaders['train'], loaders['train'], criterion, params_before, k=32) print('Permutation Sampled', optimizer_perm.param_groups[0]['params'][0].data.cpu().detach().numpy()) with torch.no_grad(): bb = [] for param, param_o in zip(optimizer_perm.param_groups[0]['params'], params_before): bb.append(torch.sum(param * param_o).item()) print(bb) params_before = [None] * len(optimizer_phi.param_groups[0]['params']) for idx, param in enumerate(optimizer_phi.param_groups[0]['params']): params_before[idx] = param.detach().clone() for epoch in range(1, args.inner_iters_phi + 1): for param in optimizer_perm.param_groups[0]['params']: param.requires_grad = False for param in optimizer_phi.param_groups[0]['params']: param.requires_grad = True test_res = {'loss': np.nan, 'accuracy': np.nan, 'nll': np.nan} time_ep = time.time() if args.curve is None or not has_bn or epoch % args.val_freq[1] == 1 or args.val_freq[1] == 1: test_res = utils.test_perm(loaders['test'], model, criterion, regularizer=regularizer, train_loader=loaders['train'], bn_eval=False, samp_t=True) idx = scheduler_perm.last_epoch + scheduler_phi.last_epoch loss_test[idx] = test_res['loss'] acc_test[idx] = test_res['accuracy'] loss_time[idx, :] = test_res['loss_time'] acc_time[idx, :] = test_res['acc_time'] train_res = utils.train_perm(loaders['train'], model, optimizer_phi, scheduler_phi, criterion, params_old=params_before, regularizer=regularizer, nu=1E3) scheduler_phi.step() time_ep = time.time() - time_ep print('Outer Iteration %2d, Curve Iteration %2d, Training Loss: %.3E, Training Accuracy: %.2f, ' 'Validation Loss: %.3E, Validation Accuracy: %.2f, Time Elapsed: %.2fs' % (iter, scheduler_phi.last_epoch, train_res['loss'], train_res['accuracy'], test_res['nll'], test_res['accuracy'], time_ep)) idx = scheduler_perm.last_epoch + scheduler_phi.last_epoch loss_train[idx] = train_res['loss'] acc_train[idx] = train_res['accuracy'] test_res = utils.test_perm(loaders['test'], model, criterion, regularizer, train_loader=loaders['train'], bn_eval=False, samp_t=True) loss_test[idx] = test_res['loss'] acc_test[idx] = test_res['accuracy'] loss_time[idx, :] = test_res['loss_time'] acc_time[idx, :] = test_res['acc_time'] if args.model == 'GoogLeNet': pam_perm = [] for perm in model.permutations[1:-1]: if len(perm) == 1: pam_perm.append(perm[0].cpu().numpy()) else: sub_list = [] for sub_perm in perm: sub_list.append(sub_perm.cpu().numpy()) pam_perm.append(sub_list) else: pam_perm = [torch.nonzero(i)[:, 1].cpu().numpy() for i in model.permutations] pam_perm = pam_perm[1:-1] if matching is not None: pam_perm = [match_og[match_perm] for (match_og, match_perm) in zip(matching, pam_perm)] model.export_base_parameters(model_turningpt, 1) model_turningpt_fin = copy.deepcopy(model_turningpt) if args.model == 'GoogLeNet': model.weight_permutation(model_1) else: model.weight_permutation() model.init_linear() model.export_base_parameters(model_turningpt, 1) for param_0, param_1 in zip(model_turningpt_fin.parameters(), model_turningpt.parameters()): param_0.data += param_1.data utils.save_checkpoint( args.dir, total_iters, name='checkpoint_align_pam_%s_seeds_%02d_%02d' % (args.alignment, args.seed_a, args.seed_b), model_state=model_turningpt_fin.state_dict(), optimizer_state_perm=optimizer_perm.state_dict(), optimizer_state_phi=optimizer_phi.state_dict() ) np.save('%smatch_pam_%s_seeds_%02d_%02d.npy' % (args.dir_alignment, args.alignment, args.seed_a, args.seed_b), pam_perm) curve_data = {'acc_train': acc_train, 'loss_train': loss_train, 'acc_test': acc_test, 'loss_test': loss_test, 'iters_perm': args.inner_iters_perm, 'iters_phi': args.inner_iters_phi, 'loss_time': loss_time, 'acc_time': acc_time, 'change_perm': change_P} np.save('%scurve_align_pam_%s_seeds_%02d_%02d.npy' % (args.dir2, args.alignment, args.seed_a, args.seed_b), curve_data)
[ "torch.device", "torch.nonzero", "torch.nn.ParameterList", "torch.cuda.manual_seed", "torch.no_grad", "torch.optim.SGD", "torch.manual_seed", "torch.cuda.is_available", "torch.load", "torch.optim.lr_scheduler.LambdaLR", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.4.0
IBM/NeuronAlignment
5b82b60666db1fac72e53db07529a3328ee549c4
1.1
import os from argparse import Namespace import numpy as np import torch # from pl_examples import LightningTemplateModel from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TestTubeLogger, TensorBoardLogger from tests.base import LightningTestModel, EvalModelTemplate from tests.base.datasets import PATH_DATASETS # generate a list of random seeds for each test RANDOM_PORTS = list(np.random.randint(12000, 19000, 1000)) ROOT_SEED = 1234 torch.manual_seed(ROOT_SEED) np.random.seed(ROOT_SEED) RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000)) ROOT_PATH = os.path.abspath(os.path.dirname(__file__)) def assert_speed_parity(pl_times, pt_times, num_epochs): # assert speeds max_diff_per_epoch = 0.9 pl_times = np.asarray(pl_times) pt_times = np.asarray(pt_times) diffs = pl_times - pt_times diffs = diffs / num_epochs assert np.alltrue(diffs < max_diff_per_epoch), \ f"lightning was slower than PT (threshold {max_diff_per_epoch})" def run_model_test_no_loggers(trainer_options, model, min_acc=0.50): # save_dir = trainer_options['default_root_dir'] # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(trainer.logger, trainer.checkpoint_callback.dirpath, path_expt=trainer_options.get('default_root_dir')) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(dataloader, pretrained_model, min_acc=min_acc) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() def run_model_test(trainer_options, model, on_gpu=True): save_dir = trainer_options['default_root_dir'] # logger file to get meta logger = get_default_testtube_logger(save_dir, False) # logger file to get weights checkpoint = init_checkpoint_callback(logger) # add these to the trainer options trainer_options['checkpoint_callback'] = checkpoint trainer_options['logger'] = logger # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(logger, trainer.checkpoint_callback.dirpath) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] [run_prediction(dataloader, pretrained_model) for dataloader in test_loaders] if trainer.use_ddp or trainer.use_ddp2: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \ trainer.init_optimizers(pretrained_model) # test HPC loading / saving trainer.hpc_save(save_dir, logger) trainer.hpc_load(save_dir, on_gpu=on_gpu) def get_default_hparams(continue_training=False, hpc_exp_number=0): _ = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) args = { 'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28 * 28, 'learning_rate': 0.001 * 8, 'optimizer_name': 'adam', 'data_root': PATH_DATASETS, 'out_features': 10, 'hidden_dim': 1000, } if continue_training: args['test_tube_do_checkpoint_load'] = True args['hpc_exp_number'] = hpc_exp_number hparams = Namespace(**args) return hparams def get_default_model(lbfgs=False): # set up model with these hyperparams hparams = get_default_hparams() if lbfgs: setattr(hparams, 'optimizer_name', 'lbfgs') setattr(hparams, 'learning_rate', 0.002) model = LightningTestModel(hparams) return model, hparams def get_default_testtube_logger(save_dir, debug=True, version=None): # set up logger object without actually saving logs logger = TestTubeLogger(save_dir, name='lightning_logs', debug=debug, version=version) return logger def get_data_path(expt_logger, path_dir=None): # some calls contain only experiment not complete logger expt = expt_logger.experiment if hasattr(expt_logger, 'experiment') else expt_logger # each logger has to have these attributes name, version = expt_logger.name, expt_logger.version # only the test-tube experiment has such attribute if hasattr(expt, 'get_data_path'): return expt.get_data_path(name, version) # the other experiments... if not path_dir: path_dir = ROOT_PATH path_expt = os.path.join(path_dir, name, 'version_%s' % version) # try if the new sub-folder exists, typical case for test-tube if not os.path.isdir(path_expt): path_expt = path_dir return path_expt def load_model(exp, root_weights_dir, module_class=LightningTestModel, path_expt=None): # load trained model path_expt_dir = get_data_path(exp, path_dir=path_expt) tags_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_CSV_TAGS) checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x] weights_dir = os.path.join(root_weights_dir, checkpoints[0]) trained_model = module_class.load_from_checkpoint( checkpoint_path=weights_dir, tags_csv=tags_path ) assert trained_model is not None, 'loading model failed' return trained_model def load_model_from_checkpoint(root_weights_dir, module_class=LightningTestModel): # load trained model checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x] weights_dir = os.path.join(root_weights_dir, checkpoints[0]) trained_model = module_class.load_from_checkpoint( checkpoint_path=weights_dir, ) assert trained_model is not None, 'loading model failed' return trained_model def run_prediction(dataloader, trained_model, dp=False, min_acc=0.5): # run prediction on 1 batch for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) if dp: output = trained_model(batch, 0) acc = output['val_acc'] acc = torch.mean(acc).item() else: y_hat = trained_model(x) # acc labels_hat = torch.argmax(y_hat, dim=1) acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) acc = torch.tensor(acc) acc = acc.item() assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})" def assert_ok_model_acc(trainer, key='test_acc', thr=0.5): # this model should get 0.80+ acc acc = trainer.training_tqdm_dict[key] assert acc > thr, f"Model failed to get expected {thr} accuracy. {key} = {acc}" def reset_seed(): seed = RANDOM_SEEDS.pop() torch.manual_seed(seed) np.random.seed(seed) def set_random_master_port(): port = RANDOM_PORTS.pop() os.environ['MASTER_PORT'] = str(port) def init_checkpoint_callback(logger, path_dir=None): exp_path = get_data_path(logger, path_dir=path_dir) ckpt_dir = os.path.join(exp_path, 'checkpoints') os.mkdir(ckpt_dir) checkpoint = ModelCheckpoint(ckpt_dir) return checkpoint
[ "torch.manual_seed", "torch.tensor", "torch.mean", "torch.argmax", "torch.sum" ]
1.1
gangiman/pytorch-lightning
9b31272cf0f3079a244944096b4a81eec20fe555
1.4
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data import torch from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt self.root = opt.dataroot @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) flip = random.random() > 0.5 return {'crop_pos': (x, y), 'flip': flip} def get_transform(opt, params=None, noise=False, grayscale=False, method=Image.BICUBIC): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, method)) if 'crop' in opt.preprocess: if params is None: transform_list.append(transforms.RandomCrop(opt.crop_size)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) transform_list.append(transforms.ToTensor()) if noise: transform_list.append(transforms.ColorJitter(brightness=(0.8, 1.2), contrast=(0.8, 1.2), saturation=(0.8, 1.2), hue=(-0.05, 0.05))) transform_list.append(transforms.Lambda(lambda x: coarse_dropout(x))) transform_list.append(transforms.Lambda(lambda x: x + torch.rand(x.shape)*0.05)) if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img __print_size_warning(ow, oh, w, h) return img.resize((w, h), method) def __scale_width(img, target_size, crop_size, method=Image.BICUBIC): ow, oh = img.size if ow == target_size and oh >= crop_size: return img w = target_size h = int(max(target_size * oh / ow, crop_size)) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img def __print_size_warning(ow, oh, w, h): """Print warning information about image size(only print once)""" if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True def coarse_dropout(image, count=200, max_size=0.05): dim = image.shape[1] for k in range(count): x = (torch.rand(1) * image.shape[1]).int() y = (torch.rand(1) * image.shape[2]).int() height = (dim* max_size * torch.rand(1)) ya = torch.max(torch.tensor(0), y - height // 2).int() yb = torch.min(torch.tensor(dim), y + height // 2).int() xa = torch.max(torch.tensor(0), x - height // 2).int() xb = torch.min(torch.tensor(dim), x + height // 2).int() one = image[:, ya:yb, 0:xa] two = torch.rand([3, yb - ya, xb - xa]) * 1 three = image[:, ya:yb, xb:dim] middle = torch.cat([one, two, three], axis=2) image = torch.cat([image[:, 0:ya, :], middle, image[:, yb:dim, :]], axis=1) image = torch.reshape(image, [3, dim, dim]) return image
[ "torch.reshape", "torch.rand", "torch.cat", "torch.tensor" ]
1.4.0
loerssoni/pytorch-CycleGAN-and-pix2pix
289287f9e4bd948a306627b32fc6b57b78420121
0.4
""" LOAD DATA from file. """ # pylint: disable=C0301,E1101,W0622,C0103,R0902,R0915 ## import os import torch import numpy as np import torchvision.datasets as datasets from torchvision.datasets import MNIST from torchvision.datasets import CIFAR10 from torchvision.datasets import ImageFolder import torchvision.transforms as transforms ## def load_data(opt): """ Load Data Args: opt ([type]): Argument Parser Raises: IOError: Cannot Load Dataset Returns: [type]: dataloader """ ## # LOAD DATA SET if opt.dataroot == '': opt.dataroot = './data/{}'.format(opt.dataset) if opt.dataset in ['cifar10']: splits = ['train', 'test'] drop_last_batch = {'train': True, 'test': False} shuffle = {'train': True, 'test': False} transform = transforms.Compose( [ transforms.Resize(opt.isize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) classes = { 'plane': 0, 'car': 1, 'bird': 2, 'cat': 3, 'deer': 4, 'dog': 5, 'frog': 6, 'horse': 7, 'ship': 8, 'truck': 9 } dataset = {} dataset['train'] = CIFAR10(root='./data', train=True, download=True, transform=transform) dataset['test'] = CIFAR10(root='./data', train=False, download=True, transform=transform) dataset['train'].train_data, dataset['train'].train_labels, \ dataset['test'].test_data, dataset['test'].test_labels = get_cifar_anomaly_dataset( trn_img=dataset['train'].train_data, trn_lbl=dataset['train'].train_labels, tst_img=dataset['test'].test_data, tst_lbl=dataset['test'].test_labels, abn_cls_idx=classes[opt.anomaly_class] ) dataloader = {x: torch.utils.data.DataLoader(dataset=dataset[x], batch_size=opt.batchsize, shuffle=shuffle[x], num_workers=int(opt.workers), drop_last=drop_last_batch[x]) for x in splits} return dataloader elif opt.dataset in ['mnist']: opt.anomaly_class = int(opt.anomaly_class) splits = ['train', 'test'] drop_last_batch = {'train': True, 'test': False} shuffle = {'train': True, 'test': True} transform = transforms.Compose( [ transforms.Scale(opt.isize), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ] ) dataset = {} dataset['train'] = MNIST(root='./data', train=True, download=True, transform=transform) dataset['test'] = MNIST(root='./data', train=False, download=True, transform=transform) dataset['train'].train_data, dataset['train'].train_labels, \ dataset['test'].test_data, dataset['test'].test_labels = get_mnist_anomaly_dataset( trn_img=dataset['train'].train_data, trn_lbl=dataset['train'].train_labels, tst_img=dataset['test'].test_data, tst_lbl=dataset['test'].test_labels, abn_cls_idx=opt.anomaly_class ) dataloader = {x: torch.utils.data.DataLoader(dataset=dataset[x], batch_size=opt.batchsize, shuffle=shuffle[x], num_workers=int(opt.workers), drop_last=drop_last_batch[x]) for x in splits} return dataloader elif opt.dataset in ['mnist2']: opt.anomaly_class = int(opt.anomaly_class) splits = ['train', 'test'] drop_last_batch = {'train': True, 'test': False} shuffle = {'train': True, 'test': True} transform = transforms.Compose( [ transforms.Scale(opt.isize), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ] ) dataset = {} dataset['train'] = MNIST(root='./data', train=True, download=True, transform=transform) dataset['test'] = MNIST(root='./data', train=False, download=True, transform=transform) dataset['train'].train_data, dataset['train'].train_labels, \ dataset['test'].test_data, dataset['test'].test_labels = get_mnist2_anomaly_dataset( trn_img=dataset['train'].train_data, trn_lbl=dataset['train'].train_labels, tst_img=dataset['test'].test_data, tst_lbl=dataset['test'].test_labels, nrm_cls_idx=opt.anomaly_class, proportion=opt.proportion ) dataloader = {x: torch.utils.data.DataLoader(dataset=dataset[x], batch_size=opt.batchsize, shuffle=shuffle[x], num_workers=int(opt.workers), drop_last=drop_last_batch[x]) for x in splits} return dataloader else: splits = ['train', 'test'] drop_last_batch = {'train': True, 'test': False} shuffle = {'train': True, 'test': True} transform = transforms.Compose([transforms.Scale(opt.isize), transforms.CenterCrop(opt.isize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) dataset = {x: ImageFolder(os.path.join(opt.dataroot, x), transform) for x in splits} dataloader = {x: torch.utils.data.DataLoader(dataset=dataset[x], batch_size=opt.batchsize, shuffle=shuffle[x], num_workers=int(opt.workers), drop_last=drop_last_batch[x]) for x in splits} return dataloader ## def get_cifar_anomaly_dataset(trn_img, trn_lbl, tst_img, tst_lbl, abn_cls_idx=0, manualseed=-1): """[summary] Arguments: trn_img {np.array} -- Training images trn_lbl {np.array} -- Training labels tst_img {np.array} -- Test images tst_lbl {np.array} -- Test labels Keyword Arguments: abn_cls_idx {int} -- Anomalous class index (default: {0}) Returns: [np.array] -- New training-test images and labels. """ # Convert train-test labels into numpy array. trn_lbl = np.array(trn_lbl) tst_lbl = np.array(tst_lbl) # -- # Find idx, img, lbl for abnormal and normal on org dataset. nrm_trn_idx = np.where(trn_lbl != abn_cls_idx)[0] abn_trn_idx = np.where(trn_lbl == abn_cls_idx)[0] nrm_trn_img = trn_img[nrm_trn_idx] # Normal training images abn_trn_img = trn_img[abn_trn_idx] # Abnormal training images nrm_trn_lbl = trn_lbl[nrm_trn_idx] # Normal training labels abn_trn_lbl = trn_lbl[abn_trn_idx] # Abnormal training labels. nrm_tst_idx = np.where(tst_lbl != abn_cls_idx)[0] abn_tst_idx = np.where(tst_lbl == abn_cls_idx)[0] nrm_tst_img = tst_img[nrm_tst_idx] # Normal training images abn_tst_img = tst_img[abn_tst_idx] # Abnormal training images. nrm_tst_lbl = tst_lbl[nrm_tst_idx] # Normal training labels abn_tst_lbl = tst_lbl[abn_tst_idx] # Abnormal training labels. # -- # Assign labels to normal (0) and abnormals (1) nrm_trn_lbl[:] = 0 nrm_tst_lbl[:] = 0 abn_trn_lbl[:] = 1 abn_tst_lbl[:] = 1 # -- if manualseed != -1: # Random seed. # Concatenate the original train and test sets. nrm_img = np.concatenate((nrm_trn_img, nrm_tst_img), axis=0) nrm_lbl = np.concatenate((nrm_trn_lbl, nrm_tst_lbl), axis=0) abn_img = np.concatenate((abn_trn_img, abn_tst_img), axis=0) abn_lbl = np.concatenate((abn_trn_lbl, abn_tst_lbl), axis=0) # Split the normal data into the new train and tests. idx = np.arange(len(nrm_lbl)) np.random.seed(manualseed) np.random.shuffle(idx) nrm_trn_len = int(len(idx) * 0.80) nrm_trn_idx = idx[:nrm_trn_len] nrm_tst_idx = idx[nrm_trn_len:] nrm_trn_img = nrm_img[nrm_trn_idx] nrm_trn_lbl = nrm_lbl[nrm_trn_idx] nrm_tst_img = nrm_img[nrm_tst_idx] nrm_tst_lbl = nrm_lbl[nrm_tst_idx] # Create new anomaly dataset based on the following data structure: # - anomaly dataset # . -> train # . -> normal # . -> test # . -> normal # . -> abnormal new_trn_img = np.copy(nrm_trn_img) new_trn_lbl = np.copy(nrm_trn_lbl) new_tst_img = np.concatenate((nrm_tst_img, abn_trn_img, abn_tst_img), axis=0) new_tst_lbl = np.concatenate((nrm_tst_lbl, abn_trn_lbl, abn_tst_lbl), axis=0) return new_trn_img, new_trn_lbl, new_tst_img, new_tst_lbl ## def get_mnist_anomaly_dataset(trn_img, trn_lbl, tst_img, tst_lbl, abn_cls_idx=0, manualseed=-1): """[summary] Arguments: trn_img {np.array} -- Training images trn_lbl {np.array} -- Training labels tst_img {np.array} -- Test images tst_lbl {np.array} -- Test labels Keyword Arguments: abn_cls_idx {int} -- Anomalous class index (default: {0}) Returns: [np.array] -- New training-test images and labels. """ # -- # Find normal abnormal indexes. nrm_trn_idx = torch.from_numpy(np.where(trn_lbl.numpy() != abn_cls_idx)[0]) abn_trn_idx = torch.from_numpy(np.where(trn_lbl.numpy() == abn_cls_idx)[0]) nrm_tst_idx = torch.from_numpy(np.where(tst_lbl.numpy() != abn_cls_idx)[0]) abn_tst_idx = torch.from_numpy(np.where(tst_lbl.numpy() == abn_cls_idx)[0]) # -- # Find normal and abnormal images nrm_trn_img = trn_img[nrm_trn_idx] # Normal training images abn_trn_img = trn_img[abn_trn_idx] # Abnormal training images. nrm_tst_img = tst_img[nrm_tst_idx] # Normal training images abn_tst_img = tst_img[abn_tst_idx] # Abnormal training images. # -- # Find normal and abnormal labels. nrm_trn_lbl = trn_lbl[nrm_trn_idx] # Normal training labels abn_trn_lbl = trn_lbl[abn_trn_idx] # Abnormal training labels. nrm_tst_lbl = tst_lbl[nrm_tst_idx] # Normal training labels abn_tst_lbl = tst_lbl[abn_tst_idx] # Abnormal training labels. # -- # Assign labels to normal (0) and abnormals (1) nrm_trn_lbl[:] = 0 nrm_tst_lbl[:] = 0 abn_trn_lbl[:] = 1 abn_tst_lbl[:] = 1 # -- if manualseed != -1: # Random seed. # Concatenate the original train and test sets. nrm_img = torch.cat((nrm_trn_img, nrm_tst_img), dim=0) nrm_lbl = torch.cat((nrm_trn_lbl, nrm_tst_lbl), dim=0) abn_img = torch.cat((abn_trn_img, abn_tst_img), dim=0) abn_lbl = torch.cat((abn_trn_lbl, abn_tst_lbl), dim=0) # Split the normal data into the new train and tests. idx = np.arange(len(nrm_lbl)) np.random.seed(manualseed) np.random.shuffle(idx) nrm_trn_len = int(len(idx) * 0.80) nrm_trn_idx = idx[:nrm_trn_len] nrm_tst_idx = idx[nrm_trn_len:] nrm_trn_img = nrm_img[nrm_trn_idx] nrm_trn_lbl = nrm_lbl[nrm_trn_idx] nrm_tst_img = nrm_img[nrm_tst_idx] nrm_tst_lbl = nrm_lbl[nrm_tst_idx] # Create new anomaly dataset based on the following data structure: new_trn_img = nrm_trn_img.clone() new_trn_lbl = nrm_trn_lbl.clone() new_tst_img = torch.cat((nrm_tst_img, abn_trn_img, abn_tst_img), dim=0) new_tst_lbl = torch.cat((nrm_tst_lbl, abn_trn_lbl, abn_tst_lbl), dim=0) return new_trn_img, new_trn_lbl, new_tst_img, new_tst_lbl ## def get_mnist2_anomaly_dataset(trn_img, trn_lbl, tst_img, tst_lbl, nrm_cls_idx=0, proportion=0.5): """ Create mnist 2 anomaly dataset. Arguments: trn_img {np.array} -- Training images trn_lbl {np.array} -- Training labels tst_img {np.array} -- Test images tst_lbl {np.array} -- Test labels Keyword Arguments: nrm_cls_idx {int} -- Anomalous class index (default: {0}) Returns: [tensor] -- New training-test images and labels. """ # -- # Find normal abnormal indexes. # TODO: PyTorch v0.4 has torch.where function nrm_trn_idx = torch.from_numpy(np.where(trn_lbl.numpy() == nrm_cls_idx)[0]) abn_trn_idx = torch.from_numpy(np.where(trn_lbl.numpy() != nrm_cls_idx)[0]) nrm_tst_idx = torch.from_numpy(np.where(tst_lbl.numpy() == nrm_cls_idx)[0]) abn_tst_idx = torch.from_numpy(np.where(tst_lbl.numpy() != nrm_cls_idx)[0]) # Get n percent of the abnormal samples. abn_tst_idx = abn_tst_idx[torch.randperm(len(abn_tst_idx))] abn_tst_idx = abn_tst_idx[:int(len(abn_tst_idx) * proportion)] # -- # Find normal and abnormal images nrm_trn_img = trn_img[nrm_trn_idx] # Normal training images abn_trn_img = trn_img[abn_trn_idx] # Abnormal training images. nrm_tst_img = tst_img[nrm_tst_idx] # Normal training images abn_tst_img = tst_img[abn_tst_idx] # Abnormal training images. # -- # Find normal and abnormal labels. nrm_trn_lbl = trn_lbl[nrm_trn_idx] # Normal training labels abn_trn_lbl = trn_lbl[abn_trn_idx] # Abnormal training labels. nrm_tst_lbl = tst_lbl[nrm_tst_idx] # Normal training labels abn_tst_lbl = tst_lbl[abn_tst_idx] # Abnormal training labels. # -- # Assign labels to normal (0) and abnormals (1) nrm_trn_lbl[:] = 0 nrm_tst_lbl[:] = 0 abn_trn_lbl[:] = 1 abn_tst_lbl[:] = 1 # Create new anomaly dataset based on the following data structure: new_trn_img = nrm_trn_img.clone() new_trn_lbl = nrm_trn_lbl.clone() new_tst_img = torch.cat((nrm_tst_img, abn_tst_img), dim=0) new_tst_lbl = torch.cat((nrm_tst_lbl, abn_tst_lbl), dim=0) return new_trn_img, new_trn_lbl, new_tst_img, new_tst_lbl
[ "torch.cat" ]
0.4.0
lss616263/ganomaly
0e8ddd7b97fdbe35b33d607cddaf62f36cb591c8
1.8
#!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import division, absolute_import, print_function, unicode_literals from typing import Optional, Union import math import torch from torch import nn from model.encoder_internal import BasePrefixAwareLayer, BaseLogitAdjustableLayer from model.hashembed import HashEmbedding class HashCodeAwareLogits(BaseLogitAdjustableLayer): def __init__(self, n_digits: int, n_ary_out: int, num_embeddings: int, embedding_dim: int, num_buckets: int, additive: bool, logit_adjustment: bool, matrix_rank_reduction: bool = False, num_hashes=2, replace_trailing_zeroes: bool = False, **kwargs): """ Prefix-aware (=y_{<d}) logit layer implemented on top of Hash Embedings. @param n_digits: number of digits of sense code. @param n_ary_out: number of ary of sense code. @param num_embeddings: vocabulary size of Hash Embeddings. @param embedding_dim: number of hidden dimensions. @param num_buckets: number of unique shared embeddings of Hash Embeddings algorithm. @param additive: average along with prefixes (=sense hierarchy). @param logit_adjustment: adjust logit score using prefix-aware prior probability @param matrix_rank_reduction: apply rank reduction to logit coefficient matrix. it doesn't work well so far. @param num_hashes: @param replace_trailing_zeroes: replace prefix index of zeroes with last non-zero indices. @param kwargs: """ if logit_adjustment: for required_argument in ("logit_adjust_tau", "logit_adjust_when"): assert required_argument in kwargs, f"argument {required_argument} must be specified." super().__init__(replace_trailing_zeroes=replace_trailing_zeroes, null_prefix_index=0, num_classes=n_ary_out, unobserved_class_fill_strategy=kwargs.get("unobserved_class_fill_strategy", "min"), smoothing_alpha=kwargs.get("smoothing_alpha", 0.1), logit_adjust_when=kwargs["logit_adjust_when"], logit_adjust_tau=kwargs["logit_adjust_tau"]) else: super().__init__(replace_trailing_zeroes=replace_trailing_zeroes, null_prefix_index=0, logit_adjust_when=False) self._n_digits = n_digits self._n_ary = n_ary_out self._n_dim_emb = embedding_dim self._n_distinc_prefix = num_embeddings self._logit_adjustment = logit_adjustment self._additive = additive self._matrix_rank_reduction = matrix_rank_reduction if matrix_rank_reduction: self._matrix_rank = max(int(math.sqrt(n_ary_out)), n_ary_out // 8) else: self._matrix_rank = n_ary_out # prefix hash から HashEmbeddingsを使って n_ary * n_dim_emb 個のparameterをlookupする if matrix_rank_reduction: _embedding_dim = (n_ary_out + embedding_dim) * self._matrix_rank else: _embedding_dim = embedding_dim*n_ary_out self._logit_layer_weights = HashEmbedding(num_embeddings=num_embeddings, num_hashes=num_hashes, embedding_dim=_embedding_dim, num_buckets=num_buckets, append_weight=False) def forward(self, input_sequence: torch.Tensor, t_representation: torch.Tensor): # input_sequence: (n_batch, n_digits_so_far) input_sequence[b,d] \in {0,n_ary_in} # t_representation: (n_batch, n_digits_so_far, n_dim) n_digits_so_far = min(self._n_digits, input_sequence.shape[-1]) # input_sequence_prefix_hashes: (n_batch, n_digits_so_far) input_sequence_prefix_hashes = self.transform_sequence_to_prefix_indices(input_sequence) # t_weight_: (n_batch, n_digits_so_far, n_ary_out * n_dim) t_weight_ = self._logit_layer_weights.forward(input_sequence_prefix_hashes) if self._additive: # moving average from MSD to d-th digits. t_weight_ = torch.cumsum(t_weight_, dim=1) # by dividing number of digits, it may avoid nan error. # t_denom: (1, n_digits_so_far, 1) t_denom = torch.arange(start=1, end=n_digits_so_far+1, device=t_weight_.device).view(1, -1, 1) t_weight_ = t_weight_ / t_denom # t_weight: (n_batch, n_digits_so_far, n_ary_out, n_dim) if self._matrix_rank_reduction: # u: (n_batch, n_digits_so_far, n_ary_out, n_rank) # v: (n_batch, n_digits_so_far, n_rank, n_dim) t_weight_u, t_weight_v = torch.split(t_weight_, [self._n_ary*self._matrix_rank, self._n_dim_emb*self._matrix_rank], dim=-1) t_weight_u = t_weight_u.view((-1, n_digits_so_far, self._n_ary, self._matrix_rank)) t_weight_v = t_weight_v.view((-1, n_digits_so_far, self._matrix_rank, self._n_dim_emb)) # t_logits_: (n_batch, n_digits_so_far, n_rank, 1) t_logits_ = torch.matmul(t_weight_v, t_representation.unsqueeze(-1)) # t_logits: (n_batch, n_digits_so_far, n_ary_out) t_logits = torch.matmul(t_weight_u, t_logits_).squeeze(-1) else: t_weight = t_weight_.view((-1, n_digits_so_far, self._n_ary, self._n_dim_emb)) # t_logits: (n_batch, n_digits_so_far, n_ary_out) t_logits = torch.matmul(t_weight, t_representation.unsqueeze(-1)).squeeze(-1) if self._logit_adjustment: t_logits = super().apply_logit_adjustment(logits=t_logits, sequences=input_sequence) return t_logits def init_weights(self, *args, **kwargs): self._logit_layer_weights.reset_parameters(std=0.00001) def summary(self): ret = super().summary() ret["matrix_rank_reduction"] = self._matrix_rank_reduction ret["matrix_rank"] = self._matrix_rank ret["num_buckets"] = self._logit_layer_weights.num_buckets ret["num_hashes"] = self._logit_layer_weights.num_hashes ret["additive"] = self._additive return ret class AdditiveCodeAwareLogits(torch.nn.Module): def __init__(self, n_digits: int, n_ary_in: int, n_ary_out: int, n_dim_emb: int, bias: bool = False, depends_on_previous_digits: Optional[int] = None, **kwargs): super().__init__() self._n_digits = n_digits self._n_ary_in = n_ary_in self._n_ary_out = n_ary_out self._n_dim_emb = n_dim_emb self._bias = bias self._depends_on_previous_digits = depends_on_previous_digits cfg_base_weight_layer = { "num_embeddings": n_ary_in, "embedding_dim": n_ary_out * n_dim_emb } cfg_base_weight_layer.update(kwargs) # base_weight_layers: (n_digit, n_ary_in, n_ary_out * n_dim) lst_base_weight_layers = [nn.Embedding(**cfg_base_weight_layer) for _ in range(n_digits)] self.base_weight_layers = nn.ModuleList(lst_base_weight_layers) # offset_weights: (n_digit, n_ary_out * n_dim) if bias: self.bias_weights = nn.Parameter(torch.zeros(size=(n_digits, n_ary_out * n_dim_emb)), requires_grad=True) self.init_weights() def init_weights(self): for layer in self.base_weight_layers: nn.init.zeros_(layer.weight) def _ragged_cumsum(self, tensor: torch.Tensor, dim: int, stride: Optional[int]): if stride is None: # t_cumsum[:,d,:] = tensor[:,:d+1,:].sum(dim=dim) t_cumsum = torch.cumsum(tensor, dim=dim) else: # t_cumsum[:,d,:] = tensor[:,(d-stride):d+1,:].sum(dim=dim) shp = list(tensor.shape) length = shp[dim] _stride = min(stride + 1, length) t_ = torch.cumsum(tensor, dim=dim) shp[dim] = _stride pad = torch.zeros(shp, dtype=tensor.dtype).to(tensor.device) index = torch.arange(end=length - _stride).to(tensor.device) t_ragged = torch.index_select(t_, dim=dim, index=index) t_cumsum = t_ - torch.cat((pad, t_ragged), dim=dim) return t_cumsum def forward(self, input_sequence: torch.Tensor, t_representation: torch.Tensor): # input_sequence: (n_batch, n_digits_so_far) input_sequence[b,d] \in {0,n_ary_in} # t_representation: (n_batch, n_digits_so_far, n_dim) device = input_sequence.device n_digits_so_far = min(self._n_digits, input_sequence.shape[-1]) lst_base_weights = [self.base_weight_layers[digit](input_sequence[:,digit]) for digit in range(n_digits_so_far)] # t_base_weight: (n_batch, n_digits_so_far, n_ary_out * n_dim) t_base_weight = torch.stack(lst_base_weights, dim=1) if self._depends_on_previous_digits is None: t_weight_ = torch.cumsum(t_base_weight, dim=1) # by dividing number of digits, it may avoid nan error. # t_denom: (1, n_digits_so_far, 1) t_denom = torch.arange(start=1, end=n_digits_so_far+1, device=device).view(1, -1, 1) t_weight_ = t_weight_ / t_denom else: t_weight_ = self._ragged_cumsum(t_base_weight, dim=1, stride=min(self._depends_on_previous_digits, n_digits_so_far)) if self._bias: t_weight_ = t_weight_ + self.bias_weights[:n_digits_so_far, :] # t_weight: (n_batch, n_digits_so_far, n_ary_out, n_dim) t_weight = t_weight_.view((-1, n_digits_so_far, self._n_ary_out, self._n_dim_emb)) # t_logits: (n_batch, n_digits_so_far, n_ary_out) t_logits = torch.matmul(t_weight, t_representation.unsqueeze(-1)).squeeze(-1) return t_logits def summary(self): ret = {} for attr_name in ("bias", "depends_on_previous_digits", "n_ary_in", "n_ary_out"): ret[attr_name] = getattr(self, f"_{attr_name}") return ret class PositionAwareLogits(torch.nn.Module): def __init__(self, n_seq_len: int = None, **kwargs): super().__init__() if isinstance(n_seq_len, int): lst_layers = [nn.Linear(**kwargs) for _ in range(n_seq_len)] self.linear_layers = nn.ModuleList(lst_layers) else: self.linear_layers = nn.Linear(**kwargs) self.n_seq_len = n_seq_len self.init_weights() def init_weights(self): if isinstance(self.linear_layers, nn.ModuleList): for layer in self.linear_layers: nn.init.zeros_(layer.weight) else: nn.init.zeros_(self.linear_layers.weight) def forward(self, t_representation: torch.Tensor, **kwargs) -> torch.Tensor: # t_representation: (n_batch, n_digits_so_far, n_dim) assert t_representation.ndim == 3, f"unexpected dimension size: {t_representation.ndim}" if isinstance(self.linear_layers, nn.ModuleList): n_digits = t_representation.shape[1] lst_t_logits = [self.linear_layers[digit](t_representation[:,digit,:]) for digit in range(n_digits)] t_logits = torch.stack(lst_t_logits, dim=1) else: t_logits = self.linear_layers.forward(t_representation) # t_logits: (n_batch, n_digits_so_far, n_ary) return t_logits def summary(self): ret = { "n_seq_len": self.n_seq_len } return ret
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.stack", "torch.nn.ModuleList", "torch.arange", "torch.split", "torch.index_select", "torch.nn.init.zeros_", "torch.matmul", "torch.nn.Embedding", "torch.cumsum" ]
1.8.1
s-mizuki-nlp/word_sense_disambiguation
e920b37f879e8db8f2b2d7a55e7997bb8b61ff1a
1.3
import torch import torch.nn.functional as F import numpy as np from tqdm import tqdm from collections import OrderedDict from maml.utils import update_parameters, tensors_to_device, compute_accuracy __all__ = ['ModelAgnosticMetaLearning', 'MAML', 'FOMAML'] class ModelAgnosticMetaLearning(object): """Meta-learner class for Model-Agnostic Meta-Learning [1]. Parameters ---------- model : `torchmeta.modules.MetaModule` instance The model. optimizer : `torch.optim.Optimizer` instance, optional The optimizer for the outer-loop optimization procedure. This argument is optional for evaluation. step_size : float (default: 0.1) The step size of the gradient descent update for fast adaptation (inner-loop update). first_order : bool (default: False) If `True`, then the first-order approximation of MAML is used. learn_step_size : bool (default: False) If `True`, then the step size is a learnable (meta-trained) additional argument [2]. per_param_step_size : bool (default: False) If `True`, then the step size parameter is different for each parameter of the model. Has no impact unless `learn_step_size=True`. num_adaptation_steps : int (default: 1) The number of gradient descent updates on the loss function (over the training dataset) to be used for the fast adaptation on a new task. scheduler : object in `torch.optim.lr_scheduler`, optional Scheduler for the outer-loop optimization [3]. loss_function : callable (default: `torch.nn.functional.cross_entropy`) The loss function for both the inner and outer-loop optimization. Usually `torch.nn.functional.cross_entropy` for a classification problem, of `torch.nn.functional.mse_loss` for a regression problem. device : `torch.device` instance, optional The device on which the model is defined. References ---------- .. [1] Finn C., Abbeel P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. International Conference on Machine Learning (ICML) (https://arxiv.org/abs/1703.03400) .. [2] Li Z., Zhou F., Chen F., Li H. (2017). Meta-SGD: Learning to Learn Quickly for Few-Shot Learning. (https://arxiv.org/abs/1707.09835) .. [3] Antoniou A., Edwards H., Storkey A. (2018). How to train your MAML. International Conference on Learning Representations (ICLR). (https://arxiv.org/abs/1810.09502) """ def __init__(self, model, optimizer=None, step_size=0.1, first_order=False, learn_step_size=False, per_param_step_size=False, num_adaptation_steps=1, scheduler=None, loss_function=F.cross_entropy, device=None): self.model = model.to(device=device) self.optimizer = optimizer self.step_size = step_size self.first_order = first_order self.num_adaptation_steps = num_adaptation_steps self.scheduler = scheduler self.loss_function = loss_function self.device = device if per_param_step_size: self.step_size = OrderedDict((name, torch.tensor(step_size, dtype=param.dtype, device=self.device, requires_grad=learn_step_size)) for (name, param) in model.meta_named_parameters()) else: self.step_size = torch.tensor(step_size, dtype=torch.float32, device=self.device, requires_grad=learn_step_size) if (self.optimizer is not None) and learn_step_size: self.optimizer.add_param_group({'params': self.step_size.values() if per_param_step_size else [self.step_size]}) if scheduler is not None: for group in self.optimizer.param_groups: group.setdefault('initial_lr', group['lr']) self.scheduler.base_lrs([group['initial_lr'] for group in self.optimizer.param_groups]) def get_outer_loss(self, batch): if 'test' not in batch: raise RuntimeError('The batch does not contain any test dataset.') _, test_targets = batch['test'] num_tasks = test_targets.size(0) is_classification_task = (not test_targets.dtype.is_floating_point) results = { 'num_tasks': num_tasks, 'inner_losses': np.zeros((self.num_adaptation_steps, num_tasks), dtype=np.float32), 'outer_losses': np.zeros((num_tasks,), dtype=np.float32), 'mean_outer_loss': 0. } if is_classification_task: results.update({ 'accuracies_before': np.zeros((num_tasks,), dtype=np.float32), 'accuracies_after': np.zeros((num_tasks,), dtype=np.float32) }) mean_outer_loss = torch.tensor(0., device=self.device) for task_id, (train_inputs, train_targets, test_inputs, test_targets) \ in enumerate(zip(*batch['train'], *batch['test'])): params, adaptation_results = self.adapt(train_inputs, train_targets, is_classification_task=is_classification_task, num_adaptation_steps=self.num_adaptation_steps, step_size=self.step_size, first_order=self.first_order) results['inner_losses'][:, task_id] = adaptation_results['inner_losses'] if is_classification_task: results['accuracies_before'][task_id] = adaptation_results['accuracy_before'] with torch.set_grad_enabled(self.model.training): test_logits = self.model(test_inputs, params=params) outer_loss = self.loss_function(test_logits, test_targets) results['outer_losses'][task_id] = outer_loss.item() mean_outer_loss += outer_loss if is_classification_task: results['accuracies_after'][task_id] = compute_accuracy( test_logits, test_targets) mean_outer_loss.div_(num_tasks) results['mean_outer_loss'] = mean_outer_loss.item() return mean_outer_loss, results def adapt(self, inputs, targets, is_classification_task=None, num_adaptation_steps=1, step_size=0.1, first_order=False): if is_classification_task is None: is_classification_task = (not targets.dtype.is_floating_point) params = None results = {'inner_losses': np.zeros( (num_adaptation_steps,), dtype=np.float32)} for step in range(num_adaptation_steps): logits = self.model(inputs, params=params) inner_loss = self.loss_function(logits, targets) results['inner_losses'][step] = inner_loss.item() if (step == 0) and is_classification_task: results['accuracy_before'] = compute_accuracy(logits, targets) self.model.zero_grad() params = update_parameters(self.model, inner_loss, step_size=step_size, params=params, first_order=(not self.model.training) or first_order) return params, results def train(self, dataloader, max_batches=500, verbose=True, **kwargs): with tqdm(total=max_batches, disable=not verbose, **kwargs) as pbar: for results in self.train_iter(dataloader, max_batches=max_batches): pbar.update(1) postfix = {'loss': '{0:.4f}'.format(results['mean_outer_loss'])} if 'accuracies_after' in results: postfix['accuracy'] = '{0:.4f}'.format( np.mean(results['accuracies_after'])) pbar.set_postfix(**postfix) def train_iter(self, dataloader, max_batches=500): if self.optimizer is None: raise RuntimeError('Trying to call `train_iter`, while the ' 'optimizer is `None`. In order to train `{0}`, you must ' 'specify a Pytorch optimizer as the argument of `{0}` ' '(eg. `{0}(model, optimizer=torch.optim.SGD(model.' 'parameters(), lr=0.01), ...).'.format(__class__.__name__)) num_batches = 0 self.model.train() while num_batches < max_batches: for batch in dataloader: if num_batches >= max_batches: break if self.scheduler is not None: self.scheduler.step(epoch=num_batches) self.optimizer.zero_grad() batch = tensors_to_device(batch, device=self.device) outer_loss, results = self.get_outer_loss(batch) yield results outer_loss.backward() self.optimizer.step() num_batches += 1 def evaluate(self, dataloader, max_batches=500, verbose=True, **kwargs): mean_outer_loss, mean_accuracy, count = 0., 0., 0 with tqdm(total=max_batches, disable=not verbose, **kwargs) as pbar: for results in self.evaluate_iter(dataloader, max_batches=max_batches): pbar.update(1) count += 1 mean_outer_loss += (results['mean_outer_loss'] - mean_outer_loss) / count postfix = {'loss': '{0:.4f}'.format(mean_outer_loss)} if 'accuracies_after' in results: mean_accuracy += (np.mean(results['accuracies_after']) - mean_accuracy) / count postfix['accuracy'] = '{0:.4f}'.format(mean_accuracy) pbar.set_postfix(**postfix) mean_results = {'mean_outer_loss': mean_outer_loss} if 'accuracies_after' in results: mean_results['accuracies_after'] = mean_accuracy return mean_results def evaluate_iter(self, dataloader, max_batches=500): num_batches = 0 self.model.eval() while num_batches < max_batches: for batch in dataloader: if num_batches >= max_batches: break batch = tensors_to_device(batch, device=self.device) _, results = self.get_outer_loss(batch) yield results num_batches += 1 MAML = ModelAgnosticMetaLearning class FOMAML(ModelAgnosticMetaLearning): def __init__(self, model, optimizer=None, step_size=0.1, learn_step_size=False, per_param_step_size=False, num_adaptation_steps=1, scheduler=None, loss_function=F.cross_entropy, device=None): super(FOMAML, self).__init__(model, optimizer=optimizer, first_order=True, step_size=step_size, learn_step_size=learn_step_size, per_param_step_size=per_param_step_size, num_adaptation_steps=num_adaptation_steps, scheduler=scheduler, loss_function=loss_function, device=device)
[ "torch.tensor", "torch.set_grad_enabled" ]
1.3.0
ferhah/pytorch-maml
8fbf8b200c1c73aeb98787e4df43036955dca323
1.0
# -*- coding: utf-8 -*- from functools import partial import torch from torchtext.data import Field, RawField from onmt.inputters.dataset_base import DatasetBase class TextDataset(DatasetBase): """ Build `Example` objects, `Field` objects, and filter_pred function from text corpus. Args: fields (dict): a dictionary of `torchtext.data.Field`. Keys are like 'src', 'tgt', 'src_map', and 'alignment'. src_examples_iter (dict iter): preprocessed source example dictionary iterator. tgt_examples_iter (dict iter): preprocessed target example dictionary iterator. dynamic_dict (bool) """ @staticmethod def sort_key(ex): if hasattr(ex, "tgt"): if hasattr(ex, "ans"): return len(ex.src[0]), len(ex.ans[0]), len(ex.tgt[0]) else: return len(ex.src[0]), len(ex.tgt[0]) else: if hasattr(ex, "ans"): return len(ex.src[0]), len(ex.ans[0]) else: return len(ex.src[0]) @classmethod def make_examples(cls, sequences, side): """ Args: sequences: path to corpus file or iterable truncate (int): maximum sequence length (0 for unlimited). side (str): "src" or "tgt" or "ans". Yields: dictionaries whose keys are the names of fields and whose values are more or less the result of tokenizing with those fields. """ if isinstance(sequences, str): sequences = cls._read_file(sequences) for i, seq in enumerate(sequences): yield {side: seq, "indices": i} # mix this with partial def _feature_tokenize( string, layer=0, tok_delim=None, feat_delim=None, truncate=None): tokens = string.split(tok_delim) if truncate is not None: tokens = tokens[:truncate] if feat_delim is not None: tokens = [t.split(feat_delim)[layer] for t in tokens] return tokens class TextMultiField(RawField): def __init__(self, base_name, base_field, feats_fields): super(TextMultiField, self).__init__() self.fields = [(base_name, base_field)] for name, ff in sorted(feats_fields, key=lambda kv: kv[0]): self.fields.append((name, ff)) @property def base_field(self): return self.fields[0][1] def process(self, batch, device=None): # batch (list(list(list))): batch_size x len(self.fields) x seq_len batch_by_feat = list(zip(*batch)) base_data = self.base_field.process(batch_by_feat[0], device=device) if self.base_field.include_lengths: # lengths: batch_size base_data, lengths = base_data feats = [ff.process(batch_by_feat[i], device=device) for i, (_, ff) in enumerate(self.fields[1:], 1)] levels = [base_data] + feats # data: seq_len x batch_size x len(self.fields) data = torch.stack(levels, 2) if self.base_field.include_lengths: return data, lengths else: return data def preprocess(self, x): return [f.preprocess(x) for _, f in self.fields] def __getitem__(self, item): return self.fields[item] def text_fields(base_name, **kwargs): """Create text fields. Args: base_name (str) n_feats (int) include_lengths (bool) pad (str, optional): Defaults to <blank>. bos (str or NoneType, optional): Defaults to <s> eos (str or NoneType, optional): Defaults to </s> truncate (bool or NoneType, optional): Defaults to None. """ n_feats = kwargs["n_feats"] include_lengths = kwargs["include_lengths"] pad = kwargs.get("pad", "<blank>") bos = kwargs.get("bos", "<s>") eos = kwargs.get("eos", "</s>") truncate = kwargs.get("truncate", None) fields_ = [] feat_delim = u"│" if n_feats > 0 else None for i in range(n_feats + 1): name = base_name + "_feat_" + str(i - 1) if i > 0 else base_name tokenize = partial( _feature_tokenize, layer=i, truncate=truncate, feat_delim=feat_delim) use_len = i == 0 and include_lengths feat = Field( init_token=bos, eos_token=eos, pad_token=pad, tokenize=tokenize, include_lengths=use_len) fields_.append((name, feat)) assert fields_[0][0] == base_name # sanity check field = TextMultiField(fields_[0][0], fields_[0][1], fields_[1:]) return [(base_name, field)]
[ "torch.stack" ]
1.0
kolk/qa_factoid2natural
ccdd0096217c8e88b148f353f0c89628b85f9c4d
1.8
# Create by Packetsss # Personal use is allowed # Commercial use is prohibited from __future__ import division import math import torch import torch.optim as optim from collections import defaultdict class SharedRMSprop(optim.Optimizer): """Implements RMSprop algorithm with shared states. """ def __init__(self, params, lr=7e-4, alpha=0.99, eps=0.1, weight_decay=0, momentum=0, centered=False): defaults = defaultdict(lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=centered) super(SharedRMSprop, self).__init__(params, defaults) for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'] = torch.zeros(1) state['grad_avg'] = p.data.new().resize_as_(p.data).zero_() state['square_avg'] = p.data.new().resize_as_(p.data).zero_() state['momentum_buffer'] = p.data.new( ).resize_as_(p.data).zero_() def share_memory(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['square_avg'].share_memory_() state['step'].share_memory_() state['grad_avg'].share_memory_() state['momentum_buffer'].share_memory_() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'RMSprop does not support sparse gradients') state = self.state[p] square_avg = state['square_avg'] alpha = group['alpha'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) if group['centered']: grad_avg = state['grad_avg'] grad_avg.mul_(alpha).add_(1 - alpha, grad) avg = square_avg.addcmul( -1, grad_avg, grad_avg).sqrt().add_(group['eps']) else: avg = square_avg.sqrt().add_(group['eps']) if group['momentum'] > 0: buf = state['momentum_buffer'] buf.mul_(group['momentum']).addcdiv_(grad, avg) p.data.add_(-group['lr'], buf) else: p.data.addcdiv_(-group['lr'], grad, avg) return loss class SharedAdam(optim.Optimizer): """Implements Adam algorithm with shared states. """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-3, weight_decay=0, amsgrad=True): defaults = defaultdict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(SharedAdam, self).__init__(params, defaults) for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'] = torch.zeros(1) state['exp_avg'] = p.data.new().resize_as_(p.data).zero_() state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_() state['max_exp_avg_sq'] = p.data.new( ).resize_as_(p.data).zero_() def share_memory(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'].share_memory_() state['exp_avg'].share_memory_() state['exp_avg_sq'].share_memory_() state['max_exp_avg_sq'].share_memory_() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till # now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1**state['step'].item() bias_correction2 = 1 - beta2**state['step'].item() step_size = group['lr'] * \ math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) return loss
[ "torch.zeros", "torch.max" ]
1.8.1
PaulPan00/donkey_wrapper
a03cf0f42f65625fbce792b06c98acd153c5d6c8
1.4
# -*- coding: utf-8 -*- import math from typing import Optional, Tuple import warnings import torch from torch import Tensor __all__ = [ "spectrogram", "griffinlim", "amplitude_to_DB", "DB_to_amplitude", "compute_deltas", "compute_kaldi_pitch", "create_fb_matrix", "create_dct", "compute_deltas", "detect_pitch_frequency", "DB_to_amplitude", "mu_law_encoding", "mu_law_decoding", "complex_norm", "angle", "magphase", "phase_vocoder", 'mask_along_axis', 'mask_along_axis_iid', 'sliding_window_cmn', "spectral_centroid", ] def spectrogram( waveform: Tensor, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: Optional[float], normalized: bool, center: bool = True, pad_mode: str = "reflect", onesided: bool = True ) -> Tensor: r"""Create a spectrogram or a batch of spectrograms from a raw audio signal. The spectrogram can be either magnitude-only or complex. Args: waveform (Tensor): Tensor of audio of dimension (..., time) pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size power (float or None): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. normalized (bool): Whether to normalize by magnitude after stft center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` onesided (bool, optional): controls whether to return half of results to avoid redundancy. Default: ``True`` Returns: Tensor: Dimension (..., freq, time), freq is ``n_fft // 2 + 1`` and ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ if pad > 0: # TODO add "with torch.no_grad():" back when JIT supports it waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant") # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) # default values are consistent with librosa.core.spectrum._spectrogram spec_f = torch.stft( input=waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=False, onesided=onesided, return_complex=True, ) # unpack batch spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:]) if normalized: spec_f /= window.pow(2.).sum().sqrt() if power is not None: if power == 1.0: return spec_f.abs() return spec_f.abs().pow(power) return torch.view_as_real(spec_f) def griffinlim( specgram: Tensor, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: float, normalized: bool, n_iter: int, momentum: float, length: Optional[int], rand_init: bool ) -> Tensor: r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation. Implementation ported from `librosa`. * [1] McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. "librosa: Audio and music signal analysis in python." In Proceedings of the 14th python in science conference, pp. 18-25. 2015. * [2] Perraudin, N., Balazs, P., & Søndergaard, P. L. "A fast Griffin-Lim algorithm," IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013. * [3] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Args: specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames) where freq is ``n_fft // 2 + 1``. window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins hop_length (int): Length of hop between STFT windows. ( Default: ``win_length // 2``) win_length (int): Window size. (Default: ``n_fft``) power (float): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. normalized (bool): Whether to normalize by magnitude after stft. n_iter (int): Number of iteration for phase recovery process. momentum (float): The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method. Values near 1 can lead to faster convergence, but above 1 may not converge. length (int or None): Array length of the expected output. rand_init (bool): Initializes phase randomly if True, to zero otherwise. Returns: torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given. """ assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum) assert momentum >= 0, 'momentum={} < 0'.format(momentum) if normalized: warnings.warn( "The argument normalized is not used in Griffin-Lim, " "and will be removed in v0.9.0 release. To suppress this warning, " "please use `normalized=False`.") # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) specgram = specgram.pow(1 / power) # randomly initialize the phase batch, freq, frames = specgram.size() if rand_init: angles = 2 * math.pi * torch.rand(batch, freq, frames) else: angles = torch.zeros(batch, freq, frames) angles = torch.stack([angles.cos(), angles.sin()], dim=-1) \ .to(dtype=specgram.dtype, device=specgram.device) specgram = specgram.unsqueeze(-1).expand_as(angles) # And initialize the previous iterate to 0 rebuilt = torch.tensor(0.) for _ in range(n_iter): # Store the previous iterate tprev = rebuilt # Invert with our current estimate of the phases inverse = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length).float() # Rebuild the spectrogram rebuilt = torch.view_as_real( torch.stft( input=inverse, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=True, pad_mode='reflect', normalized=False, onesided=True, return_complex=True, ) ) # Update our phase estimates angles = rebuilt if momentum: angles = angles - tprev.mul_(momentum / (1 + momentum)) angles = angles.div(complex_norm(angles).add(1e-16).unsqueeze(-1).expand_as(angles)) # Return the final phase estimates waveform = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length) # unpack batch waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:]) return waveform def amplitude_to_DB( x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None ) -> Tensor: r"""Turn a spectrogram from the power/amplitude scale to the decibel scale. The output of each tensor in a batch depends on the maximum value of that tensor, and so may return different values for an audio clip split into snippets vs. a full clip. Args: x (Tensor): Input spectrogram(s) before being converted to decibel scale. Input should take the form `(..., freq, time)`. Batched inputs should include a channel dimension and have the form `(batch, channel, freq, time)`. multiplier (float): Use 10. for power and 20. for amplitude amin (float): Number to clamp ``x`` db_multiplier (float): Log10(max(reference value and amin)) top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) Returns: Tensor: Output tensor in decibel scale """ x_db = multiplier * torch.log10(torch.clamp(x, min=amin)) x_db -= multiplier * db_multiplier if top_db is not None: # Expand batch shape = x_db.size() packed_channels = shape[-3] if x_db.dim() > 2 else 1 x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1]) x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1)) # Repack batch x_db = x_db.reshape(shape) return x_db def DB_to_amplitude( x: Tensor, ref: float, power: float ) -> Tensor: r"""Turn a tensor from the decibel scale to the power/amplitude scale. Args: x (Tensor): Input tensor before being converted to power/amplitude scale. ref (float): Reference which the output will be scaled by. power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude. Returns: Tensor: Output tensor in power/amplitude scale. """ return ref * torch.pow(torch.pow(10.0, 0.1 * x), power) def create_fb_matrix( n_freqs: int, f_min: float, f_max: float, n_mels: int, sample_rate: int, norm: Optional[str] = None ) -> Tensor: r"""Create a frequency bin conversion matrix. Args: n_freqs (int): Number of frequencies to highlight/apply f_min (float): Minimum frequency (Hz) f_max (float): Maximum frequency (Hz) n_mels (int): Number of mel filterbanks sample_rate (int): Sample rate of the audio waveform norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) Returns: Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``) meaning number of frequencies to highlight/apply to x the number of filterbanks. Each column is a filterbank so that assuming there is a matrix A of size (..., ``n_freqs``), the applied result would be ``A * create_fb_matrix(A.size(-1), ...)``. """ if norm is not None and norm != "slaney": raise ValueError("norm must be one of None or 'slaney'") # freq bins # Equivalent filterbank construction by Librosa all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) # calculate mel freq bins # hertz to mel(f) is 2595. * math.log10(1. + (f / 700.)) m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0)) m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0)) m_pts = torch.linspace(m_min, m_max, n_mels + 2) # mel to hertz(mel) is 700. * (10**(mel / 2595.) - 1.) f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0) # calculate the difference between each mel point and each stft freq point in hertz f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1) slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_mels + 2) # create overlapping triangles zero = torch.zeros(1) down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels) up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels) fb = torch.max(zero, torch.min(down_slopes, up_slopes)) if norm is not None and norm == "slaney": # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels]) fb *= enorm.unsqueeze(0) if (fb.max(dim=0).values == 0.).any(): warnings.warn( "At least one mel filterbank has all zero values. " f"The value for `n_mels` ({n_mels}) may be set too high. " f"Or, the value for `n_freqs` ({n_freqs}) may be set too low." ) return fb def create_dct( n_mfcc: int, n_mels: int, norm: Optional[str] ) -> Tensor: r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``), normalized depending on norm. Args: n_mfcc (int): Number of mfc coefficients to retain n_mels (int): Number of mel filterbanks norm (str or None): Norm to use (either 'ortho' or None) Returns: Tensor: The transformation matrix, to be right-multiplied to row-wise data of size (``n_mels``, ``n_mfcc``). """ # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II n = torch.arange(float(n_mels)) k = torch.arange(float(n_mfcc)).unsqueeze(1) dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels) if norm is None: dct *= 2.0 else: assert norm == "ortho" dct[0] *= 1.0 / math.sqrt(2.0) dct *= math.sqrt(2.0 / float(n_mels)) return dct.t() def mu_law_encoding( x: Tensor, quantization_channels: int ) -> Tensor: r"""Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1. Args: x (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law encoding """ mu = quantization_channels - 1.0 if not x.is_floating_point(): x = x.to(torch.float) mu = torch.tensor(mu, dtype=x.dtype) x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu) x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64) return x_mu def mu_law_decoding( x_mu: Tensor, quantization_channels: int ) -> Tensor: r"""Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: x_mu (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law decoding """ mu = quantization_channels - 1.0 if not x_mu.is_floating_point(): x_mu = x_mu.to(torch.float) mu = torch.tensor(mu, dtype=x_mu.dtype) x = ((x_mu) / mu) * 2 - 1.0 x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu return x def complex_norm( complex_tensor: Tensor, power: float = 1.0 ) -> Tensor: r"""Compute the norm of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`). Returns: Tensor: Power of the normed input tensor. Shape of `(..., )` """ # Replace by torch.norm once issue is fixed # https://github.com/pytorch/pytorch/issues/34279 return complex_tensor.pow(2.).sum(-1).pow(0.5 * power) def angle( complex_tensor: Tensor ) -> Tensor: r"""Compute the angle of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` Return: Tensor: Angle of a complex tensor. Shape of `(..., )` """ return torch.atan2(complex_tensor[..., 1], complex_tensor[..., 0]) def magphase( complex_tensor: Tensor, power: float = 1.0 ) -> Tuple[Tensor, Tensor]: r"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`) Returns: (Tensor, Tensor): The magnitude and phase of the complex tensor """ mag = complex_norm(complex_tensor, power) phase = angle(complex_tensor) return mag, phase def phase_vocoder( complex_specgrams: Tensor, rate: float, phase_advance: Tensor ) -> Tensor: r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``. Args: complex_specgrams (Tensor): Dimension of `(..., freq, time, complex=2)` rate (float): Speed-up factor phase_advance (Tensor): Expected phase advance in each bin. Dimension of (freq, 1) Returns: Tensor: Complex Specgrams Stretch with dimension of `(..., freq, ceil(time/rate), complex=2)` Example >>> freq, hop_length = 1025, 512 >>> # (channel, freq, time, complex=2) >>> complex_specgrams = torch.randn(2, freq, 300, 2) >>> rate = 1.3 # Speed up by 30% >>> phase_advance = torch.linspace( >>> 0, math.pi * hop_length, freq)[..., None] >>> x = phase_vocoder(complex_specgrams, rate, phase_advance) >>> x.shape # with 231 == ceil(300 / 1.3) torch.Size([2, 1025, 231, 2]) """ # pack batch shape = complex_specgrams.size() complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-3:])) time_steps = torch.arange(0, complex_specgrams.size(-2), rate, device=complex_specgrams.device, dtype=complex_specgrams.dtype) alphas = time_steps % 1.0 phase_0 = angle(complex_specgrams[..., :1, :]) # Time Padding complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 0, 0, 2]) # (new_bins, freq, 2) complex_specgrams_0 = complex_specgrams.index_select(-2, time_steps.long()) complex_specgrams_1 = complex_specgrams.index_select(-2, (time_steps + 1).long()) angle_0 = angle(complex_specgrams_0) angle_1 = angle(complex_specgrams_1) norm_0 = torch.norm(complex_specgrams_0, p=2, dim=-1) norm_1 = torch.norm(complex_specgrams_1, p=2, dim=-1) phase = angle_1 - angle_0 - phase_advance phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi)) # Compute Phase Accum phase = phase + phase_advance phase = torch.cat([phase_0, phase[..., :-1]], dim=-1) phase_acc = torch.cumsum(phase, -1) mag = alphas * norm_1 + (1 - alphas) * norm_0 real_stretch = mag * torch.cos(phase_acc) imag_stretch = mag * torch.sin(phase_acc) complex_specgrams_stretch = torch.stack([real_stretch, imag_stretch], dim=-1) # unpack batch complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-3] + complex_specgrams_stretch.shape[1:]) return complex_specgrams_stretch def mask_along_axis_iid( specgrams: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. Args: specgrams (Tensor): Real spectrograms (batch, channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (2 -> frequency, 3 -> time) Returns: Tensor: Masked spectrograms of dimensions (batch, channel, freq, time) """ if axis != 2 and axis != 3: raise ValueError('Only Frequency and Time masking are supported') device = specgrams.device dtype = specgrams.dtype value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * mask_param min_value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * (specgrams.size(axis) - value) # Create broadcastable mask mask_start = min_value[..., None, None] mask_end = (min_value + value)[..., None, None] mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype) # Per batch example masking specgrams = specgrams.transpose(axis, -1) specgrams.masked_fill_((mask >= mask_start) & (mask < mask_end), mask_value) specgrams = specgrams.transpose(axis, -1) return specgrams def mask_along_axis( specgram: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. All examples will have the same mask interval. Args: specgram (Tensor): Real spectrogram (channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (1 -> frequency, 2 -> time) Returns: Tensor: Masked spectrogram of dimensions (channel, freq, time) """ # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) value = torch.rand(1) * mask_param min_value = torch.rand(1) * (specgram.size(axis) - value) mask_start = (min_value.long()).squeeze() mask_end = (min_value.long() + value.long()).squeeze() assert mask_end - mask_start < mask_param if axis == 1: specgram[:, mask_start:mask_end] = mask_value elif axis == 2: specgram[:, :, mask_start:mask_end] = mask_value else: raise ValueError('Only Frequency and Time masking are supported') # unpack batch specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:]) return specgram def compute_deltas( specgram: Tensor, win_length: int = 5, mode: str = "replicate" ) -> Tensor: r"""Compute delta coefficients of a tensor, usually a spectrogram: .. math:: d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2} where :math:`d_t` is the deltas at time :math:`t`, :math:`c_t` is the spectrogram coeffcients at time :math:`t`, :math:`N` is ``(win_length-1)//2``. Args: specgram (Tensor): Tensor of audio of dimension (..., freq, time) win_length (int, optional): The window length used for computing delta (Default: ``5``) mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``) Returns: Tensor: Tensor of deltas of dimension (..., freq, time) Example >>> specgram = torch.randn(1, 40, 1000) >>> delta = compute_deltas(specgram) >>> delta2 = compute_deltas(delta) """ device = specgram.device dtype = specgram.dtype # pack batch shape = specgram.size() specgram = specgram.reshape(1, -1, shape[-1]) assert win_length >= 3 n = (win_length - 1) // 2 # twice sum of integer squared denom = n * (n + 1) * (2 * n + 1) / 3 specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode) kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1) output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom # unpack batch output = output.reshape(shape) return output def _compute_nccf( waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int ) -> Tensor: r""" Compute Normalized Cross-Correlation Function (NCCF). .. math:: \phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}}, where :math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`, :math:`w` is the waveform, :math:`N` is the length of a frame, :math:`b_i` is the beginning of frame :math:`i`, :math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`. """ EPSILON = 10 ** (-9) # Number of lags to check lags = int(math.ceil(sample_rate / freq_low)) frame_size = int(math.ceil(sample_rate * frame_time)) waveform_length = waveform.size()[-1] num_of_frames = int(math.ceil(waveform_length / frame_size)) p = lags + num_of_frames * frame_size - waveform_length waveform = torch.nn.functional.pad(waveform, (0, p)) # Compute lags output_lag = [] for lag in range(1, lags + 1): s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] output_frames = ( (s1 * s2).sum(-1) / (EPSILON + torch.norm(s1, p=2, dim=-1)).pow(2) / (EPSILON + torch.norm(s2, p=2, dim=-1)).pow(2) ) output_lag.append(output_frames.unsqueeze(-1)) nccf = torch.cat(output_lag, -1) return nccf def _combine_max( a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99 ) -> Tuple[Tensor, Tensor]: """ Take value from first if bigger than a multiplicative factor of the second, elementwise. """ mask = (a[0] > thresh * b[0]) values = mask * a[0] + ~mask * b[0] indices = mask * a[1] + ~mask * b[1] return values, indices def _find_max_per_frame( nccf: Tensor, sample_rate: int, freq_high: int ) -> Tensor: r""" For each frame, take the highest value of NCCF, apply centered median smoothing, and convert to frequency. Note: If the max among all the lags is very close to the first half of lags, then the latter is taken. """ lag_min = int(math.ceil(sample_rate / freq_high)) # Find near enough max that is smallest best = torch.max(nccf[..., lag_min:], -1) half_size = nccf.shape[-1] // 2 half = torch.max(nccf[..., lag_min:half_size], -1) best = _combine_max(half, best) indices = best[1] # Add back minimal lag indices += lag_min # Add 1 empirical calibration offset indices += 1 return indices def _median_smoothing( indices: Tensor, win_length: int ) -> Tensor: r""" Apply median smoothing to the 1D tensor over the given window. """ # Centered windowed pad_length = (win_length - 1) // 2 # "replicate" padding in any dimension indices = torch.nn.functional.pad( indices, (pad_length, 0), mode="constant", value=0. ) indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1) roll = indices.unfold(-1, win_length, 1) values, _ = torch.median(roll, -1) return values def detect_pitch_frequency( waveform: Tensor, sample_rate: int, frame_time: float = 10 ** (-2), win_length: int = 30, freq_low: int = 85, freq_high: int = 3400, ) -> Tensor: r"""Detect pitch frequency. It is implemented using normalized cross-correlation function and median smoothing. Args: waveform (Tensor): Tensor of audio of dimension (..., freq, time) sample_rate (int): The sample rate of the waveform (Hz) frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``). win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``). freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``). freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``). Returns: Tensor: Tensor of freq of dimension (..., frame) """ # pack batch shape = list(waveform.size()) waveform = waveform.reshape([-1] + shape[-1:]) nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low) indices = _find_max_per_frame(nccf, sample_rate, freq_high) indices = _median_smoothing(indices, win_length) # Convert indices to frequency EPSILON = 10 ** (-9) freq = sample_rate / (EPSILON + indices.to(torch.float)) # unpack batch freq = freq.reshape(shape[:-1] + list(freq.shape[-1:])) return freq def sliding_window_cmn( waveform: Tensor, cmn_window: int = 600, min_cmn_window: int = 100, center: bool = False, norm_vars: bool = False, ) -> Tensor: r""" Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: waveform (Tensor): Tensor of audio of dimension (..., freq, time) cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) Returns: Tensor: Tensor of freq of dimension (..., frame) """ input_shape = waveform.shape num_frames, num_feats = input_shape[-2:] waveform = waveform.view(-1, num_frames, num_feats) num_channels = waveform.shape[0] dtype = waveform.dtype device = waveform.device last_window_start = last_window_end = -1 cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cmn_waveform = torch.zeros( num_channels, num_frames, num_feats, dtype=dtype, device=device) for t in range(num_frames): window_start = 0 window_end = 0 if center: window_start = t - cmn_window // 2 window_end = window_start + cmn_window else: window_start = t - cmn_window window_end = t + 1 if window_start < 0: window_end -= window_start window_start = 0 if not center: if window_end > t: window_end = max(t + 1, min_cmn_window) if window_end > num_frames: window_start -= (window_end - num_frames) window_end = num_frames if window_start < 0: window_start = 0 if last_window_start == -1: input_part = waveform[:, window_start: window_end - window_start, :] cur_sum += torch.sum(input_part, 1) if norm_vars: cur_sumsq += torch.cumsum(input_part ** 2, 1)[:, -1, :] else: if window_start > last_window_start: frame_to_remove = waveform[:, last_window_start, :] cur_sum -= frame_to_remove if norm_vars: cur_sumsq -= (frame_to_remove ** 2) if window_end > last_window_end: frame_to_add = waveform[:, last_window_end, :] cur_sum += frame_to_add if norm_vars: cur_sumsq += (frame_to_add ** 2) window_frames = window_end - window_start last_window_start = window_start last_window_end = window_end cmn_waveform[:, t, :] = waveform[:, t, :] - cur_sum / window_frames if norm_vars: if window_frames == 1: cmn_waveform[:, t, :] = torch.zeros( num_channels, num_feats, dtype=dtype, device=device) else: variance = cur_sumsq variance = variance / window_frames variance -= ((cur_sum ** 2) / (window_frames ** 2)) variance = torch.pow(variance, -0.5) cmn_waveform[:, t, :] *= variance cmn_waveform = cmn_waveform.view(input_shape[:-2] + (num_frames, num_feats)) if len(input_shape) == 2: cmn_waveform = cmn_waveform.squeeze(0) return cmn_waveform def spectral_centroid( waveform: Tensor, sample_rate: int, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, ) -> Tensor: r""" Compute the spectral centroid for each channel along the time axis. The spectral centroid is defined as the weighted average of the frequency values, weighted by their magnitude. Args: waveform (Tensor): Tensor of audio of dimension (..., time) sample_rate (int): Sample rate of the audio waveform pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size Returns: Tensor: Dimension (..., time) """ specgram = spectrogram(waveform, pad=pad, window=window, n_fft=n_fft, hop_length=hop_length, win_length=win_length, power=1., normalized=False) freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2, device=specgram.device).reshape((-1, 1)) freq_dim = -2 return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim) def compute_kaldi_pitch( waveform: torch.Tensor, sample_rate: float, frame_length: float = 25.0, frame_shift: float = 10.0, min_f0: float = 50, max_f0: float = 400, soft_min_f0: float = 10.0, penalty_factor: float = 0.1, lowpass_cutoff: float = 1000, resample_frequency: float = 4000, delta_pitch: float = 0.005, nccf_ballast: float = 7000, lowpass_filter_width: int = 1, upsample_filter_width: int = 5, max_frames_latency: int = 0, frames_per_chunk: int = 0, simulate_first_pass_online: bool = False, recompute_frame: int = 500, snip_edges: bool = True, ) -> torch.Tensor: """Extract pitch based on method described in [1]. This function computes the equivalent of `compute-kaldi-pitch-feats` from Kaldi. Args: waveform (Tensor): The input waveform of shape `(..., time)`. sample_rate (float): Sample rate of `waveform`. frame_length (float, optional): Frame length in milliseconds. (default: 25.0) frame_shift (float, optional): Frame shift in milliseconds. (default: 10.0) min_f0 (float, optional): Minimum F0 to search for (Hz) (default: 50.0) max_f0 (float, optional): Maximum F0 to search for (Hz) (default: 400.0) soft_min_f0 (float, optional): Minimum f0, applied in soft way, must not exceed min-f0 (default: 10.0) penalty_factor (float, optional): Cost factor for FO change. (default: 0.1) lowpass_cutoff (float, optional): Cutoff frequency for LowPass filter (Hz) (default: 1000) resample_frequency (float, optional): Frequency that we down-sample the signal to. Must be more than twice lowpass-cutoff. (default: 4000) delta_pitch( float, optional): Smallest relative change in pitch that our algorithm measures. (default: 0.005) nccf_ballast (float, optional): Increasing this factor reduces NCCF for quiet frames (default: 7000) lowpass_filter_width (int, optional): Integer that determines filter width of lowpass filter, more gives sharper filter. (default: 1) upsample_filter_width (int, optional): Integer that determines filter width when upsampling NCCF. (default: 5) max_frames_latency (int, optional): Maximum number of frames of latency that we allow pitch tracking to introduce into the feature processing (affects output only if ``frames_per_chunk > 0`` and ``simulate_first_pass_online=True``) (default: 0) frames_per_chunk (int, optional): The number of frames used for energy normalization. (default: 0) simulate_first_pass_online (bool, optional): If true, the function will output features that correspond to what an online decoder would see in the first pass of decoding -- not the final version of the features, which is the default. (default: False) Relevant if ``frames_per_chunk > 0``. recompute_frame (int, optional): Only relevant for compatibility with online pitch extraction. A non-critical parameter; the frame at which we recompute some of the forward pointers, after revising our estimate of the signal energy. Relevant if ``frames_per_chunk > 0``. (default: 500) snip_edges (bool, optional): If this is set to false, the incomplete frames near the ending edge won't be snipped, so that the number of frames is the file size divided by the frame-shift. This makes different types of features give the same number of frames. (default: True) Returns: Tensor: Pitch feature. Shape: ``(batch, frames 2)`` where the last dimension corresponds to pitch and NCCF. Reference: - A pitch extraction algorithm tuned for automatic speech recognition P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal and S. Khudanpur 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp. 2494-2498, doi: 10.1109/ICASSP.2014.6854049. """ shape = waveform.shape waveform = waveform.reshape(-1, shape[-1]) result = torch.ops.torchaudio.kaldi_ComputeKaldiPitch( waveform, sample_rate, frame_length, frame_shift, min_f0, max_f0, soft_min_f0, penalty_factor, lowpass_cutoff, resample_frequency, delta_pitch, nccf_ballast, lowpass_filter_width, upsample_filter_width, max_frames_latency, frames_per_chunk, simulate_first_pass_online, recompute_frame, snip_edges, ) result = result.reshape(shape[:-1] + result.shape[-2:]) return result
[ "torch.round", "torch.cat", "torch.view_as_real", "torch.stack", "torch.istft", "torch.nn.functional.pad", "torch.stft", "torch.sum", "torch.log1p", "torch.norm", "torch.abs", "torch.tensor", "torch.zeros", "torch.cos", "torch.min", "torch.max", "torch.linspace", "torch.clamp", "torch.nn.functional.conv1d", "torch.cumsum", "torch.pow", "torch.rand", "torch.sin", "torch.arange", "torch.ops.torchaudio.kaldi_ComputeKaldiPitch", "torch.sign", "torch.atan2", "torch.median" ]
1.4.0
worc3131/audio
05bff83fdec3e8f70f80bf7a1b89951bf7050114
1.0
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task. """ import collections import inspect import math import os import random import re import shutil import sys import time import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from tqdm.auto import tqdm # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split default_hp_search_backend, get_reporting_integration_callbacks, hp_params, is_fairscale_available, is_optuna_available, is_ray_tune_available, run_hp_search_optuna, run_hp_search_ray, ) import numpy as np import torch from packaging import version from torch import nn from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from . import __version__ from .configuration_utils import PretrainedConfig from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from .debug_utils import DebugOption, DebugUnderflowOverflow from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled from .dependency_versions_check import dep_version_check from .file_utils import ( CONFIG_NAME, WEIGHTS_NAME, PushToHubMixin, is_apex_available, is_datasets_available, is_in_notebook, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_torch_tpu_available, ) from .modelcard import TrainingSummary from .modeling_utils import PreTrainedModel, unwrap_model from .models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES from .optimization import Adafactor, AdamW, get_scheduler from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedSamplerWithLoop, DistributedTensorGatherer, IterableDatasetShard, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, ShardSampler, distributed_broadcast_scalars, distributed_concat, find_batch_size, get_parameter_names, nested_concat, nested_detach, nested_numpify, nested_truncate, nested_xla_mesh_reduce, reissue_pt_warnings, ) from .trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalLoopOutput, EvalPrediction, HPSearchBackend, PredictionOutput, ShardedDDPOption, TrainerMemoryTracker, TrainOutput, default_compute_objective, default_hp_space, denumpify_detensorize, get_last_checkpoint, number_of_arguments, set_seed, speed_metrics, ) from .training_args import ParallelMode, TrainingArguments from .utils import logging _is_torch_generator_available = False _is_native_amp_available = False DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from .utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback if is_apex_available(): from apex import amp if version.parse(torch.__version__) >= version.parse("1.6"): _is_torch_generator_available = True _is_native_amp_available = True from torch.cuda.amp import autocast if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl if is_fairscale_available(): dep_version_check("fairscale") import fairscale from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP from fairscale.nn.wrap import auto_wrap from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.distributed as dist from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP else: import torch.distributed as dist if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`): The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed. .. note:: :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel` provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. args (:class:`~transformers.TrainingArguments`, `optional`): The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided. data_collator (:obj:`DataCollator`, `optional`): The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise. train_dataset (:obj:`torch.utils.data.Dataset` or :obj:`torch.utils.data.IterableDataset`, `optional`): The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Note that if it's a :obj:`torch.utils.data.IterableDataset` with some randomization and you are training in a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that internally sets the seed of the RNGs used. eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`): The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. tokenizer (:class:`PreTrainedTokenizerBase`, `optional`): The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`): A function that instantiates the model to be used. If provided, each call to :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function. The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in :doc:`here <callback>`. If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method. optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of :class:`~transformers.AdamW` on your model and a scheduler given by :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`. Important attributes: - **model** -- Always points to the core model. If using a transformers model, it will be a :class:`~transformers.PreTrainedModel` subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``, the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to :obj:`False` if model parallel or deepspeed is used, or if the default ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` . - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called while in ``train``) """ from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, model_init: Callable[[], PreTrainedModel] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) self.args = args # Seed must be set before instantiating the model when using model set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # set the correct log level depending on the node log_level = args.get_process_log_level() logging.set_verbosity(log_level) # force device and distributed setup init explicitly args._setup_devices if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. " "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.", FutureWarning, ) self.model_init = model_init if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel: self.is_model_parallel = True else: self.is_model_parallel = False # Setup Sharded DDP training self.sharded_ddp = None if len(args.sharded_ddp) > 0: if args.deepspeed: raise ValueError( "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if args.local_rank == -1: raise ValueError("Using sharded DDP only works in distributed training.") elif not is_fairscale_available(): raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.") elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None: raise ImportError( "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found " f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`." ) elif ShardedDDPOption.SIMPLE in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.SIMPLE elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_2 elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_3 # one place to sort out whether to place the model on device or not # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment # 3. full fp16 eval - since the model needs to be half'ed first # 4. Sharded DDP - same as MP self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or args.deepspeed or (args.fp16_full_eval and not args.do_train) or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3]) ): self.place_model_on_device = False default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.tokenizer = tokenizer if self.place_model_on_device: self._move_model_to_device(model, args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1 # later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument." "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) # Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create clone of distant repo and output directory if needed if self.args.push_to_hub: self.init_git_repo() if self.args.should_save: os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0: raise ValueError("train_dataset does not implement __len__, max_steps has to be specified") self._signature_columns = None # Mixed precision setup self.use_apex = False self.use_amp = False self.fp16_backend = None if args.fp16: if args.fp16_backend == "auto": self.fp16_backend = "amp" if _is_native_amp_available else "apex" else: self.fp16_backend = args.fp16_backend logger.info(f"Using {self.fp16_backend} fp16 backend") if args.fp16 and not args.deepspeed: # deepspeed manages its own fp16 if self.fp16_backend == "amp": self.use_amp = True if is_sagemaker_mp_enabled(): self.scaler = smp.amp.GradScaler() elif self.sharded_ddp is not None: self.scaler = ShardedGradScaler() else: self.scaler = torch.cuda.amp.GradScaler() else: if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex." ) self.use_apex = True # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error. if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0: raise ValueError( "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass " "along 'max_grad_norm': 0 in your hyperparameters." ) # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.state = TrainerState() self.control = TrainerControl() # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then # returned to 0 every time flos need to be logged self.current_flos = 0 self.hp_search_backend = None self.use_tune_checkpoints = False default_label_names = ( ["start_positions", "end_positions"] if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values() else ["labels"] ) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) # very last self._memory_tracker.stop_and_update_metrics() def add_callback(self, callback): """ Add a callback to the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it. If the callback is not found, returns :obj:`None` (and no error is raised). Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will pop the first member of that class found in the list of callbacks. Returns: :class:`~transformer.TrainerCallback`: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _move_model_to_device(self, model, device): model = model.to(device) # Moving a model to an XLA device disconnects the tied weights, so we have to retie them. if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"): model.tie_weights() def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return dataset if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. signature = inspect.signature(self.model.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += ["label", "label_ids"] columns = [k for k in self._signature_columns if k in dataset.column_names] ignored_columns = list(set(dataset.column_names) - set(self._signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set " logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." ) if version.parse(datasets.__version__) < version.parse("1.4.0"): dataset.set_format( type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"] ) return dataset else: return dataset.remove_columns(ignored_columns) def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: if not isinstance(self.train_dataset, collections.abc.Sized): return None generator = None if self.args.world_size <= 1 and _is_torch_generator_available: generator = torch.Generator() generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item())) # Build the sampler. if self.args.group_by_length: if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset): lengths = ( self.train_dataset[self.args.length_column_name] if self.args.length_column_name in self.train_dataset.column_names else None ) else: lengths = None model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None if self.args.world_size <= 1: return LengthGroupedSampler( self.train_dataset, self.args.train_batch_size, lengths=lengths, model_input_name=model_input_name, generator=generator, ) else: return DistributedLengthGroupedSampler( self.train_dataset, self.args.train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, lengths=lengths, model_input_name=model_input_name, seed=self.args.seed, ) else: if self.args.world_size <= 1: if _is_torch_generator_available: return RandomSampler(self.train_dataset, generator=generator) return RandomSampler(self.train_dataset) elif ( self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL] and not self.args.dataloader_drop_last ): # Use a loop for TPUs when drop_last is False to have all batches have the same size. return DistributedSamplerWithLoop( self.train_dataset, batch_size=self.args.per_device_train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) else: return DistributedSampler( self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) def get_train_dataloader(self) -> DataLoader: """ Returns the training :class:`~torch.utils.data.DataLoader`. Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") if isinstance(train_dataset, torch.utils.data.IterableDataset): if self.args.world_size > 1: train_dataset = IterableDatasetShard( train_dataset, batch_size=self.args.train_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( train_dataset, batch_size=self.args.train_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) train_sampler = self._get_train_sampler() return DataLoader( train_dataset, batch_size=self.args.train_batch_size, sampler=train_sampler, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]: # Deprecated code if self.args.use_legacy_prediction_loop: if is_torch_tpu_available(): return SequentialDistributedSampler( eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal() ) elif is_sagemaker_mp_enabled(): return SequentialDistributedSampler( eval_dataset, num_replicas=smp.dp_size(), rank=smp.dp_rank(), batch_size=self.args.per_device_eval_batch_size, ) elif self.args.local_rank != -1: return SequentialDistributedSampler(eval_dataset) else: return SequentialSampler(eval_dataset) if self.args.world_size <= 1: return SequentialSampler(eval_dataset) else: return ShardSampler( eval_dataset, batch_size=self.args.per_device_eval_batch_size, num_processes=self.args.world_size, process_index=self.args.process_index, ) def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: """ Returns the evaluation :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`): If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation") if isinstance(eval_dataset, torch.utils.data.IterableDataset): if self.args.world_size > 1: eval_dataset = IterableDatasetShard( eval_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( eval_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) eval_sampler = self._get_eval_sampler(eval_dataset) return DataLoader( eval_dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (:obj:`torch.utils.data.Dataset`, `optional`): The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if is_datasets_available() and isinstance(test_dataset, datasets.Dataset): test_dataset = self._remove_unused_columns(test_dataset, description="test") if isinstance(test_dataset, torch.utils.data.IterableDataset): if self.args.world_size > 1: test_dataset = IterableDatasetShard( test_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( test_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) test_sampler = self._get_eval_sampler(test_dataset) # We use the same batch_size as for eval. return DataLoader( test_dataset, sampler=test_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, pin_memory=self.args.dataloader_pin_memory, ) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer` and/or :obj:`create_scheduler`) in a subclass. """ self.create_optimizer() self.create_scheduler(num_training_steps) def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: decay_parameters = get_parameter_names(self.model, [nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if n in decay_parameters], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if is_sagemaker_mp_enabled(): self.optimizer = smp.DistributedOptimizer(self.optimizer) def create_scheduler(self, num_training_steps: int): """ Setup the scheduler. The optimizer of the trainer must have been set up before this method is called. Args: num_training_steps (int): The number of training steps to do. """ if self.lr_scheduler is None: self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, self.optimizer, num_warmup_steps=self.args.get_warmup_steps(num_training_steps), num_training_steps=num_training_steps, ) def num_examples(self, dataloader: DataLoader) -> int: """ Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset. Will raise an exception if the underlying dataset does not implement method :obj:`__len__` """ return len(dataloader.dataset) def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """HP search setup code""" self._trial = trial if self.hp_search_backend is None or trial is None: return if self.hp_search_backend == HPSearchBackend.OPTUNA: params = self.hp_space(trial) elif self.hp_search_backend == HPSearchBackend.RAY: params = trial params.pop("wandb", None) for key, value in params.items(): if not hasattr(self.args, key): logger.warn( f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`." ) continue old_attr = getattr(self.args, key, None) # Casting value to the proper type if old_attr is not None: value = type(old_attr)(value) setattr(self.args, key, value) if self.hp_search_backend == HPSearchBackend.OPTUNA: logger.info("Trial:", trial.params) if self.args.deepspeed: # Rebuild the deepspeed config to reflect the updated training parameters from transformers.deepspeed import HfDeepSpeedConfig self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args) def _report_to_hp_search( self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float] ): if self.hp_search_backend is None or trial is None: return self.objective = self.compute_objective(metrics.copy()) if self.hp_search_backend == HPSearchBackend.OPTUNA: import optuna trial.report(self.objective, epoch) if trial.should_prune(): raise optuna.TrialPruned() elif self.hp_search_backend == HPSearchBackend.RAY: from ray import tune if self.control.should_save: self._tune_save_checkpoint() tune.report(objective=self.objective, **metrics) def _tune_save_checkpoint(self): from ray import tune if not self.use_tune_checkpoints: return with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir: output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}") self.save_model(output_dir) if self.args.should_save: self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) def call_model_init(self, trial=None): model_init_argcount = number_of_arguments(self.model_init) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(trial) else: raise RuntimeError("model_init should have 0 or 1 argument.") if model is None: raise RuntimeError("model_init should not return None.") return model def _wrap_model(self, model, training=True): if is_sagemaker_mp_enabled(): # Wrapping the base model twice in a DistributedModel will raise an error. if isinstance(self.model_wrapped, smp.model.DistributedModel): return self.model_wrapped return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps) # already initialized its own DDP and AMP if self.deepspeed: return self.deepspeed # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again if unwrap_model(model) is not model: return model # Mixed precision training with apex (torch < 1.6) if self.use_apex and training: model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level) # Multi-gpu training (should be after apex fp16 initialization) if self.args.n_gpu > 1: model = nn.DataParallel(model) # Note: in torch.distributed mode, there's no point in wrapping the model # inside a DistributedDataParallel as we'll be under `no_grad` anyways. if not training: return model # Distributed training (should be after apex fp16 initialization) if self.sharded_ddp is not None: # Sharded DDP! if self.sharded_ddp == ShardedDDPOption.SIMPLE: model = ShardedDDP(model, self.optimizer) else: mixed_precision = self.args.fp16 cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3 # XXX: Breaking the self.model convention but I see no way around it for now. if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp: model = auto_wrap(model) self.model = model = FullyShardedDDP( model, mixed_precision=mixed_precision, reshard_after_forward=zero_3, cpu_offload=cpu_offload, ).to(self.args.device) elif is_sagemaker_dp_enabled(): model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) elif self.args.local_rank != -1: if self.args.ddp_find_unused_parameters is not None: find_unused_parameters = self.args.ddp_find_unused_parameters elif isinstance(model, PreTrainedModel): # find_unused_parameters breaks checkpointing as per # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021 find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False) else: find_unused_parameters = True model = nn.parallel.DistributedDataParallel( model, device_ids=[self.args.local_rank], output_device=self.args.local_rank, find_unused_parameters=find_unused_parameters, ) return model def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, ignore_keys_for_eval: Optional[List[str]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): The trial run or the hyperparameter dictionary for hyperparameter search. ignore_keys_for_eval (:obj:`List[str]`, `optional`) A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions for evaluation during the training. kwargs: Additional keyword arguments used to hide deprecated arguments """ resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint # memory metrics - must set up as early as possible self._memory_tracker.start() args = self.args self.is_in_train = True # do_train is not a reliable argument, as it might not be set and .train() still called, so # the following is a workaround: if args.fp16_full_eval and not args.do_train: self._move_model_to_device(self.model, args.device) if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. set_seed(args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") if resume_from_checkpoint is not None: if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}") logger.info(f"Loading model from {resume_from_checkpoint}).") if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)): config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME)) checkpoint_version = config.transformers_version if checkpoint_version is not None and checkpoint_version != __version__: logger.warn( f"You are resuming training from a checkpoint trained with {checkpoint_version} of " f"Transformers but your current version is {__version__}. This is not recommended and could " "yield to errors or unwanted behaviors." ) if args.deepspeed: # will be resumed in deepspeed_init pass else: # We load the model state dict on the CPU to avoid an OOM error. state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) # release memory del state_dict # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self._move_model_to_device(self.model, args.device) self.model_wrapped = self.model # Keeping track whether we can can len() on the dataset or not train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) # Data loader and number of training steps train_dataloader = self.get_train_dataloader() # Setting up training control variables: # number of training epochs: num_train_epochs # number of training steps per epoch: num_update_steps_per_epoch # total number of training steps to execute: max_steps total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size if train_dataset_is_sized: num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) if args.max_steps > 0: max_steps = args.max_steps num_train_epochs = args.max_steps // num_update_steps_per_epoch + int( args.max_steps % num_update_steps_per_epoch > 0 ) # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's # the best we can do. num_train_samples = args.max_steps * total_train_batch_size else: max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch) num_train_epochs = math.ceil(args.num_train_epochs) num_train_samples = len(self.train_dataset) * args.num_train_epochs else: # see __init__. max_steps is set when the dataset has no __len__ max_steps = args.max_steps # Setting a very large number of epochs so we go as many times as necessary over the iterator. num_train_epochs = sys.maxsize num_update_steps_per_epoch = max_steps num_train_samples = args.max_steps * total_train_batch_size if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: if self.args.n_gpu > 1: # nn.DataParallel(model) replicates the model, creating new variables and module # references registered here no longer work on other gpus, breaking the module raise ValueError( "Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)." ) else: debug_overflow = DebugUnderflowOverflow(self.model) # noqa delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE if args.deepspeed: deepspeed_engine, optimizer, lr_scheduler = deepspeed_init( self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint ) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine self.optimizer = optimizer self.lr_scheduler = lr_scheduler elif not delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) self.state = TrainerState() self.state.is_hyper_param_search = trial is not None model = self._wrap_model(self.model_wrapped) # for the rest of this function `model` is the outside model, whether it was wrapped or not if model is not self.model: self.model_wrapped = model if delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) # Check if saved optimizer or scheduler states exist self._load_optimizer_and_scheduler(resume_from_checkpoint) # important: at this point: # self.model is the Transformers Model # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. # Train! num_examples = ( self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_steps}") self.state.epoch = 0 start_time = time.time() epochs_trained = 0 steps_trained_in_current_epoch = 0 steps_trained_progress_bar = None # Check if continuing training from a checkpoint if resume_from_checkpoint is not None and os.path.isfile( os.path.join(resume_from_checkpoint, "trainer_state.json") ): self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json")) epochs_trained = self.state.global_step // num_update_steps_per_epoch if not args.ignore_data_skip: steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) steps_trained_in_current_epoch *= args.gradient_accumulation_steps else: steps_trained_in_current_epoch = 0 logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {self.state.global_step}") if not args.ignore_data_skip: logger.info( f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` " "flag to your launch command, but you will resume the training on data already seen by your model." ) if self.is_local_process_zero() and not args.disable_tqdm: steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch) steps_trained_progress_bar.set_description("Skipping the first batches") # Update the references self.callback_handler.model = self.model self.callback_handler.optimizer = self.optimizer self.callback_handler.lr_scheduler = self.lr_scheduler self.callback_handler.train_dataloader = train_dataloader self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None self.state.trial_params = hp_params(trial) if trial is not None else None # This should be the same if the state has been saved but in case the training arguments changed, it's safer # to set this after the load. self.state.max_steps = max_steps self.state.num_train_epochs = num_train_epochs self.state.is_local_process_zero = self.is_local_process_zero() self.state.is_world_process_zero = self.is_world_process_zero() # tr_loss is a tensor to avoid synchronization of TPUs through .item() tr_loss = torch.tensor(0.0).to(args.device) # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses self._total_loss_scalar = 0.0 self._globalstep_last_logged = self.state.global_step model.zero_grad() self.control = self.callback_handler.on_train_begin(args, self.state, self.control) # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. if not args.ignore_data_skip: for epoch in range(epochs_trained): # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break for epoch in range(epochs_trained, num_train_epochs): if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch) elif isinstance(train_dataloader.dataset, IterableDatasetShard): train_dataloader.dataset.set_epoch(epoch) if is_torch_tpu_available(): parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device) epoch_iterator = parallel_loader else: epoch_iterator = train_dataloader # Reset the past mems state at the beginning of each epoch if necessary. if args.past_index >= 0: self._past = None steps_in_epoch = ( len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps ) self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 if steps_trained_progress_bar is not None: steps_trained_progress_bar.update(1) if steps_trained_in_current_epoch == 0: self._load_rng_state(resume_from_checkpoint) continue elif steps_trained_progress_bar is not None: steps_trained_progress_bar.close() steps_trained_progress_bar = None if step % args.gradient_accumulation_steps == 0: self.control = self.callback_handler.on_step_begin(args, self.state, self.control) if ( ((step + 1) % args.gradient_accumulation_steps != 0) and args.local_rank != -1 and args._no_sync_in_gradient_accumulation ): # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): tr_loss += self.training_step(model, inputs) else: tr_loss += self.training_step(model, inputs) self.current_flos += float(self.floating_point_ops(inputs)) # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps if self.deepspeed: self.deepspeed.step() if (step + 1) % args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch ): # Gradient clipping if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed: # deepspeed does its own clipping if self.use_amp: # AMP: gradients need unscaling self.scaler.unscale_(self.optimizer) if hasattr(self.optimizer, "clip_grad_norm"): # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping self.optimizer.clip_grad_norm(args.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): # Some models (like FullyShardedDDP) have a specific way to do gradient clipping model.clip_grad_norm_(args.max_grad_norm) else: # Revert to normal clipping otherwise, handling Apex or full precision nn.utils.clip_grad_norm_( amp.master_params(self.optimizer) if self.use_apex else model.parameters(), args.max_grad_norm, ) # Optimizer step optimizer_was_run = True if self.deepspeed: pass # called outside the loop elif is_torch_tpu_available(): xm.optimizer_step(self.optimizer) elif self.use_amp: scale_before = self.scaler.get_scale() self.scaler.step(self.optimizer) self.scaler.update() scale_after = self.scaler.get_scale() optimizer_was_run = scale_before <= scale_after else: self.optimizer.step() if optimizer_was_run and not self.deepspeed: self.lr_scheduler.step() model.zero_grad() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_in_epoch self.control = self.callback_handler.on_step_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) else: self.control = self.callback_handler.on_substep_end(args, self.state, self.control) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: if is_torch_tpu_available(): # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) else: logger.warning( "You enabled PyTorch/XLA debug metrics but you don't have a TPU " "configured. Check your training configuration if this is unexpected." ) if self.control.should_training_stop: break if args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: # Wait for everyone to get here so we are sur the model has been saved by process 0. if is_torch_tpu_available(): xm.rendezvous("load_best_model_at_end") elif args.local_rank != -1: dist.barrier() logger.info( f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." ) best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME) if os.path.exists(best_model_path): # We load the model state dict on the CPU to avoid an OOM error. state_dict = torch.load(best_model_path, map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) else: logger.warn( f"Could not locate the best model at {best_model_path}, if you are running a distributed training " "on multiple nodes, you should activate `--save_on_each_node`." ) if self.deepspeed: self.deepspeed.load_checkpoint( self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False ) # add remaining tr_loss self._total_loss_scalar += tr_loss.item() train_loss = self._total_loss_scalar / self.state.global_step metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps) self.store_flos() metrics["total_flos"] = self.state.total_flos metrics["train_loss"] = train_loss self.is_in_train = False self._memory_tracker.stop_and_update_metrics(metrics) self.log(metrics) self.control = self.callback_handler.on_train_end(args, self.state, self.control) return TrainOutput(self.state.global_step, train_loss, metrics) def _load_state_dict_in_model(self, state_dict): load_result = self.model.load_state_dict(state_dict, strict=False) if len(load_result.missing_keys) != 0: if set(load_result.missing_keys) == set(self.model._keys_to_ignore_on_save): self.model.tie_weights() else: logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.") if len(load_result.unexpected_keys) != 0: logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.") def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval): if self.control.should_log: logs: Dict[str, float] = {} tr_loss_scalar = tr_loss.item() # reset tr_loss to zero tr_loss -= tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._total_loss_scalar += tr_loss_scalar self._globalstep_last_logged = self.state.global_step self.store_flos() self.log(logs) metrics = None if self.control.should_evaluate: metrics = self.evaluate(ignore_keys=ignore_keys_for_eval) self._report_to_hp_search(trial, epoch, metrics) if self.control.should_save: self._save_checkpoint(model, trial, metrics=metrics) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def _load_rng_state(self, checkpoint): # Load RNG states from `checkpoint` if checkpoint is None: return local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank != -1: rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that " "wasn't launched in a distributed fashion, reproducibility is not guaranteed." ) return else: rng_file = os.path.join(checkpoint, "rng_state.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( "Didn't find an RNG file, if you are resuming a training that was launched in a distributed " "fashion, reproducibility is not guaranteed." ) return checkpoint_rng_state = torch.load(rng_file) random.setstate(checkpoint_rng_state["python"]) np.random.set_state(checkpoint_rng_state["numpy"]) torch.random.set_rng_state(checkpoint_rng_state["cpu"]) if torch.cuda.is_available(): if self.args.local_rank != -1: torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"]) else: torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"]) if is_torch_tpu_available(): xm.set_rng_state(checkpoint_rng_state["xla"]) def _save_checkpoint(self, model, trial, metrics=None): # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we # want to save except FullyShardedDDP. # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model" # Save model checkpoint checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" if self.hp_search_backend is not None and trial is not None: if self.hp_search_backend == HPSearchBackend.OPTUNA: run_id = trial.number else: from ray import tune run_id = tune.get_trial_id() run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}" run_dir = os.path.join(self.args.output_dir, run_name) else: run_dir = self.args.output_dir self.store_flos() output_dir = os.path.join(run_dir, checkpoint_folder) self.save_model(output_dir) if self.deepspeed: # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed # config `stage3_gather_fp16_weights_on_model_save` is True self.deepspeed.save_checkpoint(output_dir) # Save optimizer and scheduler if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer.consolidate_state_dict() if is_torch_tpu_available(): xm.rendezvous("saving_optimizer_states") xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) elif is_sagemaker_mp_enabled(): if smp.dp_rank() == 0: # Consolidate the state dict on all processed of dp_rank 0 opt_state_dict = self.optimizer.state_dict() # Save it and the scheduler on the main process if self.args.should_save: torch.save(opt_state_dict, os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) elif self.args.should_save and not self.deepspeed: # deepspeed.save_checkpoint above saves model/optim/sched torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) # Determine the new best metric / best model checkpoint if metrics is not None and self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics[metric_to_check] operator = np.greater if self.args.greater_is_better else np.less if ( self.state.best_metric is None or self.state.best_model_checkpoint is None or operator(metric_value, self.state.best_metric) ): self.state.best_metric = metric_value self.state.best_model_checkpoint = output_dir # Save the Trainer state if self.args.should_save: self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) # Save RNG state in non-distributed training rng_states = { "python": random.getstate(), "numpy": np.random.get_state(), "cpu": torch.random.get_rng_state(), } if torch.cuda.is_available(): if self.args.local_rank == -1: # In non distributed, we save the global CUDA RNG state (will take care of DataParallel) rng_states["cuda"] = torch.cuda.random.get_rng_state_all() else: rng_states["cuda"] = torch.cuda.random.get_rng_state() if is_torch_tpu_available(): rng_states["xla"] = xm.get_rng_state() # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may # not yet exist. os.makedirs(output_dir, exist_ok=True) local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank == -1: torch.save(rng_states, os.path.join(output_dir, "rng_state.pth")) else: torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth")) # Maybe delete some older checkpoints. if self.args.should_save: self._rotate_checkpoints(use_mtime=True, output_dir=run_dir) def _load_optimizer_and_scheduler(self, checkpoint): """If optimizer and scheduler states exist, load them.""" if checkpoint is None: return if self.deepspeed: # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init return if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile( os.path.join(checkpoint, "scheduler.pt") ): # Load in optimizer and scheduler states if is_torch_tpu_available(): # On TPU we have to take some extra precautions to properly load the states on the right device. optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu") with warnings.catch_warnings(record=True) as caught_warnings: lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu") reissue_pt_warnings(caught_warnings) xm.send_cpu_data_to_device(optimizer_state, self.args.device) xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device) self.optimizer.load_state_dict(optimizer_state) self.lr_scheduler.load_state_dict(lr_scheduler_state) else: map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device self.optimizer.load_state_dict( torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=map_location) ) with warnings.catch_warnings(record=True) as caught_warnings: self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt"))) reissue_pt_warnings(caught_warnings) if self.use_amp and os.path.isfile(os.path.join(checkpoint, "scaler.pt")): self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, "scaler.pt"))) def hyperparameter_search( self, hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None, compute_objective: Optional[Callable[[Dict[str, float]], float]] = None, n_trials: int = 20, direction: str = "minimize", backend: Optional[Union["str", HPSearchBackend]] = None, hp_name: Optional[Callable[["optuna.Trial"], str]] = None, **kwargs, ) -> BestRun: """ Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise. .. warning:: To use this method, you need to have provided a ``model_init`` when initializing your :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler. Args: hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`): A function that defines the hyperparameter search space. Will default to :func:`~transformers.trainer_utils.default_hp_space_optuna` or :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend. compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`): A function computing the objective to minimize or maximize from the metrics returned by the :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`. n_trials (:obj:`int`, `optional`, defaults to 100): The number of trial runs to test. direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`): Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or several metrics. backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`): The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna. kwargs: Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For more information see: - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ Returns: :class:`transformers.trainer_utils.BestRun`: All the information about the best run. """ if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError( "At least one of optuna or ray should be installed. " "To install optuna run `pip install optuna`." "To install ray run `pip install ray[tune]`." ) backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and not is_optuna_available(): raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.") if backend == HPSearchBackend.RAY and not is_ray_tune_available(): raise RuntimeError( "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`." ) self.hp_search_backend = backend if self.model_init is None: raise RuntimeError( "To use hyperparameter search, you need to pass your model through a model_init function." ) self.hp_space = default_hp_space[backend] if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray best_run = run_hp_search(self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if self.state.epoch is not None: logs["epoch"] = round(self.state.epoch, 2) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output) self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs) def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if isinstance(v, torch.Tensor): kwargs = dict(device=self.args.device) if self.deepspeed and inputs[k].dtype != torch.int64: # NLP models inputs are int64 and those get adjusted to the right dtype of the # embedding. Other models such as wav2vec2's inputs are already float and thus # may need special handling to match the dtypes of the model kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype())) inputs[k] = v.to(**kwargs) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if is_sagemaker_mp_enabled(): scaler = self.scaler if self.use_amp else None loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler) return loss_mb.reduce_mean().detach().to(self.args.device) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.args.gradient_accumulation_steps > 1 and not self.deepspeed: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: # loss gets scaled under gradient_accumulation_steps in deepspeed loss = self.deepspeed.backward(loss) else: loss.backward() return loss.detach() def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss def is_local_process_zero(self) -> bool: """ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. """ return self.args.local_process_index == 0 def is_world_process_zero(self) -> bool: """ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be :obj:`True` for one process). """ # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global # process index. if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.args.process_index == 0 def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. Will only save from the main process. """ if output_dir is None: output_dir = self.args.output_dir if is_torch_tpu_available(): self._save_tpu(output_dir) elif is_sagemaker_mp_enabled(): # Calling the state_dict needs to be done on the wrapped model and on all processes. state_dict = self.model_wrapped.state_dict() if self.args.should_save: self._save(output_dir, state_dict=state_dict) elif ( ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp ): state_dict = self.model.state_dict() if self.args.should_save: self._save(output_dir, state_dict=state_dict) elif self.deepspeed: # this takes care of everything as long as we aren't under zero3 if self.args.should_save: self._save(output_dir) if is_deepspeed_zero3_enabled(): # It's too complicated to try to override different places where the weights dump gets # saved, so since under zero3 the file is bogus, simply delete it. The user should # either user deepspeed checkpoint to resume or to recover full weights use # zero_to_fp32.py stored in the checkpoint. if self.args.should_save: file = os.path.join(output_dir, WEIGHTS_NAME) if os.path.isfile(file): # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights") os.remove(file) # now save the real model if stage3_gather_fp16_weights_on_model_save=True # if false it will not be saved. # This must be called on all ranks self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME) elif self.args.should_save: self._save(output_dir) def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info(f"Saving model checkpoint to {output_dir}") if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained( output_dir, save_config=self.args.should_save, state_dict=self.model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, save_config=self.args.should_save, save_function=xm.save) if self.tokenizer is not None and self.args.should_save: self.tokenizer.save_pretrained(output_dir) def _save(self, output_dir: Optional[str] = None, state_dict=None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving model checkpoint to {output_dir}") # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): if state_dict is None: state_dict = self.model.state_dict() unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") if state_dict is None: state_dict = self.model.state_dict() torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, state_dict=state_dict) if self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def store_flos(self): # Storing the number of floating-point operations that went into the model if self.args.local_rank != -1: self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item() self.current_flos = 0 else: self.state.total_flos += self.current_flos self.current_flos = 0 def _sorted_checkpoints( self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False ) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")] for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match is not None and regex_match.groups() is not None: ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] # Make sure we don't delete the best model. if self.state.best_model_checkpoint is not None: best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint))) for i in range(best_model_index, len(checkpoints_sorted) - 2): checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i] return checkpoints_sorted def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None: if self.args.save_total_limit is None or self.args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir) if len(checkpoints_sorted) <= self.args.save_total_limit: return # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which # we don't do to allow resuming. save_total_limit = self.args.save_total_limit if ( self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1 and checkpoints_sorted[-1] != self.state.best_model_checkpoint ): save_total_limit = 2 number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") shutil.rmtree(checkpoint) def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ # memory metrics - must set up as early as possible self._memory_tracker.start() eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self.log(output.metrics) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test" ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:obj:`Dataset`): Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__` ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "test_bleu" if the prefix is "test" (default) .. note:: If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ # memory metrics - must set up as early as possible self._memory_tracker.start() test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self._memory_tracker.stop_and_update_metrics(output.metrics) return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics) def evaluation_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> EvalLoopOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size logger.info(f"***** Running {description} *****") if isinstance(dataloader.dataset, collections.abc.Sized): logger.info(f" Num examples = {self.num_examples(dataloader)}") else: logger.info(" Num examples: Unknown") logger.info(f" Batch size = {batch_size}") model.eval() self.callback_handler.eval_dataloader = dataloader # Do this before wrapping. eval_dataset = dataloader.dataset if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None # Initialize containers # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps) losses_host = None preds_host = None labels_host = None # losses/preds/labels on CPU (final containers) all_losses = None all_preds = None all_labels = None # Will be useful when we have an iterable dataset so don't know its length. observed_num_examples = 0 # Main evaluation loop for step, inputs in enumerate(dataloader): # Update the observed num examples observed_batch_size = find_batch_size(inputs) if observed_batch_size is not None: observed_num_examples += observed_batch_size # Prediction step loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) # Update containers on host if loss is not None: losses = self._nested_gather(loss.repeat(batch_size)) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: logits = self._pad_across_processes(logits) logits = self._nested_gather(logits) preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels = self._pad_across_processes(labels) labels = self._nested_gather(labels) labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = ( labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) ) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) # Number of samples if not isinstance(eval_dataset, IterableDataset): num_samples = len(eval_dataset) # The instance check is weird and does not actually check for the type, but whether the dataset has the right # methods. Therefore we need to make sure it also has the attribute. elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"): num_samples = eval_dataset.num_examples else: num_samples = observed_num_examples # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of # samplers has been rounded to a multiple of batch_size, so we truncate. if all_losses is not None: all_losses = all_losses[:num_samples] if all_preds is not None: all_preds = nested_truncate(all_preds, num_samples) if all_labels is not None: all_labels = nested_truncate(all_labels, num_samples) # Metrics! if self.compute_metrics is not None and all_preds is not None and all_labels is not None: metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if all_losses is not None: metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples) def _nested_gather(self, tensors, name=None): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): if name is None: name = "nested_gather" tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return tensors # Copied from Accelerate. def _pad_across_processes(self, tensor, pad_index=-100): """ Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they can safely be gathered. """ if isinstance(tensor, (list, tuple)): return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()}) elif not isinstance(tensor, torch.Tensor): raise TypeError( f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors." ) if len(tensor.shape) < 2: return tensor # Gather all sizes size = torch.tensor(tensor.shape, device=tensor.device)[None] sizes = self._nested_gather(size).cpu() max_size = max(s[1] for s in sizes) if tensor.shape[1] == max_size: return tensor # Then pad to the maximum size old_size = tensor.shape new_size = list(old_size) new_size[1] = max_size new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index new_tensor[:, : old_size[1]] = tensor return new_tensor def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. Return: Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if is_sagemaker_mp_enabled(): raw_outputs = smp_forward_only(model, inputs) if has_labels: if isinstance(raw_outputs, dict): loss_mb = raw_outputs["loss"] logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"]) else: loss_mb = raw_outputs[0] logits_mb = raw_outputs[1:] loss = loss_mb.reduce_mean().detach().cpu() logits = smp_nested_concat(logits_mb) else: loss = None if isinstance(raw_outputs, dict): logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys) else: logits_mb = raw_outputs logits = smp_nested_concat(logits_mb) else: if has_labels: loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] return (loss, logits, labels) def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]): """ For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method. Args: inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. Returns: :obj:`int`: The number of floating-point operations. """ if hasattr(self.model, "floating_point_ops"): return self.model.floating_point_ops(inputs) else: return 0 def init_git_repo(self): """ Initializes a git repo in :obj:`self.args.push_to_hub_model_id`. """ if not self.args.should_save: return use_auth_token = True if self.args.push_to_hub_token is None else self.args.push_to_hub_token repo_url = PushToHubMixin._get_repo_url_from_name( self.args.push_to_hub_model_id, organization=self.args.push_to_hub_organization, use_auth_token=use_auth_token, ) self.repo = PushToHubMixin._create_or_get_repo( self.args.output_dir, repo_url=repo_url, use_auth_token=use_auth_token ) # By default, ignore the checkpoint folders if not os.path.exists(os.path.join(self.args.output_dir, ".gitignore")): with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer: writer.writelines(["checkpoint-*/"]) def create_model_card( self, language: Optional[str] = None, license: Optional[str] = None, tags: Optional[str] = None, model_name: Optional[str] = None, finetuned_from: Optional[str] = None, tasks: Optional[str] = None, dataset_tags: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, dataset_args: Optional[Union[str, List[str]]] = None, ): training_summary = TrainingSummary.from_trainer( self, language=language, license=license, tags=tags, model_name=model_name, finetuned_from=finetuned_from, tasks=tasks, dataset_tags=dataset_tags, dataset=dataset, dataset_args=dataset_args, ) model_card = training_summary.to_model_card() with open(os.path.join(self.args.output_dir, "README.md"), "w") as f: f.write(model_card) def push_to_hub(self, commit_message: Optional[str] = "add model", **kwargs) -> str: """ Upload `self.model` and `self.tokenizer` to the 🤗 model hub on the repo `self.args.push_to_hub_model_id`. Parameters: commit_message (:obj:`str`, `optional`, defaults to :obj:`"add model"`): Message to commit while pushing. kwargs: Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`. Returns: The url of the commit of your model in the given repository. """ if self.args.should_save: self.create_model_card(model_name=self.args.push_to_hub_model_id, **kwargs) # Needs to be executed on all processes for TPU training, but will only save on the processed determined by # self.args.should_save. self.save_model() # Only push from one node. if not self.is_world_process_zero(): return return self.repo.push_to_hub(commit_message=commit_message) # # Deprecated code # def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info(f"***** Running {description} *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Batch size = {batch_size}") losses_host: torch.Tensor = None preds_host: Union[torch.Tensor, List[torch.Tensor]] = None labels_host: Union[torch.Tensor, List[torch.Tensor]] = None world_size = max(1, self.args.world_size) eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size) if not prediction_loss_only: # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass # a batch size to the sampler) make_multiple_of = None if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler): make_multiple_of = dataloader.sampler.batch_size preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) model.eval() if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None self.callback_handler.eval_dataloader = dataloader for step, inputs in enumerate(dataloader): loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) if loss is not None: losses = loss.repeat(batch_size) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) eval_loss = eval_losses_gatherer.finalize() preds = preds_gatherer.finalize() if not prediction_loss_only else None label_ids = labels_gatherer.finalize() if not prediction_loss_only else None if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if eval_loss is not None: metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def _gather_and_numpify(self, tensors, name): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return nested_numpify(tensors)
[ "torch.cat", "torch.utils.data.RandomSampler", "torch.cuda.amp.autocast", "torch.Generator", "torch.cuda.random.set_rng_state", "torch.random.get_rng_state", "torch.cuda.random.set_rng_state_all", "torch.cuda.is_available", "torch.load", "torch.cuda.random.get_rng_state_all", "torch.nn.DataParallel", "torch.tensor", "torch.utils.data.DataLoader", "torch.empty", "torch.random.set_rng_state", "torch.utils.data.SequentialSampler", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.amp.GradScaler", "torch.distributed.barrier", "torch.cuda.random.get_rng_state", "torch.distributed.get_local_rank", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
1.0
mweiss17/transformers
ae88d5adc89a2020c21d62481e98f058f91784aa
1.1
import torch import torch.nn as nn import torchvision.models as models import torchvision.transforms as transforms class ChannelPoolAdaptiveAvg1d(torch.nn.AdaptiveAvgPool1d): def forward(self, input): n, c = input.size() input = input.view(n,c,1).permute(0,2,1) pooled = torch.nn.functional.adaptive_avg_pool1d(input, self.output_size) _, _, c = pooled.size() pooled = pooled.permute(0,2,1) return pooled.view(n,c) class Img2Vec(): def __init__(self, cuda=False, model='resnet-18', layer='default', layer_output_size=512): """ Img2Vec :param cuda: If set to True, will run forward pass on GPU :param model: String name of requested model :param layer: String or Int depending on model. See more docs: https://github.com/christiansafka/img2vec.git :param layer_output_size: Int depicting the output size of the requested layer """ self.device = torch.device("cuda" if cuda else "cpu") self.layer_output_size = layer_output_size self.model_name = model self.model, self.extraction_layer = self._get_model_and_layer(model, layer) self.model = self.model.to(self.device) self.model.eval() self.scaler = transforms.Scale((224, 224)) self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.to_tensor = transforms.ToTensor() def get_vec(self, img, tensor=False): """ Get vector embedding from PIL image :param img: PIL Image :param tensor: If True, get_vec will return a FloatTensor instead of Numpy array :returns: Numpy ndarray """ image = self.normalize(self.to_tensor(self.scaler(img))).unsqueeze(0).to(self.device) if self.model_name in ('alexnet', 'mobilenet', 'resnext-50-small'): my_embedding = torch.zeros(1, self.layer_output_size) elif self.model_name in ('resnet-18', 'resnext-50'): my_embedding = torch.zeros(1, self.layer_output_size) def copy_data(m, i, o): my_embedding.copy_(o.data) h = self.extraction_layer.register_forward_hook(copy_data) h_x = self.model(image) h.remove() if tensor: return my_embedding else: if self.model_name in ('alexnet', 'mobilenet', 'resnext-50-small'): return my_embedding.numpy()[0, :] elif self.model_name in ('resnet-18', 'resnext-50'): return my_embedding.numpy()[0, :, 0, 0] def _get_model_and_layer(self, model_name, layer): """ Internal method for getting layer from model :param model_name: model name such as 'resnet-18' :param layer: layer as a string for resnet-18 or int for alexnet :returns: pytorch model, selected layer """ if model_name == 'resnext-50-small': model = models.resnext50_32x4d(pretrained=True) if layer == 'default': #b = torch.nn.AvgPool2d(kernel_size=(8,8),stride=(4,4)) #a = torch.nn.AvgPool2d(kernel_size=(2,2),stride=2) #model.avgpool = b #model.fc = nn.Identity() #layer = model.avgpool model.fc = ChannelPoolAdaptiveAvg1d(output_size=512) layer = model.fc self.layer_output_size = 512 else: layer = model._modules.get(layer) return model, layer if model_name == 'resnext-50': model = models.resnext50_32x4d(pretrained=True) if layer == 'default': layer = model._modules.get('avgpool') self.layer_output_size = 2048 else: layer = model._modules.get(layer) return model, layer if model_name == 'resnet-18': model = models.resnet18(pretrained=True) if layer == 'default': layer = model._modules.get('avgpool') self.layer_output_size = 512 else: layer = model._modules.get(layer) return model, layer # @TODO: Fix or remove, this is both slow and inaccurate, not sure where we'd use it if model_name == 'alexnet': model = models.alexnet(pretrained=True) if layer == 'default': layer = model.classifier[-2] self.layer_output_size = 4096 else: layer = model.classifier[-layer] return model, layer # @TODO: Fix or remove, this is slow and not quite as accurate as resnet18, it's a failed experiment trying to end the encoder with the output from an FC rather than output from the pooling layer, might work on it later, if 1 month from now it stays the same, just remove it if model_name == 'mobilenet': model = models.mobilenet_v2(pretrained=True) if layer == 'default': layer = model._modules.get('classifier') self.layer_output_size = 1000 else: layer = model._modules.get(layer) return model, layer else: raise KeyError('Model %s was not found' % model_name)
[ "torch.zeros", "torch.device", "torch.nn.functional.adaptive_avg_pool1d" ]
1.1.0
abitrolly/lightwood
ee0c095f594c5d491196401b59344702f346bc9c
1.3
import torch import torch.nn.functional as F import configparser import matplotlib.pyplot as plt import os import numpy as np plt.figure(figsize=(20,5)) import ast import sys #to import parent-level modules os.chdir('Temporal-Based Approach') sys.path.append('..') from model.StackedLSTM import StackedLSTM from utils.normalize_testdata import normalize_testdata from influence import prediction_with_influence from postprocessing.postprocessing import PostProcessing #read the configuration file config = configparser.ConfigParser() config.read('config.ini') batch_size = int(config['Test']['test_batch_size']) input_size = int(config['Common']['input_size']) hidden_size = int(config['Common']['hidden_size']) num_layer = int(config['Common']['num_layer']) sequence_length = int(config['Common']['sequence_length']) output_size = int(config['Common']['output_size']) test_dir = config['Test']['test_dir'] weights_loc = config['Common']['weights_loc'] initial_seq = torch.Tensor(ast.literal_eval(config['Save']['initial_seq'])) # max_note = int(config['Save']['max_note']) # min_note = int(config['Save']['min_note']) #check if CUDA is available device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') initial_seq = initial_seq.to(device) #load the weights of the LSTM model model = StackedLSTM(input_size,hidden_size,num_layer,output_size, batch_size) model.load_state_dict(torch.load('{}'.format(weights_loc))) #set the model in evaluation mode model.eval() model.to(device) test_list = os.listdir(test_dir) for each_test_file in test_list: test_file_path = os.path.join(test_dir,each_test_file).replace('\\','/') testing_data = np.array(normalize_testdata(test_file_path, 50, 89)) predicted_notes_list = prediction_with_influence(model, testing_data, initial_seq) print(predicted_notes_list) #convert tensor to list for i in range(len(predicted_notes_list)): predicted_notes_list[i]=predicted_notes_list[i].detach().cpu().numpy().tolist() postprocessing = PostProcessing() postprocessing.stich_notes(predicted_notes_list) postprocessing.music_generation(testing_data*89, each_test_file)
[ "torch.cuda.is_available" ]
1.3.0
uvashisth/Sonification-using-Deep-Learning
a0917e785c35aa5fadcbb258e938c58071b4e482
0.4
from torch import nn class GPT2LMHead(nn.Module): """ Language Model Head for the transformer """ def __init__(self, model_embeddings_weights, config): super(GPT2LMHead, self).__init__() self.n_embd = config.n_embd self.set_embeddings_weights(model_embeddings_weights) def set_embeddings_weights(self, model_embeddings_weights): embed_shape = model_embeddings_weights.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.decoder.weight = model_embeddings_weights # Tied weights def forward(self, hidden_state): # Truncated Language modeling logits (we remove the last token) # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) lm_logits = self.decoder(hidden_state) return lm_logits class GPT2MultipleChoiceHead(nn.Module): """ Classifier Head for the transformer """ def __init__(self, config): super(GPT2MultipleChoiceHead, self).__init__() self.n_embd = config.n_embd self.linear = nn.Linear(config.n_embd, 1) nn.init.normal_(self.linear.weight, std=0.02) nn.init.normal_(self.linear.bias, 0) def forward(self, hidden_states, mc_token_ids): # Classification logits # hidden_state (bsz, num_choices, seq_length, hidden_size) # mc_token_ids (bsz, num_choices) mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1)) # (bsz, num_choices, 1, hidden_size) multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2) # (bsz, num_choices, hidden_size) multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1) # (bsz, num_choices) return multiple_choice_logits
[ "torch.nn.Linear", "torch.nn.init.normal_" ]
0.4.1
kniazevgeny/GPT2sQA-1
b319016f51847a25ea3e9cd9c8450d58831cc42a
1.7
import torch from torch import nn import torch.nn.functional as F class ConvNormLReLU(nn.Sequential): def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False): pad_layer = { "zero": nn.ZeroPad2d, "same": nn.ReplicationPad2d, "reflect": nn.ReflectionPad2d, } if pad_mode not in pad_layer: raise NotImplementedError super(ConvNormLReLU, self).__init__( pad_layer[pad_mode](padding), nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias), #nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True), nn.InstanceNorm2d(num_features=out_ch, affine=True), nn.LeakyReLU(0.2, inplace=True) ) class InvertedResBlock(nn.Module): def __init__(self, in_ch, out_ch, expansion_ratio=2): super(InvertedResBlock, self).__init__() self.use_res_connect = in_ch == out_ch bottleneck = int(round(in_ch*expansion_ratio)) layers = [] if expansion_ratio != 1: layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0)) # dw layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True)) # pw layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False)) # layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True)) layers.append(nn.InstanceNorm2d(num_features=out_ch, affine=True)) self.layers = nn.Sequential(*layers) def forward(self, input): out = self.layers(input) if self.use_res_connect: out = input + out return out class Generator(nn.Module): def __init__(self, ): super().__init__() self.block_a = nn.Sequential( ConvNormLReLU(3, 32, kernel_size=7, padding=3), ConvNormLReLU(32, 64, stride=2, padding=(0,1,0,1)), ConvNormLReLU(64, 64) ) self.block_b = nn.Sequential( ConvNormLReLU(64, 128, stride=2, padding=(0,1,0,1)), ConvNormLReLU(128, 128) ) self.block_c = nn.Sequential( ConvNormLReLU(128, 128), InvertedResBlock(128, 256, 2), InvertedResBlock(256, 256, 2), InvertedResBlock(256, 256, 2), InvertedResBlock(256, 256, 2), ConvNormLReLU(256, 128), ) self.block_d = nn.Sequential( ConvNormLReLU(128, 128), ConvNormLReLU(128, 128) ) self.block_e = nn.Sequential( ConvNormLReLU(128, 64), ConvNormLReLU(64, 64), ConvNormLReLU(64, 32, kernel_size=7, padding=3) ) self.out_layer = nn.Sequential( nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False), nn.Tanh() ) def forward(self, input, align_corners=False): out = self.block_a(input) half_size = out.size()[-2:] out = self.block_b(out) out = self.block_c(out) if align_corners: out = F.interpolate(out, half_size, mode="bilinear", align_corners=True) else: out = F.interpolate(out, scale_factor=2, mode='nearest') out = self.block_d(out) if align_corners: out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True) else: out = F.interpolate(out, scale_factor=2, mode='nearest') out = self.block_e(out) out = self.out_layer(out) return out
[ "torch.nn.Sequential", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.nn.functional.interpolate", "torch.nn.Conv2d", "torch.nn.InstanceNorm2d" ]
1.7.1
viztopia/animegan2-pytorch
cef7f42fa429cfc902c3b419d343389e690943f5
0.4
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model. """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import math import os import sys from io import open import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer, add_start_docstrings) logger = logging.getLogger(__name__) BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", } BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", } def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """ Load tf checkpoints in a pytorch model. """ try: import re import numpy as np import tensorflow as tf except ImportError: logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any(n in ["adam_v", "adam_m", "global_step"] for n in name): logger.info("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+_\d+', m_name): l = re.split(r'_(\d+)', m_name) else: l = [m_name] if l[0] == 'kernel' or l[0] == 'gamma': pointer = getattr(pointer, 'weight') elif l[0] == 'output_bias' or l[0] == 'beta': pointer = getattr(pointer, 'bias') elif l[0] == 'output_weights': pointer = getattr(pointer, 'weight') elif l[0] == 'squad': pointer = getattr(pointer, 'classifier') else: try: pointer = getattr(pointer, l[0]) except AttributeError: logger.info("Skipping {}".format("/".join(name))) continue if len(l) >= 2: num = int(l[1]) pointer = pointer[num] if m_name[-11:] == '_embeddings': pointer = getattr(pointer, 'weight') elif m_name == 'kernel': array = np.transpose(array) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model @torch.jit.script def f_gelu(x): """Fused gelu func""" return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return f_gelu(x) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} class BertConfig(PretrainedConfig): r""" :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a `BertModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size_or_config_json_file=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, **kwargs): super(BertConfig, self).__init__(**kwargs) if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, head_mask=None): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) for head in heads: mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads def forward(self, input_tensor, attention_mask, head_mask=None): self_outputs = self.self(input_tensor, attention_mask, head_mask) attention_output = self.output(self_outputs[0], input_tensor) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, head_mask=None): attention_outputs = self.attention(hidden_states, attention_mask, head_mask) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, head_mask=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i]) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # outputs, (hidden states), (attentions) class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertConfig pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" def __init__(self, *inputs, **kwargs): super(BertPreTrainedModel, self).__init__(*inputs, **kwargs) def init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() BERT_START_DOCSTRING = r""" The BERT model was proposed in `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer pre-trained using a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia. This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: https://arxiv.org/abs/1810.04805 .. _`torch.nn.Module`: https://pytorch.org/docs/stable/nn.html#module Parameters: config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. """ BERT_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1[``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. """ @add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertModel(BertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertModel(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_weights) def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.embeddings.word_embeddings new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.embeddings.word_embeddings = new_embeddings return self.embeddings.word_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForPreTraining(BertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForPreTraining(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.apply(self.init_weights) self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.cls.predictions.decoder, self.bert.embeddings.word_embeddings) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss outputs = (total_loss,) + outputs return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForMaskedLM(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, masked_lm_labels=input_ids) >>> loss, prediction_scores = outputs[:2] """ def __init__(self, config): super(BertForMaskedLM, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config) self.apply(self.init_weights) self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.cls.predictions.decoder, self.bert.embeddings.word_embeddings) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention is they are here if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForNextSentencePrediction(BertPreTrainedModel): r""" **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Next sequence prediction (classification) loss. **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForNextSentencePrediction(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> seq_relationship_scores = outputs[0] """ def __init__(self, config): super(BertForNextSentencePrediction, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here if next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) outputs = (next_sentence_loss,) + outputs return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForSequenceClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForSequenceClassification(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, logits = outputs[:2] """ def __init__(self, config): super(BertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING) class BertForMultipleChoice(BertPreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, num_choices, sequence_length)``: Mask to avoid performing attention on padding token indices. The second dimension of the input (`num_choices`) indicates the number of choices to score. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForMultipleChoice(config) >>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices >>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, classification_scores = outputs[:2] """ def __init__(self, config): super(BertForMultipleChoice, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): num_choices = input_ids.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None outputs = self.bert(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs # (loss), reshaped_logits, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForTokenClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels]``. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForTokenClassification(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, scores = outputs[:2] """ def __init__(self, config): super(BertForTokenClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForQuestionAnswering(BertPreTrainedModel): r""" **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForQuestionAnswering(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss, start_scores, end_scores = outputs[:2] """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
[ "torch.nn.Linear", "torch.ones", "torch.nn.CrossEntropyLoss", "torch.sigmoid", "torch.sqrt", "torch.nn.Softmax", "torch.zeros_like", "torch.zeros", "torch.nn.Tanh", "torch.matmul", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.arange", "torch.erf", "torch.from_numpy", "torch.ones_like", "torch.nn.Embedding" ]
0.4.1
jiahuanglin/pytorch-transformers
a7a93143df4e60e31e062d7f2a4eb0d6283473a4
1.0
# TvNorm.py import torch import torch.nn as nn class TvNorm(nn.Module): """ normalization using the total variation; idea is to normalize pixel-wise by the length of the feature vector, i.e., MATLAB notation: z = diag( 1/ sqrt( sum(x.^2,3)+eps)) x Attributes: eps: small float so no division by 0 weight: scaling weight for the affine transformation bias: bias for the affine transformation """ def __init__(self, nChan, eps=1e-4): """ :param nChan: number of channels for the data you expect to normalize :param eps: small float so no division by 0 """ super().__init__() self.eps = eps # Tv Norm has no tuning of the scaling weights # self.weight = nn.Parameter(torch.ones(nChan)) self.register_buffer('weight', torch.ones(nChan)) self.bias = nn.Parameter(torch.zeros(nChan)) def forward(self,x): """ :param x: inputs tensor, second dim is channels example dims: (num images in the batch , num channels, height , width) :return: normalized version with same dimensions as x """ z = torch.pow(x, 2) z = torch.div(x, torch.sqrt(torch.sum(z, dim=1, keepdim=True) + self.eps)) # assumes that Tensor is formatted ( something , no. of channels, something, something, etc.) if self.weight is not None: w = self.weight.unsqueeze(0) # add first dimension w = w.unsqueeze(-1) # add last dimension w = w.unsqueeze(-1) # add last dimension z = z * w if self.bias is not None: b = self.bias.unsqueeze(0) # add first dimension b = b.unsqueeze(-1) # add last dimension b = b.unsqueeze(-1) # add last dimension z = z + b return z
[ "torch.ones", "torch.zeros", "torch.sum", "torch.pow" ]
1.0.1
EmoryMLIP/DynamicBlocks
52acc9fbc1a2640c6ac8922fa18105279ccaea97
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trainer to automate the training.""" import logging import warnings from itertools import count from pathlib import Path from traceback import print_exc from typing import Any, Dict, Iterable, List, Optional, Union import torch from torch.utils.data import DataLoader from pytorch_lightning.accelerators import Accelerator from pytorch_lightning.callbacks import Callback from pytorch_lightning.core.datamodule import LightningDataModule from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.core.step_result import Result from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning.plugins import Plugin from pytorch_lightning.profiler import BaseProfiler from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin from pytorch_lightning.trainer.configuration_validator import ConfigValidator from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector from pytorch_lightning.trainer.connectors.data_connector import DataConnector from pytorch_lightning.trainer.connectors.debugging_connector import DebuggingConnector from pytorch_lightning.trainer.connectors.env_vars_connector import _defaults_from_env_vars from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector from pytorch_lightning.trainer.connectors.model_connector import ModelConnector from pytorch_lightning.trainer.connectors.optimizer_connector import OptimizerConnector from pytorch_lightning.trainer.connectors.profiler_connector import ProfilerConnector from pytorch_lightning.trainer.connectors.slurm_connector import SLURMConnector from pytorch_lightning.trainer.connectors.training_trick_connector import TrainingTricksConnector from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin from pytorch_lightning.trainer.deprecated_api import DeprecatedDistDeviceAttributes, DeprecatedTrainerAttributes from pytorch_lightning.trainer.evaluation_loop import EvaluationLoop from pytorch_lightning.trainer.logging import TrainerLoggingMixin from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin from pytorch_lightning.trainer.predict_loop import PredictLoop from pytorch_lightning.trainer.properties import TrainerProperties from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.trainer.training_loop import TrainLoop from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin from pytorch_lightning.tuner.tuning import Tuner from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.cloud_io import load as pl_load from pytorch_lightning.utilities.debugging import InternalDebugger from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.memory import recursive_detach from pytorch_lightning.utilities.model_helpers import is_overridden log = logging.getLogger(__name__) # warnings to ignore in trainer warnings.filterwarnings( 'ignore', message='torch.distributed.reduce_op is deprecated, ' 'please use torch.distributed.ReduceOp instead' ) class Trainer( TrainerProperties, TrainerCallbackHookMixin, TrainerModelHooksMixin, TrainerOptimizersMixin, TrainerLoggingMixin, TrainerTrainingTricksMixin, TrainerDataLoadingMixin, DeprecatedDistDeviceAttributes, DeprecatedTrainerAttributes, ): @_defaults_from_env_vars def __init__( self, logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True, checkpoint_callback: bool = True, callbacks: Optional[Union[List[Callback], Callback]] = None, default_root_dir: Optional[str] = None, gradient_clip_val: float = 0, process_position: int = 0, num_nodes: int = 1, num_processes: int = 1, gpus: Optional[Union[List[int], str, int]] = None, auto_select_gpus: bool = False, tpu_cores: Optional[Union[List[int], str, int]] = None, log_gpu_memory: Optional[str] = None, progress_bar_refresh_rate: Optional[int] = None, overfit_batches: Union[int, float] = 0.0, track_grad_norm: Union[int, float, str] = -1, check_val_every_n_epoch: int = 1, fast_dev_run: Union[int, bool] = False, accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1, max_epochs: Optional[int] = None, min_epochs: Optional[int] = None, max_steps: Optional[int] = None, min_steps: Optional[int] = None, limit_train_batches: Union[int, float] = 1.0, limit_val_batches: Union[int, float] = 1.0, limit_test_batches: Union[int, float] = 1.0, limit_predict_batches: Union[int, float] = 1.0, val_check_interval: Union[int, float] = 1.0, flush_logs_every_n_steps: int = 100, log_every_n_steps: int = 50, accelerator: Optional[Union[str, Accelerator]] = None, sync_batchnorm: bool = False, precision: int = 32, weights_summary: Optional[str] = 'top', weights_save_path: Optional[str] = None, num_sanity_val_steps: int = 2, truncated_bptt_steps: Optional[int] = None, resume_from_checkpoint: Optional[Union[Path, str]] = None, profiler: Optional[Union[BaseProfiler, str]] = None, benchmark: bool = False, deterministic: bool = False, reload_dataloaders_every_epoch: bool = False, auto_lr_find: Union[bool, str] = False, replace_sampler_ddp: bool = True, terminate_on_nan: bool = False, auto_scale_batch_size: Union[str, bool] = False, prepare_data_per_node: bool = True, plugins: Optional[Union[Plugin, str, list]] = None, amp_backend: str = 'native', amp_level: str = 'O2', distributed_backend: Optional[str] = None, move_metrics_to_cpu: bool = False, multiple_trainloader_mode: str = 'max_size_cycle', stochastic_weight_avg: bool = False ): r""" Customize every aspect of training via flags Args: accelerator: Previously known as distributed_backend (dp, ddp, ddp2, etc...). Can also take in an accelerator object for custom hardware. accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict. amp_backend: The mixed precision backend to use ("native" or "apex") amp_level: The optimization level to use (O1, O2, etc...). auto_lr_find: If set to True, will make trainer.tune() run a learning rate finder, trying to optimize initial learning for faster convergence. trainer.tune() method will set the suggested learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key set a string instead of True with the key name. auto_scale_batch_size: If set to True, will `initially` run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either `power` that estimates the batch size through a power search or `binsearch` that estimates the batch size through a binary search. auto_select_gpus: If enabled and `gpus` is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in "exclusive mode", such that only one process at a time can access them. benchmark: If true enables cudnn.benchmark. callbacks: Add a callback or list of callbacks. checkpoint_callback: If ``True``, enable checkpointing. It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`. check_val_every_n_epoch: Check val every n train epochs. default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed. Default: ``os.getcwd()``. Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/' deterministic: If true enables cudnn.deterministic. distributed_backend: deprecated. Please use 'accelerator' fast_dev_run: runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test to find any bugs (ie: a sort of unit test). flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). gpus: number of gpus to train on (int) or which GPUs to train on (list or str) applied per node gradient_clip_val: 0 means don't clip. limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches) limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches) limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches) limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches) logger: Logger (or iterable collection of loggers) for experiment tracking. log_gpu_memory: None, 'min_max', 'all'. Might slow performance log_every_n_steps: How often to log within steps (defaults to every 50 steps). prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data process_position: orders the progress bar when running multiple models on same machine. progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar. Ignored when a custom progress bar is passed to :paramref:`~Trainer.callbacks`. Default: None, means a suitable value will be chosen based on the environment (terminal, Google COLAB, etc.). profiler: To profile individual steps during training and assist in identifying bottlenecks. overfit_batches: Overfit a fraction of training data (float) or a set number of batches (int). plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins. precision: Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs. max_epochs: Stop training once this number of epochs is reached. Disabled by default (None). If both max_epochs and max_steps are not specified, defaults to ``max_epochs`` = 1000. min_epochs: Force training for at least these many epochs. Disabled by default (None). If both min_epochs and min_steps are not specified, defaults to ``min_epochs`` = 1. max_steps: Stop training after this number of steps. Disabled by default (None). min_steps: Force training for at least these number of steps. Disabled by default (None). num_nodes: number of GPU nodes for distributed training. num_processes: number of processes for distributed training with distributed_backend="ddp_cpu" num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine. Set it to `-1` to run all batches in all validation dataloaders. reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch. replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not specified this will toggled automatically when DDP is used. By default it will add ``shuffle=True`` for train sampler and ``shuffle=False`` for val/test sampler. If you want to customize it, you can set ``replace_sampler_ddp=False`` and add your own distributed sampler. resume_from_checkpoint: Path/URL of the checkpoint from which training is resumed. If there is no checkpoint file at the path, start from scratch. If resuming from mid-epoch checkpoint, training will start from the beginning of the next epoch. sync_batchnorm: Synchronize batch norm layers between process groups/whole world. terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf. tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1] track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm. truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of much longer sequence. val_check_interval: How often to check the validation set. Use float to check within a training epoch, use int to check every n steps (batches). weights_summary: Prints a summary of the weights when training begins. weights_save_path: Where to save weights if specified. Will override default_root_dir for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`. Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/' Defaults to `default_root_dir`. move_metrics_to_cpu: Whether to force internal logged metrics to be moved to cpu. This can save some gpu memory, but can make training slower. Use with attention. multiple_trainloader_mode: How to loop over the datasets when there are multiple train loaders. In 'max_size_cycle' mode, the trainer ends one epoch when the largest dataset is traversed, and smaller datasets reload when running out of their data. In 'min_size' mode, all the datasets reload when reaching the minimum length of datasets. stochastic_weight_avg: Whether to use `Stochastic Weight Averaging (SWA) <https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/>_` """ super().__init__() distributed_backend = distributed_backend or accelerator # init connectors self.dev_debugger = InternalDebugger(self) self.config_validator = ConfigValidator(self) self.data_connector = DataConnector(self) self.optimizer_connector = OptimizerConnector(self) self.accelerator_connector = AcceleratorConnector( num_processes, tpu_cores, distributed_backend, auto_select_gpus, gpus, num_nodes, sync_batchnorm, benchmark, replace_sampler_ddp, deterministic, precision, amp_backend, amp_level, plugins ) self.logger_connector = LoggerConnector(self, log_gpu_memory) self.model_connector = ModelConnector(self) self.callback_connector = CallbackConnector(self) self.debugging_connector = DebuggingConnector(self) self.training_tricks_connector = TrainingTricksConnector(self) self.profile_connector = ProfilerConnector(self) self.checkpoint_connector = CheckpointConnector(self) self.slurm_connector = SLURMConnector(self) self.tuner = Tuner(self) self.train_loop = TrainLoop(self, multiple_trainloader_mode) self.evaluation_loop = EvaluationLoop(self) self.predict_loop = PredictLoop(self) # training state self.weights_summary = weights_summary self.shown_warnings = set() # init callbacks # Declare attributes to be set in callback_connector on_trainer_init self.callback_connector.on_trainer_init( callbacks, checkpoint_callback, progress_bar_refresh_rate, process_position, default_root_dir, weights_save_path, resume_from_checkpoint, stochastic_weight_avg ) # hook self.on_init_start() # init optimizer + lr scheduler related flags self.optimizer_connector.on_trainer_init() # init data flags self.data_connector.on_trainer_init( check_val_every_n_epoch, reload_dataloaders_every_epoch, prepare_data_per_node ) # init training tricks self.training_tricks_connector.on_trainer_init( gradient_clip_val, track_grad_norm, accumulate_grad_batches, truncated_bptt_steps, terminate_on_nan ) self.train_loop.on_trainer_init( max_epochs, min_epochs, max_steps, min_steps, num_sanity_val_steps, weights_summary, ) self.evaluation_loop.on_trainer_init() # configure tuner self.tuner.on_trainer_init(auto_lr_find, auto_scale_batch_size) # configure profiler self.profile_connector.on_trainer_init(profiler) # init logger flags self.logger_connector.on_trainer_init( logger, flush_logs_every_n_steps, log_every_n_steps, move_metrics_to_cpu, ) # init debugging flags self.debugging_connector.on_init_start( limit_train_batches, limit_val_batches, limit_test_batches, limit_predict_batches, val_check_interval, overfit_batches, fast_dev_run, ) # Callback system self.on_init_end() def fit( self, model: LightningModule, train_dataloader: Any = None, val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, datamodule: Optional[LightningDataModule] = None, ): r""" Runs the full optimization routine. Args: datamodule: A instance of :class:`LightningDataModule`. model: Model to fit. train_dataloader: Either a single PyTorch DataLoader or a collection of these (list, dict, nested lists and dicts). In the case of multiple dataloaders, please see this :ref:`page <multiple-training-dataloaders>` val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped """ # we reuse fit for other functions. When already set, it shouldn't be modified. if not self.state.running: self.state = TrainerState.FITTING if self._running_stage is None: self.training = True # set local properties on the model self.model_connector.copy_trainer_model_properties(model) # ---------------------------- # LINK DATA # ---------------------------- # setup data, etc... self.train_loop.setup_fit(model, train_dataloader, val_dataloaders, datamodule) # hook self.data_connector.prepare_data(model) self.callback_connector._attach_model_callbacks(model, self) # ---------------------------- # SET UP TRAINING # ---------------------------- self.call_hook("on_before_accelerator_backend_setup", model) self.accelerator.connect(model) self.accelerator.setup_environment() self.call_setup_hook(model) # allow user to setup lightning_module in accelerator environment self.accelerator.setup(self, model) # note: this sets up self.lightning_module # ---------------------------- # INSPECT THE CORE LOOPS # ---------------------------- f""" Lightning internal flow looks like this: {Trainer.fit} or {Trainer.test} or {Trainer.predict} || | || create accelerator || | || {self.dispatch} || | || LIGHTNING {self.accelerator.start_training} || or {self.accelerator.start_evaluating} || or {self.accelerator.start_predicting} || FLOW | || {self.run_stage} || | || DIRECTION {self.run_train} || or {self.run_evaluation} || or {self.run_predict} || | || results \/ This is used to guide readers to the core loops: train, test, predict. {self.run_predict} is the simplest to understand, use `Go to Definition` to read it :) Search for `start_training` or `start_evaluating` or `start_predicting` in `pytorch_lightning/plugins/training_type_plugin` to find accelerator dispatch functions. """ # noqa: W605 # ---------------------------- # TRAIN # ---------------------------- # hook if self.state == TrainerState.FITTING: self.call_hook("on_fit_start") # plugin will setup fitting (e.g. ddp will launch child processes) self.pre_dispatch() # dispatch `start_training` or `start_evaluating` or `start_predicting` self.dispatch() # plugin will finalized fitting (e.g. ddp_spawn will load trained model) self.post_dispatch() # ---------------------------- # POST-Training CLEAN UP # ---------------------------- # hook if self.state == TrainerState.FITTING: self.call_hook('on_fit_end') # teardown self.call_teardown_hook(model) if self.state != TrainerState.INTERRUPTED: self.state = TrainerState.FINISHED self._running_stage = None # return 1 when finished # used for testing or when we need to know that training succeeded return self.accelerator.results or 1 def pre_dispatch(self): self.accelerator.pre_dispatch(self) # log hyper-parameters if self.logger is not None: # save exp to get started (this is where the first experiment logs are written) self.logger.log_hyperparams(self.lightning_module.hparams_initial) self.logger.log_graph(self.lightning_module) self.logger.save() def post_dispatch(self): self.accelerator.post_dispatch(self) self.accelerator.teardown() def dispatch(self): if self.evaluating: self.accelerator.start_evaluating(self) elif self.predicting: self.accelerator.start_predicting(self) else: self.accelerator.start_training(self) def run_stage(self): results = None self.profile_connector.setup() if self.evaluating: results = self.run_evaluate() elif self.predicting: results = self.run_predict() else: self.run_train() return results def _pre_training_routine(self): # wait for all to join if on distributed self.accelerator.barrier("setup_training") # register auto-resubmit when on SLURM self.slurm_connector.register_slurm_signal_handlers() # -------------------------- # Pre-train # -------------------------- # on pretrain routine start ref_model = self.lightning_module self.on_pretrain_routine_start() ref_model.on_pretrain_routine_start() # print model summary if self.is_global_zero and self.weights_summary is not None and not self.testing: if self.weights_summary in ModelSummary.MODES: ref_model.summarize(mode=self.weights_summary) else: raise MisconfigurationException("weights_summary can be None, " + ", ".join(ModelSummary.MODES)) # restore training and model before hpc is called self.checkpoint_connector.restore_weights() # on pretrain routine end self.on_pretrain_routine_end() ref_model.on_pretrain_routine_end() def run_train(self) -> None: self._pre_training_routine() if not self.is_global_zero and self.progress_bar_callback is not None: self.progress_bar_callback.disable() self.run_sanity_check(self.lightning_module) self.checkpoint_connector.has_trained = False # enable train mode model = self.lightning_module model.train() torch.set_grad_enabled(True) # reload data when needed self.train_loop.reset_train_val_dataloaders(model) # hook self.train_loop.on_train_start() try: if self.train_loop.should_skip_training(): return # run all epochs epochs = range(self.current_epoch, self.max_epochs) if self.max_epochs else count(self.current_epoch) for epoch in epochs: # hook self.train_loop.on_train_epoch_start(epoch) with self.profiler.profile("run_training_epoch"): # run train epoch self.train_loop.run_training_epoch() if self.max_steps and self.max_steps <= self.global_step: return # early stopping met_min_epochs = (epoch >= self.min_epochs - 1) if self.min_epochs else True met_min_steps = self.global_step >= self.min_steps if self.min_steps else True if self.should_stop: if met_min_epochs and met_min_steps: return else: log.info( 'Trainer was signaled to stop but required minimum epochs' f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has' ' not been met. Training will continue...' ) # hook self.train_loop.on_train_end() except KeyboardInterrupt: rank_zero_warn('Detected KeyboardInterrupt, attempting graceful shutdown...') # user could press Ctrl+c many times... only shutdown once if not self.interrupted: self.state = TrainerState.INTERRUPTED self.on_keyboard_interrupt() except (RuntimeError, AssertionError): # if an exception is raised, the finally block is executed and can hide the actual exception # that was initially raised if `on_train_end` also raises an exception. we want to avoid that # for assertions and other runtime errors so we aren't misled while debugging print_exc() finally: # hook self.train_loop.on_train_end() def run_evaluation(self, on_epoch=False): if not (self.evaluating or self.sanity_checking): rank_zero_warn( f"`trainer.run_evaluation()` was called but the running stage is set to {self._running_stage}." " This should not happen normally. Setting it to `RunningStage.VALIDATING`", RuntimeWarning ) self.validating = True # reset cached results self.logger_connector.reset() # prepare dataloaders dataloaders, max_batches = self.evaluation_loop.get_evaluation_dataloaders() # check if we want to skip this evaluation if self.evaluation_loop.should_skip_evaluation(max_batches): return [], [] # enable eval mode + no grads self.evaluation_loop.on_evaluation_model_eval() # ref model model = self.lightning_module model.zero_grad() torch.set_grad_enabled(False) # hook self.evaluation_loop.on_evaluation_start() # set up the eval loop self.evaluation_loop.setup(model, max_batches, dataloaders) # hook self.evaluation_loop.on_evaluation_epoch_start() # run validation/testing for dataloader_idx, dataloader in enumerate(dataloaders): # bookkeeping dl_outputs = [] dataloader = self.accelerator.process_dataloader(dataloader) dl_max_batches = self.evaluation_loop.max_batches[dataloader_idx] for batch_idx, batch in enumerate(dataloader): if batch is None: continue # stop short when running on limited batches if batch_idx >= dl_max_batches: break # hook self.evaluation_loop.on_evaluation_batch_start(batch, batch_idx, dataloader_idx) # lightning module methods with self.profiler.profile("evaluation_step_and_end"): output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx) output = self.evaluation_loop.evaluation_step_end(output) # hook + store predictions self.evaluation_loop.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx) # log batch metrics self.evaluation_loop.log_evaluation_step_metrics(output, batch_idx) # track epoch level outputs dl_outputs = self.track_output_for_epoch_end(dl_outputs, output) # store batch level output per dataloader self.evaluation_loop.outputs.append(dl_outputs) # lightning module method deprecated_eval_results = self.evaluation_loop.evaluation_epoch_end() # hook self.evaluation_loop.on_evaluation_epoch_end() # update epoch-level lr_schedulers if on_epoch: self.optimizer_connector.update_learning_rates(interval='epoch') # hook self.evaluation_loop.on_evaluation_end() # log epoch metrics eval_loop_results = self.evaluation_loop.log_epoch_metrics_on_evaluation_end() # save predictions to disk self.evaluation_loop.predictions.to_disk() # enable train mode again self.evaluation_loop.on_evaluation_model_train() torch.set_grad_enabled(True) return eval_loop_results, deprecated_eval_results def track_output_for_epoch_end(self, outputs, output): if output is not None: if isinstance(output, Result): output = output.detach() if self.move_metrics_to_cpu: output = output.cpu() elif isinstance(output, dict): output = recursive_detach(output, to_cpu=self.move_metrics_to_cpu) elif isinstance(output, torch.Tensor) and output.is_cuda and self.move_metrics_to_cpu: output = output.cpu() outputs.append(output) return outputs def run_evaluate(self): if not self.is_global_zero and self.progress_bar_callback is not None: self.progress_bar_callback.disable() assert self.evaluating with self.profiler.profile(f"run_{self._running_stage}_evaluation"): eval_loop_results, _ = self.run_evaluation() if len(eval_loop_results) == 0: return 1 # remove the tensors from the eval results for i, result in enumerate(eval_loop_results): if isinstance(result, dict): for k, v in result.items(): if isinstance(v, torch.Tensor): result[k] = v.cpu().item() return eval_loop_results def run_predict(self): # prepare dataloaders dataloaders, max_batches = self.predict_loop.get_predict_dataloaders() # check if we want to skip this evaluation if self.predict_loop.should_skip_predict(max_batches): return [] # ref model model = self.lightning_module # enable eval mode + no grads self.predict_loop.on_predict_model_eval() model.zero_grad() torch.set_grad_enabled(False) # set up the eval loop self.predict_loop.setup(model, max_batches, dataloaders) # run validation/testing for dataloader_idx, dataloader in enumerate(dataloaders): dataloader = self.accelerator.process_dataloader(dataloader) dl_max_batches = self.predict_loop.max_batches[dataloader_idx] for batch_idx, batch in enumerate(dataloader): if batch is None: continue # stop short when running on limited batches if batch_idx >= dl_max_batches: break # lightning module methods with self.profiler.profile("predict"): self.predict_loop.predict(batch, batch_idx, dataloader_idx) results = self.predict_loop.on_predict_epoch_end() return results def run_sanity_check(self, ref_model): using_val_step = ref_model.val_dataloader is not None and is_overridden('validation_step', ref_model) should_sanity_check = using_val_step and self.num_sanity_val_steps > 0 and self.limit_val_batches > 0 # run tiny validation (if validation defined) # to make sure program won't crash during val if should_sanity_check: stage = self._running_stage self.sanity_checking = True # hook and callback self.on_sanity_check_start() # run eval step _, eval_results = self.run_evaluation() # allow no returns from eval if eval_results is not None and len(eval_results) > 0: # when we get a list back, used only the last item if isinstance(eval_results, list): eval_results = eval_results[-1] _, _, _, callback_metrics, _ = self.process_dict_result(eval_results) self.logger_connector.callback_metrics = callback_metrics self.on_sanity_check_end() self._running_stage = stage def validate( self, model: Optional[LightningModule] = None, val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, ckpt_path: Optional[str] = 'best', verbose: bool = True, datamodule: Optional[LightningDataModule] = None, ): r""" Perform one evaluation epoch over the validation set. Args: model: The model to validate. val_dataloaders: Either a single PyTorch DataLoader or a list of them, specifying validation samples. ckpt_path: Either ``best`` or path to the checkpoint you wish to validate. If ``None``, use the current weights of the model. When the model is given as argument, this parameter will not apply. verbose: If True, prints the validation results. datamodule: A instance of :class:`LightningDataModule`. Returns: The dictionary with final validation results returned by validation_epoch_end. If validation_epoch_end is not defined, the output is a list of the dictionaries returned by validation_step. """ # -------------------- # SETUP HOOK # -------------------- self.verbose_evaluate = verbose self.state = TrainerState.VALIDATING self.validating = True # If you supply a datamodule you can't supply val_dataloaders if val_dataloaders and datamodule: raise MisconfigurationException( 'You cannot pass both `trainer.validate(val_dataloaders=..., datamodule=...)`' ) model_provided = model is not None model = model or self.lightning_module # Attach datamodule to get setup/prepare_data added to model before the call to it below self.data_connector.attach_datamodule(model, datamodule) # Attach dataloaders (if given) self.data_connector.attach_dataloaders(model, val_dataloaders=val_dataloaders) if not model_provided: self.validated_ckpt_path = self.__load_ckpt_weights(model, ckpt_path=ckpt_path) # run validate results = self.fit(model) assert self.state.stopped self.validating = False return results def test( self, model: Optional[LightningModule] = None, test_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, ckpt_path: Optional[str] = 'best', verbose: bool = True, datamodule: Optional[LightningDataModule] = None, ): r""" Perform one evaluation epoch over the test set. It's separated from fit to make sure you never run on your test set until you want to. Args: model: The model to test. test_dataloaders: Either a single PyTorch DataLoader or a list of them, specifying test samples. ckpt_path: Either ``best`` or path to the checkpoint you wish to test. If ``None``, use the current weights of the model. When the model is given as argument, this parameter will not apply. verbose: If True, prints the test results. datamodule: A instance of :class:`LightningDataModule`. Returns: Returns a list of dictionaries, one for each test dataloader containing their respective metrics. """ # -------------------- # SETUP HOOK # -------------------- self.verbose_evaluate = verbose self.state = TrainerState.TESTING self.testing = True # If you supply a datamodule you can't supply test_dataloaders if test_dataloaders and datamodule: raise MisconfigurationException('You cannot pass both `trainer.test(test_dataloaders=..., datamodule=...)`') model_provided = model is not None model = model or self.lightning_module # Attach datamodule to get setup/prepare_data added to model before the call to it below self.data_connector.attach_datamodule(model, datamodule) # Attach dataloaders (if given) self.data_connector.attach_dataloaders(model, test_dataloaders=test_dataloaders) if not model_provided: self.tested_ckpt_path = self.__load_ckpt_weights(model, ckpt_path=ckpt_path) # run test results = self.fit(model) assert self.state.stopped self.testing = False return results def __load_ckpt_weights( self, model, ckpt_path: Optional[str] = None, ) -> Optional[str]: # if user requests the best checkpoint but we don't have it, error if ckpt_path == 'best' and not self.checkpoint_callback.best_model_path: raise MisconfigurationException( 'ckpt_path is "best", but `ModelCheckpoint` is not configured to save the best model.' ) # load best weights if ckpt_path is not None: # ckpt_path is 'best' so load the best model if ckpt_path == 'best': ckpt_path = self.checkpoint_callback.best_model_path if not ckpt_path: fn = self.state.value raise MisconfigurationException( f'`.{fn}()` found no path for the best weights: "{ckpt_path}". Please' ' specify a path for a checkpoint `.{fn}(ckpt_path=PATH)`' ) self.training_type_plugin.barrier() ckpt = pl_load(ckpt_path, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt['state_dict']) return ckpt_path def predict( self, model: Optional[LightningModule] = None, dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, datamodule: Optional[LightningDataModule] = None, ): r""" Separates from fit to make sure you never run on your predictions set until you want to. This will call the model forward function to compute predictions. Args: model: The model to predict on. dataloaders: Either a single Pytorch Dataloader or a list of them, specifying inference samples. datamodule: A instance of :class:`LightningDataModule`. Returns: Returns a list of dictionaries, one for each provided dataloader containing their respective predictions. """ # -------------------- # SETUP HOOK # -------------------- # If you supply a datamodule you can't supply dataloaders model = model or self.lightning_module self.state = TrainerState.PREDICTING self.predicting = True if dataloaders and datamodule: raise MisconfigurationException( 'You cannot pass dataloaders to trainer.predict if you supply a datamodule.' ) # Attach datamodule to get setup/prepare_data added to model before the call to it below self.data_connector.attach_datamodule(model, datamodule) # Attach dataloaders (if given) self.data_connector.attach_dataloaders(model, predict_dataloaders=dataloaders) results = self.fit(model) assert self.state.stopped self.predicting = False return results def tune( self, model: LightningModule, train_dataloader: Optional[DataLoader] = None, val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, datamodule: Optional[LightningDataModule] = None, ): r""" Runs routines to tune hyperparameters before training. Args: datamodule: A instance of :class:`LightningDataModule`. model: Model to tune. train_dataloader: A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped. val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped """ self.state = TrainerState.TUNING self.tuning = True self.tuner.tune(model, train_dataloader, val_dataloaders, datamodule) assert self.state.stopped self.tuning = False def call_setup_hook(self, model: LightningModule) -> None: assert self.state.running, f"TrainerState: {self.state}" state = self._setup_state if self.datamodule is not None: called = getattr(self.datamodule, f'has_setup_{state}') if not called: self.datamodule.setup(stage=state) self.setup(model, stage=state) model.setup(stage=state) def call_teardown_hook(self, model: LightningModule) -> None: state = self._teardown_state self.profiler.teardown(stage=state) self.teardown(stage=state) model.teardown(stage=state) def _reset_result_and_set_hook_fx_name(self, hook_name): # on_before_zero_grad is called within training_step if "batch_start" in hook_name or "on_before_zero_grad" in hook_name: return True model_ref = self.lightning_module if model_ref is not None: # used to track current hook name called model_ref._results = Result() model_ref._current_hook_fx_name = hook_name return False def _cache_logged_metrics(self): model_ref = self.lightning_module if model_ref is not None: # capture logging for this hook self.logger_connector.cache_logged_metrics() def call_hook(self, hook_name, *args, **kwargs): # set hook_name to model + reset Result obj skip = self._reset_result_and_set_hook_fx_name(hook_name) # always profile hooks with self.profiler.profile(hook_name): # first call trainer hook if hasattr(self, hook_name): trainer_hook = getattr(self, hook_name) trainer_hook(*args, **kwargs) # next call hook in lightningModule output = None model_ref = self.lightning_module if is_overridden(hook_name, model_ref): hook_fx = getattr(model_ref, hook_name) output = hook_fx(*args, **kwargs) # if the PL module doesn't have the hook then call the accelerator # used to auto-reduce things for the user with Results obj elif hasattr(self.accelerator, hook_name): accelerator_hook = getattr(self.accelerator, hook_name) output = accelerator_hook(*args, **kwargs) if not skip: self._cache_logged_metrics() return output
[ "torch.set_grad_enabled" ]
1.4
bmahlbrand/pytorch-lightning
95e85e4d2d8f644b0ccc1f59d59634d6dd0f5d65
1.3
from functools import partial import pytest import torch from sklearn.metrics import ( accuracy_score as sk_accuracy, jaccard_score as sk_jaccard_score, precision_score as sk_precision, recall_score as sk_recall, roc_auc_score as sk_roc_auc_score, ) from pytorch_lightning import seed_everything from pytorch_lightning.metrics.functional.classification import ( stat_scores, stat_scores_multiple_classes, accuracy, precision, recall, _binary_clf_curve, dice_score, auroc, multiclass_auroc, auc, iou, ) from pytorch_lightning.metrics.utils import to_onehot, get_num_classes, to_categorical @pytest.mark.parametrize(['sklearn_metric', 'torch_metric', 'only_binary'], [ pytest.param(sk_accuracy, accuracy, False, id='accuracy'), pytest.param(partial(sk_jaccard_score, average='macro'), iou, False, id='iou'), pytest.param(partial(sk_precision, average='micro'), precision, False, id='precision'), pytest.param(partial(sk_recall, average='micro'), recall, False, id='recall'), pytest.param(sk_roc_auc_score, auroc, True, id='auroc') ]) def test_against_sklearn(sklearn_metric, torch_metric, only_binary): """Compare PL metrics to sklearn version. """ device = 'cuda' if torch.cuda.is_available() else 'cpu' # for metrics with only_binary=False, we try out different combinations of number # of labels in pred and target (also test binary) # for metrics with only_binary=True, target is always binary and pred will be # (unnormalized) class probabilities class_comb = [(5, 2)] if only_binary else [(10, 10), (5, 10), (10, 5), (2, 2)] for n_cls_pred, n_cls_target in class_comb: pred = torch.randint(n_cls_pred, (300,), device=device) target = torch.randint(n_cls_target, (300,), device=device) sk_score = sklearn_metric(target.cpu().detach().numpy(), pred.cpu().detach().numpy()) pl_score = torch_metric(pred, target) # if multi output if isinstance(sk_score, tuple): sk_score = [torch.tensor(sk_s.copy(), dtype=torch.float, device=device) for sk_s in sk_score] for sk_s, pl_s in zip(sk_score, pl_score): assert torch.allclose(sk_s, pl_s.float()) else: sk_score = torch.tensor(sk_score, dtype=torch.float, device=device) assert torch.allclose(sk_score, pl_score) @pytest.mark.parametrize('class_reduction', ['micro', 'macro', 'weighted']) @pytest.mark.parametrize(['sklearn_metric', 'torch_metric'], [ pytest.param(sk_precision, precision, id='precision'), pytest.param(sk_recall, recall, id='recall'), ]) def test_different_reduction_against_sklearn(class_reduction, sklearn_metric, torch_metric): """ Test metrics where the class_reduction parameter have a correponding value in sklearn """ device = 'cuda' if torch.cuda.is_available() else 'cpu' pred = torch.randint(10, (300,), device=device) target = torch.randint(10, (300,), device=device) sk_score = sklearn_metric(target.cpu().detach().numpy(), pred.cpu().detach().numpy(), average=class_reduction) sk_score = torch.tensor(sk_score, dtype=torch.float, device=device) pl_score = torch_metric(pred, target, class_reduction=class_reduction) assert torch.allclose(sk_score, pl_score) def test_onehot(): test_tensor = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) expected = torch.stack([ torch.cat([torch.eye(5, dtype=int), torch.zeros((5, 5), dtype=int)]), torch.cat([torch.zeros((5, 5), dtype=int), torch.eye(5, dtype=int)]) ]) assert test_tensor.shape == (2, 5) assert expected.shape == (2, 10, 5) onehot_classes = to_onehot(test_tensor, num_classes=10) onehot_no_classes = to_onehot(test_tensor) assert torch.allclose(onehot_classes, onehot_no_classes) assert onehot_classes.shape == expected.shape assert onehot_no_classes.shape == expected.shape assert torch.allclose(expected.to(onehot_no_classes), onehot_no_classes) assert torch.allclose(expected.to(onehot_classes), onehot_classes) def test_to_categorical(): test_tensor = torch.stack([ torch.cat([torch.eye(5, dtype=int), torch.zeros((5, 5), dtype=int)]), torch.cat([torch.zeros((5, 5), dtype=int), torch.eye(5, dtype=int)]) ]).to(torch.float) expected = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) assert expected.shape == (2, 5) assert test_tensor.shape == (2, 10, 5) result = to_categorical(test_tensor) assert result.shape == expected.shape assert torch.allclose(result, expected.to(result.dtype)) @pytest.mark.parametrize(['pred', 'target', 'num_classes', 'expected_num_classes'], [ pytest.param(torch.rand(32, 10, 28, 28), torch.randint(10, (32, 28, 28)), 10, 10), pytest.param(torch.rand(32, 10, 28, 28), torch.randint(10, (32, 28, 28)), None, 10), pytest.param(torch.rand(32, 28, 28), torch.randint(10, (32, 28, 28)), None, 10), ]) def test_get_num_classes(pred, target, num_classes, expected_num_classes): assert get_num_classes(pred, target, num_classes) == expected_num_classes @pytest.mark.parametrize(['pred', 'target', 'expected_tp', 'expected_fp', 'expected_tn', 'expected_fn', 'expected_support'], [ pytest.param(torch.tensor([0., 2., 4., 4.]), torch.tensor([0., 4., 3., 4.]), 1, 1, 1, 1, 2), pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), 1, 1, 1, 1, 2) ]) def test_stat_scores(pred, target, expected_tp, expected_fp, expected_tn, expected_fn, expected_support): tp, fp, tn, fn, sup = stat_scores(pred, target, class_index=4) assert tp.item() == expected_tp assert fp.item() == expected_fp assert tn.item() == expected_tn assert fn.item() == expected_fn assert sup.item() == expected_support @pytest.mark.parametrize(['pred', 'target', 'reduction', 'expected_tp', 'expected_fp', 'expected_tn', 'expected_fn', 'expected_support'], [ pytest.param(torch.tensor([0., 2., 4., 4.]), torch.tensor([0., 4., 3., 4.]), 'none', [1, 0, 0, 0, 1], [0, 0, 1, 0, 1], [3, 4, 3, 3, 1], [0, 0, 0, 1, 1], [1, 0, 0, 1, 2]), pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), 'none', [1, 0, 0, 0, 1], [0, 0, 1, 0, 1], [3, 4, 3, 3, 1], [0, 0, 0, 1, 1], [1, 0, 0, 1, 2]), pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), 'sum', torch.tensor(2), torch.tensor(2), torch.tensor(14), torch.tensor(2), torch.tensor(4)), pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), 'elementwise_mean', torch.tensor(0.4), torch.tensor(0.4), torch.tensor(2.8), torch.tensor(0.4), torch.tensor(0.8)) ]) def test_stat_scores_multiclass(pred, target, reduction, expected_tp, expected_fp, expected_tn, expected_fn, expected_support): tp, fp, tn, fn, sup = stat_scores_multiple_classes(pred, target, reduction=reduction) assert torch.allclose(torch.tensor(expected_tp).to(tp), tp) assert torch.allclose(torch.tensor(expected_fp).to(fp), fp) assert torch.allclose(torch.tensor(expected_tn).to(tn), tn) assert torch.allclose(torch.tensor(expected_fn).to(fn), fn) assert torch.allclose(torch.tensor(expected_support).to(sup), sup) def test_multilabel_accuracy(): # Dense label indicator matrix format y1 = torch.tensor([[0, 1, 1], [1, 0, 1]]) y2 = torch.tensor([[0, 0, 1], [1, 0, 1]]) assert torch.allclose(accuracy(y1, y2, class_reduction='none'), torch.tensor([2 / 3, 1.])) assert torch.allclose(accuracy(y1, y1, class_reduction='none'), torch.tensor([1., 1.])) assert torch.allclose(accuracy(y2, y2, class_reduction='none'), torch.tensor([1., 1.])) assert torch.allclose(accuracy(y2, torch.logical_not(y2), class_reduction='none'), torch.tensor([0., 0.])) assert torch.allclose(accuracy(y1, torch.logical_not(y1), class_reduction='none'), torch.tensor([0., 0.])) # num_classes does not match extracted number from input we expect a warning with pytest.warns(RuntimeWarning, match=r'You have set .* number of classes which is' r' different from predicted (.*) and' r' target (.*) number of classes'): _ = accuracy(y2, torch.zeros_like(y2), num_classes=3) def test_accuracy(): pred = torch.tensor([0, 1, 2, 3]) target = torch.tensor([0, 1, 2, 2]) acc = accuracy(pred, target) assert acc.item() == 0.75 pred = torch.tensor([0, 1, 2, 2]) target = torch.tensor([0, 1, 1, 3]) acc = accuracy(pred, target) assert acc.item() == 0.50 @pytest.mark.parametrize(['pred', 'target', 'expected_prec', 'expected_rec'], [ pytest.param(torch.tensor([1., 0., 1., 0.]), torch.tensor([0., 1., 1., 0.]), [0.5, 0.5], [0.5, 0.5]), pytest.param(to_onehot(torch.tensor([1., 0., 1., 0.])), torch.tensor([0., 1., 1., 0.]), [0.5, 0.5], [0.5, 0.5]) ]) def test_precision_recall(pred, target, expected_prec, expected_rec): prec = precision(pred, target, class_reduction='none') rec = recall(pred, target, class_reduction='none') assert torch.allclose(torch.tensor(expected_prec).to(prec), prec) assert torch.allclose(torch.tensor(expected_rec).to(rec), rec) @pytest.mark.parametrize(['sample_weight', 'pos_label', "exp_shape"], [ pytest.param(1, 1., 42), pytest.param(None, 1., 42), ]) def test_binary_clf_curve(sample_weight, pos_label, exp_shape): # TODO: move back the pred and target to test func arguments # if you fix the array inside the function, you'd also have fix the shape, # because when the array changes, you also have to fix the shape seed_everything(0) pred = torch.randint(low=51, high=99, size=(100,), dtype=torch.float) / 100 target = torch.tensor([0, 1] * 50, dtype=torch.int) if sample_weight is not None: sample_weight = torch.ones_like(pred) * sample_weight fps, tps, thresh = _binary_clf_curve(pred, target, sample_weight, pos_label) assert isinstance(tps, torch.Tensor) assert isinstance(fps, torch.Tensor) assert isinstance(thresh, torch.Tensor) assert tps.shape == (exp_shape,) assert fps.shape == (exp_shape,) assert thresh.shape == (exp_shape,) @pytest.mark.parametrize(['pred', 'target', 'expected'], [ pytest.param([0, 1, 0, 1], [0, 1, 0, 1], 1.), pytest.param([1, 1, 0, 0], [0, 0, 1, 1], 0.), pytest.param([1, 1, 1, 1], [1, 1, 0, 0], 0.5), pytest.param([1, 1, 0, 0], [1, 1, 0, 0], 1.), pytest.param([0.5, 0.5, 0.5, 0.5], [1, 1, 0, 0], 0.5), ]) def test_auroc(pred, target, expected): score = auroc(torch.tensor(pred), torch.tensor(target)).item() assert score == expected def test_multiclass_auroc(): with pytest.raises(ValueError, match=r".*probabilities, i.e. they should sum up to 1.0 over classes"): _ = multiclass_auroc(pred=torch.tensor([[0.9, 0.9], [1.0, 0]]), target=torch.tensor([0, 1])) with pytest.raises(ValueError, match=r".*not defined when all of the classes do not occur in the target.*"): _ = multiclass_auroc(pred=torch.rand((4, 3)).softmax(dim=1), target=torch.tensor([1, 0, 1, 0])) with pytest.raises(ValueError, match=r".*does not equal the number of classes passed in 'num_classes'.*"): _ = multiclass_auroc(pred=torch.rand((5, 4)).softmax(dim=1), target=torch.tensor([0, 1, 2, 2, 3]), num_classes=6) @pytest.mark.parametrize('n_cls', [2, 5, 10, 50]) def test_multiclass_auroc_against_sklearn(n_cls): device = 'cuda' if torch.cuda.is_available() else 'cpu' n_samples = 300 pred = torch.rand(n_samples, n_cls, device=device).softmax(dim=1) target = torch.randint(n_cls, (n_samples,), device=device) # Make sure target includes all class labels so that multiclass AUROC is defined target[10:10 + n_cls] = torch.arange(n_cls) pl_score = multiclass_auroc(pred, target) # For the binary case, sklearn expects an (n_samples,) array of probabilities of # the positive class pred = pred[:, 1] if n_cls == 2 else pred sk_score = sk_roc_auc_score(target.cpu().detach().numpy(), pred.cpu().detach().numpy(), multi_class="ovr") sk_score = torch.tensor(sk_score, dtype=torch.float, device=device) assert torch.allclose(sk_score, pl_score) @pytest.mark.parametrize(['x', 'y', 'expected'], [ pytest.param([0, 1], [0, 1], 0.5), pytest.param([1, 0], [0, 1], 0.5), pytest.param([1, 0, 0], [0, 1, 1], 0.5), pytest.param([0, 1], [1, 1], 1), pytest.param([0, 0.5, 1], [0, 0.5, 1], 0.5), ]) def test_auc(x, y, expected): # Test Area Under Curve (AUC) computation assert auc(torch.tensor(x), torch.tensor(y)) == expected @pytest.mark.parametrize(['pred', 'target', 'expected'], [ pytest.param([[0, 0], [1, 1]], [[0, 0], [1, 1]], 1.), pytest.param([[1, 1], [0, 0]], [[0, 0], [1, 1]], 0.), pytest.param([[1, 1], [1, 1]], [[1, 1], [0, 0]], 2 / 3), pytest.param([[1, 1], [0, 0]], [[1, 1], [0, 0]], 1.), ]) def test_dice_score(pred, target, expected): score = dice_score(torch.tensor(pred), torch.tensor(target)) assert score == expected @pytest.mark.parametrize(['half_ones', 'reduction', 'ignore_index', 'expected'], [ pytest.param(False, 'none', None, torch.Tensor([1, 1, 1])), pytest.param(False, 'elementwise_mean', None, torch.Tensor([1])), pytest.param(False, 'none', 0, torch.Tensor([1, 1])), pytest.param(True, 'none', None, torch.Tensor([0.5, 0.5, 0.5])), pytest.param(True, 'elementwise_mean', None, torch.Tensor([0.5])), pytest.param(True, 'none', 0, torch.Tensor([0.5, 0.5])), ]) def test_iou(half_ones, reduction, ignore_index, expected): pred = (torch.arange(120) % 3).view(-1, 1) target = (torch.arange(120) % 3).view(-1, 1) if half_ones: pred[:60] = 1 iou_val = iou( pred=pred, target=target, ignore_index=ignore_index, reduction=reduction, ) assert torch.allclose(iou_val, expected, atol=1e-9) def test_iou_input_check(): with pytest.raises(ValueError, match=r"'pred' shape (.*) must equal 'target' shape (.*)"): _ = iou(pred=torch.randint(0, 2, (3, 4, 3)), target=torch.randint(0, 2, (3, 3))) with pytest.raises(ValueError, match="'pred' must contain integer targets."): _ = iou(pred=torch.rand((3, 3)), target=torch.randint(0, 2, (3, 3))) @pytest.mark.parametrize('metric', [auroc]) def test_error_on_multiclass_input(metric): """ check that these metrics raise an error if they are used for multiclass problems """ pred = torch.randint(0, 10, (100, )) target = torch.randint(0, 10, (100, )) with pytest.raises(ValueError, match="AUROC metric is meant for binary classification"): _ = metric(pred, target) # TODO: When the jaccard_score of the sklearn version we use accepts `zero_division` (see # https://github.com/scikit-learn/scikit-learn/pull/17866), consider adding a test here against our # `absent_score`. @pytest.mark.parametrize(['pred', 'target', 'ignore_index', 'absent_score', 'num_classes', 'expected'], [ # Note that -1 is used as the absent_score in almost all tests here to distinguish it from the range of valid # scores the function can return ([0., 1.] range, inclusive). # 2 classes, class 0 is correct everywhere, class 1 is absent. pytest.param([0], [0], None, -1., 2, [1., -1.]), pytest.param([0, 0], [0, 0], None, -1., 2, [1., -1.]), # absent_score not applied if only class 0 is present and it's the only class. pytest.param([0], [0], None, -1., 1, [1.]), # 2 classes, class 1 is correct everywhere, class 0 is absent. pytest.param([1], [1], None, -1., 2, [-1., 1.]), pytest.param([1, 1], [1, 1], None, -1., 2, [-1., 1.]), # When 0 index ignored, class 0 does not get a score (not even the absent_score). pytest.param([1], [1], 0, -1., 2, [1.0]), # 3 classes. Only 0 and 2 are present, and are perfectly predicted. 1 should get absent_score. pytest.param([0, 2], [0, 2], None, -1., 3, [1., -1., 1.]), pytest.param([2, 0], [2, 0], None, -1., 3, [1., -1., 1.]), # 3 classes. Only 0 and 1 are present, and are perfectly predicted. 2 should get absent_score. pytest.param([0, 1], [0, 1], None, -1., 3, [1., 1., -1.]), pytest.param([1, 0], [1, 0], None, -1., 3, [1., 1., -1.]), # 3 classes, class 0 is 0.5 IoU, class 1 is 0 IoU (in pred but not target; should not get absent_score), class # 2 is absent. pytest.param([0, 1], [0, 0], None, -1., 3, [0.5, 0., -1.]), # 3 classes, class 0 is 0.5 IoU, class 1 is 0 IoU (in target but not pred; should not get absent_score), class # 2 is absent. pytest.param([0, 0], [0, 1], None, -1., 3, [0.5, 0., -1.]), # Sanity checks with absent_score of 1.0. pytest.param([0, 2], [0, 2], None, 1.0, 3, [1., 1., 1.]), pytest.param([0, 2], [0, 2], 0, 1.0, 3, [1., 1.]), ]) def test_iou_absent_score(pred, target, ignore_index, absent_score, num_classes, expected): iou_val = iou( pred=torch.tensor(pred), target=torch.tensor(target), ignore_index=ignore_index, absent_score=absent_score, num_classes=num_classes, reduction='none', ) assert torch.allclose(iou_val, torch.tensor(expected).to(iou_val)) # example data taken from # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py @pytest.mark.parametrize(['pred', 'target', 'ignore_index', 'num_classes', 'reduction', 'expected'], [ # Ignoring an index outside of [0, num_classes-1] should have no effect. pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], None, 3, 'none', [1, 1 / 2, 2 / 3]), pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], -1, 3, 'none', [1, 1 / 2, 2 / 3]), pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 255, 3, 'none', [1, 1 / 2, 2 / 3]), # Ignoring a valid index drops only that index from the result. pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 0, 3, 'none', [1 / 2, 2 / 3]), pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 1, 3, 'none', [1, 2 / 3]), pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 2, 3, 'none', [1, 1 / 2]), # When reducing to mean or sum, the ignored index does not contribute to the output. pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 0, 3, 'elementwise_mean', [7 / 12]), pytest.param([0, 1, 1, 2, 2], [0, 1, 2, 2, 2], 0, 3, 'sum', [7 / 6]), ]) def test_iou_ignore_index(pred, target, ignore_index, num_classes, reduction, expected): iou_val = iou( pred=torch.tensor(pred), target=torch.tensor(target), ignore_index=ignore_index, num_classes=num_classes, reduction=reduction, ) assert torch.allclose(iou_val, torch.tensor(expected).to(iou_val))
[ "torch.zeros", "torch.rand", "torch.arange", "torch.logical_not", "torch.randint", "torch.cuda.is_available", "torch.tensor", "torch.eye", "torch.ones_like", "torch.zeros_like", "torch.allclose", "torch.Tensor" ]
1.3
rwbfd/pytorch-lightning
f518ee6e25d1499f73cec86ca8b3f584d0fa440d
1.8
import torch import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sys from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel, LossNotDecreasingChecker from gpsa.plotting import callback_twod sys.path.append("../../data") from simulated.generate_twod_data import generate_twod_data import matplotlib.animation as animation import matplotlib.image as mpimg import os from os.path import join as pjoin import anndata import matplotlib font = {"size": 25} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True device = "cuda" if torch.cuda.is_available() else "cpu" LATEX_FONTSIZE = 35 n_spatial_dims = 2 n_views = 2 m_G = 50 m_X_per_view = 50 N_EPOCHS = 3000 PRINT_EVERY = 100 def two_d_gpsa( n_outputs, n_epochs, n_latent_gps, warp_kernel_variance=0.1, noise_variance=0.0, plot_intermediate=True, fixed_view_data=None, fixed_view_idx=None, ): x = torch.from_numpy(X).float().clone() y = torch.from_numpy(Y).float().clone() data_dict = { "expression": { "spatial_coords": x, "outputs": y, "n_samples_list": n_samples_list, } } model = VariationalGPSA( data_dict, n_spatial_dims=n_spatial_dims, m_X_per_view=m_X_per_view, m_G=m_G, data_init=True, minmax_init=False, grid_init=False, n_latent_gps=n_latent_gps, mean_function="identity_fixed", kernel_func_warp=rbf_kernel, kernel_func_data=rbf_kernel, fixed_view_idx=fixed_view_idx, ).to(device) view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict) optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) def train(model, loss_fn, optimizer): model.train() # Forward pass G_means, G_samples, F_latent_samples, F_samples = model.forward( {"expression": x}, view_idx=view_idx, Ns=Ns, S=5 ) # Compute loss loss = loss_fn(data_dict, F_samples) # Compute gradients and take optimizer step optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() loss_trace = [] error_trace = [] convergence_checker = LossNotDecreasingChecker(max_epochs=n_epochs, atol=1e-4) for t in range(n_epochs): loss = train(model, model.loss_fn, optimizer) loss_trace.append(loss) # has_converged = convergence_checker.check_loss(t, loss_trace) # if has_converged: # print("Convergence criterion met.") # break if t % PRINT_EVERY == 0: print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss)) G_means, G_samples, F_latent_samples, F_samples = model.forward( {"expression": x}, view_idx=view_idx, Ns=Ns ) print("Done!") return G_means["expression"].detach().numpy() if __name__ == "__main__": ## Generate data n_outputs = 30 n_latent_gps = {"expression": 5} warp_kernel_variance = 0.5 noise_variance = 0.001 fixed_view_data = 0 X, Y, n_samples_list, view_idx = generate_twod_data( n_views, n_outputs, grid_size=10, n_latent_gps=n_latent_gps["expression"], kernel_lengthscale=5.0, kernel_variance=warp_kernel_variance, noise_variance=noise_variance, fixed_view_idx=fixed_view_data, ) n_samples_per_view = X.shape[0] // n_views ## Set up figure plt.figure(figsize=(18, 5)) ## Plot data markers = ["o", "X"] plt.subplot(131) for vv in range(n_views): plt.scatter( X[view_idx[vv], 0], X[view_idx[vv], 1], c=Y[view_idx[vv], 0], marker=markers[vv], s=300, linewidth=1.8, edgecolor="black", ) plt.title("Data") plt.xlabel("Spatial 1") plt.ylabel("Spatial 2") ## De novo aligned_coords_denovo = two_d_gpsa( n_epochs=N_EPOCHS, n_outputs=n_outputs, warp_kernel_variance=warp_kernel_variance, noise_variance=noise_variance, n_latent_gps=n_latent_gps, fixed_view_idx=None, ) plt.subplot(132) for vv in range(n_views): plt.scatter( aligned_coords_denovo[view_idx[vv], 0], aligned_coords_denovo[view_idx[vv], 1], c=Y[view_idx[vv], 0], marker=markers[vv], s=300, linewidth=1.8, edgecolor="black", ) plt.title(r"$\emph{De novo}$ alignment") plt.xlabel("Spatial 1") plt.ylabel("Spatial 2") ## Template-based aligned_coords_template = two_d_gpsa( n_epochs=N_EPOCHS, n_outputs=n_outputs, warp_kernel_variance=warp_kernel_variance, noise_variance=noise_variance, n_latent_gps=n_latent_gps, fixed_view_idx=0, ) plt.subplot(133) for vv in range(n_views): plt.scatter( aligned_coords_template[view_idx[vv], 0], aligned_coords_template[view_idx[vv], 1], c=Y[view_idx[vv], 0], marker=markers[vv], s=300, linewidth=1.8, edgecolor="black", label="Slice {}".format(vv + 1), ) plt.title(r"$\emph{Template-based}$ alignment") plt.xlabel("Spatial 1") plt.ylabel("Spatial 2") plt.legend(loc="center left", bbox_to_anchor=(1, 0.5)) plt.tight_layout() plt.savefig("./out/two_d_denovo_vs_templatebased.png") plt.show() denovo_error = np.mean( np.sum( (aligned_coords_denovo[view_idx[0]] - aligned_coords_denovo[view_idx[1]]) ** 2, axis=1, ) ) templatebased_error = np.mean( np.sum( ( aligned_coords_template[view_idx[0]] - aligned_coords_template[view_idx[1]] ) ** 2, axis=1, ) ) original_error = np.mean(np.sum((X[view_idx[0]] - X[view_idx[1]]) ** 2, axis=1)) # De novo error: 0.000536963 # Template error: 0.007253051 # Observed data error: 0.7329880727046506 import ipdb ipdb.set_trace()
[ "torch.from_numpy", "torch.cuda.is_available" ]
1.8.0
giovp/spatial-alignment
b03a6508ba581246a3f6367217b2f8df5dcd15d4
1.8
import numpy as np import pandas as pd import numpy.random as npr import torch from scipy.special import xlogy def rbf_kernel( x1, x2, lengthscale_unconstrained, output_variance_unconstrained, diag=False ): lengthscale = torch.exp(lengthscale_unconstrained) output_variance = torch.exp(output_variance_unconstrained) if diag: diffs = x1 - x2 else: diffs = x1.unsqueeze(-2) - x2.unsqueeze(-3) K = output_variance * torch.exp( -0.5 * torch.sum(torch.square(diffs / lengthscale), dim=-1) ) return K def rbf_kernel_numpy(x, xp, kernel_params): output_scale = np.exp(kernel_params[0]) lengthscales = np.exp(kernel_params[1:]) diffs = np.expand_dims(x / lengthscales, 1) - np.expand_dims(xp / lengthscales, 0) return output_scale * np.exp(-0.5 * np.sum(diffs ** 2, axis=2)) def matern12_kernel( x1, x2, lengthscale_unconstrained, output_variance_unconstrained, diag=False ): lengthscale = torch.exp(lengthscale_unconstrained) output_variance = torch.exp(output_variance_unconstrained) if diag: diffs = x1 - x2 else: diffs = x1.unsqueeze(-2) - x2.unsqueeze(-3) eps = 1e-10 dists = torch.sqrt(torch.sum(torch.square(diffs), dim=-1) + eps) return output_variance * torch.exp(-0.5 * dists / lengthscale) def matern32_kernel( x1, x2, lengthscale_unconstrained, output_variance_unconstrained, diag=False ): lengthscale = torch.exp(lengthscale_unconstrained) output_variance = torch.exp(output_variance_unconstrained) if diag: diffs = x1 - x2 else: diffs = x1.unsqueeze(-2) - x2.unsqueeze(-3) eps = 1e-10 dists = torch.sqrt(torch.sum(torch.square(diffs), dim=-1) + eps) inner_term = np.sqrt(3.0) * dists / lengthscale K = output_variance * (1 + inner_term) * torch.exp(-inner_term) return K def polar_warp(X, r, theta): return np.array([X[:, 0] + r * np.cos(theta), X[:, 1] + r * np.sin(theta)]).T def get_st_coordinates(df): """ Extracts spatial coordinates from ST data with index in 'AxB' type format. Return: pandas dataframe of coordinates """ coor = [] for spot in df.index: coordinates = spot.split("x") coordinates = [float(i) for i in coordinates] coor.append(coordinates) return np.array(coor) def compute_distance(X1, X2): return np.mean(np.sqrt(np.sum((X1 - X2) ** 2, axis=1))) def make_pinwheel( radial_std, tangential_std, num_classes, num_per_class, rate, rs=npr.RandomState(0) ): """Based on code by Ryan P. Adams.""" rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False) features = rs.randn(num_classes * num_per_class, 2) * np.array( [radial_std, tangential_std] ) features[:, 0] += 1 labels = np.repeat(np.arange(num_classes), num_per_class) angles = rads[labels] + rate * np.exp(features[:, 0]) rotations = np.stack( [np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)] ) rotations = np.reshape(rotations.T, (-1, 2, 2)) return np.einsum("ti,tij->tj", features, rotations) class ConvergenceChecker(object): def __init__(self, span, dtp="float64"): self.span = span x = np.arange(span, dtype=dtp) x -= x.mean() X = np.column_stack((np.ones(shape=x.shape), x, x ** 2, x ** 3)) self.U = np.linalg.svd(X, full_matrices=False)[0] def smooth(self, y): return self.U @ (self.U.T @ y) def subset(self, y, idx=-1): span = self.U.shape[0] lo = idx - span + 1 if idx == -1: return y[lo:] else: return y[lo : (idx + 1)] def relative_change(self, y, idx=-1, smooth=True): y = self.subset(y, idx=idx) if smooth: y = self.smooth(y) prev = y[-2] return (y[-1] - prev) / (0.1 + abs(prev)) def converged(self, y, tol=1e-4, **kwargs): return abs(self.relative_change(y, **kwargs)) < tol def relative_change_all(self, y, smooth=True): n = len(y) span = self.U.shape[0] cc = np.tile([np.nan], n) for i in range(span, n): cc[i] = self.relative_change(y, idx=i, smooth=smooth) return cc def converged_all(self, y, tol=1e-4, smooth=True): cc = self.relative_change_all(y, smooth=smooth) return np.abs(cc) < tol # Function for computing size factors def compute_size_factors(m): # given matrix m with samples in the columns # compute size factors sz = np.sum(m.values, axis=0) # column sums (sum of counts in each cell) lsz = np.log(sz) # make geometric mean of sz be 1 for poisson sz_poisson = np.exp(lsz - np.mean(lsz)) return sz_poisson def poisson_deviance(X, sz): LP = X.values / sz # recycling # import ipdb; ipdb.set_trace() LP[LP > 0] = np.log(LP[LP > 0]) # log transform nonzero elements only # Transpose to make features in cols, observations in rows X = X.T ll_sat = np.sum(np.multiply(X, LP.T), axis=0) feature_sums = np.sum(X, axis=0) ll_null = feature_sums * np.log(feature_sums / np.sum(sz)) return 2 * (ll_sat - ll_null) def deviance_feature_selection(X): # Remove cells without any counts X = X[np.sum(X, axis=1) > 0] # Compute size factors sz = compute_size_factors(X) # Compute deviances devs = poisson_deviance(X, sz) # Get associated gene names gene_names = X.index.values assert gene_names.shape[0] == devs.values.shape[0] return devs.values, gene_names def deviance_residuals(x, theta, mu=None): """Computes deviance residuals for NB model with a fixed theta""" if mu is None: counts_sum0 = np.sum(x, axis=0, keepdims=True) counts_sum1 = np.sum(x, axis=1, keepdims=True) counts_sum = np.sum(x) # get residuals mu = counts_sum1 @ counts_sum0 / counts_sum def remove_negatives(sqrt_term): negatives_idx = sqrt_term < 0 if np.any(negatives_idx): n_negatives = np.sum(negatives_idx) print( "Setting %u negative sqrt term values to 0 (%f%%)" % (n_negatives, n_negatives / np.product(sqrt_term.shape)) ) sqrt_term[negatives_idx] = 0 if np.isinf(theta): ### POISSON x_minus_mu = x - mu sqrt_term = 2 * ( xlogy(x, x / mu) - x_minus_mu ) # xlogy(x,x/mu) computes xlog(x/mu) and returns 0 if x=0 remove_negatives(sqrt_term) dev = np.sign(x_minus_mu) * np.sqrt(sqrt_term) else: ### NEG BIN x_plus_theta = x + theta sqrt_term = 2 * ( xlogy(x, x / mu) - (x_plus_theta) * np.log(x_plus_theta / (mu + theta)) ) # xlogy(x,x/mu) computes xlog(x/mu) and returns 0 if x=0 remove_negatives(sqrt_term) dev = np.sign(x - mu) * np.sqrt(sqrt_term) return dev def pearson_residuals(counts, theta, clipping=True): """Computes analytical residuals for NB model with a fixed theta, clipping outlier residuals to sqrt(N)""" counts_sum0 = np.sum(counts, axis=0, keepdims=True) counts_sum1 = np.sum(counts, axis=1, keepdims=True) counts_sum = np.sum(counts) # get residuals mu = counts_sum1 @ counts_sum0 / counts_sum z = (counts - mu) / np.sqrt(mu + mu ** 2 / theta) # clip to sqrt(n) if clipping: n = counts.shape[0] z[z > np.sqrt(n)] = np.sqrt(n) z[z < -np.sqrt(n)] = -np.sqrt(n) return z class LossNotDecreasingChecker(): def __init__(self, max_epochs, atol=1e-2, window_size=10): self.max_epochs = max_epochs self.atol = atol self.window_size = window_size self.decrease_in_loss = np.zeros(max_epochs) self.average_decrease_in_loss = np.zeros(max_epochs) def check_loss(self, iternum, loss_trace): if iternum >= 1: self.decrease_in_loss[iternum] = loss_trace[iternum-1] - loss_trace[iternum] if iternum >= self.window_size: self.average_decrease_in_loss[iternum] = np.mean(self.decrease_in_loss[iternum - self.window_size + 1:iternum]) has_converged = (self.average_decrease_in_loss[iternum] < self.atol) return has_converged return False
[ "torch.exp", "torch.square" ]
1.8.0
giovp/spatial-alignment
b03a6508ba581246a3f6367217b2f8df5dcd15d4
1.8
import torch import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sys from gpsa import VariationalGPSA, LossNotDecreasingChecker sys.path.append("../../data") from simulated.generate_oned_data import ( generate_oned_data_affine_warp, generate_oned_data_gp_warp, ) from gpsa.plotting import callback_oned device = "cuda" if torch.cuda.is_available() else "cpu" LATEX_FONTSIZE = 30 n_spatial_dims = 1 n_views = 2 n_outputs = 50 n_samples_per_view = 100 m_G = 10 m_X_per_view = 10 N_EPOCHS = 10_000 PRINT_EVERY = 25 N_LATENT_GPS = {"expression": 1} NOISE_VARIANCE = 0.01 X, Y, n_samples_list, view_idx = generate_oned_data_gp_warp( n_views, n_outputs, n_samples_per_view, noise_variance=NOISE_VARIANCE, n_latent_gps=N_LATENT_GPS["expression"], kernel_variance=0.25, kernel_lengthscale=10.0, ) x = torch.from_numpy(X).float().clone() y = torch.from_numpy(Y).float().clone() data_dict = { "expression": { "spatial_coords": x, "outputs": y, "n_samples_list": n_samples_list, } } model = VariationalGPSA( data_dict, n_spatial_dims=n_spatial_dims, m_X_per_view=m_X_per_view, m_G=m_G, data_init=True, minmax_init=False, grid_init=False, n_latent_gps=N_LATENT_GPS, mean_function="identity_fixed", fixed_warp_kernel_variances=np.ones(n_views) * 0.1, fixed_warp_kernel_lengthscales=np.ones(n_views) * 10, ).to(device) view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict) optimizer = torch.optim.Adam(model.parameters(), lr=1e-1) def train(model, loss_fn, optimizer): model.train() # Forward pass G_means, G_samples, F_latent_samples, F_samples = model.forward( {"expression": x}, view_idx=view_idx, Ns=Ns, S=5, ) # Compute loss loss = loss_fn(data_dict, F_samples) # Compute gradients and take optimizer step optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() # Set up figure. fig = plt.figure(figsize=(14, 7), facecolor="white") data_expression_ax = fig.add_subplot(212, frameon=False) latent_expression_ax = fig.add_subplot(211, frameon=False) plt.show(block=False) loss_trace = [] error_trace = [] convergence_checker = LossNotDecreasingChecker(max_epochs=N_EPOCHS, atol=1e-4) for t in range(N_EPOCHS): loss = train(model, model.loss_fn, optimizer) loss_trace.append(loss) has_converged = convergence_checker.check_loss(t, loss_trace) if has_converged: print("Convergence criterion met.") break if t % PRINT_EVERY == 0: print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss)) G_means, G_samples, F_latent_samples, F_samples = model.forward( {"expression": x}, view_idx=view_idx, Ns=Ns, S=3 ) callback_oned( model, X, Y=Y, X_aligned=G_means, data_expression_ax=data_expression_ax, latent_expression_ax=latent_expression_ax, ) err = np.mean( ( G_means["expression"].detach().numpy().squeeze()[:n_samples_per_view] - G_means["expression"].detach().numpy().squeeze()[n_samples_per_view:] ) ** 2 ) print("Error: {}".format(err)) error_trace.append(loss) print("Done!") plt.close() G_means, G_samples, F_latent_samples, F_samples = model.forward( {"expression": x}, view_idx=view_idx, Ns=Ns, S=3 ) err_unaligned = np.mean((X[:n_samples_per_view] - X[n_samples_per_view:]) ** 2) err_aligned = np.mean( ( G_means["expression"].detach().numpy().squeeze()[:n_samples_per_view] - G_means["expression"].detach().numpy().squeeze()[n_samples_per_view:] ) ** 2 ) print("Pre-alignment error: {}".format(err_unaligned)) print("Post-alignment error: {}".format(err_aligned)) import matplotlib font = {"size": LATEX_FONTSIZE} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True fig = plt.figure(figsize=(10, 10)) data_expression_ax = fig.add_subplot(211, frameon=False) latent_expression_ax = fig.add_subplot(212, frameon=False) callback_oned( model, X, Y=Y, X_aligned=G_means, data_expression_ax=data_expression_ax, latent_expression_ax=latent_expression_ax, ) plt.tight_layout() plt.savefig("../../plots/one_d_simulation.png") plt.show() import ipdb ipdb.set_trace()
[ "torch.from_numpy", "torch.cuda.is_available" ]
1.8.0
giovp/spatial-alignment
b03a6508ba581246a3f6367217b2f8df5dcd15d4
1.5
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import ABC, abstractmethod from functools import partial from typing import Any, Union import torch from monai.metrics.utils import do_metric_reduction from monai.utils import MetricReduction class RegressionMetric(ABC): def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__() self.reduction = reduction def _reduce(self, f: torch.Tensor): return do_metric_reduction(f, self.reduction) def _check_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None: if y_pred.shape != y.shape: raise ValueError( "y_pred and y shapes dont match, received y_pred: [{}] and y: [{}]".format(y_pred.shape, y.shape) ) # also check if there is atleast one non-batch dimension i.e. num_dims >= 2 if len(y_pred.shape) < 2: raise ValueError("either channel or spatial dimensions required, found only batch dimension") @abstractmethod def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") def __call__(self, y_pred: torch.Tensor, y: torch.Tensor): self._check_shape(y_pred, y) out = self._compute_metric(y_pred, y) y, not_nans = self._reduce(out) return y, not_nans class MSEMetric(RegressionMetric): r"""Compute Mean Squared Error between two tensors using function: .. math:: \operatorname {MSE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i} \right)^{2}. More info: https://en.wikipedia.org/wiki/Mean_squared_error Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__(reduction=reduction) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) return mse_out class MSEMetricTraining(RegressionMetric): r"""Compute Mean Squared Error between two tensors using function: .. math:: \operatorname {MSE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i} \right)^{2}. More info: https://en.wikipedia.org/wiki/Mean_squared_error Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__(reduction=reduction) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) return 1 - (100 * mse_out) class MAEMetric(RegressionMetric): r"""Compute Mean Absolute Error between two tensors using function: .. math:: \operatorname {MAE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left|y_i-\hat{y_i}\right|. More info: https://en.wikipedia.org/wiki/Mean_absolute_error Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__(reduction=reduction) self.abs_func = torch.abs def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mae_out = compute_mean_error_metrics(y_pred, y, func=self.abs_func) return mae_out class MAEMetricTraining(RegressionMetric): r"""Compute Mean Absolute Error between two tensors using function: .. math:: \operatorname {MAE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left|y_i-\hat{y_i}\right|. More info: https://en.wikipedia.org/wiki/Mean_absolute_error Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__(reduction=reduction) self.abs_func = torch.abs def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mae_out = compute_mean_error_metrics(y_pred, y, func=self.abs_func) return 1 - (100 * mae_out) class RMSEMetric(RegressionMetric): r"""Compute Root Mean Squared Error between two tensors using function: .. math:: \operatorname {RMSE}\left(Y, \hat{Y}\right) ={ \sqrt{ \frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i}\right)^2 } } \ = \sqrt {\operatorname{MSE}\left(Y, \hat{Y}\right)}. More info: https://en.wikipedia.org/wiki/Root-mean-square_deviation Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__(self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN) -> None: super().__init__(reduction=reduction) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) rmse_out = torch.sqrt(mse_out) return rmse_out class PSNRMetric(RegressionMetric): r"""Compute Peak Signal To Noise Ratio between two tensors using function: .. math:: \operatorname{PSNR}\left(Y, \hat{Y}\right) = 20 \cdot \log_{10} \left({\mathit{MAX}}_Y\right) \ -10 \cdot \log_{10}\left(\operatorname{MSE\left(Y, \hat{Y}\right)}\right) More info: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Help taken from: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/image_ops_impl.py line 4139 Input `y_pred` (BCHW[D] where C is number of channels) is compared with ground truth `y` (BCHW[D]). Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Args: max_val: The dynamic range of the images/volumes (i.e., the difference between the maximum and the minimum allowed values e.g. 255 for a uint8 image). reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``} Define the mode to reduce computation result of 1 batch data. Defaults to ``"mean"``. """ def __init__( self, max_val: Union[int, float], reduction: Union[MetricReduction, str] = MetricReduction.MEAN ) -> None: super().__init__(reduction=reduction) self.max_val = max_val self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> Any: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) psnr_val = 20 * math.log10(self.max_val) - 10 * torch.log10(mse_out) return psnr_val def compute_mean_error_metrics(y_pred: torch.Tensor, y: torch.Tensor, func) -> torch.Tensor: # reducing in only channel + spatial dimensions (not batch) # reducion of batch handled inside __call__() using do_metric_reduction() in respective calling class flt = partial(torch.flatten, start_dim=1) error_metric = torch.mean(flt(func(y - y_pred)), dim=-1, keepdim=True) return error_metric
[ "torch.sqrt", "torch.log10" ]
1.5
davidiommi/MONAI
c470c1a67b33d7dbbce0f8b8c5ffdad84b76d60f
1.8
""" Model dependent data transforms that apply MRAugment to training data before fed to the model. Modified from https://github.com/facebookresearch/fastMRI/blob/master/fastmri/data/transforms.py """ from typing import Dict, Optional, Sequence, Tuple, Union import fastmri import numpy as np import torch from fastmri.data.subsample import MaskFunc from fastmri.data.transforms import to_tensor, apply_mask class VarNetDataTransform: """ Data Transformer for training VarNet models with added MRAugment data augmentation. """ def __init__(self, augmentor = None, mask_func: Optional[MaskFunc] = None, use_seed: bool = True): """ Args: augmentor: DataAugmentor object that encompasses the MRAugment pipeline and schedules the augmentation probability mask_func: Optional; A function that can create a mask of appropriate shape. Defaults to None. use_seed: If True, this class computes a pseudo random number generator seed from the filename. This ensures that the same mask is used for all the slices of a given volume every time. """ self.mask_func = mask_func self.use_seed = use_seed if augmentor is not None: self.use_augment = True self.augmentor = augmentor else: self.use_augment = False def __call__( self, kspace: np.ndarray, mask: np.ndarray, target: np.ndarray, attrs: Dict, fname: str, slice_num: int, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, str, int, float, torch.Tensor]: """ Args: kspace: Input k-space of shape (num_coils, rows, cols) for multi-coil data. mask: Mask from the test dataset. target: Target image. attrs: Acquisition related information stored in the HDF5 object. fname: File name. slice_num: Serial number of the slice. Returns: tuple containing: masked_kspace: k-space after applying sampling mask. mask: The applied sampling mask target: The target image (if applicable). fname: File name. slice_num: The slice index. max_value: Maximum image value. crop_size: The size to crop the final image. """ # Make sure data types match kspace = kspace.astype(np.complex64) target = target.astype(np.float32) if target is not None: target = to_tensor(target) max_value = attrs["max"] else: target = torch.tensor(0) max_value = 0.0 kspace = to_tensor(kspace) # Apply augmentations if needed if self.use_augment: if self.augmentor.schedule_p() > 0.0: kspace, target = self.augmentor(kspace, target.shape) # Add singleton channel dimension if singlecoil if len(kspace.shape) == 3: kspace.unsqueeze_(0) assert len(kspace.shape) == 4 seed = None if not self.use_seed else tuple(map(ord, fname)) acq_start = attrs["padding_left"] acq_end = attrs["padding_right"] crop_size = torch.tensor([target.shape[0], target.shape[1]]) if self.mask_func: masked_kspace, mask = apply_mask( kspace, self.mask_func, seed, (acq_start, acq_end) ) else: masked_kspace = kspace shape = np.array(kspace.shape) num_cols = shape[-2] shape[:-3] = 1 mask_shape = [1] * len(shape) mask_shape[-2] = num_cols mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32)) mask = mask.reshape(*mask_shape) mask[:, :, :acq_start] = 0 mask[:, :, acq_end:] = 0 return ( masked_kspace, mask.byte(), target, fname, slice_num, max_value, crop_size, ) def seed_pipeline(self, seed): """ Sets random seed for the MRAugment pipeline. It is important to provide different seed to different workers and across different GPUs to keep the augmentations diverse. For an example how to set it see worker_init in pl_modules/fastmri_data_module.py """ if self.use_augment: if self.augmentor.aug_on: self.augmentor.augmentation_pipeline.rng.seed(seed)
[ "torch.tensor" ]
1.8.1
z-fabian/MRAugment
88dd0649f05b2dd43bf967e8b92eaf2d5daab42d
1.5
import copy import datetime import inspect import logging import os import sys import time import warnings from inspect import signature from pathlib import Path from typing import Any, Dict, Optional, Tuple, Type, Union, cast import torch from torch.optim.sgd import SGD from torch.utils.data.dataset import ConcatDataset from flair.nn import Model try: from apex import amp except ImportError: amp = None import random from torch.optim.lr_scheduler import OneCycleLR # type: ignore import flair import flair.nn from flair.data import Corpus, Dictionary, MultiCorpus, _len_dataset from flair.datasets import DataLoader from flair.optim import ExpAnnealLR, LinearSchedulerWithWarmup from flair.training_utils import ( AnnealOnPlateau, WeightExtractor, add_file_handler, identify_dynamic_embeddings, init_output_file, log_line, store_embeddings, ) log = logging.getLogger("flair") class ModelTrainer: def __init__( self, model: flair.nn.Model, corpus: Corpus, ): """ Initialize a model trainer :param model: The model that you want to train. The model should inherit from flair.nn.Model # noqa: E501 :param corpus: The dataset used to train the model, should be of type Corpus """ self.model: flair.nn.Model = model self.corpus: Corpus = corpus @staticmethod def check_for_and_delete_previous_best_models(base_path): all_best_model_names = [filename for filename in os.listdir(base_path) if filename.startswith("best-model")] if len(all_best_model_names) != 0: warnings.warn( "There should be no best model saved at epoch 1 except there " "is a model from previous trainings" " in your training folder. All previous best models will be deleted." ) for single_model in all_best_model_names: previous_best_path = os.path.join(base_path, single_model) if os.path.exists(previous_best_path): os.remove(previous_best_path) def train( self, base_path: Union[Path, str], learning_rate: float = 0.1, mini_batch_size: int = 32, eval_batch_size: int = None, mini_batch_chunk_size: Optional[int] = None, max_epochs: int = 100, train_with_dev: bool = False, train_with_test: bool = False, monitor_train: bool = False, monitor_test: bool = False, main_evaluation_metric: Tuple[str, str] = ("micro avg", "f1-score"), scheduler=AnnealOnPlateau, anneal_factor: float = 0.5, patience: int = 3, min_learning_rate: float = 0.0001, initial_extra_patience: int = 0, optimizer: Union[torch.optim.Optimizer, Type[torch.optim.Optimizer]] = SGD, cycle_momentum: bool = False, warmup_fraction: float = 0.1, embeddings_storage_mode: str = "cpu", checkpoint: bool = False, save_final_model: bool = True, anneal_with_restarts: bool = False, anneal_with_prestarts: bool = False, anneal_against_dev_loss: bool = False, batch_growth_annealing: bool = False, shuffle: bool = True, param_selection_mode: bool = False, write_weights: bool = False, num_workers: Optional[int] = None, sampler=None, use_amp: bool = False, amp_opt_level: str = "O1", eval_on_train_fraction: float = 0.0, eval_on_train_shuffle: bool = False, save_model_each_k_epochs: int = 0, tensorboard_comment: str = "", use_swa: bool = False, use_final_model_for_eval: bool = False, gold_label_dictionary_for_eval: Optional[Dictionary] = None, create_file_logs: bool = True, create_loss_file: bool = True, epoch: int = 0, use_tensorboard: bool = False, tensorboard_log_dir=None, metrics_for_tensorboard=[], optimizer_state_dict: Optional[Dict[str, Any]] = None, scheduler_state_dict: Optional[Dict[str, Any]] = None, save_optimizer_state: bool = False, **kwargs, ) -> dict: """ Trains any class that implements the flair.nn.Model interface. :param base_path: Main path to which all output during training is logged and models are saved # noqa: E501 :param learning_rate: Initial learning rate (or max, if scheduler is OneCycleLR) # noqa: E501 :param mini_batch_size: Size of mini-batches during training :param mini_batch_chunk_size: If mini-batches are larger than this number, they get broken down into chunks of this size for processing purposes # noqa: E501 :param max_epochs: Maximum number of epochs to train. Terminates training if this number is surpassed. # noqa: E501 :param scheduler: The learning rate scheduler to use :param checkpoint: If True, a full checkpoint is saved at end of each epoch # noqa: E501 :param cycle_momentum: If scheduler is OneCycleLR, whether the scheduler should cycle also the momentum # noqa: E501 :param anneal_factor: The factor by which the learning rate is annealed :param patience: Patience is the number of epochs with no improvement the Trainer waits # noqa: E501 until annealing the learning rate :param min_learning_rate: If the learning rate falls below this threshold, training terminates # noqa: E501 :param warmup_fraction: Fraction of warmup steps if the scheduler is LinearSchedulerWithWarmup # noqa: E501 :param train_with_dev: If True, the data from dev split is added to the training data # noqa: E501 :param train_with_test: If True, the data from test split is added to the training data # noqa: E501 :param monitor_train: If True, training data is evaluated at end of each epoch :param monitor_test: If True, test data is evaluated at end of each epoch :param embeddings_storage_mode: One of 'none' (all embeddings are deleted and freshly recomputed), # noqa: E501 'cpu' (embeddings are stored on CPU) or 'gpu' (embeddings are stored on GPU) :param save_final_model: If True, final model is saved :param anneal_with_restarts: If True, the last best model is restored when annealing the learning rate # noqa: E501 :param shuffle: If True, data is shuffled during training :param param_selection_mode: If True, testing is performed against dev data. Use this mode when doing # noqa: E501 parameter selection. :param num_workers: Number of workers in your data loader. :param sampler: You can pass a data sampler here for special sampling of data. # noqa: E501 :param eval_on_train_fraction: the fraction of train data to do the evaluation on, # noqa: E501 if 0. the evaluation is not performed on fraction of training data, if 'dev' the size is determined from dev set size :param eval_on_train_shuffle: if True the train data fraction is determined on the start of training # noqa: E501 and kept fixed during training, otherwise it's sampled at beginning of each epoch # noqa: E501 :param save_model_each_k_epochs: Each k epochs, a model state will be written out. If set to '5', a model will # noqa: E501 be saved each 5 epochs. Default is 0 which means no model saving. :param main_evaluation_metric: Type of metric to use for best model tracking and learning rate scheduling (if dev data is available, otherwise loss will be used), currently only applicable for text_classification_model # noqa: E501 :param tensorboard_comment: Comment to use for tensorboard logging :param create_file_logs: If True, the logs will also be stored in a file 'training.log' in the model folder # noqa: E501 :param create_loss_file: If True, the loss will be writen to a file 'loss.tsv' in the model folder # noqa: E501 :param optimizer: The optimizer to use (typically SGD or Adam) :param epoch: The starting epoch (normally 0 but could be higher if you continue training model) # noqa: E501 :param use_tensorboard: If True, writes out tensorboard information :param tensorboard_log_dir: Directory into which tensorboard log files will be written # noqa: E501 :param metrics_for_tensorboard: List of tuples that specify which metrics (in addition to the main_score) shall be plotted in tensorboard, could be [("macro avg", 'f1-score'), ("macro avg", 'precision')] for example # noqa: E501 :param kwargs: Other arguments for the Optimizer :return: """ # create a model card for this model with Flair and PyTorch version model_card: Dict[str, Any] = { "flair_version": flair.__version__, "pytorch_version": torch.__version__, } # also record Transformers version if library is loaded try: import transformers model_card["transformers_version"] = transformers.__version__ except ImportError: pass # remember all parameters used in train() call local_variables = locals() training_parameters = {} for parameter in signature(self.train).parameters: training_parameters[parameter] = local_variables[parameter] model_card["training_parameters"] = training_parameters # add model card to model self.model.model_card = model_card assert self.corpus.train if use_tensorboard: try: from torch.utils.tensorboard import SummaryWriter if tensorboard_log_dir is not None and not os.path.exists(tensorboard_log_dir): os.mkdir(tensorboard_log_dir) writer = SummaryWriter(log_dir=tensorboard_log_dir, comment=tensorboard_comment) log.info(f"tensorboard logging path is {tensorboard_log_dir}") except ImportError: log_line(log) log.warning("ATTENTION! PyTorch >= 1.1.0 and pillow are required" "for TensorBoard support!") log_line(log) use_tensorboard = False pass if use_amp: if sys.version_info < (3, 0): raise RuntimeError("Apex currently only supports Python 3. Aborting.") if amp is None: raise RuntimeError( "Failed to import apex. Please install apex from " "https://www.github.com/nvidia/apex " "to enable mixed-precision training." ) if not eval_batch_size: eval_batch_size = mini_batch_size if mini_batch_chunk_size is None: mini_batch_chunk_size = mini_batch_size if learning_rate < min_learning_rate: min_learning_rate = learning_rate / 10 initial_learning_rate = learning_rate base_path = Path(base_path) base_path.mkdir(exist_ok=True, parents=True) self.check_for_and_delete_previous_best_models(base_path) # determine what splits (train, dev, test) to evaluate and log log_train = True if monitor_train else False log_test = True if (not param_selection_mode and self.corpus.test and monitor_test) else False log_dev = False if train_with_dev or not self.corpus.dev else True log_train_part = True if (eval_on_train_fraction == "dev" or eval_on_train_fraction > 0.0) else False if log_train_part: train_part_size = ( _len_dataset(self.corpus.dev) if eval_on_train_fraction == "dev" else int(_len_dataset(self.corpus.train) * eval_on_train_fraction) ) assert train_part_size > 0 if not eval_on_train_shuffle: train_part_indices = list(range(train_part_size)) train_part = torch.utils.data.dataset.Subset(self.corpus.train, train_part_indices) # prepare loss logging file and set up header loss_txt = init_output_file(base_path, "loss.tsv") if create_loss_file else None weight_extractor = WeightExtractor(base_path) # if optimizer class is passed, instantiate: if not isinstance(optimizer, torch.optim.Optimizer): kwargs["lr"] = learning_rate optimizer = optimizer(self.model.parameters(), **kwargs) if use_swa: import torchcontrib optimizer = torchcontrib.optim.SWA(optimizer, swa_start=10, swa_freq=5, swa_lr=learning_rate) if use_amp: self.model, optimizer = amp.initialize(self.model, optimizer, opt_level=amp_opt_level) optimizer = cast(torch.optim.Optimizer, optimizer) # load existing optimizer state dictionary if it exists if optimizer_state_dict: optimizer.load_state_dict(optimizer_state_dict) # minimize training loss if training with dev data, else maximize dev score anneal_mode = "min" if train_with_dev or anneal_against_dev_loss else "max" best_validation_score = 100000000000 if train_with_dev or anneal_against_dev_loss else 0.0 dataset_size = _len_dataset(self.corpus.train) if train_with_dev: dataset_size += _len_dataset(self.corpus.dev) # if scheduler is passed as a class, instantiate if inspect.isclass(scheduler): if scheduler == OneCycleLR: scheduler = OneCycleLR( optimizer, max_lr=learning_rate, steps_per_epoch=dataset_size // mini_batch_size + 1, epochs=max_epochs - epoch, # if we load a checkpoint, we have already trained for epoch pct_start=0.0, cycle_momentum=cycle_momentum, ) elif scheduler == LinearSchedulerWithWarmup: steps_per_epoch = (dataset_size + mini_batch_size - 1) / mini_batch_size num_train_steps = int(steps_per_epoch * max_epochs) num_warmup_steps = int(num_train_steps * warmup_fraction) scheduler = LinearSchedulerWithWarmup( optimizer, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, ) else: scheduler = scheduler( optimizer, factor=anneal_factor, patience=patience, initial_extra_patience=initial_extra_patience, mode=anneal_mode, verbose=True, ) # load existing scheduler state dictionary if it exists if scheduler_state_dict: scheduler.load_state_dict(scheduler_state_dict) # update optimizer and scheduler in model card model_card["training_parameters"]["optimizer"] = optimizer model_card["training_parameters"]["scheduler"] = scheduler if isinstance(scheduler, OneCycleLR) and batch_growth_annealing: raise ValueError("Batch growth with OneCycle policy is not implemented.") train_data = self.corpus.train # if training also uses dev/train data, include in training set if train_with_dev or train_with_test: parts = [self.corpus.train] if train_with_dev and self.corpus.dev: parts.append(self.corpus.dev) if train_with_test and self.corpus.test: parts.append(self.corpus.test) train_data = ConcatDataset(parts) # initialize sampler if provided if sampler is not None: # init with default values if only class is provided if inspect.isclass(sampler): sampler = sampler() # set dataset to sample from sampler.set_dataset(train_data) shuffle = False dev_score_history = [] dev_loss_history = [] train_loss_history = [] micro_batch_size = mini_batch_chunk_size # this field stores the names of all dynamic embeddings in the model (determined after first forward pass) dynamic_embeddings = None # At any point you can hit Ctrl + C to break out of training early. try: if create_file_logs: log_handler = add_file_handler(log, base_path / "training.log") else: log_handler = None log_line(log) log.info(f'Model: "{self.model}"') log_line(log) log.info(f'Corpus: "{self.corpus}"') log_line(log) log.info("Parameters:") log.info(f' - learning_rate: "{learning_rate}"') log.info(f' - mini_batch_size: "{mini_batch_size}"') log.info(f' - patience: "{patience}"') log.info(f' - anneal_factor: "{anneal_factor}"') log.info(f' - max_epochs: "{max_epochs}"') log.info(f' - shuffle: "{shuffle}"') log.info(f' - train_with_dev: "{train_with_dev}"') log.info(f' - batch_growth_annealing: "{batch_growth_annealing}"') log_line(log) log.info(f'Model training base path: "{base_path}"') log_line(log) log.info(f"Device: {flair.device}") log_line(log) log.info(f"Embeddings storage mode: {embeddings_storage_mode}") previous_learning_rate = learning_rate momentum = 0 for group in optimizer.param_groups: if "momentum" in group: momentum = group["momentum"] for epoch in range(epoch + 1, max_epochs + 1): log_line(log) # update epoch in model card model_card["training_parameters"]["epoch"] = epoch if anneal_with_prestarts: last_epoch_model_state_dict = copy.deepcopy(self.model.state_dict()) if eval_on_train_shuffle: train_part_indices = list(range(_len_dataset(self.corpus.train))) random.shuffle(train_part_indices) train_part_indices = train_part_indices[:train_part_size] train_part = torch.utils.data.dataset.Subset(self.corpus.train, train_part_indices) # get new learning rate for group in optimizer.param_groups: learning_rate = group["lr"] if learning_rate != previous_learning_rate and batch_growth_annealing: mini_batch_size *= 2 # reload last best model if annealing with restarts is enabled if ( (anneal_with_restarts or anneal_with_prestarts) and learning_rate != previous_learning_rate and os.path.exists(base_path / "best-model.pt") ): if anneal_with_restarts: log.info("resetting to best model") self.model.load_state_dict(self.model.load(base_path / "best-model.pt").state_dict()) if anneal_with_prestarts: log.info("resetting to pre-best model") self.model.load_state_dict(self.model.load(base_path / "pre-best-model.pt").state_dict()) previous_learning_rate = learning_rate if use_tensorboard: writer.add_scalar("learning_rate", learning_rate, epoch) # stop training if learning rate becomes too small if ( not isinstance(scheduler, (OneCycleLR, LinearSchedulerWithWarmup)) and learning_rate < min_learning_rate ): log_line(log) log.info("learning rate too small - quitting training!") log_line(log) break batch_loader = DataLoader( train_data, batch_size=mini_batch_size, shuffle=shuffle if epoch > 1 else False, # never shuffle the first epoch num_workers=0 if num_workers is None else num_workers, sampler=sampler, ) self.model.train() train_loss: float = 0 seen_batches = 0 total_number_of_batches = len(batch_loader) modulo = max(1, int(total_number_of_batches / 10)) # process mini-batches batch_time = 0.0 average_over = 0 for batch_no, batch in enumerate(batch_loader): start_time = time.time() # zero the gradients on the model and optimizer self.model.zero_grad() optimizer.zero_grad() # if necessary, make batch_steps batch_steps = [batch] if len(batch) > micro_batch_size: batch_steps = [batch[x : x + micro_batch_size] for x in range(0, len(batch), micro_batch_size)] # forward and backward for batch for batch_step in batch_steps: # forward pass loss = self.model.forward_loss(batch_step) if isinstance(loss, tuple): average_over += loss[1] loss = loss[0] # Backward if use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() train_loss += loss.item() # identify dynamic embeddings (always deleted) on first sentence if not dynamic_embeddings: dynamic_embeddings = identify_dynamic_embeddings(batch[0]) # depending on memory mode, embeddings are moved to CPU, GPU or deleted store_embeddings(batch, embeddings_storage_mode, dynamic_embeddings) # do the optimizer step torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5.0) optimizer.step() # do the scheduler step if one-cycle or linear decay if isinstance(scheduler, (OneCycleLR, LinearSchedulerWithWarmup)): scheduler.step() # get new learning rate for group in optimizer.param_groups: learning_rate = group["lr"] if "momentum" in group: momentum = group["momentum"] if "betas" in group: momentum, _ = group["betas"] seen_batches += 1 batch_time += time.time() - start_time if seen_batches % modulo == 0: momentum_info = f" - momentum: {momentum:.4f}" if cycle_momentum else "" intermittent_loss = train_loss / average_over if average_over > 0 else train_loss / seen_batches log.info( f"epoch {epoch} - iter {seen_batches}/" f"{total_number_of_batches} - loss " f"{intermittent_loss:.8f} - samples/sec:" f" {mini_batch_size * modulo / batch_time:.2f}" f" - lr: {learning_rate:.6f}{momentum_info}" ) batch_time = 0.0 iteration = epoch * total_number_of_batches + batch_no if not param_selection_mode and write_weights: weight_extractor.extract_weights(self.model.state_dict(), iteration) if average_over != 0: train_loss /= average_over self.model.eval() if save_model_each_k_epochs > 0 and epoch % save_model_each_k_epochs == 0: print("saving model of current epoch") model_name = "model_epoch_" + str(epoch) + ".pt" self.model.save(base_path / model_name, checkpoint=save_optimizer_state) log_line(log) log.info(f"EPOCH {epoch} done: loss {train_loss:.4f}" f" - lr {learning_rate:.7f}") if use_tensorboard: writer.add_scalar("train_loss", train_loss, epoch) # evaluate on train / dev / test split depending on training settings result_line: str = "" if log_train: train_eval_result = self.model.evaluate( self.corpus.train, gold_label_type=self.model.label_type, mini_batch_size=eval_batch_size, num_workers=num_workers, embedding_storage_mode=embeddings_storage_mode, main_evaluation_metric=main_evaluation_metric, gold_label_dictionary=gold_label_dictionary_for_eval, ) result_line += f"\t{train_eval_result.log_line}" # depending on memory mode, embeddings are moved to CPU, GPU or deleted store_embeddings(self.corpus.train, embeddings_storage_mode, dynamic_embeddings) if log_train_part: train_part_eval_result = self.model.evaluate( train_part, gold_label_type=self.model.label_type, mini_batch_size=eval_batch_size, num_workers=num_workers, embedding_storage_mode=embeddings_storage_mode, main_evaluation_metric=main_evaluation_metric, gold_label_dictionary=gold_label_dictionary_for_eval, ) result_line += f"\t{train_part_eval_result.loss}" f"\t{train_part_eval_result.log_line}" log.info( f"TRAIN_SPLIT : loss {train_part_eval_result.loss}" f" - {main_evaluation_metric[1]}" f" ({main_evaluation_metric[0]})" f" {round(train_part_eval_result.main_score, 4)}" ) if use_tensorboard: for (metric_class_avg_type, metric_type) in metrics_for_tensorboard: writer.add_scalar( f"train_{metric_class_avg_type}_{metric_type}", train_part_eval_result.classification_report[metric_class_avg_type][metric_type], epoch, ) if log_dev: assert self.corpus.dev dev_eval_result = self.model.evaluate( self.corpus.dev, gold_label_type=self.model.label_type, mini_batch_size=eval_batch_size, num_workers=num_workers, out_path=base_path / "dev.tsv", embedding_storage_mode=embeddings_storage_mode, main_evaluation_metric=main_evaluation_metric, gold_label_dictionary=gold_label_dictionary_for_eval, ) result_line += f"\t{dev_eval_result.loss}\t{dev_eval_result.log_line}" log.info( f"DEV : loss {dev_eval_result.loss}" f" - {main_evaluation_metric[1]}" f" ({main_evaluation_metric[0]})" f" {round(dev_eval_result.main_score, 4)}" ) # calculate scores using dev data if available # append dev score to score history dev_score_history.append(dev_eval_result.main_score) dev_loss_history.append(dev_eval_result.loss) dev_score = dev_eval_result.main_score # depending on memory mode, embeddings are moved to CPU, GPU or deleted store_embeddings(self.corpus.dev, embeddings_storage_mode, dynamic_embeddings) if use_tensorboard: writer.add_scalar("dev_loss", dev_eval_result.loss, epoch) writer.add_scalar("dev_score", dev_eval_result.main_score, epoch) for ( metric_class_avg_type, metric_type, ) in metrics_for_tensorboard: writer.add_scalar( f"dev_{metric_class_avg_type}_{metric_type}", dev_eval_result.classification_report[metric_class_avg_type][metric_type], epoch, ) if log_test: assert self.corpus.test test_eval_result = self.model.evaluate( self.corpus.test, gold_label_type=self.model.label_type, mini_batch_size=eval_batch_size, num_workers=num_workers, out_path=base_path / "test.tsv", embedding_storage_mode=embeddings_storage_mode, main_evaluation_metric=main_evaluation_metric, gold_label_dictionary=gold_label_dictionary_for_eval, ) result_line += f"\t{test_eval_result.loss}\t{test_eval_result.log_line}" log.info( f"TEST : loss {test_eval_result.loss} -" f" {main_evaluation_metric[1]}" f" ({main_evaluation_metric[0]}) " f" {round(test_eval_result.main_score, 4)}" ) # depending on memory mode, embeddings are moved to CPU, GPU or deleted store_embeddings(self.corpus.test, embeddings_storage_mode, dynamic_embeddings) if use_tensorboard: writer.add_scalar("test_loss", test_eval_result.loss, epoch) writer.add_scalar("test_score", test_eval_result.main_score, epoch) for ( metric_class_avg_type, metric_type, ) in metrics_for_tensorboard: writer.add_scalar( f"test_{metric_class_avg_type}_{metric_type}", test_eval_result.classification_report[metric_class_avg_type][metric_type], epoch, ) # determine if this is the best model or if we need to anneal current_epoch_has_best_model_so_far = False # default mode: anneal against dev score if not train_with_dev and not anneal_against_dev_loss: if dev_score > best_validation_score: current_epoch_has_best_model_so_far = True best_validation_score = dev_score if isinstance(scheduler, AnnealOnPlateau): scheduler.step(dev_score, dev_eval_result.loss) # alternative: anneal against dev loss if not train_with_dev and anneal_against_dev_loss: if dev_eval_result.loss < best_validation_score: current_epoch_has_best_model_so_far = True best_validation_score = dev_eval_result.loss if isinstance(scheduler, AnnealOnPlateau): scheduler.step(dev_eval_result.loss) # alternative: anneal against train loss if train_with_dev: if train_loss < best_validation_score: current_epoch_has_best_model_so_far = True best_validation_score = train_loss if isinstance(scheduler, AnnealOnPlateau): scheduler.step(train_loss) train_loss_history.append(train_loss) # determine bad epoch number try: bad_epochs = scheduler.num_bad_epochs except AttributeError: bad_epochs = 0 for group in optimizer.param_groups: new_learning_rate = group["lr"] if new_learning_rate != previous_learning_rate: bad_epochs = patience + 1 if previous_learning_rate == initial_learning_rate: bad_epochs += initial_extra_patience # log bad epochs log.info(f"BAD EPOCHS (no improvement): {bad_epochs}") if loss_txt is not None: # output log file with open(loss_txt, "a") as f: # make headers on first epoch if epoch == 1: f.write("EPOCH\tTIMESTAMP\tBAD_EPOCHS" "\tLEARNING_RATE\tTRAIN_LOSS") if log_train: f.write("\tTRAIN_" + "\tTRAIN_".join(train_eval_result.log_header.split("\t"))) if log_train_part: f.write( "\tTRAIN_PART_LOSS\tTRAIN_PART_" + "\tTRAIN_PART_".join(train_part_eval_result.log_header.split("\t")) ) if log_dev: f.write("\tDEV_LOSS\tDEV_" + "\tDEV_".join(dev_eval_result.log_header.split("\t"))) if log_test: f.write("\tTEST_LOSS\tTEST_" + "\tTEST_".join(test_eval_result.log_header.split("\t"))) f.write( f"\n{epoch}\t{datetime.datetime.now():%H:%M:%S}" f"\t{bad_epochs}" f"\t{learning_rate:.4f}\t{train_loss}" ) f.write(result_line) # if checkpoint is enabled, save model at each epoch if checkpoint and not param_selection_mode: self.model.save(base_path / "checkpoint.pt", checkpoint=True) # Check whether to save best model if ( (not train_with_dev or anneal_with_restarts or anneal_with_prestarts) and not param_selection_mode and current_epoch_has_best_model_so_far and not use_final_model_for_eval ): log.info("saving best model") self.model.save(base_path / "best-model.pt", checkpoint=save_optimizer_state) if anneal_with_prestarts: current_state_dict = self.model.state_dict() self.model.load_state_dict(last_epoch_model_state_dict) self.model.save(base_path / "pre-best-model.pt") self.model.load_state_dict(current_state_dict) if use_swa: import torchcontrib cast(torchcontrib.optim.SWA, optimizer).swap_swa_sgd() # if we do not use dev data for model selection, save final model if save_final_model and not param_selection_mode: self.model.save(base_path / "final-model.pt", checkpoint=save_optimizer_state) except KeyboardInterrupt: log_line(log) log.info("Exiting from training early.") if not param_selection_mode: log.info("Saving model ...") self.model.save(base_path / "final-model.pt", checkpoint=save_optimizer_state) log.info("Done.") except Exception: if create_file_logs: log_handler.close() log.removeHandler(log_handler) raise finally: if use_tensorboard: writer.close() # test best model if test data is present if self.corpus.test and not train_with_test: final_score = self.final_test( base_path=base_path, eval_mini_batch_size=eval_batch_size, num_workers=num_workers, main_evaluation_metric=main_evaluation_metric, gold_label_dictionary_for_eval=gold_label_dictionary_for_eval, ) else: final_score = 0 log.info("Test data not provided setting final score to 0") if create_file_logs: log_handler.close() log.removeHandler(log_handler) return { "test_score": final_score, "dev_score_history": dev_score_history, "train_loss_history": train_loss_history, "dev_loss_history": dev_loss_history, } def resume( self, model: Model, **trainer_args, ): assert model.model_card is not None self.model = model # recover all arguments that were used to train this model args_used_to_train_model = model.model_card["training_parameters"] # you can overwrite params with your own for param in trainer_args: args_used_to_train_model[param] = trainer_args[param] if param == "optimizer" and "optimizer_state_dict" in args_used_to_train_model: del args_used_to_train_model["optimizer_state_dict"] if param == "scheduler" and "scheduler_state_dict" in args_used_to_train_model: del args_used_to_train_model["scheduler_state_dict"] # surface nested arguments kwargs = args_used_to_train_model["kwargs"] del args_used_to_train_model["kwargs"] # resume training with these parameters self.train(**args_used_to_train_model, **kwargs) def fine_tune( self, base_path: Union[Path, str], learning_rate: float = 5e-5, max_epochs: int = 10, optimizer=torch.optim.AdamW, scheduler=LinearSchedulerWithWarmup, warmup_fraction: float = 0.1, mini_batch_size: int = 4, embeddings_storage_mode: str = "none", use_final_model_for_eval: bool = True, **trainer_args, ): return self.train( base_path=base_path, learning_rate=learning_rate, max_epochs=max_epochs, optimizer=optimizer, scheduler=scheduler, warmup_fraction=warmup_fraction, mini_batch_size=mini_batch_size, embeddings_storage_mode=embeddings_storage_mode, use_final_model_for_eval=use_final_model_for_eval, **trainer_args, ) def final_test( self, base_path: Union[Path, str], eval_mini_batch_size: int, main_evaluation_metric: Tuple[str, str], num_workers: Optional[int] = 8, gold_label_dictionary_for_eval: Optional[Dictionary] = None, ): base_path = Path(base_path) base_path.mkdir(exist_ok=True, parents=True) log_line(log) self.model.eval() if (base_path / "best-model.pt").exists(): self.model.load_state_dict(self.model.load(base_path / "best-model.pt").state_dict()) else: log.info("Testing using last state of model ...") assert self.corpus.test test_results = self.model.evaluate( self.corpus.test, gold_label_type=self.model.label_type, mini_batch_size=eval_mini_batch_size, num_workers=num_workers, out_path=base_path / "test.tsv", embedding_storage_mode="none", main_evaluation_metric=main_evaluation_metric, gold_label_dictionary=gold_label_dictionary_for_eval, ) log.info(test_results.log_line) log.info(test_results.detailed_results) log_line(log) # if we are training over multiple datasets, do evaluation for each if isinstance(self.corpus, MultiCorpus): for subcorpus in self.corpus.corpora: log_line(log) if subcorpus.test: subcorpus_results = self.model.evaluate( subcorpus.test, gold_label_type=self.model.label_type, mini_batch_size=eval_mini_batch_size, num_workers=num_workers, out_path=base_path / f"{subcorpus.name}-test.tsv", embedding_storage_mode="none", main_evaluation_metric=main_evaluation_metric, ) log.info(subcorpus.name) log.info(subcorpus_results.log_line) # get and return the final test score of best model final_score = test_results.main_score return final_score def find_learning_rate( self, base_path: Union[Path, str], optimizer, mini_batch_size: int = 32, start_learning_rate: float = 1e-7, end_learning_rate: float = 10, iterations: int = 1000, stop_early: bool = True, file_name: str = "learning_rate.tsv", **kwargs, ) -> Path: best_loss = None # cast string to Path base_path = Path(base_path) base_path.mkdir(exist_ok=True, parents=True) learning_rate_tsv = init_output_file(base_path, file_name) with open(learning_rate_tsv, "a") as f: f.write("ITERATION\tTIMESTAMP\tLEARNING_RATE\tTRAIN_LOSS\n") optimizer = optimizer(self.model.parameters(), lr=start_learning_rate, **kwargs) train_data = self.corpus.train scheduler = ExpAnnealLR(optimizer, end_learning_rate, iterations) model_state = self.model.state_dict() self.model.train() step = 0 loss_list = [] average_loss_list = [] while step < iterations: batch_loader = DataLoader(train_data, batch_size=mini_batch_size, shuffle=True) for batch in batch_loader: step += 1 # forward pass loss = self.model.forward_loss(batch) if isinstance(loss, tuple): loss = loss[0] # update optimizer and scheduler optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5.0) optimizer.step() scheduler.step() learning_rate = scheduler.get_lr()[0] # append current loss to list of losses for all iterations loss_list.append(loss.item()) # compute averaged loss import statistics moving_avg_loss = statistics.mean(loss_list) average_loss_list.append(moving_avg_loss) if len(average_loss_list) > 10: drop = average_loss_list[-10] - moving_avg_loss else: drop = 0.0 if not best_loss or moving_avg_loss < best_loss: best_loss = moving_avg_loss if step > iterations: break if stop_early and (moving_avg_loss > 4 * best_loss or torch.isnan(loss)): log_line(log) log.info("loss diverged - stopping early!") step = iterations break with open(str(learning_rate_tsv), "a") as f: f.write(f"{step}\t{learning_rate}\t{loss.item()}" f"\t{moving_avg_loss}\t{drop}\n") self.model.load_state_dict(model_state) self.model.to(flair.device) log_line(log) log.info(f"learning rate finder finished - plot {learning_rate_tsv}") log_line(log) return Path(learning_rate_tsv)
[ "torch.optim.lr_scheduler.OneCycleLR", "torch.isnan", "torch.utils.data.dataset.ConcatDataset", "torch.utils.data.dataset.Subset", "torch.utils.tensorboard.SummaryWriter" ]
1.5.0
adriensas/flair
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
1.5
from typing import Tuple import numpy as np import torch import torch.nn from torch.nn.functional import softmax from torch.nn.utils.rnn import pack_padded_sequence import flair from flair.data import Dictionary, Label, List START_TAG: str = "<START>" STOP_TAG: str = "<STOP>" class ViterbiLoss(torch.nn.Module): """ Calculates the loss for each sequence up to its length t. """ def __init__(self, tag_dictionary: Dictionary): """ :param tag_dictionary: tag_dictionary of task """ super(ViterbiLoss, self).__init__() self.tag_dictionary = tag_dictionary self.tagset_size = len(tag_dictionary) self.start_tag = tag_dictionary.get_idx_for_item(START_TAG) self.stop_tag = tag_dictionary.get_idx_for_item(STOP_TAG) def forward(self, features_tuple: tuple, targets: torch.Tensor) -> torch.Tensor: """ Forward propagation of Viterbi Loss :param features_tuple: CRF scores from forward method in shape (batch size, seq len, tagset size, tagset size), lengths of sentences in batch, transitions from CRF :param targets: true tags for sentences which will be converted to matrix indices. :return: average Viterbi Loss over batch size """ features, lengths, transitions = features_tuple batch_size = features.size(0) seq_len = features.size(1) targets, targets_matrix_indices = self._format_targets(targets, lengths) targets_matrix_indices = torch.tensor(targets_matrix_indices, dtype=torch.long).unsqueeze(2).to(flair.device) # scores_at_targets[range(features.shape[0]), lengths.values -1] # Squeeze crf scores matrices in 1-dim shape and gather scores at targets by matrix indices scores_at_targets = torch.gather(features.view(batch_size, seq_len, -1), 2, targets_matrix_indices) scores_at_targets = pack_padded_sequence(scores_at_targets, lengths, batch_first=True)[0] transitions_to_stop = transitions[ np.repeat(self.stop_tag, features.shape[0]), [target[length - 1] for target, length in zip(targets, lengths)], ] gold_score = scores_at_targets.sum() + transitions_to_stop.sum() scores_upto_t = torch.zeros(batch_size, self.tagset_size, device=flair.device) for t in range(max(lengths)): batch_size_t = sum( [length > t for length in lengths] ) # since batch is ordered, we can save computation time by reducing our effective batch_size if t == 0: # Initially, get scores from <start> tag to all other tags scores_upto_t[:batch_size_t] = ( scores_upto_t[:batch_size_t] + features[:batch_size_t, t, :, self.start_tag] ) else: # We add scores at current timestep to scores accumulated up to previous timestep, and log-sum-exp # Remember, the cur_tag of the previous timestep is the prev_tag of this timestep scores_upto_t[:batch_size_t] = self._log_sum_exp( features[:batch_size_t, t, :, :] + scores_upto_t[:batch_size_t].unsqueeze(1), dim=2 ) all_paths_scores = self._log_sum_exp(scores_upto_t + transitions[self.stop_tag].unsqueeze(0), dim=1).sum() viterbi_loss = all_paths_scores - gold_score return viterbi_loss @staticmethod def _log_sum_exp(tensor, dim): """ Calculates the log-sum-exponent of a tensor's dimension in a numerically stable way. :param tensor: tensor :param dim: dimension to calculate log-sum-exp of :return: log-sum-exp """ m, _ = torch.max(tensor, dim) m_expanded = m.unsqueeze(dim).expand_as(tensor) return m + torch.log(torch.sum(torch.exp(tensor - m_expanded), dim)) def _format_targets(self, targets: torch.Tensor, lengths: torch.IntTensor): """ Formats targets into matrix indices. CRF scores contain per sentence, per token a (tagset_size x tagset_size) matrix, containing emission score for token j + transition prob from previous token i. Means, if we think of our rows as "to tag" and our columns as "from tag", the matrix in cell [10,5] would contain the emission score for tag 10 + transition score from previous tag 5 and could directly be addressed through the 1-dim indices (10 + tagset_size * 5) = 70, if our tagset consists of 12 tags. :param targets: targets as in tag dictionary :param lengths: lengths of sentences in batch """ targets_per_sentence = [] targets_list = targets.tolist() for cut in lengths: targets_per_sentence.append(targets_list[:cut]) targets_list = targets_list[cut:] for t in targets_per_sentence: t += [self.tag_dictionary.get_idx_for_item(STOP_TAG)] * (int(lengths.max().item()) - len(t)) matrix_indices = list( map( lambda s: [self.tag_dictionary.get_idx_for_item(START_TAG) + (s[0] * self.tagset_size)] + [s[i] + (s[i + 1] * self.tagset_size) for i in range(0, len(s) - 1)], targets_per_sentence, ) ) return targets_per_sentence, matrix_indices class ViterbiDecoder: """ Decodes a given sequence using the Viterbi algorithm. """ def __init__(self, tag_dictionary: Dictionary): """ :param tag_dictionary: Dictionary of tags for sequence labeling task """ self.tag_dictionary = tag_dictionary self.tagset_size = len(tag_dictionary) self.start_tag = tag_dictionary.get_idx_for_item(START_TAG) self.stop_tag = tag_dictionary.get_idx_for_item(STOP_TAG) def decode(self, features_tuple: tuple, probabilities_for_all_classes: bool) -> Tuple[List, List]: """ Decoding function returning the most likely sequence of tags. :param features_tuple: CRF scores from forward method in shape (batch size, seq len, tagset size, tagset size), lengths of sentence in batch, transitions of CRF :param probabilities_for_all_classes: whether to return probabilities for all tags :return: decoded sequences """ features, lengths, transitions = features_tuple all_tags = [] batch_size = features.size(0) seq_len = features.size(1) # Create a tensor to hold accumulated sequence scores at each current tag scores_upto_t = torch.zeros(batch_size, seq_len + 1, self.tagset_size).to(flair.device) # Create a tensor to hold back-pointers # i.e., indices of the previous_tag that corresponds to maximum accumulated score at current tag # Let pads be the <end> tag index, since that was the last tag in the decoded sequence backpointers = ( torch.ones((batch_size, seq_len + 1, self.tagset_size), dtype=torch.long, device=flair.device) * self.stop_tag ) for t in range(seq_len): batch_size_t = sum([length > t for length in lengths]) # effective batch size (sans pads) at this timestep terminates = [i for i, length in enumerate(lengths) if length == t + 1] if t == 0: scores_upto_t[:batch_size_t, t] = features[:batch_size_t, t, :, self.start_tag] backpointers[:batch_size_t, t, :] = ( torch.ones((batch_size_t, self.tagset_size), dtype=torch.long) * self.start_tag ) else: # We add scores at current timestep to scores accumulated up to previous timestep, and # choose the previous timestep that corresponds to the max. accumulated score for each current timestep scores_upto_t[:batch_size_t, t], backpointers[:batch_size_t, t, :] = torch.max( features[:batch_size_t, t, :, :] + scores_upto_t[:batch_size_t, t - 1].unsqueeze(1), dim=2 ) # If sentence is over, add transition to STOP-tag if terminates: scores_upto_t[terminates, t + 1], backpointers[terminates, t + 1, :] = torch.max( scores_upto_t[terminates, t].unsqueeze(1) + transitions[self.stop_tag].unsqueeze(0), dim=2 ) # Decode/trace best path backwards decoded = torch.zeros((batch_size, backpointers.size(1)), dtype=torch.long, device=flair.device) pointer = torch.ones((batch_size, 1), dtype=torch.long, device=flair.device) * self.stop_tag for t in list(reversed(range(backpointers.size(1)))): decoded[:, t] = torch.gather(backpointers[:, t, :], 1, pointer).squeeze(1) pointer = decoded[:, t].unsqueeze(1) # Sanity check assert torch.equal( decoded[:, 0], torch.ones((batch_size), dtype=torch.long, device=flair.device) * self.start_tag ) # remove start-tag and backscore to stop-tag scores_upto_t = scores_upto_t[:, :-1, :] decoded = decoded[:, 1:] # Max + Softmax to get confidence score for predicted label and append label to each token scores = softmax(scores_upto_t, dim=2) confidences = torch.max(scores, dim=2) tags = [] for tag_seq, tag_seq_conf, length_seq in zip(decoded, confidences.values, lengths): tags.append( [ Label(self.tag_dictionary.get_item_for_index(tag), conf.item()) for tag, conf in list(zip(tag_seq, tag_seq_conf))[:length_seq] ] ) if probabilities_for_all_classes: all_tags = self._all_scores_for_token(scores, lengths) return tags, all_tags def _all_scores_for_token(self, scores: torch.Tensor, lengths: torch.IntTensor): """ Returns all scores for each tag in tag dictionary. :param scores: Scores for current sentence. """ scores = scores.numpy() prob_tags_per_sentence = [] for scores_sentence, length in zip(scores, lengths): scores_sentence = scores_sentence[:length] prob_tags_per_sentence.append( [ [ Label(self.tag_dictionary.get_item_for_index(score_id), score) for score_id, score in enumerate(score_dist) ] for score_dist in scores_sentence ] ) return prob_tags_per_sentence
[ "torch.zeros", "torch.max", "torch.gather", "torch.ones", "torch.tensor", "torch.nn.utils.rnn.pack_padded_sequence", "torch.nn.functional.softmax", "torch.exp" ]
1.5.0
adriensas/flair
f01b0e7ff9a87d3862acae50aeaffdc8e8b8ac21
0.4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import json import os import shutil import tempfile from argparse import Namespace import numpy as np import pytest import torch from espnet.nets.pytorch_backend.e2e_tts_fastspeech import FeedForwardTransformer from espnet.nets.pytorch_backend.e2e_tts_transformer import Transformer from espnet.nets.pytorch_backend.fastspeech.duration_calculator import DurationCalculator from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator from espnet.nets.pytorch_backend.nets_utils import pad_list def prepare_inputs(idim, odim, ilens, olens, device=torch.device('cpu')): ilens = torch.LongTensor(ilens).to(device) olens = torch.LongTensor(olens).to(device) xs = [np.random.randint(0, idim, l) for l in ilens] ys = [np.random.randn(l, odim) for l in olens] xs = pad_list([torch.from_numpy(x).long() for x in xs], 0).to(device) ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device) labels = ys.new_zeros(ys.size(0), ys.size(1)) for i, l in enumerate(olens): labels[i, l - 1:] = 1 batch = { "xs": xs, "ilens": ilens, "ys": ys, "labels": labels, "olens": olens, } return batch def make_transformer_args(**kwargs): defaults = dict( embed_dim=0, eprenet_conv_layers=0, eprenet_conv_filts=0, eprenet_conv_chans=0, dprenet_layers=2, dprenet_units=256, adim=32, aheads=4, elayers=2, eunits=128, dlayers=2, dunits=128, postnet_layers=5, postnet_filts=5, postnet_chans=512, eprenet_dropout_rate=0.1, dprenet_dropout_rate=0.5, postnet_dropout_rate=0.1, transformer_enc_dropout_rate=0.1, transformer_enc_positional_dropout_rate=0.1, transformer_enc_attn_dropout_rate=0.0, transformer_dec_dropout_rate=0.1, transformer_dec_positional_dropout_rate=0.1, transformer_dec_attn_dropout_rate=0.3, transformer_enc_dec_attn_dropout_rate=0.0, use_masking=True, bce_pos_weight=1.0, use_batch_norm=True, use_scaled_pos_enc=True, encoder_normalize_before=True, decoder_normalize_before=True, encoder_concat_after=False, decoder_concat_after=False, transformer_init="pytorch", initial_encoder_alpha=1.0, initial_decoder_alpha=1.0, reduction_factor=1, loss_type="L1", use_guided_attn_loss=False, num_heads_applied_guided_attn=2, num_layers_applied_guided_attn=2, guided_attn_loss_sigma=0.4, modules_applied_guided_attn=["encoder", "decoder", "encoder-decoder"] ) defaults.update(kwargs) return defaults def make_feedforward_transformer_args(**kwargs): defaults = dict( adim=32, aheads=4, elayers=2, eunits=128, dlayers=2, dunits=128, duration_predictor_layers=2, duration_predictor_chans=128, duration_predictor_kernel_size=3, duration_predictor_dropout_rate=0.1, positionwise_layer_type="linear", positionwise_conv_kernel_size=1, transformer_enc_dropout_rate=0.1, transformer_enc_positional_dropout_rate=0.1, transformer_enc_attn_dropout_rate=0.0, transformer_dec_dropout_rate=0.1, transformer_dec_positional_dropout_rate=0.1, transformer_dec_attn_dropout_rate=0.3, transformer_enc_dec_attn_dropout_rate=0.0, use_masking=True, use_scaled_pos_enc=True, encoder_normalize_before=True, decoder_normalize_before=True, encoder_concat_after=False, decoder_concat_after=False, transformer_init="pytorch", initial_encoder_alpha=1.0, initial_decoder_alpha=1.0, transfer_encoder_from_teacher=False, transferred_encoder_module="all", reduction_factor=1, teacher_model=None, ) defaults.update(kwargs) return defaults @pytest.mark.parametrize( "model_dict", [ ({}), ({"use_masking": False}), ({"use_scaled_pos_enc": False}), ({"positionwise_layer_type": "conv1d", "positionwise_conv_kernel_size": 3}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"encoder_concat_after": True}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ]) def test_fastspeech_trainable_and_decodable(model_dict): # make args idim, odim = 10, 25 teacher_model_args = make_transformer_args(**model_dict) model_args = make_feedforward_transformer_args(**model_dict) # setup batch ilens = [10, 5] olens = [20, 15] batch = prepare_inputs(idim, odim, ilens, olens) # define teacher model and save it teacher_model = Transformer(idim, odim, Namespace(**teacher_model_args)) tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") torch.save(teacher_model.state_dict(), tmpdir + "/model.dummy.best") with open(tmpdir + "/model.json", 'wb') as f: f.write(json.dumps((idim, odim, teacher_model_args), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) # define model model_args["teacher_model"] = tmpdir + "/model.dummy.best" model = FeedForwardTransformer(idim, odim, Namespace(**model_args)) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # decodable model.eval() with torch.no_grad(): model.inference(batch["xs"][0][:batch["ilens"][0]]) model.calculate_all_attentions(**batch) # remove tmpdir if os.path.exists(tmpdir): shutil.rmtree(tmpdir) @pytest.mark.skipif(not torch.cuda.is_available(), reason="gpu required") @pytest.mark.parametrize( "model_dict", [ ({}), ({"use_masking": False}), ({"use_scaled_pos_enc": False}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"encoder_concat_after": True}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ]) def test_fastspeech_gpu_trainable(model_dict): # make args idim, odim = 10, 25 teacher_model_args = make_transformer_args(**model_dict) model_args = make_feedforward_transformer_args(**model_dict) # setup batch ilens = [10, 5] olens = [20, 15] device = torch.device('cuda') batch = prepare_inputs(idim, odim, ilens, olens, device=device) # define teacher model and save it teacher_model = Transformer(idim, odim, Namespace(**teacher_model_args)) tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") torch.save(teacher_model.state_dict(), tmpdir + "/model.dummy.best") with open(tmpdir + "/model.json", 'wb') as f: f.write(json.dumps((idim, odim, teacher_model_args), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) # define model model_args["teacher_model"] = tmpdir + "/model.dummy.best" model = FeedForwardTransformer(idim, odim, Namespace(**model_args)) model.to(device) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # remove tmpdir if os.path.exists(tmpdir): shutil.rmtree(tmpdir) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="multi gpu required") @pytest.mark.parametrize( "model_dict", [ ({}), ({"use_masking": False}), ({"use_scaled_pos_enc": False}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"encoder_concat_after": True}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ]) def test_fastspeech_multi_gpu_trainable(model_dict): # make args idim, odim = 10, 25 teacher_model_args = make_transformer_args(**model_dict) model_args = make_feedforward_transformer_args(**model_dict) # setup batch ilens = [10, 5] olens = [20, 15] device = torch.device('cuda') batch = prepare_inputs(idim, odim, ilens, olens, device=device) # define teacher model and save it teacher_model = Transformer(idim, odim, Namespace(**teacher_model_args)) tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") torch.save(teacher_model.state_dict(), tmpdir + "/model.dummy.best") with open(tmpdir + "/model.json", 'wb') as f: f.write(json.dumps((idim, odim, teacher_model_args), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) # define model ngpu = 2 device_ids = list(range(ngpu)) model_args["teacher_model"] = tmpdir + "/model.dummy.best" model = FeedForwardTransformer(idim, odim, Namespace(**model_args)) model = torch.nn.DataParallel(model, device_ids) model.to(device) optimizer = torch.optim.Adam(model.parameters()) # trainable loss = model(**batch).mean() optimizer.zero_grad() loss.backward() optimizer.step() # remove tmpdir if os.path.exists(tmpdir): shutil.rmtree(tmpdir) @pytest.mark.parametrize( "model_dict", [ ({}), ({"use_scaled_pos_enc": False}), ({"init_encoder_module": "embed"}), ({"encoder_normalize_before": False}), ({"decoder_normalize_before": False}), ({"encoder_normalize_before": False, "decoder_normalize_before": False}), ({"encoder_concat_after": True}), ({"decoder_concat_after": True}), ({"encoder_concat_after": True, "decoder_concat_after": True}), ]) def test_initialization(model_dict): # make args idim, odim = 10, 25 teacher_model_args = make_transformer_args(**model_dict) model_args = make_feedforward_transformer_args(**model_dict) # define teacher model and save it teacher_model = Transformer(idim, odim, Namespace(**teacher_model_args)) tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") torch.save(teacher_model.state_dict(), tmpdir + "/model.dummy.best") with open(tmpdir + "/model.json", 'wb') as f: f.write(json.dumps((idim, odim, teacher_model_args), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) # define model model_args["teacher_model"] = tmpdir + "/model.dummy.best" model_args["transfer_encoder_from_teacher"] = True model = FeedForwardTransformer(idim, odim, Namespace(**model_args)) # check initialization if model_args["transferred_encoder_module"] == "all": for p1, p2 in zip(model.encoder.parameters(), model.teacher.encoder.parameters()): np.testing.assert_array_equal(p1.data.cpu().numpy(), p2.data.cpu().numpy()) else: np.testing.assert_array_equal( model.encoder.embed[0].weight.data.cpu().numpy(), model.teacher.encoder.embed[0].weight.data.cpu().numpy() ) # remove tmpdir if os.path.exists(tmpdir): shutil.rmtree(tmpdir) def test_length_regulator(): # prepare inputs idim = 5 ilens = [10, 5, 3] xs = pad_list([torch.randn((ilen, idim)) for ilen in ilens], 0.0) ds = pad_list([torch.arange(ilen) for ilen in ilens], 0) # test with non-zero durations length_regulator = LengthRegulator() xs_expand = length_regulator(xs, ds, ilens) assert int(xs_expand.shape[1]) == int(ds.sum(dim=-1).max()) # test with duration including zero ds[:, 2] = 0 xs_expand = length_regulator(xs, ds, ilens) assert int(xs_expand.shape[1]) == int(ds.sum(dim=-1).max()) def test_duration_calculator(): # define duration calculator idim, odim = 10, 25 teacher_model_args = make_transformer_args() teacher = Transformer(idim, odim, Namespace(**teacher_model_args)) duration_calculator = DurationCalculator(teacher) # setup batch ilens = [10, 5, 3] olens = [20, 15, 10] batch = prepare_inputs(idim, odim, ilens, olens) # calculate durations ds = duration_calculator(batch["xs"], batch["ilens"], batch["ys"], batch["olens"]) np.testing.assert_array_equal(ds.sum(dim=-1).cpu().numpy(), batch["olens"].cpu().numpy())
[ "torch.device", "torch.arange", "torch.no_grad", "torch.cuda.device_count", "torch.from_numpy", "torch.cuda.is_available", "torch.LongTensor", "torch.randn", "torch.nn.DataParallel" ]
0.4.1
szmmm/speechchain
909724c6f305588a52958f64f584ad21696b5173
1.1
import torch class AnchorGenerator(object): """ Examples: >>> from mmdet.core import AnchorGenerator >>> self = AnchorGenerator(9, [1.], [1.]) >>> all_anchors = self.grid_anchors((2, 2), device='cpu') >>> print(all_anchors) tensor([[ 0., 0., 8., 8.], [16., 0., 24., 8.], [ 0., 16., 8., 24.], [16., 16., 24., 24.]]) """ def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None): self.base_size = base_size self.scales = torch.Tensor(scales) self.ratios = torch.Tensor(ratios) self.scale_major = scale_major self.ctr = ctr self.base_anchors = self.gen_base_anchors() @property def num_base_anchors(self): return self.base_anchors.size(0) def gen_base_anchors(self): w = self.base_size h = self.base_size if self.ctr is None: x_ctr = 0.5 * (w - 1) y_ctr = 0.5 * (h - 1) else: x_ctr, y_ctr = self.ctr h_ratios = torch.sqrt(self.ratios) w_ratios = 1 / h_ratios if self.scale_major: ws = (w * w_ratios[:, None] * self.scales[None, :]).view(-1) hs = (h * h_ratios[:, None] * self.scales[None, :]).view(-1) else: ws = (w * self.scales[:, None] * w_ratios[None, :]).view(-1) hs = (h * self.scales[:, None] * h_ratios[None, :]).view(-1) # yapf: disable base_anchors = torch.stack( [ x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1) ], dim=-1).round() # yapf: enable return base_anchors def _meshgrid(self, x, y, row_major=True): xx = x.repeat(len(y)) yy = y.view(-1, 1).repeat(1, len(x)).view(-1) if row_major: return xx, yy else: return yy, xx def grid_anchors(self, featmap_size, stride=16, device='cuda'): base_anchors = self.base_anchors.to(device) feat_h, feat_w = featmap_size shift_x = torch.arange(0, feat_w, device=device) * stride shift_y = torch.arange(0, feat_h, device=device) * stride shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1) shifts = shifts.type_as(base_anchors) # first feat_w elements correspond to the first row of shifts # add A anchors (1, A, 4) to K shifts (K, 1, 4) to get # shifted anchors (K, A, 4), reshape to (K*A, 4) all_anchors = base_anchors[None, :, :] + shifts[:, None, :] all_anchors = all_anchors.view(-1, 4) # first A rows correspond to A anchors of (0, 0) in feature map, # then (0, 1), (0, 2), ... return all_anchors def valid_flags(self, featmap_size, valid_size, device='cuda'): feat_h, feat_w = featmap_size valid_h, valid_w = valid_size assert valid_h <= feat_h and valid_w <= feat_w valid_x = torch.zeros(feat_w, dtype=torch.uint8, device=device) valid_y = torch.zeros(feat_h, dtype=torch.uint8, device=device) valid_x[:valid_w] = 1 valid_y[:valid_h] = 1 valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) valid = valid_xx & valid_yy valid = valid[:, None].expand( valid.size(0), self.num_base_anchors).contiguous().view(-1) return valid
[ "torch.zeros", "torch.sqrt", "torch.stack", "torch.arange", "torch.Tensor" ]
1.1.0
witnessai/GRAN
952c2b08a58f3b0087f0f18fd48f8e385e45908b
1.1
from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes, merge_aug_masks, merge_aug_proposals, multiclass_nms) class RPNTestMixin(object): def simple_test_rpn(self, x, img_meta, rpn_test_cfg): rpn_outs = self.rpn_head(x) proposal_inputs = rpn_outs + (img_meta, rpn_test_cfg) proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) return proposal_list def aug_test_rpn(self, feats, img_metas, rpn_test_cfg): imgs_per_gpu = len(img_metas[0]) aug_proposals = [[] for _ in range(imgs_per_gpu)] for x, img_meta in zip(feats, img_metas): proposal_list = self.simple_test_rpn(x, img_meta, rpn_test_cfg) for i, proposals in enumerate(proposal_list): aug_proposals[i].append(proposals) # reorganize the order of 'img_metas' to match the dimensions # of 'aug_proposals' aug_img_metas = [] for i in range(imgs_per_gpu): aug_img_meta = [] for j in range(len(img_metas)): aug_img_meta.append(img_metas[j][i]) aug_img_metas.append(aug_img_meta) # after merging, proposals will be rescaled to the original image size merged_proposals = [ merge_aug_proposals(proposals, aug_img_meta, rpn_test_cfg) for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) ] return merged_proposals class BBoxTestMixin(object): def simple_test_bboxes(self, x, img_meta, proposals, rcnn_test_cfg, rescale=False): """Test only det bboxes without augmentation.""" rois = bbox2roi(proposals) roi_feats = self.bbox_roi_extractor( x[:len(self.bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: roi_feats = self.shared_head(roi_feats) # if img_meta[0]['filename'] == 'data/coco/val2014/COCO_val2014_000000242605.jpg': # pass # import ipdb # ipdb.set_trace() if 'fusedfeat2sem' in str([x for x in self.bbox_head.modules()]): import torchvision import torch import ipdb # ipdb.set_trace() full_img_bboxes = torch.Tensor([[0, 0, 0, x[3].shape[3], x[3].shape[2]]]).cuda() full_img_feat = torchvision.ops.roi_align(x[3], full_img_bboxes, (16, 16)) cls_score, bbox_pred = self.bbox_head(roi_feats, full_img_feat) else: cls_score, bbox_pred = self.bbox_head(roi_feats, rois) img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] det_bboxes, det_labels = self.bbox_head.get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) return det_bboxes, det_labels def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): aug_bboxes = [] aug_scores = [] for x, img_meta in zip(feats, img_metas): # only one image in the batch img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] # TODO more flexible proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, scale_factor, flip) rois = bbox2roi([proposals]) # recompute feature maps to save GPU memory roi_feats = self.bbox_roi_extractor( x[:len(self.bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: roi_feats = self.shared_head(roi_feats) if 'fusedfeat2sem' in str([x for x in self.bbox_head.modules()]): import torchvision import torch import ipdb # ipdb.set_trace() full_img_bboxes = torch.Tensor([[0, 0, 0, x[3].shape[3], x[3].shape[2]]]).cuda() full_img_feat = torchvision.ops.roi_align(x[3], full_img_bboxes, (16, 16)) cls_score, bbox_pred = self.bbox_head(roi_feats, full_img_feat) elif self.bbox_head.has_matcher: cls_score, bbox_pred = self.bbox_head(roi_feats, rois) else: cls_score, bbox_pred = self.bbox_head(roi_feats) bboxes, scores = self.bbox_head.get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=False, cfg=None) aug_bboxes.append(bboxes) aug_scores.append(scores) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = merge_aug_bboxes( aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, rcnn_test_cfg.score_thr, rcnn_test_cfg.nms, rcnn_test_cfg.max_per_img) return det_bboxes, det_labels class MaskTestMixin(object): def simple_test_mask(self, x, img_meta, det_bboxes, det_labels, rescale=False): # image shape of the first image in the batch (only one) ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes - 1)] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. _bboxes = ( det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) mask_feats = self.mask_roi_extractor( x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head(mask_feats) segm_result = self.mask_head.get_seg_masks(mask_pred, _bboxes, det_labels, self.test_cfg.rcnn, ori_shape, scale_factor, rescale) return segm_result def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes - 1)] else: aug_masks = [] for x, img_meta in zip(feats, img_metas): img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) mask_feats = self.mask_roi_extractor( x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head(mask_feats) # convert to numpy array to save memory aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg.rcnn) ori_shape = img_metas[0][0]['ori_shape'] segm_result = self.mask_head.get_seg_masks( merged_masks, det_bboxes, det_labels, self.test_cfg.rcnn, ori_shape, scale_factor=1.0, rescale=False) return segm_result
[ "torch.Tensor" ]
1.1.0
witnessai/GRAN
952c2b08a58f3b0087f0f18fd48f8e385e45908b
1.1
import torch import torch.nn as nn from torch.nn.modules.utils import _pair from ..utils import ConvModule from mmdet.core import (auto_fp16) from ..registry import HEADS @HEADS.register_module class GlobalContextSemanticHead(nn.Module): """Simplest RoI head, with only two fc layers for semantic and regression respectively""" def __init__(self, roi_feat_size=7, in_channels=256, num_convs=3, conv_out_channels=256, num_fcs=1, fc_out_channels=1024, semantic_dims=1024, num_classes=49, conv_cfg=None, norm_cfg=None ): super(GlobalContextSemanticHead, self).__init__() self.roi_feat_size = _pair(roi_feat_size) self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1] self.in_channels = in_channels self.fp16_enabled = False self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels in_channels = self.in_channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.out_dim = semantic_dims self.relu = nn.ReLU(inplace=True) self.convs, self.fcs, self.last_dim = self._add_conv_fc_branch(num_convs, num_fcs, in_channels) # self.fc2 = nn.Linear(self.last_dim, self.out_dim) self.final_fc = nn.Linear(self.last_dim, num_classes) self.debug_imgs = None def _add_conv_fc_branch(self, num_convs, num_fcs, in_channels): last_layer_dim = in_channels context_convs = nn.ModuleList() if num_convs > 0: for i in range(num_convs): conv_in_channels = ( last_layer_dim if i == 0 else self.conv_out_channels) context_convs.append( ConvModule( conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) last_layer_dim = self.conv_out_channels # add branch specific fc layers context_fcs = nn.ModuleList() if num_fcs > 0: last_layer_dim *= self.roi_feat_area for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) context_fcs.append( nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return context_convs, context_fcs, last_layer_dim def init_weights(self): nn.init.normal_(self.final_fc.weight, 0, 0.001) nn.init.constant_(self.final_fc.bias, 0) # nn.init.normal_(self.fc2.weight, 0, 0.001) # nn.init.constant_(self.fc2.bias, 0) @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if x.dim() > 2: x = x.view(x.size(0), -1) for fc in self.fcs: x = self.relu(fc(x)) # x = self.relu(self.fc2(x)) x = self.final_fc(x) # 1024*49 return x
[ "torch.nn.Linear", "torch.nn.modules.utils._pair", "torch.nn.ModuleList", "torch.nn.init.constant_", "torch.nn.ReLU", "torch.nn.init.normal_" ]
1.1.0
witnessai/GRAN
952c2b08a58f3b0087f0f18fd48f8e385e45908b
1.1
from __future__ import division import math import numpy as np import torch from mmcv.runner.utils import get_dist_info from torch.utils.data import DistributedSampler as _DistributedSampler from torch.utils.data import Sampler class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) class GroupSampler(Sampler): def __init__(self, dataset, samples_per_gpu=1): assert hasattr(dataset, 'flag') self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.flag = dataset.flag.astype(np.int64) self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, size in enumerate(self.group_sizes): self.num_samples += int(np.ceil( size / self.samples_per_gpu)) * self.samples_per_gpu def __iter__(self): indices = [] for i, size in enumerate(self.group_sizes): if size == 0: continue indice = np.where(self.flag == i)[0] assert len(indice) == size np.random.shuffle(indice) num_extra = int(np.ceil(size / self.samples_per_gpu) ) * self.samples_per_gpu - len(indice) indice = np.concatenate( [indice, np.random.choice(indice, num_extra)]) indices.append(indice) indices = np.concatenate(indices) indices = [ indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] for i in np.random.permutation( range(len(indices) // self.samples_per_gpu)) ] indices = np.concatenate(indices) indices = indices.astype(np.int64).tolist() assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples class DistributedGroupSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, samples_per_gpu=1, num_replicas=None, rank=None): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.num_replicas = num_replicas self.rank = rank self.epoch = 0 assert hasattr(self.dataset, 'flag') self.flag = self.dataset.flag self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, j in enumerate(self.group_sizes): self.num_samples += int( math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / self.num_replicas)) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = [] for i, size in enumerate(self.group_sizes): if size > 0: indice = np.where(self.flag == i)[0] assert len(indice) == size indice = indice[list(torch.randperm(int(size), generator=g))].tolist() extra = int( math.ceil( size * 1.0 / self.samples_per_gpu / self.num_replicas) ) * self.samples_per_gpu * self.num_replicas - len(indice) # pad indice tmp = indice.copy() for _ in range(extra // size): indice.extend(tmp) indice.extend(tmp[:extra % size]) indices.extend(indice) assert len(indices) == self.total_size indices = [ indices[j] for i in list( torch.randperm( len(indices) // self.samples_per_gpu, generator=g)) for j in range(i * self.samples_per_gpu, (i + 1) * self.samples_per_gpu) ] # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch
[ "torch.Generator" ]
1.1.0
witnessai/GRAN
952c2b08a58f3b0087f0f18fd48f8e385e45908b
1.0
import warnings warnings.filterwarnings("ignore") import sys import matplotlib.pylab as plt import scipy sys.path.append('waveglow/') import numpy as np import torch from hparams import create_hparams from train import load_model from text import text_to_sequence def plot_data(data, figsize=(16, 4)): fig, axes = plt.subplots(1, len(data), figsize=figsize) for i in range(len(data)): axes[i].imshow(data[i], aspect='auto', origin='bottom', interpolation='none') hparams = create_hparams() hparams.sampling_rate = 22050 # hparams.gate_threshold = 0.1 checkpoint_path = "tacotron2_statedict.pt" # checkpoint_path = "outdir/checkpoint_12500" # checkpoint_path = "outdir/saved_10000" #checkpoint_path = "outdir_self_data/saved_170000" model = load_model(hparams) model.load_state_dict(torch.load(checkpoint_path)['state_dict']) _ = model.cuda().eval().half() waveglow_path = 'waveglow_256channels.pt' # waveglow_path = 'waveglow/checkpoints1/saved_356000' waveglow = torch.load(waveglow_path)['model'] waveglow.cuda().eval().half() for k in waveglow.convinv: k.float() text = 'Littlelights is awesome!' sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :] sequence = torch.autograd.Variable(torch.from_numpy(sequence)).cuda().long() # text_list = [ # "Read loudly, and be a super hero!", # "Join me to learn some words.", # ] # sequence_list = [np.array(text_to_sequence(text, ['english_cleaners']))[None, :] for text in text_list] # sequence_list = torch.autograd.Variable(torch.from_numpy(sequence_list)).cuda().long() mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence) with torch.no_grad(): audio = waveglow.infer(mel_outputs_postnet, sigma=0.666) data = audio[0].data.cpu().numpy().astype(np.float32) scipy.io.wavfile.write('audio_output/{}.wav'.format(text), hparams.sampling_rate, data)
[ "torch.no_grad", "torch.load", "torch.from_numpy" ]
1.0.0
gaoxiao/tacotron2
0a58682c8025f892b29898088ae275b9086887b6
1.9
import os from copy import deepcopy import pytest import torch from torch.optim import SGD, Adadelta, Adagrad, Adam, RMSprop from pythae.customexception import BadInheritanceError from pythae.models.base.base_utils import ModelOutput from pythae.models import VQVAE, VQVAEConfig from pythae.trainers import BaseTrainer, BaseTrainerConfig from pythae.pipelines import TrainingPipeline from tests.data.custom_architectures import ( Decoder_AE_Conv, Encoder_AE_Conv, NetBadInheritance, ) PATH = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(params=[VQVAEConfig(), VQVAEConfig(latent_dim=4)]) def model_configs_no_input_dim(request): return request.param @pytest.fixture( params=[ VQVAEConfig( input_dim=(1, 28, 28), latent_dim=4, num_embeddings=10 ), # ! Needs squared latent_dim ! VQVAEConfig( input_dim=(1, 28, 28), beta=0.02, latent_dim=4, ), ] ) def model_configs(request): return request.param @pytest.fixture def custom_encoder(model_configs): return Encoder_AE_Conv(model_configs) @pytest.fixture def custom_decoder(model_configs): return Decoder_AE_Conv(model_configs) class Test_Model_Building: @pytest.fixture() def bad_net(self): return NetBadInheritance() def test_build_model(self, model_configs): model = VQVAE(model_configs) assert all( [ model.input_dim == model_configs.input_dim, model.latent_dim == model_configs.latent_dim, ] ) def test_raises_bad_inheritance(self, model_configs, bad_net): with pytest.raises(BadInheritanceError): model = VQVAE(model_configs, encoder=bad_net) with pytest.raises(BadInheritanceError): model = VQVAE(model_configs, decoder=bad_net) def test_raises_no_input_dim( self, model_configs_no_input_dim, custom_encoder, custom_decoder ): with pytest.raises(AttributeError): model = VQVAE(model_configs_no_input_dim) with pytest.raises(AttributeError): model = VQVAE(model_configs_no_input_dim, encoder=custom_encoder) with pytest.raises(AttributeError): model = VQVAE(model_configs_no_input_dim, decoder=custom_decoder) def test_build_custom_arch(self, model_configs, custom_encoder, custom_decoder): model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder) assert model.encoder == custom_encoder assert not model.model_config.uses_default_encoder assert model.decoder == custom_decoder assert not model.model_config.uses_default_decoder model = VQVAE(model_configs, encoder=custom_encoder) assert model.encoder == custom_encoder assert not model.model_config.uses_default_encoder assert model.model_config.uses_default_decoder model = VQVAE(model_configs, decoder=custom_decoder) assert model.model_config.uses_default_encoder assert model.decoder == custom_decoder assert not model.model_config.uses_default_decoder class Test_Model_Saving: def test_default_model_saving(self, tmpdir, model_configs): tmpdir.mkdir("dummy_folder") dir_path = dir_path = os.path.join(tmpdir, "dummy_folder") model = VQVAE(model_configs) model.state_dict()["encoder.layers.0.0.weight"][0] = 0 model.save(dir_path=dir_path) assert set(os.listdir(dir_path)) == set(["model_config.json", "model.pt"]) # reload model model_rec = VQVAE.load_from_folder(dir_path) # check configs are the same assert model_rec.model_config.__dict__ == model.model_config.__dict__ assert all( [ torch.equal(model_rec.state_dict()[key], model.state_dict()[key]) for key in model.state_dict().keys() ] ) def test_custom_encoder_model_saving(self, tmpdir, model_configs, custom_encoder): tmpdir.mkdir("dummy_folder") dir_path = dir_path = os.path.join(tmpdir, "dummy_folder") model = VQVAE(model_configs, encoder=custom_encoder) model.state_dict()["encoder.layers.0.0.weight"][0] = 0 model.save(dir_path=dir_path) assert set(os.listdir(dir_path)) == set( ["model_config.json", "model.pt", "encoder.pkl"] ) # reload model model_rec = VQVAE.load_from_folder(dir_path) # check configs are the same assert model_rec.model_config.__dict__ == model.model_config.__dict__ assert all( [ torch.equal(model_rec.state_dict()[key], model.state_dict()[key]) for key in model.state_dict().keys() ] ) def test_custom_decoder_model_saving(self, tmpdir, model_configs, custom_decoder): tmpdir.mkdir("dummy_folder") dir_path = dir_path = os.path.join(tmpdir, "dummy_folder") model = VQVAE(model_configs, decoder=custom_decoder) model.state_dict()["encoder.layers.0.0.weight"][0] = 0 model.save(dir_path=dir_path) assert set(os.listdir(dir_path)) == set( ["model_config.json", "model.pt", "decoder.pkl"] ) # reload model model_rec = VQVAE.load_from_folder(dir_path) # check configs are the same assert model_rec.model_config.__dict__ == model.model_config.__dict__ assert all( [ torch.equal(model_rec.state_dict()[key], model.state_dict()[key]) for key in model.state_dict().keys() ] ) def test_full_custom_model_saving( self, tmpdir, model_configs, custom_encoder, custom_decoder ): tmpdir.mkdir("dummy_folder") dir_path = dir_path = os.path.join(tmpdir, "dummy_folder") model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder) model.state_dict()["encoder.layers.0.0.weight"][0] = 0 model.save(dir_path=dir_path) assert set(os.listdir(dir_path)) == set( ["model_config.json", "model.pt", "encoder.pkl", "decoder.pkl"] ) # reload model model_rec = VQVAE.load_from_folder(dir_path) # check configs are the same assert model_rec.model_config.__dict__ == model.model_config.__dict__ assert all( [ torch.equal(model_rec.state_dict()[key], model.state_dict()[key]) for key in model.state_dict().keys() ] ) def test_raises_missing_files( self, tmpdir, model_configs, custom_encoder, custom_decoder ): tmpdir.mkdir("dummy_folder") dir_path = dir_path = os.path.join(tmpdir, "dummy_folder") model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder) model.state_dict()["encoder.layers.0.0.weight"][0] = 0 model.save(dir_path=dir_path) os.remove(os.path.join(dir_path, "decoder.pkl")) # check raises decoder.pkl is missing with pytest.raises(FileNotFoundError): model_rec = VQVAE.load_from_folder(dir_path) os.remove(os.path.join(dir_path, "encoder.pkl")) # check raises encoder.pkl is missing with pytest.raises(FileNotFoundError): model_rec = VQVAE.load_from_folder(dir_path) os.remove(os.path.join(dir_path, "model.pt")) # check raises encoder.pkl is missing with pytest.raises(FileNotFoundError): model_rec = VQVAE.load_from_folder(dir_path) os.remove(os.path.join(dir_path, "model_config.json")) # check raises encoder.pkl is missing with pytest.raises(FileNotFoundError): model_rec = VQVAE.load_from_folder(dir_path) class Test_Model_forward: @pytest.fixture def demo_data(self): data = torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample"))[ : ] return data # This is an extract of 3 data from MNIST (unnormalized) used to test custom architecture @pytest.fixture def vae(self, model_configs, demo_data): model_configs.input_dim = tuple(demo_data["data"][0].shape) return VQVAE(model_configs) def test_model_train_output(self, vae, demo_data): vae.train() out = vae(demo_data) assert isinstance(out, ModelOutput) assert set(["loss", "recon_loss", "vq_loss", "recon_x", "z"]) == set(out.keys()) assert out.z.shape[0] == demo_data["data"].shape[0] assert out.recon_x.shape == demo_data["data"].shape @pytest.mark.slow class Test_VQVAETraining: @pytest.fixture def train_dataset(self): return torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample")) @pytest.fixture( params=[BaseTrainerConfig(num_epochs=3, steps_saving=2, learning_rate=1e-5)] ) def training_configs(self, tmpdir, request): tmpdir.mkdir("dummy_folder") dir_path = os.path.join(tmpdir, "dummy_folder") request.param.output_dir = dir_path return request.param @pytest.fixture( params=[ torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), ] ) def vae(self, model_configs, custom_encoder, custom_decoder, request): # randomized alpha = request.param if alpha < 0.25: model = VQVAE(model_configs) elif 0.25 <= alpha < 0.5: model = VQVAE(model_configs, encoder=custom_encoder) elif 0.5 <= alpha < 0.75: model = VQVAE(model_configs, decoder=custom_decoder) else: model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder) return model @pytest.fixture(params=[None, Adagrad, Adam, Adadelta, SGD, RMSprop]) def optimizers(self, request, vae, training_configs): if request.param is not None: optimizer = request.param( vae.parameters(), lr=training_configs.learning_rate ) else: optimizer = None return optimizer def test_vae_train_step(self, vae, train_dataset, training_configs, optimizers): trainer = BaseTrainer( model=vae, train_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) start_model_state_dict = deepcopy(trainer.model.state_dict()) step_1_loss = trainer.train_step(epoch=1) step_1_model_state_dict = deepcopy(trainer.model.state_dict()) # check that weights were updated assert not all( [ torch.equal(start_model_state_dict[key], step_1_model_state_dict[key]) for key in start_model_state_dict.keys() ] ) def test_vae_eval_step(self, vae, train_dataset, training_configs, optimizers): trainer = BaseTrainer( model=vae, train_dataset=train_dataset, eval_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) start_model_state_dict = deepcopy(trainer.model.state_dict()) step_1_loss = trainer.eval_step(epoch=1) step_1_model_state_dict = deepcopy(trainer.model.state_dict()) # check that weights were updated assert all( [ torch.equal(start_model_state_dict[key], step_1_model_state_dict[key]) for key in start_model_state_dict.keys() ] ) def test_vae_main_train_loop( self, tmpdir, vae, train_dataset, training_configs, optimizers ): trainer = BaseTrainer( model=vae, train_dataset=train_dataset, eval_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) start_model_state_dict = deepcopy(trainer.model.state_dict()) trainer.train() step_1_model_state_dict = deepcopy(trainer.model.state_dict()) # check that weights were updated assert not all( [ torch.equal(start_model_state_dict[key], step_1_model_state_dict[key]) for key in start_model_state_dict.keys() ] ) def test_checkpoint_saving( self, tmpdir, vae, train_dataset, training_configs, optimizers ): dir_path = training_configs.output_dir trainer = BaseTrainer( model=vae, train_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) # Make a training step step_1_loss = trainer.train_step(epoch=1) model = deepcopy(trainer.model) optimizer = deepcopy(trainer.optimizer) trainer.save_checkpoint(dir_path=dir_path, epoch=0, model=model) checkpoint_dir = os.path.join(dir_path, "checkpoint_epoch_0") assert os.path.isdir(checkpoint_dir) files_list = os.listdir(checkpoint_dir) assert set(["model.pt", "optimizer.pt", "training_config.json"]).issubset( set(files_list) ) # check pickled custom decoder if not vae.model_config.uses_default_decoder: assert "decoder.pkl" in files_list else: assert not "decoder.pkl" in files_list # check pickled custom encoder if not vae.model_config.uses_default_encoder: assert "encoder.pkl" in files_list else: assert not "encoder.pkl" in files_list model_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))[ "model_state_dict" ] assert all( [ torch.equal( model_rec_state_dict[key].cpu(), model.state_dict()[key].cpu() ) for key in model.state_dict().keys() ] ) # check reload full model model_rec = VQVAE.load_from_folder(os.path.join(checkpoint_dir)) assert all( [ torch.equal( model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu() ) for key in model.state_dict().keys() ] ) assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu()) assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu()) optim_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "optimizer.pt")) assert all( [ dict_rec == dict_optimizer for (dict_rec, dict_optimizer) in zip( optim_rec_state_dict["param_groups"], optimizer.state_dict()["param_groups"], ) ] ) assert all( [ dict_rec == dict_optimizer for (dict_rec, dict_optimizer) in zip( optim_rec_state_dict["state"], optimizer.state_dict()["state"] ) ] ) def test_checkpoint_saving_during_training( self, tmpdir, vae, train_dataset, training_configs, optimizers ): # target_saving_epoch = training_configs.steps_saving dir_path = training_configs.output_dir trainer = BaseTrainer( model=vae, train_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) model = deepcopy(trainer.model) trainer.train() training_dir = os.path.join( dir_path, f"VQVAE_training_{trainer._training_signature}" ) assert os.path.isdir(training_dir) checkpoint_dir = os.path.join( training_dir, f"checkpoint_epoch_{target_saving_epoch}" ) assert os.path.isdir(checkpoint_dir) files_list = os.listdir(checkpoint_dir) # check files assert set(["model.pt", "optimizer.pt", "training_config.json"]).issubset( set(files_list) ) # check pickled custom decoder if not vae.model_config.uses_default_decoder: assert "decoder.pkl" in files_list else: assert not "decoder.pkl" in files_list # check pickled custom encoder if not vae.model_config.uses_default_encoder: assert "encoder.pkl" in files_list else: assert not "encoder.pkl" in files_list model_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))[ "model_state_dict" ] assert not all( [ torch.equal(model_rec_state_dict[key], model.state_dict()[key]) for key in model.state_dict().keys() ] ) def test_final_model_saving( self, tmpdir, vae, train_dataset, training_configs, optimizers ): dir_path = training_configs.output_dir trainer = BaseTrainer( model=vae, train_dataset=train_dataset, training_config=training_configs, optimizer=optimizers, ) trainer.train() model = deepcopy(trainer._best_model) training_dir = os.path.join( dir_path, f"VQVAE_training_{trainer._training_signature}" ) assert os.path.isdir(training_dir) final_dir = os.path.join(training_dir, f"final_model") assert os.path.isdir(final_dir) files_list = os.listdir(final_dir) assert set(["model.pt", "model_config.json", "training_config.json"]).issubset( set(files_list) ) # check pickled custom decoder if not vae.model_config.uses_default_decoder: assert "decoder.pkl" in files_list else: assert not "decoder.pkl" in files_list # check pickled custom encoder if not vae.model_config.uses_default_encoder: assert "encoder.pkl" in files_list else: assert not "encoder.pkl" in files_list # check reload full model model_rec = VQVAE.load_from_folder(os.path.join(final_dir)) assert all( [ torch.equal( model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu() ) for key in model.state_dict().keys() ] ) assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu()) assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu()) def test_vae_training_pipeline(self, tmpdir, vae, train_dataset, training_configs): dir_path = training_configs.output_dir # build pipeline pipeline = TrainingPipeline(model=vae, training_config=training_configs) # Launch Pipeline pipeline( train_data=train_dataset.data, # gives tensor to pipeline eval_data=train_dataset.data, # gives tensor to pipeline ) model = deepcopy(pipeline.trainer._best_model) training_dir = os.path.join( dir_path, f"VQVAE_training_{pipeline.trainer._training_signature}" ) assert os.path.isdir(training_dir) final_dir = os.path.join(training_dir, f"final_model") assert os.path.isdir(final_dir) files_list = os.listdir(final_dir) assert set(["model.pt", "model_config.json", "training_config.json"]).issubset( set(files_list) ) # check pickled custom decoder if not vae.model_config.uses_default_decoder: assert "decoder.pkl" in files_list else: assert not "decoder.pkl" in files_list # check pickled custom encoder if not vae.model_config.uses_default_encoder: assert "encoder.pkl" in files_list else: assert not "encoder.pkl" in files_list # check reload full model model_rec = VQVAE.load_from_folder(os.path.join(final_dir)) assert all( [ torch.equal( model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu() ) for key in model.state_dict().keys() ] ) assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu()) assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu())
[ "torch.rand", "torch.equal" ]
1.9.0
clementchadebec/benchmark_VAE
943e231f9e5dfa40b4eec14d4536f1c229ad9be1
1.7
import torch import torch.nn as nn from torch.utils.model_zoo import load_url as load_state_dict_from_url from typing import Any __all__ = ['AlexNet', 'alexnet'] model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', } class AlexNet(nn.Module): ''' AlexNet modified (features) for CIFAR10. Source: https://github.com/icpm/pytorch-cifar10/blob/master/models/AlexNet.py. ''' def __init__(self, num_classes: int = 1000, use_dropout=False) -> None: super(AlexNet, self).__init__() self.use_dropout = use_dropout self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), ) # self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.fc_block = nn.Sequential( nn.Linear(256 * 2 * 2, 4096, bias=False), nn.BatchNorm1d(4096), nn.ReLU(inplace=True), nn.Linear(4096, 4096, bias=False), nn.BatchNorm1d(4096), nn.ReLU(inplace=True), ) self.classifier = nn.Sequential( nn.Linear(4096, num_classes), ) self.penultimate_active = False self.drop = nn.Dropout(p=0.5) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) # x = self.avgpool(x) z = torch.flatten(x, 1) if self.use_dropout: x = self.drop(x) z = self.fc_block(z) x = self.classifier(z) if self.penultimate_active: return z, x return x def alexnet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> AlexNet: r"""AlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ model = AlexNet(**kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['alexnet'], progress=progress) model.load_state_dict(state_dict) return model
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.MaxPool2d", "torch.utils.model_zoo.load_url", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.BatchNorm1d", "torch.flatten" ]
1.7.1
acl21/deep-active-learning-pytorch
637fd507235632903bcf84ed841ff524d847b94e
1.6
import numpy as np import scipy.stats import torch as t from torch.distributions import Normal, Poisson import math from .utils import betaln, binomln, kappa_marginal_moments # flat gaussian mixture class GaussianMixture: def __init__(self, mus, sigs): """ Args: - mus: (t.tensor) vector of component means [shape (n_particles,)] - sigs: (t.tensor) vector of component variances [shape (n_particles,)] """ self._kernel = Normal(loc=mus, scale=sigs) self._n_particles = len(mus) def log_prob(self, lam, keepdims=False): """ Log probability of scalar poisson rate under the Gaussian Mixture. Args: - lam: (scalar/size 0 tensor) Poisson rate """ if type(lam) == float: lam = t.tensor([lam]) elif len(lam.size()) == 0: lam = lam.view(1) log_p = t.logsumexp( self._kernel.log_prob(lam[:, None]), dim=1, keepdims=keepdims ) normalize = math.log(self._n_particles) return log_p - normalize def sample(self, n_samples): return self._kernel.sample(n_samples) class PoissonMixture: def __init__(self, rates): """ Args: - rates: (t.tensor) vector of component means [shape (n_particles,)] """ self._kernel = Poisson(rates) self._n_particles = len(rates) self.support = (0, np.inf) def log_prob(self, x, keepdims=False): """ Log probability of scalar count under the Poisson Mixture. Args: - x: (scalar/size 0 tensor) count """ if type(x) == float: x = t.tensor([x]) elif len(x.size()) == 0: x = x.view(1) log_p = t.logsumexp(self._kernel.log_prob(x), dim=1, keepdims=keepdims) normalize = math.log(self._n_particles) return log_p - normalize def sample(self, n_samples): return self._kernel.sample(n_samples) class LaggedBetaBinomial: def __init__(self, ys, alphas, betas, prior): """ beta-binomial emission distribution Args: - ys: (t.tensor) [shape (n_lag_steps,)] - alphas (t.tensor) first beta shape parameters for thinning prior [shape (n_lag_steps,)] - alphas (t.tensor) second beta shape parameters for thinning prior [shape (n_lag_steps,)] - prior_x (distribution) prior distribution on the true count. Must implement log_prob """ # support of the true count for latent marginalization try: lower = prior.support[0] except: lower = prior.support.lower_bound self._support_lower = max(lower, int(ys.max())) self._ys = ys self._alphas = alphas self._betas = betas self._prior = prior self._left = self._ys + self._alphas # (n_lag_steps,) self._right = betas - ys # (n_lag_steps,) self._log_denom = betaln(alphas, betas) # (n_lag_steps,) def log_prob(self, x, support_check=True): if support_check: if x < self._support_lower: return t.tensor([-np.inf]) if type(x) == float: x = t.tensor([x]) elif len(x.size()) == 0: x = x.view(1) right = x[None, :] + self._right[:, None] # (n_lag_steps, x_dim) log_num = betaln(self._left[:, None], right) # (n_lag_steps, x_dim) log_binom = binomln(x[None, :], self._ys[:, None]) # (n_lag_steps, x_dim) log_prior = self._prior.log_prob(x[:, None]) # [:, None]) # (x_dim, prior_dim) log_beta_binom = ( log_binom[:, :, None] + log_num[:, :, None] - self._log_denom[:, None, None] + log_prior[None, :] ) # (n_lag_steps, x_dim, prior_dim) return log_beta_binom.sum(dim=0) # (x_dim, prior_dim) def log_marginal(self, support_max=100): try: upper = prior.support[1] except: upper = support_max alpha_f, beta_f = self._alphas[-1], self._betas[-1] mu = alpha_f / (alpha_f + beta_f) # 0.5, var = 0.5 sig = np.sqrt( alpha_f * beta_f / ((alpha_f + beta_f) ** 2 * (alpha_f + beta_f + 1)) ) xs = t.arange(self._support_lower, support_max).float() return self.log_prob(xs, support_check=False).logsumexp(dim=0) # (prior_dim,) class PoissonBetaBinomial: def __init__(self, ys, alphas, betas, prior_x, prior_lam): """ Args: - ys: (t.tensor) vector of reported counts [shape (n_lag_steps,)] - alphas: (t.tensor) vector of beta prior shape parameters [shape (n_lag_steps,)] - betas: (t.tensor) vector of beta prior shape parameters [shape (n_lag_steps,)] - prior_x: (distribution) prior distribution on true count [must implement log_prob] - prior_lam: (distribution) prior distribution on poisson rate [must implement log_prob] """ # support of the true count for latent marginalization support_lower = max(prior_x.support[0], int(ys.max())) self._xs = t.arange(support_lower, prior_x.support[1]).float() # set prior self._prior_lam = prior_lam self._log_beta_binom = self._beta_binom(ys, alphas, betas, prior_x) self._poisson_log_norm = t.lgamma(self._xs + 1) # utils for sampler self.is_continuous = True self.support = (0, np.inf) def log_prob(self, lam, support_check=True): """ log-probability of scalar poisson rate under the Poisson beta-binomial emission model. Args: - lam: (float or 0-dim tensor) poisson rate """ support_lower, support_upper = self.support if support_check: if not self._support_check(lam): return -np.inf if type(lam) == float: lam = t.tensor([lam]) elif len(lam.size()) == 0: lam = lam.view(1) log_poisson = ( self._xs[:, None] * np.log(lam)[None, :] - lam[None, :] - self._poisson_log_norm[:, None] ) # (x_dim, lam_dim) log_series = (log_poisson[None, :] + self._log_beta_binom[:, :, None]).sum( axis=0 ) # (x_dim, lam_dim) if self._prior_lam is None: log_prior_lam = 0. else: log_prior_lam = self._prior_lam.log_prob(lam) # (lam_dim) log_prob_lam = t.logsumexp(log_series, dim=0) + log_prior_lam # (lam_dim) return log_prob_lam def _beta_binom(self, ys, alphas, betas, prior_x): """ beta-binomial emission distribution Args: - ys: (t.tensor) [shape (n_lag_steps,)] - alphas (t.tensor) first beta shape parameters for thinning prior [shape (n_lag_steps,)] - alphas (t.tensor) second beta shape parameters for thinning prior [shape (n_lag_steps,)] - prior_x (distribution) prior distribution on the true count. Must implement log_prob """ xs = self._xs left = (ys + alphas)[:, None] # (n_lag_steps, 1) right = xs - ys[:, None] + betas[:, None] # (n_lag_steps, x_dim) log_num = betaln(left, right) # (n_lag_steps, x_dim) log_binom = binomln(xs[None, :], ys[:, None]) # (n_lag_steps, x_dim) log_denom = betaln(alphas, betas)[:, None] # (n_lag_steps, 1) log_prior_x = prior_x.log_prob(xs) # (x_dim) log_beta_binom = ( log_binom + log_num - log_denom + log_prior_x ) # (n_lag_steps, x_dim) return log_beta_binom def _support_check(self, lam): return self.support[0] <= lam <= self.support[1] class CountSmoothingDistribution: def __init__(self, ys, a, b, lambda_smoothing_particles): prior = Poisson(lambda_smoothing_particles) self._emission = LaggedBetaBinomial(ys, a, b, prior) _n_particles = len(lambda_smoothing_particles) self._log_normalizer = math.log(_n_particles) def log_prob(self, x): weights = self._emission.log_prob( x, support_check=False ) - self._emission.log_marginal(support_max=x.max()) lp = t.logsumexp(weights, dim=1) - self._log_normalizer return lp class AdditiveDriftDistribution: def __init__(self, kappa_sigma, prior_particles, emission_dist): self._prior_lambdas = prior_particles[:, 0].squeeze().numpy() self._prior_kappas = prior_particles[:, 1].squeeze().numpy() self._kappa_sigma = kappa_sigma self.y_likelihood = emission_dist def sample(self, length_scale, burn_in=100, thin=100, n_samples=500): n_steps = n_samples * thin + burn_in kappa_proposal_dist = Normal(0, scale=length_scale) deltas = kappa_proposal_dist.sample([n_steps]).squeeze() # init kap = np.mean(self._prior_kappas) lam_idx = np.random.choice(np.arange(len(self._prior_lambdas))) lam = (t.tensor([self._prior_lambdas[lam_idx]]) + kap).abs() ll = self.y_likelihood.log_prob(lam) + Normal( self._prior_kappas[lam_idx], self._kappa_sigma ).log_prob(kap) samples = [] for i, delta in enumerate(deltas): # sampler_pbar.update() kap_p = kap + delta lam_idx = np.random.choice(np.arange(len(self._prior_lambdas))) lam_p = kap_p + self._prior_lambdas[lam_idx] weight = sum(self._prior_lambdas == self._prior_lambdas[lam_idx]).item() # component likelihood lam_p_ll = self.y_likelihood.log_prob(lam_p) kap_p_ll = Normal(self._prior_kappas[lam_idx], self._kappa_sigma).log_prob( kap_p ) p_ll = lam_p_ll + kap_p_ll + np.log(weight) log_prob_accept = p_ll - ll if log_prob_accept > 0: accept = True else: p = t.exp(log_prob_accept).item() accept = np.random.choice([True, False], p=[p, 1 - p]) if accept: kap = kap_p lam = lam_p ll = p_ll samples.append(t.tensor([lam, kap])) return t.stack(samples[burn_in:][::thin]) class DriftSmoothingDistribution: def __init__( self, lambda_filtering_particles, lambda_smoothing_particles, prior_kappa_loc, prior_kappa_scale, random_walk_scale, ): # required for kappa log probability self._filtering = lambda_filtering_particles self._smoothing = lambda_smoothing_particles self._rw_scale = random_walk_scale self._prior_kappa = Normal(loc=prior_kappa_loc, scale=prior_kappa_scale) # Marginal normalizer is a gaussian mixture mixture_locs, mixture_scales = kappa_marginal_moments( prior_kappa_loc, prior_kappa_scale, random_walk_scale, lambda_filtering_particles, ) normalizer = GaussianMixture(mixture_locs, mixture_scales) self._row_norm = normalizer.log_prob(lambda_smoothing_particles, keepdims=True) def log_prob(self, kappa): # prior probability of kappa log_prior = self._prior_kappa.log_prob(kappa) # likelihood function for kappa marginalized over the filtering and smoothing distributions transition_log_proba = self.particle_transition_matrix(kappa) marginal_log_likelihood = t.logsumexp( transition_log_proba - self._row_norm, dim=(0, 1) ) # smoothing probability for kappa particle_norm = math.log(self._smoothing.shape[0]) + math.log( self._filtering.shape[0] ) lp = log_prior + marginal_log_likelihood - particle_norm return lp def particle_transition_matrix(self, kappa): tm_loc = kappa * self._filtering tm_scale = self._rw_scale transition_dist = Normal(loc=tm_loc, scale=tm_scale) transition_log_prob_matrix = transition_dist.log_prob(self._smoothing[:, None]) return transition_log_prob_matrix # This lets me sample lam class CorrectedPoissonBetaBinomial: def __init__( self, ys, alphas, betas, prior_x, prior_lam, prior_correction, multidim=False ): self._pbb = PoissonBetaBinomial(ys, alphas, betas, prior_x, prior_lam=None) self._prior_lam = prior_lam self._prior_correction = prior_correction self._multidim = multidim def log_prob(self, lam, support_check=True): if not self._multidim: if support_check: if lam < 0: return -np.inf # LAM MUST BE SCALAR HERE effective_lam = lam * self._prior_correction.values if self._prior_lam is None: prior_lam_term = 0. else: prior_lam_term = self._prior_lam.log_prob(lam) # (lam_dim) lp = t.logsumexp( self._pbb.log_prob(effective_lam, support_check=False) + self._prior_correction.log_probas, axis=0, ) lp = lp + prior_lam_term else: effective_lam = ( lam[:, None] * self._prior_correction.values[None, :] ) # (lam_dim, z_dim) if self._prior_lam is None: prior_lam_term = 0. else: prior_lam_term = self._prior_lam.log_prob(lam) # (lam_dim) pbb_proba = self._pbb.log_prob(effective_lam.view(-1), support_check=False) lp = t.logsumexp( pbb_proba.view(effective_lam.shape) + self._prior_correction.log_probas, axis=1, ) lp = lp + prior_lam_term return lp class DiscreteDistribution: def __init__(self, values, log_probas): self.values = values self.log_probas = log_probas class EmpiricalDistribution: def __init__(self, support, probas): """ Args: - support: (tuple) edges of support. Support assumed to exist on all integers between. [shape (2,)] - probas: (t.tensor) probabilities for each element of support. [shape (support[1] - support[0],)] """ self.support = support self.probas = probas self._xs = t.arange(support[0], support[1]).float() def log_prob(self, x): return self.probas[x.int() - self.support[0]] def sample(self, size): idxs = np.arange(0, len(self._xs)) sample_idxs = np.random.choice(idxs, p=self.probas, size=size) samples = self._xs[sample_idxs] return samples
[ "torch.stack", "torch.arange", "torch.distributions.Normal", "torch.logsumexp", "torch.tensor", "torch.distributions.Poisson", "torch.lgamma", "torch.exp" ]
1.6
anguswilliams91/jbc-turing-rss-nowcasting
8c91e568dcf0dfcdf48e03cac86ad01bc47f8dcc
1.1
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from utils.box_utils import match, log_sum_exp class MultiBoxLoss(nn.Module): """SSD Weighted Loss Function Compute Targets: 1) Produce Confidence Target Indices by matching ground truth boxes with (default) 'priorboxes' that have jaccard index > threshold parameter (default threshold: 0.5). 2) Produce localization target by 'encoding' variance into offsets of ground truth boxes and their matched 'priorboxes'. 3) Hard negative mining to filter the excessive number of negative examples that comes with using a large number of default bounding boxes. (default negative:positive ratio 3:1) Objective Loss: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss weighted by α which is set to 1 by cross val. Args: c: class confidences, l: predicted boxes, g: ground truth boxes N: number of matched default boxes See: https://arxiv.org/pdf/1512.02325.pdf for more details. """ def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target): super(MultiBoxLoss, self).__init__() self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = [0.1, 0.2] def forward(self, predictions, priors, targets): """Multibox Loss Args: predictions (tuple): A tuple containing loc preds, conf preds, and prior boxes from SSD net. conf shape: torch.size(batch_size,num_priors,num_classes) loc shape: torch.size(batch_size,num_priors,4) priors shape: torch.size(num_priors,4) ground_truth (tensor): Ground truth boxes and labels for a batch, shape: [batch_size,num_objs,5] (last idx is the label). """ loc_data, conf_data = predictions priors = priors num = loc_data.size(0) num_priors = (priors.size(0)) num_classes = self.num_classes # match priors (default boxes) and ground truth boxes loc_t = torch.zeros((num, num_priors, 4), dtype=torch.float32) conf_t = torch.zeros((num, num_priors), dtype=torch.int64) for idx in range(num): truths = targets[idx][:, :-1].data labels = targets[idx][:, -1].data defaults = priors.data match(self.threshold, truths, defaults, self.variance, labels, loc_t, conf_t, idx) if torch.cuda.is_available(): loc_t = loc_t.cuda() conf_t = conf_t.cuda() pos = conf_t > 0 # Localization Loss (Smooth L1) # Shape: [batch,num_priors,4] pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data) loc_p = loc_data[pos_idx].view(-1, 4) loc_t = loc_t[pos_idx].view(-1, 4) loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum') # Compute max conf across batch for hard negative mining batch_conf = conf_data.view(-1, self.num_classes) loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1)) # Hard Negative Mining loss_c[pos.view(-1, 1)] = 0 # filter out pos boxes for now loss_c = loss_c.view(num, -1) _, loss_idx = loss_c.sort(1, descending=True) _, idx_rank = loss_idx.sort(1) num_pos = pos.long().sum(1, keepdim=True) num_neg = torch.clamp(self.negpos_ratio * num_pos, max=pos.size(1) - 1) neg = idx_rank < num_neg.expand_as(idx_rank) # Confidence Loss Including Positive and Negative Examples pos_idx = pos.unsqueeze(2).expand_as(conf_data) neg_idx = neg.unsqueeze(2).expand_as(conf_data) conf_p = conf_data[(pos_idx + neg_idx).gt(0)].view(-1, self.num_classes) targets_weighted = conf_t[(pos + neg).gt(0)] loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum') # Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N N = max(num_pos.data.sum().float(), 1) loss_l /= N loss_c /= N return loss_l, loss_c
[ "torch.zeros", "torch.nn.functional.cross_entropy", "torch.cuda.is_available", "torch.nn.functional.smooth_l1_loss" ]
1.1.0
ka-ryo/M2Det
d947f135e7aad996da43f5fe3a350eeead237fd0
1.2
# coding: utf-8 """ Training module """ from itertools import count import argparse import time import shutil from typing import List, Dict import os from os.path import join import queue from functools import partial import random import numpy as np import torch import torch.nn as nn from torch import Tensor from torch.utils.tensorboard import SummaryWriter from torchtext.data import Dataset from entmax import Entmax15Loss, SparsemaxLoss, EntmaxBisectLoss from joeynmt.model import build_model from joeynmt.batch import Batch from joeynmt.helpers import log_data_info, load_config, log_cfg, \ store_attention_plots, load_checkpoint, make_model_dir, \ make_logger, set_seed, symlink_update, ConfigurationError, postprocess from joeynmt.model import Model from joeynmt.prediction import validate_on_data from joeynmt.loss import LabelSmoothingLoss, FYLabelSmoothingLoss from joeynmt.data import load_data, make_data_iter from joeynmt.builders import build_optimizer, build_scheduler, \ build_gradient_clipper from joeynmt.prediction import test def _parse_hidden_size(model_config): if "encoder" in model_config: return model_config["encoder"]["hidden_size"] encs_config = model_config["encoders"] if "encoder" in encs_config: return encs_config["encoder"]["hidden_size"] return next(cf["hidden_size"] for cf in encs_config.values() if "hidden_size" in cf) # pylint: disable=too-many-instance-attributes class TrainManager: """ Manages training loop, validations, learning rate scheduling and early stopping.""" def __init__(self, model: Model, config: dict) -> None: """ Creates a new TrainManager for a model, specified as in configuration. :param model: torch module defining the model :param config: dictionary containing the training configurations """ train_config = config["training"] # files for logging and storing self.model_dir = train_config["model_dir"] make_model_dir( self.model_dir, overwrite=train_config.get("overwrite", False) ) self.logger = make_logger(model_dir=self.model_dir) self.logging_freq = train_config.get("logging_freq", 100) self.valid_report_file = join(self.model_dir, "validations.txt") self.tb_writer = SummaryWriter( log_dir=join(self.model_dir, "tensorboard/") ) # model self.model = model self.pad_index = self.model.pad_index self._log_parameters_list() # objective objective = train_config.get("loss", "cross_entropy") loss_alpha = train_config.get("loss_alpha", 1.5) assert loss_alpha >= 1 # maybe don't do the label smoothing thing here, instead have # nn.CrossEntropyLoss # then you look up the loss func, and you either use it directly or # wrap it in FYLabelSmoothingLoss if objective == "softmax": objective = "cross_entropy" loss_funcs = { "cross_entropy": nn.CrossEntropyLoss, "entmax15": partial(Entmax15Loss, k=512), "sparsemax": partial(SparsemaxLoss, k=512), "entmax": partial(EntmaxBisectLoss, alpha=loss_alpha, n_iter=30) } if objective not in loss_funcs: raise ConfigurationError("Unknown loss function") loss_module = loss_funcs[objective] loss_func = loss_module(ignore_index=self.pad_index, reduction='sum') label_smoothing = train_config.get("label_smoothing", 0.0) label_smoothing_type = train_config.get("label_smoothing_type", "fy") assert label_smoothing_type in ["fy", "szegedy"] smooth_dist = train_config.get("smoothing_distribution", "uniform") assert smooth_dist in ["uniform", "unigram"] if label_smoothing > 0: if label_smoothing_type == "fy": # label smoothing entmax loss if smooth_dist is not None: smooth_p = torch.FloatTensor(model.trg_vocab.frequencies) smooth_p /= smooth_p.sum() else: smooth_p = None loss_func = FYLabelSmoothingLoss( loss_func, smoothing=label_smoothing, smooth_p=smooth_p ) else: assert objective == "cross_entropy" loss_func = LabelSmoothingLoss( ignore_index=self.pad_index, reduction="sum", smoothing=label_smoothing ) self.loss = loss_func self.norm_type = train_config.get("normalization", "batch") if self.norm_type not in ["batch", "tokens"]: raise ConfigurationError("Invalid normalization. " "Valid options: 'batch', 'tokens'.") # optimization self.learning_rate_min = train_config.get("learning_rate_min", 1.0e-8) self.clip_grad_fun = build_gradient_clipper(config=train_config) self.optimizer = build_optimizer( config=train_config, parameters=model.parameters()) # validation & early stopping self.validate_by_label = train_config.get("validate_by_label", False) self.validation_freq = train_config.get("validation_freq", 1000) self.log_valid_sents = train_config.get("print_valid_sents", [0, 1, 2]) self.plot_attention = train_config.get("plot_attention", False) self.ckpt_queue = queue.Queue( maxsize=train_config.get("keep_last_ckpts", 5)) allowed = {'bleu', 'chrf', 'token_accuracy', 'sequence_accuracy', 'cer', "wer", "levenshtein_distance"} eval_metrics = train_config.get("eval_metric", "bleu") if isinstance(eval_metrics, str): eval_metrics = [eval_metrics] if any(metric not in allowed for metric in eval_metrics): ok_metrics = " ".join(allowed) raise ConfigurationError("Invalid setting for 'eval_metric', " "valid options: {}".format(ok_metrics)) self.eval_metrics = eval_metrics self.forced_sparsity = train_config.get("forced_sparsity", False) early_stop_metric = train_config.get("early_stopping_metric", "loss") allowed_early_stop = {"ppl", "loss"} | set(self.eval_metrics) if early_stop_metric not in allowed_early_stop: raise ConfigurationError( "Invalid setting for 'early_stopping_metric', " "valid options: 'loss', 'ppl', and eval_metrics.") self.early_stopping_metric = early_stop_metric min_metrics = {"ppl", "loss", "cer", "wer", "levenshtein_distance"} self.minimize_metric = early_stop_metric in min_metrics # learning rate scheduling hidden_size = _parse_hidden_size(config["model"]) self.scheduler, self.sched_incr = build_scheduler( config=train_config, scheduler_mode="min" if self.minimize_metric else "max", optimizer=self.optimizer, hidden_size=hidden_size) # data & batch handling # src/trg magic if "level" in config["data"]: self.src_level = self.trg_level = config["data"]["level"] else: assert "src_level" in config["data"] assert "trg_level" in config["data"] self.src_level = config["data"]["src_level"] self.trg_level = config["data"]["trg_level"] self.shuffle = train_config.get("shuffle", True) self.epochs = train_config["epochs"] self.batch_size = train_config["batch_size"] self.batch_type = train_config.get("batch_type", "sentence") self.eval_batch_size = train_config.get("eval_batch_size", self.batch_size) self.eval_batch_type = train_config.get("eval_batch_type", self.batch_type) self.batch_multiplier = train_config.get("batch_multiplier", 1) # generation self.max_output_length = train_config.get("max_output_length", None) # CPU / GPU self.use_cuda = train_config["use_cuda"] if self.use_cuda: self.model.cuda() self.loss.cuda() # initialize training statistics self.steps = 0 # stop training if this flag is True by reaching learning rate minimum self.stop = False self.total_tokens = 0 self.best_ckpt_iteration = 0 # initial values for best scores self.best_ckpt_score = np.inf if self.minimize_metric else -np.inf mrt_schedule = train_config.get("mrt_schedule", None) assert mrt_schedule is None or mrt_schedule in ["warmup", "mix", "mtl"] self.mrt_schedule = mrt_schedule self.mrt_p = train_config.get("mrt_p", 0.0) self.mrt_lambda = train_config.get("mrt_lambda", 1.0) assert 0 <= self.mrt_p <= 1 assert 0 <= self.mrt_lambda <= 1 self.mrt_start_steps = train_config.get("mrt_start_steps", 0) self.mrt_samples = train_config.get("mrt_samples", 1) self.mrt_alpha = train_config.get("mrt_alpha", 1.0) self.mrt_strategy = train_config.get("mrt_strategy", "sample") self.mrt_cost = train_config.get("mrt_cost", "levenshtein") self.mrt_max_len = train_config.get("mrt_max_len", 31) # hmm self.step_counter = count() assert self.mrt_alpha > 0 assert self.mrt_strategy in ["sample", "topk"] assert self.mrt_cost in ["levenshtein", "bleu"] # model parameters if "load_model" in train_config.keys(): model_load_path = train_config["load_model"] reset_training = train_config.get("reset_training", False) self.logger.info("Loading model from %s", model_load_path) self.init_from_checkpoint(model_load_path, reset=reset_training) def is_best(self, score): return self.minimize_metric == (score < self.best_ckpt_score) def _save_checkpoint(self) -> None: """ Save the model's current parameters and the training state to a checkpoint. The training state contains the total number of training steps, the total number of training tokens, the best checkpoint score and iteration so far, and optimizer and scheduler states. """ ckpt_name = str(self.steps) + ".ckpt" model_path = join(self.model_dir, ckpt_name) if self.scheduler is not None: scheduler_state = self.scheduler.state_dict() else: scheduler_state = None state = { "steps": self.steps, "total_tokens": self.total_tokens, "best_ckpt_score": self.best_ckpt_score, "best_ckpt_iteration": self.best_ckpt_iteration, "model_state": self.model.state_dict(), "optimizer_state": self.optimizer.state_dict(), "scheduler_state": scheduler_state } torch.save(state, model_path) if self.ckpt_queue.full(): to_delete = self.ckpt_queue.get() # delete oldest ckpt try: os.remove(to_delete) except FileNotFoundError: self.logger.warning("Wanted to delete old checkpoint %s but " "file does not exist.", to_delete) self.ckpt_queue.put(model_path) # create/modify symbolic link for best checkpoint symlink_update(ckpt_name, join(self.model_dir, "best.ckpt")) def init_from_checkpoint(self, path: str, reset: bool = False): """ Initialize the trainer from a given checkpoint file. This checkpoint file contains not only model parameters, but also scheduler and optimizer states, see `self._save_checkpoint`. :param path: path to checkpoint """ model_checkpoint = load_checkpoint(path=path, use_cuda=self.use_cuda) # restore model and optimizer parameters self.model.load_state_dict(model_checkpoint["model_state"]) if not reset: self.optimizer.load_state_dict(model_checkpoint["optimizer_state"]) scheduler_state = model_checkpoint["scheduler_state"] if scheduler_state is not None and self.scheduler is not None: self.scheduler.load_state_dict(scheduler_state) # restore counts self.steps = model_checkpoint["steps"] self.total_tokens = model_checkpoint["total_tokens"] self.best_ckpt_score = model_checkpoint["best_ckpt_score"] self.best_ckpt_iteration = model_checkpoint["best_ckpt_iteration"] # move parameters to cuda if self.use_cuda: self.model.cuda() def log_tensorboard(self, split, **kwargs): """ split: "train" or "valid" """ assert split in ["train", "valid"] prefix = "{0}/{0}_".format(split) for metric, value in kwargs.items(): name = prefix + metric self.tb_writer.add_scalar(name, value, self.steps) def train_and_validate(self, train_data: Dataset, valid_data: Dataset): """ Train the model and validate it on the validation set. :param train_data: training data :param valid_data: validation data """ train_iter = make_data_iter( train_data, batch_size=self.batch_size, batch_type=self.batch_type, train=True, shuffle=self.shuffle, use_cuda=self.use_cuda ) for epoch_no in range(1, self.epochs + 1): self.logger.info("EPOCH %d", epoch_no) if self.sched_incr == "epoch": self.scheduler.step(epoch=epoch_no - 1) # 0-based indexing self.model.train() start = time.time() total_valid_duration = 0 processed_tokens = self.total_tokens epoch_loss = 0 for i, batch in enumerate(iter(train_iter), 1): # reactivate training self.model.train() # create a Batch object from torchtext batch batch = Batch(batch, self.pad_index) # only update every batch_multiplier batches update = i % self.batch_multiplier == 0 batch_loss = self._train_batch(batch, update=update) self.log_tensorboard("train", batch_loss=batch_loss) epoch_loss += batch_loss.cpu().numpy() if not update: continue if self.sched_incr == "step": self.scheduler.step() # log learning progress if self.steps % self.logging_freq == 0: elapsed = time.time() - start - total_valid_duration elapsed_tokens = self.total_tokens - processed_tokens self.logger.info( "Epoch %3d Step: %8d Batch Loss: %12.6f " "Tokens per Sec: %8.0f, Lr: %.6f", epoch_no, self.steps, batch_loss, elapsed_tokens / elapsed, self.optimizer.param_groups[0]["lr"]) start = time.time() total_valid_duration = 0 processed_tokens = self.total_tokens # validate on the entire dev set if self.steps % self.validation_freq == 0: valid_start_time = time.time() # it would be nice to include loss and ppl in valid_scores valid_scores, valid_references, valid_hypotheses, \ valid_hypotheses_raw, valid_attention_scores, \ scores_by_label = validate_on_data( batch_size=self.eval_batch_size, data=valid_data, eval_metrics=self.eval_metrics, trg_level=self.trg_level, model=self.model, use_cuda=self.use_cuda, max_output_length=self.max_output_length, loss_function=self.loss, beam_size=0, # greedy validations batch_type=self.eval_batch_type, save_attention=self.plot_attention, validate_by_label=self.validate_by_label, forced_sparsity=self.forced_sparsity ) ckpt_score = valid_scores[self.early_stopping_metric] self.log_tensorboard("valid", **valid_scores) new_best = False if self.is_best(ckpt_score): self.best_ckpt_score = ckpt_score self.best_ckpt_iteration = self.steps self.logger.info( 'Hooray! New best validation result [%s]!', self.early_stopping_metric) if self.ckpt_queue.maxsize > 0: self.logger.info("Saving new checkpoint.") new_best = True self._save_checkpoint() if self.sched_incr == "validation": self.scheduler.step(ckpt_score) # append to validation report self._add_report(valid_scores, new_best=new_best) valid_sources_raw = {f: list(getattr(valid_data, f)) for f in valid_data.fields if f != "trg"} self._log_examples( sources_raw=valid_sources_raw, hypotheses_raw=valid_hypotheses_raw, hypotheses=valid_hypotheses, references=valid_references ) labeled_scores = sorted(valid_scores.items()) eval_report = ", ".join("{}: {:.5f}".format(n, v) for n, v in labeled_scores) valid_duration = time.time() - valid_start_time total_valid_duration += valid_duration self.logger.info( 'Validation result at epoch %3d, step %8d: %s, ' 'duration: %.4fs', epoch_no, self.steps, eval_report, valid_duration) if scores_by_label is not None: for metric, scores in scores_by_label.items(): # make a report label_report = [metric] numbers = sorted(scores.items()) label_report.extend( ["{}={}: {:.5f}".format(l, n, v) for (l, n), v in numbers] ) self.logger.info("\n\t".join(label_report)) # store validation set outputs self._store_outputs(valid_hypotheses) # store attention plots for selected valid sentences if valid_attention_scores and self.plot_attention: store_attention_plots( attentions=valid_attention_scores, sources=list(valid_data.src), targets=valid_hypotheses_raw, indices=self.log_valid_sents, model_dir=self.model_dir, tb_writer=self.tb_writer, steps=self.steps) if self.stop: break if self.stop: self.logger.info( 'Training ended because minimum lr %f was reached.', self.learning_rate_min) break self.logger.info( 'Epoch %3d: total training loss %.2f', epoch_no, epoch_loss) else: self.logger.info('Training ended after %3d epochs.', epoch_no) self.logger.info('Best validation result at step %8d: %6.2f %s.', self.best_ckpt_iteration, self.best_ckpt_score, self.early_stopping_metric) self.tb_writer.close() # close Tensorboard writer def _train_batch(self, batch: Batch, update: bool = True) -> Tensor: """ Train the model on one batch: Compute the loss, make a gradient step. :param batch: training batch :param update: if False, only store gradient. if True also make update :return: loss for batch (sum) """ times_called = next(self.step_counter) # when do you call get_risk_for batch? mrt_schedule = self.mrt_schedule mrt_steps = self.mrt_start_steps warmed_up = mrt_schedule == "warmup" and times_called >= mrt_steps mrt_drawn = mrt_schedule == "mix" and random.random() < self.mrt_p if mrt_schedule == "mtl": batch_loss = self.model.get_loss_and_risk_for_batch( batch, self.loss, n_samples=self.mrt_samples, alpha=self.mrt_alpha, strategy=self.mrt_strategy, max_len=self.mrt_max_len, cost=self.mrt_cost, level=self.trg_level, mrt_lambda=self.mrt_lambda ) if warmed_up or mrt_drawn: batch_loss = self.mrt_lambda * self.model.get_risk_for_batch( batch, n_samples=self.mrt_samples, alpha=self.mrt_alpha, strategy=self.mrt_strategy, max_len=self.mrt_max_len, cost=self.mrt_cost, level=self.trg_level ) else: batch_loss = self.model.get_loss_for_batch(batch, self.loss) norm = batch.nseqs if self.norm_type == "batch" else batch.ntokens norm_batch_loss = batch_loss / norm # division needed since loss.backward sums the gradients until updated norm_batch_multiply = norm_batch_loss / self.batch_multiplier # compute gradients norm_batch_multiply.backward() if self.clip_grad_fun is not None: self.clip_grad_fun(self.model.parameters()) # works in-place if update: # make gradient step self.optimizer.step() self.optimizer.zero_grad() self.steps += 1 # increment token counter self.total_tokens += batch.ntokens return norm_batch_loss.detach() def _add_report(self, valid_scores: dict, new_best: bool = False) -> None: """ Append a one-line report to validation logging file. :param valid_score: validation evaluation score [eval_metric] :param valid_ppl: validation perplexity :param valid_loss: validation loss (sum over whole validation set) :param eval_metric: evaluation metric, e.g. "bleu" :param new_best: whether this is a new best model """ current_lr = -1 # ignores other param groups for now for param_group in self.optimizer.param_groups: current_lr = param_group['lr'] if current_lr < self.learning_rate_min: self.stop = True # why does this happen inside _add_report? with open(self.valid_report_file, 'a') as opened_file: labeled_scores = sorted(valid_scores.items()) eval_report = "\t".join("{}: {:.5f}".format(n, v) for n, v in labeled_scores) opened_file.write( "Steps: {}\t{}\tLR: {:.8f}\t{}\n".format( self.steps, eval_report, current_lr, "*" if new_best else "")) def _log_parameters_list(self) -> None: """ Write all model parameters (name, shape) to the log. """ model_parameters = filter(lambda p: p.requires_grad, self.model.parameters()) n_params = sum(np.prod(p.size()) for p in model_parameters) self.logger.info("Total params: %d", n_params) trainable_params = [n for (n, p) in self.model.named_parameters() if p.requires_grad] self.logger.info("Trainable parameters: %s", sorted(trainable_params)) assert trainable_params def _log_examples( self, sources_raw: Dict[str, List[str]], hypotheses: List[str], references: List[str], hypotheses_raw: List[List[str]] = None, references_raw: List[List[str]] = None) -> None: """ Log a the first `self.log_valid_sents` sentences from given examples. :param sources: decoded sources (dict of list of strings) :param hypotheses: decoded hypotheses (list of strings) :param references: decoded references (list of strings) :param sources_raw: raw sources (list of list of tokens) :param hypotheses_raw: raw hypotheses (list of list of tokens) :param references_raw: raw references (list of list of tokens) """ ix = self.log_valid_sents assert all(i < len(hypotheses) for i in ix) sources = {k: postprocess(v, self.src_level) for k, v in sources_raw.items()} for i in ix: self.logger.info("Example #{}".format(i)) for f, rs in sources_raw.items(): self.logger.debug("\t{}: {}".format(f, rs[i])) if references_raw is not None: self.logger.debug("\tRaw reference: %s", references_raw[i]) if hypotheses_raw is not None: self.logger.debug("\tRaw hypothesis: %s", hypotheses_raw[i]) for f, srcs in sources.items(): self.logger.info("\t{}: {}".format(f, srcs[i])) self.logger.info("\tReference: %s", references[i]) self.logger.info("\tHypothesis: %s", hypotheses[i]) def _store_outputs(self, hypotheses: List[str]) -> None: """ Write current validation outputs to file in `self.model_dir.` :param hypotheses: list of strings """ valid_output_file = join(self.model_dir, "{}.hyps".format(self.steps)) with open(valid_output_file, 'w') as f: for hyp in hypotheses: f.write("{}\n".format(hyp)) def train(cfg_file: str) -> None: """ Main training function. After training, also test on test data if given. :param cfg_file: path to configuration yaml file """ cfg = load_config(cfg_file) train_cfg = cfg["training"] data_cfg = cfg["data"] # set the random seed set_seed(seed=train_cfg.get("random_seed", 42)) # load the data data = load_data(data_cfg) train_data = data["train_data"] dev_data = data["dev_data"] test_data = data["test_data"] vocabs = data["vocabs"] # build an encoder-decoder model model = build_model(cfg["model"], vocabs=vocabs) # for training management, e.g. early stopping and model selection trainer = TrainManager(model=model, config=cfg) # store copy of original training config in model dir shutil.copy2(cfg_file, join(trainer.model_dir, "config.yaml")) # log all entries of config log_cfg(cfg, trainer.logger) log_data_info( train_data=train_data, valid_data=dev_data, test_data=test_data, vocabs=vocabs, logging_function=trainer.logger.info) trainer.logger.info(str(model)) # store the vocabs model_dir = train_cfg["model_dir"] for vocab_name, vocab in vocabs.items(): vocab.to_file(join(model_dir, vocab_name + "_vocab.txt")) # train the model trainer.train_and_validate(train_data=train_data, valid_data=dev_data) # predict with the best model on validation and test # (if test data is available) ckpt = join(trainer.model_dir, str(trainer.best_ckpt_iteration) + ".ckpt") output_name = "{:08d}.hyps".format(trainer.best_ckpt_iteration) output_path = join(trainer.model_dir, output_name) test(cfg_file, ckpt=ckpt, output_path=output_path, logger=trainer.logger) if __name__ == "__main__": parser = argparse.ArgumentParser('Joey-NMT') parser.add_argument("config", default="configs/default.yaml", type=str, help="Training configuration file (yaml).") args = parser.parse_args() train(cfg_file=args.config)
[ "torch.save", "torch.FloatTensor" ]
1.2
deep-spin/S7
c987906b032eaa727c8bcbec53f48befb467e515
1.2
from typing import Dict import torch from torch import Tensor from torch.distributions.categorical import Categorical from joeynmt.helpers import tile def sample_decode( model, size: int, encoder_output, masks: Dict[str, Tensor], max_output_length: int, labels: dict = None): """ Sample size sequences from the model In each decoding step, find the k most likely partial hypotheses. :param decoder: :param size: size of the beam :param encoder_output: :param masks: :param max_output_length: :return: - stacked_output: dim?, - scores: dim? """ # init transformer = model.is_transformer any_mask = next(iter(masks.values())) batch_size = any_mask.size(0) att_vectors = None # not used for Transformer device = encoder_output.device masks.pop("trg", None) # mutating one of the inputs is not good # Recurrent models only: initialize RNN hidden state if not transformer and model.decoder.bridge_layer is not None: hidden = model.decoder.bridge_layer(encoder_output.hidden) else: hidden = None # tile encoder states and decoder initial states beam_size times if hidden is not None: # layers x batch*k x dec_hidden_size hidden = tile(hidden, size, dim=1) # encoder_output: batch*k x src_len x enc_hidden_size encoder_output.tile(size, dim=0) masks = {k: tile(v, size, dim=0) for k, v in masks.items()} # Transformer only: create target mask masks["trg"] = any_mask.new_ones([1, 1, 1]) if transformer else None # the structure holding all batch_size * k partial hypotheses alive_seq = torch.full( (batch_size * size, 1), model.bos_index, dtype=torch.long, device=device ) # the structure indicating, for each hypothesis, whether it has # encountered eos yet (if it has, stop updating the hypothesis # likelihood) is_finished = torch.zeros( batch_size * size, dtype=torch.bool, device=device ) # for each (batch x size) sequence, there is a log probability seq_probs = torch.zeros(batch_size * size, device=device) for step in range(1, max_output_length + 1): dec_input = alive_seq if transformer else alive_seq[:, -1].view(-1, 1) # decode a step probs, hidden, att_scores, att_vectors = model.decode( trg_input=dec_input, encoder_output=encoder_output, masks=masks, decoder_hidden=hidden, prev_att_vector=att_vectors, unroll_steps=1, labels=labels, generate="true" ) # batch*k x trg_vocab # probs = model.decoder.gen_func(logits[:, -1], dim=-1).squeeze(1) next_ids = Categorical(probs).sample().unsqueeze(1) # batch*k x 1 next_scores = probs.gather(1, next_ids).squeeze(1) # batch*k seq_probs = torch.where( is_finished, seq_probs, seq_probs + next_scores.log() ) # append latest prediction # batch_size*k x hyp_len alive_seq = torch.cat([alive_seq, next_ids], -1) # update which hypotheses are finished is_finished = is_finished | next_ids.eq(model.eos_index).squeeze(1) if is_finished.all(): break # final_outputs: batch x size x len final_outputs = alive_seq.view(batch_size, size, -1) seq_probs = seq_probs.view(batch_size, size) max_scores, max_ix = seq_probs.max(dim=-1) outs = [] for b in range(final_outputs.size(0)): outs.append(final_outputs[b, max_ix[b]]) best_outputs = torch.stack(outs) # hmm, maybe not as good as pad and stack # print(torch.index_select(final_outputs, 0, max_ix).size()) #print(final_outputs[:, max_ix].size()) #print(final_outputs[:, max_ix].size()) return best_outputs, max_scores
[ "torch.zeros", "torch.cat", "torch.stack", "torch.distributions.categorical.Categorical", "torch.full" ]
1.2
deep-spin/S7
c987906b032eaa727c8bcbec53f48befb467e515
1.2
import torch from joeynmt.model import EncoderOutput from joeynmt.decoders import TransformerDecoder, TransformerDecoderLayer from .test_helpers import TensorTestCase class TestTransformerDecoder(TensorTestCase): def setUp(self): self.emb_size = 12 self.num_layers = 3 self.hidden_size = 12 self.ff_size = 24 self.num_heads = 4 self.dropout = 0. self.seed = 42 def test_transformer_decoder_freeze(self): torch.manual_seed(self.seed) encoder = TransformerDecoder(freeze=True) for n, p in encoder.named_parameters(): self.assertFalse(p.requires_grad) def test_transformer_decoder_output_size(self): vocab_size = 11 decoder = TransformerDecoder( num_layers=self.num_layers, num_heads=self.num_heads, hidden_size=self.hidden_size, ff_size=self.ff_size, dropout=self.dropout, vocab_size=vocab_size) if not hasattr(decoder, "output_size"): self.fail("Missing output_size property.") self.assertEqual(decoder.output_size, vocab_size) def test_transformer_decoder_forward(self): torch.manual_seed(self.seed) batch_size = 2 src_time_dim = 4 trg_time_dim = 5 vocab_size = 7 trg_embed = torch.rand(size=(batch_size, trg_time_dim, self.emb_size)) decoder = TransformerDecoder( num_layers=self.num_layers, num_heads=self.num_heads, hidden_size=self.hidden_size, ff_size=self.ff_size, dropout=self.dropout, emb_dropout=self.dropout, vocab_size=vocab_size) encoder_output = EncoderOutput( torch.rand(size=(batch_size, src_time_dim, self.hidden_size)), None) for p in decoder.parameters(): torch.nn.init.uniform_(p, -0.5, 0.5) src_mask = torch.ones(size=(batch_size, 1, src_time_dim)) == 1 trg_mask = torch.ones(size=(batch_size, trg_time_dim, 1)) == 1 output, states, _, _ = decoder( trg_embed, encoder_output, src_mask, trg_mask) output_target = torch.Tensor( [[[ 0.1765, 0.4578, 0.2345, -0.5303, 0.3862, 0.0964, 0.6882], [ 0.3363, 0.3907, 0.2210, -0.5414, 0.3770, 0.0748, 0.7344], [ 0.3275, 0.3729, 0.2797, -0.3519, 0.3341, 0.1605, 0.5403], [ 0.3081, 0.4513, 0.1900, -0.3443, 0.3072, 0.0570, 0.6652], [ 0.3253, 0.4315, 0.1227, -0.3371, 0.3339, 0.1129, 0.6331]], [[ 0.3235, 0.4836, 0.2337, -0.4019, 0.2831, -0.0260, 0.7013], [ 0.2800, 0.5662, 0.0469, -0.4156, 0.4246, -0.1121, 0.8110], [ 0.2968, 0.4777, 0.0652, -0.2706, 0.3146, 0.0732, 0.5362], [ 0.3108, 0.4910, 0.0774, -0.2341, 0.2873, 0.0404, 0.5909], [ 0.2338, 0.4371, 0.1350, -0.1292, 0.0673, 0.1034, 0.5356]]] ) self.assertEqual(output_target.shape, output.shape) self.assertTensorAlmostEqual(output_target, output) greedy_predictions = output.argmax(-1) expect_predictions = output_target.argmax(-1) self.assertTensorEqual(expect_predictions, greedy_predictions) states_target = torch.Tensor( [[[ 8.3742e-01, -1.3161e-01, 2.1876e-01, -1.3920e-01, -9.1572e-01, 2.3006e-01, 3.8328e-01, -1.6271e-01, 3.7370e-01, -1.2110e-01, -4.7549e-01, -4.0622e-01], [ 8.3609e-01, -2.9161e-02, 2.0583e-01, -1.3571e-01, -8.0510e-01, 2.7630e-01, 4.8219e-01, -1.8863e-01, 1.1977e-01, -2.0179e-01, -4.4314e-01, -4.1228e-01], [ 8.5478e-01, 1.1368e-01, 2.0400e-01, -1.3059e-01, -8.1042e-01, 1.6369e-01, 5.4244e-01, -2.9103e-01, 3.9919e-01, -3.3826e-01, -4.5423e-01, -4.2516e-01], [ 9.0388e-01, 1.1853e-01, 1.9927e-01, -1.1675e-01, -7.7208e-01, 2.0686e-01, 4.6024e-01, -9.1610e-02, 3.9778e-01, -2.6214e-01, -4.7688e-01, -4.0807e-01], [ 8.9476e-01, 1.3646e-01, 2.0298e-01, -1.0910e-01, -8.2137e-01, 2.8025e-01, 4.2538e-01, -1.1852e-01, 4.1497e-01, -3.7422e-01, -4.9212e-01, -3.9790e-01]], [[ 8.8745e-01, -2.5798e-02, 2.1483e-01, -1.8219e-01, -6.4821e-01, 2.6279e-01, 3.9598e-01, -1.0423e-01, 3.0726e-01, -1.1315e-01, -4.7201e-01, -3.6979e-01], [ 7.5528e-01, 6.8919e-02, 2.2486e-01, -1.6395e-01, -7.9692e-01, 3.7830e-01, 4.9367e-01, 2.4355e-02, 2.6674e-01, -1.1740e-01, -4.4945e-01, -3.6367e-01], [ 8.3467e-01, 1.7779e-01, 1.9504e-01, -1.6034e-01, -8.2783e-01, 3.2627e-01, 5.0045e-01, -1.0181e-01, 4.4797e-01, -4.8046e-01, -3.7264e-01, -3.7392e-01], [ 8.4359e-01, 2.2699e-01, 1.9721e-01, -1.5768e-01, -7.5897e-01, 3.3738e-01, 4.5559e-01, -1.0258e-01, 4.5782e-01, -3.8058e-01, -3.9275e-01, -3.8412e-01], [ 9.6349e-01, 1.6264e-01, 1.8207e-01, -1.6910e-01, -5.9304e-01, 1.4468e-01, 2.4968e-01, 6.4794e-04, 5.4930e-01, -3.8420e-01, -4.2137e-01, -3.8016e-01]]] ) self.assertEqual(states_target.shape, states.shape) self.assertTensorAlmostEqual(states_target, states) def test_transformer_decoder_layers(self): torch.manual_seed(self.seed) batch_size = 2 src_time_dim = 4 trg_time_dim = 5 vocab_size = 7 decoder = TransformerDecoder( num_layers=self.num_layers, num_heads=self.num_heads, hidden_size=self.hidden_size, ff_size=self.ff_size, dropout=self.dropout, vocab_size=vocab_size) self.assertEqual(len(decoder.layers), self.num_layers) for layer in decoder.layers: self.assertTrue(isinstance(layer, TransformerDecoderLayer)) self.assertTrue(hasattr(layer, "src_trg_att")) self.assertTrue(hasattr(layer, "trg_trg_att")) self.assertTrue(hasattr(layer, "feed_forward")) self.assertEqual(layer.size, self.hidden_size) self.assertEqual( layer.feed_forward.pwff_layer[0].in_features, self.hidden_size) self.assertEqual( layer.feed_forward.pwff_layer[0].out_features, self.ff_size)
[ "torch.rand", "torch.ones", "torch.manual_seed", "torch.nn.init.uniform_", "torch.Tensor" ]
1.2
deep-spin/S7
c987906b032eaa727c8bcbec53f48befb467e515
1.7
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved import argparse import json import math import os import pickle from collections import Counter, defaultdict from copy import deepcopy from functools import partial from multiprocessing import Pool from pathlib import Path from typing import Dict, List, Tuple import sys PACKAGE_PARENT = ".." SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) import torch from tqdm import tqdm from utils.boxes import box_iou_helper, combine_boxes, get_boxes_equiv, obj_to_box, region_to_box, xyxy_to_xywh from utils.dump import Annotation, Datapoint from utils.spans import ( PreprocessError, consolidate_spans, get_canonical_spans, span_intersect_spanlist, spanlist_intersect_spanlist, ) from utils.text import get_root_and_nouns, normalize_sentence, normalize_whitespace, simplify_punctuation from utils.unionfind import UnionFind def parse_args(): parser = argparse.ArgumentParser("Visual Genome conversion script") parser.add_argument( "--dataset_path", required=True, type=str, help="Path to the VG dataset. Should contain region graphs", ) parser.add_argument( "--out_path", default=None, type=str, help="Path where to export the resulting dataset.", ) parser.add_argument( "--nb_process", default=1, type=str, help="Number of concurrent processes to use to dump the data", ) return parser.parse_args() def preprocess_region(region): filtered_region = { "caption": simplify_punctuation(normalize_whitespace(region["phrase"])), "original_image_id": region["image_id"], "original_region_id": region["region_id"], "boxes": [], "tokens_positive": [], "found_objects": False, } if len(filtered_region["caption"]) < 3: raise PreprocessError("caption too short, skipping" + filtered_region["caption"]) _, _, root_spans, negative_spans = get_root_and_nouns(filtered_region["caption"].lower(), False) # Filter objects that have multiple synsets, they are likely to be spurious obj_synsets = set([o["synsets"][0] for o in region["objects"] if len(o["synsets"]) == 1]) synsets_count = Counter([s["synset_name"] for s in region["synsets"]]) # Filter synsets that occur multiple times, since we don't have mapping to objects all_synsets = set([s["synset_name"] for s in region["synsets"] if synsets_count[s["synset_name"]] == 1]) authorized_synsets = obj_synsets.intersection(all_synsets) syn2span: Dict[str, Tuple[int, int]] = { s["synset_name"]: (s["entity_idx_start"], s["entity_idx_end"]) for s in region["synsets"] if s["synset_name"] in authorized_synsets } synlist, spanlist = [], [] for k, s in syn2span.items(): synlist.append(k) spanlist.append([s]) # the spans positions may have been altered by the whitespace removal, so we recompute here spanlist, new_caption = get_canonical_spans(spanlist, region["phrase"], whitespace_only=True) if new_caption.lower().strip() != filtered_region["caption"].lower().strip(): raise PreprocessError(f"Inconsistent whitespace removal: '{new_caption}' vs '{filtered_region['caption']}'") assert len(synlist) == len(spanlist) syn2span = {k: v[0] for k, v in zip(synlist, spanlist)} root_objs = [] other_objs: Dict[Tuple[int, int], List[List[int]]] = {} for obj in region["objects"]: if len(obj["synsets"]) == 1 and obj["synsets"][0] in authorized_synsets: cur_span = syn2span[obj["synsets"][0]] if span_intersect_spanlist(cur_span, root_spans): root_objs.append(obj_to_box(obj)) filtered_region["found_objects"] = True else: if cur_span not in other_objs: other_objs[cur_span] = [] negative_spans.append(cur_span) other_objs[cur_span].append(obj_to_box(obj)) filtered_region["found_objects"] = True if len(root_objs) == 0: # If we don't have a box for the root of the sentence, we use the box of the region itself. root_objs.append(region_to_box(region)) dedup_root_objs = combine_boxes(root_objs) filtered_region["boxes"] += dedup_root_objs root_spans = consolidate_spans(root_spans, filtered_region["caption"]) filtered_region["tokens_positive"] += [root_spans for _ in range(len(dedup_root_objs))] for span, objs in other_objs.items(): dedup_objs = combine_boxes(objs) filtered_region["boxes"] += dedup_objs cur_spans = consolidate_spans([span], filtered_region["caption"]) filtered_region["tokens_positive"] += [cur_spans for _ in range(len(dedup_objs))] filtered_region["tokens_negative"] = consolidate_spans(negative_spans, filtered_region["caption"]) return filtered_region def deduplicate_regions(regions, iou_threshold=0.5): """This functions accepts pre-processed region descriptions for a given image, and removes regions that are redundant. Two regions are deemed redundant if 1) the text is closely matching 2) the IOU between region boxes is > iou_threshold A cleaned description is returned. """ def helper_merge(regions): if len(regions) <= 1: return regions uf = UnionFind(len(regions)) for r in regions: spans, txt2 = get_canonical_spans(r["tokens_positive"], r["caption"]) if txt != txt2: raise PreprocessError(f"inconsistent canonicalization fct. Mismatch: '{txt}' and '{txt2}'") r["cano_tokens"] = spans for r1 in range(len(regions)): for r2 in range(r1 + 1, len(regions)): compatible = True assert len(regions[r1]["boxes"]) == len(regions[r1]["cano_tokens"]) assert len(regions[r2]["boxes"]) == len(regions[r2]["cano_tokens"]) ious = box_iou_helper(regions[r1]["boxes"], regions[r2]["boxes"]) for b1 in range(len(regions[r1]["cano_tokens"])): for b2 in range(len(regions[r2]["cano_tokens"])): if (len(regions[r1]["cano_tokens"][b1]) == 0 or len(regions[r2]["cano_tokens"][b2]) == 0) or ( spanlist_intersect_spanlist(regions[r1]["cano_tokens"][b1], regions[r2]["cano_tokens"][b2]) and ious[b1][b2] < iou_threshold ): compatible = False break if not compatible: break if compatible: uf.unite(r1, r2) compo2regions = defaultdict(list) for i, r in enumerate(regions): compo2regions[uf.find(i)].append(r) final_regions = [] for reg_list in compo2regions.values(): if len(reg_list) == 1: final_regions.append(reg_list[0]) else: # We pick as representative of this cluster the region with the most boxes sorted_regions = sorted([(len(r["boxes"]), i) for i, r in enumerate(reg_list)], reverse=True) reg_ids = [sr[1] for sr in sorted_regions] # We need to put the boxes and token spans in buckets cano_spans_buckets = [] orig_spans_buckets = [] boxes_buckets = [] for idx in reg_ids: for b in range(len(reg_list[idx]["boxes"])): # find the bucket bucket = -1 for j in range(len(cano_spans_buckets)): if spanlist_intersect_spanlist(reg_list[idx]["cano_tokens"][b], cano_spans_buckets[j]): bucket = j break if bucket == -1: # bucket not found, creating one. if idx != reg_ids[0]: # This shouldn't happen. But if it does, we give up on the merging return regions assert idx == reg_ids[0], ( "TODO: if this triggers, it means another regions has token spans than aren't covered by the main region." + "We need to create a new token span, which involve finding the span in the original sentencen of the main region. Don't forget to update the negative tokens" ) bucket = len(orig_spans_buckets) orig_spans_buckets.append(reg_list[idx]["tokens_positive"][b]) cano_spans_buckets.append(reg_list[idx]["cano_tokens"][b]) boxes_buckets.append([reg_list[idx]["boxes"][b]]) else: boxes_buckets[bucket].append(reg_list[idx]["boxes"][b]) assert len(orig_spans_buckets) == len(boxes_buckets) merged_region = deepcopy(reg_list[reg_ids[0]]) merged_region["tokens_positive"] = [] merged_region["boxes"] = [] for i in range(len(boxes_buckets)): dedup_objs = combine_boxes(boxes_buckets[i], iou_threshold=0.5) merged_region["boxes"] += dedup_objs merged_region["tokens_positive"] += [orig_spans_buckets[i] for _ in range(len(dedup_objs))] final_regions.append(merged_region) for r in final_regions: del r["cano_tokens"] return final_regions txt2region = defaultdict(list) for r in regions: txt2region[normalize_sentence(r["caption"])].append(r) stupid_sentence_set = set(["wall", "side", "building"]) final_regions = [] for txt, regions in txt2region.items(): # Edge case, we remove the sentences like "the wall on the side of the building" which are uninformative and have spurious boxes if "wall" in txt and set(txt.strip().split(" ")).issubset(stupid_sentence_set): continue if len(regions) == 1: final_regions.append(deepcopy(regions[0])) else: # print(txt) regions_with_boxes = [r for r in regions if r["found_objects"]] all_boxes = sum([r["boxes"] for r in regions_with_boxes], []) # print("regions with boxes", len(regions_with_boxes)) regions_without_boxes = [] for r in regions: if not r["found_objects"]: # we consider than one of the region with boxes will be better suited and drop this one # if there is a positive iou. Otherwise, we have to keep it if len(regions_with_boxes) == 0 or box_iou_helper(all_boxes, r["boxes"]).max().item() < 0.1: regions_without_boxes.append(r) # print("regions without boxes", len(regions_without_boxes)) try: new_regions_with_boxes = helper_merge(regions_with_boxes) except PreprocessError as e: print("skipping", e) # Ouch, hit a cornercase, we give up on the merge new_regions_with_boxes = regions_with_boxes try: new_regions_without_boxes = helper_merge(regions_without_boxes) except PreprocessError as e: print("skipping", e) # Ouch, hit a cornercase, we give up on the merge new_regions_without_boxes = regions_without_boxes # now collapse into one big region. We do it only when the captions are exactly matching, otherwise it's a nightmare to recompute spans capt2region = defaultdict(list) for r in new_regions_with_boxes + new_regions_without_boxes: capt2region[r["caption"]].append(r) for capt, reg_list in capt2region.items(): all_boxes = sum([r["boxes"] for r in reg_list], []) all_tokens = sum([r["tokens_positive"] for r in reg_list], []) compo2boxes, compo2id = get_boxes_equiv(all_boxes, iou_threshold=0.75) final_boxes = [] final_tokens = [] if compo2boxes is not None: for compo in compo2boxes.keys(): box_list = compo2boxes[compo] id_list = compo2id[compo] final_boxes.append(xyxy_to_xywh(torch.stack(box_list, 0).mean(0)).tolist()) final_tokens.append(consolidate_spans(sum([all_tokens[i] for i in id_list], []), capt)) else: final_boxes = all_boxes final_tokens = all_tokens merged_region = { "caption": capt, "original_image_id": reg_list[0]["original_image_id"], "original_region_id": reg_list[0]["original_region_id"], "boxes": final_boxes, "tokens_positive": final_tokens, "tokens_negative": consolidate_spans(sum([r["tokens_negative"] for r in reg_list], []), capt), "found_objects": False, } final_regions.append(merged_region) return final_regions def _get_all_datapoints(output_path: Path, img_list, proc_id: int): # image2ann_map = defaultdict(lambda: defaultdict(list)) print(f"process {proc_id} got job queue of", len(img_list)) all_datapoints: List[Datapoint] = [] for i, data in enumerate(tqdm(img_list)): # print(f"status {i}/{len(img_list)}") all_regions = [] for r in data["regions"]: try: all_regions.append(preprocess_region(r)) except PreprocessError as e: print("Dropping region, preprocess failed", e) all_regions = deduplicate_regions(all_regions) # all_regions = deduplicate_regions([preprocess_region(r) for r in data["regions"]]) for region in all_regions: cur_datapoint = Datapoint( image_id=data["image_id"], dataset_name="VG", tokens_negative=region["tokens_negative"], original_id=region["original_region_id"], caption=region["caption"], annotations=[], ) assert len(region["boxes"]) == len(region["tokens_positive"]) converted_bbox = torch.as_tensor(region["boxes"], dtype=torch.float) areas = converted_bbox[:, -1] * converted_bbox[:, -2] # Convert to (x,y,x,y) format converted_bbox[:, 2:] += converted_bbox[:, :2] for i in range(len(region["boxes"])): cur_ann = Annotation( area=float(areas[i]), iscrowd=0, category_id=1, bbox=region["boxes"][i], giou_friendly_bbox=converted_bbox[i].tolist(), tokens_positive=region["tokens_positive"][i], ) cur_datapoint.annotations.append(cur_ann) all_datapoints.append(cur_datapoint) print(f"Process {proc_id} dumping...") pickle.dump(all_datapoints, open(output_path / f"vg_train_dump_{proc_id}.pkl", "wb")) print(f"Process {proc_id} done.") del all_datapoints return None # return image2ann_map def chunk_list(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def get_all_datapoints(dataset_path: Path, output_path: Path, nb_proc: int): print("loading region graphs....") with open(dataset_path / "region_graphs.json", "r") as f: VG_region_graph = json.load(f) print("loading success!") # return _get_image2ann_mapping(VG_region_graph) chunks = list(chunk_list(VG_region_graph, math.ceil(len(VG_region_graph) / (18 * nb_proc)))) # sub_part = sum(chunks[:3], []) # chunks = list(chunk_list(sub_part, math.ceil(len(sub_part) / nb_proc))) proc_id = list(range(len(chunks))) # assert len(chunks) == nb_proc with Pool(nb_proc) as p: p.starmap(partial(_get_all_datapoints, output_path), zip(chunks, proc_id)) return None def main(args): vg_path = Path(args.dataset_path) output_path = Path(args.out_path) if args.out_path is not None else vg_path os.makedirs(str(output_path), exist_ok=True) get_all_datapoints(vg_path, output_path, int(args.nb_process)) if __name__ == "__main__": main(parse_args())
[ "torch.as_tensor", "torch.stack" ]
1.7.0
bonejay/mdetr
38c6d7c26d6d493f7bf6772ba65a72b493573d90
1.6
import argparse import time import torch from hivemind.proto.runtime_pb2 import CompressionType from hivemind.utils.compression import serialize_torch_tensor, deserialize_torch_tensor def benchmark_compression(tensor: torch.Tensor, compression_type: CompressionType) -> float: t = time.time() deserialize_torch_tensor(serialize_torch_tensor(tensor, compression_type)) return time.time() - t if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--size', type=int, default=10000000, required=False) parser.add_argument('--seed', type=int, default=7348, required=False) parser.add_argument('--num_iters', type=int, default=30, required=False) args = parser.parse_args() torch.manual_seed(args.seed) X = torch.randn(args.size) for name, compression_type in CompressionType.items(): tm = 0 for i in range(args.num_iters): tm += benchmark_compression(X, compression_type) tm /= args.num_iters print(f"Compression type: {name}, time: {tm}")
[ "torch.manual_seed", "torch.randn" ]
1.6.0
Vsevolod-pl/hivemind
0300cfd91adeb14d91d9659a98221628f9b775b9
1.6
import torch import torch.nn as nn import torch.nn.functional as F import torchvision try: from torchvision.models.utils import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # Inception weights ported to Pytorch from # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501 class InceptionV3(nn.Module): """Pretrained InceptionV3 network returning feature maps""" # Index of default block of inception to return, # corresponds to output of final average pooling DEFAULT_BLOCK_INDEX = 3 # Maps feature dimensionality to their output blocks indices BLOCK_INDEX_BY_DIM = { 64: 0, # First max pooling features 192: 1, # Second max pooling featurs 768: 2, # Pre-aux classifier features 2048: 3 # Final average pooling features } def __init__(self, output_blocks=(DEFAULT_BLOCK_INDEX,), resize_input=True, normalize_input=True, requires_grad=False, use_fid_inception=True): """Build pretrained InceptionV3 Parameters ---------- output_blocks : list of int Indices of blocks to return features of. Possible values are: - 0: corresponds to output of first max pooling - 1: corresponds to output of second max pooling - 2: corresponds to output which is fed to aux classifier - 3: corresponds to output of final average pooling resize_input : bool If true, bilinearly resizes input to width and height 299 before feeding input to model. As the network without fully connected layers is fully convolutional, it should be able to handle inputs of arbitrary size, so resizing might not be strictly needed normalize_input : bool If true, scales the input from range (0, 1) to the range the pretrained Inception network expects, namely (-1, 1) requires_grad : bool If true, parameters of the model require gradients. Possibly useful for finetuning the network use_fid_inception : bool If true, uses the pretrained Inception model used in Tensorflow's FID implementation. If false, uses the pretrained Inception model available in torchvision. The FID Inception model has different weights and a slightly different structure from torchvision's Inception model. If you want to compute FID scores, you are strongly advised to set this parameter to true to get comparable results. """ super(InceptionV3, self).__init__() self.resize_input = resize_input self.normalize_input = normalize_input self.output_blocks = sorted(output_blocks) self.last_needed_block = max(output_blocks) assert self.last_needed_block <= 3, \ 'Last possible output block index is 3' self.blocks = nn.ModuleList() if use_fid_inception: inception = fid_inception_v3() else: inception = _inception_v3(pretrained=True) # Block 0: input to maxpool1 block0 = [ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block0)) # Block 1: maxpool1 to maxpool2 if self.last_needed_block >= 1: block1 = [ inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block1)) # Block 2: maxpool2 to aux classifier if self.last_needed_block >= 2: block2 = [ inception.Mixed_5b, inception.Mixed_5c, inception.Mixed_5d, inception.Mixed_6a, inception.Mixed_6b, inception.Mixed_6c, inception.Mixed_6d, inception.Mixed_6e, ] self.blocks.append(nn.Sequential(*block2)) # Block 3: aux classifier to final avgpool if self.last_needed_block >= 3: block3 = [ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c, nn.AdaptiveAvgPool2d(output_size=(1, 1)) ] self.blocks.append(nn.Sequential(*block3)) for param in self.parameters(): param.requires_grad = requires_grad def forward(self, inp): """Get Inception feature maps Parameters ---------- inp : torch.autograd.Variable Input tensor of shape Bx3xHxW. Values are expected to be in range (0, 1) Returns ------- List of torch.autograd.Variable, corresponding to the selected output block, sorted ascending by index """ outp = [] x = inp if self.resize_input: x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) if self.normalize_input: x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) for idx, block in enumerate(self.blocks): x = block(x) if idx in self.output_blocks: outp.append(x) if idx == self.last_needed_block: break return outp def _inception_v3(*args, **kwargs): """Wraps `torchvision.models.inception_v3` Skips default weight inititialization if supported by torchvision version. See https://github.com/mseitzer/pytorch-fid/issues/28. """ try: version = tuple(map(int, torchvision.__version__.split('.')[:2])) except ValueError: # Just a caution against weird version strings version = (0,) if version >= (0, 6): kwargs['init_weights'] = False return torchvision.models.inception_v3(*args, **kwargs) def fid_inception_v3(): """Build pretrained Inception model for FID computation The Inception model for FID computation uses a different set of weights and has a slightly different structure than torchvision's Inception. This method first constructs torchvision's Inception and then patches the necessary parts that are different in the FID Inception model. """ inception = _inception_v3(num_classes=1008, aux_logits=False, pretrained=False) inception.Mixed_5b = FIDInceptionA(192, pool_features=32) inception.Mixed_5c = FIDInceptionA(256, pool_features=64) inception.Mixed_5d = FIDInceptionA(288, pool_features=64) inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) inception.Mixed_7b = FIDInceptionE_1(1280) inception.Mixed_7c = FIDInceptionE_2(2048) state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) inception.load_state_dict(state_dict) return inception class FIDInceptionA(torchvision.models.inception.InceptionA): """InceptionA block patched for FID computation""" def __init__(self, in_channels, pool_features): super(FIDInceptionA, self).__init__(in_channels, pool_features) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionC(torchvision.models.inception.InceptionC): """InceptionC block patched for FID computation""" def __init__(self, in_channels, channels_7x7): super(FIDInceptionC, self).__init__(in_channels, channels_7x7) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_1(torchvision.models.inception.InceptionE): """First InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_1, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_2(torchvision.models.inception.InceptionE): """Second InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_2, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: The FID Inception model uses max pooling instead of average # pooling. This is likely an error in this specific Inception # implementation, as other Inception models use average pooling here # (which matches the description in the paper). branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
[ "torch.cat", "torch.nn.functional.avg_pool2d", "torch.nn.ModuleList", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.functional.interpolate", "torch.utils.model_zoo.load_url", "torch.nn.AdaptiveAvgPool2d", "torch.nn.functional.max_pool2d" ]
1.6.0
man-sean/pscgan
be87e519cf789dc28b052afcea6c135a74cdbaaa
1.5
import torch import cv2 import numpy as np from .models.with_mobilenet import PoseEstimationWithMobileNet from .modules.keypoints import extract_keypoints, group_keypoints from .modules.load_state import load_state from .modules.pose import Pose from . import demo def get_rect(net, images, height_size=512): stride = 8 upsample_ratio = 4 num_keypoints = Pose.num_kpts previous_poses = [] delay = 33 for image in images: rect_path = image.replace('.%s' % (image.split('.')[-1]), '_rect.txt') img = cv2.imread(image, cv2.IMREAD_COLOR) orig_img = img.copy() heatmaps, pafs, scale, pad = demo.infer_fast(net, img, height_size, stride, upsample_ratio, cpu=False) total_keypoints_num = 0 all_keypoints_by_type = [] for kpt_idx in range(num_keypoints): # 19th for bg total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num) pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, demo=True) for kpt_id in range(all_keypoints.shape[0]): all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale current_poses = [] rects = [] for n in range(len(pose_entries)): if len(pose_entries[n]) == 0: continue pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1 valid_keypoints = [] for kpt_id in range(num_keypoints): if pose_entries[n][kpt_id] != -1.0: # keypoint was found pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0]) pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1]) valid_keypoints.append([pose_keypoints[kpt_id, 0], pose_keypoints[kpt_id, 1]]) valid_keypoints = np.array(valid_keypoints) if pose_entries[n][10] != -1.0 or pose_entries[n][13] != -1.0: pmin = valid_keypoints.min(0) pmax = valid_keypoints.max(0) center = (0.5 * (pmax[:2] + pmin[:2])).astype(np.int) radius = int(0.65 * max(pmax[0] - pmin[0], pmax[1] - pmin[1])) elif pose_entries[n][10] == -1.0 and pose_entries[n][13] == -1.0 and pose_entries[n][8] != -1.0 and \ pose_entries[n][11] != -1.0: # if leg is missing, use pelvis to get cropping center = (0.5 * (pose_keypoints[8] + pose_keypoints[11])).astype(np.int) radius = int(1.45 * np.sqrt(((center[None, :] - valid_keypoints) ** 2).sum(1)).max(0)) center[1] += int(0.05 * radius) else: center = np.array([img.shape[1] // 2, img.shape[0] // 2]) radius = max(img.shape[1] // 2, img.shape[0] // 2) x1 = center[0] - radius y1 = center[1] - radius rects.append([x1, y1, 2 * radius, 2 * radius]) np.savetxt(rect_path, np.array(rects), fmt='%d') def get_pose_model(): net = PoseEstimationWithMobileNet() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') checkpoint = torch.load('lightweight_human_pose_estimation_pytorch/checkpoint_iter_370000.pth', map_location=device) load_state(net, checkpoint) return net def get_pose(net, image_path): get_rect(net.cuda(), [image_path], 512)
[ "torch.cuda.is_available", "torch.load" ]
1.5.1
psi1104/pifuhd
32be6642d8ee198f6186ec7ab82f329d95a9f275
1.7
import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from timm.models.vision_transformer import _cfg __all__ = [ 'pvt_tiny', 'pvt_small', 'pvt_medium', 'pvt_large', 'pvt_small_sk2ffn' ] class SK2(nn.Module): def __init__(self, dim, reduce_ratio=4.): super().__init__() hidden_dim = max(int(dim // reduce_ratio), 32) print('hidden_dim = ', hidden_dim) self.mlp = nn.Sequential( nn.Linear(dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, dim), nn.BatchNorm1d(dim), ) # Mlp(in_features=dim, hidden_features=hidden_dim) self.alpha = nn.Parameter(torch.zeros(1, 1)) def forward(self, x0, x1): sig = self.alpha.sigmoid() attn = (1.0 - sig) * x0.mean(dim=1, keepdim=False) + sig * x1.mean(dim=1, keepdim=False) attn = self.mlp(attn).sigmoid().unsqueeze(1) x = x0 + attn * (x1 - x0) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class SK2Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.sk2 = SK2(hidden_features) def forward(self, x): y = self.fc1(x) y = self.act(y) x = self.sk2(x, y) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Block_sk2mlp(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = SK2Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) # x = self.sk2(x, self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) # x = self.sk2ln(x, self.mlp(self.norm2(x))) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) def forward(self, x, H, W): B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) if self.sr_ratio > 1: x_ = x.permute(0, 2, 1).reshape(B, C, H, W) x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) x_ = self.norm(x_) kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) else: kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SK2LN(nn.Module): def __init__(self, dim, reduce_ratio=4.): super().__init__() hidden_dim = max(int(dim // reduce_ratio), 32) print('hidden_dim = ', hidden_dim) self.mlp = nn.Sequential( nn.Linear(dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, dim), nn.LayerNorm(dim), #nn.BatchNorm1d(dim), ) # Mlp(in_features=dim, hidden_features=hidden_dim) self.alpha = nn.Parameter(torch.zeros(1, 1)) def forward(self, x0, x1): sig = self.alpha.sigmoid() attn = (1.0 - sig) * x0.mean(dim=1, keepdim=False) + sig * x1.mean(dim=1, keepdim=False) attn = self.mlp(attn).sigmoid().unsqueeze(1) x = x0 + attn * (x1 - x0) return x class Block_sk2lnffn(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.sk2ln = SK2LN(dim) print('using ffn sk2ln') def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) # x = self.sk2(x, self.attn(self.norm1(x), H, W)) # x = x + self.drop_path(self.mlp(self.norm2(x))) x = self.sk2ln(x, self.mlp(self.norm2(x))) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) #self.sk2 = SK2(dim) #print('using ffn sk2') def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) # x = self.sk2(x, self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) # x = self.sk2(x, self.mlp(self.norm2(x))) return x class Block_sk2ffn(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.sk2 = SK2(dim) print('using ffn sk2') def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) # x = self.sk2(x, self.attn(self.norm1(x), H, W)) # x = x + self.drop_path(self.mlp(self.norm2(x))) x = self.sk2(x, self.mlp(self.norm2(x))) return x class Block_sk2ffnx(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.sk2 = SK2(dim) print('using ffn sk2 x, x+mlp(x)') def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) # x = self.sk2(x, self.attn(self.norm1(x), H, W)) # x = x + self.drop_path(self.mlp(self.norm2(x))) x = self.sk2(x, x + self.mlp(self.norm2(x))) return x class Block_sk2(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.sk2 = SK2(dim) print('using sk2') def forward(self, x, H, W): # x = x + self.drop_path(self.attn(self.norm1(x), H, W)) # x = self.sk2(x, self.drop_path(self.attn(self.norm1(x), H, W))) x = self.sk2(x, self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) # x = self.sk2(x, self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) H, W = H // self.patch_size[0], W // self.patch_size[1] return x, (H, W) class PyramidVisionTransformer(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=None): super().__init__() self.num_classes = num_classes self.depths = depths # patch_embed self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0]) self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3]) # pos_embed self.pos_embed1 = nn.Parameter(torch.zeros(1, self.patch_embed1.num_patches, embed_dims[0])) self.pos_drop1 = nn.Dropout(p=drop_rate) self.pos_embed2 = nn.Parameter(torch.zeros(1, self.patch_embed2.num_patches, embed_dims[1])) self.pos_drop2 = nn.Dropout(p=drop_rate) self.pos_embed3 = nn.Parameter(torch.zeros(1, self.patch_embed3.num_patches, embed_dims[2])) self.pos_drop3 = nn.Dropout(p=drop_rate) self.pos_embed4 = nn.Parameter(torch.zeros(1, self.patch_embed4.num_patches + 1, embed_dims[3])) self.pos_drop4 = nn.Dropout(p=drop_rate) # transformer encoder dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 self.block1 = nn.ModuleList([Block( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[0]) for i in range(depths[0])]) cur += depths[0] self.block2 = nn.ModuleList([Block( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[1]) for i in range(depths[1])]) cur += depths[1] self.block3 = nn.ModuleList([Block( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[2]) for i in range(depths[2])]) cur += depths[2] self.block4 = nn.ModuleList([Block( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[3]) for i in range(depths[3])]) self.norm = norm_layer(embed_dims[3]) # cls_token self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) # classification head self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() # init weights trunc_normal_(self.pos_embed1, std=.02) trunc_normal_(self.pos_embed2, std=.02) trunc_normal_(self.pos_embed3, std=.02) trunc_normal_(self.pos_embed4, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def reset_drop_path(self, drop_path_rate): dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): # return {'pos_embed', 'cls_token'} # has pos_embed may be better return {'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() # def _get_pos_embed(self, pos_embed, patch_embed, H, W): # if H * W == self.patch_embed1.num_patches: # return pos_embed # else: # return F.interpolate( # pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2), # size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1) def forward_features(self, x): B = x.shape[0] # stage 1 x, (H, W) = self.patch_embed1(x) x = x + self.pos_embed1 x = self.pos_drop1(x) for blk in self.block1: x = blk(x, H, W) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() # stage 2 x, (H, W) = self.patch_embed2(x) x = x + self.pos_embed2 x = self.pos_drop2(x) for blk in self.block2: x = blk(x, H, W) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() # stage 3 x, (H, W) = self.patch_embed3(x) x = x + self.pos_embed3 x = self.pos_drop3(x) for blk in self.block3: x = blk(x, H, W) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() # stage 4 x, (H, W) = self.patch_embed4(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed4 x = self.pos_drop4(x) for blk in self.block4: x = blk(x, H, W) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _conv_filter(state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict @register_model def pvt_tiny(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_small(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=Block, **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_small_sk2ffn(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=Block_sk2ffn, **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_small_sk2ffnx(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=Block_sk2ffnx, **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_small_sk2(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=Block_sk2, **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_small_sk2lnffn(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], Block=Block_sk2lnffn, **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_medium(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_large(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs) model.default_cfg = _cfg() return model @register_model def pvt_huge_v2(pretrained=False, **kwargs): model = PyramidVisionTransformer( patch_size=4, embed_dims=[128, 256, 512, 768], num_heads=[2, 4, 8, 12], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 10, 60, 3], sr_ratios=[8, 4, 2, 1], # drop_rate=0.0, drop_path_rate=0.02) **kwargs) model.default_cfg = _cfg() return model
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.nn.Identity", "torch.nn.init.constant_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.BatchNorm1d" ]
1.7.0
implus/PVT
4f70d09f2c0390a9ca2dabf271d725f2d8f75d08
0.4
import sys import argparse import copy import random import torch import torch.utils.data as data from random import shuffle from collections import OrderedDict import continual_benchmark.dataloaders.base import continual_benchmark.agents as agents import continual_benchmark.dataloaders as dataloaders from continual_benchmark.dataloaders.datasetGen import SplitGen, PermutedGen from vae_experiments import models_definition from vae_experiments import training_functions from vae_experiments import vae_utils from visualise import * exp_values = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101] parts = len(exp_values) def run(args): if not os.path.exists('outputs'): os.mkdir('outputs') train_dataset, val_dataset = dataloaders.base.__dict__[args.dataset](args.dataroot, args.skip_normalization, args.train_aug) if args.n_permutation > 0: train_dataset_splits, val_dataset_splits, task_output_space = PermutedGen(train_dataset, val_dataset, args.n_permutation, remap_class=not args.no_class_remap) else: train_dataset_splits, val_dataset_splits, task_output_space = SplitGen(train_dataset, val_dataset, first_split_sz=args.first_split_size, other_split_sz=args.other_split_size, rand_split=args.rand_split, remap_class=not args.no_class_remap) # Calculate constants n_classes = train_dataset.number_classes labels_tasks = {} for task_name, task in train_dataset_splits.items(): labels_tasks[int(task_name)] = task.dataset.class_list n_tasks = len(labels_tasks) n_channels = val_dataset.dataset[0][0].size()[0] in_size = val_dataset.dataset[0][0].size()[1] agent_config = {'lr': args.base_lr, 'momentum': args.base_momentum, 'nesterov': args.base_nesterov, 'weight_decay': args.base_weight_decay, 'base_schedule': args.base_schedule, 'base_model_type': args.base_model_type, 'base_model_name': args.base_model_name, 'base_model_weights': args.base_model_weights, 'out_dim': {'All': args.base_force_out_dim} if args.base_force_out_dim > 0 else task_output_space, 'optimizer': args.base_optimizer, 'base_print_freq': args.base_print_freq, 'score_generated_images_by_freezed_classifier': args.score_generated_images_by_freezed_classifier, 'gpuid': args.gpuid} agent = agents.default.NormalNN(agent_config, n_channels=n_channels, in_size=in_size, n_classes=n_classes, d=args.base_model_d, model_bn=args.base_model_bn,max_pool=args.base_max_pool, n_conv=args.base_n_conv, dropout_rate=args.base_dropout_rate) # Decide split ordering task_names = sorted(list(task_output_space.keys()), key=int) print('Task order:', task_names) if args.rand_split_order: shuffle(task_names) print('Shuffled task order:', task_names) acc_table = OrderedDict() test_acc_table = OrderedDict() # Prepare VAE local_vae = models_definition.VAE(latent_size=args.gen_latent_size, d=args.gen_d, p_coding=args.gen_p_coding, n_dim_coding=args.gen_n_dim_coding, device=device, n_channels=n_channels, in_size=in_size).to(device) print(local_vae) class_table = torch.zeros(n_tasks, n_classes, dtype=torch.long) global_classes_list = [] global_n_codes = [] for task_id in range(len(task_names)): print("######### Task number {} #########".format(task_id)) task_name = task_names[task_id] # VAE print("Train local VAE model") n_codes = len(train_dataset_splits[task_name]) train_dataset_loader = torch.utils.data.DataLoader(dataset=train_dataset_splits[task_name], batch_size=args.gen_batch_size, shuffle=True, drop_last=False) data_loader_stable = torch.utils.data.DataLoader(dataset=train_dataset_splits[task_name], batch_size=args.gen_batch_size, shuffle=False, drop_last=False) data_loader_total = torch.utils.data.DataLoader(dataset=train_dataset_splits[task_name], batch_size=n_codes, shuffle=False, drop_last=False) global_n_codes.append(n_codes) start_id = int(np.sum(global_n_codes[:task_id])) codes_range = range(start_id, start_id + n_codes) codes_rep = torch.Tensor() for exp_value in exp_values: codes = codes_range * np.array( exp_value ** np.floor(args.gen_latent_size // parts * np.log(2) / np.log(exp_value)), dtype=np.longlong) % 2 ** args.gen_latent_size // parts codes = torch.tensor( models_definition.unpackbits(np.array(codes, dtype=np.longlong), args.gen_latent_size // parts)).float() codes_rep = torch.cat([codes_rep, codes], 1) if args.gen_load_pretrained_models: codes_rep = (codes_rep.repeat([args.gen_batch_size, 1, 1]) * 2 - 1) else: codes_rep = (codes_rep.repeat([args.gen_batch_size, 1, 1]).to(device) * 2 - 1) if args.gen_load_pretrained_models: local_vae.load_state_dict(torch.load(args.gen_pretrained_models_dir + f'model{task_id}_local_vae')) global_classes_list = np.load(args.gen_pretrained_models_dir + f'model{task_id}_classes.npy') else: dataloader_with_codes = training_functions.train_local_generator(local_vae, train_dataset_loader, data_loader_stable, data_loader_total, global_classes_list, task_id, codes_rep, args.gen_batch_size, n_epochs_pre=args.gen_ae_pre_epochs, n_epochs=args.gen_ae_epochs) print("Done training local VAE model") del codes_rep if not task_id: # First task, initializing global decoder as local_vae's decoder curr_global_decoder = copy.deepcopy(local_vae.decoder) else: print("Train global VAE model") # Retraining global decoder with previous global decoder and local_vae if args.gen_load_pretrained_models: curr_global_decoder = models_definition.Decoder(local_vae.latent_size, args.gen_d*4, p_coding=local_vae.p_coding, n_dim_coding=local_vae.n_dim_coding, device=local_vae.device, n_channels=n_channels, in_size=in_size).to( local_vae.device) curr_global_decoder.load_state_dict( torch.load(args.gen_pretrained_models_dir + f'model{task_id}_curr_decoder')) else: curr_global_decoder = training_functions.train_global_decoder(curr_global_decoder, local_vae, dataloader_with_codes, task_id=task_id, codes_rep=None, total_n_codes=n_codes, global_n_codes=global_n_codes, global_classes_list=global_classes_list, d=args.gen_d, n_epochs=args.gen_ae_epochs, batch_size=args.gen_batch_size, n_channels=n_channels, in_size=in_size) torch.cuda.empty_cache() # Plotting results for already learned tasks if not args.gen_load_pretrained_models: vae_utils.plot_results(args.experiment_name, curr_global_decoder, task_id, n_codes, global_n_codes, global_classes_list) vae_utils.plot_results(args.experiment_name, local_vae.decoder, task_id, n_codes, global_n_codes, global_classes_list, 5, "_local_vae") torch.save(curr_global_decoder.state_dict(), f"results/{args.experiment_name}/model{task_id}_curr_decoder") torch.save(local_vae.state_dict(), f"results/{args.experiment_name}/model{task_id}_local_vae") torch.save(agent.model.state_dict(), f"results/{args.experiment_name}/model{task_id}_classifier") np.save(f"results/{args.experiment_name}/model{task_id}_classes", global_classes_list) # Classifier train_loader = data.DataLoader(train_dataset_splits[task_name], batch_size=args.base_batch_size, shuffle=True, num_workers=args.workers) val_loader = data.DataLoader(val_dataset_splits[task_name], batch_size=args.base_batch_size, shuffle=True, num_workers=args.workers) agent.learn_batch(train_loader, val_loader, curr_global_decoder, local_vae, class_table, global_classes_list, task_id, n_codes, global_n_codes, args.new_task_data_processing) # Classifier validation acc_table[task_name] = OrderedDict() for j in range(task_id + 1): agent.active_neurons = torch.zeros((1, 4000)) val_name = task_names[j] print('validation split name:', val_name) val_data = val_dataset_splits[val_name] if not args.base_eval_on_train_set else train_dataset_splits[val_name] val_loader = data.DataLoader(val_data, batch_size=args.base_batch_size, shuffle=True, num_workers=args.workers) acc_table[val_name][task_name] = agent.validation(val_loader) return acc_table, task_names, test_acc_table def get_args(argv): parser = argparse.ArgumentParser() # General parser.add_argument('--experiment_name', type=str, default='default_run', help='Name of current experiment') parser.add_argument('--rpath', type=str, default='results/', help='Directory to save results') parser.add_argument('--gpuid', nargs="+", type=int, default=[0], help="The list of gpuid, ex:--gpuid 3 1. Negative value means cpu-only") parser.add_argument('--repeat', type=int, default=1, help="Repeat the experiment N times") parser.add_argument('--seed', type=int, required=False, help="Random seed. If defined all random operations will be reproducible") # Data parser.add_argument('--dataroot', type=str, default='data', help="The root folder of dataset or downloaded data") parser.add_argument('--dataset', type=str, default='MNIST', help="MNIST(default)|FashionMNIST|CIFAR10|CIFAR100") parser.add_argument('--n_permutation', type=int, default=0, help="Enable permuted tests when >0") parser.add_argument('--first_split_size', type=int, default=2) parser.add_argument('--other_split_size', type=int, default=2) parser.add_argument('--rand_split', dest='rand_split', default=False, action='store_true', help="Randomize the classes in splits") parser.add_argument('--rand_split_order', dest='rand_split_order', default=False, action='store_true', help="Randomize the order of splits") parser.add_argument('--no_class_remap', dest='no_class_remap', default=False, action='store_true', help="Avoid the dataset with a subset of classes doing the remapping. Ex: [2,5,6 ...] -> [0,1,2 ...]") parser.add_argument('--skip_normalization', action='store_true', help='Loads dataset without normalization') parser.add_argument('--train_aug', dest='train_aug', default=False, action='store_true', help="Allow data augmentation during training") parser.add_argument('--workers', type=int, default=0, help="#Thread for dataloader") # Learning options parser.add_argument('--new_task_data_processing', type=str, choices=['original', 'original_through_vae', 'generated'], default='original', help="Determines train data for base network.") parser.add_argument('--score_generated_images_by_freezed_classifier', default=True, action='store_true', help="Score generated images by freezed classifier. If false - generator prompts the labels") # Base network - currently classfier parser.add_argument('--base_batch_size', type=int, default=100) parser.add_argument('--base_model_type', type=str, default='mlp', help="The type (lenet|resnet|cifar_net) of backbone network") parser.add_argument('--base_model_name', type=str, default='MLP', help="The name of actual model for the backbone") parser.add_argument('--base_force_out_dim', type=int, default=2, help="Set 0 to let the task decide the required output dimension") parser.add_argument('--base_schedule', nargs="+", type=int, default=[2], help="The list of epoch numbers to reduce learning rate by factor of 0.1. Last number is the end epoch") parser.add_argument('--base_print_freq', type=float, default=100, help="Print the log at every x iteration") parser.add_argument('--base_model_weights', type=str, default=None, help="The path to the file for the model weights (*.pth).") parser.add_argument('--base_eval_on_train_set', dest='base_eval_on_train_set', default=False, action='store_true', help="Force the evaluation on train set") parser.add_argument('--base_model_d', type=int, default=64, help="Size of base network") parser.add_argument('--base_model_bn', default=True, help="Use batch norm in base network") parser.add_argument('--base_max_pool', default=False, help="Use max pooling in base network") parser.add_argument('--base_n_conv', type=int, default=3, help="Num of convs in base network") parser.add_argument('--base_dropout_rate', type=float, default=0.4, help="Dropout rate in base network") parser.add_argument('--base_optimizer', type=str, default='Adam', help="SGD|Adam|RMSprop|amsgrad|Adadelta|Adagrad|Adamax ...") parser.add_argument('--base_lr', type=float, default=0.01, help="Learning rate for base network") parser.add_argument('--base_nesterov', action='store_true', help='Whether to use nesterov momentum in base network') parser.add_argument('--base_momentum', type=float, default=0) parser.add_argument('--base_weight_decay', type=float, default=0) # Generative network - currently binary latent autoencoder parser.add_argument('--gen_batch_size', type=int, default=50) parser.add_argument('--gen_n_dim_coding', type=int, default=10, help="Number of bits used to code task id in binary autoencoder") parser.add_argument('--gen_p_coding', type=int, default=307, help="Prime number used to calculated codes in binary autoencoder") parser.add_argument('--gen_latent_size', type=int, default=200, help="Latent size in binary autoencoder") parser.add_argument('--gen_d', type=int, default=32, help="Size of binary autoencoder") parser.add_argument('--gen_ae_pre_epochs', type=int, default=20, help="Number of epochs to train autoencoder before freezing the codes") parser.add_argument('--gen_ae_epochs', type=int, default=200, help="Number of epochs to train autoencoder") parser.add_argument('--gen_load_pretrained_models', default=False, help="Load pretrained generative models") parser.add_argument('--gen_pretrained_models_dir', type=str, default="results/pretrained_models", help="Directory of pretrained generative models") args = parser.parse_args(argv) return args if __name__ == '__main__': args = get_args(sys.argv[1:]) torch.cuda.set_device(0) device = torch.device("cuda") if args.seed: print("Using manual seed = {}".format(args.seed)) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False else: print("WARNING: Not using manual seed - your experiments will not be reproducible") acc_val, acc_test = {}, {} os.makedirs(f"{args.rpath}{args.experiment_name}", exist_ok=True) with open(f"{args.rpath}{args.experiment_name}/args.txt", "w") as text_file: text_file.write(str(args)) for r in range(args.repeat): acc_val[r], _, acc_test[r] = run(args) np.save(f"{args.rpath}{args.experiment_name}/acc_val.npy", acc_val) np.save(f"{args.rpath}{args.experiment_name}/acc_test.npy", acc_test) plot_final_results([args.experiment_name])
[ "torch.zeros", "torch.device", "torch.cat", "torch.cuda.manual_seed", "torch.manual_seed", "torch.cuda.set_device", "torch.cuda.empty_cache", "torch.utils.data.DataLoader", "torch.load", "torch.Tensor" ]
0.4.1
KamilDeja/BinPlay
a8626e0bd85ed2f0c064b0c78c95a0bc8c0eb14e
1.0
import os import gc import json import time import tqdm import argparse import datetime import torch.distributed as dist import torch.utils.data.distributed from warpctc_pytorch import CTCLoss from novograd import (AdamW, Novograd) from linknet import (SemsegLoss, MaskSimilarity) from decoder import GreedyDecoder from model import DeepSpeech, supported_rnns from data.utils import reduce_tensor, get_cer_wer from data.data_loader_aug import (SpectrogramDataset, BucketingSampler, BucketingLenSampler, DistributedBucketingSampler) import torch import warnings from torch._six import inf tq = tqdm.tqdm VISIBLE_DEVICES = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(',') or ['0'] parser = argparse.ArgumentParser(description='DeepSpeech training') parser.add_argument('--train-manifest', metavar='DIR', help='path to train manifest csv', default='data/train_manifest.csv') parser.add_argument('--cache-dir', metavar='DIR', help='path to save temp audio', default='data/cache/') parser.add_argument('--train-val-manifest', metavar='DIR', help='path to train validation manifest csv', default='') parser.add_argument('--val-manifest', metavar='DIR', help='path to validation manifest csv', default='data/val_manifest.csv') parser.add_argument('--curriculum', metavar='DIR', help='path to curriculum file', default='') parser.add_argument('--use-curriculum', action='store_true', default=False) parser.add_argument('--curriculum-ratio', default=0.5, type=float) parser.add_argument('--cl-point', default=0.1, type=float) parser.add_argument('--sample-rate', default=16000, type=int, help='Sample rate') parser.add_argument('--batch-size', default=20, type=int, help='Batch size for training') parser.add_argument('--val-batch-size', default=20, type=int, help='Batch size for training') parser.add_argument('--num-workers', default=4, type=int, help='Number of workers used in data-loading') parser.add_argument('--labels-path', default='labels.json', help='Contains all characters for transcription') parser.add_argument('--phonemes-path', default='phonemes_ru.json', help='Contains all phonemes for the Russian language') parser.add_argument('--use-bpe', dest='use_bpe', action='store_true', help='Use sentencepiece BPE tokens') parser.add_argument('--sp-model', dest='sp_model', default='data/spm_train_v05_cleaned_asr_10s_phoneme.model', type=str, help='Pre-trained sentencepiece model') parser.add_argument('--use-phonemes', action='store_true', default=False) parser.add_argument('--phonemes-only', action='store_true', default=False) parser.add_argument('--omit-spaces', action='store_true', default=False) parser.add_argument('--subword-regularization', action='store_true', default=False) parser.add_argument('--batch-similar-lens', dest='batch_similar_lens', action='store_true', help='Force usage of sampler that batches items with similar duration together') parser.add_argument('--pytorch-mel', action='store_true', help='Use pytorch based STFT + MEL') parser.add_argument('--pytorch-stft', action='store_true', help='Use pytorch based STFT') parser.add_argument('--denoise', action='store_true', help='Train a denoising head') parser.add_argument('--use-attention', action='store_true', help='Use attention based decoder instead of CTC') parser.add_argument('--double-supervision', action='store_true', help='Use both CTC and attention in sequence') parser.add_argument('--naive-split', action='store_true', help='Use a naive DS2 inspired syllable split') parser.add_argument('--grapheme-phoneme', action='store_true', help='Use both phonemes and graphemes with BPE to train from scratch') parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram in seconds') parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram in seconds') parser.add_argument('--window', default='hamming', help='Window type for spectrogram generation') parser.add_argument('--hidden-size', default=800, type=int, help='Hidden size of RNNs') parser.add_argument('--cnn-width', default=256, type=int, help='w2l-like network width') parser.add_argument('--kernel-size', default=7, type=int, help='cnn kernel size') parser.add_argument('--hidden-layers', default=6, type=int, help='Number of RNN layers') parser.add_argument('--rnn-type', default='gru', help='Type of the RNN. rnn|gru|lstm are supported') parser.add_argument('--decoder-layers', default=4, type=int) parser.add_argument('--decoder-girth', default=1, type=int) parser.add_argument('--dropout', default=0, type=float, help='Fixed dropout for CNN based models') parser.add_argument('--epochs', default=70, type=int, help='Number of training epochs') parser.add_argument('--cuda', dest='cuda', action='store_true', help='Use cuda to train model') parser.add_argument('--lr', '--learning-rate', default=3e-4, type=float, help='initial learning rate') parser.add_argument('--optimizer', default='sgd', help='Optimizer - sgd or adam') parser.add_argument('--weight-decay', default=0, help='Weight decay for SGD', type=float) parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--batch-norm-momentum', default=0.1, type=float, help='BatchNorm momentum') parser.add_argument('--max-norm', default=100, type=int, help='Norm cutoff to prevent explosion of gradients') parser.add_argument('--norm-warmup-epochs', default=1000, type=int, help='Do gradient clipping only before some epoch') parser.add_argument('--gradient-accumulation-steps', default=1, type=int, help='Accumulate gradients for some time first') parser.add_argument('--learning-anneal', default=1.1, type=float, help='Annealing applied to learning rate every epoch') parser.add_argument('--checkpoint-anneal', default=1.0, type=float, help='Annealing applied to learning rate every checkpoint') parser.add_argument('--silent', dest='silent', action='store_true', help='Turn off progress tracking per iteration') parser.add_argument('--checkpoint', dest='checkpoint', action='store_true', help='Enables checkpoint saving of model') parser.add_argument('--checkpoint-per-samples', default=0, type=int, help='Save checkpoint per samples. 0 means never save') parser.add_argument('--visdom', dest='visdom', action='store_true', help='Turn on visdom graphing') parser.add_argument('--enorm', dest='enorm', action='store_true', help='Turn on enorm ( https://github.com/facebookresearch/enorm )') parser.add_argument('--tensorboard', dest='tensorboard', action='store_true', help='Turn on tensorboard graphing') parser.add_argument('--log-dir', default='visualize/deepspeech_final', help='Location of tensorboard log') parser.add_argument('--log-params', dest='log_params', action='store_true', help='Log parameter values and gradients') parser.add_argument('--id', default='Deepspeech training', help='Identifier for visdom/tensorboard run') parser.add_argument('--save-folder', default='models/', help='Location to save epoch models') parser.add_argument('--continue-from', default='', help='Continue from checkpoint model') parser.add_argument('--norm', default='max_frame', action="store", help='Normalize sounds. Choices: "mean", "frame", "max_frame", "none"') parser.add_argument('--finetune', dest='finetune', action='store_true', help='Finetune the model from checkpoint "continue_from"') parser.add_argument('--augment', dest='augment', action='store_true', help='Use random tempo and gain perturbations.') parser.add_argument('--noise-dir', default=None, help='Directory to inject noise into audio. If default, noise Inject not added') parser.add_argument('--noise-prob', default=0.4, type=float, help='Probability of noise being added per sample') parser.add_argument('--aug-type', default=0, type=int, help='Type of augs to use') parser.add_argument('--aug-prob-8khz', default=0, type=float, help='Probability of dropping half of stft frequencies, robustness to 8kHz audio') parser.add_argument('--aug-prob-spect', default=0, type=float, help='Probability of applying spectrogram based augmentations') parser.add_argument('--noise-min', default=0.0, help='Minimum noise level to sample from. (1.0 means all noise, not original signal)', type=float) parser.add_argument('--noise-max', default=0.5, help='Maximum noise levels to sample from. Maximum 1.0', type=float) parser.add_argument('--no-shuffle', dest='no_shuffle', action='store_true', help='Turn off shuffling and sample from dataset based on sequence length (smallest to largest)') parser.add_argument('--no-sortaGrad', dest='no_sorta_grad', action='store_true', help='Turn off ordering of dataset on sequence length for the first epoch.') parser.add_argument('--reverse-sort', dest='reverse_sort', action='store_true', help='Turn off reverse ordering of dataset on sequence length for the first epoch.') parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True, help='Turn off bi-directional RNNs, introduces lookahead convolution') parser.add_argument('--dist-url', default='tcp://127.0.0.1:1550', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend') parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes') parser.add_argument('--rank', default=0, type=int, help='The rank of this process') parser.add_argument('--gpu-rank', default=None, help='If using distributed parallel for multi-gpu, sets the GPU for the process') parser.add_argument('--data-parallel', dest='data_parallel', action='store_true', help='Use data parallel') parser.add_argument('--use-lookahead', dest='use_lookahead', action='store_true', help='Use look ahead optimizer') torch.manual_seed(123456) torch.cuda.manual_seed_all(123456) def to_np(x): return x.data.cpu().numpy() def clip_grad_norm_(parameters, max_norm, norm_type=2): r"""Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Arguments: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) clip_coef = max_norm / (total_norm + 1e-6) # print(clip_coef) if clip_coef < 1: for p in parameters: p.grad.data.mul_(clip_coef) return total_norm def calc_grad_norm(parameters, max_norm, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) clip_coef = max_norm / (total_norm + 1e-6) return clip_coef class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class MultipleOptimizer(object): def __init__(self, op): self.optimizers = op def zero_grad(self): for op in self.optimizers: op.zero_grad() def step(self): for op in self.optimizers: op.step() def state_dict(self): out = [op.state_dict() for op in self.optimizers] return out def load_state_dict(self, states): assert len(states) == len(self.optimizers) for i in range(len(self.optimizers)): self.optimizers[i].load_state_dict(states[i]) def build_optimizer(args_, parameters_=None, model=None): # import aggmo # return aggmo.AggMo(model.parameters(), args_.lr, betas=[0, 0.6, 0.9]) if args_.weight_decay > 0: print('Using weight decay {} for SGD'.format(args_.weight_decay)) if args.double_supervision or 'transformer' in args.rnn_type or args.grapheme_phoneme: import itertools adam_lr = 1e-4 # / 10 sgd_lr = args_.lr print('Using double supervision, SGD with clipping for CTC, ADAM for s2s') print('SGD LR {} / ADAM LR {}'.format(sgd_lr, adam_lr)) if 'transformer' in args.rnn_type: print('Using transformer-type double optimizer') params_ctc = [model.rnns.layers.parameters()] params_adam = [model.rnns.decoder.parameters(), model.fc.parameters()] else: params_ctc = [model.rnns.layers.parameters(), model.rnns.ctc_decoder.parameters(), model.rnns.ctc_fc.parameters()] params_adam = [model.rnns.s2s_decoder.parameters()] ctc_optimizer = torch.optim.SGD(itertools.chain(*params_ctc), lr=args_.lr, momentum=args_.momentum, nesterov=True) s2s_optimizer = torch.optim.Adam(itertools.chain(*params_adam), lr=adam_lr) return MultipleOptimizer([ctc_optimizer, s2s_optimizer]) elif args_.optimizer == 'sgd': print('Using SGD') try: base_optimizer = torch.optim.SGD(parameters_, lr=args_.lr, momentum=args_.momentum, nesterov=True, weight_decay=args_.weight_decay) if args_.use_lookahead: print('Using SGD + Lookahead') from lookahead import Lookahead return Lookahead(base_optimizer=base_optimizer, k=5, alpha=0.5) return base_optimizer except: # wo nesterov return torch.optim.SGD(parameters_, lr=args_.lr, momentum=args_.momentum, nesterov=False, weight_decay=args_.weight_decay) elif args_.optimizer=='adam': print('Using ADAM') return torch.optim.Adam(parameters_, lr=args_.lr) elif args_.optimizer=='novograd': print('Using Novograd') return Novograd(parameters_, lr=args_.lr) elif args_.optimizer=='adamw': print('Using ADAMW') return AdamW(parameters_, lr=args_.lr) viz = None tensorboard_writer = None class PlotWindow: def __init__(self, title, suffix, log_x=False, log_y=False): self.loss_results = torch.Tensor(10000) self.cer_results = torch.Tensor(10000) self.wer_results = torch.Tensor(10000) self.epochs = torch.arange(1, 10000) self.viz_window = None self.tb_subplot='/'+suffix global viz, tensorboard_writer hour_now = str(datetime.datetime.now()).split('.', 1)[0][:-3] self.opts = dict(title=title + ': ' + hour_now, ylabel='', xlabel=suffix, legend=['Loss', 'WER', 'CER']) self.opts['layoutopts'] = {'plotly': {}} if log_x: self.opts['layoutopts']['plotly'] = {'xaxis': {'type': 'log'}} if log_y: self.opts['layoutopts']['plotly'] = {'yaxis': {'type': 'log'}} if args.visdom and is_leader: if viz is None: from visdom import Visdom viz = Visdom() if args.tensorboard and is_leader: os.makedirs(args.log_dir, exist_ok=True) if tensorboard_writer is None: from tensorboardX import SummaryWriter tensorboard_writer = SummaryWriter(args.log_dir) def plot_history(self, position): global viz, tensorboard_writer if is_leader and args.visdom: # Add previous scores to visdom graph x_axis = self.epochs[0:position] y_axis = torch.stack( (self.loss_results[0:position], self.wer_results[0:position], self.cer_results[0:position]), dim=1) self.viz_window = viz.line( X=x_axis, Y=y_axis, opts=self.opts, ) if is_leader and args.tensorboard: # Previous scores to tensorboard logs for i in range(position): values = { 'Avg Train Loss': self.loss_results[i], 'Avg WER': self.wer_results[i], 'Avg CER': self.cer_results[i] } tensorboard_writer.add_scalars(args.id+self.tb_subplot, values, i + 1) def plot_progress(self, epoch, avg_loss, cer_avg, wer_avg): global viz, tensorboard_writer if args.visdom and is_leader: x_axis = self.epochs[0:epoch + 1] y_axis = torch.stack( (self.loss_results[0:epoch + 1], self.wer_results[0:epoch + 1], self.cer_results[0:epoch + 1]), dim=1) if self.viz_window is None: self.viz_window = viz.line( X=x_axis, Y=y_axis, opts=self.opts, ) else: viz.line( X=x_axis.unsqueeze(0).expand(y_axis.size(1), x_axis.size(0)).transpose(0, 1), # Visdom fix Y=y_axis, win=self.viz_window, update='replace', ) if args.tensorboard and is_leader: values = { 'Avg Train Loss': avg_loss, 'Avg WER': wer_avg, 'Avg CER': cer_avg } tensorboard_writer.add_scalars(args.id+self.tb_subplot, values, epoch + 1) if args.log_params: for tag, value in model.named_parameters(): tag = tag.replace('.', '/') tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1) tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1) class LRPlotWindow: def __init__(self, title, suffix, log_x=False, log_y=False): self.loss_results = torch.Tensor(10000) self.epochs = torch.Tensor(10000) self.viz_window = None self.suffix = suffix self.tb_subplot='/'+suffix global viz, tensorboard_writer hour_now = str(datetime.datetime.now()).split('.', 1)[0][:-3] self.opts = dict(title=title + ': ' + hour_now, ylabel='', xlabel=suffix, legend=['Loss']) self.opts['layoutopts'] = {'plotly': {}} if log_x: self.opts['layoutopts']['plotly'] = {'xaxis': {'type': 'log'}} if log_y: self.opts['layoutopts']['plotly'] = {'yaxis': {'type': 'log'}} if args.visdom and is_leader: if viz is None: from visdom import Visdom viz = Visdom() if args.tensorboard and is_leader: os.makedirs(args.log_dir, exist_ok=True) if tensorboard_writer is None: from tensorboardX import SummaryWriter tensorboard_writer = SummaryWriter(args.log_dir) def plot_progress(self, epoch, avg_loss, cer_avg, wer_avg): global viz, tensorboard_writer if args.visdom and is_leader: x_axis = self.epochs[0:epoch + 1] y_axis = torch.stack(( self.loss_results[0:epoch + 1], ), dim=1) if self.viz_window is None: self.viz_window = viz.line( X=x_axis, Y=y_axis, opts=self.opts, ) else: viz.line( X=x_axis, Y=y_axis, win=self.viz_window, update='replace', ) if args.tensorboard and is_leader: values = { 'Avg Train Loss': avg_loss, } tensorboard_writer.add_scalars(args.id+self.tb_subplot, values, epoch + 1) if args.log_params: for tag, value in model.named_parameters(): tag = tag.replace('.', '/') tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1) tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1) def get_lr(): if args.use_lookahead: return optimizer.optimizer.state_dict()['param_groups'][0]['lr'] if args.double_supervision or 'transformer' in args.rnn_type or args.grapheme_phoneme: # SGD state optim_state = optimizer.optimizers[0].state_dict() else: optim_state = optimizer.state_dict() return optim_state['param_groups'][0]['lr'] def set_lr(lr): print('Learning rate annealed to: {lr:.6g}'.format(lr=lr)) if args.double_supervision or 'transformer' in args.rnn_type or args.grapheme_phoneme: # ADAM's LR typically is set 10x lower than SGD sgd_optim_state = optimizer.optimizers[0].state_dict() sgd_optim_state['param_groups'][0]['lr'] = lr optimizer.optimizers[0].load_state_dict(sgd_optim_state) adam_optim_state = optimizer.optimizers[1].state_dict() # always fixed for adam adam_optim_state['param_groups'][0]['lr'] = 1e-4 optimizer.optimizers[1].load_state_dict(adam_optim_state) elif args.use_lookahead: optim_state = optimizer.optimizer.state_dict() optim_state['param_groups'][0]['lr'] = lr optimizer.optimizer.load_state_dict(optim_state) else: optim_state = optimizer.state_dict() optim_state['param_groups'][0]['lr'] = lr optimizer.load_state_dict(optim_state) def check_model_quality(epoch, checkpoint, train_loss, train_cer, train_wer): gc.collect() torch.cuda.empty_cache() val_cer_sum, val_wer_sum, val_loss_sum = 0, 0, 0 num_chars, num_words, num_losses = 0, 0, 0 model.eval() with torch.no_grad(): for i, data in tq(enumerate(test_loader), total=len(test_loader)): # use if full phoneme decoding will be required if False: (inputs, targets, filenames, input_percentages, target_sizes, phoneme_targets, phoneme_target_sizes) = data elif args.denoise: (inputs, targets, filenames, input_percentages, target_sizes, mask_targets) = data else: inputs, targets, filenames, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.use_attention: batch_size = inputs.size(0) max_len = max(target_sizes) # use CTC blank as pad token # ctc blank has an index of zero trg = torch.zeros(batch_size, max_len) assert len(target_sizes) == batch_size for _, split_target in enumerate(split_targets): trg[_, :target_sizes[_]] = split_target trg = trg.long().to(device) # trg_teacher_forcing = trg[:, :-1] trg_val = trg inputs = inputs.to(device) if args.use_phonemes or args.grapheme_phoneme: (logits, probs, output_sizes, phoneme_logits, phoneme_probs) = model(inputs, input_sizes) elif args.denoise: logits, probs, output_sizes, mask_logits = model(inputs, input_sizes) elif args.use_attention: logits, output_sizes = model(inputs, lengths=input_sizes) # for our purposes they are the same probs = logits elif args.double_supervision: ctc_logits, s2s_logits, output_sizes = model(inputs, lengths=input_sizes) # s2s decoder is the final decoder probs = s2s_logits else: logits, probs, output_sizes = model(inputs, input_sizes) if args.use_attention: # this is kind of murky # you can calculate this using teacher forcing unrolling # or you can just assume # that the smart network will produce outputs of similar length to gt short_logits = logits[:, :trg_val.size(1), :].contiguous() loss = criterion(short_logits.view(-1, short_logits.size(-1)), trg_val.contiguous().view(-1)) loss = loss / sum(target_sizes) # average the loss by number of tokens loss = loss.to(device) elif args.double_supervision: # do not bother with loss here loss = 0 loss_value = 0 else: loss = criterion(logits.transpose(0, 1), targets, output_sizes.cpu(), target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size).item() elif args.double_supervision: pass else: loss_value = loss.item() if loss_value == inf or loss_value == -inf: print("WARNING: received an inf loss, setting loss value to 1000") loss_value = 1000 loss_value = float(loss_value) val_loss_sum = (val_loss_sum * 0.998 + loss_value * 0.002) # discount earlier losses val_loss_sum += loss_value num_losses += 1 decoded_output, _ = decoder.decode(probs, output_sizes, use_attention=args.use_attention or args.double_supervision) target_strings = decoder.convert_to_strings(split_targets) for x in range(len(target_strings)): transcript, reference = decoded_output[x][0], target_strings[x][0] wer, cer, wer_ref, cer_ref = get_cer_wer(decoder, transcript, reference) if x < 1: print("CER: {:6.2f}% WER: {:6.2f}% Filename: {}".format(cer/cer_ref*100, wer/wer_ref*100, filenames[x])) print('Reference:', reference, '\nTranscript:', transcript) times_used = test_dataset.curriculum[filenames[x]]['times_used']+1 test_dataset.update_curriculum(filenames[x], reference, transcript, None, cer / cer_ref, wer / wer_ref, times_used=times_used) val_wer_sum += wer val_cer_sum += cer num_words += wer_ref num_chars += cer_ref if args.double_supervision: del inputs, targets, input_percentages, input_sizes del probs, output_sizes, target_sizes, loss del ctc_logits, s2s_logits del split_targets else: del inputs, targets, input_percentages, input_sizes del logits, probs, output_sizes, target_sizes, loss del split_targets if args.cuda: torch.cuda.synchronize() val_wer = 100 * val_wer_sum / num_words val_cer = 100 * val_cer_sum / num_chars print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(epoch + 1, wer=val_wer, cer=val_cer)) val_loss = val_loss_sum / num_losses plots.loss_results[epoch] = train_loss plots.wer_results[epoch] = train_wer plots.cer_results[epoch] = train_cer plots.epochs[epoch] = epoch + 1 checkpoint_plots.loss_results[checkpoint] = val_loss checkpoint_plots.wer_results[checkpoint] = val_wer checkpoint_plots.cer_results[checkpoint] = val_cer checkpoint_plots.epochs[checkpoint] = checkpoint + 1 plots.plot_progress(epoch, train_loss, train_cer, train_wer) checkpoint_plots.plot_progress(checkpoint, val_loss, val_cer, val_wer) if args.checkpoint_anneal != 1.0: global lr_plots lr_plots.loss_results[checkpoint] = val_loss lr_plots.epochs[checkpoint] = get_lr() zero_loss = lr_plots.loss_results == 0 lr_plots.loss_results[zero_loss] = val_loss lr_plots.epochs[zero_loss] = get_lr() lr_plots.plot_progress(checkpoint, val_loss, val_cer, val_wer) # only if trainval manifest provided # separate scope not to mess with general flow too much if args.train_val_manifest != '': calculate_trainval_quality_metrics(checkpoint, epoch, trainval_loader, trainval_checkpoint_plots) return val_wer, val_cer def calculate_trainval_quality_metrics(checkpoint, epoch, loader, plots_handle): val_cer_sum, val_wer_sum, val_loss_sum = 0, 0, 0 num_chars, num_words, num_losses = 0, 0, 0 model.eval() with torch.no_grad(): for i, data in tq(enumerate(loader), total=len(loader)): # use if full phoneme decoding will be required if False: (inputs, targets, filenames, input_percentages, target_sizes, phoneme_targets, phoneme_target_sizes) = data elif args.denoise: (inputs, targets, filenames, input_percentages, target_sizes, mask_targets) = data else: inputs, targets, filenames, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.use_attention: batch_size = inputs.size(0) max_len = max(target_sizes) # use CTC blank as pad token # ctc blank has an index of zero trg = torch.zeros(batch_size, max_len) assert len(target_sizes) == batch_size for _, split_target in enumerate(split_targets): trg[_, :target_sizes[_]] = split_target trg = trg.long().to(device) # trg_teacher_forcing = trg[:, :-1] trg_val = trg inputs = inputs.to(device) if args.use_phonemes: (logits, probs, output_sizes, phoneme_logits, phoneme_probs) = model(inputs, input_sizes) elif args.denoise: logits, probs, output_sizes, mask_logits = model(inputs, input_sizes) elif args.use_attention: logits, output_sizes = model(inputs, lengths=input_sizes) # for our purposes they are the same probs = logits elif args.double_supervision: ctc_logits, s2s_logits, output_sizes = model(inputs, lengths=input_sizes) # s2s decoder is the final decoder probs = s2s_logits else: logits, probs, output_sizes = model(inputs, input_sizes) if args.use_attention: # this is kind of murky # you can calculate this using teacher forcing unrolling # or you can just assume # that the smart network will produce outputs of similar length to gt # some edge cases in annotation also may cause this to fail miserably # hence a failsafe max_loss_len = min(trg_val.size(1), logits.size(1)) short_logits = logits[:, :max_loss_len, :].contiguous() short_trg = trg_val[:, :max_loss_len].contiguous() loss = criterion(short_logits.view(-1, short_logits.size(-1)), short_trg.view(-1)) loss = loss / sum(target_sizes) # average the loss by number of tokens loss = loss.to(device) elif args.double_supervision: # do not bother with loss here loss = 0 loss_value = 0 else: loss = criterion(logits.transpose(0, 1), targets, output_sizes.cpu(), target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size).item() elif args.double_supervision: pass else: loss_value = loss.item() if loss_value == inf or loss_value == -inf: print("WARNING: received an inf loss, setting loss value to 1000") loss_value = 1000 loss_value = float(loss_value) val_loss_sum = (val_loss_sum * 0.998 + loss_value * 0.002) # discount earlier losses val_loss_sum += loss_value num_losses += 1 decoded_output, _ = decoder.decode(probs, output_sizes, use_attention=args.use_attention or args.double_supervision) target_strings = decoder.convert_to_strings(split_targets) for x in range(len(target_strings)): transcript, reference = decoded_output[x][0], target_strings[x][0] wer, cer, wer_ref, cer_ref = get_cer_wer(decoder, transcript, reference) if x < 1: print("CER: {:6.2f}% WER: {:6.2f}% Filename: {}".format(cer/cer_ref*100, wer/wer_ref*100, filenames[x])) print('Reference:', reference, '\nTranscript:', transcript) times_used = trainval_dataset.curriculum[filenames[x]]['times_used']+1 trainval_dataset.update_curriculum(filenames[x], reference, transcript, None, cer / cer_ref, wer / wer_ref, times_used=times_used) val_wer_sum += wer val_cer_sum += cer num_words += wer_ref num_chars += cer_ref if args.double_supervision: del inputs, targets, input_percentages, input_sizes del probs, output_sizes, target_sizes, loss del ctc_logits, s2s_logits del split_targets else: del inputs, targets, input_percentages, input_sizes del logits, probs, output_sizes, target_sizes, loss del split_targets if args.cuda: torch.cuda.synchronize() val_wer = 100 * val_wer_sum / num_words val_cer = 100 * val_cer_sum / num_chars print('TrainVal Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(epoch + 1, wer=val_wer, cer=val_cer)) val_loss = val_loss_sum / num_losses plots_handle.loss_results[checkpoint] = val_loss plots_handle.wer_results[checkpoint] = val_wer plots_handle.cer_results[checkpoint] = val_cer plots_handle.epochs[checkpoint] = checkpoint + 1 plots_handle.plot_progress(checkpoint, val_loss, val_cer, val_wer) def save_validation_curriculums(save_folder, checkpoint, epoch, iteration=0): if iteration>0: test_path = '%s/test_checkpoint_%04d_epoch_%02d_iter_%05d.csv' % (save_folder, checkpoint + 1, epoch + 1, iteration + 1) else: test_path = '%s/test_checkpoint_%04d_epoch_%02d.csv' % (save_folder, checkpoint + 1, epoch + 1) print("Saving test curriculum to {}".format(test_path)) test_dataset.save_curriculum(test_path) if args.train_val_manifest != '': if iteration>0: trainval_path = '%s/trainval_checkpoint_%04d_epoch_%02d_iter_%05d.csv' % (save_folder, checkpoint + 1, epoch + 1, iteration + 1) else: trainval_path = '%s/trainval_checkpoint_%04d_epoch_%02d.csv' % (save_folder, checkpoint + 1, epoch + 1) print("Saving trainval curriculum to {}".format(trainval_path)) trainval_dataset.save_curriculum(trainval_path) class Trainer: def __init__(self): self.end = time.time() self.train_wer = 0 self.train_cer = 0 self.num_words = 0 self.num_chars = 0 def reset_scores(self): self.train_wer = 0 self.train_cer = 0 self.num_words = 0 self.num_chars = 0 def get_cer(self): return 100. * self.train_cer / (self.num_chars or 1) def get_wer(self): return 100. * self.train_wer / (self.num_words or 1) def train_batch(self, epoch, batch_id, data): if args.use_phonemes: (inputs, targets, filenames, input_percentages, target_sizes, phoneme_targets, phoneme_target_sizes) = data elif args.denoise: (inputs, targets, filenames, input_percentages, target_sizes, mask_targets) = data mask_targets = mask_targets.squeeze(1).to(device) elif args.double_supervision: (inputs, targets, s2s_targets, filenames, input_percentages, target_sizes, s2s_target_sizes) = data else: inputs, targets, filenames, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # measure data loading time data_time.update(time.time() - self.end) inputs = inputs.to(device) input_sizes = input_sizes.to(device) split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.double_supervision: split_s2s_targets = [] offset = 0 for size in s2s_target_sizes: split_s2s_targets.append(s2s_targets[offset:offset + size]) offset += size batch_size = inputs.size(0) max_len = max(s2s_target_sizes) # use CTC blank as pad token # ctc blank has an index of zero trg = torch.zeros(batch_size, max_len) assert len(s2s_target_sizes) == batch_size for _, split_target in enumerate(split_s2s_targets): trg[_,:s2s_target_sizes[_]] = split_target trg = trg.long().to(device) trg_teacher_forcing = trg[:, :-1] trg_y = trg[:, 1:] if args.use_attention: batch_size = inputs.size(0) max_len = max(target_sizes) # use CTC blank as pad token # ctc blank has an index of zero trg = torch.zeros(batch_size, max_len) assert len(target_sizes) == batch_size for _, split_target in enumerate(split_targets): trg[_,:target_sizes[_]] = split_target trg = trg.long().to(device) trg_teacher_forcing = trg[:, :-1] trg_y = trg[:, 1:] if args.use_phonemes: (logits, probs, output_sizes, phoneme_logits, phoneme_probs) = model(inputs, input_sizes) elif args.denoise: logits, probs, output_sizes, mask_logits = model(inputs, input_sizes) elif args.use_attention: logits, output_sizes = model(inputs, lengths=input_sizes, trg=trg_teacher_forcing) # for our purposes they are the same probs = logits elif args.double_supervision: ctc_logits, s2s_logits, output_sizes = model(inputs, lengths=input_sizes, trg=trg_teacher_forcing) # s2s decoder is the final decoder probs = s2s_logits # (batch x sequence x channels) => (seqLength x batch x outputDim) ctc_logits = ctc_logits.transpose(0, 1) else: logits, probs, output_sizes = model(inputs, input_sizes) if args.double_supervision: assert ctc_logits.is_cuda assert s2s_logits.is_cuda else: assert logits.is_cuda assert probs.is_cuda assert output_sizes.is_cuda decoded_output, _ = decoder.decode(probs, output_sizes, use_attention=args.use_attention or args.double_supervision) if args.double_supervision: target_strings = decoder.convert_to_strings(split_s2s_targets) else: target_strings = decoder.convert_to_strings(split_targets) for x in range(len(target_strings)): transcript, reference = decoded_output[x][0], target_strings[x][0] wer, cer, wer_ref, cer_ref = get_cer_wer(decoder, transcript, reference) # accessing dict should be fast times_used = train_dataset.curriculum[filenames[x]]['times_used']+1 train_dataset.update_curriculum(filenames[x], reference, transcript, None, cer / cer_ref, wer / wer_ref, times_used=times_used) self.train_wer += wer self.train_cer += cer self.num_words += wer_ref self.num_chars += cer_ref if args.use_phonemes: phoneme_logits = phoneme_logits.transpose(0, 1) # TxNxH if not args.use_attention and not args.double_supervision: logits = logits.transpose(0, 1) # TxNxH if not args.double_supervision: if torch.isnan(logits).any(): # and args.nan == 'zero': # work around bad data print("WARNING: Working around NaNs in data") logits[torch.isnan(logits)] = 0 if args.use_phonemes: # output_sizes should be the same # for phoneme and non-phonemes loss = criterion(logits, targets, output_sizes.cpu(), target_sizes) + criterion(phoneme_logits, phoneme_targets, output_sizes.cpu(), phoneme_target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch loss = loss.to(device) elif args.denoise: ctc_loss = 0 """ ctc_loss = criterion(logits, targets, output_sizes.cpu(), target_sizes).to(device) / inputs.size(0) """ mask_loss = 50.0 * mask_criterion(mask_logits, mask_targets).to(device) if torch.isnan(mask_loss): print('Nan loss detected') return 102 loss = ctc_loss + mask_loss inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size).item() else: loss_value = loss.item() * args.gradient_accumulation_steps ctc_loss_value = ctc_loss # .item() if ctc_loss_value == inf or ctc_loss_value == -inf: print("WARNING: received an inf CTC loss, setting loss value to 1000") ctc_loss_value = 1000 loss_value = 1000 elif args.use_attention: loss = criterion(logits.contiguous().view(-1, logits.size(-1)), trg_y.contiguous().view(-1)) loss = loss / sum(target_sizes) # average the loss by number of tokens if args.gradient_accumulation_steps > 1: # average loss by accumulation steps loss = loss / args.gradient_accumulation_steps loss = loss.to(device) elif args.double_supervision: ctc_loss = ctc_criterion(ctc_logits, targets, output_sizes.cpu(), target_sizes) ctc_loss = ctc_loss / inputs.size(0) # average the loss by minibatch ctc_loss = ctc_loss.to(device) s2s_loss = s2s_criterion(s2s_logits.contiguous().view(-1, s2s_logits.size(-1)), trg_y.contiguous().view(-1)) # average the loss by number of tokens # multiply by 10 for weight s2s_loss = 10 * s2s_loss / sum(s2s_target_sizes) s2s_loss = s2s_loss.to(device) loss = ctc_loss + s2s_loss inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size).item() else: loss_value = loss.item() * args.gradient_accumulation_steps ctc_loss_value = ctc_loss.item() if ctc_loss_value == inf or ctc_loss_value == -inf: print("WARNING: received an inf CTC loss, setting loss value to 1000") ctc_loss_value = 1000 loss_value = 1000 else: loss = criterion(logits, targets, output_sizes.cpu(), target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch if args.gradient_accumulation_steps > 1: # average loss by accumulation steps loss = loss / args.gradient_accumulation_steps loss = loss.to(device) if not args.denoise: inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size).item() else: loss_value = loss.item() * args.gradient_accumulation_steps if loss_value == inf or loss_value == -inf: print("WARNING: received an inf loss, setting loss value to 1000") loss_value = 1000 loss_value = float(loss_value) losses.update(loss_value, inputs.size(0)) if args.denoise: mask_accuracy.update(mask_metric(mask_logits, mask_targets).item(), inputs.size(0)) mask_losses.update(mask_loss.item(), inputs.size(0)) ctc_losses.update(ctc_loss_value, inputs.size(0)) elif args.double_supervision: ctc_losses.update(ctc_loss_value, inputs.size(0)) s2s_losses.update(s2s_loss.item(), inputs.size(0)) # update_curriculum if (batch_id + 1) % args.gradient_accumulation_steps == 0: # compute gradient optimizer.zero_grad() loss.backward() # try just lr reduction # instead of gradient clipping lr_clipping = False # spare time by doing clipping # only once each N epochs if args.max_norm > 0: if epoch < args.norm_warmup_epochs: if lr_clipping: raise ValueError('LEGACY') clip_coef = calc_grad_norm(model.parameters(), args.max_norm) underlying_lr = get_lr() set_lr(underlying_lr * clip_coef) else: clip_grad_norm_(model.parameters(), args.max_norm) else: raise ValueError('LEGACY') # clip only when gradients explode if loss_value == inf or loss_value == -inf: clip_grad_norm_(model.parameters(), args.max_norm) # if torch.isnan(logits).any(): # # work around bad data # print("WARNING: Skipping NaNs in backward step") # SGD step optimizer.step() if lr_clipping: set_lr(underlying_lr) if args.enorm: enorm.step() # measure elapsed time batch_time.update(time.time() - self.end) if not args.silent: if args.denoise: print('GPU-{0} Epoch {1} [{2}/{3}]\t' 'Time {batch_time.val:.2f} ({batch_time.avg:.2f})\t' 'Data {data_time.val:.2f} ({data_time.avg:.2f})\t' 'Loss {loss.val:.2f} ({loss.avg:.2f})\t' 'CTC Loss {ctc_losses.val:.2f} ({ctc_losses.avg:.2f})\t' 'Mask Loss {mask_losses.val:.2f} ({mask_losses.avg:.2f})\t' 'Mask {mask_accuracy.val:.2f} ({mask_accuracy.avg:.2f})\t'.format( args.gpu_rank or VISIBLE_DEVICES[0], epoch + 1, batch_id + 1, len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses, mask_losses=mask_losses, ctc_losses=ctc_losses, mask_accuracy=mask_accuracy)) elif args.double_supervision: print('GPU-{0} Epoch {1} [{2}/{3}]\t' 'Time {batch_time.val:.2f} ({batch_time.avg:.2f})\t' 'Data {data_time.val:.2f} ({data_time.avg:.2f})\t' 'Loss {loss.val:.2f} ({loss.avg:.2f})\t' 'CTC Loss {ctc_losses.val:.2f} ({ctc_losses.avg:.2f})\t' 'S2S Loss {s2s_losses.val:.2f} ({s2s_losses.avg:.2f})\t'.format( args.gpu_rank or VISIBLE_DEVICES[0], epoch + 1, batch_id + 1, len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses, ctc_losses=ctc_losses, s2s_losses=s2s_losses)) else: print('GPU-{0} Epoch {1} [{2}/{3}]\t' 'Time {batch_time.val:.2f} ({batch_time.avg:.2f})\t' 'Data {data_time.val:.2f} ({data_time.avg:.2f})\t' 'Loss {loss.val:.2f} ({loss.avg:.2f})\t'.format( args.gpu_rank or VISIBLE_DEVICES[0], epoch + 1, batch_id + 1, len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses)) if args.double_supervision: del inputs, targets, input_percentages, input_sizes del probs, output_sizes, target_sizes, loss, ctc_loss, s2s_loss del s2s_targets, s2s_target_sizes del ctc_logits, s2s_logits else: del inputs, targets, input_percentages, input_sizes del logits, probs, output_sizes, target_sizes, loss return loss_value def init_train_set(epoch, from_iter): #train_dataset.set_curriculum_epoch(epoch, sample=True) train_dataset.set_curriculum_epoch(epoch, sample=args.use_curriculum, sample_size=args.curriculum_ratio, cl_point=args.cl_point) global train_loader, train_sampler if not args.distributed: if args.batch_similar_lens: print('Using BucketingLenSampler') train_sampler = BucketingLenSampler(train_dataset, batch_size=args.batch_size) else: train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size) train_sampler.bins = train_sampler.bins[from_iter:] else: train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler, pin_memory=True) if (not args.no_shuffle and epoch != 0) or args.no_sorta_grad: print("Shuffling batches for the following epochs") train_sampler.shuffle(epoch) def train(from_epoch, from_iter, from_checkpoint): print('Starting training with id="{}" at GPU="{}" with lr={}'.format(args.id, args.gpu_rank or VISIBLE_DEVICES[0], get_lr())) checkpoint_per_batch = 1+(args.checkpoint_per_samples-1) // args.batch_size if args.checkpoint_per_samples > 0 else 0 trainer = Trainer() checkpoint = from_checkpoint best_score = None for epoch in range(from_epoch, args.epochs): init_train_set(epoch, from_iter=from_iter) trainer.reset_scores() total_loss = 0 num_losses = 1 model.train() trainer.end = time.time() start_epoch_time = time.time() for i, data in enumerate(train_loader, start=from_iter): if i >= len(train_sampler) + start_iter: break total_loss += trainer.train_batch(epoch, i, data) num_losses += 1 if (i + 1) % 50 == 0: # deal with GPU memory fragmentation gc.collect() torch.cuda.empty_cache() if checkpoint_per_batch > 0 and is_leader: if (i + 1) % checkpoint_per_batch == 0: file_path = '%s/checkpoint_%04d_epoch_%02d_iter_%05d.model' % (save_folder, checkpoint + 1, epoch + 1, i + 1) print("Saving checkpoint model to %s" % file_path) if args.use_lookahead: _optimizer = optimizer.optimizer else: _optimizer = optimizer torch.save(DeepSpeech.serialize(model, optimizer=_optimizer, epoch=epoch, iteration=i, loss_results=plots.loss_results, wer_results=plots.wer_results, cer_results=plots.cer_results, checkpoint=checkpoint, checkpoint_loss_results=checkpoint_plots.loss_results, checkpoint_wer_results=checkpoint_plots.wer_results, checkpoint_cer_results=checkpoint_plots.cer_results, trainval_checkpoint_loss_results=trainval_checkpoint_plots.loss_results, trainval_checkpoint_wer_results=trainval_checkpoint_plots.wer_results, trainval_checkpoint_cer_results=trainval_checkpoint_plots.cer_results, avg_loss=total_loss / num_losses), file_path) train_dataset.save_curriculum(file_path + '.csv') del _optimizer check_model_quality(epoch, checkpoint, total_loss / num_losses, trainer.get_cer(), trainer.get_wer()) save_validation_curriculums(save_folder, checkpoint + 1, epoch + 1, i + 1) checkpoint += 1 gc.collect() torch.cuda.empty_cache() model.train() if args.checkpoint_anneal != 1: print("Checkpoint:", checkpoint) set_lr(get_lr() / args.checkpoint_anneal) trainer.end = time.time() epoch_time = time.time() - start_epoch_time print('Training Summary Epoch: [{0}]\t' 'Time taken (s): {epoch_time:.0f}\t' 'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=total_loss / num_losses)) from_iter = 0 # Reset start iteration for next epoch if trainer.num_chars == 0: continue wer_avg, cer_avg = check_model_quality(epoch, checkpoint, total_loss / num_losses, trainer.get_cer(), trainer.get_wer()) new_score = wer_avg + cer_avg checkpoint += 1 if args.checkpoint and is_leader: # checkpoint after the end of each epoch file_path = '%s/model_checkpoint_%04d_epoch_%02d.model' % (save_folder, checkpoint+1, epoch + 1) if args.use_lookahead: _optimizer = optimizer.optimizer else: _optimizer = optimizer torch.save(DeepSpeech.serialize(model, optimizer=_optimizer, epoch=epoch, loss_results=plots.loss_results, wer_results=plots.wer_results, cer_results=plots.cer_results, checkpoint=checkpoint, checkpoint_loss_results=checkpoint_plots.loss_results, checkpoint_wer_results=checkpoint_plots.wer_results, checkpoint_cer_results=checkpoint_plots.cer_results, trainval_checkpoint_loss_results=trainval_checkpoint_plots.loss_results, trainval_checkpoint_wer_results=trainval_checkpoint_plots.wer_results, trainval_checkpoint_cer_results=trainval_checkpoint_plots.cer_results, ), file_path) train_dataset.save_curriculum(file_path + '.csv') save_validation_curriculums(save_folder, checkpoint + 1, epoch + 1, 0) del _optimizer # anneal lr print("Checkpoint:", checkpoint) set_lr(get_lr() / args.learning_anneal) if (best_score is None or new_score < best_score) and is_leader: print("Found better validated model, saving to %s" % args.model_path) if args.use_lookahead: _optimizer = optimizer.optimizer else: _optimizer = optimizer torch.save(DeepSpeech.serialize(model, optimizer=_optimizer, epoch=epoch, loss_results=plots.loss_results, wer_results=plots.wer_results, cer_results=plots.cer_results, checkpoint=checkpoint, checkpoint_loss_results=checkpoint_plots.loss_results, checkpoint_wer_results=checkpoint_plots.wer_results, checkpoint_cer_results=checkpoint_plots.cer_results, trainval_checkpoint_loss_results=trainval_checkpoint_plots.loss_results, trainval_checkpoint_wer_results=trainval_checkpoint_plots.wer_results, trainval_checkpoint_cer_results=trainval_checkpoint_plots.cer_results, ), args.model_path) train_dataset.save_curriculum(args.model_path + '.csv') del _optimizer best_score = new_score if __name__ == '__main__': args = parser.parse_args() assert args.use_phonemes + args.denoise + args.grapheme_phoneme < 2 assert args.double_supervision + args.use_attention < 2 # упячка, я идиот, убейте меня кто-нибудь if args.use_phonemes: from data.data_loader_aug import AudioDataLoaderPhoneme as AudioDataLoader elif args.denoise: from data.data_loader_aug import AudioDataLoaderDenoise as AudioDataLoader elif args.double_supervision: from data.data_loader_aug import AudioDataLoaderDouble as AudioDataLoader else: from data.data_loader_aug import AudioDataLoader if args.double_supervision: from data.data_loader_aug import AudioDataLoader as AudioDataLoaderVal else: AudioDataLoaderVal = AudioDataLoader args.distributed = args.world_size > 1 args.model_path = os.path.join(args.save_folder, 'best.model') is_leader = True device = torch.device("cuda" if args.cuda else "cpu") if args.distributed: if args.gpu_rank: torch.cuda.set_device(int(args.gpu_rank)) dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) is_leader = args.rank == 0 # Only the first proc should save models save_folder = args.save_folder os.makedirs(save_folder, exist_ok=True) plots = PlotWindow(args.id, 'train_loss_epochs', log_y=True) checkpoint_plots = PlotWindow(args.id, 'test_loss_checks', log_y=True) if args.train_val_manifest != '': trainval_checkpoint_plots = PlotWindow(args.id, 'val_loss_checks', log_y=True) else: # set all properties to None for easy backwards compatibility trainval_checkpoint_plots = t = type('test', (object,), {})() trainval_checkpoint_plots.loss_results = None trainval_checkpoint_plots.wer_results = None trainval_checkpoint_plots.cer_results = None lr_plots = LRPlotWindow(args.id, 'lr_finder', log_x=True) total_avg_loss, start_epoch, start_iter, start_checkpoint = 0, 0, 0, 0 if args.use_phonemes: with open(args.phonemes_path) as phoneme_file: phoneme_map = {l: i for i, l in enumerate(json.load(phoneme_file))} if args.continue_from: # Starting from previous model print("Loading checkpoint model %s" % args.continue_from) package = torch.load(args.continue_from, map_location=lambda storage, loc: storage) # package['dropout']=0.2 model = DeepSpeech.load_model_package(package) # start with non-phoneme model, continue with phonemes labels = DeepSpeech.get_labels(model) audio_conf = DeepSpeech.get_audio_conf(model) # in case you need to resume and change audio conf manually """ audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max), aug_prob_8khz=args.aug_prob_8khz, aug_prob_spect=args.aug_prob_spect) if args.use_phonemes: audio_conf['phoneme_count'] = len(phoneme_map) audio_conf['phoneme_map'] = phoneme_map """ if args.use_phonemes and package.get('phoneme_count', 0) == 0: model = DeepSpeech.add_phonemes_to_model(model, len(phoneme_map)) audio_conf['phoneme_count'] = len(phoneme_map) audio_conf['phoneme_map'] = phoneme_map model.phoneme_count = len(phoneme_map) if args.denoise and package.get('denoise', False) == False: model = DeepSpeech.add_denoising_to_model(model) print('Model transformed to a denoising one') audio_conf['denoise'] = True audio_conf['noise_prob'] = args.noise_prob audio_conf['aug_type'] = args.aug_type audio_conf['pytorch_stft'] = True print('Changed audio conf params') if args.use_attention: if args.use_bpe: from data.bpe_labels import Labels as BPELabels labels = BPELabels(sp_model=args.sp_model, use_phonemes=False, s2s_decoder=args.use_attention) # list instead of string labels = labels.label_list model = DeepSpeech.add_s2s_decoder_to_model(model, labels=labels) print('Model transformed to a model with full s2s decoder') # REMOVE LATER # audio_conf['noise_dir'] = '../data/augs/*.wav' # audio_conf['noise_prob'] = 0.1 if args.double_supervision or 'transformer' in args.rnn_type: optimizer = build_optimizer(args, model=model) else: parameters = model.parameters() optimizer = build_optimizer(args, parameters_=parameters) if not args.finetune: # Don't want to restart training model = model.to(device) # when adding phonemes, optimizer state is not full try: optimizer.load_state_dict(package['optim_dict']) # set_lr(args.lr) print('Current LR {}'.format( optimizer.state_dict()['param_groups'][0]['lr'] )) except: if args.double_supervision or 'transformer' in args.rnn_type or args.grapheme_phoneme: optim_state = package['optim_dict'][0] lr = optim_state['param_groups'][0]['lr'] print('Just setting the SGD LR {}'.format(lr)) set_lr(lr) else: print('Just changing the LR in the optimizer') # set_lr(package['optim_dict']['param_groups'][0]['lr']) set_lr(args.lr) start_epoch = int(package.get('epoch', 1)) - 1 # Index start at 0 for training start_iter = package.get('iteration', None) start_checkpoint = package.get('checkpoint', 0) or 0 if start_iter is None: start_epoch += 1 # We saved model after epoch finished, start at the next epoch. start_iter = 0 else: start_iter += 1 total_avg_loss = int(package.get('avg_loss', 0)) plots.loss_results = package['loss_results'] plots.cer_results = package['cer_results'] plots.wer_results = package['wer_results'] if package.get('checkpoint_cer_results') is not None: checkpoint_plots.loss_results = package.get('checkpoint_loss_results', torch.Tensor(10000)) checkpoint_plots.cer_results = package.get('checkpoint_cer_results', torch.Tensor(10000)) checkpoint_plots.wer_results = package.get('checkpoint_wer_results', torch.Tensor(10000)) if package['cer_results'] is not None and start_epoch > 0: plots.plot_history(start_epoch) if package.get('checkpoint_cer_results') is not None and start_checkpoint > 0: checkpoint_plots.plot_history(start_checkpoint) if args.train_val_manifest != '': if package.get('trainval_checkpoint_cer_results') is not None: trainval_checkpoint_plots.loss_results = package.get('trainval_checkpoint_loss_results', torch.Tensor(10000)) trainval_checkpoint_plots.cer_results = package.get('trainval_checkpoint_cer_results', torch.Tensor(10000)) trainval_checkpoint_plots.wer_results = package.get('trainval_checkpoint_wer_results', torch.Tensor(10000)) if package.get('trainval_checkpoint_cer_results') is not None and start_checkpoint > 0: trainval_checkpoint_plots.plot_history(start_checkpoint) else: if args.use_bpe: from data.bpe_labels import Labels as BPELabels labels = BPELabels(sp_model=args.sp_model, use_phonemes=args.phonemes_only, s2s_decoder=args.use_attention or args.double_supervision, double_supervision=False, naive_split=args.naive_split, omit_spaces=args.omit_spaces, subword_regularization=args.subword_regularization) # list instead of string labels = labels.label_list # in case of double supervision just use the longer # i.e. s2s = blank(pad) + base_num + space + eos + sos # ctc = blank(pad) + base_num + space + 2 # len(ctc) = len(s2s) - 1 else: with open(args.labels_path) as label_file: # labels is a string labels = str(''.join(json.load(label_file))) assert args.pytorch_stft != args.pytorch_mel audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max), aug_prob_8khz=args.aug_prob_8khz, aug_prob_spect=args.aug_prob_spect, use_bpe=args.use_bpe, sp_model=args.sp_model, aug_type=args.aug_type, pytorch_mel=args.pytorch_mel, pytorch_stft=args.pytorch_stft, denoise=args.denoise) if args.use_phonemes: audio_conf['phoneme_count'] = len(phoneme_map) audio_conf['phoneme_map'] = phoneme_map rnn_type = args.rnn_type.lower() assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru" model = DeepSpeech(rnn_hidden_size=args.hidden_size, cnn_width=args.cnn_width, nb_layers=args.hidden_layers, labels=labels, rnn_type=rnn_type, audio_conf=audio_conf, bidirectional=args.bidirectional, bnm=args.batch_norm_momentum, dropout=args.dropout, phoneme_count=len(phoneme_map) if args.use_phonemes else 0, decoder_layers=args.decoder_layers, kernel_size=args.kernel_size, decoder_girth=args.decoder_girth) if args.use_lookahead: model = model.to(device) if args.double_supervision or 'transformer' in args.rnn_type: optimizer = build_optimizer(args, model=model) else: parameters = model.parameters() optimizer = build_optimizer(args, parameters_=parameters) # enorm = ENorm(model.named_parameters(), optimizer, c=1) if args.use_attention: criterion = torch.nn.NLLLoss(reduction='sum', ignore_index=0) # use ctc blank token as pad token elif args.double_supervision: ctc_criterion = CTCLoss() s2s_criterion = torch.nn.NLLLoss(reduction='sum', ignore_index=0) # use ctc blank token as pad token else: criterion = CTCLoss() if args.denoise: mask_criterion = SemsegLoss(bce_weight=1.0, dice_weight=0.0, mse_weight=0.0) mask_metric = MaskSimilarity(thresholds=[0.05, 0.1, 0.15]) # if double supervision used, s2s head is the last one # and actually partakes in the decoding decoder = GreedyDecoder(labels, cut_after_eos_token=args.use_attention or args.double_supervision, eos_token=']') print('Label length {}'.format(len(labels))) print(labels) print('Audio conf') print(audio_conf) train_dataset = SpectrogramDataset(audio_conf=audio_conf, cache_path=args.cache_dir, manifest_filepath=args.train_manifest, labels=labels, normalize=args.norm, augment=args.augment, curriculum_filepath=args.curriculum, use_attention=args.use_attention, double_supervision=args.double_supervision, naive_split=args.naive_split, phonemes_only=args.phonemes_only, omit_spaces=args.omit_spaces, subword_regularization=args.subword_regularization) test_audio_conf = {**audio_conf, 'noise_prob': 0, 'aug_prob_8khz':0, 'aug_prob_spect':0, 'phoneme_count':0, 'phoneme_map':None} print('Test audio conf') print(test_audio_conf) # no augs on test # on test, even in case of double supervision # we just need s2s data to validate test_dataset = SpectrogramDataset(audio_conf=test_audio_conf, cache_path=args.cache_dir, manifest_filepath=args.val_manifest, labels=labels, normalize=args.norm, augment=False, use_attention=args.use_attention or args.double_supervision, double_supervision=False, naive_split=args.naive_split, phonemes_only=args.phonemes_only, omit_spaces=args.omit_spaces, subword_regularization=False) # turn off augs on val # if file is specified # separate train validation wo domain shift # also wo augs # on test, even in case of double supervision # we just need s2s data to validate if args.train_val_manifest != '': trainval_dataset = SpectrogramDataset(audio_conf=test_audio_conf, cache_path=args.cache_dir, manifest_filepath=args.train_val_manifest, labels=labels, normalize=args.norm, augment=False, use_attention=args.use_attention or args.double_supervision, double_supervision=False, naive_split=args.naive_split, phonemes_only=args.phonemes_only, omit_spaces=args.omit_spaces, subword_regularization=False) # turn off augs on val if args.reverse_sort: # XXX: A hack to test max memory load. train_dataset.ids.reverse() test_loader = AudioDataLoaderVal(test_dataset, batch_size=args.val_batch_size, num_workers=args.num_workers) if args.train_val_manifest != '': trainval_loader = AudioDataLoaderVal(trainval_dataset, batch_size=args.val_batch_size, num_workers=args.num_workers) if not args.use_lookahead: model = model.to(device) if args.distributed: device_id = [int(args.gpu_rank)] if args.rank else None model = torch.nn.parallel.DistributedDataParallel(model, device_ids=device_id) elif args.data_parallel: model = torch.nn.DataParallel(model).to(device) print('Using DP') print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() if args.denoise: mask_accuracy = AverageMeter() mask_losses = AverageMeter() ctc_losses = AverageMeter() if args.double_supervision: ctc_losses = AverageMeter() s2s_losses = AverageMeter() train(start_epoch, start_iter, start_checkpoint)
[ "torch.nn.NLLLoss", "torch.device", "torch.zeros", "torch.cuda.manual_seed_all", "torch.stack", "torch.arange", "torch.cuda.synchronize", "torch.distributed.init_process_group", "torch.isnan", "torch.no_grad", "torch.optim.SGD", "torch.optim.Adam", "torch.nn.parallel.DistributedDataParallel", "torch.manual_seed", "torch.cuda.empty_cache", "torch.load", "torch.Tensor", "torch.nn.DataParallel" ]
1.0
snakers4/deepspeech.pytorch
4c9e9648fe56247169d73248340f3a60572d3f5b
1.0
# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: [email protected] from __future__ import absolute_import from __future__ import print_function from __future__ import division import sys import os import time import pickle import numpy as np import torch import torch.nn as nn DEFAULT_DTYPE = torch.float32 def create_prior(prior_type, **kwargs): if prior_type == 'gmm': prior = MaxMixturePrior(**kwargs) elif prior_type == 'l2': return L2Prior(**kwargs) elif prior_type == 'angle': return SMPLifyAnglePrior(**kwargs) elif prior_type == 'none' or prior_type is None: # Don't use any pose prior def no_prior(*args, **kwargs): return 0.0 prior = no_prior else: raise ValueError('Prior {}'.format(prior_type) + ' is not implemented') return prior class SMPLifyAnglePrior(nn.Module): def __init__(self, dtype=torch.float32, **kwargs): super(SMPLifyAnglePrior, self).__init__() # Indices for the roration angle of # 55: left elbow, 90deg bend at -np.pi/2 # 58: right elbow, 90deg bend at np.pi/2 # 12: left knee, 90deg bend at np.pi/2 # 15: right knee, 90deg bend at np.pi/2 angle_prior_idxs = np.array([55, 58, 12, 15], dtype=np.int64) angle_prior_idxs = torch.tensor(angle_prior_idxs, dtype=torch.long) self.register_buffer('angle_prior_idxs', angle_prior_idxs) angle_prior_signs = np.array([1, -1, -1, -1], dtype=np.float32 if dtype == torch.float32 else np.float64) angle_prior_signs = torch.tensor(angle_prior_signs, dtype=dtype) self.register_buffer('angle_prior_signs', angle_prior_signs) def forward(self, pose, with_global_pose=False): ''' Returns the angle prior loss for the given pose Args: pose: (Bx[23 + 1] * 3) torch tensor with the axis-angle representation of the rotations of the joints of the SMPL model. Kwargs: with_global_pose: Whether the pose vector also contains the global orientation of the SMPL model. If not then the indices must be corrected. Returns: A sze (B) tensor containing the angle prior loss for each element in the batch. ''' angle_prior_idxs = self.angle_prior_idxs - (not with_global_pose) * 3 return torch.exp(pose[:, angle_prior_idxs] * self.angle_prior_signs).pow(2) class L2Prior(nn.Module): def __init__(self, dtype=DEFAULT_DTYPE, reduction='sum', **kwargs): super(L2Prior, self).__init__() def forward(self, module_input, *args): return torch.sum(module_input.pow(2)) class MaxMixturePrior(nn.Module): def __init__(self, prior_folder='prior', num_gaussians=6, dtype=DEFAULT_DTYPE, epsilon=1e-16, use_merged=True, **kwargs): super(MaxMixturePrior, self).__init__() if dtype == DEFAULT_DTYPE: np_dtype = np.float32 elif dtype == torch.float64: np_dtype = np.float64 else: print('Unknown float type {}, exiting!'.format(dtype)) sys.exit(-1) self.num_gaussians = num_gaussians self.epsilon = epsilon self.use_merged = use_merged gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians) full_gmm_fn = os.path.join(prior_folder, gmm_fn) if not os.path.exists(full_gmm_fn): print('The path to the mixture prior "{}"'.format(full_gmm_fn) + ' does not exist, exiting!') sys.exit(-1) with open(full_gmm_fn, 'rb') as f: gmm = pickle.load(f, encoding='latin1') if type(gmm) == dict: means = gmm['means'].astype(np_dtype) covs = gmm['covars'].astype(np_dtype) weights = gmm['weights'].astype(np_dtype) elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)): means = gmm.means_.astype(np_dtype) covs = gmm.covars_.astype(np_dtype) weights = gmm.weights_.astype(np_dtype) else: print('Unknown type for the prior: {}, exiting!'.format(type(gmm))) sys.exit(-1) self.register_buffer('means', torch.tensor(means, dtype=dtype)) self.register_buffer('covs', torch.tensor(covs, dtype=dtype)) precisions = [np.linalg.inv(cov) for cov in covs] precisions = np.stack(precisions).astype(np_dtype) self.register_buffer('precisions', torch.tensor(precisions, dtype=dtype)) # The constant term: sqrdets = np.array([(np.sqrt(np.linalg.det(c))) for c in gmm['covars']]) const = (2 * np.pi)**(69 / 2.) nll_weights = np.asarray(gmm['weights'] / (const * (sqrdets / sqrdets.min()))) nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0) self.register_buffer('nll_weights', nll_weights) weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0) self.register_buffer('weights', weights) self.register_buffer('pi_term', torch.log(torch.tensor(2 * np.pi, dtype=dtype))) cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon) for cov in covs] self.register_buffer('cov_dets', torch.tensor(cov_dets, dtype=dtype)) # The dimensionality of the random variable self.random_var_dim = self.means.shape[1] def get_mean(self): ''' Returns the mean of the mixture ''' mean_pose = torch.matmul(self.weights, self.means) return mean_pose def merged_log_likelihood(self, pose, betas): diff_from_mean = pose.unsqueeze(dim=1) - self.means prec_diff_prod = torch.einsum('mij,bmj->bmi', [self.precisions, diff_from_mean]) diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1) curr_loglikelihood = 0.5 * diff_prec_quadratic - \ torch.log(self.nll_weights) # curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) + # self.random_var_dim * self.pi_term + # diff_prec_quadratic # ) - torch.log(self.weights) min_likelihood, _ = torch.min(curr_loglikelihood, dim=1) return min_likelihood def log_likelihood(self, pose, betas, *args, **kwargs): ''' Create graph operation for negative log-likelihood calculation ''' likelihoods = [] for idx in range(self.num_gaussians): mean = self.means[idx] prec = self.precisions[idx] cov = self.covs[idx] diff_from_mean = pose - mean curr_loglikelihood = torch.einsum('bj,ji->bi', [diff_from_mean, prec]) curr_loglikelihood = torch.einsum('bi,bi->b', [curr_loglikelihood, diff_from_mean]) cov_term = torch.log(torch.det(cov) + self.epsilon) curr_loglikelihood += 0.5 * (cov_term + self.random_var_dim * self.pi_term) likelihoods.append(curr_loglikelihood) log_likelihoods = torch.stack(likelihoods, dim=1) min_idx = torch.argmin(log_likelihoods, dim=1) weight_component = self.nll_weights[:, min_idx] weight_component = -torch.log(weight_component) return weight_component + log_likelihoods[:, min_idx] def forward(self, pose, betas): if self.use_merged: return self.merged_log_likelihood(pose, betas) else: return self.log_likelihood(pose, betas)
[ "torch.stack", "torch.min", "torch.einsum", "torch.argmin", "torch.det", "torch.tensor", "torch.log", "torch.matmul", "torch.exp" ]
1.0.1
omidrk/computervisionPanopticToSMPLAuto
b84b60f0ec4ffdb4ae61348919a95f7bb2eab926
1.5
from itertools import product import numpy as np import pandas as pd import torch from trains import Task from models.detection.SSD.priorbox_optimization import PriorOptimizationInput, ImageSizeTuple from models.detection.SSD.priorbox_optimization.bbox_clustering import get_box_pairwise_iou def collect_ground_truth_stats(ground_truth_loader): def just_meta_iter(loader): for gt in loader: yield gt[-1] gt = list(just_meta_iter(ground_truth_loader)) gt_df = get_gt_df_from_gt(gt) return gt_df def get_gt_df_from_gt(gt): # removing all "crowd" labels def process_meta_element(element): boxes = element['boxes'] iscrowd = element['iscrowd'] labels = element['labels'] orig_boxes = [box for box, crowd in zip(boxes, iscrowd) if not crowd] orig_labels = [label for label, crowd in zip(labels, iscrowd) if not crowd] orig_boxes = np.around(orig_boxes) width = np.around(orig_boxes[:, 2] - orig_boxes[:, 0]) height = np.around(orig_boxes[:, 3] - orig_boxes[:, 1]) area = width * height good_boxes = np.where(area > 0)[0] if len(good_boxes) != len(orig_boxes): boxes = orig_boxes[good_boxes] labels = np.array(orig_labels)[good_boxes].tolist() height = height[good_boxes] width = width[good_boxes] else: boxes = orig_boxes labels = orig_labels pairwise_iou = get_box_pairwise_iou(boxes) score = np.around(pairwise_iou.sum(axis=0) - 1, decimals=2) return [(w, h, label, q) for w, h, label, q in zip(width, height, labels, score)] processed_gt = [process_meta_element(el) for elem in gt for el in elem if len(el['boxes']) > 0] all_gt = [elem for elements in processed_gt for elem in elements] column_names = ['width', 'height', 'label', 'overlap_score'] return pd.DataFrame(all_gt, columns=column_names) def get_optimization_input(ground_truth_df, fmap_sizes, input_priors, image_size): def fmap_to_pixel_fov(fmap_sizes): # fm = [np.array([fmap, fmap]) for fmap in fmap_sizes] # fm_np = np.vstack(fm) # fm_in_pixels = np.array(image_size) / fm_np fm_in_pixels = np.array(image_size) * \ np.array([3/fmap_sizes[-7], 3/fmap_sizes[-6], 3/(fmap_sizes[-5]+2), 3/(fmap_sizes[-4]+2), 3/(fmap_sizes[-3]+2), 3/(fmap_sizes[-2]+2), 1]) fm_in_pixels = [np.array([fmap, fmap]) for fmap in fm_in_pixels] fm_in_pixels = np.vstack(fm_in_pixels) return pd.DataFrame(fm_in_pixels, columns=['width', 'height']) task = Task.current_task() fmap = [np.array([fmap, fmap]) for fmap in fmap_sizes] task.upload_artifact('feature_maps_sizes', pd.DataFrame(np.vstack(fmap), columns=['width', 'height'])) fmap_df = fmap_to_pixel_fov(fmap_sizes) task.upload_artifact('feature_maps_pixel_fov', fmap_df) in_priors_df = pd.DataFrame(input_priors.numpy(), columns=['match_group', 'width', 'height']) target_image_size = ImageSizeTuple(w=image_size, h=image_size) return PriorOptimizationInput( target_image_size=target_image_size, gt_bbox=ground_truth_df, fmap_sizes=fmap_df, in_priors=in_priors_df, ) def convert_optimization_result_to_priors(fm_sizes, steps, opt_result): priors_output = opt_result.out_priors by_resolution = list(priors_output.groupby('match_group')) num_anchors_per_resolution = [len(priors[-1]) for priors in by_resolution] if len(num_anchors_per_resolution) < len(fm_sizes): print('Some resolution were empty - setting default prior per empty resolution') curr_match_groups = opt_result.out_priors.match_group.to_list() curr_prior_number = len(curr_match_groups) empty_match_groups = list(set(range(len(fm_sizes))) - set(np.unique(curr_match_groups))) for empty_match_group in empty_match_groups: prior_size = opt_result.target_image_size.w / fm_sizes[empty_match_group] new_prior = pd.DataFrame(np.array([empty_match_group, prior_size**2, 1, prior_size, prior_size]).reshape(1, 5), columns=['match_group', 'area', 'aspect_ratio', 'width', 'height']) new_prior['index'] = 'prior_{}'.format(curr_prior_number) new_prior = new_prior.set_index('index') priors_output = priors_output.append(new_prior) curr_prior_number += 1 by_resolution.append((empty_match_group, new_prior)) num_anchors_per_resolution.append(1) Task.current_task().register_artifact('priors_output', priors_output.sort_values('match_group')) by_resolution = list(priors_output.groupby('match_group')) boxes = [] priors = [] for i, (fm_size, new_priors) in enumerate(zip(fm_sizes, by_resolution)): for h, w in product(range(fm_size), repeat=2): cx = (w + 0.5) * steps[i] cy = (h + 0.5) * steps[i] for prior in new_priors[-1].iterrows(): w = prior[-1].width h = prior[-1].height boxes.append((cx, cy, w, h)) priors.append((i, w, h)) return torch.Tensor(boxes), torch.Tensor(np.unique(np.array(priors), axis=0)), num_anchors_per_resolution
[ "torch.Tensor" ]
1.5.1
danmalowany/trains-model-zoo
2091100057afae9593b18ddcefd81b7d46724a96
1.9
import json import os import subprocess import sys from contextlib import contextmanager from datetime import datetime from pathlib import Path from time import sleep from typing import List, Union import numpy as np import torch import torch.nn as nn def create_logdir(root: Union[str, Path] = None): if (root is None) or (root == ""): root = Path.cwd() else: root = Path(root) # When running multiple jobs in parallel (e.g. Slurm) we could get the same # timestamp so let's allow ourselves to try a few times for _ in range(10): try: timestamp = datetime.now().strftime("%Y-%m-%d-%A-%H-%M-%S") log_dir = root / "runs" / timestamp log_dir.mkdir(parents=True) except FileExistsError: sleep(1) continue else: break else: raise SystemExit("Could not create logdir.") return log_dir def save_repo_status(path: Union[str, Path]): path = Path(path) with (path / "git_commit.txt").open("w") as f: subprocess.run(["git", "rev-parse", "HEAD"], stdout=f) with (path / "workspace_changes.diff").open("w") as f: subprocess.run(["git", "diff"], stdout=f) def save_command_line(path: Union[str, Path]): path = Path(path) with open(path / "command_line.txt", "w") as f: f.write("python " + " ".join(sys.argv)) def set_seed(seed: int, allow_nondeterminism: bool): torch.manual_seed(seed) np.random.seed(seed) if allow_nondeterminism is False: # This can make the training slower torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def unconcatenate(x: torch.Tensor, orig_list: List[torch.Tensor]): result = [] processed = 0 for ref in orig_list: result.append(x[processed : processed + ref.numel()].reshape(ref.shape)) processed += ref.numel() return result def save_checkpoint( logdir, model: torch.nn.Module, optimiser: torch.optim.Optimizer, lr_scheduler: torch.optim.lr_scheduler._LRScheduler, epoch: int, max_checkpoints=None, ): state = { "model": model.state_dict(), "optimiser": optimiser.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), } p = logdir / f"chkpt_epoch_{epoch}.pt" torch.save(state, p) if max_checkpoints: chkpts = sorted(logdir.glob("chkpt_e[0-9]*.pt"), key=os.path.getmtime) num_unwanted_chckpts = len(chkpts) - max_checkpoints if num_unwanted_chckpts > 0: for c in chkpts[0:num_unwanted_chckpts]: c.unlink() def load_checkpoint( path: Union[Path, str], model: torch.nn.Module, optimiser: torch.optim.Optimizer, lr_scheduler: torch.optim.lr_scheduler._LRScheduler, ): path = Path(path) if not path.exists(): raise FileNotFoundError print(f"🛻 Loading from checkpoint file {path}.") chkpt = torch.load(path) model.load_state_dict(chkpt["model"]) print("✅ Loaded the model.") optimiser.load_state_dict(chkpt["optimiser"]) print("✅ Loaded the optimiser.") lr_scheduler.load_state_dict(chkpt["lr_scheduler"]) print("✅ Loaded the LR scheduler.") @contextmanager def eval_mode(model: nn.Module): """ Sets training mode to False and restores it when exiting. """ is_training = model.training try: model.eval() yield model finally: if is_training: model.train() class Hyperparameters: def __init__(self, **kwargs): self.from_dict(kwargs) def from_argparse(self, args): self.from_dict(args.__dict__) def from_dict(self, d): for k, v in d.items(): setattr(self, k, v) def as_dict(self): return {k: getattr(self, k) for k in self.__dict__} def from_json(self, j): d = json.loads(j) return self.from_dict(d) def to_json(self, path: Path): j = json.dumps(self.as_dict(), indent=4, sort_keys=True) path.write_text(j) def __contains__(self, k): return k in self.__dict__ def __str__(self): s = [f"{k}={v}" for k, v in self.as_dict().items()] return ",".join(s)
[ "torch.manual_seed", "torch.save", "torch.load" ]
1.9.1
mil-ad/prospr
a92177989f4480f1f2b43a48b3e18a6597ebba6d
1.9
import torch.nn as nn from ..core.primitives import AbstractPrimitive class ConvBNReLU(AbstractPrimitive): def __init__(self, C_in, C_out, kernel_size, stride=1, affine=False): super().__init__(locals()) pad = 0 if stride == 1 and kernel_size == 1 else 1 self.op = nn.Sequential( nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=pad, bias=False), nn.BatchNorm2d(C_out, affine=affine), nn.ReLU(inplace=False), ) def forward(self, x, edge_data): return self.op(x) def get_embedded_ops(self): return None class DepthwiseConv(AbstractPrimitive): """ Depthwise convolution """ def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super().__init__(locals()) self.op = nn.Sequential( nn.Conv2d( C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False, ), nn.BatchNorm2d(C_in, affine=affine), nn.ReLU(inplace=False), ) def forward(self, x, edge_data): return self.op(x) def get_embedded_ops(self): return None
[ "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.BatchNorm2d" ]
1.9.0
NUDTNASLab/NASLib
451cdb4738a7c1501ac62f78727c6244039dc657
1.0
from gym import spaces import multiprocessing.dummy as mp import multiprocessing import numpy as np import os import torch import torch import torch.nn as nn from torch.nn import Parameter, ModuleList import torch.nn.functional as F from evkit.rl.utils import init, init_normc_ from evkit.utils.misc import is_cuda from evkit.preprocess import transforms import pickle as pkl init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain('relu')) ################################ # Inverse Models # Predict s_{t+1} | s_t, a_t ################################ class ForwardModel(nn.Module): def __init__(self, state_shape, action_shape, hidden_size): super().__init__() self.fc1 = init_(nn.Linear(state_shape + action_shape[1], hidden_size)) self.fc2 = init_(nn.Linear(hidden_size, state_shape)) def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x ################################ # Inverse Models # Predict a_t | s_t, s_{t+1} ################################ class InverseModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.fc1 = init_(nn.Linear(input_size * 2, hidden_size)) # Note to stoip gradient self.fc2 = init_(nn.Linear(hidden_size, output_size)) def forward(self, phi_t, phi_t_plus_1): x = torch.cat([phi_t, phi_t_plus_1], 1) x = F.relu(self.fc1(x)) logits = self.fc2(x) return logits # ainvprobs = nn.softmax(logits, dim=-1)
[ "torch.nn.init.calculate_gain", "torch.cat", "torch.nn.Linear", "torch.nn.init.constant_" ]
1.0.1
jozhang97/Side-tuning
dea345691fb7ee0230150fe56ddd644efdffa6ac
1.0
import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class _CustomDataParallel(nn.Module): def __init__(self, model, device_ids): super(_CustomDataParallel, self).__init__() self.model = nn.DataParallel(model, device_ids=device_ids) self.model.to(device) num_devices = torch.cuda.device_count() if device_ids is None else len(device_ids) print(f"{type(model)} using {num_devices} GPUs!") def forward(self, *input, **kwargs): return self.model(*input, **kwargs) def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.model.module, name)
[ "torch.cuda.is_available", "torch.nn.DataParallel", "torch.cuda.device_count" ]
1.0.1
jozhang97/Side-tuning
dea345691fb7ee0230150fe56ddd644efdffa6ac
1.0
import torch.nn as nn from torch.nn import Parameter, ModuleList import torch.nn.functional as F import torch import multiprocessing import numpy as np import os from gym import spaces from torchvision.models import resnet18 from evkit.rl.utils import init, init_normc_ from evkit.preprocess import transforms import torchvision as vision from evkit.models.architectures import FrameStacked, Flatten, atari_conv init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain('relu')) N_CHANNELS = 3 def getNChannels(): return N_CHANNELS ######################## # SRL ######################## class BaseModelSRL(nn.Module): """ Base Class for a SRL network It implements a getState method to retrieve a state from observations """ def __init__(self): super(BaseModelSRL, self).__init__() def getStates(self, observations): """ :param observations: (th.Tensor) :return: (th.Tensor) """ return self.forward(observations) def forward(self, x): raise NotImplementedError class BaseModelAutoEncoder(BaseModelSRL): """ Base Class for a SRL network (autoencoder family) It implements a getState method to retrieve a state from observations """ def __init__(self, n_frames, n_map_channels=0, use_target=True, output_size=512): super(BaseModelAutoEncoder, self).__init__() self.output_size = output_size self.n_frames = 4 self.n_frames = n_frames self.output_size = output_size self.n_map_channels = n_map_channels self.use_target = use_target self.use_map = n_map_channels > 0 if self.use_map: self.map_tower = nn.Sequential( atari_conv(self.n_frames * self.n_map_channels), nn.Conv2d(32, 64, kernel_size=4, stride=1), #, padding=3, bias=False), nn.ReLU(inplace=True), ) if self.use_target: self.target_channels = 3 else: self.target_channels = 0 # Inspired by ResNet: # conv3x3 followed by BatchNorm2d self.encoder_conv = nn.Sequential( # 224x224xN_CHANNELS -> 112x112x64 nn.Conv2d(getNChannels(), 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # 56x56x64 conv3x3(in_planes=64, out_planes=64, stride=1), # 56x56x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # 27x27x64 conv3x3(in_planes=64, out_planes=64, stride=2), # 14x14x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) # 6x6x64 ) self.decoder_conv = nn.Sequential( nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 13x13x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 27x27x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 55x55x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 111x111x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, getNChannels(), kernel_size=4, stride=2), # 224x224xN_CHANNELS ) self.encoder = FrameStacked(self.encoder_conv, self.n_frames) self.conv1 = nn.Conv2d(self.n_frames * (64 + self.target_channels), 64, 3, stride=1) # c4 s 4 self.flatten = Flatten() self.fc1 = init_(nn.Linear(64 * 4 * 4 * (self.use_map) + 64 * 4 * 4 * (1), 1024)) self.fc2 = init_(nn.Linear(1024, self.output_size)) def getStates(self, observations): """ :param observations: (th.Tensor) :return: (th.Tensor) """ return self.encode(observations) def encode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # raise NotImplementedError self.encoder_conv(x) def decode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # raise NotImplementedError self.decoder_conv(x) def forward(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ x_taskonomy = x['taskonomy'] if self.use_target: x_taskonomy = torch.cat([x_taskonomy, x["target"]], dim=1) x_taskonomy = F.relu(self.conv1(x_taskonomy)) if self.use_map: x_map = x['map'] x_map = self.map_tower(x_map) x_taskonomy = torch.cat([x_map, x_taskonomy], dim=1) x = self.flatten(x_taskonomy) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return x encoded = self.encode(x) # decoded = self.decode(encoded).view(input_shape) return encoded #, decoded def conv3x3(in_planes, out_planes, stride=1): """" From PyTorch Resnet implementation 3x3 convolution with padding :param in_planes: (int) :param out_planes: (int) :param stride: (int) """ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def srl_features_transform(task_path, dtype=np.float32): ''' rescale_centercrop_resize Args: output_size: A tuple CxWxH dtype: of the output (must be np, not torch) Returns: a function which returns takes 'env' and returns transform, output_size, dtype ''' _rescale_thunk = transforms.rescale_centercrop_resize((3, 224, 224)) if task_path != 'pixels_as_state': # net = TaskonomyEncoder().cuda() net = nn.Sequential( # 224x224xN_CHANNELS -> 112x112x64 nn.Conv2d(getNChannels(), 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # 56x56x64 conv3x3(in_planes=64, out_planes=64, stride=1), # 56x56x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # 27x27x64 conv3x3(in_planes=64, out_planes=64, stride=2), # 14x14x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) # 6x6x64 ).cuda() net.eval() if task_path != 'None': checkpoint = torch.load(task_path) # checkpoint = {k.replace('model.encoder_conv.', ''): v for k, v in checkpoint.items() if 'encoder_conv' in k} checkpoint = {k.replace('model.conv_layers.', '').replace('model.encoder_conv.', ''): v for k, v in checkpoint.items() if 'encoder_conv' in k or 'conv_layers' in k} net.load_state_dict(checkpoint) def encode(x): if task_path == 'pixels_as_state': return x with torch.no_grad(): return net(x) def _features_transform_thunk(obs_space): rescale, _ = _rescale_thunk(obs_space) def pipeline(x): # x = rescale(x).view(1, 3, 224, 224) x = torch.Tensor(x).cuda() x = encode(x) return x.cpu() if task_path == 'pixels_as_state': raise NotImplementedError return pixels_as_state_pipeline, spaces.Box(-1, 1, (8, 16, 16), dtype) else: return pipeline, spaces.Box(-1, 1, (64, 6, 6), dtype) return _features_transform_thunk
[ "torch.nn.Linear", "torch.cat", "torch.nn.init.constant_", "torch.nn.MaxPool2d", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.no_grad", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.load", "torch.nn.init.calculate_gain", "torch.Tensor" ]
1.0.1
jozhang97/Side-tuning
dea345691fb7ee0230150fe56ddd644efdffa6ac
1.0
from collections import namedtuple, Counter, defaultdict from tlkit.data.sequential_tasks_dataloaders import ConcatenatedDataLoader, CyclingDataLoader, ErrorPassingConcatenatedDataLoader, ErrorPassingCyclingDataLoader from tlkit.utils import SINGLE_IMAGE_TASKS, TASKS_TO_CHANNELS import torch import torch.utils.data as utils import torchvision.transforms as transforms import torchvision.datasets as ds import torch.utils.data as data from tqdm import tqdm from PIL import Image, ImageFile import numpy as np import os import torch.multiprocessing as mp from torch.utils.data import DataLoader import warnings from tlkit.data.img_transforms import default_loader, get_transform from tlkit.data.splits import SPLIT_TO_NUM_IMAGES, taskonomy_no_midlevel as split_taskonomy_no_midlevel TRAIN_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['train'] VAL_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['val'] TEST_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['test'] ImageFile.LOAD_TRUNCATED_IMAGES = True # TODO Test this class TaskonomyData(data.Dataset): ''' Loads data for the Taskonomy dataset. This expects that the data is structured /path/to/data/ rgb/ modelk/ point_i_view_j.png ... depth_euclidean/ ... (other tasks) If one would like to use pretrained representations, then they can be added into the directory as: /path/to/data/ rgb_encoding/ modelk/ point_i_view_j.npy ... Basically, any other folder name will work as long as it is named the same way. ''' def __init__(self, data_path, tasks, buildings, transform=None, load_to_mem=False, zip_file_name=False, max_images=None): ''' data_path: Path to data tasks: Which tasks to load. Any subfolder will work as long as data is named accordingly buildings: Which models to include. See `splits.taskonomy` transform: one transform per task. Note: This assumes that all images are present in all (used) subfolders ''' self.return_tuple = True if isinstance(tasks, str): tasks = [tasks] transform = [transform] self.return_tuple = False self.buildings = buildings self.cached_data = {} self.data_path = data_path self.load_to_mem = load_to_mem self.tasks = tasks self.zip_file_name = zip_file_name self.urls = {task: make_dataset(os.path.join(data_path, task), buildings, max_images) for task in tasks} # Validate number of images n_images_task = [(len(obs), task) for task, obs in self.urls.items()] print("\t" + " | ".join(["{}: {}".format(k, task) for task, k in n_images_task])) if max(n_images_task)[0] != min(n_images_task)[0]: print("Each task must have the same number of images. However, the max != min ({} != {}). Number of images per task is: \n\t{}".format( max(n_images_task)[0], min(n_images_task)[0], "\n\t".join([str(t) for t in n_images_task]))) # count number of frames per building per task all_buildings = defaultdict(dict) for task, obs in self.urls.items(): c = Counter([url.split("/")[-2] for url in obs]) for building in c: all_buildings[building][task] = c[building] # find where the number of distinct counts is more than 1 print('Removing data from the following buildings') buildings_to_remove = [] for b, count in all_buildings.items(): if len(set(list(count.values()))) > 1: print(f"\t{b}:", count) buildings_to_remove.append(b) # [(len(obs), task) for task, obs in self.urls.items()] # redo the loading with fewer buildings buildings_redo = [b for b in buildings if b not in buildings_to_remove] self.urls = {task: make_dataset(os.path.join(data_path, task), buildings_redo) for task in tasks} n_images_task = [(len(obs), task) for task, obs in self.urls.items()] print("\t" + " | ".join(["{}: {}".format(k, task) for task, k in n_images_task])) assert max(n_images_task)[0] == min(n_images_task)[0], \ "Each task must have the same number of images. However, the max != min ({} != {}). Number of images per task is: \n\t{}".format( max(n_images_task)[0], min(n_images_task)[0], "\n\t".join([str(t) for t in n_images_task])) self.size = max(n_images_task)[0] # Perhaps load some things into main memory if load_to_mem: print('Writing activations to memory') for t, task in zip(transform, tasks): self.cached_data[task] = [None] * len(self) for i, url in enumerate(self.urls[task]): self.cached_data[task][i] = t(default_loader(url)) self.cached_data[task] = torch.stack(self.cached_data[task]) # self.cached_data = torch.stack(self.cached_data) print('Finished writing some activations to memory') self.transform = transform def __len__(self): return self.size def __getitem__(self, index): fpaths = [self.urls[task][index] for task in self.tasks] if self.load_to_mem: result = tuple([self.cached_data[task][index] for task in self.tasks]) else: result = [default_loader(path) for path in fpaths] if self.transform is not None: # result = [transform(tensor) for transform, tensor in zip(self.transform, result)] result_post = [] for i, (transform, tensor) in enumerate(zip(self.transform, result)): try: result_post.append(transform(tensor)) except Exception as e: print(self.tasks[i], transform, tensor) raise e result = result_post # handle 2 channel outputs for i in range(len(self.tasks)): task = self.tasks[i] base_task = [t for t in SINGLE_IMAGE_TASKS if t in task] if len(base_task) == 0: continue else: base_task = base_task[0] num_channels = TASKS_TO_CHANNELS[base_task] if 'decoding' in task and result[i].shape[0] != num_channels: assert torch.sum(result[i][num_channels:,:,:]) < 1e-5, 'unused channels should be 0.' result[i] = result[i][:num_channels,:,:] if self.zip_file_name: result = tuple(zip(fpaths, result)) if self.return_tuple: return result else: return result[0] def make_dataset(dir, folders=None, max_images=None): # folders are building names. If None, get all the images (from both building folders and dir) has_reached_capacity = lambda images, max_images: not max_images is None and len(images) >= max_images images = [] dir = os.path.expanduser(dir) if not os.path.isdir(dir): assert "bad directory" for subfolder in sorted(os.listdir(dir)): subfolder_path = os.path.join(dir, subfolder) if os.path.isdir(subfolder_path) and (folders is None or subfolder in folders): for fname in sorted(os.listdir(subfolder_path)): path = os.path.join(subfolder_path, fname) if not has_reached_capacity(images, max_images): images.append(path) # If folders/buildings are not specified, use images in dir if folders is None and os.path.isfile(subfolder_path) and not has_reached_capacity(images, max_images): images.append(subfolder_path) return images def get_dataloaders(data_path, tasks, batch_size=64, batch_size_val=4, zip_file_name=False, train_folders=TRAIN_BUILDINGS, val_folders=VAL_BUILDINGS, test_folders=TEST_BUILDINGS, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, max_images=None): """ :param data_path: directory that data is stored at :param tasks: names of subdirectories to return observations from :param batch_size: :param zip_file_name: when returning an observation, this will zip the fpath to it. E.g. (/path/to/img.png, OBS) :param train_folders: in a big data dir, which subfolders contain our training data :param val_folders: in a big data dir, which subfolders contain our val data :param max_images: maximum number of images in any dataset :return: dictionary of dataloaders """ if transform is None: if isinstance(tasks, str): transform = get_transform(tasks) else: transform = [get_transform(task) if len(task.split(' ')) == 1 else get_transform(*task.split(' ')) for task in tasks] tasks = [t.split(' ')[0] for t in tasks] # handle special data operations if isinstance(train_folders, str): train_folders = split_taskonomy_no_midlevel[train_folders]['train'] if isinstance(val_folders, str): val_folders = split_taskonomy_no_midlevel[val_folders]['val'] if isinstance(test_folders, str): test_folders = split_taskonomy_no_midlevel[test_folders]['test'] dataloaders = {} print(f"Taskonomy dataset TRAIN folders: {train_folders}") dataset = TaskonomyData(data_path, tasks, buildings=train_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) dataloaders['train'] = dataloader print(f"Taskonomy dataset VAL folders: {val_folders}") dataset = TaskonomyData(data_path, tasks, buildings=val_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['val'] = dataloader print(f"Taskonomy dataset TEST folders: {test_folders}") dataset = TaskonomyData(data_path, tasks, buildings=test_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['test'] = dataloader return dataloaders def get_lifelong_dataloaders(data_path, sources, targets, masks, epochs_per_task=5, epochs_until_cycle=0, split='fullplus', batch_size=64, batch_size_val=4, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, speedup_no_rigidity=False, max_images_per_task=None): phases = ['train', 'val', 'test'] dataloaders = {phase: [] for phase in phases} if isinstance(masks, bool): masks = [masks] * len(sources) masks = [['mask_valid'] if mask else [] for mask in masks] for i, (source, target, mask) in enumerate(zip(sources, targets, masks)): print(f'# Task {i} dataloader: {source} -> {target}') tasks = source + target + mask dl = get_dataloaders( data_path, tasks, batch_size=batch_size, batch_size_val=batch_size_val, train_folders=split, val_folders=split, test_folders=split, transform=transform, num_workers=num_workers, load_to_mem=load_to_mem, pin_memory=pin_memory, max_images=max_images_per_task, ) for phase in phases: dataloaders[phase].append(dl[phase]) if speedup_no_rigidity: # For methods that do not forget (no intransigence) by construction. # In validation, we only compute task performance for just-trained task and next-to-be-trained task epoch_lengths = [len(dl.dataset) for dl in dataloaders['val']] epoch_length = min(epoch_lengths) if min(epoch_lengths) == max(epoch_lengths) else None dl_just_trained = CyclingDataLoader(dataloaders['val'], epochs_until_cycle=1, start_dl=0, epoch_length_per_dl=epoch_length) dl_next_to_be_trained = CyclingDataLoader(dataloaders['val'], epochs_until_cycle=0, start_dl=0, epoch_length_per_dl=epoch_length) dataloaders['val'] = ErrorPassingConcatenatedDataLoader([dl_just_trained, dl_next_to_be_trained], zip_idx=False) else: dataloaders['val'] = ErrorPassingConcatenatedDataLoader(dataloaders['val']) train_epoch_length = SPLIT_TO_NUM_IMAGES[split] if split is not None else min([len(dl.dataset) for dl in dataloaders['train']]) dataloaders['train'] = ErrorPassingCyclingDataLoader(dataloaders['train'], epoch_length_per_dl=epochs_per_task * train_epoch_length, epochs_until_cycle=epochs_until_cycle) dataloaders['test'] = ErrorPassingConcatenatedDataLoader(dataloaders['test']) return dataloaders
[ "torch.stack", "torch.utils.data.DataLoader", "torch.sum" ]
1.0.1
jozhang97/Side-tuning
dea345691fb7ee0230150fe56ddd644efdffa6ac
1.0
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='retinanet', version='0.1', description='Fast and accurate single shot object detector', author = 'NVIDIA Corporation', author_email='[email protected]', packages=['retinanet', 'retinanet.backbones'], ext_modules=[CUDAExtension('retinanet._C', ['csrc/extensions.cpp', 'csrc/engine.cpp', 'csrc/cuda/decode.cu', 'csrc/cuda/nms.cu'], extra_compile_args={ 'cxx': ['-std=c++14', '-O2', '-Wall'], 'nvcc': [ '-std=c++14', '--expt-extended-lambda', '--use_fast_math', '-Xcompiler', '-Wall', '-gencode=arch=compute_50,code=sm_50', '-gencode=arch=compute_52,code=sm_52', '-gencode=arch=compute_60,code=sm_60', '-gencode=arch=compute_61,code=sm_61', '-gencode=arch=compute_70,code=sm_70', '-gencode=arch=compute_72,code=sm_72', '-gencode=arch=compute_75,code=sm_75', '-gencode=arch=compute_75,code=compute_75' ], }, library_dirs= ['/usr/local/lib/'], libraries=['nvinfer', 'nvinfer_plugin', 'nvonnxparser', 'opencv_core', 'opencv_highgui', 'opencv_imgproc', 'opencv_imgcodecs']) ], cmdclass={'build_ext': BuildExtension.with_options(no_python_abi_suffix=True)}, install_requires=[ 'torch>=1.0.0a0', #'torchvision', 'apex @ git+https://github.com/NVIDIA/apex', 'pycocotools @ git+https://github.com/nvidia/cocoapi.git#subdirectory=PythonAPI', 'pillow>=6.2.2', 'requests', ], entry_points = {'console_scripts': ['retinanet=retinanet.main:main']} )
[ "torch.utils.cpp_extension.CUDAExtension", "torch.utils.cpp_extension.BuildExtension.with_options" ]
1.0.0
abhinavagarwalla/MAL-inference-deepsort
3dc2010f76dc249e60d3e970247faa7e7c5ffca6
1.0
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import os from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast, ) from ...modeling_utils import ( Conv1D, PreTrainedModel, SequenceSummary, find_pruneable_heads_and_indices, prune_conv1d_layer, ) from ...utils import logging from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_gpt2 import GPT2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "GPT2Config" _TOKENIZER_FOR_DOC = "GPT2Tokenizer" GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl", "distilgpt2", # See all GPT-2 models at https://huggingface.co/models?filter=gpt2 ] def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False): super().__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer( "bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx) ) self.register_buffer("masked_bias", torch.tensor(-1e4)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.is_cross_attention = is_cross_attention if self.is_cross_attention: self.c_attn = Conv1D(2 * n_state, nx) self.q_attn = Conv1D(n_state, nx) else: self.c_attn = Conv1D(3 * n_state, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_head, self.split_size // self.n_head, self.pruned_heads ) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False): w = torch.matmul(q, k) if self.scale: w = w / (float(v.size(-1)) ** 0.5) nd, ns = w.size(-2), w.size(-1) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask mask = self.bias[:, :, ns - nd : ns, :ns] w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype)) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = (torch.matmul(w, v),) if output_attentions: outputs += (w,) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): if encoder_hidden_states is not None: assert hasattr( self, "q_attn" ), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`." query = self.q_attn(hidden_states) key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key.transpose(-2, -1), value) # transpose to have same shapes else: present = None attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) return (a, present) + attn_outputs[1:] # a, present, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super().__init__() hidden_size = config.n_embd inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = Attention(hidden_size, n_ctx, config, scale) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: self.crossattention = Attention(hidden_size, n_ctx, config, scale, is_cross_attention=True) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = MLP(inner_dim, config) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): attn_outputs = self.attn( self.ln_1(hidden_states), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + hidden_states if encoder_hidden_states is not None: # add one self-attention block for cross-attention assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" cross_attn_outputs = self.crossattention( self.ln_cross_attn(hidden_states), attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = hidden_states + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights feed_forward_hidden_states = self.mlp(self.ln_2(hidden_states)) # residual connection hidden_states = hidden_states + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class GPT2DoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided): Language modeling loss. mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided): Multiple choice classification loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): Tuple of length :obj:`config.n_layers`, containing tuples of tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mc_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mc_logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None GPT2_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else ``past_key_values[0][0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input sequence tokens in the vocabulary. If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be passed as ``input_ids``. Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which have their past given to this model should not be passed as ``input_ids`` as they have already been computed. attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see :obj:`past_key_values`). use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (:obj:`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the following number of attention modules: - gpt2: 12 - gpt2-medium: 24 - gpt2-large: 36 - gpt2-xl: 48 Example:: # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: model = GPT2LMHeadModel.from_pretrained('gpt2-xl') device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8], 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]} model.parallelize(device_map) """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example:: # On a 4 GPU machine with gpt2-large: model = GPT2LMHeadModel.from_pretrained('gpt2-large') device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7], 1: [8, 9, 10, 11, 12, 13, 14, 15], 2: [16, 17, 18, 19, 20, 21, 22, 23], 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() """ class GPT2Embeddings(nn.Module): def __init__(self, config): super().__init__() self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) self.emb3 = nn.Embedding(config.emb3_size, config.n_embd) self.emb4 = nn.Embedding(config.emb4_size, config.n_embd) # token type embedding also -> wte self.drop = nn.Dropout(config.embd_pdrop) # layer norm is in the robertamodel def forward( self, input_ids=None, token_type_ids=None, position_ids=None, emb3_ids=None, emb4_ids=None, inputs_embeds=None ): # some processing of forward input is done on Model class (not necessary to move here i think?) # tok emb + pos emb if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds # tok type emb if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds # third emb if emb3_ids is not None: emb3_embeds = self.emb3(emb3_ids) hidden_states = hidden_states + emb3_embeds # fourth emb if emb4_ids is not None: emb4_embeds = self.emb4(emb4_ids) hidden_states = hidden_states + emb4_embeds # fith emb # dropout hidden_states = self.drop(hidden_states) return hidden_states @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) # NEW self.embeddings = GPT2Embeddings(config) # NEW # self.wte = nn.Embedding(config.vocab_size, config.n_embd) # self.wpe = nn.Embedding(config.n_positions, config.n_embd) # self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): # Check validity of device_map self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) # self.wte = self.wte.to(self.first_device) # self.wpe = self.wpe.to(self.first_device) self.embeddings = self.embeddings.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" # self.wte = self.wte.to("cpu") # self.wpe = self.wpe.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.embeddings.wte def set_input_embeddings(self, new_embeddings): self.embeddings.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="gpt2", output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, emb3_ids=None, emb4_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: assert batch_size > 0, "batch_size has to be defined and > 0" attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) # if inputs_embeds is None: # inputs_embeds = self.wte(input_ids) # position_embeds = self.wpe(position_ids) # hidden_states = inputs_embeds + position_embeds # if token_type_ids is not None: # token_type_embeds = self.wte(token_type_ids) # hidden_states = hidden_states + token_type_embeds # hidden_states = self.drop(hidden_states) # NEW hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, emb3_ids=emb3_ids, emb4_ids=emb4_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) # NEW output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="gpt2", output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, emb3_ids=None, emb4_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, emb3_ids=emb3_ids, emb4_ids=emb4_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING, ) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, emb3_ids=None, emb4_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, labels=None, mc_labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Return: Example:: >>> import torch >>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') >>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2') >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoded_choices = [tokenizer.encode(s) for s in choices] >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) >>> lm_logits = outputs.logits >>> mc_logits = outputs.mc_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, emb3_ids=emb3_ids, emb4_ids=emb4_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) mc_loss = None if mc_labels is not None: loss_fct = CrossEntropyLoss() mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) lm_loss = None if labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_loss is not None: output = (mc_loss,) + output return ((lm_loss,) + output) if lm_loss is not None else output return GPT2DoubleHeadsModelOutput( loss=lm_loss, mc_loss=mc_loss, logits=lm_logits, mc_logits=mc_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) @add_start_docstrings( """ The GPT2 Model transformer with a sequence classification head on top (linear layer). :class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, GPT2_START_DOCSTRING, ) class GPT2ForSequenceClassification(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="microsoft/dialogrpt", output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, emb3_ids=None, emb4_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, emb3_ids=emb3_ids, emb4_ids=emb4_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
[ "torch.nn.Linear", "torch.cat", "torch.ne", "torch.ones", "torch.nn.CrossEntropyLoss", "torch.nn.LayerNorm", "torch.nn.Softmax", "torch.tensor", "torch.cuda.device_count", "torch.cuda.set_device", "torch.cuda.empty_cache", "torch.matmul", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.arange", "torch.from_numpy", "torch.nn.Embedding" ]
1.0
KanaCS/transformers
d4ba8ec0d56a332fdc66d0339db4dfe1a9af7af0
1.7
import torch import torch.nn as nn from pytorch_models.MF import BaseMF class GMF(BaseMF): def __init__(self, hyper_params): super(GMF, self).__init__(hyper_params) self.final = nn.Linear(hyper_params['latent_size'], 1) self.dropout = nn.Dropout(hyper_params['dropout']) def get_score(self, user_id, item_id): # For the FM user_bias = self.user_bias.gather(0, user_id.view(-1)).view(user_id.shape) item_bias = self.item_bias.gather(0, item_id.view(-1)).view(item_id.shape) # Embed Latent space user = self.dropout(self.user_embedding(user_id.view(-1))) item = self.dropout(self.item_embedding(item_id.view(-1))) joint = user * item rating = self.final(joint)[:, 0].view(user_id.shape) # [bsz] return user_bias + item_bias + self.global_bias + rating class MLP(BaseMF): def __init__(self, hyper_params): super(MLP, self).__init__(hyper_params) self.project = nn.Sequential( nn.Dropout(hyper_params['dropout']), nn.Linear(2 * hyper_params['latent_size'], hyper_params['latent_size']), nn.ReLU(), nn.Linear(hyper_params['latent_size'], hyper_params['latent_size']) ) self.final = nn.Linear(hyper_params['latent_size'], 1) self.dropout = nn.Dropout(hyper_params['dropout']) def get_score(self, user_id, item_id): # For the FM user_bias = self.user_bias.gather(0, user_id.view(-1)).view(user_id.shape) item_bias = self.item_bias.gather(0, item_id.view(-1)).view(item_id.shape) # Embed Latent space user = self.dropout(self.user_embedding(user_id.view(-1))) item = self.dropout(self.item_embedding(item_id.view(-1))) joint = torch.cat([ user, item ], dim = -1) joint = self.project(joint) rating = self.final(joint)[:, 0].view(user_id.shape) return user_bias + item_bias + self.global_bias + rating class NeuMF(BaseMF): def __init__(self, hyper_params): super(NeuMF, self).__init__(hyper_params, keep_gamma = False) self.gmf_user_embedding = nn.Embedding(hyper_params['total_users'], hyper_params['latent_size']) self.gmf_item_embedding = nn.Embedding(hyper_params['total_items'], hyper_params['latent_size']) self.mlp_user_embedding = nn.Embedding(hyper_params['total_users'], hyper_params['latent_size']) self.mlp_item_embedding = nn.Embedding(hyper_params['total_items'], hyper_params['latent_size']) self.project = nn.Sequential( nn.Dropout(hyper_params['dropout']), nn.Linear(2 * hyper_params['latent_size'], hyper_params['latent_size']), nn.ReLU(), nn.Linear(hyper_params['latent_size'], hyper_params['latent_size']) ) self.final = nn.Linear(2 * hyper_params['latent_size'], 1) self.dropout = nn.Dropout(hyper_params['dropout']) def init(self, gmf_model, mlp_model): with torch.no_grad(): self.gmf_user_embedding.weight.data = gmf_model.user_embedding.weight.data self.gmf_item_embedding.weight.data = gmf_model.item_embedding.weight.data self.mlp_user_embedding.weight.data = mlp_model.user_embedding.weight.data self.mlp_item_embedding.weight.data = mlp_model.item_embedding.weight.data for i in range(len(self.project)): try: self.project[i].weight.data = mlp_model.project[i].weight.data self.project[i].bias.data = mlp_model.project[i].bias.data except: pass self.final.weight.data = torch.cat([ gmf_model.final.weight.data, mlp_model.final.weight.data ], dim = -1) self.final.bias.data = 0.5 * (gmf_model.final.bias.data + mlp_model.final.bias.data) self.user_bias.data = 0.5 * (gmf_model.user_bias.data + mlp_model.user_bias.data) self.item_bias.data = 0.5 * (gmf_model.item_bias.data + mlp_model.item_bias.data) def get_score(self, user_id, item_id): # For the FM user_bias = self.user_bias.gather(0, user_id.view(-1)).view(user_id.shape) item_bias = self.item_bias.gather(0, item_id.view(-1)).view(item_id.shape) # GMF Part user = self.dropout(self.gmf_user_embedding(user_id.view(-1))) # [bsz x 32] item = self.dropout(self.gmf_item_embedding(item_id.view(-1))) # [bsz x 32] gmf_joint = user * item # MLP Part user = self.dropout(self.mlp_user_embedding(user_id.view(-1))) # [bsz x 32] item = self.dropout(self.mlp_item_embedding(item_id.view(-1))) # [bsz x 32] mlp_joint = torch.cat([ user, item ], dim = -1) mlp_joint = self.project(mlp_joint) # NeuMF final = torch.cat([ gmf_joint, mlp_joint ], dim = -1) rating = self.final(final)[:, 0].view(user_id.shape) # [bsz] return user_bias + item_bias + self.global_bias + rating
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.no_grad", "torch.nn.ReLU", "torch.nn.Embedding" ]
1.7.0
noveens/sampling_cf
e135819b1e7310ee58edbbd138f303e5240a2619
1.0
""" This is an implementation of R2D2(Soft Actor Critic ver). See https://openreview.net/pdf?id=r1lyTjAqYX and https://arxiv.org/abs/1801.01290 """ import torch import torch.nn as nn from machina import loss_functional as lf from machina import logger from machina.traj import traj_functional as tf def train(traj, pol, qfs, targ_qfs, log_alpha, optim_pol, optim_qfs, optim_alpha, epoch, batch_size, seq_length, burn_in_length, # optimization hypers tau, gamma, sampling, reparam=True, log_enable=True, ): """ Train function for soft actor critic. Parameters ---------- traj : Traj Off policy trajectory. pol : Pol Policy. qfs : list of SAVfunction Q function. targ_qfs : list of SAVfunction Target Q function. log_alpha : torch.Tensor Temperature parameter of entropy. optim_pol : torch.optim.Optimizer Optimizer for Policy. optim_qfs : list of torch.optim.Optimizer Optimizer for Q function. optim_alpha : torch.optim.Optimizer Optimizer for alpha. epoch : int Number of iteration. batch_size : int Number of batches. seq_length : int Length of batches. burn_in_length : int Length of batches for burn-in. tau : float Target updating rate. gamma : float Discounting rate. sampling : int Number of samping in calculating expectation. reparam : bool log_enable: bool If True, enable logging Returns ------- result_dict : dict Dictionary which contains losses information. """ pol_losses = [] _qf_losses = [] alpha_losses = [] if log_enable: logger.log("Optimizing...") for batch, start_indices in traj.prioritized_random_batch_rnn(batch_size, seq_length, epoch, return_indices=True): batch, pol_loss, qf_losses, alpha_loss, td_losses = lf.r2d2_sac( pol, qfs, targ_qfs, log_alpha, batch, gamma, sampling, burn_in_length, reparam) optim_pol.zero_grad() pol_loss.backward() optim_pol.step() for optim_qf, qf_loss in zip(optim_qfs, qf_losses): optim_qf.zero_grad() qf_loss.backward() optim_qf.step() optim_alpha.zero_grad() alpha_loss.backward() optim_alpha.step() for qf, targ_qf in zip(qfs, targ_qfs): for q, targ_q in zip(qf.parameters(), targ_qf.parameters()): targ_q.detach().copy_((1 - tau) * targ_q.detach() + tau * q.detach()) pol_losses.append(pol_loss.detach().cpu().numpy()) _qf_losses.append( (sum(qf_losses) / len(qf_losses)).detach().cpu().numpy()) alpha_losses.append(alpha_loss.detach().cpu().numpy()) # update seq_pris train_length = seq_length - burn_in_length for i in range(batch_size): start = start_indices[i] + burn_in_length seq_indices = torch.arange(start, start+train_length-1) traj = tf.update_pris( traj, td_losses[:, i], seq_indices, update_epi_pris=True, seq_length=seq_length) if log_enable: logger.log("Optimization finished!") return dict( PolLoss=pol_losses, QfLoss=_qf_losses, AlphaLoss=alpha_losses )
[ "torch.arange" ]
1.0.1
krish-dx/machina
f93bb6f5aca1feccd71fc509bd6370d2015e2d85
1.4
from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDA_HOME from torch.utils.cpp_extension import CppExtension, CUDAExtension # In any case, include the CPU version modules = [ CppExtension('torchsearchsorted.cpu', ['src/cpu/searchsorted_cpu_wrapper.cpp']), ] # If nvcc is available, add the CUDA extension if CUDA_HOME: modules.append( CUDAExtension('torchsearchsorted.cuda', ['src/cuda/searchsorted_cuda_wrapper.cpp', 'src/cuda/searchsorted_cuda_kernel.cu']) ) tests_require = [ 'pytest', ] # Now proceed to setup setup( name='torchsearchsorted', version='1.1', description='A searchsorted implementation for pytorch', keywords='searchsorted', author='Antoine Liutkus', author_email='[email protected]', packages=find_packages(where='src'), package_dir={"": "src"}, ext_modules=modules, tests_require=tests_require, extras_require={ 'test': tests_require, }, cmdclass={ 'build_ext': BuildExtension } )
[ "torch.utils.cpp_extension.CUDAExtension", "torch.utils.cpp_extension.CppExtension" ]
1.4.0
small-zeng/nerf-pytorch
59b5fc655e1c22cd42dfa4a1617ba6feb8ce3464
1.5
""" Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` Attributes: _out_channels (list of int): specify number of channels for each encoder feature tensor _depth (int): specify number of stages in decoder (in other words number of downsampling operations) _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) Methods: forward(self, x: torch.Tensor) produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of shape NCHW (features should be sorted in descending order according to spatial resolution, starting with resolution same as input `x` tensor). Input: `x` with shape (1, 3, 64, 64) Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) also should support number of features according to specified depth, e.g. if depth = 5, number of feature tensors = 6 (one with same resolution as input and 5 downsampled), depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ import torch.nn as nn from pretrainedmodels.models.inceptionv4 import BasicConv2d, InceptionV4, pretrained_settings from ._base import EncoderMixin class InceptionV4Encoder(InceptionV4, EncoderMixin): def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._stage_idxs = stage_idxs self._out_channels = out_channels self._depth = depth self._in_channels = 3 # correct paddings for m in self.modules(): if isinstance(m, nn.Conv2d): if m.kernel_size == (3, 3): m.padding = (1, 1) if isinstance(m, nn.MaxPool2d): m.padding = (1, 1) # remove linear layers del self.last_linear def make_dilated(self, stage_list, dilation_list): raise ValueError( "InceptionV4 encoder does not support dilated mode " "due to pooling operation for downsampling!" ) def get_stages(self): return [ nn.Identity(), self.features[:self._stage_idxs[0]], self.features[self._stage_idxs[0]:self._stage_idxs[1]], self.features[self._stage_idxs[1]:self._stage_idxs[2]], self.features[self._stage_idxs[2]:self._stage_idxs[3]], self.features[self._stage_idxs[3]:], ] def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("last_linear.bias") state_dict.pop("last_linear.weight") super().load_state_dict(state_dict, **kwargs) inceptionv4_encoders = { "inceptionv4": { "encoder": InceptionV4Encoder, "pretrained_settings": pretrained_settings["inceptionv4"], "params": { "stage_idxs": (3, 5, 9, 15), "out_channels": (3, 64, 192, 384, 1024, 1536), "num_classes": 1001, }, } }
[ "torch.nn.Identity" ]
1.5.0
PVSemk/segmentation_models.pytorch
8d9b033be918dfc1e6186d9ef404cc7d2c171e8d
1.3
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # NOTE: To be removed once (if) https://github.com/pytorch/pytorch/pull/37385 lands from __future__ import annotations from collections import OrderedDict import torch from torch._six import container_abcs from torch.nn import Module class BufferDict(Module): r"""Holds buffers in a dictionary. BufferDict can be indexed like a regular Python dictionary, but buffers it contains are properly registered, and will be visible by all Module methods. :class:`~torch.nn.BufferDict` is an **ordered** dictionary that respects * the order of insertion, and * in :meth:`~torch.nn.BufferDict.update`, the order of the merged ``OrderedDict`` or another :class:`~torch.nn.BufferDict` (the argument to :meth:`~torch.nn.BufferDict.update`). Note that :meth:`~torch.nn.BufferDict.update` with other unordered mapping types (e.g., Python's plain ``dict``) does not preserve the order of the merged mapping. Arguments: buffers (iterable, optional): a mapping (dictionary) of (string : :class:`~torch.Tensor`) or an iterable of key-value pairs of type (string, :class:`~torch.Tensor`) Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.buffers = nn.BufferDict({ 'left': torch.randn(5, 10), 'right': torch.randn(5, 10) }) def forward(self, x, choice): x = self.buffers[choice].mm(x) return x """ def __init__(self, buffers=None): super(BufferDict, self).__init__() if buffers is not None: self.update(buffers) def __getitem__(self, key): return self._buffers[key] def __setitem__(self, key, buffer): self.register_buffer(key, buffer) def __delitem__(self, key): del self._buffers[key] def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.keys()) def __contains__(self, key): return key in self._buffers def clear(self): """Remove all items from the BufferDict.""" self._buffers.clear() def pop(self, key): r"""Remove key from the BufferDict and return its buffer. Arguments: key (string): key to pop from the BufferDict """ v = self[key] del self[key] return v def keys(self): r"""Return an iterable of the BufferDict keys.""" return self._buffers.keys() def items(self): r"""Return an iterable of the BufferDict key/value pairs.""" return self._buffers.items() def values(self): r"""Return an iterable of the BufferDict values.""" return self._buffers.values() def update(self, buffers): r"""Update the :class:`~torch.nn.BufferDict` with the key-value pairs from a mapping or an iterable, overwriting existing keys. .. note:: If :attr:`buffers` is an ``OrderedDict``, a :class:`~torch.nn.BufferDict`, or an iterable of key-value pairs, the order of new elements in it is preserved. Arguments: buffers (iterable): a mapping (dictionary) from string to :class:`~torch.Tensor`, or an iterable of key-value pairs of type (string, :class:`~torch.Tensor`) """ if not isinstance(buffers, container_abcs.Iterable): raise TypeError( "BuffersDict.update should be called with an " "iterable of key/value pairs, but got " + type(buffers).__name__ ) if isinstance(buffers, container_abcs.Mapping): if isinstance(buffers, (OrderedDict, BufferDict)): for key, buffer in buffers.items(): self[key] = buffer else: for key, buffer in sorted(buffers.items()): self[key] = buffer else: for j, p in enumerate(buffers): if not isinstance(p, container_abcs.Iterable): raise TypeError( "BufferDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(p).__name__ ) if not len(p) == 2: raise ValueError( "BufferDict update sequence element " "#" + str(j) + " has length " + str(len(p)) + "; 2 is required" ) self[p[0]] = p[1] def extra_repr(self): child_lines = [] for k, p in self._buffers.items(): size_str = "x".join(str(size) for size in p.size()) device_str = "" if not p.is_cuda else " (GPU {})".format(p.get_device()) parastr = "Buffer containing: [{} of size {}{}]".format( torch.typename(p), size_str, device_str ) child_lines.append(" (" + k + "): " + parastr) tmpstr = "\n".join(child_lines) return tmpstr def __call__(self, input): raise RuntimeError("BufferDict should not be called.")
[ "torch.typename" ]
1.3
SamuelMarks/botorch
7801e2f56dc447322b2b6c92cab683d8900e4c7f
1.3
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from botorch.utils.testing import BotorchTestCase, MockModel, MockPosterior class TestMock(BotorchTestCase): def test_MockPosterior(self): # test basic logic mp = MockPosterior() self.assertEqual(mp.device.type, "cpu") self.assertEqual(mp.dtype, torch.float32) self.assertEqual(mp.event_shape, torch.Size()) self.assertEqual( MockPosterior(variance=torch.rand(2)).event_shape, torch.Size([2]) ) # test passing in tensors mean = torch.rand(2) variance = torch.eye(2) samples = torch.rand(1, 2) mp = MockPosterior(mean=mean, variance=variance, samples=samples) self.assertEqual(mp.device.type, "cpu") self.assertEqual(mp.dtype, torch.float32) self.assertTrue(torch.equal(mp.mean, mean)) self.assertTrue(torch.equal(mp.variance, variance)) self.assertTrue(torch.all(mp.sample() == samples.unsqueeze(0))) self.assertTrue( torch.all(mp.sample(torch.Size([2])) == samples.repeat(2, 1, 1)) ) with self.assertRaises(RuntimeError): mp.sample(sample_shape=torch.Size([2]), base_samples=torch.rand(3)) def test_MockModel(self): mp = MockPosterior() mm = MockModel(mp) X = torch.empty(0) self.assertEqual(mm.posterior(X), mp) self.assertEqual(mm.num_outputs, 0) mm.state_dict() mm.load_state_dict()
[ "torch.Size", "torch.rand", "torch.equal", "torch.eye", "torch.empty" ]
1.3
SamuelMarks/botorch
7801e2f56dc447322b2b6c92cab683d8900e4c7f
1.3
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import warnings import torch from botorch.cross_validation import batch_cross_validation, gen_loo_cv_folds from botorch.exceptions.warnings import OptimizationWarning from botorch.models.gp_regression import FixedNoiseGP, SingleTaskGP from botorch.utils.testing import BotorchTestCase, _get_random_data from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood class TestFitBatchCrossValidation(BotorchTestCase): def test_single_task_batch_cv(self): n = 10 for batch_shape, num_outputs, dtype in itertools.product( (torch.Size(), torch.Size([2])), (1, 2), (torch.float, torch.double) ): tkwargs = {"device": self.device, "dtype": dtype} train_X, train_Y = _get_random_data( batch_shape=batch_shape, num_outputs=num_outputs, n=n, **tkwargs ) if num_outputs == 1: train_Y = train_Y.squeeze(-1) train_Yvar = torch.full_like(train_Y, 0.01) noiseless_cv_folds = gen_loo_cv_folds(train_X=train_X, train_Y=train_Y) # check shapes expected_shape_train_X = batch_shape + torch.Size( [n, n - 1, train_X.shape[-1]] ) expected_shape_test_X = batch_shape + torch.Size([n, 1, train_X.shape[-1]]) self.assertEqual(noiseless_cv_folds.train_X.shape, expected_shape_train_X) self.assertEqual(noiseless_cv_folds.test_X.shape, expected_shape_test_X) expected_shape_train_Y = batch_shape + torch.Size([n, n - 1, num_outputs]) expected_shape_test_Y = batch_shape + torch.Size([n, 1, num_outputs]) self.assertEqual(noiseless_cv_folds.train_Y.shape, expected_shape_train_Y) self.assertEqual(noiseless_cv_folds.test_Y.shape, expected_shape_test_Y) self.assertIsNone(noiseless_cv_folds.train_Yvar) self.assertIsNone(noiseless_cv_folds.test_Yvar) # Test SingleTaskGP with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=OptimizationWarning) cv_results = batch_cross_validation( model_cls=SingleTaskGP, mll_cls=ExactMarginalLogLikelihood, cv_folds=noiseless_cv_folds, fit_args={"options": {"maxiter": 1}}, ) expected_shape = batch_shape + torch.Size([n, 1, num_outputs]) self.assertEqual(cv_results.posterior.mean.shape, expected_shape) self.assertEqual(cv_results.observed_Y.shape, expected_shape) # Test FixedNoiseGP noisy_cv_folds = gen_loo_cv_folds( train_X=train_X, train_Y=train_Y, train_Yvar=train_Yvar ) # check shapes self.assertEqual(noisy_cv_folds.train_X.shape, expected_shape_train_X) self.assertEqual(noisy_cv_folds.test_X.shape, expected_shape_test_X) self.assertEqual(noisy_cv_folds.train_Y.shape, expected_shape_train_Y) self.assertEqual(noisy_cv_folds.test_Y.shape, expected_shape_test_Y) self.assertEqual(noisy_cv_folds.train_Yvar.shape, expected_shape_train_Y) self.assertEqual(noisy_cv_folds.test_Yvar.shape, expected_shape_test_Y) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=OptimizationWarning) cv_results = batch_cross_validation( model_cls=FixedNoiseGP, mll_cls=ExactMarginalLogLikelihood, cv_folds=noisy_cv_folds, fit_args={"options": {"maxiter": 1}}, ) self.assertEqual(cv_results.posterior.mean.shape, expected_shape) self.assertEqual(cv_results.observed_Y.shape, expected_shape) self.assertEqual(cv_results.observed_Y.shape, expected_shape)
[ "torch.Size", "torch.full_like" ]
1.3
SamuelMarks/botorch
7801e2f56dc447322b2b6c92cab683d8900e4c7f
3
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG), # acting on behalf of its Max Planck Institute for Intelligent Systems and the # Max Planck Institute for Biological Cybernetics. All rights reserved. # # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights # on this computer program. You can only use this computer program if you have closed a license agreement # with MPG or you get the right to use the computer program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and liable to prosecution. # Contact: [email protected] # # # If you use this code in a research publication please consider citing the following: # # Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866> # # # Code Developed by: # Nima Ghorbani <https://nghorbani.github.io/> # # 2020.12.12 def pyrenderer(imw=2048, imh=2048): from body_visualizer.mesh.mesh_viewer import MeshViewer import cv2 import numpy as np import trimesh try: mv = MeshViewer(width=imw, height=imh, use_offscreen=True) except: import os os.environ['PYOPENGL_PLATFORM'] = 'egl' os.environ['EGL_DEVICE_ID'] = os.environ['GPU_DEVICE_ORDINAL'].split(',')[0] mv = MeshViewer(width=imw, height=imh, use_offscreen=True) mv.set_cam_trans([0, -0.5, 2.]) def render_an_image(meshes): n_all = len(meshes) nc = int(np.sqrt(n_all)) out_image = np.zeros([1, 1, 1, mv.width, mv.height, 4]) scale_percent = 100./nc width = int(mv.width * scale_percent / 100) height = int(mv.height * scale_percent / 100) dim = (width, height) for rId in range(nc): for cId in range(nc): i = (nc*rId) + cId if i>len(meshes): break mesh = meshes[i] # mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(-90), (1, 0, 0))) mesh.vertices -= np.median(np.array(mesh.vertices), axis=0) mv.set_dynamic_meshes([mesh]) img = mv.render(render_wireframe=False, RGBA=True) img_resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) out_image[0, 0, 0, (rId*width):((rId+1)*width), (cId*height):((cId+1)*height)] = cv2.cvtColor(img_resized, cv2.COLOR_BGRA2RGBA) return out_image.astype(np.uint8) return render_an_image def vposer_trainer_renderer(bm, num_bodies_to_display=5): import numpy as np import trimesh import torch from body_visualizer.tools.vis_tools import imagearray2file, colors from human_body_prior.tools.omni_tools import copy2cpu as c2c from human_body_prior.tools.omni_tools import makepath from trimesh import Trimesh as Mesh from trimesh.util import concatenate as mesh_cat renderer = pyrenderer(1024, 1024) faces = c2c(bm.f) def render_once(body_parms, body_colors=[colors['grey'], colors['brown-light']], out_fname=None): ''' :param body_parms: list of dictionaries of body parameters. :param body_colors: list of np arrays of color rgb values :param movie_outpath: a mp4 path :return: ''' if out_fname is not None: makepath(out_fname, isfile=True) assert len(body_parms) <= len(body_colors), ValueError('Not enough colors provided for #{} body_parms'.format(len(body_parms))) bs = body_parms[0]['pose_body'].shape[0] body_ids = np.random.choice(bs, num_bodies_to_display) body_evals = [c2c(bm(root_orient=v['root_orient'].view(bs, -1) if 'root_orient' in v else torch.zeros(bs, 3).type_as(v['pose_body']), pose_body=v['pose_body'].contiguous().view(bs, -1)).v) for v in body_parms] num_verts = body_evals[0].shape[1] render_meshes = [] for bId in body_ids: concat_cur_meshes = None for body, body_color in zip(body_evals, body_colors): cur_body_mesh = Mesh(body[bId], faces, vertex_colors=np.ones([num_verts, 3]) * body_color) concat_cur_meshes = cur_body_mesh if concat_cur_meshes is None else mesh_cat(concat_cur_meshes, cur_body_mesh) render_meshes.append(concat_cur_meshes) img = renderer(render_meshes) if out_fname is not None: imagearray2file(img, out_fname, fps=10) return return render_once
[ "torch.zeros" ]
3
zokin/human_body_prior
0278cb45180992e4d39ba1a11601f5ecc53ee148