version
stringclasses
24 values
code
stringlengths
396
135k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
6
64
hexsha
stringlengths
40
40
1.4
""" Base loss definitions """ from collections import OrderedDict import copy import torch import torch.nn as nn from mixmo.utils import misc, logger LOGGER = logger.get_logger(__name__, level="DEBUG") class AbstractLoss(nn.modules.loss._Loss): """ Base loss class defining printing and logging utilies """ def __init__(self, config_args, device, config_loss=None): self.device = device self.config_args = config_args or {} self.config_loss = config_loss or {} self.name = self.config_loss["display_name"] nn.modules.loss._Loss.__init__(self) def print_details(self): LOGGER.info(f"Using loss: {self.config_loss} with name: {self.name}") def start_accumulator(self): self._accumulator_loss = 0 self._accumulator_len = 0 def get_accumulator_stats(self, format="short", split=None): """ Gather tracked stats into a dictionary as formatted strings """ if not self._accumulator_len: return {} stats = OrderedDict({}) loss_value = self._accumulator_loss / self._accumulator_len if format == "long": assert split is not None key = split + "/" + self.name stats[key] = { "value": loss_value, "string": f"{loss_value:.5}", } else: # make it as short as possibe to fit on one line of tqdm postfix loss_string = f"{loss_value:.3}".replace("e-0", "-").replace("e-", "-") stats[self.name] = loss_string return stats def forward(self, input, target): current_loss = self._forward(input, target) self._accumulator_loss += current_loss.detach().to("cpu").numpy() self._accumulator_len += 1 return current_loss def _forward(self, input, target): raise NotImplementedError class SoftCrossEntropyLoss(AbstractLoss): """ Soft CrossEntropy loss that specifies the proper forward function for AbstractLoss """ def _forward(self, input, target): """ Cross entropy that accepts soft targets Args: pred: predictions for neural network targets: targets, can be soft size_average: if false, sum is returned instead of mean Examples:: input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]]) input = torch.autograd.Variable(out, requires_grad=True) target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]]) target = torch.autograd.Variable(y1) loss = cross_entropy(input, target) loss.backward() """ if len(target.size()) == 1: target = torch.nn.functional.one_hot(target, num_classes=input.size(-1)) target = target.to(torch.float).to(self.device) logsoftmax = torch.nn.LogSoftmax(dim=1) return torch.mean(torch.sum(-target * logsoftmax(input), dim=1)) DICT_LOSS_STANDARD = { "soft_cross_entropy": SoftCrossEntropyLoss, } class WrapperLoss(AbstractLoss): """ Wrapper around the multiple losses. Initialized from listloss. """ def __init__(self, config_loss, config_args, device): AbstractLoss.__init__( self, config_args=config_args, config_loss=config_loss, device=device, ) self.losses = self._init_get_losses() self.regularized_network = None def _init_get_losses(self): """ Initialize and gather losses from listloss """ losses = [] for ic, config_loss in enumerate(self.config_loss["listloss"]): if config_loss["coeff"] == "<num_members": config_loss["coeff"] = (1. if ic < self.config_args["num_members"] else 0) if config_loss["coeff"] == 0: LOGGER.debug(f"Skip loss: {config_loss}") continue loss_callable = get_loss(config_loss, device=self.device, config_args=self.config_args) loss = copy.deepcopy(config_loss) loss["callable"] = loss_callable losses.append(loss) return losses def print_details(self): return def start_accumulator(self): AbstractLoss.start_accumulator(self) for loss in self.losses: loss["callable"].start_accumulator() def get_accumulator_stats(self, format="short", split=None): """ Gather tracked stats into a dictionary as formatted strings """ if not self._accumulator_len: return {} stats = AbstractLoss.get_accumulator_stats(self, format=format, split=split) if format == "long": # tensorboard logs if self.config_loss.get("l2_reg"): l2_reg = self.l2_reg().detach().to("cpu").numpy() stats["general/l2_reg"] = { "value": l2_reg, "string": f"{l2_reg:.4}", } for loss in self.losses: substats = loss["callable"].get_accumulator_stats( format=format, split=split, ) misc.clean_update(stats, substats) return stats def _forward(self, input, target): """ Perform loss forwards for each sublosses and l2 reg """ computed_losses = [self._forward_subloss(loss, input, target) for loss in self.losses] stacked_computed_losses = torch.stack(computed_losses) final_loss = stacked_computed_losses.sum() if self.config_loss.get("l2_reg"): final_loss = final_loss + self.l2_reg() * float(self.config_loss.get("l2_reg")) return final_loss def _forward_subloss(self, loss, input, target): """ Standard loss forward for one of the sublosses """ coeff = float(loss["coeff"]) subloss_input = self._match_item(loss["input"], dict_tensors=input) subloss_target = self._match_item(loss["target"], dict_tensors=target) loss = loss["callable"](input=subloss_input, target=subloss_target) return loss * coeff @staticmethod def _match_item(name, dict_tensors): if misc.is_none(name): return None if name in dict_tensors: return dict_tensors[str(name)] raise ValueError(name) def set_regularized_network(self, network): if self.config_loss.get("l2_reg"): self.regularized_network = network LOGGER.warning(f"Set l2 regularization on {network.__class__.__name__}") def l2_reg(self,): """ Compute l2 regularization/weight decay over the non-excluded parameters """ assert self.regularized_network is not None # Retrieve non excluded parameters params = list(self.regularized_network.parameters()) # Iterate over all parameters to decay l2_reg = None for W in params: if l2_reg is None: l2_reg = torch.sum(torch.pow(W, 2)) else: l2_reg = l2_reg + torch.sum(torch.pow(W, 2)) assert l2_reg is not None return l2_reg def get_loss(config_loss, device=None, config_args=None): """ Construct loss object, wrapped if there are multiple losses """ loss_name = config_loss["name"] if loss_name == "multitask": loss = WrapperLoss(config_args=config_args, device=device, config_loss=config_loss) elif loss_name in DICT_LOSS_STANDARD: loss = DICT_LOSS_STANDARD[loss_name]( config_loss=config_loss, config_args=config_args, device=device ) else: raise Exception(f"Loss {loss_name} not implemented") loss.print_details() return loss
[ "torch.nn.LogSoftmax", "torch.nn.modules.loss._Loss.__init__", "torch.stack", "torch.pow" ]
1.4.0
JiarunLiu/mixmo-pytorch
a9ad674122d9b6512094b8292280a4045bb5a400
1.4
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import math import warnings import torch import pyro import pyro.poutine as poutine from pyro.ops.stats import fit_generalized_pareto from .abstract_infer import TracePosterior from .enum import get_importance_trace class Importance(TracePosterior): """ :param model: probabilistic model defined as a function :param guide: guide used for sampling defined as a function :param num_samples: number of samples to draw from the guide (default 10) This method performs posterior inference by importance sampling using the guide as the proposal distribution. If no guide is provided, it defaults to proposing from the model's prior. """ def __init__(self, model, guide=None, num_samples=None): """ Constructor. default to num_samples = 10, guide = model """ super().__init__() if num_samples is None: num_samples = 10 warnings.warn("num_samples not provided, defaulting to {}".format(num_samples)) if guide is None: # propose from the prior by making a guide from the model by hiding observes guide = poutine.block(model, hide_types=["observe"]) self.num_samples = num_samples self.model = model self.guide = guide def _traces(self, *args, **kwargs): """ Generator of weighted samples from the proposal distribution. """ for i in range(self.num_samples): guide_trace = poutine.trace(self.guide).get_trace(*args, **kwargs) model_trace = poutine.trace( poutine.replay(self.model, trace=guide_trace)).get_trace(*args, **kwargs) log_weight = model_trace.log_prob_sum() - guide_trace.log_prob_sum() yield (model_trace, log_weight) def get_log_normalizer(self): """ Estimator of the normalizing constant of the target distribution. (mean of the unnormalized weights) """ # ensure list is not empty if self.log_weights: log_w = torch.tensor(self.log_weights) log_num_samples = torch.log(torch.tensor(self.num_samples * 1.)) return torch.logsumexp(log_w - log_num_samples, 0) else: warnings.warn("The log_weights list is empty, can not compute normalizing constant estimate.") def get_normalized_weights(self, log_scale=False): """ Compute the normalized importance weights. """ if self.log_weights: log_w = torch.tensor(self.log_weights) log_w_norm = log_w - torch.logsumexp(log_w, 0) return log_w_norm if log_scale else torch.exp(log_w_norm) else: warnings.warn("The log_weights list is empty. There is nothing to normalize.") def get_ESS(self): """ Compute (Importance Sampling) Effective Sample Size (ESS). """ if self.log_weights: log_w_norm = self.get_normalized_weights(log_scale=True) ess = torch.exp(-torch.logsumexp(2*log_w_norm, 0)) else: warnings.warn("The log_weights list is empty, effective sample size is zero.") ess = 0 return ess def vectorized_importance_weights(model, guide, *args, **kwargs): """ :param model: probabilistic model defined as a function :param guide: guide used for sampling defined as a function :param num_samples: number of samples to draw from the guide (default 1) :param int max_plate_nesting: Bound on max number of nested :func:`pyro.plate` contexts. :param bool normalized: set to True to return self-normalized importance weights :returns: returns a ``(num_samples,)``-shaped tensor of importance weights and the model and guide traces that produced them Vectorized computation of importance weights for models with static structure:: log_weights, model_trace, guide_trace = \\ vectorized_importance_weights(model, guide, *args, num_samples=1000, max_plate_nesting=4, normalized=False) """ num_samples = kwargs.pop("num_samples", 1) max_plate_nesting = kwargs.pop("max_plate_nesting", None) normalized = kwargs.pop("normalized", False) if max_plate_nesting is None: raise ValueError("must provide max_plate_nesting") max_plate_nesting += 1 def vectorize(fn): def _fn(*args, **kwargs): with pyro.plate("num_particles_vectorized", num_samples, dim=-max_plate_nesting): return fn(*args, **kwargs) return _fn model_trace, guide_trace = get_importance_trace( "flat", max_plate_nesting, vectorize(model), vectorize(guide), args, kwargs) guide_trace.pack_tensors() model_trace.pack_tensors(guide_trace.plate_to_symbol) if num_samples == 1: log_weights = model_trace.log_prob_sum() - guide_trace.log_prob_sum() else: wd = guide_trace.plate_to_symbol["num_particles_vectorized"] log_weights = 0. for site in model_trace.nodes.values(): if site["type"] != "sample": continue log_weights += torch.einsum(site["packed"]["log_prob"]._pyro_dims + "->" + wd, [site["packed"]["log_prob"]]) for site in guide_trace.nodes.values(): if site["type"] != "sample": continue log_weights -= torch.einsum(site["packed"]["log_prob"]._pyro_dims + "->" + wd, [site["packed"]["log_prob"]]) if normalized: log_weights = log_weights - torch.logsumexp(log_weights) return log_weights, model_trace, guide_trace @torch.no_grad() def psis_diagnostic(model, guide, *args, **kwargs): """ Computes the Pareto tail index k for a model/guide pair using the technique described in [1], which builds on previous work in [2]. If :math:`0 < k < 0.5` the guide is a good approximation to the model posterior, in the sense described in [1]. If :math:`0.5 \\le k \\le 0.7`, the guide provides a suboptimal approximation to the posterior, but may still be useful in practice. If :math:`k > 0.7` the guide program provides a poor approximation to the full posterior, and caution should be used when using the guide. Note, however, that a guide may be a poor fit to the full posterior while still yielding reasonable model predictions. If :math:`k < 0.0` the importance weights corresponding to the model and guide appear to be bounded from above; this would be a bizarre outcome for a guide trained via ELBO maximization. Please see [1] for a more complete discussion of how the tail index k should be interpreted. Please be advised that a large number of samples may be required for an accurate estimate of k. Note that we assume that the model and guide are both vectorized and have static structure. As is canonical in Pyro, the args and kwargs are passed to the model and guide. References [1] 'Yes, but Did It Work?: Evaluating Variational Inference.' Yuling Yao, Aki Vehtari, Daniel Simpson, Andrew Gelman [2] 'Pareto Smoothed Importance Sampling.' Aki Vehtari, Andrew Gelman, Jonah Gabry :param callable model: the model program. :param callable guide: the guide program. :param int num_particles: the total number of times we run the model and guide in order to compute the diagnostic. defaults to 1000. :param max_simultaneous_particles: the maximum number of simultaneous samples drawn from the model and guide. defaults to `num_particles`. `num_particles` must be divisible by `max_simultaneous_particles`. compute the diagnostic. defaults to 1000. :param int max_plate_nesting: optional bound on max number of nested :func:`pyro.plate` contexts in the model/guide. defaults to 7. :returns float: the PSIS diagnostic k """ num_particles = kwargs.pop('num_particles', 1000) max_simultaneous_particles = kwargs.pop('max_simultaneous_particles', num_particles) max_plate_nesting = kwargs.pop('max_plate_nesting', 7) if num_particles % max_simultaneous_particles != 0: raise ValueError("num_particles must be divisible by max_simultaneous_particles.") N = num_particles // max_simultaneous_particles log_weights = [vectorized_importance_weights(model, guide, num_samples=max_simultaneous_particles, max_plate_nesting=max_plate_nesting, *args, **kwargs)[0] for _ in range(N)] log_weights = torch.cat(log_weights) log_weights -= log_weights.max() log_weights = torch.sort(log_weights, descending=False)[0] cutoff_index = - int(math.ceil(min(0.2 * num_particles, 3.0 * math.sqrt(num_particles)))) - 1 lw_cutoff = max(math.log(1.0e-15), log_weights[cutoff_index]) lw_tail = log_weights[log_weights > lw_cutoff] if len(lw_tail) < 10: warnings.warn("Not enough tail samples to compute PSIS diagnostic; increase num_particles.") k = float('inf') else: k, _ = fit_generalized_pareto(lw_tail.exp() - math.exp(lw_cutoff)) return k
[ "torch.cat", "torch.einsum", "torch.no_grad", "torch.logsumexp", "torch.tensor", "torch.exp", "torch.sort" ]
1.4.0
patrickeganfoley/pyro
3bd5e099e85f3686c66fc3b53476c3b009a77a02
1.4
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import torch from pyro.distributions import Categorical from pyro.distributions.torch_distribution import TorchDistributionMixin from pyro.ops.indexing import Vindex from pyro.util import ignore_jit_warnings from .messenger import Messenger from .runtime import _ENUM_ALLOCATOR def _tmc_mixture_sample(msg): dist, num_samples = msg["fn"], msg["infer"].get("num_samples") # find batch dims that aren't plate dims batch_shape = [1] * len(dist.batch_shape) for f in msg["cond_indep_stack"]: if f.vectorized: batch_shape[f.dim] = f.size if f.size > 0 else dist.batch_shape[f.dim] batch_shape = tuple(batch_shape) # sample a batch sample_shape = (num_samples,) fat_sample = dist(sample_shape=sample_shape) # TODO thin before sampling assert fat_sample.shape == sample_shape + dist.batch_shape + dist.event_shape assert any(d > 1 for d in fat_sample.shape) target_shape = (num_samples,) + batch_shape + dist.event_shape # if this site has any possible ancestors, sample ancestor indices uniformly thin_sample = fat_sample if thin_sample.shape != target_shape: index = [Ellipsis] + [slice(None)] * (len(thin_sample.shape) - 1) squashed_dims = [] for squashed_dim, squashed_size in zip(range(1, len(thin_sample.shape)), thin_sample.shape[1:]): if squashed_size > 1 and (target_shape[squashed_dim] == 1 or squashed_dim == 0): # uniformly sample one ancestor per upstream particle population ancestor_dist = Categorical(logits=torch.zeros((squashed_size,), device=thin_sample.device)) ancestor_index = ancestor_dist.sample(sample_shape=(num_samples,)) index[squashed_dim] = ancestor_index squashed_dims.append(squashed_dim) thin_sample = Vindex(thin_sample)[tuple(index)] for squashed_dim in squashed_dims: thin_sample = thin_sample.unsqueeze(squashed_dim) assert thin_sample.shape == target_shape return thin_sample def _tmc_diagonal_sample(msg): dist, num_samples = msg["fn"], msg["infer"].get("num_samples") # find batch dims that aren't plate dims batch_shape = [1] * len(dist.batch_shape) for f in msg["cond_indep_stack"]: if f.vectorized: batch_shape[f.dim] = f.size if f.size > 0 else dist.batch_shape[f.dim] batch_shape = tuple(batch_shape) # sample a batch sample_shape = (num_samples,) fat_sample = dist(sample_shape=sample_shape) # TODO thin before sampling assert fat_sample.shape == sample_shape + dist.batch_shape + dist.event_shape assert any(d > 1 for d in fat_sample.shape) target_shape = (num_samples,) + batch_shape + dist.event_shape # if this site has any ancestors, choose ancestors from diagonal approximation thin_sample = fat_sample if thin_sample.shape != target_shape: index = [Ellipsis] + [slice(None)] * (len(thin_sample.shape) - 1) squashed_dims = [] for squashed_dim, squashed_size in zip(range(1, len(thin_sample.shape)), thin_sample.shape[1:]): if squashed_size > 1 and (target_shape[squashed_dim] == 1 or squashed_dim == 0): # diagonal approximation: identify particle indices across populations ancestor_index = torch.arange(squashed_size, device=thin_sample.device) index[squashed_dim] = ancestor_index squashed_dims.append(squashed_dim) thin_sample = Vindex(thin_sample)[tuple(index)] for squashed_dim in squashed_dims: thin_sample = thin_sample.unsqueeze(squashed_dim) assert thin_sample.shape == target_shape return thin_sample def enumerate_site(msg): dist = msg["fn"] num_samples = msg["infer"].get("num_samples", None) if num_samples is None: # Enumerate over the support of the distribution. value = dist.enumerate_support(expand=msg["infer"].get("expand", False)) elif num_samples > 1 and not msg["infer"].get("expand", False): tmc_strategy = msg["infer"].get("tmc", "diagonal") if tmc_strategy == "mixture": value = _tmc_mixture_sample(msg) elif tmc_strategy == "diagonal": value = _tmc_diagonal_sample(msg) else: raise ValueError("{} not a valid TMC strategy".format(tmc_strategy)) elif num_samples > 1 and msg["infer"]["expand"]: # Monte Carlo sample the distribution. value = dist(sample_shape=(num_samples,)) assert value.dim() == 1 + len(dist.batch_shape) + len(dist.event_shape) return value class EnumMessenger(Messenger): """ Enumerates in parallel over discrete sample sites marked ``infer={"enumerate": "parallel"}``. :param int first_available_dim: The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer or None. """ def __init__(self, first_available_dim=None): assert first_available_dim is None or first_available_dim < 0, first_available_dim self.first_available_dim = first_available_dim super().__init__() def __enter__(self): if self.first_available_dim is not None: _ENUM_ALLOCATOR.set_first_available_dim(self.first_available_dim) self._markov_depths = {} # site name -> depth (nonnegative integer) self._param_dims = {} # site name -> (enum dim -> unique id) self._value_dims = {} # site name -> (enum dim -> unique id) return super().__enter__() @ignore_jit_warnings() def _pyro_sample(self, msg): """ :param msg: current message at a trace site. :returns: a sample from the stochastic function at the site. """ if msg["done"] or not isinstance(msg["fn"], TorchDistributionMixin): return # Compute upstream dims in scope; these are unsafe to use for this site's target_dim. scope = msg["infer"].get("_markov_scope") # site name -> markov depth param_dims = _ENUM_ALLOCATOR.dim_to_id.copy() # enum dim -> unique id if scope is not None: for name, depth in scope.items(): if self._markov_depths[name] == depth: # hide sites whose markov context has exited param_dims.update(self._value_dims[name]) self._markov_depths[msg["name"]] = msg["infer"]["_markov_depth"] self._param_dims[msg["name"]] = param_dims if msg["is_observed"] or msg["infer"].get("enumerate") != "parallel": return # Compute an enumerated value (at an arbitrary dim). value = enumerate_site(msg) actual_dim = -1 - len(msg["fn"].batch_shape) # the leftmost dim of log_prob # Move actual_dim to a safe target_dim. target_dim, id_ = _ENUM_ALLOCATOR.allocate(None if scope is None else param_dims) event_dim = msg["fn"].event_dim categorical_support = getattr(value, '_pyro_categorical_support', None) if categorical_support is not None: # Preserve categorical supports to speed up Categorical.log_prob(). # See pyro/distributions/torch.py for details. assert target_dim < 0 value = value.reshape(value.shape[:1] + (1,) * (-1 - target_dim)) value._pyro_categorical_support = categorical_support elif actual_dim < target_dim: assert value.size(target_dim - event_dim) == 1, \ 'pyro.markov dim conflict at dim {}'.format(actual_dim) value = value.transpose(target_dim - event_dim, actual_dim - event_dim) while value.dim() and value.size(0) == 1: value = value.squeeze(0) elif target_dim < actual_dim: diff = actual_dim - target_dim value = value.reshape(value.shape[:1] + (1,) * diff + value.shape[1:]) # Compute dims passed downstream through the value. value_dims = {dim: param_dims[dim] for dim in range(event_dim - value.dim(), 0) if value.size(dim - event_dim) > 1 and dim in param_dims} value_dims[target_dim] = id_ msg["infer"]["_enumerate_dim"] = target_dim msg["infer"]["_dim_to_id"] = value_dims msg["value"] = value msg["done"] = True def _pyro_post_sample(self, msg): # Save all dims exposed in this sample value. # Whereas all of site["_dim_to_id"] are needed to interpret a # site's log_prob tensor, only a filtered subset self._value_dims[msg["name"]] # are needed to interpret a site's value. if not isinstance(msg["fn"], TorchDistributionMixin): return value = msg["value"] if value is None: return shape = value.shape[:value.dim() - msg["fn"].event_dim] dim_to_id = msg["infer"].setdefault("_dim_to_id", {}) dim_to_id.update(self._param_dims.get(msg["name"], {})) with ignore_jit_warnings(): self._value_dims[msg["name"]] = {dim: id_ for dim, id_ in dim_to_id.items() if len(shape) >= -dim and shape[dim] > 1}
[ "torch.zeros", "torch.arange" ]
1.4.0
patrickeganfoley/pyro
3bd5e099e85f3686c66fc3b53476c3b009a77a02
1.0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018 Nagoya University (Tomoki Hayashi) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """E2E-TTS training / decoding functions.""" import copy import json import logging import math import os import time import chainer import kaldiio import numpy as np import torch from chainer import training from chainer.training import extensions from espnet.asr.asr_utils import get_model_conf from espnet.asr.asr_utils import snapshot_object from espnet.asr.asr_utils import torch_load from espnet.asr.asr_utils import torch_resume from espnet.asr.asr_utils import torch_snapshot from espnet.asr.pytorch_backend.asr_init import load_trained_modules from espnet.nets.pytorch_backend.nets_utils import pad_list from espnet.nets.tts_interface import TTSInterface from espnet.utils.dataset import ChainerDataLoader from espnet.utils.dataset import TransformDataset from espnet.utils.dynamic_import import dynamic_import from espnet.utils.io_utils import LoadInputsAndTargets from espnet.utils.training.batchfy import make_batchset from espnet.utils.training.evaluator import BaseEvaluator from espnet.utils.deterministic_utils import set_deterministic_pytorch from espnet.utils.training.train_utils import check_early_stop from espnet.utils.training.train_utils import set_early_stop from espnet.utils.training.iterators import ShufflingEnabler import matplotlib from espnet.utils.training.tensorboard_logger import TensorboardLogger from tensorboardX import SummaryWriter matplotlib.use('Agg') class CustomEvaluator(BaseEvaluator): """Custom evaluator.""" def __init__(self, model, iterator, target, device): """Initilize module. Args: model (torch.nn.Module): Pytorch model instance. iterator (chainer.dataset.Iterator): Iterator for validation. target (chainer.Chain): Dummy chain instance. device (torch.device): The device to be used in evaluation. """ super(CustomEvaluator, self).__init__(iterator, target) self.model = model self.device = device # The core part of the update routine can be customized by overriding. def evaluate(self): """Evaluate over validation iterator.""" iterator = self._iterators['main'] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, 'reset'): iterator.reset() it = iterator else: it = copy.copy(iterator) summary = chainer.reporter.DictSummary() self.model.eval() with torch.no_grad(): for batch in it: if isinstance(batch, tuple): x = tuple(arr.to(self.device) for arr in batch) else: x = batch for key in x.keys(): x[key] = x[key].to(self.device) observation = {} with chainer.reporter.report_scope(observation): # convert to torch tensor if isinstance(x, tuple): self.model(*x) else: self.model(**x) summary.add(observation) self.model.train() return summary.compute_mean() class CustomUpdater(training.StandardUpdater): """Custom updater.""" def __init__(self, model, grad_clip, iterator, optimizer, device, accum_grad=1): """Initilize module. Args: model (torch.nn.Module) model: Pytorch model instance. grad_clip (float) grad_clip : The gradient clipping value. iterator (chainer.dataset.Iterator): Iterator for training. optimizer (torch.optim.Optimizer) : Pytorch optimizer instance. device (torch.device): The device to be used in training. """ super(CustomUpdater, self).__init__(iterator, optimizer) self.model = model self.grad_clip = grad_clip self.device = device self.clip_grad_norm = torch.nn.utils.clip_grad_norm_ self.accum_grad = accum_grad self.forward_count = 0 # The core part of the update routine can be customized by overriding. def update_core(self): """Update model one step.""" # When we pass one iterator and optimizer to StandardUpdater.__init__, # they are automatically named 'main'. train_iter = self.get_iterator('main') optimizer = self.get_optimizer('main') # Get the next batch (a list of json files) batch = train_iter.next() if isinstance(batch, tuple): x = tuple(arr.to(self.device) for arr in batch) else: x = batch for key in x.keys(): x[key] = x[key].to(self.device) # compute loss and gradient if isinstance(x, tuple): loss = self.model(*x).mean() / self.accum_grad else: loss = self.model(**x).mean() / self.accum_grad loss.backward() # update parameters self.forward_count += 1 if self.forward_count != self.accum_grad: return self.forward_count = 0 # compute the gradient norm to check if it is normal or not grad_norm = self.clip_grad_norm(self.model.parameters(), self.grad_clip) logging.debug('grad norm={}'.format(grad_norm)) if math.isnan(grad_norm): logging.warning('grad norm is nan. Do not update model.') else: optimizer.step() optimizer.zero_grad() def update(self): """Run update function.""" self.update_core() if self.forward_count == 0: self.iteration += 1 class CustomConverter(object): """Custom converter.""" def __init__(self): """Initilize module.""" # NOTE: keep as class for future development pass def __call__(self, batch, device=torch.device('cpu')): """Convert a given batch. Args: batch (list): List of ndarrays. device (torch.device): The device to be send. Returns: dict: Dict of converted tensors. Examples: >>> batch = [([np.arange(5), np.arange(3)], [np.random.randn(8, 2), np.random.randn(4, 2)], None, None)] >>> conveter = CustomConverter() >>> conveter(batch, torch.device("cpu")) {'xs': tensor([[0, 1, 2, 3, 4], [0, 1, 2, 0, 0]]), 'ilens': tensor([5, 3]), 'ys': tensor([[[-0.4197, -1.1157], [-1.5837, -0.4299], [-2.0491, 0.9215], [-2.4326, 0.8891], [ 1.2323, 1.7388], [-0.3228, 0.6656], [-0.6025, 1.3693], [-1.0778, 1.3447]], [[ 0.1768, -0.3119], [ 0.4386, 2.5354], [-1.2181, -0.5918], [-0.6858, -0.8843], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000]]]), 'labels': tensor([[0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 1., 1., 1., 1., 1.]]), 'olens': tensor([8, 4])} """ # batch should be located in list assert len(batch) == 1 xs, ys, spembs, extras = batch[0] # get list of lengths (must be tensor for DataParallel) ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).long().to(device) olens = torch.from_numpy(np.array([y.shape[0] for y in ys])).long().to(device) # perform padding and conversion to tensor xs = pad_list([torch.from_numpy(x).long() for x in xs], 0).to(device) ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device) # make labels for stop prediction labels = ys.new_zeros(ys.size(0), ys.size(1)) for i, l in enumerate(olens): labels[i, l - 1:] = 1.0 # prepare dict new_batch = { "xs": xs, "ilens": ilens, "ys": ys, "labels": labels, "olens": olens, } # load speaker embedding if spembs is not None: spembs = torch.from_numpy(np.array(spembs)).float() new_batch["spembs"] = spembs.to(device) # load second target if extras is not None: extras = pad_list([torch.from_numpy(extra).float() for extra in extras], 0) new_batch["extras"] = extras.to(device) return new_batch def train(args): """Train E2E-TTS model.""" set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) # reverse input and output dimension idim = int(valid_json[utts[0]]['output'][0]['shape'][1]) odim = int(valid_json[utts[0]]['input'][0]['shape'][1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # get extra input and output dimenstion if args.use_speaker_embedding: args.spk_embed_dim = int(valid_json[utts[0]]['input'][1]['shape'][0]) else: args.spk_embed_dim = None if args.use_second_target: args.spc_dim = int(valid_json[utts[0]]['input'][1]['shape'][1]) else: args.spc_dim = None # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to' + model_conf) f.write(json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) # specify model architecture if args.enc_init is not None or args.dec_init is not None: model = load_trained_modules(idim, odim, args, TTSInterface) else: model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, TTSInterface) logging.info(model) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu))) if args.batch_size != 0: logging.warning('batch size is automatically increased (%d -> %d)' % ( args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # Setup an optimizer if args.opt == 'adam': optimizer = torch.optim.Adam( model.parameters(), args.lr, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'noam': from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # FIXME: TOO DIRTY HACK setattr(optimizer, 'target', reporter) setattr(optimizer, 'serialize', lambda s: reporter.serialize(s)) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 if use_sortagrad: args.batch_sort_key = "input" # make minibatch list (variable length) train_batchset = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=True, iaxis=0, oaxis=0) valid_batchset = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=True, iaxis=0, oaxis=0) load_tr = LoadInputsAndTargets( mode='tts', use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={'train': True}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) load_cv = LoadInputsAndTargets( mode='tts', use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={'train': False}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) converter = CustomConverter() # hack to make batchsize argument as 1 # actual bathsize is included in a list train_iter = {'main': ChainerDataLoader( dataset=TransformDataset(train_batchset, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.num_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0])} valid_iter = {'main': ChainerDataLoader( dataset=TransformDataset(valid_batchset, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.num_iter_processes)} # Set up a trainer updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer, device, args.accum_grad) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # set intervals eval_interval = (args.eval_interval_epochs, 'epoch') save_interval = (args.save_interval_epochs, 'epoch') report_interval = (args.report_interval_iters, 'iteration') # Evaluate the model with the test dataset for each epoch trainer.extend(CustomEvaluator( model, valid_iter, reporter, device), trigger=eval_interval) # Save snapshot for each epoch trainer.extend(torch_snapshot(), trigger=save_interval) # Save best models trainer.extend(snapshot_object(model, 'model.loss.best'), trigger=training.triggers.MinValueTrigger( 'validation/main/loss', trigger=eval_interval)) # Save attention figure for each epoch if args.num_save_attention > 0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + '/att_ws', converter=converter, transform=load_cv, device=device, reverse=True) trainer.extend(att_reporter, trigger=eval_interval) else: att_reporter = None # Make a plot for training and validation values if hasattr(model, "module"): base_plot_keys = model.module.base_plot_keys else: base_plot_keys = model.base_plot_keys plot_keys = [] for key in base_plot_keys: plot_key = ['main/' + key, 'validation/main/' + key] trainer.extend(extensions.PlotReport( plot_key, 'epoch', file_name=key + '.png'), trigger=eval_interval) plot_keys += plot_key trainer.extend(extensions.PlotReport( plot_keys, 'epoch', file_name='all_loss.png'), trigger=eval_interval) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=report_interval)) report_keys = ['epoch', 'iteration', 'elapsed_time'] + plot_keys trainer.extend(extensions.PrintReport(report_keys), trigger=report_interval) trainer.extend(extensions.ProgressBar(), trigger=report_interval) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": writer = SummaryWriter(args.tensorboard_dir) trainer.extend(TensorboardLogger(writer, att_reporter), trigger=report_interval) if use_sortagrad: trainer.extend(ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, 'epoch')) # Run the training trainer.run() check_early_stop(trainer, args.epochs) @torch.no_grad() def decode(args): """Decode with E2E-TTS model.""" set_deterministic_pytorch(args) # read training config idim, odim, train_args = get_model_conf(args.model, args.model_conf) # show arguments for key in sorted(vars(args).keys()): logging.info('args: ' + key + ': ' + str(vars(args)[key])) # define model model_class = dynamic_import(train_args.model_module) model = model_class(idim, odim, train_args) assert isinstance(model, TTSInterface) logging.info(model) # load trained model parameters logging.info('reading model parameters from ' + args.model) torch_load(args.model, model) model.eval() # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # read json data with open(args.json, 'rb') as f: js = json.load(f)['utts'] # check directory outdir = os.path.dirname(args.out) if len(outdir) != 0 and not os.path.exists(outdir): os.makedirs(outdir) load_inputs_and_targets = LoadInputsAndTargets( mode='tts', load_input=False, sort_in_input_length=False, use_speaker_embedding=train_args.use_speaker_embedding, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={'train': False} # Switch the mode of preprocessing ) # define function for plot prob and att_ws def _plot_and_save(array, figname, figsize=(6, 4), dpi=150): import matplotlib.pyplot as plt shape = array.shape if len(shape) == 1: # for eos probability plt.figure(figsize=figsize, dpi=dpi) plt.plot(array) plt.xlabel("Frame") plt.ylabel("Probability") plt.ylim([0, 1]) elif len(shape) == 2: # for tacotron 2 attention weights, whose shape is (out_length, in_length) plt.figure(figsize=figsize, dpi=dpi) plt.imshow(array, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") elif len(shape) == 4: # for transformer attention weights, whose shape is (#leyers, #heads, out_length, in_length) plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi) for idx1, xs in enumerate(array): for idx2, x in enumerate(xs, 1): plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2) plt.imshow(x, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") else: raise NotImplementedError("Support only from 1D to 4D array.") plt.tight_layout() if not os.path.exists(os.path.dirname(figname)): # NOTE: exist_ok = True is needed for parallel process decoding os.makedirs(os.path.dirname(figname), exist_ok=True) plt.savefig(figname) plt.close() # define function to calculate focus rate (see section 3.3 in https://arxiv.org/abs/1905.09263) def _calculate_focus_rete(att_ws): if att_ws is None: # fastspeech case -> None return 1.0 elif len(att_ws.shape) == 2: # tacotron 2 case -> (L, T) return float(att_ws.max(dim=-1)[0].mean()) elif len(att_ws.shape) == 4: # transformer case -> (#layers, #heads, L, T) return float(att_ws.max(dim=-1)[0].mean(dim=-1).max()) else: raise ValueError("att_ws should be 2 or 4 dimensional tensor.") # define function to convert attention to duration def _convert_att_to_duration(att_ws): if len(att_ws.shape) == 2: # tacotron 2 case -> (L, T) pass elif len(att_ws.shape) == 4: # transformer case -> (#layers, #heads, L, T) # get the most diagonal head according to focus rate att_ws = torch.cat([att_w for att_w in att_ws], dim=0) # (#heads * #layers, L, T) diagonal_scores = att_ws.max(dim=-1)[0].mean(dim=-1) # (#heads * #layers,) diagonal_head_idx = diagonal_scores.argmax() att_ws = att_ws[diagonal_head_idx] # (L, T) else: raise ValueError("att_ws should be 2 or 4 dimensional tensor.") # calculate duration from 2d attention weight durations = torch.stack([att_ws.argmax(-1).eq(i).sum() for i in range(att_ws.shape[1])]) return durations.view(-1, 1).float() # define writer instances feat_writer = kaldiio.WriteHelper( 'ark,scp:{o}.ark,{o}.scp'.format(o=args.out)) if args.save_durations: dur_writer = kaldiio.WriteHelper( 'ark,scp:{o}.ark,{o}.scp'.format( o=args.out.replace("feats", "durations"))) if args.save_focus_rates: fr_writer = kaldiio.WriteHelper( 'ark,scp:{o}.ark,{o}.scp'.format( o=args.out.replace("feats", "focus_rates"))) # start decoding for idx, utt_id in enumerate(js.keys()): # setup inputs batch = [(utt_id, js[utt_id])] data = load_inputs_and_targets(batch) x = torch.LongTensor(data[0][0]).to(device) spemb = None if train_args.use_speaker_embedding: spemb = torch.FloatTensor(data[1][0]).to(device) # decode and write start_time = time.time() outs, probs, att_ws = model.inference(x, args, spemb=spemb) logging.info("inference speed = %.1f frames / sec." % ( int(outs.size(0)) / (time.time() - start_time))) if outs.size(0) == x.size(0) * args.maxlenratio: logging.warning("output length reaches maximum length (%s)." % utt_id) focus_rate = _calculate_focus_rete(att_ws) logging.info('(%d/%d) %s (size: %d->%d, focus rate: %.3f)' % ( idx + 1, len(js.keys()), utt_id, x.size(0), outs.size(0), focus_rate)) feat_writer[utt_id] = outs.cpu().numpy() if args.save_durations: ds = _convert_att_to_duration(att_ws) dur_writer[utt_id] = ds.cpu().numpy() if args.save_focus_rates: fr_writer[utt_id] = np.array(focus_rate).reshape(1, 1) # plot and save prob and att_ws if probs is not None: _plot_and_save(probs.cpu().numpy(), os.path.dirname(args.out) + "/probs/%s_prob.png" % utt_id) if att_ws is not None: _plot_and_save(att_ws.cpu().numpy(), os.path.dirname(args.out) + "/att_ws/%s_att_ws.png" % utt_id) # close file object feat_writer.close() if args.save_durations: dur_writer.close() if args.save_focus_rates: fr_writer.close()
[ "torch.cat", "torch.cuda.is_available", "torch.LongTensor", "torch.FloatTensor", "torch.device", "torch.no_grad", "torch.from_numpy" ]
1.0.1
kokeshing/espnet
9e2bfc5cdecbb8846f5c6cb26d22010b06e98c40
1.10
import random from random import shuffle import PIL import torch import torch.nn.functional as F from torch.nn.utils import clip_grad_norm_ from torchvision.transforms import ToTensor from tqdm import tqdm from hw_asr.base import BaseTrainer from hw_asr.logger.utils import plot_spectrogram_to_buf from hw_asr.metric.utils import calc_cer, calc_wer from hw_asr.utils import inf_loop, MetricTracker class Trainer(BaseTrainer): """ Trainer class """ def __init__( self, model, criterion, metrics, optimizer, config, device, data_loader, text_encoder, valid_data_loader=None, lr_scheduler=None, len_epoch=None, skip_oom=True, ): super().__init__(model, criterion, metrics, optimizer, config, device) self.skip_oom = skip_oom self.text_encoder = text_encoder self.config = config self.data_loader = data_loader if len_epoch is None: # epoch-based training self.len_epoch = len(self.data_loader) else: # iteration-based training ###OBO #self.data_loader = inf_loop(data_loader) ###OBO self.len_epoch = len_epoch self.valid_data_loader = valid_data_loader ###OBO self.do_validation = False #self.valid_data_loader is not None ###OBO self.lr_scheduler = lr_scheduler self.log_step = 10 self.train_metrics = MetricTracker( "loss", "grad norm", *[m.name for m in self.metrics], writer=self.writer ) self.valid_metrics = MetricTracker( "loss", *[m.name for m in self.metrics], writer=self.writer ) @staticmethod def move_batch_to_device(batch, device: torch.device): """ Move all necessary tensors to the HPU """ for tensor_for_gpu in ["spectrogram", "text_encoded"]: batch[tensor_for_gpu] = batch[tensor_for_gpu].to(device) return batch def _clip_grad_norm(self): if self.config["trainer"].get("grad_norm_clip", None) is not None: clip_grad_norm_( self.model.parameters(), self.config["trainer"]["grad_norm_clip"] ) def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Integer, current training epoch. :return: A log that contains average loss and metric in this epoch. """ self.model.train() self.train_metrics.reset() self.writer.add_scalar("epoch", epoch) for batch_idx, batch in enumerate( tqdm(self.data_loader, desc="train", total=self.len_epoch) ): ###OBO if batch_idx >= self.len_epoch: break ###OBO try: batch = self.process_batch( batch, is_train=True, metrics=self.train_metrics, ) except RuntimeError as e: if "out of memory" in str(e) and self.skip_oom: self.logger.warning("OOM on batch. Skipping batch.") for p in self.model.parameters(): if p.grad is not None: del p.grad # free some memory torch.cuda.empty_cache() continue else: raise e self.train_metrics.update("grad norm", self.get_grad_norm()) if batch_idx % self.log_step == 0: self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx) self.logger.debug( "Train Epoch: {} {} Loss: {:.6f}".format( epoch, self._progress(batch_idx), batch["loss"].item() ) ) self.writer.add_scalar( "learning rate", self.lr_scheduler.get_last_lr()[0] ) self._log_predictions(part="train", **batch) self._log_spectrogram(batch["spectrogram"]) self._log_scalars(self.train_metrics) log = self.train_metrics.result() if self.do_validation: val_log = self._valid_epoch(epoch) log.update(**{"val_" + k: v for k, v in val_log.items()}) return log def process_batch(self, batch, is_train: bool, metrics: MetricTracker): batch = self.move_batch_to_device(batch, self.device) if is_train: self.optimizer.zero_grad() outputs = self.model(**batch) if type(outputs) is dict: batch.update(outputs) else: batch["logits"] = outputs batch["log_probs"] = F.log_softmax(batch["logits"], dim=-1) batch["log_probs_length"] = self.model.transform_input_lengths( batch["spectrogram_length"] ) batch["loss"] = self.criterion(**batch) if is_train: batch["loss"].backward() self._clip_grad_norm() self.optimizer.step() if self.lr_scheduler is not None: self.lr_scheduler.step() metrics.update("loss", batch["loss"].item()) for met in self.metrics: metrics.update(met.name, met(**batch)) return batch def _valid_epoch(self, epoch): """ Validate after training an epoch :param epoch: Integer, current training epoch. :return: A log that contains information about validation """ self.model.eval() self.valid_metrics.reset() with torch.no_grad(): for batch_idx, batch in tqdm( enumerate(self.valid_data_loader), desc="validation", total=len(self.valid_data_loader), ): batch = self.process_batch( batch, is_train=False, metrics=self.valid_metrics, ) self.writer.set_step(epoch * self.len_epoch, "valid") self._log_scalars(self.valid_metrics) self._log_predictions(part="val", **batch) self._log_spectrogram(batch["spectrogram"]) # add histogram of model parameters to the tensorboard for name, p in self.model.named_parameters(): self.writer.add_histogram(name, p, bins="auto") return self.valid_metrics.result() def _progress(self, batch_idx): base = "[{}/{} ({:.0f}%)]" if hasattr(self.data_loader, "n_samples"): current = batch_idx * self.data_loader.batch_size total = self.data_loader.n_samples else: current = batch_idx total = self.len_epoch return base.format(current, total, 100.0 * current / total) def _log_predictions( self, text, log_probs, log_probs_length, examples_to_log=20, *args, **kwargs, ): # TODO: implement logging of beam search results if self.writer is None: return argmax_inds = log_probs.cpu().argmax(-1) argmax_inds = [ inds[: int(ind_len)] for inds, ind_len in zip(argmax_inds, log_probs_length) ] argmax_texts_raw = [self.text_encoder.decode(inds) for inds in argmax_inds] argmax_texts = [self.text_encoder.ctc_decode(inds) for inds in argmax_inds] tuples = list(zip(argmax_texts, text, argmax_texts_raw)) shuffle(tuples) to_log_pred = [] to_log_pred_raw = [] for pred, target, raw_pred in tuples[:examples_to_log]: wer = calc_wer(target, pred) * 100 cer = calc_cer(target, pred) * 100 to_log_pred.append( f"true: '{target}' | pred: '{pred}' " f"| wer: {wer:.2f} | cer: {cer:.2f}" ) to_log_pred_raw.append(f"true: '{target}' | pred: '{raw_pred}'\n") self.writer.add_text(f"predictions", "< < < < > > > >".join(to_log_pred)) self.writer.add_text( f"predictions_raw", "< < < < > > > >".join(to_log_pred_raw) ) def _log_spectrogram(self, spectrogram_batch): spectrogram = random.choice(spectrogram_batch) image = PIL.Image.open(plot_spectrogram_to_buf(spectrogram.cpu().log())) self.writer.add_image("spectrogram", ToTensor()(image)) @torch.no_grad() def get_grad_norm(self, norm_type=2): parameters = self.model.parameters() if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] total_norm = torch.norm( torch.stack( [torch.norm(p.grad.detach(), norm_type).cpu() for p in parameters] ), norm_type, ) return total_norm.item() def _log_scalars(self, metric_tracker: MetricTracker): if self.writer is None: return for metric_name in metric_tracker.keys(): self.writer.add_scalar(f"{metric_name}", metric_tracker.avg(metric_name))
[ "torch.no_grad", "torch.cuda.empty_cache", "torch.nn.functional.log_softmax" ]
1.10.1
Mrrrat/asr_project_template
50d264684d90bc45c59f3e9be5766fabaf090d25
1.7
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2020-05-08 20:51 import functools import os from typing import Union, Any, List import torch from alnlp.modules.util import lengths_to_mask from torch import nn from torch.optim import Adam from torch.optim.lr_scheduler import ExponentialLR from torch.utils.data import DataLoader from elit.common.constant import UNK, IDX from elit.common.dataset import PadSequenceDataLoader from elit.common.structure import History from elit.common.torch_component import TorchComponent from elit.common.transform import LowerCase, FieldLength, PunctuationMask, TransformList from elit.common.vocab import Vocab, VocabCounter from elit.common.conll import CoNLLWord, CoNLLSentence from elit.components.parsers.constituency.treecrf import CRF2oDependency from elit.components.parsers.second_order.model import DependencyModel from elit.components.parsers.second_order.treecrf_decoder import TreeCRFDecoder from elit.datasets.parsing.conll_dataset import CoNLLParsingDataset, append_bos, get_sibs from elit.layers.embeddings.contextual_word_embedding import ContextualWordEmbedding, ContextualWordEmbeddingModule from elit.layers.embeddings.embedding import Embedding, EmbeddingList, ConcatModuleList from elit.layers.embeddings.util import index_word2vec_with_vocab from elit.layers.transformers.pt_imports import AutoModel_ from elit.layers.transformers.utils import build_optimizer_scheduler_with_transformer from elit.metrics.parsing.attachmentscore import AttachmentScore from elit.transform.transformer_tokenizer import TransformerSequenceTokenizer from elit.utils.time_util import CountdownTimer from elit.common.util import merge_locals_kwargs, merge_dict, reorder class TreeConditionalRandomFieldDependencyParser(TorchComponent): def __init__(self) -> None: super().__init__() self.model: DependencyModel = self.model self._transformer_transform = None def predict(self, data: Any, batch_size=None, batch_max_tokens=None, output_format='conllx', **kwargs): if not data: return [] use_pos = self.use_pos flat = self.input_is_flat(data, use_pos) if flat: data = [data] samples = self.build_samples(data, use_pos) if not batch_max_tokens: batch_max_tokens = self.config.batch_max_tokens if not batch_size: batch_size = self.config.batch_size dataloader = self.build_dataloader(samples, device=self.devices[0], shuffle=False, **merge_dict(self.config, batch_size=batch_size, batch_max_tokens=batch_max_tokens, overwrite=True, **kwargs)) predictions, build_data, data, order = self.before_outputs(data) for batch in dataloader: arc_scores, rel_scores, mask, puncts = self.feed_batch(batch) self.collect_outputs(arc_scores, rel_scores, mask, batch, predictions, order, data, use_pos, build_data) outputs = self.post_outputs(predictions, data, order, use_pos, build_data) if flat: return outputs[0] return outputs def build_samples(self, data, use_pos=None): samples = [] for idx, each in enumerate(data): sample = {IDX: idx} if use_pos: token, pos = zip(*each) sample.update({'FORM': list(token), 'CPOS': list(pos)}) else: token = each sample.update({'FORM': list(token)}) samples.append(sample) return samples def input_is_flat(self, data, use_pos=None): if use_pos: flat = isinstance(data[0], (list, tuple)) and isinstance(data[0][0], str) else: flat = isinstance(data[0], str) return flat def before_outputs(self, data): predictions, order = [], [] build_data = data is None if build_data: data = [] return predictions, build_data, data, order def post_outputs(self, predictions, data, order, use_pos, build_data): predictions = reorder(predictions, order) if build_data: data = reorder(data, order) outputs = [] self.predictions_to_human(predictions, outputs, data, use_pos) return outputs def predictions_to_human(self, predictions, outputs, data, use_pos): for d, (arcs, rels) in zip(data, predictions): sent = CoNLLSentence() for idx, (cell, a, r) in enumerate(zip(d, arcs, rels)): if use_pos: token, pos = cell else: token, pos = cell, None sent.append(CoNLLWord(idx + 1, token, cpos=pos, head=a, deprel=self.vocabs['rel'][r])) outputs.append(sent) def collect_outputs(self, arc_scores, rel_scores, mask, batch, predictions, order, data, use_pos, build_data): lens = [len(token) - 1 for token in batch['token']] arc_preds, rel_preds = self.decode(arc_scores, rel_scores, mask, batch) self.collect_outputs_extend(predictions, arc_preds, rel_preds, lens, mask) order.extend(batch[IDX]) if build_data: if use_pos: data.extend(zip(batch['FORM'], batch['CPOS'])) else: data.extend(batch['FORM']) def collect_outputs_extend(self, predictions: list, arc_preds, rel_preds, lens, mask): predictions.extend(zip([seq.tolist() for seq in arc_preds[mask].split(lens)], [seq.tolist() for seq in rel_preds[mask].split(lens)])) def fit(self, trn_data, dev_data, save_dir, embed, n_mlp_arc=500, n_mlp_rel=100, n_mlp_sib=100, mlp_dropout=.33, lr=2e-3, transformer_lr=5e-5, mu=.9, nu=.9, epsilon=1e-12, grad_norm=5.0, decay=.75, decay_steps=5000, weight_decay=0, warmup_steps=0.1, separate_optimizer=True, patience=100, lowercase=False, epochs=50000, tree=False, proj=True, mbr=True, partial=False, punct=False, min_freq=2, logger=None, verbose=True, unk=UNK, max_sequence_length=512, batch_size=None, sampler_builder=None, gradient_accumulation=1, devices: Union[float, int, List[int]] = None, transform=None, eval_trn=False, bos='\0', **kwargs): return super().fit(**merge_locals_kwargs(locals(), kwargs)) def execute_training_loop(self, trn, dev, devices, epochs, logger, patience, save_dir, optimizer, gradient_accumulation, **kwargs): optimizer, scheduler, transformer_optimizer, transformer_scheduler = optimizer criterion = self.build_criterion() best_e, best_metric = 0, self.build_metric() timer = CountdownTimer(epochs) history = History() ratio_width = len(f'{len(trn) // gradient_accumulation}/{len(trn) // gradient_accumulation}') for epoch in range(1, epochs + 1): # train one epoch and update the parameters logger.info(f"[yellow]Epoch {epoch} / {epochs}:[/yellow]") self.fit_dataloader(trn, optimizer, scheduler, criterion, epoch, logger, history, transformer_optimizer, transformer_scheduler, gradient_accumulation=gradient_accumulation, eval_trn=self.config.eval_trn) loss, dev_metric = self.evaluate_dataloader(dev, criterion, ratio_width=ratio_width, logger=logger) timer.update() # logger.info(f"{'Dev' + ' ' * ratio_width} loss: {loss:.4f} {dev_metric}") # save the model if it is the best so far report = f"{timer.elapsed_human} / {timer.total_time_human} ETA: {timer.eta_human}" if dev_metric > best_metric: best_e, best_metric = epoch, dev_metric self.save_weights(save_dir) report += ' ([red]saved[/red])' else: if patience != epochs: report += f' ({epoch - best_e}/{patience})' else: report += f' ({epoch - best_e})' logger.info(report) if patience is not None and epoch - best_e >= patience: logger.info(f'LAS has stopped improving for {patience} epochs, early stop.') break timer.stop() if not best_e: self.save_weights(save_dir) elif best_e != epoch: self.load_weights(save_dir) logger.info(f"Max score of dev is {best_metric.score:.2%} at epoch {best_e}") logger.info(f"Average time of each epoch is {timer.elapsed_average_human}") logger.info(f"{timer.elapsed_human} elapsed") def build_optimizer(self, epochs, trn, gradient_accumulation, **kwargs): config = self.config model = self.model if isinstance(model, nn.DataParallel): model = model.module transformer = self._get_transformer_builder() if transformer and transformer.trainable: transformer = self._get_transformer() optimizer = Adam(set(model.parameters()) - set(transformer.parameters()), config.lr, (config.mu, config.nu), config.epsilon) if self.config.transformer_lr: num_training_steps = len(trn) * epochs // gradient_accumulation if not self.config.separate_optimizer: optimizer, scheduler = build_optimizer_scheduler_with_transformer(model, transformer, config.lr, config.transformer_lr, num_training_steps, config.warmup_steps, config.weight_decay, config.epsilon) transformer_optimizer, transformer_scheduler = None, None else: transformer_optimizer, transformer_scheduler = \ build_optimizer_scheduler_with_transformer(transformer, transformer, config.lr, config.transformer_lr, num_training_steps, config.warmup_steps, config.weight_decay, config.epsilon) else: transformer.requires_grad_(False) transformer_optimizer, transformer_scheduler = None, None else: optimizer = Adam(model.parameters(), config.lr, (config.mu, config.nu), config.epsilon) transformer_optimizer, transformer_scheduler = None, None if self.config.separate_optimizer: scheduler = ExponentialLR(optimizer, config.decay ** (1 / config.decay_steps)) # noinspection PyUnboundLocalVariable optimizer = Adam(model.parameters(), **{'lr': 0.002, 'betas': (0.9, 0.9), 'eps': 1e-12}) scheduler = ExponentialLR(optimizer, **{'gamma': 0.9999424652406974}) return optimizer, scheduler, transformer_optimizer, transformer_scheduler # noinspection PyMethodOverriding def build_dataloader(self, data, shuffle, device, embed: Embedding, training=False, logger=None, gradient_accumulation=1, sampler_builder=None, batch_size=None, bos='\0', **kwargs) -> DataLoader: first_transform = TransformList(functools.partial(append_bos, bos=bos)) embed_transform = embed.transform(vocabs=self.vocabs) transformer_transform = self._get_transformer_transform_from_transforms(embed_transform) if embed_transform: if transformer_transform and isinstance(embed_transform, TransformList): embed_transform.remove(transformer_transform) first_transform.append(embed_transform) dataset = self.build_dataset(data, first_transform=first_transform) if self.config.get('transform', None): dataset.append_transform(self.config.transform) if self.vocabs.mutable: self.build_vocabs(dataset, logger, self._transformer_trainable()) if transformer_transform and isinstance(embed_transform, TransformList): embed_transform.append(transformer_transform) dataset.append_transform(FieldLength('token', 'sent_length')) if isinstance(data, str): dataset.purge_cache() if len(dataset) > 1000 and isinstance(data, str): timer = CountdownTimer(len(dataset)) self.cache_dataset(dataset, timer, training, logger) if sampler_builder: lens = [sample['sent_length'] for sample in dataset] sampler = sampler_builder.build(lens, shuffle, gradient_accumulation) else: sampler = None loader = PadSequenceDataLoader(dataset=dataset, batch_sampler=sampler, batch_size=batch_size, pad=self.get_pad_dict(), device=device, vocabs=self.vocabs) return loader def cache_dataset(self, dataset, timer, training=False, logger=None): for each in dataset: timer.log('Preprocessing and caching samples [blink][yellow]...[/yellow][/blink]') def get_pad_dict(self): return {'arc': 0} def build_dataset(self, data, first_transform=None): if not first_transform: first_transform = append_bos transform = [first_transform, get_sibs] if self.config.get('lowercase', False): transform.append(LowerCase('token')) transform.append(self.vocabs) if not self.config.punct: transform.append(PunctuationMask('token', 'punct_mask')) return CoNLLParsingDataset(data, transform=transform) def build_tokenizer_transform(self): return TransformerSequenceTokenizer(self.transformer_tokenizer, 'token', '', ret_token_span=True, cls_is_bos=True, max_seq_length=self.config.get('max_sequence_length', 512), truncate_long_sequences=False) def build_vocabs(self, dataset, logger=None, transformer=False): rel_vocab = self.vocabs.get('rel', None) if rel_vocab is None: rel_vocab = Vocab(unk_token=None, pad_token=self.config.get('pad_rel', None)) self.vocabs.put(rel=rel_vocab) timer = CountdownTimer(len(dataset)) if transformer: token_vocab = None else: self.vocabs.token = token_vocab = VocabCounter(unk_token=self.config.get('unk', UNK)) for i, sample in enumerate(dataset): timer.log('Building vocab [blink][yellow]...[/yellow][/blink]', ratio_percentage=True) min_freq = self.config.get('min_freq', None) if min_freq: token_vocab.trim(min_freq) rel_vocab.set_unk_as_safe_unk() # Some relation in dev set is OOV self.vocabs.lock() self.vocabs.summary(logger=logger) if token_vocab: self.config.n_words = len(self.vocabs['token']) self.config.n_rels = len(self.vocabs['rel']) if token_vocab: self.config.pad_index = self.vocabs['token'].pad_idx self.config.unk_index = self.vocabs['token'].unk_idx # noinspection PyMethodOverriding def build_model(self, embed: Embedding, encoder, n_mlp_arc, n_mlp_rel, mlp_dropout, n_mlp_sib, training=True, **kwargs) -> torch.nn.Module: model = DependencyModel( embed=embed.module(vocabs=self.vocabs), encoder=encoder, decoder=TreeCRFDecoder(encoder.get_output_dim(), n_mlp_arc, n_mlp_sib, n_mlp_rel, mlp_dropout, len(self.vocabs['rel'])) ) return model def build_embeddings(self, training=True): pretrained_embed = None if self.config.get('pretrained_embed', None): pretrained_embed = index_word2vec_with_vocab(self.config.pretrained_embed, self.vocabs['token'], init='zeros', normalize=True) transformer = self.config.transformer if transformer: transformer = AutoModel_.from_pretrained(transformer, training=training) return pretrained_embed, transformer # noinspection PyMethodOverriding def fit_dataloader(self, trn, optimizer, scheduler, criterion, epoch, logger, history: History, transformer_optimizer=None, transformer_scheduler=None, gradient_accumulation=1, eval_trn=False, **kwargs): self.model.train() timer = CountdownTimer(history.num_training_steps(len(trn), gradient_accumulation)) metric = self.build_metric(training=True) total_loss = 0 for idx, batch in enumerate(trn): optimizer.zero_grad() (s_arc, s_sib, s_rel), mask, puncts = self.feed_batch(batch) arcs, sibs, rels = batch['arc'], batch['sib_id'], batch['rel_id'] loss, s_arc = self.compute_loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask) if gradient_accumulation > 1: loss /= gradient_accumulation loss.backward() total_loss += loss.item() if eval_trn: arc_preds, rel_preds = self.decode(s_arc, s_sib, s_rel, mask) self.update_metric(arc_preds, rel_preds, arcs, rels, mask, puncts, metric) if history.step(gradient_accumulation): self._step(optimizer, scheduler, transformer_optimizer, transformer_scheduler) report = self._report(total_loss / (timer.current + 1), metric if eval_trn else None) lr = scheduler.get_last_lr()[0] report += f' lr: {lr:.4e}' timer.log(report, ratio_percentage=False, logger=logger) del loss def _step(self, optimizer, scheduler, transformer_optimizer, transformer_scheduler): if self.config.get('grad_norm', None): nn.utils.clip_grad_norm_(self.model.parameters(), self.config.grad_norm) optimizer.step() scheduler.step() if self._transformer_transform and self.config.transformer_lr and transformer_optimizer: transformer_optimizer.step() transformer_optimizer.zero_grad() transformer_scheduler.step() def feed_batch(self, batch): words, feats, lens, puncts = batch.get('token_id', None), batch.get('pos_id', None), batch['sent_length'], \ batch.get('punct_mask', None) mask = lengths_to_mask(lens) logits = self.model(batch, mask) if self.model.training: mask = mask.clone() # ignore the first token of each sentence mask[:, 0] = 0 return logits, mask, puncts def _report(self, loss, metric: AttachmentScore = None): return f'loss: {loss:.4f} {metric}' if metric else f'loss: {loss:.4f}' def compute_loss(self, s_arc, s_sib, s_rel, arcs, sibs, rels, mask): crf: CRF2oDependency = self.model.decoder.crf return crf.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.config.mbr, self.config.partial) # noinspection PyUnboundLocalVariable @torch.no_grad() def evaluate_dataloader(self, loader: PadSequenceDataLoader, criterion, logger=None, filename=None, output=False, ratio_width=None, metric=None, **kwargs): self.model.eval() total_loss = 0 if not metric: metric = self.build_metric() timer = CountdownTimer(len(loader)) for batch in loader: (s_arc, s_sib, s_rel), mask, puncts = self.feed_batch(batch) arcs, sibs, rels = batch['arc'], batch['sib_id'], batch['rel_id'] loss, s_arc = self.compute_loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask) total_loss += float(loss) arc_preds, rel_preds = self.decode(s_arc, s_sib, s_rel, mask) self.update_metric(arc_preds, rel_preds, arcs, rels, mask, puncts, metric) report = self._report(total_loss / (timer.current + 1), metric) if filename: report = f'{os.path.basename(filename)} ' + report timer.log(report, ratio_percentage=False, logger=logger, ratio_width=ratio_width) total_loss /= len(loader) return total_loss, metric def update_metric(self, arc_preds, rel_preds, arcs, rels, mask, puncts, metric): # ignore all punctuation if not specified if not self.config.punct: mask &= puncts metric(arc_preds, rel_preds, arcs, rels, mask) def decode(self, s_arc, s_sib, s_rel, mask): crf: CRF2oDependency = self.model.decoder.crf return crf.decode(s_arc, s_sib, s_rel, mask, self.config.tree and not self.model.training, self.config.mbr, self.config.proj) def build_criterion(self, **kwargs): return None def build_metric(self, **kwargs): return AttachmentScore() def _get_transformer_transform_from_transforms(self, transform: Union[ TransformList, TransformerSequenceTokenizer]) -> TransformerSequenceTokenizer: def _get(): if isinstance(transform, TransformerSequenceTokenizer): # noinspection PyTypeChecker return transform elif isinstance(transform, TransformList): # noinspection PyTypeChecker,PyArgumentList for each in transform: if isinstance(each, TransformerSequenceTokenizer): return each if self._transformer_transform is None: self._transformer_transform = _get() return self._transformer_transform def _get_transformer(self): embed = self.model.embed if isinstance(embed, ContextualWordEmbeddingModule): return embed if isinstance(embed, ConcatModuleList): for each in embed: if isinstance(each, ContextualWordEmbeddingModule): return each def _get_transformer_builder(self): embed: Embedding = self.config.embed if isinstance(embed, ContextualWordEmbedding): return embed if isinstance(embed, EmbeddingList): for each in embed.to_list(): if isinstance(embed, ContextualWordEmbedding): return each def _transformer_trainable(self): builder = self._get_transformer_builder() if not builder: return False return builder.trainable
[ "torch.no_grad", "torch.optim.lr_scheduler.ExponentialLR" ]
1.7.1
emorynlp/levi-graph-amr-parser
f71f1056c13181b8db31d6136451fb8d57114819
1.8
import sys sys.path.append("..") import os import math import torch import torchvision import model.E.Ablation_Study.E_Blur_Z as BE from model.utils.custom_adam import LREQAdam import metric.pytorch_ssim as pytorch_ssim import lpips import numpy as np import tensorboardX import argparse from model.stylegan1.net import Generator, Mapping #StyleGANv1 from training_utils import * def train(tensor_writer = None, args = None): type = args.mtype model_path = args.checkpoint_dir_GAN if type == 1: # StyleGAN1 #model_path = './checkpoint/stylegan_v1/ffhq1024/' Gs = Generator(startf=args.start_features, maxf=512, layer_count=int(math.log(args.img_size,2)-1), latent_size=512, channels=3) Gs.load_state_dict(torch.load(model_path+'Gs_dict.pth')) Gm = Mapping(num_layers=int(math.log(args.img_size,2)-1)*2, mapping_layers=8, latent_size=512, dlatent_size=512, mapping_fmaps=512) #num_layers: 14->256 / 16->512 / 18->1024 Gm.load_state_dict(torch.load(model_path+'Gm_dict.pth')) Gm.buffer1 = torch.load(model_path+'./center_tensor.pt') const_ = Gs.const const1 = const_.repeat(args.batch_size,1,1,1).detach().clone().cuda() layer_num = int(math.log(args.img_size,2)-1)*2 # 14->256 / 16 -> 512 / 18->1024 layer_idx = torch.arange(layer_num)[np.newaxis, :, np.newaxis] # shape:[1,18,1], layer_idx = [0,1,2,3,4,5,6。。。,17] ones = torch.ones(layer_idx.shape, dtype=torch.float32) # shape:[1,18,1], ones = [1,1,1,1,1,1,1,1] coefs = torch.where(layer_idx < layer_num//2, 0.7 * ones, ones) # 18个变量前8个裁剪比例truncation_psi [0.7,0.7,...,1,1,1] coefs = coefs.cuda() Gs.cuda() Gm.cuda() E = BE.BE(startf=args.start_features, maxf=512, layer_count=int(math.log(args.img_size,2)-1), latent_size=512, channels=3) else: print('error') return if args.checkpoint_dir_E != None: E.load_state_dict(torch.load(args.checkpoint_dir_E)) E.cuda() writer = tensor_writer E_optimizer = LREQAdam([{'params': E.parameters()},], lr=args.lr, betas=(args.beta_1, 0.99), weight_decay=0) loss_lpips = lpips.LPIPS(net='vgg').to('cuda') batch_size = args.batch_size it_d = 0 for iteration in range(0,args.iterations): set_seed(iteration%30000) z_c1 = torch.randn(batch_size, args.z_dim).cuda() #[n, 512] if type == 1: w1 = Gm(z_c1,coefs_m=coefs) #[batch_size,18,512] imgs1 = Gs.forward(w1,int(math.log(args.img_size,2)-2)) # 7->512 / 6->256 z_c2, _ = E(imgs1) z_c2 = z_c2.squeeze(-1).squeeze(-1) w2 = Gm(z_c2,coefs_m=coefs) imgs2 = Gs.forward(w2,int(math.log(args.img_size,2)-2)) else: print('model type error') return E_optimizer.zero_grad() #loss Images loss_imgs, loss_imgs_info = space_loss(imgs1,imgs2,lpips_model=loss_lpips) loss_msiv = loss_imgs E_optimizer.zero_grad() loss_msiv.backward(retain_graph=True) E_optimizer.step() #Latent-Vectors ## w #loss_w, loss_w_info = space_loss(w1,w2,image_space = False) ## c loss_c, loss_c_info = space_loss(z_c1,z_c2,image_space = False) loss_mslv = loss_c*0.01 E_optimizer.zero_grad() loss_mslv.backward() E_optimizer.step() print('ep_%d_iter_%d'%(iteration//30000,iteration%30000)) print('[loss_imgs_mse[img,img_mean,img_std], loss_imgs_kl, loss_imgs_cosine, loss_imgs_ssim, loss_imgs_lpips]') print('---------ImageSpace--------') print('loss_imgs_info: %s'%loss_imgs_info) print('---------LatentSpace--------') print('loss_c_info: %s'%loss_c_info) it_d += 1 writer.add_scalar('loss_imgs_mse', loss_imgs_info[0][0], global_step=it_d) writer.add_scalar('loss_imgs_mse_mean', loss_imgs_info[0][1], global_step=it_d) writer.add_scalar('loss_imgs_mse_std', loss_imgs_info[0][2], global_step=it_d) writer.add_scalar('loss_imgs_kl', loss_imgs_info[1], global_step=it_d) writer.add_scalar('loss_imgs_cosine', loss_imgs_info[2], global_step=it_d) writer.add_scalar('loss_imgs_ssim', loss_imgs_info[3], global_step=it_d) writer.add_scalar('loss_imgs_lpips', loss_imgs_info[4], global_step=it_d) writer.add_scalar('loss_c_mse', loss_c_info[0][0], global_step=it_d) writer.add_scalar('loss_c_mse_mean', loss_c_info[0][1], global_step=it_d) writer.add_scalar('loss_c_mse_std', loss_c_info[0][2], global_step=it_d) writer.add_scalar('loss_c_kl', loss_c_info[1], global_step=it_d) writer.add_scalar('loss_c_cosine', loss_c_info[2], global_step=it_d) writer.add_scalar('loss_c_ssim', loss_c_info[3], global_step=it_d) writer.add_scalar('loss_c_lpips', loss_c_info[4], global_step=it_d) writer.add_scalars('Latent Space C', {'loss_c_mse':loss_c_info[0][0],'loss_c_mse_mean':loss_c_info[0][1],'loss_c_mse_std':loss_c_info[0][2],'loss_c_kl':loss_c_info[1],'loss_c_cosine':loss_c_info[2]}, global_step=it_d) if iteration % 100 == 0: n_row = batch_size test_img = torch.cat((imgs1[:n_row],imgs2[:n_row]))*0.5+0.5 torchvision.utils.save_image(test_img, resultPath1_1+'/ep%d_iter%d.jpg'%(iteration//30000,iteration%30000),nrow=n_row) # nrow=3 with open(resultPath+'/Loss.txt', 'a+') as f: print('i_'+str(iteration),file=f) print('[loss_imgs_mse[img,img_mean,img_std], loss_imgs_kl, loss_imgs_cosine, loss_imgs_ssim, loss_imgs_lpips]',file=f) print('---------ImageSpace--------',file=f) print('loss_imgs_info: %s'%loss_imgs_info,file=f) print('---------LatentSpace--------',file=f) print('loss_c_info: %s'%loss_c_info,file=f) if iteration % 5000 == 0: torch.save(E.state_dict(), resultPath1_2+'/E_model_ep%d_iter%d.pth'%(iteration//30000,iteration%30000)) #torch.save(Gm.buffer1,resultPath1_2+'/center_tensor_iter%d.pt'%iteration) if __name__ == "__main__": parser = argparse.ArgumentParser(description='the training args') parser.add_argument('--iterations', type=int, default=60001) # epoch = iterations//30000 parser.add_argument('--lr', type=float, default=0.0015) parser.add_argument('--beta_1', type=float, default=0.0) parser.add_argument('--batch_size', type=int, default=2) parser.add_argument('--experiment_dir', default=None) #None parser.add_argument('--checkpoint_dir_GAN', default='../checkpoint/stylegan_v1/ffhq1024/') #None ./checkpoint/stylegan_v1/ffhq1024/ or ./checkpoint/stylegan_v2/stylegan2_ffhq1024.pth or ./checkpoint/biggan/256/G-256.pt parser.add_argument('--config_dir', default='./checkpoint/biggan/256/biggan-deep-256-config.json') # BigGAN needs it parser.add_argument('--checkpoint_dir_E', default=None) parser.add_argument('--img_size',type=int, default=1024) parser.add_argument('--img_channels', type=int, default=3)# RGB:3 ,L:1 parser.add_argument('--z_dim', type=int, default=512) # PGGAN , StyleGANs are 512. BIGGAN is 128 parser.add_argument('--mtype', type=int, default=1) # StyleGANv1=1, StyleGANv2=2, PGGAN=3, BigGAN=4 parser.add_argument('--start_features', type=int, default=16) # 16->1024 32->512 64->256 args = parser.parse_args() if not os.path.exists('./result'): os.mkdir('./result') resultPath = args.experiment_dir if resultPath == None: resultPath = "./result/StyleGANv1-AlationStudy-Z" if not os.path.exists(resultPath): os.mkdir(resultPath) resultPath1_1 = resultPath+"/imgs" if not os.path.exists(resultPath1_1): os.mkdir(resultPath1_1) resultPath1_2 = resultPath+"/models" if not os.path.exists(resultPath1_2): os.mkdir(resultPath1_2) writer_path = os.path.join(resultPath, './summaries') if not os.path.exists(writer_path): os.mkdir(writer_path) writer = tensorboardX.SummaryWriter(writer_path) use_gpu = True device = torch.device("cuda" if use_gpu else "cpu") train(tensor_writer=writer, args = args)
[ "torch.device", "torch.cat", "torch.arange", "torch.ones", "torch.load", "torch.randn", "torch.where" ]
1.8
disanda/MSV
066ed236a4c5df8b4b5e366020fe2954b7a6915a
0.4
import os.path from data.base_dataset import BaseDataset, get_params, get_transform from data.image_folder import make_dataset from PIL import Image, ImageOps import torch class Aligned3TmMaxDataset(BaseDataset): """A dataset class for paired image dataset. It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. During test time, you need to prepare a directory '/path/to/data/test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_ABC = os.path.join(opt.dataroot, opt.phase) # get the image directory self.ABC_paths = sorted(make_dataset(self.dir_ABC, opt.max_dataset_size)) # get image paths assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc self.input2_nc = self.opt.input2_nc def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - an image in the input domain B (tensor) - - its corresponding image in the target domain C (tensor) - - an alternative image in the input domain A_paths (str) - - image paths B_paths (str) - - image paths (same as A_paths) C_paths (str) - - image paths (same as A_paths) """ # read a image given a random integer index ABC_path = self.ABC_paths[index] ABC = Image.open(ABC_path).convert('RGB') # split AB image into A and B w, h = ABC.size h25 = int(h / 25) w3 = int(w / 3) A = [] B = [] C = [] for i in range(25): A.append(ABC.crop((0, h25*i, w3, h25*(i+1)))) B.append(ABC.crop((w3, h25*i, w3*2, h25*(i+1)))) Ctmp = ImageOps.flip(ABC.crop((w3*2, h25*i, w, h25*(i+1)))) Ctmp = Ctmp.convert("L") _, vmax = Ctmp.getextrema() Ctmp = Ctmp.point(lambda x: 0 if x < vmax else 255) C.append(Ctmp) # apply the same transform to both A and B transform_params = get_params(self.opt, A[0].size) A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) C_transform = get_transform(self.opt, transform_params, grayscale=(self.input2_nc == 1), convert=False) for i in range(25): A[i] = A_transform(A[i]) B[i] = B_transform(B[i]) C[i] = C_transform(C[i]) Acat = torch.unsqueeze(A[0], 0) Bcat = torch.unsqueeze(B[0], 0) Ccat = torch.unsqueeze(C[0], 0) for i in range(1,25): Acat = torch.cat([Acat, torch.unsqueeze(A[i], 0)], dim=0) Bcat = torch.cat([Bcat, torch.unsqueeze(B[i], 0)], dim=0) Ccat = torch.cat([Ccat, torch.unsqueeze(C[i], 0)], dim=0) # print('Acat size:', Acat.size()) # print('A_trans:', A.max(), A.min()) # print('B_trans:', B.max(), B.min()) # print('C_trans:', C.max(), C.min()) return {'A': Acat, 'B': Bcat, 'C': Ccat, 'A_paths': ABC_path, 'B_paths': ABC_path, 'C_paths': ABC_path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.ABC_paths)
[ "torch.unsqueeze" ]
0.4.1
tkuri/pytorch-CycleGAN-and-pix2pix
b00b3f0bcebfb12d3f026c2a61c98ff63175a583
1.7
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import signal import subprocess import sys import tempfile import time from pathlib import Path from time import sleep from typing import Any, Callable, Dict, List, Optional, Union import __main__ import numpy as np import torch import torch.distributed from torch.distributed import GradBucket from torch.nn import Module from torch.nn.parallel.distributed import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.overrides import LightningDistributedModule from pytorch_lightning.overrides.distributed import prepare_for_backward from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.strategies.strategy import TBroadcast from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities import ( _FAIRSCALE_AVAILABLE, _HYDRA_AVAILABLE, _IS_WINDOWS, _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_9, _TORCH_GREATER_EQUAL_1_10, ) from pytorch_lightning.utilities.distributed import _revert_sync_batchnorm, distributed_available from pytorch_lightning.utilities.distributed import group as _group from pytorch_lightning.utilities.distributed import init_dist_connection, ReduceOp, sync_ddp_if_available from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.exceptions import DeadlockDetectedException from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn from pytorch_lightning.utilities.seed import reset_seed from pytorch_lightning.utilities.types import STEP_OUTPUT if _FAIRSCALE_AVAILABLE: from fairscale.optim import OSS if _HYDRA_AVAILABLE: from hydra.core.hydra_config import HydraConfig from hydra.utils import get_original_cwd, to_absolute_path if _TORCH_GREATER_EQUAL_1_8: from pytorch_lightning.utilities.distributed import register_ddp_comm_hook log = logging.getLogger(__name__) class DDPStrategy(ParallelStrategy): """Plugin for multi-process single-device training on one or multiple nodes. The main process in each node spawns N-1 child processes via :func:`subprocess.Popen`, where N is the number of devices (e.g. GPU) per node. It is very similar to how :mod:`torch.distributed.launch` launches processes. """ distributed_backend = _StrategyType.DDP def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[Callable[[Any, GradBucket], torch.futures.Future[torch.Tensor]]] = None, ddp_comm_wrapper: Optional[ Callable[ [Callable[[Any, GradBucket], torch.futures.Future[torch.Tensor]], Any], torch.futures.Future[torch.Tensor], ] ] = None, model_averaging_period: Optional[int] = None, **kwargs: Union[Any, Dict[str, Any]], ) -> None: super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) log.detail(f"{self.__class__.__name__}: initializing DDP plugin") self.interactive_ddp_procs: List[subprocess.Popen] = [] self._num_nodes = 1 self.sync_batchnorm = False self._ddp_kwargs = kwargs self._ddp_comm_state = ddp_comm_state self._ddp_comm_hook = ddp_comm_hook self._ddp_comm_wrapper = ddp_comm_wrapper self._model_averaging_period = model_averaging_period self._pids: Optional[List[int]] = None self._sync_dir: Optional[str] = None self._rank_0_has_called_call_children_scripts: bool = False self.set_world_ranks() @property def is_distributed(self) -> bool: return True @property def root_device(self) -> torch.device: return self.parallel_devices[self.local_rank] @property def num_nodes(self) -> int: return self._num_nodes @num_nodes.setter def num_nodes(self, num_nodes: int) -> None: # note that world ranks is related to num_nodes, when resetting it, need to reset world ranks self._num_nodes = num_nodes self.set_world_ranks() @property def num_processes(self) -> int: return len(self.parallel_devices) if self.parallel_devices is not None else 0 @property def distributed_sampler_kwargs(self) -> Dict[str, Any]: distributed_sampler_kwargs = dict(num_replicas=(self.num_nodes * self.num_processes), rank=self.global_rank) return distributed_sampler_kwargs @property def _is_single_process_single_device(self) -> bool: return True def setup_environment(self) -> None: # start the other scripts assert self.cluster_environment is not None if not self.cluster_environment.creates_processes_externally: self._call_children_scripts() self.setup_distributed() super().setup_environment() def setup(self, trainer: "pl.Trainer") -> None: super().setup(trainer) # share ddp pids to all processes self._rank_0_has_called_call_children_scripts = ( self.broadcast(self._rank_0_has_called_call_children_scripts) is True ) if self._should_run_deadlock_detection(): self._share_information_to_prevent_deadlock() # move the model to the correct device self.model_to_device() assert self.model is not None if self.sync_batchnorm: self.model = self.configure_sync_batchnorm(self.model) # skip wrapping the model if we are not fitting as no gradients need to be exchanged assert self.lightining_module is not None trainer_fn = self.lightning_module.trainer.state.fn if trainer_fn == TrainerFn.FITTING: self.configure_ddp() def _setup_model(self, model: Module) -> DistributedDataParallel: """Wraps the model into a :class:`~torch.nn.parallel.distributed.DistributedDataParallel` module.""" device_ids = self.determine_ddp_device_ids() log.detail(f"setting up DDP model with device ids: {device_ids}, kwargs: {self._ddp_kwargs}") return DistributedDataParallel(module=model, device_ids=device_ids, **self._ddp_kwargs) def _call_children_scripts(self) -> None: # bookkeeping of spawned processes self._check_can_spawn_children() assert self.cluster_environment is not None # DDP Environment variables os.environ["MASTER_ADDR"] = self.cluster_environment.main_address os.environ["MASTER_PORT"] = str(self.cluster_environment.main_port) # allow the user to pass the node rank os.environ["NODE_RANK"] = str(self.cluster_environment.node_rank()) os.environ["LOCAL_RANK"] = str(self.cluster_environment.local_rank()) # Check if the current calling command looked like `python a/b/c.py` or `python -m a.b.c` # See https://docs.python.org/3/reference/import.html#main-spec if __main__.__spec__ is None: # pragma: no-cover # Script called as `python a/b/c.py` # when user is using hydra find the absolute path path_lib = os.path.abspath if not _HYDRA_AVAILABLE else to_absolute_path # pull out the commands used to run the script and resolve the abs file path command = sys.argv try: full_path = path_lib(command[0]) except Exception: full_path = os.path.abspath(command[0]) command[0] = full_path # use the same python interpreter and actually running command = [sys.executable] + command else: # Script called as `python -m a.b.c` command = [sys.executable, "-m", __main__.__spec__.name] + sys.argv[1:] os.environ["WORLD_SIZE"] = f"{self.num_processes * self.num_nodes}" self.interactive_ddp_procs = [] for local_rank in range(1, self.num_processes): env_copy = os.environ.copy() env_copy["LOCAL_RANK"] = f"{local_rank}" # remove env var if global seed not set if os.environ.get("PL_GLOBAL_SEED") is None and "PL_GLOBAL_SEED" in env_copy: del env_copy["PL_GLOBAL_SEED"] # start process # if hydra is available and initialized, make sure to set the cwd correctly cwd: Optional[str] = None if _HYDRA_AVAILABLE: if HydraConfig.initialized(): cwd = get_original_cwd() os_cwd = f'"{os.getcwd()}"' command += [f"hydra.run.dir={os_cwd}", f"hydra.job.name=train_ddp_process_{local_rank}"] proc = subprocess.Popen(command, env=env_copy, cwd=cwd) self.interactive_ddp_procs.append(proc) # starting all processes at once can cause issues # with dataloaders delay between 1-10 seconds delay = np.random.uniform(1, 5, 1)[0] sleep(delay) self._rank_0_has_called_call_children_scripts = True def setup_distributed(self) -> None: log.detail(f"{self.__class__.__name__}: setting up distributed...") reset_seed() # determine which process we are and world size self.set_world_ranks() # set warning rank rank_zero_only.rank = self.global_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table assert self.cluster_environment is not None init_dist_connection(self.cluster_environment, self.torch_distributed_backend) def _check_can_spawn_children(self) -> None: if self.local_rank != 0: raise RuntimeError( "Lightning attempted to launch new distributed processes with `local_rank > 0`. This should not happen." " Possible reasons: 1) LOCAL_RANK environment variable was incorrectly modified by the user," " 2) `ClusterEnvironment.creates_processes_externally` incorrectly implemented." ) def set_world_ranks(self) -> None: if self.cluster_environment is None: return self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) rank_zero_only.rank = self.cluster_environment.global_rank() def pre_configure_ddp(self) -> None: # if unset, default `find_unused_parameters` `True` # Many models require setting this parameter to True, as there are corner cases # when not all parameter backward hooks are fired by the autograd engine even if require_grad is set to True. # This flag does come with a performance hit, so it is suggested to disable in cases where it is possible. self._ddp_kwargs["find_unused_parameters"] = self._ddp_kwargs.get("find_unused_parameters", True) assert self.lightning_module is not None if not self.lightning_module.automatic_optimization and not self._ddp_kwargs.get( "find_unused_parameters", False ): # TODO: PyTorch 1.7.0 DDP introduces `self.reducer._rebuild_buckets()` breaking manual_optimization rank_zero_warn( "From PyTorch 1.7.0, Lightning `manual_optimization` needs to set `find_unused_parameters=True` to" " properly work with DDP. Using `find_unused_parameters=True`." ) self._ddp_kwargs["find_unused_parameters"] = True def _register_ddp_hooks(self) -> None: log.detail(f"{self.__class__.__name__}: registering ddp hooks") # In 1.8, DDP communication hooks only work with NCCL backend and SPSD (single process single device) mode # Since 1.9, DDP communication hooks can work on all backends. if _TORCH_GREATER_EQUAL_1_9 or ( _TORCH_GREATER_EQUAL_1_8 and self.root_device.type == "cuda" and self._is_single_process_single_device ): register_ddp_comm_hook( model=self.model, ddp_comm_state=self._ddp_comm_state, ddp_comm_hook=self._ddp_comm_hook, ddp_comm_wrapper=self._ddp_comm_wrapper, ) if _TORCH_GREATER_EQUAL_1_10 and self.lightning_module.trainer.state.fn == TrainerFn.FITTING: import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD if isinstance(self._ddp_comm_state, post_localSGD.PostLocalSGDState): self._reinit_optimizers_with_post_localSGD(self._ddp_comm_state.start_localSGD_iter) def _reinit_optimizers_with_post_localSGD(self, warmup_steps: int) -> None: log.detail(f"{self.__class__.__name__}: reinitializing optimizers with post localSGD") optimizers = self.optimizers if self._model_averaging_period is None: raise ValueError( "Post-localSGD algorithm is used, but model averaging period is not provided to DDP strategy." ) if _TORCH_GREATER_EQUAL_1_10: if not _IS_WINDOWS: from torch.distributed.optim import DistributedOptimizer import torch.distributed.algorithms.model_averaging.averagers as averagers from torch.distributed.optim import PostLocalSGDOptimizer, ZeroRedundancyOptimizer averager = averagers.PeriodicModelAverager(period=self._model_averaging_period, warmup_steps=warmup_steps) for x, optimizer in enumerate(optimizers): if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer is_distributed_optimizer = isinstance(optimizer, DistributedOptimizer) if not _IS_WINDOWS else False if ( is_distributed_optimizer or isinstance(optimizer, ZeroRedundancyOptimizer) or (_FAIRSCALE_AVAILABLE and isinstance(optimizer, OSS)) ): raise ValueError( f"Cannot wrap a distributed optimizer of type {optimizer.__name__} by PostLocalSGDOptimizer." ) if isinstance(optimizer, PostLocalSGDOptimizer): continue optim_class = type(optimizer) post_localSGD_optimizer = PostLocalSGDOptimizer( params=optimizer.param_groups, optimizer_class=optim_class, averager=averager, **optimizer.defaults, ) optimizers[x] = post_localSGD_optimizer del optimizer self.optimizers = optimizers def configure_ddp(self) -> None: log.detail(f"{self.__class__.__name__}: configuring DistributedDataParallel") self.pre_configure_ddp() assert self.model is not None self.model = self._setup_model(LightningDistributedModule(self.model)) self._register_ddp_hooks() def determine_ddp_device_ids(self) -> Optional[List[int]]: if self.root_device.type == "cpu": return None return [self.root_device.index] def barrier(self, *args, **kwargs) -> None: if not distributed_available(): return if _TORCH_GREATER_EQUAL_1_8 and torch.distributed.get_backend() == "nccl": torch.distributed.barrier(device_ids=self.determine_ddp_device_ids()) else: torch.distributed.barrier() def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast: obj = [obj] if self.global_rank != src: obj = [None] torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD) return obj[0] def pre_backward(self, closure_loss: torch.Tensor) -> None: """Run before precision plugin executes backward.""" assert self.model is not None assert self.lightning_module is not None if not self.lightning_module.automatic_optimization: prepare_for_backward(self.model, closure_loss) def model_to_device(self) -> None: log.detail(f"{self.__class__.__name__}: moving model to device [{self.root_device}]...") if self.model: self.model.to(self.root_device) def reduce( self, tensor: torch.Tensor, group: Optional[Any] = None, reduce_op: Union[ReduceOp, str, None] = "mean" ) -> torch.Tensor: """Reduces a tensor from several distributed processes to one aggregated tensor. Args: tensor: the tensor to sync and reduce group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to 'mean'/'avg'. Can also be a string 'sum' to calculate the sum during reduction. Return: reduced value, except when the input was not a tensor the output remains is unchanged """ if isinstance(tensor, torch.Tensor): tensor = sync_ddp_if_available(tensor, group, reduce_op=reduce_op) return tensor def training_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.train_step_context(): assert self.model is not None return self.model(*args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.val_step_context(): if isinstance(self.model, DistributedDataParallel): # used when calling `trainer.fit` return self.model(*args, **kwargs) else: # used when calling `trainer.validate` assert self.lightning_module is not None return self.lightning_module.validation_step(*args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.test_step_context(): assert self.lightning_module is not None return self.lightning_module.test_step(*args, **kwargs) def predict_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.predict_step_context(): assert self.lightning_module is not None return self.lightning_module.predict_step(*args, **kwargs) def post_training_step(self) -> None: assert self.model is not None assert self.lightning_module is not None if not self.lightning_module.automatic_optimization: self.model.require_backward_grad_sync = True @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( "ddp_find_unused_parameters_false", cls, description="DDP Strategy with `find_unused_parameters` as False", find_unused_parameters=False, ) def _should_run_deadlock_detection(self) -> bool: """Determines whether the plugin will perform process reconciliation in case of errors. If the environment variable `PL_RECONCILE_PROCESS` is set, run detection regardless of the cluster environment. By default this is disabled. Otherwise, if the cluster environment creates the processes, allow the scheduler / parent process to perform the process termination, external to Lightning. """ return os.getenv("PL_RECONCILE_PROCESS", "0") == "1" or self._rank_0_has_called_call_children_scripts def _share_information_to_prevent_deadlock(self) -> None: self._share_pids() # there should be a unique sync_dir per nodes. if self.local_rank == 0: # create a temporary directory used to synchronize processes on deadlock. self._sync_dir = tempfile.mkdtemp() sync_dirs = [] global_node_rank_zero = 0 for _ in range(self.num_nodes): sync_dirs.append(self.broadcast(self._sync_dir, global_node_rank_zero)) global_node_rank_zero += self.world_size // self.num_nodes self._sync_dir = sync_dirs[self.node_rank] def _share_pids(self) -> None: """Make all DDP processes aware of all processes pids.""" self.barrier() pids = self.all_gather(torch.tensor(os.getpid(), device=self.root_device)) pids = pids.cpu().numpy().tolist() self._pids = pids if isinstance(pids, list) else [pids] def reconciliate_processes(self, trace: str) -> None: if self.world_size < 2: return if not self._should_run_deadlock_detection(): return sync_dir = self._sync_dir if not sync_dir: rank_zero_warn("Error handling mechanism for deadlock detection is uninitialized. Skipping check.") return # The cluster may be configured to periodically purge the `/tmp` # directory, in which case `sync_dir` may not exist anymore at this # point. Idempotently create it to ensure its existence. Path(sync_dir).mkdir(parents=True, exist_ok=True) # save a file locally. torch.save(True, os.path.join(sync_dir, f"{self.global_rank}.pl")) # sleep for a short time time.sleep(3) # return if all processes wrote a file in the `sync_dir`. # todo (tchaton) Add support for non-shared file-system which will fail. if len(os.listdir(sync_dir)) == (self.world_size // self.num_nodes): return if not self._pids: return for pid in self._pids: if pid != os.getpid(): os.kill(pid, signal.SIGKILL) shutil.rmtree(sync_dir) raise DeadlockDetectedException(f"DeadLock detected from rank: {self.global_rank} \n {trace}") def teardown(self) -> None: log.detail(f"{self.__class__.__name__}: tearing down DDP plugin") super().teardown() if isinstance(self.model, DistributedDataParallel): self.model = self.lightning_module assert self.model is not None if self.sync_batchnorm: self.model = _revert_sync_batchnorm(self.model) if self.root_device.type == "cuda": # GPU teardown log.detail(f"{self.__class__.__name__}: moving model to CPU") assert self.lightning_module is not None self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()
[ "torch.distributed.algorithms.model_averaging.averagers.PeriodicModelAverager", "torch.distributed.optim.PostLocalSGDOptimizer", "torch.distributed.broadcast_object_list", "torch.nn.parallel.distributed.DistributedDataParallel", "torch.distributed.get_backend", "torch.cuda.empty_cache", "torch.distributed.barrier" ]
1.7
alat-rights/pytorch-lightning
a4f1f3dc28982eb6578df62ca92b93f83a2defcc
1.5
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import numpy as np from utils.utils import AverageMeter from tqdm import tqdm # from utils.visualize import plot_confusion_matrix from sklearn.metrics import confusion_matrix class ExperimentRunnerBase: def __init__(self, args): # Set the LR Scheduler and Loss Parameters if args.scheduler == 'plateau': self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, factor=0.5, patience=3, mode='max', verbose=True) elif args.scheduler == 'cycle': self.scheduler = torch.optim.lr_scheduler.OneCycleLR(self.optimizer, max_lr=args.learning_rate, steps_per_epoch=len(self.train_loader), epochs=args.num_epochs) self.criterion = torch.nn.CrossEntropyLoss() self.visualize = args.visualize if self.visualize: print("if visualize is true this line will run") from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter() # Training specific params self.args = args self.num_epochs = args.num_epochs self.print_every = args.print_every self.val_every = args.val_every self.model_dir = args.model_dir self.save_every = args.save_every def train(self): # Setting the variables before starting the training avg_train_loss = AverageMeter() avg_train_acc = AverageMeter() best_val_acc = -np.inf for epoch in range(self.num_epochs): avg_train_loss.reset() avg_train_acc.reset() # Mini batch loop for batch_idx, batch in enumerate(tqdm(self.train_loader)): step = epoch * len(self.train_loader) + batch_idx # Get the model output for the batch and update the loss and accuracy meters train_loss, train_acc = self.train_step(batch) if self.args.scheduler == 'cycle': self.scheduler.step() avg_train_loss.update([train_loss.item()]) avg_train_acc.update([train_acc]) # Save the step checkpoint if needed # if step % self.save_every == 0: # step_chkpt_path = os.path.join(self.model_dir, # 'step_chkpt_{}_{}.pth'.format(epoch, step)) # print("Saving the model checkpoint for epoch {} at step {}".format(epoch, step)) # torch.save(self.model.state_dict(), step_chkpt_path) # Logging and validation check if step % self.print_every == 0: print('Epoch {}, batch {}, step {}, ' 'loss = {:.4f}, acc = {:.4f}, ' 'running averages: loss = {:.4f}, acc = {:.4f}'.format(epoch, batch_idx, step, train_loss.item(), train_acc, avg_train_loss.get(), avg_train_acc.get())) if step % self.val_every == 0: val_loss, val_acc = self.val() print('Val acc = {:.4f}, Val loss = {:.4f}'.format(val_acc, val_loss)) if self.visualize: self.writer.add_scalar('Val/loss', val_loss, step) self.writer.add_scalar('Val/acc', val_acc, step) # Update the save the best validation checkpoint if needed if val_acc > best_val_acc: best_val_acc = val_acc best_chkpt_path = os.path.join(self.model_dir, 'best_ckpt.pth') torch.save(self.model.state_dict(), best_chkpt_path) if self.args.scheduler == 'plateau': self.scheduler.step(val_acc) if self.visualize: # Log data to self.writer.add_scalar('Train/loss', train_loss.item(), step) self.writer.add_scalar('Train/acc', train_acc, step) def compute_loss(self, batch): """ This function is specific to the kind of model we are training and must be implemented """ raise NotImplementedError def train_step(self, batch): self.model.train() self.optimizer.zero_grad() metrics = self.compute_loss(batch) metrics['loss'].backward() self.optimizer.step() return metrics['loss'], metrics['accuracy'] def load_model_for_eval(self): chkpt_path = os.path.join(self.model_dir, 'best_ckpt.pth') \ if self.args.eval_checkpoint_path is None else self.args.eval_checkpoint_path self.model.load_state_dict(torch.load(chkpt_path)) self.model.eval() @torch.no_grad() def val(self): print('VALIDATING:') avg_val_loss = AverageMeter() avg_val_acc = AverageMeter() self.model.eval() for batch_idx, batch in enumerate(tqdm(self.val_loader)): metrics = self.compute_loss(batch) avg_val_acc.update(metrics['correct'].cpu().numpy()) avg_val_loss.update([metrics['loss']]) return avg_val_loss.get(), avg_val_acc.get() @torch.no_grad() def infer(self): self.load_model_for_eval() avg_test_loss = AverageMeter() avg_test_acc = AverageMeter() all_true_labels = [] all_pred_labels = [] all_audio_embeddings = [] all_text_embeddings = [] for batch_idx, batch in enumerate(tqdm(self.test_loader)): # Get the model output and update the meters output = self.compute_loss(batch) avg_test_acc.update(output['correct'].cpu().numpy()) avg_test_loss.update([output['loss']]) # Store the Predictions all_true_labels.append(batch['label'].cpu()) all_pred_labels.append(output['predicted'].cpu()) all_audio_embeddings.append(output['model_output']['audio_embed'].cpu()) all_text_embeddings.append(output['model_output']['text_embed'].cpu()) # Collect the predictions and embeddings for the full set all_true_labels = torch.cat(all_true_labels).numpy() all_pred_labels = torch.cat(all_pred_labels).numpy() all_audio_embeddings = torch.cat(all_audio_embeddings).numpy() all_text_embeddings = torch.cat(all_text_embeddings).numpy() # Save the embeddings and plot the confusion matrix np.savez_compressed('embeddings.npz', audio=all_audio_embeddings, text=all_text_embeddings, labels=all_true_labels) # cm = confusion_matrix(all_true_labels, all_pred_labels) # plot_confusion_matrix(cm, self.test_loader.dataset.labels_list(), normalize=True) print('Final test acc = {:.4f}, test loss = {:.4f}'.format(avg_test_acc.get(), avg_test_loss.get())) return avg_test_loss.get(), avg_test_acc.get()
[ "torch.cat", "torch.no_grad", "torch.nn.CrossEntropyLoss", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.load", "torch.utils.tensorboard.SummaryWriter" ]
1.5.0
Emmyphung/flexible-input-slu
a2c7fff640b2b4aec830f3ca1b447c28dc506bb4
1.7
import cv2 import numpy as np import torch import torch.nn as nn from . import common from .agent import Agent from .controller import PIDController, CustomController from .controller import ls_circle STEPS = 5 SPEED_STEPS = 3 COMMANDS = 4 DT = 0.1 CROP_SIZE = 192 PIXELS_PER_METER = 5 def regression_base(): return nn.Sequential( nn.ConvTranspose2d(640,256,4,2,1,0), nn.BatchNorm2d(256), nn.ReLU(True), nn.ConvTranspose2d(256,128,4,2,1,0), nn.BatchNorm2d(128), nn.ReLU(True), nn.ConvTranspose2d(128,64,4,2,1,0), nn.BatchNorm2d(64), nn.ReLU(True)) def spatial_softmax_base(): return nn.Sequential( nn.BatchNorm2d(640), nn.ConvTranspose2d(640,256,3,2,1,1), nn.ReLU(True), nn.BatchNorm2d(256), nn.ConvTranspose2d(256,128,3,2,1,1), nn.ReLU(True), nn.BatchNorm2d(128), nn.ConvTranspose2d(128,64,3,2,1,1), nn.ReLU(True)) class BirdViewPolicyModelSS(common.ResnetBase): def __init__(self, backbone='resnet18', input_channel=7, n_step=5, all_branch=False, **kwargs): super().__init__(backbone=backbone, input_channel=input_channel, bias_first=False) self.deconv = spatial_softmax_base() self.location_pred = nn.ModuleList([ nn.Sequential( nn.BatchNorm2d(64), nn.Conv2d(64,STEPS,1,1,0), common.SpatialSoftmax(48,48,STEPS)) for i in range(COMMANDS) ]) self.all_branch = all_branch def forward(self, bird_view, velocity, command): h = self.conv(bird_view) b, c, kh, kw = h.size() # Late fusion for velocity velocity = velocity[...,None,None,None].repeat((1,128,kh,kw)) h = torch.cat((h, velocity), dim=1) h = self.deconv(h) location_preds = [location_pred(h) for location_pred in self.location_pred] location_preds = torch.stack(location_preds, dim=1) location_pred = common.select_branch(location_preds, command) if self.all_branch: return location_pred, location_preds return location_pred class BirdViewAgent(Agent): def __init__(self, steer_points=None, pid=None, gap=5, **kwargs): super().__init__(**kwargs) self.speed_control = PIDController(K_P=1.0, K_I=0.1, K_D=2.5) if steer_points is None: steer_points = {"1": 3, "2": 2, "3": 2, "4": 2} if pid is None: pid = { "1": {"Kp": 1.0, "Ki": 0.1, "Kd": 0}, # Left "2": {"Kp": 1.0, "Ki": 0.1, "Kd": 0}, # Right "3": {"Kp": 0.8, "Ki": 0.1, "Kd": 0}, # Straight "4": {"Kp": 0.8, "Ki": 0.1, "Kd": 0}, # Follow } self.turn_control = CustomController(pid) self.steer_points = steer_points self.gap = gap def run_step(self, observations, teaching=False): birdview = common.crop_birdview(observations['birdview'], dx=-10) speed = np.linalg.norm(observations['velocity']) command = self.one_hot[int(observations['command']) - 1] with torch.no_grad(): _birdview = self.transform(birdview).to(self.device).unsqueeze(0) _speed = torch.FloatTensor([speed]).to(self.device) _command = command.to(self.device).unsqueeze(0) if self.model.all_branch: _locations, _ = self.model(_birdview, _speed, _command) else: _locations = self.model(_birdview, _speed, _command) _locations = _locations.squeeze().detach().cpu().numpy() _map_locations = _locations # Pixel coordinates. _locations = (_locations + 1) / 2 * CROP_SIZE targets = list() for i in range(STEPS): pixel_dx, pixel_dy = _locations[i] pixel_dx = pixel_dx - CROP_SIZE / 2 pixel_dy = CROP_SIZE - pixel_dy angle = np.arctan2(pixel_dx, pixel_dy) dist = np.linalg.norm([pixel_dx, pixel_dy]) / PIXELS_PER_METER targets.append([dist * np.cos(angle), dist * np.sin(angle)]) target_speed = 0.0 for i in range(1, SPEED_STEPS): pixel_dx, pixel_dy = _locations[i] prev_dx, prev_dy = _locations[i-1] dx = pixel_dx - prev_dx dy = pixel_dy - prev_dy delta = np.linalg.norm([dx, dy]) target_speed += delta / (PIXELS_PER_METER * self.gap * DT) / (SPEED_STEPS-1) _cmd = int(observations['command']) n = self.steer_points.get(str(_cmd), 1) targets = np.concatenate([[[0, 0]], targets], 0) c, r = ls_circle(targets) closest = common.project_point_to_circle(targets[n], c, r) v = [1.0, 0.0, 0.0] w = [closest[0], closest[1], 0.0] alpha = common.signed_angle(v, w) steer = self.turn_control.run_step(alpha, _cmd) throttle = self.speed_control.step(target_speed - speed) brake = 0.0 if target_speed < 1.0: steer = 0.0 throttle = 0.0 brake = 1.0 self.debug['locations_birdview'] = _locations[:,::-1].astype(int) self.debug['target'] = closest self.debug['target_speed'] = target_speed control = self.postprocess(steer, throttle, brake) if teaching: return control, _map_locations else: return control
[ "torch.cat", "torch.stack", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.no_grad", "torch.FloatTensor", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.7.1
jostl/masters-thesis
211e1f12a07428d37507e2bddc808f6da1149efb
1.7
import copy import math import time from pathlib import Path import random from kornia.filters import spatial_gradient from pytorch_msssim import ssim, SSIM import torch import torch.optim as optim from tensorboardX import SummaryWriter from torch.utils.data import DataLoader, random_split from tqdm import tqdm from perception.custom_datasets import DepthDataset from perception.training.models import createUNet, createUNetResNet from perception.utils.visualization import display_images_horizontally def depth_loss_function(y_pred, y_true, theta=0.1, maxDepthVal=1): # from https://github.com/ialhashim/DenseDepth/blob/ed044069eb99fa06dd4af415d862b3b5cbfab283/loss.py # and their paper https://arxiv.org/pdf/1812.11941.pdf # with modifications for pytorch - using libraries pytorch_msssim and kornia # Point-wise depth l_depth = torch.mean(torch.abs(y_pred - y_true), dim=-1) # Edges d_true = spatial_gradient(y_true) dx_true = d_true[:, :, 0, :, :] dy_true = d_true[:, :, 1, :, :] d_pred = spatial_gradient(y_pred) dx_pred = d_pred[:, :, 0, :, :] dy_pred = d_pred[:, :, 1, :, :] l_edges = torch.mean(torch.abs(dy_pred - dy_true) + torch.abs(dx_pred - dx_true), dim=-1) # Structural similarity (SSIM) index l_ssim = torch.clip((1 - ssim(y_true, y_pred, maxDepthVal, nonnegative_ssim=True)) * 0.5, 0, 1) # Weights w1 = 1.0 w2 = 1.0 w3 = theta return (w1 * l_ssim) + (w2 * torch.mean(l_edges)) + (w3 * torch.mean(l_depth)) def create_dataloaders(path, validation_set_size, batch_size=32, max_n_instances=None, augment_strategy=None, num_workers=0, use_transform=None): dataset = DepthDataset(root_folder=path, max_n_instances=max_n_instances, augment_strategy=augment_strategy, use_transform=use_transform) train_size = int((1 - validation_set_size) * len(dataset)) validation_size = len(dataset) - train_size train_dataset, validation_dataset = random_split(dataset, [train_size, validation_size]) dataloaders = {"train": DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers), "val": DataLoader(validation_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)} return dataloaders def train_model(model, dataloaders, criterion, optimizer, n_epochs, model_save_path, scheduler=None, save_model_weights=True, display_img_after_epoch=0): # determine the computational device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") model.to(device) best_val_loss = math.inf best_model_weights = copy.deepcopy(model.state_dict()) start = time.time() last_time = start # Tensorboard logging train_log_path = model_save_path / "logs/train" val_log_path = model_save_path / "logs/val" train_log_path.mkdir(parents=True) val_log_path.mkdir(parents=True) writer_train = SummaryWriter(model_save_path / "logs/train") writer_val = SummaryWriter(model_save_path / "logs/val") for epoch in range(n_epochs): print('-' * 10) print('Epoch {}/{}'.format(epoch + 1, n_epochs)) for phase in ["train", "val"]: if phase == "train": model.train() else: model.eval() running_loss = 0.0 display_images = None for i, data in tqdm(enumerate(dataloaders[phase])): # Get the inputs; data is a list of (RGB, semantic segmentation, depth maps). rgb_input = data[0].to(device, dtype=torch.float32) # TODO så stor datatype? #rgb_target = data[1].to(device, dtype=torch.float32) depth_image = data[2].to(device, dtype=torch.float32) rgb_raw = data[3] # Find the size of rgb_image input_size = rgb_input.size(0) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(phase == "train"): outputs = model(rgb_input) #depth_image = torch.flatten(depth_image, start_dim=1) # TODO loss loss = criterion(outputs, depth_image) # backward + optimize only if in training phase if phase == "train": loss.backward() optimizer.step() if display_images is None: # Save image as a numpy array. Used later for displaying predictions. idx = random.randint(0, input_size-1) display_images = [rgb_raw.cpu().numpy()[idx].transpose(1, 2, 0), depth_image.cpu().numpy()[idx].reshape(160, 384), outputs.detach().cpu().numpy()[idx].reshape(160, 384)] # statistics running_loss += loss.item() * input_size if phase == 'train' and scheduler is not None: scheduler.step() dataset_size = len(dataloaders["train"].dataset) if phase == "train" else len(dataloaders["val"].dataset) epoch_loss = running_loss / dataset_size print('{} Loss: {:.6f}'.format(phase, epoch_loss)) # deep copy the model if phase == "val" and epoch_loss < best_val_loss: print("val loss record low, saving these weights...") best_val_loss = epoch_loss best_model_weights = copy.deepcopy(model.state_dict()) writer = writer_train if phase == "train" else writer_val writer.add_scalar("epoch_loss", epoch_loss, epoch) display = True if phase == "val" and display_img_after_epoch else False figtitle = "{} visualization after epoch {}".format(phase, epoch) subtitles = ["augmented input", "ground truth", "prediction"] img = display_images_horizontally(display_images, fig_width=10, fig_height=2, display=display, title=figtitle, subplot_titles=subtitles) writer.add_image("{} comparison".format(phase), img.transpose(2, 0, 1), epoch) now = time.time() time_elapsed = now - last_time print("Epoch completed in {:.0f}m {:.0f}s".format( time_elapsed // 60, time_elapsed % 60)) last_time = now # Save the model if save_model_weights: path = model_save_path / "epoch-{}.pt".format(epoch+1) print("Saving weights to:", path) torch.save(model.state_dict(), path) time_elapsed = time.time() - start print("Training complete in {:.0f}m {:.0f}s".format( time_elapsed // 60, time_elapsed % 60)) # load the best weights model.load_state_dict(best_model_weights) # Save the model if save_model_weights: path = model_save_path / "best_weights.pt" print("Saving best weights to:", path) torch.save(model.state_dict(), path) return model def main(): model_name = "depth_unet_resnet_ssim6" model_save_path = Path("training_logs/perception") / model_name validation_set_size = 0.2 max_n_instances = None batch_size = 42 augment_strategy = "medium" path = "data/perception/test1" model_save_path.mkdir(parents=True) dataloaders = create_dataloaders(path=path, validation_set_size=validation_set_size, batch_size=batch_size, max_n_instances=max_n_instances, augment_strategy=augment_strategy, num_workers=0, use_transform=None) # "midas_large" save_model_weights = True display_img_after_epoch = True n_epochs = 20 #model = createDeepLabv3(outputchannels=len(DEFAULT_CLASSES) + 1, backbone=backbone, pretrained=True) #model = createUNet() model = createUNetResNet() #criterion = torch.nn.MSELoss() criterion = depth_loss_function optimizer = optim.Adam(model.parameters(), lr=0.0001) train_model(model=model, dataloaders=dataloaders, criterion=criterion, optimizer=optimizer, n_epochs=n_epochs, model_save_path=model_save_path, save_model_weights=save_model_weights, display_img_after_epoch=display_img_after_epoch) if __name__ == '__main__': main()
[ "torch.utils.data.random_split", "torch.set_grad_enabled", "torch.abs", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.mean" ]
1.7.1
jostl/masters-thesis
211e1f12a07428d37507e2bddc808f6da1149efb
0.4
""" IBN(b)-ResNet, implemented in PyTorch. Original paper: 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. """ __all__ = ['IBNbResNet', 'ibnb_resnet50', 'ibnb_resnet101', 'ibnb_resnet152'] import os import torch.nn as nn import torch.nn.init as init from .common import conv1x1_block from .resnet import ResBottleneck class IBNbConvBlock(nn.Module): """ IBN(b)-ResNet specific convolution block with Instance normalization and ReLU activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. activate : bool, default True Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False, activate=True): super(IBNbConvBlock, self).__init__() self.activate = activate self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.inst_norm = nn.InstanceNorm2d( num_features=out_channels, affine=True) if self.activate: self.activ = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.inst_norm(x) if self.activate: x = self.activ(x) return x def ibnb_conv7x7_block(in_channels, out_channels, stride=1, padding=3, bias=False, activate=True): """ 7x7 version of the IBN(b)-ResNet specific convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 3 Padding value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. activate : bool, default True Whether activate the convolution block. """ return IBNbConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=stride, padding=padding, bias=bias, activate=activate) class IBNbResUnit(nn.Module): """ IBN(b)-ResNet unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int Strides of the convolution. use_inst_norm : bool Whether to use instance normalization. """ def __init__(self, in_channels, out_channels, stride, use_inst_norm): super(IBNbResUnit, self).__init__() self.use_inst_norm = use_inst_norm self.resize_identity = (in_channels != out_channels) or (stride != 1) self.body = ResBottleneck( in_channels=in_channels, out_channels=out_channels, stride=stride, conv1_stride=False) if self.resize_identity: self.identity_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, stride=stride, activate=False) if self.use_inst_norm: self.inst_norm = nn.InstanceNorm2d( num_features=out_channels, affine=True) self.activ = nn.ReLU(inplace=True) def forward(self, x): if self.resize_identity: identity = self.identity_conv(x) else: identity = x x = self.body(x) x = x + identity if self.use_inst_norm: x = self.inst_norm(x) x = self.activ(x) return x class IBNbResInitBlock(nn.Module): """ IBN(b)-ResNet specific initial block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(IBNbResInitBlock, self).__init__() self.conv = ibnb_conv7x7_block( in_channels=in_channels, out_channels=out_channels, stride=2) self.pool = nn.MaxPool2d( kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.conv(x) x = self.pool(x) return x class IBNbResNet(nn.Module): """ IBN(b)-ResNet model from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. num_classes : int, default 1000 Number of classification classes. """ def __init__(self, channels, init_block_channels, in_channels=3, in_size=(224, 224), num_classes=1000): super(IBNbResNet, self).__init__() self.in_size = in_size self.num_classes = num_classes self.features = nn.Sequential() self.features.add_module("init_block", IBNbResInitBlock( in_channels=in_channels, out_channels=init_block_channels)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = nn.Sequential() for j, out_channels in enumerate(channels_per_stage): stride = 2 if (j == 0) and (i != 0) else 1 use_inst_norm = (i < 2) and (j == len(channels_per_stage) - 1) stage.add_module("unit{}".format(j + 1), IBNbResUnit( in_channels=in_channels, out_channels=out_channels, stride=stride, use_inst_norm=use_inst_norm)) in_channels = out_channels self.features.add_module("stage{}".format(i + 1), stage) self.features.add_module("final_pool", nn.AvgPool2d( kernel_size=7, stride=1)) self.output = nn.Linear( in_features=in_channels, out_features=num_classes) self._init_params() def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.output(x) return x def get_ibnbresnet(blocks, model_name=None, pretrained=False, root=os.path.join('~', '.torch', 'models'), **kwargs): """ Create IBN(b)-ResNet model with specific parameters. Parameters: ---------- blocks : int Number of blocks. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ if blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] elif blocks == 152: layers = [3, 8, 36, 3] else: raise ValueError("Unsupported IBN(b)-ResNet with number of blocks: {}".format(blocks)) init_block_channels = 64 channels_per_layers = [256, 512, 1024, 2048] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = IBNbResNet( channels=channels, init_block_channels=init_block_channels, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def ibnb_resnet50(**kwargs): """ IBN(b)-ResNet-50 model from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_ibnbresnet(blocks=50, model_name="ibnb_resnet50", **kwargs) def ibnb_resnet101(**kwargs): """ IBN(b)-ResNet-101 model from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_ibnbresnet(blocks=101, model_name="ibnb_resnet101", **kwargs) def ibnb_resnet152(**kwargs): """ IBN(b)-ResNet-152 model from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_ibnbresnet(blocks=152, model_name="ibnb_resnet152", **kwargs) def _calc_width(net): import numpy as np net_params = filter(lambda p: p.requires_grad, net.parameters()) weight_count = 0 for param in net_params: weight_count += np.prod(param.size()) return weight_count def _test(): import torch from torch.autograd import Variable pretrained = False models = [ ibnb_resnet50, ibnb_resnet101, ibnb_resnet152, ] for model in models: net = model(pretrained=pretrained) # net.train() net.eval() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != ibnb_resnet50 or weight_count == 25558568) assert (model != ibnb_resnet101 or weight_count == 44550696) assert (model != ibnb_resnet152 or weight_count == 60194344) x = Variable(torch.randn(1, 3, 224, 224)) y = net(x) assert (tuple(y.size()) == (1, 1000)) if __name__ == "__main__": _test()
[ "torch.nn.Linear", "torch.nn.init.kaiming_uniform_", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.init.constant_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.InstanceNorm2d", "torch.randn" ]
0.4.0
raijinspecial/imgclsmob
c87c0942420876941868c016211073dec4392e4d
0.4
""" PeleeNet, implemented in PyTorch. Original paper: 'Pelee: A Real-Time Object Detection System on Mobile Devices,' https://arxiv.org/abs/1804.06882. """ __all__ = ['PeleeNet', 'peleenet'] import os import torch import torch.nn as nn import torch.nn.init as init from .common import conv1x1_block, conv3x3_block, Concurrent class PeleeBranch1(nn.Module): """ PeleeNet branch type 1 block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. mid_channels : int Number of intermediate channels. stride : int or tuple/list of 2 int, default 1 Strides of the second convolution. """ def __init__(self, in_channels, out_channels, mid_channels, stride=1): super(PeleeBranch1, self).__init__() self.conv1 = conv1x1_block( in_channels=in_channels, out_channels=mid_channels) self.conv2 = conv3x3_block( in_channels=mid_channels, out_channels=out_channels, stride=stride) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x class PeleeBranch2(nn.Module): """ PeleeNet branch type 2 block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. mid_channels : int Number of intermediate channels. """ def __init__(self, in_channels, out_channels, mid_channels): super(PeleeBranch2, self).__init__() self.conv1 = conv1x1_block( in_channels=in_channels, out_channels=mid_channels) self.conv2 = conv3x3_block( in_channels=mid_channels, out_channels=out_channels) self.conv3 = conv3x3_block( in_channels=out_channels, out_channels=out_channels) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x class StemBlock(nn.Module): """ PeleeNet stem block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(StemBlock, self).__init__() mid1_channels = out_channels // 2 mid2_channels = out_channels * 2 self.first_conv = conv3x3_block( in_channels=in_channels, out_channels=out_channels, stride=2) self.branches = Concurrent() self.branches.add_module("branch1", PeleeBranch1( in_channels=out_channels, out_channels=out_channels, mid_channels=mid1_channels, stride=2)) self.branches.add_module("branch2", nn.MaxPool2d( kernel_size=2, stride=2, padding=0)) self.last_conv = conv1x1_block( in_channels=mid2_channels, out_channels=out_channels) def forward(self, x): x = self.first_conv(x) x = self.branches(x) x = self.last_conv(x) return x class DenseBlock(nn.Module): """ PeleeNet dense block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. bottleneck_size : int Bottleneck width. """ def __init__(self, in_channels, out_channels, bottleneck_size): super(DenseBlock, self).__init__() inc_channels = (out_channels - in_channels) // 2 mid_channels = inc_channels * bottleneck_size self.branch1 = PeleeBranch1( in_channels=in_channels, out_channels=inc_channels, mid_channels=mid_channels) self.branch2 = PeleeBranch2( in_channels=in_channels, out_channels=inc_channels, mid_channels=mid_channels) def forward(self, x): x1 = self.branch1(x) x2 = self.branch2(x) x = torch.cat((x, x1, x2), dim=1) return x class TransitionBlock(nn.Module): """ PeleeNet's transition block, like in DensNet, but with ordinary convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(TransitionBlock, self).__init__() self.conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels) self.pool = nn.AvgPool2d( kernel_size=2, stride=2, padding=0) def forward(self, x): x = self.conv(x) x = self.pool(x) return x class PeleeNet(nn.Module): """ PeleeNet model from 'Pelee: A Real-Time Object Detection System on Mobile Devices,' https://arxiv.org/abs/1804.06882. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck_sizes : list of int Bottleneck sizes for each stage. dropout_rate : float, default 0.5 Parameter of Dropout layer. Faction of the input units to drop. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. num_classes : int, default 1000 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck_sizes, dropout_rate=0.5, in_channels=3, in_size=(224, 224), num_classes=1000): super(PeleeNet, self).__init__() self.in_size = in_size self.num_classes = num_classes self.features = nn.Sequential() self.features.add_module("init_block", StemBlock( in_channels=in_channels, out_channels=init_block_channels)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): bottleneck_size = bottleneck_sizes[i] stage = nn.Sequential() if i != 0: stage.add_module("trans{}".format(i + 1), TransitionBlock( in_channels=in_channels, out_channels=in_channels)) for j, out_channels in enumerate(channels_per_stage): stage.add_module("unit{}".format(j + 1), DenseBlock( in_channels=in_channels, out_channels=out_channels, bottleneck_size=bottleneck_size)) in_channels = out_channels self.features.add_module("stage{}".format(i + 1), stage) self.features.add_module("final_block", conv1x1_block( in_channels=in_channels, out_channels=in_channels)) self.features.add_module("final_pool", nn.AvgPool2d( kernel_size=7, stride=1)) self.output = nn.Sequential() self.output.add_module('dropout', nn.Dropout(p=dropout_rate)) self.output.add_module('fc', nn.Linear( in_features=in_channels, out_features=num_classes)) self._init_params() def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.output(x) return x def get_peleenet(model_name=None, pretrained=False, root=os.path.join('~', '.torch', 'models'), **kwargs): """ Create PeleeNet model with specific parameters. Parameters: ---------- model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ init_block_channels = 32 growth_rate = 32 layers = [3, 4, 8, 6] bottleneck_sizes = [1, 2, 4, 4] from functools import reduce channels = reduce( lambda xi, yi: xi + [reduce( lambda xj, yj: xj + [xj[-1] + yj], [growth_rate] * yi, [xi[-1][-1]])[1:]], layers, [[init_block_channels]])[1:] net = PeleeNet( channels=channels, init_block_channels=init_block_channels, bottleneck_sizes=bottleneck_sizes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def peleenet(**kwargs): """ PeleeNet model from 'Pelee: A Real-Time Object Detection System on Mobile Devices,' https://arxiv.org/abs/1804.06882. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_peleenet(model_name="peleenet", **kwargs) def _calc_width(net): import numpy as np net_params = filter(lambda p: p.requires_grad, net.parameters()) weight_count = 0 for param in net_params: weight_count += np.prod(param.size()) return weight_count def _test(): import torch from torch.autograd import Variable pretrained = False models = [ peleenet, ] for model in models: net = model(pretrained=pretrained) # net.train() net.eval() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != peleenet or weight_count == 2802248) x = Variable(torch.randn(1, 3, 224, 224)) y = net(x) assert (tuple(y.size()) == (1, 1000)) if __name__ == "__main__": _test()
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.nn.init.kaiming_uniform_", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.init.constant_", "torch.randn" ]
0.4.0
raijinspecial/imgclsmob
c5d3ab207a6304f1343e4394f0467bdc7403a72a
1.1
import os import numpy as np import torch from torch.utils.data import Dataset from common.laserscan import LaserScan, SemLaserScan EXTENSIONS_SCAN = ['.bin'] EXTENSIONS_LABEL = ['.label'] def is_scan(filename): return any(filename.endswith(ext) for ext in EXTENSIONS_SCAN) def is_label(filename): return any(filename.endswith(ext) for ext in EXTENSIONS_LABEL) class SemanticKitti(Dataset): def __init__(self, root, # directory where data is sequences, # sequences for this data (e.g. [1,3,4,6]) labels, # label dict: (e.g 10: "car") color_map, # colors dict bgr (e.g 10: [255, 0, 0]) learning_map, # classes to learn (0 to N-1 for xentropy) learning_map_inv, # inverse of previous (recover labels) sensor, # sensor to parse scans from max_points=150000, # max number of points present in dataset gt=True): # send ground truth? # save deats self.root = os.path.join(root, "sequences") self.sequences = sequences self.labels = labels self.color_map = color_map self.learning_map = learning_map self.learning_map_inv = learning_map_inv self.sensor = sensor self.sensor_img_H = sensor["img_prop"]["height"] self.sensor_img_W = sensor["img_prop"]["width"] self.sensor_img_means = torch.tensor(sensor["img_means"], dtype=torch.float) self.sensor_img_stds = torch.tensor(sensor["img_stds"], dtype=torch.float) self.sensor_fov_up = sensor["fov_up"] self.sensor_fov_down = sensor["fov_down"] self.max_points = max_points self.gt = gt # get number of classes (can't be len(self.learning_map) because there # are multiple repeated entries, so the number that matters is how many # there are for the xentropy) self.nclasses = len(self.learning_map_inv) # sanity checks # make sure directory exists if os.path.isdir(self.root): print("Sequences folder exists! Using sequences from %s" % self.root) else: raise ValueError("Sequences folder doesn't exist! Exiting...") # make sure labels is a dict assert (isinstance(self.labels, dict)) # make sure color_map is a dict assert (isinstance(self.color_map, dict)) # make sure learning_map is a dict assert (isinstance(self.learning_map, dict)) # make sure sequences is a list assert (isinstance(self.sequences, list)) # placeholder for filenames self.scan_files = [] self.label_files = [] # fill in with names, checking that all sequences are complete for seq in self.sequences: # to string seq = '{0:02d}'.format(int(seq)) print("parsing seq {}".format(seq)) # get paths for each scan_path = os.path.join(self.root, seq, "velodyne") label_path = os.path.join(self.root, seq, "labels") # get files scan_files = [os.path.join(dp, f) for dp, dn, fn in os.walk( os.path.expanduser(scan_path)) for f in fn if is_scan(f)] label_files = [os.path.join(dp, f) for dp, dn, fn in os.walk( os.path.expanduser(label_path)) for f in fn if is_label(f)] # check all scans have labels if self.gt: assert (len(scan_files) == len(label_files)) # extend list self.scan_files.extend(scan_files) self.label_files.extend(label_files) # sort for correspondance self.scan_files.sort() self.label_files.sort() print("Using {} scans from sequences {}".format(len(self.scan_files), self.sequences)) def __getitem__(self, index): # get item in tensor shape scan_file = self.scan_files[index] if self.gt: label_file = self.label_files[index] # open a semantic laserscan if self.gt: scan = SemLaserScan(self.color_map, project=True, H=self.sensor_img_H, W=self.sensor_img_W, fov_up=self.sensor_fov_up, fov_down=self.sensor_fov_down) else: scan = LaserScan(project=True, H=self.sensor_img_H, W=self.sensor_img_W, fov_up=self.sensor_fov_up, fov_down=self.sensor_fov_down) # open and obtain scan scan.open_scan(scan_file) if self.gt: scan.open_label(label_file) # map unused classes to used classes (also for projection) scan.sem_label = self.map(scan.sem_label, self.learning_map) scan.proj_sem_label = self.map(scan.proj_sem_label, self.learning_map) # make a tensor of the uncompressed data (with the max num points) unproj_n_points = scan.points.shape[0] unproj_xyz = torch.full((self.max_points, 3), -1.0, dtype=torch.float) unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points) unproj_range = torch.full([self.max_points], -1.0, dtype=torch.float) unproj_range[:unproj_n_points] = torch.from_numpy(scan.unproj_range) unproj_remissions = torch.full([self.max_points], -1.0, dtype=torch.float) unproj_remissions[:unproj_n_points] = torch.from_numpy(scan.remissions) if self.gt: unproj_labels = torch.full([self.max_points], -1.0, dtype=torch.int32) unproj_labels[:unproj_n_points] = torch.from_numpy(scan.sem_label) else: unproj_labels = [] # get points and labels proj_range = torch.from_numpy(scan.proj_range).clone() proj_xyz = torch.from_numpy(scan.proj_xyz).clone() proj_remission = torch.from_numpy(scan.proj_remission).clone() proj_mask = torch.from_numpy(scan.proj_mask) if self.gt: proj_labels = torch.from_numpy(scan.proj_sem_label).clone() proj_labels = proj_labels * proj_mask else: proj_labels = [] proj_x = torch.full([self.max_points], -1, dtype=torch.long) proj_x[:unproj_n_points] = torch.from_numpy(scan.proj_x) proj_y = torch.full([self.max_points], -1, dtype=torch.long) proj_y[:unproj_n_points] = torch.from_numpy(scan.proj_y) proj = torch.cat([proj_range.unsqueeze(0).clone(), proj_xyz.clone().permute(2, 0, 1), proj_remission.unsqueeze(0).clone()]) proj = (proj - self.sensor_img_means[:, None, None] ) / self.sensor_img_stds[:, None, None] proj = proj * proj_mask.float() # get name and sequence path_norm = os.path.normpath(scan_file) path_split = path_norm.split(os.sep) path_seq = path_split[-3] path_name = path_split[-1].replace(".bin", ".label") # print("path_norm: ", path_norm) # print("path_seq", path_seq) # print("path_name", path_name) # return return proj, proj_mask, proj_labels, unproj_labels, path_seq, path_name, proj_x, proj_y, proj_range, unproj_range, proj_xyz, unproj_xyz, proj_remission, unproj_remissions, unproj_n_points def __len__(self): return len(self.scan_files) @staticmethod def map(label, mapdict): # put label from original values to xentropy # or vice-versa, depending on dictionary values # make learning map a lookup table maxkey = 0 for key, data in mapdict.items(): if isinstance(data, list): nel = len(data) else: nel = 1 if key > maxkey: maxkey = key # +100 hack making lut bigger just in case there are unknown labels if nel > 1: lut = np.zeros((maxkey + 100, nel), dtype=np.int32) else: lut = np.zeros((maxkey + 100), dtype=np.int32) for key, data in mapdict.items(): try: lut[key] = data except IndexError: print("Wrong key ", key) # do the mapping return lut[label] class Parser: # standard conv, BN, relu def __init__(self, root, # directory for data train_sequences, # sequences to train valid_sequences, # sequences to validate. test_sequences, # sequences to test (if none, don't get) labels, # labels in data color_map, # color for each label learning_map, # mapping for training labels learning_map_inv, # recover labels from xentropy sensor, # sensor to use max_points, # max points in each scan in entire dataset batch_size, # batch size for train and val workers, # threads to load data gt=True, # get gt? shuffle_train=True): # shuffle training set? super(Parser, self).__init__() # if I am training, get the dataset self.root = root self.train_sequences = train_sequences self.valid_sequences = valid_sequences self.test_sequences = test_sequences self.labels = labels self.color_map = color_map self.learning_map = learning_map self.learning_map_inv = learning_map_inv self.sensor = sensor self.max_points = max_points self.batch_size = batch_size self.workers = workers self.gt = gt self.shuffle_train = shuffle_train # number of classes that matters is the one for xentropy self.nclasses = len(self.learning_map_inv) # Data loading code self.train_dataset = SemanticKitti(root=self.root, sequences=self.train_sequences, labels=self.labels, color_map=self.color_map, learning_map=self.learning_map, learning_map_inv=self.learning_map_inv, sensor=self.sensor, max_points=max_points, gt=self.gt) self.trainloader = torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=self.shuffle_train, num_workers=self.workers, pin_memory=True, drop_last=True) assert len(self.trainloader) > 0 self.trainiter = iter(self.trainloader) self.valid_dataset = SemanticKitti(root=self.root, sequences=self.valid_sequences, labels=self.labels, color_map=self.color_map, learning_map=self.learning_map, learning_map_inv=self.learning_map_inv, sensor=self.sensor, max_points=max_points, gt=self.gt) self.validloader = torch.utils.data.DataLoader(self.valid_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.workers, pin_memory=True, drop_last=True) assert len(self.validloader) > 0 self.validiter = iter(self.validloader) if self.test_sequences: self.test_dataset = SemanticKitti(root=self.root, sequences=self.test_sequences, labels=self.labels, color_map=self.color_map, learning_map=self.learning_map, learning_map_inv=self.learning_map_inv, sensor=self.sensor, max_points=max_points, gt=False) self.testloader = torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.workers, pin_memory=True, drop_last=True) assert len(self.testloader) > 0 self.testiter = iter(self.testloader) def get_train_batch(self): scans = self.trainiter.next() return scans def get_train_set(self): return self.trainloader def get_valid_batch(self): scans = self.validiter.next() return scans def get_valid_set(self): return self.validloader def get_test_batch(self): scans = self.testiter.next() return scans def get_test_set(self): return self.testloader def get_train_size(self): return len(self.trainloader) def get_valid_size(self): return len(self.validloader) def get_test_size(self): return len(self.testloader) def get_n_classes(self): return self.nclasses def get_original_class_string(self, idx): return self.labels[idx] def get_xentropy_class_string(self, idx): return self.labels[self.learning_map_inv[idx]] def to_original(self, label): # put label in original values return SemanticKitti.map(label, self.learning_map_inv) def to_xentropy(self, label): # put label in xentropy values return SemanticKitti.map(label, self.learning_map) def to_color(self, label): # put label in original values label = SemanticKitti.map(label, self.learning_map_inv) # put label in color return SemanticKitti.map(label, self.color_map)
[ "torch.from_numpy", "torch.full", "torch.tensor", "torch.utils.data.DataLoader" ]
1.1.0
andrewkouri/lidar-bonnetal
a0b5c6aba530701084ac66a02532689ed580f934
1.4
"""Test defintion common to CPU and CUDA""" import torch import torchaudio.functional as F from parameterized import parameterized from scipy import signal from torchaudio_unittest import common_utils class Lfilter(common_utils.TestBaseMixin): def test_simple(self): """ Create a very basic signal, Then make a simple 4th order delay The output should be same as the input but shifted """ torch.random.manual_seed(42) waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device) b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device) a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device) output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs) self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5) def test_clamp(self): input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device) b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device) a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device) output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True) assert output_signal.max() <= 1 output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False) assert output_signal.max() > 1 @parameterized.expand([ ((44100,),), ((3, 44100),), ((2, 3, 44100),), ((1, 2, 3, 44100),) ]) def test_shape(self, shape): torch.random.manual_seed(42) waveform = torch.rand(*shape, dtype=self.dtype, device=self.device) b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device) a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device) output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs) assert shape == waveform.size() == output_waveform.size() def test_9th_order_filter_stability(self): """ Validate the precision of lfilter against reference scipy implementation when using high order filter. The reference implementation use cascaded second-order filters so is more numerically accurate. """ # create an impulse signal x = torch.zeros(1024, dtype=self.dtype, device=self.device) x[0] = 1 # get target impulse response sos = signal.butter(9, 850, 'hp', fs=22050, output='sos') y = torch.from_numpy(signal.sosfilt(sos, x.cpu().numpy())).to(self.dtype).to(self.device) # get lfilter coefficients b, a = signal.butter(9, 850, 'hp', fs=22050, output='ba') b, a = torch.from_numpy(b).to(self.dtype).to(self.device), torch.from_numpy( a).to(self.dtype).to(self.device) # predict impulse response yhat = F.lfilter(x, a, b, False) self.assertEqual(yhat, y, atol=1e-4, rtol=1e-5) class Spectrogram(common_utils.TestBaseMixin): @parameterized.expand([(0., ), (1., ), (2., ), (3., )]) def test_grad_at_zero(self, power): """The gradient of power spectrogram should not be nan but zero near x=0 https://github.com/pytorch/audio/issues/993 """ x = torch.zeros(1, 22050, requires_grad=True) spec = F.spectrogram( x, pad=0, window=None, n_fft=2048, hop_length=None, win_length=None, power=power, normalized=False, ) spec.sum().backward() assert not x.grad.isnan().sum()
[ "torch.zeros", "torch.rand", "torch.ones", "torch.random.manual_seed", "torch.from_numpy", "torch.tensor" ]
1.4.0
prarabdh9909/audio
6bad3a66a7a1c7cc05755e9ee5931b7391d2b94c
1.0
""" This includes: LossComputeBase and the standard NMTLossCompute, and sharded loss compute stuff. """ from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F import onmt from onmt.modules.sparse_losses import SparsemaxLoss from onmt.modules.sparse_activations import LogSparsemax def build_loss_compute(model, tgt_field, opt, train=True): """ Returns a LossCompute subclass which wraps around an nn.Module subclass (such as nn.NLLLoss) which defines the loss criterion. The LossCompute object allows this loss to be computed in shards and passes the relevant data to a Statistics object which handles training/validation logging. Currently, the NMTLossCompute class handles all loss computation except for when using a copy mechanism. """ device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu") padding_idx = tgt_field.vocab.stoi[tgt_field.pad_token] unk_idx = tgt_field.vocab.stoi[tgt_field.unk_token] if opt.copy_attn: criterion = onmt.modules.CopyGeneratorLoss( len(tgt_field.vocab), opt.copy_attn_force, unk_index=unk_idx, ignore_index=padding_idx ) elif opt.label_smoothing > 0 and train: criterion = LabelSmoothingLoss( opt.label_smoothing, len(tgt_field.vocab), ignore_index=padding_idx ) elif isinstance(model.generator[-1], LogSparsemax): criterion = SparsemaxLoss(ignore_index=padding_idx, reduction='sum') else: criterion = nn.NLLLoss(ignore_index=padding_idx, reduction='sum') # if the loss function operates on vectors of raw logits instead of # probabilities, only the first part of the generator needs to be # passed to the NMTLossCompute. At the moment, the only supported # loss function of this kind is the sparsemax loss. use_raw_logits = isinstance(criterion, SparsemaxLoss) loss_gen = model.generator[0] if use_raw_logits else model.generator if opt.copy_attn: compute = onmt.modules.CopyGeneratorLossCompute( criterion, loss_gen, tgt_field.vocab, opt.copy_loss_by_seqlength ) else: compute = NMTLossCompute(criterion, loss_gen) compute.to(device) return compute class LossComputeBase(nn.Module): """ Class for managing efficient loss computation. Handles sharding next step predictions and accumulating multiple loss computations Users can implement their own loss computation strategy by making subclass of this one. Users need to implement the _compute_loss() and make_shard_state() methods. Args: generator (:obj:`nn.Module`) : module that maps the output of the decoder to a distribution over the target vocabulary. tgt_vocab (:obj:`Vocab`) : torchtext vocab object representing the target output normalzation (str): normalize by "sents" or "tokens" """ def __init__(self, criterion, generator): super(LossComputeBase, self).__init__() self.criterion = criterion self.generator = generator @property def padding_idx(self): return self.criterion.ignore_index def _make_shard_state(self, batch, output, range_, attns=None): """ Make shard state dictionary for shards() to return iterable shards for efficient loss computation. Subclass must define this method to match its own _compute_loss() interface. Args: batch: the current batch. output: the predict output from the model. range_: the range of examples for computing, the whole batch or a trunc of it? attns: the attns dictionary returned from the model. """ return NotImplementedError def _compute_loss(self, batch, output, target, **kwargs): """ Compute the loss. Subclass must define this method. Args: batch: the current batch. output: the predict output from the model. target: the validate target to compare output with. **kwargs(optional): additional info for computing loss. """ return NotImplementedError def __call__(self, batch, output, attns, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None): """Compute the forward loss, possibly in shards in which case this method also runs the backward pass and returns ``None`` as the loss value. Also supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(trunc_start, trunc_start + trunc_size)`. Note sharding is an exact efficiency trick to relieve memory required for the generation buffers. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model `[tgt_len x batch x hidden]` attns (dict) : dictionary of attention distributions `[tgt_len x batch x src_len]` normalization: Optional normalization factor. shard_size (int) : maximum number of examples in a shard trunc_start (int) : starting position of truncation window trunc_size (int) : length of truncation window Returns: A tuple with the loss and a :obj:`onmt.utils.Statistics` instance. """ if trunc_size is None: trunc_size = batch.tgt.size(0) - trunc_start trunc_range = (trunc_start, trunc_start + trunc_size) shard_state = self._make_shard_state(batch, output, trunc_range, attns) if shard_size == 0: loss, stats = self._compute_loss(batch, **shard_state) return loss / float(normalization), stats batch_stats = onmt.utils.Statistics() for shard in shards(shard_state, shard_size): loss, stats = self._compute_loss(batch, **shard) loss.div(float(normalization)).backward() batch_stats.update(stats) return None, batch_stats def _stats(self, loss, scores, target): """ Args: loss (:obj:`FloatTensor`): the loss computed by the loss criterion. scores (:obj:`FloatTensor`): a score for each possible output target (:obj:`FloatTensor`): true targets Returns: :obj:`onmt.utils.Statistics` : statistics for this batch. """ pred = scores.max(1)[1] non_padding = target.ne(self.padding_idx) num_correct = pred.eq(target).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() return onmt.utils.Statistics(loss.item(), num_non_padding, num_correct) def _bottle(self, _v): return _v.view(-1, _v.size(2)) def _unbottle(self, _v, batch_size): return _v.view(-1, batch_size, _v.size(1)) class LabelSmoothingLoss(nn.Module): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__() smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing def forward(self, output, target): """ output (FloatTensor): batch_size x n_classes target (LongTensor): batch_size """ model_prob = self.one_hot.repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='sum') class NMTLossCompute(LossComputeBase): """ Standard NMT Loss Computation. """ def __init__(self, criterion, generator, normalization="sents"): super(NMTLossCompute, self).__init__(criterion, generator) def _make_shard_state(self, batch, output, range_, attns=None): return { "output": output, "target": batch.tgt[range_[0] + 1: range_[1], :, 0], } def _compute_loss(self, batch, output, target): bottled_output = self._bottle(output) scores = self.generator(bottled_output) gtruth = target.view(-1) loss = self.criterion(scores, gtruth) stats = self._stats(loss.clone(), scores, gtruth) return loss, stats def filter_shard_state(state, shard_size=None): for k, v in state.items(): if shard_size is None: yield k, v if v is not None: v_split = [] if isinstance(v, torch.Tensor): for v_chunk in torch.split(v, shard_size): v_chunk = v_chunk.data.clone() v_chunk.requires_grad = v.requires_grad v_split.append(v_chunk) yield k, (v, v_split) def shards(state, shard_size, eval_only=False): """ Args: state: A dictionary which corresponds to the output of *LossCompute._make_shard_state(). The values for those keys are Tensor-like or None. shard_size: The maximum size of the shards yielded by the model. eval_only: If True, only yield the state, nothing else. Otherwise, yield shards. Yields: Each yielded shard is a dict. Side effect: After the last shard, this function does back-propagation. """ if eval_only: yield filter_shard_state(state) else: # non_none: the subdict of the state dictionary where the values # are not None. non_none = dict(filter_shard_state(state, shard_size)) # Now, the iteration: # state is a dictionary of sequences of tensor-like but we # want a sequence of dictionaries of tensors. # First, unzip the dictionary into a sequence of keys and a # sequence of tensor-like sequences. keys, values = zip(*((k, [v_chunk for v_chunk in v_split]) for k, (_, v_split) in non_none.items())) # Now, yield a dictionary for each shard. The keys are always # the same. values is a sequence of length #keys where each # element is a sequence of length #shards. We want to iterate # over the shards, not over the keys: therefore, the values need # to be re-zipped by shard and then each shard can be paired # with the keys. for shard_tensors in zip(*values): yield dict(zip(keys, shard_tensors)) # Assumed backprop'd variables = [] for k, (v, v_split) in non_none.items(): if isinstance(v, torch.Tensor) and state[k].requires_grad: variables.extend(zip(torch.split(state[k], shard_size), [v_chunk.grad for v_chunk in v_split])) inputs, grads = zip(*variables) torch.autograd.backward(inputs, grads)
[ "torch.nn.NLLLoss", "torch.autograd.backward", "torch.split", "torch.nn.functional.kl_div", "torch.full" ]
1.0
sajastu/abs-summarization
9d4b35b457cfd617965ed1fab68c173c98333439
1.0
import copy import unittest import math import torch import onmt import onmt.inputters import onmt.opts from onmt.model_builder import build_embeddings, \ build_encoder, build_decoder from onmt.encoders.image_encoder import ImageEncoder from onmt.encoders.audio_encoder import AudioEncoder from onmt.utils.parse import ArgumentParser parser = ArgumentParser(description='train.py') onmt.opts.model_opts(parser) onmt.opts.train_opts(parser) # -data option is required, but not used in this test, so dummy. opt = parser.parse_known_args(['-data', 'dummy'])[0] class TestModel(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestModel, self).__init__(*args, **kwargs) self.opt = opt def get_field(self): src = onmt.inputters.get_fields("text", 0, 0)["src"] src.base_field.build_vocab([]) return src def get_batch(self, source_l=3, bsize=1): # len x batch x nfeat test_src = torch.ones(source_l, bsize, 1).long() test_tgt = torch.ones(source_l, bsize, 1).long() test_length = torch.ones(bsize).fill_(source_l).long() return test_src, test_tgt, test_length def get_batch_image(self, tgt_l=3, bsize=1, h=15, w=17): # batch x c x h x w test_src = torch.ones(bsize, 3, h, w).float() test_tgt = torch.ones(tgt_l, bsize, 1).long() test_length = None return test_src, test_tgt, test_length def get_batch_audio(self, tgt_l=7, bsize=3, sample_rate=5500, window_size=0.03, t=37): # batch x 1 x nfft x t nfft = int(math.floor((sample_rate * window_size) / 2) + 1) test_src = torch.ones(bsize, 1, nfft, t).float() test_tgt = torch.ones(tgt_l, bsize, 1).long() test_length = torch.ones(bsize).long().fill_(tgt_l) return test_src, test_tgt, test_length def embeddings_forward(self, opt, source_l=3, bsize=1): ''' Tests if the embeddings works as expected args: opt: set of options source_l: Length of generated input sentence bsize: Batchsize of generated input ''' word_field = self.get_field() emb = build_embeddings(opt, word_field) test_src, _, __ = self.get_batch(source_l=source_l, bsize=bsize) if opt.decoder_type == 'transformer': input = torch.cat([test_src, test_src], 0) res = emb(input) compare_to = torch.zeros(source_l * 2, bsize, opt.src_word_vec_size) else: res = emb(test_src) compare_to = torch.zeros(source_l, bsize, opt.src_word_vec_size) self.assertEqual(res.size(), compare_to.size()) def encoder_forward(self, opt, source_l=3, bsize=1): ''' Tests if the encoder works as expected args: opt: set of options source_l: Length of generated input sentence bsize: Batchsize of generated input ''' if opt.rnn_size > 0: opt.enc_rnn_size = opt.rnn_size word_field = self.get_field() embeddings = build_embeddings(opt, word_field) enc = build_encoder(opt, embeddings) test_src, test_tgt, test_length = self.get_batch(source_l=source_l, bsize=bsize) hidden_t, outputs, test_length = enc(test_src, test_length) # Initialize vectors to compare size with test_hid = torch.zeros(self.opt.enc_layers, bsize, opt.enc_rnn_size) test_out = torch.zeros(source_l, bsize, opt.dec_rnn_size) # Ensure correct sizes and types self.assertEqual(test_hid.size(), hidden_t[0].size(), hidden_t[1].size()) self.assertEqual(test_out.size(), outputs.size()) self.assertEqual(type(outputs), torch.Tensor) def nmtmodel_forward(self, opt, source_l=3, bsize=1): """ Creates a nmtmodel with a custom opt function. Forwards a testbatch and checks output size. Args: opt: Namespace with options source_l: length of input sequence bsize: batchsize """ if opt.rnn_size > 0: opt.enc_rnn_size = opt.rnn_size opt.dec_rnn_size = opt.rnn_size word_field = self.get_field() embeddings = build_embeddings(opt, word_field) enc = build_encoder(opt, embeddings) embeddings = build_embeddings(opt, word_field, for_encoder=False) dec = build_decoder(opt, embeddings) model = onmt.models.model.NMTModel(enc, dec) test_src, test_tgt, test_length = self.get_batch(source_l=source_l, bsize=bsize) outputs, attn = model(test_src, test_tgt, test_length) outputsize = torch.zeros(source_l - 1, bsize, opt.dec_rnn_size) # Make sure that output has the correct size and type self.assertEqual(outputs.size(), outputsize.size()) self.assertEqual(type(outputs), torch.Tensor) def imagemodel_forward(self, opt, tgt_l=2, bsize=1, h=15, w=17): """ Creates an image-to-text nmtmodel with a custom opt function. Forwards a testbatch and checks output size. Args: opt: Namespace with options source_l: length of input sequence bsize: batchsize """ if opt.encoder_type == 'transformer' or opt.encoder_type == 'cnn': return word_field = self.get_field() enc = ImageEncoder( opt.enc_layers, opt.brnn, opt.enc_rnn_size, opt.dropout) embeddings = build_embeddings(opt, word_field, for_encoder=False) dec = build_decoder(opt, embeddings) model = onmt.models.model.NMTModel(enc, dec) test_src, test_tgt, test_length = self.get_batch_image( h=h, w=w, bsize=bsize, tgt_l=tgt_l) outputs, attn = model(test_src, test_tgt, test_length) outputsize = torch.zeros(tgt_l - 1, bsize, opt.dec_rnn_size) # Make sure that output has the correct size and type self.assertEqual(outputs.size(), outputsize.size()) self.assertEqual(type(outputs), torch.Tensor) def audiomodel_forward(self, opt, tgt_l=7, bsize=3, t=37): """ Creates a speech-to-text nmtmodel with a custom opt function. Forwards a testbatch and checks output size. Args: opt: Namespace with options source_l: length of input sequence bsize: batchsize """ if opt.encoder_type == 'transformer' or opt.encoder_type == 'cnn': return if opt.rnn_type == 'SRU': return word_field = self.get_field() enc = AudioEncoder(opt.rnn_type, opt.enc_layers, opt.dec_layers, opt.brnn, opt.enc_rnn_size, opt.dec_rnn_size, opt.audio_enc_pooling, opt.dropout, opt.sample_rate, opt.window_size) embeddings = build_embeddings(opt, word_field, for_encoder=False) dec = build_decoder(opt, embeddings) model = onmt.models.model.NMTModel(enc, dec) test_src, test_tgt, test_length = self.get_batch_audio( bsize=bsize, sample_rate=opt.sample_rate, window_size=opt.window_size, t=t, tgt_l=tgt_l) outputs, attn = model(test_src, test_tgt, test_length) outputsize = torch.zeros(tgt_l - 1, bsize, opt.dec_rnn_size) # Make sure that output has the correct size and type self.assertEqual(outputs.size(), outputsize.size()) self.assertEqual(type(outputs), torch.Tensor) def _add_test(param_setting, methodname): """ Adds a Test to TestModel according to settings Args: param_setting: list of tuples of (param, setting) methodname: name of the method that gets called """ def test_method(self): opt = copy.deepcopy(self.opt) if param_setting: for param, setting in param_setting: setattr(opt, param, setting) ArgumentParser.update_model_opts(opt) getattr(self, methodname)(opt) if param_setting: name = 'test_' + methodname + "_" + "_".join( str(param_setting).split()) else: name = 'test_' + methodname + '_standard' setattr(TestModel, name, test_method) test_method.__name__ = name ''' TEST PARAMETERS ''' opt.brnn = False test_embeddings = [[], [('decoder_type', 'transformer')] ] for p in test_embeddings: _add_test(p, 'embeddings_forward') tests_encoder = [[], [('encoder_type', 'mean')], # [('encoder_type', 'transformer'), # ('word_vec_size', 16), ('rnn_size', 16)], [] ] for p in tests_encoder: _add_test(p, 'encoder_forward') tests_nmtmodel = [[('rnn_type', 'GRU')], [('layers', 10)], [('input_feed', 0)], [('decoder_type', 'transformer'), ('encoder_type', 'transformer'), ('src_word_vec_size', 16), ('tgt_word_vec_size', 16), ('rnn_size', 16)], [('decoder_type', 'transformer'), ('encoder_type', 'transformer'), ('src_word_vec_size', 16), ('tgt_word_vec_size', 16), ('rnn_size', 16), ('position_encoding', True)], [('coverage_attn', True)], [('copy_attn', True)], [('global_attention', 'mlp')], [('context_gate', 'both')], [('context_gate', 'target')], [('context_gate', 'source')], [('encoder_type', "brnn"), ('brnn_merge', 'sum')], [('encoder_type', "brnn")], [('decoder_type', 'cnn'), ('encoder_type', 'cnn')], [('encoder_type', 'rnn'), ('global_attention', None)], [('encoder_type', 'rnn'), ('global_attention', None), ('copy_attn', True), ('copy_attn_type', 'general')], [('encoder_type', 'rnn'), ('global_attention', 'mlp'), ('copy_attn', True), ('copy_attn_type', 'general')], [], ] if onmt.models.sru.check_sru_requirement(): # """ Only do SRU test if requirment is safisfied. """ # SRU doesn't support input_feed. tests_nmtmodel.append([('rnn_type', 'SRU'), ('input_feed', 0)]) for p in tests_nmtmodel: _add_test(p, 'nmtmodel_forward') for p in tests_nmtmodel: _add_test(p, 'imagemodel_forward') for p in tests_nmtmodel: p.append(('sample_rate', 5500)) p.append(('window_size', 0.03)) # when reasonable, set audio_enc_pooling to 2 for arg, val in p: if arg == "layers" and int(val) > 2: # Need lengths >= audio_enc_pooling**n_layers. # That condition is unrealistic for large n_layers, # so leave audio_enc_pooling at 1. break else: p.append(('audio_enc_pooling', '2')) _add_test(p, 'audiomodel_forward')
[ "torch.zeros", "torch.cat", "torch.ones" ]
1.0
sajastu/abs-summarization
9d4b35b457cfd617965ed1fab68c173c98333439
0.4
# System libs import os import argparse from distutils.version import LooseVersion from multiprocessing import Queue, Process # Numerical libs import numpy as np import math import torch import torch.nn as nn from scipy.io import loadmat # Our libs from mit_semseg.config import cfg from mit_semseg.dataset import ValDataset from mit_semseg.models import ModelBuilder, SegmentationModule from mit_semseg.utils import AverageMeter, colorEncode, accuracy, intersectionAndUnion, parse_devices, setup_logger from mit_semseg.lib.nn import user_scattered_collate, async_copy_to from mit_semseg.lib.utils import as_numpy from PIL import Image from tqdm import tqdm colors = loadmat('data/color150.mat')['colors'] def visualize_result(data, pred, dir_result): (img, seg, info) = data # segmentation seg_color = colorEncode(seg, colors) # prediction pred_color = colorEncode(pred, colors) # aggregate images and save im_vis = np.concatenate((img, seg_color, pred_color), axis=1).astype(np.uint8) img_name = info.split('/')[-1] Image.fromarray(im_vis).save(os.path.join(dir_result, img_name.replace('.jpg', '.png'))) def evaluate(segmentation_module, loader, cfg, gpu_id, result_queue): segmentation_module.eval() for batch_data in loader: # process data batch_data = batch_data[0] seg_label = as_numpy(batch_data['seg_label'][0]) img_resized_list = batch_data['img_data'] with torch.no_grad(): segSize = (seg_label.shape[0], seg_label.shape[1]) scores = torch.zeros(1, cfg.DATASET.num_class, segSize[0], segSize[1]) scores = async_copy_to(scores, gpu_id) for img in img_resized_list: feed_dict = batch_data.copy() feed_dict['img_data'] = img del feed_dict['img_ori'] del feed_dict['info'] feed_dict = async_copy_to(feed_dict, gpu_id) # forward pass scores_tmp = segmentation_module(feed_dict, segSize=segSize) scores = scores + scores_tmp / len(cfg.DATASET.imgSizes) _, pred = torch.max(scores, dim=1) pred = as_numpy(pred.squeeze(0).cpu()) # calculate accuracy and SEND THEM TO MASTER acc, pix = accuracy(pred, seg_label) intersection, union = intersectionAndUnion(pred, seg_label, cfg.DATASET.num_class) result_queue.put_nowait((acc, pix, intersection, union)) # visualization if cfg.VAL.visualize: visualize_result( (batch_data['img_ori'], seg_label, batch_data['info']), pred, os.path.join(cfg.DIR, 'result') ) def worker(cfg, gpu_id, start_idx, end_idx, result_queue): torch.cuda.set_device(gpu_id) # Dataset and Loader dataset_val = ValDataset( cfg.DATASET.root_dataset, cfg.DATASET.list_val, cfg.DATASET, start_idx=start_idx, end_idx=end_idx) loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=cfg.VAL.batch_size, shuffle=False, collate_fn=user_scattered_collate, num_workers=2) # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.cuda() # Main loop evaluate(segmentation_module, loader_val, cfg, gpu_id, result_queue) def main(cfg, gpus): with open(cfg.DATASET.list_val, 'r') as f: lines = f.readlines() num_files = len(lines) num_files_per_gpu = math.ceil(num_files / len(gpus)) pbar = tqdm(total=num_files) acc_meter = AverageMeter() intersection_meter = AverageMeter() union_meter = AverageMeter() result_queue = Queue(500) procs = [] for idx, gpu_id in enumerate(gpus): start_idx = idx * num_files_per_gpu end_idx = min(start_idx + num_files_per_gpu, num_files) proc = Process(target=worker, args=(cfg, gpu_id, start_idx, end_idx, result_queue)) print('gpu:{}, start_idx:{}, end_idx:{}'.format(gpu_id, start_idx, end_idx)) proc.start() procs.append(proc) # master fetches results processed_counter = 0 while processed_counter < num_files: if result_queue.empty(): continue (acc, pix, intersection, union) = result_queue.get() acc_meter.update(acc, pix) intersection_meter.update(intersection) union_meter.update(union) processed_counter += 1 pbar.update(1) for p in procs: p.join() # summary iou = intersection_meter.sum / (union_meter.sum + 1e-10) for i, _iou in enumerate(iou): print('class [{}], IoU: {:.4f}'.format(i, _iou)) print('[Eval Summary]:') print('Mean IoU: {:.4f}, Accuracy: {:.2f}%' .format(iou.mean(), acc_meter.average()*100)) print('Evaluation Done!') if __name__ == '__main__': assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \ 'PyTorch>=0.4.0 is required' parser = argparse.ArgumentParser( description="PyTorch Semantic Segmentation Validation" ) parser.add_argument( "--cfg", default="config/ade20k-resnet50dilated-ppm_deepsup.yaml", metavar="FILE", help="path to config file", type=str, ) parser.add_argument( "--gpus", default="0", help="gpus to use, e.g. 0-3 or 0,1,2,3" ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg.merge_from_file(args.cfg) cfg.merge_from_list(args.opts) # cfg.freeze() logger = setup_logger(distributed_rank=0) # TODO logger.info("Loaded configuration file {}".format(args.cfg)) logger.info("Running with config:\n{}".format(cfg)) # absolute paths of model weights cfg.MODEL.weights_encoder = os.path.join( cfg.DIR, 'encoder_' + cfg.VAL.checkpoint) cfg.MODEL.weights_decoder = os.path.join( cfg.DIR, 'decoder_' + cfg.VAL.checkpoint) assert os.path.exists(cfg.MODEL.weights_encoder) and \ os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!" if not os.path.isdir(os.path.join(cfg.DIR, "result")): os.makedirs(os.path.join(cfg.DIR, "result")) # Parse gpu ids gpus = parse_devices(args.gpus) gpus = [x.replace('gpu', '') for x in gpus] gpus = [int(x) for x in gpus] main(cfg, gpus)
[ "torch.nn.NLLLoss", "torch.zeros", "torch.max", "torch.no_grad", "torch.cuda.set_device", "torch.utils.data.DataLoader" ]
0.4.1
chenjun2hao/segmentation.pytorch
a319d0f006559dd58bd853065e6fe79ae8c23791
1.7
# Copyright (c) maiot GmbH 2020. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import os from typing import List, Text, Dict import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data from torch.utils.tensorboard import SummaryWriter from zenml.steps.trainer import TorchBaseTrainerStep from zenml.steps.trainer import utils from zenml.steps.trainer.pytorch_trainers import utils as torch_utils from zenml.utils import path_utils class BinaryClassifier(nn.Module): def __init__(self): super(BinaryClassifier, self).__init__() self.layer_1 = nn.Linear(8, 64) self.layer_2 = nn.Linear(64, 64) self.layer_out = nn.Linear(64, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.1) self.batchnorm1 = nn.BatchNorm1d(64) self.batchnorm2 = nn.BatchNorm1d(64) def forward(self, inputs): x = self.relu(self.layer_1(inputs)) x = self.batchnorm1(x) x = self.relu(self.layer_2(x)) x = self.batchnorm2(x) x = self.dropout(x) x = self.layer_out(x) return x def binary_acc(y_pred, y_test): y_pred_tag = torch.round(torch.sigmoid(y_pred)) correct_results_sum = (y_pred_tag == y_test).sum().float() acc = correct_results_sum / y_test.shape[0] acc = torch.round(acc * 100) return acc class FeedForwardTrainer(TorchBaseTrainerStep): def __init__(self, batch_size: int = 32, lr: float = 0.0001, epochs: int = 10, dropout_chance: int = 0.2, loss: str = 'mse', metrics: List[str] = None, hidden_layers: List[int] = None, hidden_activation: str = 'relu', last_activation: str = 'sigmoid', input_units: int = 8, output_units: int = 1, device: str = None, **kwargs): self.batch_size = batch_size self.lr = lr self.epochs = epochs self.dropout_chance = dropout_chance self.loss = loss self.metrics = metrics or [] self.hidden_layers = hidden_layers or [64, 32, 16] self.hidden_activation = hidden_activation self.last_activation = last_activation self.input_units = input_units self.output_units = output_units self.device = torch_utils.assign_device(device) super(FeedForwardTrainer, self).__init__( batch_size=self.batch_size, lr=self.lr, epochs=self.epochs, dropout_chance=self.dropout_chance, loss=self.loss, metrics=self.metrics, hidden_layers=self.hidden_layers, hidden_activation=self.hidden_activation, last_activation=self.last_activation, input_units=self.input_units, output_units=self.output_units, device = device, **kwargs) def input_fn(self, file_patterns: List[Text]): dataset = torch_utils.TFRecordTorchDataset(file_patterns, self.schema) loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, drop_last=True) return loader def model_fn(self, train_dataset, eval_dataset): return BinaryClassifier() def test_fn(self, model, dataset): # Activate the evaluation mode model.eval() batch_list = [] for x, y, raw in dataset: # start with an empty batch batch = {} # add the raw features with the transformed features and labels batch.update(x) batch.update(y) batch.update(raw) # finally, add the output of the model x_batch = torch.cat([v.to(self.device) for v in x.values()], dim=-1) p = model(x_batch) if isinstance(p, torch.Tensor): batch.update({'output': p}) elif isinstance(p, dict): batch.update(p) elif isinstance(p, list): batch.update( {'output_{}'.format(i): v for i, v in enumerate(p)}) else: raise TypeError('Unknown output format!') batch_list.append(batch) combined_batch = utils.combine_batch_results(batch_list) return combined_batch def run_fn(self): train_split_patterns = [self.input_patterns[split] for split in self.split_mapping[utils.TRAIN_SPLITS]] train_dataset = self.input_fn(train_split_patterns) eval_split_patterns = [self.input_patterns[split] for split in self.split_mapping[utils.EVAL_SPLITS]] eval_dataset = self.input_fn(eval_split_patterns) model = self.model_fn(train_dataset, eval_dataset) model.to(self.device) criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) writer = SummaryWriter(self.log_dir) model.train() total_count = 0 for e in range(1, self.epochs + 1): epoch_loss = 0 epoch_acc = 0 step_count = 0 for x, y, _ in train_dataset: step_count += 1 total_count += 1 x_batch = torch.cat([v.to(self.device) for v in x.values()], dim=-1) y_batch = torch.cat([v.to(self.device) for v in y.values()], dim=-1) optimizer.zero_grad() y_pred = model(x_batch) loss = criterion(y_pred, y_batch) acc = binary_acc(y_pred, y_batch) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_acc += acc.item() if e == 1 and step_count == 1: writer.add_graph(model, x_batch) writer.add_scalar('training_loss', loss, total_count) writer.add_scalar('training_accuracy', acc, total_count) print(f'Epoch {e + 0:03}: | Loss: ' f'{epoch_loss / step_count:.5f} | Acc: ' f'{epoch_acc / step_count:.3f}') # test for split in self.split_mapping[utils.TEST_SPLITS]: assert split in self.input_patterns, \ f'There are currently no inputs for the split "{split}" ' \ f'which is currently used in the {utils.TEST_SPLITS} of the ' \ f'split mapping.' pattern = self.input_patterns[split] test_dataset = self.input_fn([pattern]) test_results = self.test_fn(model, test_dataset) utils.save_test_results(test_results, self.output_patterns[split]) path_utils.create_dir_if_not_exists(self.serving_model_dir) if path_utils.is_remote(self.serving_model_dir): temp_model_dir = '__temp_model_dir__' temp_path = os.path.join(os.getcwd(), temp_model_dir) if path_utils.is_dir(temp_path): raise PermissionError('{} is used as a temp path but it ' 'already exists. Please remove it to ' 'continue.') torch.save(model, temp_path) path_utils.copy_dir(temp_path, self.serving_model_dir) path_utils.rm_dir(temp_path) else: torch.save(model, os.path.join(self.serving_model_dir, 'model.pt'))
[ "torch.nn.Linear", "torch.round", "torch.nn.Dropout", "torch.sigmoid", "torch.save", "torch.nn.ReLU", "torch.nn.BatchNorm1d", "torch.utils.data.DataLoader", "torch.nn.BCEWithLogitsLoss", "torch.utils.tensorboard.SummaryWriter" ]
1.7.0
ORG-MARS/zenml
8ee9a9264397d4e24a34c906e34a443782b189d3
0.4
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: speedinghzl02 ## Modified by: RainbowSecret ## Microsoft Research ## [email protected] ## Copyright (c) 2018 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import cv2 import pdb import collections import matplotlib.pyplot as plt import numpy as np import os import os.path as osp from PIL import Image, ImageOps, ImageFilter import random import torch import torchvision from torch.utils import data import torchvision.transforms as transforms class LeadBangTrain(data.Dataset): def __init__(self, root, max_iters=None, scale=True, mirror=True, ignore_label=255, use_aug=False, network="resnet101"): self.root = root # self.crop_h, self.crop_w = crop_size self.crop_h = 480 self.crop_w = 480 self.img_width = 512 self.img_height = 512 self.scale = scale self.ignore_label = ignore_label self.is_mirror = mirror self.use_aug = use_aug self.network = network self.files = [] self.cache_img = {} self.cache_label = {} self.item_idx_list = [] for item_idx in range(1, 1463): self.item_idx_list.append(item_idx) img_path = 'source/' + str(item_idx) + ".bmp" label_path = 'label/' + str(item_idx) + ".bmp" img_file = osp.join(self.root, img_path) label_file = osp.join(self.root, label_path) print('label file: ', label_file) self.files.append({ "img": img_file, "label": label_file, "name": str(item_idx), "weight": 1 }) self.cache_img[item_idx] = cv2.imread(img_file) self.cache_label[item_idx] = 255 - cv2.imread(label_file, 0) print('{} images are loaded!'.format(1462)) def __len__(self): return len(self.files) def generate_scale_label(self, image, label): f_scale = 0.5 + random.randint(0, 16) / 10.0 image = cv2.resize(image, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_LINEAR) label = cv2.resize(label, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_NEAREST) return image, label def rescale(self, image, label): image = cv2.resize(image, (self.img_width, self.img_height)) label = cv2.resize(label, (self.img_width, self.img_height)) return image, label def id2trainId(self, label, reverse=False): label_copy = label.copy() if reverse: for v, k in self.id_to_trainid.items(): label_copy[label == k] = v else: for k, v in self.id_to_trainid.items(): label_copy[label == k] = v return label_copy def get_rotate_angle(self, angle_min, angle_max, angle_delta): count = int((angle_max - angle_min) / angle_delta) delta = random.random() * (count + 1) * angle_delta angle = angle_min + delta if angle < angle_min: angle = angle_min if angle > angle_max: angle = angle_max return angle def rotate(self, image, angle, border_value=None): center = (self.img_width // 2, self.img_height // 2) M = cv2.getRotationMatrix2D(center, angle, 1) if border_value is None: rotated = cv2.warpAffine(image, M, (self.img_width, self.img_height)) else: rotated = cv2.warpAffine(image, M, (self.img_width, self.img_height), borderValue=(int(border_value),)) return rotated def get_border_value(self, mat): r = mat.shape[0] c = mat.shape[1] return (mat[1][1] + mat[1][c - 2] + mat[r-2][1] + mat[r-2][c-2] + mat[2][2] + mat[2][c - 3] + mat[r-3][2] + mat[r-3][c-3]) / 8.0 def rotate_img_lb(self, image, label, angle): b = image[0] g = image[1] r = image[2] # (102.9801, 115.9465, 122.7717) # b = self.rotate(b, angle, border_value=255 - 102.9801) # g = self.rotate(g, angle, border_value=255-115.9465) # r = self.rotate(r, angle, border_value=255-122.7717) b = self.rotate(b, angle, border_value=self.get_border_value(b)) g = self.rotate(g, angle, border_value=self.get_border_value(g)) r = self.rotate(r, angle, border_value=self.get_border_value(r)) label = self.rotate(label, angle) image = np.asarray([b, g, r], dtype=np.float32) ret, label = cv2.threshold(label, 127, 255, cv2.THRESH_BINARY) return image, label def adv_img_lb(self, img, lb): # brightness img += (random.random() * 10 - 5) # rotate angle = self.get_rotate_angle(-180, 180, 5) img, lb = self.rotate_img_lb(img, lb, angle) # flip lr if random.random() < 0.5: img = img[:,:,::-1] lb = lb[:,::-1] # flip ud if random.random() < 0.5: img = img[:,::-1,:] lb = lb[::-1,:] return img, lb def __getitem__(self, index): datafiles = self.files[index] item_idx = self.item_idx_list[index] image = self.cache_img[item_idx].copy() label = self.cache_label[item_idx].copy() size = image.shape name = datafiles["name"] image, label = self.rescale(image, label) image = np.array(image, dtype=np.float32) if self.network == "resnet101": # mean = (102.9801, 115.9465, 122.7717) # "mean_value_b" : 141.29403686523437, # "mean_value_g" : 123.58832550048828, # "mean_value_r" : 172.43679809570312, mean = (172.43679809570312, 123.58832550048828, 141.29403686523437) image = image[:,:,::-1] image -= mean elif self.network == "mobilenetv2": mean = (0.485, 0.456, 0.406) var = (0.229, 0.224, 0.225) # print("network: {}, mean: {}, var: {}".format(self.network, mean, var)) image = image[:,:,::-1] image /= 255 image -= mean image /= var elif self.network == "wide_resnet38": mean = (0.41738699, 0.45732192, 0.46886091) var = (0.25685097, 0.26509955, 0.29067996) image = image[:,:,::-1] image /= 255 image -= mean image /= var image = image.transpose((2, 0, 1)) image, label = self.adv_img_lb(image, label) img_h, img_w = label.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) image = np.asarray(image[:,h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) # [0, 255] => [0, 1] ret, label = cv2.threshold(label, 127, 1, cv2.THRESH_BINARY) label = np.array(label, dtype=np.int64) return image.copy(), label.copy(), np.array(size), name class LeadBangTest(data.Dataset): def __init__(self, root, max_iters=None, scale=True, mirror=True, ignore_label=255, network="resnet101"): self.root = root # self.crop_h, self.crop_w = crop_size self.crop_h = 512 self.crop_w = 512 self.img_width = 512 self.img_height = 512 self.scale = scale self.ignore_label = ignore_label self.is_mirror = mirror self.network = network self.files = [] self.cache_img = {} self.cache_label = {} self.item_idx_list = [] for item_idx in range(1463, 2352): self.item_idx_list.append(item_idx) img_path = 'source/' + str(item_idx) + ".bmp" label_path = 'label/' + str(item_idx) + ".bmp" img_file = osp.join(self.root, img_path) label_file = osp.join(self.root, label_path) self.files.append({ "img": img_file, "label": label_file, "name": str(item_idx), "weight": 1 }) print("label: ", label_file) self.cache_img[item_idx] = cv2.imread(img_file) self.cache_label[item_idx] = 255-cv2.imread(label_file, 0) print('{} images are loaded!'.format(2352-1463)) def __len__(self): return len(self.files) def id2trainId(self, label, reverse=False): label_copy = label.copy() if reverse: for v, k in self.id_to_trainid.items(): label_copy[label == k] = v else: for k, v in self.id_to_trainid.items(): label_copy[label == k] = v return label_copy def rescale(self, image, label): image = cv2.resize(image, (self.img_width, self.img_height)) label = cv2.resize(label, (self.img_width, self.img_height)) return image, label def __getitem__(self, index): datafiles = self.files[index] item_idx = self.item_idx_list[index] image = self.cache_img[item_idx].copy() label = self.cache_label[item_idx].copy() size = image.shape name = datafiles["name"] image, label = self.rescale(image, label) image = np.array(image, dtype=np.float32) if self.network == "resnet101": # mean = (102.9801, 115.9465, 122.7717) mean = (172.43679809570312, 123.58832550048828, 141.29403686523437) image = image[:,:,::-1] image -= mean elif self.network == "mobilenetv2": mean = (0.485, 0.456, 0.406) var = (0.229, 0.224, 0.225) # print("network: {}, mean: {}, var: {}".format(self.network, mean, var)) image = image[:,:,::-1] image /= 255 image -= mean image /= var elif self.network == "wide_resnet38": mean = (0.41738699, 0.45732192, 0.46886091) var = (0.25685097, 0.26509955, 0.29067996) image = image[:,:,::-1] image /= 255 image -= mean image /= var image = image.transpose((2, 0, 1)) img_h, img_w = label.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) image = np.asarray(image[:,h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) # [0, 255] => [0, 1] ret, label = cv2.threshold(label, 127, 1, cv2.THRESH_BINARY) label = np.array(label, dtype=np.int64) label = np.asarray(label, dtype=np.int64) return image.copy(), label.copy(), np.array(size), name def test_train_leadbang(): dst = LeadBangTrain("./leadbang/") trainloader = data.DataLoader(dst, batch_size=1, num_workers=0) with open("./list/cityscapes/trainval.lst") as f: train_list = f.readlines() train_list = [x.strip() for x in train_list] f_w = open("./list/cityscapes/bus_truck_train.lst", "w") for i, dt in enumerate(trainloader): imgs, labels, _, name = dt img = imgs.numpy() lb = labels.numpy() print(name) print(img.shape) print(lb.shape) name = name[0] img = np.transpose(img[0], (1,2,0)) img += (172.43679809570312, 123.58832550048828, 141.29403686523437) img = img[:,:,::-1] img = np.array(img, dtype=np.uint8) lb = 255 - lb[0] * 255 lb = np.asarray(lb, dtype=np.uint8) cv2.imshow( "img", img) cv2.imshow( "lb", lb) cv2.waitKey(0) def test_test_leadbang(): dst = LeadBangTest("./leadbang/") trainloader = data.DataLoader(dst, batch_size=1, num_workers=0) with open("./list/cityscapes/trainval.lst") as f: train_list = f.readlines() train_list = [x.strip() for x in train_list] f_w = open("./list/cityscapes/bus_truck_train.lst", "w") for i, dt in enumerate(trainloader): imgs, labels, _, name = dt img = imgs.numpy() lb = labels.numpy() print(name) print(img.shape) print(lb.shape) name = name[0] img = np.transpose(img[0], (1,2,0)) img += (172.43679809570312, 123.58832550048828, 141.29403686523437) img = img[:,:,::-1] img = np.array(img, dtype=np.uint8) lb = 255 - lb[0] * 255 lb = np.asarray(lb, dtype=np.uint8) cv2.imshow( "img", img) cv2.imshow( "lb", lb) cv2.waitKey(0) if __name__ == '__main__': test_train_leadbang() # test_test_leadbang()
[ "torch.utils.data.DataLoader" ]
0.4.1
liqile1/OCNet.pytorch
5fb733adbf178ccc8040197057e3277896b3dc12
1.7
""" Network definitions from https://github.com/ferrine/hyrnn """ import geoopt import geoopt.manifolds.stereographic.math as gmath import numpy as np import torch.nn import torch.nn.functional from torch.cuda.amp import autocast def mobius_linear( input, weight, bias=None, hyperbolic_input=True, hyperbolic_bias=True, nonlin=None, k=-1.0, ): k = torch.tensor(k) if hyperbolic_input: output = mobius_matvec(weight, input, k=k) else: output = torch.nn.functional.linear(input, weight) output = gmath.expmap0(output, k=k) if bias is not None: if not hyperbolic_bias: bias = gmath.expmap0(bias, k=k) output = gmath.mobius_add(output, bias.unsqueeze(0).expand_as(output), k=k) if nonlin is not None: output = gmath.mobius_fn_apply(nonlin, output, k=k) output = gmath.project(output, k=k) return output def mobius_matvec(m: torch.Tensor, x: torch.Tensor, *, k: torch.Tensor, dim=-1): return _mobius_matvec(m, x, k, dim=dim) def _mobius_matvec(m: torch.Tensor, x: torch.Tensor, k: torch.Tensor, dim: int = -1): if m.dim() > 2 and dim != -1: raise RuntimeError( "broadcasted Möbius matvec is supported for the last dim only" ) x_norm = x.norm(dim=dim, keepdim=True, p=2).clamp_min(1e-15) if dim != -1 or m.dim() == 2: # mx = torch.tensordot(x, m, [dim], [1]) mx = torch.matmul(m, x.transpose(1, 0)).transpose(1, 0) else: mx = torch.matmul(m, x.unsqueeze(-1)).squeeze(-1) mx_norm = mx.norm(dim=dim, keepdim=True, p=2).clamp_min(1e-15) res_c = gmath.tan_k(mx_norm / x_norm * gmath.artan_k(x_norm, k), k) * (mx / mx_norm) cond = (mx == 0).prod(dim=dim, keepdim=True, dtype=torch.uint8) res_0 = torch.zeros(1, dtype=res_c.dtype, device=res_c.device) res = torch.where(cond, res_0, res_c) return res def one_rnn_transform(W, h, U, x, b, k): W_otimes_h = gmath.mobius_matvec(W, h, k=k) U_otimes_x = gmath.mobius_matvec(U, x, k=k) Wh_plus_Ux = gmath.mobius_add(W_otimes_h, U_otimes_x, k=k) return gmath.mobius_add(Wh_plus_Ux, b, k=k) def mobius_gru_cell( input: torch.Tensor, hx: torch.Tensor, weight_ih: torch.Tensor, weight_hh: torch.Tensor, bias: torch.Tensor, k: torch.Tensor, nonlin=None, ): W_ir, W_ih, W_iz = weight_ih.chunk(3) b_r, b_h, b_z = bias W_hr, W_hh, W_hz = weight_hh.chunk(3) z_t = gmath.logmap0(one_rnn_transform(W_hz, hx, W_iz, input, b_z, k), k=k).sigmoid() r_t = gmath.logmap0(one_rnn_transform(W_hr, hx, W_ir, input, b_r, k), k=k).sigmoid() rh_t = gmath.mobius_pointwise_mul(r_t, hx, k=k) h_tilde = one_rnn_transform(W_hh, rh_t, W_ih, input, b_h, k) if nonlin is not None: h_tilde = gmath.mobius_fn_apply(nonlin, h_tilde, k=k) delta_h = gmath.mobius_add(-hx, h_tilde, k=k) h_out = gmath.mobius_add(hx, gmath.mobius_pointwise_mul(z_t, delta_h, k=k), k=k) return h_out def mobius_gru_loop( input: torch.Tensor, h0: torch.Tensor, weight_ih: torch.Tensor, weight_hh: torch.Tensor, bias: torch.Tensor, k: torch.Tensor, batch_sizes=None, hyperbolic_input: bool = False, hyperbolic_hidden_state0: bool = False, nonlin=None, ): if not hyperbolic_hidden_state0: hx = gmath.expmap0(h0, k=k) else: hx = h0 if not hyperbolic_input: input = gmath.expmap0(input, k=k) outs = [] if batch_sizes is None: input_unbinded = input.unbind(0) for t in range(input.size(0)): hx = mobius_gru_cell( input=input_unbinded[t], hx=hx, weight_ih=weight_ih, weight_hh=weight_hh, bias=bias, nonlin=nonlin, k=k, ) outs.append(hx) outs = torch.stack(outs) h_last = hx else: h_last = [] T = len(batch_sizes) - 1 for i, t in enumerate(range(batch_sizes.size(0))): ix, input = input[: batch_sizes[t]], input[batch_sizes[t]:] hx = mobius_gru_cell( input=ix, hx=hx, weight_ih=weight_ih, weight_hh=weight_hh, bias=bias, nonlin=nonlin, k=k, ) outs.append(hx) if t < T: hx, ht = hx[: batch_sizes[t + 1]], hx[batch_sizes[t + 1]:] h_last.append(ht) else: h_last.append(hx) h_last.reverse() h_last = torch.cat(h_last) outs = torch.cat(outs) return outs, h_last class MobiusLinear(torch.nn.Linear): def __init__( self, *args, hyperbolic_input=True, hyperbolic_bias=True, nonlin=None, k=-1.0, fp64_hyper=True, **kwargs ): k = torch.tensor(k) super().__init__(*args, **kwargs) if self.bias is not None: if hyperbolic_bias: self.ball = manifold = geoopt.PoincareBall(c=k.abs()) self.bias = geoopt.ManifoldParameter(self.bias, manifold=manifold) with torch.no_grad(): # self.bias.set_(gmath.expmap0(self.bias.normal_() / 4, k=k)) self.bias.set_(gmath.expmap0(self.bias.normal_() / 400, k=k)) with torch.no_grad(): # 1e-2 was the original value in the code. The updated one is from HNN++ std = 1 / np.sqrt(2 * self.weight.shape[0] * self.weight.shape[1]) # Actually, we divide that by 100 so that it starts really small and far from the border std = std / 100 self.weight.normal_(std=std) self.hyperbolic_bias = hyperbolic_bias self.hyperbolic_input = hyperbolic_input self.nonlin = nonlin self.k = k self.fp64_hyper = fp64_hyper def forward(self, input): if self.fp64_hyper: input = input.double() else: input = input.float() with autocast(enabled=False): # Do not use fp16 return mobius_linear( input, weight=self.weight, bias=self.bias, hyperbolic_input=self.hyperbolic_input, nonlin=self.nonlin, hyperbolic_bias=self.hyperbolic_bias, k=self.k, ) def extra_repr(self): info = super().extra_repr() info += "c={}, hyperbolic_input={}".format(self.ball.c, self.hyperbolic_input) if self.bias is not None: info = ", hyperbolic_bias={}".format(self.hyperbolic_bias) return info class MobiusDist2Hyperplane(torch.nn.Module): def __init__(self, in_features, out_features, k=-1.0, fp64_hyper=True): k = torch.tensor(k) super().__init__() self.in_features = in_features self.out_features = out_features self.ball = ball = geoopt.PoincareBall(c=k.abs()) self.sphere = sphere = geoopt.manifolds.Sphere() self.scale = torch.nn.Parameter(torch.zeros(out_features)) point = torch.randn(out_features, in_features) / 4 point = gmath.expmap0(point, k=k) tangent = torch.randn(out_features, in_features) self.point = geoopt.ManifoldParameter(point, manifold=ball) self.fp64_hyper = fp64_hyper with torch.no_grad(): self.tangent = geoopt.ManifoldParameter(tangent, manifold=sphere).proj_() def forward(self, input): if self.fp64_hyper: input = input.double() else: input = input.float() with autocast(enabled=False): # Do not use fp16 input = input.unsqueeze(-2) distance = gmath.dist2plane( x=input, p=self.point, a=self.tangent, k=self.ball.c, signed=True ) return distance * self.scale.exp() def extra_repr(self): return ( "in_features={in_features}, out_features={out_features}" # "c={ball.c}".format( # **self.__dict__ # ) )
[ "torch.cuda.amp.autocast" ]
1.7.0
jacv050/hyperfuture
54288230656c7a8cc0b825f9e397d690408d9e42
0.4
""" SparseNet for ImageNet-1K, implemented in PyTorch. Original paper: 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. """ __all__ = ['SparseNet', 'sparsenet121', 'sparsenet161', 'sparsenet169', 'sparsenet201', 'sparsenet264'] import os import math import torch import torch.nn as nn import torch.nn.init as init from .common import pre_conv1x1_block, pre_conv3x3_block from .preresnet import PreResInitBlock, PreResActivation from .densenet import TransitionBlock def sparsenet_exponential_fetch(lst): """ SparseNet's specific exponential fetch. Parameters: ---------- lst : list List of something. Returns ------- list Filtered list. """ return [lst[len(lst) - 2**i] for i in range(1 + math.floor(math.log(len(lst), 2)))] class SparseBlock(nn.Module): """ SparseNet block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. dropout_rate : float Parameter of Dropout layer. Faction of the input units to drop. """ def __init__(self, in_channels, out_channels, dropout_rate): super(SparseBlock, self).__init__() self.use_dropout = (dropout_rate != 0.0) bn_size = 4 mid_channels = out_channels * bn_size self.conv1 = pre_conv1x1_block( in_channels=in_channels, out_channels=mid_channels) self.conv2 = pre_conv3x3_block( in_channels=mid_channels, out_channels=out_channels) if self.use_dropout: self.dropout = nn.Dropout(p=dropout_rate) def forward(self, x): x = self.conv1(x) x = self.conv2(x) if self.use_dropout: x = self.dropout(x) return x class SparseStage(nn.Module): """ SparseNet stage. Parameters: ---------- in_channels : int Number of input channels. channels_per_stage : list of int Number of output channels for each unit in stage. growth_rate : int Growth rate for blocks. dropout_rate : float Parameter of Dropout layer. Faction of the input units to drop. do_transition : bool Whether use transition block. """ def __init__(self, in_channels, channels_per_stage, growth_rate, dropout_rate, do_transition): super(SparseStage, self).__init__() self.do_transition = do_transition if self.do_transition: self.trans = TransitionBlock( in_channels=in_channels, out_channels=(in_channels // 2)) in_channels = in_channels // 2 self.blocks = nn.Sequential() for i, out_channels in enumerate(channels_per_stage): self.blocks.add_module("block{}".format(i + 1), SparseBlock( in_channels=in_channels, out_channels=growth_rate, dropout_rate=dropout_rate)) in_channels = out_channels def forward(self, x): if self.do_transition: x = self.trans(x) outs = [x] for block in self.blocks._modules.values(): y = block(x) outs.append(y) flt_outs = sparsenet_exponential_fetch(outs) x = torch.cat(tuple(flt_outs), dim=1) return x class SparseNet(nn.Module): """ SparseNet model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. growth_rate : int Growth rate for blocks. dropout_rate : float, default 0.0 Parameter of Dropout layer. Faction of the input units to drop. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. num_classes : int, default 1000 Number of classification classes. """ def __init__(self, channels, init_block_channels, growth_rate, dropout_rate=0.0, in_channels=3, in_size=(224, 224), num_classes=1000): super(SparseNet, self).__init__() self.in_size = in_size self.num_classes = num_classes self.features = nn.Sequential() self.features.add_module("init_block", PreResInitBlock( in_channels=in_channels, out_channels=init_block_channels)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = SparseStage( in_channels=in_channels, channels_per_stage=channels_per_stage, growth_rate=growth_rate, dropout_rate=dropout_rate, do_transition=(i != 0)) in_channels = channels_per_stage[-1] self.features.add_module("stage{}".format(i + 1), stage) self.features.add_module("post_activ", PreResActivation(in_channels=in_channels)) self.features.add_module("final_pool", nn.AvgPool2d( kernel_size=7, stride=1)) self.output = nn.Linear( in_features=in_channels, out_features=num_classes) self._init_params() def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.output(x) return x def get_sparsenet(num_layers, model_name=None, pretrained=False, root=os.path.join("~", ".torch", "models"), **kwargs): """ Create SparseNet model with specific parameters. Parameters: ---------- num_layers : int Number of layers. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ if num_layers == 121: init_block_channels = 64 growth_rate = 32 layers = [6, 12, 24, 16] elif num_layers == 161: init_block_channels = 96 growth_rate = 48 layers = [6, 12, 36, 24] elif num_layers == 169: init_block_channels = 64 growth_rate = 32 layers = [6, 12, 32, 32] elif num_layers == 201: init_block_channels = 64 growth_rate = 32 layers = [6, 12, 48, 32] elif num_layers == 264: init_block_channels = 64 growth_rate = 32 layers = [6, 12, 64, 48] else: raise ValueError("Unsupported SparseNet version with number of layers {}".format(num_layers)) from functools import reduce channels = reduce( lambda xi, yi: xi + [reduce( lambda xj, yj: xj + [sum(sparsenet_exponential_fetch([xj[0]] + [yj[0]] * (yj[1] + 1)))], zip([growth_rate] * yi, range(yi)), [xi[-1][-1] // 2])[1:]], layers, [[init_block_channels * 2]])[1:] net = SparseNet( channels=channels, init_block_channels=init_block_channels, growth_rate=growth_rate, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def sparsenet121(**kwargs): """ SparseNet-121 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=121, model_name="sparsenet121", **kwargs) def sparsenet161(**kwargs): """ SparseNet-161 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=161, model_name="sparsenet161", **kwargs) def sparsenet169(**kwargs): """ SparseNet-169 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=169, model_name="sparsenet169", **kwargs) def sparsenet201(**kwargs): """ SparseNet-201 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=201, model_name="sparsenet201", **kwargs) def sparsenet264(**kwargs): """ SparseNet-264 model from 'Sparsely Aggregated Convolutional Networks,' https://arxiv.org/abs/1801.05895. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sparsenet(num_layers=264, model_name="sparsenet264", **kwargs) def _calc_width(net): import numpy as np net_params = filter(lambda p: p.requires_grad, net.parameters()) weight_count = 0 for param in net_params: weight_count += np.prod(param.size()) return weight_count def _test(): import torch pretrained = False models = [ sparsenet121, sparsenet161, sparsenet169, sparsenet201, sparsenet264, ] for model in models: net = model(pretrained=pretrained) # net.train() net.eval() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != sparsenet121 or weight_count == 3250824) assert (model != sparsenet161 or weight_count == 9853288) assert (model != sparsenet169 or weight_count == 4709864) assert (model != sparsenet201 or weight_count == 5703144) assert (model != sparsenet264 or weight_count == 7717224) x = torch.randn(1, 3, 224, 224) y = net(x) y.sum().backward() assert (tuple(y.size()) == (1, 1000)) if __name__ == "__main__": _test()
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.init.kaiming_uniform_", "torch.nn.init.constant_", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.randn" ]
0.4.0
oliviaweng/imgclsmob
a1f1f52eecbb841fa878bff4d3c311b79864835d
1.7
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from typing import Callable, List, Optional import torch from fairseq import utils from fairseq.data.indexed_dataset import get_available_dataset_impl from fairseq.dataclass.configs import ( CheckpointConfig, CommonConfig, CommonEvalConfig, DatasetConfig, DistributedTrainingConfig, EvalLMConfig, GenerationConfig, InteractiveConfig, OptimizationConfig, ) from fairseq.dataclass.utils import gen_parser_from_dataclass # this import is for backward compatibility from fairseq.utils import csv_str_list, eval_bool, eval_str_dict, eval_str_list # noqa def get_preprocessing_parser(default_task="translation"): parser = get_parser("Preprocessing", default_task) add_preprocess_args(parser) return parser def get_training_parser(default_task="translation"): parser = get_parser("Trainer", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser) add_model_args(parser) add_optimization_args(parser) add_checkpoint_args(parser) return parser def get_generation_parser(interactive=False, default_task="translation"): parser = get_parser("Generation", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_generation_args(parser) add_checkpoint_args(parser) if interactive: add_interactive_args(parser) return parser def get_interactive_generation_parser(default_task="translation"): return get_generation_parser(interactive=True, default_task=default_task) def get_eval_lm_parser(default_task="language_modeling"): parser = get_parser("Evaluate Language Model", default_task) add_dataset_args(parser, gen=True) add_distributed_training_args(parser, default_world_size=1) add_eval_lm_args(parser) return parser def get_validation_parser(default_task=None): parser = get_parser("Validation", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser, default_world_size=1) group = parser.add_argument_group("Evaluation") gen_parser_from_dataclass(group, CommonEvalConfig()) return parser def parse_args_and_arch( parser: argparse.ArgumentParser, input_args: List[str] = None, parse_known: bool = False, suppress_defaults: bool = False, modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None, ): """ Args: parser (ArgumentParser): the parser input_args (List[str]): strings to parse, defaults to sys.argv parse_known (bool): only parse known arguments, similar to `ArgumentParser.parse_known_args` suppress_defaults (bool): parse while ignoring all default values modify_parser (Optional[Callable[[ArgumentParser], None]]): function to modify the parser, e.g., to set default values """ if suppress_defaults: # Parse args without any default values. This requires us to parse # twice, once to identify all the necessary task/model args, and a second # time with all defaults set to None. args = parse_args_and_arch( parser, input_args=input_args, parse_known=parse_known, suppress_defaults=False, ) suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser]) suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()}) args = suppressed_parser.parse_args(input_args) return argparse.Namespace( **{k: v for k, v in vars(args).items() if v is not None} ) from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args(input_args) utils.import_user_module(usr_args) if modify_parser is not None: modify_parser(parser) # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, "arch"): model_specific_group = parser.add_argument_group( "Model-specific configuration", # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) if args.arch in ARCH_MODEL_REGISTRY: ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) elif args.arch in MODEL_REGISTRY: MODEL_REGISTRY[args.arch].add_args(model_specific_group) else: raise RuntimeError() if hasattr(args, "task"): from fairseq.tasks import TASK_REGISTRY TASK_REGISTRY[args.task].add_args(parser) if getattr(args, "use_bmuf", False): # hack to support extra args for block distributed data parallelism from fairseq.optim.bmuf import FairseqBMUF FairseqBMUF.add_args(parser) # Add *-specific args to parser. from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) if choice is not None: cls = REGISTRY["registry"][choice] if hasattr(cls, "add_args"): cls.add_args(parser) elif hasattr(cls, "__dataclass"): gen_parser_from_dataclass(parser, cls.__dataclass()) # Modify the parser a second time, since defaults may have been reset if modify_parser is not None: modify_parser(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if ( hasattr(args, "batch_size_valid") and args.batch_size_valid is None ) or not hasattr(args, "batch_size_valid"): args.batch_size_valid = args.batch_size if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None: args.max_tokens_valid = args.max_tokens if getattr(args, "memory_efficient_fp16", False): args.fp16 = True if getattr(args, "memory_efficient_bf16", False): args.bf16 = True args.tpu = getattr(args, "tpu", False) args.bf16 = getattr(args, "bf16", False) if args.bf16: args.tpu = True if args.tpu and args.fp16: raise ValueError("Cannot combine --fp16 and --tpu, use --bf16 on TPUs") if getattr(args, "seed", None) is None: args.seed = 1 # default seed for training args.no_seed_provided = True else: args.no_seed_provided = False # Apply architecture configuration. if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY: ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args def get_parser(desc, default_task="translation"): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) gen_parser_from_dataclass(parser, CommonConfig()) from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( "--" + registry_name.replace("_", "-"), default=REGISTRY["default"], choices=REGISTRY["registry"].keys(), ) # Task definitions can be found under fairseq/tasks/ from fairseq.tasks import TASK_REGISTRY parser.add_argument( "--task", metavar="TASK", default=default_task, choices=TASK_REGISTRY.keys(), help="task", ) # fmt: on return parser def add_preprocess_args(parser): group = parser.add_argument_group("Preprocessing") # fmt: off group.add_argument("-s", "--source-lang", default=None, metavar="SRC", help="source language") group.add_argument("-t", "--target-lang", default=None, metavar="TARGET", help="target language") group.add_argument("--trainpref", metavar="FP", default=None, help="train file prefix (also used to build dictionaries)") group.add_argument("--validpref", metavar="FP", default=None, help="comma separated, valid file prefixes " "(words missing from train set are replaced with <unk>)") group.add_argument("--testpref", metavar="FP", default=None, help="comma separated, test file prefixes " "(words missing from train set are replaced with <unk>)") group.add_argument("--align-suffix", metavar="FP", default=None, help="alignment file suffix") group.add_argument("--destdir", metavar="DIR", default="data-bin", help="destination dir") group.add_argument("--thresholdtgt", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--thresholdsrc", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--tgtdict", metavar="FP", help="reuse given target dictionary") group.add_argument("--srcdict", metavar="FP", help="reuse given source dictionary") group.add_argument("--nwordstgt", metavar="N", default=-1, type=int, help="number of target words to retain") group.add_argument("--nwordssrc", metavar="N", default=-1, type=int, help="number of source words to retain") group.add_argument("--alignfile", metavar="ALIGN", default=None, help="an alignment file (optional)") parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap', choices=get_available_dataset_impl(), help='output dataset implementation') group.add_argument("--joined-dictionary", action="store_true", help="Generate joined dictionary") group.add_argument("--only-source", action="store_true", help="Only process the source language") group.add_argument("--padding-factor", metavar="N", default=8, type=int, help="Pad dictionary size to be multiple of N") group.add_argument("--workers", metavar="N", default=1, type=int, help="number of parallel workers") # fmt: on return parser def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group("dataset_data_loading") gen_parser_from_dataclass(group, DatasetConfig()) # fmt: on return group def add_distributed_training_args(parser, default_world_size=None): group = parser.add_argument_group("distributed_training") if default_world_size is None: default_world_size = max(1, torch.cuda.device_count()) gen_parser_from_dataclass( group, DistributedTrainingConfig(distributed_world_size=default_world_size) ) return group def add_optimization_args(parser): group = parser.add_argument_group("optimization") # fmt: off gen_parser_from_dataclass(group, OptimizationConfig()) # fmt: on return group def add_checkpoint_args(parser): group = parser.add_argument_group("checkpoint") # fmt: off gen_parser_from_dataclass(group, CheckpointConfig()) # fmt: on return group def add_common_eval_args(group): gen_parser_from_dataclass(group, CommonEvalConfig()) def add_eval_lm_args(parser): group = parser.add_argument_group("LM Evaluation") add_common_eval_args(group) gen_parser_from_dataclass(group, EvalLMConfig()) def add_generation_args(parser): group = parser.add_argument_group("Generation") add_common_eval_args(group) gen_parser_from_dataclass(group, GenerationConfig()) return group def add_interactive_args(parser): group = parser.add_argument_group("Interactive") gen_parser_from_dataclass(group, InteractiveConfig()) def add_model_args(parser): group = parser.add_argument_group("Model configuration") # fmt: off # Model definitions can be found under fairseq/models/ # # The model architecture can be specified in several ways. # In increasing order of priority: # 1) model defaults (lowest priority) # 2) --arch argument # 3) --encoder/decoder-* arguments (highest priority) from fairseq.models import ARCH_MODEL_REGISTRY group.add_argument('--arch', '-a', metavar='ARCH', choices=ARCH_MODEL_REGISTRY.keys(), help='model architecture') # fmt: on return group
[ "torch.cuda.device_count" ]
1.7.1
jaehwlee/K-wav2vec
6ba33f0ef7d2399e4c52a3c80d83a092dac4daa9
1.4
import torch.nn as nn import torch.nn.functional as F import numpy as np from tool.region_loss import RegionLoss from tool.yolo_layer import YoloLayer from tool.config import * from tool.torch_utils import * class Mish(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): x = x * (torch.tanh(torch.nn.functional.softplus(x))) return x class MaxPoolDark(nn.Module): def __init__(self, size=2, stride=1): super(MaxPoolDark, self).__init__() self.size = size self.stride = stride def forward(self, x): ''' darknet output_size = (input_size + p - k) / s +1 p : padding = k - 1 k : size s : stride torch output_size = (input_size + 2*p -k) / s +1 p : padding = k//2 ''' p = self.size // 2 if ((x.shape[2] - 1) // self.stride) != ((x.shape[2] + 2 * p - self.size) // self.stride): padding1 = (self.size - 1) // 2 padding2 = padding1 + 1 else: padding1 = (self.size - 1) // 2 padding2 = padding1 if ((x.shape[3] - 1) // self.stride) != ((x.shape[3] + 2 * p - self.size) // self.stride): padding3 = (self.size - 1) // 2 padding4 = padding3 + 1 else: padding3 = (self.size - 1) // 2 padding4 = padding3 x = F.max_pool2d(F.pad(x, (padding3, padding4, padding1, padding2), mode='replicate'), self.size, stride=self.stride) return x class Upsample_expand(nn.Module): def __init__(self, stride=2): super(Upsample_expand, self).__init__() self.stride = stride def forward(self, x): assert (x.data.dim() == 4) x = x.view(x.size(0), x.size(1), x.size(2), 1, x.size(3), 1).\ expand(x.size(0), x.size(1), x.size(2), self.stride, x.size(3), self.stride).contiguous().\ view(x.size(0), x.size(1), x.size(2) * self.stride, x.size(3) * self.stride) return x class Upsample_interpolate(nn.Module): def __init__(self, stride): super(Upsample_interpolate, self).__init__() self.stride = stride def forward(self, x): assert (x.data.dim() == 4) out = F.interpolate(x, size=(x.size(2) * self.stride, x.size(3) * self.stride), mode='nearest') return out class Reorg(nn.Module): def __init__(self, stride=2): super(Reorg, self).__init__() self.stride = stride def forward(self, x): stride = self.stride assert (x.data.dim() == 4) B = x.data.size(0) C = x.data.size(1) H = x.data.size(2) W = x.data.size(3) assert (H % stride == 0) assert (W % stride == 0) ws = stride hs = stride x = x.view(B, C, H / hs, hs, W / ws, ws).transpose(3, 4).contiguous() x = x.view(B, C, H / hs * W / ws, hs * ws).transpose(2, 3).contiguous() x = x.view(B, C, hs * ws, H / hs, W / ws).transpose(1, 2).contiguous() x = x.view(B, hs * ws * C, H / hs, W / ws) return x class GlobalAvgPool2d(nn.Module): def __init__(self): super(GlobalAvgPool2d, self).__init__() def forward(self, x): N = x.data.size(0) C = x.data.size(1) H = x.data.size(2) W = x.data.size(3) x = F.avg_pool2d(x, (H, W)) x = x.view(N, C) return x # for route, shortcut and sam class EmptyModule(nn.Module): def __init__(self): super(EmptyModule, self).__init__() def forward(self, x): return x # support route shortcut and reorg class Darknet(nn.Module): def __init__(self, cfgfile, inference=False): super(Darknet, self).__init__() self.inference = inference self.training = not self.inference self.blocks = parse_cfg(cfgfile) self.width = int(self.blocks[0]['width']) self.height = int(self.blocks[0]['height']) self.models = self.create_network(self.blocks) # merge conv, bn,leaky self.loss = self.models[len(self.models) - 1] if self.blocks[(len(self.blocks) - 1)]['type'] == 'region': self.anchors = self.loss.anchors self.num_anchors = self.loss.num_anchors self.anchor_step = self.loss.anchor_step self.num_classes = self.loss.num_classes self.header = torch.IntTensor([0, 0, 0, 0]) self.seen = 0 def forward(self, x): ind = -2 self.loss = None outputs = dict() out_boxes = [] for block in self.blocks: ind = ind + 1 # if ind > 0: # return x if block['type'] == 'net': continue elif block['type'] in ['convolutional', 'maxpool', 'reorg', 'upsample', 'avgpool', 'softmax', 'connected']: x = self.models[ind](x) outputs[ind] = x elif block['type'] == 'route': layers = block['layers'].split(',') layers = [int(i) if int(i) > 0 else int(i) + ind for i in layers] if len(layers) == 1: if 'groups' not in block.keys() or int(block['groups']) == 1: x = outputs[layers[0]] outputs[ind] = x else: groups = int(block['groups']) group_id = int(block['group_id']) _, b, _, _ = outputs[layers[0]].shape x = outputs[layers[0]][:, b // groups * group_id:b // groups * (group_id + 1)] outputs[ind] = x elif len(layers) == 2: x1 = outputs[layers[0]] x2 = outputs[layers[1]] x = torch.cat((x1, x2), 1) outputs[ind] = x elif len(layers) == 4: x1 = outputs[layers[0]] x2 = outputs[layers[1]] x3 = outputs[layers[2]] x4 = outputs[layers[3]] x = torch.cat((x1, x2, x3, x4), 1) outputs[ind] = x else: print("rounte number > 2 ,is {}".format(len(layers))) elif block['type'] == 'shortcut': from_layer = int(block['from']) activation = block['activation'] from_layer = from_layer if from_layer > 0 else from_layer + ind x1 = outputs[from_layer] x2 = outputs[ind - 1] x = x1 + x2 if activation == 'leaky': x = F.leaky_relu(x, 0.1, inplace=True) elif activation == 'relu': x = F.relu(x, inplace=True) outputs[ind] = x elif block['type'] == 'sam': from_layer = int(block['from']) from_layer = from_layer if from_layer > 0 else from_layer + ind x1 = outputs[from_layer] x2 = outputs[ind - 1] x = x1 * x2 outputs[ind] = x elif block['type'] == 'region': continue if self.loss: self.loss = self.loss + self.models[ind](x) else: self.loss = self.models[ind](x) outputs[ind] = None elif block['type'] == 'yolo': # if self.training: # pass # else: # boxes = self.models[ind](x) # out_boxes.append(boxes) boxes = self.models[ind](x) out_boxes.append(boxes) elif block['type'] == 'cost': continue else: print('unknown type %s' % (block['type'])) if self.training: return out_boxes else: return get_region_boxes(out_boxes) def print_network(self): print_cfg(self.blocks) def create_network(self, blocks): models = nn.ModuleList() prev_filters = 3 out_filters = [] prev_stride = 1 out_strides = [] conv_id = 0 for block in blocks: if block['type'] == 'net': prev_filters = int(block['channels']) continue elif block['type'] == 'convolutional': conv_id = conv_id + 1 batch_normalize = int(block['batch_normalize']) filters = int(block['filters']) kernel_size = int(block['size']) stride = int(block['stride']) is_pad = int(block['pad']) pad = (kernel_size - 1) // 2 if is_pad else 0 activation = block['activation'] model = nn.Sequential() if batch_normalize: model.add_module('conv{0}'.format(conv_id), nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=False)) model.add_module('bn{0}'.format(conv_id), nn.BatchNorm2d(filters)) # model.add_module('bn{0}'.format(conv_id), BN2d(filters)) else: model.add_module('conv{0}'.format(conv_id), nn.Conv2d(prev_filters, filters, kernel_size, stride, pad)) if activation == 'leaky': model.add_module('leaky{0}'.format(conv_id), nn.LeakyReLU(0.1, inplace=True)) elif activation == 'relu': model.add_module('relu{0}'.format(conv_id), nn.ReLU(inplace=True)) elif activation == 'mish': model.add_module('mish{0}'.format(conv_id), Mish()) elif activation == 'linear': pass elif activation == 'logistic': model.add_module('sigmoid{0}'.format(conv_id), nn.Sigmoid()) else: print("No convolutional activation named {}".format(activation)) prev_filters = filters out_filters.append(prev_filters) prev_stride = stride * prev_stride out_strides.append(prev_stride) models.append(model) elif block['type'] == 'maxpool': pool_size = int(block['size']) stride = int(block['stride']) if stride == 1 and pool_size % 2: # You can use Maxpooldark instead, here is convenient to convert onnx. # Example: [maxpool] size=3 stride=1 model = nn.MaxPool2d(kernel_size=pool_size, stride=stride, padding=pool_size // 2) elif stride == pool_size: # You can use Maxpooldark instead, here is convenient to convert onnx. # Example: [maxpool] size=2 stride=2 model = nn.MaxPool2d(kernel_size=pool_size, stride=stride, padding=0) else: model = MaxPoolDark(pool_size, stride) out_filters.append(prev_filters) prev_stride = stride * prev_stride out_strides.append(prev_stride) models.append(model) elif block['type'] == 'avgpool': model = GlobalAvgPool2d() out_filters.append(prev_filters) models.append(model) elif block['type'] == 'softmax': model = nn.Softmax() out_strides.append(prev_stride) out_filters.append(prev_filters) models.append(model) elif block['type'] == 'cost': if block['_type'] == 'sse': model = nn.MSELoss(reduction='mean') elif block['_type'] == 'L1': model = nn.L1Loss(reduction='mean') elif block['_type'] == 'smooth': model = nn.SmoothL1Loss(reduction='mean') out_filters.append(1) out_strides.append(prev_stride) models.append(model) elif block['type'] == 'reorg': stride = int(block['stride']) prev_filters = stride * stride * prev_filters out_filters.append(prev_filters) prev_stride = prev_stride * stride out_strides.append(prev_stride) models.append(Reorg(stride)) elif block['type'] == 'upsample': stride = int(block['stride']) out_filters.append(prev_filters) prev_stride = prev_stride // stride out_strides.append(prev_stride) models.append(Upsample_expand(stride)) # models.append(Upsample_interpolate(stride)) elif block['type'] == 'route': layers = block['layers'].split(',') ind = len(models) layers = [int(i) if int(i) > 0 else int(i) + ind for i in layers] if len(layers) == 1: if 'groups' not in block.keys() or int(block['groups']) == 1: prev_filters = out_filters[layers[0]] prev_stride = out_strides[layers[0]] else: prev_filters = out_filters[layers[0]] // int(block['groups']) prev_stride = out_strides[layers[0]] // int(block['groups']) elif len(layers) == 2: assert (layers[0] == ind - 1 or layers[1] == ind - 1) prev_filters = out_filters[layers[0]] + out_filters[layers[1]] prev_stride = out_strides[layers[0]] elif len(layers) == 4: assert (layers[0] == ind - 1) prev_filters = out_filters[layers[0]] + out_filters[layers[1]] + out_filters[layers[2]] + \ out_filters[layers[3]] prev_stride = out_strides[layers[0]] else: print("route error!!!") out_filters.append(prev_filters) out_strides.append(prev_stride) models.append(EmptyModule()) elif block['type'] == 'shortcut': ind = len(models) prev_filters = out_filters[ind - 1] out_filters.append(prev_filters) prev_stride = out_strides[ind - 1] out_strides.append(prev_stride) models.append(EmptyModule()) elif block['type'] == 'sam': ind = len(models) prev_filters = out_filters[ind - 1] out_filters.append(prev_filters) prev_stride = out_strides[ind - 1] out_strides.append(prev_stride) models.append(EmptyModule()) elif block['type'] == 'connected': filters = int(block['output']) if block['activation'] == 'linear': model = nn.Linear(prev_filters, filters) elif block['activation'] == 'leaky': model = nn.Sequential( nn.Linear(prev_filters, filters), nn.LeakyReLU(0.1, inplace=True)) elif block['activation'] == 'relu': model = nn.Sequential( nn.Linear(prev_filters, filters), nn.ReLU(inplace=True)) prev_filters = filters out_filters.append(prev_filters) out_strides.append(prev_stride) models.append(model) elif block['type'] == 'region': loss = RegionLoss() anchors = block['anchors'].split(',') loss.anchors = [float(i) for i in anchors] loss.num_classes = int(block['classes']) loss.num_anchors = int(block['num']) loss.anchor_step = len(loss.anchors) // loss.num_anchors loss.object_scale = float(block['object_scale']) loss.noobject_scale = float(block['noobject_scale']) loss.class_scale = float(block['class_scale']) loss.coord_scale = float(block['coord_scale']) out_filters.append(prev_filters) out_strides.append(prev_stride) models.append(loss) elif block['type'] == 'yolo': yolo_layer = YoloLayer() anchors = block['anchors'].split(',') anchor_mask = block['mask'].split(',') yolo_layer.anchor_mask = [int(i) for i in anchor_mask] yolo_layer.anchors = [float(i) for i in anchors] yolo_layer.num_classes = int(block['classes']) self.num_classes = yolo_layer.num_classes yolo_layer.num_anchors = int(block['num']) yolo_layer.anchor_step = len(yolo_layer.anchors) // yolo_layer.num_anchors yolo_layer.stride = prev_stride yolo_layer.scale_x_y = float(block['scale_x_y']) # yolo_layer.object_scale = float(block['object_scale']) # yolo_layer.noobject_scale = float(block['noobject_scale']) # yolo_layer.class_scale = float(block['class_scale']) # yolo_layer.coord_scale = float(block['coord_scale']) out_filters.append(prev_filters) out_strides.append(prev_stride) models.append(yolo_layer) else: print('unknown type %s' % (block['type'])) return models def load_weights(self, weightfile): fp = open(weightfile, 'rb') header = np.fromfile(fp, count=5, dtype=np.int32) self.header = torch.from_numpy(header) self.seen = self.header[3] buf = np.fromfile(fp, dtype=np.float32) fp.close() start = 0 ind = -2 for block in self.blocks: if start >= buf.size: break ind = ind + 1 if block['type'] == 'net': continue elif block['type'] == 'convolutional': model = self.models[ind] batch_normalize = int(block['batch_normalize']) if batch_normalize: start = load_conv_bn(buf, start, model[0], model[1]) else: start = load_conv(buf, start, model[0]) elif block['type'] == 'connected': model = self.models[ind] if block['activation'] != 'linear': start = load_fc(buf, start, model[0]) else: start = load_fc(buf, start, model) elif block['type'] == 'maxpool': pass elif block['type'] == 'reorg': pass elif block['type'] == 'upsample': pass elif block['type'] == 'route': pass elif block['type'] == 'shortcut': pass elif block['type'] == 'sam': pass elif block['type'] == 'region': pass elif block['type'] == 'yolo': pass elif block['type'] == 'avgpool': pass elif block['type'] == 'softmax': pass elif block['type'] == 'cost': pass else: print('unknown type %s' % (block['type'])) # def save_weights(self, outfile, cutoff=0): # if cutoff <= 0: # cutoff = len(self.blocks) - 1 # # fp = open(outfile, 'wb') # self.header[3] = self.seen # header = self.header # header.numpy().tofile(fp) # # ind = -1 # for blockId in range(1, cutoff + 1): # ind = ind + 1 # block = self.blocks[blockId] # if block['type'] == 'convolutional': # model = self.models[ind] # batch_normalize = int(block['batch_normalize']) # if batch_normalize: # save_conv_bn(fp, model[0], model[1]) # else: # save_conv(fp, model[0]) # elif block['type'] == 'connected': # model = self.models[ind] # if block['activation'] != 'linear': # save_fc(fc, model) # else: # save_fc(fc, model[0]) # elif block['type'] == 'maxpool': # pass # elif block['type'] == 'reorg': # pass # elif block['type'] == 'upsample': # pass # elif block['type'] == 'route': # pass # elif block['type'] == 'shortcut': # pass # elif block['type'] == 'sam': # pass # elif block['type'] == 'region': # pass # elif block['type'] == 'yolo': # pass # elif block['type'] == 'avgpool': # pass # elif block['type'] == 'softmax': # pass # elif block['type'] == 'cost': # pass # else: # print('unknown type %s' % (block['type'])) # fp.close()
[ "torch.nn.Linear", "torch.nn.functional.avg_pool2d", "torch.nn.MSELoss", "torch.nn.ModuleList", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.Softmax", "torch.nn.BatchNorm2d", "torch.nn.LeakyReLU", "torch.nn.Sigmoid", "torch.nn.functional.relu", "torch.nn.ReLU", "torch.nn.L1Loss", "torch.nn.Conv2d", "torch.nn.SmoothL1Loss", "torch.nn.functional.pad", "torch.nn.functional.leaky_relu" ]
1.4.0
ajsanjoaquin/pytorch-YOLOv4
dbc10cdc43668f29647ea2019ec13c4109d590c1
1.7
#!/usr/bin/env python3 import unittest import torch from gpytorch.lazy import CholLazyTensor, TriangularLazyTensor from gpytorch.test.lazy_tensor_test_case import LazyTensorTestCase class TestCholLazyTensor(LazyTensorTestCase, unittest.TestCase): seed = 0 should_test_sample = True should_call_cg = False should_call_lanczos = False def create_lazy_tensor(self): chol = torch.tensor( [[3, 0, 0, 0, 0], [-1, 2, 0, 0, 0], [1, 4, 1, 0, 0], [0, 2, 3, 2, 0], [-4, -2, 1, 3, 4]], dtype=torch.float, requires_grad=True, ) return CholLazyTensor(TriangularLazyTensor(chol)) def evaluate_lazy_tensor(self, lazy_tensor): chol = lazy_tensor.root.evaluate() return chol.matmul(chol.transpose(-1, -2)) class TestCholLazyTensorBatch(TestCholLazyTensor): seed = 0 def create_lazy_tensor(self): chol = torch.tensor( [ [[3, 0, 0, 0, 0], [-1, 2, 0, 0, 0], [1, 4, 1, 0, 0], [0, 2, 3, 2, 0], [-4, -2, 1, 3, 4]], [[2, 0, 0, 0, 0], [3, 1, 0, 0, 0], [-2, 3, 2, 0, 0], [-2, 1, -1, 3, 0], [-4, -4, 5, 2, 3]], ], dtype=torch.float, ) chol.add_(torch.eye(5).unsqueeze(0)) chol.requires_grad_(True) return CholLazyTensor(TriangularLazyTensor(chol)) class TestCholLazyTensorMultiBatch(TestCholLazyTensor): seed = 0 # Because these LTs are large, we'll skil the big tests should_test_sample = False skip_slq_tests = True def create_lazy_tensor(self): chol = torch.tensor( [ [[3, 0, 0, 0, 0], [-1, 2, 0, 0, 0], [1, 4, 1, 0, 0], [0, 2, 3, 2, 0], [-4, -2, 1, 3, 4]], [[2, 0, 0, 0, 0], [3, 1, 0, 0, 0], [-2, 3, 2, 0, 0], [-2, 1, -1, 3, 0], [-4, -4, 5, 2, 3]], ], dtype=torch.float, ) chol = chol.repeat(3, 1, 1, 1) chol[1].mul_(2) chol[2].mul_(0.5) chol.add_(torch.eye(5).unsqueeze_(0).unsqueeze_(0)) chol.requires_grad_(True) return CholLazyTensor(TriangularLazyTensor(chol)) if __name__ == "__main__": unittest.main()
[ "torch.eye", "torch.tensor" ]
1.7
lrast/gpytorch
2e0bbc9f59e4b4b54780c3e55db784c3d2c9a5bf
1.7
#!/usr/bin/env python3 import math import unittest import torch from gpytorch.kernels import CosineKernel class TestCosineKernel(unittest.TestCase): def test_computes_periodic_function(self): a = torch.tensor([[4, 1], [2, 2], [8, 0]], dtype=torch.float) b = torch.tensor([[0, 0], [2, 1], [1, 0]], dtype=torch.float) period = 1 kernel = CosineKernel().initialize(period_length=period) kernel.eval() actual = torch.zeros(3, 3) for i in range(3): for j in range(3): actual[i, j] = torch.cos(math.pi * ((a[i] - b[j]) / period).norm(2, dim=-1)) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # diag res = kernel(a, b).diag() actual = actual.diag() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims actual = torch.zeros(2, 3, 3) for i in range(3): for j in range(3): for l in range(2): actual[l, i, j] = torch.cos(math.pi * ((a[i, l] - b[j, l]) / period)) res = kernel(a, b, last_dim_is_batch=True).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims + diag res = kernel(a, b, last_dim_is_batch=True).diag() actual = torch.cat([actual[i].diag().unsqueeze(0) for i in range(actual.size(0))]) self.assertLess(torch.norm(res - actual), 1e-5) def test_batch(self): a = torch.tensor([[4, 2, 8], [1, 2, 3]], dtype=torch.float).view(2, 3, 1) b = torch.tensor([[0, 2, 1], [-1, 2, 0]], dtype=torch.float).view(2, 3, 1) period = torch.tensor(1, dtype=torch.float).view(1, 1, 1) kernel = CosineKernel().initialize(period_length=period) kernel.eval() actual = torch.zeros(2, 3, 3) for k in range(2): for i in range(3): for j in range(3): actual[k, i, j] = torch.cos(math.pi * ((a[k, i] - b[k, j]) / period)) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) def test_batch_separate(self): a = torch.tensor([[[4, 1], [2, 2], [8, 0]], [[2, 5], [6, 1], [0, 1]]], dtype=torch.float) b = torch.tensor([[[0, 0], [2, 1], [1, 0]], [[1, 1], [2, 3], [1, 0]]], dtype=torch.float) period = torch.tensor([1, 2], dtype=torch.float).view(2, 1, 1) kernel = CosineKernel(batch_shape=torch.Size([2])).initialize(period_length=period) kernel.eval() actual = torch.zeros(2, 3, 3) for k in range(2): for i in range(3): for j in range(3): actual[k, i, j] = torch.cos(math.pi * ((a[k, i] - b[k, j]) / period[k]).norm(2, dim=-1)) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # diag res = kernel(a, b).diag() actual = torch.cat([actual[i].diag().unsqueeze(0) for i in range(actual.size(0))]) self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims actual = torch.zeros(2, 2, 3, 3) for k in range(2): for i in range(3): for j in range(3): for l in range(2): actual[k, l, i, j] = torch.cos(math.pi * ((a[k, i, l] - b[k, j, l]) / period[k])) res = kernel(a, b, last_dim_is_batch=True).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims + diag res = kernel(a, b, last_dim_is_batch=True).diag() actual = actual.diagonal(dim1=-2, dim2=-1) self.assertLess(torch.norm(res - actual), 1e-5) if __name__ == "__main__": unittest.main()
[ "torch.zeros", "torch.cos", "torch.Size", "torch.norm", "torch.tensor" ]
1.7
lrast/gpytorch
2e0bbc9f59e4b4b54780c3e55db784c3d2c9a5bf
1.7
#!/usr/bin/env python3 import torch from ..utils.broadcasting import _pad_with_singletons from ..utils.getitem import _equal_indices, _noop_index from ..utils.memoize import cached from .lazy_tensor import LazyTensor from .matmul_lazy_tensor import MatmulLazyTensor from .non_lazy_tensor import NonLazyTensor, lazify class RootLazyTensor(LazyTensor): def __init__(self, root): root = lazify(root) super().__init__(root) self.root = root def _expand_batch(self, batch_shape): if len(batch_shape) == 0: return self return self.__class__(self.root._expand_batch(batch_shape)) def _get_indices(self, row_index, col_index, *batch_indices): row_index = row_index.unsqueeze(-1) col_index = col_index.unsqueeze(-1) batch_indices = tuple(batch_index.unsqueeze(-1) for batch_index in batch_indices) inner_index = torch.arange(0, self.root.size(-1), device=self.device) inner_index = _pad_with_singletons(inner_index, row_index.dim() - 1, 0) left_tensor = self.root._get_indices(row_index, inner_index, *batch_indices) if torch.equal(row_index, col_index): res = left_tensor.pow(2).sum(-1) else: right_tensor = self.root._get_indices(col_index, inner_index, *batch_indices) res = (left_tensor * right_tensor).sum(-1) return res def _getitem(self, row_index, col_index, *batch_indices): # Make sure we're not generating more memory with our "efficient" method if torch.is_tensor(row_index) and torch.is_tensor(col_index): num_indices = row_index.numel() if num_indices > self.matrix_shape.numel(): return lazify(self.evaluate())._getitem(row_index, col_index, *batch_indices) left_tensor = self.root._getitem(row_index, _noop_index, *batch_indices) if _equal_indices(row_index, col_index): res = self.__class__(left_tensor) else: right_tensor = self.root._getitem(col_index, _noop_index, *batch_indices) res = MatmulLazyTensor(left_tensor, right_tensor.transpose(-1, -2)) return res def _matmul(self, rhs): return self.root._matmul(self.root._t_matmul(rhs)) def _mul_constant(self, constant): if constant > 0: res = self.__class__(self.root._mul_constant(constant.sqrt())) else: res = super()._mul_constant(constant) return res def _t_matmul(self, rhs): # Matrix is symmetric return self._matmul(rhs) def root_decomposition(self): return self def _root_decomposition(self): return self.root def _root_decomposition_size(self): return self.root.size(-1) def _size(self): return torch.Size((*self.root.batch_shape, self.root.size(-2), self.root.size(-2))) def _transpose_nonbatch(self): return self def diag(self): if isinstance(self.root, NonLazyTensor): return (self.root.tensor ** 2).sum(-1) else: return super().diag() @cached def evaluate(self): eval_root = self.root.evaluate() return torch.matmul(eval_root, eval_root.transpose(-1, -2))
[ "torch.is_tensor", "torch.equal" ]
1.7
lrast/gpytorch
2e0bbc9f59e4b4b54780c3e55db784c3d2c9a5bf
1.3
#!/usr/bin/env python3 import math import warnings import torch from .. import settings from ..distributions import MultivariateNormal from ..lazy import ( BatchRepeatLazyTensor, CachedCGLazyTensor, CholLazyTensor, DiagLazyTensor, MatmulLazyTensor, PsdSumLazyTensor, RootLazyTensor, ) from ..module import Module from ..utils.memoize import cached from .unwhitened_variational_strategy import UnwhitenedVariationalStrategy # Remove after 1.0 class WhitenedVariationalStrategy(UnwhitenedVariationalStrategy): def __init__(self, model, inducing_points, variational_distribution, learn_inducing_locations=True): warnings.warn( "WhitenedVariationalStrategy is deprecated. Please use VariationalStrategy instead.", DeprecationWarning ) super().__init__(model, inducing_points, variational_distribution, learn_inducing_locations) @cached(name="logdet_memo") def prior_covar_logdet(self): return -self.prior_distribution.lazy_covariance_matrix.logdet() @cached(name="covar_trace_memo") def covar_trace(self): variational_covar = self.variational_distribution.covariance_matrix prior_covar = self.prior_distribution.covariance_matrix batch_shape = prior_covar.shape[:-2] return (variational_covar * prior_covar).view(*batch_shape, -1).sum(-1) @cached(name="mean_diff_inv_quad_memo") def mean_diff_inv_quad(self): prior_mean = self.prior_distribution.mean prior_covar = self.prior_distribution.lazy_covariance_matrix variational_mean = self.variational_distribution.mean return prior_covar.inv_quad(variational_mean - prior_mean) def kl_divergence(self): variational_dist_u = self.variational_distribution prior_dist = self.prior_distribution kl_divergence = 0.5 * sum( [ # log|k| - log|S| # = log|K| - log|K var_dist_covar K| # = -log|K| - log|var_dist_covar| self.prior_covar_logdet(), -variational_dist_u.lazy_covariance_matrix.logdet(), # tr(K^-1 S) = tr(K^1 K var_dist_covar K) = tr(K var_dist_covar) self.covar_trace(), # (m - \mu u)^T K^-1 (m - \mu u) # = (K^-1 (m - \mu u)) K (K^1 (m - \mu u)) # = (var_dist_mean)^T K (var_dist_mean) self.mean_diff_inv_quad(), # d -prior_dist.event_shape.numel(), ] ) return kl_divergence def initialize_variational_dist(self): prior_dist = self.prior_distribution inv_prior_dist = torch.distributions.MultivariateNormal( prior_dist.mean, prior_dist.lazy_covariance_matrix.add_jitter() .evaluate() .double() .inverse() .type_as(prior_dist.covariance_matrix), ) self.variational_distribution.initialize_variational_distribution(inv_prior_dist) def forward(self, x): r""" The :func:`~gpytorch.variational.VariationalStrategy.forward` method determines how to marginalize out the inducing point function values. Specifically, forward defines how to transform a variational distribution over the inducing point values, :math:`q(u)`, in to a variational distribution over the function values at specified locations x, :math:`q(f|x)`, by integrating :math:`\int p(f|x, u)q(u)du` :param torch.Tensor x: Locations x to get the variational posterior of the function values at. :rtype: ~gpytorch.distributions.MultivariateNormal :return: The distribution :math:`q(f|x)` """ variational_dist = self.variational_distribution inducing_points = self.inducing_points if inducing_points.dim() < x.dim(): inducing_points = inducing_points.expand(*x.shape[:-2], *inducing_points.shape[-2:]) if len(variational_dist.batch_shape) < x.dim() - 2: variational_dist = variational_dist.expand(x.shape[:-2]) # If our points equal the inducing points, we're done if torch.equal(x, inducing_points): # De-whiten the prior covar prior_covar = self.prior_distribution.lazy_covariance_matrix if isinstance(variational_dist.lazy_covariance_matrix, RootLazyTensor): predictive_covar = RootLazyTensor(prior_covar @ variational_dist.lazy_covariance_matrix.root.evaluate()) else: predictive_covar = MatmulLazyTensor(prior_covar @ variational_dist.covariance_matrix, prior_covar) # Cache some values for the KL divergence if self.training: self._mean_diff_inv_quad_memo, self._logdet_memo = prior_covar.inv_quad_logdet( (variational_dist.mean - self.prior_distribution.mean), logdet=True ) return MultivariateNormal(variational_dist.mean, predictive_covar) # Otherwise, we have to marginalize else: num_induc = inducing_points.size(-2) full_inputs = torch.cat([inducing_points, x], dim=-2) full_output = self.model.forward(full_inputs) full_mean, full_covar = full_output.mean, full_output.lazy_covariance_matrix # Mean terms test_mean = full_mean[..., num_induc:] induc_mean = full_mean[..., :num_induc] mean_diff = (variational_dist.mean - induc_mean).unsqueeze(-1) # Covariance terms induc_induc_covar = full_covar[..., :num_induc, :num_induc].add_jitter() induc_data_covar = full_covar[..., :num_induc, num_induc:].evaluate() data_data_covar = full_covar[..., num_induc:, num_induc:] # If we're less than a certain size, we'll compute the Cholesky decomposition of induc_induc_covar cholesky = False if settings.fast_computations.log_prob.off() or (num_induc <= settings.max_cholesky_size.value()): induc_induc_covar = CholLazyTensor(induc_induc_covar.cholesky()) cholesky = True # Cache the CG results # Do not use preconditioning for whitened VI, as it does not seem to improve performance. with settings.max_preconditioner_size(0): with torch.no_grad(): eager_rhs = torch.cat([induc_data_covar, mean_diff], -1) solve, probe_vecs, probe_vec_norms, probe_vec_solves, tmats = CachedCGLazyTensor.precompute_terms( induc_induc_covar, eager_rhs.detach(), logdet_terms=(not cholesky), include_tmats=(not settings.skip_logdet_forward.on() and not cholesky), ) eager_rhss = [eager_rhs.detach()] solves = [solve.detach()] if settings.skip_logdet_forward.on() and self.training: eager_rhss.append(torch.cat([probe_vecs, eager_rhs], -1)) solves.append(torch.cat([probe_vec_solves, solve[..., : eager_rhs.size(-1)]], -1)) elif not self.training: eager_rhss.append(eager_rhs[..., :-1]) solves.append(solve[..., :-1]) induc_induc_covar = CachedCGLazyTensor( induc_induc_covar, eager_rhss=eager_rhss, solves=solves, probe_vectors=probe_vecs, probe_vector_norms=probe_vec_norms, probe_vector_solves=probe_vec_solves, probe_vector_tmats=tmats, ) # Compute some terms that will be necessary for the predicitve covariance and KL divergence if self.training: interp_data_data_var_plus_mean_diff_inv_quad, logdet = induc_induc_covar.inv_quad_logdet( torch.cat([induc_data_covar, mean_diff], -1), logdet=True, reduce_inv_quad=False ) interp_data_data_var = interp_data_data_var_plus_mean_diff_inv_quad[..., :-1] mean_diff_inv_quad = interp_data_data_var_plus_mean_diff_inv_quad[..., -1] # Compute predictive mean predictive_mean = torch.add( test_mean, induc_induc_covar.inv_matmul(mean_diff, left_tensor=induc_data_covar.transpose(-1, -2)).squeeze(-1), ) # Compute the predictive covariance is_root_lt = isinstance(variational_dist.lazy_covariance_matrix, RootLazyTensor) is_repeated_root_lt = isinstance( variational_dist.lazy_covariance_matrix, BatchRepeatLazyTensor ) and isinstance(variational_dist.lazy_covariance_matrix.base_lazy_tensor, RootLazyTensor) if is_root_lt: predictive_covar = RootLazyTensor( induc_data_covar.transpose(-1, -2) @ variational_dist.lazy_covariance_matrix.root.evaluate() ) elif is_repeated_root_lt: predictive_covar = RootLazyTensor( induc_data_covar.transpose(-1, -2) @ variational_dist.lazy_covariance_matrix.root_decomposition().root.evaluate() ) else: predictive_covar = MatmulLazyTensor( induc_data_covar.transpose(-1, -2), predictive_covar @ induc_data_covar ) if self.training: data_covariance = DiagLazyTensor((data_data_covar.diag() - interp_data_data_var).clamp(0, math.inf)) else: neg_induc_data_data_covar = torch.matmul( induc_data_covar.transpose(-1, -2).mul(-1), induc_induc_covar.inv_matmul(induc_data_covar) ) data_covariance = data_data_covar + neg_induc_data_data_covar predictive_covar = PsdSumLazyTensor(predictive_covar, data_covariance) # Save the logdet, mean_diff_inv_quad, prior distribution for the ELBO if self.training: self._memoize_cache["prior_distribution_memo"] = MultivariateNormal(induc_mean, induc_induc_covar) self._memoize_cache["logdet_memo"] = -logdet self._memoize_cache["mean_diff_inv_quad_memo"] = mean_diff_inv_quad return MultivariateNormal(predictive_mean, predictive_covar) def __call__(self, x, prior=False): # If we're in prior mode, then we're done! if prior: return self.model.forward(x) # Delete previously cached items from the training distribution if self.training: if hasattr(self, "_memoize_cache"): delattr(self, "_memoize_cache") self._memoize_cache = dict() # (Maybe) initialize variational distribution if not self.variational_params_initialized.item(): prior_dist = self.prior_distribution self._variational_distribution.initialize_variational_distribution(prior_dist) self.variational_params_initialized.fill_(1) return Module.__call__(self, x)
[ "torch.cat", "torch.equal", "torch.no_grad" ]
1.3
Xiao-dong-Wang/gpytorch
92e07cf4dae26083fe0aed926e1dfd483443924e
1.9
"""Structural Regularization for """ from torch.nn.parameter import Parameter from allennlp.common import Registrable from allennlp.data.vocabulary import Vocabulary from pathlib import Path from networkx.exception import NetworkXException from typing import List, Tuple, Union, Dict, Any, Optional import torch import networkx as nx import logging from box_mlc.dataset_readers.hierarchy_readers.hierarchy_reader import ( HierarchyReader, ) logger = logging.getLogger(__name__) class HierarchyRegularizer(torch.nn.Module, Registrable): """Base class to satisfy Registrable and to define the common hierarchy initializations""" def __init__( self, alpha: float, hierarchy_reader: HierarchyReader, debug_level: int = 0, ) -> None: """ Args: alpha: The regularization parameter that is multiplied with the hierarchy struct loss. hierarchy_reader: Creates the adjacency_matrix and the mask debug_level: scale of 0 to 3. 0 meaning no-debug (fastest) and 3 highest debugging possible (slowest). Returns: (None) """ super().__init__() # type:ignore self.alpha = alpha self.debug_level = debug_level self.adjacency_matrix = Parameter( hierarchy_reader.adjacency_matrix, requires_grad=False ) #: Adj(i,j) =1 => if j is true, i is true. # self.mask = Parameter(self.initialize_mask(), requires_grad=False) #type: torch.Tensor self.mask: torch.BoolTensor = ( # pylint: disable hierarchy_reader.mask # type:ignore ) # noqa def to(self, *args, **kwargs): # type: ignore # noqa """Deligates to `torch.nn.Module.to`. Additionally moves `self.mask` to the correct device. This is needed because we depend on to() to move the all tensors and params to appropriate device. Args: args: same as super class kwargs: same as super class """ super().to(*args, **kwargs) ( device, dtype, non_blocking, convert_to_format, ) = torch._C._nn._parse_to(*args, **kwargs) self.mask.to(device=device) def get_active_adjacency_matrix_and_mask( self, active_mask: torch.BoolTensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: active_mask: 1D Boolean Tensor of shape (adj.shape[0],) indicating which rows and columns to take. Returns: torch.Tensor: masked adj matrix torch.Tensor: masked mask """ assert len(active_mask.shape) == 1 assert active_mask.shape[0] == self.adjacency_matrix.shape[0] num_active = torch.sum(active_mask) active_mask_float = active_mask.to(dtype=torch.float) active_mask_matrix = torch.ger( active_mask_float, active_mask_float ).to(dtype=torch.bool) return (self.adjacency_matrix[active_mask_matrix]).reshape( num_active, num_active ), (self.mask[active_mask_matrix]).reshape(num_active, num_active)
[ "torch.ger", "torch._C._nn._parse_to", "torch.nn.parameter.Parameter", "torch.sum" ]
1.9.0
iesl/box-mlc
15439b7e46885458d0c45d530c17f1deac0398f8
1.2
import torch from src.solver import BaseSolver from src.asr import ASR from src.optim import Optimizer from src.data import load_dataset from src.util import human_format, cal_er, feat_to_fig class Solver(BaseSolver): ''' Solver for training''' def __init__(self, config, paras, mode): super().__init__(config, paras, mode) # Logger settings self.best_wer = {'att': 3.0, 'ctc': 3.0} # Curriculum learning affects data loader self.curriculum = self.config['hparas']['curriculum'] def fetch_data(self, data): ''' Move data to device and compute text seq. length''' _, feat, feat_len, txt = data feat = feat.to(self.device) feat_len = feat_len.to(self.device) txt = txt.to(self.device) txt_len = torch.sum(txt != 0, dim=-1) return feat, feat_len, txt, txt_len def load_data(self): ''' Load data for training/validation, store tokenizer and input/output shape''' self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, self.curriculum > 0, **self.config['data']) self.verbose(msg) def set_model(self): ''' Setup ASR model and optimizer ''' # Model init_adadelta = self.config['hparas']['optimizer'] == 'Adadelta' self.model = ASR(self.feat_dim, self.vocab_size, init_adadelta, ** self.config['model']).to(self.device) self.verbose(self.model.create_msg()) model_paras = [{'params': self.model.parameters()}] # Losses self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0) # Note: zero_infinity=False is unstable? self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=False) # Plug-ins self.emb_fuse = False self.emb_reg = ('emb' in self.config) and ( self.config['emb']['enable']) if self.emb_reg: from src.plugin import EmbeddingRegularizer self.emb_decoder = EmbeddingRegularizer( self.tokenizer, self.model.dec_dim, **self.config['emb']).to(self.device) model_paras.append({'params': self.emb_decoder.parameters()}) self.emb_fuse = self.emb_decoder.apply_fuse if self.emb_fuse: self.seq_loss = torch.nn.NLLLoss(ignore_index=0) self.verbose(self.emb_decoder.create_msg()) # Optimizer self.optimizer = Optimizer(model_paras, **self.config['hparas']) self.verbose(self.optimizer.create_msg()) # Enable AMP if needed self.enable_apex() # Automatically load pre-trained model if self.paras.load is given self.load_ckpt() # ToDo: other training methods def exec(self): ''' Training End-to-end ASR system ''' self.verbose('Total training steps {}.'.format( human_format(self.max_step))) ctc_loss, att_loss, emb_loss = None, None, None n_epochs = 0 self.timer.set() while self.step < self.max_step: # Renew dataloader to enable random sampling if self.curriculum > 0 and n_epochs == self.curriculum: self.verbose( 'Curriculum learning ends after {} epochs, starting random sampling.'.format(n_epochs)) self.tr_set, _, _, _, _, _ = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, False, **self.config['data']) for data in self.tr_set: # Pre-step : update tf_rate/lr_rate and do zero_grad tf_rate = self.optimizer.pre_step(self.step) total_loss = 0 # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data) self.timer.cnt('rd') # Forward model # Note: txt should NOT start w/ <sos> ctc_output, encode_len, att_output, att_align, dec_state = \ self.model(feat, feat_len, max(txt_len), tf_rate=tf_rate, teacher=txt, get_dec_state=self.emb_reg) # Plugins if self.emb_reg: emb_loss, fuse_output = self.emb_decoder( dec_state, att_output, label=txt) total_loss += self.emb_decoder.weight*emb_loss # Compute all objectives if ctc_output is not None: if self.paras.cudnn_ctc: ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1), txt.to_sparse().values().to(device='cpu', dtype=torch.int32), [ctc_output.shape[1]] * len(ctc_output), txt_len.cpu().tolist()) else: ctc_loss = self.ctc_loss(ctc_output.transpose( 0, 1), txt, encode_len, txt_len) total_loss += ctc_loss*self.model.ctc_weight if att_output is not None: b, t, _ = att_output.shape att_output = fuse_output if self.emb_fuse else att_output att_loss = self.seq_loss( att_output.contiguous().view(b*t, -1), txt.contiguous().view(-1)) total_loss += att_loss*(1-self.model.ctc_weight) self.timer.cnt('fw') # Backprop grad_norm = self.backward(total_loss) self.step += 1 # Logger if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0): self.progress('Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}' .format(total_loss.cpu().item(), grad_norm, self.timer.show())) self.write_log( 'loss', {'tr_ctc': ctc_loss, 'tr_att': att_loss}) self.write_log('emb_loss', {'tr': emb_loss}) self.write_log('wer', {'tr_att': cal_er(self.tokenizer, att_output, txt), 'tr_ctc': cal_er(self.tokenizer, ctc_output, txt, ctc=True)}) if self.emb_fuse: if self.emb_decoder.fuse_learnable: self.write_log('fuse_lambda', { 'emb': self.emb_decoder.get_weight()}) self.write_log( 'fuse_temp', {'temp': self.emb_decoder.get_temp()}) # Validation if (self.step == 1) or (self.step % self.valid_step == 0): self.validate() # End of step # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354 torch.cuda.empty_cache() self.timer.set() if self.step > self.max_step: break n_epochs += 1 self.log.close() def validate(self): # Eval mode self.model.eval() if self.emb_decoder is not None: self.emb_decoder.eval() dev_wer = {'att': [], 'ctc': []} for i, data in enumerate(self.dv_set): self.progress('Valid step - {}/{}'.format(i+1, len(self.dv_set))) # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data) # Forward model with torch.no_grad(): ctc_output, encode_len, att_output, att_align, dec_state = \ self.model(feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO), emb_decoder=self.emb_decoder) dev_wer['att'].append(cal_er(self.tokenizer, att_output, txt)) dev_wer['ctc'].append(cal_er(self.tokenizer, ctc_output, txt, ctc=True)) # Show some example on tensorboard if i == len(self.dv_set)//2: for i in range(min(len(txt), self.DEV_N_EXAMPLE)): if self.step == 1: self.write_log('true_text{}'.format( i), self.tokenizer.decode(txt[i].tolist())) if att_output is not None: self.write_log('att_align{}'.format(i), feat_to_fig( att_align[i, 0, :, :].cpu().detach())) self.write_log('att_text{}'.format(i), self.tokenizer.decode( att_output[i].argmax(dim=-1).tolist())) if ctc_output is not None: self.write_log('ctc_text{}'.format(i), self.tokenizer.decode(ctc_output[i].argmax(dim=-1).tolist(), ignore_repeat=True)) # Ckpt if performance improves for task in ['att', 'ctc']: dev_wer[task] = sum(dev_wer[task])/len(dev_wer[task]) if dev_wer[task] < self.best_wer[task]: self.best_wer[task] = dev_wer[task] self.save_checkpoint('best_{}.pth'.format(task), 'wer', dev_wer[task]) self.write_log('wer', {'dv_'+task: dev_wer[task]}) self.save_checkpoint('latest.pth', 'wer', dev_wer['att'], show_msg=False) # Resume training self.model.train() if self.emb_decoder is not None: self.emb_decoder.train()
[ "torch.nn.NLLLoss", "torch.no_grad", "torch.nn.CTCLoss", "torch.cuda.empty_cache", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.2.0
voidism/End-to-end-ASR-Pytorch
509c389fa6ab98c30e227c6f4c8f7474adbc1bb2
1.10
# an implementation of PPO algorithm # reference to: https://github.com/nikhilbarhate99/PPO-PyTorch import torch import torch.nn as nn from torch.optim import Adam, RMSprop from torch.distributions import Categorical from torch.utils.tensorboard.writer import SummaryWriter from torch.utils.data import BatchSampler, RandomSampler from typing import Tuple # this class implements an actor critic model with linear networks class ActorCritic(nn.Module): def __init__(self, state_dimension, action_dimension): super().__init__() # save dimensions self.d_state = state_dimension self.d_action = action_dimension # create actor network self.actor = nn.Sequential( nn.Linear(self.d_state, 1024), nn.LeakyReLU(), nn.Linear(1024, 512), nn.LeakyReLU(), nn.Linear(512, 256), nn.LeakyReLU(), nn.Linear(256, 128), nn.LeakyReLU(), nn.Linear(128, self.d_action), nn.Softmax(dim=1) ) # create critic network self.critic = nn.Sequential( nn.Linear(self.d_state, 1024), nn.LeakyReLU(), nn.Linear(1024, 512), nn.LeakyReLU(), nn.Linear(512, 256), nn.LeakyReLU(), nn.Linear(256, 128), nn.LeakyReLU(), nn.Linear(128, 64), nn.LeakyReLU(), nn.Linear(64, 1) ) def forward(self, x): """ Empty forward function """ return x def action(self, state) -> Tuple[torch.Tensor, torch.Tensor]: """ Get action and log probs """ # get probabilities of actions probs = self.actor(state) dist = Categorical(probs=probs) # sample an action action = dist.sample() logprob = dist.log_prob(action) return action.detach(), logprob.detach() def evaluate(self, state, action) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Evaluates an action """ # get probabilities of actions probs = self.actor(state) dist = Categorical(probs=probs) # get distribution entropy and log probs of chosen action entropy = dist.entropy() logprob = dist.log_prob(action).diagonal().view(action.shape) # get critic value critics = self.critic(state) return entropy, logprob, critics # this structure stores buffer info for PPO class PPOBuffer: def __init__(self): self.actions = [] self.states = [] self.logprobs = [] self.rewards = [] self.is_terminals = [] def reset(self): del self.actions[:] del self.states[:] del self.logprobs[:] del self.rewards[:] del self.is_terminals[:] self.actions = [] self.states = [] self.logprobs = [] self.rewards = [] self.is_terminals = [] def isEmpty(self): return len(self.actions) <= 0 # this class implements PPO model # with actor and critic updated individually class PPO(object): def __init__(self, state_dimension, action_dimension, lr_actor, lr_critic, num_epochs, discount, eps_clip, batch_size, max_grad_norm, train ): self.discount = discount self.num_epochs = num_epochs self.eps_clip = eps_clip self.lr_actor = lr_actor self.lr_critic = lr_critic self.batch_size = batch_size self.max_grad_norm = max_grad_norm self.training = train self.iter_count = 0 # create buffer self.buffer = PPOBuffer() # select running environment for train self.device = "cuda" if torch.cuda.is_available() else "cpu" # create actor critic model self.AC = ActorCritic(state_dimension, action_dimension).to(self.device) # set optimizer self.optim_actor = Adam(self.AC.actor.parameters(), lr_actor) self.optim_critic = Adam(self.AC.critic.parameters(), lr_critic) # set saved model self.AC_saved = ActorCritic(state_dimension, action_dimension).to(self.device) self.AC_saved.load_state_dict(self.AC.state_dict()) self.AC_saved.eval() # set loss function self.loss = nn.MSELoss() def action(self, state): """ Choose next action """ with torch.no_grad(): # get new action from actor state = torch.FloatTensor(state).to(self.device) action, logprob = self.AC_saved.action(state) # store into buffer if self.training: self.buffer.states.append(state) self.buffer.actions.append(action) self.buffer.logprobs.append(logprob) return action.cpu().item() def save(self, filename): """ Save current network to file path """ torch.save(( self.AC_saved.state_dict(), self.optim_actor.state_dict(), self.optim_critic.state_dict(), ), filename) def load(self, filename): """ Load network from file path """ states, opt1, opt2 = torch.load(filename, map_location=lambda storage, _: storage) self.AC.load_state_dict(states) self.AC_saved.load_state_dict(states) self.optim_actor.load_state_dict(opt1) self.optim_critic.load_state_dict(opt2) def train(self, writer : SummaryWriter): """ Update policy """ if not self.training: return if self.buffer.isEmpty(): return rewards = [] reward_disc = 0.0 for reward, is_terminal in zip(reversed(self.buffer.rewards), reversed(self.buffer.is_terminals)): # if is terminal state, set reward to 0 if is_terminal: reward_disc = 0.0 reward_disc = reward + (self.discount * reward_disc) rewards.insert(0, reward_disc) length = len(rewards) # normalize the rewards target_values = torch.FloatTensor(rewards) target_values = (target_values - target_values.mean()) / (target_values.std() + 1e-8) target_values = target_values.view(-1, 1) # convert list to tensor old_states = torch.squeeze(torch.stack(self.buffer.states[:length], dim=0)).detach() old_actions = torch.squeeze(torch.stack(self.buffer.actions[:length], dim=0)).view(-1, 1).detach() old_logprobs = torch.squeeze(torch.stack(self.buffer.logprobs[:length], dim=0)).view(-1, 1).detach() # start training self.AC.train() torch.cuda.empty_cache() for _ in range(self.num_epochs): for indices in BatchSampler(RandomSampler(range(length)), batch_size=self.batch_size, drop_last=False): target_values_gpu = target_values[indices].to(self.device) old_states_gpu = old_states[indices].to(self.device) old_actions_gpu = old_actions[indices].to(self.device) old_logprobs_gpu = old_logprobs[indices].to(self.device) # get critics _, logprob, state_values = self.AC.evaluate(old_states_gpu, old_actions_gpu) # state_values = torch.squeeze(critics) # compute advantages advantages = (target_values_gpu - state_values).detach() # find the ratio (pi_theta / pi_theta__old) ratios = torch.exp((logprob - old_logprobs_gpu)) # find Surrogate Loss (Clipped Surrogate Objective) surr1 = ratios * advantages surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages # compute actor loss loss_actor = -torch.min(surr1, surr2).mean() # optimize actor self.optim_actor.zero_grad() loss_actor.backward() torch.nn.utils.clip_grad.clip_grad_norm_(self.AC.actor.parameters(), max_norm=self.max_grad_norm) self.optim_actor.step() # compute critic loss loss_critic = self.loss(state_values, target_values_gpu).mean() self.optim_critic.zero_grad() loss_critic.backward() torch.nn.utils.clip_grad.clip_grad_norm_(self.AC.critic.parameters(), max_norm=self.max_grad_norm) self.optim_critic.step() # log in tensorboard writer.add_scalar("PPO/Loss Actor", loss_actor.cpu().detach().item(), self.iter_count) writer.add_scalar("PPO/Loss Critic", loss_critic.cpu().detach().item(), self.iter_count) writer.add_scalar("PPO/Advantage", advantages.cpu().detach().mean().item(), self.iter_count) self.iter_count += 1 self.AC.eval() # save weights after training self.AC_saved.load_state_dict(self.AC.state_dict()) self.AC_saved.eval() # clear buffer self.buffer.reset() def update(self, reward, is_terminal): """ Update buffer """ if not self.training: return self.buffer.rewards.append(reward) self.buffer.is_terminals.append(is_terminal)
[ "torch.nn.Linear", "torch.distributions.Categorical", "torch.stack", "torch.nn.MSELoss", "torch.nn.Softmax", "torch.min", "torch.FloatTensor", "torch.nn.LeakyReLU", "torch.no_grad", "torch.clamp", "torch.cuda.empty_cache", "torch.cuda.is_available", "torch.load", "torch.exp" ]
1.10
fightZero/fightZero
84c2f76c7dda31837d002e47cd74936044251079
1.1
import argparse import pickle import torch import os import numpy as np from src.models.api import EvaluationModel, NegSampleGenerator from torch import nn class Namespace: def __init__(self, **kwargs): self.__dict__.update(kwargs) class DistMult: def get_score(self, head: torch.tensor, relation: torch.tensor, tail: torch.tensor, mode: str) -> torch.tensor: """ Computes Scores for head, relation, tail triples with DistMult model :param head: torch.tensor, dtype: int, shape: (batch_size, sample_size, entity_dim) :param relation: torch.tensor, dtype: int, shape: (batch_size, sample_size, relation_dim) :param tail: torch.tensor, dtype: int, shape: (batch_size, sample_size, entity_dim) :param mode: str ('single', 'head-batch' or 'head-tail') :return: torch.tensor, dtype: float, shape: (batch_size, num_entities) """ if mode == 'head-batch': score = head * (relation * tail) else: score = (head * relation) * tail score = score.sum(dim=2) return score def parse_args(args=None): parser = argparse.ArgumentParser( description='Load trained model and use it for predictions' ) parser.add_argument('-m', '--model', type=str, default=None) parser.add_argument('-d', '--data', type=str, default=None) parser.add_argument('-o', '--output_path', type=str, default=None) return parser.parse_args(args) def load_data(data_path): path_train = os.path.join(data_path, 'train.pickle') with open(path_train, 'rb') as handle: train = pickle.load(handle) path_valid = os.path.join(data_path, 'valid.pickle') with open(path_valid, 'rb') as handle: valid = pickle.load(handle) path_test = os.path.join(data_path, 'test.pickle') with open(path_test, 'rb') as handle: test = pickle.load(handle) return train, valid, test def main(args): """ Load trained model and use it for predictions. """ if args.model is None or args.data is None: raise ValueError('You have to specify model and data input paths.') # load data train_triples, valid_triples, test_triples = load_data(args.data) # create model and load already trained embeddings all_true_triples = np.concatenate([train_triples, valid_triples, test_triples], axis=0) neg_sample_generator = NegSampleGenerator(all_true_triples, create_filter_bias=True) model = EvaluationModel(model_class=DistMult(), neg_sample_generator=neg_sample_generator) path = os.path.join(args.model, 'entity_embedding.npy') new_entity_embedding = nn.Parameter(torch.from_numpy(np.load(path))) path = os.path.join(args.model, 'relation_embedding.npy') new_relation_embedding = nn.Parameter(torch.from_numpy(np.load(path))) # only True if embeddings of RotatE are used if new_entity_embedding.shape[1] != new_relation_embedding.shape[1]: stop = new_relation_embedding.shape[1] new_entity_embedding = new_entity_embedding[:, :stop] new_entity_embedding = nn.Parameter(new_entity_embedding) model.change_entity_embedding(new_entity_embedding.cuda()) model.change_relation_embedding(new_relation_embedding.cuda()) model.cuda() model.eval() # use API to evaluate model and generate model output for error analysis s = torch.tensor(test_triples[:, 0]).cuda() p = torch.tensor(test_triples[:, 1]).cuda() o = torch.tensor(test_triples[:, 2]).cuda() evaluation_result = model.evaluate(s, p, o, batch_size=4) if args.output_path is not None: model.generate_model_output(output_path=args.output_path, test_triples=test_triples, evaluation_result=evaluation_result) if __name__ == '__main__': main(parse_args())
[ "torch.tensor", "torch.nn.Parameter" ]
1.1.0
wang-yuhao/Practical-Big-Data-Science-ADL-AI
0bf63bf210f506e287f8492e716bb3394137d74b
1.1
# coding=utf-8 import torch from torch import nn import numpy as np from src.models.api import AbstractModel, evaluate class DistMult(AbstractModel): def __init__( self, num_entities: int, num_relations: int, embedding_dim: int, ): super(DistMult, self).__init__( num_entities=num_entities, num_relations=num_relations ) self.entity_embedding = nn.Embedding( num_embeddings=num_entities, embedding_dim=embedding_dim ) self.relation_embedding = nn.Embedding( num_embeddings=num_relations, embedding_dim=embedding_dim ) def score_subjects( self, p: torch.tensor, o: torch.tensor, ) -> torch.tensor: p_emb = self.relation_embedding(p) o_emb = self.entity_embedding(o) all_emb = self.entity_embedding.weight.data return torch.sum( all_emb * p_emb[None, :] * o_emb[None, :], dim=-1 ) def score_objects( self, s: torch.tensor, p: torch.tensor, ) -> torch.tensor: s_emb = self.entity_embedding(s) p_emb = self.relation_embedding(p) all_emb = self.entity_embedding.weight.data return torch.sum( s_emb[None, :] * p_emb[None, :] * all_emb, dim=-1 ) def forward(self, *inputs): raise Exception("Not implemented") if __name__ == '__main__': model = DistMult(num_entities=128, num_relations=16, embedding_dim=64) n_triples = 256 device = torch.device('cpu') sbjs = np.random.randint( model.num_entities, size=(n_triples,), dtype=np.int32 ) pred = np.random.randint( model.num_relation, size=(n_triples,), dtype=np.int32 ) objs = np.random.randint( model.num_entities, size=(n_triples,), dtype=np.int32 ) fake_triples = np.stack([sbjs, pred, objs], axis=-1) results = evaluate(triples=fake_triples, model=model, device=device) print(results)
[ "torch.device", "torch.nn.Embedding", "torch.sum" ]
1.1.0
wang-yuhao/Practical-Big-Data-Science-ADL-AI
0bf63bf210f506e287f8492e716bb3394137d74b
1.6
import time import torch from tqdm import tqdm import pytorch_warmup as warmup import numpy as np import random import cv2 from lanedet.models.registry import build_net from .registry import build_trainer, build_evaluator from .optimizer import build_optimizer from .scheduler import build_scheduler from lanedet.datasets import build_dataloader from lanedet.utils.recorder import build_recorder from lanedet.utils.net_utils import save_model, load_network class Runner(object): def __init__(self, cfg): torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) random.seed(cfg.seed) self.cfg = cfg self.recorder = build_recorder(self.cfg) self.net = build_net(self.cfg) # self.net.to(torch.device('cuda')) self.net = torch.nn.parallel.DataParallel( self.net, device_ids = range(self.cfg.gpus)).cuda() self.recorder.logger.info('Network: \n' + str(self.net)) self.resume() self.optimizer = build_optimizer(self.cfg, self.net) self.scheduler = build_scheduler(self.cfg, self.optimizer) self.warmup_scheduler = None # TODO(zhengtu): remove this hard code if self.cfg.optimizer.type == 'SGD': self.warmup_scheduler = warmup.LinearWarmup( self.optimizer, warmup_period=5000) self.metric = 0. self.val_loader = None def resume(self): if not self.cfg.load_from and not self.cfg.finetune_from: return load_network(self.net, self.cfg.load_from, finetune_from=self.cfg.finetune_from, logger=self.recorder.logger) def to_cuda(self, batch): for k in batch: if k == 'meta': continue batch[k] = batch[k].cuda() return batch def train_epoch(self, epoch, train_loader): self.net.train() end = time.time() max_iter = len(train_loader) for i, data in enumerate(train_loader): if self.recorder.step >= self.cfg.total_iter: break date_time = time.time() - end self.recorder.step += 1 data = self.to_cuda(data) output = self.net(data) self.optimizer.zero_grad() loss = output['loss'] loss.backward() self.optimizer.step() self.scheduler.step() if self.warmup_scheduler: self.warmup_scheduler.dampen() batch_time = time.time() - end end = time.time() self.recorder.update_loss_stats(output['loss_stats']) self.recorder.batch_time.update(batch_time) self.recorder.data_time.update(date_time) if i % self.cfg.log_interval == 0 or i == max_iter - 1: lr = self.optimizer.param_groups[0]['lr'] self.recorder.lr = lr self.recorder.record('train') def train(self): self.recorder.logger.info('Build train loader...') train_loader = build_dataloader(self.cfg.dataset.train, self.cfg, is_train=True) self.recorder.logger.info('Start training...') for epoch in range(self.cfg.epochs): self.recorder.epoch = epoch self.train_epoch(epoch, train_loader) if (epoch + 1) % self.cfg.save_ep == 0 or epoch == self.cfg.epochs - 1: self.save_ckpt() if (epoch + 1) % self.cfg.eval_ep == 0 or epoch == self.cfg.epochs - 1: self.validate() if self.recorder.step >= self.cfg.total_iter: break def validate(self): if not self.val_loader: self.val_loader = build_dataloader(self.cfg.dataset.val, self.cfg, is_train=False) self.net.eval() predictions = [] for i, data in enumerate(tqdm(self.val_loader, desc=f'Validate')): data = self.to_cuda(data) with torch.no_grad(): output = self.net(data) predictions.extend(output) if self.cfg.view: self.val_loader.dataset.view(predictions, data['meta']) out = self.val_loader.dataset.evaluate(predictions, self.cfg.work_dir) self.recorder.logger.info(out) metric = out if metric > self.metric: self.metric = metric self.save_ckpt(is_best=True) self.recorder.logger.info('Best metric: ' + str(self.metric)) def save_ckpt(self, is_best=False): save_model(self.net, self.optimizer, self.scheduler, self.recorder, is_best)
[ "torch.manual_seed", "torch.no_grad" ]
1.6.0
zhangzhongshuai/lanedet
bff96fcbed122ac0f876d8e64ada7795ca34e4b6
1.4
"""Module for (demo) viewer.""" import os from dataclasses import dataclass from glob import glob from logging import getLogger from os.path import basename, join from typing import List, Optional, Tuple import cv2 import numpy as np import seaborn as sns import torch import torch.cuda import torchvision from hydra.utils import to_absolute_path from frcnn.labels import COCO91 from frcnn.models import FasterRCNN, fasterrcnn_resnet50_fpn __all__ = ["ImageViewer"] logger = getLogger(__name__) ColorType = Tuple[int, int, int] @dataclass class BasicConfig: gpu: bool conf: float display: bool weights: Optional[str] @dataclass class ImageConfig: root: str outputs: str @dataclass class Config: basic: BasicConfig image: ImageConfig @dataclass class FasterRCNNOutput: boxes: torch.Tensor labels: torch.Tensor scores: torch.Tensor class ImageViewer: COLORS: List[ColorType] = [ tuple(int(c * 255) for c in color) for color in sns.color_palette(n_colors=len(COCO91)) # type: ignore ] def __init__(self, cfg: Config): self._cfg = cfg self._model = self._load_model(cfg.basic.weights) self._paths = sorted(glob(join(to_absolute_path(cfg.image.root), "*"))) self._device = "cuda" if cfg.basic.gpu and torch.cuda.is_available() else "cpu" os.makedirs(cfg.image.outputs, exist_ok=True) @torch.no_grad() def run(self): self._model = self._model.to(self._device).eval() for i, path in enumerate(self._paths): image_bgr: np.ndarray = cv2.imread(path) image_rgb: np.ndarray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) image_tensor: torch.Tensor = torchvision.transforms.functional.to_tensor(image_rgb).to(self._device) # only the first element because input only one image output = FasterRCNNOutput(**self._model([image_tensor])[0]) boxes = output.boxes.cpu().numpy() labels = output.labels.cpu().numpy() scores = output.scores.cpu().numpy() logger.debug( f"[{i + 1}/{len(self._paths)}] Detect {len([s for s in scores if s >= self._cfg.basic.conf]):2d} " + f"objects in {path}", ) image_bgr = self._draw_results(image_bgr, boxes, labels, scores) if self._cfg.basic.display: cv2.imshow("", image_bgr) cv2.waitKey(1) cv2.imwrite(join(self._cfg.image.outputs, basename(path)), image_bgr) @staticmethod def _load_model(weights: Optional[str]) -> FasterRCNN: logger.debug(f"Load weights: {weights}") if weights is None: model = fasterrcnn_resnet50_fpn(pretrained=True) else: model = fasterrcnn_resnet50_fpn(pretrained=False) model = model.load_state_dict(torch.load(weights)) return model def _draw_results(self, image: np.ndarray, boxes: np.ndarray, labels: np.ndarray, scores: np.ndarray) -> np.ndarray: """Draw texts and rectangles to the image (BGR).""" for box, label, score in zip(boxes, labels, scores): if score < self._cfg.basic.conf: continue image = cv2.putText( image, COCO91[label], (round(box[0]), round(box[1])), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=self.COLORS[label], thickness=2, ) image = cv2.rectangle( image, (round(box[0]), round(box[1])), (round(box[2]), round(box[3])), color=self.COLORS[label], thickness=2, ) return image
[ "torch.no_grad", "torch.cuda.is_available", "torch.load" ]
1.4.0
skmatz/frcnn
eae9d42f964a5883f72dc294984c019b3c75e837
1.6
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities and types for defining networks, these depend on PyTorch. """ import re import warnings from collections import OrderedDict from contextlib import contextmanager from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Union import torch import torch.nn as nn from monai.utils.deprecate_utils import deprecated_arg from monai.utils.misc import ensure_tuple, set_determinism from monai.utils.module import pytorch_after __all__ = [ "one_hot", "slice_channels", "predict_segmentation", "normalize_transform", "to_norm_affine", "normal_init", "icnr_init", "pixelshuffle", "eval_mode", "train_mode", "copy_model_state", "convert_to_torchscript", ] def one_hot(labels: torch.Tensor, num_classes: int, dtype: torch.dtype = torch.float, dim: int = 1) -> torch.Tensor: """ For every value v in `labels`, the value in the output will be either 1 or 0. Each vector along the `dim`-th dimension has the "one-hot" format, i.e., it has a total length of `num_classes`, with a one and `num_class-1` zeros. Note that this will include the background label, thus a binary mask should be treated as having two classes. Args: labels: input tensor of integers to be converted into the 'one-hot' format. Internally `labels` will be converted into integers `labels.long()`. num_classes: number of output channels, the corresponding length of `labels[dim]` will be converted to `num_classes` from `1`. dtype: the data type of the output one_hot label. dim: the dimension to be converted to `num_classes` channels from `1` channel, should be non-negative number. Example: For a tensor `labels` of dimensions [B]1[spatial_dims], return a tensor of dimensions `[B]N[spatial_dims]` when `num_classes=N` number of classes and `dim=1`. .. code-block:: python from monai.networks.utils import one_hot import torch a = torch.randint(0, 2, size=(1, 2, 2, 2)) out = one_hot(a, num_classes=2, dim=0) print(out.shape) # torch.Size([2, 2, 2, 2]) a = torch.randint(0, 2, size=(2, 1, 2, 2, 2)) out = one_hot(a, num_classes=2, dim=1) print(out.shape) # torch.Size([2, 2, 2, 2, 2]) """ # if `dim` is bigger, add singleton dim at the end if labels.ndim < dim + 1: shape = list(labels.shape) + [1] * (dim + 1 - len(labels.shape)) labels = torch.reshape(labels, shape) sh = list(labels.shape) if sh[dim] != 1: raise AssertionError("labels should have a channel with length equal to one.") sh[dim] = num_classes o = torch.zeros(size=sh, dtype=dtype, device=labels.device) labels = o.scatter_(dim=dim, index=labels.long(), value=1) return labels def slice_channels(tensor: torch.Tensor, *slicevals: Optional[int]) -> torch.Tensor: slices = [slice(None)] * len(tensor.shape) slices[1] = slice(*slicevals) return tensor[slices] def predict_segmentation(logits: torch.Tensor, mutually_exclusive: bool = False, threshold: float = 0.0) -> Any: """ Given the logits from a network, computing the segmentation by thresholding all values above 0 if multi-labels task, computing the `argmax` along the channel axis if multi-classes task, logits has shape `BCHW[D]`. Args: logits: raw data of model output. mutually_exclusive: if True, `logits` will be converted into a binary matrix using a combination of argmax, which is suitable for multi-classes task. Defaults to False. threshold: thresholding the prediction values if multi-labels task. """ if not mutually_exclusive: return (logits >= threshold).int() if logits.shape[1] == 1: warnings.warn("single channel prediction, `mutually_exclusive=True` ignored, use threshold instead.") return (logits >= threshold).int() return logits.argmax(1, keepdim=True) def normalize_transform( shape: Sequence[int], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, align_corners: bool = False, ) -> torch.Tensor: """ Compute an affine matrix according to the input shape. The transform normalizes the homogeneous image coordinates to the range of `[-1, 1]`. Args: shape: input spatial shape device: device on which the returned affine will be allocated. dtype: data type of the returned affine align_corners: if True, consider -1 and 1 to refer to the centers of the corner pixels rather than the image corners. See also: https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample """ norm = torch.tensor(shape, dtype=torch.float64, device=device) # no in-place change if align_corners: norm[norm <= 1.0] = 2.0 norm = 2.0 / (norm - 1.0) norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device)))) norm[:-1, -1] = -1.0 else: norm[norm <= 0.0] = 2.0 norm = 2.0 / norm norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device)))) norm[:-1, -1] = 1.0 / torch.tensor(shape, dtype=torch.float64, device=device) - 1.0 norm = norm.unsqueeze(0).to(dtype=dtype) norm.requires_grad = False return norm def to_norm_affine( affine: torch.Tensor, src_size: Sequence[int], dst_size: Sequence[int], align_corners: bool = False ) -> torch.Tensor: """ Given ``affine`` defined for coordinates in the pixel space, compute the corresponding affine for the normalized coordinates. Args: affine: Nxdxd batched square matrix src_size: source image spatial shape dst_size: target image spatial shape align_corners: if True, consider -1 and 1 to refer to the centers of the corner pixels rather than the image corners. See also: https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample Raises: TypeError: When ``affine`` is not a ``torch.Tensor``. ValueError: When ``affine`` is not Nxdxd. ValueError: When ``src_size`` or ``dst_size`` dimensions differ from ``affine``. """ if not isinstance(affine, torch.Tensor): raise TypeError(f"affine must be a torch.Tensor but is {type(affine).__name__}.") if affine.ndimension() != 3 or affine.shape[1] != affine.shape[2]: raise ValueError(f"affine must be Nxdxd, got {tuple(affine.shape)}.") sr = affine.shape[1] - 1 if sr != len(src_size) or sr != len(dst_size): raise ValueError(f"affine suggests {sr}D, got src={len(src_size)}D, dst={len(dst_size)}D.") src_xform = normalize_transform(src_size, affine.device, affine.dtype, align_corners) dst_xform = normalize_transform(dst_size, affine.device, affine.dtype, align_corners) return src_xform @ affine @ torch.inverse(dst_xform) def normal_init( m, std: float = 0.02, normal_func: Callable[[torch.Tensor, float, float], Any] = torch.nn.init.normal_ ) -> None: """ Initialize the weight and bias tensors of `m' and its submodules to values from a normal distribution with a stddev of `std'. Weight tensors of convolution and linear modules are initialized with a mean of 0, batch norm modules with a mean of 1. The callable `normal_func', used to assign values, should have the same arguments as its default normal_(). This can be used with `nn.Module.apply` to visit submodules of a network. """ cname = m.__class__.__name__ if getattr(m, "weight", None) is not None and (cname.find("Conv") != -1 or cname.find("Linear") != -1): normal_func(m.weight.data, 0.0, std) if getattr(m, "bias", None) is not None: nn.init.constant_(m.bias.data, 0.0) elif cname.find("BatchNorm") != -1: normal_func(m.weight.data, 1.0, std) nn.init.constant_(m.bias.data, 0) def icnr_init(conv, upsample_factor, init=nn.init.kaiming_normal_): """ ICNR initialization for 2D/3D kernels adapted from Aitken et al.,2017 , "Checkerboard artifact free sub-pixel convolution". """ out_channels, in_channels, *dims = conv.weight.shape scale_factor = upsample_factor ** len(dims) oc2 = int(out_channels / scale_factor) kernel = torch.zeros([oc2, in_channels] + dims) kernel = init(kernel) kernel = kernel.transpose(0, 1) kernel = kernel.reshape(oc2, in_channels, -1) kernel = kernel.repeat(1, 1, scale_factor) kernel = kernel.reshape([in_channels, out_channels] + dims) kernel = kernel.transpose(0, 1) conv.weight.data.copy_(kernel) @deprecated_arg( name="dimensions", new_name="spatial_dims", since="0.6", msg_suffix="Please use `spatial_dims` instead." ) def pixelshuffle( x: torch.Tensor, spatial_dims: int, scale_factor: int, dimensions: Optional[int] = None ) -> torch.Tensor: """ Apply pixel shuffle to the tensor `x` with spatial dimensions `spatial_dims` and scaling factor `scale_factor`. See: Shi et al., 2016, "Real-Time Single Image and Video Super-Resolution Using a nEfficient Sub-Pixel Convolutional Neural Network." See: Aitken et al., 2017, "Checkerboard artifact free sub-pixel convolution". Args: x: Input tensor spatial_dims: number of spatial dimensions, typically 2 or 3 for 2D or 3D scale_factor: factor to rescale the spatial dimensions by, must be >=1 .. deprecated:: 0.6.0 ``dimensions`` is deprecated, use ``spatial_dims`` instead. Returns: Reshuffled version of `x`. Raises: ValueError: When input channels of `x` are not divisible by (scale_factor ** spatial_dims) """ if dimensions is not None: spatial_dims = dimensions dim, factor = spatial_dims, scale_factor input_size = list(x.size()) batch_size, channels = input_size[:2] scale_divisor = factor ** dim if channels % scale_divisor != 0: raise ValueError( f"Number of input channels ({channels}) must be evenly " f"divisible by scale_factor ** dimensions ({factor}**{dim}={scale_divisor})." ) org_channels = channels // scale_divisor output_size = [batch_size, org_channels] + [d * factor for d in input_size[2:]] indices = tuple(range(2, 2 + 2 * dim)) indices_factor, indices_dim = indices[:dim], indices[dim:] permute_indices = (0, 1) + sum(zip(indices_dim, indices_factor), ()) x = x.reshape(batch_size, org_channels, *([factor] * dim + input_size[2:])) x = x.permute(permute_indices).reshape(output_size) return x @contextmanager def eval_mode(*nets: nn.Module): """ Set network(s) to eval mode and then return to original state at the end. Args: nets: Input network(s) Examples .. code-block:: python t=torch.rand(1,1,16,16) p=torch.nn.Conv2d(1,1,3) print(p.training) # True with eval_mode(p): print(p.training) # False print(p(t).sum().backward()) # will correctly raise an exception as gradients are calculated """ # Get original state of network(s) training = [n for n in nets if n.training] try: # set to eval mode with torch.no_grad(): yield [n.eval() for n in nets] finally: # Return required networks to training for n in training: n.train() @contextmanager def train_mode(*nets: nn.Module): """ Set network(s) to train mode and then return to original state at the end. Args: nets: Input network(s) Examples .. code-block:: python t=torch.rand(1,1,16,16) p=torch.nn.Conv2d(1,1,3) p.eval() print(p.training) # False with train_mode(p): print(p.training) # True print(p(t).sum().backward()) # No exception """ # Get original state of network(s) eval_list = [n for n in nets if not n.training] try: # set to train mode with torch.set_grad_enabled(True): yield [n.train() for n in nets] finally: # Return required networks to eval_list for n in eval_list: n.eval() def copy_model_state( dst: Union[torch.nn.Module, Mapping], src: Union[torch.nn.Module, Mapping], dst_prefix="", mapping=None, exclude_vars=None, inplace=True, ): """ Compute a module state_dict, of which the keys are the same as `dst`. The values of `dst` are overwritten by the ones from `src` whenever their keys match. The method provides additional `dst_prefix` for the `dst` key when matching them. `mapping` can be a `{"src_key": "dst_key"}` dict, indicating `dst[dst_prefix + dst_key] = src[src_key]`. This function is mainly to return a model state dict for loading the `src` model state into the `dst` model, `src` and `dst` can have different dict keys, but their corresponding values normally have the same shape. Args: dst: a pytorch module or state dict to be updated. src: a pytorch module or state dist used to get the values used for the update. dst_prefix: `dst` key prefix, so that `dst[dst_prefix + src_key]` will be assigned to the value of `src[src_key]`. mapping: a `{"src_key": "dst_key"}` dict, indicating that `dst[dst_prefix + dst_key]` to be assigned to the value of `src[src_key]`. exclude_vars: a regular expression to match the `dst` variable names, so that their values are not overwritten by `src`. inplace: whether to set the `dst` module with the updated `state_dict` via `load_state_dict`. This option is only available when `dst` is a `torch.nn.Module`. Examples: .. code-block:: python from monai.networks.nets import BasicUNet from monai.networks.utils import copy_model_state model_a = BasicUNet(in_channels=1, out_channels=4) model_b = BasicUNet(in_channels=1, out_channels=2) model_a_b, changed, unchanged = copy_model_state( model_a, model_b, exclude_vars="conv_0.conv_0", inplace=False) # dst model updated: 76 of 82 variables. model_a.load_state_dict(model_a_b) # <All keys matched successfully> Returns: an OrderedDict of the updated `dst` state, the changed, and unchanged keys. """ if isinstance(src, (nn.DataParallel, nn.parallel.DistributedDataParallel)): src = src.module if isinstance(dst, (nn.DataParallel, nn.parallel.DistributedDataParallel)): dst = dst.module src_dict = src.state_dict() if isinstance(src, torch.nn.Module) else src dst_dict = dst.state_dict() if isinstance(dst, torch.nn.Module) else dst dst_dict = OrderedDict(dst_dict) to_skip = {s_key for s_key in src_dict if exclude_vars and re.compile(exclude_vars).search(s_key)} # update dst with items from src all_keys, updated_keys = list(dst_dict), list() for s, val in src_dict.items(): dst_key = f"{dst_prefix}{s}" if dst_key in dst_dict and dst_key not in to_skip and dst_dict[dst_key].shape == val.shape: dst_dict[dst_key] = val updated_keys.append(dst_key) for s in mapping if mapping else {}: dst_key = f"{dst_prefix}{mapping[s]}" if dst_key in dst_dict and dst_key not in to_skip: if dst_dict[dst_key].shape != src_dict[s].shape: warnings.warn(f"Param. shape changed from {dst_dict[dst_key].shape} to {src_dict[s].shape}.") dst_dict[dst_key] = src_dict[s] updated_keys.append(dst_key) updated_keys = sorted(set(updated_keys)) unchanged_keys = sorted(set(all_keys).difference(updated_keys)) print(f"'dst' model updated: {len(updated_keys)} of {len(dst_dict)} variables.") if inplace and isinstance(dst, torch.nn.Module): dst.load_state_dict(dst_dict) return dst_dict, updated_keys, unchanged_keys def convert_to_torchscript( model: nn.Module, filename_or_obj: Optional[Any] = None, extra_files: Optional[Dict] = None, verify: bool = False, inputs: Optional[Sequence[Any]] = None, device: Optional[torch.device] = None, rtol: float = 1e-4, atol: float = 0.0, **kwargs, ): """ Utility to convert a model into TorchScript model and save to file, with optional input / output data verification. Args: model: source PyTorch model to save. filename_or_obj: if not None, specify a file-like object (has to implement write and flush) or a string containing a file path name to save the TorchScript model. extra_files: map from filename to contents which will be stored as part of the save model file. works for PyTorch 1.7 or later. for more details: https://pytorch.org/docs/stable/generated/torch.jit.save.html. verify: whether to verify the input and output of TorchScript model. if `filename_or_obj` is not None, load the saved TorchScript model and verify. inputs: input test data to verify model, should be a sequence of data, every item maps to a argument of `model()` function. device: target device to verify the model, if None, use CUDA if available. rtol: the relative tolerance when comparing the outputs of PyTorch model and TorchScript model. atol: the absolute tolerance when comparing the outputs of PyTorch model and TorchScript model. kwargs: other arguments except `obj` for `torch.jit.script()` to convert model, for more details: https://pytorch.org/docs/master/generated/torch.jit.script.html. """ model.eval() with torch.no_grad(): script_module = torch.jit.script(model, **kwargs) if filename_or_obj is not None: if not pytorch_after(1, 7): torch.jit.save(m=script_module, f=filename_or_obj) else: torch.jit.save(m=script_module, f=filename_or_obj, _extra_files=extra_files) if verify: if device is None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if inputs is None: raise ValueError("missing input data for verification.") inputs = [i.to(device) if isinstance(i, torch.Tensor) else i for i in inputs] ts_model = torch.jit.load(filename_or_obj) if filename_or_obj is not None else script_module ts_model.eval().to(device) model = model.to(device) with torch.no_grad(): set_determinism(seed=0) torch_out = ensure_tuple(model(*inputs)) set_determinism(seed=0) torchscript_out = ensure_tuple(ts_model(*inputs)) set_determinism(seed=None) # compare TorchScript and PyTorch results for r1, r2 in zip(torch_out, torchscript_out): if isinstance(r1, torch.Tensor) or isinstance(r2, torch.Tensor): torch.testing.assert_allclose(r1, r2, rtol=rtol, atol=atol) return script_module
[ "torch.zeros", "torch.nn.init.constant_", "torch.no_grad", "torch.inverse", "torch.ones", "torch.jit.load", "torch.jit.save", "torch.tensor", "torch.testing.assert_allclose", "torch.cuda.is_available", "torch.jit.script", "torch.set_grad_enabled", "torch.reshape" ]
1.6
yiheng-wang-nv/MONAI
885d5b947aeafc1a9bee2899cfd48fff9036e68a
1.9
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for multiple choice. """ # You can also adapt this script on your own multiple choice task. Pointers for this are left as comments. import logging import os import sys from dataclasses import dataclass, field from typing import Optional, Union import datasets import numpy as np import torch import transformers from datasets import load_dataset from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, TrainingArguments, default_data_collator, set_seed, ) from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.fx import symbolic_trace import yaml from optimum.intel.neural_compressor import ( IncOptimizer, IncPruner, IncPruningConfig, IncQuantizationConfig, IncQuantizationMode, IncQuantizer, IncTrainer, ) from optimum.intel.neural_compressor.quantization import IncQuantizedModelForMultipleChoice from optimum.intel.neural_compressor.utils import CONFIG_NAME os.environ["CUDA_VISIBLE_DEVICES"] = "" # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.12.0") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class OptimizationArguments: """ Arguments pertaining to what type of optimization we are going to apply on the model. """ quantize: bool = field( default=False, metadata={"help": "Whether or not to apply quantization."}, ) quantization_approach: Optional[str] = field( default=None, metadata={"help": "Quantization approach. Supported approach are static, dynamic and aware_training."}, ) prune: bool = field( default=False, metadata={"help": "Whether or not to apply pruning."}, ) target_sparsity: Optional[float] = field( default=None, metadata={"help": "Targeted sparsity when pruning the model."}, ) quantization_config: Optional[str] = field( default=None, metadata={ "help": "Path to the directory containing the YAML configuration file used to control the quantization and " "tuning behavior." }, ) pruning_config: Optional[str] = field( default=None, metadata={ "help": "Path to the directory containing the YAML configuration file used to control the pruning behavior." }, ) tune_metric: str = field( default="eval_accuracy", metadata={"help": "Metric used for the tuning strategy."}, ) perf_tol: Optional[float] = field( default=None, metadata={"help": "Performance tolerance when optimizing the model."}, ) verify_loading: bool = field( default=False, metadata={"help": "Whether or not to verify the loading of the quantized model."}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) def __post_init__(self): if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class DataCollatorForMultipleChoice: """ Data collator that will dynamically pad the inputs for multiple choice received. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature.pop(label_name) for feature in features] batch_size = len(features) num_choices = len(features[0]["input_ids"]) flattened_features = [ [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features ] flattened_features = sum(flattened_features, []) batch = self.tokenizer.pad( flattened_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) # Un-flatten batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()} # Add back labels batch["labels"] = torch.tensor(labels, dtype=torch.int64) return batch def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, OptimizationArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args, optim_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args, optim_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) else: # Downloading and loading the swag dataset from the hub. raw_datasets = load_dataset("swag", "regular", cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. ending_names = [f"ending{i}" for i in range(4)] context_name = "sent1" question_header_name = "sent2" if data_args.max_seq_length is None: max_seq_length = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." ) max_seq_length = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Preprocessing the datasets. def preprocess_function(examples): first_sentences = [[context] * 4 for context in examples[context_name]] question_headers = examples[question_header_name] second_sentences = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) ] # Flatten out first_sentences = sum(first_sentences, []) second_sentences = sum(second_sentences, []) # Tokenize tokenized_examples = tokenizer( first_sentences, second_sentences, truncation=True, max_length=max_seq_length, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator data_collator = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) ) # Metric def compute_metrics(eval_predictions): predictions, label_ids = eval_predictions preds = np.argmax(predictions, axis=1) return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()} # Initialize our Trainer trainer = IncTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) eval_dataloader = trainer.get_eval_dataloader() it = iter(eval_dataloader) try: input_names = next(it).keys() except StopIteration: input_names = None logger.warning( "Unable to determine the names of the inputs of the model to trace, input_names is set to None and " "model.dummy_inputs().keys() will be used instead." ) resume_from_checkpoint = training_args.resume_from_checkpoint metric_name = optim_args.tune_metric def take_eval_steps(model, trainer, metric_name, save_metrics=False): trainer.model = model metrics = trainer.evaluate() if save_metrics: trainer.save_metrics("eval", metrics) logger.info("{}: {}".format(metric_name, metrics.get(metric_name))) logger.info("Throughput: {} samples/sec".format(metrics.get("eval_samples_per_second"))) return metrics.get(metric_name) def eval_func(model): return take_eval_steps(model, trainer, metric_name) def take_train_steps(model, trainer, resume_from_checkpoint, last_checkpoint): trainer.model_wrapped = model trainer.model = model checkpoint = None if resume_from_checkpoint is not None: checkpoint = resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(pruner, resume_from_checkpoint=checkpoint) metrics = train_result.metrics trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() def train_func(model): return take_train_steps(model, trainer, resume_from_checkpoint, last_checkpoint) quantizer = None pruner = None num_choices = len(eval_dataset[0]["input_ids"]) if not optim_args.quantize and not optim_args.prune: raise ValueError("quantize and prune are both set to False.") result_baseline_model = take_eval_steps(model, trainer, metric_name) default_config = os.path.join(os.path.abspath(os.path.join(__file__, os.path.pardir, os.path.pardir)), "config") if optim_args.quantize: if not training_args.do_eval: raise ValueError("do_eval must be set to True for quantization.") q8_config = IncQuantizationConfig.from_pretrained( optim_args.quantization_config if optim_args.quantization_config is not None else default_config, config_file_name="quantization.yml", cache_dir=model_args.cache_dir, ) # Set metric tolerance if specified if optim_args.perf_tol is not None: q8_config.set_tolerance(optim_args.perf_tol) # Set quantization approach if specified if optim_args.quantization_approach is not None: supported_approach = {"static", "dynamic", "aware_training"} if optim_args.quantization_approach not in supported_approach: raise ValueError( "Unknown quantization approach. Supported approach are " + ", ".join(supported_approach) ) quant_approach = getattr(IncQuantizationMode, optim_args.quantization_approach.upper()).value q8_config.set_config("quantization.approach", quant_approach) # torch FX used for post-training quantization and quantization aware training # dynamic quantization will be added when torch FX is more mature if q8_config.get_config("quantization.approach") != IncQuantizationMode.DYNAMIC.value: if not training_args.do_train: raise ValueError("do_train must be set to True for static and aware training quantization.") # TODO : Remove when dynamic axes support if ( not training_args.dataloader_drop_last and eval_dataset.shape[0] % training_args.per_device_eval_batch_size != 0 ): raise ValueError( "The number of samples of the dataset is not a multiple of the batch size." "Use --dataloader_drop_last to overcome." ) if not data_args.pad_to_max_length: raise ValueError( "All the samples must have the same sequence length, use --pad_to_max_length to overcome." ) q8_config.set_config("model.framework", "pytorch_fx") model.config.save_pretrained(training_args.output_dir) model = symbolic_trace( model, input_names=input_names, batch_size=training_args.per_device_eval_batch_size, sequence_length=max_seq_length, num_choices=num_choices, ) calib_dataloader = trainer.get_train_dataloader() inc_quantizer = IncQuantizer( model, q8_config, eval_func=eval_func, train_func=train_func, calib_dataloader=calib_dataloader ) quantizer = inc_quantizer.fit() if optim_args.prune: if not training_args.do_train: raise ValueError("do_train must be set to True for pruning.") pruning_config = IncPruningConfig.from_pretrained( optim_args.pruning_config if optim_args.pruning_config is not None else default_config, config_file_name="prune.yml", cache_dir=model_args.cache_dir, ) # Set targeted sparsity if specified if optim_args.target_sparsity is not None: pruning_config.set_config( "pruning.approach.weight_compression.target_sparsity", optim_args.target_sparsity ) pruning_start_epoch = pruning_config.get_config("pruning.approach.weight_compression.start_epoch") pruning_end_epoch = pruning_config.get_config("pruning.approach.weight_compression.end_epoch") if pruning_start_epoch > training_args.num_train_epochs - 1: logger.warning( f"Pruning end epoch {pruning_start_epoch} is higher than the total number of training epoch " f"{training_args.num_train_epochs}. No pruning will be applied." ) if pruning_end_epoch > training_args.num_train_epochs - 1: logger.warning( f"Pruning end epoch {pruning_end_epoch} is higher than the total number of training epoch " f"{training_args.num_train_epochs}. The target sparsity will not be reached." ) inc_pruner = IncPruner(model, pruning_config, eval_func=eval_func, train_func=train_func) # Creation Pruning object used for IncTrainer training loop pruner = inc_pruner.fit() inc_optimizer = IncOptimizer(model, quantizer=quantizer, pruner=pruner) opt_model = inc_optimizer.fit() _, sparsity = opt_model.report_sparsity() result_opt_model = take_eval_steps(opt_model.model, trainer, metric_name, save_metrics=True) trainer.save_model(training_args.output_dir) with open(os.path.join(training_args.output_dir, CONFIG_NAME), "w") as f: yaml.dump(opt_model.tune_cfg, f, default_flow_style=False) logger.info( f"Optimized model with final sparsity of {sparsity} and {metric_name} of {result_opt_model} saved to: " f"{training_args.output_dir}. Original model had an {metric_name} of {result_baseline_model}" ) if optim_args.quantize and optim_args.verify_loading: # Load the model obtained after Intel Neural Compressor (INC) quantization loaded_model = IncQuantizedModelForMultipleChoice.from_pretrained( training_args.output_dir, input_names=input_names, batch_size=training_args.per_device_eval_batch_size, sequence_length=max_seq_length, num_choices=num_choices, ) loaded_model.eval() result_loaded_model = take_eval_steps(loaded_model, trainer, metric_name) if result_loaded_model != result_opt_model: raise ValueError("The quantized model was not successfully loaded.") else: logger.info(f"The quantized model was successfully loaded.") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
[ "torch.tensor" ]
1.9
michaelbenayoun/optimum
21c5809577e2ef5687f293d31d1d3e28288e1bb7
1.3
""" Entry point for training and evaluating a dependency parser. This implementation combines a deep biaffine graph-based parser with linearization and distance features. For details please refer to paper: https://nlp.stanford.edu/pubs/qi2018universal.pdf. """ """ Training and evaluation for the parser. """ import sys import os import shutil import time from datetime import datetime import argparse import numpy as np import random import torch from torch import nn, optim from stanza.models.depparse.data import DataLoader from stanza.models.depparse.trainer import Trainer from stanza.models.depparse import scorer from stanza.models.common import utils from stanza.models.common.pretrain import Pretrain from stanza.models.common.doc import * from stanza.utils.conll import CoNLL from stanza.models import _training_logging def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='data/depparse', help='Root dir for saving models.') parser.add_argument('--wordvec_dir', type=str, default='extern_data/word2vec', help='Directory of word vectors.') parser.add_argument('--wordvec_file', type=str, default=None, help='Word vectors filename.') parser.add_argument('--train_file', type=str, default=None, help='Input file for data loader.') parser.add_argument('--eval_file', type=str, default=None, help='Input file for data loader.') parser.add_argument('--output_file', type=str, default=None, help='Output CoNLL-U file.') parser.add_argument('--gold_file', type=str, default=None, help='Output CoNLL-U file.') parser.add_argument('--mode', default='train', choices=['train', 'predict']) parser.add_argument('--lang', type=str, help='Language') parser.add_argument('--shorthand', type=str, help="Treebank shorthand") parser.add_argument('--hidden_dim', type=int, default=400) parser.add_argument('--char_hidden_dim', type=int, default=400) parser.add_argument('--deep_biaff_hidden_dim', type=int, default=400) parser.add_argument('--composite_deep_biaff_hidden_dim', type=int, default=100) parser.add_argument('--word_emb_dim', type=int, default=75) parser.add_argument('--char_emb_dim', type=int, default=100) parser.add_argument('--tag_emb_dim', type=int, default=50) parser.add_argument('--transformed_dim', type=int, default=125) parser.add_argument('--num_layers', type=int, default=3) parser.add_argument('--char_num_layers', type=int, default=1) parser.add_argument('--pretrain_max_vocab', type=int, default=250000) parser.add_argument('--word_dropout', type=float, default=0.33) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--rec_dropout', type=float, default=0, help="Recurrent dropout") parser.add_argument('--char_rec_dropout', type=float, default=0, help="Recurrent dropout") parser.add_argument('--no_char', dest='char', action='store_false', help="Turn off character model.") parser.add_argument('--no_pretrain', dest='pretrain', action='store_false', help="Turn off pretrained embeddings.") parser.add_argument('--no_linearization', dest='linearization', action='store_false', help="Turn off linearization term.") parser.add_argument('--no_distance', dest='distance', action='store_false', help="Turn off distance term.") parser.add_argument('--sample_train', type=float, default=1.0, help='Subsample training data.') parser.add_argument('--optim', type=str, default='adam', help='sgd, adagrad, adam or adamax.') parser.add_argument('--lr', type=float, default=3e-3, help='Learning rate') parser.add_argument('--beta2', type=float, default=0.95) parser.add_argument('--max_steps', type=int, default=50000) parser.add_argument('--eval_interval', type=int, default=100) parser.add_argument('--max_steps_before_stop', type=int, default=3000) parser.add_argument('--batch_size', type=int, default=5000) parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Gradient clipping.') parser.add_argument('--log_step', type=int, default=20, help='Print log every k steps.') parser.add_argument('--save_dir', type=str, default='saved_models/depparse', help='Root dir for saving models.') parser.add_argument('--save_name', type=str, default=None, help="File name to save the model") parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available()) parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.') args = parser.parse_args() return args def main(): args = parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) if args.cpu: args.cuda = False elif args.cuda: torch.cuda.manual_seed(args.seed) args = vars(args) print("Running parser in {} mode".format(args['mode'])) if args['mode'] == 'train': train(args) else: evaluate(args) def train(args): utils.ensure_dir(args['save_dir']) model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrained vectors if needed pretrain = None if args['pretrain']: vec_file = args['wordvec_file'] if args['wordvec_file'] else utils.get_wordvec_file(args['wordvec_dir'], args['shorthand']) pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) pretrain = Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab']) # load data print("Loading data with batch size {}...".format(args['batch_size'])) train_doc = Document(CoNLL.conll2dict(input_file=args['train_file'])) train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False) vocab = train_batch.vocab dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file'])) dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) # pred and gold path system_pred_file = args['output_file'] gold_file = args['gold_file'] # skip training if the language does not have training or dev data if len(train_batch) == 0 or len(dev_batch) == 0: print("Skip training because no data available...") sys.exit(0) print("Training parser...") trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda']) global_step = 0 max_steps = args['max_steps'] dev_score_history = [] best_dev_preds = [] current_lr = args['lr'] global_start_time = time.time() format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}' using_amsgrad = False last_best_step = 0 # start training train_loss = 0 while True: do_break = False for i, batch in enumerate(train_batch): start_time = time.time() global_step += 1 loss = trainer.update(batch, eval=False) # update step train_loss += loss if global_step % args['log_step'] == 0: duration = time.time() - start_time print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\ max_steps, loss, duration, current_lr)) if global_step % args['eval_interval'] == 0: # eval on dev print("Evaluating on dev set...") dev_preds = [] for batch in dev_batch: preds = trainer.predict(batch) dev_preds += preds dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx) dev_batch.doc.set([HEAD, DEPREL], [y for x in dev_preds for y in x]) CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file) _, _, dev_score = scorer.score(system_pred_file, gold_file) train_loss = train_loss / args['eval_interval'] # avg loss per batch print("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score)) train_loss = 0 # save best model if len(dev_score_history) == 0 or dev_score > max(dev_score_history): last_best_step = global_step trainer.save(model_file) print("new best model saved.") best_dev_preds = dev_preds dev_score_history += [dev_score] print("") if global_step - last_best_step >= args['max_steps_before_stop']: if not using_amsgrad: print("Switching to AMSGrad") last_best_step = global_step using_amsgrad = True trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6) else: do_break = True break if global_step >= args['max_steps']: do_break = True break if do_break: break train_batch.reshuffle() print("Training ended with {} steps.".format(global_step)) best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1 print("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval'])) def evaluate(args): # file paths system_pred_file = args['output_file'] gold_file = args['gold_file'] model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrain; note that we allow the pretrain_file to be non-existent pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] trainer = Trainer(pretrain=pretrain, model_file=model_file, use_cuda=use_cuda) loaded_args, vocab = trainer.args, trainer.vocab # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'] or k == 'mode': loaded_args[k] = args[k] # load data print("Loading data with batch size {}...".format(args['batch_size'])) doc = Document(CoNLL.conll2dict(input_file=args['eval_file'])) batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) if len(batch) > 0: print("Start evaluation...") preds = [] for i, b in enumerate(batch): preds += trainer.predict(b) else: # skip eval if dev data does not exist preds = [] preds = utils.unsort(preds, batch.data_orig_idx) # write to file and score batch.doc.set([HEAD, DEPREL], [y for x in preds for y in x]) CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file) if gold_file is not None: _, _, score = scorer.score(system_pred_file, gold_file) print("Parser score:") print("{} {:.2f}".format(args['shorthand'], score*100)) if __name__ == '__main__': main()
[ "torch.cuda.manual_seed", "torch.manual_seed", "torch.cuda.is_available" ]
1.3.0
de9uch1/stanza
cafb7d5004842cd3c8a3ac334ce7649bac928830
1.3
""" A trainer class to handle training and testing of models. """ import sys import numpy as np from collections import Counter import logging import torch from torch import nn import torch.nn.init as init import stanza.models.common.seq2seq_constant as constant from stanza.models.common.seq2seq_model import Seq2SeqModel from stanza.models.common import utils, loss from stanza.models.lemma import edit from stanza.models.lemma.vocab import MultiVocab logger = logging.getLogger('stanza') def unpack_batch(batch, use_cuda): """ Unpack a batch from the data loader. """ if use_cuda: inputs = [b.cuda() if b is not None else None for b in batch[:6]] else: inputs = [b if b is not None else None for b in batch[:6]] orig_idx = batch[6] return inputs, orig_idx class Trainer(object): """ A trainer for training models. """ def __init__(self, args=None, vocab=None, emb_matrix=None, model_file=None, use_cuda=False): self.use_cuda = use_cuda if model_file is not None: # load everything from file self.load(model_file, use_cuda) else: # build model from scratch self.args = args self.model = None if args['dict_only'] else Seq2SeqModel(args, emb_matrix=emb_matrix, use_cuda=use_cuda) self.vocab = vocab # dict-based components self.word_dict = dict() self.composite_dict = dict() if not self.args['dict_only']: if self.args.get('edit', False): self.crit = loss.MixLoss(self.vocab['char'].size, self.args['alpha']) logger.debug("Running seq2seq lemmatizer with edit classifier...") else: self.crit = loss.SequenceLoss(self.vocab['char'].size) self.parameters = [p for p in self.model.parameters() if p.requires_grad] if use_cuda: self.model.cuda() self.crit.cuda() else: self.model.cpu() self.crit.cpu() self.optimizer = utils.get_optimizer(self.args['optim'], self.parameters, self.args['lr']) def update(self, batch, eval=False): inputs, orig_idx = unpack_batch(batch, self.use_cuda) src, src_mask, tgt_in, tgt_out, pos, edits = inputs if eval: self.model.eval() else: self.model.train() self.optimizer.zero_grad() log_probs, edit_logits = self.model(src, src_mask, tgt_in, pos) if self.args.get('edit', False): assert edit_logits is not None loss = self.crit(log_probs.view(-1, self.vocab['char'].size), tgt_out.view(-1), \ edit_logits, edits) else: loss = self.crit(log_probs.view(-1, self.vocab['char'].size), tgt_out.view(-1)) loss_val = loss.data.item() if eval: return loss_val loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm']) self.optimizer.step() return loss_val def predict(self, batch, beam_size=1): inputs, orig_idx = unpack_batch(batch, self.use_cuda) src, src_mask, tgt, tgt_mask, pos, edits = inputs self.model.eval() batch_size = src.size(0) preds, edit_logits = self.model.predict(src, src_mask, pos=pos, beam_size=beam_size) pred_seqs = [self.vocab['char'].unmap(ids) for ids in preds] # unmap to tokens pred_seqs = utils.prune_decoded_seqs(pred_seqs) pred_tokens = ["".join(seq) for seq in pred_seqs] # join chars to be tokens pred_tokens = utils.unsort(pred_tokens, orig_idx) if self.args.get('edit', False): assert edit_logits is not None edits = np.argmax(edit_logits.data.cpu().numpy(), axis=1).reshape([batch_size]).tolist() edits = utils.unsort(edits, orig_idx) else: edits = None return pred_tokens, edits def postprocess(self, words, preds, edits=None): """ Postprocess, mainly for handing edits. """ assert len(words) == len(preds), "Lemma predictions must have same length as words." edited = [] if self.args.get('edit', False): assert edits is not None and len(words) == len(edits) for w, p, e in zip(words, preds, edits): lem = edit.edit_word(w, p, e) edited += [lem] else: edited = preds # do not edit # final sanity check assert len(edited) == len(words) final = [] for lem, w in zip(edited, words): if len(lem) == 0 or constant.UNK in lem: final += [w] # invalid prediction, fall back to word else: final += [lem] return final def update_lr(self, new_lr): utils.change_lr(self.optimizer, new_lr) def train_dict(self, triples): """ Train a dict lemmatizer given training (word, pos, lemma) triples. """ # accumulate counter ctr = Counter() ctr.update([(p[0], p[1], p[2]) for p in triples]) # find the most frequent mappings for p, _ in ctr.most_common(): w, pos, l = p if (w,pos) not in self.composite_dict: self.composite_dict[(w,pos)] = l if w not in self.word_dict: self.word_dict[w] = l return def predict_dict(self, pairs): """ Predict a list of lemmas using the dict model given (word, pos) pairs. """ lemmas = [] for p in pairs: w, pos = p if (w,pos) in self.composite_dict: lemmas += [self.composite_dict[(w,pos)]] elif w in self.word_dict: lemmas += [self.word_dict[w]] else: lemmas += [w] return lemmas def skip_seq2seq(self, pairs): """ Determine if we can skip the seq2seq module when ensembling with the frequency lexicon. """ skip = [] for p in pairs: w, pos = p if (w,pos) in self.composite_dict: skip.append(True) elif w in self.word_dict: skip.append(True) else: skip.append(False) return skip def ensemble(self, pairs, other_preds): """ Ensemble the dict with statistical model predictions. """ lemmas = [] assert len(pairs) == len(other_preds) for p, pred in zip(pairs, other_preds): w, pos = p if (w,pos) in self.composite_dict: lemma = self.composite_dict[(w,pos)] elif w in self.word_dict: lemma = self.word_dict[w] else: lemma = pred if lemma is None: lemma = w lemmas.append(lemma) return lemmas def save(self, filename): params = { 'model': self.model.state_dict() if self.model is not None else None, 'dicts': (self.word_dict, self.composite_dict), 'vocab': self.vocab.state_dict(), 'config': self.args } try: torch.save(params, filename) logger.info("Model saved to {}".format(filename)) except BaseException: logger.warning("Saving failed... continuing anyway.") def load(self, filename, use_cuda=False): try: checkpoint = torch.load(filename, lambda storage, loc: storage) except BaseException: logger.error("Cannot load model from {}".format(filename)) raise self.args = checkpoint['config'] self.word_dict, self.composite_dict = checkpoint['dicts'] if not self.args['dict_only']: self.model = Seq2SeqModel(self.args, use_cuda=use_cuda) self.model.load_state_dict(checkpoint['model']) else: self.model = None self.vocab = MultiVocab.load_state_dict(checkpoint['vocab'])
[ "torch.save", "torch.load" ]
1.3.0
de9uch1/stanza
cafb7d5004842cd3c8a3ac334ce7649bac928830
1.6
import torch import torch.nn as nn from torch.nn.functional import mse_loss class PSNRLoss(nn.Module): r"""Creates a criterion that calculates the PSNR between 2 images. Given an m x n image, the PSNR is: .. math:: \text{PSNR} = 10 \log_{10} \bigg(\frac{\text{MAX}_I^2}{MSE(I,T)}\bigg) where .. math:: \text{MSE}(I,T) = \frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\text{MAX}_I=1`). Arguments: max_val (float): Maximum value of input Shape: - input: :math:`(*)` - approximation: :math:`(*)` same shape as input - output: :math:`()` a scalar Examples: >>> kornia.losses.psnr_loss(torch.ones(1), 1.2*torch.ones(1), 2) tensor(20.0000) # 10 * log(4/((1.2-1)**2)) / log(10) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ def __init__(self, max_val: float) -> None: super(PSNRLoss, self).__init__() self.max_val: float = max_val def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # type: ignore return psnr_loss(input, target, self.max_val) def psnr_loss(input: torch.Tensor, target: torch.Tensor, max_val: float) -> torch.Tensor: r"""Function that computes PSNR See :class:`~kornia.losses.PSNRLoss` for details. """ if not torch.is_tensor(input) or not torch.is_tensor(target): raise TypeError(f"Expected 2 torch tensors but got {type(input)} and {type(target)}") if input.shape != target.shape: raise TypeError(f"Expected tensors of equal shapes, but got {input.shape} and {target.shape}") mse_val = mse_loss(input, target, reduction='mean') max_val_tensor: torch.Tensor = torch.tensor(max_val).to(input.device).to(input.dtype) return 10 * torch.log10(max_val_tensor * max_val_tensor / mse_val)
[ "torch.nn.functional.mse_loss", "torch.is_tensor", "torch.tensor", "torch.log10" ]
1.6.0
pmeier/kornia
57f5aeb605d0c69de88a0a1aa1563cee52d4bfaf
1.6
from typing import Tuple, List, Union, cast import torch import torch.nn as nn from kornia.geometry.transform.affwarp import rotate def normalize_kernel2d(input: torch.Tensor) -> torch.Tensor: r"""Normalizes both derivative and smoothing kernel. """ if len(input.size()) < 2: raise TypeError("input should be at least 2D tensor. Got {}" .format(input.size())) norm: torch.Tensor = input.abs().sum(dim=-1).sum(dim=-1) return input / (norm.unsqueeze(-1).unsqueeze(-1)) def gaussian(window_size, sigma): x = torch.arange(window_size).float() - window_size // 2 if window_size % 2 == 0: x = x + 0.5 gauss = torch.exp((-x.pow(2.0) / float(2 * sigma ** 2))) return gauss / gauss.sum() def laplacian_1d(window_size) -> torch.Tensor: r"""One could also use the Laplacian of Gaussian formula to design the filter. """ filter_1d = torch.ones(window_size) filter_1d[window_size // 2] = 1 - window_size laplacian_1d: torch.Tensor = filter_1d return laplacian_1d def get_box_kernel2d(kernel_size: Tuple[int, int]) -> torch.Tensor: r"""Utility function that returns a box filter.""" kx: float = float(kernel_size[0]) ky: float = float(kernel_size[1]) scale: torch.Tensor = torch.tensor(1.) / torch.tensor([kx * ky]) tmp_kernel: torch.Tensor = torch.ones(1, kernel_size[0], kernel_size[1]) return scale.to(tmp_kernel.dtype) * tmp_kernel def get_binary_kernel2d(window_size: Tuple[int, int]) -> torch.Tensor: r"""Creates a binary kernel to extract the patches. If the window size is HxW will create a (H*W)xHxW kernel. """ window_range: int = window_size[0] * window_size[1] kernel: torch.Tensor = torch.zeros(window_range, window_range) for i in range(window_range): kernel[i, i] += 1.0 return kernel.view(window_range, 1, window_size[0], window_size[1]) def get_sobel_kernel_3x3() -> torch.Tensor: """Utility function that returns a sobel kernel of 3x3""" return torch.tensor([ [-1., 0., 1.], [-2., 0., 2.], [-1., 0., 1.], ]) def get_sobel_kernel_5x5_2nd_order() -> torch.Tensor: """Utility function that returns a 2nd order sobel kernel of 5x5""" return torch.tensor([ [-1., 0., 2., 0., -1.], [-4., 0., 8., 0., -4.], [-6., 0., 12., 0., -6.], [-4., 0., 8., 0., -4.], [-1., 0., 2., 0., -1.] ]) def _get_sobel_kernel_5x5_2nd_order_xy() -> torch.Tensor: """Utility function that returns a 2nd order sobel kernel of 5x5""" return torch.tensor([ [-1., -2., 0., 2., 1.], [-2., -4., 0., 4., 2.], [0., 0., 0., 0., 0.], [2., 4., 0., -4., -2.], [1., 2., 0., -2., -1.] ]) def get_diff_kernel_3x3() -> torch.Tensor: """Utility function that returns a sobel kernel of 3x3""" return torch.tensor([ [-0., 0., 0.], [-1., 0., 1.], [-0., 0., 0.], ]) def get_diff_kernel3d(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: """Utility function that returns a first order derivative kernel of 3x3x3""" kernel: torch.Tensor = torch.tensor([[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [-0.5, 0.0, 0.5], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, -0.5, 0.0], [0.0, 0.0, 0.0], [0.0, 0.5, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 0.0, 0.0], [0.0, -0.5, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.0]], ], ], device=device, dtype=dtype) return kernel.unsqueeze(1) def get_diff_kernel3d_2nd_order(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: """Utility function that returns a first order derivative kernel of 3x3x3""" kernel: torch.Tensor = torch.tensor([[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 1.0, 0.0], [0.0, -2.0, 0.0], [0.0, 1.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, -2.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], ], [[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]], ], [[[0.0, 0.0, 0.0], [1.0, 0.0, -1.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [0.0, 0.0, 0.0]], ], ], device=device, dtype=dtype) return kernel.unsqueeze(1) def get_sobel_kernel2d() -> torch.Tensor: kernel_x: torch.Tensor = get_sobel_kernel_3x3() kernel_y: torch.Tensor = kernel_x.transpose(0, 1) return torch.stack([kernel_x, kernel_y]) def get_diff_kernel2d() -> torch.Tensor: kernel_x: torch.Tensor = get_diff_kernel_3x3() kernel_y: torch.Tensor = kernel_x.transpose(0, 1) return torch.stack([kernel_x, kernel_y]) def get_sobel_kernel2d_2nd_order() -> torch.Tensor: gxx: torch.Tensor = get_sobel_kernel_5x5_2nd_order() gyy: torch.Tensor = gxx.transpose(0, 1) gxy: torch.Tensor = _get_sobel_kernel_5x5_2nd_order_xy() return torch.stack([gxx, gxy, gyy]) def get_diff_kernel2d_2nd_order() -> torch.Tensor: gxx: torch.Tensor = torch.tensor([ [0., 0., 0.], [1., -2., 1.], [0., 0., 0.], ]) gyy: torch.Tensor = gxx.transpose(0, 1) gxy: torch.Tensor = torch.tensor([ [-1., 0., 1.], [0., 0., 0.], [1., 0., -1.], ]) return torch.stack([gxx, gxy, gyy]) def get_spatial_gradient_kernel2d(mode: str, order: int) -> torch.Tensor: r"""Function that returns kernel for 1st or 2nd order image gradients, using one of the following operators: sobel, diff""" if mode not in ['sobel', 'diff']: raise TypeError("mode should be either sobel\ or diff. Got {}".format(mode)) if order not in [1, 2]: raise TypeError("order should be either 1 or 2\ Got {}".format(order)) if mode == 'sobel' and order == 1: kernel: torch.Tensor = get_sobel_kernel2d() elif mode == 'sobel' and order == 2: kernel = get_sobel_kernel2d_2nd_order() elif mode == 'diff' and order == 1: kernel = get_diff_kernel2d() elif mode == 'diff' and order == 2: kernel = get_diff_kernel2d_2nd_order() else: raise NotImplementedError("") return kernel def get_spatial_gradient_kernel3d(mode: str, order: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: r"""Function that returns kernel for 1st or 2nd order scale pyramid gradients, using one of the following operators: sobel, diff""" if mode not in ['sobel', 'diff']: raise TypeError("mode should be either sobel\ or diff. Got {}".format(mode)) if order not in [1, 2]: raise TypeError("order should be either 1 or 2\ Got {}".format(order)) if mode == 'sobel': raise NotImplementedError("Sobel kernel for 3d gradient is not implemented yet") elif mode == 'diff' and order == 1: kernel = get_diff_kernel3d(device, dtype) elif mode == 'diff' and order == 2: kernel = get_diff_kernel3d_2nd_order(device, dtype) else: raise NotImplementedError("") return kernel def get_gaussian_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor: r"""Function that returns Gaussian filter coefficients. Args: kernel_size (int): filter size. It should be odd and positive. sigma (float): gaussian standard deviation. force_even (bool): overrides requirement for odd kernel size. Returns: Tensor: 1D tensor with gaussian filter coefficients. Shape: - Output: :math:`(\text{kernel_size})` Examples:: >>> kornia.image.get_gaussian_kernel(3, 2.5) tensor([0.3243, 0.3513, 0.3243]) >>> kornia.image.get_gaussian_kernel(5, 1.5) tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201]) """ if (not isinstance(kernel_size, int) or ( (kernel_size % 2 == 0) and not force_even) or ( kernel_size <= 0)): raise TypeError( "kernel_size must be an odd positive integer. " "Got {}".format(kernel_size) ) window_1d: torch.Tensor = gaussian(kernel_size, sigma) return window_1d def get_gaussian_kernel2d( kernel_size: Tuple[int, int], sigma: Tuple[float, float], force_even: bool = False) -> torch.Tensor: r"""Function that returns Gaussian filter matrix coefficients. Args: kernel_size (Tuple[int, int]): filter sizes in the x and y direction. Sizes should be odd and positive. sigma (Tuple[int, int]): gaussian standard deviation in the x and y direction. force_even (bool): overrides requirement for odd kernel size. Returns: Tensor: 2D tensor with gaussian filter matrix coefficients. Shape: - Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` Examples:: >>> kornia.image.get_gaussian_kernel2d((3, 3), (1.5, 1.5)) tensor([[0.0947, 0.1183, 0.0947], [0.1183, 0.1478, 0.1183], [0.0947, 0.1183, 0.0947]]) >>> kornia.image.get_gaussian_kernel2d((3, 5), (1.5, 1.5)) tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370], [0.0462, 0.0899, 0.1123, 0.0899, 0.0462], [0.0370, 0.0720, 0.0899, 0.0720, 0.0370]]) """ if not isinstance(kernel_size, tuple) or len(kernel_size) != 2: raise TypeError( "kernel_size must be a tuple of length two. Got {}".format( kernel_size ) ) if not isinstance(sigma, tuple) or len(sigma) != 2: raise TypeError( "sigma must be a tuple of length two. Got {}".format(sigma) ) ksize_x, ksize_y = kernel_size sigma_x, sigma_y = sigma kernel_x: torch.Tensor = get_gaussian_kernel1d(ksize_x, sigma_x, force_even) kernel_y: torch.Tensor = get_gaussian_kernel1d(ksize_y, sigma_y, force_even) kernel_2d: torch.Tensor = torch.matmul( kernel_x.unsqueeze(-1), kernel_y.unsqueeze(-1).t() ) return kernel_2d def get_laplacian_kernel1d(kernel_size: int) -> torch.Tensor: r"""Function that returns the coefficients of a 1D Laplacian filter. Args: kernel_size (int): filter size. It should be odd and positive. Returns: Tensor (float): 1D tensor with laplacian filter coefficients. Shape: - Output: math:`(\text{kernel_size})` Examples:: >>> kornia.image.get_laplacian_kernel(3) tensor([ 1., -2., 1.]) >>> kornia.image.get_laplacian_kernel(5) tensor([ 1., 1., -4., 1., 1.]) """ if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ kernel_size <= 0: raise TypeError("ksize must be an odd positive integer. Got {}" .format(kernel_size)) window_1d: torch.Tensor = laplacian_1d(kernel_size) return window_1d def get_laplacian_kernel2d(kernel_size: int) -> torch.Tensor: r"""Function that returns Gaussian filter matrix coefficients. Args: kernel_size (int): filter size should be odd. Returns: Tensor: 2D tensor with laplacian filter matrix coefficients. Shape: - Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` Examples:: >>> kornia.image.get_laplacian_kernel2d(3) tensor([[ 1., 1., 1.], [ 1., -8., 1.], [ 1., 1., 1.]]) >>> kornia.image.get_laplacian_kernel2d(5) tensor([[ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., -24., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.]]) """ if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ kernel_size <= 0: raise TypeError("ksize must be an odd positive integer. Got {}" .format(kernel_size)) kernel = torch.ones((kernel_size, kernel_size)) mid = kernel_size // 2 kernel[mid, mid] = 1 - kernel_size ** 2 kernel_2d: torch.Tensor = kernel return kernel_2d def get_motion_kernel2d(kernel_size: int, angle: Union[torch.Tensor, float], direction: Union[torch.Tensor, float] = 0.) -> torch.Tensor: r"""Function that returns motion blur filter. Args: kernel_size (int): motion kernel width and height. It should be odd and positive. angle (torch.Tensor, float): angle of the motion blur in degrees (anti-clockwise rotation). direction (float): forward/backward direction of the motion blur. Lower values towards -1.0 will point the motion blur towards the back (with angle provided via angle), while higher values towards 1.0 will point the motion blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur. Returns: torch.Tensor: the motion blur kernel. Shape: - Output: :math:`(ksize, ksize)` Examples:: >>> kornia.filters.get_motion_kernel2d(5, 0., 0.) tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.2000, 0.2000, 0.2000, 0.2000, 0.2000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]) >>> kornia.filters.get_motion_kernel2d(3, 215., -0.5) tensor([[0.0000, 0.0412, 0.0732], [0.1920, 0.3194, 0.0804], [0.2195, 0.0743, 0.0000]]) """ if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size < 3: raise TypeError("ksize must be an odd integer >= than 3") if not isinstance(angle, torch.Tensor): angle = torch.tensor([angle]) angle = cast(torch.Tensor, angle) if angle.dim() == 0: angle = angle.unsqueeze(dim=0) assert angle.dim() == 1, f"angle must be a 1-dim tensor. Got {angle}." if not isinstance(direction, torch.Tensor): direction = torch.tensor([direction]) direction = cast(torch.Tensor, direction) if direction.dim() == 0: direction = direction.unsqueeze(dim=0) assert direction.dim() == 1, f"direction must be a 1-dim tensor. Got {direction}." kernel_tuple: Tuple[int, int] = (kernel_size, kernel_size) # direction from [-1, 1] to [0, 1] range direction = (torch.clamp(direction, -1., 1.).item() + 1.) / 2. kernel = torch.zeros(kernel_tuple, dtype=torch.float) kernel[kernel_tuple[0] // 2, :] = torch.linspace(direction, 1. - direction, steps=kernel_tuple[0]) kernel = kernel.unsqueeze(0).unsqueeze(0) # rotate (counterclockwise) kernel by given angle kernel = rotate(kernel, angle) kernel = kernel[0][0] kernel = kernel / kernel.sum() return kernel
[ "torch.zeros", "torch.device", "torch.stack", "torch.arange", "torch.linspace", "torch.clamp", "torch.ones", "torch.tensor" ]
1.6.0
pmeier/kornia
57f5aeb605d0c69de88a0a1aa1563cee52d4bfaf
1.2
from __future__ import absolute_import import torch.nn as nn import math __all__ = ["resnet"] class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): """ResNet for CIFAR10/100 dataset.""" def __init__(self, depth, num_classes=1000, block_name="BasicBlock"): super(ResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == "basicblock": assert ( depth - 2 ) % 6 == 0, "When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202" n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == "bottleneck": assert ( depth - 2 ) % 9 == 0, "When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199" n = (depth - 2) // 9 block = Bottleneck else: raise ValueError("block_name shoule be Basicblock or Bottleneck") self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16, n) self.layer2 = self._make_layer(block, 32, n, stride=2) self.layer3 = self._make_layer(block, 64, n, stride=2) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) # 32x32 x = self.layer1(x) # 32x32 x = self.layer2(x) # 16x16 x = self.layer3(x) # 8x8 x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet(**kwargs): """ Constructs a ResNet model. """ return ResNet(**kwargs)
[ "torch.nn.Linear", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.2.0
awwong1/ml-research
6f0bb585fef0c4567a5f02937fea62726b9c88dd
1.0
""" Library for extracting interesting quantites from autograd, see README.md Not thread-safe because of module-level variables Notation: o: number of output classes (exact Hessian), number of Hessian samples (sampled Hessian) n: batch-size do: output dimension (output channels for convolution) di: input dimension (input channels for convolution) Hi: per-example Hessian of matmul, shaped as matrix of [dim, dim], indices have been row-vectorized Hi_bias: per-example Hessian of bias Oh, Ow: output height, output width (convolution) Kh, Kw: kernel height, kernel width (convolution) Jb: batch output Jacobian of matmul, output sensitivity for example,class pair, [o, n, ....] Jb_bias: as above, but for bias A, activations: inputs into current layer B, backprops: backprop values (aka Lop aka Jacobian-vector product) observed at current layer """ from typing import List import torch import torch.nn as nn import torch.nn.functional as F _supported_layers = ['Linear', 'Conv2d'] # Supported layer class types _hooks_disabled: bool = False # work-around for https://github.com/pytorch/pytorch/issues/25723 _enforce_fresh_backprop: bool = False # global switch to catch double backprop errors on Hessian computation def add_hooks(model: nn.Module) -> None: """ Adds hooks to model to save activations and backprop values. The hooks will 1. save activations into param.activations during forward pass 2. append backprops to params.backprops_list during backward pass. Call "remove_hooks(model)" to disable this. Args: model: """ global _hooks_disabled _hooks_disabled = False handles = [] for layer in model.modules(): if _layer_type(layer) in _supported_layers: handles.append(layer.register_forward_hook(_capture_activations)) handles.append(layer.register_backward_hook(_capture_backprops)) model.__dict__.setdefault('autograd_hacks_hooks', []).extend(handles) def remove_hooks(model: nn.Module) -> None: """ Remove hooks added by add_hooks(model) """ assert model == 0, "not working, remove this after fix to https://github.com/pytorch/pytorch/issues/25723" if not hasattr(model, 'autograd_hacks_hooks'): print("Warning, asked to remove hooks, but no hooks found") else: for handle in model.autograd_hacks_hooks: handle.remove() del model.autograd_hacks_hooks def disable_hooks() -> None: """ Globally disable all hooks installed by this library. """ global _hooks_disabled _hooks_disabled = True def enable_hooks() -> None: """the opposite of disable_hooks()""" global _hooks_disabled _hooks_disabled = False def is_supported(layer: nn.Module) -> bool: """Check if this layer is supported""" return _layer_type(layer) in _supported_layers def _layer_type(layer: nn.Module) -> str: return layer.__class__.__name__ def _capture_activations(layer: nn.Module, input: List[torch.Tensor], output: torch.Tensor): """Save activations into layer.activations in forward pass""" if _hooks_disabled: return assert _layer_type(layer) in _supported_layers, "Hook installed on unsupported layer, this shouldn't happen" setattr(layer, "activations", input[0].detach()) def _capture_backprops(layer: nn.Module, _input, output): """Append backprop to layer.backprops_list in backward pass.""" global _enforce_fresh_backprop if _hooks_disabled: return if _enforce_fresh_backprop: assert not hasattr(layer, 'backprops_list'), "Seeing result of previous backprop, use clear_backprops(model) to clear" _enforce_fresh_backprop = False if not hasattr(layer, 'backprops_list'): setattr(layer, 'backprops_list', []) layer.backprops_list.append(output[0].detach()) def clear_backprops(model: nn.Module) -> None: """Delete layer.backprops_list in every layer.""" for layer in model.modules(): if hasattr(layer, 'backprops_list'): del layer.backprops_list def compute_grad1(model: nn.Module, loss_type: str = 'mean') -> None: """ Compute per-example gradients and save them under 'param.grad1'. Must be called after loss.backprop() Args: model: loss_type: either "mean" or "sum" depending whether backpropped loss was averaged or summed over batch """ assert loss_type in ('sum', 'mean') for layer in model.modules(): layer_type = _layer_type(layer) if layer_type not in _supported_layers: continue assert hasattr(layer, 'activations'), "No activations detected, run forward after add_hooks(model)" assert hasattr(layer, 'backprops_list'), "No backprops detected, run backward after add_hooks(model)" assert len(layer.backprops_list) == 1, "Multiple backprops detected, make sure to call clear_backprops(model)" A = layer.activations n = A.shape[0] if loss_type == 'mean': B = layer.backprops_list[0] * n else: # loss_type == 'sum': B = layer.backprops_list[0] if layer_type == 'Linear': setattr(layer.weight, 'grad1', torch.einsum('ni,nj->nij', B, A)) if layer.bias is not None: setattr(layer.bias, 'grad1', B) elif layer_type == 'Conv2d': A = torch.nn.functional.unfold(A, layer.kernel_size, dilation=layer.dilation, padding=layer.padding, stride=layer.stride) #A = torch.nn.functional.unfold(A, layer.kernel_size) B = B.reshape(n, -1, A.shape[-1]) grad1 = torch.einsum('ijk,ilk->ijl', B, A) shape = [n] + list(layer.weight.shape) setattr(layer.weight, 'grad1', grad1.reshape(shape)) if layer.bias is not None: setattr(layer.bias, 'grad1', torch.sum(B, dim=2)) def compute_hess(model: nn.Module,) -> None: """Save Hessian under param.hess for each param in the model""" for layer in model.modules(): layer_type = _layer_type(layer) if layer_type not in _supported_layers: continue assert hasattr(layer, 'activations'), "No activations detected, run forward after add_hooks(model)" assert hasattr(layer, 'backprops_list'), "No backprops detected, run backward after add_hooks(model)" if layer_type == 'Linear': A = layer.activations B = torch.stack(layer.backprops_list) n = A.shape[0] o = B.shape[0] A = torch.stack([A] * o) Jb = torch.einsum("oni,onj->onij", B, A).reshape(n*o, -1) H = torch.einsum('ni,nj->ij', Jb, Jb) / n setattr(layer.weight, 'hess', H) if layer.bias is not None: setattr(layer.bias, 'hess', torch.einsum('oni,onj->ij', B, B)/n) elif layer_type == 'Conv2d': Kh, Kw = layer.kernel_size di, do = layer.in_channels, layer.out_channels A = layer.activations.detach() A = torch.nn.functional.unfold(A, (Kh, Kw)) # n, di * Kh * Kw, Oh * Ow n = A.shape[0] B = torch.stack([Bt.reshape(n, do, -1) for Bt in layer.backprops_list]) # o, n, do, Oh*Ow o = B.shape[0] A = torch.stack([A] * o) # o, n, di * Kh * Kw, Oh*Ow Jb = torch.einsum('onij,onkj->onik', B, A) # o, n, do, di * Kh * Kw Hi = torch.einsum('onij,onkl->nijkl', Jb, Jb) # n, do, di*Kh*Kw, do, di*Kh*Kw Jb_bias = torch.einsum('onij->oni', B) Hi_bias = torch.einsum('oni,onj->nij', Jb_bias, Jb_bias) setattr(layer.weight, 'hess', Hi.mean(dim=0)) if layer.bias is not None: setattr(layer.bias, 'hess', Hi_bias.mean(dim=0)) def backprop_hess(output: torch.Tensor, hess_type: str) -> None: """ Call backprop 1 or more times to get values needed for Hessian computation. Args: output: prediction of neural network (ie, input of nn.CrossEntropyLoss()) hess_type: type of Hessian propagation, "CrossEntropy" results in exact Hessian for CrossEntropy Returns: """ assert hess_type in ('LeastSquares', 'CrossEntropy') global _enforce_fresh_backprop n, o = output.shape _enforce_fresh_backprop = True if hess_type == 'CrossEntropy': batch = F.softmax(output, dim=1) mask = torch.eye(o).expand(n, o, o) diag_part = batch.unsqueeze(2).expand(n, o, o) * mask outer_prod_part = torch.einsum('ij,ik->ijk', batch, batch) hess = diag_part - outer_prod_part assert hess.shape == (n, o, o) for i in range(n): hess[i, :, :] = symsqrt(hess[i, :, :]) hess = hess.transpose(0, 1) elif hess_type == 'LeastSquares': hess = [] assert len(output.shape) == 2 batch_size, output_size = output.shape id_mat = torch.eye(output_size) for out_idx in range(output_size): hess.append(torch.stack([id_mat[out_idx]] * batch_size)) for o in range(o): output.backward(hess[o], retain_graph=True) def symsqrt(a, cond=None, return_rank=False, dtype=torch.float32): """Symmetric square root of a positive semi-definite matrix. See https://github.com/pytorch/pytorch/issues/25481""" s, u = torch.symeig(a, eigenvectors=True) cond_dict = {torch.float32: 1e3 * 1.1920929e-07, torch.float64: 1E6 * 2.220446049250313e-16} if cond in [None, -1]: cond = cond_dict[dtype] above_cutoff = (abs(s) > cond * torch.max(abs(s))) psigma_diag = torch.sqrt(s[above_cutoff]) u = u[:, above_cutoff] B = u @ torch.diag(psigma_diag) @ u.t() if return_rank: return B, len(psigma_diag) else: return B
[ "torch.symeig", "torch.sqrt", "torch.stack", "torch.nn.functional.unfold", "torch.einsum", "torch.eye", "torch.nn.functional.softmax", "torch.diag", "torch.sum" ]
1.0
shyhuai/kfac_pytorch
f5a99366fa94345697432a8aabdc5d370f68d06f
0.4
#!/usr/bin/env python3 """Script to test a pytorch model on Cifar100's validation set.""" import argparse import logging import pprint import sys import time import torch from torch import nn from models import model_factory import opts import utils import mul_cifar100 def parse_args(argv): """Parse arguments @argv and return the flags needed for training.""" parser = argparse.ArgumentParser(description=__doc__, allow_abbrev=False) group = parser.add_argument_group('General Options') opts.add_general_flags(group) group = parser.add_argument_group('Dataset Options') opts.add_dataset_flags(group) group = parser.add_argument_group('Model Options') opts.add_model_flags(group) args = parser.parse_args(argv) if args.model_state_file is None: parser.error("You should set --model-state-file to reload a model " "state.") return args def test_for_one_epoch(model, loss, test_loader, epoch_number): model.eval() loss.eval() data_time_meter = utils.AverageMeter() batch_time_meter = utils.AverageMeter() loss_meter = utils.AverageMeter(recent=100) top1_meter = utils.AverageMeter(recent=100) top5_meter = utils.AverageMeter(recent=100) timestamp = time.time() for i, (images, labels) in enumerate(test_loader): batch_size = images.size(0) if utils.is_model_cuda(model): images = images.cuda() labels = labels.cuda() # Record data time data_time_meter.update(time.time() - timestamp) # Forward pass without computing gradients. with torch.no_grad(): outputs = model(images) loss_output = loss(outputs, labels) # Sometimes loss function returns a modified version of the output, # which must be used to compute the model accuracy. if isinstance(loss_output, tuple): loss_value, outputs = loss_output else: loss_value = loss_output # Record loss and model accuracy. loss_meter.update(loss_value.item(), batch_size) top1, top5 = utils.topk_accuracy(outputs, labels, recalls=(1, 5)) top1_meter.update(top1, batch_size) top5_meter.update(top5, batch_size) # Record batch time batch_time_meter.update(time.time() - timestamp) timestamp = time.time() if i % 10 == 0: logging.info( 'Epoch: [{epoch}][{batch}/{epoch_size}]\t' 'Time {batch_time.value:.2f} ({batch_time.average:.2f}) ' 'Data {data_time.value:.2f} ({data_time.average:.2f}) ' 'Loss {loss.value:.3f} {{{loss.average:.3f}, {loss.average_recent:.3f}}} ' 'Top-1 {top1.value:.2f} {{{top1.average:.2f}, {top1.average_recent:.2f}}} ' 'Top-5 {top5.value:.2f} {{{top5.average:.2f}, {top5.average_recent:.2f}}} '.format( epoch=epoch_number, batch=i + 1, epoch_size=len(test_loader), batch_time=batch_time_meter, data_time=data_time_meter, loss=loss_meter, top1=top1_meter, top5=top5_meter)) # Log the overall test stats logging.info( 'Epoch: [{epoch}] -- TESTING SUMMARY\t' 'Time {batch_time.sum:.2f} ' 'Data {data_time.sum:.2f} ' 'Loss {loss.average:.3f} ' 'Top-1 {top1.average:.2f} ' 'Top-5 {top5.average:.2f} '.format( epoch=epoch_number, batch_time=batch_time_meter, data_time=data_time_meter, loss=loss_meter, top1=top1_meter, top5=top5_meter)) def main(argv): """Run the test script with command line arguments @argv.""" args = parse_args(argv) utils.general_setup(args.save, args.gpus) logging.info("Arguments parsed.\n{}".format(pprint.pformat(vars(args)))) # Create the validation data loaders. # val_loader = imagenet.get_val_loader(args.imagenet, args.batch_size, # args.num_workers) val_loader = mul_cifar100.mul_CIFAR100DataLoader(root=args.data_dir, image_size=32, train=False, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) # Create model and the loss. model, loss = model_factory.create_model( args.model, args.model_state_file, args.gpus, coslinear=args.coslinear, scale=args.s) logging.info("Model:\n{}".format(model)) # for n,p in model.named_parameters(): # print(n) # Test for one epoch. test_for_one_epoch(model, loss, val_loader, epoch_number=1) print('\n') if __name__ == '__main__': main(sys.argv[1:])
[ "torch.no_grad" ]
0.4.0
chrisqqq123/FA-Dist-EfficientNet
cb788b0f212d568d9bf04a51516d79fed5383585
1.0
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task. """ import collections import gc import inspect import math import os import re import shutil import time import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split default_hp_search_backend, get_reporting_integration_callbacks, hp_params, is_fairscale_available, is_optuna_available, is_ray_tune_available, run_hp_search_optuna, run_hp_search_ray, init_deepspeed, ) import numpy as np import torch from packaging import version from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler, SequentialSampler from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from .file_utils import ( WEIGHTS_NAME, is_apex_available, is_datasets_available, is_in_notebook, is_sagemaker_distributed_available, is_torch_tpu_available, ) from .modeling_utils import PreTrainedModel, unwrap_model from .optimization import Adafactor, AdamW, get_scheduler from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedTensorGatherer, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, distributed_broadcast_scalars, distributed_concat, nested_concat, nested_detach, nested_numpify, nested_xla_mesh_reduce, reissue_pt_warnings, ) from .trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalPrediction, HPSearchBackend, PredictionOutput, ShardedDDPOption, TrainerMemoryTracker, TrainOutput, default_compute_objective, default_hp_space, get_last_checkpoint, set_seed, speed_metrics, ) from .training_args import ParallelMode, TrainingArguments from .utils import logging from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES _is_native_amp_available = False DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from .utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback if is_apex_available(): from apex import amp if version.parse(torch.__version__) >= version.parse("1.6"): _is_native_amp_available = True from torch.cuda.amp import autocast if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl if is_fairscale_available(): import fairscale from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if version.parse(fairscale.__version__) >= version.parse("0.3"): from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP else: FullyShardedDDP = None if is_sagemaker_distributed_available(): import smdistributed.dataparallel.torch.distributed as dist from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP else: import torch.distributed as dist if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`): The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed. .. note:: :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel` provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. args (:class:`~transformers.TrainingArguments`, `optional`): The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided. data_collator (:obj:`DataCollator`, `optional`): The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise. train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. tokenizer (:class:`PreTrainedTokenizerBase`, `optional`): The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`): A function that instantiates the model to be used. If provided, each call to :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function. The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in :doc:`here <callback>`. If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method. optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of :class:`~transformers.AdamW` on your model and a scheduler given by :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`. Important attributes: - **model** -- Always points to the core model. If using a transformers model, it will be a :class:`~transformers.PreTrainedModel` subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``, the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to :obj:`False` if model parallel or deepspeed is used, or if the default ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` . - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called while in ``train``) """ from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state def __init__( self, model: Union[PreTrainedModel, torch.nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, tokenizer: Optional["PreTrainedTokenizerBase"] = None, model_init: Callable[[], PreTrainedModel] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) self.args = args # Seed must be set before instantiating the model when using model set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # force device and distributed setup init explicitly args._setup_devices if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. " "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.", FutureWarning, ) self.model_init = model_init if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel: self.is_model_parallel = True else: self.is_model_parallel = False # Setup Sharded DDP training self.sharded_ddp = None if len(args.sharded_ddp) > 0: if args.deepspeed: raise ValueError( "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if args.local_rank == -1: raise ValueError("Using sharded DDP only works in distributed training.") elif not is_fairscale_available(): raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.") elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None: raise ImportError( "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found " f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`." ) elif ShardedDDPOption.SIMPLE in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.SIMPLE elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_2 elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_3 # one place to sort out whether to place the model on device or not self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or (args.deepspeed and args.do_train) or (args.fp16_full_eval and not args.do_train) or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3]) ): self.place_model_on_device = False default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.tokenizer = tokenizer # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment if self.place_model_on_device: model = model.to(args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1 # later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument." "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) # Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create output directory if needed if self.is_world_process_zero(): os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") # Enforce rules on using datasets with no __len__ if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0: raise ValueError("train_dataset does not implement __len__, max_steps has to be specified") if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") self._signature_columns = None if is_datasets_available(): if isinstance(train_dataset, datasets.Dataset): self._remove_unused_columns(self.train_dataset, description="training") if isinstance(eval_dataset, datasets.Dataset): self._remove_unused_columns(self.eval_dataset, description="evaluation") # Mixed precision setup self.use_apex = False self.use_amp = False self.fp16_backend = None if args.fp16: if args.fp16_backend == "auto": self.fp16_backend = "amp" if _is_native_amp_available else "apex" else: self.fp16_backend = args.fp16_backend logger.info(f"Using {self.fp16_backend} fp16 backend") if args.fp16 and not args.deepspeed: # deepspeed manages its own fp16 if self.fp16_backend == "amp": self.use_amp = True self.scaler = ShardedGradScaler() if self.sharded_ddp is not None else torch.cuda.amp.GradScaler() else: if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex." ) self.use_apex = True # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.state = TrainerState() self.control = TrainerControl() # Internal variable for total_flos used to count as tensors (for distributed + TPU), will be sent in the # state at each call to self.log. self._total_flos = None self.hp_search_backend = None self.use_tune_checkpoints = False default_label_names = ( ["start_positions", "end_positions"] if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values() else ["labels"] ) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) # very last self._memory_tracker.stop_and_update_metrics() def add_callback(self, callback): """ Add a callback to the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it. If the callback is not found, returns :obj:`None` (and no error is raised). Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will pop the first member of that class found in the list of callbacks. Returns: :class:`~transformer.TrainerCallback`: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. signature = inspect.signature(self.model.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += ["label", "label_ids"] columns = [k for k in self._signature_columns if k in dataset.column_names] ignored_columns = list(set(dataset.column_names) - set(self._signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set " logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." ) dataset.set_format(type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]) def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]: if isinstance(self.train_dataset, torch.utils.data.IterableDataset) or not isinstance( self.train_dataset, collections.abc.Sized ): return None # Gather the number of processes and this process index. if self.args.parallel_mode == ParallelMode.TPU: num_processes = xm.xrt_world_size() process_index = xm.get_ordinal() elif ( self.args.parallel_mode == ParallelMode.DISTRIBUTED or self.args.parallel_mode == ParallelMode.SAGEMAKER_DISTRIBUTED ): num_processes = dist.get_world_size() process_index = dist.get_rank() else: num_processes = 1 process_index = 0 # Build the sampler. if self.args.group_by_length: model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None if num_processes <= 1: return LengthGroupedSampler( self.train_dataset, self.args.train_batch_size, model_input_name=model_input_name ) else: return DistributedLengthGroupedSampler( self.train_dataset, self.args.train_batch_size, num_replicas=num_processes, rank=process_index, model_input_name=model_input_name, ) else: if num_processes <= 1: return RandomSampler(self.train_dataset) else: return DistributedSampler(self.train_dataset, num_replicas=num_processes, rank=process_index) def get_train_dataloader(self) -> DataLoader: """ Returns the training :class:`~torch.utils.data.DataLoader`. Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_sampler = self._get_train_sampler() return DataLoader( self.train_dataset, batch_size=self.args.train_batch_size, sampler=train_sampler, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]: if is_torch_tpu_available(): return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) elif self.args.local_rank != -1: return SequentialDistributedSampler(eval_dataset) else: return SequentialSampler(eval_dataset) def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: """ Returns the evaluation :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") elif eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") elif is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): self._remove_unused_columns(eval_dataset, description="evaluation") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset eval_sampler = self._get_eval_sampler(eval_dataset) return DataLoader( eval_dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if not isinstance(test_dataset, collections.abc.Sized): raise ValueError("test_dataset must implement __len__") elif is_datasets_available() and isinstance(test_dataset, datasets.Dataset): self._remove_unused_columns(test_dataset, description="test") test_sampler = self._get_eval_sampler(test_dataset) # We use the same batch_size as for eval. return DataLoader( test_dataset, sampler=test_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, pin_memory=self.args.dataloader_pin_memory, ) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if self.lr_scheduler is None: warmup_steps = ( self.args.warmup_steps if self.args.warmup_steps > 0 else math.ceil(num_training_steps * self.args.warmup_ratio) ) self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps, ) def num_examples(self, dataloader: DataLoader) -> int: """ Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset. Will raise an exception if the underlying dataset dese not implement method :obj:`__len__` """ return len(dataloader.dataset) def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """ HP search setup code """ self._trial = trial if self.hp_search_backend is None or trial is None: return params = self.hp_space(trial) if self.hp_search_backend == HPSearchBackend.OPTUNA else trial for key, value in params.items(): if not hasattr(self.args, key): raise AttributeError( f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`." ) old_attr = getattr(self.args, key, None) # Casting value to the proper type if old_attr is not None: value = type(old_attr)(value) setattr(self.args, key, value) if self.hp_search_backend == HPSearchBackend.OPTUNA: logger.info("Trial:", trial.params) def _report_to_hp_search( self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float] ): if self.hp_search_backend is None or trial is None: return self.objective = self.compute_objective(metrics.copy()) if self.hp_search_backend == HPSearchBackend.OPTUNA: import optuna trial.report(self.objective, epoch) if trial.should_prune(): raise optuna.TrialPruned() elif self.hp_search_backend == HPSearchBackend.RAY: from ray import tune if self.control.should_save: self._tune_save_checkpoint() tune.report(objective=self.objective, **metrics) def _tune_save_checkpoint(self): from ray import tune if not self.use_tune_checkpoints: return with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir: output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}") self.save_model(output_dir) if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) def call_model_init(self, trial=None): model_init_argcount = len(inspect.signature(self.model_init).parameters) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(trial) else: raise RuntimeError("model_init should have 0 or 1 argument.") if model is None: raise RuntimeError("model_init should not return None.") return model def _wrap_model(self, model, training=True): # already initialized its own DDP and AMP if self.deepspeed: return self.deepspeed # Mixed precision training with apex (torch < 1.6) if self.use_apex and training: model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level) # Multi-gpu training (should be after apex fp16 initialization) if self.args.n_gpu > 1: model = torch.nn.DataParallel(model) # Note: in torch.distributed mode, there's no point in wrapping the model # inside a DistributedDataParallel as we'll be under `no_grad` anyways. if not training: return model # Distributed training (should be after apex fp16 initialization) if self.sharded_ddp is not None: # Sharded DDP! if self.sharded_ddp == ShardedDDPOption.SIMPLE: model = ShardedDDP(model, self.optimizer) else: mixed_precision = self.args.fp16 cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3 # XXX: Breaking the self.model convention but I see no way around it for now. self.model = model = FullyShardedDDP( model, mixed_precision=mixed_precision, reshard_after_forward=zero_3, cpu_offload=cpu_offload ).to(self.args.device) elif is_sagemaker_distributed_available(): model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) elif self.args.local_rank != -1: if self.args.ddp_find_unused_parameters is not None: find_unused_parameters = self.args.ddp_find_unused_parameters elif isinstance(model, PreTrainedModel): # find_unused_parameters breaks checkpointing as per # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021 find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False) else: find_unused_parameters = True model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[self.args.local_rank], output_device=self.args.local_rank, find_unused_parameters=find_unused_parameters, ) return model def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): The trial run or the hyperparameter dictionary for hyperparameter search. kwargs: Additional keyword arguments used to hide deprecated arguments """ # memory metrics - must set up as early as possible self._memory_tracker.start() self.is_in_train = True if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. set_seed(self.args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(self.args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({self.args.output_dir})") if resume_from_checkpoint is not None and os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): logger.info(f"Loading model from {resume_from_checkpoint}).") if isinstance(self.model, PreTrainedModel): self.model = self.model.from_pretrained(resume_from_checkpoint) model_reloaded = True else: state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)) self.model.load_state_dict(state_dict) # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self.model = self.model.to(self.args.device) self.model_wrapped = self.model # Keeping track whether we can can len() on the dataset or not train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) # Data loader and number of training steps train_dataloader = self.get_train_dataloader() # Setting up training control variables: # number of training epochs: num_train_epochs # number of training steps per epoch: num_update_steps_per_epoch # total number of training steps to execute: max_steps if train_dataset_is_sized: num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) if self.args.max_steps > 0: max_steps = self.args.max_steps num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int( self.args.max_steps % num_update_steps_per_epoch > 0 ) else: max_steps = math.ceil(self.args.num_train_epochs * num_update_steps_per_epoch) num_train_epochs = math.ceil(self.args.num_train_epochs) else: # see __init__. max_steps is set when the dataset has no __len__ max_steps = self.args.max_steps num_train_epochs = 1 num_update_steps_per_epoch = max_steps delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE if self.args.deepspeed: model, optimizer, lr_scheduler = init_deepspeed(self, num_training_steps=max_steps) self.model = model.module self.model_wrapped = model # will get further wrapped in DDP self.deepspeed = model # DeepSpeedEngine object self.optimizer = optimizer self.lr_scheduler = lr_scheduler elif not delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) self.state = TrainerState() self.state.is_hyper_param_search = trial is not None # Check if saved optimizer or scheduler states exist self._load_optimizer_and_scheduler(resume_from_checkpoint) model = self._wrap_model(self.model_wrapped) # for the rest of this function `model` is the outside model, whether it was wrapped or not if model is not self.model: self.model_wrapped = model if delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) # important: at this point: # self.model is the Transformers Model # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. # Train! if is_torch_tpu_available(): world_size = xm.xrt_world_size() elif self.args.local_rank != -1: world_size = dist.get_world_size() else: world_size = 1 total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps * world_size num_examples = ( self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * self.args.max_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_steps}") self.state.epoch = 0 start_time = time.time() epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if resume_from_checkpoint is not None and os.path.isfile( os.path.join(resume_from_checkpoint, "trainer_state.json") ): self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json")) epochs_trained = self.state.global_step // num_update_steps_per_epoch if not self.args.ignore_data_skip: steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) steps_trained_in_current_epoch *= self.args.gradient_accumulation_steps else: steps_trained_in_current_epoch = 0 logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {self.state.global_step}") if not self.args.ignore_data_skip: logger.info( f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " "batches in the first epoch." ) # Update the references self.callback_handler.model = self.model self.callback_handler.optimizer = self.optimizer self.callback_handler.lr_scheduler = self.lr_scheduler self.callback_handler.train_dataloader = train_dataloader self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None self.state.trial_params = hp_params(trial) if trial is not None else None # This should be the same if the state has been saved but in case the training arguments changed, it's safer # to set this after the load. self.state.max_steps = max_steps self.state.num_train_epochs = num_train_epochs self.state.is_local_process_zero = self.is_local_process_zero() self.state.is_world_process_zero = self.is_world_process_zero() # tr_loss is a tensor to avoid synchronization of TPUs through .item() tr_loss = torch.tensor(0.0).to(self.args.device) # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses self._total_loss_scalar = 0.0 self._globalstep_last_logged = self.state.global_step self._total_flos = self.state.total_flos model.zero_grad() self.control = self.callback_handler.on_train_begin(self.args, self.state, self.control) # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. if not self.args.ignore_data_skip: for epoch in range(epochs_trained): # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break for epoch in range(epochs_trained, num_train_epochs): if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch) if is_torch_tpu_available(): parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader( self.args.device ) epoch_iterator = parallel_loader else: epoch_iterator = train_dataloader # Reset the past mems state at the beginning of each epoch if necessary. if self.args.past_index >= 0: self._past = None steps_in_epoch = ( len(epoch_iterator) if train_dataset_is_sized else self.args.max_steps * self.args.gradient_accumulation_steps ) self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue if (step + 1) % self.args.gradient_accumulation_steps == 0: self.control = self.callback_handler.on_step_begin(self.args, self.state, self.control) if ( ((step + 1) % self.args.gradient_accumulation_steps != 0) and self.args.local_rank != -1 and self.args._no_sync_in_gradient_accumulation ): # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): tr_loss += self.training_step(model, inputs) else: tr_loss += self.training_step(model, inputs) self._total_flos += float(self.floating_point_ops(inputs)) # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps if self.deepspeed: self.deepspeed.step() if (step + 1) % self.args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps steps_in_epoch <= self.args.gradient_accumulation_steps and (step + 1) == steps_in_epoch ): # Gradient clipping if self.args.max_grad_norm is not None and self.args.max_grad_norm > 0 and not self.deepspeed: # deepspeed does its own clipping if self.use_amp: # AMP: gradients need unscaling self.scaler.unscale_(self.optimizer) if hasattr(self.optimizer, "clip_grad_norm"): # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping self.optimizer.clip_grad_norm(self.args.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): # Some models (like FullyShardedDDP) have a specific way to do gradient clipping model.clip_grad_norm_(self.args.max_grad_norm) else: # Revert to normal clipping otherwise, handling Apex or full precision torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer) if self.use_apex else model.parameters(), self.args.max_grad_norm, ) # Optimizer step if self.deepspeed: pass # called outside the loop elif is_torch_tpu_available(): xm.optimizer_step(self.optimizer) elif self.use_amp: self.scaler.step(self.optimizer) self.scaler.update() else: self.optimizer.step() if not self.deepspeed: self.lr_scheduler.step() model.zero_grad() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_in_epoch self.control = self.callback_handler.on_step_end(self.args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(self.args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.args.tpu_metrics_debug or self.args.debug: if is_torch_tpu_available(): # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) else: logger.warning( "You enabled PyTorch/XLA debug metrics but you don't have a TPU " "configured. Check your training configuration if this is unexpected." ) if self.control.should_training_stop: break if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") if self.args.load_best_model_at_end and self.state.best_model_checkpoint is not None: logger.info( f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." ) if isinstance(self.model, PreTrainedModel): self.model = self.model.from_pretrained(self.state.best_model_checkpoint) if self.place_model_on_device: self.model = self.model.to(self.args.device) else: state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)) self.model.load_state_dict(state_dict) if self.deepspeed: self.deepspeed.load_checkpoint( self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False ) metrics = speed_metrics("train", start_time, self.state.max_steps) if self._total_flos is not None: self.store_flos() metrics["total_flos"] = self.state.total_flos self.log(metrics) self.control = self.callback_handler.on_train_end(self.args, self.state, self.control) # add remaining tr_loss self._total_loss_scalar += tr_loss.item() if self.deepspeed: # free up any memory that might be useful for eval self.deepspeed = None self.optimizer = None self.lr_scheduler = None self.model_wrapped = self.model gc.collect() # force memory release # to restore normal behavior outside of train replay the place_model_on_device logic w/o deepspeed self.place_model_on_device = self.args.place_model_on_device if self.is_model_parallel: self.place_model_on_device = False self.is_in_train = False self._memory_tracker.stop_and_update_metrics(metrics) return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics) def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch): if self.control.should_log: logs: Dict[str, float] = {} tr_loss_scalar = tr_loss.item() # reset tr_loss to zero tr_loss -= tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._total_loss_scalar += tr_loss_scalar self._globalstep_last_logged = self.state.global_step self.log(logs) metrics = None if self.control.should_evaluate: metrics = self.evaluate() self._report_to_hp_search(trial, epoch, metrics) if self.control.should_save: self._save_checkpoint(model, trial, metrics=metrics) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def _save_checkpoint(self, model, trial, metrics=None): # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we # want to save except FullyShardedDDP. # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model" # Save model checkpoint checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" if self.hp_search_backend is not None and trial is not None: if self.hp_search_backend == HPSearchBackend.OPTUNA: run_id = trial.number else: from ray import tune run_id = tune.get_trial_id() run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}" run_dir = os.path.join(self.args.output_dir, run_name) else: run_dir = self.args.output_dir self.store_flos() output_dir = os.path.join(run_dir, checkpoint_folder) self.save_model(output_dir) if self.deepspeed: self.deepspeed.save_checkpoint(output_dir) # Save optimizer and scheduler if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer.consolidate_state_dict() if is_torch_tpu_available(): xm.rendezvous("saving_optimizer_states") xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) elif self.is_world_process_zero() and not self.deepspeed: # deepspeed.save_checkpoint above saves model/optim/sched torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) # Determine the new best metric / best model checkpoint if metrics is not None and self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics[metric_to_check] operator = np.greater if self.args.greater_is_better else np.less if ( self.state.best_metric is None or self.state.best_model_checkpoint is None or operator(metric_value, self.state.best_metric) ): self.state.best_metric = metric_value self.state.best_model_checkpoint = output_dir # Save the Trainer state if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) # Maybe delete some older checkpoints. if self.is_world_process_zero(): self._rotate_checkpoints(use_mtime=True, output_dir=run_dir) def _load_optimizer_and_scheduler(self, checkpoint): """If optimizer and scheduler states exist, load them.""" if checkpoint is None: return if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile( os.path.join(checkpoint, "scheduler.pt") ): # Load in optimizer and scheduler states if is_torch_tpu_available(): # On TPU we have to take some extra precautions to properly load the states on the right device. optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu") with warnings.catch_warnings(record=True) as caught_warnings: lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu") reissue_pt_warnings(caught_warnings) xm.send_cpu_data_to_device(optimizer_state, self.args.device) xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device) self.optimizer.load_state_dict(optimizer_state) self.lr_scheduler.load_state_dict(lr_scheduler_state) else: self.optimizer.load_state_dict( torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=self.args.device) ) with warnings.catch_warnings(record=True) as caught_warnings: self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt"))) reissue_pt_warnings(caught_warnings) if self.deepspeed: # Not sure how to check if there is a saved deepspeed checkpoint, but since it just return None if it fails to find a deepspeed checkpoint this is sort of a check-n-load function self.deepspeed.load_checkpoint(checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True) def hyperparameter_search( self, hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None, compute_objective: Optional[Callable[[Dict[str, float]], float]] = None, n_trials: int = 20, direction: str = "minimize", backend: Optional[Union["str", HPSearchBackend]] = None, hp_name: Optional[Callable[["optuna.Trial"], str]] = None, **kwargs, ) -> BestRun: """ Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise. .. warning:: To use this method, you need to have provided a ``model_init`` when initializing your :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler. Args: hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`): A function that defines the hyperparameter search space. Will default to :func:`~transformers.trainer_utils.default_hp_space_optuna` or :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend. compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`): A function computing the objective to minimize or maximize from the metrics returned by the :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`. n_trials (:obj:`int`, `optional`, defaults to 100): The number of trial runs to test. direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`): Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or several metrics. backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`): The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna. kwargs: Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For more information see: - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ Returns: :class:`transformers.trainer_utils.BestRun`: All the information about the best run. """ if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError( "At least one of optuna or ray should be installed. " "To install optuna run `pip install optuna`." "To install ray run `pip install ray[tune]`." ) backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and not is_optuna_available(): raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.") if backend == HPSearchBackend.RAY and not is_ray_tune_available(): raise RuntimeError( "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`." ) self.hp_search_backend = backend if self.model_init is None: raise RuntimeError( "To use hyperparameter search, you need to pass your model through a model_init function." ) self.hp_space = default_hp_space[backend] if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray best_run = run_hp_search(self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if self.state.epoch is not None: logs["epoch"] = round(self.state.epoch, 2) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output) self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs) def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if isinstance(v, torch.Tensor): inputs[k] = v.to(self.args.device) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.args.gradient_accumulation_steps > 1 and not self.deepspeed: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: # loss gets scaled under gradient_accumulation_steps in deepspeed loss = self.deepspeed.backward(loss) else: loss.backward() return loss.detach() def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss def is_local_process_zero(self) -> bool: """ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. """ if is_torch_tpu_available(): return xm.is_master_ordinal(local=True) else: return self.args.local_rank in [-1, 0] def is_world_process_zero(self) -> bool: """ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be :obj:`True` for one process). """ if is_torch_tpu_available(): return xm.is_master_ordinal(local=False) else: return self.args.local_rank == -1 or dist.get_rank() == 0 def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. Will only save from the main process. """ if is_torch_tpu_available(): self._save_tpu(output_dir) else: if self.is_world_process_zero(): self._save(output_dir) if self.args.local_rank != -1: dist.barrier() def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info("Saving model checkpoint to %s", output_dir) if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained( output_dir, save_config=self.is_world_process_zero(), state_dict=self.model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save) if self.tokenizer is not None and self.is_world_process_zero(): self.tokenizer.save_pretrained(output_dir) def _save(self, output_dir: Optional[str] = None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info("Saving model checkpoint to %s", output_dir) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained(output_dir, state_dict=self.model.state_dict()) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir) if self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def store_flos(self): # Storing the number of floating-point operations that went into the model if self._total_flos is not None: if self.args.local_rank != -1: self.state.total_flos = distributed_broadcast_scalars([self._total_flos]).sum().item() else: self.state.total_flos = self._total_flos def _sorted_checkpoints( self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False ) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")] for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match and regex_match.groups(): ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] # Make sure we don't delete the best model. if self.state.best_model_checkpoint is not None: best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint))) checkpoints_sorted[best_model_index], checkpoints_sorted[-1] = ( checkpoints_sorted[-1], checkpoints_sorted[best_model_index], ) return checkpoints_sorted def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None: if self.args.save_total_limit is None or self.args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir) if len(checkpoints_sorted) <= self.args.save_total_limit: return number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint)) shutil.rmtree(checkpoint) def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ # memory metrics - must set up as early as possible self._memory_tracker.start() if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() output = self.prediction_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset) output.metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples)) self.log(output.metrics) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval" ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:obj:`Dataset`): Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__` ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) .. note:: If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ # memory metrics - must set up as early as possible self._memory_tracker.start() if test_dataset is not None and not isinstance(test_dataset, collections.abc.Sized): raise ValueError("test_dataset must implement __len__") test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() output = self.prediction_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) output.metrics.update(speed_metrics(metric_key_prefix, start_time, len(test_dataset))) self._memory_tracker.stop_and_update_metrics(output.metrics) return output def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) if self.args.deepspeed and not self.args.do_train: # no harm, but flagging to the user that deepspeed config is ignored for eval # flagging only for when --do_train wasn't passed as only then it's redundant logger.info("Detected the deepspeed argument but it will not be used for evaluation") model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, half it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info("***** Running %s *****", description) logger.info(" Num examples = %d", num_examples) logger.info(" Batch size = %d", batch_size) losses_host: torch.Tensor = None preds_host: Union[torch.Tensor, List[torch.Tensor]] = None labels_host: Union[torch.Tensor, List[torch.Tensor]] = None world_size = 1 if is_torch_tpu_available(): world_size = xm.xrt_world_size() elif self.args.local_rank != -1: world_size = dist.get_world_size() world_size = max(1, world_size) eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size) if not prediction_loss_only: preds_gatherer = DistributedTensorGatherer(world_size, num_examples) labels_gatherer = DistributedTensorGatherer(world_size, num_examples) model.eval() if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None self.callback_handler.eval_dataloader = dataloader for step, inputs in enumerate(dataloader): loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) if loss is not None: losses = loss.repeat(batch_size) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) eval_loss = eval_losses_gatherer.finalize() preds = preds_gatherer.finalize() if not prediction_loss_only else None label_ids = labels_gatherer.finalize() if not prediction_loss_only else None if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if eval_loss is not None: metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def _gather_and_numpify(self, tensors, name): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): tensors = nested_xla_mesh_reduce(tensors, name) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return nested_numpify(tensors) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if has_labels: loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] return (loss, logits, labels) def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]): """ For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method. Args: inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. Returns: :obj:`int`: The number of floating-point operations. """ if hasattr(self.model, "floating_point_ops"): return self.model.floating_point_ops(inputs) else: return 0
[ "torch.distributed.get_world_size", "torch.cat", "torch.utils.data.dataloader.DataLoader", "torch.utils.data.sampler.RandomSampler", "torch.cuda.amp.autocast", "torch.no_grad", "torch.nn.parallel.DistributedDataParallel", "torch.utils.data.sampler.SequentialSampler", "torch.tensor", "torch.utils.data.distributed.DistributedSampler", "torch.cuda.amp.GradScaler", "torch.distributed.get_rank", "torch.distributed.barrier", "torch.distributed.get_local_rank", "torch.nn.DataParallel" ]
1.0
silvershine157/transformers
fd01104435914dd65c34026dcec8be008c40ee60
1.0
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Donny You ([email protected]) # Class Definition for GAN. import time import torch from datasets.gan.data_loader import DataLoader from methods.tools.runner_helper import RunnerHelper from methods.tools.trainer import Trainer from models.gan.model_manager import ModelManager from utils.tools.average_meter import AverageMeter from utils.tools.logger import Logger as Log class ImageTranslator(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() def _get_parameters(self): return self.gan_net.parameters() def train(self): """ Train function of every epoch during train phase. """ self.gan_net.train() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, solver_dict=self.configer.get('solver')) inputs = data_dict['imgA'] self.data_time.update(time.time() - start_time) # Forward pass. out_dict = self.gan_net(data_dict) # outputs = self.module_utilizer.gather(outputs) loss = out_dict['loss'].mean() self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get('solver', 'display_iter') == 0: Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.gan_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['imgA'] with torch.no_grad(): # Forward pass. out_dict = self.gan_net(data_dict) # Compute the loss of the val batch. self.val_losses.update(out_dict['loss'].mean().item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format( batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.gan_net.train() if __name__ == "__main__": # Test class for pose estimator. pass
[ "torch.no_grad" ]
1.0.1
MendelXu/ANN
f4eabeb27dbba5c9bdcf83d03776bffa34995666
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import Namespace from unittest import mock import pytest import torch import yaml from omegaconf import OmegaConf from packaging.version import Version from tensorboard.backend.event_processing.event_accumulator import EventAccumulator from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from tests.helpers import BoringModel from tests.helpers.runif import RunIf @RunIf(min_torch="1.5.0") def test_tensorboard_hparams_reload(tmpdir): class CustomModel(BoringModel): def __init__(self, b1=0.5, b2=0.999): super().__init__() self.save_hyperparameters() trainer = Trainer(max_steps=1, default_root_dir=tmpdir) model = CustomModel() assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) assert trainer.log_dir == trainer.logger.log_dir folder_path = trainer.log_dir # make sure yaml is there with open(os.path.join(folder_path, "hparams.yaml")) as file: # The FullLoader parameter handles the conversion from YAML # scalar values to Python the dictionary format yaml_params = yaml.safe_load(file) assert yaml_params["b1"] == 0.5 assert yaml_params["b2"] == 0.999 assert len(yaml_params.keys()) == 2 # verify artifacts assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1 # verify tb logs event_acc = EventAccumulator(folder_path) event_acc.Reload() data_pt_1_5 = b'\x12\x1b"\x04\n\x02b1"\x04\n\x02b2*\r\n\x0b\x12\thp_metric' data_pt_1_6 = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric' hparams_data = data_pt_1_6 if Version(torch.__version__) >= Version("1.6.0") else data_pt_1_5 assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.plugin_name == 'hparams' assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.content == hparams_data def test_tensorboard_automatic_versioning(tmpdir): """Verify that automatic versioning works""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning") assert logger.version == 2 def test_tensorboard_manual_versioning(tmpdir): """Verify that manual versioning works""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() (root_dir / "version_2").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1) assert logger.version == 1 def test_tensorboard_named_version(tmpdir): """Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """ name = "tb_versioning" (tmpdir / name).mkdir() expected_version = "2020-02-05-162402" logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.version == expected_version assert os.listdir(tmpdir / name) == [expected_version] assert os.listdir(tmpdir / name / expected_version) @pytest.mark.parametrize("name", ["", None]) def test_tensorboard_no_name(tmpdir, name): """Verify that None or empty name works""" logger = TensorBoardLogger(save_dir=tmpdir, name=name) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.root_dir == tmpdir assert os.listdir(tmpdir / "version_0") def test_tensorboard_log_sub_dir(tmpdir): class TestLogger(TensorBoardLogger): # for reproducibility @property def version(self): return "version" @property def name(self): return "name" trainer_args = dict( default_root_dir=tmpdir, max_steps=1, ) # no sub_dir specified save_dir = tmpdir / "logs" logger = TestLogger(save_dir) trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version") # sub_dir specified logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version", "sub_dir") # test home dir (`~`) handling save_dir = "~/tmp" explicit_save_dir = os.path.expanduser(save_dir) logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") # test env var (`$`) handling test_env_dir = "some_directory" os.environ["test_env_dir"] = test_env_dir save_dir = "$test_env_dir/tmp" explicit_save_dir = f"{test_env_dir}/tmp" logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") @pytest.mark.parametrize("step_idx", [10, None]) def test_tensorboard_log_metrics(tmpdir, step_idx): logger = TensorBoardLogger(tmpdir) metrics = { "float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1), } logger.log_metrics(metrics, step_idx) def test_tensorboard_log_hyperparams(tmpdir): logger = TensorBoardLogger(tmpdir) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": { "a": { "b": "c" } }, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, } logger.log_hyperparams(hparams) def test_tensorboard_log_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": { "a": { "b": "c" } }, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, } metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": { "a": { "b": "c" } }, "list": [1, 2, 3], # "namespace": Namespace(foo=Namespace(bar="buzz")), # "layer": torch.nn.BatchNorm1d, } hparams = OmegaConf.create(hparams) metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) @pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)]) def test_tensorboard_log_graph(tmpdir, example_input_array): """ test that log graph works with both model.example_input_array and if array is passed externaly """ model = BoringModel() if example_input_array is not None: model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) logger.log_graph(model, example_input_array) def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir): """ test that log graph throws warning if model.example_input_array is None """ model = BoringModel() model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) with pytest.warns( UserWarning, match='Could not log computational graph since the `model.example_input_array`' ' attribute is not set or `input_array` was not given' ): logger.log_graph(model) @mock.patch('pytorch_lightning.loggers.TensorBoardLogger.log_metrics') def test_tensorboard_with_accummulated_gradients(mock_log_metrics, tmpdir): """Tests to ensure that tensorboard log properly when accumulated_gradients > 1""" class TestModel(BoringModel): def __init__(self): super().__init__() self.indexes = [] def training_step(self, *args): self.log('foo', 1, on_step=True, on_epoch=True) if not self.trainer.train_loop.should_accumulate(): if self.trainer.logger_connector.should_update_logs: self.indexes.append(self.trainer.global_step) return super().training_step(*args) model = TestModel() model.training_epoch_end = None logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False) trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=12, limit_val_batches=0, max_epochs=3, accumulate_grad_batches=2, logger=[logger_0], log_every_n_steps=3, ) trainer.fit(model) calls = [m[2] for m in mock_log_metrics.mock_calls] count_epochs = [c["step"] for c in calls if "foo_epoch" in c["metrics"]] assert count_epochs == [5, 11, 17] count_steps = [c["step"] for c in calls if "foo_step" in c["metrics"]] assert count_steps == model.indexes @mock.patch('pytorch_lightning.loggers.tensorboard.SummaryWriter') def test_tensorboard_finalize(summary_writer, tmpdir): """ Test that the SummaryWriter closes in finalize. """ logger = TensorBoardLogger(save_dir=tmpdir) logger.finalize("any") summary_writer().flush.assert_called() summary_writer().close.assert_called() def test_tensorboard_save_hparams_to_yaml_once(tmpdir): model = BoringModel() logger = TensorBoardLogger(save_dir=tmpdir, default_hp_metric=False) trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=logger) assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) hparams_file = "hparams.yaml" assert os.path.isfile(os.path.join(trainer.log_dir, hparams_file)) assert not os.path.isfile(os.path.join(tmpdir, hparams_file)) @mock.patch('pytorch_lightning.loggers.tensorboard.log') def test_tensorboard_with_symlink(log, tmpdir): """ Tests a specific failure case when tensorboard logger is used with empty name, symbolic link ``save_dir``, and relative paths. """ os.chdir(tmpdir) # need to use relative paths source = os.path.join('.', 'lightning_logs') dest = os.path.join('.', 'sym_lightning_logs') os.makedirs(source, exist_ok=True) os.symlink(source, dest) logger = TensorBoardLogger(save_dir=dest, name='') _ = logger.version log.warning.assert_not_called()
[ "torch.rand", "torch.tensor" ]
1.4
xxxhycl2010/pytorch-lightning
7e18b118449133a5184b9014082ff1fb9818cf9b
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2Config, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, GPT2LMHeadModel, GPT2Model, GPT2Tokenizer, ) class GPT2ModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self, gradient_checkpointing=False): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, gradient_checkpointing=gradient_checkpointing, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPT2Model(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPT2Model(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPT2Model(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt2_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPT2Model(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPT2LMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_forward_and_backwards(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPT2LMHeadModel(config) model.to(torch_device) result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_double_lm_head_model( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = GPT2DoubleHeadsModel(config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, "labels": multiple_choice_inputs_ids, } result = model(**inputs) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_gpt2_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPT2ForSequenceClassification(config) model.to(torch_device) model.eval() print(config.num_labels, sequence_labels.size()) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class GPT2ModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = ( (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2ForSequenceClassification) if is_torch_available() else () ) all_generative_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else () test_missing_keys = False def setUp(self): self.model_tester = GPT2ModelTester(self) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt2_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model(*config_and_inputs) def test_gpt2_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) def test_gpt2_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) def test_gpt2_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) def test_gpt2_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_gpt2_double_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs) def test_gpt2_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) def test_gpt2_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(gradient_checkpointing=True) self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs) @slow def test_batch_generation(self): model = GPT2LMHeadModel.from_pretrained("gpt2") model.to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) torch.manual_seed(0) outputs = model.generate( input_ids=inputs["input_ids"].to(torch_device), attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit of a mess. I'm not sure if he's going", "Today, I'm going to be doing a lot of research on this. I", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GPT2Model.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class GPT2ModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_gpt2(self): for checkpointing in [True, False]: model = GPT2LMHeadModel.from_pretrained("gpt2", gradient_checkpointing=checkpointing) model.to(torch_device) input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device) # The dog expected_output_ids = [ 464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290, ] # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids) @slow def test_lm_generate_distilgpt2(self): model = GPT2LMHeadModel.from_pretrained("distilgpt2") model.to(torch_device) input_ids = torch.tensor([[464, 1893]], dtype=torch.long, device=torch_device) # The president expected_output_ids = [ 464, 1893, 286, 262, 1578, 1829, 11, 290, 262, 1893, 286, 262, 1578, 7526, 11, 423, 587, 287, 262, 2635, ] # The president of the United States, and the president of the United Kingdom, have been in the White output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
[ "torch.cat", "torch.ones", "torch.manual_seed", "torch.tensor", "torch.allclose" ]
1.0
katarinaslama/transformers-1
a5a8eeb772b185b0746f3ce9be6ae43181d2ca71
1.9
from logging import getLogger from typing import Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.onnx import export logger = getLogger(__name__) def export_to_onnx( model: nn.Module, dummy_input: [Union[Tuple], torch.Tensor], file, opset_version: int = 12, input_names: Optional[List[str]] = None, output_names: Optional[List[str]] = None, dynamic_axes: Dict[str, Dict[int, str]] = None ) -> None: """Exports PyTorch model to ONNX format. Args: model: PyTorch module. dummy_input: Dummy input. file: Path to save converted model or file-like object. opset_version: Version of ONNX operator set. Defaults to 12. input_names: Names of model inputs. Defaults to None. output_names: Names of model outputs. Defaults to None. dynamic_axes: Axes (input or/and outputs) with dynamic shapes. Defaults to None. Examples: >>> from transformers import AutoModel, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') >>> model = AutoModel.from_pretrained('bert-base-uncased') >>> encoded = tokenizer('aboba', return_tensors='np') >>> >>> export_to_onnx( >>> model, >>> dummy_input=tuple(encoded.values()), >>> path_to_save='model.onnx', >>> input_names=list(encoded.keys()), >>> output_names=['last_hidden_state', 'pooler_output'], >>> dynamic_axes={ >>> 'input_ids' : {0 : 'batch_size', 1: 'seq'}, >>> 'token_type_ids' : {0 : 'batch_size', 1: 'seq'}, >>> 'attention_mask' : {0 : 'batch_size', 1: 'seq'}, >>> 'last_hidden_state' : {0 : 'batch_size', 1: 'seq'}, >>> 'pooler_output' : {0 : 'batch_size', 1: 'seq'} >>> } >>> ) """ model.eval() export( model, dummy_input, file, opset_version=opset_version, do_constant_folding=True, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes ) logger.warning(f'Model was exported to ONNX.')
[ "torch.onnx.export" ]
1.9.0
esceptico/squeezer
98bc4c7923c6aa3b12ac81444d79392826fc34c6
1.7
import pandas as pd pd.options.mode.chained_assignment = None import numpy as np from clinicaldg.eicu.data_extraction.data_extraction_mortality import data_extraction_mortality import clinicaldg.eicu.Constants as Constants from sklearn.preprocessing import StandardScaler, LabelEncoder from torch.utils.data import ConcatDataset, Dataset hospitals = pd.read_csv((Constants.eicu_dir/'hospital.csv')) hospitals['region'] = hospitals['region'].fillna('Missing') patients = pd.read_csv((Constants.eicu_dir/'patient.csv'))[['patientunitstayid', 'hospitalid', 'gender']] class LabelEncoderExt(object): ''' Label encoder, but when encountering an unseen label on the test set, will set to "Missing" ''' def __init__(self): self.label_encoder = LabelEncoder() def fit(self, data_list): self.label_encoder = self.label_encoder.fit(list(map(str, list(data_list))) + ['Missing']) self.classes_ = self.label_encoder.classes_ return self def transform(self, data_list): data_list = list(map(str, list(data_list))) for unique_item in np.unique(data_list): if unique_item not in self.label_encoder.classes_: data_list = ['Missing' if x==unique_item else x for x in data_list] return self.label_encoder.transform(data_list) class AugmentedDataset(): def __init__(self, augs = [], train_pct = 0.7, val_pct = 0.1): self.reg_mort, self.reg_pat, self.scalers, self.labelencoders = self._get_mortality_data(train_pct, val_pct) for a in augs: a.augment(self.reg_mort, self.reg_pat) def get_torch_dataset(self, envs, dset): ''' envs: a list of region names dset: one of ['train', 'val', 'test']. For the test environment, use "test" for dset ''' datasets = [] for r in envs: datasets.append(eICUDataset(self.reg_mort[r][self.reg_mort[r]['fold'] == dset], self.reg_pat[r][self.reg_pat[r]['fold'] == dset])) return ConcatDataset(datasets) def get_num_levels(self): return ({i: len(self.labelencoders[i].classes_) for i in Constants.ts_cat_features}, {i: len(self.labelencoders[i].classes_) for i in Constants.static_cat_features}, ) def _get_mortality_data(self, train_pct, val_pct): mort_df = data_extraction_mortality(str(Constants.benchmark_dir)) targets = mort_df.groupby('patientunitstayid').agg({'hospitaldischargestatus': 'first'}).reset_index() pat_df = pd.merge(patients, hospitals, on = 'hospitalid', how = 'left') pat_df = pd.merge(pat_df, targets, on = 'patientunitstayid', how = 'inner').rename(columns = {'hospitaldischargestatus': 'target'}) pat_df = pat_df[pat_df.patientunitstayid.isin(mort_df.patientunitstayid)].sample(frac = 1) # shuffle pat_df['fold'] = '' pat_df['fold'].iloc[:int(len(pat_df)*train_pct)] = 'train' pat_df['fold'].iloc[int(len(pat_df)*train_pct):int(len(pat_df)*(train_pct + val_pct))] = 'val' pat_df['fold'].iloc[int(len(pat_df)*(train_pct + val_pct)):] = 'test' mort_df = mort_df.merge(pat_df[['patientunitstayid', 'fold']], on = 'patientunitstayid') # make sure everyone has exactly 48h hours of data ## make multiindex with 48h ## groupby and ffill ## fill any remaining missing features with normal_values iterables = [np.unique(mort_df['patientunitstayid']), list(range(1, mort_df.itemoffset.max()+1))] multiind = pd.MultiIndex.from_product(iterables, names = ['patientunitstayid', 'itemoffset']) ind_df = pd.DataFrame(index = multiind) mort_df = pd.merge(ind_df, mort_df, left_index = True, right_on = ['patientunitstayid', 'itemoffset'], how = 'left') mort_df = mort_df.set_index(['patientunitstayid', 'itemoffset']).sort_index().groupby('patientunitstayid').ffill() for back_col in ['hospitaldischargestatus', 'fold'] + Constants.static_cont_features + Constants.static_cat_features: mort_df[back_col] = mort_df[back_col].fillna(method = 'backfill') for feat, val in Constants.normal_values.items(): mort_df[feat] = mort_df[feat].fillna(val) # scale continuous and static ts features scalers = {} for feat in Constants.ts_cont_features + Constants.static_cont_features: scalers[feat] = StandardScaler().fit(mort_df.loc[mort_df.fold == 'train', feat].values.reshape(-1, 1)) mort_df[feat] = scalers[feat].transform(mort_df[feat].values.reshape(-1, 1))[:, 0] # encode continuous and static cat features labelencoders, num_encodings = {}, {} for feat in Constants.ts_cat_features + Constants.static_cat_features: mort_df[feat] = mort_df[feat].fillna('Missing') labelencoders[feat] = LabelEncoderExt().fit(mort_df.loc[mort_df.fold == 'train', feat]) mort_df[feat] = labelencoders[feat].transform(mort_df[feat]) num_encodings[feat] = len(labelencoders[feat].classes_) reg_mort, reg_pat = {}, {} for reg in pat_df.region.unique(): sub_pat = pat_df[pat_df.region == reg] sub = mort_df[mort_df.index.get_level_values(0).isin(sub_pat.patientunitstayid)] reg_mort[reg] = sub reg_pat[reg] = sub_pat.set_index('patientunitstayid') return reg_mort, reg_pat, scalers, labelencoders class eICUDataset(Dataset): def __init__(self, mort_df, pat_df): self.mort_df = mort_df self.pat_df = pat_df def __len__(self): return self.pat_df.shape[0] def __getitem__(self, idx): pat_id = self.pat_df.index[idx] mort_data = self.mort_df.loc[pat_id] ts_cont_feats = mort_data[Constants.ts_cont_features].values ts_cat_feats = mort_data[Constants.ts_cat_features].values static_not_in_mort = [i for i in Constants.static_cont_features if i not in self.mort_df] static_in_mort = [i for i in Constants.static_cont_features if i in self.mort_df] static_cont_feats = np.concatenate((mort_data[static_in_mort].iloc[0].values, self.pat_df.loc[pat_id, static_not_in_mort].values)).astype(float) static_cat_feats = mort_data[Constants.static_cat_features].iloc[0].values return ({'pat_id': pat_id, 'ts_cont_feats': ts_cont_feats, 'ts_cat_feats': ts_cat_feats, 'static_cont_feats': static_cont_feats, 'static_cat_feats': static_cat_feats, 'gender': int(self.pat_df.loc[pat_id, 'gender'].strip() == 'Male')}, self.pat_df.loc[pat_id, 'target'])
[ "torch.utils.data.ConcatDataset" ]
1.7.0
MLforHealth/ClinicalDG
2de4a8e155231f07d80036504a6f49b50004654e
1.4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=missing-module-docstring # pylint: disable=missing-class-docstring # pylint: disable=missing-function-docstring import os import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import fairscale.optim as optim skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO # type: ignore DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu") def setup_module(module): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" dist.init_process_group(backend=BACKEND, rank=0, world_size=1) def dist_init(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29501" dist.init_process_group(backend=BACKEND, rank=rank, world_size=world_size) def test_create(): params = [torch.rand(1)] o = optim.OSS(params, lr=0.01) def test_state_dict(): x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], lr=0.1, momentum=0.9) x.backward() o.step() assert x == torch.tensor([0.9], device=DEVICE) assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE) o.zero_grad() o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none state_dict = o.state_dict() # Check that the state dict is pytorch-compliant key wise assert "param_groups" in state_dict.keys() assert "state" in state_dict.keys() # Check that the pulled state is what we expect, and that we have all the expected keys assert state_dict["param_groups"][0]["lr"] == 0.1 assert state_dict["param_groups"][0]["momentum"] == 0.9 assert not state_dict["param_groups"][0]["nesterov"] assert state_dict["param_groups"][0]["weight_decay"] == 0.0 assert state_dict["param_groups"][0]["dampening"] == 0.0 # Check that the pulled state and the .param_groups attribute are in sync for k in state_dict["param_groups"][0].keys(): if k != "params": assert state_dict["param_groups"][0][k] == o.param_groups[0][k] # Check that it's correctly loaded o = optim.OSS([x], lr=0.01) o.load_state_dict(state_dict) # Check that state is correct and on proper device assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE) # We should now be using a lr of 0.1, both within the optimizer # and as exposed by the .param_groups attribute assert o.param_groups[0]["lr"] == 0.1 x.backward() o.step() assert x == torch.tensor([0.71], device=DEVICE) assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE) # Check that the exposed param_groups are on the proper device assert o.param_groups[0]["params"][0].device == x.device def test_lr_scheduler(): x = torch.tensor([1.0], device=DEVICE, requires_grad=True) x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], lr=0.01) o2 = torch.optim.SGD([x2], lr=0.01) s = torch.optim.lr_scheduler.StepLR(o, 1) s2 = torch.optim.lr_scheduler.StepLR(o2, 1) for _ in range(5): x.backward() o.zero_grad() o.step() s.step() x2.backward() o2.zero_grad() o2.step() s2.step() assert x == x2 def test_step_with_kwargs(): class SGDWithStepKWArg(torch.optim.SGD): def step(self, closure=None, kwarg=[]): super().step() kwarg.append(5) kwarg = [] x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], SGDWithStepKWArg, lr=0.1) x.backward() o.step(0, kwarg=kwarg) assert kwarg == [5] assert x == torch.tensor([0.9], device=DEVICE) def test_step_without_closure(): class SGDWithoutClosure(torch.optim.SGD): def step(self): return super().step() x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], SGDWithoutClosure, lr=0.1) x.backward() o.step() assert x == torch.tensor([0.9], device=DEVICE) def test_local_state_dict(): x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], lr=0.1) local_state_dict = o.local_state_dict() o = optim.OSS([x], lr=0.01) o.load_local_state_dict(local_state_dict) # We should now be using a lr of 0.1. assert o.optim.param_groups[0]["lr"] == 0.1 assert o.param_groups[0]["lr"] == 0.1 x.backward() o.step() assert x == torch.tensor([0.9], device=DEVICE) def test_implicit_local_state_dict(): x = torch.tensor([1.0], device=DEVICE, requires_grad=True) o = optim.OSS([x], lr=0.1) local_state_dict = o.state_dict() o = optim.OSS([x], lr=0.01) o.load_state_dict(local_state_dict) # We should now be using a lr of 0.1. assert o.optim.param_groups[0]["lr"] == 0.1 assert o.param_groups[0]["lr"] == 0.1 x.backward() o.step() assert x == torch.tensor([0.9], device=DEVICE) def run_test_add_param_group(rank, world_size): dist_init(rank, world_size) params = [] for size in [4, 5, 2, 6, 4]: params.append(torch.rand(size, 1)) o = optim.OSS(params, lr=0.1) assert len(o.param_groups) == 1 o.add_param_group({"params": [torch.rand(3, 1)]}) assert len(o.param_groups) == 2 # Verify that added group is added to the correct partition making all have 8 elements. assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8 assert len(o.optim.param_groups) == 2 def test_add_param_group(): world_size = 3 mp.spawn(run_test_add_param_group, args=(world_size,), nprocs=world_size, join=True) def run_test_zero_grad(rank, world_size): dist_init(rank, world_size) x = torch.rand(1) m = torch.nn.Linear(1, 1) o = optim.OSS(m.parameters(), lr=0.1) y = m(x) y.backward(x) assert m.weight.grad assert m.bias.grad o.zero_grad() assert not m.weight.grad assert not m.bias.grad def test_zero_grad(): world_size = 2 mp.spawn(run_test_zero_grad, args=(world_size,), nprocs=world_size, join=True) def run_test_step(rank, world_size): dist_init(rank, world_size) x = torch.tensor([float(rank + 1)], device=rank) m = torch.nn.Linear(1, 1) m.weight.data = torch.tensor([[1.0]]) m.bias.data = torch.tensor([2.0]) m.to(rank) o = optim.OSS(m.parameters(), lr=0.1) y = m(x) y.backward(x) for p in m.parameters(): dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM) p.grad.data /= world_size o.step() assert m.weight == torch.tensor([[0.75]], device=rank) assert m.bias == torch.tensor([1.85], device=rank) @skip_if_no_cuda def test_step(): world_size = min(2, torch.cuda.device_count()) mp.spawn(run_test_step, args=(world_size,), nprocs=world_size, join=True) def run_test_step_with_closure(rank, world_size, optimizer=None): dist_init(rank, world_size) x_val = rank + 1 weight = 1.0 bias = 2.0 error = 1.0 target = torch.tensor([x_val * weight + bias + error], device=rank) loss_fn = torch.nn.L1Loss() x = torch.tensor([float(x_val)], device=rank) m = torch.nn.Linear(1, 1) m.weight.data = torch.tensor([[weight]]) m.bias.data = torch.tensor([bias]) m.to(rank) o = optim.OSS(m.parameters(), lr=0.1) y = m(x) y.backward(x) for p in m.parameters(): dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM) p.grad.data /= world_size def closure(): o.zero_grad() output = m(x) loss = loss_fn(output, target) loss.backward() return loss loss = o.step(closure=closure) assert loss == torch.tensor(error, device=rank) assert m.weight == torch.tensor([[1.1]], device=rank) assert m.bias == torch.tensor([2.1], device=rank) @skip_if_no_cuda def test_step_with_closure(): world_size = min(2, torch.cuda.device_count()) mp.spawn(run_test_step_with_closure, args=(world_size,), nprocs=world_size, join=True) def run_test_sharding(rank, world_size): dist_init(rank, world_size) params = [] for size in [5, 4, 2, 6, 4, 3]: params.append(torch.rand(size, 1)) o = optim.OSS(params, lr=0.1) assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8 def test_sharding(): world_size = 3 mp.spawn(run_test_sharding, args=(world_size,), nprocs=world_size, join=True) def run_test_collect_shards(rank, world_size, reference_rank): dist_init(rank, world_size) device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE # Run a dummy step so that the optimizer state dict exists batch, input_width, hidden, target_width = 3, 20, 10, 5 target = torch.rand((batch, target_width), device=device) inputs = torch.rand((batch, input_width), device=device) model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)) model.to(device) loss_fn = torch.nn.L1Loss() loss_fn.to(device) # With SGD, Momentum is required to get a state to shard optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99) def closure(): optimizer.zero_grad() output = model(inputs) loss = loss_fn(output, target) loss.backward() return loss _ = optimizer.step(closure=closure) # Update the optimizer state on the reference rank optimizer.consolidate_state_dict(recipient_rank=reference_rank) # Fetch the state on the reference rank # - check that it has the correct size # - load it again if rank == reference_rank: optimizer_state_dict = optimizer.state_dict() assert len(optimizer_state_dict["state"]) == world_size else: optimizer_state_dict = {} optimizer_state_dict = optim.utils.broadcast_object( optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device ) # Load the optimizer state dict optimizer.load_state_dict(optimizer_state_dict) def test_collect_shards(): world_size = 3 if torch.cuda.is_available(): world_size = min(world_size, torch.cuda.device_count()) reference_rank = 0 mp.spawn( run_test_collect_shards, args=(world_size, reference_rank), nprocs=world_size, join=True, )
[ "torch.nn.Linear", "torch.device", "torch.rand", "torch.optim.lr_scheduler.StepLR", "torch.distributed.init_process_group", "torch.optim.SGD", "torch.multiprocessing.spawn", "torch.nn.L1Loss", "torch.cuda.device_count", "torch.cuda.is_available", "torch.tensor", "torch.distributed.all_reduce" ]
1.4.0
joshim5/fairscale
1c2a6f6b46646866f3e86d628b8a4ca437f68215
1.8
import torch import torch.nn as nn from utils import binary_accuracy from sklearn.metrics import precision_recall_fscore_support import numpy as np only_one_iteration = False def train(model, iterator, optimizer, criterion, device): epoch_loss = 0 epoch_acc = 0 precission = 0 recall = 0 f1 = 0 model.train() for i, batch in enumerate(iterator): optimizer.zero_grad() predictions = model(batch.text, device).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) loss.backward() optimizer.step() epoch_loss += float(loss.item()) epoch_acc += float(acc.item()) pr_epoch, rec_epoch, f1_epoch, _ = precision_recall_fscore_support(batch.label.cpu().detach().numpy(), torch.round(torch.sigmoid(predictions)).cpu().detach().numpy(),average='macro') precission += pr_epoch recall += rec_epoch f1 += f1_epoch if only_one_iteration: break return epoch_loss / len(iterator), epoch_acc / len(iterator), precission/ len(iterator), recall/ len(iterator), f1/ len(iterator) def evaluate(model, iterator, criterion, device): epoch_loss = 0 epoch_acc = 0 precission = 0 recall = 0 f1 = 0 model.eval() with torch.no_grad(): for batch in iterator: predictions = model(batch.text, device).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) epoch_loss += loss.item() epoch_acc += acc.item() pr_epoch, rec_epoch, f1_epoch, _ = precision_recall_fscore_support(batch.label.cpu().detach().numpy(), torch.round(torch.sigmoid(predictions)).cpu().detach().numpy(),average='micro') precission += pr_epoch recall += rec_epoch f1 += f1_epoch if only_one_iteration: break return epoch_loss / len(iterator), epoch_acc / len(iterator), precission/ len(iterator), recall/ len(iterator), f1/ len(iterator)
[ "torch.sigmoid", "torch.no_grad" ]
1.8.1
trusthlt/dp-across-nlp-tasks
ec3e03511420044cdb0bb1a3574925d354ff03f4
1.5
import os import time import ujson as json import torch import sys import pickle import numpy as np from torch.utils.data import Dataset import torch.distributed as dist import torch.nn.functional as F from bootleg.symbols.alias_entity_table import AliasEntityTable from bootleg.symbols.constants import * from bootleg.prep import prep_data from bootleg.utils import logging_utils, data_utils, train_utils from bootleg.utils.utils import import_class from bootleg.utils import utils # https://github.com/pytorch/pytorch/issues/37581#issuecomment-624516586 import warnings warnings.filterwarnings("ignore", message=".*The given NumPy array is not writeable.*") class WikiDataset(Dataset): """ Main dataset class that handles preparing a batch of input. Things to note **Input is a sentence with mentions that are both true and false golds. A true gold is one that was directly mined with Wikipedia. A false gold is one that was generated by weak labelling. **We determine entities that are in a slice by if the true entity index is -1 or not. During train, if use_weak_label is true, we allow the model to leverage true and false golds. During eval, we only score true enchors. **Some embeddings require more expensive processing. E.g., extracting the pairs of candidate entities that are connected in a KG. When this processing is done in the dataloader where is can benefit from multiple dataloader threads, the embedding is stored in batch_on_the_fly. This embedding must have a batch_prep method When this processing is done during data prep, the embedding is stored in batch_prep. **If training a NIL model, we support randomly removing the true entity from the candidate list and setting the true entity index to be the NIL entity. **We support data slices (subsets of data) for both training (if slice model) and eval. If using slices for training model, we supports probabilistic slice indices. Attributes: batch_prepped_emb_file_names: embedding that are batch prepped in advance batch_on_the_fly_embs: embedding where the batch_prep method is called in the __get_item__ method random_nil: whether to do NIL candidate random generation Batch Inputs: start_idx_in_sent: first token index of a mention, end_idx_in_sent: last token index of a mention, alias_idx: the alias (mention) index in our alias dictionary, word_indices: word indexes into the word emeddings (e.g., BERT token indices), sent_idx: unique sentence index, subsent_idx: unique subsentence index in the case of sentence windowing, entity_indices: the entity indices in our entity dictionary, alias_list_pos: keeps track of the original alias position in the list of all aliases in case the sentence is split via windowing true_entity_idx_for_train: entity indices for true and false golds, as seen during train slice_indices (optional): if slice dataset, we pass in matrix where each row is alias and each column is 0/1 if that mention is in the slice or not <ind_task_name> (option): probabilistic labels of if an mention is in a slice or not (used in slicing model) <pred_task_name>: NED prediction labels; for slice model, predictions of aliases not in the slice are masked <embs>: all batch prep or batch on the fly emeddings """ def __init__(self, args, use_weak_label, input_src, dataset_name, is_writer, distributed, word_symbols, entity_symbols, slice_dataset=None, dataset_is_eval=False): # Need to save args to reinstantiate logger self.args = args self.logger = logging_utils.get_logger(args) # Number of candidates, including NIL if a NIL model (train_in_candidates is False) self.K = entity_symbols.max_candidates + (not args.data_config.train_in_candidates) self.num_entities_with_pad_and_nocand = entity_symbols.num_entities_with_pad_and_nocand self.dataset_name = dataset_name self.slice_dataset = slice_dataset self.dataset_is_eval = dataset_is_eval # Slice names used for eval slices and a slicing model self.slice_names = train_utils.get_data_slices(args, dataset_is_eval) self.storage_type_file = data_utils.get_storage_file(self.dataset_name) # Mappings from sent_idx to row_id in dataset self.sent_idx_file = os.path.splitext(dataset_name)[0] + "_sent_idx.json" self.type_pred = False if args.data_config.type_prediction.use_type_pred: self.type_pred = True self.eid2typeid, self.num_types_with_pad = self.load_coarse_type_table(args, entity_symbols) # Load memory mapped file self.logger.info("Loading dataset...") self.logger.debug("Seeing if " + dataset_name + " exists") if (args.data_config.overwrite_preprocessed_data or (not os.path.exists(self.dataset_name)) or (not os.path.exists(self.sent_idx_file)) or (not os.path.exists(self.storage_type_file)) or (not os.path.exists(data_utils.get_batch_prep_config(self.dataset_name)))): start = time.time() self.logger.debug(f"Building dataset with {input_src}") # Only prep data once per node if is_writer: prep_data(args, use_weak_label=use_weak_label, dataset_is_eval=self.dataset_is_eval, input_src=input_src, dataset_name=dataset_name, prep_dir=data_utils.get_data_prep_dir(args)) if distributed: # Make sure all processes wait for data to be created dist.barrier() self.logger.debug(f"Finished building and saving dataset in {round(time.time() - start, 2)}s.") start = time.time() # Storage type for loading memory mapped file of dataset self.storage_type = pickle.load(open(self.storage_type_file, 'rb')) self.data = np.memmap(self.dataset_name, dtype=self.storage_type, mode='r') self.data_len = len(self.data) # Mapping from sentence idx to rows in the dataset (indices). # Needed when sampling sentence indices from slices for evaluation. sent_idx_to_idx_str = utils.load_json_file(self.sent_idx_file) self.sent_idx_to_idx = {int(i):val for i,val in sent_idx_to_idx_str.items()} self.logger.info(f"Finished loading dataset.") # Stores info about the batch prepped embedding memory mapped files and their shapes and datatypes # so we can load them self.batch_prep_config = utils.load_json_file(data_utils.get_batch_prep_config(self.dataset_name)) self.batch_prepped_emb_files = {} self.batch_prepped_emb_file_names = {} for emb in args.data_config.ent_embeddings: if 'batch_prep' in emb and emb['batch_prep']: assert emb.key in self.batch_prep_config, f'Need to prep {emb.key}. Please call prep instead of run with batch_prep_embeddings set to true.' self.batch_prepped_emb_file_names[emb.key] = os.path.join(os.path.dirname(self.dataset_name), os.path.basename(self.batch_prep_config[emb.key]['file_name'])) self.batch_prepped_emb_files[emb.key] = np.memmap( self.batch_prepped_emb_file_names[emb.key], dtype=self.batch_prep_config[emb.key]['dtype'], shape=tuple(self.batch_prep_config[emb.key]['shape']), mode='r') assert len(self.batch_prepped_emb_files[emb.key]) == self.data_len,\ f'Preprocessed emb data file {self.batch_prep_config[emb.key]["file_name"]} does not match length of main data file.' # Stores embeddings that we compute on the fly; these are embeddings where batch_on_the_fly is set to true. self.batch_on_the_fly_embs = {} for emb in args.data_config.ent_embeddings: if 'batch_on_the_fly' in emb and emb['batch_on_the_fly'] is True: mod, load_class = import_class("bootleg.embeddings", emb.load_class) try: self.batch_on_the_fly_embs[emb.key] = getattr(mod, load_class)(main_args=args, emb_args=emb['args'], entity_symbols=entity_symbols, model_device=None, word_symbols=None, key=emb.key) except AttributeError as e: self.logger.warning(f'No prep method found for {emb.load_class} with error {e}') except Exception as e: print("ERROR", e) # The data in this table shouldn't be pickled since we delete it in the class __getstate__ self.alias2entity_table = AliasEntityTable(args=args, entity_symbols=entity_symbols) # Random NIL percent self.mask_perc = args.train_config.random_nil_perc self.random_nil = False # Don't want to random mask for eval if not dataset_is_eval: # Whether to use a random NIL training regime self.random_nil = args.train_config.random_nil if self.random_nil: self.logger.info(f'Using random nils during training with {self.mask_perc} percent') def __len__(self): return self.data_len def __getitem__(self, key): # start = time.time() example = self.data[key] entity_indices = self.alias2entity_table(example['alias_idx']) # True entities will be true and false golds for train (if use_weak_label in config is true) and just true golds for eval true_entities = torch.from_numpy(example['true_entity_idx']) M = true_entities.shape if self.random_nil: # example['true_entity_idx'] is M -> we want to sample some % of these and set them to not in candidate list # randomly mask each entity embedding bern_prob = (torch.ones(M) * self.mask_perc) keep_mask = torch.bernoulli(bern_prob) < 1 # whichever we sample, we want to set corresponding true candidate to -1 and mask it out # to simulate not being in the candidate list # can't have negatives for one hot so we temporarily cast padded values to 0 padded_entities = true_entities == -1 true_entities = true_entities.masked_fill(padded_entities, 0) one_hot_true_entities = F.one_hot(true_entities, num_classes=self.K) one_hot_true_entities[keep_mask.unsqueeze(-1).expand_as(one_hot_true_entities)] = 0 one_hot_true_entities[padded_entities.unsqueeze(-1).expand_as(one_hot_true_entities)] = 0 entity_indices = entity_indices.masked_fill(one_hot_true_entities, -1) # set new true label to 0 ('not in candidate') true_entities = true_entities.masked_fill(~keep_mask, 0) # make sure original padded entities are padded true_entities = true_entities.masked_fill(padded_entities, -1) start_idx_in_sent = example['start_idx_in_sent'] end_idx_in_sent = example['end_idx_in_sent'] example_dict = {'start_idx_in_sent': start_idx_in_sent, 'end_idx_in_sent': end_idx_in_sent, 'alias_idx': example['alias_idx'], 'word_indices': example['word_indices'], 'sent_idx': example['sent_idx'], 'subsent_idx': example['subsent_idx'], 'entity_indices': entity_indices, # due to subsentence split, we need to keep track of the original alias position in the list # to do eval over slices when distributed # (examples from a sentence may be distributed across different GPUs) 'alias_list_pos': example['alias_list_pos'], # true entities of the mentions seen during train (true and false golds); in eval, we only keep # true entities of true golds 'true_entity_idx_for_train': example['true_entity_idx_for_train']} # If this dataset is associated with slices, slice_indices is a incidence matrix indicating # for each alias in the batch, which ones participate in which slice (slices keep track of sentence indexes and aliases to predict) # Slices are not windowed like that are for training data. if self.slice_dataset is not None: # -1 is pad and should not be in the mapping from sentence index to row in array. assert -1 != self.slice_dataset.sent_idx_arr[example["sent_idx"]] # One row per mention and one column per slice slice_indices = np.hstack([self.slice_dataset.data[slice_name][self.slice_dataset.sent_idx_arr[example["sent_idx"]]].alias_to_predict.T for slice_name in self.slice_names]) prob_labels_arr = np.hstack([self.slice_dataset.data[slice_name][self.slice_dataset.sent_idx_arr[example["sent_idx"]]].prob_labels.T for slice_name in self.slice_names]) # alias_list_pos will have -1 for no alias; we want these to become zero in slice_indices. # Therefore we add a pad row to the bottom of slice_indices slice_indices = np.vstack([slice_indices, np.zeros(slice_indices.shape[1])]).astype(int) slice_indices = slice_indices[example['alias_list_pos']] # Probabilistic slice labels for slice indicator head training prob_labels_arr = np.vstack([prob_labels_arr, np.zeros(prob_labels_arr.shape[1])]).astype(float) prob_labels_arr = prob_labels_arr[example['alias_list_pos']] # If this is an eval dataset, keep slice indices intact for eval_wrapper example_dict['slice_indices'] = slice_indices # Assign true entity idx to -1 if example alias doesn't participate in slice for i, slice_name in enumerate(self.slice_names): prob_labels = prob_labels_arr[:,i] bin_in_slice_labels = slice_indices[:,i] # NED prediction labels; set predictions to be -1 for masking for mentions not in a slice pred_labels = np.copy(true_entities) pred_labels[~(bin_in_slice_labels).astype(bool)] = -1 # Mask out slice alias labels for which we don't want to make a prediction # We need to use true_entity_idx to account for subsentences which indicate # which alias to predict prob_labels[true_entities == -1] = -1 ind_task_name = train_utils.get_slice_head_ind_name(slice_name) pred_task_name = train_utils.get_slice_head_pred_name(slice_name) # Add indicator head and prediction head labels example_dict[ind_task_name] = prob_labels example_dict[pred_task_name] = pred_labels else: example_dict[train_utils.get_slice_head_pred_name(FINAL_LOSS)] = example['true_entity_idx'] # Add type preds if self.type_pred: example_dict["type_labels"] = self.eid2typeid[true_entities] # Add embeddings to example forward for emb_name in self.batch_prepped_emb_files: example_dict[emb_name] = np.asarray(self.batch_prepped_emb_files[emb_name][key]) # Prep the embeddings (this will call the batch_prep method for the embedding) for emb_name, emb in self.batch_on_the_fly_embs.items(): example_dict[emb_name] = emb.batch_prep(example['alias_idx'], entity_indices) return example_dict def __getstate__(self): state = self.__dict__.copy() # Not picklable del state['data'] del state['logger'] # the sent_idx mapping is expensive to pickle so remove # also not needed in dataloader workers so we don't need to setstate for it del state['sent_idx_to_idx'] del state['batch_prepped_emb_files'] return state def __setstate__(self, state): self.__dict__.update(state) self.data = np.memmap(self.dataset_name, dtype=self.storage_type, mode='r') self.batch_prepped_emb_files = {} for emb_name, file_name in self.batch_prepped_emb_file_names.items(): self.batch_prepped_emb_files[emb_name] = np.memmap(self.batch_prepped_emb_file_names[emb_name], dtype=self.batch_prep_config[emb_name]['dtype'], shape=tuple(self.batch_prep_config[emb_name]['shape']), mode='r') self.logger = logging_utils.get_logger(self.args) def __repr__(self): return f"Dataset {self.dataset_name}" def load_coarse_type_table(self, args, entity_symbols): emb_dir = args.data_config.emb_dir coarse_type_file = args.data_config.type_prediction.file with open(os.path.join(emb_dir, coarse_type_file)) as in_f: # take the first type; UNK type is 0 qid2type = {} max_type = 0 for k, v in json.load(in_f).items(): if len(v) > 0: qid2type[k] = v[0]+1 else: qid2type[k] = 0 max_type = max(max_type, qid2type[k]) # We assume types are indexed from 0. So, 6 types will have indices 0 - 5. Max type will get 5+1 = 6. assert max_type == args.data_config.type_prediction.num_types,\ f"{args.data_config.type_prediction.num_types} from args.data_config.type_prediction.num_types must match our computed number {max_type}" # All qids get unk types values = [0 for _ in range(self.num_entities_with_pad_and_nocand)] for qid in qid2type: if entity_symbols.qid_exists(qid): values[entity_symbols.get_eid(qid)] = qid2type[qid] # Padded eid gets -1 values[-1] = -1 num_types_with_pad = max_type+1 eid2coarsetype = torch.tensor(values) return eid2coarsetype, num_types_with_pad
[ "torch.nn.functional.one_hot", "torch.from_numpy", "torch.ones", "torch.tensor", "torch.bernoulli", "torch.distributed.barrier" ]
1.5.0
mleszczy/bootleg
162d74001cdfbbe146753393641d549e0328acb1
1.0
""" """ from __future__ import division from torch.optim.optimizer import Optimizer, required import numpy as np import torch from typing import NamedTuple, List from dataclasses import dataclass from enum import Enum from typing import Union, Tuple # from scipy.sparse.linalg import svds from scipy.optimize import minimize_scalar class LayerType(Enum): CONV = 1 FC = 2 NON_CONV = 3 @dataclass class LayerMetrics: rank: float KG: float condition: float @dataclass class ConvLayerMetrics: input_channel: LayerMetrics output_channel: LayerMetrics class LRMetrics(NamedTuple): rank_velocity: List[float] r_conv: List[float] def EVBMF(Y, sigma2=None, H=None): """Implementation of the analytical solution to Empirical Variational Bayes Matrix Factorization. This function can be used to calculate the analytical solution to empirical VBMF. This is based on the paper and MatLab code by Nakajima et al.: "Global analytic solution of fully-observed variational Bayesian matrix factorization." Notes ----- If sigma2 is unspecified, it is estimated by minimizing the free energy. If H is unspecified, it is set to the smallest of the sides of the input Y. Attributes ---------- Y : numpy-array Input matrix that is to be factorized. Y has shape (L,M), where L<=M. sigma2 : int or None (default=None) Variance of the noise on Y. H : int or None (default = None) Maximum rank of the factorized matrices. Returns ------- U : numpy-array Left-singular vectors. S : numpy-array Diagonal matrix of singular values. V : numpy-array Right-singular vectors. post : dictionary Dictionary containing the computed posterior values. References ---------- .. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37. .. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012. """ L, M = Y.shape # has to be L<=M if H is None: H = L alpha = L / M tauubar = 2.5129 * np.sqrt(alpha) # SVD of the input matrix, max rank of H # U, s, V = np.linalg.svd(Y) U, s, V = torch.svd(Y) U = U[:, :H] s = s[:H] V = V[:H].T # Calculate residual residual = 0. if H < L: # residual = np.sum(np.sum(Y**2)-np.sum(s**2)) residual = torch.sum(np.sum(Y**2) - np.sum(s**2)) # Estimation of the variance when sigma2 is unspecified if sigma2 is None: xubar = (1 + tauubar) * (1 + alpha / tauubar) eH_ub = int(np.min([np.ceil(L / (1 + alpha)) - 1, H])) - 1 # upper_bound = (np.sum(s**2)+residual)/(L*M) # lower_bound = np.max( # [s[eH_ub+1]**2/(M*xubar), np.mean(s[eH_ub+1:]**2)/M]) upper_bound = (torch.sum(s**2) + residual) / (L * M) lower_bound = torch.max(torch.stack( [s[eH_ub + 1]**2 / (M * xubar), torch.mean(s[eH_ub + 1:]**2) / M], dim=0)) scale = 1. # /lower_bound s = s * np.sqrt(scale) residual = residual * scale lower_bound = lower_bound * scale upper_bound = upper_bound * scale sigma2_opt = minimize_scalar( EVBsigma2, args=(L, M, s.cpu().numpy(), residual, xubar), bounds=[lower_bound.cpu().numpy(), upper_bound.cpu().numpy()], method='Bounded') sigma2 = sigma2_opt.x # Threshold gamma term threshold = np.sqrt(M * sigma2 * (1 + tauubar) * (1 + alpha / tauubar)) # pos = np.sum(s > threshold) pos = torch.sum(s > threshold) # Formula (15) from [2] # d = torch.multiply(s[:pos]/2, # 1-torch.divide( # torch.tensor((L+M)*sigma2, device=s.device), # s[:pos]**2) + torch.sqrt((1-torch.divide( # torch.tensor( # (L+M)*sigma2, device=s.device), # s[:pos]**2))**2 - # 4*L*M*sigma2**2/s[:pos]**4)) # d = np.multiply(s[:pos]/2, 1-np.divide((L+M)*sigma2, s[:pos]**2) + np.sqrt( # (1-np.divide((L+M)*sigma2, s[:pos]**2))**2 - 4*L*M*sigma2**2/s[:pos]**4)) d = (s[:pos] / 2) * (1 - (L + M) * sigma2 / s[:pos]**2 + torch.sqrt((1 - (L + M) * sigma2 / s[:pos]**2)**2 - 4 * L * M * sigma2**2 / s[:pos]**4)) # Computation of the posterior # post = {} # post['ma'] = np.zeros(H) # post['mb'] = np.zeros(H) # post['sa2'] = np.zeros(H) # post['sb2'] = np.zeros(H) # post['cacb'] = np.zeros(H) # tau = np.multiply(d, s[:pos])/(M*sigma2) # delta = np.multiply(np.sqrt(np.divide(M*d, L*s[:pos])), 1+alpha/tau) # post['ma'][:pos] = np.sqrt(np.multiply(d, delta)) # post['mb'][:pos] = np.sqrt(np.divide(d, delta)) # post['sa2'][:pos] = np.divide(sigma2*delta, s[:pos]) # post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos])) # post['cacb'][:pos] = np.sqrt(np.multiply(d, s[:pos])/(L*M)) # post['sigma2'] = sigma2 # post['F'] = 0.5*(L*M*np.log(2*np.pi*sigma2) + # (residual+np.sum(s**2))/sigma2 + np.sum( # M*np.log(tau+1) + L*np.log(tau/alpha + 1) - M*tau)) return U[:, :pos], torch.diag(d), V[:, :pos] # , post def EVBsigma2(sigma2, L, M, s, residual, xubar): H = len(s) alpha = L / M x = s**2 / (M * sigma2) z1 = x[x > xubar] z2 = x[x <= xubar] tau_z1 = tau(z1, alpha) term1 = np.sum(z2 - np.log(z2)) term2 = np.sum(z1 - tau_z1) term3 = np.sum(np.log(np.divide(tau_z1 + 1, z1))) term4 = alpha * np.sum(np.log(tau_z1 / alpha + 1)) obj = term1 + term2 + term3 + term4 + residual / (M * sigma2) + (L - H) * np.log(sigma2) return obj def phi0(x): return x - np.log(x) def phi1(x, alpha): return np.log(tau(x, alpha) + 1) + alpha * np.log(tau(x, alpha) / alpha + 1 ) - tau(x, alpha) def tau(x, alpha): return 0.5 * (x - (1 + alpha) + np.sqrt((x - (1 + alpha))**2 - 4 * alpha)) class Metrics: def __init__(self, params, linear: bool = False) -> None: ''' parameters: list of torch.nn.Module.parameters() ''' self.params = params self.history = list() mask = list() for param_idx, param in enumerate(params): param_shape = param.shape if not linear: if len(param_shape) != 4: mask.append(param_idx) else: if len(param_shape) != 4 and len(param_shape) != 2: mask.append(param_idx) self.mask = set(mask) def compute_low_rank(self, tensor: torch.Tensor, normalizer: float) -> torch.Tensor: if tensor.requires_grad: tensor = tensor.detach() try: tensor_size = tensor.shape if tensor_size[0] > tensor_size[1]: tensor = tensor.T U_approx, S_approx, V_approx = EVBMF(tensor) except RuntimeError: return None, None, None rank = S_approx.shape[0] / tensor_size[0] # normalizer low_rank_eigen = torch.diag(S_approx).data.cpu().numpy() if len(low_rank_eigen) != 0: condition = low_rank_eigen[0] / low_rank_eigen[-1] sum_low_rank_eigen = low_rank_eigen / \ max(low_rank_eigen) sum_low_rank_eigen = np.sum(sum_low_rank_eigen) else: condition = 0 sum_low_rank_eigen = 0 KG = sum_low_rank_eigen / tensor_size[0] # normalizer return rank, KG, condition def KG(self, epoch: int) -> np.ndarray: KG_list = list() for i, (index, metric) in enumerate(self.history[epoch]): if isinstance(metric, ConvLayerMetrics): KG_list.append((metric.input_channel.KG + metric.output_channel.KG) / 2) elif isinstance(metric, LayerMetrics): KG_list.append(metric.KG) return np.array(KG_list) def __call__(self) -> List[Tuple[int, Union[LayerMetrics, ConvLayerMetrics]]]: ''' Computes the knowledge gain (S) and mapping condition (condition) ''' metrics: List[Tuple[int, Union[LayerMetrics, ConvLayerMetrics]]] = list() for layer_index, layer in enumerate(self.params): if layer_index in self.mask: metrics.append((layer_index, None)) continue # if np.less(np.prod(layer.shape), 10_000): # metrics.append((layer_index, None)) if len(layer.shape) == 4: layer_tensor = layer.data tensor_size = layer_tensor.shape mode_3_unfold = layer_tensor.permute(1, 0, 2, 3) mode_3_unfold = torch.reshape( mode_3_unfold, [tensor_size[1], tensor_size[0] * tensor_size[2] * tensor_size[3]]) mode_4_unfold = layer_tensor mode_4_unfold = torch.reshape( mode_4_unfold, [tensor_size[0], tensor_size[1] * tensor_size[2] * tensor_size[3]]) in_rank, in_KG, in_condition = self.compute_low_rank( mode_3_unfold, tensor_size[1]) if in_rank is None and in_KG is None and in_condition is None: if len(self.history) > 0: in_rank = self.history[-1][ layer_index][1].input_channel.rank in_KG = self.history[-1][ layer_index][1].input_channel.KG in_condition = self.history[-1][ layer_index][1].input_channel.condition else: in_rank = in_KG = in_condition = 0. out_rank, out_KG, out_condition = self.compute_low_rank( mode_4_unfold, tensor_size[0]) if out_rank is None and out_KG is None and out_condition is None: if len(self.history) > 0: out_rank = self.history[-1][ layer_index][1].output_channel.rank out_KG = self.history[-1][ layer_index][1].output_channel.KG out_condition = self.history[-1][ layer_index][1].output_channel.condition else: out_rank = out_KG = out_condition = 0. metrics.append((layer_index, ConvLayerMetrics( input_channel=LayerMetrics( rank=in_rank, KG=in_KG, condition=in_condition), output_channel=LayerMetrics( rank=out_rank, KG=out_KG, condition=out_condition)))) elif len(layer.shape) == 2: rank, KG, condition = self.compute_low_rank( layer, layer.shape[0]) if rank is None and KG is None and condition is None: if len(self.history) > 0: rank = self.history[-1][layer_index][1].rank KG = self.history[-1][layer_index][1].KG condition = self.history[-1][layer_index][1].condition else: rank = KG = condition = 0. metrics.append((layer_index, LayerMetrics( rank=rank, KG=KG, condition=condition))) else: metrics.append((layer_index, None)) self.history.append(metrics) return metrics class Adas(Optimizer): """ Vectorized SGD from torch.optim.SGD """ def __init__(self, params, lr: float = required, beta: float = 0.8, step_size: int = None, linear: bool = True, gamma: float = 1, momentum: float = 0, dampening: float = 0, weight_decay: float = 0, nesterov: bool = False): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening") super(Adas, self).__init__(params[:2], defaults) # Adas Specific stuff (not SGD) if np.less(beta, 0) or np.greater_equal(beta, 1): raise ValueError(f'Invalid beta: {beta}') if np.less(gamma, 0): raise ValueError(f'Invalid gamma: {gamma}') if step_size is not None: if np.less_equal(step_size, 0): raise ValueError(f'Invalid step_size: {step_size}') self.step_size = step_size self.gamma = gamma self.beta = beta self.metrics = metrics = Metrics(params=params[2]["all_params"], linear=linear) self.lr_vector = np.repeat(a=lr, repeats=len(metrics.params)) self.velocity = np.zeros( len(self.metrics.params) - len(self.metrics.mask)) self.not_ready = list(range(len(self.velocity))) self.init_lr = lr self.zeta = 1. self.KG = 0. def __setstate__(self, state): super(Adas, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def epoch_step(self, epoch: int) -> None: self.metrics() if epoch == 0: velocity = self.init_lr * np.ones(len(self.velocity)) self.KG = self.metrics.KG(epoch) else: KG = self.metrics.KG(epoch) velocity = KG - self.KG self.KG = KG for idx in self.not_ready: if np.isclose(KG[idx], 0.): velocity[idx] = self.init_lr - \ self.beta * self.velocity[idx] else: self.not_ready.remove(idx) if self.step_size is not None: if epoch % self.step_size == 0 and epoch > 0: self.lr_vector *= self.gamma self.zeta *= self.gamma self.velocity = np.maximum( self.beta * self.velocity + self.zeta * velocity, 0.) count = 0 for i in range(len(self.metrics.params)): if i in self.metrics.mask: self.lr_vector[i] = self.lr_vector[i - (1 if i > 0 else 0)] else: self.lr_vector[i] = self.velocity[count] count += 1 def step(self, closure: callable = None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() iteration_group = 0 for group in self.param_groups: iteration_group += 1 weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p_index, p in enumerate(group['params']): if p.grad is None: continue d_p = p.grad.data if weight_decay != 0: d_p.add_(p.data, alpha=weight_decay) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone( d_p).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf # p.data.add_(-group['lr'], d_p) p.data.add_(d_p, alpha=-self.lr_vector[p_index]) return loss
[ "torch.reshape", "torch.sqrt", "torch.svd", "torch.diag", "torch.clone", "torch.mean", "torch.sum" ]
1.0
MathieuTuli/transformers
da3db8ba7a18deed492808b0d6c5d29669241fa0
1.7
# coding: UTF-8 import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import warnings warnings.filterwarnings("ignore") import argparse import numpy as np import shutil import PIL import time from imageio import imread, imsave from googletrans import Translator import torch import torchvision import torch.nn.functional as F from torchvision import transforms as T import clip os.environ['KMP_DUPLICATE_LIB_OK']='True' from clip_fft import to_valid_rgb, fft_image, resume_fft, pixel_image from utils import slice_imgs, derivat, sim_func, slerp, basename, file_list, img_list, img_read, pad_up_to, txt_clean, latent_anima, cvshow, checkout, save_cfg, old_torch import transforms try: # progress bar for notebooks get_ipython().__class__.__name__ from progress_bar import ProgressIPy as ProgressBar except: # normal console from progress_bar import ProgressBar clip_models = ['ViT-B/16', 'ViT-B/32', 'RN50', 'RN50x4', 'RN50x16', 'RN101'] def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--size', default='1280-720', help='Output resolution') parser.add_argument('-t', '--in_txt', default=None, help='Text string or file to process (main topic)') parser.add_argument('-pre', '--in_txt_pre', default=None, help='Prefix for input text') parser.add_argument('-post', '--in_txt_post', default=None, help='Postfix for input text') parser.add_argument('-t2', '--in_txt2', default=None, help='Text string or file to process (style)') parser.add_argument('-t0', '--in_txt0', default=None, help='input text to subtract') parser.add_argument('-im', '--in_img', default=None, help='input image or directory with images') parser.add_argument('-w0', '--weight0', default=0.3, type=float, help='weight for subtraction') parser.add_argument('-w2', '--weight2', default=0.5, type=float, help='weight for style') parser.add_argument('-wi', '--weight_img', default=0.5, type=float, help='weight for images') parser.add_argument('-r', '--resume', default=None, help='Resume from saved params or from an image') parser.add_argument( '--out_dir', default='_out') parser.add_argument('-tr', '--translate', action='store_true', help='Translate with Google Translate') parser.add_argument( '--invert', action='store_true', help='Invert criteria') parser.add_argument('-v', '--verbose', default=True, type=bool) # training parser.add_argument( '--gen', default='RGB', help='Generation (optimization) method: FFT or RGB') parser.add_argument('-m', '--model', default='ViT-B/32', choices=clip_models, help='Select CLIP model to use') parser.add_argument( '--steps', default=300, type=int, help='Iterations (frames) per scene (text line)') parser.add_argument( '--samples', default=100, type=int, help='Samples to evaluate per frame') parser.add_argument('-lr', '--lrate', default=1, type=float, help='Learning rate') # motion parser.add_argument('-opt', '--opt_step', default=1, type=int, help='How many optimizing steps per save/transform step') parser.add_argument('-sm', '--smooth', action='store_true', help='Smoothen interframe jittering for FFT method') parser.add_argument('-it', '--interpol', default=True, help='Interpolate topics? (or change by cut)') parser.add_argument( '--fstep', default=100, type=int, help='How many frames before changing motion') parser.add_argument( '--scale', default=0.012, type=float) parser.add_argument( '--shift', default=10., type=float, help='in pixels') parser.add_argument( '--angle', default=0.8, type=float, help='in degrees') parser.add_argument( '--shear', default=0.4, type=float) parser.add_argument( '--anima', default=True, help='Animate motion') # tweaks parser.add_argument('-a', '--align', default='overscan', choices=['central', 'uniform', 'overscan', 'overmax'], help='Sampling distribution') parser.add_argument('-tf', '--transform', default='custom', choices=['none', 'custom', 'elastic'], help='use augmenting transforms?') parser.add_argument( '--contrast', default=1.2, type=float) parser.add_argument( '--colors', default=2, type=float) parser.add_argument('-sh', '--sharp', default=None, type=float) parser.add_argument('-mc', '--macro', default=0.4, type=float, help='Endorse macro forms 0..1 ') parser.add_argument('-e', '--enforce', default=0, type=float, help='Enforce details (by boosting similarity between two parallel samples)') parser.add_argument('-x', '--expand', default=0, type=float, help='Boosts diversity (by enforcing difference between prev/next samples)') parser.add_argument('-n', '--noise', default=2., type=float, help='Add noise to make composition sparse (FFT only)') # 0.04 parser.add_argument( '--sim', default='mix', help='Similarity function (angular/spherical/mixed; None = cossim)') parser.add_argument( '--rem', default=None, help='Dummy text to add to project name') a = parser.parse_args() if a.size is not None: a.size = [int(s) for s in a.size.split('-')][::-1] if len(a.size)==1: a.size = a.size * 2 a.gen = a.gen.upper() a.invert = -1. if a.invert is True else 1. # Overriding some parameters, depending on other settings if a.gen == 'RGB': a.smooth = False a.align = 'overscan' if a.sharp is None: a.sharp = -1. if a.gen == 'RGB' else 1. if a.model == 'ViT-B/16': a.sim = 'cossim' return a def frame_transform(img, size, angle, shift, scale, shear): if old_torch(): # 1.7.1 img = T.functional.affine(img, angle, shift, scale, shear, fillcolor=0, resample=PIL.Image.BILINEAR) img = T.functional.center_crop(img, size) img = pad_up_to(img, size) else: # 1.8+ img = T.functional.affine(img, angle, shift, scale, shear, fill=0, interpolation=T.InterpolationMode.BILINEAR) img = T.functional.center_crop(img, size) # on 1.8+ also pads return img def main(): a = get_args() # Load CLIP models model_clip, _ = clip.load(a.model, jit=old_torch()) try: a.modsize = model_clip.visual.input_resolution except: a.modsize = 288 if a.model == 'RN50x4' else 384 if a.model == 'RN50x16' else 224 if a.verbose is True: print(' using model', a.model) xmem = {'ViT-B/16':0.25, 'RN50':0.5, 'RN50x4':0.16, 'RN50x16':0.06, 'RN101':0.33} if a.model in xmem.keys(): a.samples = int(a.samples * xmem[a.model]) if a.translate: translator = Translator() if a.enforce != 0: a.samples = int(a.samples * 0.5) if 'elastic' in a.transform: trform_f = transforms.transforms_elastic a.samples = int(a.samples * 0.95) elif 'custom' in a.transform: trform_f = transforms.transforms_custom a.samples = int(a.samples * 0.95) else: trform_f = transforms.normalize() def enc_text(txt): if a.translate: txt = translator.translate(txt, dest='en').text emb = model_clip.encode_text(clip.tokenize(txt).cuda()[:77]) return emb.detach().clone() def enc_image(img_file): img_t = torch.from_numpy(img_read(img_file)/255.).unsqueeze(0).permute(0,3,1,2).cuda()[:,:3,:,:] in_sliced = slice_imgs([img_t], a.samples, a.modsize, transforms.normalize(), a.align)[0] emb = model_clip.encode_image(in_sliced) return emb.detach().clone() # Encode inputs count = 0 texts = [] styles = [] images = [] if a.in_txt is not None: if os.path.isfile(a.in_txt): with open(a.in_txt, 'r', encoding="utf-8") as f: texts = f.readlines() texts = [tt.strip() for tt in texts if len(tt.strip()) > 0 and tt[0] != '#'] else: texts = [a.in_txt] if a.in_txt_pre is not None: texts = [' '.join([a.in_txt_pre, tt]).strip() for tt in texts] if a.in_txt_post is not None: texts = [' '.join([tt, a.in_txt_post]).strip() for tt in texts] key_txt_encs = [enc_text(txt) for txt in texts] count = max(count, len(key_txt_encs)) if a.in_txt2 is not None: if os.path.isfile(a.in_txt2): with open(a.in_txt2, 'r', encoding="utf-8") as f: styles = f.readlines() styles = [tt.strip() for tt in styles if len(tt.strip()) > 0 and tt[0] != '#'] else: styles = [a.in_txt2] key_styl_encs = [enc_text(style) for style in styles] count = max(count, len(key_styl_encs)) if a.in_img is not None and os.path.exists(a.in_img): images = file_list(a.in_img) if os.path.isdir(a.in_img) else [a.in_img] key_img_encs = [enc_image(image) for image in images] count = max(count, len(key_img_encs)) assert count > 0, "No inputs found!" if a.in_txt0 is not None: if a.verbose is True: print(' subtract text:', a.in_txt0) if a.translate: a.in_txt0 = translator.translate(a.in_txt0, dest='en').text # if a.verbose is True: print(' translated to:', a.in_txt0) anti_txt_encs = [enc_text(txt) for txt in a.in_txt0.split('.')] if a.verbose is True: print(' samples:', a.samples) global params_tmp shape = [1, 3, *a.size] if a.gen == 'RGB': params_tmp, _, sz = pixel_image(shape, a.resume) params_tmp = params_tmp[0].cuda().detach() else: params_tmp, sz = resume_fft(a.resume, shape, decay=1.5, sd=1) if sz is not None: a.size = sz # [glob]steps = for save/move, opt_steps = for optimization cycle steps = a.steps glob_steps = count * steps opt_steps = steps * a.opt_step if glob_steps == a.fstep: a.fstep = glob_steps // 2 # otherwise no motion workname = basename(a.in_txt) if a.in_txt is not None else basename(a.in_img) workname = txt_clean(workname) workdir = os.path.join(a.out_dir, workname) if a.rem is not None: workdir += '-%s' % a.rem if 'RN' in a.model.upper(): workdir += '-%s' % a.model if a.noise > 0: workdir += '-n%.2g' % a.noise if a.macro > 0: workdir += '-m%.2g' % a.macro if a.smooth is True: workdir += '-sm' if a.transform != 'custom': workdir += '-tf%s' % a.transform if a.gen == 'RGB': workdir += '-rgb' tempdir = os.path.join(workdir, 'ttt') os.makedirs(tempdir, exist_ok=True) save_cfg(a, workdir) if a.in_txt is not None and os.path.isfile(a.in_txt): shutil.copy(a.in_txt, os.path.join(workdir, os.path.basename(a.in_txt))) if a.in_txt2 is not None and os.path.isfile(a.in_txt2): shutil.copy(a.in_txt2, os.path.join(workdir, os.path.basename(a.in_txt2))) midp = 0.5 if a.anima: if a.gen == 'RGB': # zoom in m_scale = latent_anima([1], glob_steps, a.fstep, uniform=True, cubic=True, start_lat=[-0.3], verbose=False) m_scale = 1 + (m_scale + 0.3) * a.scale else: m_scale = latent_anima([1], glob_steps, a.fstep, uniform=True, cubic=True, start_lat=[0.6], verbose=False) m_scale = 1 - (m_scale-0.6) * a.scale m_shift = latent_anima([2], glob_steps, a.fstep, uniform=True, cubic=True, start_lat=[midp,midp], verbose=False) m_angle = latent_anima([1], glob_steps, a.fstep, uniform=True, cubic=True, start_lat=[midp], verbose=False) m_shear = latent_anima([1], glob_steps, a.fstep, uniform=True, cubic=True, start_lat=[midp], verbose=False) m_shift = (midp-m_shift) * a.shift * abs(m_scale-1) / a.scale m_angle = (midp-m_angle) * a.angle * abs(m_scale-1) / a.scale m_shear = (midp-m_shear) * a.shear * abs(m_scale-1) / a.scale def get_encs(encs, num): cnt = len(encs) if cnt == 0: return [] enc_1 = encs[min(num, cnt-1)] enc_2 = encs[min(num+1, cnt-1)] return slerp(enc_1, enc_2, opt_steps) prev_enc = 0 def process(num): global params_tmp, opt_state, params, image_f, optimizer if a.interpol is True: # linear topics interpolation txt_encs = get_encs(key_txt_encs, num) styl_encs = get_encs(key_styl_encs, num) img_encs = get_encs(key_img_encs, num) else: # change by cut txt_encs = [key_txt_encs[min(num, len(key_txt_encs)-1)][0]] * opt_steps if len(key_txt_encs) > 0 else [] styl_encs = [key_styl_encs[min(num, len(key_styl_encs)-1)][0]] * opt_steps if len(key_styl_encs) > 0 else [] img_encs = [key_img_encs[min(num, len(key_img_encs)-1)][0]] * opt_steps if len(key_img_encs) > 0 else [] if a.verbose is True: if len(texts) > 0: print(' ref text: ', texts[min(num, len(texts)-1)][:80]) if len(styles) > 0: print(' ref style: ', styles[min(num, len(styles)-1)][:80]) if len(images) > 0: print(' ref image: ', basename(images[min(num, len(images)-1)])[:80]) pbar = ProgressBar(steps) for ii in range(opt_steps): glob_step = num * steps + ii // a.opt_step # save/transform loss = 0 txt_enc = txt_encs[ii % len(txt_encs)].unsqueeze(0) if len(txt_encs) > 0 else None styl_enc = styl_encs[ii % len(styl_encs)].unsqueeze(0) if len(styl_encs) > 0 else None img_enc = img_encs[ii % len(img_encs)].unsqueeze(0) if len(img_encs) > 0 else None # MOTION: transform frame, reload params if ii % a.opt_step == 0: scale = m_scale[glob_step] if a.anima else 1 + a.scale shift = tuple(m_shift[glob_step]) if a.anima else [0, a.shift] angle = m_angle[glob_step][0] if a.anima else a.angle shear = m_shear[glob_step][0] if a.anima else a.shear if a.gen == 'RGB': img_tmp = frame_transform(params_tmp, a.size, angle, shift, scale, shear) params, image_f, _ = pixel_image([1, 3, *a.size], resume=img_tmp) else: # FFT if old_torch(): # 1.7.1 img_tmp = torch.irfft(params_tmp, 2, normalized=True, signal_sizes=a.size) img_tmp = frame_transform(img_tmp, a.size, angle, shift, scale, shear) params_tmp = torch.rfft(img_tmp, 2, normalized=True) else: # 1.8+ if type(params_tmp) is not torch.complex64: params_tmp = torch.view_as_complex(params_tmp) img_tmp = torch.fft.irfftn(params_tmp, s=a.size, norm='ortho') img_tmp = frame_transform(img_tmp, a.size, angle, shift, scale, shear) params_tmp = torch.fft.rfftn(img_tmp, s=a.size, dim=[2,3], norm='ortho') params_tmp = torch.view_as_real(params_tmp) params, image_f, _ = fft_image([1, 3, *a.size], sd=1, resume=params_tmp) optimizer = torch.optim.Adam(params, a.lrate) # optimizer = torch.optim.AdamW(params, a.lrate, weight_decay=0.01, amsgrad=True) image_f = to_valid_rgb(image_f, colors = a.colors) del img_tmp if a.smooth is True and num + ii > 0: optimizer.load_state_dict(opt_state) noise = a.noise * (torch.rand(1, 1, a.size[0], a.size[1]//2+1, 1)-0.5).cuda() if a.noise>0 else 0. img_out = image_f(noise) img_sliced = slice_imgs([img_out], a.samples, a.modsize, trform_f, a.align, a.macro)[0] out_enc = model_clip.encode_image(img_sliced) if a.gen == 'RGB': # empirical hack loss += 1.66 * abs(img_out.mean((2,3)) - 0.45).sum() # fix brightness loss += 1.66 * abs(img_out.std((2,3)) - 0.17).sum() # fix contrast if txt_enc is not None: loss -= a.invert * sim_func(txt_enc, out_enc, a.sim) if styl_enc is not None: loss -= a.weight2 * sim_func(styl_enc, out_enc, a.sim) if img_enc is not None: loss -= a.weight_img * sim_func(img_enc, out_enc, a.sim) if a.in_txt0 is not None: # subtract text for anti_txt_enc in anti_txt_encs: loss += 0.3 * sim_func(anti_txt_enc, out_enc, a.sim) if a.sharp != 0: # scharr|sobel|naive loss -= a.sharp * derivat(img_out, mode='naive') if a.enforce != 0: img_sliced = slice_imgs([image_f(noise)], a.samples, a.modsize, trform_f, a.align, a.macro)[0] out_enc2 = model_clip.encode_image(img_sliced) loss -= a.enforce * sim_func(out_enc, out_enc2, a.sim) del out_enc2; torch.cuda.empty_cache() if a.expand > 0: global prev_enc if ii > 0: loss += a.expand * sim_func(prev_enc, out_enc, a.sim) prev_enc = out_enc.detach().clone() del img_out, img_sliced, out_enc; torch.cuda.empty_cache() optimizer.zero_grad() loss.backward() optimizer.step() if ii % a.opt_step == a.opt_step-1: params_tmp = params[0].detach().clone() if a.smooth is True: opt_state = optimizer.state_dict() if ii % a.opt_step == 0: with torch.no_grad(): img_t = image_f(contrast=a.contrast)[0].permute(1,2,0) img = torch.clip(img_t*255, 0, 255).cpu().numpy().astype(np.uint8) imsave(os.path.join(tempdir, '%06d.jpg' % glob_step), img, quality=95) if a.verbose is True: cvshow(img) del img, img_t pbar.upd() params_tmp = params[0].detach().clone() glob_start = time.time() try: for i in range(count): process(i) except KeyboardInterrupt: pass os.system('ffmpeg -v warning -y -i %s/\%%06d.jpg "%s.mp4"' % (tempdir, os.path.join(workdir, workname))) if __name__ == '__main__': main()
[ "torch.rfft", "torch.rand", "torch.view_as_real", "torch.no_grad", "torch.optim.Adam", "torch.irfft", "torch.fft.irfftn", "torch.view_as_complex", "torch.clip", "torch.cuda.empty_cache", "torch.fft.rfftn" ]
1.7.1
ksburaya/aphantasia
de9d430dee7108abfcb1b19eb2d8d806b8e5d899
0.4
from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABC import torch import torch.nn as nn import torch.nn.functional as F from lib.loss.loss_helper import FSAuxCELoss, FSAuxRMILoss from lib.utils.tools.logger import Logger as Log class PixelContrastLoss(nn.Module, ABC): def __init__(self, configer): super(PixelContrastLoss, self).__init__() self.configer = configer self.temperature = self.configer.get('contrast', 'temperature') self.base_temperature = self.configer.get('contrast', 'base_temperature') self.ignore_label = -1 if self.configer.exists('loss', 'params') and 'ce_ignore_index' in self.configer.get('loss', 'params'): self.ignore_label = self.configer.get('loss', 'params')['ce_ignore_index'] self.max_samples = self.configer.get('contrast', 'max_samples') self.max_views = self.configer.get('contrast', 'max_views') def _hard_anchor_sampling(self, X, y_hat, y): batch_size, feat_dim = X.shape[0], X.shape[-1] classes = [] total_classes = 0 for ii in range(batch_size): this_y = y_hat[ii] this_classes = torch.unique(this_y) this_classes = [x for x in this_classes if x > 0 and x != self.ignore_label] this_classes = [x for x in this_classes if (this_y == x).nonzero().shape[0] > self.max_views] classes.append(this_classes) total_classes += len(this_classes) if total_classes == 0: return None, None n_view = self.max_samples // total_classes n_view = min(n_view, self.max_views) X_ = torch.zeros((total_classes, n_view, feat_dim), dtype=torch.float).cuda() y_ = torch.zeros(total_classes, dtype=torch.float).cuda() X_ptr = 0 for ii in range(batch_size): this_y_hat = y_hat[ii] this_y = y[ii] this_classes = classes[ii] for cls_id in this_classes: hard_indices = ((this_y_hat == cls_id) & (this_y != cls_id)).nonzero() easy_indices = ((this_y_hat == cls_id) & (this_y == cls_id)).nonzero() num_hard = hard_indices.shape[0] num_easy = easy_indices.shape[0] if num_hard >= n_view / 2 and num_easy >= n_view / 2: num_hard_keep = n_view // 2 num_easy_keep = n_view - num_hard_keep elif num_hard >= n_view / 2: num_easy_keep = num_easy num_hard_keep = n_view - num_easy_keep elif num_easy >= n_view / 2: num_hard_keep = num_hard num_easy_keep = n_view - num_hard_keep else: Log.info('this shoud be never touched! {} {} {}'.format(num_hard, num_easy, n_view)) raise Exception perm = torch.randperm(num_hard) hard_indices = hard_indices[perm[:num_hard_keep]] perm = torch.randperm(num_easy) easy_indices = easy_indices[perm[:num_easy_keep]] indices = torch.cat((hard_indices, easy_indices), dim=0) X_[X_ptr, :, :] = X[ii, indices, :].squeeze(1) y_[X_ptr] = cls_id X_ptr += 1 return X_, y_ def _contrastive(self, feats_, labels_): anchor_num, n_view = feats_.shape[0], feats_.shape[1] labels_ = labels_.contiguous().view(-1, 1) mask = torch.eq(labels_, torch.transpose(labels_, 0, 1)).float().cuda() contrast_count = n_view contrast_feature = torch.cat(torch.unbind(feats_, dim=1), dim=0) anchor_feature = contrast_feature anchor_count = contrast_count anchor_dot_contrast = torch.div(torch.matmul(anchor_feature, torch.transpose(contrast_feature, 0, 1)), self.temperature) logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() mask = mask.repeat(anchor_count, contrast_count) neg_mask = 1 - mask logits_mask = torch.ones_like(mask).scatter_(1, torch.arange(anchor_num * anchor_count).view(-1, 1).cuda(), 0) mask = mask * logits_mask neg_logits = torch.exp(logits) * neg_mask neg_logits = neg_logits.sum(1, keepdim=True) exp_logits = torch.exp(logits) log_prob = logits - torch.log(exp_logits + neg_logits) mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.mean() return loss def forward(self, feats, labels=None, predict=None): labels = labels.unsqueeze(1).float().clone() labels = torch.nn.functional.interpolate(labels, (feats.shape[2], feats.shape[3]), mode='nearest') labels = labels.squeeze(1).long() assert labels.shape[-1] == feats.shape[-1], '{} {}'.format(labels.shape, feats.shape) batch_size = feats.shape[0] labels = labels.contiguous().view(batch_size, -1) predict = predict.contiguous().view(batch_size, -1) feats = feats.permute(0, 2, 3, 1) feats = feats.contiguous().view(feats.shape[0], -1, feats.shape[-1]) feats_, labels_ = self._hard_anchor_sampling(feats, labels, predict) loss = self._contrastive(feats_, labels_) return loss class ContrastAuxCELoss(nn.Module, ABC): def __init__(self, configer=None): super(ContrastAuxCELoss, self).__init__() self.configer = configer ignore_index = -1 if self.configer.exists('loss', 'params') and 'ce_ignore_index' in self.configer.get('loss', 'params'): ignore_index = self.configer.get('loss', 'params')['ce_ignore_index'] Log.info('ignore_index: {}'.format(ignore_index)) self.loss_weight = self.configer.get('contrast', 'loss_weight') self.use_rmi = self.configer.get('contrast', 'use_rmi') if self.use_rmi: self.seg_criterion = FSAuxRMILoss(configer=configer) else: self.seg_criterion = FSAuxCELoss(configer=configer) self.contrast_criterion = PixelContrastLoss(configer=configer) def forward(self, preds, target): h, w = target.size(1), target.size(2) assert "seg" in preds assert "seg_aux" in preds seg = preds['seg'] seg_aux = preds['seg_aux'] embedding = preds['embedding'] if 'embedding' in preds else None pred = F.interpolate(input=seg, size=(h, w), mode='bilinear', align_corners=True) pred_aux = F.interpolate(input=seg_aux, size=(h, w), mode='bilinear', align_corners=True) loss = self.seg_criterion([pred_aux, pred], target) if embedding is not None: _, predict = torch.max(seg, 1) loss_contrast = self.contrast_criterion(embedding, target, predict) return loss + self.loss_weight * loss_contrast return loss
[ "torch.zeros", "torch.cat", "torch.unique", "torch.arange", "torch.max", "torch.unbind", "torch.nn.functional.interpolate", "torch.randperm", "torch.ones_like", "torch.transpose", "torch.log", "torch.exp" ]
0.4.1
wenguanwang/ContrastiveSeg
9a381b9799c16d81e18d8f9f25ab509b93fb56de
1.3
# Copyright (c) 2021 Sen Wu. All Rights Reserved. """Helper function to set random seed for reproducibility of models.""" import logging import random from typing import Optional import numpy as np import torch logger = logging.getLogger(__name__) def set_random_seed(seed: Optional[int] = None) -> None: """Set random seed for random, numpy, and pytorch. Args: seed: The random seed, defaults to `None` which select it randomly. """ max_value = np.iinfo(np.uint32).max min_value = np.iinfo(np.uint32).min try: seed = int(seed) logger.info(f"Set random seed to {seed}.") except (TypeError, ValueError): seed = random.randint(min_value, max_value) logger.info(f"No random seed specified, randomly set random seed to {seed}.") if not (min_value <= seed <= max_value): new_seed = random.randint(min_value, max_value) logger.info( f"Random seed {seed} is not valid, randomly set random seed to {new_seed}." ) seed = new_seed # Set random seed for random random.seed(seed) # Set random seed for all numpy operations np.random.seed(seed=seed) # Set random seed for PyTorch torch.manual_seed(seed)
[ "torch.manual_seed" ]
1.3.1
KeAWang/emmental
dae9f9fbba944f7c8404ab85aa9296545db1b82b
0.3
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_ and [Wilson2017reparam]_ .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from torch import Tensor from ..exceptions.errors import UnsupportedError from ..models.model import Model from ..sampling.samplers import MCSampler, SobolQMCNormalSampler from ..utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from .acquisition import AcquisitionFunction from .objective import IdentityMCObjective, MCAcquisitionObjective from .utils import prune_inferior_points class MCAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for Monte-Carlo based batch acquisition functions.""" def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if sampler is None: sampler = SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True) self.add_module("sampler", sampler) if objective is None: objective = IdentityMCObjective() elif not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "Only objectives of type MCAcquisitionObjective are supported for " "MC acquisition functions." ) self.add_module("objective", objective) self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `(b) x q x d` X Tensor of `(b)` t-batches with `q` `d`-dim design points each, and returns a one-dimensional Tensor with `(b)` elements. Should utilize the result of set_X_pending as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) obj = (obj - self.best_f).clamp_min(0) q_ei = obj.max(dim=-1)[0].mean(dim=0) return q_ei class qNoisyExpectedImprovement(MCAcquisitionFunction): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = False, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)`. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective ) self.register_buffer("X_baseline", X_baseline) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qNoisyExpectedImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Noisy Expected Improvement values at the given design points `X`. """ q = X.shape[-2] X_full = torch.cat([X, match_batch_shape(self.X_baseline, X)], dim=-2) # TODO (T41248036): Implement more efficient way to compute posterior # over both training and test points in GPyTorch posterior = self.model.posterior(X_full) samples = self.sampler(posterior) obj = self.objective(samples) diffs = obj[:, :, :q].max(dim=-1)[0] - obj[:, :, q:].max(dim=-1)[0] return diffs.clamp_min(0).mean(dim=0) class qProbabilityOfImprovement(MCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1000) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) if not torch.is_tensor(best_f): best_f = torch.tensor(float(best_f)) self.register_buffer("best_f", best_f) if not torch.is_tensor(tau): tau = torch.tensor(float(tau)) self.register_buffer("tau", tau) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Probability of Improvement values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) max_obj = obj.max(dim=-1)[0] val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0) return val class qSimpleRegret(MCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qSimpleRegret on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Simple Regret values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) val = obj.max(dim=-1)[0].mean(dim=0) return val class qUpperConfidenceBound(MCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1000) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. Defaults to `SobolQMCNormalSampler(num_samples=500, collapse_batch_dims=True)` objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=X_pending ) self.beta_prime = math.sqrt(beta * math.pi / 2) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound on the candidate set `X`. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of Upper Confidence Bound values at the given design points `X`. """ posterior = self.model.posterior(X) samples = self.sampler(posterior) obj = self.objective(samples) mean = obj.mean(dim=0) ucb_samples = mean + self.beta_prime * (obj - mean).abs() return ucb_samples.max(dim=-1)[0].mean(dim=0)
[ "torch.is_tensor", "torch.sigmoid" ]
0.3.5
BradyBromley/botorch
270599207f5b9bf8c66e1197ad2632bb69c3d3b9
1.4
import io import os import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image def resize_axis(tensor, axis, new_size, fill_value=0, random_sampling=False): """Truncates or pads a tensor to new_size on on a given axis. Truncate or extend tensor such that tensor.shape[axis] == new_size. If the size increases, the padding will be performed at the end, using fill_value. Args: tensor: The tensor to be resized. axis: An integer representing the dimension to be sliced. new_size: An integer or 0d tensor representing the new value for tensor.shape[axis]. fill_value: Value to use to fill any new entries in the tensor. Will be cast to the type of tensor. Returns: The resized tensor. """ tensor = torch.Tensor(tensor) shape = list(tensor.shape) pad_shape = shape[:] pad_shape[axis] = max(0, new_size - shape[axis]) start = 0 if shape[axis] <= new_size else np.random.randint( shape[axis] - new_size) # random clip old_length = shape[axis] shape[axis] = min(shape[axis], new_size) resized = torch.cat([ torch.index_select(tensor, dim=axis, index=torch.randint(old_length, (new_size,)) ) if start > 0 and random_sampling else torch.narrow(tensor, dim=axis, start=start, length=shape[axis]), torch.Tensor(*pad_shape).fill_(fill_value) ], dim=axis) return resized class CircleLoss(torch.nn.Module): def __init__(self, m=0.25, gamma=256): super(CircleLoss, self).__init__() self.m = m self.gamma = gamma self.loss = torch.nn.CrossEntropyLoss() def forward(self, logits, labels): alpha = torch.clamp_min(logits + self.m, min=0).detach() # an alpha[labels] = torch.clamp_min(-logits[labels] + 1 + self.m, min=0).detach() # ap delta = torch.ones_like(logits, device=logits.device, dtype=logits.dtype) * self.m # delta_n delta[labels] = 1 - self.m # delta_p return self.loss(alpha * (logits - delta) * self.gamma, labels)
[ "torch.narrow", "torch.randint", "torch.ones_like", "torch.Tensor", "torch.nn.CrossEntropyLoss", "torch.clamp_min" ]
1.4.0
glee1228/segment_temporal_context_aggregation
e5778f848f1cfd89bd1f77beb5e1b38a66a2f13d
1.7
import copy import torch import logging import numpy as np from sacred import Experiment from noge.data_loaders import get_datasets, get_test_loader, get_train_generator from noge.factory import make_env, make_memory from noge.network import make_network from noge.agent import Actor, main_loop, loop_ing from noge.trainers import DQNTrainer, Replay from noge.policies import LinearSchedule, GraphDQNPolicy from noge.preprocessors import Preprocessor from noge.evaluation import Evaluator, eval_ing from noge.constants import CONFIGS_DIR, EVAL_DIR from xlog.utils import get_logger from xlog.mlflow_observer import MlflowObserver ex = Experiment(name='NOGE_DQN', ingredients=[eval_ing, loop_ing]) ex.add_config(str(CONFIGS_DIR / 'dqn.yaml')) ex.logger = get_logger(__name__, level=logging.INFO) ex.observers = [MlflowObserver(tracking_uri=str(EVAL_DIR.absolute()))] @ex.automain def train(dataset, test_size, max_episode_steps, reward_type, input_meas_type, meas_transform, target_transform, node_history, gamma, target_update_freq, cat_features, feature_range, replay_capacity, min_horizon, epsilon_start, epsilon_end, exploration_frac, n_train_steps, train_freq, loss, batch_size, lr, n_test_episodes, init_eval, n_eval_artifacts, test_freq, log_freq, device, seed, data_seed, save_model, _log, _run, _config): np.set_printoptions(precision=2, suppress=True) if device.startswith('cuda'): assert torch.cuda.is_available() logger = _log device = torch.device(device) # data source train_set, test_set = get_datasets(dataset, seed=data_seed, test_size=test_size) max_nodes = max(train_set.max_nodes, test_set.max_nodes) max_edges = 2 * max(train_set.max_edges, test_set.max_edges) # for undirected graphs, consider both directions test_loader = get_test_loader(test_set, seed=seed, num_samples=n_test_episodes) train_gen = get_train_generator(train_set, seed=seed) preprocessor = Preprocessor(input_meas_type=input_meas_type, output_meas_type=input_meas_type, feature_range=feature_range, meas_transform=meas_transform, target_transform=target_transform, temporal_offsets=[1.], max_nodes=max_nodes, device=device) # environment train_env_config = dict( max_episode_steps=max_episode_steps, reward_type=reward_type, max_nodes=max_nodes, max_edges=max_edges, nn_feat='N' in cat_features, ) train_env = make_env(**train_env_config, data_generator=train_gen, seed=seed) test_env_config = copy.deepcopy(train_env_config) test_env_config.update(sample_goals=False, data_generator=None) test_env = make_env(**test_env_config, seed=seed) # graph memory + graph preprocessing neg_label, pos_label = feature_range mem_features = dict(cat=cat_features) graph_mem_config = dict( max_episode_steps=max_episode_steps, max_nodes=max_nodes, max_edges=max_edges, history=node_history, memory_type='cat', features=mem_features, neg_label=neg_label, pos_label=pos_label ) eval_memory = make_memory(online=True, **graph_mem_config) acting_memory = make_memory(online=True, **graph_mem_config) # model model_config = dict( dim_node=eval_memory.dim_node, dim_meas=preprocessor.dim_input_meas, dim_goal=1, max_edges=max_edges, **_config['model'] ) network = make_network(**model_config).to(device) # evaluation eval_policy = GraphDQNPolicy(network, eval_memory, preprocessor=preprocessor, device=device) evaluator = Evaluator(test_loader, test_env, eval_policy) # experience collecting policy exploration_steps = int(exploration_frac * n_train_steps) exploration_schedule = LinearSchedule(epsilon_start, epsilon_end, exploration_steps) acting_policy = GraphDQNPolicy(network, graph_memory=acting_memory, preprocessor=preprocessor, exploration_schedule=exploration_schedule, device=device) # replay buffer replay_buffer = Replay(capacity=replay_capacity, ob_space=train_env.observation_space, graph_mem_config=graph_mem_config, min_horizon=min_horizon) # actor: runs the simulation forward and stores to the replay buffer actor = Actor(train_env, acting_policy, replay_buffer) # trainer optimizer = torch.optim.Adam(network.parameters(), lr=lr) if loss == 'mse': criterion = torch.nn.MSELoss() else: raise ValueError(f"Unsupported loss: {loss}") trainer = DQNTrainer(gamma=gamma, target_update_freq=target_update_freq, replay_buffer=replay_buffer, batch_size=batch_size, network=network, preprocessor=preprocessor, criterion=criterion, optimizer=optimizer, device=device) # fill up the replay buffer network.eval() logger.info(f"Filling up the replay buffer...") actor.step(n=replay_capacity, use_tqdm=True) logger.info(f"Replay buffer filled: [{len(replay_buffer)} / {replay_capacity}]") # fit the preprocessor with buffer data preprocessor.fit(replay_buffer._measurements) best_perf = main_loop(actor, trainer, evaluator, network, exploration_schedule, init_eval, n_eval_artifacts, n_train_steps, train_freq, log_freq, test_freq, save_model) train_env.close() evaluator.close() return best_perf
[ "torch.cuda.is_available", "torch.device", "torch.nn.MSELoss" ]
1.7.1
johny-c/noge
88e68ba8c51ff0d63577991e233e9110cb76e228
1.8
import os import torch from typing import List from dqc.utils.datastruct import CGTOBasis __all__ = ["loadbasis"] _dtype = torch.double _device = torch.device("cpu") def loadbasis(cmd: str, dtype: torch.dtype = _dtype, device: torch.device = _device, requires_grad: bool = False) -> \ List[CGTOBasis]: """ Load basis from a file and return the list of CGTOBasis. Arguments --------- cmd: str This can be a file path where the basis is stored or a string in format ``"atomz:basis"``, e.g. ``"1:6-311++G**"``. dtype: torch.dtype Tensor data type for ``alphas`` and ``coeffs`` of the GTO basis device: torch.device Tensor device for ``alphas`` and ``coeffs`` requires_grad: bool If ``True``, the ``alphas`` and ``coeffs`` tensors become differentiable Returns ------- list of CGTOBasis List of GTO basis loaded from the given file """ res = [] if not os.path.exists(cmd): file = _get_basis_file(cmd) else: file = cmd # read the content with open(file, "r") as f: lines = f.read().split("\n") # skip the header while True: line = lines.pop(0) if line == "": continue if line.startswith("!"): continue break # now it is at the orbital description while len(lines) > 0: line = lines.pop(0) if line.startswith("**"): break desc = line.split() nlines = int(desc[1]) if nlines == 0: raise RuntimeError("Zero line on basis %s" % file) # read the exponents and the coefficients alphas = [] coeffsT = [] for i in range(nlines): alphacoeff = [_read_float(f) for f in lines.pop(0).split()] alphas.append(alphacoeff[0]) coeffsT.append(alphacoeff[1:]) # coeffsT: list with shape (nbasis, ncontr) # coeffs: list with shape (ncontr, nbasis) coeffs = list(zip(*coeffsT)) ncoeffs = len(coeffs) angmoms = _expand_angmoms(desc[0], ncoeffs) # convert to tensor alpha = torch.tensor(alphas, dtype=dtype, device=device, requires_grad=requires_grad) for i in range(ncoeffs): coeff = torch.tensor(coeffs[i], dtype=dtype, device=device, requires_grad=requires_grad) basis = CGTOBasis(angmom=angmoms[i], alphas=alpha, coeffs=coeff) basis.wfnormalize_() res.append(basis) return res def _read_float(s: str) -> float: s = s.replace("D", "E") return float(s) def _get_basis_file(cmd: str) -> str: # parse the string command, check if the basis has already been downloaded # (download if not), and return the file name # parse to get the atomz and the basisname atomz_str, raw_basisname = cmd.split(":") raw_basisname = raw_basisname.strip() atomz = int(atomz_str) # get the path to the database basisname = _normalize_basisname(raw_basisname) thisdir = os.path.dirname(os.path.realpath(__file__)) fname = "%02d.gaussian94" % atomz fdir = os.path.join(thisdir, ".database", basisname) fpath = os.path.join(fdir, fname) # if the file does not exist, download it if not os.path.exists(fpath): print("The %s basis for atomz %d does not exist, but we will download it" % (raw_basisname, atomz)) if not os.path.exists(fdir): os.makedirs(fdir) _download_basis(fpath, atomz, raw_basisname) return fpath def _normalize_basisname(basisname: str) -> str: b = basisname.lower() b = b.replace("+", "p") b = b.replace("*", "s") b = b.replace("(", "_") b = b.replace(")", "_") b = b.replace(",", "_") return b def _download_basis(fname: str, atomz: int, basisname: str) -> None: import basis_set_exchange as bse s = bse.get_basis(basisname, elements=[atomz], fmt="gaussian94") with open(fname, "w") as f: f.write(s) print("Downloaded to %s" % fname) def _expand_angmoms(s: str, n: int) -> List[int]: # convert the angular momentum characters into angmom and returns a list # of n integer containing the angular momentums if len(s) == n: pass elif n % len(s) == 0: s = s * (n // len(s)) else: raise RuntimeError("Do not know how to read orbital %s with %d coefficient columns" % (s, n)) s = s.lower() spdfmap = { "s": 0, "p": 1, "d": 2, "f": 3, "g": 4, "h": 5, "i": 6, } angmoms = [spdfmap[c] for c in s] return angmoms
[ "torch.device", "torch.tensor" ]
1.8
Jaikinator/dqc
47c964c7d1323a35f4f69521d40476c41843810e
1.8
from typing import overload, Tuple import torch __all__ = ["BaseOrbParams", "QROrbParams", "MatExpOrbParams"] class BaseOrbParams(object): """ Class that provides free-parameterization of orthogonal orbitals. """ @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: None) -> torch.Tensor: ... @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: float) \ -> Tuple[torch.Tensor, torch.Tensor]: ... @staticmethod def params2orb(params, coeffs, with_penalty): """ Convert the parameters & coefficients to the orthogonal orbitals. ``params`` is the tensor to be optimized in variational method, while ``coeffs`` is a tensor that is needed to get the orbital, but it is not optimized in the variational method. """ pass @staticmethod def orb2params(orb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Get the free parameters from the orthogonal orbitals. Returns ``params`` and ``coeffs`` described in ``params2orb``. """ pass class QROrbParams(BaseOrbParams): @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: None) -> torch.Tensor: ... @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: float) \ -> Tuple[torch.Tensor, torch.Tensor]: ... @staticmethod def params2orb(params, coeffs, with_penalty): orb, _ = torch.linalg.qr(params) if with_penalty is None: return orb else: # QR decomposition's solution is not unique in a way that every column # can be multiplied by -1 and it still a solution # So, to remove the non-uniqueness, we will make the sign of the sum # positive. s1 = torch.sign(orb.sum(dim=-2, keepdim=True)) # (*BD, 1, norb) s2 = torch.sign(params.sum(dim=-2, keepdim=True)) penalty = torch.mean((orb * s1 - params * s2) ** 2) * with_penalty return orb, penalty @staticmethod def orb2params(orb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: coeffs = torch.tensor([0], dtype=orb.dtype, device=orb.device) return orb, coeffs class MatExpOrbParams(BaseOrbParams): """ Orthogonal orbital parameterization using matrix exponential. The orthogonal orbital is represented by: P = matrix_exp(Q) @ C where C is an orthogonal coefficient tensor, and Q is the parameters defining the rotation of the orthogonal tensor. """ @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: None) -> torch.Tensor: ... @overload @staticmethod def params2orb(params: torch.Tensor, coeffs: torch.Tensor, with_penalty: float) \ -> Tuple[torch.Tensor, torch.Tensor]: ... @staticmethod def params2orb(params, coeffs, with_penalty): # params: (*, nparams) # coeffs: (*, nao, norb) nao = coeffs.shape[-2] norb = coeffs.shape[-1] nparams = params.shape[-1] bshape = params.shape[:-1] # construct the rotation parameters triu_idxs = torch.triu_indices(nao, nao, offset=1)[..., :nparams] rotmat = torch.zeros((*bshape, nao, nao), dtype=params.dtype, device=params.device) rotmat[..., triu_idxs[0], triu_idxs[1]] = params rotmat = rotmat - rotmat.transpose(-2, -1).conj() # calculate the orthogonal orbital ortho_orb = torch.matrix_exp(rotmat) @ coeffs if with_penalty: penalty = torch.zeros((1,), dtype=params.dtype, device=params.device) return ortho_orb, penalty else: return ortho_orb @staticmethod def orb2params(orb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # orb: (*, nao, norb) nao = orb.shape[-2] norb = orb.shape[-1] nparams = norb * (nao - norb) + norb * (norb - 1) // 2 # the orbital becomes the coefficients while params is all zeros (no rotation) coeffs = orb params = torch.zeros((*orb.shape[:-2], nparams), dtype=orb.dtype, device=orb.device) return params, coeffs
[ "torch.zeros", "torch.triu_indices", "torch.linalg.qr", "torch.matrix_exp", "torch.tensor", "torch.mean" ]
1.8
Jaikinator/dqc
47c964c7d1323a35f4f69521d40476c41843810e
1.9
import torch from recstudio.ann import sampler from recstudio.data import dataset from recstudio.model import basemodel, loss_func, scorer r""" HGN ######## Paper Reference: Chen ma, et al. "HGN: Hierarchical Gating Networks for Sequential Recommendation" in KDD2019. https://dl.acm.org/doi/abs/10.1145/3292500.3330984 """ class HGNQueryEncoder(torch.nn.Module): def __init__(self, fuid, fiid, num_users, embed_dim, max_seq_len, item_encoder, pooling_type='mean') -> None: super().__init__() self.fuid = fuid self.fiid = fiid self.item_encoder = item_encoder self.pooling_type = pooling_type self.user_embedding = torch.nn.Embedding(num_users, embed_dim, 0) self.W_g_1 = torch.nn.Linear(embed_dim, embed_dim, bias=False) self.W_g_2 = torch.nn.Linear(embed_dim, embed_dim, bias=False) self.b_g = torch.nn.Parameter(torch.empty(embed_dim), requires_grad=True) self.w_g_3 = torch.nn.Linear(embed_dim, 1, bias=False) self.W_g_4 = torch.nn.Linear(embed_dim, max_seq_len) def forward(self, batch): U = self.user_embedding(batch[self.fuid]) S = self.item_encoder(batch['in_'+self.fiid]) S_F = S * torch.sigmoid(self.W_g_1(S) + self.W_g_2(U).view(U.size(0), 1, -1) + self.b_g) weight = torch.sigmoid(self.w_g_3(S_F) + ([email protected]_g_4.weight[:S.size(1)].T).view(U.size(0), -1, 1)) # BxLx1 S_I = S_F * weight if self.pooling_type == 'mean': s = S_I.sum(1) / weight.sum(1) elif self.pooling_type == 'max': s = torch.max(S_I, dim=1).values else: raise ValueError("`pooling_type` only support `avg` and `max`") query = U + s + S.sum(1) return query class HGN(basemodel.BaseRetriever): r"""HGN proposes a hierarchical gating network, integrated with the Bayesian Personalized Ranking (BPR) to capture both the long-term and short-term user interests. HGN consists of a feature gating module, an instance gating module, and an item-item product module.""" def _get_dataset_class(self): r"""The dataset is SeqDataset.""" return dataset.SeqDataset def _get_query_encoder(self, train_data): return HGNQueryEncoder(self.fuid, self.fiid, train_data.num_users, self.embed_dim, \ train_data.config['max_seq_len'], self.item_encoder, self.config['pooling_type']) def _get_scorer_func(self): return scorer.InnerProductScorer() def _get_loss_func(self): r"""BPR loss is used.""" return loss_func.BPRLoss() def _get_sampler(self, train_data): return sampler.UniformSampler(train_data.num_items-1)
[ "torch.nn.Linear", "torch.empty", "torch.nn.Embedding", "torch.max" ]
1.9.0
ustc-recsys/Torchrec
4d62ee42018c12961850936cfd8f4f8d3c6a8dbc
1.8
import pytest import numpy as np import torch from doctr.models.preprocessor import PreProcessor @pytest.mark.parametrize( "batch_size, output_size, input_tensor, expected_batches, expected_value", [ [2, (128, 128), np.full((3, 256, 128, 3), 255, dtype=np.uint8), 1, .5], # numpy uint8 [2, (128, 128), np.ones((3, 256, 128, 3), dtype=np.float32), 1, .5], # numpy fp32 [2, (128, 128), np.ones((3, 256, 128, 3), dtype=np.float16), 1, .5], # numpy fp16 [2, (128, 128), torch.full((3, 3, 256, 128), 255, dtype=torch.uint8), 1, .5], # torch uint8 [2, (128, 128), torch.ones((3, 3, 256, 128), dtype=torch.float32), 1, .5], # torch fp32 [2, (128, 128), torch.ones((3, 3, 256, 128), dtype=torch.float16), 1, .5], # torch fp16 [2, (128, 128), [np.full((256, 128, 3), 255, dtype=np.uint8)] * 3, 2, .5], # list of numpy uint8 [2, (128, 128), [np.ones((256, 128, 3), dtype=np.float32)] * 3, 2, .5], # list of numpy fp32 [2, (128, 128), [np.ones((256, 128, 3), dtype=np.float16)] * 3, 2, .5], # list of numpy fp16 [2, (128, 128), [torch.full((3, 256, 128), 255, dtype=torch.uint8)] * 3, 2, .5], # list of torch uint8 [2, (128, 128), [torch.ones((3, 256, 128), dtype=torch.float32)] * 3, 2, .5], # list of torch fp32 [2, (128, 128), [torch.ones((3, 256, 128), dtype=torch.float16)] * 3, 2, .5], # list of torch fp32 ], ) def test_preprocessor(batch_size, output_size, input_tensor, expected_batches, expected_value): processor = PreProcessor(output_size, batch_size) # Invalid input type with pytest.raises(TypeError): processor(42) # 4D check with pytest.raises(AssertionError): processor(np.full((256, 128, 3), 255, dtype=np.uint8)) with pytest.raises(TypeError): processor(np.full((1, 256, 128, 3), 255, dtype=np.int32)) # 3D check with pytest.raises(AssertionError): processor([np.full((3, 256, 128, 3), 255, dtype=np.uint8)]) with pytest.raises(TypeError): processor([np.full((256, 128, 3), 255, dtype=np.int32)]) with torch.no_grad(): out = processor(input_tensor) assert isinstance(out, list) and len(out) == expected_batches assert all(isinstance(b, torch.Tensor) for b in out) assert all(b.dtype == torch.float32 for b in out) assert all(b.shape[-2:] == output_size for b in out) assert all(torch.all(b == expected_value) for b in out) assert len(repr(processor).split('\n')) == 4 # Check FP16 processor = PreProcessor(output_size, batch_size, fp16=True) with torch.no_grad(): out = processor(input_tensor) assert all(b.dtype == torch.float16 for b in out)
[ "torch.no_grad", "torch.ones", "torch.all", "torch.full" ]
1.8.0
mzeidhassan/doctr
14b376e07d31b09b6bd31bceebf6ffb477c30f08
1.8
import os from pathlib import Path from typing import Callable, Optional, Tuple, Union import torchvision from torch import nn from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets import STL10, ImageFolder def build_custom_pipeline(): """Builds augmentation pipelines for custom data. If you want to do exoteric augmentations, you can just re-write this function. Needs to return a dict with the same structure. """ pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), "T_val": transforms.Compose( [ transforms.Resize(256), # resize shorter transforms.CenterCrop(224), # take center crop transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), } return pipeline def prepare_transforms(dataset: str) -> Tuple[nn.Module, nn.Module]: """Prepares pre-defined train and test transformation pipelines for some datasets. Args: dataset (str): dataset name. Returns: Tuple[nn.Module, nn.Module]: training and validation transformation pipelines. """ cifar_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=32, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ] ), "T_val": transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ] ), } stl_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=96, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261)), ] ), "T_val": transforms.Compose( [ transforms.Resize((96, 96)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261)), ] ), } imagenet_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), "T_val": transforms.Compose( [ transforms.Resize(256), # resize shorter transforms.CenterCrop(224), # take center crop transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), } custom_pipeline = build_custom_pipeline() pipelines = { "cifar10": cifar_pipeline, "cifar100": cifar_pipeline, "stl10": stl_pipeline, "imagenet100": imagenet_pipeline, "imagenet": imagenet_pipeline, "custom": custom_pipeline, } assert dataset in pipelines pipeline = pipelines[dataset] T_train = pipeline["T_train"] T_val = pipeline["T_val"] return T_train, T_val def prepare_datasets( dataset: str, T_train: Callable, T_val: Callable, data_dir: Optional[Union[str, Path]] = None, train_dir: Optional[Union[str, Path]] = None, val_dir: Optional[Union[str, Path]] = None, ) -> Tuple[Dataset, Dataset]: """Prepares train and val datasets. Args: dataset (str): dataset name. T_train (Callable): pipeline of transformations for training dataset. T_val (Callable): pipeline of transformations for validation dataset. data_dir Optional[Union[str, Path]]: path where to download/locate the dataset. train_dir Optional[Union[str, Path]]: subpath where the training data is located. val_dir Optional[Union[str, Path]]: subpath where the validation data is located. Returns: Tuple[Dataset, Dataset]: training dataset and validation dataset. """ if data_dir is None: sandbox_dir = Path(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) data_dir = sandbox_dir / "datasets" else: data_dir = Path(data_dir) if train_dir is None: train_dir = Path(f"{dataset}/train") else: train_dir = Path(train_dir) if val_dir is None: val_dir = Path(f"{dataset}/val") else: val_dir = Path(val_dir) assert dataset in ["cifar10", "cifar100", "stl10", "imagenet", "imagenet100", "custom"] if dataset in ["cifar10", "cifar100"]: DatasetClass = vars(torchvision.datasets)[dataset.upper()] train_dataset = DatasetClass( data_dir / train_dir, train=True, download=True, transform=T_train, ) val_dataset = DatasetClass( data_dir / val_dir, train=False, download=True, transform=T_val, ) elif dataset == "stl10": train_dataset = STL10( data_dir / train_dir, split="train", download=True, transform=T_train, ) val_dataset = STL10( data_dir / val_dir, split="test", download=True, transform=T_val, ) elif dataset in ["imagenet", "imagenet100", "custom"]: train_dir = data_dir / train_dir val_dir = data_dir / val_dir train_dataset = ImageFolder(train_dir, T_train) val_dataset = ImageFolder(val_dir, T_val) return train_dataset, val_dataset def prepare_dataloaders( train_dataset: Dataset, val_dataset: Dataset, batch_size: int = 64, num_workers: int = 4 ) -> Tuple[DataLoader, DataLoader]: """Wraps a train and a validation dataset with a DataLoader. Args: train_dataset (Dataset): object containing training data. val_dataset (Dataset): object containing validation data. batch_size (int): batch size. num_workers (int): number of parallel workers. Returns: Tuple[DataLoader, DataLoader]: training dataloader and validation dataloader. """ train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True, ) val_loader = DataLoader( val_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=False, ) return train_loader, val_loader def prepare_data( dataset: str, transform: Optional[Callable] = None, data_dir: Optional[Union[str, Path]] = None, train_dir: Optional[Union[str, Path]] = None, val_dir: Optional[Union[str, Path]] = None, batch_size: int = 64, num_workers: int = 4, ) -> Tuple[DataLoader, DataLoader]: """Prepares transformations, creates dataset objects and wraps them in dataloaders. Args: dataset (str): dataset name. data_dir (Optional[Union[str, Path]], optional): path where to download/locate the dataset. Defaults to None. train_dir (Optional[Union[str, Path]], optional): subpath where the training data is located. Defaults to None. val_dir (Optional[Union[str, Path]], optional): subpath where the validation data is located. Defaults to None. batch_size (int, optional): batch size. Defaults to 64. num_workers (int, optional): number of parallel workers. Defaults to 4. Returns: Tuple[DataLoader, DataLoader]: prepared training and validation dataloader;. """ if transform is None: T_train, T_val = prepare_transforms(dataset) else: T_train = transform T_val = transform train_dataset, val_dataset = prepare_datasets( dataset, T_train, T_val, data_dir=data_dir, train_dir=train_dir, val_dir=val_dir, ) train_loader, val_loader = prepare_dataloaders( train_dataset, val_dataset, batch_size=batch_size, num_workers=num_workers, ) return train_loader, val_loader
[ "torch.utils.data.DataLoader" ]
1.8.1
fariasfc/solo-learn
f53ff40edbc7e96e06db5238d8c3a44f7b8965c1
1.8
import torch import torch.nn.functional as F def invariance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor: """Computes mse loss given batch of projected features z1 from view 1 and projected features z2 from view 2. Args: z1 (torch.Tensor): NxD Tensor containing projected features from view 1. z2 (torch.Tensor): NxD Tensor containing projected features from view 2. Returns: torch.Tensor: invariance loss (mean squared error). """ return F.mse_loss(z1, z2) def variance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor: """Computes variance loss given batch of projected features z1 from view 1 and projected features z2 from view 2. Args: z1 (torch.Tensor): NxD Tensor containing projected features from view 1. z2 (torch.Tensor): NxD Tensor containing projected features from view 2. Returns: torch.Tensor: variance regularization loss. """ eps = 1e-4 std_z1 = torch.sqrt(z1.var(dim=0) + eps) std_z2 = torch.sqrt(z2.var(dim=0) + eps) std_loss = torch.mean(F.relu(1 - std_z1)) + torch.mean(F.relu(1 - std_z2)) return std_loss def covariance_loss(z1: torch.Tensor, z2: torch.Tensor) -> torch.Tensor: """Computes covariance loss given batch of projected features z1 from view 1 and projected features z2 from view 2. Args: z1 (torch.Tensor): NxD Tensor containing projected features from view 1. z2 (torch.Tensor): NxD Tensor containing projected features from view 2. Returns: torch.Tensor: covariance regularization loss. """ N, D = z1.size() z1 = z1 - z1.mean(dim=0) z2 = z2 - z2.mean(dim=0) cov_z1 = (z1.T @ z1) / (N - 1) cov_z2 = (z2.T @ z2) / (N - 1) diag = torch.eye(D, device=z1.device) cov_loss = cov_z1[~diag.bool()].pow_(2).sum() / D + cov_z2[~diag.bool()].pow_(2).sum() / D return cov_loss def vicreg_loss_func( z1: torch.Tensor, z2: torch.Tensor, sim_loss_weight: float = 25.0, var_loss_weight: float = 25.0, cov_loss_weight: float = 1.0, ) -> torch.Tensor: """Computes VICReg's loss given batch of projected features z1 from view 1 and projected features z2 from view 2. Args: z1 (torch.Tensor): NxD Tensor containing projected features from view 1. z2 (torch.Tensor): NxD Tensor containing projected features from view 2. sim_loss_weight (float): invariance loss weight. var_loss_weight (float): variance loss weight. cov_loss_weight (float): covariance loss weight. Returns: torch.Tensor: VICReg loss. """ sim_loss = invariance_loss(z1, z2) var_loss = variance_loss(z1, z2) cov_loss = covariance_loss(z1, z2) loss = sim_loss_weight * sim_loss + var_loss_weight * var_loss + cov_loss_weight * cov_loss return loss
[ "torch.nn.functional.mse_loss", "torch.nn.functional.relu", "torch.eye" ]
1.8.1
fariasfc/solo-learn
b75ba6faf5269b0849120bfb89593f9bc23e09bc
1.7
import json import os import sys import time import torch from training.training import Trainer from data.conversion import GridDataConverter, PointCloudDataConverter, ERA5Converter from data.dataloaders import mnist, celebahq from data.dataloaders_era5 import era5 from data.dataloaders3d import shapenet_voxels, shapenet_point_clouds from models.discriminator import PointConvDiscriminator from models.function_distribution import HyperNetwork, FunctionDistribution from models.function_representation import FunctionRepresentation, FourierFeatures def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Get config file from command line arguments if len(sys.argv) != 2: raise(RuntimeError("Wrong arguments, use python main.py <config_path>")) config_path = sys.argv[1] # Open config file with open(config_path) as f: config = json.load(f) if config["path_to_data"] == "": raise(RuntimeError("Path to data not specified. Modify path_to_data attribute in config to point to data.")) # Create a folder to store experiment results timestamp = time.strftime("%Y-%m-%d_%H-%M") directory = "{}_{}".format(timestamp, config["id"]) if not os.path.exists(directory): os.makedirs(directory) # Save config file in experiment directory with open(directory + '/config.json', 'w') as f: json.dump(config, f) # Setup dataloader is_voxel = False is_point_cloud = False is_era5 = False if config["dataset"] == 'mnist': dataloader = mnist(path_to_data=config["path_to_data"], batch_size=config["training"]["batch_size"], size=config["resolution"], train=True) input_dim = 2 output_dim = 1 data_shape = (1, config["resolution"], config["resolution"]) elif config["dataset"] == 'celebahq': dataloader = celebahq(path_to_data=config["path_to_data"], batch_size=config["training"]["batch_size"], size=config["resolution"]) input_dim = 2 output_dim = 3 data_shape = (3, config["resolution"], config["resolution"]) elif config["dataset"] == 'shapenet_voxels': dataloader = shapenet_voxels(path_to_data=config["path_to_data"], batch_size=config["training"]["batch_size"], size=config["resolution"]) input_dim = 3 output_dim = 1 data_shape = (1, config["resolution"], config["resolution"], config["resolution"]) is_voxel = True elif config["dataset"] == 'shapenet_point_clouds': dataloader = shapenet_point_clouds(path_to_data=config["path_to_data"], batch_size=config["training"]["batch_size"]) input_dim = 3 output_dim = 1 data_shape = (1, config["resolution"], config["resolution"], config["resolution"]) is_point_cloud = True elif config["dataset"] == 'era5': dataloader = era5(path_to_data=config["path_to_data"], batch_size=config["training"]["batch_size"]) input_dim = 3 output_dim = 1 data_shape = (46, 90) is_era5 = True # Setup data converter if is_point_cloud: data_converter = PointCloudDataConverter(device, data_shape, normalize_features=True) elif is_era5: data_converter = ERA5Converter(device, data_shape, normalize_features=True) else: data_converter = GridDataConverter(device, data_shape, normalize_features=True) # Setup encoding for function distribution num_frequencies = config["generator"]["encoding"]["num_frequencies"] std_dev = config["generator"]["encoding"]["std_dev"] if num_frequencies: frequency_matrix = torch.normal(mean=torch.zeros(num_frequencies, input_dim), std=std_dev).to(device) encoding = FourierFeatures(frequency_matrix) else: encoding = torch.nn.Identity() # Setup generator models final_non_linearity = torch.nn.Tanh() non_linearity = torch.nn.LeakyReLU(0.1) function_representation = FunctionRepresentation(input_dim, output_dim, config["generator"]["layer_sizes"], encoding, non_linearity, final_non_linearity).to(device) hypernetwork = HyperNetwork(function_representation, config["generator"]["latent_dim"], config["generator"]["hypernet_layer_sizes"], non_linearity).to(device) function_distribution = FunctionDistribution(hypernetwork).to(device) # Setup discriminator discriminator = PointConvDiscriminator(input_dim, output_dim, config["discriminator"]["layer_configs"], linear_layer_sizes=config["discriminator"]["linear_layer_sizes"], norm_order=config["discriminator"]["norm_order"], add_sigmoid=True, add_batchnorm=config["discriminator"]["add_batchnorm"], add_weightnet_batchnorm=config["discriminator"]["add_weightnet_batchnorm"], deterministic=config["discriminator"]["deterministic"], same_coordinates=config["discriminator"]["same_coordinates"]).to(device) print("\nFunction distribution") print(hypernetwork) print("Number of parameters: {}".format(count_parameters(hypernetwork))) print("\nDiscriminator") print(discriminator) print("Number of parameters: {}".format(count_parameters(discriminator))) # Setup trainer trainer = Trainer(device, function_distribution, discriminator, data_converter, lr=config["training"]["lr"], lr_disc=config["training"]["lr_disc"], r1_weight=config["training"]["r1_weight"], max_num_points=config["training"]["max_num_points"], print_freq=config["training"]["print_freq"], save_dir=directory, model_save_freq=config["training"]["model_save_freq"], is_voxel=is_voxel, is_point_cloud=is_point_cloud, is_era5=is_era5) trainer.train(dataloader, config["training"]["epochs"])
[ "torch.zeros", "torch.nn.Identity", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.cuda.is_available" ]
1.7.0
EmilienDupont/neural-function-distributions
c034bf79640c6d8922f1c276174b3cb1800d22b4
0.4
from __future__ import print_function import argparse import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim as optim import torch.utils.data.distributed from torchvision import models import horovod.torch as hvd import timeit import numpy as np # Benchmark settings parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') parser.add_argument('--model', type=str, default='resnet50', help='model to benchmark') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--num-warmup-batches', type=int, default=10, help='number of warm-up batches that don\'t count towards benchmark') parser.add_argument('--num-batches-per-iter', type=int, default=10, help='number of batches per benchmark iteration') parser.add_argument('--num-iters', type=int, default=10, help='number of benchmark iterations') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--use-adasum', action='store_true', default=False, help='use adasum algorithm to do reduction') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) cudnn.benchmark = True # Set up standard model. model = getattr(models, args.model)() # By default, Adasum doesn't need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if args.cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler) # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Set up fixed fake data data = torch.randn(args.batch_size, 3, 224, 224) target = torch.LongTensor(args.batch_size).random_() % 1000 if args.cuda: data, target = data.cuda(), target.cuda() def benchmark_step(): optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() def log(s, nl=True): if hvd.rank() != 0: return print(s, end='\n' if nl else '') log('Model: %s' % args.model) log('Batch size: %d' % args.batch_size) device = 'GPU' if args.cuda else 'CPU' log('Number of %ss: %d' % (device, hvd.size())) # Warm-up log('Running warmup...') timeit.timeit(benchmark_step, number=args.num_warmup_batches) # Benchmark log('Running benchmark...') img_secs = [] for x in range(args.num_iters): time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter) img_sec = args.batch_size * args.num_batches_per_iter / time log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) img_secs.append(img_sec) # Results img_sec_mean = np.mean(img_secs) img_sec_conf = 1.96 * np.std(img_secs) log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) log('Total img/sec on %d %s(s): %.1f +-%.1f' % (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))
[ "torch.nn.functional.cross_entropy" ]
0.4.0
zmldndx/horovod
e9b1e228ff92eb7f65d9aea2d36f23b327df28bd
1.9
from typing import ClassVar, List, Optional, Tuple, Callable, Union, cast import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as D from alphazero.network.distributions import SquashedNormal, GeneralizedBeta from alphazero.network.utils import ( _map_nonlinearities, _process_str, ) __all__ = [ "make_policy", "DiagonalNormalPolicy", "DiagonalGMMPolicy", "GeneralizedBetaPolicy", "DiscretePolicy", ] class Policy(nn.Module): """Base policy class. The base policy is responsible for instanting the linear layers and value head. It also defines some interface functions. Parameters ---------- representation_dim : int Dimensions of the input representation. action_dim : int Number of dimensions for the action space. distribution : str Distribution that is parameterized by the network. Allows the following options: - "normal": Normal distribution. - "tanhsquashed", "tanhsquashednormal": Normal distribution with samples squashed in (-1, 1). - "generalizedsquashed", "generalizedsquashednormal": Normal distribution with samples squashed in (-c, c). - "beta", "generalizedbeta": Beta distribution with transformed support on (-c, c). action_bound : Optional[float] Bounds for the action space. Can be either float or None. hidden_dimensions : List[int] Specify the number of hidden neurons for each respective hidden layer of the network. Cannot be empty. nonlinearity : str Nonlinearity used between hidden layers. Options are: - "relu": https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU . - "leakyrelu": https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU. - "relu6": https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#torch.nn.ReLU6. - "silu": https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html#torch.nn.SiLU. - "elu": https://pytorch.org/docs/stable/generated/torch.nn.ELU.html#torch.nn.ELU. - "hardswish": https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html#torch.nn.Hardswish. layernorm : bool If True, the network is regularized with layer normalization after each liner layer. This may increase performance, see https://arxiv.org/pdf/1709.06560.pdf for info. log_param_min : int Lower bound for learned log parameters. log_param_max : int Upper bound for learned log parameters. """ # member type annotations state_dim: int action_dim: int action_bound: Optional[float] log_param_min: float log_param_max: float hidden_layers: int hidden_dimensions: List[int] trunk: nn.Sequential value_head: nn.Linear def __init__( self, representation_dim: int, action_dim: int, action_bound: Optional[float], hidden_dimensions: List[int], nonlinearity: str, layernorm: bool, log_param_min: float, log_param_max: float, ): super().__init__() self.state_dim = representation_dim self.action_dim = action_dim self.action_bound = action_bound # boundaries for the log standard deviation to increae training stability self.log_param_min = log_param_min self.log_param_max = log_param_max assert hidden_dimensions, "Hidden dimensions can't be empty." self.hidden_dimensions = hidden_dimensions self.hidden_layers = len(hidden_dimensions) activation: Callable[..., nn.Module] = _map_nonlinearities(nonlinearity) self.layernorm = layernorm # generate neural network except distribution heads layers = [ nn.Linear(self.state_dim, hidden_dimensions[0]), activation(inplace=True), ] if layernorm: layers.append(nn.LayerNorm(normalized_shape=hidden_dimensions[0])) if 1 < self.hidden_layers: for i, hidden_dim in enumerate(hidden_dimensions[:-1]): hid = [ nn.Linear(hidden_dim, hidden_dimensions[i + 1]), activation(inplace=True), ] if layernorm: hid.append(nn.LayerNorm(normalized_shape=hidden_dimensions[i + 1])) layers.extend(hid) self.trunk = nn.Sequential(*layers) self.value_head = nn.Linear(hidden_dimensions[-1], 1) def __repr__(self) -> str: """ Returns ------- str String representation of this instance. """ components: int = getattr(self, "num_components", 1) return ( f"class={type(self).__name__}, distribution={self.distribution_type}, components={components}, " f"state_dim={self.state_dim}, action_dim={self.action_dim}, action_bounds={self.bounds}, " f"log_std_bounds={self.log_param_bounds}, hidden_layers={self.hidden_layers}, hidden_units={self.hidden_dimensions}, " f"nonlinearity={type(self.trunk[1]).__name__}, layernorm={self.layernorm}" ) @property def bounds(self) -> np.ndarray: if self.action_bound is None: return np.array([-np.inf, np.inf], dtype=np.float32) else: return np.array([-self.action_bound, self.action_bound], dtype=np.float32) @torch.no_grad() def get_train_data( self, states: torch.Tensor, actions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: raise NotImplementedError @torch.no_grad() def sample_action(self, x: torch.Tensor) -> np.ndarray: raise NotImplementedError @torch.no_grad() def predict_V(self, x: torch.Tensor) -> np.ndarray: self.eval() x = self.trunk(x) V_hat = self.value_head(x) self.train() return V_hat.detach().cpu().numpy() class DiscretePolicy(nn.Module): """Base policy class. The base policy is responsible for instanting the linear layers and value head. It also defines some interface functions. Parameters ---------- representation_dim : int Dimensions of the input representation. action_dim : int Number of dimensions for the action space. distribution : str Distribution that is parameterized by the network. Allows the following options: - "normal": Normal distribution. - "tanhsquashed", "tanhsquashednormal": Normal distribution with samples squashed in (-1, 1). - "generalizedsquashed", "generalizedsquashednormal": Normal distribution with samples squashed in (-c, c). - "beta", "generalizedbeta": Beta distribution with transformed support on (-c, c). action_bound : Optional[float] Bounds for the action space. Can be either float or None. hidden_dimensions : List[int] Specify the number of hidden neurons for each respective hidden layer of the network. Cannot be empty. nonlinearity : str Nonlinearity used between hidden layers. Options are: - "relu": https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU . - "leakyrelu": https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU. - "relu6": https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#torch.nn.ReLU6. - "silu": https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html#torch.nn.SiLU. - "elu": https://pytorch.org/docs/stable/generated/torch.nn.ELU.html#torch.nn.ELU. - "hardswish": https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html#torch.nn.Hardswish. layernorm : bool If True, the network is regularized with layer normalization after each liner layer. This may increase performance, see https://arxiv.org/pdf/1709.06560.pdf for info. log_param_min : int Lower bound for learned log parameters. log_param_max : int Upper bound for learned log parameters. """ # member type annotations state_dim: int action_dim: int num_actions: int hidden_layers: int hidden_dimensions: List[int] trunk: nn.Sequential value_head: nn.Linear # class variable distribution_type: ClassVar[str] = "Categorical" def __init__( self, representation_dim: int, action_dim: int, num_actions: int, hidden_dimensions: List[int], nonlinearity: str, layernorm: bool, ): super().__init__() self.state_dim = representation_dim self.action_dim = action_dim self.num_actions = num_actions assert hidden_dimensions, "Hidden dimensions can't be empty." self.hidden_dimensions = hidden_dimensions self.hidden_layers = len(hidden_dimensions) self.distribution = D.Categorical activation: Callable[..., nn.Module] = _map_nonlinearities(nonlinearity) self.layernorm = layernorm # generate neural network except distribution heads layers = [ nn.Linear(self.state_dim, hidden_dimensions[0]), activation(inplace=True), ] if layernorm: layers.append(nn.LayerNorm(normalized_shape=hidden_dimensions[0])) if 1 < self.hidden_layers: for i, hidden_dim in enumerate(hidden_dimensions[:-1]): hid = [ nn.Linear(hidden_dim, hidden_dimensions[i + 1]), activation(inplace=True), ] if layernorm: hid.append(nn.LayerNorm(normalized_shape=hidden_dimensions[i + 1])) layers.extend(hid) self.trunk = nn.Sequential(*layers) self.value_head = nn.Linear(hidden_dimensions[-1], 1) self.dist_head = nn.Linear(hidden_dimensions[-1], num_actions) def __repr__(self) -> str: """ Returns ------- str String representation of this instance. """ return ( f"class={type(self).__name__}, distribution={self.distribution_type}, num_actions={self.num_actions}, " f"state_dim={self.state_dim}, action_dim={self.action_dim}, " f"hidden_layers={self.hidden_layers}, hidden_units={self.hidden_dimensions}, " f"nonlinearity={type(self.trunk[1]).__name__}, layernorm={self.layernorm}" ) def _get_dist_params( self, x: torch.Tensor ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: """Returns the learned paremters of the distribution. Parameters ---------- x : torch.FloatTensor Input state tensor. Returns ------- Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor] Distribution mean (mu), Distribution standard deviation (sigma), State value estimate (V_hat). """ x = self.trunk(x) V_hat = self.value_head(x) # dist_head returns a tensor of shape [batch_size, 2*action_dim] # split this tensor along the last dimension into parameters for mu and sigma pi_logits = self.dist_head(x) return pi_logits, V_hat def forward(self, x: torch.FloatTensor) -> Tuple[D.Categorical, torch.FloatTensor]: """Forward pass of the model. Parameters ---------- x : torch.FloatTensor Input state tensor. Returns ------- Tuple[Normallike, torch.FloatTensor] Normal or squashed Normal distribution (dist), State value estimate (V_hat). """ pi_logits, V_hat = self._get_dist_params(x) dist = D.Categorical(logits=pi_logits) # samples from dist have shape [batch_size, action_dim] return dist, V_hat def get_train_data( self, states: torch.Tensor, actions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: pi_logits, V_hat = self._get_dist_params(states) # This creates an independent distribution for each action possibility # so that the batch_shape of the distribution is identical to the shape of actions # It's needed so that the log_probs are of the proper shape [batch_size, num_actions] # else this throws since the distribution's batch_shape=[batch_shape] doesn't match # the shape of the actions tensor, which is [batch_size, num_actions] num_actions = actions.shape[1] pi_hat = D.Categorical( logits=pi_logits.unsqueeze(dim=1).repeat((1, num_actions, 1)) ) log_probs = pi_hat.log_prob(actions) entropy = pi_hat.entropy() return log_probs, entropy, V_hat @torch.no_grad() def predict_V(self, x: torch.Tensor) -> np.ndarray: self.eval() _, V_hat = self(x) self.train() return V_hat.detach().cpu().numpy() @torch.no_grad() def predict_pi(self, x: torch.Tensor) -> np.ndarray: self.eval() logits, _ = self._get_dist_params(x) self.train() return F.softmax(logits, dim=-1).detach().cpu().numpy() class DiagonalNormalPolicy(Policy): """Policy class for factorized normal distributions. Learns parameters for a factorized normal distribution of types Normal, TanhSquashedNormal or GeneralizedSquashedNormal. Factorized means that a conditionally independent (given a state) 1D Normal distribution is learned for each dimension of the action space instead of a Multivariate Normal. Parameters ---------- representation_dim : int Dimensions of the input representation. action_dim : int Number of dimensions for the action space. distribution : str Distribution that is parameterized by the network. Has to be a Normallike distribution. Allows the following options: - "normal": Normal distribution. - "tanhsquashed", "tanhsquashednormal": Normal distribution with samples squashed in (-1, 1). - "generalizedsquashed", "generalizedsquashednormal": Normal distribution with samples squashed in (-c, c). action_bound : Optional[float] Bounds for the action space. Can be either float or None. hidden_dimensions : List[int] Specify the number of hidden neurons for each respective hidden layer of the network. Cannot be empty. nonlinearity : str Nonlinearity used between hidden layers. Options are: - "relu": https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU . - "leakyrelu": https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU. - "relu6": https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#torch.nn.ReLU6. - "silu": https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html#torch.nn.SiLU. - "elu": https://pytorch.org/docs/stable/generated/torch.nn.ELU.html#torch.nn.ELU. - "hardswish": https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html#torch.nn.Hardswish. layernorm : bool If True, the network is regularized with layer normalization after each liner layer. This may increase performance, see https://arxiv.org/pdf/1709.06560.pdf for info. log_param_min : int Lower bound for learned log standard deviation. log_param_max : int Upper bound for learned log standard deviation. """ # member annotations state_dim: int action_dim: int action_bound: Optional[float] log_param_min: float log_param_max: float hidden_layers: int hidden_dimensions: List[int] trunk: nn.Sequential dist_head: nn.Linear value_head: nn.Linear # class variable policy_type: ClassVar[str] = "DiagonalNormal" def __init__( self, representation_dim: int, action_dim: int, action_bound: Optional[float], hidden_dimensions: List[int], nonlinearity: str, layernorm: bool, log_param_min: float, log_param_max: float, ): super().__init__( representation_dim=representation_dim, action_dim=action_dim, action_bound=action_bound, hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, ) self.dist_head = nn.Linear(hidden_dimensions[-1], 2 * self.action_dim) def forward( self, x: torch.FloatTensor ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: """Returns the learned paremters of the distribution. Parameters ---------- x : torch.FloatTensor Input state tensor. Returns ------- Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor] Distribution mean (mu), Distribution standard deviation (sigma), State value estimate (V_hat). """ x = self.trunk(x) V_hat = self.value_head(x) # dist_head returns a tensor of shape [batch_size, 2*action_dim] # split this tensor along the last dimension into parameters for mu and sigma mu, log_std = self.dist_head(x).chunk(2, dim=-1) # Learning the log_std_dev is a trick for numerical stability # Since the stddev > 0, we can learn the log and then exponentiate # constrain log_std inside [log_param_min, log_param_max] log_std = torch.clamp(log_std, min=self.log_param_min, max=self.log_param_max) sigma = log_std.exp() return mu, sigma, V_hat def get_train_data( self, states: torch.Tensor, actions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: mu, sigma, V_hat = self(states) # This aligns the distribution batch_shape with the number of actions at the root # It can be thought of as generating num_actions identical normal distributions for each agent # and then sampling the log_prob for action from the distribution # num_actions = actions.shape[-1] # mu = mu.expand((-1, num_actions)) # sigma = sigma.expand((-1, num_actions)) normal: Union[D.Normal, SquashedNormal] if self.action_bound: normal = SquashedNormal(mu, sigma, self.action_bound) else: normal = D.Normal(mu, sigma) log_probs = normal.log_prob(actions) entropy = -log_probs.mean(dim=-1) return log_probs, entropy, V_hat @torch.no_grad() def sample_action(self, x: torch.Tensor) -> np.ndarray: self.eval() mu, sigma, _ = self(x) normal: Union[D.Normal, SquashedNormal] if self.action_bound: normal = SquashedNormal(mu, sigma, self.action_bound) else: normal = D.Normal(mu, sigma) action = normal.sample() self.train() return action.detach().cpu().numpy() class DiagonalGMMPolicy(Policy): """Policy class for learning a factorized GMM. Learns a 1D GMM for each dimension of the action space. The components of the GMM are either Normal or squashed Normal. Parameters ---------- representation_dim : int Dimensions of the input representation. action_dim : int Number of dimensions for the action space. distribution : str Distribution that is parameterized by the network. Has to be Normallike. Allows the following options: - "normal": Normal distribution. - "tanhsquashed", "tanhsquashednormal": Normal distribution with samples squashed in (-1, 1). - "generalizedsquashed", "generalizedsquashednormal": Normal distribution with samples squashed in (-c, c). num_components : int Number of mixture components. action_bound : Optional[float] Bounds for the action space. Can be either float or None. hidden_dimensions : List[int] Specify the number of hidden neurons for each respective hidden layer of the network. Cannot be empty. nonlinearity : str Nonlinearity used between hidden layers. Options are: - "relu": https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU . - "leakyrelu": https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU. - "relu6": https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#torch.nn.ReLU6. - "silu": https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html#torch.nn.SiLU. - "elu": https://pytorch.org/docs/stable/generated/torch.nn.ELU.html#torch.nn.ELU. - "hardswish": https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html#torch.nn.Hardswish. layernorm : bool If True, the network is regularized with layer normalization after each liner layer. This may increase performance, see https://arxiv.org/pdf/1709.06560.pdf for info. log_param_min : int Lower bound for learned log standard deviations. log_param_max : int Upper bound for learned log standard deviations. """ # member annotations state_dim: int action_dim: int action_bound: Optional[float] log_param_min: float log_param_max: float hidden_layers: int hidden_dimensions: List[int] num_components: int trunk: nn.Sequential dist_head: nn.Linear value_head: nn.Linear # class variable policy_type: ClassVar[str] = "DiagonalGMM" def __init__( self, representation_dim: int, action_dim: int, action_bound: Optional[float], num_components: int, hidden_dimensions: List[int], nonlinearity: str, layernorm: bool, log_param_min: float, log_param_max: float, ): super().__init__( representation_dim=representation_dim, action_dim=action_dim, action_bound=action_bound, hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, ) self.num_components = num_components # calculate the number of parameters needed for the GMM # 2 comes from each distribution being specifiec by 2 parameters dist_params = num_components * (2 * self.action_dim + 1) self.dist_head = nn.Linear(hidden_dimensions[-1], dist_params) def forward( self, x: torch.FloatTensor ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor ]: """Returns the learned paremters of the distribution. Parameters ---------- x : torch.FloatTensor Input state tensor. Returns ------- Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor] Distribution mean (mu), Distribution standard deviation (sigma), Logits for the categorical distribution parameterizing the components (log_coeffs), State value estimate (V_hat). """ x = self.trunk(x) V_hat = self.value_head(x) # mixture_params is a tensor of shape [batch_size, num_agents, 2*action_dim*num_components + num_components] # the elements in the first term (2*action_dim*num_components) are the parameters for the mixture components # the elements in the second term (+ num_components) are the mixture coefficients mixture_params = self.dist_head(x) # get mixture parameters and reorder to [batch_size, num_agents, 2*num_components, action_dim] dist_params = mixture_params[ ..., : self.num_components * 2 * self.action_dim ].view(x.shape[0], -1) # get the num_components last tensor elements as logits for the mixture coefficients log_coeff = mixture_params[..., -self.num_components :] # split the dist_params along the middle dimension (2*num_components) into means and log stddevs mu, log_std = dist_params.chunk(2, dim=-1) # Learning the log_std_dev is a trick for numerical stability # Since the stddev > 0, we can learn the log and then exponentiate # constrain log_std inside [log_param_min, log_param_max] log_std = torch.clamp(log_std, min=self.log_param_min, max=self.log_param_max) sigma = log_std.exp() return mu, sigma, log_coeff, V_hat def get_train_data( self, states: torch.Tensor, actions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: mu, sigma, log_coeff, V_hat = self(states) # We need num_actions identical gmms to sample log_probs for each action num_actions = actions.shape[-1] mu = mu.unsqueeze(dim=1).expand((-1, num_actions, -1)) sigma = sigma.unsqueeze(dim=1).expand((-1, num_actions, -1)) log_coeff = log_coeff.unsqueeze(dim=1).expand((-1, num_actions, -1)) mix = D.Categorical(logits=log_coeff) component: Union[D.Normal, SquashedNormal] if self.action_bound: component = SquashedNormal(mu, sigma, self.action_bound) else: component = D.Normal(mu, sigma) gmm = D.MixtureSameFamily(mix, component) log_probs = gmm.log_prob(actions) entropy = -log_probs.mean(dim=-1) return log_probs, entropy, V_hat @torch.no_grad() def sample_action(self, x: torch.Tensor) -> np.ndarray: self.eval() mu, sigma, log_coeff, _ = self(x) mix = D.Categorical(logits=log_coeff) component: Union[D.Normal, SquashedNormal] if self.action_bound: component = SquashedNormal(mu, sigma, self.action_bound) else: component = D.Normal(mu, sigma) gmm = D.MixtureSameFamily(mix, component) action = gmm.sample() self.train() return action.detach().cpu().numpy() class GeneralizedBetaPolicy(Policy): """Policy class for a generalized Beta distribution. The beta distribution used by this class is generalized in that it has support [-c, c] instead of [0,1]. This is achieved via a location-scale transformation (2c)x - c, where c are the desired bounds. Since both parameters alpha, beta > 0, the log-learning-trick for the Normal standard deviation is applied to both parameters. Parameters ---------- representation_dim : int Dimensions of the input representation. action_dim : int Number of dimensions for the action space. action_bound : Optional[float] Bounds for the action space. Can be either float or None. hidden_dimensions : List[int] Specify the number of hidden neurons for each respective hidden layer of the network. Cannot be empty. nonlinearity : str Nonlinearity used between hidden layers. Options are: - "relu": https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU . - "leakyrelu": https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU. - "relu6": https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#torch.nn.ReLU6. - "silu": https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html#torch.nn.SiLU. - "elu": https://pytorch.org/docs/stable/generated/torch.nn.ELU.html#torch.nn.ELU. - "hardswish": https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html#torch.nn.Hardswish. layernorm : bool If True, the network is regularized with layer normalization after each liner layer. This may increase performance, see https://arxiv.org/pdf/1709.06560.pdf for info. log_param_min : int Lower bound for learned log_alpha and log_beta. log_param_max : int Upper bound for learned log_alpha and log_beta. """ # member annotations state_dim: int action_dim: int action_bound: float log_param_min: float log_param_max: float hidden_layers: int hidden_dimensions: List[int] trunk: nn.Sequential dist_head: nn.Linear value_head: nn.Linear # class variable policy_type: ClassVar[str] = "GeneralizedBeta" def __init__( self, representation_dim: int, action_dim: int, action_bound: float, hidden_dimensions: List[int], nonlinearity: str, layernorm: bool, log_param_min: float, log_param_max: float, ): assert action_bound, "Beta policy needs action bounds specified." super().__init__( representation_dim=representation_dim, action_dim=action_dim, action_bound=action_bound, hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, ) self.dist_head = nn.Linear(hidden_dimensions[-1], 2 * self.action_dim) def forward( self, x: torch.FloatTensor ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: """Returns the learned paremters of the distribution. Parameters ---------- x : torch.FloatTensor Input state tensor. Returns ------- Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor] Alpha parameter (alpha), Beta parameter (beta), State value estimate (V_hat). """ x = self.trunk(x) V_hat = self.value_head(x) # create distribution parameters dist_params = self.dist_head(x) # Use the log_std_dev trick for alpha and beta # since both alpha > 0 and beta > 0 dist_params = torch.clamp( dist_params, min=self.log_param_min, max=self.log_param_max ) alpha, beta = dist_params.exp().chunk(2, dim=-1) return alpha, beta, V_hat def get_train_data( self, states: torch.Tensor, actions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: alpha, beta, V_hat = self(states) # ensure that the distribution batch_shape fits the number of actions taken for # each agent at the root num_actions = actions.shape[-1] alpha = alpha.expand(-1, num_actions) beta = beta.expand(-1, num_actions) beta_dist = GeneralizedBeta(alpha, beta, self.action_bound) log_probs = beta_dist.log_prob(actions) entropy = -log_probs.mean(dim=-1) return log_probs, entropy, V_hat @torch.no_grad() def sample_action(self, x: torch.Tensor) -> np.ndarray: self.eval() alpha, beta, _ = self(x) beta_dist = D.Beta(alpha, beta) action = beta_dist.sample() self.train() return action.detach().cpu().numpy() def make_policy( representation_dim: int, action_dim: int, distribution: str, hidden_dimensions: List[int], nonlinearity: str, num_components: Optional[int] = None, num_actions: Optional[int] = None, action_bound: Optional[float] = None, layernorm: bool = False, log_param_min: float = -5, log_param_max: float = 2, ) -> Union[ DiscretePolicy, DiagonalNormalPolicy, DiagonalGMMPolicy, GeneralizedBetaPolicy ]: """Constructs a policy network from a given config. The following config keys need to be specified: - "representation_dim": int - "action_dim": int - "distribution": str - "num_components": int - "action_bound": float - "hidden_dimensions": List[int] - "nonlinearity": str - "layernorm": bool - "log_param_min": Optional[float] - "log_param_max": Optional[float] Parameters ---------- representation_dim: int Dimensionality of the vector state space of the environment. action_dim: int Number of action dimensions in the environment. distribution: str Name of the policy distribution as string ["discrete", "beta", "normal"]. hidden_dimensions: List[int] List specification of the MLP policy. Each int element in the list represents a hidden layer in the network with the respective number of neurons. nonlinearity: str Nonlinearity (activation function) used in the policy network. num_components: Optional[int] = None Number of components for mixture distributions. num_actions: Optional[int] = None Number of available actions. Used in the discrete policy. action_bound: Optional[float] = None Action bounds for the squashed normal or squashed GMM policy. layernorm: bool = False Use Layernorm in the policy network if set to True. log_param_min: float = -5 Lower bound of the learned log parameters (standard deviation for Normal distributions). log_param_max: float = 2 Upper bound of the learned log parameters. Returns ------- Union[DiscretePolicy, DiagonalNormalPolicy, DiagonalGMMPolicy, GeneralizedBetaPolicy] Policy network intance. """ # basic config string preprocessing to ensure mapping works later distribution = _process_str(distribution) nonlinearity = _process_str(nonlinearity) if distribution == "discrete": return DiscretePolicy( representation_dim=representation_dim, action_dim=action_dim, num_actions=cast(int, num_actions), hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, ) elif distribution == "beta": assert num_components return GeneralizedBetaPolicy( representation_dim=representation_dim, action_dim=action_dim, action_bound=cast(float, action_bound), hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, ) else: assert num_components if 1 < num_components: return DiagonalGMMPolicy( representation_dim=representation_dim, action_dim=action_dim, num_components=num_components, action_bound=action_bound, hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, ) else: return DiagonalNormalPolicy( representation_dim=representation_dim, action_dim=action_dim, action_bound=action_bound, hidden_dimensions=hidden_dimensions, nonlinearity=nonlinearity, layernorm=layernorm, log_param_min=log_param_min, log_param_max=log_param_max, )
[ "torch.nn.Linear", "torch.distributions.Categorical", "torch.nn.LayerNorm", "torch.nn.Sequential", "torch.no_grad", "torch.distributions.Normal", "torch.clamp", "torch.distributions.Beta", "torch.nn.functional.softmax", "torch.distributions.MixtureSameFamily" ]
1.9.0
timoklein/A0C
2825193f424bd5b74b654c929ef73775b0914ee5
1.6
import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" # import deepspeed # import mpi4py # import pandas import torch import transformers import wandb #%env WANDB_PROJECT=wine_gpt2_Trainer_42 MODEL_NAME = "gpt2-medium" # wandb.login(anonymous='never', key="222a37baaf0c1b0d1499ec003e5c2fe49f97b107") wandb.init() # wandb.watch(log='all') print(torch.cuda.is_available()) print(f"transformers version: {transformers.__version__}") print(f"PyTorch version: {torch.__version__}") # Tokenizers tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME) print(len(tokenizer)) tokenizer.add_special_tokens( {"eos_token": "<|startoftext|>", "bos_token": "<|startoftext|>"} ) tokenizer.add_tokens( [ "[prompt]", "[response]", "[category_1]", "[category_2]", "[origin]", "[description]", "<|endoftext|>", ] ) tokenizer.pad_token = tokenizer.eos_token tokenizer.save_pretrained("data/modeling/trainer_42/") print(len(tokenizer)) print("Created tokenizer") class wineDataset(torch.utils.data.Dataset): def __init__(self, encodings): self.encodings = encodings def __len__(self): return len(self.encodings["input_ids"]) def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item["labels"] = item["input_ids"] return item with open("data/scraped/name_desc_nlp_ready_train.txt", "r", encoding="utf8") as file: wines_raw_train = file.read().splitlines() with open("data/scraped/name_desc_nlp_ready_test.txt", "r", encoding="utf8") as file: wines_raw_test = file.read().splitlines() print("Loaded dataset") # wines_raw_train, wines_raw_test = train_test_split(wines_raw,test_size=0.2) # wine_encodings_train = tokenizer(wines_raw_train, max_length=200, truncation=True, padding=True) wine_encodings_test = tokenizer( wines_raw_test, max_length=200, truncation=True, padding=True ) print("Encoded dataset") # wine_dataset_train = wineDataset(wine_encodings_train) wine_dataset_test = wineDataset(wine_encodings_test) print("Created PyTorch DataSet") # train_loader = torch.utils.data.DataLoader(wine_dataset_train) model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME) # model.to('cuda') model.resize_token_embeddings(len(tokenizer)) print(f"model parameters: {model.num_parameters():,}") training_args = transformers.TrainingArguments( output_dir="data/modeling/trainer_42/", overwrite_output_dir=True, num_train_epochs=1, per_device_train_batch_size=2, save_steps=100, save_total_limit=2, fp16=True, # deepspeed='data/ds_config.json' ) trainer = transformers.Trainer( model=model, args=training_args, train_dataset=wine_dataset_test, ) trainer.train()
[ "torch.cuda.is_available", "torch.tensor" ]
1.6.0
cipher982/Wine-o-matic
a8000bf5ec86554e9c3c746aae51ba509ab59162
1.7
import torch import torchvision from torchvision import transforms, utils, datasets from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from sklearn.metrics import classification_report, confusion_matrix def makeDataSet(IMAGE_SHAPE = 300,DATA_PATH = './data_after_splitting/'): image_transforms = { "train": transforms.Compose([ transforms.Resize((IMAGE_SHAPE, IMAGE_SHAPE)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]), "val": transforms.Compose([ transforms.Resize((IMAGE_SHAPE, IMAGE_SHAPE)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) } train_dataset = datasets.ImageFolder(root = DATA_PATH + "train", transform = image_transforms["train"] ) val_dataset = datasets.ImageFolder(root = DATA_PATH + "val", transform = image_transforms["val"] ) train_dataloader = DataLoader(train_dataset, batch_size=4, num_workers=2, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=4, num_workers=2, shuffle=True) return train_dataloader,val_dataloader
[ "torch.utils.data.DataLoader" ]
1.7.1
manhph2211/Pytorch-Fb-Classification
cf5f9c0b356635020ff245c255d971e450d203fb
1.2
"""Adapted from: @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn Licensed under The MIT License [see LICENSE for details] """ from __future__ import print_function import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Variable from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform from data import VOC_CLASSES as labelmap import torch.utils.data as data from ssd import build_ssd import sys import os import time import argparse import numpy as np import pickle import cv2 if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Evaluation') parser.add_argument('--trained_model', default='weights/ssd300_mAP_77.43_v2.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--save_folder', default='eval/', type=str, help='File path to save results') parser.add_argument('--confidence_threshold', default=0.5, type=float, help='Detection confidence threshold') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=False, type=str2bool, help='Use cuda to train model') parser.add_argument('--voc_root', default=VOC_ROOT, help='Location of VOC root directory') parser.add_argument('--cleanup', default=True, type=str2bool, help='Cleanup and remove results files following eval') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) if torch.cuda.is_available(): if args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: It looks like you have a CUDA device, but aren't using \ CUDA. Run with --cuda for optimal eval speed.") torch.set_default_tensor_type('torch.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') annopath = os.path.join(args.voc_root, 'VOC2007', 'Annotations', '%s.xml') imgpath = os.path.join(args.voc_root, 'VOC2007', 'JPEGImages', '%s.jpg') if sys.platform.startswith("linux"): imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets', 'Main', '{:s}.txt') # Linux 系统下 if sys.platform.startswith("win"): imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets', 'Main', '{}.txt') # Linux 系统下 YEAR = '2007' devkit_path = args.voc_root + 'VOC' + YEAR dataset_mean = (104, 117, 123) set_type = 'test' class Timer(object): """A simple timer.""" def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: return self.average_time else: return self.diff def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1, int(bbox.find('ymin').text) - 1, int(bbox.find('xmax').text) - 1, int(bbox.find('ymax').text) - 1] objects.append(obj_struct) return objects def get_output_dir(name, phase): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ filedir = os.path.join(name, phase) if not os.path.exists(filedir): os.makedirs(filedir) return filedir def get_voc_results_file_template(image_set, cls): # VOCdevkit/VOC2007/results/det_test_aeroplane.txt filename = 'det_' + image_set + '_%s.txt' % (cls) filedir = os.path.join(devkit_path, 'results') if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def write_voc_results_file(all_boxes, dataset): for cls_ind, cls in enumerate(labelmap): print('Writing {:s} VOC results file'.format(cls)) filename = get_voc_results_file_template(set_type, cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(dataset.ids): dets = all_boxes[cls_ind+1][im_ind] if dets == []: continue # the VOCdevkit expects 1-based indices for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index[1], dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def do_python_eval(output_dir='output', use_07=True): cachedir = os.path.join(devkit_path, 'annotations_cache') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = use_07 print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) if not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(labelmap): filename = get_voc_results_file_template(set_type, cls) rec, prec, ap = voc_eval( filename, annopath, imgsetpath.format(set_type), cls, cachedir, ovthresh=0.5, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~') print('Results:') for ap in aps: print('{:.3f}'.format(ap)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('--------------------------------------------------------------') def voc_ap(rec, prec, use_07_metric=True): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:True). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, cachedir, ovthresh=0.5, use_07_metric=True): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) cachedir: Directory for caching the annotations [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default True) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # cachedir caches the annotations in a pickle file # first load gt if not os.path.isdir(cachedir): os.mkdir(cachedir) cachefile = os.path.join(cachedir, 'annots.pkl') # read list of images with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): recs[imagename] = parse_rec(annopath % (imagename)) if i % 100 == 0: print('Reading annotation for {:d}/{:d}'.format( i + 1, len(imagenames))) # save print('Saving cached annotations to {:s}'.format(cachefile)) with open(cachefile, 'wb') as f: pickle.dump(recs, f) else: # load with open(cachefile, 'rb') as f: recs = pickle.load(f) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} # read dets detfile = detpath.format(classname) with open(detfile, 'r') as f: lines = f.readlines() if any(lines) == 1: splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin, 0.) ih = np.maximum(iymax - iymin, 0.) inters = iw * ih uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) + (BBGT[:, 2] - BBGT[:, 0]) * (BBGT[:, 3] - BBGT[:, 1]) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) else: rec = -1. prec = -1. ap = -1. return rec, prec, ap def test_net(save_folder, net, cuda, dataset, transform, top_k, im_size=300, thresh=0.05): num_images = len(dataset) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in range(num_images)] for _ in range(len(labelmap)+1)] # timers _t = {'im_detect': Timer(), 'misc': Timer()} output_dir = get_output_dir('ssd300_120000', set_type) det_file = os.path.join(output_dir, 'detections.pkl') for i in range(num_images): im, gt, h, w = dataset.pull_item(i) x = Variable(im.unsqueeze(0)) if args.cuda: x = x.cuda() _t['im_detect'].tic() detections = net(x).data detect_time = _t['im_detect'].toc(average=False) # skip j = 0, because it's the background class for j in range(1, detections.size(1)): dets = detections[0, j, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.size(0) == 0: continue boxes = dets[:, 1:] boxes[:, 0] *= w boxes[:, 2] *= w boxes[:, 1] *= h boxes[:, 3] *= h scores = dets[:, 0].cpu().numpy() cls_dets = np.hstack((boxes.cpu().numpy(), scores[:, np.newaxis])).astype(np.float32, copy=False) all_boxes[j][i] = cls_dets print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1, num_images, detect_time)) with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') evaluate_detections(all_boxes, output_dir, dataset) def evaluate_detections(box_list, output_dir, dataset): write_voc_results_file(box_list, dataset) do_python_eval(output_dir) if __name__ == '__main__': # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD #net.load_state_dict(torch.load(args.trained_model)) net.load_state_dict(torch.load(args.trained_model, map_location='cpu')) # running on a CPU-only machine net.eval() print('Finished loading model!') # load data dataset = VOCDetection(args.voc_root, [('2007', set_type)], BaseTransform(300, dataset_mean), VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, dataset, BaseTransform(net.size, dataset_mean), args.top_k, 300, thresh=args.confidence_threshold)
[ "torch.cuda.is_available", "torch.load", "torch.masked_select", "torch.set_default_tensor_type" ]
1.2
FLyingLSJ/ssd.pytorch
9caca0788f0bebab345f969a7d3c1f8b2081b809
1.3
import os import sys import errno import random import pickle import numpy as np import torch import torchvision import torch.nn.functional as F from torch.utils.data.dataset import Dataset from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import BatchSampler from torchvision.datasets import DatasetFolder from torchvision import transforms from torch import nn from torch import optim import matplotlib.pyplot as plt #============================================================================== # Network definition #============================================================================== class SE_HIPP_3D_Net(nn.Module): def __init__(self): super(SE_HIPP_3D_Net, self).__init__() self.conv1 = nn.Conv2d(28, 32, kernel_size=4, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=2, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(64) self.fc1 = nn.Linear(64*7*7, 120) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(120, 2) def forward(self, x): x = self.conv1(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=0) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1) x = self.bn2(x) x = self.relu(x) # print("size", x.size()) x = x.view(-1, self.num_flat_features(x)) x = self.dropout(x) # print("size", x.size()) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.functional.max_pool2d" ]
1.3.1
kaderghal/ADNI_Data_processing
454462d3913d77e3bc4de2b9725b456301c7b351
3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import logging import multiprocessing as mp import numpy as np import os import torch from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.data.detection_utils import read_image from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.logger import setup_logger from pytorch3d.io import save_obj from pytorch3d.structures import Meshes # required so that .register() calls are executed in module scope import meshrcnn.data # noqa import meshrcnn.modeling # noqa import meshrcnn.utils # noqa from meshrcnn.config import get_meshrcnn_cfg_defaults from meshrcnn.evaluation import transform_meshes_to_camera_coord_system def get_parser(): parser = argparse.ArgumentParser(description="MeshRCNN Demo") parser.add_argument( "--config-file", default="configs/pix3d/meshrcnn_R50_FPN.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--input", help="A path to an input image") parser.add_argument("--output", help="A directory to save output visualizations") parser.add_argument( "--focal-length", type=float, default=20.0, help="Focal length for the image" ) parser.add_argument( "--onlyhighest", action="store_true", help="will return only the highest scoring detection" ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser args = get_parser().parse_args() from meshrcnn.data.datasets.register_pix3d import register_pix3d register_pix3d(args.opts[1]) import cv2 logger = logging.getLogger("demo") class VisualizationDemo(object): def __init__(self, cfg, vis_highest_scoring=True, output_dir="./vis"): """ Args: cfg (CfgNode): vis_highest_scoring (bool): If set to True visualizes only the highest scoring prediction """ self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) self.colors = self.metadata.thing_colors self.cat_names = self.metadata.thing_classes self.cpu_device = torch.device("cpu") self.vis_highest_scoring = vis_highest_scoring self.predictor = DefaultPredictor(cfg) os.makedirs(output_dir, exist_ok=True) self.output_dir = output_dir def run_on_image(self, image, focal_length=10.0): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. focal_length (float): the focal_length of the image Returns: predictions (dict): the output of the model. """ predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] # camera matrix imsize = [image.shape[0], image.shape[1]] # focal <- focal * image_width / 32 focal_length = image.shape[1] / 32 * focal_length K = [focal_length, image.shape[1] / 2, image.shape[0] / 2] if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) scores = instances.scores boxes = instances.pred_boxes labels = instances.pred_classes masks = instances.pred_masks meshes = Meshes( verts=[mesh[0] for mesh in instances.pred_meshes], faces=[mesh[1] for mesh in instances.pred_meshes], ) pred_dz = instances.pred_dz[:, 0] * (boxes.tensor[:, 3] - boxes.tensor[:, 1]) tc = pred_dz.abs().max() + 1.0 zranges = torch.stack( [ torch.stack( [ tc - tc * pred_dz[i] / 2.0 / focal_length, tc + tc * pred_dz[i] / 2.0 / focal_length, ] ) for i in range(len(meshes)) ], dim=0, ) Ks = torch.tensor(K).to(self.cpu_device).view(1, 3).expand(len(meshes), 3) meshes = transform_meshes_to_camera_coord_system( meshes, boxes.tensor, zranges, Ks, imsize ) if self.vis_highest_scoring: det_ids = [scores.argmax().item()] else: det_ids = range(len(scores)) for det_id in det_ids: self.visualize_prediction( det_id, image, boxes.tensor[det_id], labels[det_id], scores[det_id], masks[det_id], meshes[det_id], ) return predictions def visualize_prediction( self, det_id, image, box, label, score, mask, mesh, alpha=0.6, dpi=200 ): mask_color = np.array(self.colors[label], dtype=np.float32) cat_name = self.cat_names[label] thickness = max([int(np.ceil(0.001 * image.shape[0])), 1]) box_color = (0, 255, 0) # '#00ff00', green text_color = (218, 227, 218) # gray composite = image.copy().astype(np.float32) # overlay mask idx = mask.nonzero() composite[idx[:, 0], idx[:, 1], :] *= 1.0 - alpha composite[idx[:, 0], idx[:, 1], :] += alpha * mask_color # overlay box (x0, y0, x1, y1) = (int(x + 0.5) for x in box) composite = cv2.rectangle( composite, (x0, y0), (x1, y1), color=box_color, thickness=thickness ) composite = composite.astype(np.uint8) # overlay text font_scale = 0.001 * image.shape[0] font_thickness = thickness font = cv2.FONT_HERSHEY_TRIPLEX text = "%s %.3f" % (cat_name, score) ((text_w, text_h), _) = cv2.getTextSize(text, font, font_scale, font_thickness) # Place text background. if x0 + text_w > composite.shape[1]: x0 = composite.shape[1] - text_w if y0 - int(1.2 * text_h) < 0: y0 = int(1.2 * text_h) back_topleft = x0, y0 - int(1.3 * text_h) back_bottomright = x0 + text_w, y0 cv2.rectangle(composite, back_topleft, back_bottomright, box_color, -1) # Show text text_bottomleft = x0, y0 - int(0.2 * text_h) cv2.putText( composite, text, text_bottomleft, font, font_scale, text_color, thickness=font_thickness, lineType=cv2.LINE_AA, ) save_file = os.path.join(self.output_dir, "%d_mask_%s_%.3f.png" % (det_id, cat_name, score)) cv2.imwrite(save_file, composite[:, :, ::-1]) save_file = os.path.join(self.output_dir, "%d_mesh_%s_%.3f.obj" % (det_id, cat_name, score)) verts, faces = mesh.get_mesh_verts_faces(0) save_obj(save_file, verts, faces) def setup_cfg(args): cfg = get_cfg() get_meshrcnn_cfg_defaults(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg if __name__ == "__main__": mp.set_start_method("spawn", force=True) args = get_parser().parse_args() logger = setup_logger(name="demo") logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) im_name = args.input.split("/")[-1].split(".")[0] demo = VisualizationDemo( cfg, vis_highest_scoring=args.onlyhighest, output_dir=os.path.join(args.output, im_name) ) # use PIL, to be consistent with evaluation img = read_image(args.input, format="BGR") predictions = demo.run_on_image(img, focal_length=args.focal_length) logger.info("Predictions saved in %s" % (os.path.join(args.output, im_name)))
[ "torch.device", "torch.stack", "torch.tensor" ]
3
ishanic/MeshRCNN-keypoints
fdc2c81ce57313207478ab9ff1699614addc5993
1.6
from math import log, exp from numpy import inf, zeros, zeros_like as np_zeros_like, arange, asarray, empty from pandas import concat from anndata import AnnData from torch import cat, no_grad, randn, zeros_like, zeros as torch_zeros, ones, argmax from torch.nn import Module, Linear, Sequential, RNNCell, Softplus, Parameter, Softmax from torch.optim import Adam from torch.optim.lr_scheduler import StepLR from .Layers import Input_Block, FF_Block, LambdaLayer, Dual_Forward class sciPENN_Model(Module): def __init__(self, p_mod1, p_mod2, loss1, loss2, quantiles, categories): super(sciPENN_Model, self).__init__() h_size, drop_rate = 512, 0.25 self.RNNCell = RNNCell(h_size, h_size) self.input_block = Input_Block(p_mod1, h_size, drop_rate, drop_rate) self.skip_1 = FF_Block(h_size, drop_rate) self.skip_2 = FF_Block(h_size, drop_rate) self.skip_3 = FF_Block(h_size, drop_rate) MSE_output = Linear(h_size, p_mod2) if len(quantiles) > 0: quantile_layer = [] quantile_layer.append(Linear(h_size, p_mod2 * len(quantiles))) quantile_layer.append(LambdaLayer(lambda x: x.view(-1, p_mod2, len(quantiles)))) quantile_layer = Sequential(*quantile_layer) self.mod2_out = Dual_Forward(MSE_output, quantile_layer) else: self.mod2_out = MSE_output if categories is not None: self.celltype_out = Sequential(Linear(h_size, len(categories)), Softmax(1)) self.forward = self.forward_transfer self.categories_arr = empty((len(categories), ), dtype = 'object') for cat in categories: self.categories_arr[categories[cat]] = cat else: self.forward = self.forward_simple self.categories_arr = None self.quantiles = quantiles self.loss1, self.loss2 = loss1, loss2 def forward_transfer(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': self.celltype_out(h.detach()), 'modality 2': self.mod2_out(h), 'embedding': h} def forward_simple(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': None, 'modality 2': self.mod2_out(h), 'embedding': h} def train_backprop(self, train_loader, val_loader, n_epoch = 10000, ES_max = 30, decay_max = 10, decay_step = 0.1, lr = 10**(-3)): optimizer = Adam(self.parameters(), lr = lr) scheduler = StepLR(optimizer, step_size = 1, gamma = decay_step) patience = 0 bestloss = inf if self.categories_arr is None: get_correct = lambda x: 0 else: get_correct = lambda outputs: (argmax(outputs['celltypes'], axis = 1) == celltypes).sum() for epoch in range(n_epoch): with no_grad(): running_loss, rtype_acc = 0., 0. self.eval() for batch, inputs in enumerate(val_loader): mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) n_correct = get_correct(outputs) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) rtype_acc += n_correct running_loss += mod2_loss.item() * len(mod2) if self.categories_arr is None: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}") else: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}, validation accuracy = {rtype_acc/len(val_loader):.3f}") patience += 1 if bestloss/1.005 > running_loss: bestloss, patience = running_loss, 0 if (patience + 1) % decay_max == 0: scheduler.step() print(f"Decaying loss to {optimizer.param_groups[0]['lr']}") if (patience + 1) > ES_max: break self.train() for batch, inputs in enumerate(train_loader): optimizer.zero_grad() mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) mod1_loss = self.loss1(outputs['celltypes'], celltypes) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) loss = mod1_loss + mod2_loss loss.backward() optimizer.step() def impute(self, impute_loader, requested_quantiles, denoise_genes, proteins): imputed_test = proteins.copy() for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = self.fill_predicted(imputed_test.X[start:end], mod2_impute, bools) for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end return imputed_test def embed(self, impute_loader, test_loader, cells_train, cells_test): if cells_test is not None: embedding = AnnData(zeros(shape = (len(cells_train) + len(cells_test), 512))) embedding.obs = concat((cells_train, cells_test), join = 'inner') else: embedding = AnnData(zeros(shape = (len(cells_train), 512))) embedding.obs = cells_train self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end if cells_test is not None: for mod1 in test_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end return embedding def fill_predicted(self, array, predicted, bools): bools = bools.cpu().numpy() return (1. - bools) * predicted.cpu().numpy() + array def predict(self, test_loader, requested_quantiles, denoise_genes, proteins, cells): imputed_test = AnnData(zeros(shape = (len(cells), len(proteins.var)))) imputed_test.obs = cells imputed_test.var.index = proteins.var.index if self.categories_arr is not None: celltypes = ['None'] * len(cells) for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1 in test_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if self.categories_arr is not None: predicted_types = argmax(outputs['celltypes'], axis = 1).cpu().numpy() celltypes[start:end] = self.categories_arr[predicted_types].tolist() if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = mod2_impute.cpu().numpy() for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end if self.categories_arr is not None: imputed_test.obs['transfered cell labels'] = celltypes return imputed_test
[ "torch.nn.Linear", "torch.optim.lr_scheduler.StepLR", "torch.nn.RNNCell", "torch.nn.Softmax", "torch.nn.Sequential", "torch.no_grad", "torch.zeros_like", "torch.argmax" ]
1.6.1
jlakkis/sciPENN
34afb2008a076e13c40965a76d3dd31d0c331652
0.4
# MIT License # Copyright (c) 2018 the NJUNMT-pytorch authors. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import random import time from copy import deepcopy import numpy as np import torch import yaml from tensorboardX import SummaryWriter from tqdm import tqdm from src.data.data_iterator import DataIterator from src.data.dataset import TextLineDataset, ZipDataset from src.data.vocabulary import Vocabulary from src.decoding import beam_search, ensemble_beam_search from src.decoding.beam_search import nmt_lm_fusion_beam_search from src.metric.bleu_scorer import SacreBLEUScorer from src.models import build_model from src.modules.criterions import NMTCriterion from src.optim import Optimizer from src.optim.lr_scheduler import ReduceOnPlateauScheduler, NoamScheduler, RsqrtScheduler from src.utils.common_utils import * from src.utils.configs import default_configs, pretty_configs from src.utils.logging import * from src.utils.moving_average import MovingAverage BOS = Vocabulary.BOS EOS = Vocabulary.EOS PAD = Vocabulary.PAD def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def load_model_parameters(path, map_location="cpu"): state_dict = torch.load(path, map_location=map_location) if "model" in state_dict: return state_dict["model"] return state_dict def split_shard(*inputs, split_size=1): if split_size <= 1: yield inputs else: lengths = [len(s) for s in inputs[-1]] # sorted_indices = np.argsort(lengths) # sorting inputs inputs = [ [inp[ii] for ii in sorted_indices] for inp in inputs ] # split shards total_batch = sorted_indices.shape[0] # total number of batches if split_size >= total_batch: yield inputs else: shard_size = total_batch // split_size _indices = list(range(total_batch))[::shard_size] + [total_batch] for beg, end in zip(_indices[:-1], _indices[1:]): yield (inp[beg:end] for inp in inputs) def prepare_data(seqs_x, seqs_y=None, cuda=False, batch_first=True): """ Args: eval ('bool'): indicator for eval/infer. Returns: """ def _np_pad_batch_2D(samples, pad, batch_first=True, cuda=True): batch_size = len(samples) sizes = [len(s) for s in samples] max_size = max(sizes) x_np = np.full((batch_size, max_size), fill_value=pad, dtype='int64') for ii in range(batch_size): x_np[ii, :sizes[ii]] = samples[ii] if batch_first is False: x_np = np.transpose(x_np, [1, 0]) x = torch.tensor(x_np) if cuda is True: x = x.cuda() return x seqs_x = list(map(lambda s: [BOS] + s + [EOS], seqs_x)) x = _np_pad_batch_2D(samples=seqs_x, pad=PAD, cuda=cuda, batch_first=batch_first) if seqs_y is None: return x seqs_y = list(map(lambda s: [BOS] + s + [EOS], seqs_y)) y = _np_pad_batch_2D(seqs_y, pad=PAD, cuda=cuda, batch_first=batch_first) return x, y def compute_forward(model, critic, seqs_x, eval=False, normalization=1.0, norm_by_words=False ): """ :type model: nn.Module :type critic: NMTCriterion """ x_inp = seqs_x[:, :-1].contiguous() x_label = seqs_x[:, 1:].contiguous() words_norm = x_label.ne(PAD).float().sum(1) if not eval: model.train() critic.train() # For training with torch.enable_grad(): log_probs = model(x_inp) loss = critic(inputs=log_probs, labels=x_label, reduce=False, normalization=normalization) if norm_by_words: loss = loss.div(words_norm).sum() else: loss = loss.sum() torch.autograd.backward(loss) return loss.item() else: model.eval() critic.eval() # For compute loss with torch.no_grad(): log_probs = model(x_inp) loss = critic(inputs=log_probs, labels=x_label, normalization=normalization, reduce=True) return loss.item() def loss_validation(model, critic, valid_iterator): """ :type model: Transformer :type critic: NMTCriterion :type valid_iterator: DataIterator """ n_sents = 0 n_tokens = 0.0 sum_loss = 0.0 valid_iter = valid_iterator.build_generator() for batch in valid_iter: _, seqs_x = batch n_sents += len(seqs_x) n_tokens += sum(len(s) for s in seqs_x) x = prepare_data(seqs_x, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=model, critic=critic, seqs_x=x, eval=True) if np.isnan(loss): WARN("NaN detected!") sum_loss += float(loss) return float(sum_loss / n_sents) def bleu_validation(uidx, valid_iterator, model, bleu_scorer, vocab_tgt, batch_size, valid_dir="./valid", max_steps=10, beam_size=5, alpha=-1.0 ): model.eval() numbers = [] trans = [] infer_progress_bar = tqdm(total=len(valid_iterator), desc=' - (Infer) ', unit="sents") valid_iter = valid_iterator.build_generator(batch_size=batch_size) for batch in valid_iter: seq_nums = batch[0] numbers += seq_nums seqs_x = batch[1] infer_progress_bar.update(len(seqs_x)) x = prepare_data(seqs_x, cuda=GlobalNames.USE_GPU) with torch.no_grad(): word_ids = beam_search(nmt_model=model, beam_size=beam_size, max_steps=max_steps, src_seqs=x, alpha=alpha) word_ids = word_ids.cpu().numpy().tolist() # Append result for sent_t in word_ids: sent_t = [[wid for wid in line if wid != PAD] for line in sent_t] x_tokens = [] for wid in sent_t[0]: if wid == EOS: break x_tokens.append(vocab_tgt.id2token(wid)) if len(x_tokens) > 0: trans.append(vocab_tgt.tokenizer.detokenize(x_tokens)) else: trans.append('%s' % vocab_tgt.id2token(EOS)) origin_order = np.argsort(numbers).tolist() trans = [trans[ii] for ii in origin_order] infer_progress_bar.close() if not os.path.exists(valid_dir): os.mkdir(valid_dir) hyp_path = os.path.join(valid_dir, 'trans.iter{0}.txt'.format(uidx)) with open(hyp_path, 'w') as f: for line in trans: f.write('%s\n' % line) with open(hyp_path) as f: bleu_v = bleu_scorer.corpus_bleu(f) return bleu_v def load_pretrained_model(nmt_model, pretrain_path, device, exclude_prefix=None): """ Args: nmt_model: model. pretrain_path ('str'): path to pretrained model. map_dict ('dict'): mapping specific parameter names to those names in current model. exclude_prefix ('dict'): excluding parameters with specific names for pretraining. Raises: ValueError: Size not match, parameter name not match or others. """ if exclude_prefix is None: exclude_prefix = [] if pretrain_path != "": INFO("Loading pretrained model from {}".format(pretrain_path)) pretrain_params = torch.load(pretrain_path, map_location=device) for name, params in pretrain_params.items(): flag = False for pp in exclude_prefix: if name.startswith(pp): flag = True break if flag: continue INFO("Loading param: {}...".format(name)) try: nmt_model.load_state_dict({name: params}, strict=False) except Exception as e: WARN("{}: {}".format(str(Exception), e)) INFO("Pretrained model loaded.") def train(FLAGS): """ FLAGS: saveto: str reload: store_true config_path: str pretrain_path: str, default="" model_name: str log_path: str """ # write log of training to file. write_log_to_file(os.path.join(FLAGS.log_path, "%s.log" % time.strftime("%Y%m%d-%H%M%S"))) GlobalNames.USE_GPU = FLAGS.use_gpu if GlobalNames.USE_GPU: CURRENT_DEVICE = "cpu" else: CURRENT_DEVICE = "cuda:0" config_path = os.path.abspath(FLAGS.config_path) with open(config_path.strip()) as f: configs = yaml.load(f) INFO(pretty_configs(configs)) # Add default configs configs = default_configs(configs) data_configs = configs['data_configs'] model_configs = configs['model_configs'] optimizer_configs = configs['optimizer_configs'] training_configs = configs['training_configs'] GlobalNames.SEED = training_configs['seed'] set_seed(GlobalNames.SEED) best_model_prefix = os.path.join(FLAGS.saveto, FLAGS.model_name + GlobalNames.MY_BEST_MODEL_SUFFIX) timer = Timer() # ================================================================================== # # Load Data INFO('Loading data...') timer.tic() # Generate target dictionary vocab_src = Vocabulary(**data_configs["vocabularies"][0]) train_batch_size = training_configs["batch_size"] * max(1, training_configs["update_cycle"]) train_buffer_size = training_configs["buffer_size"] * max(1, training_configs["update_cycle"]) train_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['train_data'][0], vocabulary=vocab_src, max_len=data_configs['max_len'][0], ), shuffle=training_configs['shuffle'] ) valid_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['valid_data'][0], vocabulary=vocab_src, ), ) training_iterator = DataIterator(dataset=train_bitext_dataset, batch_size=train_batch_size, use_bucket=training_configs['use_bucket'], buffer_size=train_buffer_size, batching_func=training_configs['batching_key']) valid_iterator = DataIterator(dataset=valid_bitext_dataset, batch_size=training_configs['valid_batch_size'], use_bucket=True, buffer_size=100000, numbering=True) INFO('Done. Elapsed time {0}'.format(timer.toc())) lrate = optimizer_configs['learning_rate'] is_early_stop = False # ================================ Begin ======================================== # # Build Model & Optimizer # We would do steps below on after another # 1. build models & criterion # 2. move models & criterion to gpu if needed # 3. load pre-trained model if needed # 4. build optimizer # 5. build learning rate scheduler if needed # 6. load checkpoints if needed # 0. Initial model_collections = Collections() checkpoint_saver = Saver(save_prefix="{0}.ckpt".format(os.path.join(FLAGS.saveto, FLAGS.model_name)), num_max_keeping=training_configs['num_kept_checkpoints'] ) best_model_saver = BestKSaver(save_prefix="{0}.best".format(os.path.join(FLAGS.saveto, FLAGS.model_name)), num_max_keeping=training_configs["num_kept_best_checkpoints"]) # 1. Build Model & Criterion INFO('Building model...') timer.tic() nmt_model = build_model(n_words=vocab_src.max_n_words, **model_configs) INFO(nmt_model) params_total = sum([p.numel() for n, p in nmt_model.named_parameters()]) params_with_embedding = sum([p.numel() for n, p in nmt_model.named_parameters() if n.find('embedding') == -1]) INFO('Total parameters: {}'.format(params_total)) INFO('Total parameters (excluding word embeddings): {}'.format(params_with_embedding)) critic = NMTCriterion(label_smoothing=model_configs['label_smoothing']) INFO(critic) INFO('Done. Elapsed time {0}'.format(timer.toc())) # 2. Move to GPU if GlobalNames.USE_GPU: nmt_model = nmt_model.cuda() critic = critic.cuda() # 3. Load pretrained model if needed load_pretrained_model(nmt_model, FLAGS.pretrain_path, exclude_prefix=None, device=CURRENT_DEVICE) # 4. Build optimizer INFO('Building Optimizer...') optim = Optimizer(name=optimizer_configs['optimizer'], model=nmt_model, lr=lrate, grad_clip=optimizer_configs['grad_clip'], optim_args=optimizer_configs['optimizer_params'] ) # 5. Build scheduler for optimizer if needed if optimizer_configs['schedule_method'] is not None: if optimizer_configs['schedule_method'] == "loss": scheduler = ReduceOnPlateauScheduler(optimizer=optim, **optimizer_configs["scheduler_configs"] ) elif optimizer_configs['schedule_method'] == "noam": scheduler = NoamScheduler(optimizer=optim, **optimizer_configs['scheduler_configs']) elif optimizer_configs["schedule_method"] == "rsqrt": scheduler = RsqrtScheduler(optimizer=optim, **optimizer_configs['scheduler_configs']) else: WARN("Unknown scheduler name {0}. Do not use lr_scheduling.".format(optimizer_configs['schedule_method'])) scheduler = None else: scheduler = None # 6. build moving average if training_configs['moving_average_method'] is not None: ma = MovingAverage(moving_average_method=training_configs['moving_average_method'], named_params=nmt_model.named_parameters(), alpha=training_configs['moving_average_alpha']) else: ma = None INFO('Done. Elapsed time {0}'.format(timer.toc())) # Reload from latest checkpoint if FLAGS.reload: checkpoint_saver.load_latest(model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) # ================================================================================== # # Prepare training eidx = model_collections.get_collection("eidx", [0])[-1] uidx = model_collections.get_collection("uidx", [0])[-1] bad_count = model_collections.get_collection("bad_count", [0])[-1] oom_count = model_collections.get_collection("oom_count", [0])[-1] summary_writer = SummaryWriter(log_dir=FLAGS.log_path) cum_samples = 0 cum_words = 0 valid_loss = best_valid_loss = float('inf') # Max Float saving_files = [] # Timer for computing speed timer_for_speed = Timer() timer_for_speed.tic() INFO('Begin training...') while True: summary_writer.add_scalar("Epoch", (eidx + 1), uidx) # Build iterator and progress bar training_iter = training_iterator.build_generator() training_progress_bar = tqdm(desc=' - (Epc {}, Upd {}) '.format(eidx, uidx), total=len(training_iterator), unit="sents" ) for batch in training_iter: uidx += 1 if optimizer_configs["schedule_method"] is not None and optimizer_configs["schedule_method"] != "loss": scheduler.step(global_step=uidx) seqs_x = batch n_samples_t = len(seqs_x) n_words_t = sum(len(s) for s in seqs_x) cum_samples += n_samples_t cum_words += n_words_t train_loss = 0. optim.zero_grad() try: # Prepare data for seqs_x_t, in split_shard(seqs_x, split_size=training_configs['update_cycle']): x = prepare_data(seqs_x_t, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=nmt_model, critic=critic, seqs_x=x, eval=False, normalization=n_samples_t, norm_by_words=training_configs["norm_by_words"]) train_loss += loss / x.size(1) optim.step() except RuntimeError as e: if 'out of memory' in str(e): print('| WARNING: ran out of memory, skipping batch') oom_count += 1 optim.zero_grad() else: raise e if ma is not None and eidx >= training_configs['moving_average_start_epoch']: ma.step() training_progress_bar.update(n_samples_t) training_progress_bar.set_description(' - (Epc {}, Upd {}) '.format(eidx, uidx)) training_progress_bar.set_postfix_str( 'TrainLoss: {:.2f}, ValidLoss(best): {:.2f} ({:.2f})'.format(train_loss, valid_loss, best_valid_loss)) summary_writer.add_scalar("train_loss", scalar_value=train_loss, global_step=uidx) # ================================================================================== # # Display some information if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['disp_freq']): # words per second and sents per second words_per_sec = cum_words / (timer.toc(return_seconds=True)) sents_per_sec = cum_samples / (timer.toc(return_seconds=True)) lrate = list(optim.get_lrate())[0] summary_writer.add_scalar("Speed(words/sec)", scalar_value=words_per_sec, global_step=uidx) summary_writer.add_scalar("Speed(sents/sen)", scalar_value=sents_per_sec, global_step=uidx) summary_writer.add_scalar("lrate", scalar_value=lrate, global_step=uidx) summary_writer.add_scalar("oom_count", scalar_value=oom_count, global_step=uidx) # Reset timer timer.tic() cum_words = 0 cum_samples = 0 # ================================================================================== # # Loss Validation & Learning rate annealing if should_trigger_by_steps(global_step=uidx, n_epoch=eidx, every_n_step=training_configs['loss_valid_freq'], debug=FLAGS.debug): if ma is not None: origin_state_dict = deepcopy(nmt_model.state_dict()) nmt_model.load_state_dict(ma.export_ma_params(), strict=False) valid_loss = loss_validation(model=nmt_model, critic=critic, valid_iterator=valid_iterator, ) model_collections.add_to_collection("history_losses", valid_loss) min_history_loss = np.array(model_collections.get_collection("history_losses")).min() summary_writer.add_scalar("loss", valid_loss, global_step=uidx) summary_writer.add_scalar("best_loss", min_history_loss, global_step=uidx) best_valid_loss = min_history_loss if ma is not None: nmt_model.load_state_dict(origin_state_dict) del origin_state_dict if optimizer_configs["schedule_method"] == "loss": scheduler.step(global_step=uidx, metric=best_valid_loss) # If model get new best valid bleu score if valid_loss < best_valid_loss: bad_count = 0 if is_early_stop is False: # 1. save the best model's parameters torch.save(nmt_model.state_dict(), best_model_prefix + ".final") # 2. save the best checkpoint model_collections.add_to_collection("uidx", uidx) model_collections.add_to_collection("eidx", eidx) model_collections.add_to_collection("bad_count", bad_count) best_model_saver.save(global_step=uidx, metric=valid_loss, model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) else: bad_count += 1 # At least one epoch should be traversed if bad_count >= training_configs['early_stop_patience'] and eidx > 0: is_early_stop = True WARN("Early Stop!") summary_writer.add_scalar("bad_count", bad_count, uidx) INFO("{0} Loss: {1:.2f} lrate: {2:6f} patience: {3}".format( uidx, valid_loss, lrate, bad_count )) # ================================================================================== # # Saving checkpoints if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['save_freq'], debug=FLAGS.debug): model_collections.add_to_collection("uidx", uidx) model_collections.add_to_collection("eidx", eidx) model_collections.add_to_collection("bad_count", bad_count) if not is_early_stop: checkpoint_saver.save(global_step=uidx, model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) training_progress_bar.close() eidx += 1 if eidx > training_configs["max_epochs"]: break def nmt_lm_fusion_translate(FLAGS): GlobalNames.USE_GPU = FLAGS.use_gpu config_path = os.path.abspath(FLAGS.config_path) with open(config_path.strip()) as f: configs = yaml.load(f) data_configs = configs['data_configs'] nmt_model_configs = configs['nmt_model_configs'] lm_model_configs = configs['lm_model_configs'] timer = Timer() # ================================================================================== # # Load Data INFO('Loading data...') timer.tic() # Generate target dictionary vocab_src = Vocabulary(**data_configs["vocabularies"][0]) vocab_tgt = Vocabulary(**data_configs["vocabularies"][1]) valid_dataset = TextLineDataset(data_path=FLAGS.source_path, vocabulary=vocab_src) valid_iterator = DataIterator(dataset=valid_dataset, batch_size=FLAGS.batch_size, use_bucket=True, buffer_size=100000, numbering=True) INFO('Done. Elapsed time {0}'.format(timer.toc())) # ================================================================================== # # Build Model & Sampler & Validation INFO('Building model...') timer.tic() nmt_model_path = FLAGS.nmt_model_path lm_model_path = FLAGS.lm_model_path nmt_model = build_model(n_src_vocab=vocab_src.max_n_words, n_tgt_vocab=vocab_tgt.max_n_words, **nmt_model_configs) lm_model = build_model(n_words=vocab_tgt.max_n_words, **lm_model_configs) nmt_model.eval() lm_model.eval() INFO('Done. Elapsed time {0}'.format(timer.toc())) INFO('Reloading model parameters...') timer.tic() nmt_params = load_model_parameters(nmt_model_path, map_location="cpu") lm_params = load_model_parameters(lm_model_path, map_location="cpu") nmt_model.load_state_dict(nmt_params) lm_model.load_state_dict(lm_params) if GlobalNames.USE_GPU: nmt_model.cuda() lm_model.cuda() INFO('Done. Elapsed time {0}'.format(timer.toc())) INFO('Begin...') result_numbers = [] result = [] n_words = 0 timer.tic() infer_progress_bar = tqdm(total=len(valid_iterator), desc=' - (Infer) ', unit="sents") valid_iter = valid_iterator.build_generator() for batch in valid_iter: numbers, seqs_x = batch batch_size_t = len(seqs_x) x = prepare_data(seqs_x=seqs_x, cuda=GlobalNames.USE_GPU) with torch.no_grad(): word_ids = nmt_lm_fusion_beam_search(nmt_model=nmt_model, lm_model=lm_model, beam_size=FLAGS.beam_size, max_steps=FLAGS.max_steps, src_seqs=x, alpha=FLAGS.alpha, beta=FLAGS.beta) word_ids = word_ids.cpu().numpy().tolist() result_numbers += numbers # Append result for sent_t in word_ids: sent_t = [[wid for wid in line if wid != PAD] for line in sent_t] result.append(sent_t) n_words += len(sent_t[0]) infer_progress_bar.update(batch_size_t) infer_progress_bar.close() INFO('Done. Speed: {0:.2f} words/sec'.format(n_words / (timer.toc(return_seconds=True)))) translation = [] for sent in result: samples = [] for trans in sent: sample = [] for w in trans: if w == vocab_tgt.EOS: break sample.append(vocab_tgt.id2token(w)) samples.append(vocab_tgt.tokenizer.detokenize(sample)) translation.append(samples) # resume the ordering origin_order = np.argsort(result_numbers).tolist() translation = [translation[ii] for ii in origin_order] with open(FLAGS.saveto, 'w') as f: for trans in translation: f.write("%s\n"%trans[0]) if __name__ == '__main__': _args = { "model_name": "test_rnnlm", "reload": False, "config_path": "./configs/test_rnnlm.yaml", "debug": True, "use_gpu": False, "task": "lm", "log_path": "/tmp", "saveto": "/tmp", "valid_path": "/tmp", } from src.bin import train as _train _train.run(**_args)
[ "torch.cuda.manual_seed_all", "torch.autograd.backward", "torch.enable_grad", "torch.no_grad", "torch.manual_seed", "torch.cuda.is_available", "torch.tensor", "torch.load" ]
0.4.0
skysky77/MGNMT
19dded399a310cd118eee09bd37d657746d11cf1
1.4
import sys sys.path.append('../') import torch import numpy as np import random import math import time import argparse from data_tlp_cite import DataHelper_t from torch.utils.data import DataLoader from model import Model from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, accuracy_score, f1_score device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") FType = torch.FloatTensor LType = torch.LongTensor def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def main(args): setup_seed(args.seed) Data = DataHelper_t(args.file_path, args.node_feature_path, args.neg_size, args.hist_len, args.directed, tlp_flag=args.tlp_flag) loader = DataLoader(Data, batch_size=args.batch_size, shuffle=False, num_workers=5) model = Model(args).to(device) model.load_state_dict(torch.load('../res/cite/model.pkl')) s_emb_list = [] t_emb_list = [] dup_s_emb_list = [] neg_embs_list = [] loss_list = [] model.eval() for i_batch, sample_batched in enumerate(loader): loss, s_emb, t_emb, dup_s_emb, neg_embs = model.forward( sample_batched['s_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['s_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['s_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['event_time'].type(FType).to(device), sample_batched['s_history_times'].type(FType).to(device), sample_batched['s_his_his_times_list'].type(FType).to(device), sample_batched['t_history_times'].type(FType).to(device), sample_batched['t_his_his_times_list'].type(FType).to(device), sample_batched['neg_his_times_list'].type(FType).to(device), sample_batched['neg_his_his_times_list'].type(FType).to(device), sample_batched['s_edge_rate'].type(FType).to(device), training=False ) s_emb_list.append(s_emb) t_emb_list.append(t_emb) dup_s_emb_list.append(dup_s_emb.reshape(-1, args.out_dim)) neg_embs_list.append(neg_embs.reshape(-1, args.out_dim)) loss_list.append(loss) s_emb_list = torch.cat(s_emb_list, dim=0) t_emb_list = torch.cat(t_emb_list, dim=0) dup_s_emb_list = torch.cat(dup_s_emb_list, dim=0) neg_embs_list = torch.cat(neg_embs_list, dim=0) truth = torch.ones(s_emb_list.size(0), dtype=torch.int) truth_neg = torch.zeros(neg_embs_list.size(0), dtype=torch.int) s_list = torch.cat((s_emb_list, dup_s_emb_list), dim=0) t_list = torch.cat((t_emb_list, neg_embs_list), dim=0) truth_list = torch.cat((truth, truth_neg), dim=0) dif_list = torch.abs(s_list - t_list) x_train, x_test, y_train, y_test = train_test_split(dif_list, truth_list, test_size=1 - args.train_ratio, random_state=args.seed, stratify=truth_list) lr = LogisticRegression(max_iter=10000) lr.fit(x_train, y_train) y_test_pred = lr.predict(x_test) acc = accuracy_score(y_test, y_test_pred) f1 = f1_score(y_test, y_test_pred) print('acc:{}'.format(round(acc, 4))) print('f1:{}'.format(round(f1, 4))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--file_path', type=str, default='./data/cite/emb_edges.pt') parser.add_argument('--node_feature_path', type=str, default='./data/cite/sorted_emb_feat.pt') parser.add_argument('--neg_size', type=int, default=1) parser.add_argument('--hist_len', type=int, default=10) parser.add_argument('--directed', type=bool, default=False) parser.add_argument('--epoch_num', type=int, default=10, help='epoch number') parser.add_argument('--tlp_flag', type=bool, default=True) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--hid_dim', type=int, default=16) parser.add_argument('--feat_dim', type=int, default=128) parser.add_argument('--out_dim', type=int, default=16) parser.add_argument('--seed', type=int, default=4) parser.add_argument('--ncoef', type=float, default=0.01) parser.add_argument('--l2_reg', type=float, default=0.001) parser.add_argument('--train_ratio', type=float, default=0.8) args = parser.parse_args() start = time.perf_counter() main(args)
[ "torch.cat", "torch.cuda.manual_seed", "torch.cuda.manual_seed_all", "torch.manual_seed", "torch.abs", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load" ]
1.4.0
WenZhihao666/TREND
ca4b17139b5f24d44d9421fed92021eb7a95ed6d
1.6
# -*- coding: utf-8 -*- # @Time : 2020/10/3 # @Author : Changxin Tian # @Email : [email protected] r""" KGNNLS ################################################ Reference: Hongwei Wang et al. "Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems." in KDD 2019. Reference code: https://github.com/hwwang55/KGNN-LS """ import torch import torch.nn as nn import numpy as np import random from recbole.utils import InputType from recbole.model.abstract_recommender import KnowledgeRecommender from recbole.model.loss import BPRLoss, EmbLoss from recbole.model.init import xavier_normal_initialization class KGNNLS(KnowledgeRecommender): r"""KGNN-LS is a knowledge-based recommendation model. KGNN-LS transforms the knowledge graph into a user-specific weighted graph and then apply a graph neural network to compute personalized item embeddings. To provide better inductive bias, KGNN-LS relies on label smoothness assumption, which posits that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over the edge weights and it is equivalent to a label propagation scheme on a graph. """ input_type = InputType.PAIRWISE def __init__(self, config, dataset): super(KGNNLS, self).__init__(config, dataset) # load parameters info self.embedding_size = config['embedding_size'] self.neighbor_sample_size = config['neighbor_sample_size'] self.aggregator_class = config['aggregator'] # which aggregator to use # number of iterations when computing entity representation self.n_iter = config['n_iter'] self.reg_weight = config['reg_weight'] # weight of l2 regularization # weight of label Smoothness regularization self.ls_weight = config['ls_weight'] # define embedding self.user_embedding = nn.Embedding(self.n_users, self.embedding_size) self.entity_embedding = nn.Embedding( self.n_entities, self.embedding_size) self.relation_embedding = nn.Embedding( self.n_relations + 1, self.embedding_size) # sample neighbors and construct interaction table kg_graph = dataset.kg_graph(form='coo', value_field='relation_id') adj_entity, adj_relation = self.construct_adj(kg_graph) self.adj_entity, self.adj_relation = adj_entity.to( self.device), adj_relation.to(self.device) inter_feat = dataset.dataset.inter_feat.values pos_users = torch.from_numpy(inter_feat[:, 0]) pos_items = torch.from_numpy(inter_feat[:, 1]) pos_label = torch.ones(pos_items.shape) pos_interaction_table, self.offset = self.get_interaction_table( pos_users, pos_items, pos_label) self.interaction_table = self.sample_neg_interaction( pos_interaction_table, self.offset) # define function self.softmax = nn.Softmax(dim=-1) self.linear_layers = torch.nn.ModuleList() for i in range(self.n_iter): self.linear_layers.append(nn.Linear( self.embedding_size if not self.aggregator_class == 'concat' else self.embedding_size * 2, self.embedding_size)) self.ReLU = nn.ReLU() self.Tanh = nn.Tanh() self.bce_loss = nn.BCEWithLogitsLoss() self.l2_loss = EmbLoss() # parameters initialization self.apply(xavier_normal_initialization) def get_interaction_table(self, user_id, item_id, y): r"""Get interaction_table that is used for fetching user-item interaction label in LS regularization. Args: user_id(torch.Tensor): the user id in user-item interactions, shape: [n_interactions, 1] item_id(torch.Tensor): the item id in user-item interactions, shape: [n_interactions, 1] y(torch.Tensor): the label in user-item interactions, shape: [n_interactions, 1] Returns: tuple: - interaction_table(dict): key: user_id * 10^offset + item_id; value: y_{user_id, item_id} - offset(int): The offset that is used for calculating the key(index) in interaction_table """ offset = len(str(self.n_entities)) offset = 10 ** offset keys = user_id * offset + item_id keys = keys.int().cpu().numpy().tolist() values = y.float().cpu().numpy().tolist() interaction_table = dict(zip(keys, values)) return interaction_table, offset def sample_neg_interaction(self, pos_interaction_table, offset): r"""Sample neg_interaction to construct train data. Args: pos_interaction_table(dict): the interaction_table that only contains pos_interaction. offset(int): The offset that is used for calculating the key(index) in interaction_table Returns: interaction_table(dict): key: user_id * 10^offset + item_id; value: y_{user_id, item_id} """ pos_num = len(pos_interaction_table) neg_num = 0 neg_interaction_table = {} while neg_num < pos_num: user_id = random.randint(0, self.n_users) item_id = random.randint(0, self.n_items) keys = user_id * offset + item_id if keys not in pos_interaction_table: neg_interaction_table[keys] = 0. neg_num += 1 interaction_table = {**pos_interaction_table, **neg_interaction_table} return interaction_table def construct_adj(self, kg_graph): r"""Get neighbors and corresponding relations for each entity in the KG. Args: kg_graph(scipy.sparse.coo_matrix): an undirected graph Returns: tuple: - adj_entity (torch.LongTensor): each line stores the sampled neighbor entities for a given entity, shape: [n_entities, neighbor_sample_size] - adj_relation (torch.LongTensor): each line stores the corresponding sampled neighbor relations, shape: [n_entities, neighbor_sample_size] """ # self.logger.info('constructing knowledge graph ...') # treat the KG as an undirected graph kg_dict = dict() for triple in zip(kg_graph.row, kg_graph.data, kg_graph.col): head = triple[0] relation = triple[1] tail = triple[2] if head not in kg_dict: kg_dict[head] = [] kg_dict[head].append((tail, relation)) if tail not in kg_dict: kg_dict[tail] = [] kg_dict[tail].append((head, relation)) # self.logger.info('constructing adjacency matrix ...') # each line of adj_entity stores the sampled neighbor entities for a given entity # each line of adj_relation stores the corresponding sampled neighbor relations entity_num = kg_graph.shape[0] adj_entity = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) adj_relation = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) for entity in range(entity_num): if entity not in kg_dict.keys(): adj_entity[entity] = np.array( [entity] * self.neighbor_sample_size) adj_relation[entity] = np.array( [0] * self.neighbor_sample_size) continue neighbors = kg_dict[entity] n_neighbors = len(neighbors) if n_neighbors >= self.neighbor_sample_size: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=False) else: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=True) adj_entity[entity] = np.array( [neighbors[i][0] for i in sampled_indices]) adj_relation[entity] = np.array( [neighbors[i][1] for i in sampled_indices]) return torch.from_numpy(adj_entity), torch.from_numpy(adj_relation) def get_neighbors(self, items): r"""Get neighbors and corresponding relations for each entity in items from adj_entity and adj_relation. Args: items(torch.LongTensor): The input tensor that contains item's id, shape: [batch_size, ] Returns: tuple: - entities(list): Entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} - relations(list): Relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. Relations have the same shape as entities. """ items = torch.unsqueeze(items, dim=1) entities = [items] relations = [] for i in range(self.n_iter): index = torch.flatten(entities[i]) neighbor_entities = torch.reshape(torch.index_select( self.adj_entity, 0, index), (self.batch_size, -1)) neighbor_relations = torch.reshape(torch.index_select( self.adj_relation, 0, index), (self.batch_size, -1)) entities.append(neighbor_entities) relations.append(neighbor_relations) return entities, relations def aggregate(self, user_embeddings, entities, relations): r"""For each item, aggregate the entity representation and its neighborhood representation into a single vector. Args: user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size, embedding_size] entities(list): entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} relations(list): relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. relations have the same shape as entities. Returns: item_embeddings(torch.FloatTensor): The embeddings of items, shape: [batch_size, embedding_size] """ entity_vectors = [self.entity_embedding(i) for i in entities] relation_vectors = [self.relation_embedding(i) for i in relations] for i in range(self.n_iter): entity_vectors_next_iter = [] for hop in range(self.n_iter - i): shape = (self.batch_size, -1, self.neighbor_sample_size, self.embedding_size) self_vectors = entity_vectors[hop] neighbor_vectors = torch.reshape( entity_vectors[hop + 1], shape) neighbor_relations = torch.reshape( relation_vectors[hop], shape) # mix_neighbor_vectors user_embeddings = torch.reshape(user_embeddings, (self.batch_size, 1, 1, self.embedding_size)) # [batch_size, 1, 1, dim] user_relation_scores = torch.mean(user_embeddings * neighbor_relations, dim=-1) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = torch.unsqueeze(self.softmax(user_relation_scores), dim=-1) # [batch_size, -1, n_neighbor, 1] neighbors_agg = torch.mean(user_relation_scores_normalized * neighbor_vectors, dim=2) # [batch_size, -1, dim] if self.aggregator_class == 'sum': output = torch.reshape( self_vectors + neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'neighbor': output = torch.reshape( neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'concat': # [batch_size, -1, dim * 2] output = torch.cat([self_vectors, neighbors_agg], dim=-1) output = torch.reshape( output, (-1, self.embedding_size * 2)) # [-1, dim * 2] else: raise Exception("Unknown aggregator: " + self.aggregator_class) output = self.linear_layers[i](output) # [batch_size, -1, dim] output = torch.reshape( output, [self.batch_size, -1, self.embedding_size]) if i == self.n_iter - 1: vector = self.Tanh(output) else: vector = self.ReLU(output) entity_vectors_next_iter.append(vector) entity_vectors = entity_vectors_next_iter res = torch.reshape( entity_vectors[0], (self.batch_size, self.embedding_size)) return res def label_smoothness_predict(self, user_embeddings, user, entities, relations): r"""Predict the label of items by label smoothness. Args: user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size*2, embedding_size], user(torch.FloatTensor): the index of users, shape: [batch_size*2] entities(list): entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size*2, 1], [batch_size*2, n_neighbor], [batch_size*2, n_neighbor^2], ..., [batch_size*2, n_neighbor^n_iter]} relations(list): relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. relations have the same shape as entities. Returns: predicted_labels(torch.FloatTensor): The predicted label of items, shape: [batch_size*2] """ # calculate initial labels; calculate updating masks for label propagation entity_labels = [] # True means the label of this item is reset to initial value during label propagation reset_masks = [] holdout_item_for_user = None for entities_per_iter in entities: users = torch.unsqueeze(user, dim=1) # [batch_size, 1] user_entity_concat = users * self.offset + \ entities_per_iter # [batch_size, n_neighbor^i] # the first one in entities is the items to be held out if holdout_item_for_user is None: holdout_item_for_user = user_entity_concat def lookup_interaction_table(x, _): x = int(x) label = self.interaction_table.setdefault(x, 0.5) return label initial_label = user_entity_concat.clone().cpu().double() initial_label.map_(initial_label, lookup_interaction_table) initial_label = initial_label.float().to(self.device) # False if the item is held out holdout_mask = (holdout_item_for_user - user_entity_concat).bool() # True if the entity is a labeled item reset_mask = (initial_label - 0.5).bool() reset_mask = torch.logical_and( reset_mask, holdout_mask) # remove held-out items initial_label = holdout_mask.float() * initial_label + torch.logical_not( holdout_mask).float() * 0.5 # label initialization reset_masks.append(reset_mask) entity_labels.append(initial_label) # we do not need the reset_mask for the last iteration reset_masks = reset_masks[:-1] # label propagation relation_vectors = [self.relation_embedding(i) for i in relations] for i in range(self.n_iter): entity_labels_next_iter = [] for hop in range(self.n_iter - i): masks = reset_masks[hop] self_labels = entity_labels[hop] neighbor_labels = torch.reshape(entity_labels[hop + 1], [self.batch_size, -1, self.neighbor_sample_size]) neighbor_relations = torch.reshape(relation_vectors[hop], [self.batch_size, -1, self.neighbor_sample_size, self.embedding_size]) # mix_neighbor_labels user_embeddings = torch.reshape(user_embeddings, [self.batch_size, 1, 1, self.embedding_size]) # [batch_size, 1, 1, dim] user_relation_scores = torch.mean(user_embeddings * neighbor_relations, dim=-1) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = self.softmax( user_relation_scores) # [batch_size, -1, n_neighbor] neighbors_aggregated_label = torch.mean(user_relation_scores_normalized * neighbor_labels, dim=2) # [batch_size, -1, dim] # [batch_size, -1] output = masks.float() * self_labels + torch.logical_not(masks).float() * \ neighbors_aggregated_label entity_labels_next_iter.append(output) entity_labels = entity_labels_next_iter predicted_labels = entity_labels[0].squeeze(-1) return predicted_labels def forward(self, user, item): self.batch_size = item.shape[0] # [batch_size, dim] user_e = self.user_embedding(user) # entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: # {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} entities, relations = self.get_neighbors(item) # [batch_size, dim] item_e = self.aggregate(user_e, entities, relations) return user_e, item_e def calculate_ls_loss(self, user, item, target): r"""Calculate label smoothness loss. Args: user(torch.FloatTensor): the index of users, shape: [batch_size*2], item(torch.FloatTensor): the index of items, shape: [batch_size*2], target(torch.FloatTensor): the label of user-item, shape: [batch_size*2], Returns: ls_loss: label smoothness loss """ user_e = self.user_embedding(user) entities, relations = self.get_neighbors(item) predicted_labels = self.label_smoothness_predict( user_e, user, entities, relations) ls_loss = self.bce_loss(predicted_labels, target) return ls_loss def calculate_loss(self, interaction): user = interaction[self.USER_ID] pos_item = interaction[self.ITEM_ID] neg_item = interaction[self.NEG_ITEM_ID] target = torch.zeros( len(user) * 2, dtype=torch.float32).to(self.device) target[:len(user)] = 1 users = torch.cat((user, user)) items = torch.cat((pos_item, neg_item)) user_e, item_e = self.forward(users, items) predict = torch.mul(user_e, item_e).sum(dim=1) rec_loss = self.bce_loss(predict, target) ls_loss = self.calculate_ls_loss(users, items, target) l2_loss = self.l2_loss(user_e, item_e) loss = rec_loss + self.ls_weight * ls_loss + self.reg_weight * l2_loss return loss def predict(self, interaction): user = interaction[self.USER_ID] item = interaction[self.ITEM_ID] user_e, item_e = self.forward(user, item) return torch.mul(user_e, item_e).sum(dim=1) def full_sort_predict(self, interaction): user_index = interaction[self.USER_ID] item_index = torch.tensor(range(self.n_items)).to(self.device) user = torch.unsqueeze(user_index, dim=1).repeat( 1, item_index.shape[0]) user = torch.flatten(user) item = torch.unsqueeze(item_index, dim=0).repeat( user_index.shape[0], 1) item = torch.flatten(item) user_e, item_e = self.forward(user, item) score = torch.mul(user_e, item_e).sum(dim=1) return score.view(-1)
[ "torch.nn.Linear", "torch.cat", "torch.nn.ModuleList", "torch.ones", "torch.logical_and", "torch.nn.BCEWithLogitsLoss", "torch.reshape", "torch.mul", "torch.nn.Softmax", "torch.unsqueeze", "torch.logical_not", "torch.index_select", "torch.nn.Embedding", "torch.nn.Tanh", "torch.nn.ReLU", "torch.from_numpy", "torch.flatten", "torch.mean" ]
1.6.0
xingkongxiaxia/xx
ce51d75406592d6bc25bb803f773f0788496fd97
1.6
# -*- coding: utf-8 -*- # @Time : 2020/10/6 # @Author : Changxin Tian # @Email : [email protected] r""" KGCN ################################################ Reference: Hongwei Wang et al. "Knowledge graph convolution networks for recommender systems." in WWW 2019. Reference code: https://github.com/hwwang55/KGCN """ import torch import torch.nn as nn import numpy as np from recbole.utils import InputType from recbole.model.abstract_recommender import KnowledgeRecommender from recbole.model.loss import BPRLoss, EmbLoss from recbole.model.init import xavier_normal_initialization class KGCN(KnowledgeRecommender): r"""KGCN is a knowledge-based recommendation model that captures inter-item relatedness effectively by mining their associated attributes on the KG. To automatically discover both high-order structure information and semantic information of the KG, we treat KG as an undirected graph and sample from the neighbors for each entity in the KG as their receptive field, then combine neighborhood information with bias when calculating the representation of a given entity. """ input_type = InputType.PAIRWISE def __init__(self, config, dataset): super(KGCN, self).__init__(config, dataset) # load parameters info self.embedding_size = config['embedding_size'] # number of iterations when computing entity representation self.n_iter = config['n_iter'] self.aggregator_class = config['aggregator'] # which aggregator to use self.reg_weight = config['reg_weight'] # weight of l2 regularization self.neighbor_sample_size = config['neighbor_sample_size'] # define embedding self.user_embedding = nn.Embedding(self.n_users, self.embedding_size) self.entity_embedding = nn.Embedding( self.n_entities, self.embedding_size) self.relation_embedding = nn.Embedding( self.n_relations + 1, self.embedding_size) # sample neighbors kg_graph = dataset.kg_graph(form='coo', value_field='relation_id') adj_entity, adj_relation = self.construct_adj(kg_graph) self.adj_entity, self.adj_relation = adj_entity.to( self.device), adj_relation.to(self.device) # define function self.softmax = nn.Softmax(dim=-1) self.linear_layers = torch.nn.ModuleList() for i in range(self.n_iter): self.linear_layers.append(nn.Linear( self.embedding_size if not self.aggregator_class == 'concat' else self.embedding_size * 2, self.embedding_size)) self.ReLU = nn.ReLU() self.Tanh = nn.Tanh() self.bce_loss = nn.BCEWithLogitsLoss() self.l2_loss = EmbLoss() # parameters initialization self.apply(xavier_normal_initialization) def construct_adj(self, kg_graph): r"""Get neighbors and corresponding relations for each entity in the KG. Args: kg_graph(scipy.sparse.coo_matrix): an undirected graph Returns: tuple: - adj_entity(torch.LongTensor): each line stores the sampled neighbor entities for a given entity, shape: [n_entities, neighbor_sample_size] - adj_relation(torch.LongTensor): each line stores the corresponding sampled neighbor relations, shape: [n_entities, neighbor_sample_size] """ # self.logger.info('constructing knowledge graph ...') # treat the KG as an undirected graph kg_dict = dict() for triple in zip(kg_graph.row, kg_graph.data, kg_graph.col): head = triple[0] relation = triple[1] tail = triple[2] if head not in kg_dict: kg_dict[head] = [] kg_dict[head].append((tail, relation)) if tail not in kg_dict: kg_dict[tail] = [] kg_dict[tail].append((head, relation)) # self.logger.info('constructing adjacency matrix ...') # each line of adj_entity stores the sampled neighbor entities for a given entity # each line of adj_relation stores the corresponding sampled neighbor relations entity_num = kg_graph.shape[0] adj_entity = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) adj_relation = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) for entity in range(entity_num): if entity not in kg_dict.keys(): adj_entity[entity] = np.array( [entity] * self.neighbor_sample_size) adj_relation[entity] = np.array( [0] * self.neighbor_sample_size) continue neighbors = kg_dict[entity] n_neighbors = len(neighbors) if n_neighbors >= self.neighbor_sample_size: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=False) else: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=True) adj_entity[entity] = np.array( [neighbors[i][0] for i in sampled_indices]) adj_relation[entity] = np.array( [neighbors[i][1] for i in sampled_indices]) return torch.from_numpy(adj_entity), torch.from_numpy(adj_relation) def get_neighbors(self, items): r"""Get neighbors and corresponding relations for each entity in items from adj_entity and adj_relation. Args: items(torch.LongTensor): The input tensor that contains item's id, shape: [batch_size, ] Returns: tuple: - entities(list): Entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} - relations(list): Relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. Relations have the same shape as entities. """ items = torch.unsqueeze(items, dim=1) entities = [items] relations = [] for i in range(self.n_iter): index = torch.flatten(entities[i]) neighbor_entities = torch.reshape(torch.index_select( self.adj_entity, 0, index), (self.batch_size, -1)) neighbor_relations = torch.reshape(torch.index_select( self.adj_relation, 0, index), (self.batch_size, -1)) entities.append(neighbor_entities) relations.append(neighbor_relations) return entities, relations def mix_neighbor_vectors(self, neighbor_vectors, neighbor_relations, user_embeddings): r"""Mix neighbor vectors on user-specific graph. Args: neighbor_vectors(torch.FloatTensor): The embeddings of neighbor entities(items), shape: [batch_size, -1, neighbor_sample_size, embedding_size] neighbor_relations(torch.FloatTensor): The embeddings of neighbor relations, shape: [batch_size, -1, neighbor_sample_size, embedding_size] user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size, embedding_size] Returns: neighbors_aggregated(torch.FloatTensor): The neighbors aggregated embeddings, shape: [batch_size, -1, embedding_size] """ avg = False if not avg: user_embeddings = torch.reshape(user_embeddings, (self.batch_size, 1, 1, self.embedding_size)) # [batch_size, 1, 1, dim] user_relation_scores = torch.mean(user_embeddings * neighbor_relations, dim=-1) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = self.softmax( user_relation_scores) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = torch.unsqueeze(user_relation_scores_normalized, dim=-1) # [batch_size, -1, n_neighbor, 1] neighbors_aggregated = torch.mean(user_relation_scores_normalized * neighbor_vectors, dim=2) # [batch_size, -1, dim] else: neighbors_aggregated = torch.mean( neighbor_vectors, dim=2) # [batch_size, -1, dim] return neighbors_aggregated def aggregate(self, user_embeddings, entities, relations): r"""For each item, aggregate the entity representation and its neighborhood representation into a single vector. Args: user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size, embedding_size] entities(list): entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} relations(list): relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. relations have the same shape as entities. Returns: item_embeddings(torch.FloatTensor): The embeddings of items, shape: [batch_size, embedding_size] """ entity_vectors = [self.entity_embedding(i) for i in entities] relation_vectors = [self.relation_embedding(i) for i in relations] for i in range(self.n_iter): entity_vectors_next_iter = [] for hop in range(self.n_iter - i): shape = (self.batch_size, -1, self.neighbor_sample_size, self.embedding_size) self_vectors = entity_vectors[hop] neighbor_vectors = torch.reshape( entity_vectors[hop + 1], shape) neighbor_relations = torch.reshape( relation_vectors[hop], shape) neighbors_agg = self.mix_neighbor_vectors(neighbor_vectors, neighbor_relations, user_embeddings) # [batch_size, -1, dim] if self.aggregator_class == 'sum': output = torch.reshape( self_vectors + neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'neighbor': output = torch.reshape( neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'concat': # [batch_size, -1, dim * 2] output = torch.cat([self_vectors, neighbors_agg], dim=-1) output = torch.reshape( output, (-1, self.embedding_size * 2)) # [-1, dim * 2] else: raise Exception("Unknown aggregator: " + self.aggregator_class) output = self.linear_layers[i](output) # [batch_size, -1, dim] output = torch.reshape( output, [self.batch_size, -1, self.embedding_size]) if i == self.n_iter - 1: vector = self.Tanh(output) else: vector = self.ReLU(output) entity_vectors_next_iter.append(vector) entity_vectors = entity_vectors_next_iter item_embeddings = torch.reshape( entity_vectors[0], (self.batch_size, self.embedding_size)) return item_embeddings def forward(self, user, item): self.batch_size = item.shape[0] # [batch_size, dim] user_e = self.user_embedding(user) # entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: # {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} entities, relations = self.get_neighbors(item) # [batch_size, dim] item_e = self.aggregate(user_e, entities, relations) return user_e, item_e def calculate_loss(self, interaction): user = interaction[self.USER_ID] pos_item = interaction[self.ITEM_ID] neg_item = interaction[self.NEG_ITEM_ID] user_e, pos_item_e = self.forward(user, pos_item) user_e, neg_item_e = self.forward(user, neg_item) pos_item_score = torch.mul(user_e, pos_item_e).sum(dim=1) neg_item_score = torch.mul(user_e, neg_item_e).sum(dim=1) predict = torch.cat((pos_item_score, neg_item_score)) target = torch.zeros( len(user) * 2, dtype=torch.float32).to(self.device) target[:len(user)] = 1 rec_loss = self.bce_loss(predict, target) l2_loss = self.l2_loss(user_e, pos_item_e, neg_item_e) loss = rec_loss + self.reg_weight * l2_loss return loss def predict(self, interaction): user = interaction[self.USER_ID] item = interaction[self.ITEM_ID] user_e, item_e = self.forward(user, item) return torch.mul(user_e, item_e).sum(dim=1) def full_sort_predict(self, interaction): user_index = interaction[self.USER_ID] item_index = torch.tensor(range(self.n_items)).to(self.device) user = torch.unsqueeze(user_index, dim=1).repeat( 1, item_index.shape[0]) user = torch.flatten(user) item = torch.unsqueeze(item_index, dim=0).repeat( user_index.shape[0], 1) item = torch.flatten(item) user_e, item_e = self.forward(user, item) score = torch.mul(user_e, item_e).sum(dim=1) return score.view(-1)
[ "torch.nn.Linear", "torch.index_select", "torch.cat", "torch.mul", "torch.nn.ModuleList", "torch.nn.Softmax", "torch.nn.Tanh", "torch.unsqueeze", "torch.nn.ReLU", "torch.from_numpy", "torch.mean", "torch.nn.BCEWithLogitsLoss", "torch.flatten", "torch.nn.Embedding", "torch.reshape" ]
1.6.0
xingkongxiaxia/xx
ce51d75406592d6bc25bb803f773f0788496fd97
0.4
import os import click import numpy as np from tqdm import tqdm from models.model_loader import load_model from torchvision.transforms import Compose from dataset.data_transform import Resize, Rotation, ElasticAndSine, ColorGradGausNoise, AddWidth, Normalize, ToGray, OnlyElastic, OnlySine, ColorGrad, ColorGausNoise from dataset.text_data import TextDataset, TextDatasetRandomFont from dataset.collate_fn import text_collate from utils.data_visualization import TbSummary from lr_policy import StepLR, DannLR import pickle as pkl import glob import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.utils.data import DataLoader from warpctc_pytorch import CTCLoss from test import test from models.new_vat import VATLoss, VATLossSign, LabeledATLoss, LabeledAtAndUnlabeledTestVatLoss, VATonRnnSign, VATonRnnCnnSign, VATonCnnSign from dataset.dataset_metadata import SynthDataInfo @click.command() @click.option('--base-data-dir', type=str, default=os.path.expandvars ('../Data/'), help='Path to base data directory (all other data paths are relative to this one).') @click.option('--train-data-path', type=str, default=os.path.expandvars ('Synthetic/Prepared/data_train.txt'), help='Path to training dataset (image path to line text) text file (relative to base-data-dir)') @click.option('--train-base-dir', type=str, default=os.path.expandvars( 'Synthetic/Prepared/Images'), help='Path to directory containing training images (relative to base-data-dir)') @click.option('--orig-eval-data-path', type=str, default=os.path.expandvars( 'Test/Prepared/im2line.txt'), help='Path to original test dataset (image path to line text) text file (relative to base-data-dir)') @click.option('--orig-eval-base-dir', type=str, default=os.path.expandvars( 'Test/Prepared/LineImages'), help='Path to directory containing original test images (relative to base-data-dir)') @click.option('--synth-eval-data-path', type=str, default=os.path.expandvars ('Synthetic/Prepared/data_val.txt'), help='Path to synthetic evaluation dataset (image path to line text) text file (relative to base-data-dir)') @click.option('--synth-eval-base-dir', type=str, default=os.path.expandvars( 'Synthetic/Prepared/Images'), help='Path to directory containing synthetic evaluation images (relative to base-data-dir)') @click.option('--lexicon-path', type=str, default=os.path.expandvars('char_to_class.pkl'), help='Path to alphabet lexicon (letter to id), relative to base-data-dir.') @click.option('--seq-proj', type=str, default="10x20", help='Projection of sequence') @click.option('--backend', type=str, default="resnet18", help='Backend network to use (default is resnet18)') @click.option('--snapshot', type=str, default=None, help='Path to pre-trained weights') @click.option('--input-height', type=int, default=64, help='Height of input images to network') @click.option('--base-lr', type=float, default=1e-4, help='Base learning rate.') # was e-3 #@click.option('--lr-decay', type=float, default=1e-4, help='Base learning rate') # was 0.0001 @click.option('--elastic-alpha', type=float, default=34, help='Elastic augmentation parameter alpha.') @click.option('--elastic-sigma', type=float, default=3, help='Elastic augmentation parameter sigma.') @click.option('--step-size', type=int, default=500, help='Step size for step lr change.') @click.option('--max-iter', type=int, default=6000, help='Max iterations for taining') @click.option('--batch-size', type=int, default=8, help='Batch size for training') @click.option('--output-dir', type=str, default='../Output/exp1', help='Path to save output snapshot') @click.option('--test-iter', type=int, default=1000, help='Number of iterations between test evaluation.') @click.option('--show-iter', type=int, default=1000, help='Number of iterations between showing images in tensorboard.') @click.option('--test-init', type=bool, default=False, help='Wether to test after network initialization initialization') @click.option('--use-gpu', type=bool, default=True, help='Whether to use the gpu') @click.option('--use-no-font-repeat-data', type=bool, default=True, help='Parameter to remove (always true) - whether to use random training data.') @click.option('--do-vat', type=bool, default=False, help='Whether to do VAT on synthetic trainig data') @click.option('--do-at', type=bool, default=False, help='Whether to do AT on synthetic trainig data') @click.option('--vat-ratio', type=float, default=1, help='Ratio of vat on train data loss vs base loss') @click.option('--test-vat-ratio', type=float, default=1, help='Ratio on vat on test data loss vs base loss') @click.option('--vat-epsilon', type=float, default=2.5, help='VAT on train hyperparameter - epsilon') @click.option('--vat-ip', type=int, default=1, help='VAT on train hyperparameter - number of power iterations') @click.option('--vat-xi', type=float, default=10., help='VAT on train hyperparameter - xi') @click.option('--vat-sign', type=bool, default=False, help='VAT on train hyperparameter - whether to do sign on vat loss') @click.option('--do-remove-augs', type=bool, default=False, help='Whether to remove some of the augmentations (for ablation study)') @click.option('--aug-to-remove', type=str, default='', help="with augmentation to remover out of ['elastic', 'sine', 'sine_rotate', 'rotation', 'color_aug', 'color_gaus', 'color_sine']") @click.option('--do-beam-search', type=bool, default=False, help='whether to do beam search inference in evaluation') @click.option('--dropout-conv', type=bool, default=False, help='Whether to do dropout between convolution and rnn.') @click.option('--dropout-rnn', type=bool, default=False, help='Whether to do dropout in rnn.') @click.option('--dropout-output', type=bool, default=False, help='Whether to do dropout after rnn.') @click.option('--do-ema', type=bool, default=False, help='Whether to do exponential moving average on weights') @click.option('--do-gray', type=bool, default=False, help='whether to use grayscale instread of rgb') @click.option('--do-test-vat', type=bool, default=False, help='Whether to do VAT loss on original test data') @click.option('--do-test-entropy', type=bool, default=False, help='Whether to do entropy loss on original test data') @click.option('--do-test-vat-cnn', type=bool, default=False, help='Whether to do VAT loss on original test data only for cnn part') @click.option('--do-test-vat-rnn', type=bool, default=False, help='Whether to do VAT loss on original test data only for rnn part') @click.option('--ada-after-rnn', type=bool, default=False, help='Whether to do adversarial domain adaptaion on rnn part') @click.option('--ada-before-rnn', type=bool, default=False, help='Whether to do adversarial domain adaptaion on cnn part') @click.option('--do-ada-lr', type=bool, default=False, help='Whether to do lr rule suitable of adversarial domain adaptaion (from article)') @click.option('--ada-ratio', type=float, default=1, help='Ratio of ADA loss vs base loss') @click.option('--rnn-hidden-size', type=int, default=128, help='Size of rnn hidden layer') @click.option('--do-lr-step', type=bool, default=False, help='Visualize output') @click.option('--dataset-name', type=str, default='tibetan', help='Dataset name, currently wiener or tibetan') def main(base_data_dir, train_data_path, train_base_dir, orig_eval_data_path, orig_eval_base_dir, synth_eval_data_path, synth_eval_base_dir, lexicon_path, seq_proj, backend, snapshot, input_height, base_lr, elastic_alpha, elastic_sigma, step_size, max_iter, batch_size, output_dir, test_iter, show_iter, test_init, use_gpu, use_no_font_repeat_data, do_vat, do_at, vat_ratio, test_vat_ratio, vat_epsilon, vat_ip, vat_xi, vat_sign, do_remove_augs, aug_to_remove, do_beam_search, dropout_conv, dropout_rnn, dropout_output, do_ema, do_gray, do_test_vat, do_test_entropy, do_test_vat_cnn, do_test_vat_rnn, ada_after_rnn, ada_before_rnn, do_ada_lr, ada_ratio, rnn_hidden_size, do_lr_step, dataset_name ): if not do_lr_step and not do_ada_lr: raise NotImplementedError('learning rate should be either step or ada.') train_data_path = os.path.join(base_data_dir, train_data_path) train_base_dir = os.path.join(base_data_dir, train_base_dir) synth_eval_data_path = os.path.join(base_data_dir, synth_eval_data_path) synth_eval_base_dir = os.path.join(base_data_dir, synth_eval_base_dir) orig_eval_data_path = os.path.join(base_data_dir, orig_eval_data_path) orig_eval_base_dir = os.path.join(base_data_dir, orig_eval_base_dir) lexicon_path = os.path.join(base_data_dir, lexicon_path) all_parameters = locals() cuda = use_gpu #print(train_base_dir) if output_dir is not None: os.makedirs(output_dir, exist_ok=True) tb_writer = TbSummary(output_dir) output_dir = os.path.join(output_dir, 'model') os.makedirs(output_dir, exist_ok=True) with open(lexicon_path, 'rb') as f: lexicon = pkl.load(f) #print(sorted(lexicon.items(), key=operator.itemgetter(1))) with open(os.path.join(output_dir, 'params.txt'),'w') as f: f.writelines(str(all_parameters)) print(all_parameters) print('new vat') sin_magnitude = 4 rotate_max_angle = 2 dataset_info = SynthDataInfo(None, None, None, dataset_name.lower()) train_fonts = dataset_info.font_names all_args = locals() allowed_removals = ['elastic', 'sine', 'sine_rotate', 'rotation', 'color_aug', 'color_gaus', 'color_sine'] if do_remove_augs and aug_to_remove not in allowed_removals: raise Exception('augmentation removal value is not allowed.') if do_remove_augs: rand_trans = [] if aug_to_remove == 'elastic': print('doing sine transform :)') rand_trans.append(OnlySine(sin_magnitude=sin_magnitude)) elif aug_to_remove in ['sine', 'sine_rotate']: print('doing elastic transform :)') rand_trans.append(OnlyElastic(elastic_alpha=elastic_alpha, elastic_sigma=elastic_sigma)) if aug_to_remove not in ['elastic', 'sine', 'sine_rotate']: print('doing elastic transform :)') print('doing sine transform :)') rand_trans.append(ElasticAndSine(elastic_alpha=elastic_alpha, elastic_sigma=elastic_sigma, sin_magnitude=sin_magnitude)) if aug_to_remove not in ['rotation', 'sine_rotate']: print('doing rotation transform :)') rand_trans.append(Rotation(angle=rotate_max_angle, fill_value=255)) if aug_to_remove not in ['color_aug', 'color_gaus', 'color_sine']: print('doing color_aug transform :)') rand_trans.append(ColorGradGausNoise()) elif aug_to_remove == 'color_gaus': print('doing color_sine transform :)') rand_trans.append(ColorGrad()) elif aug_to_remove == 'color_sine': print('doing color_gaus transform :)') rand_trans.append(ColorGausNoise()) else: print('doing all transforms :)') rand_trans = [ ElasticAndSine(elastic_alpha=elastic_alpha, elastic_sigma=elastic_sigma, sin_magnitude=sin_magnitude), Rotation(angle=rotate_max_angle, fill_value=255), ColorGradGausNoise()] if do_gray: rand_trans = rand_trans + [Resize(hight=input_height), AddWidth(), ToGray(), Normalize()] else: rand_trans = rand_trans + [Resize(hight=input_height), AddWidth(), Normalize()] transform_random = Compose(rand_trans) if do_gray: transform_simple = Compose([ Resize(hight=input_height), AddWidth(), ToGray(), Normalize() ]) else: transform_simple = Compose([ Resize(hight=input_height), AddWidth(), Normalize() ]) if use_no_font_repeat_data: print('creating dataset') train_data = TextDatasetRandomFont(data_path=train_data_path, lexicon=lexicon, base_path=train_base_dir, transform=transform_random, fonts=train_fonts) print('finished creating dataset') else: print('train data path:\n{}'.format(train_data_path)) print('train_base_dir:\n{}'.format(train_base_dir)) train_data = TextDataset(data_path=train_data_path, lexicon=lexicon, base_path=train_base_dir, transform=transform_random, fonts=train_fonts) synth_eval_data = TextDataset(data_path=synth_eval_data_path, lexicon=lexicon, base_path=synth_eval_base_dir, transform=transform_random, fonts=train_fonts) orig_eval_data = TextDataset(data_path=orig_eval_data_path, lexicon=lexicon, base_path=orig_eval_base_dir, transform=transform_simple, fonts=None) if do_test_vat or do_test_vat_rnn or do_test_vat_cnn: orig_vat_data = TextDataset(data_path=orig_eval_data_path, lexicon=lexicon, base_path=orig_eval_base_dir, transform=transform_simple, fonts=None) if ada_after_rnn or ada_before_rnn: orig_ada_data = TextDataset(data_path=orig_eval_data_path, lexicon=lexicon, base_path=orig_eval_base_dir, transform=transform_simple, fonts=None) #else: # train_data = TestDataset(transform=transform, abc=abc).set_mode("train") # synth_eval_data = TestDataset(transform=transform, abc=abc).set_mode("test") # orig_eval_data = TestDataset(transform=transform, abc=abc).set_mode("test") seq_proj = [int(x) for x in seq_proj.split('x')] net = load_model(lexicon=train_data.get_lexicon(), seq_proj=seq_proj, backend=backend, snapshot=snapshot, cuda=cuda, do_beam_search=do_beam_search, dropout_conv=dropout_conv, dropout_rnn=dropout_rnn, dropout_output=dropout_output, do_ema=do_ema, ada_after_rnn=ada_after_rnn, ada_before_rnn=ada_before_rnn, rnn_hidden_size=rnn_hidden_size ) optimizer = optim.Adam(net.parameters(), lr = base_lr, weight_decay=0.0001) if do_ada_lr: print('using ada lr') lr_scheduler = DannLR(optimizer, max_iter=max_iter) elif do_lr_step: print('using step lr') lr_scheduler = StepLR(optimizer, step_size=step_size, max_iter=max_iter) loss_function = CTCLoss() synth_avg_ed_best = float("inf") orig_avg_ed_best = float("inf") epoch_count = 0 if do_test_vat or do_test_vat_rnn or do_test_vat_cnn: collate_vat = lambda x: text_collate(x, do_mask=True) vat_load = DataLoader(orig_vat_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate_vat) vat_len = len(vat_load) cur_vat = 0 vat_iter = iter(vat_load) if ada_after_rnn or ada_before_rnn: collate_ada = lambda x: text_collate(x, do_mask=True) ada_load = DataLoader(orig_ada_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate_ada) ada_len = len(ada_load) cur_ada = 0 ada_iter = iter(ada_load) loss_domain = torch.nn.NLLLoss() while True: collate = lambda x: text_collate(x, do_mask=(do_vat or ada_before_rnn or ada_after_rnn)) data_loader = DataLoader(train_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate) loss_mean_ctc = [] loss_mean_vat = [] loss_mean_at = [] loss_mean_comp = [] loss_mean_total = [] loss_mean_test_vat = [] loss_mean_test_pseudo = [] loss_mean_test_rand = [] loss_mean_ada_rnn_s = [] loss_mean_ada_rnn_t = [] loss_mean_ada_cnn_s = [] loss_mean_ada_cnn_t = [] iterator = tqdm(data_loader) iter_count = 0 for iter_num, sample in enumerate(iterator): total_iter = (epoch_count * len(data_loader)) + iter_num if ((total_iter > 1) and total_iter % test_iter == 0) or (test_init and total_iter == 0): # epoch_count != 0 and print("Test phase") net = net.eval() if do_ema: net.start_test() synth_acc, synth_avg_ed, synth_avg_no_stop_ed, synth_avg_loss = test(net, synth_eval_data, synth_eval_data.get_lexicon(), cuda, visualize=False, dataset_info=dataset_info, batch_size=batch_size, tb_writer=tb_writer, n_iter=total_iter, initial_title='val_synth', loss_function=loss_function, output_path=os.path.join( output_dir, 'results'), do_beam_search=False) orig_acc, orig_avg_ed, orig_avg_no_stop_ed, orig_avg_loss = test(net, orig_eval_data, orig_eval_data.get_lexicon(), cuda, visualize=False, dataset_info=dataset_info, batch_size=batch_size, tb_writer=tb_writer, n_iter=total_iter, initial_title='test_orig', loss_function=loss_function, output_path=os.path.join(output_dir, 'results'), do_beam_search=do_beam_search) net = net.train() #save periodic if output_dir is not None and total_iter // 30000: periodic_save = os.path.join(output_dir, 'periodic_save') os.makedirs(periodic_save, exist_ok=True) old_save = glob.glob(os.path.join(periodic_save,'*')) torch.save(net.state_dict(), os.path.join(output_dir, "crnn_" + backend + "_" + str(total_iter))) if orig_avg_no_stop_ed < orig_avg_ed_best: orig_avg_ed_best = orig_avg_no_stop_ed if output_dir is not None: torch.save(net.state_dict(), os.path.join(output_dir, "crnn_" + backend + "_best")) if synth_avg_no_stop_ed < synth_avg_ed_best: synth_avg_ed_best = synth_avg_no_stop_ed if do_ema: net.end_test() print("synth: avg_ed_best: {}\t avg_ed: {}; avg_nostop_ed: {}; acc: {}".format(synth_avg_ed_best, synth_avg_ed, synth_avg_no_stop_ed, synth_acc)) print("orig: avg_ed_best: {}\t avg_ed: {}; avg_nostop_ed: {}; acc: {}".format(orig_avg_ed_best, orig_avg_ed, orig_avg_no_stop_ed, orig_acc)) tb_writer.get_writer().add_scalars('data/test', {'synth_ed_total': synth_avg_ed, 'synth_ed_no_stop': synth_avg_no_stop_ed, 'synth_avg_loss': synth_avg_loss, 'orig_ed_total': orig_avg_ed, 'orig_ed_no_stop': orig_avg_no_stop_ed, 'orig_avg_loss': orig_avg_loss }, total_iter) if len(loss_mean_ctc) > 0: train_dict = {'mean_ctc_loss': np.mean(loss_mean_ctc)} if do_vat: train_dict = {**train_dict, **{'mean_vat_loss':np.mean(loss_mean_vat)}} if do_at: train_dict = {**train_dict, **{'mean_at_loss':np.mean(loss_mean_at)}} if do_test_vat: train_dict = {**train_dict, **{'mean_test_vat_loss': np.mean(loss_mean_test_vat)}} if do_test_vat_rnn and do_test_vat_cnn: train_dict = {**train_dict, **{'mean_test_vat_crnn_loss': np.mean(loss_mean_test_vat)}} elif do_test_vat_rnn: train_dict = {**train_dict, **{'mean_test_vat_rnn_loss': np.mean(loss_mean_test_vat)}} elif do_test_vat_cnn: train_dict = {**train_dict, **{'mean_test_vat_cnn_loss': np.mean(loss_mean_test_vat)}} if ada_after_rnn: train_dict = {**train_dict, **{'mean_ada_rnn_s_loss': np.mean(loss_mean_ada_rnn_s), 'mean_ada_rnn_t_loss': np.mean(loss_mean_ada_rnn_t)}} if ada_before_rnn: train_dict = {**train_dict, **{'mean_ada_cnn_s_loss': np.mean(loss_mean_ada_cnn_s), 'mean_ada_cnn_t_loss': np.mean(loss_mean_ada_cnn_t)}} print(train_dict) tb_writer.get_writer().add_scalars('data/train', train_dict, total_iter) ''' # for multi-gpu support if sample["img"].size(0) % len(gpu.split(',')) != 0: continue ''' optimizer.zero_grad() imgs = Variable(sample["img"]) #print("images sizes are:") #print(sample["img"].shape) if do_vat or ada_after_rnn or ada_before_rnn: mask = sample['mask'] labels_flatten = Variable(sample["seq"]).view(-1) label_lens = Variable(sample["seq_len"].int()) #print("image sequence length is:") #print(sample["im_seq_len"]) #print("label sequence length is:") #print(sample["seq_len"].view(1,-1)) img_seq_lens = sample["im_seq_len"] if cuda: imgs = imgs.cuda() if do_vat or ada_after_rnn or ada_before_rnn: mask = mask.cuda() if do_ada_lr: ada_p = float(iter_count) / max_iter lr_scheduler.update(ada_p) if ada_before_rnn or ada_after_rnn: if not do_ada_lr: ada_p = float(iter_count) / max_iter ada_alpha = 2. / (1. + np.exp(-10. * ada_p)) - 1 if cur_ada >= ada_len: ada_load = DataLoader(orig_ada_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate_ada) ada_len = len(ada_load) cur_ada = 0 ada_iter = iter(ada_load) ada_batch = next(ada_iter) cur_ada += 1 ada_imgs = Variable(ada_batch["img"]) ada_img_seq_lens = ada_batch["im_seq_len"] ada_mask = ada_batch['mask'].byte() if cuda: ada_imgs = ada_imgs.cuda() _, ada_cnn, ada_rnn = net(ada_imgs, ada_img_seq_lens, ada_alpha=ada_alpha, mask=ada_mask) if ada_before_rnn: ada_num_features = ada_cnn.size(0) else: ada_num_features = ada_rnn.size(0) domain_label = torch.zeros(ada_num_features) domain_label = domain_label.long() if cuda: domain_label = domain_label.cuda() domain_label = Variable(domain_label) if ada_before_rnn: err_ada_cnn_t = loss_domain(ada_cnn, domain_label) if ada_after_rnn: err_ada_rnn_t = loss_domain(ada_rnn, domain_label) if do_test_vat and do_at: # test part! if cur_vat >= vat_len: vat_load = DataLoader(orig_vat_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate_vat) vat_len = len(vat_load) cur_vat = 0 vat_iter = iter(vat_load) test_vat_batch = next(vat_iter) cur_vat += 1 test_vat_mask = test_vat_batch['mask'] test_vat_imgs = Variable(test_vat_batch["img"]) test_vat_img_seq_lens = test_vat_batch["im_seq_len"] if cuda: test_vat_imgs = test_vat_imgs.cuda() test_vat_mask = test_vat_mask.cuda() # train part at_test_vat_loss = LabeledAtAndUnlabeledTestVatLoss(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) at_loss, test_vat_loss = at_test_vat_loss(model=net, train_x=imgs, train_labels_flatten=labels_flatten, train_img_seq_lens=img_seq_lens, train_label_lens=label_lens, batch_size=batch_size, test_x=test_vat_imgs, test_seq_len=test_vat_img_seq_lens, test_mask=test_vat_mask) elif do_test_vat or do_test_vat_rnn or do_test_vat_cnn: if cur_vat >= vat_len: vat_load = DataLoader(orig_vat_data, batch_size=batch_size, num_workers=4, shuffle=True, collate_fn=collate_vat) vat_len = len(vat_load) cur_vat = 0 vat_iter = iter(vat_load) vat_batch = next(vat_iter) cur_vat += 1 vat_mask = vat_batch['mask'] vat_imgs = Variable(vat_batch["img"]) vat_img_seq_lens = vat_batch["im_seq_len"] if cuda: vat_imgs = vat_imgs.cuda() vat_mask = vat_mask.cuda() if do_test_vat: if do_test_vat_rnn or do_test_vat_cnn: raise "can only do one of do_test_vat | (do_test_vat_rnn, do_test_vat_cnn)" if vat_sign == True: test_vat_loss = VATLossSign(do_test_entropy=do_test_entropy, xi=vat_xi, eps=vat_epsilon, ip=vat_ip) else: test_vat_loss = VATLoss(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) elif do_test_vat_rnn and do_test_vat_cnn: test_vat_loss = VATonRnnCnnSign(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) elif do_test_vat_rnn: test_vat_loss = VATonRnnSign(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) elif do_test_vat_cnn: test_vat_loss = VATonCnnSign(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) if do_test_vat_cnn and do_test_vat_rnn: test_vat_loss, cnn_lds, rnn_lds = test_vat_loss(net, vat_imgs, vat_img_seq_lens, vat_mask) elif do_test_vat: test_vat_loss = test_vat_loss(net, vat_imgs, vat_img_seq_lens, vat_mask) elif do_vat: vat_loss = VATLoss(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) vat_loss = vat_loss(net, imgs, img_seq_lens, mask) elif do_at: at_loss = LabeledATLoss(xi=vat_xi, eps=vat_epsilon, ip=vat_ip) at_loss = at_loss(net, imgs, labels_flatten, img_seq_lens, label_lens, batch_size) if ada_after_rnn or ada_before_rnn: preds, ada_cnn, ada_rnn = net(imgs, img_seq_lens, ada_alpha=ada_alpha, mask=mask) if ada_before_rnn: ada_num_features = ada_cnn.size(0) else: ada_num_features = ada_rnn.size(0) domain_label = torch.ones(ada_num_features) domain_label = domain_label.long() if cuda: domain_label = domain_label.cuda() domain_label = Variable(domain_label) if ada_before_rnn: err_ada_cnn_s = loss_domain(ada_cnn, domain_label) if ada_after_rnn: err_ada_rnn_s = loss_domain(ada_rnn, domain_label) else: preds = net(imgs, img_seq_lens) ''' if output_dir is not None: if (show_iter is not None and iter_num != 0 and iter_num % show_iter == 0): print_data_visuals(net, tb_writer, train_data.get_lexicon(), sample["img"], labels_flatten, label_lens, preds, ((epoch_count * len(data_loader)) + iter_num)) ''' loss_ctc = loss_function(preds, labels_flatten, Variable(torch.IntTensor(np.array(img_seq_lens))), label_lens) / batch_size if loss_ctc.data[0] in [float("inf"), -float("inf")]: print("warnning: loss should not be inf.") continue total_loss = loss_ctc if do_vat: #mask = sample['mask'] #if cuda: # mask = mask.cuda() #vat_loss = virtual_adversarial_loss(net, imgs, img_seq_lens, mask, is_training=True, do_entropy=False, epsilon=vat_epsilon, num_power_iterations=1, # xi=1e-6, average_loss=True) total_loss = total_loss + vat_ratio * vat_loss.cpu() if do_test_vat or do_test_vat_rnn or do_test_vat_cnn: total_loss = total_loss + test_vat_ratio * test_vat_loss.cpu() if ada_before_rnn: total_loss = total_loss + ada_ratio * err_ada_cnn_s.cpu() + ada_ratio * err_ada_cnn_t.cpu() if ada_after_rnn: total_loss = total_loss + ada_ratio * err_ada_rnn_s.cpu() + ada_ratio * err_ada_rnn_t.cpu() total_loss.backward() nn.utils.clip_grad_norm(net.parameters(), 10.0) if -400 < loss_ctc.data[0] < 400: loss_mean_ctc.append(loss_ctc.data[0]) if -1000 < total_loss.data[0] < 1000: loss_mean_total.append(total_loss.data[0]) if len(loss_mean_total) > 100: loss_mean_total = loss_mean_total[-100:] status = "epoch: {0:5d}; iter_num: {1:5d}; lr: {2:.2E}; loss_mean: {3:.3f}; loss: {4:.3f}".format(epoch_count, lr_scheduler.last_iter, lr_scheduler.get_lr(), np.mean(loss_mean_total), loss_ctc.data[0]) if ada_after_rnn: loss_mean_ada_rnn_s.append(err_ada_rnn_s.data[0]) loss_mean_ada_rnn_t.append(err_ada_rnn_t.data[0]) status += "; ladatrnns: {0:.3f}; ladatrnnt: {1:.3f}".format( err_ada_rnn_s.data[0], err_ada_rnn_t.data[0] ) if ada_before_rnn: loss_mean_ada_cnn_s.append(err_ada_cnn_s.data[0]) loss_mean_ada_cnn_t.append(err_ada_cnn_t.data[0]) status += "; ladatcnns: {0:.3f}; ladatcnnt: {1:.3f}".format( err_ada_cnn_s.data[0], err_ada_cnn_t.data[0] ) if do_vat: loss_mean_vat.append(vat_loss.data[0]) status += "; lvat: {0:.3f}".format( vat_loss.data[0] ) if do_at: loss_mean_at.append(at_loss.data[0]) status += "; lat: {0:.3f}".format( at_loss.data[0] ) if do_test_vat: loss_mean_test_vat.append(test_vat_loss.data[0]) status += "; l_tvat: {0:.3f}".format( test_vat_loss.data[0] ) if do_test_vat_rnn or do_test_vat_cnn: loss_mean_test_vat.append(test_vat_loss.data[0]) if do_test_vat_rnn and do_test_vat_cnn: status += "; l_tvatc: {}".format( cnn_lds.data[0] ) status += "; l_tvatr: {}".format( rnn_lds.data[0] ) else: status += "; l_tvat: {}".format( test_vat_loss.data[0] ) iterator.set_description(status) optimizer.step() if do_lr_step: lr_scheduler.step() if do_ema: net.udate_ema() iter_count += 1 if output_dir is not None: torch.save(net.state_dict(), os.path.join(output_dir, "crnn_" + backend + "_last")) epoch_count += 1 return if __name__ == '__main__': main()
[ "torch.nn.NLLLoss", "torch.zeros", "torch.autograd.Variable", "torch.ones", "torch.utils.data.DataLoader" ]
0.4.0
alexeypechorin/tibetan-transductive
e2356d5c0a7cbc2f2359d9cf5b6b18729fecd8de
1.6
import torch from nnunet.network_architecture.generic_UNet import Generic_UNet from nnunet.network_architecture.initialization import InitWeights_He from nnunet.training.network_training.nnUNet_variants.data_augmentation.nnUNetTrainerV2_insaneDA import \ nnUNetTrainerV2_insaneDA from nnunet.utilities.nd_softmax import softmax_helper from torch import nn class nnUNetTrainerV2_MMS(nnUNetTrainerV2_insaneDA): def setup_DA_params(self): super().setup_DA_params() self.data_aug_params["p_rot"] = 0.7 self.data_aug_params["p_eldef"] = 0.1 self.data_aug_params["p_scale"] = 0.3 self.data_aug_params["independent_scale_factor_for_each_axis"] = True self.data_aug_params["p_independent_scale_per_axis"] = 0.3 self.data_aug_params["do_additive_brightness"] = True self.data_aug_params["additive_brightness_mu"] = 0 self.data_aug_params["additive_brightness_sigma"] = 0.2 self.data_aug_params["additive_brightness_p_per_sample"] = 0.3 self.data_aug_params["additive_brightness_p_per_channel"] = 1 self.data_aug_params["elastic_deform_alpha"] = (0., 300.) self.data_aug_params["elastic_deform_sigma"] = (9., 15.) self.data_aug_params['gamma_range'] = (0.5, 1.6) def initialize_network(self): if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.BatchNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.BatchNorm2d norm_op_kwargs = {'eps': 1e-5, 'affine': True} dropout_op_kwargs = {'p': 0, 'inplace': True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} self.network = Generic_UNet(self.num_input_channels, self.base_num_features, self.num_classes, len(self.net_num_pool_op_kernel_sizes), self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, True, False, lambda x: x, InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True) if torch.cuda.is_available(): self.network.cuda() self.network.inference_apply_nonlin = softmax_helper """def run_training(self): from batchviewer import view_batch a = next(self.tr_gen) view_batch(a['data']) import IPython;IPython.embed()"""
[ "torch.cuda.is_available" ]
1.6.0
nasyxx/nnUNet
92d5f2352349eed278e22f7a38cb86b0fccd7c75
0.4
import torch import torch.nn as nn #from .utils import load_state_dict_from_url from .utils import zerocenter __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = zerocenter(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) out = zerocenter(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = zerocenter(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = zerocenter(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) out = zerocenter(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = zerocenter(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) # if pretrained: # state_dict = load_state_dict_from_url(model_urls[arch], # progress=progress) # model.load_state_dict(state_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) class ZeroCenterEncoder(ResNet): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pretrained = False del self.fc def forward(self, x): x0 = self.conv1(x) x0 = self.bn1(x0) x0 = self.relu(x0) x1 = self.maxpool(x0) x1 = zerocenter(x1) x1 = self.layer1(x1) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) return [x4, x3, x2, x1, x0] def load_state_dict(self, state_dict, **kwargs): state_dict.pop('fc.bias') state_dict.pop('fc.weight') super().load_state_dict(state_dict, **kwargs)
[ "torch.nn.Linear", "torch.flatten", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.init.constant_", "torch.nn.init.kaiming_normal_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.AdaptiveAvgPool2d" ]
0.4.0
vinnamkim/segmentation_models.pytorch
f967ded34df6fb536e8e8cba9b6491ae63b939f5
1.10
""" The file contains the PPO class to train with. NOTE: All "ALG STEP"s are following the numbers from the original PPO pseudocode. It can be found here: https://spinningup.openai.com/en/latest/_images/math/e62a8971472597f4b014c2da064f636ffe365ba3.svg """ import gym import numpy as np import torch import torch.nn as nn from torch.optim import Adam #For continuous actions from torch.distributions import MultivariateNormal #For discrete action_space from torch.distributions import Categorical from network import FeedForwardActorNN, FeedForwardCriticNN import sys from cbf_clf_helper import clf_control, cbf_control #Integrating tensorboard from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() class PPO: """ This is the PPO class we will use as our model in main.py """ def __init__(self, env, **hyperparameters): """ Initializes the PPO model, including hyperparameters. Parameters: policy_class - the policy class to use for our actor/critic networks. env - the environment to train on. hyperparameters - all extra arguments passed into PPO that should be hyperparameters. Returns: None """ # Make sure the environment is compatible with our code assert(type(env.observation_space) == gym.spaces.Box) # Makeassert(type(env.action_space) == gym.spaces.Box) # Initialize hyperparameters for training with PPO self._init_hyperparameters(hyperparameters) # Extract environment information self.env = env self.obs_dim = env.observation_space.shape[0] if self.discrete: self.act_dim = env.action_space.n else: self.act_dim = env.action_space.shape[0] #env.action_space.n #env.action_space.shape[0] # Initialize actor and critic networks self.actor = FeedForwardActorNN(self.obs_dim, self.act_dim,self.discrete) actor_model = 'ppo_actorKinematicBicycleGymLane.pth' policy = FeedForwardActorNN(5, 2,False) policy.load_state_dict(torch.load(actor_model)) actor_model = policy #print(f'model =========== {self.actor}') # ALG STEP 1 self.critic = FeedForwardCriticNN(self.obs_dim, 1) #print(f'critic =========== {self.critic}') # Initialize optimizers for actor and critic self.actor_optim = Adam(self.actor.parameters(), lr=self.lr) self.critic_optim = Adam(self.critic.parameters(), lr=self.lr) # Initialize the covariance matrix used to query the actor for actions self.cov_var = torch.full(size=(self.act_dim,), fill_value=0.05) self.cov_mat = torch.diag(self.cov_var) self.obs_count = 0 self.index_count = 0 # This logger will help us with printing out summaries of each iteration self.logger = { 't_so_far': 0, # timesteps so far 'i_so_far': 0, # iterations so far 'batch_lens': [], # episodic lengths in batch 'batch_rews': [], # episodic returns in batch 'batch_infractions': [], # Episodic returns in a neural network 'actor_losses': [], # losses of actor network in current iteration 'actor_network' : 0, # Actor network } def learn(self, env_name,failure_observations,subpolicy): """ Train the actor and critic networks. Here is where the main PPO algorithm resides. Parameters: total_timesteps - the total number of timesteps to train for Return: None """ print(f"Learning... Running {self.max_timesteps_per_episode} timesteps per episode, ", end='') print(f"{self.timesteps_per_batch} timesteps per batch for a total of {self.training_step} iterations") t_so_far = 0 # Timesteps simulated so far i_so_far = 0 # Iterations ran so far while i_so_far < self.training_step: # ALG STEP 2 # Autobots, roll out (just kidding, we're collecting our batch simulations here) batch_obs, batch_acts, batch_log_probs, batch_rtgs, batch_lens = self.rollout(subpolicy,failure_observations) # ALG STEP 3 # Calculate how many timesteps we collected this batch t_so_far += np.sum(batch_lens) # Increment the number of iterations i_so_far += 1 # Logging timesteps so far and iterations so far self.logger['t_so_far'] = t_so_far self.logger['i_so_far'] = i_so_far # Calculate advantage at k-th iteration V, _ = self.evaluate(batch_obs, batch_acts) A_k = batch_rtgs - V.detach() # ALG STEP 5 # One of the only tricks I use that isn't in the pseudocode. Normalizing advantages # isn't theoretically necessary, but in practice it decreases the variance of # our advantages and makes convergence much more stable and faster. I added this because # solving some environments was too unstable without it. A_k = (A_k - A_k.mean()) / (A_k.std() + 1e-10) # This is the loop where we update our network for some n epochs for _ in range(self.n_updates_per_iteration): # ALG STEP 6 & 7 # Calculate V_phi and pi_theta(a_t | s_t) V, curr_log_probs = self.evaluate(batch_obs, batch_acts) # Calculate the ratio pi_theta(a_t | s_t) / pi_theta_k(a_t | s_t) # NOTE: we just subtract the logs, which is the same as # dividing the values and then canceling the log with e^log. # For why we use log probabilities instead of actual probabilities, # here's a great explanation: # https://cs.stackexchange.com/questions/70518/why-do-we-use-the-log-in-gradient-based-reinforcement-algorithms # TL;DR makes gradient ascent easier behind the scenes. ratios = torch.exp(curr_log_probs - batch_log_probs) # Calculate surrogate losses. #print(f'A_k======================={A_k}') surr1 = ratios * A_k #print(f'surr1======================={surr1}') surr2 = torch.clamp(ratios, 1 - self.clip, 1 + self.clip) * A_k #print(f'surr2======================={surr2}') # Calculate actor and critic losses. # NOTE: we take the negative min of the surrogate losses because we're trying to maximize # the performance function, but Adam minimizes the loss. So minimizing the negative # performance function maximizes it. actor_loss = (-torch.min(surr1, surr2)).mean() #print(f'actor_loss======================={actor_loss}') critic_loss = nn.MSELoss()(V, batch_rtgs) # Calculate gradients and perform backward propagation for actor network self.actor_optim.zero_grad() actor_loss.backward(retain_graph=True) self.actor_optim.step() # Calculate gradients and perform backward propagation for critic network self.critic_optim.zero_grad() critic_loss.backward() self.critic_optim.step() # Log actor loss self.logger['actor_losses'].append(actor_loss.detach()) self.logger['actor_network'] = self.actor # Print a summary of our training so far self._log_summary() # Save our model if it's time if i_so_far % self.save_freq == 0: if subpolicy: torch.save(self.actor.state_dict(), './ppo_actor_subpolicy'+env_name+'.pth') torch.save(self.critic.state_dict(), './ppo_critic_subpolicy'+env_name+'.pth') else: torch.save(self.actor.state_dict(), './ppo_actor'+env_name+'.pth') torch.save(self.critic.state_dict(), './ppo_critic'+env_name+'.pth') def rollout(self,subpolicy,failure_observations): """ This is where we collect the batch of data from simulation. Since this is an on-policy algorithm, we'll need to collect a fresh batch of data each time we iterate the actor/critic networks. Parameters: None Return: batch_obs - the observations collected this batch. Shape: (number of timesteps, dimension of observation) batch_acts - the actions collected this batch. Shape: (number of timesteps, dimension of action) batch_log_probs - the log probabilities of each action taken this batch. Shape: (number of timesteps) batch_rtgs - the Rewards-To-Go of each timestep in this batch. Shape: (number of timesteps) batch_lens - the lengths of each episode this batch. Shape: (number of episodes) """ # Batch data. For more details, check function header. batch_obs = [] batch_acts = [] batch_log_probs = [] batch_rews = [] batch_rtgs = [] batch_lens = [] batch_infractions = [] # Episodic data. Keeps track of rewards per episode, will get cleared # upon each new episode ep_rews = [] t = 0 # Keeps track of how many timesteps we've run so far this batch # Keep simulating until we've run more than or equal to specified timesteps per batch while t < self.timesteps_per_batch: act_list = [] ep_rews = [] # rewards collected per episode # Reset the environment. sNote that obs is short for observation. obs = self.env.reset() #print(f'obs reset ============= {obs}') done = False count_infractions = 0 count_infractions_acc = 0 count_infractions_steer = 0 # Run an episode for a maximum of max_timesteps_per_episode timesteps for ep_t in range(self.max_timesteps_per_episode): a_predicted_clf = clf_control(self.env.v_ego) delta, target_id, crosstrack_error = self.env.car.tracker.stanley_control(self.env.x_ego, self.env.y_ego, self.env.yaw_ego, self.env.v_ego, self.env.delta_ego) # If render is specified, render the environment if self.render: self.env.render() t += 1 # Increment timesteps ran this batch so far # Track observations in this batch batch_obs.append(obs) # Calculate action and make a step in the env. # Note that rew is short for reward. if self.discrete: action, log_prob = self.get_action_discrete(obs) else: action, log_prob = self.get_action(obs) #self.get_action_discrete(obs) #print(f'action chosen =============== {action}') if(abs(round(float(action[0]),1))<abs(round(float(a_predicted_clf),1))): count_infractions_acc = count_infractions_acc+1 if(abs(round(float(action[1]),1)) < abs(round(float(delta),1))-0.2): #print(f'After rounding =============== {round(float(action_net[1]),1)} ====== {round(float(action[1]),1)}') count_infractions_steer = count_infractions_steer+1 obs, rew, done, info = self.env.step(action) count_infractions = count_infractions_acc+count_infractions_steer # Track recent reward, action, and action log probability ep_rews.append(rew) batch_acts.append(action) batch_log_probs.append(log_prob) act_list.append(info) # If the environment tells us the episode is terminated, break if done: break # Track episodic lengths and rewards #self.env.render(act_list) batch_lens.append(ep_t + 1) batch_rews.append(ep_rews) batch_infractions.append(count_infractions) # Reshape data as tensors in the shape specified in function description, before returning batch_obs = torch.tensor(batch_obs, dtype=torch.float) #print(f'batch_acts =============== {batch_acts}') #For discrete state space if self.discrete: batch_acts = torch.tensor(batch_acts, dtype=torch.long).view(-1,) else: batch_acts = torch.tensor(batch_acts, dtype=torch.float) #torch.tensor(batch_acts, dtype=torch.long).view(-1,) #print(f'batch_acts =============== {batch_acts}') batch_log_probs = torch.tensor(batch_log_probs, dtype=torch.float) batch_rtgs = self.compute_rtgs(batch_rews) # ALG STEP 4 # Log the episodic returns and episodic lengths in this batch. self.logger['batch_rews'] = batch_rews self.logger['batch_lens'] = batch_lens self.logger['batch_infractions'] = batch_infractions return batch_obs, batch_acts, batch_log_probs, batch_rtgs, batch_lens def compute_rtgs(self, batch_rews): """ Compute the Reward-To-Go of each timestep in a batch given the rewards. Parameters: batch_rews - the rewards in a batch, Shape: (number of episodes, number of timesteps per episode) Return: batch_rtgs - the rewards to go, Shape: (number of timesteps in batch) """ # The rewards-to-go (rtg) per episode per batch to return. # The shape will be (num timesteps per episode) batch_rtgs = [] # Iterate through each episode for ep_rews in reversed(batch_rews): discounted_reward = 0 # The discounted reward so far # Iterate through all rewards in the episode. We go backwards for smoother calculation of each # discounted return (think about why it would be harder starting from the beginning) for rew in reversed(ep_rews): discounted_reward = rew + discounted_reward * self.gamma batch_rtgs.insert(0, discounted_reward) # Convert the rewards-to-go into a tensor batch_rtgs = torch.tensor(batch_rtgs, dtype=torch.float) return batch_rtgs # Probability sampling for discrete actions def get_action_discrete(self, obs): #print(f'obs ================== {obs}') mean = self.actor(obs) #print(f'mean ================== {mean}') dist = Categorical(mean) #print(f'dist ================== {dist}') action = dist.sample() log_prob = dist.log_prob(action) #print(f'action ====== {action} ========= {log_prob}') return action.detach().numpy().item(), log_prob.detach().item() def get_action(self, obs): """ Queries an action from the actor network, should be called from rollout. Parameters: obs - the observation at the current timestep Return: action - the action to take, as a numpy array log_prob - the log probability of the selected action in the distribution """ # Query the actor network for a mean action mean = self.actor(obs) # Create a distribution with the mean action and std from the covariance matrix above. # For more information on how this distribution works, check out Andrew Ng's lecture on it: # https://www.youtube.com/watch?v=JjB58InuTqM dist = MultivariateNormal(mean, self.cov_mat) # Sample an action from the distribution action = dist.sample() # Calculate the log probability for that action log_prob = dist.log_prob(action) # Return the sampled action and the log probability of that action in our distribution return action.detach().numpy(), log_prob.detach() def evaluate(self, batch_obs, batch_acts): """ Estimate the values of each observation, and the log probs of each action in the most recent batch with the most recent iteration of the actor network. Should be called from learn. Parameters: batch_obs - the observations from the most recently collected batch as a tensor. Shape: (number of timesteps in batch, dimension of observation) batch_acts - the actions from the most recently collected batch as a tensor. Shape: (number of timesteps in batch, dimension of action) Return: V - the predicted values of batch_obs log_probs - the log probabilities of the actions taken in batch_acts given batch_obs """ # Query critic network for a value V for each batch_obs. Shape of V should be same as batch_rtgs V = self.critic(batch_obs).squeeze() # Calculate the log probabilities of batch actions using most recent actor network. # This segment of code is similar to that in get_action() mean = self.actor(batch_obs) if self.discrete: dist = Categorical(mean) else: dist = MultivariateNormal(mean, self.cov_mat) #For discrete actions #dist = Categorical(mean) log_probs = dist.log_prob(batch_acts) # Return the value vector V of each observation in the batch # and log probabilities log_probs of each action in the batch return V, log_probs def _init_hyperparameters(self, hyperparameters): """ Initialize default and custom values for hyperparameters Parameters: hyperparameters - the extra arguments included when creating the PPO model, should only include hyperparameters defined below with custom values. Return: None """ # Initialize default values for hyperparameters # Algorithm hyperparameters self.timesteps_per_batch = 4800 # Number of timesteps to run per batch self.max_timesteps_per_episode = 1600 # Max number of timesteps per episode self.n_updates_per_iteration = 5 # Number of times to update actor/critic per iteration self.lr = 0.005 # Learning rate of actor optimizer self.gamma = 0.95 # Discount factor to be applied when calculating Rewards-To-Go self.clip = 0.2 # Recommended 0.2, helps define the threshold to clip the ratio during SGA # Miscellaneous parameters self.render = False # If we should render during rollout self.save_freq = 10 # How often we save in number of iterations self.seed = None # Sets the seed of our program, used for reproducibility of results self.discrete = False # Sets the type of environment to discrete or continuous self.training_step = 200 # Sets the number of trainig step # Change any default values to custom values for specified hyperparameters for param, val in hyperparameters.items(): exec('self.' + param + ' = ' + str(val)) # Sets the seed if specified if self.seed != None: # Check if our seed is valid first assert(type(self.seed) == int) # Set the seed torch.manual_seed(self.seed) print(f"Successfully set seed to {self.seed}") def _log_summary(self): """ Print to stdout what we've logged so far in the most recent batch. Parameters: None Return: None """ # Calculate logging values. I use a few python shortcuts to calculate each value # without explaining since it's not too important to PPO; feel free to look it over, # and if you have any questions you can email me (look at bottom of README) t_so_far = self.logger['t_so_far'] i_so_far = self.logger['i_so_far'] avg_ep_lens = np.mean(self.logger['batch_lens']) avg_ep_rews = np.mean([np.sum(ep_rews) for ep_rews in self.logger['batch_rews']]) avg_actor_loss = np.mean([losses.float().mean() for losses in self.logger['actor_losses']]) avg_ep_infractions = np.mean([np.sum(ep_inf) for ep_inf in self.logger['batch_infractions']]) actor_model = self.logger['actor_network'] # Round decimal places for more aesthetic logging messages avg_ep_lens = str(round(avg_ep_lens, 2)) avg_ep_rews = str(round(avg_ep_rews, 2)) avg_ep_infractions = str(round(avg_ep_infractions, 2)) avg_actor_loss = str(round(avg_actor_loss, 5)) writer.add_scalar("Average Episodic Return", int(float(avg_ep_rews)), t_so_far) writer.add_scalar("Average actor Loss", int(float(avg_actor_loss)), t_so_far) writer.add_scalar("Average Infractions", int(float(avg_ep_infractions)), t_so_far) # Tracking the weight of the network for name, param in actor_model.named_parameters(): if 'weight' in name: writer.add_histogram(name, param.detach().numpy(), t_so_far) # Print logging statements print(flush=True) print(f"-------------------- Iteration #{i_so_far} --------------------", flush=True) print(f"Average Episodic Length: {avg_ep_lens}", flush=True) print(f"Average Episodic Return: {avg_ep_rews}", flush=True) print(f"Average Episodic Infractions : {avg_ep_infractions}", flush=True) print(f"Average Loss: {avg_actor_loss}", flush=True) print(f"Timesteps So Far: {t_so_far}", flush=True) print(f"------------------------------------------------------", flush=True) print(flush=True) # Reset batch-specific logging data self.logger['batch_lens'] = [] self.logger['batch_rews'] = [] self.logger['actor_losses'] = [] def test(env, actor_model, is_discrete): """ Tests the model. Parameters: env - the environment to test the policy on actor_model - the actor model to load in Return: None """ print(f"Testing {actor_model}", flush=True) # If the actor model is not specified, then exit if actor_model == '': print(f"Didn't specify model file. Exiting.", flush=True) sys.exit(0) # Extract out dimensions of observation and action spaces obs_dim = env.observation_space.shape[0] if is_discrete: act_dim = env.action_space.n else: act_dim = env.action_space.shape[0] #env.action_space.n #env.action_space.shape[0] # Build our policy the same way we build our actor model in PPO policy = FeedForwardActorNN(obs_dim, act_dim,is_discrete) # Load in the actor model saved by the PPO algorithm policy.load_state_dict(torch.load(actor_model)) # Evaluate our policy with a separate module, eval_policy, to demonstrate # that once we are done training the model/policy with ppo.py, we no longer need # ppo.py since it only contains the training algorithm. The model/policy itself exists # independently as a binary file that can be loaded in with torch. eval_policy(policy=policy, env=env, render=True, is_discrete=is_discrete)
[ "torch.distributions.Categorical", "torch.nn.MSELoss", "torch.min", "torch.clamp", "torch.manual_seed", "torch.full", "torch.tensor", "torch.load", "torch.diag", "torch.distributions.MultivariateNormal", "torch.exp", "torch.utils.tensorboard.SummaryWriter" ]
1.10.0
britig/S2RL-Policies
b9c74b7f5efec225920c09f7e8e82d8555d61bd9
0.1
# Copyright (c) Facebook, Inc. and its affiliates. import os import warnings # import git import torch import yaml from pythia.common.registry import registry from pythia.utils.distributed_utils import is_main_process, synchronize from pythia.utils.general import (ckpt_name_from_core_args, foldername_from_config_override, updir) class Checkpoint: def __init__(self, trainer): """ Generates a path for saving model which can also be used for resuming from a checkpoint. """ self.trainer = trainer self.config = self.trainer.config self.save_dir = self.config.training_parameters.save_dir self.model_name = self.config.model self.ckpt_foldername = ckpt_name_from_core_args(self.config) self.ckpt_foldername += foldername_from_config_override(self.trainer.args) self.device = registry.get("current_device") self.ckpt_prefix = "" if hasattr(self.trainer.model, "get_ckpt_name"): self.ckpt_prefix = self.trainer.model.get_ckpt_name() + "_" self.config["log_foldername"] = self.ckpt_foldername self.ckpt_foldername = os.path.join(self.save_dir, self.ckpt_foldername) self.pth_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + self.model_name + getattr(self.config.model_attributes, self.model_name).code_name + "_final.pth" ) self.models_foldername = os.path.join(self.ckpt_foldername, "models") if not os.path.exists(self.models_foldername): os.makedirs(self.models_foldername) self.save_config() self.repo_path = updir(os.path.abspath(__file__), n=3) # self.repo = git.Repo(self.repo_path) def save_config(self): cfg_file = os.path.join(self.ckpt_foldername, "config.yaml") with open(cfg_file, "w") as f: # Pop out config_override if present to remove clutter in # saved configuration yaml file self.config.pop("config_override", None) f.write(str(self.config)) def load_state_dict(self): tp = self.config.training_parameters if tp.resume_file is not None: if os.path.exists(tp.resume_file): self._load(tp.resume_file) return else: raise RuntimeError("{} doesn't exist".format(tp.resume_file)) ckpt_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + "best.ckpt" ) if tp.resume is True: if os.path.exists(ckpt_filepath): self._load(ckpt_filepath) else: warnings.warn( "Tried to resume but checkpoint filepath {} " "is not present. Skipping.".format(ckpt_filepath) ) def _load(self, file): self.trainer.writer.write("Loading checkpoint") ckpt = self._torch_load(file) data_parallel = registry.get("data_parallel") if "model" in ckpt: ckpt_model = ckpt["model"] else: ckpt_model = ckpt ckpt = {"model": ckpt} pretrained_mapping = self.config.training_parameters.pretrained_mapping if not self.config.training_parameters.load_pretrained: pretrained_mapping = {} new_dict = {} # TODO: Move to separate function for attr in ckpt_model: if "fa_history" in attr: new_dict[attr.replace("fa_history", "fa_context")] = ckpt_model[attr] elif data_parallel is False and attr.startswith("module."): # In case the ckpt was actually a data parallel model # replace first module. from dataparallel with empty string new_dict[attr.replace("module.", "", 1)] = ckpt_model[attr] else: new_dict[attr] = ckpt_model[attr] if len(pretrained_mapping.items()) == 0: final_dict = new_dict self.trainer.model.load_state_dict(final_dict) if "optimizer" in ckpt: self.trainer.optimizer.load_state_dict(ckpt["optimizer"]) else: warnings.warn( "'optimizer' key is not present in the " "checkpoint asked to be loaded. Skipping." ) self.trainer.early_stopping.init_from_checkpoint(ckpt) self.trainer.writer.write("Checkpoint loaded") if "best_iteration" in ckpt: self.trainer.current_iteration = ckpt["best_iteration"] registry.register("current_iteration", self.trainer.current_iteration) if "best_epoch" in ckpt: self.trainer.current_epoch = ckpt["best_epoch"] registry.register("current_epoch", self.trainer.current_epoch) else: final_dict = {} model = self.trainer.model own_state = model.state_dict() for key, value in pretrained_mapping.items(): key += "." value += "." for attr in new_dict: for own_attr in own_state: if ( key in attr and value in own_attr and attr.replace(key, "") == own_attr.replace(value, "") ): self.trainer.writer.write( "Copying " + attr + " " + own_attr ) own_state[own_attr].copy_(new_dict[attr]) self.trainer.writer.write("Pretrained model loaded") def _load_state_dict_mapping(self, ckpt_model): model = self.trainer.model attr_mapping = { "image_feature_encoders": "img_feat_encoders", "image_feature_embeddings_list": "img_embeddings_list", "image_text_multi_modal_combine_layer": "multi_modal_combine_layer", "text_embeddings": "text_embeddings", "classifier": "classifier", } data_parallel = registry.get("data_parallel") if not data_parallel: for key in attr_mapping: attr_mapping[key.replace("module.", "")] = attr_mapping[key] attr_mapping.pop(key) for key in attr_mapping: getattr(model, key).load_state_dict(ckpt_model[attr_mapping[key]]) def _torch_load(self, file): if "cuda" in str(self.device): return torch.load(file) else: return torch.load(file, map_location=lambda storage, loc: storage) # def _get_vcs_fields(self): # """Returns a dict with git fields of the current repository # # To reproduce an experiment directly from a checkpoint # # 1) Export `config` key as a yaml # 2) Clone repository and checkout at given commit on given branch # 3) Any local change (diff) while running the experiment is stored # in the value with key `git/diff`, output the diff to a `path.diff` # file and apply the patch to the current state by simply # # `patch -p0 < path.diff` # """ # # return { # "git/branch": self.repo.active_branch.name, # "git/commit_hash": self.repo.head.commit.name_rev, # "git/commit_author": self.repo.head.commit.author.name, # "git/commit_message": self.repo.head.commit.message, # "git/diff": self.repo.git.diff("--no-prefix"), # } def save(self, iteration, update_best=False): # Only save in main process if not is_main_process(): return ckpt_filepath = os.path.join( self.models_foldername, "model_%d.ckpt" % iteration ) best_ckpt_filepath = os.path.join( self.ckpt_foldername, self.ckpt_prefix + "best.ckpt" ) best_iteration = self.trainer.early_stopping.best_monitored_iteration best_metric = self.trainer.early_stopping.best_monitored_value ckpt = { "model": self.trainer.model.state_dict(), "optimizer": self.trainer.optimizer.state_dict(), "best_iteration": best_iteration, "best_metric_value": best_metric, "config": self.config, } # git_metadata_dict = self._get_vcs_fields() # ckpt.update(git_metadata_dict) torch.save(ckpt, ckpt_filepath) if update_best: torch.save(ckpt, best_ckpt_filepath) def restore(self): self.trainer.writer.write("Restoring checkpoint") best_path = os.path.join(self.ckpt_foldername, self.ckpt_prefix + "best.ckpt") if os.path.exists(best_path): ckpt = self._torch_load(best_path) self.trainer.model.load_state_dict(ckpt["model"]) self.trainer.optimizer.load_state_dict(ckpt["optimizer"]) def finalize(self): torch.save(self.trainer.model.state_dict(), self.pth_filepath)
[ "torch.save", "torch.load" ]
0.1.6
zean-wen/mmgnn_textvqa
2cfe82ed54610975a1d4937f2032e5f4565ecbe7
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, # The HuggingFace Inc. team, and The XTREME Benchmark Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning models for NER and POS tagging.""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random from dataclasses import dataclass, field from typing import Optional import json import numpy as np import scipy import torch from seqeval.metrics import precision_score, recall_score, f1_score from tensorboardX import SummaryWriter from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from torch.utils.data import RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from utils_tag import convert_examples_to_features from utils_tag import get_labels from utils_tag import read_examples_from_file # import lang2vec.lang2vec as l2v from scipy.spatial import distance from transformers import ( AdamW, get_linear_schedule_with_warmup, WEIGHTS_NAME, AutoConfig, AutoModelForTokenClassification, AutoTokenizer, HfArgumentParser, MultiLingAdapterArguments, AdapterConfig, AdapterType, ) #from xlm import XLMForTokenClassification DEFAULT_LANGUAGES = { 'mr': 'hi', 'bn': 'hi', 'ta': 'ta', 'fo': 'fo', 'no': 'da', 'da': 'da', 'be': 'be', 'uk': 'uk', 'bg': 'bg' } logger = logging.getLogger(__name__) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) logger.info(f'Seed = {args.seed}') if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id, lang_adapter_names, task_name, lang2id=None): """Train the model.""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) print(f'Local Rank = {args.local_rank}') print(len(train_dataset)) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) logging.info([n for (n, p) in model.named_parameters() if p.requires_grad]) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) best_score = 0.0 best_checkpoint = None patience = 0 global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Add here for reproductibility (even between python 2 and 3) cur_epoch = 0 for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) cur_epoch += 1 for step, batch in enumerate(epoch_iterator): batch = tuple(t.to(args.device) for t in batch if t is not None) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == "xlm": inputs["langs"] = batch[4] outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: # mean() to average on multi-gpu parallel training loss = loss.mean() if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() # Update learning rate schedule optimizer.step() model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate on single GPU otherwise metrics may not average well results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.save_only_best_checkpoint: result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step, lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name) if result["f1"] > best_score: logger.info("result['f1']={} > best_score={}".format(result["f1"], best_score)) best_score = result["f1"] # Save the best model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-best") best_checkpoint = output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: model_to_save.save_all_adapters(output_dir) if args.do_save_adapter_fusions: model_to_save.save_all_adapter_fusions(output_dir) if args.do_save_full_model: model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving the best model checkpoint to %s", output_dir) logger.info("Reset patience to 0") patience = 0 else: patience += 1 logger.info("Hit patience={}".format(patience)) if args.eval_patience > 0 and patience > args.eval_patience: logger.info("early stop! patience={}".format(patience)) epoch_iterator.close() train_iterator.close() if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step else: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: model_to_save.save_all_adapters(output_dir) if args.do_save_adapter_fusions: model_to_save.save_all_adapter_fusions(output_dir) if args.do_save_full_model: model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def calc_weight_multi(args, model, batch, lang_adapter_names, task_name, adapter_weights, step=10, lang=None): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "return_sequence_out": True, "labels": batch[3]} # logger.info(f'Language Adapters are {lang_adapter_names}') adapter_weights = [torch.FloatTensor([0.5 for _ in range(len(lang_adapter_names))]).to(args.device) for _ in range(13)] if args.lang_to_vec: logger.info(lang) logger.info(lang_adapter_names) adapter_weights = calc_l2v_weights(lang, lang_adapter_names, args.en_weight) logger.info(adapter_weights) for step_no in range(step): for w in adapter_weights: w.requires_grad = True if args.lang_to_vec and step_no == 0: normed_adapter_weights = adapter_weights else: normed_adapter_weights = [torch.nn.functional.softmax(w) for w in adapter_weights] # logger.info(f'Initial Adapter Weights = {normed_adapter_weights}') model.set_active_adapters([lang_adapter_names, [task_name]]) inputs["adapter_names"] = [lang_adapter_names, [task_name]] inputs["adapter_weights"] = normed_adapter_weights outputs = model(**inputs) loss, logits, orig_sequence_output = outputs[:3] kept_logits = outputs[-1] entropy = torch.nn.functional.softmax(kept_logits, dim=1)*torch.nn.functional.log_softmax(kept_logits, dim=1) entropy = -entropy.sum() / kept_logits.size(0) grads = torch.autograd.grad(entropy, adapter_weights) #print(adapter_weights) #print(grads) #print(grads) for i, w in enumerate(adapter_weights): adapter_weights[i] = adapter_weights[i].data - 10*grads[i].data normed_adapter_weights = [torch.nn.functional.softmax(w) for w in adapter_weights] #print(normed_adapter_weights) # logger.info(f'Final Adapter Weights = {normed_adapter_weights}') return normed_adapter_weights def jaccard_sim(vec1, vec2): intersection = 0 union = 0 for i in range(len(vec1)): if vec1[i] == '--' or vec2[i] == '--': continue if vec1[i] == 1 or vec2[i] == 1: union += 1 if vec1[i] == 1 and vec2[i] == 1: intersection += 1 return intersection/union def get_sim(lang1, lang2): features = l2v.get_features(f'{DEFAULT_LANGUAGES[lang1]} {lang2}', 'learned') similarity = 1 - distance.cosine(features[DEFAULT_LANGUAGES[lang1]], features[lang2]) return similarity def get_syntax_sim(lang1, lang2): features = l2v.get_features(f'{lang1} {lang2}', "syntax_wals|syntax_sswl|syntax_ethnologue") similarity = jaccard_sim(features[lang1], features[lang2]) return similarity def calc_l2v_weights(args, lang, lang_adapter_names): adapter_weight = [] for adapter_lang in lang_adapter_names: if args.en_weight is not None and adapter_lang == 'en': continue if args.lang_to_vec == 'learned': adapter_weight.append(get_sim(lang, adapter_lang)) elif args.lang_to_vec == 'syntax': adapter_weight.append(get_syntax_sim(lang, adapter_lang)) else: logger.info('INVALID FEATURE TYPE') exit() logger.info(adapter_weight) adapter_weight = torch.FloatTensor(adapter_weight) adapter_weight = torch.nn.functional.softmax(adapter_weight/args.temperature).tolist() if args.en_weight is not None: adapter_weight = [(1 - args.en_weight)*aw for aw in adapter_weight] en_index = lang_adapter_names.index('en') adapter_weight.insert(en_index, args.en_weight) return adapter_weight def scaled_input(emb, batch_size=16, num_batch=1, baseline=None, start_i=None, end_i=None): # shape of emb: (num_head, seq_len, seq_len) if baseline is None: baseline = torch.zeros_like(emb) num_points = batch_size * num_batch scale = 1.0 / num_points if start_i is None: step = (emb.unsqueeze(0) - baseline.unsqueeze(0)) * scale res = torch.cat([torch.add(baseline.unsqueeze(0), step*i) for i in range(num_points)], dim=0) return res, step[0] else: step = (emb - baseline) * scale start_emb = torch.add(baseline, step*start_i) end_emb = torch.add(baseline, step*end_i) step_new = (end_emb.unsqueeze(0) - start_emb.unsqueeze(0)) * scale res = torch.cat([torch.add(start_emb.unsqueeze(0), step_new*i) for i in range(num_points)], dim=0) return res, step_new[0] #Changed the default of calc_weight_step to 0 def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix="", lang="en", lang2id=None, print_result=True, adapter_weight=None, lang_adapter_names=None, task_name=None, calc_weight_step=0): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode, lang=lang, lang2id=lang2id) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly if args.get_attr: eval_sampler = RandomSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) else: eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s in %s *****" % (prefix, lang)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() counter = 0 head_importances = None all_head_importances = None for batch in tqdm(eval_dataloader, desc="Evaluating"): counter += 1 logger.info(f'Batch number = {counter}') batch = tuple(t.to(args.device) for t in batch) if calc_weight_step > 0: adapter_weight = calc_weight_multi(args, model, batch, lang_adapter_names, task_name, adapter_weight, calc_weight_step, lang=lang) if args.get_attr: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "adapter_weights": adapter_weight} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[4] inputs["output_attentions"] = True outputs = model(**inputs) tmp_eval_loss, logits, attentions, kept_labels, kl_logits = outputs attr_all = [] res_attr = [] input_len = int(inputs["attention_mask"][0].sum()) example_head_importances = None #Remove the batch_size dim since batch_size=1 logits = logits[0] for tar_layer in range(12): att = attentions[tar_layer][0] pred_labels = torch.argmax(logits, dim=-1) scale_att, step = scaled_input(att.data) scale_att.requires_grad_(True) attr_all = None prob_all = None for j_batch in range(1): one_batch_att = scale_att[j_batch*16:(j_batch+1)*16] _, grad = model(input_ids=inputs['input_ids'], token_type_ids=inputs['token_type_ids'], attention_mask=inputs['attention_mask'], labels=inputs['labels'], tar_layer=tar_layer, tmp_score=one_batch_att, pred_labels=pred_labels) grad = grad.sum(dim=0) attr_all = grad if attr_all is None else torch.add(attr_all, grad) # prob_all = tar_prob if prob_all is None else torch.cat([prob_all, tar_prob]) attr_all = attr_all[:,0:input_len,0:input_len] * step[:,0:input_len,0:input_len] if example_head_importances is None: example_head_importances = torch.amax(attr_all, dim=(1,2)).unsqueeze(0) else: tmp = torch.amax(attr_all, dim=(1,2)) tmp = tmp.unsqueeze(0) example_head_importances = torch.cat((example_head_importances, tmp), dim=0) # att = att[:,0:input_len,0:input_len] res_attr.append(attr_all.data) # logger.info(f'Example Head Importances = {example_head_importances}') all_head_importances = example_head_importances.unsqueeze(0) if all_head_importances is None else torch.cat((all_head_importances, example_head_importances.unsqueeze(0)), dim=0) head_importances = example_head_importances if head_importances is None else torch.add(head_importances, example_head_importances) if counter == 100: break continue with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "adapter_weights": adapter_weight} # logger.info(f'Labels = {batch[3]}') if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[4] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: # mean() to average on multi-gpu parallel evaluating tmp_eval_loss = tmp_eval_loss.mean() eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) if args.get_attr: head_importances = head_importances/counter logger.info(f'Head Importances = {head_importances}') torch.save(head_importances, os.path.join(args.output_dir,f'{mode}_{lang}_s{args.seed}_importances_100.pt')) torch.save(all_head_importances, os.path.join(args.output_dir,f'{mode}_{lang}_s{args.seed}_all_importances_100.pt')) return None, None if nb_eval_steps == 0: results = {k: 0 for k in ["loss", "precision", "recall", "f1"]} else: eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list) } if print_result: logger.info("***** Evaluation result %s in %s *****" % (prefix, lang)) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode, lang, lang2id=None, few_shot=-1): # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Load data features from cache or dataset file bpe_dropout = args.bpe_dropout if mode != 'train': bpe_dropout = 0 if bpe_dropout > 0: cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}_drop{}".format(mode, lang, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), bpe_dropout)) else: cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}".format(mode, lang, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length))) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: langs = lang.split(',') logger.info("all languages = {}".format(lang)) features = [] for lg in langs: data_file = os.path.join(args.data_dir, lg, "{}.{}".format(mode, args.model_name_or_path)) logger.info("Creating features from dataset file at {} in language {}".format(data_file, lg)) examples = read_examples_from_file(data_file, lg, lang2id) print(examples) features_lg = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta", "xlmr"]), pad_on_left=bool(args.model_type in ["xlnet"]), pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, lang=lg, bpe_dropout=bpe_dropout, ) features.extend(features_lg) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file {}, len(features)={}".format(cached_features_file, len(features))) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank == 0 and not evaluate: torch.distributed.barrier() if few_shot > 0 and mode == 'train': logger.info("Original no. of examples = {}".format(len(features))) features = features[: few_shot] logger.info('Using few-shot learning on {} examples'.format(len(features))) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) if args.model_type == 'xlm' and features[0].langs is not None: all_langs = torch.tensor([f.langs for f in features], dtype=torch.long) logger.info('all_langs[0] = {}'.format(all_langs[0])) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_langs) else: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) model_type: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) labels: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) data_dir: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) output_dir: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) max_seq_length: Optional[int] = field( default=128, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) do_train: Optional[bool] = field(default=False ) do_eval: Optional[bool] = field(default=False ) do_predict: Optional[bool] = field(default=False ) do_adapter_predict: Optional[bool] = field(default=False ) do_predict_dev: Optional[bool] = field(default=False ) do_predict_train: Optional[bool] = field(default=False ) init_checkpoint: Optional[str] = field(default=None ) evaluate_during_training: Optional[bool] = field(default=False ) do_lower_case: Optional[bool] = field(default=False ) few_shot: Optional[int] = field(default=-1 ) per_gpu_train_batch_size: Optional[int] = field(default=8) per_gpu_eval_batch_size: Optional[int] = field(default=8) gradient_accumulation_steps: Optional[int] = field(default=1) learning_rate: Optional[float] = field(default=5e-5) weight_decay: Optional[float] = field(default=0.0) adam_epsilon: Optional[float] = field(default=1e-8) max_grad_norm: Optional[float] = field(default=1.0) num_train_epochs: Optional[float] = field(default=3.0) max_steps: Optional[int] = field(default=-1) save_steps: Optional[int] = field(default=-1) warmup_steps: Optional[int] = field(default=0) logging_steps: Optional[int] = field(default=50) save_only_best_checkpoint: Optional[bool] = field(default=False) eval_all_checkpoints: Optional[bool] = field(default=False) no_cuda: Optional[bool] = field(default=False) overwrite_output_dir: Optional[bool] = field(default=False) overwrite_cache: Optional[bool] = field(default=False) seed: Optional[int] = field(default=42) fp16: Optional[bool] = field(default=False) fp16_opt_level: Optional[str] = field(default="O1") local_rank: Optional[int] = field(default=-1) server_ip: Optional[str] = field(default="") server_port: Optional[str] = field(default="") predict_langs: Optional[str] = field(default="en") train_langs: Optional[str] = field(default="en") log_file: Optional[str] = field(default=None) eval_patience: Optional[int] = field(default=-1) bpe_dropout: Optional[float] = field(default=0) do_save_adapter_fusions: Optional[bool] = field(default=False) task_name: Optional[str] = field(default="ner") predict_task_adapter: Optional[str] = field(default=None) predict_lang_adapter: Optional[str] = field(default=None) test_adapter: Optional[bool] = field(default=False) adapter_weight: Optional[str] = field(default=None) lang_to_vec: Optional[str] = field(default=None) calc_weight_step: Optional[int] = field(default=0) predict_save_prefix: Optional[str] = field(default=None) en_weight: Optional[float] = field(default=None) temperature: Optional[float] = field(default=1.0) get_attr: Optional[bool] = field(default=False) topk: Optional[int] = field(default=1) task: Optional[str] = field(default='udpos') def setup_adapter(args, adapter_args, model, train_adapter=True, load_adapter=None, load_lang_adapter=None): task_name = args.task_name or "ner" # check if adapter already exists, otherwise add it if task_name not in model.config.adapters.adapter_list(AdapterType.text_task): logging.info("Trying to decide if add adapter") # resolve the adapter config adapter_config = AdapterConfig.load( adapter_args.adapter_config, non_linearity=adapter_args.adapter_non_linearity, reduction_factor=adapter_args.adapter_reduction_factor, ) # load a pre-trained from Hub if specified if adapter_args.load_adapter or load_adapter: logging.info("loading task adapter") model.load_adapter( adapter_args.load_adapter if load_adapter is None else load_adapter, AdapterType.text_task, config=adapter_config, load_as=task_name, ) # otherwise, add a fresh adapter else: logging.info("Adding task adapter") model.add_adapter(task_name, AdapterType.text_task, config=adapter_config) # optionally load a pre-trained language adapter if adapter_args.load_lang_adapter or load_lang_adapter: if load_lang_adapter is None: # load a set of language adapters logging.info("loading lang adpater {}".format(adapter_args.load_lang_adapter)) # resolve the language adapter config lang_adapter_config = AdapterConfig.load( adapter_args.lang_adapter_config, non_linearity=adapter_args.lang_adapter_non_linearity, reduction_factor=adapter_args.lang_adapter_reduction_factor, ) # load the language adapter from Hub # if adapter_args.language == 'topk': # assert len(args.predict_langs.split(',')) == 1 # filename = f'scripts/{args.task}/en/{args.predict_langs}.json' # logger.info(f'Loading Adapter Languages from {filename}') # languages = [] # with open(filename) as f: # for i,line in enumerate(f): # if i == args.topk: # break # line = json.loads(line) # languages.append(line['adapter'].strip()) # adapter_names = [f'{lang}/wiki@ukp' for lang in languages] # else: # languages = adapter_args.language.split(",") # adapter_names = adapter_args.load_lang_adapter.split(",") # logger.info(f'Adapter Languages : {languages}, Length : {len(languages)}') # logger.info(f'Adapter Names {adapter_names}, Length : {len(adapter_names)}') # assert len(languages) == len(adapter_names) # lang_adapter_names = [] # for language, adapter_name in zip(languages, adapter_names): # logger.info(f'Language = {language}') # logger.info(f'Adapter Name = {adapter_name}') # lang_adapter_name = model.load_adapter( # adapter_name, # AdapterType.text_lang, # config=lang_adapter_config, # load_as=language, # ) # lang_adapter_names.append(lang_adapter_name) else: logging.info("loading lang adpater {}".format(load_lang_adapter)) # resolve the language adapter config lang_adapter_config = AdapterConfig.load( adapter_args.lang_adapter_config, non_linearity=adapter_args.lang_adapter_non_linearity, reduction_factor=adapter_args.lang_adapter_reduction_factor, ) # load the language adapter from Hub # lang_adapter_name = model.load_adapter( # load_lang_adapter, # AdapterType.text_lang, # config=lang_adapter_config, # load_as="lang", # ) # lang_adapter_names = [lang_adapter_name] else: lang_adapter_name = None lang_adapter_names = [] # Freeze all model weights except of those of this adapter model.train_adapter([task_name]) # Set the adapters to be used in every forward pass if lang_adapter_name: model.set_active_adapters([lang_adapter_names, [task_name]]) else: model.set_active_adapters([task_name]) return model, lang_adapter_names, task_name def load_model(args, num_labels): logger.info('Loading pretrained model and tokenizer') config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, cache_dir=args.cache_dir, ) args.model_type = config.model_type tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir, use_fast=False, ) if args.init_checkpoint: logger.info("loading from init_checkpoint={}".format(args.init_checkpoint)) model = AutoModelForTokenClassification.from_pretrained( args.init_checkpoint, config=config, cache_dir=args.cache_dir, ) else: logger.info("loading from existing model {}".format(args.model_name_or_path)) model = AutoModelForTokenClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) lang2id = config.lang2id if args.model_type == "xlm" else None logger.info("Using lang2id = {}".format(lang2id)) return model, tokenizer, lang2id def predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, split): output_test_results_file = os.path.join(args.output_dir, f"{split}_results.txt") with open(output_test_results_file, "a") as result_writer: for lang in args.predict_langs.split(','): #Check if language data exists if not os.path.exists(os.path.join(args.data_dir, lang, '{}.{}'.format(split, args.model_name_or_path))): logger.info("Language {}, split {} does not exist".format(lang, split)) continue #Activate the required language adapter adapter_weight = None # if not args.adapter_weight and not args.lang_to_vec: # if (adapter_args.train_adapter or args.test_adapter) and not args.adapter_weight: # if lang in lang_adapter_names: # logger.info(f'Language adapter for {lang} found') # logger.info("Set active language adapter to {}".format(lang)) # model.set_active_adapters([[lang], [task_name]]) # else: # logger.info(f'Language adapter for {lang} not found, using {lang_adapter_names[0]} instead') # logger.info("Set active language adapter to {}".format(lang_adapter_names[0])) # model.set_active_adapters([[lang_adapter_names[0]], [task_name]]) # else: # if args.adapter_weight == 'equal': # adapter_weight = [1/len(lang_adapter_names) for _ in lang_adapter_names] # elif args.adapter_weight == 'equal_en': # assert 'en' in lang_adapter_names, 'English language adapter not included' # adapter_weight = [(1-args.en_weight)/(len(lang_adapter_names)-1) for _ in lang_adapter_names] # en_index = lang_adapter_names.index('en') # adapter_weight[en_index] = args.en_weight # elif args.lang_to_vec: # if args.en_weight is not None: # logger.info(lang_adapter_names) # assert 'en' in lang_adapter_names, 'English language adapter not included' # adapter_weight = calc_l2v_weights(args, lang, lang_adapter_names) # elif args.adapter_weight == 'load': # filename = f'weights/{args.task}/{lang}/weights_s{args.seed}' # logger.info(f'Loading adapter weights from {filename}') # with open(filename) as f: # adapter_weight = json.loads(next(f)) # elif args.adapter_weight != "0" and args.adapter_weight is not None: # adapter_weight = [float(w) for w in args.adapter_weight.split(",")] logger.info('Args Adapter Weight = {}'.format(args.adapter_weight)) logger.info('Adapter Languages = {}'.format(lang_adapter_names)) if adapter_weight is not None: logger.info("Adapter Weights = {}".format(adapter_weight)) logger.info('Sum of Adapter Weights = {}'.format(sum(adapter_weight))) logger.info("Length of Adapter Weights = {}".format(len(adapter_weight))) # model.set_active_adapters([ lang_adapter_names, [task_name]]) #Evaluate result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode=split, lang=lang, lang2id=lang2id, adapter_weight=adapter_weight, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) if args.get_attr: continue result_json = {} # Save results if args.predict_save_prefix is not None and args.predict_save_prefix: result_json['language'] = f'{args.predict_save_prefix}_{lang}' else: result_json['language'] = f'{lang}' result_json['seed'] = args.seed result_json['language_adapters'] = lang_adapter_names if args.adapter_weight: result_json['adapter_weights'] = args.adapter_weight for key in sorted(result.keys()): result_json[key] = result[key] result_writer.write(json.dumps(result_json) + '\n') # Save predictions if args.predict_save_prefix is not None and args.predict_save_prefix: output_test_predictions_file = os.path.join(args.output_dir, "{}_{}_{}_s{}_predictions.txt".format(split, args.predict_save_prefix, lang, args.seed)) else: output_test_predictions_file = os.path.join(args.output_dir, "{}_{}_s{}_predictions.txt".format(split, lang, args.seed)) infile = os.path.join(args.data_dir, lang, "{}.{}".format(split, args.model_name_or_path)) idxfile = infile + '.idx' save_predictions(args, predictions, output_test_predictions_file, infile, idxfile) def main(): parser = argparse.ArgumentParser() parser = HfArgumentParser((ModelArguments, MultiLingAdapterArguments)) args, adapter_args = parser.parse_args_into_dataclasses() if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which sychronizes nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(handlers = [logging.FileHandler(args.log_file), logging.StreamHandler()], format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logging.info("Input args: %r" % args) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare NER/POS task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id # so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer # Make sure only the first process in distributed training loads model/vocab if args.local_rank not in [-1, 0]: torch.distributed.barrier() args.do_save_full_model= (not adapter_args.train_adapter) args.do_save_adapters=adapter_args.train_adapter if args.do_save_adapters: logging.info('save adapters') logging.info(adapter_args.train_adapter) if args.do_save_full_model: logging.info('save model') # Make sure only the first process in distributed training loads model/vocab if args.local_rank == 0: torch.distributed.barrier() logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: model, tokenizer, lang2id = load_model(args, num_labels) if adapter_args.train_adapter: model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model) logger.info("lang adapter names: {}".format(" ".join(lang_adapter_names))) else: lang_adatper_names = [] task_name = None model.to(args.device) train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train", lang=args.train_langs, lang2id=lang2id, few_shot=args.few_shot) global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id, lang_adapter_names, task_name, lang2id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use default names for the model, # you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) # Save model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training logger.info("Saving model checkpoint to %s", args.output_dir) model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: logging.info("Save adapter") model_to_save.save_all_adapters(args.output_dir) if args.do_save_adapter_fusions: logging.info("Save adapter fusion") model_to_save.save_all_adapter_fusions(args.output_dir) if args.do_save_full_model: logging.info("Save full model") model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Initialization for evaluation results = {} if args.init_checkpoint: best_checkpoint = args.init_checkpoint elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')): best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best') else: best_checkpoint = args.output_dir # Evaluation #This evaluates only if the entire model is saved, something we are not doing if args.do_eval and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) logger.info('Evaluating the model on dev set of training language(en)') load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter) model.to(args.device) result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix='debugging', lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) results.update(result) # for checkpoint in checkpoints: # global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" # model = AutoModelForTokenClassification.from_pretrained(checkpoint) # if adapter_args.train_adapter: # load_adapter = checkpoint + "/" + args.task_name # load_lang_adapter = "{}/{}".format(checkpoint, adapter_args.language) # model.model_name = args.model_name_or_path # model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter) # # model.to(args.device) # result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step, lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) # if result["f1"] > best_f1: # best_checkpoint = checkpoint # best_f1 = result["f1"] # if global_step: # result = {"{}_{}".format(global_step, k): v for k, v in result.items()} # results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) # writer.write("best checkpoint = {}, best f1 = {}\n".format(best_checkpoint, best_f1)) if args.do_predict and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) # Prediction logger.info('Evaluating the model on test set of all the languages specified') #Set up the task adapter if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'test') if args.do_predict_train and args.local_rank in [-1, 0]: logger.info('Evaluating on the train set of all specified languages') model, tokenizer, lang2id = load_model(args, num_labels) if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'train') #Predict dev set if args.do_predict_dev and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) logger.info('Evaluating on the dev sets of all the specified languages') #Set up task and language adapters if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'dev') def save_predictions(args, predictions, output_file, text_file, idx_file, output_word_prediction=False): # Save predictions with open(text_file, "r") as text_reader, open(idx_file, "r") as idx_reader: text = text_reader.readlines() index = idx_reader.readlines() assert len(text) == len(index) # Sanity check on the predictions with open(output_file, "w") as writer: example_id = 0 prev_id = int(index[0]) for line, idx in zip(text, index): if line == "" or line == "\n": example_id += 1 else: cur_id = int(idx) output_line = '\n' if cur_id != prev_id else '' if output_word_prediction: output_line += line.split()[0] + '\t' output_line += predictions[example_id].pop(0) + '\n' writer.write(output_line) prev_id = cur_id if __name__ == "__main__": main()
[ "torch.distributed.get_world_size", "torch.cat", "torch.utils.data.RandomSampler", "torch.amax", "torch.cuda.is_available", "torch.load", "torch.nn.CrossEntropyLoss", "torch.nn.DataParallel", "torch.distributed.init_process_group", "torch.FloatTensor", "torch.manual_seed", "torch.autograd.grad", "torch.tensor", "torch.utils.data.DataLoader", "torch.zeros_like", "torch.distributed.get_rank", "torch.device", "torch.cuda.manual_seed_all", "torch.save", "torch.utils.data.SequentialSampler", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.nn.functional.log_softmax", "torch.cuda.set_device", "torch.nn.functional.softmax", "torch.distributed.barrier", "torch.utils.data.TensorDataset", "torch.argmax", "torch.no_grad", "torch.add", "torch.utils.data.distributed.DistributedSampler" ]
1.0
rohanshah13/cloud-emea-copy
12acebc809080e5898ead86a412b17a5272759c2
1.4
import numpy as np from time import sleep import torch import torch.nn as nn import torch.nn.functional as F from core.models.common_layers import batch_norm, get_nddr from core.tasks import get_tasks from core.utils import AttrDict from core.utils.losses import poly class SingleTaskNet(nn.Module): def __init__(self, cfg, net1, net2): super(SingleTaskNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 return result def forward(self, x): N, C, H, W = x.size() y = x.clone() x = self.net1.base(x) y = self.net2.base(y) for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) y = self.net2.stages[stage_id](y) x = self.net1.head(x) y = self.net2.head(y) return AttrDict({'out1': x, 'out2': y}) class SharedFeatureNet(nn.Module): def __init__(self, cfg, net1, net2): super(SharedFeatureNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 return result def forward(self, x): x = self.net1.base(x) for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) out1 = self.net1.head(x) out2 = self.net2.head(x) return AttrDict({'out1': out1, 'out2': out2}) class NDDRNet(nn.Module): def __init__(self, cfg, net1, net2): super(NDDRNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) nddrs = [] total_channels = 0 for stage_id in range(self.num_stages): out_channels = net1.stages[stage_id].out_channels assert out_channels == net2.stages[stage_id].out_channels if stage_id in cfg.TRAIN.AUX_LAYERS: total_channels += out_channels nddr = get_nddr(cfg, out_channels, out_channels) nddrs.append(nddr) nddrs = nn.ModuleList(nddrs) self.aux = cfg.TRAIN.AUX if self.aux: print("Using shortcut") self.aux_conv1 = nn.Sequential( nn.Conv2d(total_channels, 256, kernel_size=3, padding=1, bias=False), batch_norm(256, eps=1e-03, momentum=cfg.MODEL.BATCH_NORM_MOMENTUM), nn.ReLU(inplace=True), nn.Dropout2d(p=0.5), nn.Conv2d(256, cfg.MODEL.NET1_CLASSES, kernel_size=1) ) self.aux_conv2 = nn.Sequential( nn.Conv2d(total_channels, 256, kernel_size=3, padding=1, bias=False), batch_norm(256, eps=1e-03, momentum=cfg.MODEL.BATCH_NORM_MOMENTUM), nn.ReLU(inplace=True), nn.Dropout2d(p=0.5), nn.Conv2d(256, cfg.MODEL.NET2_CLASSES, kernel_size=1) ) self.nddrs = nn.ModuleDict({ 'nddrs': nddrs, }) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 if self.aux: result.aux_loss1 = self.task1.loss(result.aux1, label_1) result.aux_loss2 = self.task2.loss(result.aux2, label_2) result.aux_loss = result.aux_loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.aux_loss2 result.aux_weight = poly(start=self.cfg.TRAIN.AUX_WEIGHT, end=0., steps=self._step, total_steps=self.cfg.TRAIN.STEPS, period=self.cfg.TRAIN.AUX_PERIOD, power=1.) result.loss += result.aux_weight * result.aux_loss return result def forward(self, x): N, C, H, W = x.size() y = x.clone() x = self.net1.base(x) y = self.net2.base(y) xs, ys = [], [] for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) y = self.net2.stages[stage_id](y) if isinstance(x, list): x[0], y[0] = self.nddrs['nddrs'][stage_id](x[0], y[0]) else: x, y = self.nddrs['nddrs'][stage_id](x, y) if self.aux and self.training and stage_id in self.cfg.TRAIN.AUX_LAYERS: xs.append(x) ys.append(y) x = self.net1.head(x) y = self.net2.head(y) result = AttrDict({'out1': x, 'out2': y}) if self.aux and self.training: _, _, h, w = x.size() aux_x = torch.cat([F.interpolate(_x, (h, w), mode='bilinear', align_corners=True) for _x in xs[:-1]] + [xs[-1]], dim=1) aux_y = torch.cat([F.interpolate(_y, (h, w), mode='bilinear', align_corners=True) for _y in ys[:-1]] + [ys[-1]], dim=1) result.aux1 = self.aux_conv1(aux_x) result.aux2 = self.aux_conv2(aux_y) return result
[ "torch.nn.ModuleList", "torch.nn.ModuleDict", "torch.nn.functional.interpolate", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.Dropout2d" ]
1.4.0
WZzhaoyi/MTLNAS
c04fcce1437eef306a41a6a224551be99d88f9a3
1.7
"""Provide useful functions for using PTLFlow.""" # ============================================================================= # Copyright 2021 Henrique Morimitsu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= __version__ = '0.2.5' import logging from argparse import Namespace from pathlib import Path from typing import List, Optional import requests import torch from torch import hub from ptlflow.models.base_model.base_model import BaseModel from ptlflow.models.dicl.dicl import DICL from ptlflow.models.fastflownet.fastflownet import FastFlowNet from ptlflow.models.flownet.flownet2 import FlowNet2 from ptlflow.models.flownet.flownetc import FlowNetC from ptlflow.models.flownet.flownetcs import FlowNetCS from ptlflow.models.flownet.flownetcss import FlowNetCSS from ptlflow.models.flownet.flownets import FlowNetS from ptlflow.models.flownet.flownetsd import FlowNetSD from ptlflow.models.gma.gma import GMA from ptlflow.models.hd3.hd3 import HD3, HD3Context from ptlflow.models.irr.pwcnet import IRRPWCNet from ptlflow.models.irr.pwcnet_irr import IRRPWCNetIRR from ptlflow.models.irr.irr_pwc import IRRPWC from ptlflow.models.lcv.lcv_raft import LCV_RAFT, LCV_RAFTSmall from ptlflow.models.liteflownet.liteflownet import LiteFlowNet from ptlflow.models.liteflownet.liteflownet3 import ( LiteFlowNet3, LiteFlowNet3PseudoReg, LiteFlowNet3S, LiteFlowNet3SPseudoReg) from ptlflow.models.liteflownet.liteflownet2 import LiteFlowNet2, LiteFlowNet2PseudoReg from ptlflow.models.maskflownet.maskflownet import MaskFlownet, MaskFlownet_S from ptlflow.models.pwcnet.pwcnet import PWCNet, PWCDCNet from ptlflow.models.raft.raft import RAFT, RAFTSmall from ptlflow.models.scopeflow.irr_pwc_v2 import ScopeFlow from ptlflow.models.starflow.starflow import StarFlow from ptlflow.models.vcn.vcn import VCN, VCNSmall from ptlflow.utils.utils import config_logging try: from ptlflow.models.scv.scv import SCVEighth, SCVQuarter except ImportError as e: print(e) SCVEighth = None SCVQuarter = None config_logging() models_dict = { 'dicl': DICL, 'fastflownet': FastFlowNet, 'flownet2': FlowNet2, 'flownetc': FlowNetC, 'flownetcs': FlowNetCS, 'flownetcss': FlowNetCSS, 'flownets': FlowNetS, 'flownetsd': FlowNetSD, 'gma': GMA, 'hd3': HD3, 'hd3_ctxt': HD3Context, 'irr_pwc': IRRPWC, 'irr_pwcnet': IRRPWCNet, 'irr_pwcnet_irr': IRRPWCNetIRR, 'lcv_raft': LCV_RAFT, 'lcv_raft_small': LCV_RAFTSmall, 'liteflownet': LiteFlowNet, 'liteflownet2': LiteFlowNet2, 'liteflownet2_pseudoreg': LiteFlowNet2PseudoReg, 'liteflownet3': LiteFlowNet3, 'liteflownet3_pseudoreg': LiteFlowNet3PseudoReg, 'liteflownet3s': LiteFlowNet3S, 'liteflownet3s_pseudoreg': LiteFlowNet3SPseudoReg, 'maskflownet': MaskFlownet, 'maskflownet_s': MaskFlownet_S, 'pwcnet': PWCNet, 'pwcdcnet': PWCDCNet, 'raft': RAFT, 'raft_small': RAFTSmall, 'scopeflow': ScopeFlow, 'scv4': SCVQuarter, 'scv8': SCVEighth, 'starflow': StarFlow, 'vcn': VCN, 'vcn_small': VCNSmall, } def download_scripts( destination_dir: Path = Path('ptlflow_scripts') ) -> None: """Download the main scripts and configs to start working with PTLFlow.""" github_url = 'https://raw.githubusercontent.com/hmorimitsu/ptlflow/main/' script_names = [ 'datasets.yml', 'infer.py', 'test.py', 'train.py', 'validate.py' ] destination_dir.mkdir(parents=True, exist_ok=True) for sname in script_names: script_url = github_url + sname data = requests.get(script_url) if data.status_code == 200: with open(destination_dir / sname, 'wb') as f: f.write(data.content) else: logging.warning('Script %s was not found.', script_url) logging.info('Downloaded scripts to %s.', str(destination_dir)) def get_model( model_name: str, pretrained_ckpt: Optional[str] = None, args: Optional[Namespace] = None ) -> BaseModel: """Return an instance of a chosen model. The instance can have configured by he arguments, and load some existing pretrained weights. Note that this is different from get_model_reference(), which returns a reference to the model class. The instance, returned by this function, is a class already instantiated. Therefore, the return of this function is equivalent to "return get_model_reference()()", which looks confusing. This can be rewritten as "model_ref = get_model_reference(); return model_ref()". Parameters ---------- model_name : str Name of the model to get an instance of. pretrained_ckpt : Optional[str], optional Name of the pretrained weight to load or a path to a local checkpoint file. args : Optional[Namespace], optional Some arguments that ill be provided to the model. Returns ------- BaseModel The instance of the chosen model. Raises ------ ValueError If the given checkpoint name is not a valid choice. ValueError If a checkpoint name is given, but the model does not have any pretrained weights available. See Also -------- get_model_reference : To get a reference to the class of a model. """ model_ref = get_model_reference(model_name) if args is None: parser = model_ref.add_model_specific_args() args = parser.parse_args([]) model = model_ref(args) if pretrained_ckpt is None and args is not None and args.pretrained_ckpt is not None: pretrained_ckpt = args.pretrained_ckpt if pretrained_ckpt is not None: if Path(pretrained_ckpt).exists(): ckpt_path = pretrained_ckpt elif hasattr(model_ref, 'pretrained_checkpoints'): ckpt_path = model_ref.pretrained_checkpoints.get(pretrained_ckpt) if ckpt_path is None: raise ValueError( f'Invalid checkpoint name {pretrained_ckpt}. ' f'Choose one from {{{",".join(model.pretrained_checkpoints.keys())}}}') else: raise ValueError(f'Cannot find checkpoint {pretrained_ckpt} for model {model_name}') device = 'cuda' if torch.cuda.is_available() else 'cpu' if Path(ckpt_path).exists(): ckpt = torch.load(ckpt_path, map_location=torch.device(device)) else: model_dir = Path(hub.get_dir()) / 'ptlflow' / 'checkpoints' ckpt = hub.load_state_dict_from_url( ckpt_path, model_dir=model_dir, map_location=torch.device(device), check_hash=True) state_dict = ckpt['state_dict'] model.load_state_dict(state_dict) return model def get_model_reference( model_name: str ) -> BaseModel: """Return a reference to the class of a chosen model. Note that this is different from get_model(), which returns an instance of a model. The reference, returned by this function, is a class before instantiation. Therefore, the return of this function can be used to instantiate a model as "model_ref = get_model_reference(); model_instance = model_ref()". Parameters ---------- model_name : str Name of the model to get a reference of. Returns ------- BaseModel A reference to the chosen model. Raises ------ ValueError If the given name is not a valid choice. See Also -------- get_model : To get an instance of a model. """ try: return models_dict[model_name] except KeyError: raise ValueError(f'Unknown model name: {model_name}. Choose from [{", ".join(models_dict.keys())}]') def get_trainable_model_names() -> List[str]: """Return a list of model names that are able to be trained. This function return the names of the model that have a loss function defined. Returns ======= List[str] The list of the model names that can be trained. """ return [mname for mname in models_dict.keys() if get_model(mname).loss_fn is not None]
[ "torch.device", "torch.cuda.is_available", "torch.hub.get_dir" ]
1.7.0
hmorimitsu/ptlflow
26f753322aef91b95ad78e743d847064e5d531b9
1.4
"""Rectify function""" import torch from torch.autograd import Function from encoding import cpu if torch.cuda.device_count() > 0: from encoding import gpu __all__ = ['rectify'] class _rectify(Function): @staticmethod def forward(ctx, y, x, kernel_size, stride, padding, dilation, average): ctx.save_for_backward(x) # assuming kernel_size is 3 kernel_size = [k + 2 * (d - 1) for k,d in zip(kernel_size, dilation)] ctx.kernel_size = kernel_size ctx.stride = stride ctx.padding = padding ctx.dilation = dilation ctx.average = average if x.is_cuda: gpu.conv_rectify(y, x, kernel_size, stride, padding, dilation, average) else: cpu.conv_rectify(y, x, kernel_size, stride, padding, dilation, average) ctx.mark_dirty(y) return y @staticmethod def backward(ctx, grad_y): x, = ctx.saved_variables if x.is_cuda: gpu.conv_rectify(grad_y, x, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.average) else: cpu.conv_rectify(grad_y, x, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.average) ctx.mark_dirty(grad_y) return grad_y, None, None, None, None, None, None rectify = _rectify.apply
[ "torch.cuda.device_count" ]
1.4.0
Womcos/SCARF
b90251bc23410cb810a7082ca75147a7aae21dec
1.7
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from flash.core.data.data_source import DefaultDataKeys def vissl_collate_helper(samples): result = [] for batch_ele in samples: _batch_ele_dict = {} _batch_ele_dict.update(batch_ele) _batch_ele_dict[DefaultDataKeys.INPUT] = -1 result.append(_batch_ele_dict) return torch.utils.data._utils.collate.default_collate(result) def multicrop_collate_fn(samples): """Multi-crop collate function for VISSL integration. Run custom collate on a single key since VISSL transforms affect only DefaultDataKeys.INPUT """ result = vissl_collate_helper(samples) inputs = [[] for _ in range(len(samples[0][DefaultDataKeys.INPUT]))] for batch_ele in samples: multi_crop_imgs = batch_ele[DefaultDataKeys.INPUT] for idx, crop in enumerate(multi_crop_imgs): inputs[idx].append(crop) for idx, ele in enumerate(inputs): inputs[idx] = torch.stack(ele) result[DefaultDataKeys.INPUT] = inputs return result def simclr_collate_fn(samples): """Multi-crop collate function for VISSL integration. Run custom collate on a single key since VISSL transforms affect only DefaultDataKeys.INPUT """ result = vissl_collate_helper(samples) inputs = [] num_views = len(samples[0][DefaultDataKeys.INPUT]) view_idx = 0 while view_idx < num_views: for batch_ele in samples: imgs = batch_ele[DefaultDataKeys.INPUT] inputs.append(imgs[view_idx]) view_idx += 1 result[DefaultDataKeys.INPUT] = torch.stack(inputs) return result def moco_collate_fn(samples): """MOCO collate function for VISSL integration. Run custom collate on a single key since VISSL transforms affect only DefaultDataKeys.INPUT """ result = vissl_collate_helper(samples) inputs = [] for batch_ele in samples: inputs.append(torch.stack(batch_ele[DefaultDataKeys.INPUT])) result[DefaultDataKeys.INPUT] = torch.stack(inputs).squeeze()[:, 0, :, :, :].squeeze() result["data_momentum"] = torch.stack(inputs).squeeze()[:, 1, :, :, :].squeeze() return result
[ "torch.utils.data._utils.collate.default_collate", "torch.stack" ]
1.7.1
Isaac-Flath/lightning-flash
320f87707587d92a13c8831778864b33af4fe421
1.1
# Copyright 2021 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """GAN-based TTS ESPnet model.""" from contextlib import contextmanager from distutils.version import LooseVersion from typing import Any from typing import Dict from typing import Optional import torch from typeguard import check_argument_types from espnet2.gan_tts.abs_gan_tts import AbsGANTTS from espnet2.layers.abs_normalize import AbsNormalize from espnet2.layers.inversible_interface import InversibleInterface from espnet2.train.abs_gan_espnet_model import AbsGANESPnetModel from espnet2.tts.feats_extract.abs_feats_extract import AbsFeatsExtract if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch < 1.6.0 @contextmanager def autocast(enabled=True): # NOQA yield class ESPnetGANTTSModel(AbsGANESPnetModel): """GAN-based TTS ESPnet model.""" def __init__( self, feats_extract: Optional[AbsFeatsExtract], normalize: Optional[AbsNormalize and InversibleInterface], tts: AbsGANTTS, ): """Initialize ESPnetGANTTSModel module.""" assert check_argument_types() super().__init__() self.feats_extract = feats_extract self.normalize = normalize self.tts = tts assert hasattr( tts, "generator" ), "generator module must be resistered as tts.generator" assert hasattr( tts, "discriminator" ), "discriminator module must be resistered as tts.discriminator" def forward( self, text: torch.Tensor, text_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, spembs: Optional[torch.Tensor] = None, sids: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, forward_generator: bool = True, ) -> Dict[str, Any]: """Return generator or discriminator loss with dict format. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B,). spembs (Optional[Tensor]): Speaker embedding tensor (B, D). sids (Optional[Tensor]): Speaker ID tensor (B, 1). lids (Optional[Tensor]): Language ID tensor (B, 1). forward_generator (bool): Whether to forward generator. Returns: Dict[str, Any]: - loss (Tensor): Loss scalar tensor. - stats (Dict[str, float]): Statistics to be monitored. - weight (Tensor): Weight tensor to summarize losses. - optim_idx (int): Optimizer index (0 for G and 1 for D). """ with autocast(False): # Extract features feats = None if self.feats_extract is not None: feats, feats_lengths = self.feats_extract(speech, speech_lengths) # Normalize if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Make batch for tts inputs batch = {} batch.update(text=text, text_lengths=text_lengths) batch.update(forward_generator=forward_generator) # Update kwargs for additional auxiliary inputs if feats is not None: batch.update(feats=feats, feats_lengths=feats_lengths) if self.tts.require_raw_speech: batch.update(speech=speech, speech_lengths=speech_lengths) if spembs is not None: batch.update(spembs=spembs) if sids is not None: batch.update(sids=sids) if lids is not None: batch.update(lids=lids) return self.tts(**batch) def collect_feats( self, text: torch.Tensor, text_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, spembs: Optional[torch.Tensor] = None, sids: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: """Calculate features and return them as a dict. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B, 1). spembs (Optional[Tensor]): Speaker embedding tensor (B, D). sids (Optional[Tensor]): Speaker index tensor (B, 1). lids (Optional[Tensor]): Language ID tensor (B, 1). Returns: Dict[str, Tensor]: Dict of features. """ feats = None if self.feats_extract is not None: feats, feats_lengths = self.feats_extract(speech, speech_lengths) feats_dict = {} if feats is not None: feats_dict.update(feats=feats, feats_lengths=feats_lengths) return feats_dict
[ "torch.cuda.amp.autocast" ]
1.1.0
actboy/espnet
66f0f8382b0e1195bed7c280c29711f8436b3db4
1.6
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import sys import tempfile import unittest from glob import glob import nibabel as nib import numpy as np import torch import monai from monai.data import create_test_image_2d from monai.engines import GanTrainer from monai.engines.utils import GanKeys as Keys from monai.handlers import CheckpointSaver, StatsHandler, TensorBoardStatsHandler from monai.networks import normal_init from monai.networks.nets import Discriminator, Generator from monai.transforms import AsChannelFirstd, Compose, LoadImaged, RandFlipd, ScaleIntensityd, ToTensord from monai.utils import set_determinism from tests.utils import DistTestCase, TimedCall, skip_if_quick def run_training_test(root_dir, device="cuda:0"): real_images = sorted(glob(os.path.join(root_dir, "img*.nii.gz"))) train_files = [{"reals": img} for img in zip(real_images)] # prepare real data train_transforms = Compose( [ LoadImaged(keys=["reals"]), AsChannelFirstd(keys=["reals"]), ScaleIntensityd(keys=["reals"]), RandFlipd(keys=["reals"], prob=0.5), ToTensord(keys=["reals"]), ] ) train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5) train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4) learning_rate = 2e-4 betas = (0.5, 0.999) real_label = 1 fake_label = 0 # create discriminator disc_net = Discriminator( in_shape=(1, 64, 64), channels=(8, 16, 32, 64, 1), strides=(2, 2, 2, 2, 1), num_res_units=1, kernel_size=5 ).to(device) disc_net.apply(normal_init) disc_opt = torch.optim.Adam(disc_net.parameters(), learning_rate, betas=betas) disc_loss_criterion = torch.nn.BCELoss() def discriminator_loss(gen_images, real_images): real = real_images.new_full((real_images.shape[0], 1), real_label) gen = gen_images.new_full((gen_images.shape[0], 1), fake_label) realloss = disc_loss_criterion(disc_net(real_images), real) genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen) return torch.div(torch.add(realloss, genloss), 2) # create generator latent_size = 64 gen_net = Generator( latent_shape=latent_size, start_shape=(latent_size, 8, 8), channels=[32, 16, 8, 1], strides=[2, 2, 2, 1] ) gen_net.apply(normal_init) gen_net.conv.add_module("activation", torch.nn.Sigmoid()) gen_net = gen_net.to(device) gen_opt = torch.optim.Adam(gen_net.parameters(), learning_rate, betas=betas) gen_loss_criterion = torch.nn.BCELoss() def generator_loss(gen_images): output = disc_net(gen_images) cats = output.new_full(output.shape, real_label) return gen_loss_criterion(output, cats) key_train_metric = None train_handlers = [ StatsHandler( name="training_loss", output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]} ), TensorBoardStatsHandler( log_dir=root_dir, tag_name="training_loss", output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]}, ), CheckpointSaver( save_dir=root_dir, save_dict={"g_net": gen_net, "d_net": disc_net}, save_interval=2, epoch_level=True ), ] disc_train_steps = 2 num_epochs = 5 trainer = GanTrainer( device, num_epochs, train_loader, gen_net, gen_opt, generator_loss, disc_net, disc_opt, discriminator_loss, d_train_steps=disc_train_steps, latent_shape=latent_size, key_train_metric=key_train_metric, train_handlers=train_handlers, ) trainer.run() return trainer.state @skip_if_quick class IntegrationWorkflowsGAN(DistTestCase): def setUp(self): set_determinism(seed=0) self.data_dir = tempfile.mkdtemp() for i in range(40): im, _ = create_test_image_2d(64, 64, num_objs=3, rad_max=14, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(self.data_dir, f"img{i:d}.nii.gz")) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu:0") monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) def tearDown(self): set_determinism(seed=None) shutil.rmtree(self.data_dir) @TimedCall(seconds=200, daemon=False) def test_training(self): torch.manual_seed(0) finish_state = run_training_test(self.data_dir, device=self.device) # assert GAN training finished self.assertEqual(finish_state.iteration, 100) self.assertEqual(finish_state.epoch, 5) if __name__ == "__main__": unittest.main()
[ "torch.nn.Sigmoid", "torch.add", "torch.manual_seed", "torch.cuda.is_available", "torch.nn.BCELoss" ]
1.6
Can-Zhao/MONAI
e0db5a564225a7cb62e7a23df97267019006302f
1.6
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List import torch from torch import nn from torch.nn import functional as F from monai.config.deviceconfig import USE_COMPILED from monai.networks.layers.spatial_transforms import grid_pull from monai.networks.utils import meshgrid_ij from monai.utils import GridSampleMode, GridSamplePadMode, optional_import _C, _ = optional_import("monai._C") __all__ = ["Warp", "DVF2DDF"] class Warp(nn.Module): """ Warp an image with given dense displacement field (DDF). """ def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePadMode.BORDER.value): """ For pytorch native APIs, the possible values are: - mode: ``"nearest"``, ``"bilinear"``, ``"bicubic"``. - padding_mode: ``"zeros"``, ``"border"``, ``"reflection"`` See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample For MONAI C++/CUDA extensions, the possible values are: - mode: ``"nearest"``, ``"bilinear"``, ``"bicubic"``, 0, 1, ... - padding_mode: ``"zeros"``, ``"border"``, ``"reflection"``, 0, 1, ... See also: :py:class:`monai.networks.layers.grid_pull` """ super().__init__() # resolves _interp_mode for different methods if USE_COMPILED: if mode in (inter.value for inter in GridSampleMode): mode = GridSampleMode(mode) if mode == GridSampleMode.BILINEAR: mode = 1 elif mode == GridSampleMode.NEAREST: mode = 0 elif mode == GridSampleMode.BICUBIC: mode = 3 else: mode = 1 # default to linear self._interp_mode = mode else: warnings.warn("monai.networks.blocks.Warp: Using PyTorch native grid_sample.") self._interp_mode = GridSampleMode(mode).value # resolves _padding_mode for different methods if USE_COMPILED: if padding_mode in (pad.value for pad in GridSamplePadMode): padding_mode = GridSamplePadMode(padding_mode) if padding_mode == GridSamplePadMode.ZEROS: padding_mode = 7 elif padding_mode == GridSamplePadMode.BORDER: padding_mode = 0 elif padding_mode == GridSamplePadMode.REFLECTION: padding_mode = 1 else: padding_mode = 0 # default to nearest self._padding_mode = padding_mode else: self._padding_mode = GridSamplePadMode(padding_mode).value @staticmethod def get_reference_grid(ddf: torch.Tensor) -> torch.Tensor: mesh_points = [torch.arange(0, dim) for dim in ddf.shape[2:]] grid = torch.stack(meshgrid_ij(*mesh_points), dim=0) # (spatial_dims, ...) grid = torch.stack([grid] * ddf.shape[0], dim=0) # (batch, spatial_dims, ...) grid = grid.to(ddf) return grid def forward(self, image: torch.Tensor, ddf: torch.Tensor): """ Args: image: Tensor in shape (batch, num_channels, H, W[, D]) ddf: Tensor in the same spatial size as image, in shape (batch, ``spatial_dims``, H, W[, D]) Returns: warped_image in the same shape as image (batch, num_channels, H, W[, D]) """ spatial_dims = len(image.shape) - 2 if spatial_dims not in (2, 3): raise NotImplementedError(f"got unsupported spatial_dims={spatial_dims}, currently support 2 or 3.") ddf_shape = (image.shape[0], spatial_dims) + tuple(image.shape[2:]) if ddf.shape != ddf_shape: raise ValueError( f"Given input {spatial_dims}-d image shape {image.shape}, " f"the input DDF shape must be {ddf_shape}." ) grid = self.get_reference_grid(ddf) + ddf grid = grid.permute([0] + list(range(2, 2 + spatial_dims)) + [1]) # (batch, ..., spatial_dims) if not USE_COMPILED: # pytorch native grid_sample for i, dim in enumerate(grid.shape[1:-1]): grid[..., i] = grid[..., i] * 2 / (dim - 1) - 1 index_ordering: List[int] = list(range(spatial_dims - 1, -1, -1)) grid = grid[..., index_ordering] # z, y, x -> x, y, z return F.grid_sample( image, grid, mode=self._interp_mode, padding_mode=f"{self._padding_mode}", align_corners=True ) # using csrc resampling return grid_pull(image, grid, bound=self._padding_mode, extrapolate=True, interpolation=self._interp_mode) class DVF2DDF(nn.Module): """ Layer calculates a dense displacement field (DDF) from a dense velocity field (DVF) with scaling and squaring. Adapted from: DeepReg (https://github.com/DeepRegNet/DeepReg) """ def __init__( self, num_steps: int = 7, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePadMode.ZEROS.value ): super().__init__() if num_steps <= 0: raise ValueError(f"expecting positive num_steps, got {num_steps}") self.num_steps = num_steps self.warp_layer = Warp(mode=mode, padding_mode=padding_mode) def forward(self, dvf): """ Args: dvf: dvf to be transformed, in shape (batch, ``spatial_dims``, H, W[,D]) Returns: a dense displacement field """ ddf: torch.Tensor = dvf / (2 ** self.num_steps) for _ in range(self.num_steps): ddf = ddf + self.warp_layer(image=ddf, ddf=ddf) return ddf
[ "torch.nn.functional.grid_sample", "torch.stack", "torch.arange" ]
1.6
Can-Zhao/MONAI
e0db5a564225a7cb62e7a23df97267019006302f
0.4
from __future__ import print_function import argparse import os import pickle import sys import cv2 import numpy as np import torch import vlfeat # calls constructor from sklearn.cluster import MiniBatchKMeans from src.utils.cluster.eval_metrics import _hungarian_match, _original_match, \ _acc from src.utils.segmentation.data import make_Coco_dataloaders, \ make_Potsdam_dataloaders SIFT_DLEN = 128 SIFT_STEP = 10 def _get_vectorised_sift_samples(archetype_config, dataloader): # returns num unmasked pixels x SIFT_DLEN, in uint8 format # operates on greyscale 128 bit images num_batches, batch_sz = len(dataloader), archetype_config.dataloader_batch_sz num_imgs_max = num_batches * batch_sz # estimate img_sz = archetype_config.input_sz # cluster individual (box central) pixels desc_side = int(img_sz / SIFT_STEP) print("img sz %d, desc_side %d" % (img_sz, desc_side)) sys.stdout.flush() descs_all = np.zeros((num_imgs_max, desc_side * desc_side, SIFT_DLEN), dtype=np.uint8) masks_all = np.zeros((num_imgs_max, desc_side * desc_side), dtype=np.bool) labels_all = None actual_num_imgs = 0 # when descriptor matrix flattened, goes along rows first (rows change slow) central_inds_h = (np.arange(desc_side) * SIFT_STEP + (SIFT_STEP / 2)).reshape((desc_side, 1)).repeat(desc_side, axis=1) central_inds_w = (np.arange(desc_side) * SIFT_STEP + (SIFT_STEP / 2)).reshape((1, desc_side)).repeat(desc_side, axis=0) central_inds_h, central_inds_w = central_inds_h.reshape(-1), \ central_inds_w.reshape(-1) for b_i, batch in enumerate(dataloader): if len(batch) == 3: # test dataloader store_labels = True if (labels_all is None): labels_all = np.zeros((num_imgs_max, desc_side * desc_side), dtype=np.int32) imgs, labels, masks = batch labels = labels.cpu().numpy().astype(np.int32) else: # training dataloader store_labels = False imgs, _, _, masks = batch # imgs currently channel first, [0-1] range, floats imgs = (imgs * 255.).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) masks = masks.cpu().numpy().astype(np.bool) curr_batch_sz, h, w, c = imgs.shape assert (h == archetype_config.input_sz and w == archetype_config.input_sz and c == archetype_config.in_channels) if b_i < num_batches - 1: assert (batch_sz == curr_batch_sz) start = b_i * batch_sz for i in range(curr_batch_sz): grey_img = cv2.cvtColor(imgs[i, :, :, :], cv2.COLOR_RGB2GRAY) locs, descs = vlfeat.vl_dsift(grey_img, step=SIFT_STEP) descs = descs.transpose((1, 0)) # 40*40, 128 descs = descs.reshape(-1, SIFT_DLEN) # rows change slowest # get the corresponding box central mask/label mask = masks[i][central_inds_h, central_inds_w] offset = start + i descs_all[offset, :, :] = descs masks_all[offset, :] = mask if store_labels: label = labels[i][central_inds_h, central_inds_w] labels_all[offset, :] = label actual_num_imgs += curr_batch_sz descs_all = descs_all[:actual_num_imgs, :, :] masks_all = masks_all[:actual_num_imgs, :] num_unmasked = masks_all.sum() if store_labels: labels_all = labels_all[:actual_num_imgs, :] samples_labels = labels_all[masks_all].reshape(-1) assert (samples_labels.shape[0] == num_unmasked) samples = descs_all[masks_all, :].reshape(-1, SIFT_DLEN) assert (samples.shape[0] == num_unmasked) if not store_labels: return samples else: return samples, samples_labels def _get_vectorised_colour_samples(archetype_config, dataloader): num_batches, batch_sz = len(dataloader), archetype_config.dataloader_batch_sz num_imgs_max = num_batches * batch_sz # estimate img_sz = archetype_config.input_sz # cluster individual pixels imgs_all = np.zeros( (num_imgs_max, img_sz, img_sz, archetype_config.in_channels), dtype=np.uint8) masks_all = np.zeros((num_imgs_max, img_sz, img_sz), dtype=np.bool) labels_all = None actual_num_imgs = 0 for b_i, batch in enumerate(dataloader): if len(batch) == 3: store_labels = True if (labels_all is None): labels_all = np.zeros((num_imgs_max, img_sz, img_sz), dtype=np.int32) imgs, labels, masks = batch labels = labels.cpu().numpy().astype(np.int32) else: store_labels = False imgs, _, _, masks = batch # channels last imgs = (imgs * 255.).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) masks = masks.cpu().numpy().astype(np.bool) curr_batch_sz, h, w, c = imgs.shape assert (h == archetype_config.input_sz and w == archetype_config.input_sz and c == archetype_config.in_channels) if b_i < num_batches - 1: assert (batch_sz == curr_batch_sz) start = b_i * batch_sz imgs_all[start:(start + curr_batch_sz), :, :, :] = imgs masks_all[start:(start + curr_batch_sz), :, :] = masks if store_labels: labels_all[start:(start + curr_batch_sz), :, :] = labels actual_num_imgs += curr_batch_sz imgs_all = imgs_all[:actual_num_imgs, :, :, :] masks_all = masks_all[:actual_num_imgs, :, :] num_unmasked = masks_all.sum() if store_labels: labels_all = labels_all[:actual_num_imgs, :, :] samples_labels = labels_all[masks_all].reshape(-1) assert (samples_labels.shape[0] == num_unmasked) samples = imgs_all[masks_all, :].reshape(-1, archetype_config.in_channels) assert (samples.shape[0] == num_unmasked) if not store_labels: return samples else: return samples, samples_labels def main(): # based on segmentation_multioutput_twohead - we pass in the config of the # IID run we are comparing against, so the settings can be copied parser = argparse.ArgumentParser() parser.add_argument("--model_ind", type=int, required=True) parser.add_argument("--out_root", type=str, default="/scratch/shared/slow/xuji/iid_private") parser.add_argument("--IID_model_ind", type=int, required=True) parser.add_argument("--max_num_train", type=int, required=True) parser.add_argument("--test_code", default=False, action="store_true") parser.add_argument("--do_sift", default=False, action="store_true") config = parser.parse_args() config.out_dir = os.path.join(config.out_root, str(config.model_ind)) if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) archetype_config_path = os.path.join(config.out_root, str(config.IID_model_ind), "config.pickle") print("Loading archetype config from: %s" % archetype_config_path) with open(archetype_config_path, "rb") as config_f: archetype_config = pickle.load(config_f) assert (config.IID_model_ind == archetype_config.model_ind) assert (archetype_config.mode == "IID") # compare against fully unsup sample_fn = _get_vectorised_colour_samples if config.do_sift: sample_fn = _get_vectorised_sift_samples # set it to be only rgb (and ir if nec) but no sobel - we're clustering # single pixel colours archetype_config.include_rgb = True archetype_config.no_sobel = True if "Coco" in archetype_config.dataset: assert (not archetype_config.using_IR) archetype_config.in_channels = 3 elif archetype_config.dataset == "Potsdam": # IR assert (archetype_config.using_IR) archetype_config.in_channels = 4 # Data # ------------------------------------------------------------------------- if "Coco" in archetype_config.dataset: dataloaders_head_A, mapping_assignment_dataloader, \ mapping_test_dataloader = \ make_Coco_dataloaders(archetype_config) elif archetype_config.dataset == "Potsdam": dataloaders_head_A, mapping_assignment_dataloader, \ mapping_test_dataloader = \ make_Potsdam_dataloaders(archetype_config) else: raise NotImplementedError # unlike in clustering script for STL - isn't any data from unknown classes dataloaders_head_B = dataloaders_head_A # networks and optimisers # ------------------------------------------------------ assert (archetype_config.num_dataloaders == 1) dataloader = dataloaders_head_B[0] samples = sample_fn(archetype_config, dataloader) print("got training samples") sys.stdout.flush() if config.test_code: print("testing code, taking 10000 samples only") samples = samples[:10000, :] else: num_samples_train = min(samples.shape[0], config.max_num_train) print("taking %d samples" % num_samples_train) chosen_inds = np.random.choice(samples.shape[0], size=num_samples_train, replace=False) samples = samples[chosen_inds, :] print(samples.shape) sys.stdout.flush() kmeans = MiniBatchKMeans(n_clusters=archetype_config.gt_k, verbose=1).fit( samples) print("trained kmeans") sys.stdout.flush() # use mapping assign to assign output_k=gt_k to gt_k # and also assess on its predictions, since it's identical to # mapping_test_dataloader assign_samples, assign_labels = sample_fn(archetype_config, mapping_assignment_dataloader) num_samples = assign_samples.shape[0] assign_preds = kmeans.predict(assign_samples) print("finished prediction for mapping assign/test data") sys.stdout.flush() assign_preds = torch.from_numpy(assign_preds).cuda() assign_labels = torch.from_numpy(assign_labels).cuda() if archetype_config.eval_mode == "hung": match = _hungarian_match(assign_preds, assign_labels, preds_k=archetype_config.gt_k, targets_k=archetype_config.gt_k) elif archetype_config.eval_mode == "orig": # flat! match = _original_match(assign_preds, assign_labels, preds_k=archetype_config.gt_k, targets_k=archetype_config.gt_k) elif archetype_config.eval_mode == "orig_soft": assert (False) # not used # reorder predictions to be same cluster assignments as gt_k found = torch.zeros(archetype_config.gt_k) reordered_preds = torch.zeros(num_samples).to(torch.int32).cuda() for pred_i, target_i in match: reordered_preds[assign_preds == pred_i] = target_i found[pred_i] = 1 assert (found.sum() == archetype_config.gt_k) # each output_k must get mapped acc = _acc(reordered_preds, assign_labels, archetype_config.gt_k) print("got acc %f" % acc) config.epoch_acc = [acc] config.centroids = kmeans.cluster_centers_ config.match = match # write results and centroids to model_ind output file with open(os.path.join(config.out_dir, "config.pickle"), "w") as outfile: pickle.dump(config, outfile) with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file: text_file.write("%s" % config) if __name__ == "__main__": main()
[ "torch.zeros", "torch.from_numpy" ]
0.4.1
THinnerichs/MiS-Information-Clustering
597c70e1283222e0e841e24f6805b967aaf3c9e0
1.7
from copy import copy from typing import Optional import torch import pytorch_lightning as pl from transformers import ( EncoderDecoderModel, RobertaModel, RobertaConfig, GPT2LMHeadModel, GPT2Config, RobertaTokenizer, GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup, ) import nltk nltk.download("wordnet") class EncoderDecoderModule(pl.LightningModule): def __init__( self, learning_rate: float, src_tokenizer: RobertaTokenizer, trg_tokenizer: GPT2Tokenizer, num_epochs: int, num_batches: int, num_gpus: int, num_layers_encoder: Optional[int] = None, num_layers_decoder: Optional[int] = None, encoder_name_or_path: Optional[str] = None, decoder_name_or_path: Optional[str] = None, **kwargs, ): super().__init__() self._src_tokenizer = src_tokenizer self._trg_tokenizer = trg_tokenizer self._num_epochs = num_epochs self._num_batches = num_batches self._num_gpus = num_gpus self.learning_rate = learning_rate self.save_hyperparameters() if encoder_name_or_path is not None and decoder_name_or_path is not None: # use pretrained RoBERTa as encoder encoder = RobertaModel.from_pretrained(encoder_name_or_path) # resize embeddings to match vocabulary size encoder.resize_token_embeddings(len(self._src_tokenizer)) # remove layers if necessary if num_layers_encoder is not None and num_layers_encoder < encoder.config.num_hidden_layers: encoder = EncoderDecoderModule.remove_layers_from_model(encoder, num_layers_encoder, is_gpt=False) # use pretrained GPT-2 as decoder config = GPT2Config.from_pretrained(decoder_name_or_path) config.is_decoder = True config.add_cross_attention = True decoder = GPT2LMHeadModel.from_pretrained(decoder_name_or_path, config=config) # remove layers if necessary if num_layers_decoder is not None and num_layers_decoder < decoder.config.n_layer: decoder = EncoderDecoderModule.remove_layers_from_model(decoder, num_layers_decoder, is_gpt=True) elif num_layers_decoder is not None and num_layers_encoder is not None: # use randomly initialized RoBERTa as encoder encoder_config = RobertaConfig() encoder_config.num_hidden_layers = num_layers_encoder encoder = RobertaModel(config=encoder_config) # resize embeddings to match vocabulary size encoder.resize_token_embeddings(len(self._src_tokenizer)) # use randomly initialized GPT-2 as decoder decoder_config = GPT2Config() decoder_config.n_layer = num_layers_decoder decoder_config.is_decoder = True decoder_config.add_cross_attention = True decoder = GPT2LMHeadModel(config=decoder_config) else: raise ValueError( "You have to specify either num_layers for training from scratch \ or paths for loading pretrained models" ) self.model = EncoderDecoderModel(encoder=encoder, decoder=decoder) # cache is currently not supported by EncoderDecoder framework self.model.decoder.config.use_cache = False # do not tie output embeddings to input embeddings self.model.config.tie_word_embeddings = False # to make logs for different batch sizes prettier self.examples_count = 0 def forward(self, batch): return self.model( input_ids=batch["diff_input_ids"], attention_mask=batch["diff_attention_mask"], decoder_input_ids=batch["msg_input_ids"], decoder_attention_mask=batch["msg_attention_mask"], labels=batch["msg_labels"], ) def training_step(self, batch, batch_idx): self.examples_count += len(batch["diff_input_ids"]) loss, logits = self(batch)[:2] self.logger.experiment.log({"train_loss_step": loss}, step=self.examples_count) return {"loss": loss} def training_epoch_end(self, outputs): train_loss_mean = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.log({"train_loss_epoch": train_loss_mean}, step=self.examples_count) def next_token_metrics_step(self, batch): loss, scores = self(batch)[:2] return {"loss": loss} def next_token_metrics_epoch_end(self, outputs, stage): """ Logic for validation & testing epoch end: 1) Calculate accuracy@1, accuracy@5, MRR@5 2) (in val stage only) Aggregate loss and log metric(s) for ModelCheckpoint 3) Log everything to wandb """ loss = torch.stack([x["loss"] for x in outputs]).mean() metrics = {f"{stage}_loss_epoch": loss} if stage == "val": self.log("val_loss_epoch", metrics["val_loss_epoch"], on_step=False, on_epoch=True, prog_bar=True, logger=False) self.logger.experiment.log(metrics, step=self.examples_count) def validation_step(self, batch, batch_idx, dataloader_idx=0): return self.next_token_metrics_step(batch) def validation_epoch_end(self, outputs): self.next_token_metrics_epoch_end(outputs, stage="val") def test_step(self, batch, batch_idx): return self.next_token_metrics_step(batch) def test_epoch_end(self, outputs): self.next_token_metrics_epoch_end(outputs, stage="test") def configure_optimizers(self): optimizer = AdamW(self.parameters(), lr=self.learning_rate) scheduler = { "scheduler": get_linear_schedule_with_warmup( optimizer, 4000 // self._num_gpus, self._num_epochs * self._num_batches ), "interval": "step", "frequency": 1, } return [optimizer], [scheduler] @staticmethod def remove_layers_from_model(teacher, num_layers, is_gpt): if not is_gpt: teacher_config = teacher.config student_config = copy(teacher.config) student_config.num_hidden_layers = num_layers student = RobertaModel(config=student_config) # copy all embeddings student.embeddings.word_embeddings = teacher.embeddings.word_embeddings student.embeddings.position_embeddings = teacher.embeddings.position_embeddings student.embeddings.token_type_embeddings = teacher.embeddings.token_type_embeddings student.embeddings.LayerNorm = teacher.embeddings.LayerNorm student.embeddings.dropout = teacher.embeddings.dropout # uniformly pick from middle layers from teacher # it is basically np.linspace(0, teacher_config.num_hidden_layers, # num=student_config.num_hidden_layers, endpoint=True) step = (teacher_config.num_hidden_layers - 1) / (student_config.num_hidden_layers - 1) for student_layer, teacher_layer in enumerate( int(i * step) for i in range(student_config.num_hidden_layers) ): student.encoder.layer[student_layer] = teacher.encoder.layer[teacher_layer] else: teacher_config = teacher.config student_config = copy(teacher.config) student_config.n_layer = num_layers student = GPT2LMHeadModel(config=student_config) # Copying all embeddings student.transformer.wte = teacher.transformer.wte student.transformer.wpe = teacher.transformer.wpe student.transformer.drop = teacher.transformer.drop # Maybe there is something else in BERT that need to be copied! # Specific thing for GPT2LMHead. Not necessary for BERT student.tie_weights() # Uniformly pick from middle layers from teacher # It is basically np.linspace(0, teacher_config.n_layer, num=student_config.n_layer, endpoint=True) step = (teacher_config.n_layer - 1) / (student_config.n_layer - 1) for student_layer, teacher_layer in enumerate(int(i * step) for i in range(student_config.n_layer)): student.transformer.h[student_layer] = teacher.transformer.h[teacher_layer] return student
[ "torch.stack" ]
1.7.0
saridormi/commit_message_generation
c25db61a5f41accfb566caaea5feb0d275751293
1.7
# -*- coding: utf-8 -*- import torch from supar.utils.common import MIN from supar.utils.fn import pad from torch.autograd import Function def tarjan(sequence): r""" Tarjan algorithm for finding Strongly Connected Components (SCCs) of a graph. Args: sequence (list): List of head indices. Yields: A list of indices making up a SCC. All self-loops are ignored. Examples: >>> next(tarjan([2, 5, 0, 3, 1])) # (1 -> 5 -> 2 -> 1) is a cycle [2, 5, 1] """ sequence = [-1] + sequence # record the search order, i.e., the timestep dfn = [-1] * len(sequence) # record the the smallest timestep in a SCC low = [-1] * len(sequence) # push the visited into the stack stack, onstack = [], [False] * len(sequence) def connect(i, timestep): dfn[i] = low[i] = timestep[0] timestep[0] += 1 stack.append(i) onstack[i] = True for j, head in enumerate(sequence): if head != i: continue if dfn[j] == -1: yield from connect(j, timestep) low[i] = min(low[i], low[j]) elif onstack[j]: low[i] = min(low[i], dfn[j]) # a SCC is completed if low[i] == dfn[i]: cycle = [stack.pop()] while cycle[-1] != i: onstack[cycle[-1]] = False cycle.append(stack.pop()) onstack[i] = False # ignore the self-loop if len(cycle) > 1: yield cycle timestep = [0] for i in range(len(sequence)): if dfn[i] == -1: yield from connect(i, timestep) def chuliu_edmonds(s): r""" ChuLiu/Edmonds algorithm for non-projective decoding :cite:`mcdonald-etal-2005-non`. Some code is borrowed from `tdozat's implementation`_. Descriptions of notations and formulas can be found in :cite:`mcdonald-etal-2005-non`. Notes: The algorithm does not guarantee to parse a single-root tree. Args: s (~torch.Tensor): ``[seq_len, seq_len]``. Scores of all dependent-head pairs. Returns: ~torch.Tensor: A tensor with shape ``[seq_len]`` for the resulting non-projective parse tree. .. _tdozat's implementation: https://github.com/tdozat/Parser-v3 """ s[0, 1:] = MIN # prevent self-loops s.diagonal()[1:].fill_(MIN) # select heads with highest scores tree = s.argmax(-1) # return the cycle finded by tarjan algorithm lazily cycle = next(tarjan(tree.tolist()[1:]), None) # if the tree has no cycles, then it is a MST if not cycle: return tree # indices of cycle in the original tree cycle = torch.tensor(cycle) # indices of noncycle in the original tree noncycle = torch.ones(len(s)).index_fill_(0, cycle, 0) noncycle = torch.where(noncycle.gt(0))[0] def contract(s): # heads of cycle in original tree cycle_heads = tree[cycle] # scores of cycle in original tree s_cycle = s[cycle, cycle_heads] # calculate the scores of cycle's potential dependents # s(c->x) = max(s(x'->x)), x in noncycle and x' in cycle s_dep = s[noncycle][:, cycle] # find the best cycle head for each noncycle dependent deps = s_dep.argmax(1) # calculate the scores of cycle's potential heads # s(x->c) = max(s(x'->x) - s(a(x')->x') + s(cycle)), x in noncycle and x' in cycle # a(v) is the predecessor of v in cycle # s(cycle) = sum(s(a(v)->v)) s_head = s[cycle][:, noncycle] - s_cycle.view(-1, 1) + s_cycle.sum() # find the best noncycle head for each cycle dependent heads = s_head.argmax(0) contracted = torch.cat((noncycle, torch.tensor([-1]))) # calculate the scores of contracted graph s = s[contracted][:, contracted] # set the contracted graph scores of cycle's potential dependents s[:-1, -1] = s_dep[range(len(deps)), deps] # set the contracted graph scores of cycle's potential heads s[-1, :-1] = s_head[heads, range(len(heads))] return s, heads, deps # keep track of the endpoints of the edges into and out of cycle for reconstruction later s, heads, deps = contract(s) # y is the contracted tree y = chuliu_edmonds(s) # exclude head of cycle from y y, cycle_head = y[:-1], y[-1] # fix the subtree with no heads coming from the cycle # len(y) denotes heads coming from the cycle subtree = y < len(y) # add the nodes to the new tree tree[noncycle[subtree]] = noncycle[y[subtree]] # fix the subtree with heads coming from the cycle subtree = ~subtree # add the nodes to the tree tree[noncycle[subtree]] = cycle[deps[subtree]] # fix the root of the cycle cycle_root = heads[cycle_head] # break the cycle and add the root of the cycle to the tree tree[cycle[cycle_root]] = noncycle[cycle_head] return tree def mst(scores, mask, multiroot=False): r""" MST algorithm for decoding non-projective trees. This is a wrapper for ChuLiu/Edmonds algorithm. The algorithm first runs ChuLiu/Edmonds to parse a tree and then have a check of multi-roots, If ``multiroot=True`` and there indeed exist multi-roots, the algorithm seeks to find best single-root trees by iterating all possible single-root trees parsed by ChuLiu/Edmonds. Otherwise the resulting trees are directly taken as the final outputs. Args: scores (~torch.Tensor): ``[batch_size, seq_len, seq_len]``. Scores of all dependent-head pairs. mask (~torch.BoolTensor): ``[batch_size, seq_len]``. The mask to avoid parsing over padding tokens. The first column serving as pseudo words for roots should be ``False``. multiroot (bool): Ensures to parse a single-root tree If ``False``. Returns: ~torch.Tensor: A tensor with shape ``[batch_size, seq_len]`` for the resulting non-projective parse trees. Examples: >>> scores = torch.tensor([[[-11.9436, -13.1464, -6.4789, -13.8917], [-60.6957, -60.2866, -48.6457, -63.8125], [-38.1747, -49.9296, -45.2733, -49.5571], [-19.7504, -23.9066, -9.9139, -16.2088]]]) >>> scores[:, 0, 1:] = MIN >>> scores.diagonal(0, 1, 2)[1:].fill_(MIN) >>> mask = torch.tensor([[False, True, True, True]]) >>> mst(scores, mask) tensor([[0, 2, 0, 2]]) """ batch_size, seq_len, _ = scores.shape scores = scores.cpu().unbind() preds = [] for i, length in enumerate(mask.sum(1).tolist()): s = scores[i][:length+1, :length+1] tree = chuliu_edmonds(s) roots = torch.where(tree[1:].eq(0))[0] + 1 if not multiroot and len(roots) > 1: s_root = s[:, 0] s_best = MIN s = s.index_fill(1, torch.tensor(0), MIN) for root in roots: s[:, 0] = MIN s[root, 0] = s_root[root] t = chuliu_edmonds(s) s_tree = s[1:].gather(1, t[1:].unsqueeze(-1)).sum() if s_tree > s_best: s_best, tree = s_tree, t preds.append(tree) return pad(preds, total_length=seq_len).to(mask.device) class SampledLogsumexp(Function): @staticmethod def forward(ctx, x, dim=-1): ctx.dim = dim ctx.save_for_backward(x) return x.logsumexp(dim=dim) @staticmethod def backward(ctx, grad_output): from torch.distributions import OneHotCategorical x, dim = ctx.saved_tensors, ctx.dim if ctx.needs_input_grad[0]: return grad_output.unsqueeze(dim).mul(OneHotCategorical(logits=x.movedim(dim, -1)).sample().movedim(-1, dim)), None return None, None class Sparsemax(Function): @staticmethod def forward(ctx, x, dim=-1): ctx.dim = dim sorted_x, _ = x.sort(dim, True) z = sorted_x.cumsum(dim) - 1 k = x.new_tensor(range(1, sorted_x.size(dim) + 1)).view(-1, *[1] * (x.dim() - 1)).transpose(0, dim) k = (k * sorted_x).gt(z).sum(dim, True) tau = z.gather(dim, k - 1) / k p = torch.clamp(x - tau, 0) ctx.save_for_backward(k, p) return p @staticmethod def backward(ctx, grad_output): k, p, dim = *ctx.saved_tensors, ctx.dim grad = grad_output.masked_fill(p.eq(0), 0) grad = torch.where(p.ne(0), grad - grad.sum(dim, True) / k, grad) return grad, None sampled_logsumexp = SampledLogsumexp.apply sparsemax = Sparsemax.apply
[ "torch.tensor", "torch.clamp" ]
1.7.1
zysite/parser
8ed9ccb8e542655fd6fd1b6f7faaf084d13a866e
1.9
# -*- coding: utf-8 -*- import os import torch import torch.nn as nn from supar.models import (BiaffineDependencyModel, CRF2oDependencyModel, CRFDependencyModel, VIDependencyModel) from supar.parsers.parser import Parser from supar.utils import Config, Dataset, Embedding from supar.utils.common import BOS, PAD, UNK from supar.utils.field import ChartField, Field, RawField, SubwordField from supar.utils.fn import ispunct from supar.utils.logging import get_logger, progress_bar from supar.utils.metric import AttachmentMetric from supar.utils.transform import CoNLL logger = get_logger(__name__) class BiaffineDependencyParser(Parser): r""" The implementation of Biaffine Dependency Parser :cite:`dozat-etal-2017-biaffine`. """ NAME = 'biaffine-dependency' MODEL = BiaffineDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.TAG = self.transform.CPOS self.ARC, self.REL = self.transform.HEAD, self.transform.DEPREL def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, tree=True, proj=False, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, tree=True, proj=False, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'biaffine-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('biaffine-dep-en') >>> parser = Parser.load('./ptb.biaffine.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_rel = self.model(words, feats) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, s_arc.softmax(-1).unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds @classmethod def build(cls, path, min_freq=2, fix_len=20, **kwargs): r""" Build a brand-new Parser, including initialization of all data fields and model parameters. Args: path (str): The path of the model to be saved. min_freq (str): The minimum frequency needed to include a token in the vocabulary. Required if taking words as encoder input. Default: 2. fix_len (int): The max length of all subword pieces. The excess part of each piece will be truncated. Required if using CharLSTM/BERT. Default: 20. kwargs (dict): A dict holding the unconsumed arguments. """ args = Config(**locals()) args.device = 'cuda' if torch.cuda.is_available() else 'cpu' os.makedirs(os.path.dirname(path) or './', exist_ok=True) if os.path.exists(path) and not args.build: parser = cls.load(**args) parser.model = cls.MODEL(**parser.args) parser.model.load_pretrained(parser.WORD.embed).to(args.device) return parser logger.info("Building the fields") TAG, CHAR, ELMO, BERT = None, None, None, None if args.encoder != 'lstm': from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) WORD = SubwordField('words', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) WORD.vocab = t.get_vocab() else: WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'tag' in args.feat: TAG = Field('tags', bos=BOS) if 'char' in args.feat: CHAR = SubwordField('chars', pad=PAD, unk=UNK, bos=BOS, fix_len=args.fix_len) if 'elmo' in args.feat: from allennlp.modules.elmo import batch_to_ids ELMO = RawField('elmo') ELMO.compose = lambda x: batch_to_ids(x).to(WORD.device) if 'bert' in args.feat: from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) BERT = SubwordField('bert', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) BERT.vocab = t.get_vocab() TEXT = RawField('texts') ARC = Field('arcs', bos=BOS, use_vocab=False, fn=CoNLL.get_arcs) REL = Field('rels', bos=BOS) transform = CoNLL(FORM=(WORD, TEXT, CHAR, ELMO, BERT), CPOS=TAG, HEAD=ARC, DEPREL=REL) train = Dataset(transform, args.train) if args.encoder == 'lstm': WORD.build(train, args.min_freq, (Embedding.load(args.embed, args.unk) if args.embed else None)) if TAG is not None: TAG.build(train) if CHAR is not None: CHAR.build(train) REL.build(train) args.update({ 'n_words': len(WORD.vocab) if args.encoder != 'lstm' else WORD.vocab.n_init, 'n_rels': len(REL.vocab), 'n_tags': len(TAG.vocab) if TAG is not None else None, 'n_chars': len(CHAR.vocab) if CHAR is not None else None, 'char_pad_index': CHAR.pad_index if CHAR is not None else None, 'bert_pad_index': BERT.pad_index if BERT is not None else None, 'pad_index': WORD.pad_index, 'unk_index': WORD.unk_index, 'bos_index': WORD.bos_index }) logger.info(f"{transform}") logger.info("Building the model") model = cls.MODEL(**args).load_pretrained(WORD.embed if hasattr(WORD, 'embed') else None).to(args.device) logger.info(f"{model}\n") return cls(args, model, transform) class CRFDependencyParser(BiaffineDependencyParser): r""" The implementation of first-order CRF Dependency Parser :cite:`zhang-etal-2020-efficient`. """ NAME = 'crf-dependency' MODEL = CRFDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, mbr=True, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, mbr=True, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, mbr=True, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'crf-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('crf-dep-en') >>> parser = Parser.load('./ptb.crf.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.mbr, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.mbr, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_rel = self.model(words, feats) if self.args.mbr: s_arc = self.model.crf(s_arc, mask, mbr=True) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: arc_probs = s_arc if self.args.mbr else s_arc.softmax(-1) preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, arc_probs.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds class CRF2oDependencyParser(BiaffineDependencyParser): r""" The implementation of second-order CRF Dependency Parser :cite:`zhang-etal-2020-efficient`. """ NAME = 'crf2o-dependency' MODEL = CRF2oDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, mbr=True, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, mbr=True, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, mbr=True, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'crf2o-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('crf2o-dep-en') >>> parser = Parser.load('./ptb.crf2o.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, sibs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.args.mbr, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, sibs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.args.mbr, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask, self.args.tree, self.args.mbr, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_sib, s_rel = self.model(words, feats) if self.args.mbr: s_arc = self.model.crf((s_arc, s_sib), mask, mbr=True) arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask, self.args.tree, self.args.mbr, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: arc_probs = s_arc if self.args.mbr else s_arc.softmax(-1) preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, arc_probs.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds @classmethod def build(cls, path, min_freq=2, fix_len=20, **kwargs): r""" Build a brand-new Parser, including initialization of all data fields and model parameters. Args: path (str): The path of the model to be saved. min_freq (str): The minimum frequency needed to include a token in the vocabulary. Default: 2. fix_len (int): The max length of all subword pieces. The excess part of each piece will be truncated. Required if using CharLSTM/BERT. Default: 20. kwargs (dict): A dict holding the unconsumed arguments. """ args = Config(**locals()) args.device = 'cuda' if torch.cuda.is_available() else 'cpu' os.makedirs(os.path.dirname(path) or './', exist_ok=True) if os.path.exists(path) and not args.build: parser = cls.load(**args) parser.model = cls.MODEL(**parser.args) parser.model.load_pretrained(parser.WORD.embed).to(args.device) return parser logger.info("Building the fields") TAG, CHAR, ELMO, BERT = None, None, None, None if args.encoder != 'lstm': from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) WORD = SubwordField('words', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) WORD.vocab = t.get_vocab() else: WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'tag' in args.feat: TAG = Field('tags', bos=BOS) if 'char' in args.feat: CHAR = SubwordField('chars', pad=PAD, unk=UNK, bos=BOS, fix_len=args.fix_len) if 'elmo' in args.feat: from allennlp.modules.elmo import batch_to_ids ELMO = RawField('elmo') ELMO.compose = lambda x: batch_to_ids(x).to(WORD.device) if 'bert' in args.feat: from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) BERT = SubwordField('bert', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) BERT.vocab = t.get_vocab() TEXT = RawField('texts') ARC = Field('arcs', bos=BOS, use_vocab=False, fn=CoNLL.get_arcs) SIB = ChartField('sibs', bos=BOS, use_vocab=False, fn=CoNLL.get_sibs) REL = Field('rels', bos=BOS) transform = CoNLL(FORM=(WORD, TEXT, CHAR, ELMO, BERT), CPOS=TAG, HEAD=(ARC, SIB), DEPREL=REL) train = Dataset(transform, args.train) if args.encoder == 'lstm': WORD.build(train, args.min_freq, (Embedding.load(args.embed, args.unk) if args.embed else None)) if TAG is not None: TAG.build(train) if CHAR is not None: CHAR.build(train) REL.build(train) args.update({ 'n_words': len(WORD.vocab) if args.encoder != 'lstm' else WORD.vocab.n_init, 'n_rels': len(REL.vocab), 'n_tags': len(TAG.vocab) if TAG is not None else None, 'n_chars': len(CHAR.vocab) if CHAR is not None else None, 'char_pad_index': CHAR.pad_index if CHAR is not None else None, 'bert_pad_index': BERT.pad_index if BERT is not None else None, 'pad_index': WORD.pad_index, 'unk_index': WORD.unk_index, 'bos_index': WORD.bos_index }) logger.info(f"{transform}") logger.info("Building the model") model = cls.MODEL(**args).load_pretrained(WORD.embed if hasattr(WORD, 'embed') else None).to(args.device) logger.info(f"{model}\n") return cls(args, model, transform) class VIDependencyParser(BiaffineDependencyParser): r""" The implementation of Dependency Parser using Variational Inference (:cite:`wang-tu-2020-second`). """ NAME = 'vi-dependency' MODEL = VIDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'vi-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('vi-dep-en') >>> parser = Parser.load('./ptb.vi.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, rels, mask) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, rels, mask) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_sib, s_rel = self.model(words, feats) s_arc = self.model.inference((s_arc, s_sib), mask) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, s_arc.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds
[ "torch.no_grad", "torch.cuda.is_available" ]
1.9.0
LiBinNLP/HOSDP
f0806d1c27c9d5233002836e1825a1567891d928
1.0
import os import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from tqdm import tqdm import argparse import cv2 import config from utils import Mesh from models import CMR from models.smpl_from_lib import SMPL from utils.pose_utils import compute_similarity_transform_batch, \ scale_and_translation_transform_batch from utils.cam_utils import orthographic_project_torch, undo_keypoint_normalisation from datasets.my_3dpw_eval_dataset import PW3DEvalDataset def evaluate_3dpw(model, eval_dataset, metrics, device, vis_save_path, num_workers=4, pin_memory=True, vis_every_n_batches=1000): eval_dataloader = DataLoader(eval_dataset, batch_size=1, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=pin_memory) smpl = SMPL(config.SMPL_MODEL_DIR, batch_size=1) smpl_male = SMPL(config.SMPL_MODEL_DIR, batch_size=1, gender='male') smpl_female = SMPL(config.SMPL_MODEL_DIR, batch_size=1, gender='female') smpl.to(device) smpl_male.to(device) smpl_female.to(device) J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float() J_regressor_batch = J_regressor[None, :].to(device) if 'pve' in metrics: pve_smpl_sum = 0.0 pve_graph_sum = 0.0 pve_smpl_per_frame = [] pve_graph_per_frame = [] if 'pve_scale_corrected' in metrics: pve_scale_corrected_smpl_sum = 0.0 pve_scale_corrected_graph_sum = 0.0 pve_scale_corrected_smpl_per_frame = [] pve_scale_corrected_graph_per_frame = [] if 'pve_pa' in metrics: pve_pa_smpl_sum = 0.0 pve_pa_graph_sum = 0.0 pve_pa_smpl_per_frame = [] pve_pa_graph_per_frame = [] if 'pve-t' in metrics: pvet_sum = 0.0 pvet_per_frame = [] if 'pve-t_scale_corrected' in metrics: pvet_scale_corrected_sum = 0.0 pvet_scale_corrected_per_frame = [] if 'mpjpe' in metrics: mpjpe_smpl_sum = 0.0 mpjpe_graph_sum = 0.0 mpjpe_smpl_per_frame = [] mpjpe_graph_per_frame = [] if 'mpjpe_scale_corrected' in metrics: mpjpe_scale_corrected_smpl_sum = 0.0 mpjpe_scale_corrected_graph_sum = 0.0 mpjpe_scale_corrected_smpl_per_frame = [] mpjpe_scale_corrected_graph_per_frame = [] if 'j3d_rec_err' in metrics: j3d_rec_err_smpl_sum = 0.0 j3d_rec_err_graph_sum = 0.0 j3d_rec_err_smpl_per_frame = [] j3d_rec_err_graph_per_frame = [] if 'pve_2d' in metrics: pve_2d_smpl_sum = 0.0 pve_2d_graph_sum = 0.0 if 'pve_2d_scale_corrected' in metrics: pve_2d_scale_corrected_smpl_sum = 0.0 pve_2d_scale_corrected_graph_sum = 0.0 if 'pve_2d_pa' in metrics: pve_2d_pa_smpl_sum = 0.0 pve_2d_pa_graph_sum = 0.0 num_samples = 0 num_vertices = 6890 num_joints3d = 14 model.eval() for batch_num, samples_batch in enumerate(tqdm(eval_dataloader)): # ------------------------------- TARGETS and INPUTS ------------------------------- input = samples_batch['input'] input = input.to(device) target_pose = samples_batch['pose'].to(device) target_shape = samples_batch['shape'].to(device) target_gender = samples_batch['gender'][0] if target_gender == 'm': target_smpl_output = smpl_male(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_vertices = target_smpl_output.vertices target_reposed_smpl_output = smpl_male(betas=target_shape) target_reposed_vertices = target_reposed_smpl_output.vertices target_joints_h36m = torch.matmul(J_regressor_batch, target_vertices) target_joints_h36mlsp = target_joints_h36m[:, config.H36M_TO_J14, :] elif target_gender == 'f': target_smpl_output = smpl_female(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_vertices = target_smpl_output.vertices target_reposed_smpl_output = smpl_female(betas=target_shape) target_reposed_vertices = target_reposed_smpl_output.vertices target_joints_h36m = torch.matmul(J_regressor_batch, target_vertices) target_joints_h36mlsp = target_joints_h36m[:, config.H36M_TO_J14, :] # ------------------------------- PREDICTIONS ------------------------------- pred_vertices, pred_vertices_smpl, pred_camera, pred_rotmat, pred_betas = model(input) pred_vertices_projected2d = orthographic_project_torch(pred_vertices, pred_camera) pred_vertices_projected2d = undo_keypoint_normalisation(pred_vertices_projected2d, input.shape[-1]) pred_vertices_smpl_projected2d = orthographic_project_torch(pred_vertices_smpl, pred_camera) pred_vertices_smpl_projected2d = undo_keypoint_normalisation(pred_vertices_smpl_projected2d, input.shape[-1]) pred_reposed_smpl_output = smpl(betas=pred_betas) pred_reposed_vertices = pred_reposed_smpl_output.vertices pred_joints_h36m = torch.matmul(J_regressor_batch, pred_vertices) pred_joints_h36mlsp = pred_joints_h36m[:, config.H36M_TO_J14, :] pred_joints_smpl_h36m = torch.matmul(J_regressor_batch, pred_vertices_smpl) pred_joints_smpl_h36mlsp = pred_joints_smpl_h36m[:, config.H36M_TO_J14, :] # Numpy-fying target_vertices = target_vertices.cpu().detach().numpy() target_reposed_vertices = target_reposed_vertices.cpu().detach().numpy() target_joints_h36mlsp = target_joints_h36mlsp.cpu().detach().numpy() pred_vertices = pred_vertices.cpu().detach().numpy() pred_vertices_smpl = pred_vertices_smpl.cpu().detach().numpy() pred_vertices_projected2d = pred_vertices_projected2d.cpu().detach().numpy() pred_vertices_smpl_projected2d = pred_vertices_smpl_projected2d.cpu().detach().numpy() pred_reposed_vertices = pred_reposed_vertices.cpu().detach().numpy() pred_joints_h36mlsp = pred_joints_h36mlsp.cpu().detach().numpy() pred_joints_smpl_h36mlsp = pred_joints_smpl_h36mlsp.cpu().detach().numpy() # ------------------------------- METRICS ------------------------------- if 'pve' in metrics: pve_smpl_batch = np.linalg.norm(pred_vertices_smpl - target_vertices, axis=-1) # (1, 6890) pve_graph_batch = np.linalg.norm(pred_vertices - target_vertices, axis=-1) pve_smpl_sum += np.sum(pve_smpl_batch) # scalar pve_graph_sum += np.sum(pve_graph_batch) pve_smpl_per_frame.append(np.mean(pve_smpl_batch, axis=-1)) pve_graph_per_frame.append(np.mean(pve_graph_batch, axis=-1)) # Scale and translation correction if 'pve_scale_corrected' in metrics: pred_vertices_smpl_sc = scale_and_translation_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_sc = scale_and_translation_transform_batch(pred_vertices, target_vertices) pve_sc_smpl_batch = np.linalg.norm(pred_vertices_smpl_sc - target_vertices, axis=-1) # (1, 6890) pve_sc_graph_batch = np.linalg.norm(pred_vertices_sc - target_vertices, axis=-1) # (1, 6890) pve_scale_corrected_smpl_sum += np.sum(pve_sc_smpl_batch) # scalar pve_scale_corrected_graph_sum += np.sum(pve_sc_graph_batch) # scalar pve_scale_corrected_smpl_per_frame.append(np.mean(pve_sc_smpl_batch, axis=-1)) pve_scale_corrected_graph_per_frame.append(np.mean(pve_sc_graph_batch, axis=-1)) # Procrustes analysis if 'pve_pa' in metrics: pred_vertices_smpl_pa = compute_similarity_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_pa = compute_similarity_transform_batch(pred_vertices, target_vertices) pve_pa_smpl_batch = np.linalg.norm(pred_vertices_smpl_pa - target_vertices, axis=-1) # (1, 6890) pve_pa_graph_batch = np.linalg.norm(pred_vertices_pa - target_vertices, axis=-1) # (1, 6890) pve_pa_smpl_sum += np.sum(pve_pa_smpl_batch) # scalar pve_pa_graph_sum += np.sum(pve_pa_graph_batch) # scalar pve_pa_smpl_per_frame.append(np.mean(pve_pa_smpl_batch, axis=-1)) pve_pa_graph_per_frame.append(np.mean(pve_pa_graph_batch, axis=-1)) if 'pve-t' in metrics: pvet_batch = np.linalg.norm(pred_reposed_vertices - target_reposed_vertices, axis=-1) pvet_sum += np.sum(pvet_batch) pvet_per_frame.append(np.mean(pvet_batch, axis=-1)) # Scale and translation correction if 'pve-t_scale_corrected' in metrics: pred_reposed_vertices_sc = scale_and_translation_transform_batch(pred_reposed_vertices, target_reposed_vertices) pvet_scale_corrected_batch = np.linalg.norm(pred_reposed_vertices_sc - target_reposed_vertices, axis=-1) # (bs, 6890) pvet_scale_corrected_sum += np.sum(pvet_scale_corrected_batch) # scalar pvet_scale_corrected_per_frame.append(np.mean(pvet_scale_corrected_batch, axis=-1)) if 'mpjpe' in metrics: mpjpe_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_graph_batch = np.linalg.norm(pred_joints_h36mlsp - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_smpl_sum += np.sum(mpjpe_smpl_batch) mpjpe_graph_sum += np.sum(mpjpe_graph_batch) mpjpe_smpl_per_frame.append(np.mean(mpjpe_smpl_batch, axis=-1)) mpjpe_graph_per_frame.append(np.mean(mpjpe_graph_batch, axis=-1)) # Scale and translation correction if 'mpjpe_scale_corrected' in metrics: pred_joints_smpl_h36mlsp_sc = scale_and_translation_transform_batch(pred_joints_smpl_h36mlsp, target_joints_h36mlsp) pred_joints_h36mlsp_sc = scale_and_translation_transform_batch(pred_joints_h36mlsp, target_joints_h36mlsp) mpjpe_scale_corrected_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp_sc - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_scale_corrected_graph_batch = np.linalg.norm(pred_joints_h36mlsp_sc - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_scale_corrected_smpl_sum += np.sum(mpjpe_scale_corrected_smpl_batch) mpjpe_scale_corrected_graph_sum += np.sum(mpjpe_scale_corrected_graph_batch) mpjpe_scale_corrected_smpl_per_frame.append(np.mean(mpjpe_scale_corrected_smpl_batch, axis=-1)) mpjpe_scale_corrected_graph_per_frame.append(np.mean(mpjpe_scale_corrected_graph_batch, axis=-1)) # Procrustes analysis if 'j3d_rec_err' in metrics: pred_joints_smpl_h36mlsp_pa = compute_similarity_transform_batch(pred_joints_smpl_h36mlsp, target_joints_h36mlsp) pred_joints_h36mlsp_pa = compute_similarity_transform_batch(pred_joints_h36mlsp, target_joints_h36mlsp) j3d_rec_err_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp_pa - target_joints_h36mlsp, axis=-1) # (bs, 14) j3d_rec_err_graph_batch = np.linalg.norm(pred_joints_h36mlsp_pa - target_joints_h36mlsp, axis=-1) # (bs, 14) j3d_rec_err_smpl_sum += np.sum(j3d_rec_err_smpl_batch) j3d_rec_err_graph_sum += np.sum(j3d_rec_err_graph_batch) j3d_rec_err_smpl_per_frame.append(np.mean(j3d_rec_err_smpl_batch, axis=-1)) j3d_rec_err_graph_per_frame.append(np.mean(j3d_rec_err_graph_batch, axis=-1)) if 'pve_2d' in metrics: pred_vertices_smpl_2d = pred_vertices_smpl[:, :, :2] pred_vertices_2d = pred_vertices[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_graph_batch = np.linalg.norm(pred_vertices_2d - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_smpl_sum += np.sum(pve_2d_smpl_batch) pve_2d_graph_sum += np.sum(pve_2d_graph_batch) # Scale and translation correction if 'pve_2d_scale_corrected' in metrics: pred_vertices_smpl_sc = scale_and_translation_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_sc = scale_and_translation_transform_batch(pred_vertices, target_vertices) pred_vertices_smpl_2d_sc = pred_vertices_smpl_sc[:, :, :2] pred_vertices_2d_sc = pred_vertices_sc[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_sc_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d_sc - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_sc_graph_batch = np.linalg.norm(pred_vertices_2d_sc - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_scale_corrected_smpl_sum += np.sum(pve_2d_sc_smpl_batch) pve_2d_scale_corrected_graph_sum += np.sum(pve_2d_sc_graph_batch) # Procrustes analysis if 'pve_2d_pa' in metrics: pred_vertices_smpl_pa = compute_similarity_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_pa = compute_similarity_transform_batch(pred_vertices, target_vertices) pred_vertices_smpl_2d_pa = pred_vertices_smpl_pa[:, :, :2] pred_vertices_2d_pa = pred_vertices_pa[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_pa_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d_pa - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_pa_graph_batch = np.linalg.norm(pred_vertices_2d_pa - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_pa_smpl_sum += np.sum(pve_2d_pa_smpl_batch) pve_2d_pa_graph_sum += np.sum(pve_2d_pa_graph_batch) num_samples += target_pose.shape[0] # ------------------------------- VISUALISE ------------------------------- if vis_every_n_batches is not None: if batch_num % vis_every_n_batches == 0: vis_imgs = samples_batch['vis_img'].numpy() vis_imgs = np.transpose(vis_imgs, [0, 2, 3, 1]) fnames = samples_batch['fname'] plt.figure(figsize=(16, 12)) plt.subplot(341) plt.imshow(vis_imgs[0]) plt.subplot(342) plt.imshow(vis_imgs[0]) plt.scatter(pred_vertices_projected2d[0, :, 0], pred_vertices_projected2d[0, :, 1], s=0.1, c='r') plt.subplot(343) plt.imshow(vis_imgs[0]) plt.scatter(pred_vertices_smpl_projected2d[0, :, 0], pred_vertices_smpl_projected2d[0, :, 1], s=0.1, c='r') plt.subplot(345) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices[0, :, 0], pred_vertices[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(346) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_smpl[0, :, 0], pred_vertices_smpl[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(347) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_pa[0, :, 0], pred_vertices_pa[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(348) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_smpl_pa[0, :, 0], pred_vertices_smpl_pa[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(349) plt.scatter(target_reposed_vertices[0, :, 0], target_reposed_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_reposed_vertices_sc[0, :, 0], pred_reposed_vertices_sc[0, :, 1], s=0.1, c='r') plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 10) for j in range(num_joints3d): plt.scatter(pred_joints_h36mlsp[0, j, 0], pred_joints_h36mlsp[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_h36mlsp[0, j, 0], pred_joints_h36mlsp[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 11) for j in range(num_joints3d): plt.scatter(pred_joints_h36mlsp_pa[0, j, 0], pred_joints_h36mlsp_pa[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_h36mlsp_pa[0, j, 0], pred_joints_h36mlsp_pa[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 12) for j in range(num_joints3d): plt.scatter(pred_joints_smpl_h36mlsp_pa[0, j, 0], pred_joints_smpl_h36mlsp_pa[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_smpl_h36mlsp_pa[0, j, 0], pred_joints_smpl_h36mlsp_pa[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') # plt.show() save_fig_path = os.path.join(vis_save_path, fnames[0]) plt.savefig(save_fig_path, bbox_inches='tight') plt.close() if 'pve' in metrics: pve_smpl = pve_smpl_sum / (num_samples * num_vertices) print('PVE SMPL: {:.5f}'.format(pve_smpl)) pve_graph = pve_graph_sum / (num_samples * num_vertices) print('PVE GRAPH: {:.5f}'.format(pve_graph)) pve_smpl_per_frame = np.concatenate(pve_smpl_per_frame, axis=0) pve_graph_per_frame = np.concatenate(pve_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_per_frame.npy'), pve_smpl_per_frame) np.save(os.path.join(save_path, 'pve_graph_per_frame.npy'), pve_graph_per_frame) if 'pve_scale_corrected' in metrics: pve_sc_smpl = pve_scale_corrected_smpl_sum / (num_samples * num_vertices) print('PVE SC SMPL: {:.5f}'.format(pve_sc_smpl)) pve_sc_graph = pve_scale_corrected_graph_sum / (num_samples * num_vertices) print('PVE SC GRAPH: {:.5f}'.format(pve_sc_graph)) pve_scale_corrected_smpl_per_frame = np.concatenate(pve_scale_corrected_smpl_per_frame, axis=0) pve_scale_corrected_graph_per_frame = np.concatenate(pve_scale_corrected_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_scale_corrected_per_frame.npy'), pve_scale_corrected_smpl_per_frame) np.save(os.path.join(save_path, 'pve_scale_corrected_graph_per_frame.npy'), pve_scale_corrected_graph_per_frame) if 'pve_pa' in metrics: pve_pa_smpl = pve_pa_smpl_sum / (num_samples * num_vertices) print('PVE PA SMPL: {:.5f}'.format(pve_pa_smpl)) pve_pa_graph = pve_pa_graph_sum / (num_samples * num_vertices) print('PVE PA GRAPH: {:.5f}'.format(pve_pa_graph)) pve_pa_smpl_per_frame = np.concatenate(pve_pa_smpl_per_frame, axis=0) pve_pa_graph_per_frame = np.concatenate(pve_pa_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_pa_per_frame.npy'), pve_pa_smpl_per_frame) np.save(os.path.join(save_path, 'pve_pa_graph_per_frame.npy'), pve_pa_graph_per_frame) if 'pve-t' in metrics: pvet = pvet_sum / (num_samples * num_vertices) print('PVE-T: {:.5f}'.format(pvet)) pvet_per_frame = np.concatenate(pvet_per_frame, axis=0) np.save(os.path.join(save_path, 'pvet_per_frame.npy'), pvet_per_frame) if 'pve-t_scale_corrected' in metrics: pvet_sc = pvet_scale_corrected_sum / (num_samples * num_vertices) print('PVE-T SC: {:.5f}'.format(pvet_sc)) pvet_scale_corrected_per_frame = np.concatenate(pvet_scale_corrected_per_frame, axis=0) np.save(os.path.join(save_path, 'pvet_scale_corrected_per_frame.npy'), pvet_scale_corrected_per_frame) if 'mpjpe' in metrics: mpjpe_smpl = mpjpe_smpl_sum / (num_samples * num_joints3d) print('MPJPE SMPL: {:.5f}'.format(mpjpe_smpl)) mpjpe_graph = mpjpe_graph_sum / (num_samples * num_joints3d) print('MPJPE GRAPH: {:.5f}'.format(mpjpe_graph)) mpjpe_smpl_per_frame = np.concatenate(mpjpe_smpl_per_frame, axis=0) mpjpe_graph_per_frame = np.concatenate(mpjpe_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'mpjpe_per_frame.npy'), mpjpe_smpl_per_frame) np.save(os.path.join(save_path, 'mpjpe_graph_per_frame.npy'), mpjpe_graph_per_frame) if 'mpjpe_scale_corrected' in metrics: mpjpe_sc_smpl = mpjpe_scale_corrected_smpl_sum / (num_samples * num_joints3d) print('MPJPE SC SMPL: {:.5f}'.format(mpjpe_sc_smpl)) mpjpe_sc_graph = mpjpe_scale_corrected_graph_sum / (num_samples * num_joints3d) print('MPJPE SC GRAPH: {:.5f}'.format(mpjpe_sc_graph)) mpjpe_scale_corrected_smpl_per_frame = np.concatenate( mpjpe_scale_corrected_smpl_per_frame, axis=0) mpjpe_scale_corrected_graph_per_frame = np.concatenate( mpjpe_scale_corrected_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'mpjpe_scale_corrected_per_frame.npy'), mpjpe_scale_corrected_smpl_per_frame) np.save(os.path.join(save_path, 'mpjpe_scale_corrected_graph_per_frame.npy'), mpjpe_scale_corrected_graph_per_frame) if 'j3d_rec_err' in metrics: j3d_rec_err_smpl = j3d_rec_err_smpl_sum / (num_samples * num_joints3d) print('Rec Err SMPL: {:.5f}'.format(j3d_rec_err_smpl)) j3d_rec_err_graph = j3d_rec_err_graph_sum / (num_samples * num_joints3d) print('Rec Err GRAPH: {:.5f}'.format(j3d_rec_err_graph)) j3d_rec_err_smpl_per_frame = np.concatenate(j3d_rec_err_smpl_per_frame, axis=0) j3d_rec_err_graph_per_frame = np.concatenate(j3d_rec_err_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'j3d_rec_err_per_frame.npy'), j3d_rec_err_smpl_per_frame) np.save(os.path.join(save_path, 'j3d_rec_err_graph_per_frame.npy'), j3d_rec_err_graph_per_frame) if 'pve_2d' in metrics: pve_2d_smpl = pve_2d_smpl_sum / (num_samples * num_vertices) print('PVE 2D SMPL: {:.5f}'.format(pve_2d_smpl)) pve_2d_graph = pve_2d_graph_sum / (num_samples * num_vertices) print('PVE 2D GRAPH: {:.5f}'.format(pve_2d_graph)) if 'pve_2d_scale_corrected' in metrics: pve_2d_sc_smpl = pve_2d_scale_corrected_smpl_sum / (num_samples * num_vertices) print('PVE 2D SC SMPL: {:.5f}'.format(pve_2d_sc_smpl)) pve_2d_sc_graph = pve_2d_scale_corrected_graph_sum / (num_samples * num_vertices) print('PVE 2D SC GRAPH: {:.5f}'.format(pve_2d_sc_graph)) if 'pve_2d_pa' in metrics: pve_2d_pa_smpl = pve_2d_pa_smpl_sum / (num_samples * num_vertices) print('PVE 2D PA SMPL: {:.5f}'.format(pve_2d_pa_smpl)) pve_2d_pa_graph = pve_2d_pa_graph_sum / (num_samples * num_vertices) print('PVE 2D PA GRAPH: {:.5f}'.format(pve_2d_pa_graph)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint') parser.add_argument('--gpu', default="0", type=str, help='GPU') args = parser.parse_args() # Device os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Load model mesh = Mesh(device=device) # Our pretrained networks have 5 residual blocks with 256 channels. # You might want to change this if you use a different architecture. model = CMR(mesh, 5, 256, pretrained_checkpoint=args.checkpoint, device=device) model.to(device) model.eval() # Setup evaluation dataset dataset_path = '/scratch2/as2562/datasets/3DPW/test' dataset = PW3DEvalDataset(dataset_path, img_wh=config.INPUT_RES) print("Eval examples found:", len(dataset)) # Metrics metrics = ['pve', 'pve-t', 'pve_pa', 'pve-t_pa', 'mpjpe', 'j3d_rec_err', 'pve_2d', 'pve_2d_pa', 'pve_2d_scale_corrected', 'pve_scale_corrected', 'pve-t_scale_corrected', 'mpjpe_scale_corrected'] save_path = '/data/cvfs/as2562/GraphCMR/evaluations/3dpw' if not os.path.exists(save_path): os.makedirs(save_path) # Run evaluation evaluate_3dpw(model=model, eval_dataset=dataset, metrics=metrics, device=device, vis_save_path=save_path, num_workers=4, pin_memory=True, vis_every_n_batches=1000)
[ "torch.device", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.matmul" ]
1.0.0
akashsengupta1997/GraphCMR
0b8b05be4f711995ba50e414effbde98b6b11c5b
1.5
import logging from collections import OrderedDict from pathlib import Path from typing import List, Optional, Set, Tuple, Union import numpy as np import torch from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import minmax_scale from tqdm import tqdm import flair from flair.data import Dictionary, Sentence, Span, SpanLabel from flair.datasets import DataLoader, FlairDatapointDataset from flair.embeddings import ( TokenEmbeddings, TransformerDocumentEmbeddings, TransformerWordEmbeddings, ) from flair.file_utils import cached_path from flair.models.sequence_tagger_model import SequenceTagger from flair.models.text_classification_model import TextClassifier from flair.training_utils import store_embeddings log = logging.getLogger("flair") class FewshotClassifier(flair.nn.Classifier[Sentence]): def __init__(self): self._current_task = None self._task_specific_attributes = {} self.label_nearest_map = None self.tars_model: flair.nn.Classifier[Sentence] super(FewshotClassifier, self).__init__() def forward_loss( self, data_points: Union[List[Sentence], Sentence] ) -> Union[torch.Tensor, Tuple[torch.Tensor, int]]: if not isinstance(data_points, list): data_points = [data_points] # Transform input data into TARS format sentences = self._get_tars_formatted_sentences(data_points) loss = self.tars_model.forward_loss(sentences) return loss @property def tars_embeddings(self): raise NotImplementedError def _get_tars_formatted_sentence(self, label, sentence): raise NotImplementedError def _get_tars_formatted_sentences(self, sentences: List[Sentence]): label_text_pairs = [] all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] for sentence in sentences: label_text_pairs_for_sentence = [] if self.training and self.num_negative_labels_to_sample is not None: positive_labels = list( OrderedDict.fromkeys([label.value for label in sentence.get_labels(self.label_type)]) ) sampled_negative_labels = self._get_nearest_labels_for(positive_labels) for label in positive_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) for label in sampled_negative_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) else: for label in all_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) label_text_pairs.extend(label_text_pairs_for_sentence) return label_text_pairs def _get_nearest_labels_for(self, labels): # if there are no labels, return a random sample as negatives if len(labels) == 0: tags = self.get_current_label_dictionary().get_items() import random sample = random.sample(tags, k=self.num_negative_labels_to_sample) return sample already_sampled_negative_labels = set() # otherwise, go through all labels for label in labels: plausible_labels = [] plausible_label_probabilities = [] for plausible_label in self.label_nearest_map[label]: if plausible_label in already_sampled_negative_labels or plausible_label in labels: continue else: plausible_labels.append(plausible_label) plausible_label_probabilities.append(self.label_nearest_map[label][plausible_label]) # make sure the probabilities always sum up to 1 plausible_label_probabilities = np.array(plausible_label_probabilities, dtype="float64") plausible_label_probabilities += 1e-08 plausible_label_probabilities /= np.sum(plausible_label_probabilities) if len(plausible_labels) > 0: num_samples = min(self.num_negative_labels_to_sample, len(plausible_labels)) sampled_negative_labels = np.random.choice( plausible_labels, num_samples, replace=False, p=plausible_label_probabilities, ) already_sampled_negative_labels.update(sampled_negative_labels) return already_sampled_negative_labels def train(self, mode=True): """Populate label similarity map based on cosine similarity before running epoch If the `num_negative_labels_to_sample` is set to an integer value then before starting each epoch the model would create a similarity measure between the label names based on cosine distances between their BERT encoded embeddings. """ if mode and self.num_negative_labels_to_sample is not None: self._compute_label_similarity_for_current_epoch() super().train(mode) super().train(mode) def _compute_label_similarity_for_current_epoch(self): """ Compute the similarity between all labels for better sampling of negatives """ # get and embed all labels by making a Sentence object that contains only the label text all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] label_sentences = [Sentence(label) for label in all_labels] self.tars_embeddings.eval() # TODO: check if this is necessary self.tars_embeddings.embed(label_sentences) self.tars_embeddings.train() # get each label embedding and scale between 0 and 1 if isinstance(self.tars_embeddings, TokenEmbeddings): encodings_np = [sentence[0].get_embedding().cpu().detach().numpy() for sentence in label_sentences] else: encodings_np = [sentence.get_embedding().cpu().detach().numpy() for sentence in label_sentences] normalized_encoding = minmax_scale(encodings_np) # compute similarity matrix similarity_matrix = cosine_similarity(normalized_encoding) # the higher the similarity, the greater the chance that a label is # sampled as negative example negative_label_probabilities = {} for row_index, label in enumerate(all_labels): negative_label_probabilities[label] = {} for column_index, other_label in enumerate(all_labels): if label != other_label: negative_label_probabilities[label][other_label] = similarity_matrix[row_index][column_index] self.label_nearest_map = negative_label_probabilities def get_current_label_dictionary(self): label_dictionary = self._task_specific_attributes[self._current_task]["label_dictionary"] return label_dictionary def get_current_label_type(self): return self._task_specific_attributes[self._current_task]["label_type"] def is_current_task_multi_label(self): return self._task_specific_attributes[self._current_task]["multi_label"] def add_and_switch_to_new_task( self, task_name, label_dictionary: Union[List, Set, Dictionary, str], label_type: str, multi_label: bool = True, force_switch: bool = False, ): """ Adds a new task to an existing TARS model. Sets necessary attributes and finally 'switches' to the new task. Parameters are similar to the constructor except for model choice, batch size and negative sampling. This method does not store the resultant model onto disk. :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of the labels you want to predict :param label_type: string to identify the label type ('ner', 'sentiment', etc.) :param multi_label: whether this task is a multi-label prediction problem :param force_switch: if True, will overwrite existing task with same name """ if task_name in self._task_specific_attributes and not force_switch: log.warning("Task `%s` already exists in TARS model. Switching to it.", task_name) else: # make label dictionary if no Dictionary object is passed if isinstance(label_dictionary, Dictionary): label_dictionary = label_dictionary.get_items() if type(label_dictionary) == str: label_dictionary = [label_dictionary] # prepare dictionary of tags (without B- I- prefixes and without UNK) tag_dictionary = Dictionary(add_unk=False) for tag in label_dictionary: if tag == "<unk>" or tag == "O": continue if tag[1] == "-": tag = tag[2:] tag_dictionary.add_item(tag) else: tag_dictionary.add_item(tag) self._task_specific_attributes[task_name] = { "label_dictionary": tag_dictionary, "label_type": label_type, "multi_label": multi_label, } self.switch_to_task(task_name) def list_existing_tasks(self) -> Set[str]: """ Lists existing tasks in the loaded TARS model on the console. """ return set(self._task_specific_attributes.keys()) def switch_to_task(self, task_name): """ Switches to a task which was previously added. """ if task_name not in self._task_specific_attributes: log.error( "Provided `%s` does not exist in the model. Consider calling " "`add_and_switch_to_new_task` first.", task_name, ) else: self._current_task = task_name def _drop_task(self, task_name): if task_name in self._task_specific_attributes: if self._current_task == task_name: log.error( "`%s` is the current task." " Switch to some other task before dropping this.", task_name, ) else: self._task_specific_attributes.pop(task_name) else: log.warning("No task exists with the name `%s`.", task_name) @staticmethod def _filter_empty_sentences(sentences: List[Sentence]) -> List[Sentence]: filtered_sentences = [sentence for sentence in sentences if sentence.tokens] if len(sentences) != len(filtered_sentences): log.warning(f"Ignore {len(sentences) - len(filtered_sentences)} sentence(s) with no tokens.") return filtered_sentences @property def label_type(self): return self.get_current_label_type() def predict_zero_shot( self, sentences: Union[List[Sentence], Sentence], candidate_label_set: Union[List[str], Set[str], str], multi_label: bool = True, ): """ Method to make zero shot predictions from the TARS model :param sentences: input sentence objects to classify :param candidate_label_set: set of candidate labels :param multi_label: indicates whether multi-label or single class prediction. Defaults to True. """ # check if candidate_label_set is empty if candidate_label_set is None or len(candidate_label_set) == 0: log.warning("Provided candidate_label_set is empty") return # make list if only one candidate label is passed if isinstance(candidate_label_set, str): candidate_label_set = {candidate_label_set} # create label dictionary label_dictionary = Dictionary(add_unk=False) for label in candidate_label_set: label_dictionary.add_item(label) # note current task existing_current_task = self._current_task # create a temporary task self.add_and_switch_to_new_task( task_name="ZeroShot", label_dictionary=label_dictionary, label_type="-".join(label_dictionary.get_items()), multi_label=multi_label, ) try: # make zero shot predictions self.predict(sentences) finally: # switch to the pre-existing task self.switch_to_task(existing_current_task) self._drop_task("ZeroShot") return class TARSTagger(FewshotClassifier): """ TARS model for sequence tagging. In the backend, the model uses a BERT based 5-class sequence labeler which given a <label, text> pair predicts the probability for each word to belong to one of the BIOES classes. The input data is a usual Sentence object which is inflated by the model internally before pushing it through the transformer stack of BERT. """ static_label_type = "tars_label" def __init__( self, task_name: Optional[str] = None, label_dictionary: Optional[Dictionary] = None, label_type: Optional[str] = None, embeddings: Union[TransformerWordEmbeddings, str] = "bert-base-uncased", num_negative_labels_to_sample: int = 2, prefix: bool = True, **tagger_args, ): """ Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably. """ super(TARSTagger, self).__init__() if isinstance(embeddings, str): embeddings = TransformerWordEmbeddings( model=embeddings, fine_tune=True, layers="-1", layer_mean=False, ) # prepare TARS dictionary tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item("entity") tars_dictionary.span_labels = True # initialize a bare-bones sequence tagger self.tars_model: SequenceTagger = SequenceTagger( hidden_size=123, embeddings=embeddings, tag_dictionary=tars_dictionary, tag_type=self.static_label_type, use_crf=False, use_rnn=False, reproject_embeddings=False, **tagger_args, ) # transformer separator self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if task_name and label_dictionary and label_type: # Store task specific labels since TARS can handle multiple tasks self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info( "TARS initialized without a task. You need to call .add_and_switch_to_new_task() " "before training this model" ) def _get_tars_formatted_sentence(self, label, sentence): original_text = sentence.to_tokenized_string() label_text_pair = ( f"{label} {self.separator} {original_text}" if self.prefix else f"{original_text} {self.separator} {label}" ) label_length = 0 if not self.prefix else len(label.split(" ")) + len(self.separator.split(" ")) # make a tars sentence where all labels are O by default tars_sentence = Sentence(label_text_pair, use_tokenizer=False) for entity_label in sentence.get_labels(self.label_type): if entity_label.value == label: new_span = [tars_sentence.get_token(token.idx + label_length) for token in entity_label.span] tars_sentence.add_complex_label(self.static_label_type, SpanLabel(Span(new_span), value="entity")) return tars_sentence def _get_state_dict(self): model_state = { "state_dict": self.state_dict(), "current_task": self._current_task, "tag_type": self.get_current_label_type(), "tag_dictionary": self.get_current_label_dictionary(), "tars_model": self.tars_model, "num_negative_labels_to_sample": self.num_negative_labels_to_sample, "prefix": self.prefix, "task_specific_attributes": self._task_specific_attributes, } return model_state @staticmethod def _fetch_model(model_name) -> str: if model_name == "tars-ner": cache_dir = Path("models") model_name = cached_path( "https://nlp.informatik.hu-berlin.de/resources/models/tars-ner/tars-ner.pt", cache_dir=cache_dir, ) return model_name @staticmethod def _init_model_with_state_dict(state): # init new TARS classifier model = TARSTagger( task_name=state["current_task"], label_dictionary=state["tag_dictionary"], label_type=state["tag_type"], embeddings=state["tars_model"].embeddings, num_negative_labels_to_sample=state["num_negative_labels_to_sample"], prefix=state["prefix"], ) # set all task information model._task_specific_attributes = state["task_specific_attributes"] # linear layers of internal classifier model.load_state_dict(state["state_dict"]) return model @property def tars_embeddings(self): return self.tars_model.embeddings def predict( self, sentences: Union[List[Sentence], Sentence], mini_batch_size=32, return_probabilities_for_all_classes: bool = False, verbose: bool = False, label_name: Optional[str] = None, return_loss=False, embedding_storage_mode="none", most_probable_first: bool = True, ): # return """ Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory. """ if label_name is None: label_name = self.get_current_label_type() # with torch.no_grad(): if not sentences: return sentences if not isinstance(sentences, list): sentences = [sentences] reordered_sentences = sorted(sentences, key=lambda s: len(s), reverse=True) dataloader = DataLoader( dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size, ) # progress bar for verbosity if verbose: dataloader = tqdm(dataloader) overall_loss = 0 overall_count = 0 with torch.no_grad(): for batch in dataloader: batch = self._filter_empty_sentences(batch) # stop if all sentences are empty if not batch: continue # go through each sentence in the batch for sentence in batch: # always remove tags first sentence.remove_labels(label_name) all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] all_detected = {} for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict( tars_sentence, label_name=label_name, return_loss=True, ) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted in tars_sentence.get_labels(label_name): predicted.value = label all_detected[predicted] = predicted.score if most_probable_first: import operator already_set_indices: List[int] = [] sorted_x = sorted(all_detected.items(), key=operator.itemgetter(1)) sorted_x.reverse() for tuple in sorted_x: # get the span and its label label = tuple[0] # label = span.get_labels("tars_temp_label")[0].value label_length = ( 0 if not self.prefix else len(label.value.split(" ")) + len(self.separator.split(" ")) ) # determine whether tokens in this span already have a label tag_this = True for token in label.span: corresponding_token = sentence.get_token(token.idx - label_length) if corresponding_token is None: tag_this = False continue if token.idx in already_set_indices: tag_this = False continue # only add if all tokens have no label if tag_this: already_set_indices.extend(token.idx for token in label.span) predicted_span = [sentence.get_token(token.idx - label_length) for token in label.span] sentence.add_complex_label( label_name, label=SpanLabel(Span(predicted_span), value=label.value, score=label.score), ) # clearing token embeddings to save memory store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return overall_loss, overall_count class TARSClassifier(FewshotClassifier): """ TARS model for text classification. In the backend, the model uses a BERT based binary text classifier which given a <label, text> pair predicts the probability of two classes "True", and "False". The input data is a usual Sentence object which is inflated by the model internally before pushing it through the transformer stack of BERT. """ static_label_type = "tars_label" LABEL_MATCH = "YES" LABEL_NO_MATCH = "NO" def __init__( self, task_name: Optional[str] = None, label_dictionary: Optional[Dictionary] = None, label_type: Optional[str] = None, embeddings: Union[TransformerDocumentEmbeddings, str] = "bert-base-uncased", num_negative_labels_to_sample: int = 2, prefix: bool = True, **tagger_args, ): """ Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably. :param multi_label: auto-detected by default, but you can set this to True to force multi-label predictionor False to force single-label prediction :param multi_label_threshold: If multi-label you can set the threshold to make predictions :param beta: Parameter for F-beta score for evaluation and training annealing """ super(TARSClassifier, self).__init__() if isinstance(embeddings, str): embeddings = TransformerDocumentEmbeddings( model=embeddings, fine_tune=True, layers="-1", layer_mean=False, ) # prepare TARS dictionary tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item(self.LABEL_NO_MATCH) tars_dictionary.add_item(self.LABEL_MATCH) # initialize a bare-bones sequence tagger self.tars_model = TextClassifier( document_embeddings=embeddings, label_dictionary=tars_dictionary, label_type=self.static_label_type, **tagger_args, ) # transformer separator self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if task_name and label_dictionary and label_type: # Store task specific labels since TARS can handle multiple tasks self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info( "TARS initialized without a task. You need to call .add_and_switch_to_new_task() " "before training this model" ) self.clean_up_labels = True def _clean(self, label_value: str) -> str: if self.clean_up_labels: return label_value.replace("_", " ") else: return label_value def _get_tars_formatted_sentence(self, label, sentence): label = self._clean(label) original_text = sentence.to_tokenized_string() label_text_pair = ( f"{label} {self.separator} {original_text}" if self.prefix else f"{original_text} {self.separator} {label}" ) sentence_labels = [self._clean(label.value) for label in sentence.get_labels(self.get_current_label_type())] tars_label = self.LABEL_MATCH if label in sentence_labels else self.LABEL_NO_MATCH tars_sentence = Sentence(label_text_pair, use_tokenizer=False).add_label(self.static_label_type, tars_label) return tars_sentence def _get_state_dict(self): model_state = { "state_dict": self.state_dict(), "current_task": self._current_task, "label_type": self.get_current_label_type(), "label_dictionary": self.get_current_label_dictionary(), "tars_model": self.tars_model, "num_negative_labels_to_sample": self.num_negative_labels_to_sample, "task_specific_attributes": self._task_specific_attributes, } return model_state @staticmethod def _init_model_with_state_dict(state): # init new TARS classifier label_dictionary = state["label_dictionary"] label_type = "default_label" if not state["label_type"] else state["label_type"] model: TARSClassifier = TARSClassifier( task_name=state["current_task"], label_dictionary=label_dictionary, label_type=label_type, embeddings=state["tars_model"].document_embeddings, num_negative_labels_to_sample=state["num_negative_labels_to_sample"], ) # set all task information model._task_specific_attributes = state["task_specific_attributes"] # linear layers of internal classifier model.load_state_dict(state["state_dict"]) return model @staticmethod def _fetch_model(model_name) -> str: model_map = {} hu_path: str = "https://nlp.informatik.hu-berlin.de/resources/models" model_map["tars-base"] = "/".join([hu_path, "tars-base", "tars-base-v8.pt"]) cache_dir = Path("models") if model_name in model_map: model_name = cached_path(model_map[model_name], cache_dir=cache_dir) return model_name @property def tars_embeddings(self): return self.tars_model.document_embeddings def predict( self, sentences: Union[List[Sentence], Sentence], mini_batch_size=32, return_probabilities_for_all_classes: bool = False, verbose: bool = False, label_name: Optional[str] = None, return_loss=False, embedding_storage_mode="none", label_threshold: float = 0.5, multi_label: Optional[bool] = None, ): """ Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory. """ if label_name is None: label_name = self.get_current_label_type() if multi_label is None: multi_label = self.is_current_task_multi_label() # with torch.no_grad(): if not sentences: return sentences if isinstance(sentences, Sentence): sentences = [sentences] # set context if not set already previous_sentence = None for sentence in sentences: if sentence.is_context_set(): continue sentence._previous_sentence = previous_sentence sentence._next_sentence = None if previous_sentence: previous_sentence._next_sentence = sentence previous_sentence = sentence reordered_sentences = sorted(sentences, key=lambda s: len(s), reverse=True) dataloader = DataLoader( dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size, ) # progress bar for verbosity if verbose: progressbar = tqdm(dataloader) progressbar.set_description("Batch inference") dataloader = progressbar overall_loss = 0 overall_count = 0 batch_no = 0 with torch.no_grad(): for batch in dataloader: batch_no += 1 batch = self._filter_empty_sentences(batch) # stop if all sentences are empty if not batch: continue # go through each sentence in the batch for sentence in batch: # always remove tags first sentence.remove_labels(label_name) all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] best_label = None for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict( tars_sentence, label_name=label_name, return_loss=True, return_probabilities_for_all_classes=True if label_threshold < 0.5 else False, ) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] # add all labels that according to TARS match the text and are above threshold for predicted_tars_label in tars_sentence.get_labels(label_name): if ( predicted_tars_label.value == self.LABEL_MATCH and predicted_tars_label.score > label_threshold ): # do not add labels below confidence threshold sentence.add_label(label_name, label, predicted_tars_label.score) # only use label with highest confidence if enforcing single-label predictions if not multi_label: if len(sentence.get_labels(label_name)) > 0: # get all label scores and do an argmax to get the best label label_scores = torch.tensor( [label.score for label in sentence.get_labels(label_name)], dtype=torch.float, ) best_label = sentence.get_labels(label_name)[torch.argmax(label_scores)] # remove previously added labels and only add the best label sentence.remove_labels(label_name) sentence.add_label( typename=label_name, value=best_label.value, score=best_label.score, ) # clearing token embeddings to save memory store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return overall_loss, overall_count
[ "torch.no_grad", "torch.argmax" ]
1.5.0
marleneDebatin/flair
4d17509f358158f66d43e85db1b6990523b0b095
1.8
import torch import random import numpy as np class InfiniteDataLoader(torch.utils.data.DataLoader): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dataset_iterator = super().__iter__() def __iter__(self): return self def __next__(self): try: batch = next(self.dataset_iterator) except StopIteration: self.dataset_iterator = super().__iter__() batch = next(self.dataset_iterator) return batch def make_deterministic(seed=0): """Make results deterministic. If seed == -1, do not make deterministic. Running your script in a deterministic way might slow it down. Note that for some packages (eg: sklearn's PCA) this function is not enough. """ seed = int(seed) if seed == -1: return random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def setup_logging(output_folder, exist_ok=False, console="debug", info_filename="info.log", debug_filename="debug.log"): """Set up logging files and console output. Creates one file for INFO logs and one for DEBUG logs. Args: output_folder (str): creates the folder where to save the files. exist_ok (boolean): if False throw a FileExistsError if output_folder already exists debug (str): if == "debug" prints on console debug messages and higher if == "info" prints on console info messages and higher if == None does not use console (useful when a logger has already been set) info_filename (str): the name of the info file. if None, don't create info file debug_filename (str): the name of the debug file. if None, don't create debug file """ import os import sys import logging import traceback if not exist_ok and os.path.exists(output_folder): raise FileExistsError(f"{output_folder} already exists!") os.makedirs(output_folder, exist_ok=True) base_formatter = logging.Formatter('%(asctime)s %(message)s', "%Y-%m-%d %H:%M:%S") logger = logging.getLogger('') logger.setLevel(logging.DEBUG) if info_filename != None: info_file_handler = logging.FileHandler(f'{output_folder}/{info_filename}') info_file_handler.setLevel(logging.INFO) info_file_handler.setFormatter(base_formatter) logger.addHandler(info_file_handler) if debug_filename != None: debug_file_handler = logging.FileHandler(f'{output_folder}/{debug_filename}') debug_file_handler.setLevel(logging.DEBUG) debug_file_handler.setFormatter(base_formatter) logger.addHandler(debug_file_handler) if console != None: console_handler = logging.StreamHandler() if console == "debug": console_handler.setLevel(logging.DEBUG) if console == "info": console_handler.setLevel(logging.INFO) console_handler.setFormatter(base_formatter) logger.addHandler(console_handler) def my_handler(type_, value, tb): logger.info("\n" + "".join(traceback.format_exception(type, value, tb))) logging.info("Experiment finished (with some errors)") sys.excepthook = my_handler
[ "torch.manual_seed", "torch.cuda.manual_seed_all" ]
1.8.2
gmberton/CosPlace
0f03cc9fe25919c87627e92535f3693747617eae