version
stringclasses
25 values
code
stringlengths
75
178k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
9
78
hexsha
stringlengths
40
40
1.6
# -*- coding: utf-8 -*- """ @Time : 2021/1/14 下午5:34 @FileName: bert.py @author: 王炳宁 @contact: [email protected] """ import sys import time import apex import torch import torch.distributed as dist from apex import amp sys.path.append('..') from modules.BERT import Bert from train.parser import get_argument_parser from utils import * np.random.seed(1000) torch.manual_seed(1024) torch.distributed.init_process_group(backend='nccl', init_method='env://') args = get_argument_parser() print(args.local_rank, dist.get_rank(), dist.get_world_size()) torch.cuda.set_device(args.local_rank) vocab_size = 50000 n_embedding = 128 n_hidden = 768 n_layer = 12 n_head = 12 batch_size = 8 max_learning_rate = 4e-5 doc_max_length_size = 1024 train_data = load_file(args.train_file_path) dev_data = load_file(args.dev_file_path) dev_data = sorted(dev_data, key=lambda x: len(x[0])) remove_data_size = len(dev_data) % dist.get_world_size() thread_dev_data = [dev_data[x + args.local_rank] for x in range(0, len(dev_data) - remove_data_size, dist.get_world_size())] print('train data size is {} test size {}'.format(len(train_data), len(dev_data))) model = Bert(vocab_size, n_embedding, n_hidden, n_layer, n_head) filename = args.pretrain_model state_dict = load_file(filename) for name, para in model.named_parameters(): if name not in state_dict: if dist.get_rank() == 0: print('{} not load'.format(name)) continue para.data = torch.FloatTensor(state_dict[name]) print('model size {}'.format(get_model_parameters(model))) model.cuda() if args.optimizer.lower() == 'adam': optimizer = apex.optimizers.FusedLAMB elif args.optimizer.lower() == 'lamb': optimizer = apex.optimizers.FusedLAMB else: optimizer = apex.optimizers.FusedSGD optim = optimizer( model.parameters(), eps=2.0e-7, lr=1.0e-7, ) model, optim = amp.initialize(model, optim, opt_level="O2", verbosity=0) model = apex.parallel.DistributedDataParallel(model) warm_up_steps = 500 lr_opt_steps = max_learning_rate / 1000000 warm_up_lr_opt_steps = max_learning_rate / warm_up_steps def metric_sum(val): tensor = torch.tensor(val).cuda() dist.reduce(tensor, 0) return tensor.item() def metric_mean(val): tensor = torch.tensor(val).cuda() dist.reduce(tensor, 0) return tensor.item() / dist.get_world_size() def get_shuffle_train_data(): pool = {} for one in train_data: length = len(one[0]) // 5 if length not in pool: pool[length] = [] pool[length].append(one) for one in pool: np.random.shuffle(pool[one]) length_lst = list(pool.keys()) np.random.shuffle(length_lst) whole_data = [x for y in length_lst for x in pool[y]] remove_data_size = len(whole_data) % dist.get_world_size() thread_data = [whole_data[x + args.local_rank] for x in range(0, len(whole_data) - remove_data_size, dist.get_world_size())] return thread_data def get_train_data(batch, max_len=doc_max_length_size): batch, _ = padding(batch, max_len=max_len) seq = batch.flatten() real_end_pos = np.where(seq == -1)[0] np.put(seq, real_end_pos, vocab_size) all_end_pos_seq = np.where(seq == vocab_size)[0] label = np.zeros(shape=len(all_end_pos_seq), dtype='float32') for i, j in enumerate(all_end_pos_seq): if j in real_end_pos: label[i] = 1 batch = seq.reshape(batch.shape) return batch, label current_number = 0 update_number = 0 def evaluation(epo): results = [] for i in range(dist.get_world_size()): results.extend(load_file('{}.tmp.obj'.format(i))) os.remove('{}.tmp.obj'.format(i)) print('epoch:{},total:{}'.format(epo, len(results))) threshold = 0.5 precision, recall, f1, macro_f1, accuracy = evaluate_comqa(results, threshold) print('threshold:{}\nprecision:{}\nrecall:{}\nf1:{}\nmacro_f1:{}\naccuracy:{}\n{}'.format( threshold, precision, recall, f1, macro_f1, accuracy, '===' * 10)) return [precision, recall, macro_f1, f1, accuracy] def dev(epo): model.eval() total = len(thread_dev_data) results = [] with torch.no_grad(): for i in tqdm(range(0, total, batch_size)): sample = thread_dev_data[i:i + batch_size] context_raw = [x[0] for x in sample] paras = [x[1] for x in sample] batch, label = get_train_data(context_raw, 1024) batch = torch.LongTensor(batch) mask_idx = torch.eq(batch, vocab_size) answer_logits = model([batch.cuda(), None]) end_num = mask_idx.sum(1).data.numpy().tolist() answer_logits = answer_logits.cpu().data.numpy().tolist() start = 0 for one_sent_end_num, para in zip(end_num, paras): pred = answer_logits[start:start + one_sent_end_num] results.append([pred, para]) start += one_sent_end_num dump_file(results, '{}.tmp.obj'.format(dist.get_rank())) dist.barrier() if dist.get_rank() == 0: return evaluation(epo) return None def train(epo): global current_number, update_number model.train() data = get_shuffle_train_data() total = len(data) total_loss = 0 num = 0 pre_time = None instance_number = 0 for i in range(0, total, batch_size): context = [x[0] for x in data[i:i + batch_size]] batch, label = get_train_data(context) batch = torch.LongTensor(batch) loss = model([batch.cuda(), torch.FloatTensor(label).cuda()]) with amp.scale_loss(loss, optim) as scaled_loss: scaled_loss.backward() total_loss += loss.item() * len(context) instance_number += len(context) optim.step() optim.zero_grad() update_number += 1 for param_group in optim.param_groups: if update_number > warm_up_steps: param_group['lr'] -= lr_opt_steps else: param_group['lr'] += warm_up_lr_opt_steps num += 1 if num % args.log_interval == 0: if pre_time is None: eclipse = 0 else: eclipse = time.time() - pre_time total_loss = metric_sum(total_loss) instance_number = metric_sum(instance_number) if dist.get_rank() == 0: print( 'epoch {}, mask loss is {:5.4f}, ms per batch is {:7.4f}, eclipse {:4.3f}% lr={:e}'.format(epo, total_loss / instance_number, 1000 * eclipse / instance_number, i * 100 / total, optim.param_groups[ 0][ 'lr'])) pre_time = time.time() total_loss = 0 instance_number = 0 if __name__ == '__main__': results = [] best_f1 = 0 for i in range(args.epoch): train(i) results = dev(i) output = {} if dist.get_rank() == 0: print('epoch {} done!! result is {}'.format(i, results)) if results[2] > best_f1: best_f1 = results[2] for name, param in model.module.named_parameters(): output[name] = param.data.cpu().numpy() dump_file(output, args.model_save_path)
[ "torch.distributed.get_world_size", "torch.eq", "torch.distributed.init_process_group", "torch.FloatTensor", "torch.no_grad", "torch.manual_seed", "torch.cuda.set_device", "torch.LongTensor", "torch.tensor", "torch.distributed.reduce", "torch.distributed.get_rank", "torch.distributed.barrier" ]
1.6.0
benywon/ComQA
6731d63d16b731d6c3654b2dc7d2503cf333127f
1.1
import torch.nn as nn from .gen_resblock import GenBlock class Generator(nn.Module): def __init__(self, args, activation=nn.ReLU(), n_classes=0): super(Generator, self).__init__() self.bottom_width = args.bottom_width self.activation = activation self.n_classes = n_classes self.ch = args.gf_dim self.l1 = nn.Linear(args.latent_dim, (self.bottom_width ** 2) * self.ch) self.block2 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.block3 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.block4 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.b5 = nn.BatchNorm2d(self.ch) self.c5 = nn.Conv2d(self.ch, 3, kernel_size=3, stride=1, padding=1) def forward(self, z): h = z h = self.l1(h).view(-1, self.ch, self.bottom_width, self.bottom_width) h = self.block2(h) h = self.block3(h) h = self.block4(h) h = self.b5(h) h = self.activation(h) h = nn.Tanh()(self.c5(h)) return h """Discriminator""" def _downsample(x): # Downsample (Mean Avg Pooling with 2x2 kernel) return nn.AvgPool2d(kernel_size=2)(x) class OptimizedDisBlock(nn.Module): def __init__(self, args, in_channels, out_channels, ksize=3, pad=1, activation=nn.ReLU()): super(OptimizedDisBlock, self).__init__() self.activation = activation self.c1 = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, padding=pad) self.c2 = nn.Conv2d(out_channels, out_channels, kernel_size=ksize, padding=pad) self.c_sc = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if args.d_spectral_norm: self.c1 = nn.utils.spectral_norm(self.c1) self.c2 = nn.utils.spectral_norm(self.c2) self.c_sc = nn.utils.spectral_norm(self.c_sc) def residual(self, x): h = x h = self.c1(h) h = self.activation(h) h = self.c2(h) h = _downsample(h) return h def shortcut(self, x): return self.c_sc(_downsample(x)) def forward(self, x): return self.residual(x) + self.shortcut(x) class DisBlock(nn.Module): def __init__(self, args, in_channels, out_channels, hidden_channels=None, ksize=3, pad=1, activation=nn.ReLU(), downsample=False): super(DisBlock, self).__init__() self.activation = activation self.downsample = downsample self.learnable_sc = (in_channels != out_channels) or downsample hidden_channels = in_channels if hidden_channels is None else hidden_channels self.c1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=ksize, padding=pad) self.c2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=ksize, padding=pad) if args.d_spectral_norm: self.c1 = nn.utils.spectral_norm(self.c1) self.c2 = nn.utils.spectral_norm(self.c2) if self.learnable_sc: self.c_sc = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if args.d_spectral_norm: self.c_sc = nn.utils.spectral_norm(self.c_sc) def residual(self, x): h = x h = self.activation(h) h = self.c1(h) h = self.activation(h) h = self.c2(h) if self.downsample: h = _downsample(h) return h def shortcut(self, x): if self.learnable_sc: x = self.c_sc(x) if self.downsample: return _downsample(x) else: return x else: return x def forward(self, x): return self.residual(x) + self.shortcut(x) class Discriminator(nn.Module): def __init__(self, args, activation=nn.ReLU(), ssup=False): super(Discriminator, self).__init__() self.ch = args.df_dim self.activation = activation self.ssup = ssup self.block1 = OptimizedDisBlock(args, 3, self.ch) self.block2 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=True) self.block3 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=False) self.block4 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=False) self.softmax = nn.Softmax() if ssup: self.fully_connect_rot = nn.Linear(self.ch, 4, bias=False) self.fully_connect_gan = nn.Linear(self.ch, 1, bias=False) if args.d_spectral_norm: self.fully_connect_gan = nn.utils.spectral_norm(self.fully_connect_gan) if ssup: self.fully_connect_rot = nn.utils.spectral_norm(self.fully_connect_rot) def forward(self, x): h = x h = self.block1(h) h = self.block2(h) h = self.block3(h) h = self.block4(h) h = self.activation(h) # GAN logits # Global average pooling h = h.sum(2).sum(2) gan_logits = self.fully_connect_gan(h) rot_logits, rot_prob = -1, -1 if self.ssup: rot_logits = self.fully_connect_rot(h) rot_prob = self.softmax(rot_logits) return gan_logits, rot_logits, rot_prob
[ "torch.nn.Linear", "torch.nn.Softmax", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.Tanh", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.utils.spectral_norm" ]
1.1.0
sudarshanregmi/ICRGAN-and-SSGAN
c9e7b01d89cba19505e566892a678932717b8039
1.8
from typing import Iterable, Optional, Sequence import numpy as np import torch from torch.distributions import Categorical, Normal from torch.distributions import kl_divergence as kl from torch.nn import functional as F from scvi import _CONSTANTS from scvi._compat import Literal from scvi.module.base import LossRecorder, auto_move_data from scvi.nn import Decoder, Encoder from ._classifier import Classifier from ._utils import broadcast_labels from ._vae import VAE class SCANVAE(VAE): """ Single-cell annotation using variational inference. This is an implementation of the scANVI model described in [Xu21]_, inspired from M1 + M2 model, as described in (https://arxiv.org/pdf/1406.5298.pdf). Parameters ---------- n_input Number of input genes n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs n_continuous_cov Number of continuous covarites n_cats_per_cov Number of categories for each extra categorical covariate dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. gene_likelihood One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution y_prior If None, initialized to uniform probability over cell types labels_groups Label group designations use_labels_groups Whether to use the label groups use_batch_norm Whether to use batch norm in layers use_layer_norm Whether to use layer norm in layers **vae_kwargs Keyword args for :class:`~scvi.module.VAE` """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, n_continuous_cov: int = 0, n_cats_per_cov: Optional[Iterable[int]] = None, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", y_prior=None, labels_groups: Sequence[int] = None, use_labels_groups: bool = False, classifier_parameters: dict = dict(), use_batch_norm: Literal["encoder", "decoder", "none", "both"] = "both", use_layer_norm: Literal["encoder", "decoder", "none", "both"] = "none", **vae_kwargs ): super().__init__( n_input, n_hidden=n_hidden, n_latent=n_latent, n_layers=n_layers, n_continuous_cov=n_continuous_cov, n_cats_per_cov=n_cats_per_cov, dropout_rate=dropout_rate, n_batch=n_batch, dispersion=dispersion, log_variational=log_variational, gene_likelihood=gene_likelihood, use_batch_norm=use_batch_norm, use_layer_norm=use_layer_norm, **vae_kwargs ) use_batch_norm_encoder = use_batch_norm == "encoder" or use_batch_norm == "both" use_batch_norm_decoder = use_batch_norm == "decoder" or use_batch_norm == "both" use_layer_norm_encoder = use_layer_norm == "encoder" or use_layer_norm == "both" use_layer_norm_decoder = use_layer_norm == "decoder" or use_layer_norm == "both" self.n_labels = n_labels # Classifier takes n_latent as input cls_parameters = { "n_layers": n_layers, "n_hidden": n_hidden, "dropout_rate": dropout_rate, } cls_parameters.update(classifier_parameters) self.classifier = Classifier( n_latent, n_labels=n_labels, use_batch_norm=use_batch_norm_encoder, use_layer_norm=use_layer_norm_encoder, **cls_parameters ) self.encoder_z2_z1 = Encoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, use_batch_norm=use_batch_norm_encoder, use_layer_norm=use_layer_norm_encoder, ) self.decoder_z1_z2 = Decoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, use_batch_norm=use_batch_norm_decoder, use_layer_norm=use_layer_norm_decoder, ) self.y_prior = torch.nn.Parameter( y_prior if y_prior is not None else (1 / n_labels) * torch.ones(1, n_labels), requires_grad=False, ) self.use_labels_groups = use_labels_groups self.labels_groups = ( np.array(labels_groups) if labels_groups is not None else None ) if self.use_labels_groups: if labels_groups is None: raise ValueError("Specify label groups") unique_groups = np.unique(self.labels_groups) self.n_groups = len(unique_groups) if not (unique_groups == np.arange(self.n_groups)).all(): raise ValueError() self.classifier_groups = Classifier( n_latent, n_hidden, self.n_groups, n_layers, dropout_rate ) self.groups_index = torch.nn.ParameterList( [ torch.nn.Parameter( torch.tensor( (self.labels_groups == i).astype(np.uint8), dtype=torch.uint8, ), requires_grad=False, ) for i in range(self.n_groups) ] ) @auto_move_data def classify(self, x, batch_index=None): if self.log_variational: x = torch.log(1 + x) qz_m, _, z = self.z_encoder(x, batch_index) # We classify using the inferred mean parameter of z_1 in the latent space z = qz_m if self.use_labels_groups: w_g = self.classifier_groups(z) unw_y = self.classifier(z) w_y = torch.zeros_like(unw_y) for i, group_index in enumerate(self.groups_index): unw_y_g = unw_y[:, group_index] w_y[:, group_index] = unw_y_g / ( unw_y_g.sum(dim=-1, keepdim=True) + 1e-8 ) w_y[:, group_index] *= w_g[:, [i]] else: w_y = self.classifier(z) return w_y @auto_move_data def classification_loss(self, labelled_dataset): x = labelled_dataset[_CONSTANTS.X_KEY] y = labelled_dataset[_CONSTANTS.LABELS_KEY] batch_idx = labelled_dataset[_CONSTANTS.BATCH_KEY] classification_loss = F.cross_entropy( self.classify(x, batch_idx), y.view(-1).long() ) return classification_loss def loss( self, tensors, inference_outputs, generative_ouputs, feed_labels=False, kl_weight=1, labelled_tensors=None, classification_ratio=None, ): px_r = generative_ouputs["px_r"] px_rate = generative_ouputs["px_rate"] px_dropout = generative_ouputs["px_dropout"] qz1_m = inference_outputs["qz_m"] qz1_v = inference_outputs["qz_v"] z1 = inference_outputs["z"] x = tensors[_CONSTANTS.X_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] if feed_labels: y = tensors[_CONSTANTS.LABELS_KEY] else: y = None is_labelled = False if y is None else True # Enumerate choices of label ys, z1s = broadcast_labels(y, z1, n_broadcast=self.n_labels) qz2_m, qz2_v, z2 = self.encoder_z2_z1(z1s, ys) pz1_m, pz1_v = self.decoder_z1_z2(z2, ys) reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) # KL Divergence mean = torch.zeros_like(qz2_m) scale = torch.ones_like(qz2_v) kl_divergence_z2 = kl( Normal(qz2_m, torch.sqrt(qz2_v)), Normal(mean, scale) ).sum(dim=1) loss_z1_unweight = -Normal(pz1_m, torch.sqrt(pz1_v)).log_prob(z1s).sum(dim=-1) loss_z1_weight = Normal(qz1_m, torch.sqrt(qz1_v)).log_prob(z1).sum(dim=-1) if not self.use_observed_lib_size: ql_m = inference_outputs["ql_m"] ql_v = inference_outputs["ql_v"] ( local_library_log_means, local_library_log_vars, ) = self._compute_local_library_params(batch_index) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_library_log_means, torch.sqrt(local_library_log_vars)), ).sum(dim=1) else: kl_divergence_l = 0.0 if is_labelled: loss = reconst_loss + loss_z1_weight + loss_z1_unweight kl_locals = { "kl_divergence_z2": kl_divergence_z2, "kl_divergence_l": kl_divergence_l, } if labelled_tensors is not None: classifier_loss = self.classification_loss(labelled_tensors) loss += classifier_loss * classification_ratio return LossRecorder( loss, reconst_loss, kl_locals, kl_global=torch.tensor(0.0), classification_loss=classifier_loss, n_labelled_tensors=labelled_tensors[_CONSTANTS.X_KEY].shape[0], ) return LossRecorder( loss, reconst_loss, kl_locals, kl_global=torch.tensor(0.0), ) probs = self.classifier(z1) reconst_loss += loss_z1_weight + ( (loss_z1_unweight).view(self.n_labels, -1).t() * probs ).sum(dim=1) kl_divergence = (kl_divergence_z2.view(self.n_labels, -1).t() * probs).sum( dim=1 ) kl_divergence += kl( Categorical(probs=probs), Categorical(probs=self.y_prior.repeat(probs.size(0), 1)), ) kl_divergence += kl_divergence_l loss = torch.mean(reconst_loss + kl_divergence * kl_weight) if labelled_tensors is not None: classifier_loss = self.classification_loss(labelled_tensors) loss += classifier_loss * classification_ratio return LossRecorder( loss, reconst_loss, kl_divergence, kl_global=torch.tensor(0.0), classification_loss=classifier_loss, n_labelled_tensors=labelled_tensors[_CONSTANTS.X_KEY].shape[0], ) return LossRecorder( loss, reconst_loss, kl_divergence, kl_global=torch.tensor(0.0) )
[ "torch.distributions.Categorical", "torch.sqrt", "torch.distributions.Normal", "torch.ones", "torch.tensor", "torch.ones_like", "torch.zeros_like", "torch.log", "torch.mean" ]
1.8.0
jules-samaran/scvi-tools
7dcbb819cdc6a7991469fdca6b292276c59a946d
2.0
#!/usr/bin/env python3 import argparse import datetime import os import pickle import pprint import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from examples.atari.atari_network import QRDQN from examples.atari.atari_wrapper import make_atari_env from examples.offline.utils import load_buffer from tianshou.data import Collector, VectorReplayBuffer from tianshou.policy import DiscreteCQLPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger, WandbLogger def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="PongNoFrameskip-v4") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--eps-test", type=float, default=0.001) parser.add_argument("--lr", type=float, default=0.0001) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--num-quantiles", type=int, default=200) parser.add_argument("--n-step", type=int, default=1) parser.add_argument("--target-update-freq", type=int, default=500) parser.add_argument("--min-q-weight", type=float, default=10.) parser.add_argument("--epoch", type=int, default=100) parser.add_argument("--update-per-epoch", type=int, default=10000) parser.add_argument("--batch-size", type=int, default=32) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512]) parser.add_argument("--test-num", type=int, default=10) parser.add_argument("--frames-stack", type=int, default=4) parser.add_argument("--scale-obs", type=int, default=0) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument("--resume-path", type=str, default=None) parser.add_argument("--resume-id", type=str, default=None) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], ) parser.add_argument("--wandb-project", type=str, default="offline_atari.benchmark") parser.add_argument( "--watch", default=False, action="store_true", help="watch the play of pre-trained policy only" ) parser.add_argument("--log-interval", type=int, default=100) parser.add_argument( "--load-buffer-name", type=str, default="./expert_DQN_PongNoFrameskip-v4.hdf5" ) parser.add_argument( "--buffer-from-rl-unplugged", action="store_true", default=False ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu" ) args = parser.parse_known_args()[0] return args def test_discrete_cql(args=get_args()): # envs env, _, test_envs = make_atari_env( args.task, args.seed, 1, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # model net = QRDQN(*args.state_shape, args.action_shape, args.num_quantiles, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = DiscreteCQLPolicy( net, optim, args.gamma, args.num_quantiles, args.n_step, args.target_update_freq, min_q_weight=args.min_q_weight, ).to(args.device) # load a previous policy if args.resume_path: policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # buffer if args.buffer_from_rl_unplugged: buffer = load_buffer(args.load_buffer_name) else: assert os.path.exists(args.load_buffer_name), \ "Please run atari_dqn.py first to get expert's data buffer." if args.load_buffer_name.endswith(".pkl"): buffer = pickle.load(open(args.load_buffer_name, "rb")) elif args.load_buffer_name.endswith(".hdf5"): buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name) else: print(f"Unknown buffer format: {args.load_buffer_name}") exit(0) print("Replay buffer size:", len(buffer), flush=True) # collector test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "cql" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): return False # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) pprint.pprint(result) rew = result["rews"].mean() print(f'Mean reward (over {result["n/ep"]} episodes): {rew}') if args.watch: watch() exit(0) result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ) pprint.pprint(result) watch() if __name__ == "__main__": test_discrete_cql(get_args())
[ "torch.manual_seed", "torch.cuda.is_available", "torch.load", "torch.utils.tensorboard.SummaryWriter" ]
2.0.0
BFAnas/tianshou
6e86a0bed7d1117c5ad6a421b483b45a6adfe336
1.4
import torch import torch.nn as nn import torch.nn.functional as F from convs.dyres_conv import * from convs.condconv import * __all__ = ['DyResA_ResNet18'] class DyRes_BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, channels, stride=1, num_experts=3): super().__init__() self.conv1 = DyResConv(in_channels, channels, kernel_size=3, stride=stride, padding=1, num_experts=num_experts, mode='A') self.bn1 = nn.BatchNorm2d(channels) self.conv2 = DyResConv(channels, channels, kernel_size=3, stride=1, padding=1, num_experts=num_experts, mode='A') self.bn2 = nn.BatchNorm2d(channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion*channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # Addition out += self.shortcut(x) out = F.relu(out) return out class CondConv_BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, channels, stride=1, num_experts=3): super().__init__() self.conv1 = CondConv(in_channels, channels, kernel_size=3, stride=stride, padding=1, num_experts=num_experts) self.bn1 = nn.BatchNorm2d(channels) self.conv2 = CondConv(channels, channels, kernel_size=3, stride=1, padding=1, num_experts=num_experts) self.bn2 = nn.BatchNorm2d(channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion*channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # Addition out += self.shortcut(x) out = F.relu(out) return out class DyResA_ResNet(nn.Module): def __init__(self, block1, block2, num_blocks, num_classes=100, num_experts=3): super().__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block1, 64, num_blocks[0], stride=1, num_experts=num_experts) self.layer2 = self._make_layer(block1, 128, num_blocks[1], stride=2, num_experts=num_experts) self.layer3 = self._make_layer(block2, 256, num_blocks[2], stride=2, num_experts=num_experts) self.layer4 = self._make_layer(block2, 512, num_blocks[3], stride=2, num_experts=num_experts) self.linear = nn.Linear(512*block2.expansion, num_classes) def _make_layer(self, block, channels, num_blocks, stride, num_experts): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, channels, stride, num_experts)) self.in_channels = channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DyResA_ResNet18(num_experts=3): return DyResA_ResNet(DyRes_BasicBlock, CondConv_BasicBlock, [2, 2, 2, 2], num_experts=num_experts) def test(): x = torch.randn(128, 3, 32, 32) net1 = DyResA_ResNet18() y1 = net1(x); print(y1.size()) # test()
[ "torch.nn.Linear", "torch.nn.functional.avg_pool2d", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.Conv2d", "torch.nn.functional.relu", "torch.randn" ]
1.4.0
Nyquixt/DyConv
255193068424aaa83352bee258d34cb8b32b6ee6
1.4
import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['CondConv_Inf'] class route_func(nn.Module): def __init__(self, in_channels, num_experts): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, num_experts) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) x = self.sigmoid(x) return x class CondConv_Inf(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, num_experts=3, stride=1, padding=0, groups=1, reduction=16, mode='A'): super().__init__() self.num_experts = num_experts self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups # routing function self.routing_func = route_func(in_channels, num_experts) # convs self.convs = [nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size)) for i in range(num_experts)] def forward(self, x): routing_weight = self.routing_func(x) # N x k convs = [] for i in range(self.num_experts): route = routing_weight[:, i] weight = self.convs[i] weight = weight * route convs.append(weight) conv = sum(convs) output = F.conv2d(x, weight=conv, stride=self.stride, padding=self.padding, groups=self.groups) return None def test(): x = torch.randn(1, 16, 32, 32) conv = CondConv_Inf(16, 64, 3, padding=1) y = conv(x) print(y.shape) conv = CondConv_Inf(16, 64, 3, padding=1) y = conv(x) print(y.shape) # test()
[ "torch.nn.Linear", "torch.nn.Sigmoid", "torch.nn.AdaptiveAvgPool2d", "torch.Tensor", "torch.nn.functional.conv2d", "torch.randn" ]
1.4.0
Nyquixt/DyConv
255193068424aaa83352bee258d34cb8b32b6ee6
1.9
import torch import torch.nn as nn class CosineSimilarity: """ Cosine similarity between the two vector. Given two vector v1 and v2, the cosine similarity between the two vector is the cosine of theta, where the theta is the angle between the two vector on therir inner product space. The cosine of the theta can be derived from Euclidean dot product of the two vectors. """ def __init__( self, **kwargs ) -> None: super(CosineSimilarity, self).__init__() def __call__( self, v1: torch.Tensor, v2: torch.Tensor, ) -> torch.Tensor: if v1.dim() == 1: v1 = v1.unsqueeze(0) if v2.dim() == 1: v2 = v2.unsqueeze(0) v1 = v1.unsqueeze(1) v2 = v2.unsqueeze(-1) return v1.matmul(v2).squeeze(1).squeeze(1).div(v1.pow(2).sum().sqrt() * v2.pow(2).sum().sqrt()) class AsymmertricSimilarity(nn.Module): def __init__( self, n_dim: int, **kwargs, ) -> None: super(AsymmertricSimilarity, self).__init__() self.Phi_src = nn.Linear(n_dim, n_dim, bias=False) self.Phi_dst = nn.Linear(n_dim, n_dim, bias=False) nn.init.xavier_normal_(self.Phi_src.weight) nn.init.xavier_normal_(self.Phi_dst.weight) def forward( self, z_src: torch.Tensor, z_dst: torch.Tensor, ) -> torch.Tensor: return self.Phi_src(z_src).unsqueeze(-2).matmul(self.Phi_dst(z_dst).unsqueeze(-1)).squeeze()
[ "torch.nn.Linear", "torch.nn.init.xavier_normal_" ]
1.9.1
helloybz/CLANE
60e6f0503642ac63d3bcde136885e47954067c17
1.6
import os from typing import Text import torch import unittest import torch.nn as nn import torch.optim as optim from allennlp.models import Model from allennlp.data.vocabulary import Vocabulary from zsl_kg.class_encoders.auto_gnn import AutoGNN from zsl_kg.example_encoders.text_encoder import TextEncoder from zsl_kg.data.snips import SnipsDataset from allennlp.data.iterators import BasicIterator from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from zsl_kg.common.graph import NeighSampler from zsl_kg.knowledge_graph.conceptnet import ConceptNetKG from allennlp.common.tqdm import Tqdm class BiLinearModel(Model): def __init__( self, vocab: Vocabulary, example_encoder: object, class_encoder: object, joint_dim: int, bias: bool = False, ): super().__init__(vocab) self.example_encoder = example_encoder self.class_encoder = class_encoder self.text_joint = nn.Linear( self.example_encoder.output_dim, joint_dim, bias=bias ) self.class_joint = nn.Linear( self.class_encoder.output_dim, joint_dim, bias=bias ) def forward(self, batch, node_idx, kg): encoder_out = self.example_encoder(batch) text_rep = self.text_joint(encoder_out) # get label representation class_out = self.class_encoder(node_idx, kg) class_rep = self.class_joint(class_out) logits = torch.matmul(text_rep, class_rep.t()) return logits class TestIntentClassification(unittest.TestCase): def setUp( self, ): label_maps = { "train": ["weather", "music", "restaurant"], "dev": ["search", "movie"], "test": ["book", "playlist"], } data_path = "tests/test_data/datasets/snips/" datasets = [] for split in ["train", "dev", "test"]: labels = label_maps[split] label_to_idx = dict( [(label, idx) for idx, label in enumerate(labels)] ) reader = SnipsDataset(label_to_idx) path = os.path.join(data_path, f"{split}.txt") _dataset = reader.read(path) datasets.append(_dataset) self.train_dataset, self.dev_dataset, self.test_dataset = datasets vocab = Vocabulary.from_instances( self.train_dataset + self.dev_dataset + self.test_dataset ) # create the iterator self.iterator = BasicIterator(batch_size=32) self.iterator.index_with(vocab) print("Loading GloVe...") # token embed token_embed_path = os.path.join(data_path, "word_emb.pt") token_embedding = torch.load(token_embed_path) print("word embeddings created...") word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding}) # create the text encoder print("Loading the text encoder...") self.example_encoder = TextEncoder(word_embeddings, 300, 32, 20) trgcn = { "input_dim": 300, "output_dim": 64, "type": "trgcn", "gnn": [ { "input_dim": 300, "output_dim": 64, "activation": nn.ReLU(), "normalize": True, "sampler": NeighSampler(100, mode="topk"), "fh": 100, }, { "input_dim": 64, "output_dim": 64, "activation": nn.ReLU(), "normalize": True, "sampler": NeighSampler(50, mode="topk"), }, ], } self.class_encoder = AutoGNN(trgcn) self.train_graph = ConceptNetKG.load_from_disk( "tests/test_data/subgraphs/snips/train_graph" ) node_to_idx = dict( [(node, idx) for idx, node in enumerate(self.train_graph.nodes)] ) # self.train_nodes = torch.tensor( [ node_to_idx[node] for node in [ "/c/en/weather", "/c/en/music", "/c/en/restaurant", ] ] ) self.model = BiLinearModel( vocab, self.example_encoder, self.class_encoder, joint_dim=20 ) self.optimizer = optim.Adam( self.model.parameters(), lr=1e-03, weight_decay=5e-04 ) self.loss_function = nn.CrossEntropyLoss() def test_intent_classification_train(self): self.model.train() total_batch_loss = 0.0 generator_tqdm = Tqdm.tqdm( self.iterator(self.train_dataset, num_epochs=1, shuffle=False), total=self.iterator.get_num_batches(self.train_dataset), ) for batch in generator_tqdm: self.optimizer.zero_grad() logits = self.model( batch["sentence"], self.train_nodes, self.train_graph ) loss = self.loss_function(logits, batch["labels"]) total_batch_loss += loss.item() loss.backward() self.optimizer.step() self.assertLessEqual(total_batch_loss, 100.0)
[ "torch.nn.Linear", "torch.nn.ReLU", "torch.tensor", "torch.load", "torch.nn.CrossEntropyLoss" ]
1.6.0
BatsResearch/zsl-kg
9bc4d4537a0f90ee3bbcefdf90ceae6dbcf48572
1.6
import unittest from zsl_kg.common.graph import NeighSampler import torch from allennlp.common.params import Params from zsl_kg.knowledge_graph.conceptnet import ConceptNetKG from zsl_kg.gnn.attention_agg import AttnAggregator class TestAttnAggregator(unittest.TestCase): def setUp(self) -> None: params = Params({"bidirectional": True}) nodes = [ "/c/en/cat", "/c/en/dog", "/c/en/elephant", ] relations = [ "/r/IsA", "/r/RelatedTo", ] # (u, r, v) edges = [ ( 0, 0, 1, ), ( 0, 1, 2, ), ( 1, 0, 2, ), ] features = torch.randn((3, 10)) self.kg_obj = ConceptNetKG( nodes, features, edges, relations, params, ) self.kg_obj.run_random_walk() attn_args = { "features": None, "input_dim": 10, "output_dim": 20, "sampler": NeighSampler(-1, "none"), "feature_dropout": 0.1, "leaky_relu_neg_slope": 0.4, "self_loop": True, } self.graph_agg = AttnAggregator(**attn_args) def test_forward(self): """testing forward function from the attention aggregator""" features = self.graph_agg(torch.tensor([0, 1]), self.kg_obj) self.assertEqual(features.size(0), 2) self.assertEqual(features.size(1), 20)
[ "torch.tensor", "torch.randn" ]
1.6.0
BatsResearch/zsl-kg
9bc4d4537a0f90ee3bbcefdf90ceae6dbcf48572
1.3
#!/h/haoran/anaconda3/bin/python import sys import os sys.path.append(os.getcwd()) import pandas as pd import numpy as np import argparse import Constants import torch import torch.nn as nn from torch.utils import data import pickle from pytorch_pretrained_bert import BertTokenizer, BertModel from run_classifier_dataset_utils import InputExample, convert_examples_to_features from pathlib import Path from tqdm import tqdm from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule from gradient_reversal import GradientReversal from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score, log_loss, mean_squared_error, classification_report import random import json from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME from utils import create_hdf_key, Classifier, get_emb_size, MIMICDataset, extract_embeddings, EarlyStopping, load_checkpoint from sklearn.model_selection import ParameterGrid parser = argparse.ArgumentParser('Fine-tunes a pre-trained BERT model on a certain target for one fold. Outputs fine-tuned BERT model and classifier, ' + 'as well as a pickled dictionary mapping id: predicted probability') parser.add_argument("--df_path",help = 'must have the following columns: seqs, num_seqs, fold, with note_id as index', type=str) parser.add_argument("--model_path", type=str) parser.add_argument('--fold_id', help = 'what fold to use as the DEV fold. Dataframe must have a "fold" column',nargs = '+', type=str, dest = 'fold_id', default = []) parser.add_argument('--target_col_name', help = 'name of target to train on. Must be a column in the dataframe', type=str) parser.add_argument("--output_dir", help = 'folder to output model/results', type=str) parser.add_argument('--use_adversary', help = "whether or not to use an adversary. If True, must not have --freeze_bert", action = 'store_true') parser.add_argument('--lm', help = 'lambda value for the adversary', type = float, default = 1.0) parser.add_argument('--protected_group', help = 'name of protected group, must be a column in the dataframe', type = str, default = 'insurance') parser.add_argument('--adv_layers', help = 'number of layers in adversary', type = int, default = 2) parser.add_argument('--freeze_bert', help = 'freeze all BERT layers and only use pre-trained representation', action = 'store_true') parser.add_argument('--train_batch_size', help = 'batch size to use for training', type = int) parser.add_argument('--max_num_epochs', help = 'maximum number of epochs to train for', type = int, default = 20) parser.add_argument('--es_patience', help = 'patience for the early stopping', type = int, default = 3) parser.add_argument('--other_fields', help = 'other fields to add, must be columns in df', nargs = '+', type = str, dest = 'other_fields', default = []) parser.add_argument('--seed', type = int, default = 42, help = 'random seed for initialization') parser.add_argument('--dropout', type = float, default = 0, help = 'dropout probability for classifier') parser.add_argument('--lr', type = float, default = 5e-4, help = 'learning rate for BertAdam optimizer') parser.add_argument('--predictor_layers', type = int, default = 2, help = 'number of layers for classifier, ignored if gridsearch_classifier') parser.add_argument('--emb_method', default = 'last', const = 'last', nargs = '?', choices = ['last', 'sum4', 'cat4'], help = 'what embedding layer to take') parser.add_argument('--fairness_def', default = 'demo', const = 'demo', nargs = '?', choices = ['demo', 'odds'], help = 'what fairness definition to use: demographic parity, equality of odds') parser.add_argument('--task_type', default = 'binary', const = 'binary', nargs = '?', choices = ['binary', 'multiclass', 'regression'], help = 'what type of data the target_col_name is') parser.add_argument('--save_embs', help = 'save computed embeddings at the end', action = 'store_true') parser.add_argument('--output_train_stats', help = 'export training set predictions into the dataframe', action = 'store_true') parser.add_argument('--gridsearch_classifier', help = 'whether to run a grid search over the classifier parameters, using AUPRC as metric', action = 'store_true') parser.add_argument('--average', help = 'whether to aggregate sequences to a single prediction by simple average, or by using the NYU agg function', action = 'store_true') parser.add_argument('--gridsearch_c', help = 'whether to run a grid search over the NYU agg c parameter, using AUPRC as metric, only valid if not --average, and --gridsearch_classifier', action = 'store_true') parser.add_argument('--use_new_mapping', help = 'whether to use new mapping for adversarial training', action = 'store_true') parser.add_argument('--pregen_emb_path', help = '''if embeddings have been precomputed, can provide a path here (as a pickled dictionary mapping note_id:numpy array). Will only be used if freeze_bert. note_ids in this dictionary must a be a superset of the note_ids in df_path''', type = str) parser.add_argument('--overwrite', help = 'whether to overwrite existing model/predictions', action = 'store_true') args = parser.parse_args() if os.path.isfile(os.path.join(args.output_dir, 'preds.pkl')) and not args.overwrite: print("File already exists; exiting.") sys.exit() print('Reading dataframe...', flush = True) df = pd.read_pickle(args.df_path) if 'note_id' in df.columns: df = df.set_index('note_id') tokenizer = BertTokenizer.from_pretrained(args.model_path) model = BertModel.from_pretrained(args.model_path) target = args.target_col_name assert(target in df.columns) #even if no adversary, must have valid protected group column for code to work if args.use_adversary: protected_group = args.protected_group assert(protected_group in df.columns) if args.use_new_mapping: mapping = Constants.newmapping for i in Constants.drop_groups[protected_group]: df = df[df[protected_group] != i] else: mapping = Constants.mapping other_fields_to_include = args.other_fields if args.freeze_bert: for param in model.parameters(): param.requires_grad = False assert('fold' in df.columns) for i in args.fold_id: assert(i in df['fold'].unique()) assert('test' in df['fold'].unique()) fold_id = args.fold_id if args.gridsearch_c: assert(args.task_type == 'binary') c_grid = [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1, 1.2, 1.5, 2, 3, 5, 10, 20, 50, 100, 1000] else: c_grid = [2] Path(args.output_dir).mkdir(parents = True, exist_ok = True) EMB_SIZE = get_emb_size(args.emb_method) train_df = df[~df.fold.isin(['test', 'NA', *fold_id])] val_df = df[df.fold.isin(fold_id)] test_df = df[df.fold == 'test'] def convert_input_example(note_id, text, seqIdx, target, group, other_fields = []): return InputExample(guid = '%s-%s'%(note_id,seqIdx), text_a = text, text_b = None, label = target, group = mapping[protected_group][group] if args.use_adversary else 0, other_fields = other_fields) # in training generator, return all folds except this. # in validation generator, return only this fold print('Converting input examples to appropriate format...', flush = True) examples_train = [convert_input_example(idx, i, c, row[target], row[protected_group] if args.use_adversary else 0, [] if len(other_fields_to_include) ==0 else row[other_fields_to_include].values.tolist()) for idx, row in train_df.iterrows() for c, i in enumerate(row.seqs)] examples_eval = [convert_input_example(idx, i, c, row[target], row[protected_group] if args.use_adversary else 0, [] if len(other_fields_to_include) ==0 else row[other_fields_to_include].values.tolist()) for idx, row in val_df.iterrows() for c, i in enumerate(row.seqs)] examples_test = [convert_input_example(idx, i, c, row[target], row[protected_group] if args.use_adversary else 0, [] if len(other_fields_to_include) ==0 else row[other_fields_to_include].values.tolist()) for idx, row in test_df.iterrows() for c, i in enumerate(row.seqs)] def convert_examples_to_features_emb(examples, embs): features = [] for i in examples: note_id, seq_id = i.guid.split('-') emb = embs[note_id][int(seq_id), :] features.append(EmbFeature(emb, y = i.label, guid = i.guid, group = i.group, other_fields = i.other_fields)) return features class EmbFeature(): def __init__(self, emb, y, guid, group, other_fields): self.emb = emb self.y = y self.guid = guid self.group = group self.other_fields = other_fields class Embdataset(data.Dataset): def __init__(self, features, gen_type): self.features = features #list of EmbFeatures self.gen_type = gen_type self.length = len(features) def __len__(self): return self.length def __getitem__(self, index): emb = torch.tensor(self.features[index].emb, dtype = torch.float32) if args.task_type in ['binary', 'regression']: y = torch.tensor(self.features[index].y, dtype = torch.float32) else: y = torch.tensor(self.features[index].y, dtype = torch.long) other_fields = self.features[index].other_fields guid = self.features[index].guid return emb, y, guid, other_fields class Discriminator(nn.Module): def __init__(self, input_dim, num_layers, num_categories, lm): super(Discriminator, self).__init__() self.num_layers = num_layers assert(num_layers >= 1) self.input_dim = input_dim self.num_categories = num_categories self.lm = lm self.layers = [GradientReversal(lambda_ = lm)] for c, i in enumerate(range(num_layers)): if c != num_layers-1: self.layers.append(nn.Linear(input_dim // (2**c), input_dim // (2**(c+1)))) self.layers.append(nn.ReLU()) else: self.layers.append(nn.Linear(input_dim // (2**c), num_categories)) self.layers.append(nn.Softmax(dim = 0)) self.layers = nn.ModuleList(self.layers) def forward(self, x): for i in range(len(self.layers)): x = self.layers[i](x) return x if args.gridsearch_classifier: assert(args.freeze_bert) grid = list(ParameterGrid({ 'num_layers': [2,3,4], 'dropout_prob': [0, 0.2], 'decay_rate': [2,4,6] })) grid.append({ 'num_layers': 1, 'dropout_prob': 0, 'decay_rate': 2 }) for i in grid: # adds extra fields to input arguments i['input_dim'] = EMB_SIZE + len(other_fields_to_include) i['task_type'] = args.task_type else: grid = [{ # only one parameter combination 'input_dim': EMB_SIZE + len(other_fields_to_include), 'num_layers': args.predictor_layers, 'dropout_prob': args.dropout, 'task_type': args.task_type }] if args.task_type == 'multiclass': for i in grid: i['multiclass_nclasses'] = len(df[target].unique()) if args.use_adversary: discriminator = Discriminator(EMB_SIZE + int(args.fairness_def == 'odds'), args.adv_layers, len(mapping[protected_group]), args.lm) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() model.to(device) if args.use_adversary: discriminator.to(device) seed = args.seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if n_gpu > 0: torch.cuda.manual_seed_all(seed) if args.task_type == 'binary': criterion = nn.BCELoss() elif args.task_type == 'multiclass': criterion = nn.CrossEntropyLoss() elif args.task_type == 'regression': criterion = nn.MSELoss() criterion_adv = nn.CrossEntropyLoss() if n_gpu > 1: model = torch.nn.DataParallel(model) criterion = torch.nn.DataParallel(criterion) if args.use_adversary: discriminator = torch.nn.DataParallel(discriminator) criterion_adv = torch.nn.DataParallel(criterion_adv) def get_embs(generator): ''' given a generator, runs all the data through one pass of the model to calculate embeddings used when BERT weights are frozen, calculates embeddings first to save compute ''' features = [] model.eval() with torch.no_grad(): for input_ids, input_mask, segment_ids, y, group, guid, other_vars in generator: input_ids = input_ids.to(device) segment_ids = segment_ids.to(device) input_mask = input_mask.to(device) hidden_states, _ = model(input_ids, token_type_ids = segment_ids, attention_mask = input_mask) bert_out = extract_embeddings(hidden_states, args.emb_method) for c,i in enumerate(guid): note_id, seq_id = i.split('-') emb = bert_out[c,:].detach().cpu().numpy() features.append(EmbFeature(emb = emb, y = y[c], guid = i, group = group, other_fields= [i[c] for i in other_vars])) return features print('Featurizing examples...', flush = True) if not args.pregen_emb_path: features_train = convert_examples_to_features(examples_train, Constants.MAX_SEQ_LEN, tokenizer, output_mode = ('regression' if args.task_type == 'regression' else 'classification')) features_eval = convert_examples_to_features(examples_eval, Constants.MAX_SEQ_LEN, tokenizer, output_mode = ('regression' if args.task_type == 'regression' else 'classification')) features_test = convert_examples_to_features(examples_test, Constants.MAX_SEQ_LEN, tokenizer, output_mode = ('regression' if args.task_type == 'regression' else 'classification')) training_set = MIMICDataset(features_train, 'train' ,args.task_type) training_generator = data.DataLoader(training_set, shuffle = True, batch_size = args.train_batch_size, drop_last = True) val_set = MIMICDataset(features_eval, 'val', args.task_type) val_generator = data.DataLoader(val_set, shuffle = False, batch_size = args.train_batch_size) test_set = MIMICDataset(features_test, 'test', args.task_type) test_generator = data.DataLoader(test_set, shuffle = False, batch_size = args.train_batch_size) if args.freeze_bert: #only need to precalculate for training and val set if args.pregen_emb_path: pregen_embs = pickle.load(open(args.pregen_emb_path, 'rb')) features_train_embs = convert_examples_to_features_emb(examples_train, pregen_embs) features_val_embs = convert_examples_to_features_emb(examples_eval, pregen_embs) features_test_embs = convert_examples_to_features_emb(examples_test, pregen_embs) else: features_train_embs = get_embs(training_generator) features_val_embs = get_embs(val_generator) features_test_embs = get_embs(test_generator) training_generator = data.DataLoader(Embdataset(features_train_embs, 'train'), shuffle = True, batch_size = args.train_batch_size, drop_last = True) val_generator = data.DataLoader(Embdataset(features_val_embs, 'val'), shuffle = False, batch_size = args.train_batch_size) test_generator= data.DataLoader(Embdataset(features_test_embs, 'test'), shuffle = False, batch_size = args.train_batch_size) num_train_epochs = args.max_num_epochs learning_rate = args.lr num_train_optimization_steps = len(training_generator) * num_train_epochs warmup_proportion = 0.1 PREDICTOR_CHECKPOINT_PATH = os.path.join(args.output_dir, 'predictor.chkpt') MODEL_CHECKPOINT_PATH = os.path.join(args.output_dir, 'model.chkpt') grid_auprcs = [] es_models = [] optimal_cs = [] actual_val = val_df[target] def merge_probs(probs, c): return (np.max(probs) + np.mean(probs)*len(probs)/float(c))/(1+len(probs)/float(c)) def avg_probs(probs): return np.mean(probs) def avg_probs_multiclass(probs): return np.argmax(np.mean(probs, axis = 0)) def merge_regression(preds): return np.mean(preds) def evaluate_on_set(generator, predictor, emb_gen = False, c_val=2): ''' Input: a pytorch data loader, whether the generator is an embedding or text generator Outputs: prediction_dict: a dictionary mapping note_id (str) to list of predicted probabilities merged_preds: a dictionary mapping note_id (str) to a single merged probability embs: a dictionary mapping note_id (str) to a numpy 2d array (shape num_seq * 768) ''' model.eval() predictor.eval() if generator.dataset.gen_type == 'val': prediction_dict = {str(idx): [0]*row['num_seqs'] for idx, row in val_df.iterrows()} embs = {str(idx):np.zeros(shape = (row['num_seqs'], EMB_SIZE)) for idx, row in val_df.iterrows()} elif generator.dataset.gen_type == 'test': prediction_dict = {str(idx): [0]*row['num_seqs'] for idx, row in test_df.iterrows()} embs = {str(idx):np.zeros(shape = (row['num_seqs'], EMB_SIZE)) for idx, row in test_df.iterrows()} elif generator.dataset.gen_type == 'train': prediction_dict = {str(idx): [0]*row['num_seqs'] for idx, row in train_df.iterrows()} embs = {str(idx):np.zeros(shape = (row['num_seqs'], EMB_SIZE)) for idx, row in train_df.iterrows()} if emb_gen: with torch.no_grad(): for embs, y, guid, other_vars in generator: embs = embs.to(device) y = y.to(device) for i in other_vars: embs = torch.cat([embs, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(embs).detach().cpu() for c,i in enumerate(guid): note_id, seq_id = i.split('-') if args.task_type in ['binary', 'regression']: prediction_dict[note_id][int(seq_id)] = preds[c].item() else: prediction_dict[note_id][int(seq_id)] = preds[c,:].numpy() else: with torch.no_grad(): for input_ids, input_mask, segment_ids, y, group, guid, other_vars in generator: input_ids = input_ids.to(device) segment_ids = segment_ids.to(device) input_mask = input_mask.to(device) y = y.to(device) group = group.to(device) hidden_states, _ = model(input_ids, token_type_ids = segment_ids, attention_mask = input_mask) bert_out = extract_embeddings(hidden_states, args.emb_method) for i in other_vars: bert_out = torch.cat([bert_out, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(bert_out).detach().cpu() for c,i in enumerate(guid): note_id, seq_id = i.split('-') if args.task_type in ['binary', 'regression']: prediction_dict[note_id][int(seq_id)] = preds[c].item() else: prediction_dict[note_id][int(seq_id)] = preds[c,:].numpy() embs[note_id][int(seq_id), :] = bert_out[c,:EMB_SIZE].detach().cpu().numpy() merged_preds = merge_preds(prediction_dict, c_val) return (prediction_dict, merged_preds, embs) def merge_preds(prediction_dict, c=2): merged_preds = {} for i in prediction_dict: if args.task_type == 'binary': if args.average: merged_preds[i] = avg_probs(prediction_dict[i]) else: merged_preds[i] = merge_probs(prediction_dict[i], c) elif args.task_type == 'regression': merged_preds[i] = merge_regression(prediction_dict[i]) elif args.task_type == 'multiclass': merged_preds[i] = avg_probs_multiclass(np.array(prediction_dict[i])) return merged_preds for predictor_params in grid: print(predictor_params, flush = True) predictor = Classifier(**predictor_params).to(device) if n_gpu > 1: predictor = torch.nn.DataParallel(predictor) if not(args.freeze_bert) and not(args.use_adversary): param_optimizer = list(model.named_parameters()) + list(predictor.named_parameters()) elif args.freeze_bert and not(args.use_adversary): param_optimizer = list(predictor.named_parameters()) elif args.freeze_bert and args.use_adversary: raise Exception('No purpose in using an adversary if BERT layers are frozen') else: param_optimizer = list(model.named_parameters()) + list(predictor.named_parameters()) + list(discriminator.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] es = EarlyStopping(patience = args.es_patience) optimizer = BertAdam(optimizer_grouped_parameters, lr=learning_rate, warmup=warmup_proportion, t_total=num_train_optimization_steps) warmup_linear = WarmupLinearSchedule(warmup=warmup_proportion, t_total=num_train_optimization_steps) for epoch in range(1, num_train_epochs+1): # training if not args.freeze_bert: model.train() else: model.eval() predictor.train() if args.use_adversary: discriminator.train() running_loss = 0.0 num_steps = 0 with tqdm(total=len(training_generator), desc="Epoch %s"%epoch) as pbar: if not args.freeze_bert: for input_ids, input_mask, segment_ids, y, group, _, other_vars in training_generator: input_ids = input_ids.to(device) segment_ids = segment_ids.to(device) input_mask = input_mask.to(device) y = y.to(device) group = group.to(device) hidden_states, _ = model(input_ids, token_type_ids = segment_ids, attention_mask = input_mask) bert_out = extract_embeddings(hidden_states, args.emb_method) for i in other_vars: bert_out = torch.cat([bert_out, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(bert_out) loss = criterion(preds, y) if args.use_adversary: adv_input = bert_out[:, :-len(other_vars)] if args.fairness_def == 'odds': adv_input = torch.cat([adv_input, y.unsqueeze(dim = 1)], 1) adv_pred = discriminator(adv_input) adv_loss = criterion_adv(adv_pred, group) if n_gpu > 1: loss = loss.mean() if args.use_adversary: adv_loss = adv_loss.mean() if args.use_adversary: loss += adv_loss loss.backward() optimizer.step() optimizer.zero_grad() num_steps += 1 running_loss += loss.item() mean_loss = running_loss/num_steps pbar.update(1) pbar.set_postfix_str("Running Training Loss: %.5f" % mean_loss) else: # if frozen, use precomputed embeddings to save time for embs, y,_, other_vars in training_generator: embs = embs.to(device) y = y.to(device) for i in other_vars: embs = torch.cat([embs, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(embs) loss = criterion(preds, y) if n_gpu > 1: loss = loss.mean() loss.backward() optimizer.step() optimizer.zero_grad() num_steps += 1 running_loss += loss.item() mean_loss = running_loss/num_steps pbar.update(1) pbar.set_postfix_str("Running Training Loss: %.5f" % mean_loss) # evaluate here model.eval() predictor.eval() val_loss = 0 with torch.no_grad(): if args.freeze_bert: checkpoints = {PREDICTOR_CHECKPOINT_PATH: predictor} for embs, y, guid, other_vars in val_generator: embs = embs.to(device) y = y.to(device) for i in other_vars: embs = torch.cat([embs, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(embs) loss = criterion(preds, y) if n_gpu > 1: loss = loss.mean() val_loss += loss.item() val_loss /= len(val_generator) # early stopping uses val loss as metric # model selection/c selection uses AUPRC as metric else: checkpoints = {PREDICTOR_CHECKPOINT_PATH: predictor, MODEL_CHECKPOINT_PATH: model} for input_ids, input_mask, segment_ids, y, group, guid, other_vars in val_generator: input_ids = input_ids.to(device) segment_ids = segment_ids.to(device) input_mask = input_mask.to(device) y = y.to(device) group = group.to(device) hidden_states, _ = model(input_ids, token_type_ids = segment_ids, attention_mask = input_mask) bert_out = extract_embeddings(hidden_states, args.emb_method) for i in other_vars: bert_out = torch.cat([bert_out, i.float().unsqueeze(dim = 1).to(device)], 1) preds = predictor(bert_out) loss = criterion(preds, y) if n_gpu > 1: loss = loss.mean() if args.use_adversary: adv_loss = adv_loss.mean() if args.use_adversary: loss += adv_loss val_loss += loss.item() val_loss /= len(val_generator) print('Val loss: %s'%val_loss, flush = True) es(val_loss, checkpoints) if es.early_stop: break print('Trained for %s epochs' % epoch) predictor.load_state_dict(load_checkpoint(PREDICTOR_CHECKPOINT_PATH)) os.remove(PREDICTOR_CHECKPOINT_PATH) if not args.freeze_bert: model.load_state_dict(load_checkpoint(MODEL_CHECKPOINT_PATH)) os.remove(MODEL_CHECKPOINT_PATH) if args.gridsearch_classifier: auprcs = [] #one value for each in c grid prediction_dict, _, _ = evaluate_on_set(val_generator, predictor, emb_gen = args.freeze_bert) for c_val in c_grid: merged_preds_val = merge_preds(prediction_dict, c_val) merged_preds_val_list = [merged_preds_val[str(i)] for i in actual_val.index] auprcs.append(average_precision_score(actual_val.values.astype(int), merged_preds_val_list)) print(auprcs, flush = True) print(c_grid, flush = True) idx_max = np.argmax(auprcs) grid_auprcs.append(auprcs[idx_max]) es_models.append(predictor.cpu()) optimal_cs.append(c_grid[idx_max]) print('val AUPRC:%.5f optimal c: %s' %(auprcs[idx_max], c_grid[idx_max] )) # find best predictor here, move back to cpu if args.gridsearch_classifier: idx_max = np.argmax(grid_auprcs) predictor = es_models[idx_max].to(device) opt_c = optimal_cs[idx_max] else: opt_c = 2.0 # evaluate on val set prediction_dict_val, merged_preds_val, embs_val = evaluate_on_set(val_generator, predictor, emb_gen = args.freeze_bert, c_val = opt_c) merged_preds_val_list = [merged_preds_val[str(i)] for i in actual_val.index] if args.task_type == 'binary': acc = accuracy_score(actual_val.values.astype(int), np.array(merged_preds_val_list).round()) auprc = average_precision_score(actual_val.values.astype(int), merged_preds_val_list) ll = log_loss(actual_val.values.astype(int), merged_preds_val_list) roc = roc_auc_score(actual_val.values.astype(int), merged_preds_val_list) print('Accuracy: %.5f' % acc) print('AUPRC: %.5f' % auprc) print('Log Loss: %.5f' % ll) print('AUROC: %.5f' % roc) elif args.task_type == 'regression': mse = mean_squared_error(actual_val, merged_preds_val_list) print('MSE: %.5f' % mse) elif args.task_type == 'multiclass': report = classification_report(actual_val.values.astype(int), np.array(merged_preds_val_list)) print(report) prediction_dict_test, merged_preds_test, embs_test = evaluate_on_set(test_generator, predictor, emb_gen = args.freeze_bert, c_val = opt_c) if args.output_train_stats: prediction_dict_train, merged_preds_train, embs_train = evaluate_on_set(training_generator, predictor, emb_gen = args.freeze_bert, c_val = opt_c) else: merged_preds_train, embs_train = {}, {} # save predictor json.dump(predictor_params, open(os.path.join(args.output_dir, 'predictor_params.json'), 'w')) torch.save(predictor.state_dict(), os.path.join(args.output_dir, 'predictor.pt')) # save model if not args.freeze_bert: model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # save args json.dump(vars(args), open(os.path.join(args.output_dir, 'argparse_args.json'), 'w')) #saves embeddings if args.save_embs: embs = {**embs_val, **embs_test, **embs_train} pickle.dump(embs, open(os.path.join(args.output_dir, 'embs.pkl'), 'wb')) rough_preds = {**merged_preds_val, **merged_preds_test, **merged_preds_train} pickle.dump(rough_preds, open(os.path.join(args.output_dir, 'preds.pkl'), 'wb')) # saves gridsearch info pickle.dump({ 'grid_auprcs':grid_auprcs, 'optimal_cs': optimal_cs, 'opt_c': opt_c }, open(os.path.join(args.output_dir, 'gs_info.pkl'), 'wb'))
[ "torch.nn.Linear", "torch.nn.ModuleList", "torch.cuda.is_available", "torch.nn.CrossEntropyLoss", "torch.nn.DataParallel", "torch.nn.Softmax", "torch.manual_seed", "torch.utils.data.DataLoader", "torch.nn.BCELoss", "torch.tensor", "torch.cuda.manual_seed_all", "torch.cuda.device_count", "torch.nn.ReLU", "torch.nn.MSELoss", "torch.no_grad" ]
1.3.0
MLforHealth/HurtfulWords
b59181585aa70152f0fbe79fa2611ded928bf9f1
1.4
# Copyright (c) 2020, Soohwan Kim. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import platform import numpy as np from torch import Tensor, FloatTensor class Spectrogram(object): """ Create a spectrogram from a audio signal. Args: sample_rate (int): Sample rate of audio signal. (Default: 16000) frame_length (int): frame length for spectrogram (ms) (Default : 20) frame_shift (int): Length of hop between STFT windows. (ms) (Default: 10) feature_extract_by (str): which library to use for feature extraction (default: torch) """ def __init__( self, sample_rate: int = 16000, frame_length: int = 20, frame_shift: int = 10, feature_extract_by: str = 'torch' ) -> None: self.sample_rate = sample_rate self.feature_extract_by = feature_extract_by.lower() if self.feature_extract_by == 'kaldi': # torchaudio is only supported on Linux (Linux, Mac) assert platform.system().lower() == 'linux' or platform.system().lower() == 'darwin' try: import torchaudio except ImportError: raise ImportError("Please install torchaudio: `pip install torchaudio`") self.transforms = torchaudio.compliance.kaldi.spectrogram self.frame_length = frame_length self.frame_shift = frame_shift else: self.n_fft = int(round(sample_rate * 0.001 * frame_length)) self.hop_length = int(round(sample_rate * 0.001 * frame_shift)) def __call__(self, signal): if self.feature_extract_by == 'kaldi': spectrogram = self.transforms( Tensor(signal).unsqueeze(0), frame_length=self.frame_length, frame_shift=self.frame_shift, sample_frequency=self.sample_rate, ).transpose(0, 1) else: spectrogram = torch.stft( Tensor(signal), self.n_fft, hop_length=self.hop_length, win_length=self.n_fft, window=torch.hamming_window(self.n_fft), center=False, normalized=False, onesided=True ) spectrogram = (spectrogram[:, :, 0].pow(2) + spectrogram[:, :, 1].pow(2)).pow(0.5) spectrogram = np.log1p(spectrogram.numpy()) return spectrogram class MelSpectrogram(object): """ Create MelSpectrogram for a raw audio signal. This is a composition of Spectrogram and MelScale. Args: sample_rate (int): Sample rate of audio signal. (Default: 16000) n_mels (int): Number of mfc coefficients to retain. (Default: 80) frame_length (int): frame length for spectrogram (ms) (Default : 20) frame_shift (int): Length of hop between STFT windows. (ms) (Default: 10) feature_extract_by (str): which library to use for feature extraction (default: librosa) """ def __init__( self, sample_rate: int = 16000, n_mels: int = 80, frame_length: int = 20, frame_shift: int = 10, feature_extract_by: str = 'librosa' ) -> None: self.sample_rate = sample_rate self.n_mels = n_mels self.n_fft = int(round(sample_rate * 0.001 * frame_length)) self.hop_length = int(round(sample_rate * 0.001 * frame_shift)) self.feature_extract_by = feature_extract_by.lower() if self.feature_extract_by == 'torchaudio': # torchaudio is only supported on Linux (Linux, Mac) assert platform.system().lower() == 'linux' or platform.system().lower() == 'darwin' import torchaudio self.amplitude_to_db = torchaudio.transforms.AmplitudeToDB() self.transforms = torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, win_length=frame_length, hop_length=self.hop_length, n_fft=self.n_fft, n_mels=n_mels, ) else: import librosa self.transforms = librosa.feature.melspectrogram self.amplitude_to_db = librosa.amplitude_to_db def __call__(self, signal): if self.feature_extract_by == 'torchaudio': melspectrogram = self.transforms(Tensor(signal)) melspectrogram = self.amplitude_to_db(melspectrogram) melspectrogram = melspectrogram.numpy() elif self.feature_extract_by == 'librosa': melspectrogram = self.transforms( signal, sr=self.sample_rate, n_mels=self.n_mels, n_fft=self.n_fft, hop_length=self.hop_length, ) melspectrogram = self.amplitude_to_db(melspectrogram, ref=np.max) else: raise ValueError("Unsupported library : {0}".format(self.feature_extract_by)) return melspectrogram class MFCC(object): """ Create the Mel-frequency cepstrum coefficients (MFCCs) from an audio signal. Args: sample_rate (int): Sample rate of audio signal. (Default: 16000) n_mfcc (int): Number of mfc coefficients to retain. (Default: 40) frame_length (int): frame length for spectrogram (ms) (Default : 20) frame_shift (int): Length of hop between STFT windows. (ms) (Default: 10) feature_extract_by (str): which library to use for feature extraction(default: librosa) """ def __init__( self, sample_rate: int = 16000, n_mfcc: int = 40, frame_length: int = 20, frame_shift: int = 10, feature_extract_by: str = 'librosa' ) -> None: self.sample_rate = sample_rate self.n_mfcc = n_mfcc self.n_fft = int(round(sample_rate * 0.001 * frame_length)) self.hop_length = int(round(sample_rate * 0.001 * frame_shift)) self.feature_extract_by = feature_extract_by.lower() if self.feature_extract_by == 'torchaudio': # torchaudio is only supported on Linux (Linux, Mac) assert platform.system().lower() == 'linux' or platform.system().lower() == 'darwin' import torchaudio self.transforms = torchaudio.transforms.MFCC( sample_rate=sample_rate, n_mfcc=n_mfcc, log_mels=True, win_length=frame_length, hop_length=self.hop_length, n_fft=self.n_fft, ) else: import librosa self.transforms = librosa.feature.mfcc def __call__(self, signal): if self.feature_extract_by == 'torchaudio': mfcc = self.transforms(FloatTensor(signal)) mfcc = mfcc.numpy() elif self.feature_extract_by == 'librosa': mfcc = self.transforms( y=signal, sr=self.sample_rate, n_mfcc=self.n_mfcc, n_fft=self.n_fft, hop_length=self.hop_length, ) else: raise ValueError("Unsupported library : {0}".format(self.feature_extract_by)) return mfcc class FilterBank(object): """ Create a fbank from a raw audio signal. This matches the input/output of Kaldi’s compute-fbank-feats Args: sample_rate (int): Sample rate of audio signal. (Default: 16000) n_mels (int): Number of mfc coefficients to retain. (Default: 80) frame_length (int): frame length for spectrogram (ms) (Default : 20) frame_shift (int): Length of hop between STFT windows. (ms) (Default: 10) """ def __init__( self, sample_rate: int = 16000, n_mels: int = 80, frame_length: int = 20, frame_shift: int = 10 ) -> None: import torchaudio self.transforms = torchaudio.compliance.kaldi.fbank self.sample_rate = sample_rate self.n_mels = n_mels self.frame_length = frame_length self.frame_shift = frame_shift def __call__(self, signal): return self.transforms( Tensor(signal).unsqueeze(0), num_mel_bins=self.n_mels, frame_length=self.frame_length, frame_shift=self.frame_shift, ).transpose(0, 1).numpy()
[ "torch.hamming_window", "torch.FloatTensor", "torch.Tensor" ]
1.4.0
jungwook518/KoSpeech
77b8daf2f821c8fa755e937096fdbc3536cafd81
1.4
import torch import numpy as np from hipo_rank import Embeddings, SentenceEmbeddings, SectionEmbedding, \ PairIndices, SentenceSimilarities, SectionSimilarities, Similarities from typing import List, Tuple from numpy import ndarray class CosSimilarity: def __init__(self, threshold = 0): self.threshold = threshold def _compute_similarities(self, embeds1: ndarray, embeds2: ndarray) -> ndarray: embeds1 = torch.from_numpy(embeds1) embeds2 = torch.from_numpy(embeds2) similarities = torch.cosine_similarity(embeds1, embeds2).numpy() similarities = similarities / 2 + 0.5 # normalize to a range [0,1] similarities = np.clip(similarities, self.threshold, 1) return similarities def _get_pairwise_similarities(self, embeds: ndarray) -> Tuple[ndarray, PairIndices]: pair_indices = self._get_pair_indices(len(embeds)) pair_indices_i = [x[0] for x in pair_indices] pair_indices_j = [x[1] for x in pair_indices] similarities = self._compute_similarities(embeds[pair_indices_i], embeds[pair_indices_j]) return similarities, pair_indices def _get_pair_indices(self, num_nodes: int) -> PairIndices: pair_indices = [] for i in range(num_nodes): for j in range(i+1, num_nodes): pair_indices += [(i, j)] return pair_indices def get_similarities(self, embeds: Embeddings): sent_to_sent = [] for sent_embeds in embeds.sentence: id = sent_embeds.id e = sent_embeds.embeddings similarities, pair_indices = self._get_pairwise_similarities(e) directions = ["undirected" for _ in pair_indices] sent_to_sent += [SentenceSimilarities(id, similarities, pair_indices, directions)] sent_to_sect = [] sect_embeds = np.stack([s.embedding for s in embeds.section]) num_sect = len(sect_embeds) for sent_embeds in embeds.sentence: # TODO: factor out pair indices for one and two matrices pair_indices = [] num_sent = len(sent_embeds.embeddings) for i in range(num_sent): for j in range(num_sect): pair_indices += [(i,j)] pair_indices_i = [x[0] for x in pair_indices] pair_indices_j = [x[1] for x in pair_indices] embeds1 = sent_embeds.embeddings[pair_indices_i] embeds2 = sect_embeds[pair_indices_j] similarities = self._compute_similarities(embeds1, embeds2) id = sent_embeds.id directions = ["undirected" for _ in pair_indices] sent_to_sect += [SentenceSimilarities(id, similarities, pair_indices, directions)] similarities, pair_indices = self._get_pairwise_similarities(sect_embeds) directions = ["undirected" for _ in pair_indices] sect_to_sect = SectionSimilarities(similarities, pair_indices, directions) return Similarities(sent_to_sent, sect_to_sect, sent_to_sect)
[ "torch.cosine_similarity", "torch.from_numpy" ]
1.4
mukul-mehta/HipoRank
b44490c4f1f3e0ff8015e3eb0f2b1955947dfe80
1.9
import torch import torch.nn as nn from vformer.functional import PatchMerging from vformer.utils import ENCODER_REGISTRY encoder_modules = ENCODER_REGISTRY.get_list() def test_VanillaEncoder(): test_tensor = torch.randn(2, 65, 1024) encoder = ENCODER_REGISTRY.get("VanillaEncoder")( embedding_dim=1024, depth=6, num_heads=16, head_dim=64, mlp_dim=2048 ) out = encoder(test_tensor) assert out.shape == test_tensor.shape # shape remains same del encoder, test_tensor def test_SwinEncoder(): test_tensor = torch.randn(3, 3136, 96) # when downsampled encoder = ENCODER_REGISTRY.get("SwinEncoder")( dim=96, input_resolution=(224 // 4, 224 // 4), depth=2, num_heads=3, window_size=7, downsample=PatchMerging, ) out = encoder(test_tensor) assert out.shape == (3, 784, 192) del encoder # when not downsampled encoder = ENCODER_REGISTRY.get("SwinEncoder")( dim=96, input_resolution=(224 // 4, 224 // 4), depth=2, num_heads=3, window_size=7, downsample=None, use_checkpoint=True, ) out = encoder(test_tensor) assert out.shape == (3, 3136, 96) del encoder encoder_block = ENCODER_REGISTRY.get("SwinEncoderBlock")( dim=96, input_resolution=(224 // 4, 224 // 4), num_heads=3, window_size=7 ) out = encoder_block(test_tensor) assert out.shape == test_tensor.shape del encoder_block def test_PVTEncoder(): test_tensor = torch.randn(4, 3136, 64) encoder = ENCODER_REGISTRY.get("PVTEncoder")( dim=64, depth=3, qkv_bias=True, qk_scale=0.0, p_dropout=0.0, attn_dropout=0.1, drop_path=[0.0] * 3, act_layer=nn.GELU, sr_ratio=1, linear=False, use_dwconv=False, num_heads=1, mlp_ratio=4, ) out = encoder(test_tensor, H=56, W=56) assert out.shape == test_tensor.shape del encoder def test_CrossEncoder(): test_tensor1 = torch.randn(3, 5, 128) test_tensor2 = torch.randn(3, 5, 256) encoder = ENCODER_REGISTRY.get("CrossEncoder")(128, 256) out = encoder(test_tensor1, test_tensor2) assert out[0].shape == test_tensor1.shape assert out[1].shape == test_tensor2.shape del encoder
[ "torch.randn" ]
1.9.0
aditya-agrawal-30502/vformer
e1f4950f980238442ff1dc39a8f0791e4fbc9dac
1.1
import glob import os import torch import tqdm import time from torch.nn.utils import clip_grad_norm_ from pcdet.utils import common_utils, commu_utils def train_one_epoch(cur_epoch,model, optimizer, train_loader, model_func, lr_scheduler, accumulated_iter, optim_cfg, rank, tbar, total_it_each_epoch, dataloader_iter, tb_log=None, leave_pbar=False): if total_it_each_epoch == len(train_loader): dataloader_iter = iter(train_loader) if rank == 0: pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True) data_time = common_utils.AverageMeter() batch_time = common_utils.AverageMeter() forward_time = common_utils.AverageMeter() for cur_it in range(total_it_each_epoch): end = time.time() try: batch = next(dataloader_iter) except StopIteration: dataloader_iter = iter(train_loader) batch = next(dataloader_iter) print('new iters') data_timer = time.time() cur_data_time = data_timer - end lr_scheduler.step(accumulated_iter) try: cur_lr = float(optimizer.lr) except: cur_lr = optimizer.param_groups[0]['lr'] if tb_log is not None: tb_log.add_scalar('meta_data/learning_rate', cur_lr, accumulated_iter) model.train() optimizer.zero_grad() loss, tb_dict, disp_dict = model_func(model, batch) forward_timer = time.time() cur_forward_time = forward_timer - data_timer loss.backward() clip_grad_norm_(model.parameters(), optim_cfg.GRAD_NORM_CLIP) optimizer.step() accumulated_iter += 1 cur_batch_time = time.time() - end # average reduce avg_data_time = commu_utils.average_reduce_value(cur_data_time) avg_forward_time = commu_utils.average_reduce_value(cur_forward_time) avg_batch_time = commu_utils.average_reduce_value(cur_batch_time) # log to console and tensorboard if rank == 0: data_time.update(avg_data_time) forward_time.update(avg_forward_time) batch_time.update(avg_batch_time) disp_dict.update({ 'loss': loss.item(), 'lr': cur_lr, 'd_time': f'{data_time.val:.2f}({data_time.avg:.2f})', 'f_time': f'{forward_time.val:.2f}({forward_time.avg:.2f})', 'b_time': f'{batch_time.val:.2f}({batch_time.avg:.2f})' }) pbar.update() pbar.set_postfix(dict(total_it=accumulated_iter)) tbar.set_postfix(disp_dict) tbar.refresh() if tb_log is not None: tb_log.add_scalar('train/loss', loss, cur_epoch) tb_log.add_scalar('meta_data/learning_rate', cur_lr, accumulated_iter) for key, val in tb_dict.items(): tb_log.add_scalar('train/' + key, val, accumulated_iter) if rank == 0: pbar.close() return accumulated_iter def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg, start_epoch, total_epochs, start_iter, rank, tb_log, ckpt_save_dir, train_sampler=None, lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50, merge_all_iters_to_one_epoch=False): accumulated_iter = start_iter with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar: total_it_each_epoch = len(train_loader) if merge_all_iters_to_one_epoch: assert hasattr(train_loader.dataset, 'merge_all_iters_to_one_epoch') train_loader.dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs) total_it_each_epoch = len(train_loader) // max(total_epochs, 1) dataloader_iter = iter(train_loader) for cur_epoch in tbar: if train_sampler is not None: train_sampler.set_epoch(cur_epoch) # train one epoch if lr_warmup_scheduler is not None and cur_epoch < optim_cfg.WARMUP_EPOCH: cur_scheduler = lr_warmup_scheduler else: cur_scheduler = lr_scheduler accumulated_iter = train_one_epoch(cur_epoch, model, optimizer, train_loader, model_func, lr_scheduler=cur_scheduler, accumulated_iter=accumulated_iter, optim_cfg=optim_cfg, rank=rank, tbar=tbar, tb_log=tb_log, leave_pbar=(cur_epoch + 1 == total_epochs), total_it_each_epoch=total_it_each_epoch, dataloader_iter=dataloader_iter ) # save trained model trained_epoch = cur_epoch + 1 if trained_epoch % ckpt_save_interval == 0 and rank == 0: ckpt_list = glob.glob(str(ckpt_save_dir / 'checkpoint_epoch_*.pth')) ckpt_list.sort(key=os.path.getmtime) if ckpt_list.__len__() >= max_ckpt_save_num: for cur_file_idx in range(0, len(ckpt_list) - max_ckpt_save_num + 1): os.remove(ckpt_list[cur_file_idx]) ckpt_name = ckpt_save_dir / ('checkpoint_epoch_%d' % trained_epoch) save_checkpoint( checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name, ) def model_state_to_cpu(model_state): model_state_cpu = type(model_state)() # ordered dict for key, val in model_state.items(): model_state_cpu[key] = val.cpu() return model_state_cpu def checkpoint_state(model=None, optimizer=None, epoch=None, it=None): optim_state = optimizer.state_dict() if optimizer is not None else None if model is not None: if isinstance(model, torch.nn.parallel.DistributedDataParallel): model_state = model_state_to_cpu(model.module.state_dict()) else: model_state = model.state_dict() else: model_state = None try: import pcdet version = 'pcdet+' + pcdet.__version__ except: version = 'none' return {'epoch': epoch, 'it': it, 'model_state': model_state, 'optimizer_state': optim_state, 'version': version} def save_checkpoint(state, filename='checkpoint'): if False and 'optimizer_state' in state: optimizer_state = state['optimizer_state'] state.pop('optimizer_state', None) optimizer_filename = '{}_optim.pth'.format(filename) torch.save({'optimizer_state': optimizer_state}, optimizer_filename) filename = '{}.pth'.format(filename) torch.save(state, filename)
[ "torch.save" ]
1.1
Bilal-A-Qureshi/OpenPCDet
633c6026e56fc3fb2112f2a9f7ce08a21619e78f
1.9
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 5, 2) self.conv2 = nn.Conv2d(32, 64, 7, 3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(36864, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output
[ "torch.nn.Linear", "torch.flatten", "torch.nn.functional.log_softmax", "torch.nn.Conv2d", "torch.nn.functional.relu", "torch.nn.functional.max_pool2d", "torch.nn.Dropout2d" ]
1.9.0
evanaze/captcha
62d226742be7f4091e54a7ea960703812bd44fd5
1.6
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) # TODO maybe no need :(n+1), just self.pos_embedding is OK. x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) # x.shape, b, n+1, d x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x) class AttentionWithMask(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads # 64 x 8 self.heads = heads # 8 self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None): # n is the patch_num + 1, patch_num = (img_size/patch_size)**2. # just assume img_size 224, patch_size 32, 224/32=7 it is 7*7+1=50 here. # yolo-v1 also use patch num 7*7. b, n, _, h = *x.shape, self.heads # n=50,h=8, # self.to_qkv(x)得到的尺寸为[b,50,64x8x3],然后chunk成3份 # 也就是说,qkv是一个三元tuple,每一份都是[b,50,64x8]的大小 qkv = self.to_qkv(x).chunk(3, dim = -1) # 把每一份从[b,50,64x8]变成[b,8,50,64]的形式 q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) # 这一步不太好理解,q和k都是[b,8,50,64]的形式,50理解为特征数量,64为特征变量 # dots.shape=[b,8,50,50] dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale # 不考虑mask这一块的内容 mask_value = -torch.finfo(dots.dtype).max if mask is not None: mask = F.pad(mask.flatten(1), (1, 0), value = True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = mask[:, None, :] * mask[:, :, None] dots.masked_fill_(~mask, mask_value) del mask # 对[b,8,50,50]的最后一个维度做softmax attn = dots.softmax(dim=-1) # 这个attn就是计算出来的自注意力值,和v做点乘,out.shape=[b,8,50,64] out = torch.einsum('bhij,bhjd->bhid', attn, v) # out.shape变成[b,50,8x64] out = rearrange(out, 'b h n d -> b n (h d)') # out.shape重新变成[b,60,128] out = self.to_out(out) return out
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.nn.Identity", "torch.cat", "torch.nn.ModuleList", "torch.nn.Softmax", "torch.einsum", "torch.finfo", "torch.nn.GELU", "torch.randn" ]
1.6
rocke2020/vit-pytorch
a1f828da0c952fa56a90a71f7c88c8e0025c1d42
1.4
import torch import os import numpy as np import cv2 from PIL import Image from collections import defaultdict from tqdm import tqdm import mcubes import open3d as o3d from plyfile import PlyData, PlyElement from argparse import ArgumentParser from models.rendering import * from models.nerf import * from utils import load_ckpt from datasets import dataset_dict torch.backends.cudnn.benchmark = True def get_opts(): parser = ArgumentParser() parser.add_argument('--root_dir', type=str, default='/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego', help='root directory of dataset') parser.add_argument('--dataset_name', type=str, default='blender', choices=['blender', 'llff'], help='which dataset to validate') parser.add_argument('--scene_name', type=str, default='test', help='scene name, used as output ply filename') parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800], help='resolution (img_w, img_h) of the image') parser.add_argument('--N_samples', type=int, default=64, help='number of samples to infer the acculmulated opacity') parser.add_argument('--chunk', type=int, default=32*1024, help='chunk size to split the input to avoid OOM') parser.add_argument('--ckpt_path', type=str, required=True, help='pretrained checkpoint path to load') parser.add_argument('--N_grid', type=int, default=256, help='size of the grid on 1 side, larger=higher resolution') parser.add_argument('--x_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--y_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--z_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--sigma_threshold', type=float, default=20.0, help='threshold to consider a location is occupied') parser.add_argument('--occ_threshold', type=float, default=0.2, help='''threshold to consider a vertex is occluded. larger=fewer occluded pixels''') #### method using vertex normals #### parser.add_argument('--use_vertex_normal', action="store_true", help='use vertex normals to compute color') parser.add_argument('--N_importance', type=int, default=64, help='number of fine samples to infer the acculmulated opacity') parser.add_argument('--near_t', type=float, default=1.0, help='the near bound factor to start the ray') return parser.parse_args() @torch.no_grad() def f(models, embeddings, rays, N_samples, N_importance, chunk, white_back): """Do batched inference on rays using chunk.""" B = rays.shape[0] results = defaultdict(list) for i in range(0, B, chunk): rendered_ray_chunks = \ render_rays(models, embeddings, rays[i:i+chunk], N_samples, False, 0, 0, N_importance, chunk, white_back, test_time=True) for k, v in rendered_ray_chunks.items(): results[k] += [v] for k, v in results.items(): results[k] = torch.cat(v, 0) return results if __name__ == "__main__": args = get_opts() kwargs = {'root_dir': args.root_dir, 'img_wh': tuple(args.img_wh)} if args.dataset_name == 'llff': kwargs['spheric_poses'] = True kwargs['split'] = 'test' else: kwargs['split'] = 'train' dataset = dataset_dict[args.dataset_name](**kwargs) embedding_xyz = Embedding(3, 10) embedding_dir = Embedding(3, 4) embeddings = [embedding_xyz, embedding_dir] nerf_fine = NeRF() load_ckpt(nerf_fine, args.ckpt_path, model_name='nerf_fine') nerf_fine.cuda().eval() # define the dense grid for query N = args.N_grid xmin, xmax = args.x_range ymin, ymax = args.y_range zmin, zmax = args.z_range # assert xmax-xmin == ymax-ymin == zmax-zmin, 'the ranges must have the same length!' x = np.linspace(xmin, xmax, N) y = np.linspace(ymin, ymax, N) z = np.linspace(zmin, zmax, N) xyz_ = torch.FloatTensor(np.stack(np.meshgrid(x, y, z), -1).reshape(-1, 3)).cuda() dir_ = torch.zeros_like(xyz_).cuda() # sigma is independent of direction, so any value here will produce the same result # predict sigma (occupancy) for each grid location print('Predicting occupancy ...') with torch.no_grad(): B = xyz_.shape[0] out_chunks = [] for i in tqdm(range(0, B, args.chunk)): xyz_embedded = embedding_xyz(xyz_[i:i+args.chunk]) # (N, embed_xyz_channels) dir_embedded = embedding_dir(dir_[i:i+args.chunk]) # (N, embed_dir_channels) xyzdir_embedded = torch.cat([xyz_embedded, dir_embedded], 1) out_chunks += [nerf_fine(xyzdir_embedded)] rgbsigma = torch.cat(out_chunks, 0) sigma = rgbsigma[:, -1].cpu().numpy() sigma = np.maximum(sigma, 0).reshape(N, N, N) # perform marching cube algorithm to retrieve vertices and triangle mesh print('Extracting mesh ...') vertices, triangles = mcubes.marching_cubes(sigma, args.sigma_threshold) ##### Until mesh extraction here, it is the same as the original repo. ###### vertices_ = (vertices/N).astype(np.float32) ## invert x and y coordinates (WHY? maybe because of the marching cubes algo) x_ = (ymax-ymin) * vertices_[:, 1] + ymin y_ = (xmax-xmin) * vertices_[:, 0] + xmin vertices_[:, 0] = x_ vertices_[:, 1] = y_ vertices_[:, 2] = (zmax-zmin) * vertices_[:, 2] + zmin vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))]) face['vertex_indices'] = triangles PlyData([PlyElement.describe(vertices_[:, 0], 'vertex'), PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply') # remove noise in the mesh by keeping only the biggest cluster print('Removing noise ...') mesh = o3d.io.read_triangle_mesh(f"{args.scene_name}.ply") idxs, count, _ = mesh.cluster_connected_triangles() max_cluster_idx = np.argmax(count) triangles_to_remove = [i for i in range(len(face)) if idxs[i] != max_cluster_idx] mesh.remove_triangles_by_index(triangles_to_remove) mesh.remove_unreferenced_vertices() print(f'Mesh has {len(mesh.vertices)/1e6:.2f} M vertices and {len(mesh.triangles)/1e6:.2f} M faces.') vertices_ = np.asarray(mesh.vertices).astype(np.float32) triangles = np.asarray(mesh.triangles) # perform color prediction # Step 0. define constants (image width, height and intrinsics) W, H = args.img_wh K = np.array([[dataset.focal, 0, W/2], [0, dataset.focal, H/2], [0, 0, 1]]).astype(np.float32) # Step 1. transform vertices into world coordinate N_vertices = len(vertices_) vertices_homo = np.concatenate([vertices_, np.ones((N_vertices, 1))], 1) # (N, 4) if args.use_vertex_normal: ## use normal vector method as suggested by the author. ## see https://github.com/bmild/nerf/issues/44 mesh.compute_vertex_normals() rays_d = torch.FloatTensor(np.asarray(mesh.vertex_normals)) near = dataset.bounds.min() * torch.ones_like(rays_d[:, :1]) far = dataset.bounds.max() * torch.ones_like(rays_d[:, :1]) rays_o = torch.FloatTensor(vertices_) - rays_d * near * args.near_t nerf_coarse = NeRF() load_ckpt(nerf_coarse, args.ckpt_path, model_name='nerf_coarse') nerf_coarse.cuda().eval() results = f([nerf_coarse, nerf_fine], embeddings, torch.cat([rays_o, rays_d, near, far], 1).cuda(), args.N_samples, args.N_importance, args.chunk, dataset.white_back) else: ## use my color average method. see README_mesh.md ## buffers to store the final averaged color non_occluded_sum = np.zeros((N_vertices, 1)) v_color_sum = np.zeros((N_vertices, 3)) # Step 2. project the vertices onto each training image to infer the color print('Fusing colors ...') for idx in tqdm(range(len(dataset.image_paths))): ## read image of this pose image = Image.open(dataset.image_paths[idx]).convert('RGB') image = image.resize(tuple(args.img_wh), Image.LANCZOS) image = np.array(image) ## read the camera to world relative pose P_c2w = np.concatenate([dataset.poses[idx], np.array([0, 0, 0, 1]).reshape(1, 4)], 0) P_w2c = np.linalg.inv(P_c2w)[:3] # (3, 4) ## project vertices from world coordinate to camera coordinate vertices_cam = (P_w2c @ vertices_homo.T) # (3, N) in "right up back" vertices_cam[1:] *= -1 # (3, N) in "right down forward" ## project vertices from camera coordinate to pixel coordinate vertices_image = (K @ vertices_cam).T # (N, 3) depth = vertices_image[:, -1:]+1e-5 # the depth of the vertices, used as far plane vertices_image = vertices_image[:, :2]/depth vertices_image = vertices_image.astype(np.float32) vertices_image[:, 0] = np.clip(vertices_image[:, 0], 0, W-1) vertices_image[:, 1] = np.clip(vertices_image[:, 1], 0, H-1) ## compute the color on these projected pixel coordinates ## using bilinear interpolation. ## NOTE: opencv's implementation has a size limit of 32768 pixels per side, ## so we split the input into chunks. colors = [] remap_chunk = int(3e4) for i in range(0, N_vertices, remap_chunk): colors += [cv2.remap(image, vertices_image[i:i+remap_chunk, 0], vertices_image[i:i+remap_chunk, 1], interpolation=cv2.INTER_LINEAR)[:, 0]] colors = np.vstack(colors) # (N_vertices, 3) ## predict occlusion of each vertex ## we leverage the concept of NeRF by constructing rays coming out from the camera ## and hitting each vertex; by computing the accumulated opacity along this path, ## we can know if the vertex is occluded or not. ## for vertices that appear to be occluded from every input view, we make the ## assumption that its color is the same as its neighbors that are facing our side. ## (think of a surface with one side facing us: we assume the other side has the same color) ## ray's origin is camera origin rays_o = torch.FloatTensor(dataset.poses[idx][:, -1]).expand(N_vertices, 3) ## ray's direction is the vector pointing from camera origin to the vertices rays_d = torch.FloatTensor(vertices_) - rays_o # (N_vertices, 3) rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True) near = dataset.bounds.min() * torch.ones_like(rays_o[:, :1]) ## the far plane is the depth of the vertices, since what we want is the accumulated ## opacity along the path from camera origin to the vertices far = torch.FloatTensor(depth) * torch.ones_like(rays_o[:, :1]) results = f([nerf_fine], embeddings, torch.cat([rays_o, rays_d, near, far], 1).cuda(), args.N_samples, 0, args.chunk, dataset.white_back) opacity = results['opacity_coarse'].cpu().numpy()[:, np.newaxis] # (N_vertices, 1) opacity = np.nan_to_num(opacity, 1) non_occluded = np.ones_like(non_occluded_sum) * 0.1/depth # weight by inverse depth # near=more confident in color non_occluded += opacity < args.occ_threshold v_color_sum += colors * non_occluded non_occluded_sum += non_occluded # Step 3. combine the output and write to file if args.use_vertex_normal: v_colors = results['rgb_fine'].cpu().numpy() * 255.0 else: ## the combined color is the average color among all views v_colors = v_color_sum/non_occluded_sum v_colors = v_colors.astype(np.uint8) v_colors.dtype = [('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] vertex_all = np.empty(N_vertices, vertices_.dtype.descr+v_colors.dtype.descr) for prop in vertices_.dtype.names: vertex_all[prop] = vertices_[prop][:, 0] for prop in v_colors.dtype.names: vertex_all[prop] = v_colors[prop][:, 0] face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))]) face['vertex_indices'] = triangles PlyData([PlyElement.describe(vertex_all, 'vertex'), PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply') print('Done!')
[ "torch.cat", "torch.norm", "torch.FloatTensor", "torch.zeros_like", "torch.no_grad", "torch.ones_like" ]
1.4.0
U-sepSick/NeRF
c5910f84321eb5f72e3332507b0384f1b23f51f7
0.4
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import math import logging import tarfile import tempfile import shutil import torch from torch import nn from torch.nn import CrossEntropyLoss from .file_utils import cached_path logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", } CONFIG_NAME = 'bert_config.json' WEIGHTS_NAME = 'pytorch_model.bin' def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} class BertConfig(object): """Configuration class to store the configuration of a `BertModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertDeSelfOutput(nn.Module): def __init__(self, config): super(BertDeSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.qdense = nn.Linear(config.hidden_size, config.hidden_size) self.qLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.qdropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, chidden_states,qhidden_states, cinput_tensor,qinput_tensor): chidden_states = self.dense(chidden_states) chidden_states = self.dropout(chidden_states) chidden_states = self.LayerNorm(chidden_states + cinput_tensor) qhidden_states = self.dense(qhidden_states) qhidden_states = self.dropout(qhidden_states) qhidden_states = self.LayerNorm(qhidden_states + cinput_tensor) return chidden_states,qhidden_states class BertDeAttention(nn.Module): def __init__(self, config): super(BertDeAttention, self).__init__() self.self = BertMultiAttention(config) self.output = BertDeSelfOutput(config) #Can use De here def forward(self, cinput_tensor,qinput_tensor, attention_mask, qattention_mask): cself_output,qself_output = self.self(cinput_tensor,qinput_tensor, attention_mask,qattention_mask) cattention_output,qattention_output = self.output(cself_output,qself_output, cinput_tensor,qinput_tensor) return cattention_output,qattention_output class BertDeIntermediate(nn.Module): def __init__(self, config): super(BertDeIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.qdense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, chidden_states,qhidden_states): #print('In DeIntermediate -dim of chidden_states is',chidden_states.size()) chidden_states = self.dense(chidden_states) chidden_states = self.intermediate_act_fn(chidden_states) qhidden_states = self.qdense(qhidden_states) qhidden_states = self.intermediate_act_fn(qhidden_states) return chidden_states,qhidden_states class BertDeOutput(nn.Module): def __init__(self, config): super(BertDeOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.qdense = nn.Linear(config.intermediate_size, config.hidden_size) self.qLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.qdropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, chidden_states,qhidden_states, cinput_tensor,qinput_tensor): #print('In BertDeOutput - size of chidden_states is',chidden_states.size()) chidden_states = self.dense(chidden_states) chidden_states = self.dropout(chidden_states) chidden_states = self.LayerNorm(chidden_states + cinput_tensor) qhidden_states = self.qdense(qhidden_states) qhidden_states = self.qdropout(qhidden_states) qhidden_states = self.qLayerNorm(qhidden_states + qinput_tensor) return chidden_states,qhidden_states class BertDeLayer(nn.Module): def __init__(self, config): super(BertDeLayer, self).__init__() self.attention = BertDeAttention(config) self.intermediate = BertDeIntermediate(config) self.output = BertDeOutput(config) def forward(self, chidden_states,qhidden_states, attention_mask,qattention_mask): cattention_output,qattention_output = self.attention(chidden_states,qhidden_states, attention_mask,qattention_mask) #Call this one more time to calculaye qattention_output^ #print('In DeLayer - dim of cattention_output',cattention_output.size()) cintermediate_output,qintermediate_output = self.intermediate(cattention_output,qattention_output) clayer_output,qlayer_output = self.output(cintermediate_output,qintermediate_output,cattention_output,qattention_output) return clayer_output,qlayer_output class BertDecoder(nn.Module): def __init__(self, config): super(BertDecoder, self).__init__() layer = BertDeLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(6)]) def forward(self, hidden_states, cattention_mask, qattention_mask, output_all_deencoded_layers=True): call_deencoder_layers = [] qall_deencoder_layers = [] chidden_states = hidden_states qhidden_states = hidden_states for layer_module in self.layer: chidden_states,qhidden_states = layer_module(chidden_states,qhidden_states, cattention_mask,qattention_mask) if output_all_deencoded_layers: call_deencoder_layers.append(chidden_states) qall_deencoder_layers.append(qhidden_states) if not output_all_deencoded_layers: call_deencoder_layers.append(chidden_states) qall_deencoder_layers.append(qhidden_states) return call_deencoder_layers,qall_deencoder_layers class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertMultiAttention(nn.Module): def __init__(self, config): super(BertMultiAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size #print('config.hidden_size is',config.hidden_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.query.weight) self.key = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.key.weight) self.value = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.value.weight) self.qquery = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.qquery.weight) self.qkey = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.qkey.weight) self.qvalue = nn.Linear(config.hidden_size, self.all_head_size) torch.nn.init.xavier_uniform_(self.qvalue.weight) self.cdropout = nn.Dropout(config.attention_probs_dropout_prob) self.qdropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) #NOTE - # 1. enc_hidden_states is context embeddings # 2. dec_hidden_states is question embeddings # start expt with query from dec_hidden_states # key and value from context def forward(self, enc_hidden_states,dec_hidden_states, attention_mask,qattention_mask): #print('forward of decoder') #print('shape of dec_hidden_states is',dec_hidden_states.shape) #print('size of self.all_head_size is',self.all_head_size) mixed_query_layer = self.query(dec_hidden_states) mixed_key_layer = self.key(enc_hidden_states) mixed_value_layer = self.value(enc_hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.cdropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) #--- Q2C qmixed_query_layer = self.qquery(enc_hidden_states) qmixed_key_layer = self.qkey(dec_hidden_states) qmixed_value_layer = self.qvalue(dec_hidden_states) qquery_layer = self.transpose_for_scores(qmixed_query_layer) qkey_layer = self.transpose_for_scores(qmixed_key_layer) qvalue_layer = self.transpose_for_scores(qmixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. qattention_scores = torch.matmul(qquery_layer, qkey_layer.transpose(-1, -2)) qattention_scores = qattention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) qattention_scores = qattention_scores + qattention_mask # Normalize the attention scores to probabilities. qattention_probs = nn.Softmax(dim=-1)(qattention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. qattention_probs = self.qdropout(qattention_probs) q_layer = torch.matmul(qattention_probs, qvalue_layer) q_layer = q_layer.permute(0, 2, 1, 3).contiguous() new_q_layer_shape = q_layer.size()[:-2] + (self.all_head_size,) q_layer = q_layer.view(*new_q_layer_shape) return context_layer,q_layer class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) #print('attention_output is',attention_output.shape) intermediate_output = self.intermediate(attention_output) #print('intermediate_output is',intermediate_output.shape) layer_output = self.output(intermediate_output, attention_output) #print('layer_output is',layer_output.shape) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() layer = BertLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) #print('size of hidden_states in BertEncoder is',hidden_states.shape) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0), bias=False) self.decoder.weight = bert_model_embedding_weights self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class PreTrainedBertModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(PreTrainedBertModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-large-cased` . `bert-base-multilingual-uncased` . `bert-base-multilingual-cased` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP: archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name] else: archive_file = pretrained_model_name # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) except FileNotFoundError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file)) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info("loading archive file {} from cache at {}".format( archive_file, resolved_archive_file)) tempdir = None if os.path.isdir(resolved_archive_file): serialization_dir = resolved_archive_file else: # Extract archive to temp dir tempdir = tempfile.mkdtemp() logger.info("extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir)) with tarfile.open(resolved_archive_file, 'r:gz') as archive: archive.extractall(tempdir) serialization_dir = tempdir # Load config config_file = os.path.join(serialization_dir, CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None: weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) state_dict = torch.load(weights_path) old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix='' if hasattr(model, 'bert') else 'bert.') if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if tempdir: # Clean up temp dir shutil.rmtree(tempdir) return model class BertModel(PreTrainedBertModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 #print('extended_attention_mask',extended_attention_mask) #print('attention_mask',attention_mask) #print('token_type_ids',token_type_ids) qattention_mask = attention_mask - token_type_ids cattention_mask = attention_mask - qattention_mask #print('*************************') #print('cattention_mask',cattention_mask) #print('qattention_mask',qattention_mask) cextended_attention_mask = cattention_mask.unsqueeze(1).unsqueeze(2) cextended_attention_mask = cextended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility cextended_attention_mask = (1.0 - cextended_attention_mask) * -10000.0 qextended_attention_mask = qattention_mask.unsqueeze(1).unsqueeze(2) qextended_attention_mask = qextended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility qextended_attention_mask = (1.0 - qextended_attention_mask) * -10000.0 #raise SystemExit embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers) #print('*** encoded_layers is',encoded_layers.shape) sequence_output = encoded_layers[-1] #print('*** sequence_output is',sequence_output.shape) pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return cextended_attention_mask,qextended_attention_mask,sequence_output#encoded_layers, pooled_output class BertForPreTraining(PreTrainedBertModel): """BERT model with pre-training heads. This module comprises the BERT model followed by the two pre-training heads: - the masked language modeling head, and - the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `masked_lm_labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForPreTraining(config) masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None): sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss return total_loss else: return prediction_scores, seq_relationship_score class BertForMaskedLM(PreTrainedBertModel): """BERT model with the masked language modeling head. This module comprises the BERT model followed by the masked language modeling head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] Outputs: if `masked_lm_labels` is not `None`: Outputs the masked language modeling loss. if `masked_lm_labels` is `None`: Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForMaskedLM(config) masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForMaskedLM, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None): sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) prediction_scores = self.cls(sequence_output) if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) return masked_lm_loss else: return prediction_scores class BertForNextSentencePrediction(PreTrainedBertModel): """BERT model with next sentence prediction head. This module comprises the BERT model followed by the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `next_sentence_label` is not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `next_sentence_label` is `None`: Outputs the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForNextSentencePrediction(config) seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForNextSentencePrediction, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None): _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) seq_relationship_score = self.cls( pooled_output) if next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) return next_sentence_loss else: return seq_relationship_score class BertForSequenceClassification(PreTrainedBertModel): """BERT model for classification. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForSequenceClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels=2): super(BertForSequenceClassification, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss else: return logits class BertForMultipleChoice(PreTrainedBertModel): """BERT model for multiple choice tasks. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_choices`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]]) input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]]) token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_choices = 2 model = BertForMultipleChoice(config, num_choices) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_choices=2): super(BertForMultipleChoice, self).__init__(config) self.num_choices = num_choices self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, self.num_choices) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) return loss else: return reshaped_logits class BertForTokenClassification(PreTrainedBertModel): """BERT model for token-level classification. This module is composed of the BERT model with a linear layer on top of the full hidden state of the last layer. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, sequence_length, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForTokenClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels=2): super(BertForTokenClassification, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss else: return logits class BertForQuestionAnswering(PreTrainedBertModel): """BERT model for Question Answering (span extraction). This module is composed of the BERT model with a linear layer on top of the sequence output that computes start_logits and end_logits Params: `config`: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size]. Positions are clamped to the length of the sequence and position outside of the sequence are not taken into account for computing the loss. `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size]. Positions are clamped to the length of the sequence and position outside of the sequence are not taken into account for computing the loss. Outputs: if `start_positions` and `end_positions` are not `None`: Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions. if `start_positions` or `end_positions` is `None`: Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end position tokens of shape [batch_size, sequence_length]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForQuestionAnswering(config) start_logits, end_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.bert = BertModel(config) self.enc_trans = nn.Linear(2*config.max_position_embeddings,config.max_position_embeddings) # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version # self.dropout = nn.Dropout(config.hidden_dropout_prob) self.qa_outputs = nn.Linear(config.hidden_size, 2) #print('hidden size in QA is',config.hidden_size) self.apply(self.init_bert_weights) self.conv1d = nn.Conv1d(in_channels=2,out_channels=1,kernel_size=3,padding=1) self.decoder = BertDecoder(config) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) ks=3 #convs self.conv_512_1= nn.Conv1d(in_channels=768, out_channels=512, kernel_size=ks, padding=1) self.conv_512_2= nn.Conv1d(in_channels=512, out_channels=512, kernel_size=ks, padding=1) self.conv_256_1= nn.Conv1d(in_channels=512, out_channels=256, kernel_size=ks, padding=1) self.conv_256_2= nn.Conv1d(in_channels=256, out_channels=256, kernel_size=ks, padding=1) self.conv_128_1= nn.Conv1d(in_channels=256, out_channels=128, kernel_size=ks, padding=1) self.conv_128_2= nn.Conv1d(in_channels=128, out_channels=128, kernel_size=ks, padding=1) self.conv_64_1= nn.Conv1d(in_channels=128, out_channels=64, kernel_size=ks, padding=1) self.conv_64_2= nn.Conv1d(in_channels=64, out_channels=64, kernel_size=ks, padding=1) self.conv_32_1= nn.Conv1d(in_channels=64, out_channels=32, kernel_size=ks, padding=1) self.conv_32_2= nn.Conv1d(in_channels=32, out_channels=32, kernel_size=ks, padding=1) self.conv_16_1= nn.Conv1d(in_channels=32, out_channels=16, kernel_size=ks, padding=1) self.conv_16_2= nn.Conv1d(in_channels=16, out_channels=16, kernel_size=ks, padding=1) self.conv_8_1= nn.Conv1d(in_channels=16, out_channels=8, kernel_size=ks, padding=1) self.conv_8_2= nn.Conv1d(in_channels=8, out_channels=8, kernel_size=ks, padding=1) self.conv_4_1= nn.Conv1d(in_channels=8, out_channels=4, kernel_size=ks, padding=1) self.conv_4_2= nn.Conv1d(in_channels=4, out_channels=4, kernel_size=ks, padding=1) self.conv_out=nn.Conv1d(in_channels=4, out_channels=2, kernel_size=ks, padding=1) #Freeze embedding layers of Bert #for param in self.bert.parameters(): # param.requires_grad = False # print(param) def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None): c_attention_mask,q_attention_mask,sequence_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) #print('shape of sequence_output',sequence_output.shape) #Ankit addition - Decoder cdeencoded_layers,qdeencoded_layers = self.decoder(sequence_output, #2d --> 1d translated c_attention_mask,q_attention_mask, output_all_deencoded_layers=False)#output_all_encoded_layers) cdeencoded_layers = cdeencoded_layers[-1] qdeencoded_layers = qdeencoded_layers[-1] cdeencoded_layers = cdeencoded_layers.unsqueeze(-1) qdeencoded_layers = qdeencoded_layers.unsqueeze(-1) enc_cat = torch.cat((cdeencoded_layers,qdeencoded_layers), dim=-1) #print('enc_cat size is',enc_cat.size()) #enc_cat = enc_cat.permute(0,2,1) encshape = enc_cat.shape #print('AFTERPERMUTE - enc_cat size is',enc_cat.size()) #sequence_output1d = self.enc_trans(enc_cat) #print('Dim of sequence_output is',sequence_output1d.size()) enc_cat = enc_cat.reshape(-1,enc_cat.shape[2],enc_cat.shape[3]).contiguous() #print('AFTER : enc_cat size is',enc_cat.size()) enc_cat = enc_cat.permute(0,2,1).contiguous() sequence_output1d = self.conv1d(enc_cat) #print('shape of sequence_output1d',sequence_output1d.shape) sequence_output1d = sequence_output1d.squeeze(1).contiguous() sequence_output1d = sequence_output1d.reshape(encshape[0],encshape[1],encshape[2]) #Skip connection with bert embeddings sequence_output1d = self.LayerNorm(sequence_output + sequence_output1d) sequence_output1d = sequence_output1d.permute(0,2,1).contiguous() #print('seq after perm: ', sequence_output.shape) out_512_1=self.conv_512_1(sequence_output1d) #print('out 512 1 shape', out_512_1.shape) out_512_2=self.conv_512_2(out_512_1) #print('out 512 2 shape', out_512_2.shape) #elem_1=self.LayerNorm(sequence_output+out_512_2) #print('512 size: ', elem_1.shape) out_256_1=self.conv_256_1(out_512_2) out_256_2=self.conv_256_2(out_256_1) #elem_2=self.LayerNorm(sequence_output+out_256_2) #print('256 size: ', elem_2.shape) out_128_1=self.conv_128_1(out_256_2) out_128_2=self.conv_128_2(out_128_1) #elem_3=self.LayerNorm(sequence_output+out_128_2) #print('128 size: ', elem_3.shape) out_64_1=self.conv_64_1(out_128_2) out_64_2=self.conv_64_2(out_64_1) #elem_4=self.LayerNorm(sequence_output+out_64_2) #print('64 size: ', elem_4.shape) out_32_1=self.conv_32_1(out_64_2) out_32_2=self.conv_32_2(out_32_1) #elem_5=self.LayerNorm(sequence_output+out_32_2) #print('32 size: ', elem_5.shape) out_16_1=self.conv_16_1(out_32_2) out_16_2=self.conv_16_2(out_16_1) #elem_6=self.LayerNorm(sequence_output+out_16_2) #print('16 size: ', elem_6.shape) out_8_1=self.conv_8_1(out_16_2) out_8_2=self.conv_8_2(out_8_1) #elem_7=self.LayerNorm(sequence_output+out_8_2) #print('8 size: ', elem_7.shape) out_4_1=self.conv_4_1(out_8_2) out_4_2=self.conv_4_2(out_4_1) #elem_8=self.LayerNorm(sequence_output+out_4_2) #print('4 size: ', elem_8.shape) out=self.conv_out(out_4_2) #print('out before perm: ', out.shape) out = out.permute(0,2,1).contiguous() #out = self.LayerNorm2(out) #print('out after perm: ', out.shape) logits=out #logits = self.qa_outputs(sequence_output1d) #print('Dim of logits is',logits.size()) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 return total_loss else: return start_logits, end_logits
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.Dropout", "torch.cat", "torch.zeros", "torch.sqrt", "torch.arange", "torch.nn.Conv1d", "torch.nn.Softmax", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.nn.init.xavier_uniform_", "torch.ones", "torch.load", "torch.ones_like", "torch.zeros_like", "torch.matmul", "torch.nn.Embedding" ]
0.4.1
ankit-ai/BertQA-Attention-on-Steroids
49c3de360f88f55c8442b9f8153af56c28a689a9
1.11
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from collections import OrderedDict import pytest import funsor from funsor.domains import Bint from funsor.einsum import ( einsum, naive_contract_einsum, naive_einsum, naive_plated_einsum, ) from funsor.interpretations import normalize, reflect from funsor.interpreter import reinterpret from funsor.optimizer import apply_optimizer from funsor.tensor import Tensor from funsor.terms import Variable from funsor.testing import ( assert_close, make_chain_einsum, make_einsum_example, make_hmm_einsum, make_plated_hmm_einsum, ) from funsor.util import get_backend # TODO: make this file backend agnostic pytestmark = pytest.mark.skipif( get_backend() != "torch", reason="jax backend does not have pyro.ops.contract.einsum equivalent", ) if get_backend() == "torch": import torch from pyro.ops.contract import einsum as pyro_einsum from funsor.torch.distributions import Categorical OPTIMIZED_EINSUM_EXAMPLES = [make_chain_einsum(t) for t in range(2, 50, 10)] + [ make_hmm_einsum(t) for t in range(2, 50, 10) ] @pytest.mark.parametrize("equation", OPTIMIZED_EINSUM_EXAMPLES) @pytest.mark.parametrize( "backend", ["pyro.ops.einsum.torch_log", "pyro.ops.einsum.torch_map"] ) @pytest.mark.parametrize("einsum_impl", [naive_einsum, naive_contract_einsum]) def test_optimized_einsum(equation, backend, einsum_impl): inputs, outputs, sizes, operands, funsor_operands = make_einsum_example(equation) expected = pyro_einsum(equation, *operands, backend=backend)[0] with normalize: naive_ast = einsum_impl(equation, *funsor_operands, backend=backend) optimized_ast = apply_optimizer(naive_ast) actual = reinterpret(optimized_ast) # eager by default assert isinstance(actual, funsor.Tensor) and len(outputs) == 1 if len(outputs[0]) > 0: actual = actual.align(tuple(outputs[0])) assert expected.shape == actual.data.shape assert torch.allclose(expected, actual.data) for output in outputs: for i, output_dim in enumerate(output): assert output_dim in actual.inputs assert actual.inputs[output_dim].dtype == sizes[output_dim] @pytest.mark.parametrize( "eqn1,eqn2", [("a,ab->b", "bc->"), ("ab,bc,cd->d", "de,ef,fg->")] ) @pytest.mark.parametrize("optimize1", [False, True]) @pytest.mark.parametrize("optimize2", [False, True]) @pytest.mark.parametrize( "backend1", ["torch", "pyro.ops.einsum.torch_log", "pyro.ops.einsum.torch_map"] ) @pytest.mark.parametrize( "backend2", ["torch", "pyro.ops.einsum.torch_log", "pyro.ops.einsum.torch_map"] ) @pytest.mark.parametrize("einsum_impl", [naive_einsum, naive_contract_einsum]) def test_nested_einsum( eqn1, eqn2, optimize1, optimize2, backend1, backend2, einsum_impl ): inputs1, outputs1, sizes1, operands1, _ = make_einsum_example(eqn1, sizes=(3,)) inputs2, outputs2, sizes2, operands2, funsor_operands2 = make_einsum_example( eqn2, sizes=(3,) ) # normalize the probs for ground-truth comparison operands1 = [ operand.abs() / operand.abs().sum(-1, keepdim=True) for operand in operands1 ] expected1 = pyro_einsum(eqn1, *operands1, backend=backend1, modulo_total=True)[0] expected2 = pyro_einsum( outputs1[0] + "," + eqn2, *([expected1] + operands2), backend=backend2, modulo_total=True )[0] with normalize: funsor_operands1 = [ Categorical( probs=Tensor( operand, inputs=OrderedDict([(d, Bint[sizes1[d]]) for d in inp[:-1]]), ) )(value=Variable(inp[-1], Bint[sizes1[inp[-1]]])).exp() for inp, operand in zip(inputs1, operands1) ] output1_naive = einsum_impl(eqn1, *funsor_operands1, backend=backend1) with reflect: output1 = apply_optimizer(output1_naive) if optimize1 else output1_naive output2_naive = einsum_impl( outputs1[0] + "," + eqn2, *([output1] + funsor_operands2), backend=backend2 ) with reflect: output2 = apply_optimizer(output2_naive) if optimize2 else output2_naive actual1 = reinterpret(output1) actual2 = reinterpret(output2) assert torch.allclose(expected1, actual1.data) assert torch.allclose(expected2, actual2.data) PLATED_EINSUM_EXAMPLES = [ make_plated_hmm_einsum(num_steps, num_obs_plates=b, num_hidden_plates=a) for num_steps in range(3, 50, 6) for (a, b) in [(0, 1), (0, 2), (0, 0), (1, 1), (1, 2)] ] @pytest.mark.parametrize("equation,plates", PLATED_EINSUM_EXAMPLES) @pytest.mark.parametrize( "backend", ["pyro.ops.einsum.torch_log", "pyro.ops.einsum.torch_map"] ) def test_optimized_plated_einsum(equation, plates, backend): inputs, outputs, sizes, operands, funsor_operands = make_einsum_example(equation) expected = pyro_einsum(equation, *operands, plates=plates, backend=backend)[0] actual = einsum(equation, *funsor_operands, plates=plates, backend=backend) if len(equation) < 10: actual_naive = naive_plated_einsum( equation, *funsor_operands, plates=plates, backend=backend ) assert_close(actual, actual_naive) assert isinstance(actual, funsor.Tensor) and len(outputs) == 1 if len(outputs[0]) > 0: actual = actual.align(tuple(outputs[0])) assert expected.shape == actual.data.shape assert torch.allclose(expected, actual.data) for output in outputs: for i, output_dim in enumerate(output): assert output_dim in actual.inputs assert actual.inputs[output_dim].dtype == sizes[output_dim]
[ "torch.allclose" ]
1.11.0
fritzo/funsor
1d07af18c21894dd56e2f4f877c7845430c3b729
1.9
# Copyright 2021 MosaicML. All Rights Reserved. """Core ColOut classes and functions.""" from __future__ import annotations import logging import textwrap import weakref from typing import TypeVar import torch from PIL.Image import Image as PillowImage from torchvision.datasets import VisionDataset from composer.algorithms.utils.augmentation_common import image_as_type from composer.core import Algorithm, Event, Logger, State from composer.core.types import Tensor from composer.datasets.utils import add_vision_dataset_transform log = logging.getLogger(__name__) ImgT = TypeVar("ImgT", torch.Tensor, PillowImage) __all__ = ["ColOut", "ColOutTransform", "colout_batch"] def colout_batch(X: ImgT, p_row: float = 0.15, p_col: float = 0.15) -> ImgT: """Applies ColOut augmentation to a batch of images, dropping the same random rows and columns from all images in a batch. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from composer.algorithms.colout import colout_batch new_X = colout_batch( X=X_example, p_row=0.15, p_col=0.15 ) Args: X: :class:`PIL.Image.Image` or :class:`torch.Tensor` of image data. In the latter case, must be a single image of shape ``CHW`` or a batch of images of shape ``NCHW``. p_row: Fraction of rows to drop (drop along H). Default: ``0.15``. p_col: Fraction of columns to drop (drop along W). Default: ``0.15``. Returns: torch.Tensor: Input batch tensor with randomly dropped columns and rows. """ # Convert image to Tensor if needed X_tensor = image_as_type(X, torch.Tensor) # Get the dimensions of the image row_size = X_tensor.shape[-2] col_size = X_tensor.shape[-1] # Determine how many rows and columns to keep kept_row_size = int((1 - p_row) * row_size) kept_col_size = int((1 - p_col) * col_size) # Randomly choose indices to keep. Must be sorted for slicing kept_row_idx = sorted(torch.randperm(row_size)[:kept_row_size].numpy()) kept_col_idx = sorted(torch.randperm(col_size)[:kept_col_size].numpy()) # Keep only the selected row and columns X_colout = X_tensor[..., kept_row_idx, :] X_colout = X_colout[..., :, kept_col_idx] # convert back to same type as input, and strip added batch dim if needed; # we can't just reshape to input shape because we've reduced the spatial size if not isinstance(X, torch.Tensor) or (X.ndim < X_colout.ndim): X_colout = X_colout.reshape(X_colout.shape[-3:]) X_colout = image_as_type(X_colout, type(X)) return X_colout class ColOutTransform: """Torchvision-like transform for performing the ColOut augmentation, where random rows and columns are dropped from a single image. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from torchvision import datasets, transforms from composer.algorithms.colout import ColOutTransform colout_transform = ColOutTransform(p_row=0.15, p_col=0.15) transforms = transforms.Compose([colout_transform, transforms.ToTensor()]) Args: p_row (float): Fraction of rows to drop (drop along H). Default: ``0.15``. p_col (float): Fraction of columns to drop (drop along W). Default: ``0.15``. """ def __init__(self, p_row: float = 0.15, p_col: float = 0.15): self.p_row = p_row self.p_col = p_col def __call__(self, img: ImgT) -> ImgT: """Drops random rows and columns from a single image. Args: img (torch.Tensor or PIL Image): An input image as a torch.Tensor or PIL image Returns: torch.Tensor or PIL Image: A smaller image with rows and columns dropped """ return colout_batch(img, self.p_row, self.p_col) class ColOut(Algorithm): """Drops a fraction of the rows and columns of an input image. If the fraction of rows/columns dropped isn't too large, this does not significantly alter the content of the image, but reduces its size and provides extra variability. If ``batch`` is True (the default), this algorithm runs on :attr:`Event.INIT` to insert a dataset transformation. It is a no-op if this algorithm already applied itself on the :attr:`State.train_dataloader.dataset`. Otherwise, if ``batch`` is False, then this algorithm runs on :attr:`Event.AFTER_DATALOADER` to modify the batch. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from composer.algorithms import ColOut from composer.trainer import Trainer colout_algorithm = ColOut(p_row=0.15, p_col=0.15, batch=True) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[colout_algorithm], optimizers=[optimizer] ) Args: p_row (float): Fraction of rows to drop (drop along H). Default: ``0.15``. p_col (float): Fraction of columns to drop (drop along W). Default: ``0.15``. batch (bool): Run ColOut at the batch level. Default: ``True``. """ def __init__(self, p_row: float = 0.15, p_col: float = 0.15, batch: bool = True): if not (0 <= p_col <= 1): raise ValueError("p_col must be between 0 and 1") if not (0 <= p_row <= 1): raise ValueError("p_row must be between 0 and 1") self.p_row = p_row self.p_col = p_col self.batch = batch self._transformed_datasets = weakref.WeakSet() def match(self, event: Event, state: State) -> bool: if self.batch: return event == Event.AFTER_DATALOADER else: return event == Event.FIT_START and state.train_dataloader.dataset not in self._transformed_datasets def _apply_sample(self, state: State) -> None: """Add the ColOut dataset transform to the dataloader.""" dataset = state.train_dataloader.dataset transform = ColOutTransform(p_row=self.p_row, p_col=self.p_col) if not isinstance(dataset, VisionDataset): raise TypeError( textwrap.dedent(f"""\ To use {type(self).__name__}, the dataset must be a {VisionDataset.__qualname__}, not {type(dataset).__name__}""")) add_vision_dataset_transform(dataset, transform, is_tensor_transform=False) self._transformed_datasets.add(dataset) def _apply_batch(self, state: State) -> None: """Transform a batch of images using the ColOut augmentation.""" inputs, labels = state.batch_pair assert isinstance(inputs, Tensor), "Multiple Tensors not supported yet for ColOut" new_inputs = colout_batch(inputs, p_row=self.p_row, p_col=self.p_col) state.batch = (new_inputs, labels) def apply(self, event: Event, state: State, logger: Logger) -> None: if self.batch: self._apply_batch(state) else: self._apply_sample(state)
[ "torch.randperm" ]
1.9
anisehsani/composer
42599682d50409b4a4eb7c91fad85d67418cee13
1.0
""" Functions are modified on top of GFLA. GFLA's license: https://github.com/RenYurui/Global-Flow-Local-Attention/blob/master/LICENSE.md """ import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F import os import torchvision.transforms as transforms import numpy as np class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class MultiAffineRegularizationLoss(nn.Module): def __init__(self, kz_dic): super(MultiAffineRegularizationLoss, self).__init__() self.kz_dic=kz_dic self.method_dic={} for key in kz_dic: instance = AffineRegularizationLoss(kz_dic[key]) self.method_dic[key] = instance self.layers = sorted(kz_dic, reverse=True) def __call__(self, flow_fields): loss=0 for i in range(len(flow_fields)): method = self.method_dic[self.layers[i]] loss += method(flow_fields[i]) return loss class AffineRegularizationLoss(nn.Module): """docstring for AffineRegularizationLoss""" # kernel_size: kz def __init__(self, kz): super(AffineRegularizationLoss, self).__init__() self.kz = kz self.criterion = torch.nn.L1Loss() from models.networks.block_extractor.block_extractor import BlockExtractor from models.networks.local_attn_reshape.local_attn_reshape import LocalAttnReshape self.extractor = BlockExtractor(kernel_size=kz) self.reshape = LocalAttnReshape() temp = np.arange(kz) A = np.ones([kz*kz, 3]) A[:, 0] = temp.repeat(kz) A[:, 1] = temp.repeat(kz).reshape((kz,kz)).transpose().reshape(kz**2) AH = A.transpose() k = np.dot(A, np.dot(np.linalg.inv(np.dot(AH, A)), AH)) - np.identity(kz**2) #K = (A((AH A)^-1)AH - I) self.kernel = np.dot(k.transpose(), k) self.kernel = torch.from_numpy(self.kernel).unsqueeze(1).view(kz**2, kz, kz).unsqueeze(1) def __call__(self, flow_fields): grid = self.flow2grid(flow_fields) grid_x = grid[:,0,:,:].unsqueeze(1) grid_y = grid[:,1,:,:].unsqueeze(1) weights = self.kernel.type_as(flow_fields) #import pdb; pdb.set_trace() loss_x = self.calculate_loss(grid_x, weights) loss_y = self.calculate_loss(grid_y, weights) return loss_x+loss_y def calculate_loss(self, grid, weights): results = nn.functional.conv2d(grid, weights) # KH K B [b, kz*kz, w, h] b, c, h, w = results.size() kernels_new = self.reshape(results, self.kz) f = torch.zeros(b, 2, h, w).type_as(kernels_new) + float(int(self.kz/2)) grid_H = self.extractor(grid, f) result = torch.nn.functional.avg_pool2d(grid_H*kernels_new, self.kz, self.kz) loss = torch.mean(result)*self.kz**2 return loss def flow2grid(self, flow_field): b,c,h,w = flow_field.size() x = torch.arange(w).view(1, -1).expand(h, -1).type_as(flow_field).float() y = torch.arange(h).view(-1, 1).expand(-1, w).type_as(flow_field).float() grid = torch.stack([x,y], dim=0) grid = grid.unsqueeze(0).expand(b, -1, -1, -1) return flow_field+grid class VGGLoss(nn.Module): r""" Perceptual loss, VGG-based https://arxiv.org/abs/1603.08155 https://github.com/dxyang/StyleTransfer/blob/master/utils.py """ def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]): super(VGGLoss, self).__init__() self.add_module('vgg', VGG19()) self.criterion = torch.nn.L1Loss() self.weights = weights def compute_gram(self, x): b, ch, h, w = x.size() f = x.view(b, ch, w * h) f_T = f.transpose(1, 2) G = f.bmm(f_T) / (h * w * ch) return G def __call__(self, x, y, last_only=False, content_only=False): # Compute features x_vgg, y_vgg = self.vgg(x), self.vgg(y) if not last_only: content_loss = 0.0 content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1']) content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1']) content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1']) content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1']) content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) if content_only: return content_loss # Compute loss style_loss = 0.0 style_loss += self.criterion(self.compute_gram(x_vgg['relu2_2']), self.compute_gram(y_vgg['relu2_2'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu3_4']), self.compute_gram(y_vgg['relu3_4'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu4_4']), self.compute_gram(y_vgg['relu4_4'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu5_2']), self.compute_gram(y_vgg['relu5_2'])) else: content_loss = self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) if content_only: return content_loss style_loss = self.criterion(self.compute_gram(x_vgg['relu5_2']), self.compute_gram(y_vgg['relu5_2'])) return content_loss, style_loss class PerceptualCorrectness(nn.Module): r""" """ def __init__(self, layer=['rel1_1','relu2_1','relu3_1','relu4_1']): super(PerceptualCorrectness, self).__init__() self.add_module('vgg', VGG19()) self.layer = layer self.eps=1e-8 from models.networks.resample2d_package.resample2d import Resample2d self.resample = Resample2d(4, 1, sigma=2) def __call__(self, target, source, flow_list, used_layers, mask=None, use_bilinear_sampling=False): used_layers=sorted(used_layers, reverse=True) # self.target=target # self.source=source self.target_vgg, self.source_vgg = self.vgg(target), self.vgg(source) loss = 0 for i in range(len(flow_list)): loss += self.calculate_loss(flow_list[i], self.layer[used_layers[i]], mask, use_bilinear_sampling) return loss def calculate_loss(self, flow, layer, mask=None, use_bilinear_sampling=False): target_vgg = self.target_vgg[layer] source_vgg = self.source_vgg[layer] [b, c, h, w] = target_vgg.shape # maps = F.interpolate(maps, [h,w]).view(b,-1) flow = F.interpolate(flow, [h,w]) target_all = target_vgg.view(b, c, -1) #[b C N2] source_all = source_vgg.view(b, c, -1).transpose(1,2) #[b N2 C] source_norm = source_all/(source_all.norm(dim=2, keepdim=True)+self.eps) target_norm = target_all/(target_all.norm(dim=1, keepdim=True)+self.eps) correction = torch.bmm(source_norm, target_norm) #[b N2 N2] (correction_max,max_indices) = torch.max(correction, dim=1) # interple with bilinear sampling if use_bilinear_sampling: input_sample = self.bilinear_warp(source_vgg, flow).view(b, c, -1) else: input_sample = self.resample(source_vgg, flow).view(b, c, -1) correction_sample = F.cosine_similarity(input_sample, target_all) #[b 1 N2] loss_map = torch.exp(-correction_sample/(correction_max+self.eps)) if mask is None: loss = torch.mean(loss_map) - torch.exp(torch.tensor(-1).type_as(loss_map)) else: mask=F.interpolate(mask, size=(target_vgg.size(2), target_vgg.size(3))) mask=mask.view(-1, target_vgg.size(2)*target_vgg.size(3)) loss_map = loss_map - torch.exp(torch.tensor(-1).type_as(loss_map)) loss = torch.sum(mask * loss_map)/(torch.sum(mask)+self.eps) # print(correction_sample[0,2076:2082]) # print(correction_max[0,2076:2082]) # coor_x = [32,32] # coor = max_indices[0,32+32*64] # coor_y = [int(coor%64), int(coor/64)] # source = F.interpolate(self.source, [64,64]) # target = F.interpolate(self.target, [64,64]) # source_i = source[0] # target_i = target[0] # source_i = source_i.view(3, -1) # source_i[:,coor]=-1 # source_i[0,coor]=1 # source_i = source_i.view(3,64,64) # target_i[:,32,32]=-1 # target_i[0,32,32]=1 # lists = str(int(torch.rand(1)*100)) # img_numpy = util.tensor2im(source_i.data) # util.save_image(img_numpy, 'source'+lists+'.png') # img_numpy = util.tensor2im(target_i.data) # util.save_image(img_numpy, 'target'+lists+'.png') return loss def bilinear_warp(self, source, flow): [b, c, h, w] = source.shape x = torch.arange(w).view(1, -1).expand(h, -1).type_as(source).float() / (w-1) y = torch.arange(h).view(-1, 1).expand(-1, w).type_as(source).float() / (h-1) grid = torch.stack([x,y], dim=0) grid = grid.unsqueeze(0).expand(b, -1, -1, -1) grid = 2*grid - 1 flow = 2*flow/torch.tensor([w, h]).view(1, 2, 1, 1).expand(b, -1, h, w).type_as(flow) grid = (grid+flow).permute(0, 2, 3, 1) input_sample = F.grid_sample(source, grid).view(b, c, -1) return input_sample class VGG19(torch.nn.Module): def __init__(self): super(VGG19, self).__init__() features = models.vgg19(pretrained=True).features self.relu1_1 = torch.nn.Sequential() self.relu1_2 = torch.nn.Sequential() self.relu2_1 = torch.nn.Sequential() self.relu2_2 = torch.nn.Sequential() self.relu3_1 = torch.nn.Sequential() self.relu3_2 = torch.nn.Sequential() self.relu3_3 = torch.nn.Sequential() self.relu3_4 = torch.nn.Sequential() self.relu4_1 = torch.nn.Sequential() self.relu4_2 = torch.nn.Sequential() self.relu4_3 = torch.nn.Sequential() self.relu4_4 = torch.nn.Sequential() self.relu5_1 = torch.nn.Sequential() self.relu5_2 = torch.nn.Sequential() self.relu5_3 = torch.nn.Sequential() self.relu5_4 = torch.nn.Sequential() for x in range(2): self.relu1_1.add_module(str(x), features[x]) for x in range(2, 4): self.relu1_2.add_module(str(x), features[x]) for x in range(4, 7): self.relu2_1.add_module(str(x), features[x]) for x in range(7, 9): self.relu2_2.add_module(str(x), features[x]) for x in range(9, 12): self.relu3_1.add_module(str(x), features[x]) for x in range(12, 14): self.relu3_2.add_module(str(x), features[x]) for x in range(14, 16): self.relu3_2.add_module(str(x), features[x]) for x in range(16, 18): self.relu3_4.add_module(str(x), features[x]) for x in range(18, 21): self.relu4_1.add_module(str(x), features[x]) for x in range(21, 23): self.relu4_2.add_module(str(x), features[x]) for x in range(23, 25): self.relu4_3.add_module(str(x), features[x]) for x in range(25, 27): self.relu4_4.add_module(str(x), features[x]) for x in range(27, 30): self.relu5_1.add_module(str(x), features[x]) for x in range(30, 32): self.relu5_2.add_module(str(x), features[x]) for x in range(32, 34): self.relu5_3.add_module(str(x), features[x]) for x in range(34, 36): self.relu5_4.add_module(str(x), features[x]) # don't need the gradients, just want the features for param in self.parameters(): param.requires_grad = False def forward(self, x): relu1_1 = self.relu1_1(x) relu1_2 = self.relu1_2(relu1_1) relu2_1 = self.relu2_1(relu1_2) relu2_2 = self.relu2_2(relu2_1) relu3_1 = self.relu3_1(relu2_2) relu3_2 = self.relu3_2(relu3_1) relu3_3 = self.relu3_3(relu3_2) relu3_4 = self.relu3_4(relu3_3) relu4_1 = self.relu4_1(relu3_4) relu4_2 = self.relu4_2(relu4_1) relu4_3 = self.relu4_3(relu4_2) relu4_4 = self.relu4_4(relu4_3) relu5_1 = self.relu5_1(relu4_4) relu5_2 = self.relu5_2(relu5_1) relu5_3 = self.relu5_3(relu5_2) relu5_4 = self.relu5_4(relu5_3) out = { 'relu1_1': relu1_1, 'relu1_2': relu1_2, 'relu2_1': relu2_1, 'relu2_2': relu2_2, 'relu3_1': relu3_1, 'relu3_2': relu3_2, 'relu3_3': relu3_3, 'relu3_4': relu3_4, 'relu4_1': relu4_1, 'relu4_2': relu4_2, 'relu4_3': relu4_3, 'relu4_4': relu4_4, 'relu5_1': relu5_1, 'relu5_2': relu5_2, 'relu5_3': relu5_3, 'relu5_4': relu5_4, } return out
[ "torch.stack", "torch.bmm", "torch.nn.BCEWithLogitsLoss", "torch.exp", "torch.sum", "torch.nn.functional.avg_pool2d", "torch.tensor", "torch.nn.functional.conv2d", "torch.zeros", "torch.max", "torch.nn.Sequential", "torch.nn.functional.cosine_similarity", "torch.rand", "torch.nn.MSELoss", "torch.arange", "torch.nn.functional.interpolate", "torch.nn.L1Loss", "torch.from_numpy", "torch.nn.functional.grid_sample", "torch.mean" ]
1.0.0
fyviezhao/dressing-in-order
63790663ad0420d9d2dabed22d5c56dd40422313
1.8
import os import torch import torchvision.transforms as transforms import torchvision.utils as vutils from PIL import Image from abc import abstractmethod from numpy import inf from logger import TensorboardWriter from model.esrgan.utils.utils import MODEL_KEY, GENERATOR_KEY, DISCRIMINATOR_KEY from test import save_predictions_as_imgs # Load base low-resolution image. fixed_lr = transforms.ToTensor()(Image.open(os.path.join("data/inputs/Set5", "butterfly.png"))).unsqueeze(0) class BaseTrainer: """ Base class for all trainers """ def __init__(self, models, criterion, metric_ftns, optimizers, config, device, monitor_cfg_key='monitor', epochs_cfg_key='epochs'): self.device = device self.fixed_lr = fixed_lr.to(self.device) self.config = config self.logger = config.get_logger('trainer', config['trainer']['verbosity']) self.models = models self.criterion = criterion self.metric_ftns = metric_ftns self.optimizers = optimizers cfg_trainer = config['trainer'] self.epochs = cfg_trainer[epochs_cfg_key] self.save_period = cfg_trainer['save_period'] self.monitor = cfg_trainer.get(monitor_cfg_key, 'off') # configuration to monitor model performance and save best if self.monitor == 'off': self.mnt_mode = 'off' self.mnt_best = 0 else: self.mnt_mode, self.mnt_metric = self.monitor.split() assert self.mnt_mode in ['min', 'max'] self.mnt_best = inf if self.mnt_mode == 'min' else -inf self.early_stop = cfg_trainer.get('early_stop', inf) self.plot_epoch_result = cfg_trainer.get('plot_epoch_result', inf) if self.early_stop <= 0: self.early_stop = inf self.start_epoch = 1 self.checkpoint_dir = config.save_dir # setup visualization writer instance self.writer = TensorboardWriter(config.log_dir, self.logger, cfg_trainer['tensorboard']) if config.resume is not None: self._resume_checkpoint(config.resume) @abstractmethod def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Current epoch number """ raise NotImplementedError def train(self): """ Full training logic """ not_improved_count = 0 for epoch in range(self.start_epoch, self.epochs + 1): result = self._train_epoch(epoch) # save logged informations into log dict log = {'epoch': epoch} log.update(result) # print logged informations to the screen for key, value in log.items(): self.logger.info(' {:15s}: {}'.format(str(key), value)) # evaluate model performance according to configured metric, save best checkpoint as model_best best = False if self.mnt_mode != 'off': try: # check whether model performance improved or not, according to specified metric(mnt_metric) improved = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.mnt_best) or \ (self.mnt_mode == 'max' and log[self.mnt_metric] >= self.mnt_best) except KeyError: self.logger.warning("Warning: Metric '{}' is not found. " "Model performance monitoring is disabled.".format(self.mnt_metric)) self.mnt_mode = 'off' improved = False if improved: self.mnt_best = log[self.mnt_metric] not_improved_count = 0 best = True else: not_improved_count += 1 if not_improved_count > self.early_stop: self.logger.info("Validation performance didn\'t improve for {} epochs. " "Training stops.".format(self.early_stop)) break if epoch % self.save_period == 0: self._save_checkpoint(epoch, save_best=best) def _save_checkpoint(self, epoch, save_best=False): """ Saving checkpoints :param epoch: current epoch number :param log: logging information of the epoch :param save_best: if True, rename the saved checkpoint to 'model_best.pth' """ for i, model in enumerate(self.models): optimizer = self.optimizers[i] arch = type(model).__name__ state = { 'arch': arch, 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'monitor_best': self.mnt_best, 'config': self.config } filename = str(self.checkpoint_dir / 'checkpoint-{}_epoch_{}.pth'.format(arch, epoch)) torch.save(state, filename) self.logger.info("Saving checkpoint: {} ...".format(filename)) if save_best: best_path = str(self.checkpoint_dir / f'model_{arch}_best.pth') torch.save(state, best_path) self.logger.info(f'Saving current best: model_{arch}_best.pth ...') # Each one epoch create a sr image. arch = type(self.models[MODEL_KEY]).__name__ with torch.no_grad(): sr = self.models[MODEL_KEY](self.fixed_lr) vutils.save_image( sr.detach(), os.path.join(self.checkpoint_dir, f'checkpoint-{arch}_epoch_{epoch}.png'), normalize=True ) def _resume_checkpoint(self, resume_paths): """ Resume from saved checkpoints :param resume_path: Checkpoint path to be resumed """ for i, path in enumerate(resume_paths): self.logger.info("Loading checkpoint: {} ...".format(path)) checkpoint = torch.load(path) self.start_epoch = checkpoint['epoch'] + 1 self.mnt_best = checkpoint['monitor_best'] if 'Generator' in checkpoint['arch']: key = GENERATOR_KEY arch_param = 'arch_esrgan_gen' elif 'Discriminator' in checkpoint['arch']: key = DISCRIMINATOR_KEY arch_param = 'arch_esrgan_disc' else: key = MODEL_KEY arch_param = 'arch_single' # load architecture params from checkpoint. if checkpoint['config'][arch_param] != self.config[arch_param]: self.logger.warning( "Warning: Architecture configuration given in config file is different from that of " "checkpoint. This may yield an exception while state_dict is being loaded.") self.models[key].load_state_dict(checkpoint['state_dict']) # load optimizer state from checkpoint only when optimizer type is not changed. if checkpoint['config']['optimizer']['type'] != self.config['optimizer']['type']: self.logger.warning( "Warning: Optimizer type given in config file is different from that of checkpoint. " "Optimizer parameters not being resumed.") else: self.optimizers[key].load_state_dict(checkpoint['optimizer']) self.logger.info("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch))
[ "torch.save", "torch.no_grad", "torch.load" ]
1.8.0
Lo1s/superresolution
18052465694bfc2543b9af71d8012d854a516d1a
1.7
import torch import torchaudio import torchvision from torchvision import transforms import nltk from nltk.stem import WordNetLemmatizer from collections import defaultdict # from allennlp.predictors.predictor import Predictor # import allennlp_models.structured_prediction import numpy as np import re import os import json from tqdm import tqdm from itertools import combinations from copy import deepcopy from PIL import Image from scipy import signal from kaldiio import ReadHelper # dep_parser = Predictor.from_path("https://storage.googleapis.com/allennlp-public-models/biaffine-dependency-parser-ptb-2020.04.06.tar.gz") # dep_parser._model = dep_parser._model.cuda() # lemmatizer = WordNetLemmatizer() UNK = "###UNK###" NULL = "###NULL###" BLANK = "###BLANK###" SIL = "SIL" IGNORED_TOKENS = ["GARBAGE", "+BREATH+", "+LAUGH+", "+NOISE+"] lemmatizer = WordNetLemmatizer() def log_normalize(x): x.add_(1e-6).log_() mean = x.mean() std = x.std() return x.sub_(mean).div_(std + 1e-6) def fix_embedding_length(emb, L, padding=0): size = emb.size()[1:] if emb.size(0) < L: if padding == 0: pad = torch.zeros((L-emb.size(0),)+size, dtype=emb.dtype) else: pad = padding*torch.ones((L-emb.size(0),)+size, dtype=emb.dtype) emb = torch.cat([emb, pad], dim=0) else: emb = emb[:L] return emb def collate_fn_spoken_word(batch): audios = [t[0] for t in batch] phone_labels = [t[1] for t in batch] labels = [t[2] for t in batch] input_masks = [t[3] for t in batch] phone_masks = [t[4] for t in batch] word_masks = [t[5] for t in batch] indices = [t[6] for t in batch] if isinstance(audios[0], list): audios = [ torch.nn.utils.rnn.pad_sequence(audio)\ for audio in audios ] input_masks = [ torch.nn.utils.rnn.pad_sequence(input_mask) for input_mask in input_masks ] audios = torch.nn.utils.rnn.pad_sequence(audios, batch_first=True) # (bsz, n_seg, n_pos, d) input_masks = torch.nn.utils.rnn.pad_sequence(input_masks, batch_first=True) # (bsz, n_seg, n_pos) audios = audios.permute(0, 2, 1, 3) input_masks = input_masks.permute(0, 2, 1) else: audios = torch.nn.utils.rnn.pad_sequence(audios, batch_first=True) input_masks = torch.nn.utils.rnn.pad_sequence(input_masks, batch_first=True) phone_labels = torch.nn.utils.rnn.pad_sequence(phone_labels, batch_first=True) labels = torch.stack(labels) phone_masks = torch.nn.utils.rnn.pad_sequence(phone_masks, batch_first=True) return audios, phone_labels, labels, input_masks, phone_masks, indices def embed(feat, method='average'): if method == 'average': return feat.mean(0) elif method == 'resample': new_feat = signal.resample(feat.detach().numpy(), 4) return torch.FloatTensor(new_feat.flatten()) class SpokenWordDataset(torch.utils.data.Dataset): def __init__( self, data_path, preprocessor, split, splits = { "train": ["train-clean-100", "train-clean-360"], "validation": ["dev-clean"], "test": ["dev-clean"], }, augment=False, use_segment=False, audio_feature="cpc", phone_label="predicted", ds_method="average", sample_rate=16000, min_class_size=50, n_overlap=0, debug=False ): self.preprocessor = preprocessor if debug: splits['train'] = [splits['train'][0]] self.splits = splits[split] self.data_path = data_path self.use_segment = use_segment self.ds_method = ds_method self.sample_rate = sample_rate self.n_overlap = n_overlap self.debug = debug data = [] for sp in self.splits: # Load data paths to audio and visual features examples = load_data_split(preprocessor.dataset_name, data_path, sp, min_class_size=min_class_size, audio_feature=audio_feature, phone_label=phone_label, debug=debug) data.extend(examples) print("Number of {} audio files = {}".format(split, len(examples))) # Set up transforms self.audio_transforms = [ torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, win_length=sample_rate * 25 // 1000, n_mels=preprocessor.num_features, hop_length=sample_rate * 10 // 1000, ), torchvision.transforms.Lambda(log_normalize), ] if augment: augmentation = [ torchaudio.transforms.FrequencyMasking(27, iid_masks=True), torchaudio.transforms.FrequencyMasking(27, iid_masks=True), torchaudio.transforms.TimeMasking(100, iid_masks=True), torchaudio.transforms.TimeMasking(100, iid_masks=True), ] self.audio_transforms.extend(augmentation) self.audio_transforms = torchvision.transforms.Compose(self.audio_transforms) audio = [example["audio"] for example in data] text = [example["text"] for example in data] phonemes = [example["phonemes"] for example in data] true_phonemes = [example["true_phonemes"] for example in data] self.dataset = [list(item) for item in zip(audio, text, phonemes, true_phonemes)] self.class_to_indices = defaultdict(list) for idx, item in enumerate(self.dataset): self.class_to_indices[item[1]].append(idx) self.audio_feature_type = audio_feature def load_audio(self, audio_file): if self.audio_feature_type in ["cpc", "cpc_big"]: if audio_file.split('.')[-1] == "txt": audio = np.loadtxt(audio_file) else: with ReadHelper(f"ark: gunzip -c {audio_file} |") as ark_f: for k, audio in ark_f: continue inputs = torch.FloatTensor(audio) elif self.audio_feature_type in ["bnf", "bnf+cpc"]: if audio_file.split('.')[-1] == "txt": audio = np.loadtxt(audio_file) else: with ReadHelper(f"ark: gunzip -c {audio_file} |") as ark_f: for k, audio in ark_f: continue if self.audio_feature_type == "bnf+cpc": cpc_feat = np.loadtxt(audio_file.replace("bnf", "cpc")) feat_len = min(audio.shape[0], cpc_feat.shape[0]) audio = np.concatenate([audio[:feat_len], cpc_feat[:feat_len]], axis=-1) inputs = torch.FloatTensor(audio) elif self.audio_feature_type in ['vq-wav2vec', 'wav2vec', 'wav2vec2']: audio, _ = torchaudio.load(audio_file) inputs = audio.squeeze(0) else: Exception(f"Audio feature type {self.audio_feature_type} not supported") input_mask = torch.ones(inputs.size(0)) return inputs, input_mask def segment(self, feat, segments, method="average"): """ Args: feat : (num. of frames, feature dim.) segments : a list of dicts of phoneme boundaries Returns: sfeat : (max num. of segments, feature dim.) mask : (max num. of segments,) """ sfeats = [] word_begin = segments[0]["begin"] dur = segments[-1]["end"] - segments[0]["begin"] for i, segment in enumerate(segments): if segment["text"] == SIL: continue phn = segment["text"] begin = int(round((segment["begin"]-word_begin)*100, 3)) end = int(round((segment["end"]-word_begin)*100, 3)) if self.n_overlap > 0: begin = max(begin - self.n_overlap, 0) end = max(end + self.n_overlap, feat.size(0)) dur = max(end - begin, 1) if begin >= feat.size(0): print(f'Warning: ({phn}, {begin}, {end}) begin idx {begin} >= feature size {feat.size(0)}') segment_feat = feat[-1] elif begin != end: segment_feat = embed(feat[begin:end], method=method) else: segment_feat = embed(feat[begin:end+1], method=method) if torch.any(torch.isnan(segment_feat)): print(f'Bad segment feature for feature of size {feat.size()}, begin {begin}, end {end}') sfeats.append(segment_feat) sfeat = torch.stack(sfeats) if method == "no-op": mask = torch.zeros(len(feat), len(sfeats)) else: mask = torch.ones(len(sfeats)) return sfeat, mask def unsegment(self, sfeat, segments): """ Args: sfeat : (num. of segments, feature dim.) segments : a list of dicts of phoneme boundaries Returns: feat : (num. of frames, feature dim.) """ if sfeat.ndim == 1: sfeat = sfeat.unsqueeze(-1) word_begin = segments[0]['begin'] dur = segments[-1]["end"] - segments[0]["begin"] nframes = int(round(dur * 100, 3)) feat = torch.zeros((nframes, *sfeat.size()[1:])) for i, segment in enumerate(segments): if segment["text"] == SIL: continue begin = int(round((segment["begin"]-word_begin)*100, 3)) end = int(round((segment["end"]-word_begin)*100, 3)) if i >= sfeat.size(0): break if begin != end: feat[begin:end] = sfeat[i] else: feat[begin:end+1] = sfeat[i] return feat.squeeze(-1) def __getitem__(self, idx): audio_file, label, phoneme_dicts, _ = self.dataset[idx] audio_inputs, input_mask = self.load_audio(audio_file) if self.use_segment: audio_inputs, input_mask = self.segment(audio_inputs, phoneme_dicts, method=self.ds_method) phonemes = [phn_dict["text"] for phn_dict in phoneme_dicts] word_labels = self.preprocessor.to_word_index([label]) phone_labels = self.preprocessor.to_index(phonemes) if self.use_segment: word_mask = torch.zeros(1, len(phoneme_dicts), len(phoneme_dicts)) else: word_mask = torch.zeros(1, len(audio_inputs), len(audio_inputs)) for t in range(len(phoneme_dicts)): word_mask[0, t, t] = 1. phone_mask = torch.ones(len(phonemes)) return audio_inputs,\ phone_labels,\ word_labels,\ input_mask,\ phone_mask,\ word_mask,\ idx def __len__(self): return len(self.dataset) class SpokenWordPreprocessor: def __init__( self, dataset_name, data_path, num_features, splits = { "train": ["train-clean-100", "train-clean-360"], "validation": ["dev-clean"], "test": ["dev-clean"] }, tokens_path=None, lexicon_path=None, use_words=False, prepend_wordsep=False, audio_feature="mfcc", phone_label="predicted", sample_rate=16000, min_class_size=50, ignore_index=-100, use_blank=True, debug=False, ): self.dataset_name = dataset_name self.data_path = data_path self.num_features = num_features self.ignore_index = ignore_index self.min_class_size = min_class_size self.use_blank = use_blank self.wordsep = " " self._prepend_wordsep = prepend_wordsep if debug: splits['train'] = [splits['train'][0]] metadata_file = os.path.join(data_path, f"{dataset_name}.json") data = [] for split_type, spl in splits.items(): if split_type == 'test_oos': continue for sp in spl: data.extend(load_data_split(dataset_name, data_path, sp, audio_feature=audio_feature, phone_label=phone_label, min_class_size=self.min_class_size, debug=debug)) visual_words = set() tokens = set() for ex in data: visual_words.add(ex["text"]) for phn in ex["phonemes"]: if phone_label == "groundtruth" and not "phoneme" in phn["text"]: phn["text"] = re.sub(r"[0-9]", "", phn["text"]) tokens.add(phn["text"]) self.tokens = sorted(tokens) self.visual_words = sorted(visual_words) if self.use_blank: self.tokens = [BLANK]+self.tokens self.visual_words = [BLANK]+self.visual_words self.tokens_to_index = {t:i for i, t in enumerate(self.tokens)} self.words_to_index = {t:i for i, t in enumerate(self.visual_words)} print(f"Preprocessor: number of phone classes: {self.num_tokens}") print(f"Preprocessor: number of visual word classes: {self.num_visual_words}") @property def num_tokens(self): return len(self.tokens) @property def num_visual_words(self): return len(self.visual_words) def to_index(self, sent): tok_to_idx = self.tokens_to_index return torch.LongTensor([tok_to_idx.get(t, 0) for t in sent]) def to_word_index(self, sent): tok_to_idx = self.words_to_index return torch.LongTensor([tok_to_idx.get(t, 0) for t in sent]) def to_text(self, indices): text = [] for t, i in enumerate(indices): if (i == 0) and (t != 0): prev_token = text[t-1] text.append(prev_token) else: text.append(self.tokens[i]) return text def to_word_text(self, indices): return [self.visual_words[i] for i in indices] def tokens_to_word_text(self, indices): T = len(indices) path = [self.visual_words[i] for i in indices] sent = [] for i in range(T): if path[i] == BLANK: continue elif (i != 0) and (path[i] == path[i-1]): continue else: sent.append(path[i]) return sent def tokens_to_text(self, indices): T = len(indices) path = self.to_text(indices) sent = [] for i in range(T): if path[i] == BLANK: continue elif (i != 0) and (path[i] == path[i-1]): continue else: sent.append(path[i]) return sent def load_data_split(dataset_name, data_path, split, audio_feature="mfcc", phone_label="predicted", min_class_size=50, max_keep_size=1000, debug=False): """ Returns: examples : a list of mappings of { "audio" : filename of audio, "text" : a list of tokenized words for the class name, } """ examples = [] if os.path.exists(os.path.join(data_path, f'{split}.json')): word_files = [f'{split}.json'] else: word_files = [word_file for word_file in os.listdir(data_path) if word_file.split('.')[-1] == 'json'] for word_file in word_files: word_f = open(os.path.join(data_path, word_file), "r") label_counts = dict() for line in word_f: if debug and len(examples) >= 100: break word = json.loads(line.rstrip("\n")) label = lemmatizer.lemmatize(word["label"].lower()) if not label in label_counts: label_counts[label] = 1 else: label_counts[label] += 1 if label_counts[label] > max_keep_size: continue audio_path = None audio_id = word["audio_id"] word_id = word['word_id'] if audio_feature in ["mfcc", "vq-wav2vec", "wav2vec2", "wav2vec"]: audio_path = os.path.join(data_path, split, f"{audio_id}_{word_id}.wav") if not os.path.exists(audio_path): word_id = int(word_id) audio_file = f"{audio_id}_{word_id:04d}.wav" audio_path = os.path.join(data_path, split, audio_file) elif audio_feature in ["cpc", "cpc_big"]: audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}_txt/{audio_id}_{word_id}.txt") if not os.path.exists(audio_path): audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}/{audio_id}_{word_id}.ark.gz") if not os.path.exists(audio_path): word_id = int(word_id) audio_file = f"{audio_id}_{word_id:04d}.txt" audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}_txt", audio_file) elif audio_feature in ["bnf", "bnf+cpc"]: audio_file = f"{audio_id}_{word_id}.txt" audio_path = os.path.join(data_path, f"../{dataset_name}_bnf_txt", audio_file) else: Exception(f"Audio feature type {audio_feature} not supported") true_phonemes = word["phonemes"] if "children" in true_phonemes: true_phonemes = [phn for phn in true_phonemes["children"] if phn["text"] != SIL] if len(true_phonemes) == 0: continue for phn_idx in range(len(true_phonemes)): # In Mboshi, each phoneme is written as ``phoneme{index}'' if not "phoneme" in true_phonemes[phn_idx]["text"]: true_phonemes[phn_idx]["text"] = re.sub(r"[0-9]", "", true_phonemes[phn_idx]["text"]) noisy = False for phn in true_phonemes: if phn["text"] in IGNORED_TOKENS or (phn["text"][0] == "+"): noisy = True break if noisy: continue dur = round(true_phonemes[-1]['end'] - true_phonemes[0]['begin'], 3) phonemes = None if phone_label == "groundtruth": phonemes = deepcopy(true_phonemes) elif phone_label == "multilingual": phonemes = [phn for phn in word["predicted_segments_multilingual"] if phn["text"] != SIL] elif phone_label == "multilingual_phones": phonemes = deepcopy(word["multilingual_phones"]) elif phone_label == "predicted": phonemes = [phn for phn in word["predicted_segments"] if phn["text"] != SIL] elif phone_label == "predicted_wav2vec2": if not "predicted_segments_wav2vec2" in word: continue phonemes = [phn for phn in word["predicted_segments_wav2vec2"] if phn["text"] != SIL] else: raise ValueError(f"Invalid phone label type: {phone_label}") phonemes = [phn for phn in phonemes if round(phn['end'] - phonemes[0]['begin'], 3) <= dur] if not len(phonemes): print(f'Skip example without segments: {phonemes}') continue if phonemes[-1]['end'] - phonemes[0]['begin'] != dur: phonemes[-1]['end'] = phonemes[0]['begin'] + dur example = {"audio": audio_path, "text": label, "phonemes": phonemes, "true_phonemes": true_phonemes} examples.append(example) word_f.close() return examples if __name__ == "__main__": preproc = SpokenWordPreprocessor(num_features=80, data_path="/ws/ifp-53_2/hasegawa/lwang114/data/flickr30k/")
[ "torch.cat", "torch.stack", "torch.isnan", "torch.nn.utils.rnn.pad_sequence", "torch.FloatTensor" ]
1.7.1
lwang114/InformationQuantizer
45419140708e612495fd324a9e5724306d4d4129
0.4
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # 这个是做cities 问题的 class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) # 这个初始化没看太懂. in_features 就是论文这个的F out_features 就是论文中的F' nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) # 取w的一行 N = h.size()[0]# batch_size a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' # 这个是做content问题的. class SpecialSpmmFunction(torch.autograd.Function): """Special function for only sparse region backpropataion layer.""" @staticmethod def forward(ctx, indices, values, shape, b): assert indices.requires_grad == False a = torch.sparse_coo_tensor(indices, values, shape) ctx.save_for_backward(a, b) ctx.N = shape[0] return torch.matmul(a, b) @staticmethod def backward(ctx, grad_output): a, b = ctx.saved_tensors grad_values = grad_b = None if ctx.needs_input_grad[1]: grad_a_dense = grad_output.matmul(b.t()) edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :] grad_values = grad_a_dense.view(-1)[edge_idx] if ctx.needs_input_grad[3]: grad_b = a.t().matmul(grad_output) return None, grad_values, None, grad_b class SpecialSpmm(nn.Module): def forward(self, indices, values, shape, b): return SpecialSpmmFunction.apply(indices, values, shape, b) class SpGraphAttentionLayer(nn.Module): """ Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(SpGraphAttentionLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_normal_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(1, 2*out_features))) nn.init.xavier_normal_(self.a.data, gain=1.414) self.dropout = nn.Dropout(dropout) self.leakyrelu = nn.LeakyReLU(self.alpha) self.special_spmm = SpecialSpmm() def forward(self, input, adj): dv = 'cuda' if input.is_cuda else 'cpu' N = input.size()[0] edge = adj.nonzero().t() h = torch.mm(input, self.W) # h: N x out assert not torch.isnan(h).any() # Self-attention on the nodes - Shared attention mechanism edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t() # edge: 2*D x E edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze())) assert not torch.isnan(edge_e).any() # edge_e: E e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N,1), device=dv)) # e_rowsum: N x 1 edge_e = self.dropout(edge_e) # edge_e: E h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h) assert not torch.isnan(h_prime).any() # h_prime: N x out h_prime = h_prime.div(e_rowsum) # h_prime: N x out assert not torch.isnan(h_prime).any() if self.concat: # if this layer is not last layer, return F.elu(h_prime) else: # if this layer is last layer, return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
[ "torch.zeros", "torch.Size", "torch.nn.Dropout", "torch.cat", "torch.isnan", "torch.nn.LeakyReLU", "torch.nn.functional.dropout", "torch.nn.init.xavier_uniform_", "torch.nn.functional.elu", "torch.mm", "torch.ones", "torch.sparse_coo_tensor", "torch.nn.functional.softmax", "torch.ones_like", "torch.nn.init.xavier_normal_", "torch.matmul", "torch.where" ]
0.4.1
zhangbo2008/GAT_network
c871a2aceceaa5d638c96c21d23d64ed07c07b4c
1.10
import os import pickle import random import zlib from os import path from typing import List, Optional import pandas as pd import torch from transformers import DistilBertTokenizerFast import wandb from artificial_detection.data.data import BinaryDataset, TextDetectionDataset class MockDataset: """ Mock dataset for testing. """ dataset = [ {"ru": "добрый день", "en": "good evening",}, {"ru": "извините", "en": "i am sorry",}, ] _translations = ["good evening", "i am sorry"] dataset_name = "mock" @classmethod def targets(cls) -> List[str]: return [sample["en"] for sample in cls.dataset] @classmethod def translations(cls) -> List[str]: return cls._translations @classmethod def list(cls) -> List[str]: dataset_list = [] for dct in cls.dataset: dataset_list.extend([dct["ru"], dct["en"]]) return dataset_list def get_dvc_storage_path() -> str: """ Get the full path to the DVC storage. Returns ------- str Path to the DVC Storage. """ dir_path = path.dirname(path.dirname(path.realpath(__file__))) return path.join(dir_path, "resources/data") def get_dataset_path(dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin") -> str: dvc_path = get_dvc_storage_path() if langs: dataset_real_name = f"{dataset_name}.{langs[0]}-{langs[1]}.{ext}" else: dataset_real_name = f"{dataset_name}.{ext}" return path.join(dvc_path, dataset_real_name) def load_binary_dataset(dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin") -> BinaryDataset: dataset_path = get_dataset_path(dataset_name, langs=langs, ext=ext) with open(dataset_path, "rb") as file: compressed_dataset = file.read() dumped_dataset = zlib.decompress(compressed_dataset) dataset = pickle.loads(dumped_dataset) return dataset def save_binary_dataset( dataset: BinaryDataset, dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin" ) -> None: dataset_path = get_dataset_path(dataset_name, langs=langs, ext=ext) with open(dataset_path, "wb") as file: dumped_dataset = pickle.dumps(dataset, protocol=pickle.HIGHEST_PROTOCOL) compressed_dataset = zlib.compress(dumped_dataset) file.write(compressed_dataset) def translations_to_torch_dataset( targets: List[str], translations: List[str], easy_nmt_offline: Optional[bool] = None, device: Optional[str] = None ) -> TextDetectionDataset: corpus = TextDetectionDataset.get_corpus(targets, translations) labels = torch.FloatTensor([0, 1] * len(targets)) tokenizer_path = "resources/data/tokenizer" if easy_nmt_offline else "distilbert-base-uncased" tokenizer = DistilBertTokenizerFast.from_pretrained(tokenizer_path) encodings = tokenizer(corpus, truncation=True, padding=True) encodings, labels = TextDetectionDataset.to_device(encodings, labels, device=device) dataset = TextDetectionDataset(encodings, labels, device=device) return dataset def save_translations_texts( sources: List[str], targets: List[str], translations: List[str], dataset_name: str, src_lang: str, trg_lang: str ) -> None: """ Saves data to csv. """ print("Saving sources/translations in csv...") df_data = list(zip(sources, targets, translations)) df = pd.DataFrame(data=df_data, columns=["sources", "targets", "translations"]) csv_path = get_dataset_path(f"{dataset_name}.{src_lang}-{trg_lang}", ext="csv") df.to_csv(csv_path, index=False) def ord_cyrillic(c: str) -> int: if "а" <= c <= "я": return ord(c) - ord("а") + ord("a") # - cyrillic + latinic if "А" <= c <= "Я": return ord(c) - ord("А") + ord("A") return ord(c) def setup_experiment_tracking(run_name: str) -> None: os.environ["WANDB_MODE"] = "offline" token = os.environ.get("WANDB_TOKEN", None) wandb.login(key=token) wandb.init(project="artificial-text-detection", name=run_name) def stop_experiment_tracking() -> None: wandb.finish() def fix_random_seed(seed: int = 42) -> None: """ Fixing a random seed. """ torch.backends.cudnn.deterministic = True torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed)
[ "torch.manual_seed", "torch.cuda.manual_seed_all" ]
1.10.0
MaratSaidov/artificial-text-detection
74b2100294232ec361db84fdc3a24fdeba1fce49
1.7
# ------------------------------------------------------------------------ # Conditional DETR # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copied from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ """ Various positional encodings for the transformer. """ import math import torch from torch import nn from util.misc import NestedTensor class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif args.position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
[ "torch.nn.init.uniform_", "torch.cat", "torch.nn.Embedding", "torch.arange" ]
1.7.0
miranmanesh/ConditionalDETR
c7d24c221125daa6322adc9915af77701240f063
1.8
""" Adapted from the original WHAMR script to obtain the Room Impulse ResponsesRoom Impulse Responses Authors * Cem Subakan 2021 """ import os import pandas as pd import argparse import torchaudio from recipes.WHAMandWHAMR.meta.wham_room import WhamRoom from scipy.signal import resample_poly import torch from speechbrain.pretrained.fetching import fetch from tqdm import tqdm import pyroomacoustics def create_rirs(output_dir, sr=8000): """ This function creates the room impulse responses from the WHAMR! dataset The implementation is based on the scripts from http://wham.whisper.ai/ Arguments: ------ output_dir (str) : directory for saving the RIRs sr (int) : sampling rate with which we save """ assert ( pyroomacoustics.__version__ == "0.3.1" ), "The pyroomacoustics version needs to be 0.3.1" os.makedirs(output_dir) metafilesdir = os.path.dirname(os.path.realpath(__file__)) filelist = [ "mix_2_spk_filenames_tr.csv", "mix_2_spk_filenames_cv.csv", "mix_2_spk_filenames_tt.csv", "reverb_params_tr.csv", "reverb_params_cv.csv", "reverb_params_tt.csv", ] savedir = os.path.join(metafilesdir, "data") for fl in filelist: if not os.path.exists(os.path.join(savedir, fl)): fetch( "metadata/" + fl, "speechbrain/sepformer-whamr", savedir=savedir, save_filename=fl, ) FILELIST_STUB = os.path.join( metafilesdir, "data", "mix_2_spk_filenames_{}.csv" ) SPLITS = ["tr"] reverb_param_stub = os.path.join( metafilesdir, "data", "reverb_params_{}.csv" ) for splt in SPLITS: wsjmix_path = FILELIST_STUB.format(splt) wsjmix_df = pd.read_csv(wsjmix_path) reverb_param_path = reverb_param_stub.format(splt) reverb_param_df = pd.read_csv(reverb_param_path) utt_ids = wsjmix_df.output_filename.values for output_name in tqdm(utt_ids): utt_row = reverb_param_df[ reverb_param_df["utterance_id"] == output_name ] room = WhamRoom( [ utt_row["room_x"].iloc[0], utt_row["room_y"].iloc[0], utt_row["room_z"].iloc[0], ], [ [ utt_row["micL_x"].iloc[0], utt_row["micL_y"].iloc[0], utt_row["mic_z"].iloc[0], ], [ utt_row["micR_x"].iloc[0], utt_row["micR_y"].iloc[0], utt_row["mic_z"].iloc[0], ], ], [ utt_row["s1_x"].iloc[0], utt_row["s1_y"].iloc[0], utt_row["s1_z"].iloc[0], ], [ utt_row["s2_x"].iloc[0], utt_row["s2_y"].iloc[0], utt_row["s2_z"].iloc[0], ], utt_row["T60"].iloc[0], ) room.generate_rirs() rir = room.rir_reverberant for i, mics in enumerate(rir): for j, source in enumerate(mics): h = resample_poly(source, sr, 16000) h_torch = torch.from_numpy(h).float().unsqueeze(0) torchaudio.save( os.path.join( output_dir, "{}_{}_".format(i, j) + output_name, ), h_torch, sr, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--output-dir", type=str, required=True, help="The output directory for saving the rirs for random augmentation style", ) args = parser.parse_args() create_rirs(args.output_dir)
[ "torch.from_numpy" ]
1.8.0
JasonSWFu/speechbrain
cb78ba2b33fceba273b055dc471535344c3053f0
1.8
"""Library implementing complex-valued convolutional neural networks. Authors * Titouan Parcollet 2020 """ import torch import torch.nn as nn import logging import torch.nn.functional as F from speechbrain.nnet.CNN import get_padding_elem from speechbrain.nnet.complex_networks.c_ops import ( unitary_init, complex_init, affect_conv_init, complex_conv_op, ) logger = logging.getLogger(__name__) class CConv1d(torch.nn.Module): """This function implements complex-valued 1d convolution. Arguments --------- out_channels : int Number of output channels. Please note that these are complex-valued neurons. If 256 channels are specified, the output dimension will be 512. kernel_size : int Kernel size of the convolutional filters. stride : int, optional Stride factor of the convolutional filters (default 1). dilation : int, optional Dilation factor of the convolutional filters (default 1). padding : str, optional (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is same as input shape. "causal" results in causal (dilated) convolutions. (default "same") padding_mode : str, optional This flag specifies the type of padding. See torch.nn documentation for more information (default "reflect"). groups : int, optional This option specifies the convolutional groups. See torch.nn documentation for more information (default 1). bias : bool, optional If True, the additive bias b is adopted (default True). init_criterion : str, optional (glorot, he). This parameter controls the initialization criterion of the weights. It is combined with weights_init to build the initialization method of the complex-valued weights. (default "glorot") weight_init : str, optional (complex, unitary). This parameter defines the initialization procedure of the complex-valued weights. "complex" will generate random complex-valued weights following the init_criterion and the complex polar form. "unitary" will normalize the weights to lie on the unit circle. (default "complex") More details in: "Deep Complex Networks", Trabelsi C. et al. Example ------- >>> inp_tensor = torch.rand([10, 16, 30]) >>> cnn_1d = CConv1d( ... input_shape=inp_tensor.shape, out_channels=12, kernel_size=5 ... ) >>> out_tensor = cnn_1d(inp_tensor) >>> out_tensor.shape torch.Size([10, 16, 24]) """ def __init__( self, out_channels, kernel_size, input_shape, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", init_criterion="glorot", weight_init="complex", ): super().__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.groups = groups self.bias = bias self.padding_mode = padding_mode self.unsqueeze = False self.init_criterion = init_criterion self.weight_init = weight_init self.in_channels = self._check_input(input_shape) // 2 # Managing the weight initialization and bias by directly setting the # correct function (self.k_shape, self.w_shape) = self._get_kernel_and_weight_shape() self.real_weight = torch.nn.Parameter(torch.Tensor(*self.w_shape)) self.imag_weight = torch.nn.Parameter(torch.Tensor(*self.w_shape)) if self.bias: self.b = torch.nn.Parameter(torch.Tensor(2 * self.out_channels)) self.b.data.fill_(0) else: self.b = None self.winit = {"complex": complex_init, "unitary": unitary_init}[ self.weight_init ] affect_conv_init( self.real_weight, self.imag_weight, self.kernel_size, self.winit, self.init_criterion, ) def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel). Input to convolve. 3d or 4d tensors are expected. """ # (batch, channel, time) x = x.transpose(1, -1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size - 1) * self.dilation x = F.pad(x, (num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same', 'valid' or 'causal'. Got %s." % (self.padding) ) wx = complex_conv_op( x, self.real_weight, self.imag_weight, self.b, stride=self.stride, padding=0, dilation=self.dilation, conv1d=True, ) wx = wx.transpose(1, -1) return wx def _manage_padding(self, x, kernel_size, dilation, stride): """This function performs zero-padding on the time axis such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input tensor. kernel_size : int Kernel size. dilation : int Dilation. stride : int Stride. """ # Detecting input shape L_in = x.shape[-1] # Time padding padding = get_padding_elem(L_in, stride, kernel_size, dilation) # Applying padding x = F.pad(x, tuple(padding), mode=self.padding_mode) return x def _check_input(self, input_shape): """Checks the input and returns the number of input channels. """ if len(input_shape) == 3: in_channels = input_shape[2] else: raise ValueError( "ComplexConv1d expects 3d inputs. Got " + input_shape ) # Kernel size must be odd if self.kernel_size % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) # Check complex format if in_channels % 2 != 0: raise ValueError( "Complex Tensors must have dimensions divisible by 2." " input.size()[" + str(self.channels_axis) + "] = " + str(self.nb_channels) ) return in_channels def _get_kernel_and_weight_shape(self): """ Returns the kernel size and weight shape for convolutional layers. """ ks = self.kernel_size w_shape = (self.out_channels, self.in_channels) + tuple((ks,)) return ks, w_shape class CConv2d(nn.Module): """This function implements complex-valued 1d convolution. Arguments --------- out_channels : int Number of output channels. Please note that these are complex-valued neurons. If 256 channels are specified, the output dimension will be 512. kernel_size : int Kernel size of the convolutional filters. stride : int, optional Stride factor of the convolutional filters (default 1). dilation : int, optional Dilation factor of the convolutional filters (default 1). padding : str, optional (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is same as input shape. "causal" results in causal (dilated) convolutions. (default "same") padding_mode : str, optional This flag specifies the type of padding (default "reflect"). See torch.nn documentation for more information. groups : int, optional This option specifies the convolutional groups (default 1). See torch.nn documentation for more information. bias : bool, optional If True, the additive bias b is adopted (default True). init_criterion : str , optional (glorot, he). This parameter controls the initialization criterion of the weights (default "glorot"). It is combined with weights_init to build the initialization method of the complex-valued weights. weight_init : str, optional (complex, unitary). This parameter defines the initialization procedure of the complex-valued weights (default complex). "complex" will generate random complex-valued weights following the init_criterion and the complex polar form. "unitary" will normalize the weights to lie on the unit circle. More details in: "Deep Complex Networks", Trabelsi C. et al. Example ------- >>> inp_tensor = torch.rand([10, 16, 30, 30]) >>> cnn_2d = CConv2d( ... input_shape=inp_tensor.shape, out_channels=12, kernel_size=5 ... ) >>> out_tensor = cnn_2d(inp_tensor) >>> out_tensor.shape torch.Size([10, 16, 30, 24]) """ def __init__( self, out_channels, kernel_size, input_shape, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", init_criterion="glorot", weight_init="complex", ): super().__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.groups = groups self.bias = bias self.padding_mode = padding_mode self.unsqueeze = False self.init_criterion = init_criterion self.weight_init = weight_init # k -> [k,k] if isinstance(self.kernel_size, int): self.kernel_size = [self.kernel_size, self.kernel_size] if isinstance(self.dilation, int): self.dilation = [self.dilation, self.dilation] if isinstance(self.stride, int): self.stride = [self.stride, self.stride] self.in_channels = self._check_input(input_shape) // 2 # Managing the weight initialization and bias by directly setting the # correct function (self.k_shape, self.w_shape) = self._get_kernel_and_weight_shape() self.real_weight = torch.nn.Parameter(torch.Tensor(*self.w_shape)) self.imag_weight = torch.nn.Parameter(torch.Tensor(*self.w_shape)) if self.bias: self.b = torch.nn.Parameter(torch.Tensor(2 * self.out_channels)) self.b.data.fill_(0) else: self.b = None self.winit = {"complex": complex_init, "unitary": unitary_init}[ self.weight_init ] affect_conv_init( self.real_weight, self.imag_weight, self.kernel_size, self.winit, self.init_criterion, ) def forward(self, x, init_params=False): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, feature, channels). Input to convolve. 3d or 4d tensors are expected. """ if init_params: self.init_params(x) # (batch, channel, feature, time) x = x.transpose(1, -1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size - 1) * self.dilation x = F.pad(x, (num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same', 'valid' or 'causal'. Got %s." % (self.padding) ) wx = complex_conv_op( x, self.real_weight, self.imag_weight, self.b, stride=self.stride, padding=0, dilation=self.dilation, conv1d=False, ) wx = wx.transpose(1, -1) return wx def _get_kernel_and_weight_shape(self): """ Returns the kernel size and weight shape for convolutional layers. """ ks = (self.kernel_size[0], self.kernel_size[1]) w_shape = (self.out_channels, self.in_channels) + (*ks,) return ks, w_shape def _manage_padding(self, x, kernel_size, dilation, stride): """This function performs zero-padding on the time and frequency axes such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input tensor. kernel_size : int Kernel size. dilation : int Dilation. stride: int Stride. """ # Detecting input shape L_in = x.shape[-1] # Time padding padding_time = get_padding_elem( L_in, stride[-1], kernel_size[-1], dilation[-1] ) padding_freq = get_padding_elem( L_in, stride[-2], kernel_size[-2], dilation[-2] ) padding = padding_time + padding_freq # Applying padding x = nn.functional.pad(x, tuple(padding), mode=self.padding_mode) return x def _check_input(self, input_shape): """Checks the input and returns the number of input channels. """ if len(input_shape) == 3: self.unsqueeze = True in_channels = 1 elif len(input_shape) == 4: in_channels = input_shape[3] else: raise ValueError("Expected 3d or 4d inputs. Got " + input_shape) # Kernel size must be odd if self.kernel_size[0] % 2 == 0 or self.kernel_size[1] % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) # Check complex format if in_channels % 2 != 0: raise ValueError( "Complex Tensors must have dimensions divisible by 2." " input.size()[" + str(self.channels_axis) + "] = " + str(self.nb_channels) ) return in_channels
[ "torch.nn.functional.pad", "torch.Tensor" ]
1.8.0
JasonSWFu/speechbrain
cb78ba2b33fceba273b055dc471535344c3053f0
1.3
import os import sys # path at level marl/ sys.path.insert(0, os.path.abspath(".")) import time import argparse import numpy as np from functools import partial from collections import OrderedDict, defaultdict import torch # local from algorithms.masac.utils import get_sample_scheme, dispatch_samples from algorithms.masac.utils import make_parallel_env, log_results from algorithms.masac import MASAC from runners.make_env import ENV_MAP from runners.sample_batch import EpisodeBatch from runners.ctde_runner import CTDEEpisodeRunner from runners.replay_buffer import EpisodeReplayBuffer from utils.exp_utils import setup_experiment, ExperimentLogger, ExperimentState from utils.exp_utils import time_left, time_str, merge_dict ##################################################################################### ### arguments ##################################################################################### def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--exp", type=str, default="masac", help="name of the experiment") parser.add_argument("--save_dir", type=str, default="./exps", help="top level path to save experiment/training results") parser.add_argument("--sub_dir", type=str, nargs='+', help="sub folders for experiment (hierarchical), e.g. sub=a b c --> local-dir/a/b/c") parser.add_argument("--tag", type=str, nargs='+', help="additional info for experiment, i.e. hyperparameters") parser.add_argument("--seed", default=1, type=int, help="Random seed, if 0, do not set seed") parser.add_argument("--restore", type=str, default=None, help="directory in which training state and model are loaded") # if specified and not restore, will load model for experiment init # if also restore, will overwrite default path in restore_experiment parser.add_argument("--restore_model", type=str, default=None, help="file in which model are loaded") ## NOTE: episode-wise or transition-wise (per transtion now, easier to log) parser.add_argument("--log_interval", default=25000, type=int, help="frequency to log exploration/runner stats") parser.add_argument("--train_interval", default=0, type=int, help="number of steps collected before each train") # parser.add_argument("--steps_per_update", default=100, type=int, # help="number of env steps collected before 1 training update") parser.add_argument("--target_update_interval", default=0, type=int, help="syncing parameters with target networks") parser.add_argument("--train_log_interval", default=25000, type=int, help="frequency to log training stats, e.g. losses") parser.add_argument("--eval_interval", default=25000, type=int, help="number of steps collected before each evaluation") parser.add_argument("--save_interval", default=100000, type=int) # misc parser.add_argument("--cuda", default=False, action='store_true') parser.add_argument("--cluster", default=False, action='store_true', help='if running in cluster (allow more resources)') parser.add_argument("--overwrite", type=str, nargs='+', help="overwrite env config with format: nested_name nested_type value ...") parser.add_argument("--use_tensorboard", default=False, action='store_true', help="if to use tensorboard for logging") parser.add_argument("--show_visual_range", default=False, action='store_true', help='if to show agent visual range when rendering') # Environment parser.add_argument("--env", type=str, default="mpe_hier", help="name of the environment", choices=["mpe", "mpe_hier"]) parser.add_argument("--scenario", type=str, default="simple_spread", help="name of the scenario script") parser.add_argument("--env_config", type=str, default="", help="file to environment scenario config") ## max episode length for termination parser.add_argument("--episode_length", default=25, type=int, help="max episode length") parser.add_argument("--agent_alg", default="MASAC", type=str, help="agent model type", choices=['MASAC', 'SAC']) parser.add_argument("--adversary_alg", default="MASAC", type=str, help="adversary model type", choices=['MASAC', 'SAC']) parser.add_argument("--discrete_action", action='store_true') # training parser.add_argument("--n_episodes", default=20000, type=int, help="max number of episodes to sample") ## for non-early-terminated episodes, n_env_steps ~= n_episodes * episode_length parser.add_argument("--n_env_steps", default=500000, type=int, help="max number of env steps to sample") ## NOTE: episode-wise or step-wise (episode now) parser.add_argument("--batch_size", default=32, type=int, help="Batch size for model training per update") ## in case train batch size too large, could use smaller batch size ## but multiple rounds of updates parser.add_argument("--n_updates_per_train", default=1, type=int, help="number of updates per training round") parser.add_argument("--lr", default=0.01, type=float) parser.add_argument("--tau", default=0.01, type=float) parser.add_argument("--gamma", type=float, default=0.95, help="discount factor") parser.add_argument("--sync_samples", default=False, action='store_true', help="if to use synchronized samples for each agent training") # sac parameters parser.add_argument("--target_entropy", type=float, default=10.0, help="constraint on SAC entropy target") # exploration/sampling ## NOTE: episode-wise or transition-wise (per episodes now) parser.add_argument("--sample_batch_size", default=8, type=int, help="number of data points sampled () per run") parser.add_argument("--max_buffer_size", default=40000, type=int, help="maximum number of samples (episodes) to save in replay buffer") # parser.add_argument("--max_buffer_size", default=int(1e6), type=int, # help="maximum number of samples (transitions) to save in replay buffer") parser.add_argument("--n_exploration_eps", default=25000, type=int, help="what is this ???") parser.add_argument("--init_noise_scale", default=0.3, type=float) parser.add_argument("--final_noise_scale", default=0.0, type=float) parser.add_argument("--n_step", type=int, default=1, help="length of multistep value backup") # model parser.add_argument("--hidden_dim", default=64, type=int) parser.add_argument("--critic", type=str, default="mlp", help="type of critic network", choices=["mlp", "rnn", "gnn"]) parser.add_argument("--actor", type=str, default="mlp", help="type of actor network", choices=["mlp", "rnn", "gnn"]) # evaluation parser.add_argument("--no_eval", default=False, action='store_true', help="do evaluation during training") parser.add_argument("--no_render", default=False, action='store_true', help='if to stop rendering in evaluation rollouts') parser.add_argument("--eval_n_episodes", default=10, type=int) parser.add_argument("--eval_batch_size", default=2, type=int, help="number of data points evaluated () per run") # loggings parser.add_argument("--log_agent_returns", default=False, action='store_true', help="if to log per agent returns on tensorboard") # parallelism parser.add_argument("--n_rollout_threads", default=4, type=int, help="number of parallel sampling workers to use") parser.add_argument("--n_training_threads", default=4, type=int) args = parser.parse_args() return args ##################################################################################### ### main #################################################################################### def run(args): """ main entry func """ # NOTE: experiment setup config, is_restore = setup_experiment(args) logger = ExperimentLogger(config.save_dir, log_std_out=True, use_tensorboard=config.use_tensorboard) if not config.cuda: torch.set_num_threads(config.n_training_threads) # NOTE: init/load experiment state estate = ExperimentState() if is_restore: estate.load_state(config.restore_exp_state) # make counter copies to reduce writing ... episode = estate.episode # total episodes so far t_env = estate.t_env # total env interacetion steps so far # t_max = config.n_env_steps # max number of steps to runs t_max = config.n_episodes * config.episode_length # NOTE: make vectorized env env_func = ENV_MAP[config.env] p_env_func = partial(env_func, config.scenario, benchmark=False, show_visual_range=config.show_visual_range) env = make_parallel_env(p_env_func, config.env_config, config.sample_batch_size, config.n_rollout_threads, config.seed) if not config.no_eval: eval_env = make_parallel_env(p_env_func, config.env_config, config.eval_batch_size, 1, config.seed) # NOTE: make learner agent if is_restore or config.restore_model is not None: learner = MASAC.init_from_save(config.restore_model) else: learner = MASAC.init_from_env( env, agent_alg=config.agent_alg, adversary_alg=config.adversary_alg, tau=config.tau, lr=config.lr, hidden_dim=config.hidden_dim, rnn_policy=(config.actor == "rnn"), rnn_critic=(config.critic == "rnn"), # sac stuff target_entropy=config.target_entropy ) # NOTE: make sampling runner (env wrapper) scheme = get_sample_scheme(learner.nagents, env.observation_space, env.action_space) runner = CTDEEpisodeRunner(scheme, env, learner, logger, config.sample_batch_size, config.episode_length, device=config.device, t_env=t_env, ma_step_keys=["log_probs"], is_training=True) if not config.no_eval: eval_runner = CTDEEpisodeRunner(scheme, eval_env, learner, logger, config.eval_batch_size, config.episode_length, device=config.device, t_env=t_env, ma_step_keys=["log_probs"], is_training=False) buffer = EpisodeReplayBuffer(scheme, config.max_buffer_size, config.episode_length, device=config.device, prefill_num=2*config.batch_size) # NOTE: start training logger.info("Beginning training") start_time = time.time() last_time = start_time ############################################ # while t_env <= t_max: while episode <= config.n_episodes: # NOTE: Run for a whole episode at a time learner.prep_rollouts(device=config.device) explr_pct_remaining = max(0, config.n_exploration_eps - episode) / config.n_exploration_eps learner.scale_noise(config.final_noise_scale + (config.init_noise_scale - config.final_noise_scale) * explr_pct_remaining) learner.reset_noise() episode_batch, _ = runner.run() buffer.insert_episode_batch(episode_batch) # update counters episode += config.sample_batch_size t_env = runner.t_env estate.episode = episode estate.t_env = t_env ############################################ # NOTE: logging (exploration/sampling) if (estate.last_log_t == 0) or (t_env - estate.last_log_t >= config.log_interval): logger.info("\n") logger.info("*** sampling log ***") # timing logger.info("t_env: {} / {}, eps: {} / {}".format( t_env, t_max, episode, config.n_episodes)) logger.info("Estimated time left: {}. Time passed: {}".format( time_left(last_time, estate.last_log_t, t_env, t_max), time_str(time.time() - start_time) )) last_time = time.time() # log collected episode stats results = runner.get_summaries() runner.reset_summaries() log_results(t_env, results, logger, mode="sample", log_agent_returns=config.log_agent_returns) estate.last_log_t = t_env ############################################ # NOTE: training updates ## change to batch_size * n_updates_per_train for n_updates > 1 if buffer.can_sample(config.batch_size) and (t_env - estate.last_train_t >= config.train_interval): learner.prep_training(device=config.device) for _ in range(config.n_updates_per_train): episode_sample = None for a_i in range(learner.nagents): if config.sync_samples: # if not None, reuse episode_sample if episode_sample is None: episode_sample = buffer.sample(config.batch_size) else: # each agent can have different collective experience samples episode_sample = buffer.sample(config.batch_size) # Truncate batch to only filled timesteps max_ep_t = episode_sample.max_t_filled() episode_sample = episode_sample[:, :max_ep_t] if episode_sample.device != config.device: episode_sample.to(config.device) # dispatch sample to per agent [(B,T,D)]*N sample = dispatch_samples(episode_sample, scheme, learner.nagents) learner.update(sample, a_i) #, logger=logger) # sync target networks if t_env - estate.last_target_update_t >= config.target_update_interval: learner.update_all_targets() estate.last_target_update_t = t_env learner.prep_rollouts(device=config.device) estate.last_train_t = t_env # collect & log trianing stats if t_env - estate.last_train_log_t >= config.train_log_interval: train_results = learner.get_summaries() learner.reset_summaries() logger.info("\n") logger.info("*** training log ***") log_results(t_env, train_results, logger, mode="train") estate.last_train_log_t = t_env ############################################ # NOTE: Execute test runs once in a while if not config.no_eval and ((estate.last_test_t == 0) or (t_env - estate.last_test_t >= config.eval_interval)): n_test_runs = max(1, config.eval_n_episodes // eval_runner.batch_size) eval_episodes = [] for _ in range(n_test_runs): eval_bt, _ = eval_runner.run(render=(not config.no_render)) eval_episodes.append(eval_bt) # collect evaluation stats eval_results = eval_runner.get_summaries() eval_runner.reset_summaries() eval_episodes = eval_episodes[0].concat(eval_episodes[1:]) logger.info("\n") logger.info("*** evaluation log ***") log_results(t_env, eval_results, logger, mode="eval", episodes=eval_episodes, log_agent_returns=config.log_agent_returns) estate.last_test_t = t_env ############################################ # NOTE: checkpoint if (estate.last_save_t == 0) or (t_env - estate.last_save_t >= config.save_interval): os.makedirs(config.save_dir + "/checkpoints", exist_ok=True) learner.save(config.save_dir + "/checkpoints" + "/model_{}.ckpt".format(t_env)) learner.save(config.save_dir + "/model.ckpt") logger.info("\n") logger.info("*** checkpoint log ***") logger.info("Saving models to {}".format( "/checkpoints" + "/model_{}.ckpt".format(t_env) )) estate.last_save_t = t_env estate.save_state(config.save_dir + "/exp_state.pkl") ############################################ # NOTE: clean up learner.save(config.save_dir + "/model.ckpt") # final save estate.last_save_t = t_env estate.save_state(config.save_dir + "/exp_state.pkl") env.close() logger.export_scalars_to_json("summary.json") logger.info("Finished Training") logger.close() if __name__ == '__main__': args = parse_args() run(args)
[ "torch.set_num_threads" ]
1.3.1
Justin-Yuan/learn-to-interact
eb013bb3bab269bda8a8075e64fe3bcd2964d8ae
1.3
import os import sys # path at level marl/ sys.path.insert(0, os.path.abspath(".")) import time import argparse import numpy as np from functools import partial from collections import OrderedDict, defaultdict import torch # local from algorithms.rmaddpg.utils import get_sample_scheme, dispatch_samples from algorithms.rmaddpg.utils import make_parallel_env, log_results from algorithms.rmaddpg.utils import log_weights from algorithms.rmaddpg import RMADDPG from runners.make_env import ENV_MAP from runners.sample_batch import EpisodeBatch from runners.episode_runner import EpisodeRunner from runners.replay_buffer import EpisodeReplayBuffer from utils.exp_utils import setup_experiment, ExperimentLogger, ExperimentState from utils.exp_utils import time_left, time_str, merge_dict ##################################################################################### ### arguments ##################################################################################### def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--exp", type=str, default="maddpg", help="name of the experiment") parser.add_argument("--save_dir", type=str, default="./exps", help="top level path to save experiment/training results") parser.add_argument("--sub_dir", type=str, nargs='+', help="sub folders for experiment (hierarchical), e.g. sub=a b c --> local-dir/a/b/c") parser.add_argument("--tag", type=str, nargs='+', help="additional info for experiment, i.e. hyperparameters") parser.add_argument("--seed", default=1, type=int, help="Random seed, if 0, do not set seed") parser.add_argument("--restore", type=str, default=None, help="directory in which training state and model are loaded") # if specified and not restore, will load model for experiment init # if also restore, will overwrite default path in restore_experiment parser.add_argument("--restore_model", type=str, default=None, help="file in which model are loaded") ## NOTE: episode-wise or transition-wise (per transtion now, easier to log) parser.add_argument("--log_interval", default=25000, type=int, help="frequency to log exploration/runner stats") parser.add_argument("--train_interval", default=0, type=int, help="number of steps collected before each train") # parser.add_argument("--steps_per_update", default=100, type=int, # help="number of env steps collected before 1 training update") parser.add_argument("--target_update_interval", default=0, type=int, help="syncing parameters with target networks") parser.add_argument("--train_log_interval", default=25000, type=int, help="frequency to log training stats, e.g. losses") parser.add_argument("--eval_interval", default=25000, type=int, help="number of steps collected before each evaluation") parser.add_argument("--save_interval", default=500000, type=int) # misc parser.add_argument("--cuda", default=False, action='store_true') parser.add_argument("--cluster", default=False, action='store_true', help='if running in cluster (allow more resources)') parser.add_argument("--overwrite", type=str, nargs='+', help="overwrite env config with format: nested_name nested_type value ...") parser.add_argument("--use_tensorboard", default=False, action='store_true', help="if to use tensorboard for logging") parser.add_argument("--show_visual_range", default=False, action='store_true', help='if to show agent visual range when rendering') # Environment parser.add_argument("--env", type=str, default="mpe_hier", help="name of the environment", choices=["mpe", "mpe_hier"]) parser.add_argument("--scenario", type=str, default="simple_spread", help="name of the scenario script") parser.add_argument("--env_config", type=str, default="", help="file to environment scenario config") ## max episode length for termination parser.add_argument("--episode_length", default=25, type=int, help="max episode length") parser.add_argument("--agent_alg", default="MADDPG", type=str, help="agent model type", choices=['MADDPG', 'DDPG']) parser.add_argument("--adversary_alg", default="MADDPG", type=str, help="adversary model type", choices=['MADDPG', 'DDPG']) parser.add_argument("--discrete_action", action='store_true') # training parser.add_argument("--n_episodes", default=20000, type=int, help="max number of episodes to sample") ## for non-early-terminated episodes, n_env_steps ~= n_episodes * episode_length parser.add_argument("--n_env_steps", default=500000, type=int, help="max number of env steps to sample") ## NOTE: episode-wise or step-wise (episode now) parser.add_argument("--batch_size", default=32, type=int, help="Batch size for model training per update") ## in case train batch size too large, could use smaller batch size ## but multiple rounds of updates parser.add_argument("--n_updates_per_train", default=1, type=int, help="number of updates per training round") parser.add_argument("--lr", default=0.01, type=float) parser.add_argument("--tau", default=0.01, type=float) parser.add_argument("--gamma", type=float, default=0.95, help="discount factor") parser.add_argument("--sync_samples", default=False, action='store_true', help="if to use synchronized samples for each agent training") # exploration/sampling ## NOTE: episode-wise or transition-wise (per episodes now) parser.add_argument("--sample_batch_size", default=8, type=int, help="number of data points sampled () per run") parser.add_argument("--max_buffer_size", default=40000, type=int, help="maximum number of samples (episodes) to save in replay buffer") # parser.add_argument("--max_buffer_size", default=int(1e6), type=int, # help="maximum number of samples (transitions) to save in replay buffer") parser.add_argument("--n_exploration_eps", default=25000, type=int, help="what is this ???") parser.add_argument("--init_noise_scale", default=0.3, type=float) parser.add_argument("--final_noise_scale", default=0.0, type=float) parser.add_argument("--n_step", type=int, default=1, help="length of multistep value backup") # model parser.add_argument("--hidden_dim", default=64, type=int) parser.add_argument("--critic", type=str, default="mlp", help="type of critic network", choices=["mlp", "rnn", "gnn"]) parser.add_argument("--actor", type=str, default="mlp", help="type of actor network", choices=["mlp", "rnn", "gnn"]) parser.add_argument("--norm_in", default=False, action='store_true', help="if to normalize inputs to agent networks") parser.add_argument("--constrain_out", default=False, action='store_true', help="if to use tanh for network final activation") # evaluation parser.add_argument("--no_eval", default=False, action='store_true', help="do evaluation during training") parser.add_argument("--no_render", default=False, action='store_true', help='if to stop rendering in evaluation rollouts') parser.add_argument("--eval_n_episodes", default=10, type=int) parser.add_argument("--eval_batch_size", default=2, type=int, help="number of data points evaluated () per run") # loggings parser.add_argument("--log_agent_returns", default=False, action='store_true', help="if to log per agent returns on tensorboard") # parallelism parser.add_argument("--n_rollout_threads", default=4, type=int, help="number of parallel sampling workers to use") parser.add_argument("--n_training_threads", default=4, type=int) args = parser.parse_args() return args ##################################################################################### ### main #################################################################################### def run(args): """ main entry func """ # NOTE: experiment setup config, is_restore = setup_experiment(args) logger = ExperimentLogger(config.save_dir, log_std_out=True, use_tensorboard=config.use_tensorboard) if not config.cuda: torch.set_num_threads(config.n_training_threads) # NOTE: init/load experiment state estate = ExperimentState() if is_restore: estate.load_state(config.restore_exp_state) # make counter copies to reduce writing ... episode = estate.episode # total episodes so far t_env = estate.t_env # total env interacetion steps so far # t_max = config.n_env_steps # max number of steps to runs t_max = config.n_episodes * config.episode_length # NOTE: make vectorized env env_func = ENV_MAP[config.env] p_env_func = partial(env_func, config.scenario, benchmark=False, show_visual_range=config.show_visual_range) env = make_parallel_env(p_env_func, config.env_config, config.sample_batch_size, config.n_rollout_threads, config.seed) if not config.no_eval: eval_env = make_parallel_env(p_env_func, config.env_config, config.eval_batch_size, 1, config.seed) # NOTE: make learner agent if is_restore or config.restore_model is not None: learner = RMADDPG.init_from_save(config.restore_model) else: learner = RMADDPG.init_from_env( env, agent_alg=config.agent_alg, adversary_alg=config.adversary_alg, tau=config.tau, lr=config.lr, hidden_dim=config.hidden_dim, rnn_policy=(config.actor == "rnn"), rnn_critic=(config.critic == "rnn"), norm_in=config.norm_in, constrain_out=config.constrain_out ) # NOTE: make sampling runner (env wrapper) scheme = get_sample_scheme(learner.nagents, env.observation_space, env.action_space) runner = EpisodeRunner(scheme, env, learner, logger, config.sample_batch_size, config.episode_length, device=config.device, t_env=t_env) if not config.no_eval: eval_runner = EpisodeRunner(scheme, eval_env, learner, logger, config.eval_batch_size, config.episode_length, device=config.device, t_env=t_env, is_training=False) buffer = EpisodeReplayBuffer(scheme, config.max_buffer_size, config.episode_length, device=config.device, prefill_num=2*config.batch_size) # NOTE: start training logger.info("Beginning training") start_time = time.time() last_time = start_time ############################################ # while t_env <= t_max: while episode <= config.n_episodes: # NOTE: Run for a whole episode at a time learner.prep_rollouts(device=config.device) explr_pct_remaining = max(0, config.n_exploration_eps - episode) / config.n_exploration_eps learner.scale_noise(config.final_noise_scale + (config.init_noise_scale - config.final_noise_scale) * explr_pct_remaining) learner.reset_noise() episode_batch, _ = runner.run() buffer.insert_episode_batch(episode_batch) # update counters episode += config.sample_batch_size t_env = runner.t_env estate.episode = episode estate.t_env = t_env ############################################ # NOTE: logging (exploration/sampling) if (estate.last_log_t == 0) or (t_env - estate.last_log_t >= config.log_interval): logger.info("\n") logger.info("*** sampling log ***") # timing logger.info("t_env: {} / {}, eps: {} / {}".format( t_env, t_max, episode, config.n_episodes)) logger.info("Estimated time left: {}. Time passed: {}".format( time_left(last_time, estate.last_log_t, t_env, t_max), time_str(time.time() - start_time) )) last_time = time.time() # log collected episode stats results = runner.get_summaries() runner.reset_summaries() log_results(t_env, results, logger, mode="sample", log_agent_returns=config.log_agent_returns) estate.last_log_t = t_env ############################################ # NOTE: training updates ## change to batch_size * n_updates_per_train for n_updates > 1 if buffer.can_sample(config.batch_size) and (t_env - estate.last_train_t >= config.train_interval): learner.prep_training(device=config.device) for _ in range(config.n_updates_per_train): episode_sample = None for a_i in range(learner.nagents): if config.sync_samples: # if not None, reuse episode_sample if episode_sample is None: episode_sample = buffer.sample(config.batch_size) else: # each agent can have different collective experience samples episode_sample = buffer.sample(config.batch_size) # Truncate batch to only filled timesteps max_ep_t = episode_sample.max_t_filled() episode_sample = episode_sample[:, :max_ep_t] if episode_sample.device != config.device: episode_sample.to(config.device) # dispatch sample to per agent [(B,T,D)]*N sample = dispatch_samples(episode_sample, scheme, learner.nagents) learner.update(sample, a_i) #, logger=logger) # sync target networks if t_env - estate.last_target_update_t >= config.target_update_interval: learner.update_all_targets() estate.last_target_update_t = t_env learner.prep_rollouts(device=config.device) estate.last_train_t = t_env # collect & log trianing stats if t_env - estate.last_train_log_t >= config.train_log_interval: train_results = learner.get_summaries() learner.reset_summaries() logger.info("\n") logger.info("*** training log ***") log_results(t_env, train_results, logger, mode="train") estate.last_train_log_t = t_env ############################################ # NOTE: Execute test runs once in a while if not config.no_eval and ((estate.last_test_t == 0) or (t_env - estate.last_test_t >= config.eval_interval)): n_test_runs = max(1, config.eval_n_episodes // eval_runner.batch_size) eval_episodes = [] for _ in range(n_test_runs): eval_bt, _ = eval_runner.run(render=(not config.no_render)) eval_episodes.append(eval_bt) # collect evaluation stats eval_results = eval_runner.get_summaries() eval_runner.reset_summaries() eval_episodes = eval_episodes[0].concat(eval_episodes[1:]) logger.info("\n") logger.info("*** evaluation log ***") log_results(t_env, eval_results, logger, mode="eval", episodes=eval_episodes, log_agent_returns=config.log_agent_returns) estate.last_test_t = t_env # NOTE: debug noly, log network weights log_weights(learner, logger, t_env) ############################################ # NOTE: checkpoint if (estate.last_save_t == 0) or (t_env - estate.last_save_t >= config.save_interval): os.makedirs(config.save_dir + "/checkpoints", exist_ok=True) learner.save(config.save_dir + "/checkpoints" + "/model_{}.ckpt".format(t_env)) learner.save(config.save_dir + "/model.ckpt") logger.info("\n") logger.info("*** checkpoint log ***") logger.info("Saving models to {}".format( "/checkpoints" + "/model_{}.ckpt".format(t_env) )) estate.last_save_t = t_env estate.save_state(config.save_dir + "/exp_state.pkl") ############################################ # NOTE: clean up learner.save(config.save_dir + "/model.ckpt") # final save estate.last_save_t = t_env estate.save_state(config.save_dir + "/exp_state.pkl") env.close() logger.export_scalars_to_json("summary.json") logger.info("Finished Training") logger.close() if __name__ == '__main__': args = parse_args() run(args)
[ "torch.set_num_threads" ]
1.3.1
Justin-Yuan/learn-to-interact
eb013bb3bab269bda8a8075e64fe3bcd2964d8ae
1.4
''' super slomo code refered from https://github.com/avinashpaliwal/Super-SloMo.git ''' # pylint: disable=E1101 import logging import torch from slomo import UNet, backWarp from imageProcess import initModel, getStateDict, getPadBy32, doCrop, identity, Option, extend from config import config log = logging.getLogger('Moe') modelPath = './model/slomo/SuperSloMo.ckpt' RefTime = 2 WindowSize = 2 ramCoef = [.95 / x for x in (8100., 2484., 8100., 2466., 4014., 1080.)] getFlowComp = lambda *_: UNet(6, 4) getFlowIntrp = lambda *_: UNet(20, 5) getFlowBack = lambda opt: backWarp(opt.width, opt.height, config.device(), config.dtype()) getBatchSize = lambda load, ramCoef: max(1, int((config.calcFreeMem() / load) * ramCoef)) modules = dict( flowComp={'weight': 'state_dictFC', 'f': getFlowComp, 'outShape': (1, 4, 1, 1)}, ArbTimeFlowIntrp={'weight': 'state_dictAT', 'f': getFlowIntrp, 'outShape': (1, 5, 1, 1)}) def newOpt(func, ramCoef, align=32, padding=45, scale=1, **_): opt = Option() opt.modelCached = func opt.ramCoef = ramCoef opt.align = align opt.padding = padding opt.scale = scale opt.squeeze = identity opt.unsqueeze = identity return opt def getOptS(modelPath, modules, ramCoef): opt = Option(modelPath) weights = getStateDict(modelPath) opt.modules = modules opt.ramOffset = config.getRunType() * len(modules) for i, key in enumerate(modules): m = modules[key] wKey = m['weight'] constructor = m.get('f', 0) rc = m['ramCoef'][config.getRunType()] if 'ramCoef' in m else ramCoef[opt.ramOffset + i] o = dict((k, m[k]) for k in ('align', 'padding', 'scale') if k in m) model = initModel(opt, weights[wKey], key, constructor) if 'outShape' in m: opt.__dict__[key] = newOpt(model, rc, **o) else: model.ramCoef = rc opt.__dict__[key] = model return opt def setOutShape(opt, height, width): load = width * height od = opt.__dict__ for key, o in opt.modules.items(): batchSize = opt.bf(load, od[key].ramCoef) if 'outShape' in o: q = o['outShape'] od[key].outShape = [batchSize, *q[1:-2], int(height * q[-2]), int(width * q[-1])] if 'staticDims' in o: for i in o['staticDims']: od[key].outShape[i] = q[i] if 'streams' in o and (not 0 in o.get('staticDims', {})): for name in o['streams']: od[name].send((None, batchSize)) return opt def getOptP(opt, bf=getBatchSize): opt.startPadding = 0 opt.i = 0 opt.bf = bf return opt extendRes = lambda res, item: res.extend(item) if type(item) == list else (None if item is None else res.append(item)) def makeStreamFunc(func, node, opt, nodes, name, padStates, initFunc, pushFunc): for n in nodes: node.append(n) def f(x): node.reset() node.trace(0, p='{} start'.format(name)) if not opt.i: setOutShape(opt, *initFunc(opt, x)) if opt.end: for s in padStates: s.setPadding(opt.end) opt.end = 0 if opt.start: opt.startPadding = opt.start for s in padStates: s.setPadding(opt.start) opt.start = 0 last = True if x is None else None if not last: pushFunc(opt.pad(x.unsqueeze(0))) opt.i += 1 out = [] extend(out, opt.out.send(last)) node.trace() while last: try: extend(out, opt.out.send(last)) except StopIteration: break res = [] for item in out: extendRes(res, func(opt.unpad(item))) return res return f def getOpt(option): opt = getOptS(modelPath, modules, ramCoef) opt.flowBackWarp = None opt.outStart = 0 opt.batchSize = 0 opt.sf = option['sf'] opt.bf = getBatchSize if opt.sf < 2: raise RuntimeError('Error: --sf/slomo factor has to be at least 2') return opt def doSlomo(func, node, opt): # Temporary fix for issue #7 https://github.com/avinashpaliwal/Super-SloMo/issues/7 - # - Removed per channel mean subtraction for CPU. def f(data): node.reset() node.trace(0, p='slomo start') batchSize = len(data) if not batchSize or len(data[0]) < 2: return if opt.flowBackWarp is None: width, height, opt.pad, opt.unpad = getPadBy32(data[0][0], opt) opt.width = width opt.height = height opt.flowBackWarp = initModel(opt, None, None, getFlowBack) setOutShape(opt, height, width) opt.batchSize = opt.flowComp.outShape[0] log.info('Slomo batch size={}'.format(opt.batchSize)) flowBackWarp = opt.flowBackWarp opt.flowComp.outShape[0] = batchSize opt.ArbTimeFlowIntrp.outShape[0] = batchSize sf = opt.sf tempOut = [0 for _ in range(batchSize * sf + 1)] # Save reference frames tempOut[0] = data[0][0] for i, frames in enumerate(data): tempOut[(i + 1) * sf] = frames[1] # Load data I0 = opt.pad(torch.stack([frames[0] for frames in data])) I1 = opt.pad(torch.stack([frames[1] for frames in data])) flowOut = doCrop(opt.flowComp, torch.cat((I0, I1), dim=1)) F_0_1 = flowOut[:,:2,:,:] F_1_0 = flowOut[:,2:,:,:] node.trace() # Generate intermediate frames for intermediateIndex in range(1, sf): t = intermediateIndex / sf temp = -t * (1 - t) fCoeff = (temp, t * t, (1 - t) * (1 - t), temp) wCoeff = (1 - t, t) F_t_0 = fCoeff[0] * F_0_1 + fCoeff[1] * F_1_0 F_t_1 = fCoeff[2] * F_0_1 + fCoeff[3] * F_1_0 g_I0_F_t_0 = flowBackWarp(I0, F_t_0) g_I1_F_t_1 = flowBackWarp(I1, F_t_1) intrpOut = doCrop(opt.ArbTimeFlowIntrp, torch.cat((I0, I1, F_0_1, F_1_0, F_t_1, F_t_0, g_I1_F_t_1, g_I0_F_t_0), dim=1)) F_t_0_f = intrpOut[:, :2, :, :] + F_t_0 F_t_1_f = intrpOut[:, 2:4, :, :] + F_t_1 V_t_0 = torch.sigmoid(intrpOut[:, 4:5, :, :]) V_t_1 = 1 - V_t_0 g_I0_F_t_0_f = flowBackWarp(I0, F_t_0_f) g_I1_F_t_1_f = flowBackWarp(I1, F_t_1_f) Ft_p = (wCoeff[0] * V_t_0 * g_I0_F_t_0_f + wCoeff[1] * V_t_1 * g_I1_F_t_1_f) / (wCoeff[0] * V_t_0 + wCoeff[1] * V_t_1) # Save intermediate frame for i in range(batchSize): tempOut[intermediateIndex + i * sf] = opt.unpad(Ft_p[i].detach()) node.trace() if data is None and opt.outEnd: tempOut = tempOut[:opt.outEnd] opt.outEnd = 0 res = [] for item in tempOut[opt.outStart:]: extendRes(res, func(item)) opt.outStart = max(0, opt.outStart - len(tempOut)) return res return f
[ "torch.sigmoid", "torch.cat", "torch.stack" ]
1.4
lotress/MoePhoto
6f47515d2cf236773a46413f57839565fa665796
1.1
#!/usr/bin/env python3 """ File: anilkfo_cifarfs.py Author: Seb Arnold - seba1511.net Email: [email protected] Github: seba-1511 Description: Demonstrates how to use the low-level differentiable optimization utilities to implement ANIL+KFC on CIFAR-FS. A demonstration of the high-level API is available in: examples/vision/metacurvature_fc100.py """ import random import numpy as np import torch import learn2learn as l2l class CifarCNN(torch.nn.Module): """ Example of a 4-layer CNN network for FC100/CIFAR-FS. """ def __init__(self, output_size=5, hidden_size=32, layers=4): super(CifarCNN, self).__init__() self.hidden_size = hidden_size features = l2l.vision.models.ConvBase( output_size=hidden_size, hidden=hidden_size, channels=3, max_pool=False, layers=layers, max_pool_factor=0.5, ) self.features = torch.nn.Sequential( features, l2l.nn.Lambda(lambda x: x.mean(dim=[2, 3])), l2l.nn.Flatten(), ) self.linear = torch.nn.Linear(self.hidden_size, output_size, bias=True) l2l.vision.models.maml_init_(self.linear) def forward(self, x): x = self.features(x) x = self.linear(x) return x def accuracy(predictions, targets): predictions = predictions.argmax(dim=1).view(targets.shape) return (predictions == targets).sum().float() / targets.size(0) def fast_adapt( batch, features, classifier, update, diff_sgd, loss, adaptation_steps, shots, ways, device): data, labels = batch data, labels = data.to(device), labels.to(device) data = features(data) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots*ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model & learned update for step in range(adaptation_steps): adaptation_error = loss(classifier(adaptation_data), adaptation_labels) if step > 0: # Update the learnable update function update_grad = torch.autograd.grad(adaptation_error, update.parameters(), create_graph=True, retain_graph=True) diff_sgd(update, update_grad) classifier_updates = update(adaptation_error, classifier.parameters(), create_graph=True, retain_graph=True) diff_sgd(classifier, classifier_updates) # Evaluate the adapted model predictions = classifier(evaluation_data) eval_error = loss(predictions, evaluation_labels) eval_accuracy = accuracy(predictions, evaluation_labels) return eval_error, eval_accuracy def main( fast_lr=0.1, meta_lr=0.003, num_iterations=10000, meta_batch_size=16, adaptation_steps=5, shots=5, ways=5, cuda=1, seed=1234 ): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) device = torch.device('cpu') if cuda and torch.cuda.device_count(): torch.cuda.manual_seed(seed) device = torch.device('cuda') # Create Tasksets using the benchmark interface tasksets = l2l.vision.benchmarks.get_tasksets( name='cifarfs', train_samples=2*shots, train_ways=ways, test_samples=2*shots, test_ways=ways, root='~/data', ) # Create model and learnable update model = CifarCNN(output_size=ways) model.to(device) features = model.features classifier = model.linear kfo_transform = l2l.optim.transforms.KroneckerTransform(l2l.nn.KroneckerLinear) fast_update = l2l.optim.ParameterUpdate( parameters=classifier.parameters(), transform=kfo_transform, ) fast_update.to(device) diff_sgd = l2l.optim.DifferentiableSGD(lr=fast_lr) all_parameters = list(model.parameters()) + list(fast_update.parameters()) opt = torch.optim.Adam(all_parameters, meta_lr) loss = torch.nn.CrossEntropyLoss(reduction='mean') for iteration in range(num_iterations): opt.zero_grad() meta_train_error = 0.0 meta_train_accuracy = 0.0 meta_valid_error = 0.0 meta_valid_accuracy = 0.0 for task in range(meta_batch_size): # Compute meta-training loss task_features = l2l.clone_module(features) task_classifier = l2l.clone_module(classifier) task_update = l2l.clone_module(fast_update) batch = tasksets.train.sample() evaluation_error, evaluation_accuracy = fast_adapt(batch, task_features, task_classifier, task_update, diff_sgd, loss, adaptation_steps, shots, ways, device) evaluation_error.backward() meta_train_error += evaluation_error.item() meta_train_accuracy += evaluation_accuracy.item() # Compute meta-validation loss task_features = l2l.clone_module(features) task_classifier = l2l.clone_module(classifier) task_update = l2l.clone_module(fast_update) batch = tasksets.validation.sample() evaluation_error, evaluation_accuracy = fast_adapt(batch, task_features, task_classifier, task_update, diff_sgd, loss, adaptation_steps, shots, ways, device) meta_valid_error += evaluation_error.item() meta_valid_accuracy += evaluation_accuracy.item() # Print some metrics print('\n') print('Iteration', iteration) print('Meta Train Error', meta_train_error / meta_batch_size) print('Meta Train Accuracy', meta_train_accuracy / meta_batch_size) print('Meta Valid Error', meta_valid_error / meta_batch_size) print('Meta Valid Accuracy', meta_valid_accuracy / meta_batch_size) # Average the accumulated gradients and optimize for p in model.parameters(): p.grad.data.mul_(1.0 / meta_batch_size) for p in fast_update.parameters(): p.grad.data.mul_(1.0 / meta_batch_size) opt.step() meta_test_error = 0.0 meta_test_accuracy = 0.0 for task in range(meta_batch_size): # Compute meta-testing loss task_features = l2l.clone_module(features) task_classifier = l2l.clone_module(classifier) task_update = l2l.clone_module(fast_update) batch = tasksets.test.sample() evaluation_error, evaluation_accuracy = fast_adapt(batch, task_features, task_classifier, task_update, diff_sgd, loss, adaptation_steps, shots, ways, device) meta_test_error += evaluation_error.item() meta_test_accuracy += evaluation_accuracy.item() print('Meta Test Error', meta_test_error / meta_batch_size) print('Meta Test Accuracy', meta_test_accuracy / meta_batch_size) if __name__ == '__main__': main()
[ "torch.nn.Linear", "torch.device", "torch.cuda.manual_seed", "torch.optim.Adam", "torch.from_numpy", "torch.manual_seed", "torch.cuda.device_count", "torch.nn.CrossEntropyLoss" ]
1.1.0
Brikwerk/learn2learn
c0b7c088f15986880b136ec27059644ac513db60
1.5
#!/usr/bin/env python # coding: utf-8 from tqdm import tqdm import os import torch import torchvision import torchvision.transforms as transforms from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import matplotlib as mpl import matplotlib.pyplot as plt mpl.style.use("default") import seaborn as sns sns.set_style("ticks") import sys sys.path.append("../") from src.models.CNN import AdaptiveConvNet from src.utils import get_device, plot_network_mask import argparse def argument_parser(): parser = argparse.ArgumentParser(description="Run Nonparametric Bayesian Architecture Learning") parser.add_argument('--use-cuda', action='store_false', help="Use CPU or GPU") parser.add_argument("--prior_temp", type=float, default=1., help="Temperature for Concrete Bernoulli from prior") parser.add_argument("--temp", type=float, default=.5, help="Temperature for Concrete Bernoulli from posterior") parser.add_argument("--epsilon", type=float, default=0.01, help="Epsilon to select the activated layers") parser.add_argument("--truncation_level", type=int, default=10, help="K+: Truncation for Z matrix") parser.add_argument("--a_prior", type=float, default=1.1, help="a parameter for Beta distribution") parser.add_argument("--b_prior", type=float, default=10., help="b parameter for Beta distribution") parser.add_argument("--kernel", type=int, default=5, help="Kernel size. Default is 3.") parser.add_argument("--num_samples", type=int, default=5, help="Number of samples of Z matrix") parser.add_argument("--epochs", type=int, default=50, help="Number of training epochs.") parser.add_argument("--lr", type=float, default=0.003, help="Learning rate.") parser.add_argument("--l2", type=float, default=1e-6, help="Coefficient of weight decay.") parser.add_argument("--batch_size", type=float, default=64, help="Batch size.") parser.add_argument("--max_width", type=int, default=64, help="Dimension of hidden representation.") return parser.parse_known_args()[0] args = argument_parser() transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # Normalize the test set same as training set without augmentation transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform_train, download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform_test) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False) device = get_device(args) model = AdaptiveConvNet(input_channels=1, num_classes=10, num_channels=args.max_width, kernel_size=args.kernel, args=args, device=device).to(device) model = model.to(device) print(model) loss_fn = nn.CrossEntropyLoss(reduction="none") optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.l2) if not os.path.exists("results"): os.mkdir("results") def evaluate(test_loader): loglike = 0 error_sum = 0 with torch.no_grad(): model.eval() for i, (data, labels) in enumerate(test_loader): data = data.float().to(device) labels = labels.long().to(device) output = model(data, args.num_samples) pred = output.mean(0) logits = F.softmax(pred, dim=1) ll = -F.nll_loss(logits, labels, reduction="sum").item() loglike += ll predicted = torch.argmax(logits, 1) error = predicted.ne(labels).sum().item() error_sum += error test_loglikes = loglike / len(test_dataset) test_err = error_sum / len(test_dataset) test_metrics = {'test_err': round(test_err * 100, 3), 'test_like': round(test_loglikes, 3)} return test_metrics train_losses = [] with tqdm(range(args.epochs)) as tq: for epoch in tq: train_loss = 0.0 model.train() for i, (data, labels) in enumerate(train_loader): data = data.float().to(device) labels = labels.long().to(device) # making grad zero optimizer.zero_grad() # sample an architecture act_vec = model(data, args.num_samples) loss = model.estimate_ELBO(loss_fn, act_vec, labels, N_train=len(train_dataset), kl_weight=1) loss.backward() optimizer.step() # adding losses train_loss += loss.item() train_loss = train_loss / len(train_loader) train_losses.append(train_loss) test_results = evaluate(test_loader) print("Test error: {} Test Log likelihood: {}".format(test_results['test_err'], test_results['test_like'])) kl_beta = model.structure_sampler.get_kl() tq.set_postfix({'Tr. loss': '%.6f' % train_loss, 'KL Beta': '%.6f' % kl_beta}) torch.save(model, "results/model_MNIST.pt")
[ "torch.argmax", "torch.no_grad", "torch.save", "torch.utils.data.DataLoader", "torch.nn.functional.softmax", "torch.nn.functional.nll_loss", "torch.nn.CrossEntropyLoss" ]
1.5.0
kckishan/Depth_and_Dropout
64bbff9169d588486d92946485e108342daa29b0
0.4
"""CLI and utils for training a batch of models and analysing hyper parameter tuning results""" import train import models import data_processor as dp import commons import argparse import torch import os import collections def train_models(training_configs, email=False): """Train a batch of models""" for i, config in enumerate(training_configs): print('\nTraining Model {} of {}: {}'.format(i + 1, len(training_configs), config.name)) train.train(config, plot_learning_curves=False, cuda=torch.cuda.is_available(), email=email) print('All Models have been evaluated') def print_evaluation_report(training_config): """Print the training and evaluation results for a model""" # Training Config print('Training Config') for key, val in training_config.__dict__.items(): print('{}\t{}'.format(key, val)) print() # Checkpoint model = training_config.get_by_model_key(False) checkpoint = models.ModelCheckpoint(model) checkpoint.load(training_config.get_model_path('checkpoint')) if not checkpoint.loaded: print('Not evaluated') return print('Last checkpoint stats') for key, val in checkpoint.__dict__.items(): print('{}\t{}'.format(key, val)) def _get_hps_for_autoencoder(training_config, checkpoint): hps = collections.OrderedDict() hps['name'] = training_config.name hps['trainable_params'] = checkpoint.trainable_params hps['epoch'] = checkpoint.epoch hps['best_loss'] = checkpoint.best_loss hps['batch_size'] = training_config.batch_size hps['lr'] = training_config.model_params['lr'] hps['momentum'] = training_config.model_params['momentum'] hps['num_init_filters'] = training_config.model_params['num_init_filters'] hps['num_pools'] = training_config.model_params['num_pools'] hps['num_fc'] = training_config.model_params['num_fc'] hps['fc_scale_down'] = training_config.model_params['fc_scale_down'] hps['kernel_size'] = training_config.model_params['kernel_size'] hps['shared_weights'] = training_config.model_params['shared_weights'] hps['skip_connections'] = training_config.model_params['skip_connections'] return ["{} : {}".format(key, val) for key, val in hps.items()] def _get_hps_for_classifier(training_config, checkpoint): hps = collections.OrderedDict() hps['name'] = training_config.name hps['trainable_params'] = checkpoint.trainable_params hps['epoch'] = checkpoint.epoch hps['best_loss'] = checkpoint.best_loss hps['batch_size'] = training_config.batch_size hps['lr'] = training_config.model_params['lr'] hps['momentum'] = training_config.model_params['momentum'] hps['arch'] = training_config.model_params['arch'] hps['batchnorm'] = training_config.model_params['batchnorm'] return ["{} : {}".format(key, val) for key, val in hps.items()] def save_evaluation_report(training_configs, config_path): """Compile and save hyper-tuning report for all models in the batch""" hps = [] for i, training_config in enumerate(training_configs): print('Saving report for Model {}: {}'.format(i + 1, training_config.name)) model = training_config.get_by_model_key(False) checkpoint = models.ModelCheckpoint(model) checkpoint.load(training_config.get_model_path('checkpoint')) if not checkpoint.loaded: print('Not evaluated') continue if training_config.model == 'conv_autoencoder': hps.append(_get_hps_for_autoencoder(training_config, checkpoint)) elif training_config.model == 'cnn_classifier': hps.append(_get_hps_for_classifier(training_config, checkpoint)) else: raise Exception('Invalid model code: {}'.format(training_configs.model)) with open(os.path.join(os.path.dirname(config_path), 'hps.txt'), 'w') as rep_file: rep_file.write('\n'.join(['\t'.join(hp) for hp in hps])) def save_evaluation_plots(training_configs): """Create and save learning curves for all models in the batch""" for i, training_config in enumerate(training_configs): print('Saving plot for Model {}: {}'.format(i + 1, training_config.name)) model = training_config.get_by_model_key(False) checkpoint = models.ModelCheckpoint(model) checkpoint.load(training_config.get_model_path('checkpoint')) if not checkpoint.loaded: print('Not evaluated') continue path = os.path.join(training_config.models_dir, "{}_lc.png".format(training_config.name)) commons.save_learning_curve(checkpoint.training_losses, checkpoint.cv_losses, path) def cli(): """Runs CLI""" # Arguments Parser parser = argparse.ArgumentParser(description='Hyper Parameter tuning related actions') parser.add_argument('-c', '--config_files_path', help='Path to a file containing a list of training config files') parser.add_argument('-m', '--mode', choices=['train', 'print-report', 'save-hps', 'save-plots'], default='train', help='Action to perform') parser.add_argument('-e', '--email', action='store_true', help='Send emails') parser.add_argument('-d', '--dataset', action='store_true', help='Print Dataset Details') # Parse arguments args = parser.parse_args() # Get model configs (read a single config file with newline separated paths to model configs) if args.config_files_path is None: raise Exception('Config file not specified') else: with open(args.config_files_path, 'r') as cfile: config_files = cfile.read().split('\n') train_configs = [train.TrainingConfig.load_from_file(fl) for fl in config_files] # Actions if args.mode == 'train': # Train a batch of models train_models(train_configs, email=args.email) elif args.mode == 'print-report': # Print report for all models for i, train_config in enumerate(train_configs): if args.dataset and i == 0: dataset_config = dp.DataPrepConfig.load_from_dataset(train_config.dataset_path) print('Dataset config for Model 1') for key, val in dataset_config.__dict__.items(): print('{}\t{}'.format(key, val)) print() print('*' * 10 + 'Model {}: {}'.format(i + 1, train_config.name)) print_evaluation_report(train_config) print() elif args.mode == 'save-hps': # Save hyper parameters for all models save_evaluation_report(train_configs, args.config_files_path) elif args.mode == 'save-plots': # Save learning curves for all models save_evaluation_plots(train_configs) else: raise Exception('Invalid mode: ' + args.mode) if __name__ == '__main__': cli()
[ "torch.cuda.is_available" ]
0.4.1
rbiswas143/deep-audioviz-experiments-train
294c648ca9115efce6127fb242ac3f6f51cdf532
1.2
import numpy as np import scipy.sparse as sp import torch from sklearn.model_selection import train_test_split import torch.sparse as ts import torch.nn.functional as F import warnings def encode_onehot(labels): """Convert label to onehot format. Parameters ---------- labels : numpy.array node labels Returns ------- numpy.array onehot labels """ eye = np.eye(labels.max() + 1) onehot_mx = eye[labels] return onehot_mx def tensor2onehot(labels): """Convert label tensor to label onehot tensor. Parameters ---------- labels : torch.LongTensor node labels Returns ------- torch.LongTensor onehot labels tensor """ eye = torch.eye(labels.max() + 1) onehot_mx = eye[labels] return onehot_mx.to(labels.device) def preprocess(adj, features, labels, preprocess_adj=False, preprocess_feature=False, sparse=False, device='cpu'): """Convert adj, features, labels from array or sparse matrix to torch Tensor, and normalize the input data. Parameters ---------- adj : scipy.sparse.csr_matrix the adjacency matrix. features : scipy.sparse.csr_matrix node features labels : numpy.array node labels preprocess_adj : bool whether to normalize the adjacency matrix preprocess_feature : bool whether to normalize the feature matrix sparse : bool whether to return sparse tensor device : str 'cpu' or 'cuda' """ if preprocess_adj: adj_norm = normalize_adj(adj) if preprocess_feature: features = normalize_feature(features) labels = torch.LongTensor(labels) if sparse: adj = sparse_mx_to_torch_sparse_tensor(adj) features = sparse_mx_to_torch_sparse_tensor(features) else: features = torch.FloatTensor(np.array(features.todense())) adj = torch.FloatTensor(adj.todense()) return adj.to(device), features.to(device), labels.to(device) def to_tensor(adj, features, labels=None, device='cpu'): """Convert adj, features, labels from array or sparse matrix to torch Tensor. Parameters ---------- adj : scipy.sparse.csr_matrix the adjacency matrix. features : scipy.sparse.csr_matrix node features labels : numpy.array node labels device : str 'cpu' or 'cuda' """ if sp.issparse(adj): adj = sparse_mx_to_torch_sparse_tensor(adj) else: adj = torch.FloatTensor(adj) if sp.issparse(features): features = sparse_mx_to_torch_sparse_tensor(features) else: features = torch.FloatTensor(np.array(features)) if labels is None: return adj.to(device), features.to(device) else: labels = torch.LongTensor(labels) return adj.to(device), features.to(device), labels.to(device) def normalize_feature(mx): """Row-normalize sparse matrix Parameters ---------- mx : scipy.sparse.csr_matrix matrix to be normalized Returns ------- scipy.sprase.lil_matrix normalized matrix """ if type(mx) is not sp.lil.lil_matrix: mx = mx.tolil() rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def normalize_adj(mx): """Normalize sparse adjacency matrix, A' = (D + I)^-1/2 * ( A + I ) * (D + I)^-1/2 Row-normalize sparse matrix Parameters ---------- mx : scipy.sparse.csr_matrix matrix to be normalized Returns ------- scipy.sprase.lil_matrix normalized matrix """ # TODO: maybe using coo format would be better? if type(mx) is not sp.lil.lil_matrix: mx = mx.tolil() if mx[0, 0] == 0 : mx = mx + sp.eye(mx.shape[0]) rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1/2).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) mx = mx.dot(r_mat_inv) return mx def normalize_sparse_tensor(adj, fill_value=1): """Normalize sparse tensor. Need to import torch_scatter """ edge_index = adj._indices() edge_weight = adj._values() num_nodes= adj.size(0) edge_index, edge_weight = add_self_loops( edge_index, edge_weight, fill_value, num_nodes) row, col = edge_index from torch_scatter import scatter_add deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow(-0.5) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 values = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] shape = adj.shape return torch.sparse.FloatTensor(edge_index, values, shape) def add_self_loops(edge_index, edge_weight=None, fill_value=1, num_nodes=None): # num_nodes = maybe_num_nodes(edge_index, num_nodes) loop_index = torch.arange(0, num_nodes, dtype=torch.long, device=edge_index.device) loop_index = loop_index.unsqueeze(0).repeat(2, 1) if edge_weight is not None: assert edge_weight.numel() == edge_index.size(1) loop_weight = edge_weight.new_full((num_nodes, ), fill_value) edge_weight = torch.cat([edge_weight, loop_weight], dim=0) edge_index = torch.cat([edge_index, loop_index], dim=1) return edge_index, edge_weight def normalize_adj_tensor(adj, sparse=False): """Normalize adjacency tensor matrix. """ device = torch.device("cuda" if adj.is_cuda else "cpu") if sparse: # warnings.warn('If you find the training process is too slow, you can uncomment line 207 in deeprobust/graph/utils.py. Note that you need to install torch_sparse') # TODO if this is too slow, uncomment the following code, # but you need to install torch_scatter # return normalize_sparse_tensor(adj) adj = to_scipy(adj) mx = normalize_adj(adj) return sparse_mx_to_torch_sparse_tensor(mx).to(device) else: mx = adj + torch.eye(adj.shape[0]).to(device) rowsum = mx.sum(1) r_inv = rowsum.pow(-1/2).flatten() r_inv[torch.isinf(r_inv)] = 0. r_mat_inv = torch.diag(r_inv) mx = r_mat_inv @ mx mx = mx @ r_mat_inv return mx def degree_normalize_adj(mx): """Row-normalize sparse matrix""" mx = mx.tolil() if mx[0, 0] == 0 : mx = mx + sp.eye(mx.shape[0]) rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) # mx = mx.dot(r_mat_inv) mx = r_mat_inv.dot(mx) return mx def degree_normalize_sparse_tensor(adj, fill_value=1): """degree_normalize_sparse_tensor. """ edge_index = adj._indices() edge_weight = adj._values() num_nodes= adj.size(0) edge_index, edge_weight = add_self_loops( edge_index, edge_weight, fill_value, num_nodes) row, col = edge_index from torch_scatter import scatter_add deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow(-1) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 values = deg_inv_sqrt[row] * edge_weight shape = adj.shape return torch.sparse.FloatTensor(edge_index, values, shape) def degree_normalize_adj_tensor(adj, sparse=True): """degree_normalize_adj_tensor. """ device = torch.device("cuda" if adj.is_cuda else "cpu") if sparse: # return degree_normalize_sparse_tensor(adj) adj = to_scipy(adj) mx = degree_normalize_adj(adj) return sparse_mx_to_torch_sparse_tensor(mx).to(device) else: mx = adj + torch.eye(adj.shape[0]).to(device) rowsum = mx.sum(1) r_inv = rowsum.pow(-1).flatten() r_inv[torch.isinf(r_inv)] = 0. r_mat_inv = torch.diag(r_inv) mx = r_mat_inv @ mx return mx def accuracy(output, labels): """Return accuracy of output compared to labels. Parameters ---------- output : torch.Tensor output from model labels : torch.Tensor or numpy.array node labels Returns ------- float accuracy """ if not hasattr(labels, '__len__'): labels = [labels] if type(labels) is not torch.Tensor: labels = torch.LongTensor(labels) preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) def loss_acc(output, labels, targets, avg_loss=True): if type(labels) is not torch.Tensor: labels = torch.LongTensor(labels) preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double()[targets] loss = F.nll_loss(output[targets], labels[targets], reduction='mean' if avg_loss else 'none') if avg_loss: return loss, correct.sum() / len(targets) return loss, correct # correct = correct.sum() # return loss, correct / len(labels) def classification_margin(output, true_label): """Calculate classification margin for outputs. `probs_true_label - probs_best_second_class` Parameters ---------- output: torch.Tensor output vector (1 dimension) true_label: int true label for this node Returns ------- list classification margin for this node """ probs = torch.exp(output) probs_true_label = probs[true_label].clone() probs[true_label] = 0 probs_best_second_class = probs[probs.argmax()] return (probs_true_label - probs_best_second_class).item() def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) sparserow=torch.LongTensor(sparse_mx.row).unsqueeze(1) sparsecol=torch.LongTensor(sparse_mx.col).unsqueeze(1) sparseconcat=torch.cat((sparserow, sparsecol),1) sparsedata=torch.FloatTensor(sparse_mx.data) return torch.sparse.FloatTensor(sparseconcat.t(),sparsedata,torch.Size(sparse_mx.shape)) # slower version.... # sparse_mx = sparse_mx.tocoo().astype(np.float32) # indices = torch.from_numpy( # np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) # values = torch.from_numpy(sparse_mx.data) # shape = torch.Size(sparse_mx.shape) # return torch.sparse.FloatTensor(indices, values, shape) def to_scipy(tensor): """Convert a dense/sparse tensor to scipy matrix""" if is_sparse_tensor(tensor): values = tensor._values() indices = tensor._indices() return sp.csr_matrix((values.cpu().numpy(), indices.cpu().numpy()), shape=tensor.shape) else: indices = tensor.nonzero().t() values = tensor[indices[0], indices[1]] return sp.csr_matrix((values.cpu().numpy(), indices.cpu().numpy()), shape=tensor.shape) def is_sparse_tensor(tensor): """Check if a tensor is sparse tensor. Parameters ---------- tensor : torch.Tensor given tensor Returns ------- bool whether a tensor is sparse tensor """ # if hasattr(tensor, 'nnz'): if tensor.layout == torch.sparse_coo: return True else: return False def get_train_val_test(nnodes, val_size=0.1, test_size=0.8, stratify=None, seed=None): """This setting follows nettack/mettack, where we split the nodes into 10% training, 10% validation and 80% testing data Parameters ---------- nnodes : int number of nodes in total val_size : float size of validation set test_size : float size of test set stratify : data is expected to split in a stratified fashion. So stratify should be labels. seed : int or None random seed Returns ------- idx_train : node training indices idx_val : node validation indices idx_test : node test indices """ assert stratify is not None, 'stratify cannot be None!' if seed is not None: np.random.seed(seed) idx = np.arange(nnodes) train_size = 1 - val_size - test_size idx_train_and_val, idx_test = train_test_split(idx, random_state=None, train_size=train_size + val_size, test_size=test_size, stratify=stratify) if stratify is not None: stratify = stratify[idx_train_and_val] idx_train, idx_val = train_test_split(idx_train_and_val, random_state=None, train_size=(train_size / (train_size + val_size)), test_size=(val_size / (train_size + val_size)), stratify=stratify) return idx_train, idx_val, idx_test def get_train_test(nnodes, test_size=0.8, stratify=None, seed=None): """This function returns training and test set without validation. It can be used for settings of different label rates. Parameters ---------- nnodes : int number of nodes in total test_size : float size of test set stratify : data is expected to split in a stratified fashion. So stratify should be labels. seed : int or None random seed Returns ------- idx_train : node training indices idx_test : node test indices """ assert stratify is not None, 'stratify cannot be None!' if seed is not None: np.random.seed(seed) idx = np.arange(nnodes) train_size = 1 - test_size idx_train, idx_test = train_test_split(idx, random_state=None, train_size=train_size, test_size=test_size, stratify=stratify) return idx_train, idx_test def get_train_val_test_gcn(labels, seed=None): """This setting follows gcn, where we randomly sample 20 instances for each class as training data, 500 instances as validation data, 1000 instances as test data. Note here we are not using fixed splits. When random seed changes, the splits will also change. Parameters ---------- labels : numpy.array node labels seed : int or None random seed Returns ------- idx_train : node training indices idx_val : node validation indices idx_test : node test indices """ if seed is not None: np.random.seed(seed) idx = np.arange(len(labels)) nclass = labels.max() + 1 idx_train = [] idx_unlabeled = [] for i in range(nclass): labels_i = idx[labels==i] labels_i = np.random.permutation(labels_i) idx_train = np.hstack((idx_train, labels_i[: 20])).astype(np.int) idx_unlabeled = np.hstack((idx_unlabeled, labels_i[20: ])).astype(np.int) idx_unlabeled = np.random.permutation(idx_unlabeled) idx_val = idx_unlabeled[: 500] idx_test = idx_unlabeled[500: 1500] return idx_train, idx_val, idx_test def get_train_test_labelrate(labels, label_rate): """Get train test according to given label rate. """ nclass = labels.max() + 1 train_size = int(round(len(labels) * label_rate / nclass)) print("=== train_size = %s ===" % train_size) idx_train, idx_val, idx_test = get_splits_each_class(labels, train_size=train_size) return idx_train, idx_test def get_splits_each_class(labels, train_size): """We randomly sample n instances for class, where n = train_size. """ idx = np.arange(len(labels)) nclass = labels.max() + 1 idx_train = [] idx_val = [] idx_test = [] for i in range(nclass): labels_i = idx[labels==i] labels_i = np.random.permutation(labels_i) idx_train = np.hstack((idx_train, labels_i[: train_size])).astype(np.int) idx_val = np.hstack((idx_val, labels_i[train_size: 2*train_size])).astype(np.int) idx_test = np.hstack((idx_test, labels_i[2*train_size: ])).astype(np.int) return np.random.permutation(idx_train), np.random.permutation(idx_val), \ np.random.permutation(idx_test) def unravel_index(index, array_shape): rows = index // array_shape[1] cols = index % array_shape[1] return rows, cols def get_degree_squence(adj): try: return adj.sum(0) except: return ts.sum(adj, dim=1).to_dense() def likelihood_ratio_filter(node_pairs, modified_adjacency, original_adjacency, d_min, threshold=0.004): """ Filter the input node pairs based on the likelihood ratio test proposed by Zügner et al. 2018, see https://dl.acm.org/citation.cfm?id=3220078. In essence, for each node pair return 1 if adding/removing the edge between the two nodes does not violate the unnoticeability constraint, and return 0 otherwise. Assumes unweighted and undirected graphs. """ N = int(modified_adjacency.shape[0]) # original_degree_sequence = get_degree_squence(original_adjacency) # current_degree_sequence = get_degree_squence(modified_adjacency) original_degree_sequence = original_adjacency.sum(0) current_degree_sequence = modified_adjacency.sum(0) concat_degree_sequence = torch.cat((current_degree_sequence, original_degree_sequence)) # Compute the log likelihood values of the original, modified, and combined degree sequences. ll_orig, alpha_orig, n_orig, sum_log_degrees_original = degree_sequence_log_likelihood(original_degree_sequence, d_min) ll_current, alpha_current, n_current, sum_log_degrees_current = degree_sequence_log_likelihood(current_degree_sequence, d_min) ll_comb, alpha_comb, n_comb, sum_log_degrees_combined = degree_sequence_log_likelihood(concat_degree_sequence, d_min) # Compute the log likelihood ratio current_ratio = -2 * ll_comb + 2 * (ll_orig + ll_current) # Compute new log likelihood values that would arise if we add/remove the edges corresponding to each node pair. new_lls, new_alphas, new_ns, new_sum_log_degrees = updated_log_likelihood_for_edge_changes(node_pairs, modified_adjacency, d_min) # Combination of the original degree distribution with the distributions corresponding to each node pair. n_combined = n_orig + new_ns new_sum_log_degrees_combined = sum_log_degrees_original + new_sum_log_degrees alpha_combined = compute_alpha(n_combined, new_sum_log_degrees_combined, d_min) new_ll_combined = compute_log_likelihood(n_combined, alpha_combined, new_sum_log_degrees_combined, d_min) new_ratios = -2 * new_ll_combined + 2 * (new_lls + ll_orig) # Allowed edges are only those for which the resulting likelihood ratio measure is < than the threshold allowed_edges = new_ratios < threshold if allowed_edges.is_cuda: filtered_edges = node_pairs[allowed_edges.cpu().numpy().astype(np.bool)] else: filtered_edges = node_pairs[allowed_edges.numpy().astype(np.bool)] allowed_mask = torch.zeros(modified_adjacency.shape) allowed_mask[filtered_edges.T] = 1 allowed_mask += allowed_mask.t() return allowed_mask, current_ratio def degree_sequence_log_likelihood(degree_sequence, d_min): """ Compute the (maximum) log likelihood of the Powerlaw distribution fit on a degree distribution. """ # Determine which degrees are to be considered, i.e. >= d_min. D_G = degree_sequence[(degree_sequence >= d_min.item())] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) return ll, alpha, n, sum_log_degrees def updated_log_likelihood_for_edge_changes(node_pairs, adjacency_matrix, d_min): """ Adopted from https://github.com/danielzuegner/nettack """ # For each node pair find out whether there is an edge or not in the input adjacency matrix. edge_entries_before = adjacency_matrix[node_pairs.T] degree_sequence = adjacency_matrix.sum(1) D_G = degree_sequence[degree_sequence >= d_min.item()] sum_log_degrees = torch.log(D_G).sum() n = len(D_G) deltas = -2 * edge_entries_before + 1 d_edges_before = degree_sequence[node_pairs] d_edges_after = degree_sequence[node_pairs] + deltas[:, None] # Sum the log of the degrees after the potential changes which are >= d_min sum_log_degrees_after, new_n = update_sum_log_degrees(sum_log_degrees, n, d_edges_before, d_edges_after, d_min) # Updated estimates of the Powerlaw exponents new_alpha = compute_alpha(new_n, sum_log_degrees_after, d_min) # Updated log likelihood values for the Powerlaw distributions new_ll = compute_log_likelihood(new_n, new_alpha, sum_log_degrees_after, d_min) return new_ll, new_alpha, new_n, sum_log_degrees_after def update_sum_log_degrees(sum_log_degrees_before, n_old, d_old, d_new, d_min): # Find out whether the degrees before and after the change are above the threshold d_min. old_in_range = d_old >= d_min new_in_range = d_new >= d_min d_old_in_range = d_old * old_in_range.float() d_new_in_range = d_new * new_in_range.float() # Update the sum by subtracting the old values and then adding the updated logs of the degrees. sum_log_degrees_after = sum_log_degrees_before - (torch.log(torch.clamp(d_old_in_range, min=1))).sum(1) \ + (torch.log(torch.clamp(d_new_in_range, min=1))).sum(1) # Update the number of degrees >= d_min new_n = n_old - (old_in_range!=0).sum(1) + (new_in_range!=0).sum(1) new_n = new_n.float() return sum_log_degrees_after, new_n def compute_alpha(n, sum_log_degrees, d_min): try: alpha = 1 + n / (sum_log_degrees - n * torch.log(d_min - 0.5)) except: alpha = 1 + n / (sum_log_degrees - n * np.log(d_min - 0.5)) return alpha def compute_log_likelihood(n, alpha, sum_log_degrees, d_min): # Log likelihood under alpha try: ll = n * torch.log(alpha) + n * alpha * torch.log(d_min) + (alpha + 1) * sum_log_degrees except: ll = n * np.log(alpha) + n * alpha * np.log(d_min) + (alpha + 1) * sum_log_degrees return ll def ravel_multiple_indices(ixs, shape, reverse=False): """ "Flattens" multiple 2D input indices into indices on the flattened matrix, similar to np.ravel_multi_index. Does the same as ravel_index but for multiple indices at once. Parameters ---------- ixs: array of ints shape (n, 2) The array of n indices that will be flattened. shape: list or tuple of ints of length 2 The shape of the corresponding matrix. Returns ------- array of n ints between 0 and shape[0]*shape[1]-1 The indices on the flattened matrix corresponding to the 2D input indices. """ if reverse: return ixs[:, 1] * shape[1] + ixs[:, 0] return ixs[:, 0] * shape[1] + ixs[:, 1] def visualize(your_var): """visualize computation graph""" from graphviz import Digraph import torch from torch.autograd import Variable from torchviz import make_dot make_dot(your_var).view() def reshape_mx(mx, shape): indices = mx.nonzero() return sp.csr_matrix((mx.data, (indices[0], indices[1])), shape=shape) # def check_path(file_path): # if not osp.exists(file_path): # os.system(f'mkdir -p {file_path}')
[ "torch.cat", "torch.LongTensor", "torch.eye", "torch.nn.functional.nll_loss", "torch.exp", "torch.Size", "torch.FloatTensor", "torch.zeros", "torch.device", "torch.clamp", "torch.isinf", "torch.log", "torch.arange", "torch.sparse.FloatTensor", "torch.diag", "torch.sparse.sum" ]
1.2.0
CrownX/DeepRobust
276a7048aded2cf3a190d3851ffd4587b7d1dd49
1.10
import logging import os from abc import ABC from typing import Tuple, Any import numpy as np import torch import torchvision from pandas import read_csv from torch.utils.data import Dataset, DataLoader from torchvision.datasets import CIFAR10, CIFAR100 from torchvision.datasets.folder import pil_loader, accimage_loader from torchvision.transforms import transforms from tqdm import tqdm import configs from functions.evaluate_roxf import configdataset, DATASETS from functions.mining import SimpleMemoryBank from utils.augmentations import GaussianBlurOpenCV class BaseDataset(Dataset, ABC): def get_img_paths(self): raise NotImplementedError class HashingDataset(BaseDataset): def __init__(self, root, transform=None, target_transform=None, filename='train', separate_multiclass=False, ratio=1): if torchvision.get_image_backend() == 'PIL': self.loader = pil_loader else: self.loader = accimage_loader self.separate_multiclass = separate_multiclass self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.filename = filename self.train_data = [] self.train_labels = [] self.ratio = ratio filename = os.path.join(self.root, self.filename) is_pkl = False with open(filename, 'r') as f: while True: lines = f.readline() if not lines: break path_tmp = lines.split()[0] label_tmp = lines.split()[1:] self.is_onehot = len(label_tmp) != 1 if not self.is_onehot: label_tmp = lines.split()[1] if self.separate_multiclass: assert self.is_onehot, 'if multiclass, please use onehot' nonzero_index = np.nonzero(np.array(label_tmp, dtype=np.int))[0] for c in nonzero_index: self.train_data.append(path_tmp) label_tmp = ['1' if i == c else '0' for i in range(len(label_tmp))] self.train_labels.append(label_tmp) else: self.train_data.append(path_tmp) self.train_labels.append(label_tmp) is_pkl = path_tmp.endswith('.pkl') # if save as pkl, pls make sure dont use different style of loading if is_pkl: self.loader = torch.load self.train_data = np.array(self.train_data) self.train_labels = np.array(self.train_labels, dtype=float) if ratio != 1: assert 0 < ratio < 1, 'data ratio is in between 0 and 1 exclusively' N = len(self.train_data) randidx = np.arange(N) np.random.shuffle(randidx) randidx = randidx[:int(ratio * N)] self.train_data = self.train_data[randidx] self.train_labels = self.train_labels[randidx] logging.info(f'Number of data: {self.train_data.shape[0]}') def filter_classes(self, classes): # only work for single class dataset new_data = [] new_labels = [] for idx, c in enumerate(classes): new_onehot = np.zeros(len(classes)) new_onehot[idx] = 1 cmask = self.train_labels.argmax(axis=1) == c new_data.append(self.train_data[cmask]) new_labels.append(np.repeat([new_onehot], int(np.sum(cmask)), axis=0)) # new_labels.append(self.train_labels[cmask]) self.train_data = np.concatenate(new_data) self.train_labels = np.concatenate(new_labels) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.train_data[index], self.train_labels[index] target = torch.tensor(target) img = self.loader(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, index def __len__(self): return len(self.train_data) def get_img_paths(self): return self.train_data class IndexDatasetWrapper(BaseDataset): def __init__(self, ds) -> None: super(Dataset, self).__init__() self.__dict__['ds'] = ds def __setattr__(self, name, value): setattr(self.ds, name, value) def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) return getattr(self.ds, attr) def __getitem__(self, index: int) -> Tuple: """ Args: index (int): Index Returns: tuple: (image, target, index) where target is index of the target class. """ outs = self.ds.__getitem__(index) return tuple(list(outs) + [index]) def __len__(self): return len(self.ds) def get_img_paths(self): return self.ds.get_img_paths() class Denormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor class InstanceDiscriminationDataset(BaseDataset): def augment_image(self, img): # if use this, please run script with --no-aug and --gpu-mean-transform return self.transform(self.to_pil(img)) def weak_augment_image(self, img): # if use this, please run script with --no-aug and --gpu-mean-transform return self.weak_transform(self.to_pil(img)) def __init__(self, ds, tmode='simclr', imgsize=224, weak_mode=0) -> None: super(Dataset, self).__init__() self.__dict__['ds'] = ds if 'simclr' in tmode: s = 0.5 size = imgsize color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=size, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.RandomApply([color_jitter], p=0.7), transforms.RandomGrayscale(p=0.2), GaussianBlurOpenCV(kernel_size=3), # GaussianBlur(kernel_size=int(0.1 * size)), transforms.ToTensor(), # 0.2 * 224 = 44 pixels transforms.RandomErasing(p=0.2, scale=(0.02, 0.2))]) self.transform = data_transforms # lazy fix, can be more pretty and general, cibhash part 1/2 elif tmode == 'cibhash': logging.info('CIBHash Augmentations') s = 0.5 size = imgsize color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=size, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.RandomApply([color_jitter], p=0.7), transforms.RandomGrayscale(p=0.2), GaussianBlurOpenCV(kernel_size=3), # GaussianBlur(kernel_size=3), transforms.ToTensor()]) self.transform = data_transforms else: raise ValueError(f'unknown mode {tmode}') if weak_mode == 1: logging.info(f'Weak mode {weak_mode} activated.') self.weak_transform = transforms.Compose([ transforms.Resize(256), # temp lazy hard code transforms.CenterCrop(imgsize), transforms.ToTensor() ]) elif weak_mode == 2: logging.info(f'Weak mode {weak_mode} activated.') self.weak_transform = transforms.Compose([ transforms.Resize(256), # temp lazy hard code transforms.RandomCrop(imgsize), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]) self.weak_mode = weak_mode self.tmode = tmode self.imgsize = imgsize self.to_pil = transforms.ToPILImage() def __setattr__(self, name, value): setattr(self.ds, name, value) def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) return getattr(self.ds, attr) def __getitem__(self, index: int) -> Tuple[Any, Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target, index) where target is index of the target class. """ out = self.ds.__getitem__(index) img, target = out[:2] # exclude index # if self.tmode == 'simclr': # aug_imgs = [img, self.augment_image(img)] # else: if self.weak_mode != 0: aug_imgs = [self.weak_augment_image(img), self.augment_image(img)] else: aug_imgs = [self.augment_image(img), self.augment_image(img)] return torch.stack(aug_imgs, dim=0), target, index def __len__(self): return len(self.ds) def get_img_paths(self): return self.ds.get_img_paths() class RotationDataset(BaseDataset): @staticmethod def rotate_img(img, rot): img = np.transpose(img.numpy(), (1, 2, 0)) if rot == 0: # 0 degrees rotation out = img elif rot == 90: # 90 degrees rotation out = np.flipud(np.transpose(img, (1, 0, 2))) elif rot == 180: # 90 degrees rotation out = np.fliplr(np.flipud(img)) elif rot == 270: # 270 degrees rotation / or -90 out = np.transpose(np.flipud(img), (1, 0, 2)) else: raise ValueError('rotation should be 0, 90, 180, or 270 degrees') return torch.from_numpy(np.transpose(out, (2, 0, 1)).copy()) def __init__(self, ds) -> None: super(Dataset, self).__init__() self.__dict__['ds'] = ds def __setattr__(self, name, value): setattr(self.ds, name, value) def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) return getattr(self.ds, attr) def __getitem__(self, index: int) -> Tuple[Any, Any, Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target, index) where target is index of the target class. """ out = self.ds.__getitem__(index) img, target = out[:2] # exclude index # rot_label = np.random.randint(0, 4) # .item() rot_labels = [0, 1, 2, 3] rots = [0, 90, 180, 270] # rots = [0, rots[rot_label]] rot_imgs = [self.rotate_img(img, rot) for rot in rots] return torch.stack(rot_imgs, dim=0), torch.tensor(rot_labels), target, index def __len__(self): return len(self.ds) def get_img_paths(self): return self.ds.get_img_paths() class LandmarkDataset(BaseDataset): def __init__(self, root, transform=None, target_transform=None, filename='train.csv', onehot=False, return_id=False): self.loader = pil_loader self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.filename = filename self.train_labels = [] self.set_name = filename[:-4] self.onehot = onehot self.return_id = return_id def get_path(i: str): return os.path.join(root, self.set_name, i[0], i[1], i[2], i + ".jpg") filename = os.path.join(self.root, self.filename) self.df = read_csv(filename) self.df['path'] = self.df['id'].apply(get_path) self.max_index = self.df['landmark_id'].max() + 1 logging.info(f'Number of data: {len(self.df)}') def to_onehot(self, i): t = torch.zeros(self.max_index) t[i] = 1 return t def __getitem__(self, index): img = self.df['path'][index] if self.onehot: target = self.to_onehot(self.df['landmark_id'][index]) else: target = self.df['landmark_id'][index] # target = torch.tensor(target) img = self.loader(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.return_id: return img, target, (self.df['id'][index], index) return img, target def __len__(self): return len(self.df) def get_img_paths(self): return self.df['path'].to_numpy() class SingleIDDataset(BaseDataset): """Dataset with only single class ID To be merge with Landmark""" def __init__(self, root, transform=None, target_transform=None, filename='train.csv', onehot=False): self.loader = pil_loader self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.filename = filename self.train_labels = [] self.set_name = filename[:-4] self.onehot = onehot def get_path(i: str): return os.path.join(root, "imgs", i) filename = os.path.join(self.root, self.filename) self.df = read_csv(filename) self.df['path'] = self.df['path'].apply(get_path) self.max_index = self.df['class_id'].max() + 1 logging.info(f'Number of data: {len(self.df)}') def to_onehot(self, i): t = torch.zeros(self.max_index) t[i] = 1 return t def __getitem__(self, index): img = self.df['path'][index] if self.onehot: target = self.to_onehot(self.df['class_id'][index]) else: target = self.df['class_id'][index] # target = torch.tensor(target) img = self.loader(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, index def __len__(self): return len(self.df) def get_img_paths(self): return self.df['path'].to_numpy() class ROxfordParisDataset(BaseDataset): def __init__(self, dataset='roxford5k', filename='test.txt', transform=None, target_transform=None): self.loader = pil_loader self.transform = transform self.target_transform = target_transform assert filename in ['test.txt', 'database.txt'] self.set_name = filename assert dataset in DATASETS self.cfg = configdataset(dataset, os.path.join('data')) logging.info(f'Number of data: {self.__len__()}') def __getitem__(self, index): if self.set_name == 'database.txt': img = self.cfg['im_fname'](self.cfg, index) elif self.set_name == 'test.txt': img = self.cfg['qim_fname'](self.cfg, index) img = self.loader(img) if self.set_name == 'test.txt': img = img.crop(self.cfg['gnd'][index]['bbx']) if self.transform is not None: img = self.transform(img) return img, index, index # img, None, index is throw error def __len__(self): if self.set_name == 'test.txt': return self.cfg['nq'] elif self.set_name == 'database.txt': return self.cfg['n'] def get_img_paths(self): raise NotImplementedError('Not supported.') class DescriptorDataset(BaseDataset): def __init__(self, root, filename, ratio=1): self.data_dict = torch.load(os.path.join(root, filename), map_location=torch.device('cpu')) self.filename = filename self.root = root self.ratio = ratio if ratio != 1: assert 0 < ratio < 1, 'data ratio is in between 0 and 1 exclusively' N = len(self.data_dict['codes']) randidx = np.arange(N) np.random.shuffle(randidx) randidx = randidx[:int(ratio * N)] for key in self.data_dict: self.data_dict[key] = self.data_dict[key][randidx] logging.info(f'Number of data in {filename}: {self.__len__()}') def __getitem__(self, index): embed = self.data_dict['codes'][index] label = self.data_dict['labels'][index] # label is 1 indexed, convert to 0-indexed return embed, label, index # img, None, index is throw error def __len__(self): return len(self.data_dict['codes']) def get_img_paths(self): raise NotImplementedError('Not supported for descriptor dataset. Please try usual Image Dataset if you want to get all image paths.') class EmbeddingDataset(BaseDataset): def __init__(self, root, filename='train.txt'): self.data_dict = torch.load(os.path.join(root, filename), map_location=torch.device('cpu')) self.filename = filename self.root = root logging.info(f'Number of data in {filename}: {self.__len__()}') def __getitem__(self, index): embed = self.data_dict['codes'][index] if self.filename == 'train.txt': label = self.data_dict['labels'][index] - 1 # label is 1 indexed, convert to 0-indexed else: label = 0 landmark_id = self.data_dict['id'][index] return embed, label, (landmark_id, index) # img, None, index is throw error def __len__(self): return len(self.data_dict['id']) def get_img_paths(self): raise NotImplementedError('Not supported for descriptor dataset. Please try usual Image Dataset if you want to get all image paths.') class NeighbourDatasetWrapper(BaseDataset): def __init__(self, ds, model, config) -> None: super(Dataset, self).__init__() self.ds = ds device = config['device'] loader = DataLoader(ds, config['batch_size'], shuffle=False, drop_last=False, num_workers=os.cpu_count()) model.eval() pbar = tqdm(loader, desc='Obtain Codes', ascii=True, bar_format='{l_bar}{bar:10}{r_bar}', disable=configs.disable_tqdm) ret_feats = [] for i, (data, labels, index) in enumerate(pbar): with torch.no_grad(): data, labels = data.to(device), labels.to(device) x, code_logits, b = model(data)[:3] ret_feats.append(x.cpu()) ret_feats = torch.cat(ret_feats) mbank = SimpleMemoryBank(len(self.ds), model.backbone.in_features, device) mbank.update(ret_feats) neighbour_topk = config['dataset_kwargs'].get('neighbour_topk', 5) indices = mbank.mine_nearest_neighbors(neighbour_topk) self.indices = indices[:, 1:] # exclude itself def __getitem__(self, index: int) -> Tuple[Any, Any, Any, Any, Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target, index) where target is index of the target class. """ img, target = self.ds.__getitem__(index) randidx = np.random.choice(self.indices[index], 1)[0] nbimg, nbtar = self.ds.__getitem__(randidx) return img, target, index, nbimg, nbtar, randidx def __len__(self): return len(self.ds) def get_img_paths(self): return self.ds.get_img_paths() def one_hot(nclass): def f(index): index = torch.tensor(int(index)).long() return torch.nn.functional.one_hot(index, nclass) return f def cifar(nclass, **kwargs): transform = kwargs['transform'] ep = kwargs['evaluation_protocol'] fn = kwargs['filename'] reset = kwargs['reset'] CIFAR = CIFAR10 if int(nclass) == 10 else CIFAR100 traind = CIFAR(f'data/cifar{nclass}', transform=transform, target_transform=one_hot(int(nclass)), train=True, download=True) traind = IndexDatasetWrapper(traind) testd = CIFAR(f'data/cifar{nclass}', transform=transform, target_transform=one_hot(int(nclass)), train=False, download=True) testd = IndexDatasetWrapper(testd) if ep == 2: # using orig train and test if fn == 'test.txt': return testd else: # train.txt and database.txt return traind combine_data = np.concatenate([traind.data, testd.data], axis=0) combine_targets = np.concatenate([traind.targets, testd.targets], axis=0) path = f'data/cifar{nclass}/0_0_{ep}_{fn}' load_data = fn == 'train.txt' load_data = load_data and (reset or not os.path.exists(path)) if not load_data: logging.info(f'Loading {path}') data_index = torch.load(path) else: train_data_index = [] query_data_index = [] db_data_index = [] data_id = np.arange(combine_data.shape[0]) # [0, 1, ...] for i in range(nclass): class_mask = combine_targets == i index_of_class = data_id[class_mask].copy() # index of the class [2, 10, 656,...] np.random.shuffle(index_of_class) if ep == 1: query_n = 100 # // (nclass // 10) train_n = 500 # // (nclass // 10) index_for_query = index_of_class[:query_n].tolist() index_for_db = index_of_class[query_n:].tolist() index_for_train = index_for_db[:train_n] elif ep == 2: # ep2 = take all data query_n = 1000 # // (nclass // 10) index_for_query = index_of_class[:query_n].tolist() index_for_db = index_of_class[query_n:].tolist() index_for_train = index_for_db elif ep == 3: # Bi-Half Cifar10(II) query_n = 1000 train_n = 500 index_for_query = index_of_class[:query_n].tolist() index_for_db = index_of_class[query_n:].tolist() index_for_train = index_for_db[:train_n] else: raise NotImplementedError('') train_data_index.extend(index_for_train) query_data_index.extend(index_for_query) db_data_index.extend(index_for_db) train_data_index = np.array(train_data_index) query_data_index = np.array(query_data_index) db_data_index = np.array(db_data_index) torch.save(train_data_index, f'data/cifar{nclass}/0_0_{ep}_train.txt') torch.save(query_data_index, f'data/cifar{nclass}/0_0_{ep}_test.txt') torch.save(db_data_index, f'data/cifar{nclass}/0_0_{ep}_database.txt') data_index = { 'train.txt': train_data_index, 'test.txt': query_data_index, 'database.txt': db_data_index }[fn] traind.data = combine_data[data_index] traind.targets = combine_targets[data_index] return traind def imagenet100(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] suffix = kwargs.get('dataset_name_suffix', '') d = HashingDataset(f'data/imagenet{suffix}', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d def cars(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] d = HashingDataset('data/cars', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d def landmark(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] return_id = kwargs.get('return_id', False) d = LandmarkDataset('data/landmark', transform=transform, filename=filename, return_id=return_id) return d def nuswide(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] separate_multiclass = kwargs.get('separate_multiclass', False) suffix = kwargs.get('dataset_name_suffix', '') d = HashingDataset(f'data/nuswide_v2_256{suffix}', transform=transform, filename=filename, separate_multiclass=separate_multiclass, ratio=kwargs.get('ratio', 1)) return d def nuswide_single(**kwargs): return nuswide(separate_multiclass=True, **kwargs) def coco(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] suffix = kwargs.get('dataset_name_suffix', '') d = HashingDataset(f'data/coco{suffix}', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d def roxford5k(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] d = ROxfordParisDataset(dataset='roxford5k', filename=filename, transform=transform) return d def rparis6k(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] d = ROxfordParisDataset(dataset='rparis6k', filename=filename, transform=transform) return d def gldv2delgembed(**kwargs): filename = kwargs['filename'] d = EmbeddingDataset('data/gldv2delgembed', filename=filename) return d def roxford5kdelgembed(**kwargs): filename = kwargs['filename'] d = EmbeddingDataset('data/roxford5kdelgembed', filename=filename) return d def rparis6kdelgembed(**kwargs): filename = kwargs['filename'] d = EmbeddingDataset('data/rparis6kdelgembed', filename=filename) return d def descriptor(**kwargs): filename = kwargs['filename'] data_folder = kwargs['data_folder'] d = DescriptorDataset(data_folder, filename=filename, ratio=kwargs.get('ratio', 1)) return d def mirflickr(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] suffix = kwargs.get('dataset_name_suffix', '') d = HashingDataset(f'data/mirflickr{suffix}', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d def sop_instance(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] d = SingleIDDataset('data/sop_instance', transform=transform, filename=filename) return d def sop(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] suffix = kwargs.get('dataset_name_suffix', '') d = HashingDataset(f'data/sop{suffix}', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d def food101(**kwargs): transform = kwargs['transform'] filename = kwargs['filename'] d = HashingDataset('data/food-101', transform=transform, filename=filename, ratio=kwargs.get('ratio', 1)) return d
[ "torch.zeros", "torch.cat", "torch.nn.functional.one_hot", "torch.stack", "torch.device", "torch.save", "torch.no_grad", "torch.tensor", "torch.load" ]
1.10.0
jiahuei/cisip-FIRe
bcbda2b74dc5a0b26f0338f707a257d660b688a1
1.6
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from torch import optim import tests.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.callbacks.finetuning import BackboneFinetuning from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel from tests.helpers.datamodules import ClassifDataModule from tests.helpers.simple_models import ClassificationModel def test_lr_monitor_single_lr(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() model = BoringModel() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert all(v is None for v in lr_monitor.last_momentum_values.values()), \ 'Momentum should not be logged by default' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert lr_monitor.lr_sch_names == list(lr_monitor.lrs.keys()) == ['lr-SGD'], \ 'Names of learning rates not set correctly' @pytest.mark.parametrize('opt', ['SGD', 'Adam']) def test_lr_monitor_single_lr_with_momentum(tmpdir, opt: str): """Test that learning rates and momentum are extracted and logged for single lr scheduler.""" class LogMomentumModel(BoringModel): def __init__(self, opt): super().__init__() self.opt = opt def configure_optimizers(self): if self.opt == 'SGD': opt_kwargs = {'momentum': 0.9} elif self.opt == 'Adam': opt_kwargs = {'betas': (0.9, 0.999)} optimizer = getattr(optim, self.opt)(self.parameters(), lr=1e-2, **opt_kwargs) lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-2, total_steps=10_000) return [optimizer], [lr_scheduler] model = LogMomentumModel(opt=opt) lr_monitor = LearningRateMonitor(log_momentum=True) trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=2, limit_train_batches=5, log_every_n_steps=1, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert all(v is not None for v in lr_monitor.last_momentum_values.values()), \ 'Expected momentum to be logged' assert len(lr_monitor.last_momentum_values) == len(trainer.lr_schedulers), \ 'Number of momentum values logged does not match number of lr schedulers' assert all(k == f'lr-{opt}-momentum' for k in lr_monitor.last_momentum_values.keys()), \ 'Names of momentum values not set correctly' def test_log_momentum_no_momentum_optimizer(tmpdir): """ Test that if optimizer doesn't have momentum then a warning is raised with log_momentum=True. """ class LogMomentumModel(BoringModel): def configure_optimizers(self): optimizer = optim.ASGD(self.parameters(), lr=1e-2) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] model = LogMomentumModel() lr_monitor = LearningRateMonitor(log_momentum=True) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_val_batches=2, limit_train_batches=5, log_every_n_steps=1, callbacks=[lr_monitor], ) with pytest.warns(RuntimeWarning, match="optimizers do not have momentum."): trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert all(v == 0 for v in lr_monitor.last_momentum_values.values()), \ 'Expected momentum to be logged' assert len(lr_monitor.last_momentum_values) == len(trainer.lr_schedulers), \ 'Number of momentum values logged does not match number of lr schedulers' assert all(k == 'lr-ASGD-momentum' for k in lr_monitor.last_momentum_values.keys()), \ 'Names of momentum values not set correctly' def test_lr_monitor_no_lr_scheduler(tmpdir): tutils.reset_seed() class CustomBoringModel(BoringModel): def configure_optimizers(self): optimizer = optim.SGD(self.parameters(), lr=0.1) return optimizer model = CustomBoringModel() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) with pytest.warns(RuntimeWarning, match='have no learning rate schedulers'): trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" def test_lr_monitor_no_logger(tmpdir): tutils.reset_seed() model = BoringModel() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, callbacks=[lr_monitor], logger=False, ) with pytest.raises(MisconfigurationException, match='`Trainer` that has no logger'): trainer.fit(model) @pytest.mark.parametrize("logging_interval", ['step', 'epoch']) def test_lr_monitor_multi_lrs(tmpdir, logging_interval: str): """ Test that learning rates are extracted and logged for multi lr schedulers. """ tutils.reset_seed() class CustomBoringModel(BoringModel): def training_step(self, batch, batch_idx, optimizer_idx): return super().training_step(batch, batch_idx) def configure_optimizers(self): optimizer1 = optim.Adam(self.parameters(), lr=1e-2) optimizer2 = optim.Adam(self.parameters(), lr=1e-2) lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1) lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1) return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2] model = CustomBoringModel() model.training_epoch_end = None lr_monitor = LearningRateMonitor(logging_interval=logging_interval) log_every_n_steps = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, log_every_n_steps=log_every_n_steps, limit_train_batches=7, limit_val_batches=0.1, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert lr_monitor.lr_sch_names == ['lr-Adam', 'lr-Adam-1'], \ 'Names of learning rates not set correctly' if logging_interval == 'step': expected_number_logged = trainer.global_step // log_every_n_steps if logging_interval == 'epoch': expected_number_logged = trainer.max_epochs assert all(len(lr) == expected_number_logged for lr in lr_monitor.lrs.values()), \ 'Length of logged learning rates do not match the expected number' def test_lr_monitor_param_groups(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() class CustomClassificationModel(ClassificationModel): def configure_optimizers(self): param_groups = [{ 'params': list(self.parameters())[:2], 'lr': self.lr * 0.1 }, { 'params': list(self.parameters())[2:], 'lr': self.lr }] optimizer = optim.Adam(param_groups) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) return [optimizer], [lr_scheduler] model = CustomClassificationModel() dm = ClassifDataModule() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) trainer.fit(model, datamodule=dm) assert trainer.state.finished, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == 2 * len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of param groups' assert lr_monitor.lr_sch_names == ['lr-Adam'] assert list(lr_monitor.lrs.keys()) == ['lr-Adam/pg1', 'lr-Adam/pg2'], \ 'Names of learning rates not set correctly' def test_lr_monitor_custom_name(tmpdir): class TestModel(BoringModel): def configure_optimizers(self): optimizer, [scheduler] = super().configure_optimizers() lr_scheduler = {'scheduler': scheduler, 'name': 'my_logging_name'} return optimizer, [lr_scheduler] lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], progress_bar_refresh_rate=0, weights_summary=None, ) trainer.fit(TestModel()) assert lr_monitor.lr_sch_names == list(lr_monitor.lrs.keys()) == ['my_logging_name'] def test_lr_monitor_custom_pg_name(tmpdir): class TestModel(BoringModel): def configure_optimizers(self): optimizer = torch.optim.SGD([{'params': list(self.layer.parameters()), 'name': 'linear'}], lr=0.1) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=2, limit_train_batches=2, callbacks=[lr_monitor], progress_bar_refresh_rate=0, weights_summary=None, ) trainer.fit(TestModel()) assert lr_monitor.lr_sch_names == ['lr-SGD'] assert list(lr_monitor.lrs) == ['lr-SGD/linear'] def test_lr_monitor_duplicate_custom_pg_names(tmpdir): tutils.reset_seed() class TestModel(BoringModel): def __init__(self): super().__init__() self.linear_a = torch.nn.Linear(32, 16) self.linear_b = torch.nn.Linear(16, 2) def forward(self, x): x = self.linear_a(x) x = self.linear_b(x) return x def configure_optimizers(self): param_groups = [ { 'params': list(self.linear_a.parameters()), 'name': 'linear' }, { 'params': list(self.linear_b.parameters()), 'name': 'linear' }, ] optimizer = torch.optim.SGD(param_groups, lr=0.1) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=2, limit_train_batches=2, callbacks=[lr_monitor], progress_bar_refresh_rate=0, weights_summary=None, ) with pytest.raises( MisconfigurationException, match='A single `Optimizer` cannot have multiple parameter groups with identical' ): trainer.fit(TestModel()) def test_multiple_optimizers_basefinetuning(tmpdir): class TestModel(BoringModel): def __init__(self): super().__init__() self.backbone = torch.nn.Sequential( torch.nn.Linear(32, 32), torch.nn.Linear(32, 32), torch.nn.Linear(32, 32), torch.nn.ReLU(True), ) self.layer = torch.nn.Linear(32, 2) def training_step(self, batch, batch_idx, optimizer_idx): return super().training_step(batch, batch_idx) def forward(self, x): return self.layer(self.backbone(x)) def configure_optimizers(self): parameters = list(filter(lambda p: p.requires_grad, self.parameters())) opt = optim.Adam(parameters, lr=0.1) opt_2 = optim.Adam(parameters, lr=0.1) opt_3 = optim.Adam(parameters, lr=0.1) optimizers = [opt, opt_2, opt_3] schedulers = [ optim.lr_scheduler.StepLR(opt, step_size=1, gamma=0.5), optim.lr_scheduler.StepLR(opt_2, step_size=1, gamma=0.5), ] return optimizers, schedulers class Check(Callback): def on_train_epoch_start(self, trainer, pl_module) -> None: num_param_groups = sum([len(opt.param_groups) for opt in trainer.optimizers]) assert lr_monitor.lr_sch_names == ['lr-Adam', 'lr-Adam-1'] if trainer.current_epoch == 0: assert num_param_groups == 3 elif trainer.current_epoch == 1: assert num_param_groups == 4 assert list(lr_monitor.lrs) == ['lr-Adam-1', 'lr-Adam/pg1', 'lr-Adam/pg2'] elif trainer.current_epoch == 2: assert num_param_groups == 5 assert list(lr_monitor.lrs) == ['lr-Adam/pg1', 'lr-Adam/pg2', 'lr-Adam-1/pg1', 'lr-Adam-1/pg2'] else: expected = ['lr-Adam/pg1', 'lr-Adam/pg2', 'lr-Adam-1/pg1', 'lr-Adam-1/pg2', 'lr-Adam-1/pg3'] assert list(lr_monitor.lrs) == expected class TestFinetuning(BackboneFinetuning): def freeze_before_training(self, pl_module): self.freeze(pl_module.backbone[0]) self.freeze(pl_module.backbone[1]) self.freeze(pl_module.layer) def finetune_function(self, pl_module, epoch: int, optimizer, opt_idx: int): """Called when the epoch begins.""" if epoch == 1 and opt_idx == 0: self.unfreeze_and_add_param_group(pl_module.backbone[0], optimizer, lr=0.1) if epoch == 2 and opt_idx == 1: self.unfreeze_and_add_param_group(pl_module.layer, optimizer, lr=0.1) if epoch == 3 and opt_idx == 1: assert len(optimizer.param_groups) == 2 self.unfreeze_and_add_param_group(pl_module.backbone[1], optimizer, lr=0.1) assert len(optimizer.param_groups) == 3 lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=5, limit_val_batches=0, limit_train_batches=2, callbacks=[TestFinetuning(), lr_monitor, Check()], progress_bar_refresh_rate=0, weights_summary=None, checkpoint_callback=False ) model = TestModel() model.training_epoch_end = None trainer.fit(model) expected = [0.1, 0.05, 0.025, 0.0125, 0.00625] assert lr_monitor.lrs['lr-Adam/pg1'] == expected expected = [0.1, 0.05, 0.025, 0.0125] assert lr_monitor.lrs['lr-Adam/pg2'] == expected expected = [0.1, 0.05, 0.025, 0.0125, 0.00625] assert lr_monitor.lrs['lr-Adam-1/pg1'] == expected expected = [0.1, 0.05, 0.025] assert lr_monitor.lrs['lr-Adam-1/pg2'] == expected expected = [0.1, 0.05] assert lr_monitor.lrs['lr-Adam-1/pg3'] == expected
[ "torch.nn.Linear", "torch.optim.lr_scheduler.OneCycleLR", "torch.optim.lr_scheduler.StepLR", "torch.optim.Adam", "torch.optim.SGD", "torch.nn.ReLU" ]
1.6
calebrob6/pytorch-lightning
4c79b3a5b343866217784c66d122819c59a92c1d
1.6
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script will generate 2 traces: one for `training_step` and one for `validation_step`. The traces can be visualized in 2 ways: * With Chrome: 1. Open Chrome and copy/paste this url: `chrome://tracing/`. 2. Once tracing opens, click on `Load` at the top-right and load one of the generated traces. * With PyTorch Tensorboard Profiler (Instructions are here: https://github.com/pytorch/kineto/tree/master/tb_plugin) 1. pip install tensorboard torch-tb-profiler 2. tensorboard --logdir={FOLDER} """ import sys import torch import torchvision import torchvision.models as models import torchvision.transforms as T from pl_examples import _DATASETS_PATH, cli_lightning_logo from pytorch_lightning import LightningDataModule, LightningModule from pytorch_lightning.utilities.cli import LightningCLI DEFAULT_CMD_LINE = ( "--trainer.max_epochs=1", "--trainer.limit_train_batches=15", "--trainer.limit_val_batches=15", "--trainer.profiler=pytorch", f"--trainer.gpus={int(torch.cuda.is_available())}", ) class ModelToProfile(LightningModule): def __init__(self, name: str = "resnet50"): super().__init__() self.model = getattr(models, name)(pretrained=True) self.criterion = torch.nn.CrossEntropyLoss() def training_step(self, batch, batch_idx): inputs, labels = batch outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.log("train_loss", loss) return loss def validation_step(self, batch, batch_idx): inputs, labels = batch outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.log("val_loss", loss) def predict_step(self, batch, batch_idx, dataloader_idx: int = None): inputs = batch[0] return self.model(inputs) def configure_optimizers(self): return torch.optim.SGD(self.parameters(), lr=0.001, momentum=0.9) class CIFAR10DataModule(LightningDataModule): transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()]) def train_dataloader(self, *args, **kwargs): trainset = torchvision.datasets.CIFAR10( root=_DATASETS_PATH, train=True, download=True, transform=self.transform ) return torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=0) def val_dataloader(self, *args, **kwargs): valset = torchvision.datasets.CIFAR10(root=_DATASETS_PATH, train=False, download=True, transform=self.transform) return torch.utils.data.DataLoader(valset, batch_size=32, shuffle=True, num_workers=0) def cli_main(): if len(sys.argv) == 1: sys.argv += DEFAULT_CMD_LINE LightningCLI(ModelToProfile, CIFAR10DataModule) if __name__ == '__main__': cli_lightning_logo() cli_main()
[ "torch.cuda.is_available", "torch.nn.CrossEntropyLoss", "torch.utils.data.DataLoader" ]
1.6
calebrob6/pytorch-lightning
4c79b3a5b343866217784c66d122819c59a92c1d
1.3
import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # torch.manual_seed(0) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False from pyro.distributions import MultivariateNormal, Normal, Independent from sklearn.cluster import KMeans, SpectralClustering from sklearn.metrics import adjusted_rand_score import scipy from scipy.sparse import csgraph from scipy.sparse.linalg import eigsh import sys sys.path.append('/home/REDACTED/chf-github/model/') from utils import check_has_missing, quad_function, convert_XY_pack_pad sys.path.append('../evaluation/') from eval_utils import get_cluster_swap_metric, get_cluster_pear_metric sys.path.append('../plot/') from plot_utils import plot_latent_labels, plot_delta_comp import matplotlib.pylab as pylab params = {'legend.fontsize': 'x-large', # 'figure.figsize': (10,6), 'axes.labelsize': 'x-large', 'axes.titlesize':'x-large', 'xtick.labelsize':'x-large', 'ytick.labelsize':'x-large'} pylab.rcParams.update(params) class Model(nn.Module): def __init__(self): torch.manual_seed(0) np.random.seed(0) if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False super(Model, self).__init__() def forward(self,**kwargs): raise ValueError('Should be overriden') def get_masks(self, M): m_t = ((torch.flip(torch.cumsum(torch.flip(M.sum(-1), (1,)), 1), (1,))>1.)*1) m_g_t = (m_t.sum(-1)>1)*1. lens = m_t.sum(-1) return m_t, m_g_t, lens def masked_gaussian_nll_3d(self, x, mu, std): nll = 0.5*np.log(2*np.pi) + torch.log(std)+((mu-x)**2)/(2*std**2) masked_nll = nll return masked_nll def apply_reg(self, p, reg_type='l2'): if reg_type == 'l1': return torch.sum(torch.abs(p)) elif reg_type=='l2': return torch.sum(p.pow(2)) else: raise ValueError('bad reg') def fit(self, train_loader, valid_loader, epochs, lr, eval_freq=1, print_freq=1000, anneal = False, fname = None, verbose=False, plot_debug=False, epoch_debug=False): if verbose: eval_freq = 50 opt = torch.optim.Adam(self.parameters(), lr=lr, eps=1e-3) best_nelbo, best_nll, best_kl, best_ep = 100000, 100000, 100000, -1 training_loss = list() training_epochs = list() testing_loss = list() testing_epochs = list() test_ari_vals = list() test_mse_vals = list() test_pear_vals = list() test_swaps_vals = list() train_nelbo = list() train_nll = list() train_kl = list() test_nelbo = list() test_nll = list() test_kl = list() train_likelihood = list() test_likelihood = list() train_affinity_num_clusters = list() test_affinity_num_clusters = list() if fname is not None: logging.basicConfig( filename=fname[:-4]+'_loss.log', filemode='w', format='%(asctime)s - %(levelname)s \t %(message)s', level=logging.INFO) if anneal: anneal = 0.01 # print ('With annealing starting at ',anneal) else: # print ('No annealing') anneal = 1. # TODO: consider caching the convert_XY_pad content because it's the bulk of the computation? """ if check_has_missing(X) or check_has_missing(Y): has_missing = True else: has_missing = False XY = concat(X,Y) newXY, all_seq_lengths = convert_XY_pack_pad(XY) """ Y, S, X, M, T = [i for i in train_loader][0] has_missing = False newXY = None all_seq_lengths = None if check_has_missing(X) or check_has_missing(Y): has_missing = True XY = torch.cat([X,Y], axis=2) newXY, all_seq_lengths = convert_XY_pack_pad(XY, how=self.how_missing) else: has_missing = False # now validation val_Y, val_S, val_X, val_M, val_T = [i for i in valid_loader][0] val_has_missing = False val_newXY = None val_all_seq_lengths = None if check_has_missing(val_X) or check_has_missing(val_Y): val_has_missing = True val_XY = torch.cat([val_X,val_Y], axis=2) val_newXY, val_all_seq_lengths = convert_XY_pack_pad(val_XY, how=self.how_missing) else: val_has_missing = False for epoch in range(1, epochs+1): anneal = min(1, epoch/(epochs*0.5)) self.train() batch_loss = 0 test_batch_loss = 0 idx = 0 test_idx = 0 for data_tuples in train_loader: opt.zero_grad() # if epoch == 3: (nelbo, nll, kl), loss = self.forward(*data_tuples, anneal = anneal, has_missing=has_missing,XY=newXY, all_seq_lengths=all_seq_lengths) nelbo, nll, kl = nelbo.item(), nll.item(), kl.item() if epoch_debug: train_nelbo.append(nelbo) train_nll.append(nll) train_kl.append(kl) # from torch.autograd import grad # grad(loss, model.debug['y_out'], only_inputs=True) # grad(loss, model.debug['rnn'], only_inputs=True) # grad(loss, model.debug['enc_h_mu'], only_inputs=True) loss.backward() opt.step() idx +=1 batch_loss += loss.item() cur_mse = batch_loss/float(idx) training_loss.append(cur_mse) if epoch%eval_freq==0: self.eval() (nelbo, nll, kl), eval_loss = self.forward(*valid_loader.dataset.tensors, anneal = 1., has_missing=val_has_missing,XY=val_newXY, all_seq_lengths=val_all_seq_lengths) nelbo, nll, kl = nelbo.item(), nll.item(), kl.item() if nelbo<best_nelbo: best_nelbo = nelbo; best_nll = nll; best_kl = kl; best_ep = epoch if fname is not None: torch.save(self.state_dict(), fname) if epoch_debug: test_nelbo.append(nelbo) test_nll.append(nll) test_kl.append(kl) # if kl < 0.: # print('%.3f' % kl,) train_Y, train_S, train_X, train_M, train_T = train_loader.dataset.tensors test_Y, test_S, test_X, test_M, test_T = valid_loader.dataset.tensors """ step 1: get z using mu not sampling step 2: K-means cluster these z and save centers step 3: return theta_k = g1(z_k) for K clusters """ train_z, _ = self.get_mu(train_X,train_Y) train_z = train_z.detach().numpy() # likelihood = self.imp_sampling(train_X, train_Y) # train_likelihood.append(likelihood) # for different cluster algs, plot labels and true subtypes K = 2 km = KMeans(n_clusters=K) km.fit(train_z) self.subtypes_km = km test_z, kl = self.get_mu(test_X,test_Y) test_theta = self.infer_functional_params(test_z) best_delta = self.get_best_delta(test_X, test_Y, test_M, test_theta, kl) test_z = test_z.detach().numpy() test_clusters = self.subtypes_km.predict(test_z) true_clusters = [int(i) for i in np.squeeze(test_S)] test_M = torch.ones_like(test_X) test_mse = self.get_mse(test_X, test_Y, test_M, test_theta, best_delta) test_ari = adjusted_rand_score(test_clusters, true_clusters) test_swaps = get_cluster_swap_metric(test_clusters, test_T[:,0,0].detach().numpy(), best_delta.detach().numpy()) test_pear = get_cluster_pear_metric(test_clusters, test_T[:,0,0].detach().numpy(), best_delta.detach().numpy()) test_ari_vals.append(test_ari) test_mse_vals.append(test_mse) test_swaps_vals.append(test_swaps) test_pear_vals.append(test_pear) test_batch_loss += eval_loss.item() test_idx += 1 testing_loss.append(test_batch_loss/float(test_idx)) likelihood = self.imp_sampling(train_X, train_Y, imp_samples=50) train_likelihood.append(likelihood) likelihood = self.imp_sampling(test_X, test_Y, imp_samples=50) test_likelihood.append(likelihood) if plot_debug: train_Y, train_S, train_X, train_M, train_T = train_loader.dataset.tensors test_Y, test_S, test_X, test_M, test_T = valid_loader.dataset.tensors train_z, _ = self.get_mu(train_X,train_Y) train_z = train_z.detach().numpy() # for different cluster algs, plot labels and true subtypes K = 2 km = KMeans(n_clusters=K) km.fit(train_z) self.subtypes_km = km test_z, kl = self.get_mu(test_X,test_Y) test_theta = self.infer_functional_params(test_z) best_delta = self.get_best_delta(test_X, test_Y, test_M, test_theta, kl) test_z = test_z.detach().numpy() test_clusters = self.subtypes_km.predict(test_z) true_clusters = [int(i) for i in np.squeeze(test_S)] test_M = torch.ones_like(test_X) test_mse = self.get_mse(test_X, test_Y, test_M, test_theta, best_delta) test_ari = adjusted_rand_score(test_clusters, true_clusters) plot_latent_labels(test_z, test_S, 'plots/pngs/lr_%.3f_%03d_latent.png' % (lr, epoch), title='Epoch %d, ARI: %.3f' % (epoch, test_ari)) plot_delta_comp(test_T[:,0,0].detach().numpy(), best_delta.detach().numpy(), 'plots/pngs/lr_%.3f_%03d_delta.png' % (lr, epoch), title='Epoch %d, Pear: %.3f' % (epoch, test_pear)) self.train() # print ('Best NELBO:%.3f, NLL:%.3f, KL:%.3f@ epoch %d'%(best_nelbo, best_nll, best_kl, best_ep)) self.best_nelbo = best_nelbo self.best_nll = best_nll self.best_kl = best_kl self.best_ep = best_ep if fname is not None and epochs > eval_freq: print('loaded state_dict. nelbo: %.4f (ep %d)' % (best_nelbo, best_ep)) self.load_state_dict(torch.load(fname)) self.eval() self.training_loss = training_loss self.testing_loss = testing_loss if plot_debug: import os import imageio png_dir = 'plots/pngs/' kargs = {'duration': 0.3} images = [] for file_name in sorted(os.listdir(png_dir)): if file_name.endswith('_latent.png'): file_path = os.path.join(png_dir, file_name) images.append(imageio.imread(file_path)) imageio.mimsave('plots/data%d_latent_%.3f.gif' % (self.data_num, lr), images, **kargs) images = [] for file_name in sorted(os.listdir(png_dir)): if file_name.endswith('_delta.png'): file_path = os.path.join(png_dir, file_name) images.append(imageio.imread(file_path)) imageio.mimsave('plots/data%d_delta_%.3f.gif' % (self.data_num, lr), images, **kargs) # delete everything when you're done for file_name in os.listdir(png_dir): root = os.getcwd() complete_fname = os.path.join(root, png_dir+file_name) if not os.path.isdir(complete_fname): os.unlink(complete_fname) if epoch_debug: import pickle f = open('data%d_results_lr%.3f.pk' % (self.data_num, lr), 'wb') results = {'epochs': epochs, 'eval_freq': eval_freq, 'ari': test_ari_vals, 'mse': test_mse_vals, 'swaps': test_swaps_vals, 'pear': test_pear_vals, 'train_likelihood': train_likelihood, 'test_likelihood': test_likelihood, 'train_loss': training_loss, 'test_loss': testing_loss, 'best_nelbo': best_nelbo, 'best_nll': best_nll, 'best_kl': best_kl, 'best_ep': best_ep, 'train_nelbo': train_nelbo, 'train_nll': train_nll, 'train_kl': train_kl, 'test_nelbo': test_nelbo, 'test_nll': test_nll, 'test_kl': test_kl, # 'train_affinity_num_clusters': train_affinity_num_clusters, # 'test_affinity_num_clusters': test_affinity_num_clusters, 'train_M_sum': train_M.sum(), 'test_M_sum': test_M.sum() } pickle.dump(results, f) f.close() return best_nelbo, best_nll, best_kl, best_ep class TwoLayer(nn.Module): def __init__(self,dim_input, dim_inner, dim_output): super(TwoLayer, self).__init__() self.fc1 = nn.Linear(dim_input,dim_inner) self.fc2 = nn.Linear(dim_inner,dim_output) def forward(self, x): x = self.fc2(F.relu(self.fc1(x))) return x class Sublign(Model): def __init__(self, dim_stochastic, dim_hidden, dim_rnn, C=0.0, dim_biomarkers=3, reg_type = 'l2', sigmoid=True, learn_time=True, auto_delta=True, max_delta=10., plot_debug=False, epoch_debug=False, beta=0.001, device='cpu', how_missing='linear'): """ note no lr here. lr is in fit. """ super(Sublign, self).__init__() self.dim_stochastic = dim_stochastic self.dim_hidden = dim_hidden self.dim_rnn = dim_rnn self.n_biomarkers = dim_biomarkers self.C = C self.reg_type = reg_type self.sigmoid = sigmoid self.dz_features = self.dim_stochastic rnn_input_size = self.n_biomarkers + 1 self.subtypes_km = None self.rnn = nn.RNN(rnn_input_size, self.dim_rnn, 1, batch_first = True) self.enc_h_mu = nn.Linear(self.dim_rnn, self.dim_stochastic) self.enc_h_sig = nn.Linear(self.dim_rnn, self.dim_stochastic) self.how_missing = how_missing # initialize functions theta = g1(z) if self.sigmoid: self.dec_z_beta0 = TwoLayer(self.dz_features, self.dim_hidden, self.n_biomarkers) self.dec_z_beta1 = TwoLayer(self.dz_features, self.dim_hidden, self.n_biomarkers) else: self.dec_z_a = TwoLayer(self.dz_features, self.dim_hidden, self.n_biomarkers) self.dec_z_b = TwoLayer(self.dz_features, self.dim_hidden, self.n_biomarkers) self.dec_z_c = TwoLayer(self.dz_features, self.dim_hidden, self.n_biomarkers) # experiments for delta if auto_delta: self.max_delta = 10. self.auto_delta = True self.learn_time = True elif learn_time: self.max_delta = max_delta self.auto_delta = False self.learn_time = True else: self.max_delta = 0. self.auto_delta = False self.learn_time = False if not learn_time: self.learn_time = False self.max_delta = 0. self.auto_delta = False self.N_delta_bins = 50 if device == 'cpu': self.device = torch.device('cpu') else: self.device = torch.device('cuda') self.debug = {} self.beta = beta self.data_num = 1 def get_delta_options(self, Xvals): # output delta_options is tensor size N_patients, N_delta_bins N_patients = Xvals.shape[0] if self.auto_delta: max_time_patient = Xvals.max(axis=1).values max_time_all = max_time_patient.max() max_delta_patient = max_time_all - max_time_patient delta_options = torch.zeros(N_patients,self.N_delta_bins).to(self.device) for i in range(N_patients): delta_options[i] = torch.linspace(0,max_delta_patient[i,0],self.N_delta_bins) return delta_options else: delta_options = torch.linspace(0, self.max_delta, self.N_delta_bins) return delta_options[None,:].repeat(N_patients, 1).to(self.device) def calc_loss_per_delta(self, X, Y, M, theta, delta_options, kl): """ input: - X (N_patients, N_visits, 1) - Y (N_patients, N_visits, N_biomarkers) - theta (N_patients, N_biomarkers each component) - delta_options (N_patients, N_delta_bins) output: - loss_per_patient (N_patients, N_delta_bins) step 1: convert everything to size N_patients, N_visits, N_biomarkers, N_delta_bins step 2: calculate loss yhat = f(x+delta; theta) """ N_patients, N_visits, N_biomarkers = Y.shape X_repeat = X[:,:,:,None].repeat(1,1,N_biomarkers,self.N_delta_bins) Y_repeat = Y[:,:,:,None].repeat(1,1,1,self.N_delta_bins) delta_opt_repeat = delta_options[:,None,None,:].repeat(1,N_visits,N_biomarkers,1) if self.sigmoid: beta0 = theta[0][:,None,:,None].repeat(1,N_visits,1,self.N_delta_bins) beta1 = theta[1][:,None,:,None].repeat(1,N_visits,1,self.N_delta_bins) sig_input = X_repeat + delta_opt_repeat mm = torch.nn.Sigmoid() mm_input = (beta0 + beta1 * sig_input).to(self.device) yhat = mm(mm_input) else: a = theta[0][:,None,:,None].repeat(1,N_visits,1,self.N_delta_bins) b = theta[1][:,None,:,None].repeat(1,N_visits,1,self.N_delta_bins) c = theta[2][:,None,:,None].repeat(1,N_visits,1,self.N_delta_bins) quad_input = X_repeat + delta_opt_repeat yhat = quad_function(a,b,c,quad_input) kl_repeat = kl[:,None].repeat(1,self.N_delta_bins) loss = ((yhat - Y_repeat)**2) M_repeat = M[:,:,:,None].repeat(1,1,1,self.N_delta_bins) loss = loss.masked_fill(M_repeat == 0., 0.) loss_sum = loss.sum(axis=1).sum(axis=1) delta_term = torch.log(torch.ones_like(loss_sum) / self.N_delta_bins).to(self.device) kl_repeat = kl_repeat.to(self.device) return loss_sum + self.beta*kl_repeat + delta_term def get_best_delta(self, X,Y,M,theta, kl): """ output: best_delta is size N_patients step 1: if subnolign, return 0. step 2: get all the delta options step 3: calculate loss for each option step 4: find best delta option note that z could be either from sample or get_mu so not included here """ # TODO: interpolate X and Y if they're missing if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) M = torch.tensor(M).to(self.device) N = X.shape[0] if not self.learn_time: return torch.zeros(N) delta_options = self.get_delta_options(X) loss_per_delta = self.calc_loss_per_delta(X,Y,M,theta, delta_options, kl) min_delta = loss_per_delta.min(axis=1).indices best_delta = torch.zeros(N).to(self.device) for i in range(N): best_delta[i] = delta_options[i][min_delta[i]] return best_delta def predict_Y(self, X,Y,theta,delta): """ input: - X (N_patients, N_visits, 1) - Y (N_patients, N_visits, N_biomarkers) - theta (N_patients, N_biomarkers each component) - delta (N_patients) output: - yhat (N_patients, N_visits, N_biomarkers) step 1: convert everything to size N_patients, N_visits, N_biomarkers step 2: calculate loss yhat = f(x+delta; theta) """ N_patients, N_visits, N_biomarkers = Y.shape X_repeat = X.repeat(1,1,N_biomarkers) delta_rep = delta[:,None,None].repeat(1,N_visits,N_biomarkers) if self.sigmoid: beta0 = theta[0][:,None,:].repeat(1,N_visits,1) beta1 = theta[1][:,None,:].repeat(1,N_visits,1) sig_input = X_repeat + delta_rep mm = torch.nn.Sigmoid() mm_input = (beta0 + beta1 * sig_input).to(self.device) yhat = mm(mm_input) else: a = theta[0][:,None,:].repeat(1,N_visits,1) b = theta[1][:,None,:].repeat(1,N_visits,1) c = theta[2][:,None,:].repeat(1,N_visits,1) quad_input = X_repeat + delta_rep yhat = quad_function(a,b,c,quad_input) return yhat def get_loss(self, Y, S, X, M, anneal=1., XY=None,all_seq_lengths=None, has_missing=False): if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) M = torch.tensor(M).to(self.device) z, kl = self.sample(X,Y,XY=XY, all_seq_lengths=all_seq_lengths, has_missing=has_missing) theta = self.infer_functional_params(z) with torch.no_grad(): best_delta = self.get_best_delta(X,Y,M,theta, kl) yhat = self.predict_Y(X,Y,theta,best_delta) self.debug['y_out'] = yhat squared = (Y - yhat)**2 # mask out originally missing values squared = squared.masked_fill(M == 0., 0) nll = squared.sum(-1).sum(-1) delta_term = torch.log(torch.ones_like(nll) / self.N_delta_bins) # nelbo = nll + self.beta*anneal*kl + delta_term nelbo = nll + self.beta*anneal*kl return nelbo, nll, kl def forward(self, Y, S, X, M, T, anneal = 1., XY=None,all_seq_lengths=None, has_missing=False): if type(M) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) M = torch.tensor(M).to(self.device) if XY is None and (check_has_missing(X) or check_has_missing(Y)): has_missing = True XY = torch.cat([X,Y], axis=2) newXY, all_seq_lengths = convert_XY_pack_pad(XY, how=self.how_missing) else: has_missing = False (nelbo, nll, kl) = self.get_loss(Y, S, X, M, anneal = anneal, XY=XY,all_seq_lengths=all_seq_lengths, has_missing=has_missing) reg_loss = nelbo for name,param in self.named_parameters(): reg_loss += self.C*self.apply_reg(param, reg_type=self.reg_type) normalizer = torch.sum(M) norm_nelbo = (torch.sum(nelbo) / normalizer) norm_nll = (torch.sum(nll)/normalizer) norm_kl = torch.mean(kl) norm_reg = torch.sum(reg_loss) / normalizer return (norm_nelbo, norm_nll, norm_kl), norm_reg def sample(self, X,Y,mu_std=False,XY=None,all_seq_lengths=None, has_missing=False): """ Returns z and KL sampled from observed X,Y """ cacheXY = XY if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) XY = torch.cat([X,Y], axis=2) # import pdb; pdb.set_trace() if has_missing: # batch_in, sequences = convert_XY_pack_pad(XY,how=self.how_missing) pack = torch.nn.utils.rnn.pack_padded_sequence(cacheXY, all_seq_lengths, batch_first=True, enforce_sorted=False) _, hidden = self.rnn(pack) elif check_has_missing(XY): batch_in, sequences = convert_XY_pack_pad(XY,how=self.how_missing) pack = torch.nn.utils.rnn.pack_padded_sequence(cacheXY, all_seq_lengths, batch_first=True, enforce_sorted=False) _, hidden = self.rnn(pack) else: _, hidden = self.rnn(XY) self.debug['rnn'] = hidden hid = torch.squeeze(hidden) hid = hid.to(self.device) # idx contains list of indices representing the current datapoints in X # mu_param is a pytorch tensor (randomly initialized) of size N x dimensionality of latent space # gamma = 1 (learning w/ inf. network) or 0. (learning w/ svi) mu_table = mu_param[idx] mu_enc = self.enc_h_mu(hid) mu = gamma*mu_enc+(1-gamma)*mu_table sig = torch.exp(self.enc_h_sig(hid)) q_dist = Independent(Normal(mu, sig), 1) z = torch.squeeze(q_dist.rsample((1,))) p_dist = Independent(Normal(torch.zeros_like(mu), torch.ones_like(sig)), 1) kl = q_dist.log_prob(z)-p_dist.log_prob(z) self.debug['hid'] = hid self.debug['kl'] = kl self.debug['mu'] = mu self.debug['sig'] = sig if mu_std: return z, kl, mu else: return z, kl def get_mu(self, X,Y): N = X.shape[0] if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) XY = torch.cat([X,Y], axis=2) if check_has_missing(XY): batch_in, sequences = convert_XY_pack_pad(XY) pack = torch.nn.utils.rnn.pack_padded_sequence(batch_in, sequences, batch_first=True, enforce_sorted=False) _, hidden = self.rnn(pack) else: _, hidden = self.rnn(XY) hid = torch.squeeze(hidden) mu = self.enc_h_mu(hid) return mu, torch.zeros(N) def infer_functional_params(self, z): if self.sigmoid: return [self.dec_z_beta0(z), self.dec_z_beta1(z)] else: return [self.dec_z_a(z), self.dec_z_b(z), self.dec_z_c(z)] def get_subtypes(self, X, Y, K=2): """ step 1: get z using mu not sampling step 2: K-means cluster these z and save centers step 3: return theta_k = g1(z_k) for K clusters """ z, _ = self.get_mu(X,Y) if z.get_device() > -1: z = z.cpu().detach().numpy() else: z = z.detach().numpy() # for different cluster algs, plot labels and true subtypes km = KMeans(n_clusters=K) if np.isnan(z).any(): print('z has nan in it') import pdb; pdb.set_trace() km.fit(z) self.subtypes_km = km z_mus = km.cluster_centers_ N_dims = Y.shape[2] if self.sigmoid: cent_lst = np.zeros((K,N_dims,2)) else: cent_lst = np.zeros((K,N_dims,3)) for k_ix in range(K): z_mu = z_mus[k_ix] z_mu = torch.tensor(z_mu[None,:]).to(self.device) theta = self.infer_functional_params(z_mu) if theta[0].get_device() > -1: theta = [t.cpu().detach().numpy() for t in theta] else: theta = [t.detach().numpy() for t in theta] for param_i, param_component in enumerate(theta): for dim_i, dim_val in enumerate(param_component[0]): cent_lst[k_ix,dim_i,param_i] = dim_val return cent_lst def get_param_subtypes(self, X, Y, K=2): """ step 1: get z using mu not sampling step 2: K-means cluster these z and save centers step 3: return theta_k = g1(z_k) for K clusters """ params = self.get_params(X,Y) pdb z = z.detach().numpy() # for different cluster algs, plot labels and true subtypes km = KMeans(n_clusters=K) km.fit(z) self.subtypes_km = km z_mus = km.cluster_centers_ cent_lst = list() for k_ix in range(K): z_mu = z_mus[k_ix] z_mu = torch.tensor(z_mu[None,:]).to(self.device) theta = self.infer_functional_params(z_mu) theta = [t.detach().numpy() for t in theta] cent_lst.append(theta) return cent_lst def get_params(self, X, Y): """ different from get_subtypes because now there is one theta per person NOT num subtypes """ z, _ = self.get_mu(X,Y) # z = z.detach().numpy() if self.sigmoid: return [self.dec_z_beta0(z), self.dec_z_beta1(z)] else: return [self.dec_z_a(z), self.dec_z_b(z), self.dec_z_c(z)] def get_labels(self, data_dict): X = torch.tensor(data_dict['obs_t_collect']).to(self.device) Y = torch.tensor(data_dict['Y_collect']).to(self.device) z, _ = self.get_mu(X,Y) if z.get_device() > -1: z = z.cpu().detach().numpy() else: z = z.detach().numpy() labels = self.subtypes_km.predict(z) return labels def get_deltas(self, data_dict): X = torch.tensor(data_dict['obs_t_collect']).to(self.device) Y = torch.tensor(data_dict['Y_collect']).to(self.device) M = torch.tensor(data_dict['mask_collect']).to(self.device) z, kl = self.get_mu(X,Y) theta = self.infer_functional_params(z) if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) M = torch.tensor(M).to(self.device) best_delta = self.get_best_delta(X,Y,M,theta, kl) return best_delta def get_mse(self,X,Y,M,theta,best_delta): yhat = self.predict_Y(X,Y,theta,best_delta) squared = (Y - yhat)**2 nll = squared.sum(-1).sum(-1) normsum = torch.sum(M) return torch.sum(nll) / normsum def score(self, train_data_dict, test_data_dict, K=2): """ step 1: get delta step 2: get subtype assignments step 3: get performance metrics """ for col in ['Y_collect', 'obs_t_collect', 's_collect', 't_collect']: if col not in test_data_dict: print('ERROR: %s not in test_data_dict' % col) return cent_lst = self.get_subtypes(train_data_dict['obs_t_collect'], train_data_dict['Y_collect'], K=K) test_X = torch.tensor(test_data_dict['obs_t_collect']).to(self.device) test_Y = torch.tensor(test_data_dict['Y_collect']).to(self.device) test_M = torch.tensor(test_data_dict['mask_collect']).to(self.device) test_z, kl = self.get_mu(test_X,test_Y) test_theta = self.infer_functional_params(test_z) best_delta = self.get_best_delta(test_X,test_Y, test_M, test_theta, kl) test_z = test_z.detach().numpy() test_clusters = self.subtypes_km.predict(test_z) true_clusters = [int(i) for i in np.squeeze(test_data_dict['s_collect'])] test_M = torch.ones_like(test_X) test_mse = self.get_mse(test_X, test_Y, test_M, test_theta, best_delta) test_ari = adjusted_rand_score(test_clusters, true_clusters) test_swaps = get_cluster_swap_metric(test_clusters, test_data_dict['t_collect'][:,0,0], best_delta.detach().numpy()) test_pear = get_cluster_pear_metric(test_clusters, test_data_dict['t_collect'][:,0,0], best_delta.detach().numpy()) results = { 'mse': test_mse, 'ari': test_ari, 'swaps': test_swaps, 'pear': test_pear, 'cent_lst': cent_lst } return results def imp_sampling(self, X, Y, imp_samples=10, delta_gran = 20): delta_gran = self.N_delta_bins if type(X) == np.ndarray: X = torch.tensor(X).to(self.device) Y = torch.tensor(Y).to(self.device) ll_estimates = torch.zeros((imp_samples,delta_gran,X.shape[0])).to(X.device) ll_priors = torch.zeros((imp_samples,delta_gran,X.shape[0])).to(X.device) ll_posteriors = torch.zeros((imp_samples,delta_gran,X.shape[0])).to(X.device) # TODO: fix this N_latent_dim = self.dz_features mu_prior, std_prior = torch.zeros(N_latent_dim), torch.ones(N_latent_dim) M = torch.ones_like(Y) for sample in range(imp_samples): z, kl, qz_mu = self.sample(X,Y,mu_std=True) qz_sig = torch.ones(N_latent_dim) theta = self.infer_functional_params(z) ll_estimate_list, ll_posterior_list, ll_prior_list = [],[],[] for dval in np.linspace(0,5,delta_gran): best_delta = self.get_best_delta(X,Y,M,theta, kl) dval = best_delta*0.+dval #print (best_delta.shape, dval) #best_delta = dval yhat = self.predict_Y(X,Y,theta,best_delta) nll = (yhat - Y) ** 2 ll_estimate_list.append(-1*nll.sum(-1).sum(-1)) ll_prior_list.append((-1*self.masked_gaussian_nll_3d(z, mu_prior, std_prior)).sum(-1)) ll_posterior_list.append((-1*self.masked_gaussian_nll_3d(z, qz_mu, qz_sig)).sum(-1)) ll_priors[sample] = torch.stack(ll_prior_list) ll_estimates[sample] = torch.stack(ll_estimate_list) ll_posteriors[sample] = torch.stack(ll_posterior_list) nll_estimate = -1*(torch.logsumexp(ll_estimates.view(imp_samples*delta_gran,-1) + ll_priors.view(imp_samples*delta_gran,-1) - ll_posteriors.view(imp_samples*delta_gran,-1), dim=0) - np.log(imp_samples*delta_gran)) log_p = torch.mean(nll_estimate) return log_p def get_subtypes_datadict(self, data_dict, K=2): """ assumes you've already fit a model """ X = torch.tensor(data_dict['obs_t_collect']).to(self.device) Y = torch.tensor(data_dict['Y_collect']).to(self.device) M = torch.tensor(data_dict['mask_collect']).to(self.device) z, _ = self.get_mu(X,Y) if z.get_device() > -1: z = z.cpu().detach().numpy().copy() else: z = z.detach().numpy().copy() if self.subtypes_km is None: # for different cluster algs, plot labels and true subtypes km = KMeans(n_clusters=K) km.fit(z) self.subtypes_km = km labels = self.subtypes_km.predict(z) return labels def get_hyperparameters(data_format_num): if data_format_num < 3: C, ds, dh, drnn, reg_type, lr = 0., 10, 20, 50, 'l1', 0.01 if data_format_num == 5 or data_format_num == 3: C, ds, dh, drnn, reg_type, lr = 0.01, 20, 20, 100, 'l2', 0.01 # if data_format_num == 4: # C, ds, dh, drnn, reg_type, lr = 0.0, 30, 10, 50, 'l1', 0.001 if data_format_num == 1: C, ds, dh, drnn, reg_type, lr = 0.0, 20, 30, 150, 'l1', 0.001 # C, ds, dh, drnn, reg_type, lr = 0.0, 20, 20, 100, 'l1', 0.001 if data_format_num == 11: C, ds, dh, drnn, reg_type, lr = 0.0, 20, 30, 150, 'l1', 0.001 elif data_format_num > 2: C, ds, dh, drnn, reg_type, lr = 0., 20, 50, 100, 'l1', 0.01 return C, ds, dh, drnn, reg_type, lr def main(): import argparse import os import sys sys.path.append('../data') sys.path.append('../plot') from load import sigmoid, quadratic, chf, parkinsons, load_data_format from data_utils import parse_data, change_missing from plot_utils import plot_subtypes, plot_latent parser = argparse.ArgumentParser() parser.add_argument('--epochs', action='store', type=int, default=800, help="Number of epochs") parser.add_argument('--trials', action='store', type=int, default=1, help="Number of trials") parser.add_argument('--model_name', action='store', type=str, default='SubLign', help="Model name for Latex table making") # datasets parser.add_argument('--data_num', action='store', type=int, help="Data Format Number") parser.add_argument('--chf', action='store_true', help="Use CHF dataset") parser.add_argument('--ppmi', action='store_true', help="Use PPMI dataset") # delta setup # parser.add_argument('--auto_delta', action='store_true', help="Learn delta dynamically for each patient") parser.add_argument('--max_delta', action='store', type=float, help="Maximum possible delta") parser.add_argument('--no_time', action='store_true', help="Learn time at all") # debugging parser.add_argument('--verbose', action='store_true', help="Plot everything") parser.add_argument('--missing', action='store', type=float, default=0., help="What percent of data to make missing") parser.add_argument('--plot_debug', action='store_true', help="Make animated gif about alignment / clusterings over epochs") parser.add_argument('--epoch_debug', action='store_true', help="Save pickle about epoch differences over training") parser.add_argument('--likelihood', action='store_true', help="Print likelihood") parser.add_argument('--lr', action='store', type=float, help="Learning rate override") parser.add_argument('--eval_freq', action='store', type=int, help="Make this larger than epochs for faster results", default=25) # other experiments args = parser.parse_args() trial_results = np.zeros((args.trials, 4)) data_format_num = args.data_num if args.max_delta is None: auto_delta = True else: auto_delta = False for trial_num in range(args.trials): # datasets if data_format_num is not None: max_visits = 4 num_output_dims = 3 if data_format_num < 3 else 1 use_sigmoid = data_format_num < 3 if data_format_num > 10: use_sigmoid = True num_output_dims = 3 C, d_s, d_h, d_rnn, reg_type, lr = get_hyperparameters(data_format_num) if args.lr != None: print('Learning rate: %.3f' % args.lr) lr = args.lr data = load_data_format(data_format_num, trial_num, cache=True) shuffle = False elif args.chf: print('HERE2') data = chf() max_visits = 38 shuffle = True elif args.ppmi: data = parkinsons() max_visits = 17 shuffle = True # data = data[data['subtype'] == 1] train_data_loader, train_data_dict, _, _, test_data_loader, test_data_dict, valid_pid, test_pid, unique_pid = parse_data(data.values, max_visits=max_visits, test_per=0.2, valid_per=0.2, shuffle=shuffle) # train_data_loader, train_data_dict, test_data_loader, test_data_dict, p_ids, full_p_ids = parse_data(data.values, max_visits=max_visits, test_per=0.2, shuffle=shuffle) # pickle.dump((train_data_loader, train_data_dict, test_data_loader, test_data_dict, p_ids, full_p_ids), open('../synthetic_runs/data.pk', 'wb')) # import pickle # train_data_loader, train_data_dict, test_data_loader, test_data_dict, p_ids, full_p_ids = pickle.load(open('../synthetic_runs/data.pk', 'rb')) if args.missing > 0.: train_data_loader, train_data_dict = change_missing(train_data_dict, args.missing) data_loader, collect_dict, unique_pid = parse_data(data.values, max_visits=max_visits) """ best parmas found through hypertuning (cross_validation/hpsearch.py) # sigmoid: C (0.01), dim_h (20), ds (10 mid), dim_rnn (50 mid), reg_type (l1), lr (0.1) # quad: C (0.1), dim_h (50), ds (10), dim_rnn (100), reg_type (l1), lr (0.1) ppmi: (0.0, 10, 10, 50, 'l1', 0.1) """ # dim_stochastic, dim_hidden, dim_rnn, C, dim_biomarkers=3, reg_type = 'l2', if data_format_num is not None: model = Sublign(d_s, d_h, d_rnn, C, num_output_dims, sigmoid=use_sigmoid, reg_type=reg_type, auto_delta=auto_delta, max_delta=args.max_delta, learn_time=(not args.no_time)) model.fit(train_data_loader, test_data_loader, args.epochs, lr, verbose=args.verbose, fname='runs/data%d_trial%d.pt' % (data_format_num, trial_num), eval_freq=args.eval_freq,epoch_debug=args.epoch_debug, plot_debug=args.plot_debug) elif args.chf: args.verbose = False model = Sublign(10, 20, 50, 0.1, data.shape[1] - 4, sigmoid=True, reg_type='l1', auto_delta=True, max_delta=args.max_delta, learn_time=(not args.no_time)) model.fit(data_loader, data_loader, args.epochs, 0.01, verbose=args.verbose) subtypes = model.get_subtypes(collect_dict['obs_t_collect'], collect_dict['Y_collect'], K=3) labels = model.get_labels(collect_dict['obs_t_collect'], collect_dict['Y_collect']) deltas = model.get_deltas(collect_dict['obs_t_collect'], collect_dict['Y_collect'], collect_dict['mask_collect']) zs = model.get_mu(collect_dict['obs_t_collect'], collect_dict['Y_collect']) import pickle pickle.dump((labels, deltas, subtypes, unique_pid, collect_dict, zs), open('../clinical_runs/chf_sublign_hera3.pk', 'wb')) return elif args.ppmi: args.verbose = False # (0.0, 10, 10, 50, 'l1', 0.1) # C (0.1), dim_h (50), ds (10), dim_rnn (100), reg_type (l1), lr (0.1) model = Sublign(10, 10, 20, 0., data.shape[1] - 4, sigmoid=True, reg_type='l1', auto_delta=True, max_delta=args.max_delta, learn_time=(not args.no_time)) # model.fit(train_data_loader, test_data_loader, args.epochs, 0.1, verbose=args.verbose) # subtypes = model.get_subtypes(train_data_dict['obs_t_collect'], train_data_dict['Y_collect'], K=2) # labels = model.get_labels(train_data_dict) # deltas = model.get_deltas(train_data_dict) model.fit(data_loader, data_loader, args.epochs, 0.1, verbose=args.verbose) subtypes = model.get_subtypes(collect_dict['obs_t_collect'], collect_dict['Y_collect'], K=3) labels = model.get_labels(collect_dict) deltas = model.get_deltas(collect_dict) # gt_labels = [int(i) for i in test_data_dict['s_collect'].squeeze()] # print('ARI: %.3f' % adjusted_rand_score(gt_labels, labels)) import pickle pickle.dump((labels, deltas, subtypes, unique_pid, collect_dict), open('../clinical_runs/ppmi_sublign_PDonly.pk', 'wb')) return subtypes = model.get_subtypes(train_data_dict['obs_t_collect'], train_data_dict['Y_collect'], K=2) train_results = model.score(train_data_dict, train_data_dict) test_results = model.score(train_data_dict, test_data_dict) Y = test_data_dict['Y_collect'] X = test_data_dict['obs_t_collect'] M = test_data_dict['mask_collect'] S = None T = None if args.likelihood: log_p = model.imp_sampling(X,Y,imp_samples=50) print('Test Liklihood: %.3f' % log_p) (nelbo, nll, kl), _ = model.forward(Y, S, X, M, T, anneal=1.) # def forward(self, Y, S, X, M, T, anneal = 1.): nelbo, nll, kl = nelbo.mean().detach().numpy(), nll.mean().detach().numpy(), kl.mean().detach().numpy() if args.verbose: plot_subtypes(subtypes, args.sigmoid, train_data_dict) plot_latent(model, test_data_dict) trial_results[trial_num] = [test_results['mse'],test_results['ari'], test_results['swaps'], test_results['pear']] if args.trials == 1: print('Train: %.3f, %.3f, %.3f, %.3f' % (train_results['mse'], train_results['ari'], train_results['swaps'], train_results['pear'])) print('Test : %.3f, %.3f, %.3f, %.3f' % (test_results['mse'], test_results['ari'], test_results['swaps'], test_results['pear'])) print('NELBO: %.3f, NLL: %.3f, KL: %.3f' % (nelbo, nll, kl)) else: line_str = list() for i,j in zip(trial_results.mean(axis=0), trial_results.std(axis=0)): line_str.append('%.3f $\\pm$ %.3f' % (i,j)) print(' & '.join([args.model_name] + line_str) + '\\\\') trials_fname = 'runs/%s.txt' % args.model_name if not os.path.exists(trials_fname): f = open(trials_fname, 'w') else: f = open(trials_fname, 'a') # f.write(' & '.join([args.model_name] + line_str) + '\\\\' + '\n') # f.close() if __name__=='__main__': main()
[ "torch.nn.Linear", "torch.cat", "torch.stack", "torch.ones", "torch.squeeze", "torch.cuda.is_available", "torch.nn.utils.rnn.pack_padded_sequence", "torch.load", "torch.nn.RNN", "torch.sum", "torch.manual_seed", "torch.abs", "torch.tensor", "torch.zeros_like", "torch.zeros", "torch.device", "torch.linspace", "torch.log", "torch.nn.Sigmoid", "torch.no_grad", "torch.ones_like", "torch.mean" ]
1.3.0
irenetrampoline/clustering-interval-censored
f6ab06a6cf3098ffe006d1b95d1b4f1d158b0bc4
1.2
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from blink.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer def load_biencoder(params): # Init model biencoder = BiEncoderRanker(params) return biencoder class BiEncoderModule(torch.nn.Module): def __init__(self, params): super(BiEncoderModule, self).__init__() ctxt_bert = BertModel.from_pretrained(params["bert_model"]) cand_bert = BertModel.from_pretrained(params['bert_model']) self.context_encoder = BertEncoder( ctxt_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.cand_encoder = BertEncoder( cand_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.config = ctxt_bert.config def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, token_idx_cands, segment_idx_cands, mask_cands, ): embedding_ctxt = None if token_idx_ctxt is not None: embedding_ctxt = self.context_encoder( token_idx_ctxt, segment_idx_ctxt, mask_ctxt ) embedding_cands = None if token_idx_cands is not None: embedding_cands = self.cand_encoder( token_idx_cands, segment_idx_cands, mask_cands ) return embedding_ctxt, embedding_cands class BiEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(BiEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # init tokenizer self.NULL_IDX = 0 self.START_TOKEN = "[CLS]" self.END_TOKEN = "[SEP]" self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) # init model self.build_model() model_path = params.get("path_to_model", None) if model_path is not None: self.load_model(model_path) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False): if cpu: state_dict = torch.load(fname, map_location=lambda storage, location: "cpu") else: state_dict = torch.load(fname) self.model.load_state_dict(state_dict) def build_model(self): self.model = BiEncoderModule(self.params) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def encode_context(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) embedding_context, _ = self.model( token_idx_cands, segment_idx_cands, mask_cands, None, None, None ) return embedding_context.cpu().detach() def encode_candidate(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) return embedding_cands.cpu().detach() # TODO: why do we need cpu here? # return embedding_cands # Score candidates given context input and label input # If cand_encs is provided (pre-computed), cand_ves is ignored def score_candidate( self, text_vecs, cand_vecs, random_negs=True, cand_encs=None, # pre-computed candidate encoding. ): # Encode contexts first token_idx_ctxt, segment_idx_ctxt, mask_ctxt = to_bert_input( text_vecs, self.NULL_IDX ) embedding_ctxt, _ = self.model( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, None, None, None ) # Candidate encoding is given, do not need to re-compute # Directly return the score of context encoding and candidate encoding if cand_encs is not None: return embedding_ctxt.mm(cand_encs.t()) # Train time. We compare with all elements of the batch token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cand_vecs, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) if random_negs: # train on random negatives return embedding_ctxt.mm(embedding_cands.t()) else: # train on hard negatives embedding_ctxt = embedding_ctxt.unsqueeze(1) # batchsize x 1 x embed_size embedding_cands = embedding_cands.unsqueeze(2) # batchsize x embed_size x 2 scores = torch.bmm(embedding_ctxt, embedding_cands) # batchsize x 1 x 1 scores = torch.squeeze(scores) return scores # label_input -- negatives provided # If label_input is None, train on in-batch negatives def forward(self, context_input, cand_input, label_input=None): flag = label_input is None scores = self.score_candidate(context_input, cand_input, flag) bs = scores.size(0) if label_input is None: target = torch.LongTensor(torch.arange(bs)) target = target.to(self.device) loss = F.cross_entropy(scores, target, reduction="mean") else: loss_fct = nn.BCEWithLogitsLoss(reduction="mean") # TODO: add parameters? loss = loss_fct(scores, label_input) return loss, scores def to_bert_input(token_idx, null_idx): """ token_idx is a 2D tensor int. return token_idx, segment_idx and mask """ segment_idx = token_idx * 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
[ "torch.arange", "torch.bmm", "torch.cuda.device_count", "torch.squeeze", "torch.nn.functional.cross_entropy", "torch.cuda.is_available", "torch.load", "torch.nn.BCEWithLogitsLoss", "torch.nn.DataParallel" ]
1.2.0
pbmstrk/BLINK
7380cf7d63ff76563f017adc39fa5729ba36742a
1.7
import os import torch import numpy as np import matplotlib.pyplot as plt from unbalancedot.utils import euclidean_cost from unbalancedot.sinkhorn import BatchVanillaSinkhorn from unbalancedot.entropy import ( KullbackLeibler, Balanced, TotalVariation, Range, PowerEntropy, ) path = os.getcwd() + "/output" if not os.path.isdir(path): os.mkdir(path) def template_measure(nsample): x1 = np.linspace(0.0, 0.2, nsample) a1 = np.ones(nsample) a1[0], a1[-1] = 0.0, 0.0 a1 = a1 / np.sum(a1) x2 = np.linspace(0.9, 1.0, nsample) a2 = 0.05 - np.abs(x2 - 0.95) a2[0], a2[-1] = 0.0, 0.0 a2 = a2 / np.sum(a2) x = np.concatenate((x1, x2)) a = np.concatenate((0.65 * a1, 0.35 * a2)) a = a / np.sum(a) y1 = np.linspace(0.2, 0.4, nsample) b1 = np.linspace(0.0, 1.0, nsample) b1[0], b1[-1] = 0.0, 0.0 b1 = b1 / np.sum(b1) y2 = np.linspace(0.5, 0.9, nsample) b2 = np.sqrt(np.abs(1 - ((y2 - 0.7) / 0.2) ** 2)) b2[0], b2[-1] = 0.0, 0.0 b2 = b2 / np.sum(b2) y = np.concatenate((y1, y2)) b = np.concatenate((0.45 * b1, 0.55 * b2)) b = b / np.sum(b) return a, x, b, y # Init of measures and solvers a, x, b, y = template_measure(1000) A, X, B, Y = ( torch.from_numpy(a)[None, :], torch.from_numpy(x)[None, :, None], torch.from_numpy(b)[None, :], torch.from_numpy(y)[None, :, None], ) p, blur, reach = 2, 1e-3, 0.1 cost = euclidean_cost(p) solver = BatchVanillaSinkhorn( nits=10000, nits_grad=1, tol=1e-5, assume_convergence=True ) list_entropy = [ Balanced(blur), KullbackLeibler(blur, reach), TotalVariation(blur, reach), Range(blur, 0.7, 1.3), PowerEntropy(blur, reach, 0.0), ] # Init of plot blue = (0.55, 0.55, 0.95) red = (0.95, 0.55, 0.55) fig = plt.figure(figsize=(8, 4)) plt.fill_between(x, 0, a, color="b") plt.fill_between(y, 0, b, color="r") plt.tight_layout() plt.savefig(path + "/comparison_entropy_reference.eps", format="eps") # Plotting each entropy separately for entropy in list_entropy: fig = plt.figure(figsize=(8, 4)) f, g = solver.sinkhorn_asym(A, X, B, Y, cost, entropy) C = cost(X, Y) pi = ( ((f[:, :, None] + g[:, None, :] - C) / blur).exp() * A[:, :, None] * B[:, None, :] ) pi_1, pi_2 = pi.sum(dim=2), pi.sum(dim=1) pi_1, pi_2 = pi_1[0, :].data.numpy(), pi_2[0, :].data.numpy() plt.plot(x, a, color="b", linestyle="--") plt.plot(y, b, color="r", linestyle="--") plt.fill_between(x, 0, pi_1, color=red) plt.fill_between(y, 0, pi_2, color=blue) plt.tight_layout() plt.savefig(path + f"/comparison_entropy_{entropy.__name__}.eps", format="eps")
[ "torch.from_numpy" ]
1.7
thibsej/unbalanced-ot-functionals
bfd098e98ed10b90a36e0dbe7b099c1c31770931
1.6
"""Finetuning the library models for sequence classification on GLUE.""" import dataclasses import logging import os import sys from dataclasses import dataclass, field from typing import Callable, Dict, Optional import torch import numpy as np import transformers from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction from transformers import GlueDataTrainingArguments as DataTrainingArguments from transformers import HfArgumentParser, TrainingArguments, set_seed from src.dataset import FewShotDataset from src.models import BertForPromptFinetuning, RobertaForPromptFinetuning, resize_token_type_embeddings from src.trainer import Trainer from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, bound_mapping from filelock import FileLock from datetime import datetime from copy import deepcopy from tqdm import tqdm import json logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) # Few-shot type # - finetune: standard fine-tuning # - prompt: prompt-based fine-tuning # - prompt-demo: prompt-based fine-tuning with demonstrations few_shot_type: str = field( default='prompt-demo', metadata={"help": "Few-shot learning model type. Choice: finetune, prompt, prompt-demo"} ) # Only for BERT-type model random_segment: bool = field( default=False, metadata={"help": "Whether to reinitialize the token type embeddings (only for BERT)."} ) @dataclass class DynamicDataTrainingArguments(DataTrainingArguments): """ Arguments for dynamic training. """ num_k: Optional[int] = field( default=16, metadata={"help": "Number of training instances per class"} ) num_sample: Optional[int] = field( default=16, metadata={"help": "Number of samples (for inference) in fine-tuning with demonstrations"} ) num_demo: Optional[int] = field( default=1, metadata={"help": "Number of demonstrations from each class"} ) auto_demo: bool = field( default=True, metadata={"help": "Automatically generate template for using demonstrations"} ) # For prompting template: str = field( default=None, metadata={"help": "Template"} ) mapping: str = field( default=None, metadata={"help": "Label word mapping"} ) template_path: str = field( default=None, metadata={"help": "Path to a txt file that stores all the templates, one per line. Do not set this when prompt_path is used"} ) mapping_path: str = field( default=None, metadata={"help": "Path to a txt file that stores all the label word mappings, one per line. Do not set this when prompt_path is used"} ) prompt_path: str = field( default=None, metadata={"help": "Path to a txt file that stores all the prompts (templates and mappings), one per line"} ) template_id: int = field( default=None, metadata={"help": "Template id if using template_path"} ) mapping_id: int = field( default=None, metadata={"help": "Mapping id if using template_path"} ) prompt_id: int = field( default=None, metadata={"help": "Prompt id if using prompt_path"} ) top_n_template: int = field( default=None, metadata={"help": "Use top-n template in the template path"} ) # For logging tag: str = field( default='', metadata={"help": "Set the tag and find the result easier in the log."} ) # For filtering when using demonstrations demo_filter: bool = field( default=False, metadata={"help": "Only use similar instances in demonstrations"} ) demo_filter_rate: float = field( default=0.5, metadata={"help": "Only use top-x\% similar instances in demonstrations"} ) demo_filter_model: str = field( default=None, metadata={"help": "Model name for demonstration filter embeddings. Will load embeddings based on the model name."} ) debug_mode: bool = field( default=False, metadata={"help": "Debug mode"} ) # For max length double_demo: bool = field( default=False, metadata={"help": "Use double length for using demonstrations"} ) first_sent_limit: int = field( default=None, metadata={"help": "Limit the length of the first sentence (i.e., sent_0)"} ) other_sent_limit: int = field( default=None, metadata={"help": "Limit the length of sentences other than the first sentence"} ) use_full_length: bool = field( default=None, metadata={"help": "Use the full length (512)"} ) # GPT-3's in-context learning gpt3_in_context_head: bool = field( default=False, metadata={"help": "GPT-3's in-context learning (context at the beginning)"} ) gpt3_in_context_tail: bool = field( default=False, metadata={"help": "GPT-3's in-context learning (context at the end)"} ) gpt3_in_context_num: int = field( default=32, metadata={"help": "Number of context examples"} ) truncate_head: bool = field( default=False, metadata={"help": "When exceeding the maximum length, truncate the head instead of the tail."} ) # Do not set up the following fields. They are set up automatically. prompt: bool = field( default=False, metadata={"help": "Whether to use prompt-based fine-tuning"} ) template_list: list = field( default=None, metadata={"help": "(DO NOT List of templates (only initialized after the program starts."} ) @dataclass class DynamicTrainingArguments(TrainingArguments): # For ensemble array_id: int = field( default=-1, metadata={"help": "Array ID (contains seed and hyper-paramter search) to idenfity the model"} ) model_id: int = field( default=-1, metadata={"help": "Model ID (contains template information) to identify the model"} ) save_logit: bool = field( default=False, metadata={"help": "Save test file logit with name $TASK-$MODEL_ID-$ARRAY_ID.npy"} ) save_logit_dir: str = field( default=None, metadata={"help": "Where to save the prediction result"} ) # Regularization fix_layers: int = field( default=0, metadata={"help": "Fix bottom-n layers when optimizing"} ) # Training save_at_last: bool = field( default=False, metadata={"help": "Instead of saving the best (dev performance) checkpoint, save the last checkpoint"} ) # Turn off train/test no_train: bool = field( default=False, metadata={"help": "No training"} ) no_predict: bool = field( default=False, metadata={"help": "No test"} ) alpha: float = field( default=0, metadata={"help": "Number of context examples"} ) def main(): parser = HfArgumentParser((ModelArguments, DynamicDataTrainingArguments, DynamicTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if 'prompt' in model_args.few_shot_type: data_args.prompt = True if training_args.no_train: training_args.do_train = False if training_args.no_predict: training_args.do_predict = False # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) # Load prompt/template/mapping file if data_args.prompt: if data_args.prompt_path is not None: assert data_args.prompt_id is not None prompt_list = [] with open(data_args.prompt_path) as f: for line in f: line = line.strip() template, mapping = line.split('\t') prompt_list.append((template, mapping)) data_args.template, data_args.mapping = prompt_list[data_args.prompt_id] logger.info("Specify load the %d-th prompt: %s | %s" % (data_args.prompt_id, data_args.template, data_args.mapping)) else: if data_args.template_path is not None: with open(data_args.template_path) as f: data_args.template_list = [] for line in f: line = line.strip() if len(line) > 0: data_args.template_list.append(line) # Load top-n templates if data_args.top_n_template is not None: data_args.template_list = data_args.template_list[:data_args.top_n_template] logger.info("Load top-%d templates from %s" % (len(data_args.template_list), data_args.template_path)) # ... or load i-th template if data_args.template_id is not None: data_args.template = data_args.template_list[data_args.template_id] data_args.template_list = None logger.info("Specify load the %d-th template: %s" % (data_args.template_id, data_args.template)) if data_args.mapping_path is not None: assert data_args.mapping_id is not None # Only can use one label word mapping with open(data_args.mapping_path) as f: mapping_list = [] for line in f: line = line.strip() mapping_list.append(line) data_args.mapping = mapping_list[data_args.mapping_id] logger.info("Specify using the %d-th mapping: %s" % (data_args.mapping_id, data_args.mapping)) # Check save path if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError(f"Output directory ({training_args.output_dir}) already exists.") logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) try: num_labels = num_labels_mapping[data_args.task_name] output_mode = output_modes_mapping[data_args.task_name] logger.info("Task name: {}, number of labels: {}, output mode: {}".format(data_args.task_name, num_labels, output_mode)) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Automatically generate template for using demonstrations if data_args.auto_demo and model_args.few_shot_type == 'prompt-demo': # GPT-3's in-context learning if data_args.gpt3_in_context_head or data_args.gpt3_in_context_tail: logger.info("Automatically convert the template to GPT-3's in-context learning.") assert data_args.template_list is None old_template = data_args.template new_template = old_template + '' old_template = old_template.replace('*cls*', '') # Single sentence or sentence pair? sent_num = 1 if "_1" in old_template: sent_num = 2 for instance_id in range(data_args.gpt3_in_context_num): sub_template = old_template + '' # Replace sent_id for sent_id in range(sent_num): sub_template = sub_template.replace("_{}*".format(sent_id), "_{}*".format(sent_num + sent_num * instance_id + sent_id)) # Replace mask sub_template = sub_template.replace("*mask*", "*labelx_{}*".format(instance_id)) if data_args.gpt3_in_context_tail: new_template = new_template + sub_template # Put context at the end else: new_template = sub_template + new_template # Put context at the beginning logger.info("| {} => {}".format(data_args.template, new_template)) data_args.template = new_template else: logger.info("Automatically convert the template to using demonstrations.") if data_args.template_list is not None: for i in range(len(data_args.template_list)): old_template = data_args.template_list[i] new_template = old_template + '' old_template = old_template.replace('*cls*', '') # Single sentence or sentence pair? sent_num = 1 if "_1" in old_template: sent_num = 2 for label_id in range(num_labels): sub_template = old_template + '' # Replace sent id for sent_id in range(sent_num): sub_template = sub_template.replace("_{}*".format(sent_id), "_{}*".format(sent_num + sent_num * label_id + sent_id)) # Replace mask sub_template = sub_template.replace("*mask*", "*label_{}*".format(label_id)) new_template = new_template + sub_template logger.info("| {} => {}".format(data_args.template_list[i], new_template)) data_args.template_list[i] = new_template else: old_template = data_args.template new_template = old_template + '' old_template = old_template.replace('*cls*', '') # Single sentence or sentence pair? sent_num = 1 if "_1" in old_template: sent_num = 2 for label_id in range(num_labels): sub_template = old_template + '' # Replace sent id for sent_id in range(sent_num): sub_template = sub_template.replace("_{}".format(sent_id), "_{}".format(sent_num + sent_num * label_id + sent_id)) # Replace mask sub_template = sub_template.replace("*mask*", "*label_{}*".format(label_id)) new_template = new_template + sub_template logger.info("| {} => {}".format(data_args.template, new_template)) data_args.template = new_template # Create config config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) if 'prompt' in model_args.few_shot_type: if config.model_type == 'roberta': model_fn = RobertaForPromptFinetuning elif config.model_type == 'bert': model_fn = BertForPromptFinetuning else: raise NotImplementedError elif model_args.few_shot_type == 'finetune': model_fn = AutoModelForSequenceClassification else: raise NotImplementedError special_tokens = [] # Create tokenizer tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, additional_special_tokens=special_tokens, cache_dir=model_args.cache_dir, ) # Get our special datasets. train_dataset = ( FewShotDataset(data_args, tokenizer=tokenizer, mode="train", use_demo=("demo" in model_args.few_shot_type)) ) eval_dataset = ( FewShotDataset(data_args, tokenizer=tokenizer, mode="dev", use_demo=("demo" in model_args.few_shot_type)) if training_args.do_eval else None ) test_dataset = ( FewShotDataset(data_args, tokenizer=tokenizer, mode="test", use_demo=("demo" in model_args.few_shot_type)) if training_args.do_predict else None ) set_seed(training_args.seed) model = model_fn.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # For BERT, increase the size of the segment (token type) embeddings if config.model_type == 'bert': model.resize_token_embeddings(len(tokenizer)) resize_token_type_embeddings(model, new_num_types=10, random_segment=model_args.random_segment) # Pass dataset and argument information to the model if data_args.prompt: model.label_word_list = torch.tensor(train_dataset.label_word_list).long().cuda() if output_modes_mapping[data_args.task_name] == 'regression': # lower / upper bounds model.lb, model.ub = bound_mapping[data_args.task_name] model.model_args = model_args model.data_args = data_args model.tokenizer = tokenizer # Build metric def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]: def compute_metrics_fn(p: EvalPrediction): # Note: the eval dataloader is sequential, so the examples are in order. # We average the logits over each sample for using demonstrations. predictions = p.predictions num_logits = predictions.shape[-1] logits = predictions.reshape([eval_dataset.num_sample, -1, num_logits]) logits = logits.mean(axis=0) if num_logits == 1: preds = np.squeeze(logits) else: preds = np.argmax(logits, axis=1) # Just for sanity, assert label ids are the same. label_ids = p.label_ids.reshape([eval_dataset.num_sample, -1]) label_ids_avg = label_ids.mean(axis=0) label_ids_avg = label_ids_avg.astype(p.label_ids.dtype) assert (label_ids_avg - label_ids[0]).mean() < 1e-2 label_ids = label_ids[0] return compute_metrics_mapping[task_name](task_name, preds, label_ids) return compute_metrics_fn # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=build_compute_metrics_fn(data_args.task_name) ) # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None, alpha = training_args.alpha) # Use the early stop, so do not save the model in the end (unless specify save_at_last) if training_args.save_at_last: trainer.save_model(training_args.output_dir) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) torch.save(model_args, os.path.join(training_args.output_dir, "model_args.bin")) torch.save(data_args, os.path.join(training_args.output_dir, "data_args.bin")) # Reload the best checkpoint (for eval) model = model_fn.from_pretrained(training_args.output_dir) model = model.to(training_args.device) trainer.model = model if data_args.prompt: model.label_word_list = torch.tensor(train_dataset.label_word_list).long().cuda() if output_modes_mapping[data_args.task_name] == 'regression': # lower / upper bounds model.lb, model.ub = bound_mapping[data_args.task_name] model.model_args = model_args model.data_args = data_args model.tokenizer = tokenizer # Evaluation final_result = { 'time': str(datetime.today()), } eval_results = {} if training_args.do_eval: logger.info("*** Validate ***") eval_datasets = [eval_dataset] for eval_dataset in eval_datasets: trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name) output = trainer.evaluate(eval_dataset=eval_dataset) eval_result = output.metrics output_eval_file = os.path.join( training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt" ) if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(eval_dataset.args.task_name)) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) final_result[eval_dataset.args.task_name + '_dev_' + key] = value eval_results.update(eval_result) test_results = {} if training_args.do_predict: logging.info("*** Test ***") test_datasets = [test_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") test_datasets.append( FewShotDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test", use_demo=('demo' in model_args.few_shot_type)) ) for test_dataset in test_datasets: trainer.compute_metrics = build_compute_metrics_fn(test_dataset.args.task_name) output = trainer.evaluate(eval_dataset=test_dataset) test_result = output.metrics output_test_file = os.path.join( training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt" ) if trainer.is_world_master(): with open(output_test_file, "w") as writer: logger.info("***** Test results {} *****".format(test_dataset.args.task_name)) for key, value in test_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) final_result[test_dataset.args.task_name + '_test_' + key] = value if training_args.save_logit: predictions = output.predictions num_logits = predictions.shape[-1] logits = predictions.reshape([test_dataset.num_sample, -1, num_logits]).mean(axis=0) np.save(os.path.join(training_args.save_logit_dir, "{}-{}-{}.npy".format(test_dataset.task_name, training_args.model_id, training_args.array_id)), logits) test_results.update(test_result) with FileLock('log.lock'): with open('log', 'a') as f: final_result.update(vars(model_args)) final_result.update(vars(training_args)) final_result.update(vars(data_args)) if 'evaluation_strategy' in final_result: final_result.pop('evaluation_strategy') f.write(str(final_result) + '\n') return eval_results if __name__ == "__main__": main()
[ "torch.tensor" ]
1.6.0
leeyy2020/LM-BFF
2c80b2ea3987c403c4d4abc6e202d280ea846210
1.5
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : train-duration.py @Date : 2021/01/05, Tue @Author : Atomicoo @Version : 1.0 @Contact : [email protected] @License : (C)Copyright 2020-2021, ShiGroup-NLP-XMU @Desc : Synthetize sentences into speech. ''' __author__ = 'Atomicoo' import argparse import os import os.path as osp import time from scipy.io.wavfile import write import torch from utils.hparams import HParam from utils.transform import StandardNorm from helpers.synthesizer import Synthesizer import vocoder.models from vocoder.layers import PQMF from utils.audio import dynamic_range_decompression from datasets.dataset import TextProcessor from models import ParallelText2Mel from utils.utils import select_device, get_last_chkpt_path try: from helpers.manager import GPUManager except ImportError as err: print(err); gm = None else: gm = GPUManager() if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--batch_size", default=8, type=int, help="Batch size") parser.add_argument("--checkpoint", default=None, type=str, help="Checkpoint file path") parser.add_argument("--melgan_checkpoint", default=None, type=str, help="Checkpoint file path of melgan") parser.add_argument("--input_texts", default=None, type=str, help="Input text file path") parser.add_argument("--outputs_dir", default=None, type=str, help="Output wave file directory") parser.add_argument("--device", default=None, help="cuda device or cpu") parser.add_argument("--name", default="parallel", type=str, help="Append to logdir name") parser.add_argument("--config", default=None, type=str, help="Config file path") args = parser.parse_args() if torch.cuda.is_available(): index = args.device if args.device else str(0 if gm is None else gm.auto_choice()) else: index = 'cpu' device = select_device(index) hparams = HParam(args.config) \ if args.config else HParam(osp.join(osp.abspath(os.getcwd()), "config", "default.yaml")) logdir = osp.join(hparams.trainer.logdir, f"%s-%s" % (hparams.data.dataset, args.name)) checkpoint = args.checkpoint or get_last_chkpt_path(logdir) normalizer = StandardNorm(hparams.audio.spec_mean, hparams.audio.spec_std) processor = TextProcessor(hparams.text) text2mel = ParallelText2Mel(hparams.parallel) text2mel.eval() synthesizer = Synthesizer( model=text2mel, checkpoint=checkpoint, processor=processor, normalizer=normalizer, device=device ) print('Synthesizing...') since = time.time() text_file = args.input_texts or hparams.synthesizer.inputs_file_path with open(text_file, 'r', encoding='utf-8') as fr: texts = fr.read().strip().split('\n') melspecs = synthesizer.inference(texts) print(f"Inference {len(texts)} spectrograms, total elapsed {time.time()-since:.3f}s. Done.") vocoder_checkpoint = args.melgan_checkpoint or \ osp.join(hparams.trainer.logdir, f"{hparams.data.dataset}-melgan", hparams.melgan.checkpoint) ckpt = torch.load(vocoder_checkpoint, map_location=device) # Ref: https://github.com/kan-bayashi/ParallelWaveGAN/issues/169 decompressed = dynamic_range_decompression(melspecs) decompressed_log10 = torch.log10(decompressed) mu = torch.tensor(ckpt['stats']['mu']).to(device).unsqueeze(1) var = torch.tensor(ckpt['stats']['var']).to(device).unsqueeze(1) sigma = torch.sqrt(var) melspecs = (decompressed_log10 - mu) / sigma Generator = getattr(vocoder.models, ckpt['gtype']) vocoder = Generator(**ckpt['config']).to(device) vocoder.remove_weight_norm() if ckpt['config']['out_channels'] > 1: vocoder.pqmf = PQMF().to(device) vocoder.load_state_dict(ckpt['model']) if ckpt['config']['out_channels'] > 1: waves = vocoder.pqmf.synthesis(vocoder(melspecs)).squeeze(1) else: waves = vocoder(melspecs).squeeze(1) print(f"Generate {len(texts)} audios, total elapsed {time.time()-since:.3f}s. Done.") print('Saving audio...') outputs_dir = args.outputs_dir or hparams.synthesizer.outputs_dir os.makedirs(outputs_dir, exist_ok=True) for i, wav in enumerate(waves, start=1): wav = wav.cpu().detach().numpy() filename = osp.join(outputs_dir, f"{time.strftime('%Y-%m-%d')}_{i:03d}.wav") write(filename, hparams.audio.sampling_rate, wav) print(f"Audios saved to {outputs_dir}. Done.") print(f'Done. ({time.time()-since:.3f}s)')
[ "torch.sqrt", "torch.log10", "torch.cuda.is_available", "torch.tensor", "torch.load" ]
1.5.0
f2re/FCH-TTS
54ddee710694929d978943356fe913609ed0aab5
0.4
from __future__ import absolute_import import torch as tr from base.dataloader import BaseDataLoader from torchvision.datasets import MNIST, FashionMNIST from torch.utils.data import Dataset import torchvision.transforms as transforms import numpy as np class MnistDataLoader(BaseDataLoader): def __init__(self, img_size = 2, train_batch_size=64, test_batch_size=64, get_tensor=True, supervised=True, classes = None): super(MnistDataLoader, self).__init__(img_size, None, train_batch_size, test_batch_size, get_tensor, supervised, classes) def get_data(self): train_dataset = MNIST('../data/mnist', train=True, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) test_dataset = MNIST('../data/mnist', train=False, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) train_data = np.array([x[0].numpy() for x in train_dataset]) train_labels = np.array([x[1].numpy() for x in train_dataset]) test_data = np.array([x[0].numpy() for x in test_dataset]) test_labels = np.array([x[1].numpy() for x in test_dataset]) if self.classes: train_data = train_data[np.where(np.isin(train_labels, self.classes))] train_labels = train_labels[np.where(np.isin(train_labels, self.classes))] test_data = test_data[np.where(np.isin(test_labels, self.classes))] test_labels = test_labels[np.where(np.isin(test_labels, self.classes))] return train_data, test_data, train_labels, test_labels class FashionMnistDataLoader(BaseDataLoader): def __init__(self, train_batch_size=32, test_batch_size=32, get_tensor=True): super(FashionMnistDataLoader, self).__init__((28, 28), None, train_batch_size, test_batch_size, get_tensor, supervised=True) def get_data(self): FashionMNIST('../data/fashion', download=True) train_data, train_labels = tr.load('../data/fashion/processed/training.pt') test_data, test_labels = tr.load('../data/fashion/processed/test.pt') train_data = normalize_mnist_images(train_data) test_data = normalize_mnist_images(test_data) return train_data, test_data, train_labels, test_labels class MixedMnistDataLoader(BaseDataLoader): def __init__(self, img_size = 2, train_batch_size=64, test_batch_size=64, get_tensor=True, supervised=True, classes = None): super(MixedMnistDataLoader, self).__init__(img_size, None, train_batch_size, test_batch_size, get_tensor, supervised, classes) def get_data(self): mnist_train_dataset = MNIST('../data/mnist', train=True, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) mnist_test_dataset = MNIST('../data/mnist', train=False, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) mnist_train_data = np.array([x[0].numpy() for x in mnist_train_dataset]) mnist_train_labels = np.array([x[1].numpy() for x in mnist_train_dataset]) mnist_test_data = np.array([x[0].numpy() for x in mnist_test_dataset]) mnist_test_labels = np.array([x[1].numpy() for x in mnist_test_dataset]) fashion_train_dataset = FashionMNIST('../data/fashion', train = True, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) fashion_test_dataset = FashionMNIST('../data/fashion', train = False, download=True, transform=transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) fashion_train_data = np.array([x[0].numpy() for x in fashion_train_dataset]) fashion_train_labels = np.array([x[1].numpy() for x in fashion_train_dataset]) fashion_test_data = np.array([x[0].numpy() for x in fashion_test_dataset]) fashion_test_labels = np.array([x[1].numpy() for x in fashion_test_dataset]) train_data = np.concatenate((mnist_train_data, fashion_train_data)) train_labels = np.concatenate((mnist_train_labels, 10 + fashion_train_labels)) test_data = np.concatenate((mnist_test_data, fashion_test_data)) test_labels = np.concatenate((mnist_test_labels, 10 + fashion_test_labels)) return train_data, test_data, train_labels, test_labels
[ "torch.load" ]
0.4.1
maharshi95/GANTree
5541c5fb0ba3d856081c03f37870a85fdd654681
1.1
# modify from mmcv and mmdetection import warnings import torch.nn as nn from .norm import build_norm_layer from .act import build_act_layer from .registry import UTILS conv_cfg = { 'Conv': nn.Conv2d, # TODO: octave conv } def build_conv_layer(cfg, *args, **kwargs): """ Build convolution layer Args: cfg (None or dict): cfg should contain: type (str): identify conv layer type. layer args: args needed to instantiate a conv layer. Returns: layer (nn.Module): created conv layer """ assert isinstance(cfg, dict) and 'type' in cfg cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in conv_cfg: raise KeyError('Unrecognized norm type {}'.format(layer_type)) else: conv_layer = conv_cfg[layer_type] layer = conv_layer(*args, **kwargs, **cfg_) return layer @UTILS.register_module class ConvModule(nn.Module): """A conv block that contains conv/norm/activation layers. Args: in_channels (int): Same as nn.Conv2d. out_channels (int): Same as nn.Conv2d. kernel_size (int or tuple[int]): Same as nn.Conv2d. stride (int or tuple[int]): Same as nn.Conv2d. padding (int or tuple[int]): Same as nn.Conv2d. dilation (int or tuple[int]): Same as nn.Conv2d. groups (int): Same as nn.Conv2d. bias (bool or str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. conv_cfg (dict): Config dict for convolution layer. norm_cfg (dict): Config dict for normalization layer. act_cfg (str or None): Config dict for activation layer. order (tuple[str]): The order of conv/norm/activation layers. It is a sequence of "conv", "norm" and "act". Examples are ("conv", "norm", "act") and ("act", "conv", "norm"). """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias='auto', conv_cfg=dict(type='Conv'), norm_cfg=None, act_cfg=dict(type='Relu', inplace=True), order=('conv', 'norm', 'act'), dropout=None): super(ConvModule, self).__init__() assert isinstance(conv_cfg, dict) assert norm_cfg is None or isinstance(norm_cfg, dict) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.order = order assert isinstance(self.order, tuple) and len(self.order) == 3 assert set(order) == set(['conv', 'norm', 'act']) self.with_norm = norm_cfg is not None self.with_act = act_cfg is not None self.with_dropout = dropout is not None # if the conv layer is before a norm layer, bias is unnecessary. if bias == 'auto': bias = False if self.with_norm else True self.with_bias = bias if self.with_norm and self.with_bias: warnings.warn('ConvModule has norm and bias at the same time') # build convolution layer self.conv = build_conv_layer(conv_cfg, in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) # export the attributes of self.conv to a higher level for convenience self.in_channels = self.conv.in_channels self.out_channels = self.conv.out_channels self.kernel_size = self.conv.kernel_size self.stride = self.conv.stride self.padding = self.conv.padding self.dilation = self.conv.dilation self.transposed = self.conv.transposed self.output_padding = self.conv.output_padding self.groups = self.conv.groups # build normalization layers if self.with_norm: # norm layer is after conv layer if order.index('norm') > order.index('conv'): norm_channels = out_channels else: norm_channels = in_channels self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels) self.add_module(self.norm_name, norm) # build activation layer if self.with_act: # activate layer is after conv layer if order.index('act') > order.index('conv'): act_channels = out_channels else: act_channels = in_channels self.act_name, act = build_act_layer(act_cfg, act_channels) self.add_module(self.act_name, act) if self.with_dropout: self.dropout = nn.Dropout2d(p=dropout) @property def norm(self): return getattr(self, self.norm_name) @property def activate(self): return getattr(self, self.act_name) def forward(self, x, activate=True, norm=True): for layer in self.order: if layer == 'conv': x = self.conv(x) elif layer == 'norm' and norm and self.with_norm: x = self.norm(x) elif layer == 'act' and activate and self.with_act: x = self.activate(x) if self.with_dropout: x = self.dropout(x) return x @UTILS.register_module class ConvModules(nn.Module): """Head Args: """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias='auto', conv_cfg=dict(type='Conv'), norm_cfg=None, act_cfg=dict(type='Relu', inplace=True), order=('conv', 'norm', 'act'), dropouts=None, num_convs=1): super().__init__() if dropouts is not None: assert num_convs == len(dropouts) dropout = dropouts[0] else: dropout = None layers = [ ConvModule(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, conv_cfg, norm_cfg, act_cfg, order, dropout), ] for ii in range(1, num_convs): if dropouts is not None: dropout = dropouts[ii] else: dropout = None layers.append( ConvModule(out_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, conv_cfg, norm_cfg, act_cfg, order, dropout)) self.block = nn.Sequential(*layers) def forward(self, x): feat = self.block(x) return feat
[ "torch.nn.Sequential", "torch.nn.Dropout2d" ]
1.1.0
E18301194/vedaseg
c62c8ea46dbba12f03262452dd7bed22969cfe4e
0.4
import argparse import csv import logging import os import sys from ast import literal_eval from datetime import datetime import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.switch_backend('agg') import numpy as np import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import MultiStepLR from tqdm import tqdm, trange from collections import OrderedDict import actquant import models from clr import CyclicLR # Until it will be included in official PyTorch release from data import get_dataset from logger import CsvLogger from preprocess import get_transform from utils.log import save_checkpoint model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ConvNet Training') parser.add_argument('--results_dir', metavar='RESULTS_DIR', default='./results', help='results dir') parser.add_argument('--datapath', metavar='DATA_PATH', default='./results', help='datasets dir') parser.add_argument('--save', metavar='SAVE', default='', help='saved folder') parser.add_argument('--dataset', metavar='DATASET', default='imagenet', help='dataset name or folder') parser.add_argument('--model', '-a', metavar='MODEL', default='alexnet', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: alexnet)') parser.add_argument('--input_size', type=int, default=None, help='image input size') parser.add_argument('--model_config', default='', help='additional architecture configuration') parser.add_argument('--type', default='float32', help='type of tensor - e.g float16') parser.add_argument('--gpus', default='0', help='gpus used for training - e.g 0,1,3') parser.add_argument('-j', '--workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT', help='optimizer function used') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', type=str, metavar='FILE', help='evaluate model FILE on validation set') parser.add_argument('--no-quantization', action='store_true', default=False, help='disables quantization') parser.add_argument('--no-noise', action='store_true', default=False, help='noise') parser.add_argument('--bitwidth', default=32, type=int, metavar='N', help='Quantization bitwidth (default: 5)') parser.add_argument('--scale', default=1, type=float, metavar='N', help='scale of MobileNet2') parser.add_argument('--step', default=2, type=int, metavar='N', help='portion of net to be quantized at second stage(default: 2)') parser.add_argument('--depth', default=18, type=int, metavar='N', help='depth of the model(default: 18)') parser.add_argument('--act-bitwidth', default=32, type=int, metavar='N', help='Quantization activation bitwidth (default: 5)') parser.add_argument('--no-act-quantization', action='store_true', default=False, help='disables quantization') parser.add_argument('--start-from-zero', action='store_true', default=False, help='Start from epoch 0') parser.add_argument('--no-quant-edges', action='store_true', default=False, help='no quantization for first and last layers') #parser.add_argument('--step-setup', default='15,9', help='start of steps and interval- e.g 0,1') parser.add_argument('--quant_start_stage', default=0, type=int, metavar='N', help='from which level of quant to start') parser.add_argument('--quant_epoch_step', type=float, default=1.0, help='hot often to change state of quant') # CLR parser.add_argument('--clr', dest='clr', action='store_true', help='Use CLR') parser.add_argument('--min-lr', type=float, default=1e-5, help='Minimal LR for CLR.') parser.add_argument('--max-lr', type=float, default=1, help='Maximal LR for CLR.') parser.add_argument('--epochs-per-step', type=int, default=20, help='Number of epochs per step in CLR, recommended to be between 2 and 10.') parser.add_argument('--mode', default='triangular2', help='CLR mode. One of {triangular, triangular2, exp_range}') parser.add_argument('--find-clr', dest='find_clr', action='store_true', help='Run search for optimal LR in range (min_lr, max_lr)') # Optimization options parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The learning rate.') parser.add_argument('--momentum', '-m', type=float, default=0.9, help='Momentum.') parser.add_argument('--decay', '-d', type=float, default=4e-5, help='Weight decay (L2 penalty).') parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma at scheduled epochs.') parser.add_argument('--schedule', type=int, nargs='+', default=[81, 122, 164], help='Decrease learning rate at these epochs.') parser.add_argument('--val_batch_size', default=64, type=int , help='val mini-batch size (default: 64)') # NICE parser.add_argument('--param-std-cutoff', type=float, default=3, help='how many std to include before cutoff') parser.add_argument('--quant-dataloader', action='store_true', default=False, help='Load quantized data loader') parser.add_argument('-sb', '--act_stats_batch_size', default=64, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--no_pre_process_normalize', action='store_true', default=False, help='normalize in the preprocess') parser.add_argument('--noise_mask', type=float, default=0.05, help='Probability to add noise') clamp_stats_dict = {} cos_loss_dict = {} def load_model(model, checkpoint): new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): name = k if k[0:7] != 'module.' else k[7:] # remove `module. if needed (happen when the model created with DataParallel new_state_dict[name] = v if v.dim() > 1 or 'num_batches_tracked' in name else v*v.new_ones(1) # load params model.load_state_dict(new_state_dict, strict=False) #strict false in case the loaded doesn't have alll variables like running mean def main(): torch.manual_seed(1) torch.cuda.manual_seed_all(1) global args, best_prec1 best_prec1 = 0 args = parser.parse_args() time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.evaluate: args.results_dir = '/tmp' if args.save is '': args.save = time_stamp save_path = os.path.join(args.results_dir, args.save) if not os.path.exists(save_path): os.makedirs(save_path) args.noise = not args.no_noise args.quant = not args.no_quantization args.act_quant = not args.no_act_quantization args.quant_edges = not args.no_quant_edges logging.info("saving to %s", save_path) logging.debug("run arguments: %s", args) if args.gpus is not None: args.gpus = [int(i) for i in args.gpus.split(',')] device = 'cuda:' + str(args.gpus[0]) cudnn.benchmark = True else: device = 'cpu' dtype = torch.float32 args.step_setup = None model = models.__dict__[args.model] model_config = {'scale': args.scale, 'input_size': args.input_size, 'dataset': args.dataset, 'bitwidth': args.bitwidth, 'quantize': args.quant, 'noise': args.noise, 'step': args.step, 'depth': args.depth, 'act_bitwidth': args.act_bitwidth, 'act_quant': args.act_quant, 'quant_edges': args.quant_edges, 'step_setup': args.step_setup, 'quant_epoch_step': args.quant_epoch_step, 'quant_start_stage': args.quant_start_stage, 'normalize': args.no_pre_process_normalize, 'noise_mask': args.noise_mask} if args.model_config is not '': model_config = dict(model_config, **literal_eval(args.model_config)) # create model model = model(**model_config) logging.info("creating model %s", args.model) model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("number of parameters: ", params) logging.info("created model with configuration: %s", model_config) print(model) data = None checkpoint_epoch=0 # optionally resume from a checkpoint if args.evaluate: if not os.path.isfile(args.evaluate): parser.error('invalid checkpoint: {}'.format(args.evaluate)) checkpoint = torch.load(args.evaluate, map_location=device) load_model(model, checkpoint) logging.info("loaded checkpoint '%s' (epoch %s)", args.evaluate, checkpoint['epoch']) print("loaded checkpoint {0} (epoch {1})".format(args.evaluate, checkpoint['epoch'])) elif args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location=device) if not args.start_from_zero: args.start_epoch = checkpoint['epoch'] - 1 best_test = checkpoint['best_prec1'] checkpoint_epoch = checkpoint['epoch'] load_model(model, checkpoint) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) elif os.path.isdir(args.resume): checkpoint_path = os.path.join(args.resume, 'checkpoint.pth.tar') csv_path = os.path.join(args.resume, 'results.csv') print("=> loading checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location=device) best_test = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) data = [] with open(csv_path) as csvfile: reader = csv.DictReader(csvfile) for row in reader: data.append(row) else: print("=> no checkpoint found at '{}'".format(args.resume)) if args.gpus is not None: model = torch.nn.DataParallel(model, [args.gpus[0]]) # Statistics need to be calculated on single GPU to be consistant with data among multiplr GPUs # Data loading code default_transform = { 'train': get_transform(args.dataset, input_size=args.input_size, augment=True, integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize), 'eval': get_transform(args.dataset, input_size=args.input_size, augment=False, integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize) } transform = getattr(model.module, 'input_transform', default_transform) val_data = get_dataset(args.dataset, 'val', transform['eval'], datasets_path=args.datapath) val_loader = torch.utils.data.DataLoader( val_data, batch_size=args.val_batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) train_data = get_dataset(args.dataset, 'train', transform['train'], datasets_path=args.datapath) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) statistics_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.act_stats_batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.decay, nesterov=True) model, criterion = model.to(device, dtype), criterion.to(device, dtype) if args.clr: scheduler = CyclicLR(optimizer, base_lr=args.min_lr, max_lr=args.max_lr, step_size=args.epochs_per_step * len(train_loader), mode=args.mode) else: scheduler = MultiStepLR(optimizer, milestones=args.schedule, gamma=args.gamma) csv_logger = CsvLogger(filepath=save_path, data=data) csv_logger.save_params(sys.argv, args) csv_logger_training_stats = os.path.join(save_path, 'training_stats.csv') # pre-training activation and parameters statistics calculation #### if check_if_need_to_collect_statistics(model): for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.pre_training_statistics = True # Turn on pre-training activation statistics calculation model.module.statistics_phase = True validate(statistics_train_loader, model, criterion, device, epoch=0, num_of_batches=80, stats_phase=True) # Run validation on training set for statistics model.module.quantize.get_act_max_value_from_pre_calc_stats(list(model.modules())) _ = model.module.quantize.set_weight_basis(list(model.modules()), None) for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.pre_training_statistics = False # Turn off pre-training activation statistics calculation model.module.statistics_phase = False else: # Maximal activation values still need to be derived from loaded stats model.module.quantize.assign_act_clamp_during_val(list(model.modules()), print_clamp_val=True) model.module.quantize.assign_weight_clamp_during_val(list(model.modules()), print_clamp_val=True) # model.module.quantize.get_act_max_value_from_pre_calc_stats(list(model.modules())) if args.gpus is not None: # Return to Multi-GPU after statistics calculations model = torch.nn.DataParallel(model.module, args.gpus) model, criterion = model.to(device, dtype), criterion.to(device, dtype) # pre-training activation statistics calculation #### if args.evaluate: val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, device, epoch=0) print("val_prec1: ", val_prec1) return # fast forward to curr stage for i in range(args.quant_start_stage): model.module.switch_stage(0) for epoch in trange(args.start_epoch, args.epochs + 1): if not isinstance(scheduler, CyclicLR): scheduler.step() # scheduler.optimizer = optimizer train_loss, train_prec1, train_prec5 = train( train_loader, model, criterion, device, epoch, optimizer, scheduler, training_stats_logger=csv_logger_training_stats) for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.print_clamp() # evaluate on validation set val_loss, val_prec1, val_prec5 = validate( val_loader, model, criterion, device, epoch) # remember best prec@1 and save checkpoint is_best = val_prec1 > best_prec1 best_prec1 = max(val_prec1, best_prec1) save_checkpoint({ 'epoch': epoch + 1, 'model': args.model, 'config': args.model_config, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'layers_b_dict': model.module.layers_b_dict #TODO this doesn't work for multi gpu - need to del }, is_best, path=save_path) # New type of logging csv_logger.write({'epoch': epoch + 1, 'val_error1': 1 - val_prec1, 'val_error5': 1 - val_prec5, 'val_loss': val_loss, 'train_error1': 1 - train_prec1, 'train_error5': 1 - train_prec5, 'train_loss': train_loss}) csv_logger.plot_progress(title=args.model+str(args.depth)) csv_logger.write_text('Epoch {}: Best accuracy is {:.2f}% top-1'.format(epoch + 1, best_prec1 * 100.)) def check_if_need_to_collect_statistics(model): for layer in model.modules(): # for layer in model.module.layers_list(): if isinstance(layer, actquant.ActQuantBuffers): if hasattr(layer, 'running_std') and float(layer.running_std) != 0: return False return True def forward(data_loader, model, criterion, device, epoch=0, num_of_batches=None, training=True, optimizer=None, scheduler=None, training_stats_logger=None, stats_phase=False): correct1, correct5 = 0, 0 print_correct_1 , print_correct_5 = 0, 0 print_batch_counter = 0 quant_stage_counter = 0 quant_stage_correct_1 = 0 t = time.time() for batch_idx, (inputs, target) in enumerate(tqdm(data_loader)): if num_of_batches: if batch_idx > num_of_batches: # Debug break if isinstance(scheduler, CyclicLR): scheduler.batch_step() inputs, target = inputs.to(device=device), target.to(device=device) if (training): epoch_progress = epoch + batch_idx/len(data_loader) stage_switch = model.module.switch_stage(epoch_progress) if stage_switch: quant_stage_counter = 0 quant_stage_correct_1 = 0 # compute output output = model(inputs) loss = criterion(output, target) if type(output) is list: output = output[0] # measure accuracy and record loss corr = correct(output, target, topk=(1, 5)) correct1 += corr[0] correct5 += corr[1] if training: # compute gradient optimizer.zero_grad() loss.backward() optimizer.step() quant_stage_correct_1 += corr[0] print_correct_1 += corr[0] print_correct_5 += corr[1] print_batch_counter += output.shape[0] quant_stage_counter += output.shape[0] if batch_idx % args.print_freq == 0: if stats_phase: tqdm.write('Stats phase : [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). ' 'Top-5 accuracy: ' '{:.2f}%({:.2f}%).'.format(batch_idx, len(data_loader), 100. * batch_idx / len(data_loader), loss.item(), 100. * print_correct_1 / print_batch_counter, 100. * correct1 / (args.act_stats_batch_size * (batch_idx + 1)), 100. * print_correct_5 / print_batch_counter, 100. * correct5 / (args.act_stats_batch_size * (batch_idx + 1)))) elif training: tqdm.write('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). ' 'Top-5 accuracy: {:.2f}%({:.2f}%). \t' 'lr: {:.2e}.'.format(epoch, batch_idx, len(data_loader), 100. * batch_idx / len(data_loader), loss.item(), 100. * print_correct_1 / print_batch_counter, 100. * correct1 / (args.batch_size * (batch_idx + 1)), 100. * print_correct_5 / print_batch_counter, 100. * correct5 / (args.batch_size * (batch_idx + 1)), scheduler.get_lr()[0] if scheduler is not None else 0)) dur = time.time() - t with open(training_stats_logger, 'a') as f: #TODO add title f.write('{},{},{},{},{},{},{},{},{},{},{},{},{} \n'.format(epoch, batch_idx, len(data_loader), epoch * len(data_loader) + batch_idx, 100. * batch_idx / len(data_loader), loss.item(), 100. * print_correct_1 / print_batch_counter, 100. * correct1 / (args.batch_size * (batch_idx + 1)), 100. * print_correct_5 / print_batch_counter, 100. * correct5 / (args.batch_size * (batch_idx + 1)), scheduler.get_lr()[0] if scheduler is not None else 0, dur , 100. * quant_stage_correct_1 / quant_stage_counter, ) ) else: tqdm.write('Validation Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). ' 'Top-5 accuracy: ' '{:.2f}%({:.2f}%).'.format(epoch, batch_idx, len(data_loader), 100. * batch_idx / len(data_loader), loss.item(), 100. * print_correct_1 / print_batch_counter, 100. * correct1 / (args.val_batch_size * (batch_idx + 1)), 100. * print_correct_5 / print_batch_counter, 100. * correct5 / (args.val_batch_size * (batch_idx + 1)))) print_correct_1, print_correct_5 = 0 , 0 print_batch_counter = 0 return loss.item(), correct1 / len(data_loader.dataset), correct5 / len(data_loader.dataset) def train(data_loader, model, criterion, device, epoch, optimizer, scheduler, training_stats_logger=None, num_of_batches=None): # switch to train mode model.train() return forward(data_loader, model, criterion, device, epoch, training=True, optimizer=optimizer, scheduler=scheduler, training_stats_logger=training_stats_logger,num_of_batches=num_of_batches) def validate(data_loader, model, criterion, device, epoch, num_of_batches=None, stats_phase=False): # switch to evaluate mode model.eval() return forward(data_loader, model, criterion, device, epoch, num_of_batches=num_of_batches, training=False, optimizer=None, scheduler=None, stats_phase=stats_phase) # TODO: separate file def correct(output, target, topk=(1,)): """Computes the correct@k for the specified values of k""" maxk = max(topk) _, pred = output.topk(maxk, 1, True, True) pred = pred.t().type_as(target) correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0).item() res.append(correct_k) return res def plot_bn_statistic(model): # plot histogram i = 0 for m in model.module.modules(): if isinstance(m, torch.nn.BatchNorm2d): for p in m._parameters: if m._parameters[p] is not None: gaussian_numbers = m._parameters[p].view(-1).cpu().detach().numpy() plt.hist(gaussian_numbers, bins=256) file_name = p + '_layer_' + str(i) directory = './plot_stats' if not os.path.isdir(directory): os.mkdir(directory) file_name = os.path.join(directory, file_name + '.png') plt.savefig(file_name) plt.close() for b in m._buffers: if m._buffers[b] is not None: gaussian_numbers = m._buffers[b].view(-1).cpu().detach().numpy() plt.hist(gaussian_numbers, bins=256) file_name = b + '_layer_' + str(i) directory = './plot_stats' if not os.path.isdir(directory): os.mkdir(directory) file_name = os.path.join(directory, file_name + '.png') plt.savefig(file_name) plt.close() i += 1 def migrate_models(model, target_model, best_epoch, model_name='marvis_mobilenet_multi_gpu'): """ This code snnipet is meant to adapt pre-trained model to a new model containing buffers """ module_list = [m for m in list(model.modules()) if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.BatchNorm2d)] if args.gpus is not None: target_model = torch.nn.DataParallel(target_model, args.gpus) target_module_list = [m for m in list(target_model.modules()) if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.BatchNorm2d)] for idx, m in enumerate(module_list): for p in m._parameters: if m._parameters[p] is not None: target_module_list[idx]._parameters[p].data = m._parameters[p].data.clone() for b in m._buffers: # For batchnorm stats if m._buffers[b] is not None: target_module_list[idx]._buffers[b].data = m._buffers[b].data.clone() save_dir = os.path.join('./trained_models', model_name) if not os.path.isdir(save_dir): os.mkdir(save_dir) save_checkpoint({ 'epoch': best_epoch, 'model': args.model, 'config': args.model_config, 'state_dict': target_model.state_dict(), 'best_prec1': best_epoch }, True, path=save_dir) def gather_clamp_statistic(model): act_layer_num = 0 conv_linear_layer_num = 0 # Activation clamp are taken from the model itself for layer in list(model.modules()): if isinstance(layer, actquant.ActQuantBuffers): layer_name = 'Activation_{}_clamp_val'.format(act_layer_num) if layer.clamp_val.data is not None: if layer_name not in clamp_stats_dict: clamp_stats_dict[layer_name] = [] clamp_stats_dict[layer_name].append(layer.clamp_val.data.item()) else: clamp_stats_dict[layer_name].append(layer.clamp_val.data.item()) act_layer_num += 1 for layer in list(model.modules()): if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear): for p in layer._parameters: if layer._parameters[p] is not None: if p == 'layer_basis': layer_name = 'Conv_Fc_{}_clamp_val'.format(conv_linear_layer_num) lb = layer._parameters[p] if lb is not None: clamp_val = (2 ** (args.bitwidth - 1) - 1) * lb * layer.layer_b if layer_name not in clamp_stats_dict: clamp_stats_dict[layer_name] = [] clamp_stats_dict[layer_name].append(clamp_val.item()) else: clamp_stats_dict[layer_name].append(clamp_val.item()) conv_linear_layer_num += 1 def plot_clamp_statistic(stats_dict, save_path): # plot histogram for k, v in stats_dict.items(): epoch = len(stats_dict[k]) plt.plot(list(range(epoch)), v,'.') file_name = k directory = os.path.join(save_path, 'clamp_plot_stats') # directory = 'clamp_plot_stats' if not os.path.isdir(directory): os.mkdir(directory) file_name = os.path.join(directory, file_name + '.png') plt.savefig(file_name) plt.close() def plot_clamp_statistic_from_file(dict_file, act_layers_list, save_path): plt.figure() file_name = os.path.join(save_path,'unified_activation_clamp.png') stats_dict = np.load(dict_file) dict_keys = list(stats_dict.item().keys()) for layer in act_layers_list: act_vals = stats_dict.item()[dict_keys[layer]] epoch = len(act_vals) plt.plot(list(range(epoch)), act_vals) plt.xlabel('epoch') plt.ylabel('Clamp Value') plt.savefig(file_name) plt.show() def plot_cos_loss(stats_dict, save_path): for k, v in stats_dict.items(): epoch = len(stats_dict[k]) plt.plot(list(range(epoch)), v,'.') file_name = k directory = os.path.join(save_path, 'cos_loss') if not os.path.isdir(directory): os.mkdir(directory) file_name = os.path.join(directory, file_name + '.png') plt.savefig(file_name) plt.close() def gather_cos_loss(model): num_layers = len(model.module.quantize.cosine_sim_loss) total_cosine_loss=0 layer_num = 0 for layer, cos_loss in model.module.quantize.cosine_sim_loss.items(): total_cosine_loss += cos_loss layer_string = "cos_loss_layer_{}".format(layer_num) if layer_string not in cos_loss_dict: cos_loss_dict[layer_string] = [] cos_loss_dict[layer_string].append(cos_loss) else: cos_loss_dict[layer_string].append(cos_loss) layer_num += 1 if 'total_cosine_loss' not in cos_loss_dict: cos_loss_dict['total_cosine_loss'] = [] cos_loss_dict['total_cosine_loss'].append(total_cosine_loss/num_layers) else: cos_loss_dict['total_cosine_loss'].append(total_cosine_loss/num_layers) return def plot_act_quant_error_statistic(model, save_path): for layer in model.module.modules(): # if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear): if isinstance(layer, actquant.ActQuantBuffers): i = layer.layer_num plt.hist(layer.quant_error, bins=256) file_name = 'layer_' + str(i) directory = os.path.join(save_path, 'act_quant_error_stats') if not os.path.isdir(directory): os.mkdir(directory) file_name = os.path.join(directory, file_name + '.png') plt.savefig(file_name) plt.close() return def plot_weight_quant_error_statistic(model, save_path): i = 0 for layer, stats in model.module.quantize.quant_error.items(): if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear): plt.hist(np.concatenate(stats), bins=256) file_name = 'layer_' + str(i) directory = os.path.join(save_path, 'weight_quant_error_stats') if not os.path.isdir(directory): os.mkdir(directory) full_path = os.path.join(directory, file_name + '.png') plt.savefig(full_path) plt.close() i += 1 return if __name__ == '__main__': main()
[ "torch.cuda.manual_seed_all", "torch.manual_seed", "torch.optim.lr_scheduler.MultiStepLR", "torch.utils.data.DataLoader", "torch.load", "torch.nn.CrossEntropyLoss", "torch.nn.DataParallel" ]
0.4.0
yukuzntcva/Denoising-drone-rotors
0122b020fc959dd3869b3863989fee3520aede73
1.2
""" Copyright 2020 The Microsoft DeepSpeed Team DeepSpeed library Create a new wheel via the following command: python setup.py bdist_wheel The wheel will be located at: dist/*.whl """ import os import torch from deepspeed import __version__ as ds_version from setuptools import setup, find_packages from torch.utils.cpp_extension import CUDAExtension, BuildExtension cmdclass = {} ext_modules = [] cmdclass['build_ext'] = BuildExtension TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if not torch.cuda.is_available(): # Fix to allow docker buils, similar to https://github.com/NVIDIA/apex/issues/486 print( "[WARNING] Torch did not find cuda available, if cross-compling or running with cpu only " "you can ignore this message. Adding compute capability for Pascal, Volta, and Turing " "(compute capabilities 6.0, 6.1, 6.2)") if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" # Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456 version_ge_1_1 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0): version_ge_1_1 = ['-DVERSION_GE_1_1'] version_ge_1_3 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2): version_ge_1_3 = ['-DVERSION_GE_1_3'] version_ge_1_5 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4): version_ge_1_5 = ['-DVERSION_GE_1_5'] version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5 ext_modules.append( CUDAExtension(name='fused_lamb_cuda', sources=['csrc/fused_lamb_cuda.cpp', 'csrc/fused_lamb_cuda_kernel.cu'], extra_compile_args={ 'cxx': [ '-O3', ] + version_dependent_macros, 'nvcc': ['-O3', '--use_fast_math'] + version_dependent_macros })) setup(name='deepspeed', version=ds_version, description='DeepSpeed library', author='DeepSpeed Team', author_email='[email protected]', url='http://aka.ms/deepspeed', packages=find_packages(exclude=["docker", "third_party", "csrc"]), scripts=['bin/deepspeed', 'bin/deepspeed.pt', 'bin/ds', 'bin/ds_ssh'], classifiers=['Programming Language :: Python :: 3.6'], ext_modules=ext_modules, cmdclass=cmdclass)
[ "torch.cuda.is_available", "torch.__version__.split", "torch.utils.cpp_extension.CUDAExtension" ]
1.2
sj6077/DeepSpeed
c70b472a68bc9ca387b14a1b35814c582d0ec94b
1.4
import os import sys import importlib if importlib.util.find_spec('torch_itl') is None: path_to_lib = os.getcwd()[:-15] sys.path.append(path_to_lib) from torch_itl.estimator import IQR from torch_itl.kernel import Gaussian, LearnableGaussian from torch_itl.model import DecomposableIdentity from torch_itl.sampler import LinearSampler from torch_itl.datasets import import_data_toy_quantile import torch import matplotlib.pyplot as plt import matplotlib.cm as cm # %% # Defining a simple toy dataset: print("Creating the dataset") x_train, y_train, _ = import_data_toy_quantile(150) n = x_train.shape[0] m = 10 plt.figure() plt.scatter(x_train, y_train, marker='.') plt.show() # %% # Defining an ITL model, first without a learnable kernel print("Defining the model") kernel_input = Gaussian(3.5) kernel_output = Gaussian(9) model = DecomposableIdentity(kernel_input, kernel_output, 1) lbda = 0.001 lbda_cross = 0.01 sampler = LinearSampler(0.1, 0.9, 10, 0) sampler.m = 10 est = IQR(model, lbda, lbda_cross, sampler) #%% # Learning the coefficients of the model print("Fitting the coefficients of the model") est.fit_alpha_gd(x_train, y_train, n_epochs=40, lr=0.001, line_search_fn='strong_wolfe') #%% # Plotting the loss along learning plt.figure() plt.title("Loss evolution with time") plt.plot(est.losses) plt.show() best_loss = est.losses[-1] # Plotting the model on test points probs = est.sampler.sample(30) x_test = torch.linspace(0, 1.4, 100).view(-1, 1) y_pred = est.model.forward(x_test, probs).detach().numpy() colors = [cm.viridis(x.item()) for x in torch.linspace(0, 1, 30)] plt.figure() plt.title("Conditional Quantiles output by our model") plt.scatter(x_train, y_train, marker='.') for i in range(30): plt.plot(x_test, y_pred[:, i], c=colors[i]) plt.show() # %% # Let's learn the input kernel with ITL # First define a neural net n_h = 40 d_out = 10 model_kernel_input = torch.nn.Sequential( torch.nn.Linear(x_train.shape[1], n_h), torch.nn.ReLU(), torch.nn.Linear(n_h, n_h), torch.nn.Linear(n_h, d_out), ) gamma = 3 optim_params = dict(lr=0.01, momentum=0, dampening=0, weight_decay=0, nesterov=False) kernel_input = LearnableGaussian(gamma, model_kernel_input, optim_params) est.model.kernel_input = kernel_input # %% est.fit_kernel_input(x_train, y_train) # plot the loss along learning the kernel #%% plt.figure() plt.title("Loss evolution when learning the kernel") plt.plot(est.model.kernel_input.losses) plt.show() # %% # Now retrain the parameters alpha of the model est.fit_alpha_gd(x_train, y_train, n_epochs=40, lr=0.01, line_search_fn='strong_wolfe') # plot the loss plt.figure() plt.title("Loss evolution when learning model coefficients again") plt.plot(est.losses) plt.show() y_pred = est.model.forward(x_test, probs).detach().numpy() colors = [cm.viridis(x.item()) for x in torch.linspace(0, 1, 30)] plt.figure() plt.title('Conditional Quantiles with learned kernel') plt.scatter(x_train, y_train, marker='.') for i in range(30): plt.plot(x_test, y_pred[:, i], c=colors[i]) plt.show() print('Loss gain from learning the kernel: ', best_loss - est.losses[-1])
[ "torch.nn.Linear", "torch.linspace", "torch.nn.ReLU" ]
1.4.0
mathurinm/torch_itl
e3d92d753bd51ccf585029129110c93bbf9b5fd0
1.7
import math from torch import nn import torch.nn.functional as F import torch import torchvision.models as models def kp2gaussian(kp, spatial_size, kp_variance): """ Transform a keypoint into gaussian like representation """ mean = kp['value'] coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) number_of_leading_dimensions = len(mean.shape) - 1 shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape coordinate_grid = coordinate_grid.view(*shape) repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1) coordinate_grid = coordinate_grid.repeat(*repeats) # Preprocess kp shape shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2) mean = mean.view(*shape) mean_sub = (coordinate_grid - mean) out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) return out def make_coordinate_grid(spatial_size, type): """ Create a meshgrid [-1,1] x [-1,1] of given spatial_size. """ h, w = spatial_size x = torch.arange(w).type(type) y = torch.arange(h).type(type) x = (2 * (x / (w - 1)) - 1) y = (2 * (y / (h - 1)) - 1) yy = y.view(-1, 1).repeat(1, w) xx = x.view(1, -1).repeat(h, 1) meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) return meshed class ResBlock2d(nn.Module): """ Res block, preserve spatial resolution. """ def __init__(self, in_features, kernel_size, padding): super(ResBlock2d, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.norm1 = nn.BatchNorm2d(in_features, affine=True) self.norm2 = nn.BatchNorm2d(in_features, affine=True) def forward(self, x): out = self.norm1(x) out = F.relu(out) out = self.conv1(out) out = self.norm2(out) out = F.relu(out) out = self.conv2(out) out += x return out class UpBlock2d(nn.Module): """ Upsampling block for use in decoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(UpBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) def forward(self, x): out = F.interpolate(x, scale_factor=2) out = self.conv(out) out = self.norm(out) out = F.relu(out) return out class GADEUpBlock2d(nn.Module): """ Geometrically-Adaptive Denormalization Upsampling block for use in decoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1, z_size=1280): super(GADEUpBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) self.fc_1 = nn.Linear(z_size, out_features) self.fc_2 = nn.Linear(z_size, out_features) self.conv_f = nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, padding=1) self.sigmoid = nn.Sigmoid() def forward(self, x, z): out = F.interpolate(x, scale_factor=2) out = self.conv(out) out = self.norm(out) m = self.sigmoid(self.conv_f(out)) r = self.fc_1(z).unsqueeze(-1).unsqueeze(-1).expand_as(out) beta = self.fc_2(z).unsqueeze(-1).unsqueeze(-1).expand_as(out) addin_z = r * out + beta out = m * addin_z + (1 - m) * out out = F.relu(out) return out class DownBlock2d(nn.Module): """ Downsampling block for use in encoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(DownBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) self.pool = nn.AvgPool2d(kernel_size=(2, 2)) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) out = self.pool(out) return out class SameBlock2d(nn.Module): """ Simple block, preserve spatial resolution. """ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1): super(SameBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) return out class Encoder(nn.Module): """ Hourglass Encoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Encoder, self).__init__() down_blocks = [] for i in range(num_blocks): down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) self.down_blocks = nn.ModuleList(down_blocks) def forward(self, x): outs = [x] for down_block in self.down_blocks: outs.append(down_block(outs[-1])) return outs class Decoder(nn.Module): """ Hourglass Decoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Decoder, self).__init__() up_blocks = [] for i in range(num_blocks)[::-1]: in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) out_filters = min(max_features, block_expansion * (2 ** i)) up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1)) self.up_blocks = nn.ModuleList(up_blocks) self.out_filters = block_expansion + in_features def forward(self, x): out = x.pop() for up_block in self.up_blocks: out = up_block(out) skip = x.pop() out = torch.cat([out, skip], dim=1) return out class Hourglass(nn.Module): """ Hourglass architecture. """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Hourglass, self).__init__() self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) self.out_filters = self.decoder.out_filters def forward(self, x): return self.decoder(self.encoder(x)) class AntiAliasInterpolation2d(nn.Module): """ Band-limited downsampling, for better preservation of the input signal. """ def __init__(self, channels, scale): super(AntiAliasInterpolation2d, self).__init__() sigma = (1 / scale - 1) / 2 kernel_size = 2 * round(sigma * 4) + 1 self.ka = kernel_size // 2 self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka kernel_size = [kernel_size, kernel_size] sigma = [sigma, sigma] # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid( [ torch.arange(size, dtype=torch.float32) for size in kernel_size ] ) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer('weight', kernel) self.groups = channels self.scale = scale inv_scale = 1 / scale self.int_inv_scale = int(inv_scale) def forward(self, input): if self.scale == 1.0: return input out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) out = F.conv2d(out, weight=self.weight, groups=self.groups) out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] return out class mymobilenetv2(nn.Module): def __init__(self, num_classes=1000, image_size=256): super(mymobilenetv2, self).__init__() self.model = models.mobilenet_v2(pretrained=True) self.n_layers = len(self.model.features) self.dropout = nn.Dropout(0.2) self.fc = nn.Linear(self.model.last_channel, num_classes) self.fc.weight.data.zero_() self.fc.bias.data.zero_() self.model.classifier = nn.Sequential( self.dropout, self.fc, ) self.scale_factor = 224.0 / image_size if self.scale_factor != 1: self.down = AntiAliasInterpolation2d(3, self.scale_factor) self.feature_maps = {} def forward(self, x): if self.scale_factor != 1: x = self.down(x) feature = self.model.features[0](x) for i in range(18): feature = self.model.features[i+1](feature) feature = nn.functional.adaptive_avg_pool2d(feature, 1).reshape(feature.shape[0], -1) code = self.model.classifier(feature) return code, feature class ContextualAttention(nn.Module): """ Borrowed from https://github.com/daa233/generative-inpainting-pytorch/blob/master/model/networks.py """ def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10, fuse=True): super(ContextualAttention, self).__init__() self.ksize = ksize self.stride = stride self.rate = rate self.fuse_k = fuse_k self.softmax_scale = softmax_scale # to fit the PyTorch tensor image value range self.fuse = fuse if self.fuse: fuse_weight = torch.eye(fuse_k).view(1, 1, fuse_k, fuse_k) # 1*1*k*k self.register_buffer('fuse_weight', fuse_weight) def forward(self, f, b, mask): """ Contextual attention layer implementation. Contextual attention is first introduced in publication: Generative Image Inpainting with Contextual Attention, Yu et al. Args: f: Input feature to match (foreground). b: Input feature for match (background). mask: Input mask for b, indicating patches not available. ksize: Kernel size for contextual attention. stride: Stride for extracting patches from b. rate: Dilation for matching. softmax_scale: Scaled softmax for attention. Returns: torch.tensor: output """ # get shapes raw_int_fs = list(f.size()) raw_int_bs = list(b.size()) # extract patches from background with stride and rate kernel = 2 * self.rate # raw_w is extracted for reconstruction raw_w = extract_image_patches(b, ksizes=[kernel, kernel], strides=[self.rate*self.stride, self.rate*self.stride], rates=[1, 1], padding='same') raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1) raw_w = raw_w.permute(0, 4, 1, 2, 3) raw_w_groups = torch.split(raw_w, 1, dim=0) # downscaling foreground option: downscaling both foreground and # background for matching and use original background for reconstruction. f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest') b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest') int_fs = list(f.size()) int_bs = list(b.size()) f_groups = torch.split(f, 1, dim=0) # split tensors along the batch dimension w = extract_image_patches(b, ksizes=[self.ksize, self.ksize], strides=[self.stride, self.stride], rates=[1, 1], padding='same') w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1) w = w.permute(0, 4, 1, 2, 3) w_groups = torch.split(w, 1, dim=0) mask = F.interpolate(mask, scale_factor=1./(self.rate), mode='nearest') int_ms = list(mask.size()) m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize], strides=[self.stride, self.stride], rates=[1, 1], padding='same') m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1) m = m.permute(0, 4, 1, 2, 3) mm = reduce_mean(m, axis=[3, 4]).unsqueeze(-1) y = [] for i, (xi, wi, raw_wi) in enumerate(zip(f_groups, w_groups, raw_w_groups)): ''' O => output channel as a conv filter I => input channel as a conv filter xi : separated tensor along batch dimension of front; wi : separated patch tensor along batch dimension of back; raw_wi : separated tensor along batch dimension of back; ''' # conv for compare wi = wi[0] max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + 1e-4, axis=[1, 2, 3], keepdim=True)) wi_normed = wi / max_wi xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1]) yi = F.conv2d(xi, wi_normed, stride=1) if self.fuse: # make all of depth to spatial resolution yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) yi = same_padding(yi, [self.fuse_k, self.fuse_k], [1, 1], [1, 1]) yi = F.conv2d(yi, self.fuse_weight, stride=1) yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]) yi = yi.permute(0, 2, 1, 4, 3) yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) yi = same_padding(yi, [self.fuse_k, self.fuse_k], [1, 1], [1, 1]) yi = F.conv2d(yi, self.fuse_weight, stride=1) yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2]) yi = yi.permute(0, 2, 1, 4, 3).contiguous() yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]) # softmax to match yi = yi * mm[i:i+1] yi = F.softmax(yi*self.softmax_scale, dim=1) yi = yi * mm[i:i+1] # deconv for patch pasting wi_center = raw_wi[0] yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4.0 y.append(yi) y = torch.cat(y, dim=0) y.contiguous().view(raw_int_fs) return y def extract_image_patches(images, ksizes, strides, rates, padding='same'): """ Borrowed from https://github.com/daa233/generative-inpainting-pytorch/blob/master/utils/tools.py Extract patches from images and put them in the C output dimension. :param padding: :param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape :param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for each dimension of images :param strides: [stride_rows, stride_cols] :param rates: [dilation_rows, dilation_cols] :return: A Tensor """ assert len(images.size()) == 4 assert padding in ['same', 'valid'] batch_size, channel, height, width = images.size() if padding == 'same': images = same_padding(images, ksizes, strides, rates) elif padding == 'valid': pass else: raise NotImplementedError('Unsupported padding type: {}.\ Only "same" or "valid" are supported.'.format(padding)) unfold = torch.nn.Unfold(kernel_size=ksizes, dilation=rates, padding=0, stride=strides) patches = unfold(images) return patches def same_padding(images, ksizes, strides, rates): """ Borrowed from https://github.com/daa233/generative-inpainting-pytorch/blob/master/utils/tools.py """ assert len(images.size()) == 4 batch_size, channel, rows, cols = images.size() out_rows = (rows + strides[0] - 1) // strides[0] out_cols = (cols + strides[1] - 1) // strides[1] effective_k_row = (ksizes[0] - 1) * rates[0] + 1 effective_k_col = (ksizes[1] - 1) * rates[1] + 1 padding_rows = max(0, (out_rows-1)*strides[0]+effective_k_row-rows) padding_cols = max(0, (out_cols-1)*strides[1]+effective_k_col-cols) # Pad the input padding_top = int(padding_rows / 2.) padding_left = int(padding_cols / 2.) padding_bottom = padding_rows - padding_top padding_right = padding_cols - padding_left paddings = (padding_left, padding_right, padding_top, padding_bottom) images = torch.nn.ZeroPad2d(paddings)(images) return images def reduce_mean(x, axis=None, keepdim=False): """ Borrowed from https://github.com/daa233/generative-inpainting-pytorch/blob/master/utils/tools.py """ if not axis: axis = range(len(x.shape)) for i in sorted(axis, reverse=True): x = torch.mean(x, dim=i, keepdim=keepdim) return x def reduce_sum(x, axis=None, keepdim=False): """ Borrowed from https://github.com/daa233/generative-inpainting-pytorch/blob/master/utils/tools.py """ if not axis: axis = range(len(x.shape)) for i in sorted(axis, reverse=True): x = torch.sum(x, dim=i, keepdim=keepdim) return x
[ "torch.nn.Linear", "torch.cat", "torch.nn.Unfold", "torch.nn.ModuleList", "torch.nn.BatchNorm2d", "torch.eye", "torch.nn.functional.pad", "torch.exp", "torch.sum", "torch.nn.AvgPool2d", "torch.nn.functional.adaptive_avg_pool2d", "torch.nn.functional.relu", "torch.nn.functional.conv2d", "torch.nn.Sequential", "torch.nn.Conv2d", "torch.nn.functional.softmax", "torch.pow", "torch.nn.Dropout", "torch.arange", "torch.nn.Sigmoid", "torch.nn.functional.conv_transpose2d", "torch.nn.functional.interpolate", "torch.split", "torch.nn.ZeroPad2d", "torch.mean" ]
1.7.1
shovelingpig/SAFA
35cd638ab299e58ba303bf64874287abdbcf9fd6
1.9
# this is derived from ClipDraw code # CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders # Kevin Frans, L.B. Soros, Olaf Witkowski # https://arxiv.org/abs/2106.14843 from DrawingInterface import DrawingInterface import pydiffvg import torch import skimage import skimage.io import random import ttools.modules import argparse import math import torchvision import torchvision.transforms as transforms import numpy as np import PIL.Image from util import str2bool def bound(value, low, high): return max(low, min(high, value)) class LineDrawer(DrawingInterface): @staticmethod def add_settings(parser): parser.add_argument("--strokes", type=int, help="number strokes", default=24, dest='strokes') parser.add_argument("--stroke_length", type=int, help="stroke length", default=8, dest='stroke_length') parser.add_argument("--min_stroke_width", type=float, help="min width (percent of height)", default=0.5, dest='min_stroke_width') parser.add_argument("--max_stroke_width", type=float, help="max width (percent of height)", default=2, dest='max_stroke_width') parser.add_argument("--allow_paper_color", type=str2bool, help="allow paper color to change", default=False, dest='allow_paper_color') return parser def __init__(self, settings): super(DrawingInterface, self).__init__() self.canvas_width = settings.size[0] self.canvas_height = settings.size[1] self.num_paths = settings.strokes self.stroke_length = settings.stroke_length def load_model(self, settings, device): # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) device = torch.device('cuda') pydiffvg.set_device(device) canvas_width, canvas_height = self.canvas_width, self.canvas_height num_paths = self.num_paths max_width = settings.max_stroke_width * canvas_height / 100 min_width = settings.min_stroke_width * canvas_height / 100 shapes = [] shape_groups = [] color_vars = [] # background shape p0 = [0, 0] p1 = [canvas_width, canvas_height] path = pydiffvg.Rect(p_min=torch.tensor(p0), p_max=torch.tensor(p1)) shapes.append(path) # https://encycolorpedia.com/f2eecb cell_color = torch.tensor([242/255.0, 238/255.0, 203/255.0, 1.0]) path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(shapes)-1]), stroke_color = None, fill_color = cell_color) shape_groups.append(path_group) if settings.allow_paper_color: path_group.fill_color.requires_grad = True color_vars.append(path_group.fill_color) # Initialize Random Curves for i in range(num_paths): num_segments = self.stroke_length num_control_points = torch.zeros(num_segments, dtype = torch.int32) + 2 points = [] radius = 0.5 radius_x = 0.5 #radius * canvas_height / canvas_width p0 = (0.5 + radius_x * (random.random() - 0.5), 0.5 + radius * (random.random() - 0.5)) points.append(p0) for j in range(num_segments): radius = 1.0 / (num_segments + 2) radius_x = radius * canvas_height / canvas_width p1 = (p0[0] + radius_x * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5)) p2 = (p1[0] + radius_x * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5)) p3 = (p2[0] + radius_x * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5)) points.append(p1) points.append(p2) points.append(p3) p0 = (bound(p3[0],0,1), bound(p3[1],0,1)) points = torch.tensor(points) points[:, 0] *= canvas_width points[:, 1] *= canvas_height path = pydiffvg.Path(num_control_points = num_control_points, points = points, stroke_width = torch.tensor(max_width/10), is_closed = False) shapes.append(path) s_col = [0, 0, 0, 1] path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(shapes)-1]), fill_color = None, stroke_color = torch.tensor(s_col)) shape_groups.append(path_group) # Just some diffvg setup scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args) points_vars = [] stroke_width_vars = [] for path in shapes[1:]: path.points.requires_grad = True points_vars.append(path.points) path.stroke_width.requires_grad = True stroke_width_vars.append(path.stroke_width) # for group in shape_groups: # group.stroke_color.requires_grad = True # color_vars.append(group.stroke_color) self.points_vars = points_vars self.stroke_width_vars = stroke_width_vars self.color_vars = color_vars self.img = img self.shapes = shapes self.shape_groups = shape_groups self.max_width = max_width self.canvas_width = canvas_width self.canvas_height = canvas_height def get_opts(self, decay_divisor): # Optimizers points_optim = torch.optim.Adam(self.points_vars, lr=1.0/decay_divisor) width_optim = torch.optim.Adam(self.stroke_width_vars, lr=0.1/decay_divisor) opts = [points_optim, width_optim] if len(self.color_vars) > 0: color_optim = torch.optim.Adam(self.color_vars, lr=0.01/decay_divisor) opts.append(color_optim) return opts def rand_init(self, toksX, toksY): # TODO pass def init_from_tensor(self, init_tensor): # TODO pass def reapply_from_tensor(self, new_tensor): # TODO pass def get_z_from_tensor(self, ref_tensor): return None def get_num_resolutions(self): return None def synth(self, cur_iteration): render = pydiffvg.RenderFunction.apply scene_args = pydiffvg.RenderFunction.serialize_scene(\ self.canvas_width, self.canvas_height, self.shapes, self.shape_groups) img = render(self.canvas_width, self.canvas_height, 2, 2, cur_iteration, None, *scene_args) img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device = pydiffvg.get_device()) * (1 - img[:, :, 3:4]) img = img[:, :, :3] img = img.unsqueeze(0) img = img.permute(0, 3, 1, 2) # NHWC -> NCHW self.img = img return img @torch.no_grad() def to_image(self): img = self.img.detach().cpu().numpy()[0] img = np.transpose(img, (1, 2, 0)) img = np.clip(img, 0, 1) img = np.uint8(img * 254) # img = np.repeat(img, 4, axis=0) # img = np.repeat(img, 4, axis=1) pimg = PIL.Image.fromarray(img, mode="RGB") return pimg def clip_z(self): with torch.no_grad(): for path in self.shapes[1:]: path.stroke_width.data.clamp_(1.0, self.max_width) for group in self.shape_groups[1:]: group.stroke_color.data.clamp_(0.0, 1.0) def get_z(self): return None def get_z_copy(self): return None def set_z(self, new_z): return None @torch.no_grad() def to_svg(self): pydiffvg.save_svg("./lineout.svg", self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
[ "torch.zeros", "torch.device", "torch.no_grad", "torch.optim.Adam", "torch.cuda.is_available", "torch.tensor" ]
1.9.0
q1qgames/pixray
8bd73869af7979068aa7ff8402f5b3ab2b791255
1.1
# Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Transformer speech recognition model (pytorch).""" from argparse import Namespace from distutils.util import strtobool from itertools import groupby import logging import math import numpy import torch from espnet.nets.asr_interface import ASRInterface from espnet.nets.ctc_prefix_score import CTCPrefixScore from espnet.nets.e2e_asr_common import end_detect from espnet.nets.e2e_asr_common import ErrorCalculator from espnet.nets.pytorch_backend.ctc import CTC from espnet.nets.pytorch_backend.e2e_asr import CTC_LOSS_THRESHOLD from espnet.nets.pytorch_backend.e2e_asr import Reporter from espnet.nets.pytorch_backend.nets_utils import get_subsample from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask from espnet.nets.pytorch_backend.nets_utils import th_accuracy from espnet.nets.pytorch_backend.rnn.decoders import CTC_SCORING_RATIO from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos from espnet.nets.pytorch_backend.transformer.add_sos_eos import mask_uniform from espnet.nets.pytorch_backend.transformer.attention import ( MultiHeadedAttention, # noqa: H301 RelPositionMultiHeadedAttention, # noqa: H301 ) from espnet.nets.pytorch_backend.transformer.decoder_self_mix import Decoder from espnet.nets.pytorch_backend.transformer.dynamic_conv import DynamicConvolution from espnet.nets.pytorch_backend.transformer.dynamic_conv2d import DynamicConvolution2D from espnet.nets.pytorch_backend.transformer.encoder import Encoder from espnet.nets.pytorch_backend.transformer.initializer import initialize from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import ( LabelSmoothingLoss, # noqa: H301 ) from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask from espnet.nets.pytorch_backend.transformer.mask import target_mask from espnet.nets.pytorch_backend.transformer.plot import PlotAttentionReport from espnet.nets.scorers.ctc import CTCPrefixScorer from espnet.utils.fill_missing_args import fill_missing_args class E2E(ASRInterface, torch.nn.Module): """E2E module. :param int idim: dimension of inputs :param int odim: dimension of outputs :param Namespace args: argument Namespace containing options """ @staticmethod def add_arguments(parser): """Add arguments.""" group = parser.add_argument_group("transformer model setting") group.add_argument( "--transformer-init", type=str, default="pytorch", choices=[ "pytorch", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", ], help="how to initialize transformer parameters", ) group.add_argument( "--transformer-input-layer", type=str, default="conv2d", choices=["conv2d", "linear", "embed"], help="transformer input layer type", ) group.add_argument( "--transformer-attn-dropout-rate", default=None, type=float, help="dropout in transformer attention. use --dropout-rate if None is set", ) group.add_argument( "--transformer-lr", default=10.0, type=float, help="Initial value of learning rate", ) group.add_argument( "--transformer-warmup-steps", default=25000, type=int, help="optimizer warmup steps", ) group.add_argument( "--transformer-length-normalized-loss", default=True, type=strtobool, help="normalize loss by length", ) group.add_argument( "--transformer-encoder-selfattn-layer-type", type=str, default="selfattn", choices=[ "selfattn", "rel_selfattn", "lightconv", "lightconv2d", "dynamicconv", "dynamicconv2d", "light-dynamicconv2d", ], help="transformer encoder self-attention layer type", ) group.add_argument( "--transformer-decoder-selfattn-layer-type", type=str, default="selfattn", choices=[ "selfattn", "lightconv", "lightconv2d", "dynamicconv", "dynamicconv2d", "light-dynamicconv2d", ], help="transformer decoder self-attention layer type", ) # Lightweight/Dynamic convolution related parameters. # See https://arxiv.org/abs/1912.11793v2 # and https://arxiv.org/abs/1901.10430 for detail of the method. # Configurations used in the first paper are in # egs/{csj, librispeech}/asr1/conf/tuning/ld_conv/ group.add_argument( "--wshare", default=4, type=int, help="Number of parameter shargin for lightweight convolution", ) group.add_argument( "--ldconv-encoder-kernel-length", default="21_23_25_27_29_31_33_35_37_39_41_43", type=str, help="kernel size for lightweight/dynamic convolution: " 'Encoder side. For example, "21_23_25" means kernel length 21 for ' "First layer, 23 for Second layer and so on.", ) group.add_argument( "--ldconv-decoder-kernel-length", default="11_13_15_17_19_21", type=str, help="kernel size for lightweight/dynamic convolution: " 'Decoder side. For example, "21_23_25" means kernel length 21 for ' "First layer, 23 for Second layer and so on.", ) group.add_argument( "--ldconv-usebias", type=strtobool, default=False, help="use bias term in lightweight/dynamic convolution", ) group.add_argument( "--dropout-rate", default=0.0, type=float, help="Dropout rate for the encoder", ) # Encoder group.add_argument( "--elayers", default=4, type=int, help="Number of encoder layers (for shared recognition part " "in multi-speaker asr mode)", ) group.add_argument( "--eunits", "-u", default=300, type=int, help="Number of encoder hidden units", ) # Attention group.add_argument( "--adim", default=320, type=int, help="Number of attention transformation dimensions", ) group.add_argument( "--aheads", default=4, type=int, help="Number of heads for multi head attention", ) # Decoder group.add_argument( "--dlayers", default=1, type=int, help="Number of decoder layers" ) group.add_argument( "--dunits", default=320, type=int, help="Number of decoder hidden units" ) # Non-autoregressive training group.add_argument( "--decoder-mode", default="AR", type=str, choices=["ar", "maskctc"], help="AR: standard autoregressive training, " "maskctc: non-autoregressive training based on Mask CTC", ) return parser @property def attention_plot_class(self): """Return PlotAttentionReport.""" return PlotAttentionReport def __init__(self, idim, odim, args, ignore_id=-1): """Construct an E2E object. :param int idim: dimension of inputs :param int odim: dimension of outputs :param Namespace args: argument Namespace containing options """ torch.nn.Module.__init__(self) # fill missing arguments for compatibility args = fill_missing_args(args, self.add_arguments) if args.transformer_attn_dropout_rate is None: args.transformer_attn_dropout_rate = args.dropout_rate self.encoder = Encoder( idim=idim, selfattention_layer_type=args.transformer_encoder_selfattn_layer_type, attention_dim=args.adim, attention_heads=args.aheads, conv_wshare=args.wshare, conv_kernel_length=args.ldconv_encoder_kernel_length, conv_usebias=args.ldconv_usebias, linear_units=args.eunits, num_blocks=args.elayers, input_layer=args.transformer_input_layer, dropout_rate=args.dropout_rate, positional_dropout_rate=args.dropout_rate, attention_dropout_rate=args.transformer_attn_dropout_rate, ) if args.mtlalpha < 1: self.decoder = Decoder( odim=odim, selfattention_layer_type=args.transformer_decoder_selfattn_layer_type, attention_dim=args.adim, attention_heads=args.aheads, conv_wshare=args.wshare, conv_kernel_length=args.ldconv_decoder_kernel_length, conv_usebias=args.ldconv_usebias, linear_units=args.dunits, num_blocks=args.dlayers, dropout_rate=args.dropout_rate, positional_dropout_rate=args.dropout_rate, self_attention_dropout_rate=args.transformer_attn_dropout_rate, src_attention_dropout_rate=args.transformer_attn_dropout_rate, ) self.criterion = LabelSmoothingLoss( odim, ignore_id, args.lsm_weight, args.transformer_length_normalized_loss, ) else: self.decoder = None self.criterion = None self.blank = 0 self.decoder_mode = args.decoder_mode if self.decoder_mode == "maskctc": self.mask_token = odim - 1 self.sos = odim - 2 self.eos = odim - 2 else: self.sos = odim - 1 self.eos = odim - 1 self.odim = odim self.ignore_id = ignore_id self.subsample = get_subsample(args, mode="asr", arch="transformer") self.reporter = Reporter() self.reset_parameters(args) self.adim = args.adim # used for CTC (equal to d_model) self.mtlalpha = args.mtlalpha if args.mtlalpha > 0.0: self.ctc = CTC( odim, args.adim, args.dropout_rate, ctc_type=args.ctc_type, reduce=True ) else: self.ctc = None if args.report_cer or args.report_wer: self.error_calculator = ErrorCalculator( args.char_list, args.sym_space, args.sym_blank, args.report_cer, args.report_wer, ) else: self.error_calculator = None self.rnnlm = None def reset_parameters(self, args): """Initialize parameters.""" # initialize parameters initialize(self, args.transformer_init) def forward(self, xs_pad, ilens, ys_pad): """E2E forward. :param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of source sequences (B) :param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) :return: ctc loss value :rtype: torch.Tensor :return: attention loss value :rtype: torch.Tensor :return: accuracy in attention decoder :rtype: float """ # 1. forward encoder xs_pad = xs_pad[:, : max(ilens)] # for data parallel src_mask = make_non_pad_mask(ilens.tolist()).to(xs_pad.device).unsqueeze(-2) hs_pad, hs_mask = self.encoder(xs_pad, src_mask) # print(hs_pad.shape,hs_mask.shape) self.hs_pad = hs_pad # 2. forward decoder if self.decoder is not None: if self.decoder_mode == "maskctc": ys_in_pad, ys_out_pad = mask_uniform( ys_pad, self.mask_token, self.eos, self.ignore_id ) ys_mask = (ys_in_pad != self.ignore_id).unsqueeze(-2) else: ys_in_pad, ys_out_pad = add_sos_eos( ys_pad, self.sos, self.eos, self.ignore_id ) ys_mask = target_mask(ys_in_pad, self.ignore_id) pred_pad, pred_mask, memory_pad ,memory_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask) self.pred_pad = pred_pad # 3. compute attention loss loss_att = self.criterion(pred_pad, ys_out_pad) self.acc = th_accuracy( pred_pad.view(-1, self.odim), ys_out_pad, ignore_label=self.ignore_id ) else: loss_att = None self.acc = None # TODO(karita) show predicted text # TODO(karita) calculate these stats cer_ctc = None if self.mtlalpha == 0.0: loss_ctc = None else: batch_size = xs_pad.size(0) # hs_len = hs_mask.view(batch_size, -1).sum(1)#ctc1 # loss_ctc = self.ctc(hs_pad.view(batch_size, -1, self.adim), hs_len, ys_pad)#ctc1 hs_len = memory_mask.view(batch_size, -1).sum(1)#ctc2 loss_ctc = self.ctc(memory_pad.view(batch_size, -1, self.adim), hs_len, ys_pad)#ctc2 if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(hs_pad.view(batch_size, -1, self.adim)).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) # for visualization if not self.training: self.ctc.softmax(hs_pad) # 5. compute cer/wer if self.training or self.error_calculator is None or self.decoder is None: cer, wer = None, None else: ys_hat = pred_pad.argmax(dim=-1) cer, wer = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) # copied from e2e_asr alpha = self.mtlalpha if alpha == 0: self.loss = loss_att loss_att_data = float(loss_att) loss_ctc_data = None elif alpha == 1: self.loss = loss_ctc loss_att_data = None loss_ctc_data = float(loss_ctc) else: self.loss = alpha * loss_ctc + (1 - alpha) * loss_att loss_att_data = float(loss_att) loss_ctc_data = float(loss_ctc) loss_data = float(self.loss) if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data): self.reporter.report( loss_ctc_data, loss_att_data, self.acc, cer_ctc, cer, wer, loss_data ) else: logging.warning("loss (=%f) is not correct", loss_data) return self.loss def scorers(self): """Scorers.""" return dict(decoder=self.decoder, ctc=CTCPrefixScorer(self.ctc, self.eos)) def encode(self, x): """Encode acoustic features. :param ndarray x: source acoustic feature (T, D) :return: encoder outputs :rtype: torch.Tensor """ self.eval() x = torch.as_tensor(x).unsqueeze(0) enc_output, _ = self.encoder(x, None) return enc_output.squeeze(0) def recognize(self, x, recog_args, char_list=None, rnnlm=None, use_jit=False): """Recognize input speech. :param ndnarray x: input acoustic feature (B, T, D) or (T, D) :param Namespace recog_args: argment Namespace contraining options :param list char_list: list of characters :param torch.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list """ # enc_output = self.encode(x).unsqueeze(0)#ctc1 if self.mtlalpha == 1.0: recog_args.ctc_weight = 1.0 logging.info("Set to pure CTC decoding mode.") #ctc2 self.eval() x = torch.as_tensor(x).unsqueeze(0) enc_output, enc_output_mask = self.encoder(x, None) _, _, decoder_output ,_ = self.decoder(torch.tensor([[self.sos]]), torch.tensor([[[True]]]), enc_output, enc_output_mask) #ctc2 if self.mtlalpha > 0 and recog_args.ctc_weight == 1.0: from itertools import groupby # lpz = self.ctc.argmax(enc_output)#ctc1 lpz = self.ctc.argmax(decoder_output) collapsed_indices = [x[0] for x in groupby(lpz[0])] hyp = [x for x in filter(lambda x: x != self.blank, collapsed_indices)] nbest_hyps = [{"score": 0.0, "yseq": [self.sos] + hyp}] if recog_args.beam_size > 1: raise NotImplementedError("Pure CTC beam search is not implemented.") # TODO(hirofumi0810): Implement beam search return nbest_hyps elif self.mtlalpha > 0 and recog_args.ctc_weight > 0.0: # lpz = self.ctc.log_softmax(enc_output) lpz = self.ctc.log_softmax(decoder_output) lpz = lpz.squeeze(0) else: lpz = None h = enc_output.squeeze(0) logging.info("input lengths: " + str(h.size(0))) # search parms beam = recog_args.beam_size penalty = recog_args.penalty ctc_weight = recog_args.ctc_weight # preprare sos y = self.sos vy = h.new_zeros(1).long() if recog_args.maxlenratio == 0: maxlen = h.shape[0] else: # maxlen >= 1 maxlen = max(1, int(recog_args.maxlenratio * h.size(0))) minlen = int(recog_args.minlenratio * h.size(0)) logging.info("max output length: " + str(maxlen)) logging.info("min output length: " + str(minlen)) # initialize hypothesis if rnnlm: hyp = {"score": 0.0, "yseq": [y], "rnnlm_prev": None} else: hyp = {"score": 0.0, "yseq": [y]} if lpz is not None: ctc_prefix_score = CTCPrefixScore(lpz.detach().numpy(), 0, self.eos, numpy) hyp["ctc_state_prev"] = ctc_prefix_score.initial_state() hyp["ctc_score_prev"] = 0.0 if ctc_weight != 1.0: # pre-pruning based on attention scores ctc_beam = min(lpz.shape[-1], int(beam * CTC_SCORING_RATIO)) else: ctc_beam = lpz.shape[-1] hyps = [hyp] ended_hyps = [] import six traced_decoder = None for i in six.moves.range(maxlen): logging.debug("position " + str(i)) hyps_best_kept = [] for hyp in hyps: vy[0] = hyp["yseq"][i] # get nbest local scores and their ids ys_mask = subsequent_mask(i + 1).unsqueeze(0) ys = torch.tensor(hyp["yseq"]).unsqueeze(0) # FIXME: jit does not match non-jit result if use_jit: if traced_decoder is None: traced_decoder = torch.jit.trace( self.decoder.forward_one_step, (ys, ys_mask, enc_output) ) local_att_scores = traced_decoder(ys, ys_mask, enc_output)[0] else: local_att_scores = self.decoder.forward_one_step( ys, ys_mask, enc_output )[0] if rnnlm: rnnlm_state, local_lm_scores = rnnlm.predict(hyp["rnnlm_prev"], vy) local_scores = ( local_att_scores + recog_args.lm_weight * local_lm_scores ) else: local_scores = local_att_scores if lpz is not None: local_best_scores, local_best_ids = torch.topk( local_att_scores, ctc_beam, dim=1 ) ctc_scores, ctc_states = ctc_prefix_score( hyp["yseq"], local_best_ids[0], hyp["ctc_state_prev"] ) local_scores = (1.0 - ctc_weight) * local_att_scores[ :, local_best_ids[0] ] + ctc_weight * torch.from_numpy( ctc_scores - hyp["ctc_score_prev"] ) if rnnlm: local_scores += ( recog_args.lm_weight * local_lm_scores[:, local_best_ids[0]] ) local_best_scores, joint_best_ids = torch.topk( local_scores, beam, dim=1 ) local_best_ids = local_best_ids[:, joint_best_ids[0]] else: local_best_scores, local_best_ids = torch.topk( local_scores, beam, dim=1 ) for j in six.moves.range(beam): new_hyp = {} new_hyp["score"] = hyp["score"] + float(local_best_scores[0, j]) new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"])) new_hyp["yseq"][: len(hyp["yseq"])] = hyp["yseq"] new_hyp["yseq"][len(hyp["yseq"])] = int(local_best_ids[0, j]) if rnnlm: new_hyp["rnnlm_prev"] = rnnlm_state if lpz is not None: new_hyp["ctc_state_prev"] = ctc_states[joint_best_ids[0, j]] new_hyp["ctc_score_prev"] = ctc_scores[joint_best_ids[0, j]] # will be (2 x beam) hyps at most hyps_best_kept.append(new_hyp) hyps_best_kept = sorted( hyps_best_kept, key=lambda x: x["score"], reverse=True )[:beam] # sort and get nbest hyps = hyps_best_kept logging.debug("number of pruned hypothes: " + str(len(hyps))) if char_list is not None: logging.debug( "best hypo: " + "".join([char_list[int(x)] for x in hyps[0]["yseq"][1:]]) ) # add eos in the final loop to avoid that there are no ended hyps if i == maxlen - 1: logging.info("adding <eos> in the last postion in the loop") for hyp in hyps: hyp["yseq"].append(self.eos) # add ended hypothes to a final list, and removed them from current hypothes # (this will be a probmlem, number of hyps < beam) remained_hyps = [] for hyp in hyps: if hyp["yseq"][-1] == self.eos: # only store the sequence that has more than minlen outputs # also add penalty if len(hyp["yseq"]) > minlen: hyp["score"] += (i + 1) * penalty if rnnlm: # Word LM needs to add final <eos> score hyp["score"] += recog_args.lm_weight * rnnlm.final( hyp["rnnlm_prev"] ) ended_hyps.append(hyp) else: remained_hyps.append(hyp) # end detection if end_detect(ended_hyps, i) and recog_args.maxlenratio == 0.0: logging.info("end detected at %d", i) break hyps = remained_hyps if len(hyps) > 0: logging.debug("remeined hypothes: " + str(len(hyps))) else: logging.info("no hypothesis. Finish decoding.") break if char_list is not None: for hyp in hyps: logging.debug( "hypo: " + "".join([char_list[int(x)] for x in hyp["yseq"][1:]]) ) logging.debug("number of ended hypothes: " + str(len(ended_hyps))) nbest_hyps = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[ : min(len(ended_hyps), recog_args.nbest) ] # check number of hypotheis if len(nbest_hyps) == 0: logging.warning( "there is no N-best results, perform recognition " "again with smaller minlenratio." ) # should copy becasuse Namespace will be overwritten globally recog_args = Namespace(**vars(recog_args)) recog_args.minlenratio = max(0.0, recog_args.minlenratio - 0.1) return self.recognize(x, recog_args, char_list, rnnlm) logging.info("total log probability: " + str(nbest_hyps[0]["score"])) logging.info( "normalized log probability: " + str(nbest_hyps[0]["score"] / len(nbest_hyps[0]["yseq"])) ) return nbest_hyps def recognize_maskctc(self, x, recog_args, char_list=None): """Non-autoregressive decoding using Mask CTC. :param ndnarray x: input acoustic feature (B, T, D) or (T, D) :param Namespace recog_args: argment Namespace contraining options :param list char_list: list of characters :return: decoding result :rtype: list """ self.eval() h = self.encode(x).unsqueeze(0) ctc_probs, ctc_ids = torch.exp(self.ctc.log_softmax(h)).max(dim=-1) y_hat = torch.stack([x[0] for x in groupby(ctc_ids[0])]) y_idx = torch.nonzero(y_hat != 0).squeeze(-1) probs_hat = [] cnt = 0 for i, y in enumerate(y_hat.tolist()): probs_hat.append(-1) while cnt < ctc_ids.shape[1] and y == ctc_ids[0][cnt]: if probs_hat[i] < ctc_probs[0][cnt]: probs_hat[i] = ctc_probs[0][cnt].item() cnt += 1 probs_hat = torch.from_numpy(numpy.array(probs_hat)) char_mask = "_" p_thres = recog_args.maskctc_probability_threshold mask_idx = torch.nonzero(probs_hat[y_idx] < p_thres).squeeze(-1) confident_idx = torch.nonzero(probs_hat[y_idx] >= p_thres).squeeze(-1) mask_num = len(mask_idx) y_in = torch.zeros(1, len(y_idx) + 1, dtype=torch.long) + self.mask_token y_in[0][confident_idx] = y_hat[y_idx][confident_idx] y_in[0][-1] = self.eos logging.info( "ctc:{}".format( "".join( [ char_list[y] if y != self.mask_token else char_mask for y in y_in[0].tolist() ] ).replace("<space>", " ") ) ) if not mask_num == 0: K = recog_args.maskctc_n_iterations num_iter = K if mask_num >= K and K > 0 else mask_num for t in range(1, num_iter): pred, _, _, _ = self.decoder(#ctc2修改 原本:pred, _ = self.decoder( y_in, (y_in != self.ignore_id).unsqueeze(-2), h, None ) pred_sc, pred_id = pred[0][mask_idx].max(dim=-1) cand = torch.topk(pred_sc, mask_num // num_iter, -1)[1] y_in[0][mask_idx[cand]] = pred_id[cand] mask_idx = torch.nonzero(y_in[0] == self.mask_token).squeeze(-1) logging.info( "msk:{}".format( "".join( [ char_list[y] if y != self.mask_token else char_mask for y in y_in[0].tolist() ] ).replace("<space>", " ") ) ) pred, pred_mask = self.decoder( y_in, (y_in != self.ignore_id).unsqueeze(-2), h, None ) y_in[0][mask_idx] = pred[0][mask_idx].argmax(dim=-1) logging.info( "msk:{}".format( "".join( [ char_list[y] if y != self.mask_token else char_mask for y in y_in[0].tolist() ] ).replace("<space>", " ") ) ) ret = y_in.tolist()[0][:-1] hyp = {"score": 0.0, "yseq": [self.sos] + ret + [self.eos]} return [hyp] def calculate_all_attentions(self, xs_pad, ilens, ys_pad): """E2E attention calculation. :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) :return: attention weights (B, H, Lmax, Tmax) :rtype: float ndarray """ self.eval() with torch.no_grad(): self.forward(xs_pad, ilens, ys_pad) ret = dict() for name, m in self.named_modules(): if ( isinstance(m, MultiHeadedAttention) or isinstance(m, DynamicConvolution) or isinstance(m, RelPositionMultiHeadedAttention) ): ret[name] = m.attn.cpu().numpy() if isinstance(m, DynamicConvolution2D): ret[name + "_time"] = m.attn_t.cpu().numpy() ret[name + "_freq"] = m.attn_f.cpu().numpy() self.train() return ret def calculate_all_ctc_probs(self, xs_pad, ilens, ys_pad): """E2E CTC probability calculation. :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) :return: CTC probability (B, Tmax, vocab) :rtype: float ndarray """ ret = None if self.mtlalpha == 0: return ret self.eval() with torch.no_grad(): self.forward(xs_pad, ilens, ys_pad) for name, m in self.named_modules(): if isinstance(m, CTC) and m.probs is not None: ret = m.probs.cpu().numpy() self.train() return ret
[ "torch.nonzero", "torch.no_grad", "torch.nn.Module.__init__", "torch.from_numpy", "torch.tensor", "torch.jit.trace", "torch.as_tensor", "torch.topk" ]
1.1.0
HongYun0901/ESPnet
44f78734034991fed4f42359f4d15f15504680bd
1.0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Blenderbot checkpoint.""" import argparse import torch from ...models.bart import BartConfig, BartForConditionalGeneration from ...utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) PATTERNS = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def rename_state_dict_key(k): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: k = k.replace(parlai_name, hf_name) if k.startswith("encoder"): k = k.replace(".attn", ".self_attn") k = k.replace("norm1", "self_attn_layer_norm") k = k.replace("norm2", "final_layer_norm") elif k.startswith("decoder"): k = k.replace("norm1", "self_attn_layer_norm") k = k.replace("norm2", "encoder_attn_layer_norm") k = k.replace("norm3", "final_layer_norm") return k def rename_layernorm_keys(sd): keys = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: v = sd.pop(k) new_k = k.replace("layernorm_embedding", "layer_norm") assert new_k not in sd sd[new_k] = v IGNORE_KEYS = ["START"] @torch.no_grad() def convert_parlai_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_json_path): """ Copy/paste/tweak model's weights to our BERT structure. """ model = torch.load(checkpoint_path, map_location="cpu") sd = model["model"] cfg = BartConfig.from_json_file(config_json_path) m = BartForConditionalGeneration(cfg) valid_keys = m.model.state_dict().keys() failures = [] mapping = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue new_k = rename_state_dict_key(k) if new_k not in valid_keys: failures.append([k, new_k]) else: mapping[new_k] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(sd) m.model.load_state_dict(mapping, strict=True) m.half() m.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) args = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
[ "torch.no_grad", "torch.load" ]
1.0
sunjiao123sun/transformers
c60e0e1ee45f4bf1017736b146c51729f120bb83
1.6
#!/usr/bin/env python3 # # Copyright (c) 2020 Mobvoi Inc. (authors: Fangjun Kuang) # Xiaomi Corporation (authors: Haowen Qiu) # # See ../../../LICENSE for clarification regarding multiple authors # To run this single test, use # # ctest --verbose -R index_test_py import unittest import k2 import torch class TestIndex(unittest.TestCase): def test(self): s0 = ''' 0 1 1 0.1 0 2 2 0.2 1 2 3 0.3 2 3 -1 0.4 3 ''' s1 = ''' 0 1 -1 0.5 1 ''' s2 = ''' 0 2 1 0.6 0 1 2 0.7 1 3 -1 0.8 2 1 3 0.9 3 ''' fsa0 = k2.Fsa.from_str(s0).requires_grad_(True) fsa1 = k2.Fsa.from_str(s1).requires_grad_(True) fsa2 = k2.Fsa.from_str(s2).requires_grad_(True) fsa_vec = k2.create_fsa_vec([fsa0, fsa1, fsa2]) new_fsa21 = k2.index(fsa_vec, torch.tensor([2, 1], dtype=torch.int32)) assert new_fsa21.shape == (2, None, None) assert torch.allclose( new_fsa21.arcs.values()[:, :3], torch.tensor([ # fsa 2 [0, 2, 1], [0, 1, 2], [1, 3, -1], [2, 1, 3], # fsa 1 [0, 1, -1] ]).to(torch.int32)) scale = torch.arange(new_fsa21.scores.numel()) (new_fsa21.scores * scale).sum().backward() assert torch.allclose(fsa0.scores.grad, torch.tensor([0., 0, 0, 0])) assert torch.allclose(fsa1.scores.grad, torch.tensor([4.])) assert torch.allclose(fsa2.scores.grad, torch.tensor([0., 1., 2., 3.])) # now select only a single FSA fsa0.scores.grad = None fsa1.scores.grad = None fsa2.scores.grad = None new_fsa0 = k2.index(fsa_vec, torch.tensor([0], dtype=torch.int32)) assert new_fsa0.shape == (1, None, None) scale = torch.arange(new_fsa0.scores.numel()) (new_fsa0.scores * scale).sum().backward() assert torch.allclose(fsa0.scores.grad, torch.tensor([0., 1., 2., 3.])) assert torch.allclose(fsa1.scores.grad, torch.tensor([0.])) assert torch.allclose(fsa2.scores.grad, torch.tensor([0., 0., 0., 0.])) class TestIndexRaggedInt(unittest.TestCase): def test(self): devices = [torch.device('cpu')] if torch.cuda.is_available(): devices.append(torch.device('cuda', 0)) for device in devices: src_row_splits = torch.tensor([0, 2, 3, 3, 6], dtype=torch.int32, device=device) src_shape = k2.create_ragged_shape2(src_row_splits, None, 6) src_values = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.int32, device=device) src = k2.RaggedInt(src_shape, src_values) # index with ragged int index_row_splits = torch.tensor([0, 2, 2, 3, 7], dtype=torch.int32, device=device) index_shape = k2.create_ragged_shape2(index_row_splits, None, 7) index_values = torch.tensor([0, 3, 2, 1, 2, 1, 0], dtype=torch.int32, device=device) ragged_index = k2.RaggedInt(index_shape, index_values) ans = k2.index_ragged_int(src, ragged_index) expected_row_splits = torch.tensor([0, 5, 5, 5, 9], dtype=torch.int32, device=device) self.assertTrue( torch.allclose(ans.row_splits(1), expected_row_splits)) expected_values = torch.tensor([1, 2, 4, 5, 6, 3, 3, 1, 2], dtype=torch.int32, device=device) self.assertTrue(torch.allclose(ans.values(), expected_values)) # index with tensor tensor_index = torch.tensor([0, 3, 2, 1, 2, 1], dtype=torch.int32, device=device) ans = k2.index_ragged_int(src, tensor_index) expected_row_splits = torch.tensor([0, 2, 5, 5, 6, 6, 7], dtype=torch.int32, device=device) self.assertTrue( torch.allclose(ans.row_splits(1), expected_row_splits)) expected_values = torch.tensor([1, 2, 4, 5, 6, 3, 3], dtype=torch.int32, device=device) self.assertTrue(torch.allclose(ans.values(), expected_values)) class TestIndexTensorWithRaggedInt(unittest.TestCase): def test(self): devices = [torch.device('cpu')] if torch.cuda.is_available(): devices.append(torch.device('cuda', 0)) for device in devices: src = torch.tensor([1, 2, 3, 4, 5, 6, 7], dtype=torch.int32, device=device) index_row_splits = torch.tensor([0, 2, 2, 3, 7], dtype=torch.int32, device=device) index_shape = k2.create_ragged_shape2(index_row_splits, None, 7) index_values = torch.tensor([0, 3, 2, 3, 5, 1, 3], dtype=torch.int32, device=device) ragged_index = k2.RaggedInt(index_shape, index_values) ans = k2.index_tensor_with_ragged_int(src, ragged_index) self.assertTrue(torch.allclose(ans.row_splits(1), index_row_splits)) expected_values = torch.tensor([1, 4, 3, 4, 6, 2, 4], dtype=torch.int32, device=device) self.assertTrue(torch.allclose(ans.values(), expected_values)) if __name__ == '__main__': unittest.main()
[ "torch.device", "torch.cuda.is_available", "torch.tensor" ]
1.6.0
pzelasko/k2
2dbb3e09b152fcf98354c946baa271e5b57c8321
1.2
# Copyright (c) 2019, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: MIT # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/MIT import os import json import torch import torch.nn as nn from .base import StochasticAgent from agents.maze_agents.toy_maze.env import Env from base.modules.normalization import DatasetNormalizer from agents.maze_agents.modules.density import VQVAEDensity from agents.maze_agents.modules import StochasticPolicy, Value from base.learners.skill_discovery.edl import BaseEDLLearner, BaseEDLSiblingRivalryLearner class DistanceStochasticAgent(StochasticAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.batch_keys += ['goal'] # 'goal' is only used for visualization purposes def _make_modules(self, policy, skill_embedding, vae): super()._make_modules(policy, skill_embedding) self.vae = vae def step(self, do_eval=False): super().step(do_eval=do_eval) self.episode[-1]['goal'] = self.env.goal.detach() def reset(self, skill=None, *args, **kwargs): self.reset_skill(skill) kwargs['goal'] = self.vae.get_centroids(dict(skill=self.curr_skill.view([]))).detach().numpy() self.env.reset(*args, **kwargs) self.episode = [] def preprocess_skill(self, curr_skill): assert curr_skill is not None return self.skill_embedding(curr_skill).detach() class SiblingRivalryStochasticAgent(DistanceStochasticAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.batch_keys += ['antigoal'] class VQVAEDiscriminator(VQVAEDensity): def __init__(self, state_size, hidden_size, codebook_size, code_size, beta=0.25, **kwargs): super().__init__(num_skills=0, state_size=state_size, hidden_size=hidden_size, codebook_size=codebook_size, code_size=code_size, beta=beta, **kwargs) self.softmax = nn.Softmax(dim=1) def _make_normalizer_module(self): self.normalizer = DatasetNormalizer(self.input_size) if self.normalize_inputs else None def compute_logprob(self, batch, with_codes=False): x = batch[self.input_key] z_e_x = self.encoder(x) z_q_x, selected_codes = self.vq.straight_through(z_e_x) x_ = self.decoder(z_q_x) if self.normalizes_inputs: x_ = self.normalizer.denormalize(x_) logprob = -1. * self.mse_loss(x, x_).sum(dim=1) if with_codes: return logprob, z_e_x, selected_codes else: return logprob def compute_logprob_under_latent(self, batch, z=None): x = batch[self.input_key] if z is None: z = batch['skill'] z_q_x = self.vq.embedding(z).detach() x_ = self.decoder(z_q_x).detach() if self.normalizes_inputs: x_ = self.normalizer.denormalize(x_) logprob = -1. * self.mse_loss(x, x_).sum(dim=1) return logprob def log_approx_posterior(self, batch): x, z = batch[self.input_key], batch['skill'] z_e_x = self.encoder(x) codebook_distances = self.vq.compute_distances(z_e_x) p = self.softmax(codebook_distances) p_z = p[torch.arange(0, p.shape[0]), z] return torch.log(p_z) def surprisal(self, batch): with torch.no_grad(): return self.compute_logprob_under_latent(batch).detach() class EDLLearner(BaseEDLLearner): def __init__(self, vae_logdir, **kwargs): self._parse_init_args(vae_logdir, **kwargs) super().__init__(**kwargs) def _parse_init_args(self, vae_logdir, **kwargs): vae_logdir = str(vae_logdir) if not os.path.isabs(vae_logdir): root_dir = os.environ.get("ROOT_DIR", os.getcwd()) # useful when loading experiments from a notebook vae_logdir = os.path.join(root_dir, vae_logdir) assert os.path.exists(vae_logdir), "Directory not found: {}".format(vae_logdir) self.vae_args = json.load(open(os.path.join(vae_logdir, "config.json")))["vae_args"] self.vae_checkpoint_path = os.path.join(vae_logdir, "model.pth.tar") def create_env(self): return Env(**self.env_params) def _make_agent_modules(self): self.vae = VQVAEDiscriminator(state_size=self._dummy_env.state_size, **self.vae_args) self.vae.load_checkpoint(self.vae_checkpoint_path) kwargs = dict(env=self._dummy_env, hidden_size=self.hidden_size, num_layers=self.num_layers, goal_size=self.vae.code_size, normalize_inputs=self.normalize_inputs) self.policy = StochasticPolicy(**kwargs) self.v_module = Value(use_antigoal=False, **kwargs) def _make_agent(self): return DistanceStochasticAgent(env=self.create_env(), policy=self.policy, skill_n=self.vae.codebook_size, skill_embedding=self.vae.vq.embedding, vae=self.vae) def get_values(self, batch): return self.v_module( batch['state'], self.preprocess_skill(batch['skill']) ) def get_terminal_values(self, batch): return self.v_module( batch['next_state'][-1:], self.preprocess_skill(batch['skill'][-1:]), ) def get_policy_lprobs_and_nents(self, batch): log_prob, n_ent, _ = self.policy( batch['state'], self.preprocess_skill(batch['skill']), action_logit=batch['action_logit'] ) return log_prob.sum(dim=1), n_ent class EDLSiblingRivalryLearner(BaseEDLSiblingRivalryLearner, EDLLearner): def __init__(self, **kwargs): self._parse_init_args(**kwargs) super().__init__(**kwargs) def _make_agent_modules(self): self.vae = VQVAEDiscriminator(state_size=self._dummy_env.state_size, **self.vae_args) self.vae.load_checkpoint(self.vae_checkpoint_path) kwargs = dict(env=self._dummy_env, hidden_size=self.hidden_size, num_layers=self.num_layers, goal_size=self.vae.code_size, normalize_inputs=self.normalize_inputs) self.policy = StochasticPolicy(**kwargs) self.v_module = Value(use_antigoal=self.use_antigoal, **kwargs) def _make_agent(self): return SiblingRivalryStochasticAgent(env=self.create_env(), policy=self.policy, skill_n=self.vae.codebook_size, skill_embedding=self.vae.vq.embedding, vae=self.vae) def get_values(self, batch): return self.v_module( batch['state'], self.preprocess_skill(batch['skill']), batch.get('antigoal', None) ) def get_terminal_values(self, batch): if 'antigoal' in batch: antigoal = batch['antigoal'][-1:] else: antigoal = None return self.v_module( batch['next_state'][-1:], self.preprocess_skill(batch['skill'][-1:]), antigoal )
[ "torch.arange", "torch.log", "torch.no_grad", "torch.nn.Softmax" ]
1.2.0
victorcampos7/edl
ffdf23d4e102ca7d69a1408bafa267b0c7d8bfa0
3
import os from tempfile import NamedTemporaryFile import h5py import numpy as np import torch from pytorch3dunet.datasets.utils import get_train_loaders from pytorch3dunet.train import _create_optimizer, _create_lr_scheduler from pytorch3dunet.unet3d.losses import get_loss_criterion from pytorch3dunet.unet3d.metrics import get_evaluation_metric from pytorch3dunet.unet3d.model import get_model from pytorch3dunet.unet3d.trainer import UNet3DTrainer from pytorch3dunet.unet3d.utils import DefaultTensorboardFormatter class TestUNet3DTrainer: def test_ce_loss(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'CrossEntropyLoss', 'MeanIoU', 'UNet3D') def test_wce_loss(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'WeightedCrossEntropyLoss', 'MeanIoU', 'UNet3D') def test_bce_loss(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'BCEWithLogitsLoss', 'DiceCoefficient', 'UNet3D') def test_dice_loss(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'DiceLoss', 'MeanIoU', 'UNet3D') def test_pce_loss(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'PixelWiseCrossEntropyLoss', 'MeanIoU', 'UNet3D', weight_map=True) def test_residual_unet(self, tmpdir, capsys, train_config): with capsys.disabled(): assert_train_save_load(tmpdir, train_config, 'CrossEntropyLoss', 'MeanIoU', 'ResidualUNet3D') def test_2d_unet(self, tmpdir, capsys, train_config_2d): with capsys.disabled(): assert_train_save_load(tmpdir, train_config_2d, 'CrossEntropyLoss', 'MeanIoU', 'UNet2D', shape=(3, 1, 128, 128)) def assert_train_save_load(tmpdir, train_config, loss, val_metric, model, weight_map=False, shape=(3, 64, 64, 64)): max_num_epochs = train_config['trainer']['epochs'] log_after_iters = train_config['trainer']['log_after_iters'] validate_after_iters = train_config['trainer']['validate_after_iters'] max_num_iterations = train_config['trainer']['iters'] trainer = _train_save_load(tmpdir, train_config, loss, val_metric, model, weight_map, shape) assert trainer.num_iterations == max_num_iterations assert trainer.max_num_epochs == max_num_epochs assert trainer.log_after_iters == log_after_iters assert trainer.validate_after_iters == validate_after_iters assert trainer.max_num_iterations == max_num_iterations def _train_save_load(tmpdir, train_config, loss, val_metric, model, weight_map, shape): binary_loss = loss in ['BCEWithLogitsLoss', 'DiceLoss', 'BCEDiceLoss', 'GeneralizedDiceLoss'] device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu') train_config['model']['name'] = model train_config.update({ # get device to train on 'device': device, 'loss': {'name': loss, 'weight': np.random.rand(2).astype(np.float32), 'pos_weight': 3.}, 'eval_metric': {'name': val_metric} }) train_config['model']['final_sigmoid'] = binary_loss if weight_map: train_config['loaders']['weight_internal_path'] = 'weight_map' loss_criterion = get_loss_criterion(train_config) eval_criterion = get_evaluation_metric(train_config) model = get_model(train_config) model = model.to(device) if loss in ['BCEWithLogitsLoss']: label_dtype = 'float32' train_config['loaders']['train']['transformer']['label'][0]['dtype'] = label_dtype train_config['loaders']['val']['transformer']['label'][0]['dtype'] = label_dtype train = _create_random_dataset(shape, binary_loss) val = _create_random_dataset(shape, binary_loss) train_config['loaders']['train']['file_paths'] = [train] train_config['loaders']['val']['file_paths'] = [val] loaders = get_train_loaders(train_config) optimizer = _create_optimizer(train_config, model) lr_scheduler = _create_lr_scheduler(train_config, optimizer) formatter = DefaultTensorboardFormatter() trainer = UNet3DTrainer(model, optimizer, lr_scheduler, loss_criterion, eval_criterion, device, loaders, tmpdir, max_num_epochs=train_config['trainer']['epochs'], log_after_iters=train_config['trainer']['log_after_iters'], validate_after_iters=train_config['trainer']['log_after_iters'], max_num_iterations=train_config['trainer']['iters'], tensorboard_formatter=formatter) trainer.fit() # test loading the trainer from the checkpoint trainer = UNet3DTrainer.from_checkpoint(os.path.join(tmpdir, 'last_checkpoint.pytorch'), model, optimizer, lr_scheduler, loss_criterion, eval_criterion, loaders, tensorboard_formatter=formatter) return trainer def _create_random_dataset(shape, channel_per_class): tmp = NamedTemporaryFile(delete=False) with h5py.File(tmp.name, 'w') as f: l_shape = w_shape = shape # make sure that label and weight tensors are 3D if len(shape) == 4: l_shape = shape[1:] w_shape = shape[1:] if channel_per_class: l_shape = (2,) + l_shape f.create_dataset('raw', data=np.random.rand(*shape)) f.create_dataset('label', data=np.random.randint(0, 2, l_shape)) f.create_dataset('weight_map', data=np.random.rand(*w_shape)) return tmp.name
[ "torch.cuda.is_available" ]
3
flavell-lab/pytorch-3dunet
f6b6c13cb0bb6194e95976b0245b76aaa9e9a496
1.6
from torch.nn import functional as F from torch import nn import torch import numpy as np from utils import layer from radam import RAdam from vpn import MVProp import utils from torch_critic import Critic as ClassicCritic class CriticModel(nn.Module): def __init__(self, env, layer_number, FLAGS): super().__init__() self.q_limit = -FLAGS.time_scale # Set parameters to give critic optimistic initialization near q_init self.q_init = -0.067 self.q_offset = -np.log(self.q_limit/self.q_init - 1) self.no_target_net = FLAGS.no_target_net self.time_scale = FLAGS.time_scale self.no_attention = FLAGS.no_attention self.gaussian_attention = FLAGS.gaussian_attention self.covariance = FLAGS.covariance self.offset = FLAGS.window_offset # Dimensions of goal placeholder will differ depending on layer level if layer_number == FLAGS.layers - 1 or (layer_number == FLAGS.layers -2 and FLAGS.oracle): self.goal_dim = env.end_goal_dim else: self.goal_dim = env.subgoal_dim self.loss_val = 0 self.state_dim = env.state_dim # Dimensions of action placeholder will differ depending on layer level if layer_number == 0: action_dim = env.action_dim else: action_dim = env.subgoal_dim def forward(self, v_image, actor_pixel_selection): # v_image shape [batch_size, height, width] x_coords = actor_pixel_selection[:, 0] y_coords = actor_pixel_selection[:, 1] assert (x_coords >= 0).all() assert (x_coords < v_image.shape[-1]).all(), (torch.min(x_coords), torch.max(x_coords), v_image.shape) assert (y_coords >= 0).all() assert (y_coords < v_image.shape[-2]).all() x_slice = x_coords.long().unsqueeze(1).unsqueeze(2).expand(-1, v_image.shape[1], -1) value = v_image.gather(2, x_slice) y_slice = y_coords.long().unsqueeze(1).unsqueeze(2) values = value.gather(1, y_slice) return values * self.time_scale def actor(self, v_image, pos_coords, probs_grid, sigma=None): if self.gaussian_attention: assert sigma is not None if self.covariance: masked_v = utils.multivariate_gaussian_attention(v_image, pos_coords, cov=sigma)[0] else: masked_v = utils.gaussian_attention(v_image, pos_coords, sigma=sigma)[0] elif self.no_attention: masked_v = v_image else: # Crop V. masked_v, x_coords, y_coords = utils.attention(v_image, pos_coords, offset=self.offset) assert masked_v.shape == probs_grid.shape, (v_image.shape, masked_v.shape, probs_grid.shape) return (masked_v * probs_grid).sum(dim=[1,2]) * self.time_scale class Critic(): def __init__(self, device, env, layer_number, FLAGS, learning_rate=0.001, gamma=0.98, tau=0.05): self.device = device # Session in its TF equivalent self.critic_name = 'vpn_critic_' + str(layer_number) self.learning_rate = learning_rate self.q_limit = -FLAGS.time_scale self.gamma = gamma self.tau = tau self.sac = FLAGS.sac self.td3 = FLAGS.td3 self.vpn = MVProp(self.gamma, FLAGS, env).to(self.device) self.no_target_net = FLAGS.no_target_net # Create critic network graph self.infer_net = CriticModel(env, layer_number, FLAGS).to(device=self.device) self.no_weights = FLAGS.no_vpn_weights self.vpn_masking = FLAGS.vpn_masking self.classic_critic = None if FLAGS.boost_vpn: self.classic_critic = ClassicCritic(device, env, layer_number, FLAGS, learning_rate, gamma, tau) if not self.no_weights: opt_class = RAdam if FLAGS.radam else torch.optim.Adam self.optimizer = opt_class(self.vpn.parameters(), learning_rate) if FLAGS.no_target_net: self.target_net = self.infer_net self.vpn_target = self.vpn else: self.target_net = self.infer_net self.vpn_target = MVProp(self.gamma, FLAGS, env).to(self.device) self.vpn_target.load_state_dict(self.vpn.state_dict()) self.get_pos_image = lambda states, images: env.pos_image(states[..., :2], images[:, 0]) self.get_image_pos = lambda states, images: torch.stack(env.get_image_position(states[..., :2], images), dim=-1) def get_Q_value(self,state, goal, action, image): with torch.no_grad(): q = self.infer_net(self.vpn.critic(image), self.get_image_pos(action, image)) return q def get_target_Q_value(self,state, goal, action, image): assert not self.no_target_net with torch.no_grad(): q = self.infer_net(self.target_net.critic(image), self.get_image_pos(action, image)) return q def update_target_weights(self): for source, target in zip(self.vpn.parameters(), self.vpn_target.parameters()): target.data.copy_(self.tau * source + (1.0 - self.tau) * target) def _value(self, net, vpn_net, images, states, actions, get_extra_loss=False): pos_image = self.get_pos_image(states, images) action_image_position = self.get_image_pos(actions, images) agent_image_position = self.get_image_pos(states, images) vpn_values, vpn_probs = vpn_net.actor(images, pos_image) if self.vpn_masking: vpn_values, extra_loss = vpn_net.mask_image(vpn_values, vpn_probs, pos_image, agent_image_position) if get_extra_loss: return net(vpn_values, action_image_position).squeeze(), extra_loss return net(vpn_values, action_image_position).squeeze() def update(self, old_states, old_actions, rewards, new_states, old_goals, new_goals, new_actions, is_terminals, is_weights, next_entropy, images, metrics, total_steps_taken=None): if self.no_weights: return torch.ones_like(rewards) if self.classic_critic is not None: self.classic_critic.update(old_states, old_actions, rewards, new_states, old_goals, new_actions, is_terminals, is_weights, next_entropy, None, metrics) with torch.no_grad(): wanted_qs = self._value(self.target_net, self.vpn_target, images, new_states, new_actions) if self.classic_critic is not None: alpha = 1 - (min(total_steps_taken, 1e-6) / 1e-6) wanted_qs_classic = torch.stack([net(new_states, new_goals, new_actions) for net in self.classic_critic.target_nets], dim=0) wanted_qs_classic = torch.min(wanted_qs_classic, dim=0)[0].detach().squeeze() alpha*(wanted_qs_classic) + (1-alpha)*wanted_qs wanted_qs = rewards + (1 - is_terminals) * (self.gamma * wanted_qs) if next_entropy is not None: wanted_qs -= next_entropy wanted_qs = torch.clamp(wanted_qs, max=0, min=self.q_limit) infered_Qs, extra_loss = self._value(self.infer_net, self.vpn, images, old_states, old_actions, get_extra_loss=True) if is_weights is None: is_weights = torch.ones_like(wanted_qs) abs_errors = torch.abs(wanted_qs - infered_Qs).detach() self.optimizer.zero_grad() difference = (wanted_qs - infered_Qs) loss = torch.mean(is_weights * torch.mul(difference, difference), dim=0) + extra_loss loss.backward() self.optimizer.step() metrics[self.critic_name + '/Q_loss'] = loss.item() metrics[self.critic_name + '/Q_val'] = torch.mean(wanted_qs).item() return abs_errors def get_gradients_for_actions(self, state, goal, actor, images): action, image_location, vpn_values, sigma = actor._action_with_intermediate_results( actor.infer_net, state, images, pixel_probs=True) Q = self.infer_net.actor(vpn_values, image_location, action, sigma) return Q def state_dict(self): result = {} if self.no_weights: return result result['target_net'] = self.target_net.state_dict() result['infer_net'] = self.infer_net.state_dict() result['optimizer'] = self.optimizer.state_dict() result['vpn'] = self.vpn.state_dict() result['vpn_target'] = self.vpn_target.state_dict() return result def load_state_dict(self, state_dict): if self.no_weights: return self.target_net.load_state_dict(state_dict['target_net']) self.infer_net.load_state_dict(state_dict['infer_net']) self.optimizer.load_state_dict(state_dict['optimizer']) self.vpn.load_state_dict(state_dict['vpn']) self.vpn_target.load_state_dict(state_dict['vpn_target'])
[ "torch.mul", "torch.min", "torch.max", "torch.no_grad", "torch.clamp", "torch.abs", "torch.ones_like", "torch.mean" ]
1.6.0
christsa/hide-rl
47dc3dfd93b817831473c07137a6a6e7f2eda549
1.0
import unittest import torch import pyprob from pyprob import util from pyprob.nn import EmbeddingFeedForward, EmbeddingCNN2D5C, EmbeddingCNN3D5C class NNTestCase(unittest.TestCase): def test_nn_EmbeddingFeedForward(self): batch_size = 32 input_shape = [100, 100] output_shape = [128] input_batch_shape = [batch_size] + input_shape output_batch_shape_correct = [batch_size] + output_shape input_batch = torch.zeros(input_batch_shape) nn = EmbeddingFeedForward(input_shape=torch.Size(input_shape), output_shape=torch.Size(output_shape)) output_batch = nn(input_batch) output_batch_shape = list(output_batch.size()) util.eval_print('input_shape', 'output_shape', 'batch_size', 'input_batch_shape', 'output_batch_shape', 'output_batch_shape_correct') self.assertEqual(output_batch_shape, output_batch_shape_correct) def test_nn_EmbeddingCNN2D5C(self): batch_size = 32 input_shape = [3, 100, 100] output_shape = [128] input_batch_shape = [batch_size] + input_shape output_batch_shape_correct = [batch_size] + output_shape input_batch = torch.zeros(input_batch_shape) nn = EmbeddingCNN2D5C(input_shape=torch.Size(input_shape), output_shape=torch.Size(output_shape)) output_batch = nn(input_batch) output_batch_shape = list(output_batch.size()) util.eval_print('input_shape', 'output_shape', 'batch_size', 'input_batch_shape', 'output_batch_shape', 'output_batch_shape_correct') self.assertEqual(output_batch_shape, output_batch_shape_correct) def test_nn_EmbeddingCNN3D5C(self): batch_size = 32 input_shape = [2, 25, 25, 25] output_shape = [128] input_batch_shape = [batch_size] + input_shape output_batch_shape_correct = [batch_size] + output_shape input_batch = torch.zeros(input_batch_shape) nn = EmbeddingCNN3D5C(input_shape=torch.Size(input_shape), output_shape=torch.Size(output_shape)) output_batch = nn(input_batch) output_batch_shape = list(output_batch.size()) util.eval_print('input_shape', 'output_shape', 'batch_size', 'input_batch_shape', 'output_batch_shape', 'output_batch_shape_correct') self.assertEqual(output_batch_shape, output_batch_shape_correct) if __name__ == '__main__': pyprob.set_random_seed(123) pyprob.set_verbosity(1) unittest.main(verbosity=2)
[ "torch.zeros", "torch.Size" ]
1.0.0
probprog/pyprob
0713ff6d25e5db475a5b97d8d5e87bf70e977599
1.1
import torch import numpy as np def masked_mae_loss(y_pred, y_true): mask = (y_true != 0).float() mask /= mask.mean() loss = torch.abs(y_pred - y_true) loss = loss * mask # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3 loss[loss != loss] = 0 return loss.mean() def masked_mse_loss(y_pred, y_true): mask = (y_true != 0).float() mask /= mask.mean() loss = torch.abs(y_pred - y_true)**2 loss = loss * mask # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3 loss[loss != loss] = 0 return loss.mean() def masked_mape_loss(y_pred, y_true): mask = (y_true != 0).float() mask /= mask.mean() loss = torch.abs(y_pred - y_true)/y_true loss = loss * mask # print(mask) #全1 # print(mask.mean()) #tensor(1.) # print(mask.sum()) # print((y_true == 0).float().sum()) #tensor(0.) # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3 loss[loss != loss] = 0 return loss.mean() def masked_mse(preds, labels, null_val=np.nan): if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = (labels!=null_val) mask = mask.float() mask /= torch.mean((mask)) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = (preds-labels)**2 loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_rmse(preds, labels, null_val=np.nan): return torch.sqrt(masked_mse(preds=preds, labels=labels, null_val=null_val)) def masked_mae(preds, labels, null_val=np.nan): if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = (labels!=null_val) mask = mask.float() mask /= torch.mean((mask)) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = torch.abs(preds-labels) loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_mape(preds, labels, null_val=np.nan): if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = (labels!=null_val) mask = mask.float() mask /= torch.mean((mask)) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = torch.abs(preds-labels)/labels loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def metric(pred, real): mae = masked_mae(pred,real,0.0).item() mape = masked_mape(pred,real,0.0).item() # mape = masked_mape_loss(pred,real).item() rmse = masked_rmse(pred,real,0.0).item() return mae,mape,rmse def get_normalized_adj(A): """ Returns the degree normalized adjacency matrix. """ A = A + np.diag(np.ones(A.shape[0], dtype=np.float32)) D = np.array(np.sum(A, axis=1)).reshape((-1,)) D[D <= 10e-5] = 10e-5 # Prevent infs diag = np.reciprocal(np.sqrt(D)) A_wave = np.multiply(np.multiply(diag.reshape((-1, 1)), A), diag.reshape((1, -1))) return A_wave
[ "torch.isnan", "torch.abs", "torch.zeros_like", "torch.mean" ]
1.1
kevin-xuan/Traffic-Benchmark
b9f8e40b4df9b58f5ad88432dc070cbbbcdc0228
1.9
import torch from .utils import periodic_dis def compute_idx_of_sufficient_stat(L, J, dj, dl, dn): L2 = L * 2 idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2 = [], [], [], [], [], [], [] idx_lists = (idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2) # j1=j2, k1=0,1, k2=0 or 1 for j1 in range(J): add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 0, 1, 0, 0) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 1, 1, 0, 0) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 0, 0, 0, 0) if j1 == J - 1: max_dn = 0 elif j1 == J - 2: max_dn = min(1, dn) else: max_dn = dn for n in range(4*max_dn): add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 1, 1, 0, (n+1)) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 0, 0, 0, (n+1)) # k1 = 0,1 # k2 = 0,1 or 2**(j2-j1) # k2 > k1 # j1+1 <= j2 <= min(j1+dj,J-1) for j1 in range(J): for j2 in range(j1 + 1, min(j1 + dj + 1, J)): if j2 == J - 1: max_dn = 0 elif j2 == J - 2: max_dn = min(1, dn) else: max_dn = dn for n in range(4 * max_dn): add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j2, 1, 2 ** (j2 - j1), 0, (n+1)) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j2, 0, 1, 0, (n + 1)) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j2, 1, 2**(j2-j1), 0, 0) add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, dl, j1, j2, 0, 1, 0, 0) print("Total number of coefficient: " + str(len(idx_k2))) return get_idx_wph(idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2) def compute_idx_of_sufficient_stat_PS(L, J, dj, dl, dn): L2 = L * 2 idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2 = [], [], [], [], [], [], [] idx_lists = (idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2) # j1=j2, k1=1, k2=1 for j1 in range(J): add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 1, 1, 0, 0) if j1 == J - 1: max_dn = 0 elif j1 == J - 2: max_dn = min(1, dn) else: max_dn = dn for n in range(4*max_dn): add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, 0, j1, j1, 1, 1, 0, (n+1)) print("Total number of coefficient: " + str(len(idx_k2))) return get_idx_wph(idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2) def add_k_and_j_and_dn_for_all_ell_in_idx_list(idx_lists, L2, dl, j1, j2, k1, k2, dn1, dn2): idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2 = idx_lists for ell2 in range(L2): #for ell2 in range(0,L2,2): if periodic_dis(0, ell2, L2) <= dl: idx_j1.append(j1) idx_j2.append(j2) idx_k1.append(k1) idx_k2.append(k2) idx_ell2.append(ell2) idx_dn1.append(dn1) idx_dn2.append(dn2) def get_idx_wph(idx_j1, idx_j2, idx_k1, idx_k2, idx_ell2, idx_dn1, idx_dn2): idx_wph = dict() idx_wph['j1'] = torch.tensor(idx_j1).type(torch.long) idx_wph['k1'] = torch.tensor(idx_k1).type(torch.long) idx_wph['ell2'] = torch.tensor(idx_ell2).type(torch.long) idx_wph['j2'] = torch.tensor(idx_j2).type(torch.long) idx_wph['k2'] = torch.tensor(idx_k2).type(torch.long) idx_wph['dn1'] = torch.tensor(idx_dn1).type(torch.long) idx_wph['dn2'] = torch.tensor(idx_dn2).type(torch.long) return idx_wph
[ "torch.tensor" ]
1.9.0
Eralys/pywph_dev
bb864050c73b168c32a59f37ac0aca71ff159aed
1.6
import gc import os import pickle as pkl from captum import attr import numpy as np from captum.attr import IntegratedGradients from datasets import Dataset import torch import torch.nn.functional as F from tqdm.auto import tqdm import collections import numpy as np from transformers import Trainer import argparse from omegaconf import OmegaConf from src.datasets import * from src.models import * from src.utils.mapper import configmapper import pickle as pkl from IPython.core.display import HTML from src.utils.viz import format_word_importances, save_to_file from evaluation.fix_spans import _contiguous_ranges def postprocess_spans_with_index( features, examples, raw_predictions, tokenizer, n_best_size=20, max_answer_length=30, squad_v2=False, ): all_start_logits, all_end_logits = raw_predictions # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(list(examples["id"]))} features_per_example = collections.defaultdict(list) columns = ["input_ids", "attention_mask", "token_type_ids"] features.set_format(type="torch", columns=columns, output_all_columns=True) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. predictions = collections.OrderedDict() # Logging. print( f"Post-processing {len(examples)} example predictions split into {len(features)} features." ) # Let's loop over all the examples! for example_index in tqdm(range(len(examples))): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_score = None # Only used if squad_v2 is True. valid_answers = [] context = examples[example_index]["context"] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_logits = all_start_logits[feature_index] end_logits = all_end_logits[feature_index] # This is what will allow us to map some the positions # in our logits to span of texts in the original context. offset_mapping = features[feature_index]["offset_mapping"] # Update minimum null prediction. cls_index = list(features[feature_index]["input_ids"]).index( tokenizer.cls_token_id ) feature_null_score = start_logits[cls_index] + end_logits[cls_index] if min_null_score is None or min_null_score < feature_null_score: min_null_score = feature_null_score # Go through all possibilities for the `n_best_size` greater start and end logits. start_indexes = np.argsort(start_logits)[ -1 : -n_best_size - 1 : -1 ].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, # either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or offset_mapping[end_index] is None ): continue # Don't consider answers with a length that # is either < 0 or > max_answer_length. if ( end_index < start_index or end_index - start_index + 1 > max_answer_length ): continue start_char = offset_mapping[start_index][0] end_char = offset_mapping[end_index][1] valid_answers.append( { "score": start_logits[start_index] + end_logits[end_index], "text": context[start_char:end_char], "start": start_char, "end": end_char, "start_index": start_index, "end_index": end_index, } ) if len(valid_answers) > 0: sorted_answers = sorted( valid_answers, key=lambda x: x["score"], reverse=True ) else: # In the very rare edge case we have not a single non-null prediction, # we create a fake prediction to avoid failure. sorted_answers = [{"text": "", "score": 0.0, "start": None, "end": None}] # Let's pick our final answer: the best one or the null answer (only for squad_v2) if sorted_answers[0]["score"] <= min_null_score: sorted_answers = [ {"text": "", "score": min_null_score, "start": None, "end": None}, ] + sorted_answers predictions[examples[example_index]["id"]] = sorted_answers return predictions def get_spans_token_indices_above_threshold( model, feature, example, threshold, tokenizer ): # print(feature) trainer = Trainer( model, ) # print(feature) raw_predictions = trainer.predict(feature) feature.set_format( type=feature.format["type"], columns=list(feature.features.keys()) ) # print(feature) predictions = postprocess_spans_with_index( feature, example, raw_predictions.predictions, tokenizer ) start_end_indices = [] for span in list(predictions.values())[0]: ## Should Contain Only One Example if torch.sigmoid(torch.tensor(span["score"])) > threshold: start_end_indices.append((span["start_index"], span["end_index"])) return start_end_indices def get_token_token_indices(model, feature, tokenizer): trainer = Trainer(model) predictions = trainer.predict(feature) preds = predictions.predictions preds = np.argmax(preds, axis=2) token_indices = [] input_ids = feature["input_ids"][0] for j, pred in enumerate(preds[0]): ## Should Contain Only One Example if pred == 1 and input_ids[j] != tokenizer.pad_token_id: ## Toxic token_indices.append(j) return sorted(list(set(token_indices))) def get_token_model_output( embedding_outputs, model, attention_masks, name="bert", position=None ): if name == "bert": extended_attention_masks = model.bert.get_extended_attention_mask( attention_masks, embedding_outputs.shape, torch.device("cuda") ) # print(embedding_outputs,attention_masks,extended_attention_masks) out = model.bert.encoder( embedding_outputs, extended_attention_masks, return_dict=None )[0] else: extended_attention_masks = model.roberta.get_extended_attention_mask( attention_masks, embedding_outputs.shape, torch.device("cuda") ) out = model.roberta.encoder( embedding_outputs, extended_attention_masks, return_dict=None )[0] out = model.dropout(out) logits = model.classifier(out) return F.softmax(logits, dim=2)[:, :, 1] ## Select only Toxic Logits def get_spans_model_output( embedding_outputs, model, attention_masks, name="bert", position="start" ): if name == "bert": extended_attention_masks = model.bert.get_extended_attention_mask( attention_masks, embedding_outputs.shape, torch.device("cuda") ).cuda() out = model.bert.encoder( embedding_outputs, extended_attention_masks, return_dict=None )[0] else: extended_attention_masks = model.roberta.get_extended_attention_mask( attention_masks, embedding_outputs.shape, torch.device("cuda") ).cuda() out = model.roberta.encoder( embedding_outputs, extended_attention_masks, return_dict=None )[0] out = model.qa_outputs(out) start_logits, end_logits = out.split(1, dim=-1) pred = ( F.softmax(start_logits, dim=1) if position == "start" else F.softmax(end_logits, dim=1) ) return pred.reshape(-1, embedding_outputs.size(-2)) def get_embedding_outputs(model, input_ids, name="bert"): if name == "bert": return model.bert.embeddings(input_ids) else: return model.roberta.embeddings(input_ids) def get_token_wise_attributions( fn, model, embedding_outputs, attention_masks, name, position, token_index, n_steps, internal_batch_size=4, method="riemann_right", ): int_grad = IntegratedGradients( fn, multiply_by_inputs=True, ) attributions, approximation_error = int_grad.attribute( embedding_outputs, target=token_index, n_steps=n_steps, method=method, additional_forward_args=(model, attention_masks, name, position), internal_batch_size=internal_batch_size, return_convergence_delta=True, ) return { "attributions": attributions, "delta": approximation_error, } def get_token_wise_importances(input_ids, attributions, tokenizer): tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) token_wise_attributions = torch.linalg.norm(attributions, dim=1) token_wise_importances = token_wise_attributions / torch.sum( token_wise_attributions, dim=0 ).reshape( -1, 1 ) # Normalize by sum across seq_length return ( tokens, token_wise_importances.squeeze(0).detach().cpu().numpy(), ) def get_word_wise_importances_spans( input_ids, offset_mapping, importances, text, tokenizer, name="bert" ): question = text[0] context = text[1] tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) offset_mapping = offset_mapping[0] question_offsets = tokenizer( "offense", add_special_tokens=False, return_offsets_mapping=True )["offset_mapping"] i = 1 while i < len(offset_mapping) and tokens[i] != "[SEP]": offset_mapping[i] = question_offsets[i - 1] i += 1 word_wise_importances = [] word_wise_offsets = [] words = [] is_context = False if name == "bert": for i, token in enumerate(tokens): if token == "[SEP]": is_context = not is_context continue if token == "[CLS]": is_context = False continue if token == "[PAD]": continue if token.startswith("##"): if ( tokens[i - 1] == "[SEP]" ): # Tokens can be broked due to stride after the [SEP] word_wise_importances.append( importances[i] ) # We just make new entries for them word_wise_offsets.append(offset_mapping[i]) if is_context: words.append( context[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]] ) else: words.append( question[ word_wise_offsets[-1][0] : word_wise_offsets[-1][1] ] ) else: word_wise_importances[-1] += importances[i] word_wise_offsets[-1] = ( word_wise_offsets[-1][0], offset_mapping[i][1], ) ## Expand the offsets if is_context: words[-1] = context[ word_wise_offsets[-1][0] : word_wise_offsets[-1][1] ] else: words[-1] = question[ word_wise_offsets[-1][0] : word_wise_offsets[-1][1] ] else: word_wise_importances.append( importances[i] ) # We just make new entries for them word_wise_offsets.append(offset_mapping[i]) if is_context: words.append( context[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]] ) else: words.append( question[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]] ) else: raise NotImplementedError("Not defined for any other model name than 'bert'") return ( words, word_wise_importances / np.sum(word_wise_importances), word_wise_offsets, ) def get_word_wise_importances( input_ids, offset_mapping, importances, text, tokenizer, name="bert" ): tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) offset_mapping = offset_mapping[0] print(offset_mapping) word_wise_importances = [] word_wise_offsets = [] words = [] if name == "bert": for i, token in enumerate(tokens): if token in ["[SEP]", "[PAD]", "[CLS]"]: continue if token.startswith("##"): if ( tokens[i - 1] == "[SEP]" ): # Tokens can be broked due to stride after the [SEP] word_wise_importances.append( importances[i] ) # We just make new entries for them word_wise_offsets.append(offset_mapping[i]) words.append( text[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]] ) else: word_wise_importances[-1] += importances[i] word_wise_offsets[-1] = ( word_wise_offsets[-1][0], offset_mapping[i][1], ) words[-1] = text[ word_wise_offsets[-1][0] : word_wise_offsets[-1][1] ] else: word_wise_importances.append( importances[i] ) # We just make new entries for them word_wise_offsets.append(offset_mapping[i]) words.append(text[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]]) else: for i, token in enumerate(tokens): if token in ["<s>", "</s>", "<pad>"]: continue if ( tokens[i - 1] in ["<s>", "</s>"] and token[i] not in ["<s>", "</s>"] ) or token.startswith("Ġ"): word_wise_importances.append( importances[i] ) # We just make new entries for them word_wise_offsets.append(offset_mapping[i]) words.append(text[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]]) else: word_wise_importances[-1] += importances[i] word_wise_offsets[-1] = ( word_wise_offsets[-1][0], offset_mapping[i][1], ) words[-1] = text[word_wise_offsets[-1][0] : word_wise_offsets[-1][1]] return ( words, word_wise_importances / np.sum(word_wise_importances), word_wise_offsets, ) def get_importances( model, name, feature, example, fn, tokenizer, text, n_steps, typ="spans", threshold=None, ): columns = ["input_ids", "attention_mask", "token_type_ids"] feature.set_format( type="torch", columns=columns, device="cuda", output_all_columns=True ) embedding_outputs = get_embedding_outputs(model, feature["input_ids"], name) if typ == "spans": start_end_indices = get_spans_token_indices_above_threshold( model, feature, example, threshold, tokenizer ) print(start_end_indices) feature.set_format( type="torch", columns=columns, device="cuda", output_all_columns=True ) start_indices = list(set([temp[0] for temp in start_end_indices])) end_indices = list(set([temp[1] for temp in start_end_indices])) all_token_importances = np.array([]) start_attributions_maps = {} end_attributions_maps = {} for start_index in start_indices: start_attributions = get_token_wise_attributions( fn, model, embedding_outputs, feature["attention_mask"], name, "start", start_index, n_steps, ) start_attributions_maps[start_index] = start_attributions for end_index in end_indices: end_attributions = get_token_wise_attributions( fn, model, embedding_outputs, feature["attention_mask"], name, "end", end_index, n_steps, ) end_attributions_maps[end_index] = end_attributions for indices in start_end_indices: start_pos = indices[0] end_pos = indices[1] total_attributions = ( start_attributions_maps[start_pos]["attributions"][0] + end_attributions_maps[end_pos]["attributions"][0] ) tokens, total_importance_scores = get_token_wise_importances( feature["input_ids"], total_attributions, tokenizer ) all_token_importances = np.append( all_token_importances, total_importance_scores ) all_token_importances = all_token_importances.reshape( len(start_end_indices), -1 ) avg_token_importances = np.mean(all_token_importances, axis=0) word_importances = get_word_wise_importances_spans( feature["input_ids"], feature["offset_mapping"], avg_token_importances, text, tokenizer, name, ) else: token_indices = get_token_token_indices(model, feature, tokenizer) print(token_indices) feature.set_format( type="torch", columns=columns, device="cuda", output_all_columns=True ) all_token_importances = np.array([]) for index in token_indices: pos = [index] attributions = get_token_wise_attributions( fn, model, embedding_outputs, feature["attention_mask"], name, None, pos, n_steps, ) attributions = attributions["attributions"][0] tokens, importance_scores = get_token_wise_importances( feature["input_ids"], attributions, tokenizer ) all_token_importances = np.append(all_token_importances, importance_scores) all_token_importances = all_token_importances.reshape(len(token_indices), -1) avg_token_importances = np.mean(all_token_importances, axis=0) word_importances = get_word_wise_importances( feature["input_ids"], feature["offset_mapping"], avg_token_importances, text, tokenizer, name, ) return { "word_importances": word_importances, # batches, batch_size, len of examples "token_importances": (tokens, avg_token_importances), # batches,len of layers, batch_size, len of examples } if __name__ == "__main__": parser = argparse.ArgumentParser( prog="integrated_gradients.py", description="Script to run IG on a model and an example.", ) parser.add_argument( "--config", type=str, action="store", help="The configuration for IG", ) args = parser.parse_args() ig_config = OmegaConf.load(args.config) data_config = ig_config.data_config dataset = configmapper.get_object("datasets", data_config.name)(data_config) if ig_config.type == "spans": example_intermediate = dataset.intermediate_test_dataset["test"][ ig_config.sample_index ] for key in example_intermediate.keys(): example_intermediate[key] = [example_intermediate[key]] example = Dataset.from_dict(example_intermediate) # print(example) potential_feature_indices = [ i for i, feature in enumerate(dataset.test_tokenized_inputs["test"]) if feature["example_id"] == example[0]["id"] ] feature_intermediate = dataset.test_tokenized_inputs["test"][ potential_feature_indices[0] ] # Take First Feature for key in feature_intermediate.keys(): feature_intermediate[key] = [feature_intermediate[key]] feature = Dataset.from_dict(feature_intermediate) fn = get_spans_model_output with open(ig_config.thresh_file, "r") as f: thresh = float(f.read().split()[0]) text = (example["question"][0], example["context"][0]) ignore_first_word = True else: example_intermediate = dataset.test_dataset["test"][ig_config.sample_index] for key in example_intermediate.keys(): example_intermediate[key] = [example_intermediate[key]] example = Dataset.from_dict(example_intermediate) # print(example) feature_intermediate = dataset.test_tokenized_inputs["test"][ ig_config.sample_index ] for key in feature_intermediate.keys(): feature_intermediate[key] = [feature_intermediate[key]] feature = Dataset.from_dict(feature_intermediate) # print(feature) fn = get_token_model_output thresh = None text = example["text"][0] ignore_first_word = False if not os.path.exists(ig_config.word_out_file): model_class = configmapper.get_object("models", ig_config.model_name) model = model_class.from_pretrained(**ig_config.pretrained_args) model.cuda() model.eval() tokenizer = AutoTokenizer.from_pretrained(data_config.model_checkpoint_name) importances = get_importances( model, ig_config.name, # bert or roberta feature, example, fn, tokenizer, text, ig_config.n_steps, ig_config.type, # 'spans' or 'token' thresh, ) if not os.path.exists(ig_config.out_dir + "/" + str(ig_config.sample_index)): os.makedirs(ig_config.out_dir + "/" + str(ig_config.sample_index)) with open(ig_config.word_out_file, "wb") as f: pkl.dump(importances["word_importances"], f) with open(ig_config.token_out_file, "wb") as f: pkl.dump(importances["token_importances"], f) words, importances, word_wise_offsets = importances["word_importances"] else: with open(ig_config.word_out_file, "rb") as f: words, importances, word_wise_offsets = pkl.load(f) ground_spans = _contiguous_ranges( eval(pd.read_csv(ig_config.ground_truths_file)["spans"][ig_config.sample_index]) ) predicted_spans = _contiguous_ranges( eval( pd.read_csv(ig_config.predictions_file, header=None, sep="\t")[1][ ig_config.sample_index ] ) ) ground_text_spans = [] predicted_text_spans = [] if ignore_first_word: for span in ground_spans: ground_text_spans.append(text[1][span[0] : span[1] + 1]) for span in predicted_spans: predicted_text_spans.append(text[1][span[0] : span[1] + 1]) else: for span in ground_spans: ground_text_spans.append(text[span[0] : span[1] + 1]) for span in predicted_spans: predicted_text_spans.append(text[span[0] : span[1] + 1]) # print(words) # print(importances) # print(ground_text_spans) # print(predicted_text_spans) html = format_word_importances( words, importances, ground_text_spans, predicted_text_spans ) save_to_file(html, ig_config.viz_out_file)
[ "torch.device", "torch.tensor", "torch.nn.functional.softmax", "torch.linalg.norm", "torch.sum" ]
1.6.0
gchhablani/toxic-spans-detection
5eeba0c069bef8c707d9c5fef8c6048c98d89ba5
1.9
import argparse import torch import glob from pig.models import PeppaPig import pig.data import pytorch_lightning as pl import logging from torch.utils.data import DataLoader from dataclasses import dataclass import pandas as pd import numpy as np import torch import random import yaml from copy import deepcopy random.seed(666) torch.manual_seed(666) BATCH_SIZE=8 def data_statistics(): rows = [] for split in ['train', 'val', 'test']: for fragment_type in ['dialog', 'narration']: if pig.data.SPLIT_SPEC[fragment_type][split] is not None: ds = pig.data.PeppaPigIterableDataset( target_size=(180, 100), split=[split], fragment_type=fragment_type, duration=2.3) duration = np.array([clip.duration for clip in ds._raw_clips() ]) rows.append({'Split': split, 'Type': fragment_type, 'Size (h)': duration.sum() / 60 / 60, '# Clips': len(duration)}) data = pd.DataFrame.from_records(rows) data.to_csv("results/data_statistics.csv", index=False, header=True) data.to_latex("results/data_statistics.tex", index=False, header=True, float_format="%.2f") def load_best_model(dirname, higher_better=True): info = [] for path in glob.glob(f"{dirname}/checkpoints/*.ckpt"): cp = torch.load(path, map_location='cpu') item = cp['callbacks'][pl.callbacks.model_checkpoint.ModelCheckpoint] if item['best_model_score'] is not None: info.append(item) best = sorted(info, key=lambda x: x['best_model_score'], reverse=higher_better)[0] logging.info(f"Best {best['monitor']}: {best['best_model_score']} at {best['best_model_path']}") local_model_path = best['best_model_path'].split("/peppa/")[1] net = PeppaPig.load_from_checkpoint(local_model_path, hparams_file=f"{dirname}/hparams.yaml") return net, best['best_model_path'] def score_means(data): rows = [] for item in data: row = deepcopy(item) row['triplet_acc_std'] = row['triplet_acc'].std().item() row['triplet_acc'] = row['triplet_acc'].mean().item() row['recall_at_10_fixed_std'] = row['recall_at_10_fixed'].mean(dim=1).std().item() row['recall_at_10_fixed'] = row['recall_at_10_fixed'].mean(dim=1).mean().item() row['recall_at_10_jitter_std'] = row['recall_at_10_jitter'].mean(dim=1).std().item() row['recall_at_10_jitter'] = row['recall_at_10_jitter'].mean(dim=1).mean().item() rows.append(row) return pd.DataFrame.from_records(rows) def full_score(model, gpus, split=['val']): """Compute all standard scores for the given model. """ trainer = pl.Trainer(gpus=gpus, logger=False, precision=16) data = [] if split == ['test']: types = ['narration'] elif split ==['val']: types = ['dialog', 'narration'] else: raise NotImplementedError for fragment_type in types: for scrambled_video in [False, True]: logging.info(f"Evaluating: {fragment_type}, scramble={scrambled_video} triplet") acc = triplet_score(fragment_type, model, trainer, scrambled_video=scrambled_video, split=split) logging.info(f"Evaluating: {fragment_type}, scramble={scrambled_video} recall_fixed") rec_fixed = resampled_retrieval_score(fragment_type, model, trainer, duration=2.3, jitter=False, jitter_sd=None, scrambled_video=scrambled_video, split=split, one_to_n=True) logging.info(f"Evaluating: {fragment_type}, scramble={scrambled_video} recall_jitter") rec_jitter = resampled_retrieval_score(fragment_type, model, trainer, duration=2.3, jitter=True, jitter_sd=0.5, scrambled_video=scrambled_video, split=split, one_to_n=True) data.append(dict(fragment_type=fragment_type, scrambled_video=scrambled_video, triplet_acc=acc, recall_fixed=rec_fixed, recall_jitter=rec_jitter, recall_at_10_fixed=rec_fixed[:,10,:], recall_at_10_jitter=rec_jitter[:,10,:])) return data def retrieval_score(fragment_type, model, trainer, duration=2.3, jitter=False, jitter_sd=None, batch_size=BATCH_SIZE, split=['val']): base_ds = pig.data.PeppaPigDataset( target_size=model.config["data"]["target_size"], split=split, fragment_type=fragment_type, duration=duration, jitter=jitter, jitter_sd=jitter_sd ) key = lambda x: x.audio_duration loader = pig.data.grouped_loader(base_ds, key, pig.data.collate, batch_size=batch_size) V, A = zip(* [(batch.video, batch.audio) for batch in trainer.predict(model, loader) ]) V = torch.cat(V, dim=0) A = torch.cat(A, dim=0) correct = torch.eye(V.shape[0], device=A.device) rec10 = pig.metrics.recall_at_n(V, A, correct=correct, n=10).mean().item() return rec10 def resampled_retrieval_score(fragment_type, model, trainer, duration=2.3, jitter=False, jitter_sd=None, batch_size=BATCH_SIZE, scrambled_video=False, split=['val'], one_to_n=False ): base_ds = pig.data.PeppaPigDataset( target_size=model.config["data"]["target_size"], split=split, fragment_type=fragment_type, duration=duration, audio_sample_rate=model.config["data"].get('audio_sample_rate', pig.data.DEFAULT_SAMPLE_RATE), jitter=jitter, jitter_sd=jitter_sd, scrambled_video=scrambled_video, ) key = lambda x: x.audio_duration loader = pig.data.grouped_loader(base_ds, key, pig.data.collate, batch_size=batch_size) V, A = zip(* [(batch.video, batch.audio) for batch in trainer.predict(model, loader) ]) V = torch.cat(V, dim=0) A = torch.cat(A, dim=0) rec = pig.metrics.resampled_recall_at_1_to_n(V, A, size=100, n_samples=500, N=10) if one_to_n: return rec else: return rec[:,10,:] def triplet_score(fragment_type, model, trainer, batch_size=BATCH_SIZE, scrambled_video=False, split=['val']): from pig.triplet import TripletScorer scorer = TripletScorer(fragment_type=fragment_type, split=split, target_size=model.config["data"]["target_size"], audio_sample_rate=model.config["data"].get('audio_sample_rate', pig.data.DEFAULT_SAMPLE_RATE), scrambled_video=scrambled_video) acc = scorer.evaluate(model, trainer=trainer, n_samples=500, batch_size=batch_size) return acc def comparative_triplet_score(fragment_type, models, trainer, batch_size=BATCH_SIZE, scrambled_video=False, split=['val']): from pig.triplet import TripletScorer, comparative_score_triplets scorers = [ TripletScorer(fragment_type=fragment_type, split=split, target_size=model.config["data"]["target_size"], audio_sample_rate=model.config["data"].get('audio_sample_rate', pig.data.DEFAULT_SAMPLE_RATE), scrambled_video=scrambled_video) for model in models ] for i in range(len(models)): scorers[i]._encode(models[i], trainer, batch_size) result = comparative_score_triplets([ scorer._video for scorer in scorers], [ scorer._audio for scorer in scorers], scorers[0]._duration, n_samples=500) return result def pretraining(row): return { (True, True): "AV", (True, False): "A", (False, True): "V", (False, False): "None"}[row['audio_pretrained'], row['video_pretrained']] def format(): data = torch.load("results/full_scores.pt") data = add_condition(data) data = score_means(data) for fragment_type in ['dialog', 'narration']: table = data.query(f"fragment_type=='{fragment_type}'") table['pretraining'] = pd.Categorical(table.apply(pretraining, axis=1), categories=['AV', 'A', 'V', 'None']) table[['version', 'static', 'jitter', 'pretraining', 'resolution', 'recall_at_10_fixed', 'recall_at_10_jitter', 'triplet_acc']]\ .sort_values(by=['static', 'jitter', 'pretraining', 'resolution'])\ .replace(True, "Yes").replace(False, "")\ .rename(columns=dict(version='ID', static='Static', jitter='Jitter', pretraining='Pretraining', resolution='Resolution', recall_at_10_fixed='R@10 (fixed)', recall_at_10_jitter='R@10 (jitter)', triplet_acc='Triplet Acc'))\ .to_latex(buf=f"results/scores_{fragment_type}.tex", index=False, float_format="%.3f") def add_condition(data): rows = [] for row in data: record = {k:v for k,v in row.items()} config = yaml.safe_load(open(row['hparams_path'])) record['jitter'] = config['data']['train']['jitter'] record['static'] = config['video'].get('static', False) record['audio_pretrained'] = config['audio']['pretrained'] record['video_pretrained'] = config['video']['pretrained'] record['resolution'] = 'x'.join(map(str, config['data']['target_size'])) record['freeze_wav2vec'] = config['audio']['freeze_feature_extractor'] \ and config['audio']['freeze_encoder_layers'] == 12 record['sample_rate'] = str(config['data'].get('audio_sample_rate', pig.data.DEFAULT_SAMPLE_RATE)) rows.append(record) return rows def full_run(versions = None, gpus=1): if versions is None: conditions = yaml.safe_load(open("conditions.yaml")) versions = [ version for value in conditions.values() for version in value ] logging.getLogger().setLevel(logging.INFO) for version in versions: rows = [] logging.info(f"Evaluating version {version}") net, path = load_best_model(f"lightning_logs/version_{version}/") for row in full_score(net, gpus=gpus, split=['val']): row['version'] = version row['checkpoint_path'] = path row['hparams_path'] = f"lightning_logs/version_{version}/hparams.yaml" rows.append(row) torch.save(add_condition(rows), f"results/full_scores_v{version}.pt") def test_run(gpu=0): conditions = yaml.safe_load(open("conditions.yaml")) rows = [] for version in conditions['base']: logging.info(f"Evaluating version {version}") net, path = load_best_model(f"lightning_logs/version_{version}/") for row in full_score(net, gpus=[gpu], split=['test']): row['version'] = version row['checkpoint_path'] = path row['hparams_path'] = f"lightning_logs/version_{version}/hparams.yaml" rows.append(row) torch.save(add_condition(rows), f"results/full_test_scores.pt") def test_table(): data = torch.load(f"results/full_test_scores.pt") rows = [ datum for datum in data if not datum['scrambled_video'] ] recall_fixed = torch.cat([ row['recall_at_10_fixed'].mean(dim=1) for row in rows ]) recall_jitter = torch.cat([ row['recall_at_10_jitter'].mean(dim=1) for row in rows ]) triplet_acc = torch.cat([ row['triplet_acc'] for row in rows ]) table = pd.DataFrame.from_records( [{'R@10 (fixed)': f"{recall_fixed.mean().item():0.2f} ± {recall_fixed.std().item():0.2f}", 'R@10 (jitter)': f"{recall_jitter.mean().item():0.2f} ± {recall_jitter.std().item():0.2f}", 'Triplet Acc': f"{triplet_acc.mean().item():0.2f} ± {triplet_acc.std().item():0.2f}"}]).\ to_latex(buf=f"results/scores_test.tex", index=False) def duration_effect(gpu=0): conditions = yaml.safe_load(open("conditions.yaml")) model_id1 = conditions['pretraining_a'] model_id2 = conditions['static'] out = [] models = [] for model_id in model_id1 + model_id2: logging.info(f"Loading version {model_id}") model, _ = load_best_model(f"lightning_logs/version_{model_id}/") models.append(model) trainer = pl.Trainer(gpus=[gpu], logger=False, precision=16) for fragment_type in ['dialog', 'narration']: logging.info(f"Comparing for {fragment_type}") result = comparative_triplet_score(fragment_type, models, trainer=trainer, scrambled_video=False, split=['val']) result['fragment_type'] = fragment_type result['model_ids'] = model_id1 + model_id2 out.append(result) torch.save(out, "results/duration_effect.pt")
[ "torch.cat", "torch.save", "torch.manual_seed", "torch.eye", "torch.load" ]
1.9.1
mitjanikolaus/peppa
bacfaf3ef09f050dcb503bb4c67e01f8e7ab06f5
1.6
import glob import math import os import random import shutil import time from pathlib import Path from threading import Thread from PIL import Image, ExifTags import cv2 import numpy as np import torch from PIL import Image, ExifTags from torch.utils.data import Dataset from tqdm import tqdm from .utils import xyxy2xywh, xywh2xyxy img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng'] # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == 'Orientation': break def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) try: rotation = dict(img._getexif().items())[orientation] if rotation == 6: # rotation 270 s = (s[1], s[0]) elif rotation == 8: # rotation 90 s = (s[1], s[0]) except: pass return s class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, point_number = 5 ,flip_idx_pair = [[0,1],[3,4]]): try: path = str(Path(path)) # os-agnostic if os.path.isfile(path): # file with open(path, 'r') as f: f = f.read().splitlines() elif os.path.isdir(path): # folder f = glob.iglob(path + os.sep + '*.*') self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats] except: raise Exception('Error loading data from %s' % (path)) n = len(self.img_files) bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches self.n = n self.batch = bi # batch index of image self.img_size = img_size self.augment = augment self.hyp = hyp self.image_weights = image_weights self.rect = False if image_weights else rect # self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) self.mosaic = 0 # load 4 images at a time into a mosaic (only during training) self.point_number = point_number self.flip_idx_pair = flip_idx_pair # Define labels self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in self.img_files] # Rectangular Training https://github.com/ultralytics/yolov3/issues/232 if self.rect: # Read image shapes (wh) sp = path.replace('.txt', '.shapes') # shapefile path try: with open(sp, 'r') as f: # read existing shapefile s = [x.split() for x in f.read().splitlines()] assert len(s) == n, 'Shapefile out of sync' except: s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')] np.savetxt(sp, s, fmt='%g') # overwrites existing (if any) # Sort by aspect ratio s = np.array(s, dtype=np.float64) ar = s[:, 1] / s[:, 0] # aspect ratio i = ar.argsort() self.img_files = [self.img_files[i] for i in i] self.label_files = [self.label_files[i] for i in i] self.shapes = s[i] # wh ar = ar[i] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64 # Cache labels self.imgs = [None] * n self.labels = [np.zeros((0, 5 + 2 * point_number), dtype=np.float32)] * n create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file if os.path.isfile(np_labels_path): s = np_labels_path x = list(np.load(np_labels_path, allow_pickle=True)) if len(x) == n: self.labels = x labels_loaded = True else: s = path.replace('images', 'labels') pbar = tqdm(self.label_files) for i, file in enumerate(pbar): if labels_loaded: l = self.labels[i] else: try: with open(file, 'r') as f: l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) except: nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing continue if l.shape[0]: # print(l.shape) assert l.shape[1] == 5 + 2 * point_number, '> 5 label columns: %s' % file l[:,1:5][l[:,1:5]<0] =0 l[:,1:5][l[:,1:5]>1] =1 # assert (l[:5] >= 0).all(), 'negative labels: %s' % file assert (l[:, 1:5] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows if single_cls: l[:, 0] = 0 # force dataset into single-class mode self.labels[i] = l nf += 1 # file found # Create subdataset (a smaller dataset) if create_datasubset and ns < 1E4: if ns == 0: create_folder(path='./datasubset') os.makedirs('./datasubset/images') exclude_classes = 43 if exclude_classes not in l[:, 0]: ns += 1 # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image with open('./datasubset/images.txt', 'a') as f: f.write(self.img_files[i] + '\n') # Extract object detection boxes for a second stage classifier if extract_bounding_boxes: p = Path(self.img_files[i]) img = cv2.imread(str(p)) h, w = img.shape[:2] for j, x in enumerate(l): f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name) if not os.path.exists(Path(f).parent): os.makedirs(Path(f).parent) # make new output folder b = x[1:] * [w, h, w, h] # box b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.3 + 30 # pad b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h) assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes' else: ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % ( s, nf, nm, ne, nd, n) assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url) if not labels_loaded: print('Saving labels to %s for faster future loading' % np_labels_path) np.save(np_labels_path, self.labels) # save for next time # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) if cache_images: # if training gb = 0 # Gigabytes of cached images pbar = tqdm(range(len(self.img_files)), desc='Caching images') self.img_hw0, self.img_hw = [None] * n, [None] * n for i in pbar: # max 10k images self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized gb += self.imgs[i].nbytes pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9) # Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3 detect_corrupted_images = False if detect_corrupted_images: from skimage import io # conda install -c conda-forge scikit-image for file in tqdm(self.img_files, desc='Detecting corrupted images'): try: _ = io.imread(file) except: print('Corrupted image detected: %s' % file) def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): if self.image_weights: index = self.indices[index] hyp = self.hyp if self.mosaic: # Load mosaic img, labels = load_mosaic(self, index , self.point_number) shapes = None else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling # Load labels labels = [] x = self.labels[index] if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] if self.point_number > 0: point_label = labels[:, 5:5 + self.point_number * 2].reshape([-1, self.point_number, 2]) no_trans_index = np.where(point_label == -1) point_label = point_label * np.array([w, h]) + np.array([pad[0], pad[1]]) point_label[no_trans_index] = -1 labels[:, 5:5 + self.point_number * 2] = point_label.reshape([-1, self.point_number * 2]) if self.augment: # Augment imagespace if not self.mosaic: img, labels = random_affine(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], point_number=self.point_number) # Augment colorspace augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) nL = len(labels) # number of labels if nL: # convert xyxy to xywh labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) del_index = np.where(labels[:,3]<8 )[0].tolist() + np.where(labels[:,4]<8 )[0].tolist() #del smalle object del_index = list(set(del_index)) labels = np.delete(labels, del_index, axis=0) nL = len(labels) if nL: # Normalize coordinates 0 - 1 labels[:, [2, 4]] /= img.shape[0] # height labels[:, [1, 3]] /= img.shape[1] # width if self.point_number > 0: no_tran_index = np.where(labels == -1) labels[:,6::2] /= img.shape[0] # height labels[:,5::2] /= img.shape[1] # width labels[no_tran_index] = -1 if self.augment: # random left-right flip lr_flip = True if lr_flip and random.random() < 0.5: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] point_xy = labels[:, 5:5+self.point_number*2].copy() no_tran_index = np.where(point_xy == -1) point_xy = point_xy.reshape([-1, self.point_number, 2]) point_xy[:, :, 0] = 1 - point_xy[:, :, 0] for pair in self.flip_idx_pair: id1, id2 = pair tmp = point_xy[:, id2, :].copy() point_xy[:, id2, :] = point_xy[:, id1, :] point_xy[:, id1, :] = tmp point_xy = point_xy.reshape([-1, self.point_number * 2]) point_xy[no_tran_index] = -1 labels[:, 5:5 + self.point_number * 2] = point_xy # random up-down flip # ud_flip = False # if ud_flip and random.random() < 0.5: # img = np.flipud(img) # if nL: # labels[:, 2] = 1 - labels[:, 2] # img = np.ascontiguousarray(img) # img_h,img_w,_ = img.shape # for label in labels: # cx,cy,w,h = label[1:5] # x1,y1,x2,y2 = cx - w/2,cy-h/2,cx+w/2,cy+h/2 # box = [int(x1*img_w),int(y1*img_h),int(x2*img_w),int(y2*img_h)] # cv2.rectangle(img,(box[0],box[1]),(box[2],box[3]),(0,255,0)) # for i in range(self.point_number): # cv2.circle(img, (int(label[5+i*2]*img_w), int(label[5+i*2+1]*img_h)), 1, (0, 0, 255), 4) # # cv2.imwrite("debug_imgs/{}.jpg".format(index), img) # labels_out = torch.zeros((nL, 6 + self.point_number *2)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img[:, :, ::-1] # img = (img - hyp['mean'])/hyp['std'] img = img.transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return torch.from_numpy(img), labels_out, self.img_files[index], shapes @staticmethod def collate_fn(batch): img, label, path, shapes = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes def load_image(self, index): # loads 1 image from dataset, returns img, original hw, resized hw img = self.imgs[index] if img is None: # not cached path = self.img_files[index] img = cv2.imread(path) # BGR assert img is not None, 'Image Not Found ' + path h0, w0 = img.shape[:2] # orig hw r = self.img_size / max(h0, w0) # resize image to img_size if r < 1 or (self.augment and r != 1): # always resize down, only resize up if training with augmentation interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized else: return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=np.int16) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed # Histogram equalization # if random.random() < 0.2: # for i in range(3): # img[:, :, i] = cv2.equalizeHist(img[:, :, i]) def load_mosaic(self, index, point_number = 0 ): # loads images in a mosaic labels4 = [] s = self.img_size xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)] # mosaic center x, y indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels x = self.labels[index] labels = x.copy() if x.size > 0: # Normalized xywh to pixel xyxy format labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh if point_number > 0 : point_label = labels[:,5:5+point_number*2].reshape([-1, point_number, 2]) no_trans_index = np.where(point_label==-1) point_label = point_label * np.array([w,h]) + np.array([padw,padh]) point_label[no_trans_index] = -1 labels[:, 5:5 + point_number * 2] = point_label.reshape([-1,point_number * 2]) labels4.append(labels) # Concat/clip labels if len(labels4): labels4 = np.concatenate(labels4, 0) # np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_affine # Augment # img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning) img4, labels4 = random_affine(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], border=-s // 2, point_number = point_number) # border to remove return img4, labels4 def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = new_shape ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) def random_affine(img, targets=(), degrees=10, translate=.1, scale=(0.5,2.0), shear=10, border=0 , point_number = 0 ): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 # targets = [cls, xyxy] height = img.shape[0] + border * 2 width = img.shape[1] + border * 2 # Rotation and Scale R = np.eye(3) a = 0 if random.uniform(0, 1) > 0.5: a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations # s = random.uniform(1 - scale, 1 + scale) s = 1.0 if random.uniform(0,1) > 0.2 : s = random.uniform(scale[0],scale[1]) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) tran = 0 if random.uniform(0, 1) > 0.5: tran = translate T[0, 2] = random.uniform(-tran, tran) * img.shape[0] + border # x translation (pixels) T[1, 2] = random.uniform(-tran, tran) * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) sh = 0 if random.uniform(0, 1) > 0.5: sh = shear S[0, 1] = math.tan(random.uniform(-sh, sh) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-sh, sh) * math.pi / 180) # y shear (deg) # Combined rotation matrix M = S @ T @ R # ORDER IS IMPORTANT HERE!! if (border != 0) or (M != np.eye(3)).any(): # image changed img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114)) # Transform label coordinates n = len(targets) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @ M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # # apply angle-based reduction of bounding boxes # radians = a * math.pi / 180 # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 # x = (xy[:, 2] + xy[:, 0]) / 2 # y = (xy[:, 3] + xy[:, 1]) / 2 # w = (xy[:, 2] - xy[:, 0]) * reduction # h = (xy[:, 3] - xy[:, 1]) * reduction # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2]) ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio i = (w > 4) & (h > 4) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 10) #point if point_number > 0 : point_xy = np.ones((n * point_number ,3)) point_xy[:,:2] = targets[:,5:5+point_number*2].reshape(n * point_number , 2) no_tran_index = np.where(point_xy==-1) point_xy = (point_xy @ M.T) point_xy[no_tran_index] = -1 point_xy = point_xy[:, :2] point_xy = point_xy.reshape(n, point_number * 2) targets = targets[i] targets[:, 1:5] = xy[i] if point_number > 0: targets[:, 5:5 + point_number * 2 ] = point_xy[i] return img, targets
[ "torch.cat", "torch.stack", "torch.zeros", "torch.from_numpy" ]
1.6.0
jinglingzhua/blinkblink
1975be380ef08f895af4c1c07992efaed7af49e9
1.6
import argparse import torch from cail.env import make_env from cail.algo.algo import EXP_ALGOS from cail.utils import evaluation def run(args): env = make_env(args.env_id) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") algo = EXP_ALGOS[args.algo]( state_shape=env.observation_space.shape, action_shape=env.action_space.shape, device=device, path=args.weight ) mean_return = evaluation( env=env, algo=algo, episodes=args.episodes, render=args.render, seed=args.seed, delay=args.delay ) if __name__ == '__main__': p = argparse.ArgumentParser() # required p.add_argument('--weight', type=str, required=True, help='path to the well-trained weights of the agent') p.add_argument('--env-id', type=str, required=True, help='name of the environment') p.add_argument('--algo', type=str, required=True, help='name of the well-trained agent') # custom p.add_argument('--render', action='store_true', default=False, help='render the environment or not') # default p.add_argument('--episodes', type=int, default=10, help='number of episodes used in evaluation') p.add_argument('--seed', type=int, default=0, help='random seed') p.add_argument('--delay', type=float, default=0, help='number of seconds to delay while rendering, in case the agent moves too fast') args = p.parse_args() run(args)
[ "torch.cuda.is_available" ]
1.6.0
Stanford-ILIAD/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
1.2
import pytest import torch.cuda from torch import nn from torch.optim import SGD from yann.callbacks import ( History, HistoryPlotter, HistoryWriter, Logger, Checkpoint ) from yann.datasets import TinyDigits from yann.datasets.wrappers import Slice from yann.modules import Flatten from yann.train import Trainer devices = ['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu'] @pytest.mark.slow @pytest.mark.parametrize('device', devices) def test_train(tmpdir, device): """Sanity check train run""" model = nn.Sequential( nn.Conv2d(1, 20, 3), nn.ReLU(inplace=True), nn.Conv2d(20, 20, 3), nn.ReLU(inplace=True), Flatten(), nn.Linear(320, 10) ) train = Trainer( root=tmpdir, model=model, dataset=Slice(TinyDigits(), 0, 256), device=device, optimizer=SGD(model.parameters(), lr=.01, momentum=0.9, weight_decay=.001), loss=nn.CrossEntropyLoss(), callbacks=[ History(), HistoryPlotter(save=True), HistoryWriter(), Logger(batch_freq=20), Checkpoint() ] ) train(2) assert train.paths.checkpoints.is_dir() assert train.history.metrics export_path = train.export() assert export_path assert export_path.is_dir() # @pytest.mark.slow # @pytest.mark.parametrize('device', devices) # def test_train_resolved(tmpdir, device): # from yann.data.transform import ImageTransformer # # train = Trainer( # root=tmpdir, # model='densenet121', # dataset='CIFAR10', # loss='CrossEntropy', # optimizer='SGD', # transform=ImageTransformer(resize=224) # ) # # # train(1) # def test_transforms(): # # t = Trainer( # transform={ # 'mask': 'foo', # 'label': 'foo' # } # )
[ "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.CrossEntropyLoss", "torch.nn.Linear" ]
1.2.0
michalwols/yann
b3c0f35ec7515ddaeb1f04d365af7b6d136f56cf
1.2
import base64 import os import io import numpy as np import pathlib import torch import random from PIL import Image from torchvision import transforms as tvt from torchvision.transforms.functional import to_pil_image from torchvision import transforms from ..utils import truthy class Transformer: def __init__(self, load=None, transform=None, to_tensor=None): self.load = load self.transform = transform self.to_tensor = to_tensor def __call__(self, x): x = self.load(x) x = self.transform(x) return self.to_tensor(x) def trace(self, x): loaded = self.load(x) yield loaded transformed = self.transform(loaded) yield transformed tensor = self.to_tensor(transformed) yield tensor def prep(self, x): return self.transform(self.load(x)) def __repr__(self): return ( f"{self.__class__.__name__}(\n" f" load={str(self.load)}\n" f" transform={str(self.transform)}\n" f" to_tensor={str(self.to_tensor)}\n" ")") class ImageTransformer(Transformer): def __init__( self, resize=None, rotate=None, crop=None, warp=None, mirror=None, mean=None, std=None, color_jitter=None, interpolation=None, color_space=None, load=None, transform=None, to_tensor=None ): interpolation = interpolation or Image.ANTIALIAS self.resize = resize and tvt.Resize(resize, interpolation=interpolation) self.rotate = rotate and tvt.RandomRotation(rotate) self.crop = crop and ( tvt.RandomResizedCrop(crop, interpolation=interpolation) if warp else tvt.CenterCrop(crop) ) self.mirror = mirror and tvt.RandomHorizontalFlip( .5 if mirror is True else mirror) if color_jitter is True: color_jitter = (.4, .2, .1, .05) self.color_jitter = color_jitter and tvt.ColorJitter(*color_jitter) self.normalize = (mean or std) and tvt.Normalize(mean=mean, std=std) super().__init__( load=load or GetImage(color_space), transform=tvt.Compose(truthy([ self.resize, transform, self.rotate, self.crop, self.mirror, self.color_jitter, ])), to_tensor=to_tensor or tvt.Compose(truthy([ tvt.ToTensor(), self.normalize ])) ) def state_dict(self): pass def load_state_dict(self): pass class DictTransformer: def __init__(self, **transforms): self.transforms = transforms def __call__(self, data: dict): return { k: (self.transforms[k](v) if k in self.transforms else v) for k, v in data.items() } class BatchTransformer: def __init__(self, transform): self.transform = transform def __call__(self, items): return [self.transform(x) for x in items] class GetImage: def __init__(self, space=None): self.color_space = space def __call__(self, x): return get_image(x, self.color_space) def get_image(x, space=None) -> Image.Image: if isinstance(x, Image.Image): return x.convert(space) if space else x if isinstance(x, np.ndarray): img = Image.fromarray(x) return img.convert(space) if space else img if isinstance(x, torch.Tensor): img = to_pil_image(x) return img.convert(space) if space else img if isinstance(x, (str, pathlib.Path)) and os.path.exists(x): img = Image.open(x) return img.convert(space) if space else img if isinstance(x, str): if x.startswith('http') or x.startswith('www.'): import requests x = requests.get(x).content elif x.startswith('data') and 'base64,' in x: # data header for base64 encoded x = x.split('base64,')[1] x = base64.b64decode(x) elif len(x) > 1024: # assume no header base 64 image try: x = base64.b64decode(x) except: pass if hasattr(x, 'read'): img = Image.open(io.BytesIO(x.read())) return img.convert(space) if space else img if isinstance(x, bytes): img = Image.open(io.BytesIO(x)) return img.convert(space) if space else img def mixup(inputs, targets, alpha=1): """ Args: inputs: batch of inputs targets: hot encoded targets Returns: mixed up (inputs, targets) """ shuffled_indices = torch.randperm(inputs.shape[0], device=inputs.device) fraction = np.random.beta(alpha, alpha) return ( fraction * inputs + (1 - fraction) * inputs[shuffled_indices], fraction * targets + (1 - fraction) * targets[shuffled_indices] ) def cutout(img, percent=.3, value=0): pil_img = False if isinstance(img, Image.Image): img = np.array(img) pil_img = True height, width = img.shape[:2] mask_height = round(height * percent) mask_width = round(width * percent) start_h = random.randint(0, (height - mask_height)) start_w = random.randint(0, (width - mask_width)) img[start_h:start_h + mask_height, start_w:start_w + mask_width] = value return Image.fromarray(img) if pil_img else img def cutmix(inputs, targets, beta): lam = np.random.beta(beta, beta) rand_index = torch.randperm(inputs.size()[0]).cuda() target_a = targets target_b = targets[rand_index] bbx1, bby1, bbx2, bby2 = rand_bbox(inputs.size(), lam) inputs[:, :, bbx1:bbx2, bby1:bby2] = inputs[rand_index, :, bbx1:bbx2, bby1:bby2] # adjust lambda to exactly match pixel ratio lam = 1 - ( (bbx2 - bbx1) * (bby2 - bby1) / (inputs.size()[-1] * inputs.size()[-2])) def get_imagenet_transformers(size=224, resize=256, fixres=False): train_transform = Transformer( load=GetImage('RGB'), transform=transforms.Compose([ # transforms.Resize(resize, interpolation=Image.ANTIALIAS), transforms.RandomResizedCrop( size, # scale=(.4, 1), # interpolation=Image.ANTIALIAS ), transforms.ColorJitter( .3, .3, .3 # brightness=.4, contrast=.2, saturation=.1, hue=.05 ), transforms.RandomHorizontalFlip(), ]), to_tensor=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ) test_transform = Transformer( load=train_transform.load, transform=transforms.Compose([ transforms.Resize(size, interpolation=Image.ANTIALIAS), transforms.CenterCrop(size) ]), to_tensor=train_transform.to_tensor ) return train_transform, test_transform
[ "torch.randperm" ]
1.2.0
michalwols/yann
b3c0f35ec7515ddaeb1f04d365af7b6d136f56cf
1.5
from torch.utils.tensorboard import SummaryWriter import torch class Logger(SummaryWriter): def __init__(self, log_iter, use_any_mask, use_thumbs, use_fmap, n_featuremaps, n_thumbs, img_mean, img_std, device, **kwargs): self.log_iter = log_iter self.n_featuremaps = n_featuremaps self.n_thumbs = n_thumbs self.use_fmap = use_fmap self.use_thumbs = use_thumbs self.use_any_mask = use_any_mask self.device = device self.img_mean = torch.tensor(img_mean).view(1, -1, 1, 1).to(device) self.img_std = torch.tensor(img_std).view(1, -1, 1, 1).to(device) super(Logger, self).__init__(**kwargs) self.lists = {} self.counts = {} def add_to_list(self, name: str, value): if name not in self.lists: self.lists[name] = torch.tensor(0.) self.counts[name] = 0. self.lists[name] += value self.counts[name] += 1 def send_lists(self, n_iter): for key in self.lists: self.add_scalar(key, self.lists[key].item() / self.counts[key], n_iter) self.lists[key] = torch.tensor(0.) self.counts[key] = 0. def log_images(self, train: bool, masks: list, n_iter: int): prefix = "train" if train else "eval" part_i = 0 if self.use_thumbs: size_mask = masks[part_i] for i in range(self.n_thumbs + 1): s_mask = size_mask[0, i] self.add_image(f"{prefix}_mask_size:{i}", s_mask, n_iter) part_i += 1 if self.use_fmap: for fmap_i in range(self.n_featuremaps): fm_mask = masks[part_i][0, fmap_i] self.add_image(f"{prefix}_fmap:{fmap_i}", fm_mask, n_iter) part_i += 1 if self.use_any_mask: use_mask = 1 - masks[part_i][0, 0] self.add_image(f"{prefix}_mask_any", use_mask, n_iter) def log_loss_tolist(self, loss, comb_loss, qloss, qloss_parts, n_iter): self.add_to_list("train loss", loss) self.add_to_list("train combined loss", comb_loss) qloss_part_i = 0 if self.use_thumbs: self.add_to_list("train size_loss", qloss_parts[qloss_part_i]) qloss_part_i += 1 if self.use_fmap: self.add_to_list("train fmap_loss", qloss_parts[qloss_part_i]) qloss_part_i += 1 if self.use_any_mask: self.add_to_list("train any_loss", qloss_parts[qloss_part_i]) if len(qloss_parts) > 0: self.add_to_list("train qloss", qloss) if n_iter % self.log_iter == 0: self.send_lists(n_iter) def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats='CHW'): if img_tensor.shape[0] > 3: img_tensor = img_tensor.permute(1, 0, 2).contiguous().view(1, img_tensor.size(1), img_tensor.size(2) * img_tensor.size(0)) super().add_image(tag, img_tensor, global_step, walltime, dataformats) def add_example_images(self, tag, img_tensor, global_step=None, walltime=None, num=3, normalize=True): if normalize: img_tensor *= self.img_std img_tensor += self.img_mean for i in range(num): self.add_image(f"{tag}_{i}", img_tensor[i], global_step, walltime)
[ "torch.tensor" ]
1.5
StefOe/selection-masks
e59487bffe3c30bdab7a6425bed01f6adeda4f67
1.6
from math import sqrt from itertools import product from collections import namedtuple import torch import torch.nn.functional as F from torch import nn, einsum from se3_transformer_pytorch.basis import get_basis from se3_transformer_pytorch.utils import exists, default, uniq, map_values, batched_index_select, masked_mean, to_order, fourier_encode_dist from se3_transformer_pytorch.reversible import ReversibleSequence, SequentialSequence from einops import rearrange, repeat # fiber helpers FiberEl = namedtuple('FiberEl', ['degrees', 'dim']) class Fiber(nn.Module): def __init__( self, structure ): super().__init__() if isinstance(structure, dict): structure = structure.items() self.structure = structure @property def dims(self): return uniq(map(lambda t: t[1], self.structure)) @property def degrees(self): return map(lambda t: t[0], self.structure) @staticmethod def create(num_degrees, dim): return Fiber([FiberEl(degree, dim) for degree in range(num_degrees)]) def __getitem__(self, degree): return dict(self.structure)[degree] def __iter__(self): return iter(self.structure) def __mul__(self, fiber): return product(self.structure, fiber.structure) def __and__(self, fiber): out = [] degrees_out = fiber.degrees for degree, dim in self: if degree in fiber.degrees: dim_out = fiber[degree] out.append((degree, dim, dim_out)) return out def get_tensor_device_and_dtype(features): first_tensor = next(iter(features.items()))[1] return first_tensor.device, first_tensor.dtype # classes class ResidualSE3(nn.Module): """ only support instance where both Fibers are identical """ def forward(self, x, res): out = {} for degree, tensor in x.items(): degree = str(degree) out[degree] = tensor if degree in res: out[degree] = out[degree] + res[degree] return out class LinearSE3(nn.Module): def __init__( self, fiber_in, fiber_out ): super().__init__() self.weights = nn.ParameterDict() for (degree, dim_in, dim_out) in (fiber_in & fiber_out): key = str(degree) self.weights[key] = nn.Parameter(torch.randn(dim_in, dim_out) / sqrt(dim_in)) def forward(self, x): out = {} for degree, weight in self.weights.items(): out[degree] = einsum('b n d m, d e -> b n e m', x[degree], weight) return out class NormSE3(nn.Module): """Norm-based SE(3)-equivariant nonlinearity. Nonlinearities are important in SE(3) equivariant GCNs. They are also quite expensive to compute, so it is convenient for them to share resources with other layers, such as normalization. The general workflow is as follows: > for feature type in features: > norm, phase <- feature > output = fnc(norm) * phase where fnc: {R+}^m -> R^m is a learnable map from m norms to m scalars. """ def __init__( self, fiber, nonlin = nn.GELU(), eps = 1e-12 ): super().__init__() self.fiber = fiber self.nonlin = nonlin self.eps = eps # Norm mappings: 1 per feature type self.transform = nn.ModuleDict() for degree, chan in fiber: self.transform[str(degree)] = nn.Sequential(nn.LayerNorm(chan), nonlin) def forward(self, features): output = {} for degree, t in features.items(): # Compute the norms and normalized features norm = t.norm(dim = -1, keepdim = True).clamp(min = self.eps) phase = t / norm # Transform on norms fn = self.transform[degree] transformed = fn(norm.squeeze(-1))[..., None] # Nonlinearity on norm output[degree] = (transformed * phase).view(*t.shape) return output class ConvSE3(nn.Module): """A tensor field network layer ConvSE3 stands for a Convolution SE(3)-equivariant layer. It is the equivalent of a linear layer in an MLP, a conv layer in a CNN, or a graph conv layer in a GCN. At each node, the activations are split into different "feature types", indexed by the SE(3) representation type: non-negative integers 0, 1, 2, .. """ def __init__( self, fiber_in, fiber_out, self_interaction = True, pool = True, edge_dim = 0, fourier_encode_dist = False ): super().__init__() self.fiber_in = fiber_in self.fiber_out = fiber_out self.edge_dim = edge_dim self.self_interaction = self_interaction # Neighbor -> center weights self.kernel_unary = nn.ModuleDict() for (di, mi), (do, mo) in (self.fiber_in * self.fiber_out): self.kernel_unary[f'({di},{do})'] = PairwiseConv(di, mi, do, mo, edge_dim = edge_dim, fourier_encode_dist = fourier_encode_dist) self.pool = pool # Center -> center weights if self_interaction: assert self.pool, 'must pool edges if followed with self interaction' self.self_interact = LinearSE3(fiber_in, fiber_out) self.self_interact_sum = ResidualSE3() def forward( self, inp, edge_info, rel_dist = None, basis = None ): neighbor_indices, neighbor_masks, edges = edge_info rel_dist = rearrange(rel_dist, 'b m n -> b m n ()') kernels = {} outputs = {} for (di, mi), (do, mo) in (self.fiber_in * self.fiber_out): etype = f'({di},{do})' kernel_fn = self.kernel_unary[etype] edge_features = torch.cat((rel_dist, edges), dim = -1) if exists(edges) else rel_dist kernels[etype] = kernel_fn(edge_features, basis = basis) for degree_out in self.fiber_out.degrees: output = 0 degree_out_key = str(degree_out) for degree_in, m_in in self.fiber_in: x = inp[str(degree_in)] x = batched_index_select(x, neighbor_indices, dim = 1) x = x.view(*x.shape[:3], to_order(degree_in) * m_in, 1) etype = f'({degree_in},{degree_out})' kernel = kernels[etype] output = output + einsum('... o i, ... i c -> ... o c', kernel, x) if self.pool: output = masked_mean(output, neighbor_masks, dim = 2) if exists(neighbor_masks) else output.mean(dim = 2) leading_shape = x.shape[:2] if self.pool else x.shape[:3] output = output.view(*leading_shape, -1, to_order(degree_out)) outputs[degree_out_key] = output if self.self_interaction: self_interact_out = self.self_interact(inp) outputs = self.self_interact_sum(outputs, self_interact_out) return outputs class RadialFunc(nn.Module): """NN parameterized radial profile function.""" def __init__( self, num_freq, in_dim, out_dim, edge_dim = None, fourier_encode_dist = False, num_fourier_features = 4, mid_dim = 128 ): super().__init__() self.num_freq = num_freq self.in_dim = in_dim self.mid_dim = mid_dim self.out_dim = out_dim self.edge_dim = default(edge_dim, 0) self.fourier_encode_dist = fourier_encode_dist self.num_fourier_features = num_fourier_features if fourier_encode_dist else 0 input_dim = self.edge_dim + 1 + (self.num_fourier_features * 2) self.net = nn.Sequential( nn.Linear(input_dim, mid_dim), nn.LayerNorm(mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.LayerNorm(mid_dim), nn.ReLU(), nn.Linear(mid_dim, num_freq * in_dim * out_dim) ) self.apply(self.init_) def init_(self, m): if m in {nn.Linear}: nn.init.kaiming_uniform_(m.weight) def forward(self, x): if self.fourier_encode_dist: x = fourier_encode_dist(x, num_encodings = self.num_fourier_features) x = rearrange(x, 'b n m () d -> b n m d') y = self.net(x) return rearrange(y, '... (o i f) -> ... o () i () f', i = self.in_dim, o = self.out_dim) class PairwiseConv(nn.Module): """SE(3)-equivariant convolution between two single-type features""" def __init__( self, degree_in, nc_in, degree_out, nc_out, edge_dim = 0, fourier_encode_dist = False ): super().__init__() self.degree_in = degree_in self.degree_out = degree_out self.nc_in = nc_in self.nc_out = nc_out self.num_freq = to_order(min(degree_in, degree_out)) self.d_out = to_order(degree_out) self.edge_dim = edge_dim self.rp = RadialFunc(self.num_freq, nc_in, nc_out, edge_dim, fourier_encode_dist) def forward(self, feat, basis): R = self.rp(feat) kernel = torch.sum(R * basis[f'{self.degree_in},{self.degree_out}'], dim = -1) out = kernel.view(*kernel.shape[:3], self.d_out * self.nc_out, -1) return out # feed forwards class FeedForwardSE3(nn.Module): def __init__( self, fiber, mult = 4 ): super().__init__() self.fiber = fiber fiber_hidden = Fiber(list(map(lambda t: (t[0], t[1] * mult), fiber))) self.project_in = LinearSE3(fiber, fiber_hidden) self.nonlin = NormSE3(fiber_hidden) self.project_out = LinearSE3(fiber_hidden, fiber) def forward(self, features): outputs = self.project_in(features) outputs = self.nonlin(outputs) outputs = self.project_out(outputs) return outputs class FeedForwardBlockSE3(nn.Module): def __init__( self, fiber, ): super().__init__() self.fiber = fiber self.prenorm = NormSE3(fiber) self.feedforward = FeedForwardSE3(fiber) self.residual = ResidualSE3() def forward(self, features): res = features out = self.prenorm(features) out = self.feedforward(out) return self.residual(out, res) # attention class AttentionSE3(nn.Module): def __init__( self, fiber, dim_head = 64, heads = 8, attend_self = False, edge_dim = None, fourier_encode_dist = False, use_null_kv = False ): super().__init__() hidden_dim = dim_head * heads hidden_fiber = Fiber(list(map(lambda t: (t[0], hidden_dim), fiber))) project_out = not (heads == 1 and len(fiber.dims) == 1 and dim_head == fiber.dims[0]) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = LinearSE3(fiber, hidden_fiber) self.to_k = ConvSE3(fiber, hidden_fiber, edge_dim = edge_dim, pool = False, self_interaction = False, fourier_encode_dist = fourier_encode_dist) self.to_v = ConvSE3(fiber, hidden_fiber, edge_dim = edge_dim, pool = False, self_interaction = False, fourier_encode_dist = fourier_encode_dist) self.to_out = LinearSE3(hidden_fiber, fiber) if project_out else nn.Identity() self.use_null_kv = use_null_kv if use_null_kv: self.null_keys = nn.ParameterDict() self.null_values = nn.ParameterDict() for degree in fiber.degrees: m = to_order(degree) degree_key = str(degree) self.null_keys[degree_key] = nn.Parameter(torch.zeros(heads, dim_head, m)) self.null_values[degree_key] = nn.Parameter(torch.zeros(heads, dim_head, m)) self.attend_self = attend_self if attend_self: self.to_self_k = LinearSE3(fiber, hidden_fiber) self.to_self_v = LinearSE3(fiber, hidden_fiber) def forward(self, features, edge_info, rel_dist, basis): h, attend_self = self.heads, self.attend_self device, dtype = get_tensor_device_and_dtype(features) neighbor_indices, neighbor_mask, edges = edge_info max_neg_value = -torch.finfo().max if exists(neighbor_mask): neighbor_mask = rearrange(neighbor_mask, 'b i j -> b () i j') neighbor_indices = rearrange(neighbor_indices, 'b i j -> b () i j') queries = self.to_q(features) keys, values = self.to_k(features, edge_info, rel_dist, basis), self.to_v(features, edge_info, rel_dist, basis) if attend_self: self_keys, self_values = self.to_self_k(features), self.to_self_v(features) outputs = {} for degree in features.keys(): q, k, v = map(lambda t: t[degree], (queries, keys, values)) q = rearrange(q, 'b i (h d) m -> b h i d m', h = h) k, v = map(lambda t: rearrange(t, 'b i j (h d) m -> b h i j d m', h = h), (k, v)) if self.use_null_kv: null_k, null_v = map(lambda t: t[degree], (self.null_keys, self.null_values)) null_k, null_v = map(lambda t: repeat(t, 'h d m -> b h i () d m', b = q.shape[0], i = q.shape[2]), (null_k, null_v)) k = torch.cat((null_k, k), dim = 3) v = torch.cat((null_v, v), dim = 3) if attend_self: self_k, self_v = map(lambda t: t[degree], (self_keys, self_values)) self_k, self_v = map(lambda t: rearrange(t, 'b n (h d) m -> b h n () d m', h = h), (self_k, self_v)) k = torch.cat((self_k, k), dim = 3) v = torch.cat((self_v, v), dim = 3) sim = einsum('b h i d m, b h i j d m -> b h i j', q, k) * self.scale if exists(neighbor_mask): num_left_pad = int(attend_self) + int(self.use_null_kv) mask = F.pad(neighbor_mask, (num_left_pad, 0), value = True) sim.masked_fill_(~mask, max_neg_value) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h i j d m -> b h i d m', attn, v) outputs[degree] = rearrange(out, 'b h n d m -> b n (h d) m') return self.to_out(outputs) class AttentionBlockSE3(nn.Module): def __init__( self, fiber, dim_head = 64, heads = 8, attend_self = False, edge_dim = None, use_null_kv = False, fourier_encode_dist = False ): super().__init__() self.attn = AttentionSE3(fiber, heads = heads, dim_head = dim_head, attend_self = attend_self, edge_dim = edge_dim, use_null_kv = use_null_kv) self.prenorm = NormSE3(fiber) self.residual = ResidualSE3() def forward(self, features, edge_info, rel_dist, basis): res = features outputs = self.prenorm(features) outputs = self.attn(outputs, edge_info, rel_dist, basis) return self.residual(outputs, res) # main class class SE3Transformer(nn.Module): def __init__( self, *, dim, num_neighbors = 12, heads = 8, dim_head = 64, depth = 2, input_degrees = 1, num_degrees = 2, output_degrees = 1, valid_radius = 1e5, reduce_dim_out = False, num_tokens = None, num_edge_tokens = None, edge_dim = None, reversible = False, attend_self = True, use_null_kv = False, differentiable_coors = False, fourier_encode_dist = False ): super().__init__() assert num_neighbors > 0, 'neighbors must be at least 1' self.dim = dim self.valid_radius = valid_radius self.token_emb = None self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None assert not (exists(num_edge_tokens) and not exists(edge_dim)), 'edge dimension (edge_dim) must be supplied if SE3 transformer is to have edge tokens' self.edge_emb = nn.Embedding(num_edge_tokens, edge_dim) if exists(num_edge_tokens) else None self.input_degrees = input_degrees self.num_degrees = num_degrees self.output_degrees = output_degrees self.num_neighbors = num_neighbors fiber_in = Fiber.create(input_degrees, dim) fiber_hidden = Fiber.create(num_degrees, dim) fiber_out = Fiber.create(output_degrees, dim) self.conv_in = ConvSE3(fiber_in, fiber_hidden, edge_dim = edge_dim, fourier_encode_dist = fourier_encode_dist) layers = nn.ModuleList([]) for _ in range(depth): layers.append(nn.ModuleList([ AttentionBlockSE3(fiber_hidden, heads = heads, dim_head = dim_head, attend_self = attend_self, edge_dim = edge_dim, fourier_encode_dist = fourier_encode_dist, use_null_kv = use_null_kv), FeedForwardBlockSE3(fiber_hidden) ])) execution_class = ReversibleSequence if reversible else SequentialSequence self.net = execution_class(layers) self.conv_out = ConvSE3(fiber_hidden, fiber_out, edge_dim = edge_dim, fourier_encode_dist = fourier_encode_dist) self.norm = NormSE3(fiber_out) self.linear_out = LinearSE3( fiber_out, Fiber.create(output_degrees, 1) ) if reduce_dim_out else None self.differentiable_coors = differentiable_coors def forward(self, feats, coors, mask = None, edges = None, return_type = None, return_pooled = False): _mask = mask if self.output_degrees == 1: return_type = 0 if exists(self.token_emb): feats = self.token_emb(feats) assert not (exists(edges) and not exists(self.edge_emb)), 'edge embedding (num_edge_tokens & edge_dim) must be supplied if one were to train on edge types' if exists(edges): edges = self.edge_emb(edges) if torch.is_tensor(feats): feats = {'0': feats[..., None]} b, n, d, *_, device = *feats['0'].shape, feats['0'].device assert d == self.dim, f'feature dimension {d} must be equal to dimension given at init {self.dim}' assert set(map(int, feats.keys())) == set(range(self.input_degrees)), f'input must have {self.input_degrees} degree' num_degrees, neighbors = self.num_degrees, self.num_neighbors neighbors = min(neighbors, n - 1) # exclude edge of token to itself exclude_self_mask = rearrange(~torch.eye(n, dtype = torch.bool, device = device), 'i j -> () i j') indices = repeat(torch.arange(n, device = device), 'i -> b i j', b = b, j = n) rel_pos = rearrange(coors, 'b n d -> b n () d') - rearrange(coors, 'b n d -> b () n d') indices = indices.masked_select(exclude_self_mask).reshape(b, n, n - 1) rel_pos = rel_pos.masked_select(exclude_self_mask[..., None]).reshape(b, n, n - 1, 3) if exists(mask): mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') mask = mask.masked_select(exclude_self_mask).reshape(b, n, n - 1) if exists(edges): edges = edges.masked_select(exclude_self_mask[..., None]).reshape(b, n, n - 1, -1) rel_dist = rel_pos.norm(dim = -1) # get neighbors and neighbor mask, excluding self neighbor_rel_dist, nearest_indices = rel_dist.topk(neighbors, dim = -1, largest = False) neighbor_rel_pos = batched_index_select(rel_pos, nearest_indices, dim = 2) neighbor_indices = batched_index_select(indices, nearest_indices, dim = 2) basis = get_basis(neighbor_rel_pos, num_degrees - 1, differentiable = self.differentiable_coors) neighbor_mask = neighbor_rel_dist <= self.valid_radius if exists(mask): neighbor_mask = neighbor_mask & batched_index_select(mask, nearest_indices, dim = 2) if exists(edges): edges = batched_index_select(edges, nearest_indices, dim = 2) # main logic edge_info = (neighbor_indices, neighbor_mask, edges) x = feats # project in x = self.conv_in(x, edge_info, rel_dist = neighbor_rel_dist, basis = basis) # transformer layers x = self.net(x, edge_info = edge_info, rel_dist = neighbor_rel_dist, basis = basis) # project out x = self.conv_out(x, edge_info, rel_dist = neighbor_rel_dist, basis = basis) # norm x = self.norm(x) # reduce dim if specified if exists(self.linear_out): x = self.linear_out(x) x = map_values(lambda t: t.squeeze(dim = 2), x) if return_pooled: mask_fn = (lambda t: masked_mean(t, _mask, dim = 1)) if exists(_mask) else (lambda t: t.mean(dim = 1)) x = map_values(mask_fn, x) if '0' in x: x['0'] = x['0'].squeeze(dim = -1) if exists(return_type): return x[str(return_type)] return x
[ "torch.nn.Linear", "torch.cat", "torch.nn.ModuleList", "torch.einsum", "torch.nn.ModuleDict", "torch.finfo", "torch.eye", "torch.nn.functional.pad", "torch.sum", "torch.nn.LayerNorm", "torch.is_tensor", "torch.nn.Embedding", "torch.nn.ParameterDict", "torch.zeros", "torch.nn.init.kaiming_uniform_", "torch.nn.Identity", "torch.nn.ReLU", "torch.nn.GELU", "torch.arange", "torch.randn" ]
1.6
SuperXiang/se3-transformer-pytorch
d0db110533c0cd29a243e05e27dbef083ff232f4
1.8
import json import numpy as np import os import random import time import torch from dataclasses import dataclass from typing import Any import jiant.utils.python.io as py_io import jiant.utils.zlog as zlog @dataclass class QuickInitContainer: device: Any n_gpu: int log_writer: Any def quick_init(args, verbose=True) -> QuickInitContainer: """Sets up logging, initializes device(s) and random seed, prepares output dir, and saves args." Args: args (RunConfiguration): configuration carrying command line args specifying run params. verbose (bool): whether to print the input run config and the run config as saved. Returns: QuickInitContainer specifying the run's device, GPU count, and logging configuration. """ if verbose: print_args(args) init_server_logging(server_ip=args.server_ip, server_port=args.server_port, verbose=verbose) device, n_gpu = init_cuda_from_args( no_cuda=args.no_cuda, local_rank=args.local_rank, fp16=args.fp16, verbose=verbose, ) args.seed = init_seed(given_seed=args.seed, n_gpu=n_gpu, verbose=verbose) init_output_dir(output_dir=args.output_dir, force_overwrite=args.force_overwrite) log_writer = init_log_writer(output_dir=args.output_dir) save_args(args=args, verbose=verbose) return QuickInitContainer(device=device, n_gpu=n_gpu, log_writer=log_writer) def init_server_logging(server_ip, server_port, verbose=True): """Sets ups Python Tools for Visual Studio debug (ptvsd) server. Adapted from Hugging Face template: https://github.com/huggingface/transformers/blob/ac99217 e92c43066af7ec96554054d75532565d7/templates/adding_a_new_example_script/run_xxx.py#L569-L576 """ if server_ip and server_port: # Distant debugging, see: # https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script # noinspection PyUnresolvedReferences,PyPackageRequirements import ptvsd if verbose: print("Waiting for debugger attach") ptvsd.enable_attach(address=(server_ip, server_port), redirect_output=True) ptvsd.wait_for_attach() def init_cuda_from_args(no_cuda, local_rank, fp16, verbose=True): """Perform initial CUDA setup for DistributedDataParallel, DataParallel or w/o CUDA configs. Adapted from Hugging Face template: https://github.com/huggingface/transformers/blob/ac99217e92 c43066af7ec96554054d75532565d7/templates/adding_a_new_example_script/run_xxx.py#L578-L586 Args: no_cuda (bool): True to ignore CUDA devices (i.e., use CPU instead). local_rank (int): Which GPU the script should use in DistributedDataParallel mode. fp16 (bool): True for half-precision mode. verbose: True to print device, device count, and whether training is distributed or FP16. Notes: local_rank == -1 is used to indicate that DistributedDataParallel should be disabled. n_gpu > 1 is used to indicate that DataParallel should be used. Currently, local_rank == -1 sets n_gpu = 1 even if torch.cuda.device_count() would show more than one GPU is available. Returns: (tuple): tuple containing: device (str): string handle for device. n_gpu (int): number of GPU devices. """ # TODO break local_rank == -1 and no_cuda into separate cases to make the logic easier to read. if local_rank == -1 or no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) n_gpu = 1 if verbose: print( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(local_rank != -1), fp16 ) ) return device, n_gpu def init_seed(given_seed, n_gpu, verbose=True): """Initializes random seeds for sources of randomness. If seed is -1, randomly select seed. Sets the random seed for sources of randomness (numpy, torch and python random). If seed is specified as -1, the seed will be randomly selected and used to initialize all random seeds. The value used to initialize the random seeds is returned. Args: given_seed (int): random seed. n_gpu (int): number of GPUs. verbose: whether to print random seed. Returns: int: value used to initialize random seeds. """ used_seed = get_seed(given_seed) random.seed(used_seed) np.random.seed(used_seed) torch.manual_seed(used_seed) if verbose: print("Using seed: {}".format(used_seed)) if n_gpu > 0: # noinspection PyUnresolvedReferences torch.cuda.manual_seed_all(used_seed) # MAKE SURE THIS IS SET return used_seed def init_output_dir(output_dir, force_overwrite): """Create output directory (and all intermediate dirs on the path) if it doesn't exist. Args: output_dir (str): output directory path. force_overwrite (bool): If False and output dir is complete, raise RuntimeError. Raises: RuntimeError if overwrite option is not enabled and output dir contains "DONE" signal file. """ if not force_overwrite and is_done(output_dir): raise RuntimeError(f"'{output_dir}' run is already done, and not forcing overwrite") os.makedirs(output_dir, exist_ok=True) def init_log_writer(output_dir): return zlog.ZLogger(os.path.join(output_dir, str(int(time.time()))), overwrite=True) def print_args(args): for k, v in vars(args).items(): print(" {}: {}".format(k, v)) def save_args(args, verbose=True): """Dumps RunConfiguration to a json file. Args: args (RunConfiguration): configuration carrying command line args specifying run params. verbose (bool): If True, print the arg object that was written to file. """ formatted_args = json.dumps(vars(args), indent=2) with open(os.path.join(args.output_dir, "args.json"), "w") as f: f.write(formatted_args) if verbose: print(formatted_args) def get_seed(seed): """Get random seed if seed is specified as -1, otherwise return seed. Args: seed (int): random seed. Returns: int: Random seed if seed is specified as -1, otherwise returns the provided input seed. """ if seed == -1: return int(np.random.randint(0, 2 ** 32 - 1)) else: return seed def write_done(output_dir): py_io.write_file("DONE", os.path.join(output_dir, "DONE")) def is_done(output_dir): return os.path.exists(os.path.join(output_dir, "DONE"))
[ "torch.device", "torch.cuda.manual_seed_all", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.set_device", "torch.cuda.is_available" ]
1.8.1
Inujal/jiant
095fd4ab7613fe270fd7b7c64b00a90b32b18b5b
1.7
""" To visualize the results, demo.py needs two arguments, --root (compulsary) - root directory of Cityscapes --model_path (compulsary) - path of the saved_model Press 'q' to quit the demo. Press any key to visualize the next image. """ import torch import numpy as np import cv2 import imutils from torch.utils.data import DataLoader from cityscapes import CityScapes from model import model from arg_parser import demo def main(args): scale = 1 cropsize = [int(2048 * scale), int(1024 * scale)] ds = CityScapes(args.cityscapes_path, cropsize=cropsize, mode='val', demo=True) n_classes = ds.n_classes dl = DataLoader(ds, batch_size=1, shuffle=False, num_workers=0, pin_memory=True, drop_last=True) net = model.get_network(n_classes) saved_path = args.saved_model loaded_model = torch.load(saved_path, map_location=torch.device('cuda') if torch.cuda.is_available() else 'cpu') state_dict = loaded_model['state_dict'] net.load_state_dict(state_dict, strict=False) if torch.cuda.is_available(): net.cuda() net.eval() for images, im, lb in dl: with torch.no_grad(): images = images.numpy() lb = lb.numpy() if torch.cuda.is_available(): im = im.cuda() preds = net(im).argmax(dim=1).cpu().numpy() for image, pred, label in zip(images, preds, lb): label = ds.vis_label(label) pred = ds.vis_label(pred) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imshow('im', imutils.resize(cv2.hconcat([image, label, pred]), width=1920)) if ord('q') == cv2.waitKey(0): exit() if __name__ == '__main__': args = demo() main(args)
[ "torch.device", "torch.no_grad", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.7.1
Chris10M/Vision-Project-Image-Segmentation
d32fe9302320c74f238bc125f1d62a4e2ddbca22
1.6
import torch.nn as nn from torch import optim from graphgallery.nn.models import TorchKeras from graphgallery.nn.layers.pytorch import APPNProp, PPNProp, activations from graphgallery.nn.metrics.pytorch import Accuracy class APPNP(TorchKeras): def __init__(self, in_features, out_features, *, alpha=0.1, K=10, ppr_dropout=0., hids=[64], acts=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, bias=True, approximated=True): super().__init__() lin = [] lin.append(nn.Dropout(dropout)) for hid, act in zip(hids, acts): lin.append(nn.Linear(in_features, hid, bias=bias)) lin.append(activations.get(act)) lin.append(nn.Dropout(dropout)) in_features = hid lin.append(nn.Linear(in_features, out_features, bias=bias)) lin = nn.Sequential(*lin) self.lin = lin if approximated: self.propagation = APPNProp(alpha=alpha, K=K, dropout=ppr_dropout) else: self.propagation = PPNProp(dropout=ppr_dropout) self.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam([dict(params=lin[1].parameters(), weight_decay=weight_decay), dict(params=lin[2:].parameters(), weight_decay=0.)], lr=lr), metrics=[Accuracy()]) self.act_fn = nn.ReLU() def forward(self, x, adj): x = self.lin(x) x = self.propagation(x, adj) return x
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.Sequential", "torch.nn.ReLU", "torch.nn.CrossEntropyLoss" ]
1.6.0
Jie-Re/GraphGallery
37a2e807bb21e5ed986ade935ac9619b62bfdd90
1.4
import torch from torch import nn import torch.nn.functional as F from tianshou.data import Batch from tianshou.policy import PGPolicy class A2CPolicy(PGPolicy): """docstring for A2CPolicy""" def __init__(self, actor, critic, optim, dist_fn=torch.distributions.Categorical, discount_factor=0.99, vf_coef=.5, ent_coef=.01, max_grad_norm=None): super().__init__(None, optim, dist_fn, discount_factor) self.actor = actor self.critic = critic self._w_vf = vf_coef self._w_ent = ent_coef self._grad_norm = max_grad_norm def __call__(self, batch, state=None): logits, h = self.actor(batch.obs, state=state, info=batch.info) dist = self.dist_fn(logits) act = dist.sample() return Batch(logits=logits, act=act, state=h, dist=dist) def learn(self, batch, batch_size=None, repeat=1): losses, actor_losses, vf_losses, ent_losses = [], [], [], [] for _ in range(repeat): for b in batch.split(batch_size): self.optim.zero_grad() result = self(b) dist = result.dist v = self.critic(b.obs) a = torch.tensor(b.act, device=dist.logits.device) r = torch.tensor(b.returns, device=dist.logits.device) a_loss = -(dist.log_prob(a) * (r - v).detach()).mean() vf_loss = F.mse_loss(r[:, None], v) ent_loss = dist.entropy().mean() loss = a_loss + self._w_vf * vf_loss - self._w_ent * ent_loss loss.backward() if self._grad_norm: nn.utils.clip_grad_norm_( self.model.parameters(), max_norm=self._grad_norm) self.optim.step() actor_losses.append(a_loss.detach().cpu().numpy()) vf_losses.append(vf_loss.detach().cpu().numpy()) ent_losses.append(ent_loss.detach().cpu().numpy()) losses.append(loss.detach().cpu().numpy()) return { 'loss': losses, 'loss/actor': actor_losses, 'loss/vf': vf_losses, 'loss/ent': ent_losses, }
[ "torch.nn.functional.mse_loss", "torch.tensor" ]
1.4.0
DZ9/tianshou
4f843d3f51789f488169131a5b5decba8bab2b31
1.6
import argparse import math import os import random import time import logging from pathlib import Path import numpy as np import torch.distributed as dist import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import test # import test.py to get mAP after each epoch from models.yolo import Model from utils.datasets import create_dataloader from utils.general import ( torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging) from utils.google_utils import attempt_download from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts logger = logging.getLogger(__name__) def train(hyp, opt, device, tb_writer=None): logger.info(f'Hyperparameters {hyp}') log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory wdir = str(log_dir / 'weights') + os.sep # weights directory os.makedirs(wdir, exist_ok=True) last = wdir + 'last.pt' best = wdir + 'best.pt' results_file = str(log_dir / 'results.txt') epochs, batch_size, total_batch_size, weights, rank = \ opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Save run settings with open(log_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(log_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create exclude = ['anchor'] if opt.cfg else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc).to(device) # create # Freeze freeze = ['', ] # parameter names to freeze (full or partial) if any(freeze): for k, v in model.named_parameters(): if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_parameters(): v.requires_grad = True if '.bias' in k: pg2.append(v) # biases elif '.weight' in k and '.bn' not in k: pg1.append(v) # apply weight decay else: pg0.append(v) # all else if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.8 + 0.2 # cosine scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # Results if ckpt.get('training_results') is not None: with open(results_file, 'w') as file: file.write(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = int(max(model.stride)) # grid size (max stride) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Exponential moving average ema = ModelEMA(model) if rank in [-1, 0] else None # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank)) # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) # Testloader if rank in [-1, 0]: ema.updates = start_epoch * nb // accumulate # set EMA updates testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # only runs on process 0 # Model parameters hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights model.names = names # Class frequency if rank in [-1, 0]: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # model._initialize_biases(cf.to(device)) plot_labels(labels, save_dir=log_dir) if tb_writer: # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384 tb_writer.add_histogram('classes', c, 0) # Check anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # Start training t0 = time.time() nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test)) logger.info('Using %g dataloader workers' % dataloader.num_workers) logger.info('Starting training for %g epochs...' % epochs) # torch.autograd.set_detect_anomaly(True) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if dataset.image_weights: # Generate indices if rank in [-1, 0]: w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w) dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = torch.zeros([dataset.n], dtype=torch.int) if rank == 0: indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int) dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Autocast with amp.autocast(enabled=cuda): # Forward pred = model(imgs) # Loss loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode # if not torch.isfinite(loss): # logger.info('WARNING: non-finite loss, ending training ', loss_items) # return results # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if ni < 3: f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename result = plot_images(images=imgs, targets=targets, paths=paths, fname=f) if tb_writer and result is not None: tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(model, imgs) # add model to tensorboard # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP if ema: ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP results, maps, times = test.test(opt.data, batch_size=total_batch_size, imgsz=imgsz_test, model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=log_dir) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Tensorboard if tb_writer: tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): tb_writer.add_scalar(tag, x, epoch) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1] if fi > best_fitness: best_fitness = fi # Save model save = (not opt.nosave) or (final_epoch and not opt.evolve) if save: with open(results_file, 'r') as f: # create checkpoint ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': f.read(), 'model': ema.ema.module if hasattr(ema, 'module') else ema.ema, 'optimizer': None if final_epoch else optimizer.state_dict()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Strip optimizers n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]): if os.path.exists(f1): os.rename(f1, f2) # rename ispt = f2.endswith('.pt') # is *.pt strip_optimizer(f2) if ispt else None # strip optimizer os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload # Finish if not opt.evolve: plot_results(save_dir=log_dir) # save as results.png logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) dist.destroy_process_group() if rank not in [-1, 0] else None torch.cuda.empty_cache() return results if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='', help='model.yaml path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--logdir', type=str, default='runs/', help='logging directory') parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') opt = parser.parse_args() # Set DDP variables opt.total_batch_size = opt.batch_size opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 set_logging(opt.global_rank) if opt.global_rank in [-1, 0]: check_git_status() # Resume if opt.resume: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True logger.info('Resuming training from %s' % ckpt) else: opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) device = select_device(opt.device, batch_size=opt.batch_size) # DDP mode if opt.local_rank != -1: assert torch.cuda.device_count() > opt.local_rank torch.cuda.set_device(opt.local_rank) device = torch.device('cuda', opt.local_rank) dist.init_process_group(backend='nccl', init_method='env://') # distributed backend assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' opt.batch_size = opt.total_batch_size // opt.world_size logger.info(opt) with open(opt.hyp) as f: hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps # Train if not opt.evolve: tb_writer = None if opt.global_rank in [-1, 0]: logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir) tb_writer = SummaryWriter(log_dir=increment_dir(Path(opt.logdir) / 'exp', opt.name)) # runs/exp train(hyp, opt, device, tb_writer) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'momentum': (0.1, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'giou': (1, 0.02, 0.2), # GIoU loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (1, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (0, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (1, 0.0, 1.0), # image flip left-right (probability) 'mixup': (1, 0.0, 1.0)} # image mixup (probability) assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(100): # generations to evolve if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.9, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these ' 'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
[ "torch.cuda.amp.autocast", "torch.distributed.destroy_process_group", "torch.distributed.init_process_group", "torch.nn.functional.interpolate", "torch.optim.SGD", "torch.optim.Adam", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.amp.GradScaler", "torch.optim.lr_scheduler.LambdaLR", "torch.distributed.broadcast" ]
1.6.0
1079931505/ME336-Yellow-Team-SUSTech
f4e5391d7be3f7983692457d30c2bdc697dcb76d
1.5
import logging import re import typing from abc import ABC, abstractmethod from collections import Counter, defaultdict from functools import lru_cache from operator import itemgetter from pathlib import Path from typing import Callable, Dict, List, Optional, Union, cast import torch from deprecated import deprecated from torch.utils.data import Dataset from torch.utils.data.dataset import ConcatDataset, Subset import flair from flair.file_utils import Tqdm log = logging.getLogger("flair") def _iter_dataset(dataset: Optional[Dataset]) -> typing.Iterable: if dataset is None: return [] from flair.datasets import DataLoader return map(lambda x: x[0], DataLoader(dataset, batch_size=1, num_workers=0)) def _len_dataset(dataset: Optional[Dataset]) -> int: if dataset is None: return 0 from flair.datasets import DataLoader loader = DataLoader(dataset, batch_size=1, num_workers=0) return len(loader) class Dictionary: """ This class holds a dictionary that maps strings to IDs, used to generate one-hot encodings of strings. """ def __init__(self, add_unk=True): # init dictionaries self.item2idx: Dict[bytes, int] = {} self.idx2item: List[bytes] = [] self.add_unk = add_unk self.multi_label = False self.span_labels = False # in order to deal with unknown tokens, add <unk> if add_unk: self.add_item("<unk>") def remove_item(self, item: str): bytes_item = item.encode("utf-8") if bytes_item in self.item2idx: self.idx2item.remove(bytes_item) del self.item2idx[bytes_item] def add_item(self, item: str) -> int: """ add string - if already in dictionary returns its ID. if not in dictionary, it will get a new ID. :param item: a string for which to assign an id. :return: ID of string """ bytes_item = item.encode("utf-8") if bytes_item not in self.item2idx: self.idx2item.append(bytes_item) self.item2idx[bytes_item] = len(self.idx2item) - 1 return self.item2idx[bytes_item] def get_idx_for_item(self, item: str) -> int: """ returns the ID of the string, otherwise 0 :param item: string for which ID is requested :return: ID of string, otherwise 0 """ item_encoded = item.encode("utf-8") if item_encoded in self.item2idx.keys(): return self.item2idx[item_encoded] elif self.add_unk: return 0 else: log.error(f"The string '{item}' is not in dictionary! Dictionary contains only: {self.get_items()}") log.error( "You can create a Dictionary that handles unknown items with an <unk>-key by setting add_unk = True in the construction." ) raise IndexError def get_idx_for_items(self, items: List[str]) -> List[int]: """ returns the IDs for each item of the list of string, otherwise 0 if not found :param items: List of string for which IDs are requested :return: List of ID of strings """ if not hasattr(self, "item2idx_not_encoded"): d = dict([(key.decode("UTF-8"), value) for key, value in self.item2idx.items()]) self.item2idx_not_encoded = defaultdict(int, d) if not items: return [] results = itemgetter(*items)(self.item2idx_not_encoded) if isinstance(results, int): return [results] return list(results) def get_items(self) -> List[str]: items = [] for item in self.idx2item: items.append(item.decode("UTF-8")) return items def __len__(self) -> int: return len(self.idx2item) def get_item_for_index(self, idx): return self.idx2item[idx].decode("UTF-8") def set_start_stop_tags(self): self.add_item("<START>") self.add_item("<STOP>") def start_stop_tags_are_set(self): if {"<START>".encode(), "<STOP>".encode()}.issubset(self.item2idx.keys()): return True else: return False def save(self, savefile): import pickle with open(savefile, "wb") as f: mappings = {"idx2item": self.idx2item, "item2idx": self.item2idx} pickle.dump(mappings, f) def __setstate__(self, d): self.__dict__ = d # set 'add_unk' if the dictionary was created with a version of Flair older than 0.9 if "add_unk" not in self.__dict__.keys(): self.__dict__["add_unk"] = True if b"<unk>" in self.__dict__["idx2item"] else False @classmethod def load_from_file(cls, filename: Union[str, Path]): import pickle f = open(filename, "rb") mappings = pickle.load(f, encoding="latin1") idx2item = mappings["idx2item"] item2idx = mappings["item2idx"] f.close() # set 'add_unk' depending on whether <unk> is a key add_unk = True if b"<unk>" in idx2item else False dictionary: Dictionary = Dictionary(add_unk=add_unk) dictionary.item2idx = item2idx dictionary.idx2item = idx2item return dictionary @classmethod def load(cls, name: str): from flair.file_utils import cached_path hu_path: str = "https://flair.informatik.hu-berlin.de/resources/characters" if name == "chars" or name == "common-chars": char_dict = cached_path(f"{hu_path}/common_characters", cache_dir="datasets") return Dictionary.load_from_file(char_dict) if name == "chars-large" or name == "common-chars-large": char_dict = cached_path(f"{hu_path}/common_characters_large", cache_dir="datasets") return Dictionary.load_from_file(char_dict) if name == "chars-xl" or name == "common-chars-xl": char_dict = cached_path(f"{hu_path}/common_characters_xl", cache_dir="datasets") return Dictionary.load_from_file(char_dict) if name == "chars-lemmatizer" or name == "common-chars-lemmatizer": char_dict = cached_path(f"{hu_path}/common_characters_lemmatizer", cache_dir="datasets") return Dictionary.load_from_file(char_dict) return Dictionary.load_from_file(name) def __eq__(self, o: object) -> bool: if not isinstance(o, Dictionary): return False return self.item2idx == o.item2idx and self.idx2item == o.idx2item and self.add_unk == o.add_unk def __str__(self): tags = ", ".join(self.get_item_for_index(i) for i in range(min(len(self), 50))) return f"Dictionary with {len(self)} tags: {tags}" class Label: """ This class represents a label. Each label has a value and optionally a confidence score. The score needs to be between 0.0 and 1.0. Default value for the score is 1.0. """ def __init__(self, value: Optional[str], score: float = 1.0): self._value = value self._score = score super().__init__() def set_value(self, value: str, score: float = 1.0): self.value = value self.score = score def spawn(self, value: str, score: float = 1.0): return Label(value, score) @property def value(self): return self._value @value.setter def value(self, value): if not value and value != "": raise ValueError("Incorrect label value provided. Label value needs to be set.") else: self._value = value @property def score(self): return self._score @score.setter def score(self, score): self._score = score def to_dict(self): return {"value": self.value, "confidence": self.score} def __str__(self): return f"{self._value} ({round(self._score, 4)})" def __repr__(self): return f"{self._value} ({round(self._score, 4)})" def __eq__(self, other): return self.value == other.value and self.score == other.score @property def identifier(self): return "" class SpanLabel(Label): def __init__(self, span, value: Optional[str], score: float = 1.0): super().__init__(value, score) self.span = span def spawn(self, value: str, score: float = 1.0): return SpanLabel(self.span, value, score) def to_dict(self): return {"span": self.span, "value": self.value, "confidence": self.score} def __str__(self): return f"{self._value} [{self.span.id_text}] ({round(self._score, 4)})" def __repr__(self): return f"{self._value} [{self.span.id_text}] ({round(self._score, 4)})" def __hash__(self): return hash(self.__repr__()) def __len__(self): return len(self.span) def __eq__(self, other): return self.value == other.value and self.score == other.score and self.span.id_text == other.span.id_text @property def identifier(self): return f"{self.span.id_text}" class RelationLabel(Label): def __init__(self, head, tail, value: Optional[str], score: float = 1.0): super().__init__(value, score) self.head = head self.tail = tail def spawn(self, value: str, score: float = 1.0): return RelationLabel(self.head, self.tail, value, score) def __str__(self): return f"{self._value} [{self.head.id_text} -> {self.tail.id_text}] ({round(self._score, 4)})" def __repr__(self): return f"{self._value} from {self.head.id_text} -> {self.tail.id_text} ({round(self._score, 4)})" def __len__(self): return len(self.head) + len(self.tail) def __eq__(self, other): return ( self.value == other.value and self.score == other.score and self.head.id_text == other.head.id_text and self.tail.id_text == other.tail.id_text ) @property def identifier(self): return f"{self.head.id_text} -> {self.tail.id_text}" class EntityLinkingLabel(Label): def __init__(self, span, cui, concept_name, ontology = None, score: float = 1): super().__init__(cui, score) self.span = span self.ontology = ontology self.concept_name = concept_name def spawn(self, value: str, score: float = 1): return EntityLinkingLabel(self.span, value, self.ontology, self.concept_name, score) def __str__(self): return f"{self._value} {self.concept_name} [{self.span}] ({round(self._score, 4)})" def __repr__(self): return f"{self._value} {self.concept_name} [{self.span}] ({round(self._score, 4)})" def __len__(self): return len(self.span) def __eq__(self, other): return ( self.value == other.value and self.span.id_text == other.span.id_text and self.concept_name == other.concept_name and self.ontology == other.ontology and self.score == other.score ) @property def identifier(self): return f"{self.cui}" class DataPoint: """ This is the parent class of all data points in Flair (including Token, Sentence, Image, etc.). Each DataPoint must be embeddable (hence the abstract property embedding() and methods to() and clear_embeddings()). Also, each DataPoint may have Labels in several layers of annotation (hence the functions add_label(), get_labels() and the property 'label') """ def __init__(self): self.annotation_layers = {} self._embeddings: Dict[str, torch.Tensor] = {} @property @abstractmethod def embedding(self): pass def set_embedding(self, name: str, vector: torch.Tensor): self._embeddings[name] = vector def get_embedding(self, names: Optional[List[str]] = None) -> torch.Tensor: embeddings = self.get_each_embedding(names) if embeddings: return torch.cat(embeddings, dim=0) return torch.tensor([], device=flair.device) def get_each_embedding(self, embedding_names: Optional[List[str]] = None) -> List[torch.Tensor]: embeddings = [] for embed_name in sorted(self._embeddings.keys()): if embedding_names and embed_name not in embedding_names: continue embed = self._embeddings[embed_name].to(flair.device) embeddings.append(embed) return embeddings def to(self, device: str, pin_memory: bool = False): for name, vector in self._embeddings.items(): if str(vector.device) != str(device): if pin_memory: self._embeddings[name] = vector.to(device, non_blocking=True).pin_memory() else: self._embeddings[name] = vector.to(device, non_blocking=True) def clear_embeddings(self, embedding_names: List[str] = None): if embedding_names is None: self._embeddings = {} else: for name in embedding_names: if name in self._embeddings.keys(): del self._embeddings[name] def add_label(self, typename: str, value: str, score: float = 1.0): if typename not in self.annotation_layers: self.annotation_layers[typename] = [Label(value, score)] else: self.annotation_layers[typename].append(Label(value, score)) return self def add_complex_label(self, typename: str, label: Label): if typename in self.annotation_layers and label in self.annotation_layers[typename]: return self if typename not in self.annotation_layers: self.annotation_layers[typename] = [label] else: self.annotation_layers[typename].append(label) return self def set_label(self, typename: str, value: str, score: float = 1.0): self.annotation_layers[typename] = [Label(value, score)] return self def remove_labels(self, typename: str): if typename in self.annotation_layers.keys(): del self.annotation_layers[typename] def get_labels(self, typename: str = None): if typename is None: return self.labels return self.annotation_layers[typename] if typename in self.annotation_layers else [] @property def labels(self) -> List[Label]: all_labels = [] for key in self.annotation_layers.keys(): all_labels.extend(self.annotation_layers[key]) return all_labels DT = typing.TypeVar("DT", bound=DataPoint) DT2 = typing.TypeVar("DT2", bound=DataPoint) class Token(DataPoint): """ This class represents one word in a tokenized sentence. Each token may have any number of tags. It may also point to its head in a dependency tree. """ def __init__( self, text: str, idx: int = None, head_id: int = None, whitespace_after: bool = True, start_position: int = None, ): super().__init__() self.text: str = text self.idx: Optional[int] = idx self.head_id: Optional[int] = head_id self.whitespace_after: bool = whitespace_after self.start_pos = start_position self.end_pos = start_position + len(text) if start_position is not None else None self.sentence: Optional[Sentence] = None self._embeddings: Dict = {} self.tags_proba_dist: Dict[str, List[Label]] = {} def add_tag_label(self, tag_type: str, tag: Label): self.set_label(tag_type, tag.value, tag.score) def add_tags_proba_dist(self, tag_type: str, tags: List[Label]): self.tags_proba_dist[tag_type] = tags def add_tag(self, tag_type: str, tag_value: str, confidence=1.0): self.set_label(tag_type, tag_value, confidence) def get_tag(self, label_type, zero_tag_value=""): if len(self.get_labels(label_type)) == 0: return Label(zero_tag_value) return self.get_labels(label_type)[0] def get_tags_proba_dist(self, tag_type: str) -> List[Label]: if tag_type in self.tags_proba_dist: return self.tags_proba_dist[tag_type] return [] def get_head(self): return self.sentence.get_token(self.head_id) @property def start_position(self) -> Optional[int]: return self.start_pos @property def end_position(self) -> Optional[int]: return self.end_pos @property def embedding(self): return self.get_embedding() def __str__(self) -> str: return "Token: {} {}".format(self.idx, self.text) if self.idx is not None else "Token: {}".format(self.text) def __repr__(self) -> str: return "Token: {} {}".format(self.idx, self.text) if self.idx is not None else "Token: {}".format(self.text) class Span(DataPoint): """ This class represents one textual span consisting of Tokens. """ def __init__(self, tokens: List[Token]): super().__init__() self.tokens = tokens @property def start_pos(self) -> int: assert self.tokens[0].start_position is not None return self.tokens[0].start_position @property def end_pos(self) -> int: assert self.tokens[-1].end_position is not None return self.tokens[-1].end_position @property def text(self) -> str: return " ".join([t.text for t in self.tokens]) def to_original_text(self) -> str: pos = self.tokens[0].start_pos if pos is None: return " ".join([t.text for t in self.tokens]) str = "" for t in self.tokens: if t.start_pos is None: return " ".join([t.text for t in self.tokens]) while t.start_pos > pos: str += " " pos += 1 str += t.text pos += len(t.text) return str def to_plain_string(self): plain = "" for token in self.tokens: plain += token.text if token.whitespace_after: plain += " " return plain.rstrip() def __str__(self) -> str: ids = ",".join([str(t.idx) for t in self.tokens]) label_string = " ".join([str(label) for label in self.labels]) labels = f" [− Labels: {label_string}]" if self.labels else "" return 'Span [{}]: "{}"{}'.format(ids, self.text, labels) @property def id_text(self) -> str: return f"{' '.join([t.text for t in self.tokens])} ({','.join([str(t.idx) for t in self.tokens])})" def __repr__(self) -> str: ids = ",".join([str(t.idx) for t in self.tokens]) return ( '<{}-span ({}): "{}">'.format(self.tag, ids, self.text) if len(self.labels) > 0 else '<span ({}): "{}">'.format(ids, self.text) ) def __getitem__(self, idx: int) -> Token: return self.tokens[idx] def __iter__(self): return iter(self.tokens) def __len__(self) -> int: return len(self.tokens) @property def tag(self): return self.labels[0].value @property def score(self): return self.labels[0].score @property def position_string(self): return "-".join([str(token.idx) for token in self]) @property def embedding(self): return torch.empty() def to(self, device: str, pin_memory: bool = False): pass def clear_embeddings(self, embedding_names: List[str] = None): pass def add_tag(self, tag_type: str, tag_value: str, confidence=1.0): assert self.tokens[0].sentence is not None self.tokens[0].sentence.add_complex_label(tag_type, SpanLabel(self, value=tag_value, score=confidence)) class Tokenizer(ABC): r"""An abstract class representing a :class:`Tokenizer`. Tokenizers are used to represent algorithms and models to split plain text into individual tokens / words. All subclasses should overwrite :meth:`tokenize`, which splits the given plain text into tokens. Moreover, subclasses may overwrite :meth:`name`, returning a unique identifier representing the tokenizer's configuration. """ @abstractmethod def tokenize(self, text: str) -> List[Token]: raise NotImplementedError() @property def name(self) -> str: return self.__class__.__name__ class Sentence(DataPoint): """ A Sentence is a list of tokens and is used to represent a sentence or text fragment. """ def __init__( self, text: Union[str, List[str]] = [], use_tokenizer: Union[bool, Tokenizer, Callable] = True, language_code: str = None, start_position: int = None, ): """ Class to hold all meta related to a text (tokens, predictions, language code, ...) :param text: original string (sentence), or a list of string tokens (words) :param use_tokenizer: a custom tokenizer (default is :class:`SpaceTokenizer`) more advanced options are :class:`SegTokTokenizer` to use segtok or :class:`SpacyTokenizer` to use Spacy library if available). Check the implementations of abstract class Tokenizer or implement your own subclass (if you need it). If instead of providing a Tokenizer, this parameter is just set to True (deprecated), :class:`SegtokTokenizer` will be used. :param language_code: Language of the sentence :param start_position: Start char offset of the sentence in the superordinate document """ super().__init__() self.tokens: List[Token] = [] self.language_code: Optional[str] = language_code self.start_pos = start_position self.end_pos = start_position + len(text) if start_position is not None else None # the tokenizer used for this sentence if isinstance(use_tokenizer, Tokenizer): tokenizer = use_tokenizer elif callable(use_tokenizer): from flair.tokenization import TokenizerWrapper tokenizer = TokenizerWrapper(use_tokenizer) elif type(use_tokenizer) == bool: from flair.tokenization import SegtokTokenizer, SpaceTokenizer tokenizer = SegtokTokenizer() if use_tokenizer else SpaceTokenizer() else: raise AssertionError( "Unexpected type of parameter 'use_tokenizer'. " + "Parameter should be bool, Callable[[str], List[Token]] (deprecated), Tokenizer" ) # if text is passed, instantiate sentence with tokens (words) if isinstance(text, (list, tuple)): [self.add_token(self._restore_windows_1252_characters(token)) for token in text] else: text = self._restore_windows_1252_characters(text) [self.add_token(token) for token in tokenizer.tokenize(text)] # log a warning if the dataset is empty if text == "": log.warning("Warning: An empty Sentence was created! Are there empty strings in your dataset?") self.tokenized: Optional[str] = None # some sentences represent a document boundary (but most do not) self.is_document_boundary: bool = False # internal variables to denote position inside dataset self._previous_sentence: Optional[Sentence] = None self._next_sentence: Optional[Sentence] = None self._position_in_dataset: Optional[typing.Tuple[Dataset, int]] = None def get_token(self, token_id: int) -> Optional[Token]: for token in self.tokens: if token.idx == token_id: return token return None def add_token(self, token: Union[Token, str]): if type(token) is str: token = Token(token) token = cast(Token, token) token.text = token.text.replace("\u200c", "") token.text = token.text.replace("\u200b", "") token.text = token.text.replace("\ufe0f", "") token.text = token.text.replace("\ufeff", "") # data with zero-width characters cannot be handled if token.text == "": return self.tokens.append(token) # set token idx if not set token.sentence = self if token.idx is None: token.idx = len(self.tokens) def get_label_names(self): label_names = [] for label in self.labels: label_names.append(label.value) return label_names def _convert_span_labels(self, label_type: str, min_score=-1): current_span: List[Token] = [] tags: Dict[str, float] = defaultdict(lambda: 0.0) previous_tag_value: str = "O" for token in self: tag: Label = token.get_tag(label_type) tag_value = tag.value # non-set tags are OUT tags if tag_value == "" or tag_value == "O" or tag_value == "_": tag_value = "O-" # anything that is not a BIOES tag is a SINGLE tag if tag_value[0:2] not in ["B-", "I-", "O-", "E-", "S-"]: tag_value = "S-" + tag_value # anything that is not OUT is IN in_span = False if tag_value[0:2] not in ["O-"]: in_span = True # single and begin tags start a new span starts_new_span = False if tag_value[0:2] in ["B-", "S-"]: starts_new_span = True if previous_tag_value[0:2] in ["S-"] and previous_tag_value[2:] != tag_value[2:] and in_span: starts_new_span = True if (starts_new_span or not in_span) and len(current_span) > 0: scores = [t.get_labels(label_type)[0].score for t in current_span] span_score = sum(scores) / len(scores) if span_score > min_score: span = Span(current_span) value = sorted(tags.items(), key=lambda k_v: k_v[1], reverse=True)[0][0] self.add_complex_label( typename=label_type, label=SpanLabel(span=span, value=value, score=span_score), ) current_span = [] tags = defaultdict(lambda: 0.0) if in_span: current_span.append(token) weight = 1.1 if starts_new_span else 1.0 tags[tag_value[2:]] += weight # remember previous tag previous_tag_value = tag_value if len(current_span) > 0: scores = [t.get_labels(label_type)[0].score for t in current_span] span_score = sum(scores) / len(scores) if span_score > min_score: span = Span(current_span) value = sorted(tags.items(), key=lambda k_v: k_v[1], reverse=True)[0][0] self.add_complex_label( typename=label_type, label=SpanLabel(span=span, value=value, score=span_score), ) @property def embedding(self): return self.get_embedding() def to(self, device: str, pin_memory: bool = False): # move sentence embeddings to device super().to(device=device, pin_memory=pin_memory) # also move token embeddings to device for token in self: token.to(device, pin_memory) def clear_embeddings(self, embedding_names: List[str] = None): super().clear_embeddings(embedding_names) # clear token embeddings for token in self: token.clear_embeddings(embedding_names) @lru_cache(maxsize=1) # cache last context, as training repeats calls def left_context(self, context_length: int, respect_document_boundaries: bool = True): sentence = self left_context: List[str] = [] while True: sentence = sentence.previous_sentence() if sentence is None: break if respect_document_boundaries and sentence.is_document_boundary: break left_context = [t.text for t in sentence.tokens] + left_context if len(left_context) > context_length: left_context = left_context[-context_length:] break return left_context @lru_cache(maxsize=1) # cache last context, as training repeats calls def right_context(self, context_length: int, respect_document_boundaries: bool = True): sentence = self right_context: List[str] = [] while True: sentence = sentence.next_sentence() if sentence is None: break if respect_document_boundaries and sentence.is_document_boundary: break right_context += [t.text for t in sentence.tokens] if len(right_context) > context_length: right_context = right_context[:context_length] break return right_context def to_tagged_string(self, main_tag=None) -> str: list = [] for token in self.tokens: list.append(token.text) tags: List[str] = [] for label_type in token.annotation_layers.keys(): if main_tag is not None and main_tag != label_type: continue if token.get_labels(label_type)[0].value == "O": continue if token.get_labels(label_type)[0].value == "_": continue tags.append(token.get_labels(label_type)[0].value) all_tags = "<" + "/".join(tags) + ">" if all_tags != "<>": list.append(all_tags) return " ".join(list) def to_tokenized_string(self) -> str: if self.tokenized is None: self.tokenized = " ".join([t.text for t in self.tokens]) return self.tokenized def to_plain_string(self): plain = "" for token in self.tokens: plain += token.text if token.whitespace_after: plain += " " return plain.rstrip() def infer_space_after(self): """ Heuristics in case you wish to infer whitespace_after values for tokenized text. This is useful for some old NLP tasks (such as CoNLL-03 and CoNLL-2000) that provide only tokenized data with no info of original whitespacing. :return: """ last_token = None quote_count: int = 0 # infer whitespace after field for token in self.tokens: if token.text == '"': quote_count += 1 if quote_count % 2 != 0: token.whitespace_after = False elif last_token is not None: last_token.whitespace_after = False if last_token is not None: if token.text in [".", ":", ",", ";", ")", "n't", "!", "?"]: last_token.whitespace_after = False if token.text.startswith("'"): last_token.whitespace_after = False if token.text in ["("]: token.whitespace_after = False last_token = token return self def to_original_text(self) -> str: str = "" pos = 0 for t in self.tokens: if t.start_pos is None: return self.to_tokenized_string() while t.start_pos > pos: str += " " pos += 1 str += t.text pos += len(t.text) return str def to_dict(self, tag_type: str = None): labels = [] if tag_type: labels = [label.to_dict() for label in self.get_labels(tag_type)] return {"text": self.to_original_text(), tag_type: labels} if self.labels: labels = [label.to_dict() for label in self.labels] return {"text": self.to_original_text(), "all labels": labels} @typing.overload def __getitem__(self, idx: int) -> Token: ... @typing.overload def __getitem__(self, s: slice) -> Span: ... def __getitem__(self, subscript): if isinstance(subscript, slice): return Span(self.tokens[subscript]) else: return self.tokens[subscript] def __iter__(self): return iter(self.tokens) def __len__(self) -> int: return len(self.tokens) def __repr__(self): tagged_string = self.to_tagged_string() tokenized_string = self.to_tokenized_string() # add Sentence labels to output if they exist sentence_labels = f" − Sentence-Labels: {self.annotation_layers}" if self.annotation_layers != {} else "" # add Token labels to output if they exist token_labels = f' − Token-Labels: "{tagged_string}"' if tokenized_string != tagged_string else "" return f'Sentence: "{tokenized_string}" [− Tokens: {len(self)}{token_labels}{sentence_labels}]' def __copy__(self): s = Sentence() for token in self.tokens: nt = Token(token.text) for tag_type in token.tags: nt.add_label( tag_type, token.get_tag(tag_type).value, token.get_tag(tag_type).score, ) s.add_token(nt) return s def __str__(self) -> str: tagged_string = self.to_tagged_string() tokenized_string = self.to_tokenized_string() # add Sentence labels to output if they exist sentence_labels = f" − Sentence-Labels: {self.annotation_layers}" if self.annotation_layers != {} else "" # add Token labels to output if they exist token_labels = f' − Token-Labels: "{tagged_string}"' if tokenized_string != tagged_string else "" return f'Sentence: "{tokenized_string}" [− Tokens: {len(self)}{token_labels}{sentence_labels}]' def get_language_code(self) -> str: if self.language_code is None: import langdetect try: self.language_code = langdetect.detect(self.to_plain_string()) except Exception: self.language_code = "en" return self.language_code @staticmethod def _restore_windows_1252_characters(text: str) -> str: def to_windows_1252(match): try: return bytes([ord(match.group(0))]).decode("windows-1252") except UnicodeDecodeError: # No character at the corresponding code point: remove it return "" return re.sub(r"[\u0080-\u0099]", to_windows_1252, text) def next_sentence(self): """ Get the next sentence in the document (works only if context is set through dataloader or elsewhere) :return: next Sentence in document if set, otherwise None """ if self._next_sentence is not None: return self._next_sentence if self._position_in_dataset is not None: dataset = self._position_in_dataset[0] index = self._position_in_dataset[1] + 1 if index < len(dataset): return dataset[index] return None def previous_sentence(self): """ Get the previous sentence in the document (works only if context is set through dataloader or elsewhere) :return: previous Sentence in document if set, otherwise None """ if self._previous_sentence is not None: return self._previous_sentence if self._position_in_dataset is not None: dataset = self._position_in_dataset[0] index = self._position_in_dataset[1] - 1 if index >= 0: return dataset[index] return None def is_context_set(self) -> bool: """ Return True or False depending on whether context is set (for instance in dataloader or elsewhere) :return: True if context is set, else False """ return self._previous_sentence is not None or self._position_in_dataset is not None def get_labels(self, label_type: str = None): # if no label if specified, return all labels if label_type is None: return self.labels # if the label type exists in the Sentence, return it if label_type in self.annotation_layers: return self.annotation_layers[label_type] # otherwise check if the label exists on the token-level # in this case, create span-labels and return those if label_type in set().union(*(token.annotation_layers.keys() for token in self)): return [ SpanLabel(Span([token]), token.get_tag(label_type).value, token.get_tag(label_type).score) for token in self if label_type in token.annotation_layers ] # return empty list if none of the above return [] class DataPair(DataPoint, typing.Generic[DT, DT2]): def __init__(self, first: DT, second: DT2): super().__init__() self.first = first self.second = second def to(self, device: str, pin_memory: bool = False): self.first.to(device, pin_memory) self.second.to(device, pin_memory) def clear_embeddings(self, embedding_names: List[str] = None): self.first.clear_embeddings(embedding_names) self.second.clear_embeddings(embedding_names) @property def embedding(self): return torch.cat([self.first.embedding, self.second.embedding]) def __str__(self): return f"DataPair:\n − First {self.first}\n − Second {self.second}\n − Labels: {self.labels}" def to_plain_string(self): return f"DataPair: First {self.first} || Second {self.second}" def to_original_text(self): return f"{self.first.to_original_text()} || {self.second.to_original_text()}" def __len__(self): return len(self.first) + len(self.second) TextPair = DataPair[Sentence, Sentence] class Image(DataPoint): def __init__(self, data=None, imageURL=None): super().__init__() self.data = data self._embeddings: Dict = {} self.imageURL = imageURL @property def embedding(self): return self.get_embedding() def __str__(self): image_repr = self.data.size() if self.data else "" image_url = self.imageURL if self.imageURL else "" return f"Image: {image_repr} {image_url}" class FlairDataset(Dataset): @abstractmethod def is_in_memory(self) -> bool: pass class Corpus: def __init__( self, train: Dataset = None, dev: Dataset = None, test: Dataset = None, name: str = "corpus", sample_missing_splits: Union[bool, str] = True, ): # set name self.name: str = name # abort if no data is provided if not train and not dev and not test: raise RuntimeError("No data provided when initializing corpus object.") # sample test data from train if none is provided if test is None and sample_missing_splits and train and not sample_missing_splits == "only_dev": train_length = _len_dataset(train) test_size: int = round(train_length / 10) test, train = randomly_split_into_two_datasets(train, test_size) # sample dev data from train if none is provided if dev is None and sample_missing_splits and train and not sample_missing_splits == "only_test": train_length = _len_dataset(train) dev_size: int = round(train_length / 10) dev, train = randomly_split_into_two_datasets(train, dev_size) # set train dev and test data self._train: Optional[Dataset] = train self._test: Optional[Dataset] = test self._dev: Optional[Dataset] = dev @property def train(self) -> Optional[Dataset]: return self._train @property def dev(self) -> Optional[Dataset]: return self._dev @property def test(self) -> Optional[Dataset]: return self._test def downsample( self, percentage: float = 0.1, downsample_train=True, downsample_dev=True, downsample_test=True, ): if downsample_train and self._train is not None: self._train = self._downsample_to_proportion(self._train, percentage) if downsample_dev and self._dev is not None: self._dev = self._downsample_to_proportion(self._dev, percentage) if downsample_test and self._test is not None: self._test = self._downsample_to_proportion(self._test, percentage) return self def filter_empty_sentences(self): log.info("Filtering empty sentences") if self._train is not None: self._train = Corpus._filter_empty_sentences(self._train) if self._test is not None: self._test = Corpus._filter_empty_sentences(self._test) if self._dev is not None: self._dev = Corpus._filter_empty_sentences(self._dev) log.info(self) def filter_long_sentences(self, max_charlength: int): log.info("Filtering long sentences") if self._train is not None: self._train = Corpus._filter_long_sentences(self._train, max_charlength) if self._test is not None: self._test = Corpus._filter_long_sentences(self._test, max_charlength) if self._dev is not None: self._dev = Corpus._filter_long_sentences(self._dev, max_charlength) log.info(self) @staticmethod def _filter_long_sentences(dataset, max_charlength: int) -> Dataset: # find out empty sentence indices empty_sentence_indices = [] non_empty_sentence_indices = [] for index, sentence in Tqdm.tqdm(enumerate(_iter_dataset(dataset))): if len(sentence.to_plain_string()) > max_charlength: empty_sentence_indices.append(index) else: non_empty_sentence_indices.append(index) # create subset of non-empty sentence indices subset = Subset(dataset, non_empty_sentence_indices) return subset @staticmethod def _filter_empty_sentences(dataset) -> Dataset: # find out empty sentence indices empty_sentence_indices = [] non_empty_sentence_indices = [] for index, sentence in enumerate(_iter_dataset(dataset)): if len(sentence) == 0: empty_sentence_indices.append(index) else: non_empty_sentence_indices.append(index) # create subset of non-empty sentence indices subset = Subset(dataset, non_empty_sentence_indices) return subset def make_vocab_dictionary(self, max_tokens=-1, min_freq=1) -> Dictionary: """ Creates a dictionary of all tokens contained in the corpus. By defining `max_tokens` you can set the maximum number of tokens that should be contained in the dictionary. If there are more than `max_tokens` tokens in the corpus, the most frequent tokens are added first. If `min_freq` is set the a value greater than 1 only tokens occurring more than `min_freq` times are considered to be added to the dictionary. :param max_tokens: the maximum number of tokens that should be added to the dictionary (-1 = take all tokens) :param min_freq: a token needs to occur at least `min_freq` times to be added to the dictionary (-1 = there is no limitation) :return: dictionary of tokens """ tokens = self._get_most_common_tokens(max_tokens, min_freq) vocab_dictionary: Dictionary = Dictionary() for token in tokens: vocab_dictionary.add_item(token) return vocab_dictionary def _get_most_common_tokens(self, max_tokens, min_freq) -> List[str]: tokens_and_frequencies = Counter(self._get_all_tokens()) tokens: List[str] = [] for token, freq in tokens_and_frequencies.most_common(): if (min_freq != -1 and freq < min_freq) or (max_tokens != -1 and len(tokens) == max_tokens): break tokens.append(token) return tokens def _get_all_tokens(self) -> List[str]: assert self.train tokens = list(map((lambda s: s.tokens), _iter_dataset(self.train))) tokens = [token for sublist in tokens for token in sublist] return list(map((lambda t: t.text), tokens)) @staticmethod def _downsample_to_proportion(dataset: Dataset, proportion: float): sampled_size: int = round(_len_dataset(dataset) * proportion) splits = randomly_split_into_two_datasets(dataset, sampled_size) return splits[0] def obtain_statistics(self, label_type: str = None, pretty_print: bool = True) -> Union[dict, str]: """ Print statistics about the class distribution (only labels of sentences are taken into account) and sentence sizes. """ json_data = { "TRAIN": self._obtain_statistics_for(self.train, "TRAIN", label_type), "TEST": self._obtain_statistics_for(self.test, "TEST", label_type), "DEV": self._obtain_statistics_for(self.dev, "DEV", label_type), } if pretty_print: import json return json.dumps(json_data, indent=4) return json_data @staticmethod def _obtain_statistics_for(sentences, name, tag_type) -> dict: if len(sentences) == 0: return {} classes_to_count = Corpus._count_sentence_labels(sentences) tags_to_count = Corpus._count_token_labels(sentences, tag_type) tokens_per_sentence = Corpus._get_tokens_per_sentence(sentences) label_size_dict = {} for label, c in classes_to_count.items(): label_size_dict[label] = c tag_size_dict = {} for tag, c in tags_to_count.items(): tag_size_dict[tag] = c return { "dataset": name, "total_number_of_documents": len(sentences), "number_of_documents_per_class": label_size_dict, "number_of_tokens_per_tag": tag_size_dict, "number_of_tokens": { "total": sum(tokens_per_sentence), "min": min(tokens_per_sentence), "max": max(tokens_per_sentence), "avg": sum(tokens_per_sentence) / len(sentences), }, } @staticmethod def _get_tokens_per_sentence(sentences): return list(map(lambda x: len(x.tokens), sentences)) @staticmethod def _count_sentence_labels(sentences): label_count = defaultdict(lambda: 0) for sent in sentences: for label in sent.labels: label_count[label.value] += 1 return label_count @staticmethod def _count_token_labels(sentences, label_type): label_count = defaultdict(lambda: 0) for sent in sentences: for token in sent.tokens: if label_type in token.annotation_layers.keys(): label = token.get_tag(label_type) label_count[label.value] += 1 return label_count def __str__(self) -> str: return "Corpus: %d train + %d dev + %d test sentences" % ( _len_dataset(self.train) if self.train else 0, _len_dataset(self.dev) if self.dev else 0, _len_dataset(self.test) if self.test else 0, ) def make_label_dictionary(self, label_type: str, min_count: int = -1) -> Dictionary: """ Creates a dictionary of all labels assigned to the sentences in the corpus. :return: dictionary of labels """ label_dictionary: Dictionary = Dictionary(add_unk=True) label_dictionary.span_labels = False assert self.train datasets = [self.train] data: ConcatDataset = ConcatDataset(datasets) log.info("Computing label dictionary. Progress:") all_label_types: typing.Counter[str] = Counter() label_occurrence: typing.Counter[str] = Counter() all_sentence_labels: List[str] = [] for sentence in Tqdm.tqdm(_iter_dataset(data)): # check if sentence itself has labels labels = sentence.get_labels(label_type) all_label_types.update(sentence.annotation_layers.keys()) # go through all labels and increment count for label in labels: if label.value not in all_sentence_labels: label_occurrence[label.value] += 1 # check if there are any span labels if type(label) == SpanLabel and len(label.span) > 1: label_dictionary.span_labels = True if not label_dictionary.multi_label: if len(labels) > 1: label_dictionary.multi_label = True erfasst_count = 0 unked_count = 0 for label, count in label_occurrence.most_common(): if count >= min_count: label_dictionary.add_item(label) erfasst_count += count else: unked_count += count if len(label_dictionary.idx2item) == 0: log.error( f"Corpus contains only the labels: {', '.join([f'{label[0]} (#{label[1]})' for label in all_label_types.most_common()])}" ) log.error(f"You specified as label_type='{label_type}' which is not in this dataset!") raise Exception log.info( f"Corpus contains the labels: {', '.join([label[0] + f' (#{label[1]})' for label in all_label_types.most_common()])}" ) log.info(f"{erfasst_count} instances in dict, {unked_count} instances are UNK'ed") log.info(f"Most commonly observed '{label_type}'-labels are {label_occurrence.most_common(20)}") log.info(f"Created (for label '{label_type}') {label_dictionary}") return label_dictionary def get_label_distribution(self): class_to_count = defaultdict(lambda: 0) for sent in self.train: for label in sent.labels: class_to_count[label.value] += 1 return class_to_count def get_all_sentences(self) -> ConcatDataset: parts = [] if self.train: parts.append(self.train) if self.dev: parts.append(self.dev) if self.test: parts.append(self.test) return ConcatDataset(parts) @deprecated(version="0.8", reason="Use 'make_label_dictionary' instead.") def make_tag_dictionary(self, tag_type: str) -> Dictionary: # Make the tag dictionary tag_dictionary: Dictionary = Dictionary(add_unk=False) tag_dictionary.add_item("O") for sentence in _iter_dataset(self.get_all_sentences()): for token in sentence.tokens: tag_dictionary.add_item(token.get_tag(tag_type).value) tag_dictionary.add_item("<START>") tag_dictionary.add_item("<STOP>") return tag_dictionary class MultiCorpus(Corpus): def __init__(self, corpora: List[Corpus], name: str = "multicorpus", **corpusargs): self.corpora: List[Corpus] = corpora train_parts = [] dev_parts = [] test_parts = [] for corpus in self.corpora: if corpus.train: train_parts.append(corpus.train) if corpus.dev: dev_parts.append(corpus.dev) if corpus.test: test_parts.append(corpus.test) super(MultiCorpus, self).__init__( ConcatDataset(train_parts) if len(train_parts) > 0 else None, ConcatDataset(dev_parts) if len(dev_parts) > 0 else None, ConcatDataset(test_parts) if len(test_parts) > 0 else None, name=name, **corpusargs, ) def __str__(self): output = ( f"MultiCorpus: " f"{len(self.train) if self.train else 0} train + " f"{len(self.dev) if self.dev else 0} dev + " f"{len(self.test) if self.test else 0} test sentences\n - " ) output += "\n - ".join([f"{type(corpus).__name__} {str(corpus)} - {corpus.name}" for corpus in self.corpora]) return output def iob2(tags): """ Check that tags have a valid IOB format. Tags in IOB1 format are converted to IOB2. """ for i, tag in enumerate(tags): if tag.value == "O": continue split = tag.value.split("-") if len(split) != 2 or split[0] not in ["I", "B"]: return False if split[0] == "B": continue elif i == 0 or tags[i - 1].value == "O": # conversion IOB1 to IOB2 tags[i].value = "B" + tag.value[1:] elif tags[i - 1].value[1:] == tag.value[1:]: continue else: # conversion IOB1 to IOB2 tags[i].value = "B" + tag.value[1:] return True def iob_iobes(tags): """ IOB -> IOBES """ for i, tag in enumerate(tags): if tag.value == "O" or tag.value == "": tag.value = "O" continue t, label = tag.value.split("-", 1) if len(tags) == i + 1 or tags[i + 1].value == "O": next_same = False else: nt, next_label = tags[i + 1].value.split("-", 1) next_same = nt == "I" and next_label == label if t == "B": if not next_same: tag.value = tag.value.replace("B-", "S-") elif t == "I": if not next_same: tag.value = tag.value.replace("I-", "E-") else: raise Exception("Invalid IOB format!") def randomly_split_into_two_datasets(dataset, length_of_first): import random indices = [i for i in range(len(dataset))] random.shuffle(indices) first_dataset = indices[:length_of_first] second_dataset = indices[length_of_first:] first_dataset.sort() second_dataset.sort() return Subset(dataset, first_dataset), Subset(dataset, second_dataset)
[ "torch.cat", "torch.utils.data.dataset.ConcatDataset", "torch.tensor", "torch.utils.data.dataset.Subset", "torch.empty" ]
1.5.0
piamarlene/flair
4f72d538fa49649aac88c7b5130250180ba64e43
1.10
#!/usr/bin/python # -*- encoding: utf-8 -*- import torch import torch.cuda.amp as amp import torch.nn as nn import torch.nn.functional as F ## # version 1: use pytorch autograd class MishV1(nn.Module): def __init__(self): super(MishV1, self).__init__() def forward(self, feat): return feat * torch.tanh(F.softplus(feat)) ## # version 2: use derived formula to compute grad class MishFunctionV2(torch.autograd.Function): @staticmethod @amp.custom_fwd def forward(ctx, feat): # exp = torch.exp(feat) # exp_plus = exp + 1 # exp_plus_pow = torch.pow(exp_plus, 2) # tanhX = (exp_plus_pow - 1) / (exp_plus_pow + 1) # out = feat * tanhX # grad = tanhX + 4 * feat * exp * exp_plus / torch.pow(1 + exp_plus_pow, 2) tanhX = torch.tanh(F.softplus(feat)) out = feat * tanhX grad = tanhX + feat * (1 - torch.pow(tanhX, 2)) * torch.sigmoid(feat) ctx.grad = grad return out @staticmethod @amp.custom_bwd def backward(ctx, grad_output): grad = ctx.grad grad *= grad_output return grad class MishV2(nn.Module): def __init__(self): super(MishV2, self).__init__() def forward(self, feat): return MishFunctionV2.apply(feat) ## # version 3: write with cuda which requires less memory and can be faster import mish_cpp class MishFunctionV3(torch.autograd.Function): @staticmethod @amp.custom_fwd def forward(ctx, feat): ctx.feat = feat return mish_cpp.mish_forward(feat) @staticmethod @amp.custom_bwd def backward(ctx, grad_output): feat = ctx.feat return mish_cpp.mish_backward(grad_output, feat) class MishV3(nn.Module): def __init__(self): super(MishV3, self).__init__() def forward(self, feat): return MishFunctionV3.apply(feat) if __name__ == "__main__": # import torchvision # net = torchvision.models.resnet50(pretrained=True) # sd = {k: v for k, v in net.state_dict().items() if k.startswith('conv1.') or k.startswith('bn1.')} class Net(nn.Module): def __init__(self, act='mishv1'): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 7, 2, 3) self.bn1 = nn.BatchNorm2d(64) if act == 'mishv1': self.act1 = MishV1() elif act == 'mishv2': self.act1 = MishV2() elif act == 'mishv3': self.act1 = MishV3() self.dense = nn.Linear(64, 10, bias=False) self.crit = nn.CrossEntropyLoss() # state = self.state_dict() # state.update(sd) # self.load_state_dict(state) # torch.nn.init.constant_(self.dense.weight, 1) def forward(self, feat, label): feat = self.conv1(feat) feat = self.bn1(feat) feat = self.act1(feat) feat = torch.mean(feat, dim=(2, 3)) logits = self.dense(feat) loss = self.crit(logits, label) return loss net1 = Net(act='mishv1') net2 = Net(act='mishv3') net2.load_state_dict(net1.state_dict()) net1.cuda() net2.cuda() opt1 = torch.optim.SGD(net1.parameters(), lr=1e-1) opt2 = torch.optim.SGD(net2.parameters(), lr=1e-1) bs = 32 for i in range(2000): inten = torch.randn(bs, 3, 224, 224).cuda().detach() label = torch.randint(0, 10, (bs, )).cuda().detach() loss1 = net1(inten, label) opt1.zero_grad() loss1.backward() opt1.step() loss2 = net2(inten, label) opt2.zero_grad() loss2.backward() opt2.step() if i % 200 == 0: print('====') print('loss diff: ', loss1.item() - loss2.item()) print('weight diff: ', torch.sum(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.functional.softplus", "torch.nn.BatchNorm2d", "torch.abs", "torch.randn", "torch.nn.Conv2d", "torch.randint", "torch.mean", "torch.nn.CrossEntropyLoss", "torch.pow" ]
1.10.1
napoler/pytorch-loss
36a599d868844491633f3e0091f73759922a4557
1.7
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from collections import namedtuple import numpy as np import pytest import torch from flash.core.data.utilities.classification import ( CommaDelimitedMultiLabelTargetFormatter, get_target_formatter, MultiBinaryTargetFormatter, MultiLabelTargetFormatter, MultiNumericTargetFormatter, SingleBinaryTargetFormatter, SingleLabelTargetFormatter, SingleNumericTargetFormatter, SpaceDelimitedTargetFormatter, ) Case = namedtuple("Case", ["target", "formatted_target", "target_formatter_type", "labels", "num_classes"]) cases = [ # Single Case([0, 1, 2], [0, 1, 2], SingleNumericTargetFormatter, None, 3), Case([[1, 0, 0], [0, 1, 0], [0, 0, 1]], [0, 1, 2], SingleBinaryTargetFormatter, None, 3), Case(["blue", "green", "red"], [0, 1, 2], SingleLabelTargetFormatter, ["blue", "green", "red"], 3), # Multi Case([[0, 1], [1, 2], [2, 0]], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], MultiNumericTargetFormatter, None, 3), Case([[1, 1, 0], [0, 1, 1], [1, 0, 1]], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], MultiBinaryTargetFormatter, None, 3), Case( [["blue", "green"], ["green", "red"], ["red", "blue"]], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], MultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( ["blue,green", "green,red", "red,blue"], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], CommaDelimitedMultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( ["blue green", "green red", "red blue"], [[1, 1, 0], [0, 1, 1], [1, 0, 1]], SpaceDelimitedTargetFormatter, ["blue", "green", "red"], 3, ), # Ambiguous Case([[0], [1, 2], [2, 0]], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], MultiNumericTargetFormatter, None, 3), Case([[1, 0, 0], [0, 1, 1], [1, 0, 1]], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], MultiBinaryTargetFormatter, None, 3), Case( [["blue"], ["green", "red"], ["red", "blue"]], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], MultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( ["blue", "green,red", "red,blue"], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], CommaDelimitedMultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( ["blue", "green red", "red blue"], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], SpaceDelimitedTargetFormatter, ["blue", "green", "red"], 3, ), # Special cases Case(["blue ", " green", "red"], [0, 1, 2], SingleLabelTargetFormatter, ["blue", "green", "red"], 3), Case( ["blue", "green, red", "red, blue"], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], CommaDelimitedMultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( ["blue", "green ,red", "red ,blue"], [[1, 0, 0], [0, 1, 1], [1, 0, 1]], CommaDelimitedMultiLabelTargetFormatter, ["blue", "green", "red"], 3, ), Case( [f"class_{i}" for i in range(10000)], list(range(10000)), SingleLabelTargetFormatter, [f"class_{i}" for i in range(10000)], 10000, ), # Array types Case(torch.tensor([[0], [1]]), [0, 1], SingleNumericTargetFormatter, None, 2), Case(torch.tensor([0, 1, 2]), [0, 1, 2], SingleNumericTargetFormatter, None, 3), Case(np.array([0, 1, 2]), [0, 1, 2], SingleNumericTargetFormatter, None, 3), ] @pytest.mark.parametrize("case", cases) def test_case(case): formatter = get_target_formatter(case.target) assert isinstance(formatter, case.target_formatter_type) assert formatter.labels == case.labels assert formatter.num_classes == case.num_classes assert [formatter(t) for t in case.target] == case.formatted_target @pytest.mark.parametrize("case", cases) def test_speed(case): repeats = int(1e5 / len(case.target)) # Approx. a hundred thousand targets if torch.is_tensor(case.target): targets = case.target.repeat(repeats, *(1 for _ in range(case.target.ndim - 1))) elif isinstance(case.target, np.ndarray): targets = np.repeat(case.target, repeats) else: targets = case.target * repeats start = time.perf_counter() formatter = get_target_formatter(targets) end = time.perf_counter() assert (end - start) / len(targets) < 1e-5 # 0.01ms per target start = time.perf_counter() _ = [formatter(t) for t in targets] end = time.perf_counter() assert (end - start) / len(targets) < 1e-5 # 0.01ms per target
[ "torch.is_tensor", "torch.tensor" ]
1.7.1
AjinkyaIndulkar/lightning-flash
e65020c7e5bd779d477a198865b0a84ac4f39720
0.6
import glob, torch from haven import haven_utils as hu import numpy as np import os from PIL import Image import torch.utils.data as data import torchvision.transforms as transforms import kornia.augmentation as K import PIL class COVIDDataset(data.Dataset): def __init__(self, split, datadir, exp_dict): if split in ['train', 'val']: path = os.path.join(datadir, "Dataset", "TrainingSet", "LungInfection-Train", "Doctor-label") elif split == 'test': path = os.path.join(datadir, "Dataset", "TestingSet", "LungInfection-Test") self.n_classes = exp_dict['dataset']['n_classes'] self.images = glob.glob(os.path.join(path, 'Imgs', '*')) self.gts = glob.glob(os.path.join(path, 'GT', '*')) self.size = 352 self.split = split self.images = sorted(self.images) self.gts = sorted(self.gts) if split == 'train': s = 0 e = int(0.9*len(self.images)) elif split == 'val': s = int(0.9*len(self.images)) e = len(self.images) elif split == 'test': s = 0 e = len(self.images) self.images = self.images[s:e] self.dataset_size = len(self.images) self.img_transform = transforms.Compose([ transforms.Resize((self.size, self.size)), # transforms.rotate(-90), # transforms.CenterCrop((384, 385)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) if split == 'train': self.gt_transform = transforms.Compose([ transforms.Resize((self.size, self.size), interpolation=PIL.Image.NEAREST), # transforms.rotate(-90), # transforms.CenterCrop((384, 385)), # transforms.ToTensor() ]) else: self.gt_transform = transforms.Compose([ # transforms.Resize((self.size, self.size), interpolation=PIL.Image.NEAREST), # transforms.rotate(-90), # transforms.CenterCrop((384, 385)), # transforms.ToTensor() ]) def __getitem__(self, index): image = rgb_loader(self.images[index]) gt = binary_loader(self.gts[index]) image = self.img_transform(image) gt = self.gt_transform(gt) tgt_mask = np.array(gt) assert(len(np.setdiff1d(np.unique(tgt_mask),[0,127,255] ))==0) mask = np.zeros(tgt_mask.shape) if self.n_classes == 2: mask[tgt_mask!= 0] = 1 elif self.n_classes == 3: mask[tgt_mask== 127] = 1 mask[tgt_mask== 255] = 2 mask = torch.LongTensor(mask) # gt = self.gt_transform(gt) # cc = K.CenterCrop((384, 385)) # image = cc(image) # mask = cc(mask[None].float()).long() from src.modules.lcfcn import lcfcn_loss points = lcfcn_loss.get_points_from_mask(mask.numpy().squeeze(), bg_points=-1) points = torch.LongTensor(points) # hu.save_image('tmp.png', hu.denormalize(image, 'rgb'), points=points, radius=2) # hu.save_image('tmp.png', hu.denormalize(image, 'rgb'), mask=gt.numpy(), radius=2) if self.n_classes == 2: assert (len(np.setdiff1d(np.unique(mask), [0, 1])) == 0) if self.n_classes == 3: assert (len(np.setdiff1d(np.unique(mask), [0, 1, 2])) == 0) # points = cc(torch.LongTensor(points)[None].float()).long()[0] batch = {'images':image, 'masks': mask[None], 'points':points, 'meta':{'name':index, 'hash':hu.hash_dict({'id':self.images[index]}), # 'hash':self.images[index], 'shape':mask.squeeze().shape, 'index':index, 'split':self.split, # 'size':self.size }} # return image, gt, name, np.array(F.interpolate(image, gt.size, mode='bilinear')) return batch def __len__(self): return self.dataset_size def rgb_loader(path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def binary_loader(path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('L')
[ "torch.LongTensor" ]
0.6.3
JanAlexanderPersonal/covid19_weak_supervision
5599e48c9945f1e08a2731740bc8f6e44a031703
0.6
import sys; sys.path.append("../../_EXTRAS"); import misc as ms import socket import timeit from datetime import datetime import scipy.misc as sm from collections import OrderedDict import glob # PyTorch includes import torch.optim as optim from torchvision import transforms from torch.utils.data import DataLoader from torch.nn.functional import upsample # Tensorboard include # from tensorboardX import SummaryWriter # Custom includes from dataloaders.combine_dbs import CombineDBs as combine_dbs import dataloaders.pascal as pascal import dataloaders.sbd as sbd from dataloaders import custom_transforms as tr import networks.deeplab_resnet as resnet from layers.loss import class_balanced_cross_entropy_loss from dataloaders.helpers import * # Set gpu_id to -1 to run in CPU mode, otherwise set the id of the corresponding gpu gpu_id = 0 device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): print('Using GPU: {} '.format(gpu_id)) # Setting parameters use_sbd = False nEpochs = 100 # Number of epochs for training resume_epoch = 0 # Default is 0, change if want to resume p = OrderedDict() # Parameters to include in report classifier = 'psp' # Head classifier to use p['trainBatch'] = 5 # Training batch size testBatch = 5 # Testing batch size useTest = 1 # See evolution of the test set when training? nTestInterval = 10 # Run on test set every nTestInterval epochs snapshot = 20 # Store a model every snapshot epochs relax_crop = 50 # Enlarge the bounding box by relax_crop pixels nInputChannels = 4 # Number of input channels (RGB + heatmap of extreme points) zero_pad_crop = True # Insert zero padding when cropping the image p['nAveGrad'] = 1 # Average the gradient of several iterations p['lr'] = 1e-8 # Learning rate p['wd'] = 0.0005 # Weight decay p['momentum'] = 0.9 # Momentum # Results and model directories (a new directory is generated for every run) save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__))) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] if resume_epoch == 0: runs = sorted(glob.glob(os.path.join(save_dir_root, 'run_*'))) run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0 else: run_id = 0 save_dir = os.path.join(save_dir_root, 'run_' + str(run_id)) if not os.path.exists(os.path.join(save_dir, 'models')): os.makedirs(os.path.join(save_dir, 'models')) # Network definition modelName = 'dextr_pascal' net = resnet.resnet101(1, pretrained=True, nInputChannels=nInputChannels, classifier=classifier) if resume_epoch == 0: print("Initializing from pretrained Deeplab-v2 model") else: print("Initializing weights from: {}".format( os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'))) net.load_state_dict( torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'), map_location=lambda storage, loc: storage)) train_params = [{'params': resnet.get_1x_lr_params(net), 'lr': p['lr']}, {'params': resnet.get_10x_lr_params(net), 'lr': p['lr'] * 10}] net.to(device) # Training the network if resume_epoch != nEpochs: # Logging into Tensorboard log_dir = os.path.join(save_dir, 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) # writer = SummaryWriter(log_dir=log_dir) # Use the following optimizer optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p['momentum'], weight_decay=p['wd']) p['optimizer'] = str(optimizer) # Preparation of the data loaders composed_transforms_tr = transforms.Compose([ tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25)), tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop), tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': (512, 512)}), tr.ExtremePoints(sigma=10, pert=5, elem='crop_gt'), tr.ToImage(norm_elem='extreme_points'), tr.ConcatInputs(elems=('crop_image', 'extreme_points')), tr.ToTensor()]) composed_transforms_ts = transforms.Compose([ tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop), tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': (512, 512)}), tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'), tr.ToImage(norm_elem='extreme_points'), tr.ConcatInputs(elems=('crop_image', 'extreme_points')), tr.ToTensor()]) voc_train = pascal.VOCSegmentation(split='train', transform=composed_transforms_tr) voc_val = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts) if use_sbd: sbd = sbd.SBDSegmentation(split=['train', 'val'], transform=composed_transforms_tr, retname=True) db_train = combine_dbs([voc_train, sbd], excluded=[voc_val]) else: db_train = voc_train p['dataset_train'] = str(db_train) p['transformations_train'] = [str(tran) for tran in composed_transforms_tr.transforms] p['dataset_test'] = str(db_train) p['transformations_test'] = [str(tran) for tran in composed_transforms_ts.transforms] trainloader = DataLoader(db_train, batch_size=p['trainBatch'], shuffle=True, num_workers=2) testloader = DataLoader(voc_val, batch_size=testBatch, shuffle=False, num_workers=2) generate_param_report(os.path.join(save_dir, exp_name + '.txt'), p) # Train variables num_img_tr = len(trainloader) num_img_ts = len(testloader) running_loss_tr = 0.0 running_loss_ts = 0.0 aveGrad = 0 print("Training Network") # Main Training and Testing Loop for epoch in range(resume_epoch, nEpochs): start_time = timeit.default_timer() net.train() for ii, sample_batched in enumerate(trainloader): import ipdb; ipdb.set_trace() # breakpoint 5ab142bd // inputs, gts = sample_batched['concat'], sample_batched['crop_gt'] # Forward-Backward of the mini-batch inputs.requires_grad_() inputs, gts = inputs.to(device), gts.to(device) output = net.forward(inputs) output = upsample(output, size=(512, 512), mode='bilinear', align_corners=True) # Compute the losses, side outputs and fuse loss = class_balanced_cross_entropy_loss(output, gts, size_average=False, batch_average=True) running_loss_tr += loss.item() # Print stuff if ii % num_img_tr == num_img_tr - 1: running_loss_tr = running_loss_tr / num_img_tr writer.add_scalar('data/total_loss_epoch', running_loss_tr, epoch) print('[Epoch: %d, numImages: %5d]' % (epoch, ii*p['trainBatch']+inputs.data.shape[0])) print('Loss: %f' % running_loss_tr) running_loss_tr = 0 stop_time = timeit.default_timer() print("Execution time: " + str(stop_time - start_time)+"\n") # Backward the averaged gradient loss /= p['nAveGrad'] loss.backward() aveGrad += 1 # Update the weights once in p['nAveGrad'] forward passes if aveGrad % p['nAveGrad'] == 0: writer.add_scalar('data/total_loss_iter', loss.item(), ii + num_img_tr * epoch) optimizer.step() optimizer.zero_grad() aveGrad = 0 # Save the model if (epoch % snapshot) == snapshot - 1 and epoch != 0: torch.save(net.state_dict(), os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth')) # One testing epoch if useTest and epoch % nTestInterval == (nTestInterval - 1): net.eval() with torch.no_grad(): for ii, sample_batched in enumerate(testloader): inputs, gts = sample_batched['concat'], sample_batched['crop_gt'] # Forward pass of the mini-batch inputs, gts = inputs.to(device), gts.to(device) output = net.forward(inputs) output = upsample(output, size=(512, 512), mode='bilinear', align_corners=True) # Compute the losses, side outputs and fuse loss = class_balanced_cross_entropy_loss(output, gts, size_average=False) running_loss_ts += loss.item() # Print stuff if ii % num_img_ts == num_img_ts - 1: running_loss_ts = running_loss_ts / num_img_ts print('[Epoch: %d, numImages: %5d]' % (epoch, ii*testBatch+inputs.data.shape[0])) writer.add_scalar('data/test_loss_epoch', running_loss_ts, epoch) print('Loss: %f' % running_loss_ts) running_loss_ts = 0 writer.close() # Generate result of the validation images net.eval() composed_transforms_ts = transforms.Compose([ tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop), tr.FixedResize(resolutions={'gt': None, 'crop_image': (512, 512), 'crop_gt': (512, 512)}), tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'), tr.ToImage(norm_elem='extreme_points'), tr.ConcatInputs(elems=('crop_image', 'extreme_points')), tr.ToTensor()]) db_test = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts, retname=True) testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1) save_dir_res = os.path.join(save_dir, 'Results') if not os.path.exists(save_dir_res): os.makedirs(save_dir_res) print('Testing Network') with torch.no_grad(): # Main Testing Loop for ii, sample_batched in enumerate(testloader): inputs, gts, metas = sample_batched['concat'], sample_batched['gt'], sample_batched['meta'] # Forward of the mini-batch inputs = inputs.to(device) outputs = net.forward(inputs) outputs = upsample(outputs, size=(512, 512), mode='bilinear', align_corners=True) outputs = outputs.to(torch.device('cpu')) for jj in range(int(inputs.size()[0])): pred = np.transpose(outputs.data.numpy()[jj, :, :, :], (1, 2, 0)) pred = 1 / (1 + np.exp(-pred)) pred = np.squeeze(pred) gt = tens2image(gts[jj, :, :, :]) bbox = get_bbox(gt, pad=relax_crop, zero_pad=zero_pad_crop) result = crop2fullmask(pred, bbox, gt, zero_pad=zero_pad_crop, relax=relax_crop) # Save the result, attention to the index jj sm.imsave(os.path.join(save_dir_res, metas['image'][jj] + '-' + metas['object'][jj] + '.png'), result)
[ "torch.optim.SGD", "torch.utils.data.DataLoader", "torch.nn.functional.upsample" ]
0.6.3
JanAlexanderPersonal/covid19_weak_supervision
5599e48c9945f1e08a2731740bc8f6e44a031703
1.7
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved """Dataset and evaluator for CLEVR-Ref+""" import copy from collections import defaultdict from pathlib import Path import torch import torch.utils.data from transformers import AutoTokenizer import mdetr.util.dist as dist from mdetr.datasets.clevr import make_clevr_transforms from mdetr.util.box_ops import generalized_box_iou from .coco import ModulatedDetection, make_coco_transforms class ClevrRefDetection(ModulatedDetection): pass class ClevrRefEvaluator(object): def __init__(self, refexp_gt, iou_types, k=(1, 5, 10), thresh_iou=0.5): assert isinstance(k, (list, tuple)) refexp_gt = copy.deepcopy(refexp_gt) self.refexp_gt = refexp_gt self.iou_types = iou_types self.img_ids = self.refexp_gt.imgs.keys() self.predictions = {} self.k = k self.thresh_iou = thresh_iou def accumulate(self): pass def update(self, predictions): self.predictions.update(predictions) def synchronize_between_processes(self): all_predictions = dist.all_gather(self.predictions) merged_predictions = {} for p in all_predictions: merged_predictions.update(p) self.predictions = merged_predictions def summarize(self): if dist.is_main_process(): dataset2score = { "clevrref": {k: 0.0 for k in self.k}, } dataset2count = {"clevrref": 0.0} for image_id in self.img_ids: ann_ids = self.refexp_gt.getAnnIds(imgIds=image_id) if len(ann_ids) != 1: continue img_info = self.refexp_gt.loadImgs(image_id)[0] target = self.refexp_gt.loadAnns(ann_ids[0]) prediction = self.predictions[image_id] assert prediction is not None sorted_scores_boxes = sorted( zip(prediction["scores_refexp"].tolist(), prediction["boxes"].tolist()), reverse=True ) sorted_scores, sorted_boxes = zip(*sorted_scores_boxes) sorted_boxes = torch.cat([torch.as_tensor(x).view(1, 4) for x in sorted_boxes]) target_bbox = target[0]["bbox"] converted_bbox = [ target_bbox[0], target_bbox[1], target_bbox[2] + target_bbox[0], target_bbox[3] + target_bbox[1], ] giou = generalized_box_iou(sorted_boxes, torch.as_tensor(converted_bbox).view(-1, 4)) for k in self.k: if max(giou[:k]) >= self.thresh_iou: dataset2score["clevrref"][k] += 1.0 dataset2count["clevrref"] += 1.0 for key, value in dataset2score.items(): for k in self.k: try: value[k] /= dataset2count[key] except: pass results = {} for key, value in dataset2score.items(): results[key] = sorted([v for k, v in value.items()]) print(f" Dataset: {key} - Precision @ 1, 5, 10: {results[key]} \n") return results return None def build(image_set, args): tokenizer = AutoTokenizer.from_pretrained( args.text_encoder_type, local_files_only=True ) img_dir = Path(args.clevr_img_path) / f"{image_set}" ann_file = Path(args.clevr_ann_path) / f"{image_set}.json" dataset = ClevrRefDetection( img_dir, ann_file, transforms=make_clevr_transforms(image_set, cautious=True), return_masks=args.masks, return_tokens=True, tokenizer=tokenizer, ) return dataset
[ "torch.as_tensor" ]
1.7.0
rstrudel/mdetr
177724cc60c7d63628dd14a5f26b21ea2cea45e3
1.7
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved """Postprocessors class to transform MDETR output according to the downstream task""" from typing import Dict import numpy as np import torch import torch.nn.functional as F from torch import nn from mdetr.util import box_ops class PostProcessFlickr(nn.Module): """This module converts the model's output for Flickr30k entities evaluation. This processor is intended for recall@k evaluation with respect to each phrase in the sentence. It requires a description of each phrase (as a binary mask), and returns a sorted list of boxes for each phrase. """ @torch.no_grad() def forward(self, outputs, target_sizes, positive_map, items_per_batch_element): """Perform the computation. Args: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding positive_map: tensor [total_nbr_phrases x max_seq_len] for each phrase in the batch, contains a binary mask of the tokens that correspond to that sentence. Note that this is a "collapsed" batch, meaning that all the phrases of all the batch elements are stored sequentially. items_per_batch_element: list[int] number of phrases corresponding to each batch element. """ out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 batch_size = target_sizes.shape[0] prob = F.softmax(out_logits, -1) # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) # and from relative [0, 1] to absolute [0, height] coordinates boxes = boxes * scale_fct[:, None, :] cum_sum = np.cumsum(items_per_batch_element) curr_batch_index = 0 # binarize the map if not already binary pos = positive_map > 1e-6 predicted_boxes = [[] for _ in range(batch_size)] # The collapsed batch dimension must match the number of items assert len(pos) == cum_sum[-1] if len(pos) == 0: return predicted_boxes # if the first batch elements don't contain elements, skip them. while cum_sum[curr_batch_index] == 0: curr_batch_index += 1 for i in range(len(pos)): # scores are computed by taking the max over the scores assigned to the positive tokens scores, _ = torch.max(pos[i].unsqueeze(0) * prob[curr_batch_index, :, :], dim=-1) _, indices = torch.sort(scores, descending=True) assert items_per_batch_element[curr_batch_index] > 0 predicted_boxes[curr_batch_index].append(boxes[curr_batch_index][indices].to("cpu").tolist()) if i == len(pos) - 1: break # check if we need to move to the next batch element while i >= cum_sum[curr_batch_index] - 1: curr_batch_index += 1 assert curr_batch_index < len(cum_sum) return predicted_boxes class PostProcessPhrasecut(nn.Module): """This module converts the model's output for Phrasecut evaluation. Contrary to most postprocessors, it doesn't operate directly on model's output, but must be called after the regular box processor, and optionally the segmentation post-processor (if masks are being computed). Args: score_thresh(float): minimum score at which the box/mask will be kept """ def __init__(self, score_thresh=0.7): super().__init__() self.score_thresh = score_thresh @torch.no_grad() def forward(self, results): """Perform the computation Args: results: Dictionnary that comes from PostProcess and optionally PostProcessSegm """ final_results = [] for elem in results: keep = elem["scores"] > self.score_thresh # convert boxes to [x0, y0, w, h] boxes = elem["boxes"][keep].view(-1, 4) boxes[..., 2:] -= boxes[..., :2] res = {"boxes": boxes.tolist()} if "masks" in elem: res["masks"] = elem["masks"][keep].any(0).squeeze(0).cpu().numpy() final_results.append(res) return final_results class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) labels = torch.ones_like(labels) scores = 1 - prob[:, :, -1] # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] assert len(scores) == len(labels) == len(boxes) results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] if "pred_isfinal" in outputs: is_final = outputs["pred_isfinal"].sigmoid() scores_refexp = scores * is_final.view_as(scores) assert len(results) == len(scores_refexp) for i in range(len(results)): results[i]["scores_refexp"] = scores_refexp[i] return results class PostProcessSegm(nn.Module): """Similar to PostProcess but for segmentation masks. This processor is to be called sequentially after PostProcess. Args: threshold: threshold that will be applied to binarize the segmentation masks. """ def __init__(self, threshold=0.5): super().__init__() self.threshold = threshold @torch.no_grad() def forward(self, results, outputs, orig_target_sizes, max_target_sizes): """Perform the computation Parameters: results: already pre-processed boxes (output of PostProcess) outputs: raw outputs of the model orig_target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding max_target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch after data augmentation. """ assert len(orig_target_sizes) == len(max_target_sizes) max_h, max_w = max_target_sizes.max(0)[0].tolist() outputs_masks = outputs["pred_masks"].squeeze(2) outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False) # Check if all sizes are the same, in which case we can do the interpolation more efficiently min_h, min_w = max_target_sizes.min(0)[0].tolist() min_orig_h, min_orig_w = orig_target_sizes.min(0)[0].tolist() max_orig_h, max_orig_w = orig_target_sizes.max(0)[0].tolist() if min_h == max_h and min_w == max_w and min_orig_h == max_orig_h and min_orig_w == max_orig_w: outputs_masks = ( F.interpolate(outputs_masks, size=(min_orig_h, min_orig_w), mode="bilinear").sigmoid() > self.threshold ).cpu() for i, cur_mask in enumerate(outputs_masks): results[i]["masks"] = cur_mask.unsqueeze(1) return results for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)): img_h, img_w = t[0], t[1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) results[i]["masks"] = ( F.interpolate(results[i]["masks"].float(), size=tuple(tt.tolist()), mode="bilinear").sigmoid() > self.threshold ).cpu() return results def build_postprocessors(args, dataset_name) -> Dict[str, nn.Module]: postprocessors: Dict[str, nn.Module] = {"bbox": PostProcess()} if args.masks: postprocessors["segm"] = PostProcessSegm() if dataset_name == "flickr": postprocessors["flickr_bbox"] = PostProcessFlickr() if dataset_name == "phrasecut": postprocessors["phrasecut"] = PostProcessPhrasecut() return postprocessors
[ "torch.stack", "torch.nn.functional.softmax", "torch.no_grad", "torch.nn.functional.interpolate", "torch.ones_like", "torch.sort" ]
1.7.0
rstrudel/mdetr
177724cc60c7d63628dd14a5f26b21ea2cea45e3
1.7
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import datetime import json import os from collections import OrderedDict, defaultdict import numpy as np import pycocotools.mask as mask_util import torch import torch._six import mdetr.util.dist as dist from .coco_eval import merge from .lvis import LVIS ################################################################# # From LVIS, with following changes: # * fixed LVISEval constructor to accept empty dt # * Removed logger # * LVIS results supports numpy inputs ################################################################# class Params: def __init__(self, iou_type): """Params for LVIS evaluation API.""" self.img_ids = [] self.cat_ids = [] # np.arange causes trouble. the data point on arange is slightly # larger than the true value self.iou_thrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) self.rec_thrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) self.max_dets = 300 self.area_rng = [ [0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2], ] self.area_rng_lbl = ["all", "small", "medium", "large"] self.use_cats = 1 # We bin categories in three bins based how many images of the training # set the category is present in. # r: Rare : < 10 # c: Common : >= 10 and < 100 # f: Frequent: >= 100 self.img_count_lbl = ["r", "c", "f"] self.iou_type = iou_type class LVISResults(LVIS): def __init__(self, lvis_gt, results, max_dets=300): """Constructor for LVIS results. Args: lvis_gt (LVIS class instance, or str containing path of annotation file) results (str containing path of result file or a list of dicts) max_dets (int): max number of detections per image. The official value of max_dets for LVIS is 300. """ super(LVISResults, self).__init__() assert isinstance(lvis_gt, LVIS) self.dataset["images"] = [img for img in lvis_gt.dataset["images"]] if isinstance(results, str): result_anns = self._load_json(results) elif type(results) == np.ndarray: result_anns = self.loadNumpyAnnotations(results) else: result_anns = results if max_dets >= 0: result_anns = self.limit_dets_per_image(result_anns, max_dets) if len(result_anns) > 0 and "bbox" in result_anns[0]: self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"]) for id, ann in enumerate(result_anns): x1, y1, w, h = ann["bbox"] x2 = x1 + w y2 = y1 + h if "segmentation" not in ann: ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann["area"] = w * h ann["id"] = id + 1 elif len(result_anns) > 0 and "segmentation" in result_anns[0]: self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"]) for id, ann in enumerate(result_anns): # Only support compressed RLE format as segmentation results ann["area"] = mask_util.area(ann["segmentation"]) if "bbox" not in ann: ann["bbox"] = mask_util.toBbox(ann["segmentation"]) ann["id"] = id + 1 self.dataset["annotations"] = result_anns self._create_index() # #FIXME: disabling this check for now # img_ids_in_result = [ann["image_id"] for ann in result_anns] # assert set(img_ids_in_result) == ( # set(img_ids_in_result) & set(self.get_img_ids()) # ), "Results do not correspond to current LVIS set." def limit_dets_per_image(self, anns, max_dets): img_ann = defaultdict(list) for ann in anns: img_ann[ann["image_id"]].append(ann) for img_id, _anns in img_ann.items(): if len(_anns) <= max_dets: continue _anns = sorted(_anns, key=lambda ann: ann["score"], reverse=True) img_ann[img_id] = _anns[:max_dets] return [ann for anns in img_ann.values() for ann in anns] def get_top_results(self, img_id, score_thrs): ann_ids = self.get_ann_ids(img_ids=[img_id]) anns = self.load_anns(ann_ids) return list(filter(lambda ann: ann["score"] > score_thrs, anns)) class LVISEval: def __init__(self, lvis_gt, lvis_dt=None, iou_type="segm"): """Constructor for LVISEval. Args: lvis_gt (LVIS class instance, or str containing path of annotation file) lvis_dt (LVISResult class instance, or str containing path of result file, or list of dict) iou_type (str): segm or bbox evaluation """ if iou_type not in ["bbox", "segm"]: raise ValueError("iou_type: {} is not supported.".format(iou_type)) if isinstance(lvis_gt, LVIS): self.lvis_gt = lvis_gt elif isinstance(lvis_gt, str): self.lvis_gt = LVIS(lvis_gt) else: raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt)) if isinstance(lvis_dt, LVISResults): self.lvis_dt = lvis_dt elif isinstance(lvis_dt, (str, list)): self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt) elif lvis_dt is not None: raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt)) # per-image per-category evaluation results self.eval_imgs = defaultdict(list) self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iou_type=iou_type) # parameters self.results = OrderedDict() self.stats = [] self.ious = {} # ious between all gts and dts self.params.img_ids = sorted(self.lvis_gt.get_img_ids()) self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids()) def _to_mask(self, anns, lvis): for ann in anns: rle = lvis.ann_to_rle(ann) ann["segmentation"] = rle def _prepare(self): """Prepare self._gts and self._dts for evaluation based on params.""" cat_ids = self.params.cat_ids if self.params.cat_ids else None gts = self.lvis_gt.load_anns(self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)) dts = self.lvis_dt.load_anns(self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)) # convert ground truth to mask if iou_type == 'segm' if self.params.iou_type == "segm": self._to_mask(gts, self.lvis_gt) self._to_mask(dts, self.lvis_dt) # set ignore flag for gt in gts: if "ignore" not in gt: gt["ignore"] = 0 for gt in gts: self._gts[gt["image_id"], gt["category_id"]].append(gt) # For federated dataset evaluation we will filter out all dt for an # image which belong to categories not present in gt and not present in # the negative list for an image. In other words detector is not penalized # for categories about which we don't have gt information about their # presence or absence in an image. img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids) # per image map of categories not present in image img_nl = {d["id"]: d["neg_category_ids"] for d in img_data} # per image list of categories present in image img_pl = defaultdict(set) for ann in gts: img_pl[ann["image_id"]].add(ann["category_id"]) # per image map of categoires which have missing gt. For these # categories we don't penalize the detector for flase positives. self.img_nel = {d["id"]: d["not_exhaustive_category_ids"] for d in img_data} for dt in dts: img_id, cat_id = dt["image_id"], dt["category_id"] if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]: continue self._dts[img_id, cat_id].append(dt) self.freq_groups = self._prepare_freq_group() def _prepare_freq_group(self): freq_groups = [[] for _ in self.params.img_count_lbl] cat_data = self.lvis_gt.load_cats(self.params.cat_ids) for idx, _cat_data in enumerate(cat_data): frequency = _cat_data["frequency"] freq_groups[self.params.img_count_lbl.index(frequency)].append(idx) return freq_groups def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.eval_imgs. """ self.params.img_ids = list(np.unique(self.params.img_ids)) if self.params.use_cats: cat_ids = self.params.cat_ids else: cat_ids = [-1] self._prepare() self.ious = { (img_id, cat_id): self.compute_iou(img_id, cat_id) for img_id in self.params.img_ids for cat_id in cat_ids } # loop through images, area range, max detection number self.eval_imgs = [ self.evaluate_img(img_id, cat_id, area_rng) for cat_id in cat_ids for area_rng in self.params.area_rng for img_id in self.params.img_ids ] def _get_gt_dt(self, img_id, cat_id): """Create gt, dt which are list of anns/dets. If use_cats is true only anns/dets corresponding to tuple (img_id, cat_id) will be used. Else, all anns/dets in image are used and cat_id is not used. """ if self.params.use_cats: gt = self._gts[img_id, cat_id] dt = self._dts[img_id, cat_id] else: gt = [_ann for _cat_id in self.params.cat_ids for _ann in self._gts[img_id, cat_id]] dt = [_ann for _cat_id in self.params.cat_ids for _ann in self._dts[img_id, cat_id]] return gt, dt def compute_iou(self, img_id, cat_id): gt, dt = self._get_gt_dt(img_id, cat_id) if len(gt) == 0 and len(dt) == 0: return [] # Sort detections in decreasing order of score. idx = np.argsort([-d["score"] for d in dt], kind="mergesort") dt = [dt[i] for i in idx] iscrowd = [int(False)] * len(gt) if self.params.iou_type == "segm": ann_type = "segmentation" elif self.params.iou_type == "bbox": ann_type = "bbox" else: raise ValueError("Unknown iou_type for iou computation.") gt = [g[ann_type] for g in gt] dt = [d[ann_type] for d in dt] # compute iou between each dt and gt region # will return array of shape len(dt), len(gt) ious = mask_util.iou(dt, gt, iscrowd) return ious def evaluate_img(self, img_id, cat_id, area_rng): """Perform evaluation for single category and image.""" gt, dt = self._get_gt_dt(img_id, cat_id) if len(gt) == 0 and len(dt) == 0: return None # Add another filed _ignore to only consider anns based on area range. for g in gt: if g["ignore"] or (g["area"] < area_rng[0] or g["area"] > area_rng[1]): g["_ignore"] = 1 else: g["_ignore"] = 0 # Sort gt ignore last gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort") gt = [gt[i] for i in gt_idx] # Sort dt highest score first dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort") dt = [dt[i] for i in dt_idx] # load computed ious ious = self.ious[img_id, cat_id][:, gt_idx] if len(self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id] num_thrs = len(self.params.iou_thrs) num_gt = len(gt) num_dt = len(dt) # Array to store the "id" of the matched dt/gt gt_m = np.zeros((num_thrs, num_gt)) dt_m = np.zeros((num_thrs, num_dt)) gt_ig = np.array([g["_ignore"] for g in gt]) dt_ig = np.zeros((num_thrs, num_dt)) for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs): if len(ious) == 0: break for dt_idx, _dt in enumerate(dt): iou = min([iou_thr, 1 - 1e-10]) # information about best match so far (m=-1 -> unmatched) # store the gt_idx which matched for _dt m = -1 for gt_idx, _ in enumerate(gt): # if this gt already matched continue if gt_m[iou_thr_idx, gt_idx] > 0: continue # if _dt matched to reg gt, and on ignore gt, stop if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1: break # continue to next gt unless better match made if ious[dt_idx, gt_idx] < iou: continue # if match successful and best so far, store appropriately iou = ious[dt_idx, gt_idx] m = gt_idx # No match found for _dt, go to next _dt if m == -1: continue # if gt to ignore for some reason update dt_ig. # Should not be used in evaluation. dt_ig[iou_thr_idx, dt_idx] = gt_ig[m] # _dt match found, update gt_m, and dt_m with "id" dt_m[iou_thr_idx, dt_idx] = gt[m]["id"] gt_m[iou_thr_idx, m] = _dt["id"] # For LVIS we will ignore any unmatched detection if that category was # not exhaustively annotated in gt. dt_ig_mask = [ d["area"] < area_rng[0] or d["area"] > area_rng[1] or d["category_id"] in self.img_nel[d["image_id"]] for d in dt ] dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt)) # 1 X num_dt dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0) # num_thrs X num_dt # Based on dt_ig_mask ignore any unmatched detection by updating dt_ig dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask)) # store results for given image and category return { "image_id": img_id, "category_id": cat_id, "area_rng": area_rng, "dt_ids": [d["id"] for d in dt], "gt_ids": [g["id"] for g in gt], "dt_matches": dt_m, "gt_matches": gt_m, "dt_scores": [d["score"] for d in dt], "gt_ignore": gt_ig, "dt_ignore": dt_ig, } def accumulate(self): """Accumulate per image evaluation results and store the result in self.eval. """ if not self.eval_imgs: print("Warning: Please run evaluate first.") if self.params.use_cats: cat_ids = self.params.cat_ids else: cat_ids = [-1] num_thrs = len(self.params.iou_thrs) num_recalls = len(self.params.rec_thrs) num_cats = len(cat_ids) num_area_rngs = len(self.params.area_rng) num_imgs = len(self.params.img_ids) # -1 for absent categories precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs)) recall = -np.ones((num_thrs, num_cats, num_area_rngs)) # Initialize dt_pointers dt_pointers = {} for cat_idx in range(num_cats): dt_pointers[cat_idx] = {} for area_idx in range(num_area_rngs): dt_pointers[cat_idx][area_idx] = {} # Per category evaluation for cat_idx in range(num_cats): Nk = cat_idx * num_area_rngs * num_imgs for area_idx in range(num_area_rngs): Na = area_idx * num_imgs E = [self.eval_imgs[Nk + Na + img_idx] for img_idx in range(num_imgs)] # Remove elements which are None E = [e for e in E if e is not None] if len(E) == 0: continue # Append all scores: shape (N,) dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0) dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0) dt_idx = np.argsort(-dt_scores, kind="mergesort") dt_scores = dt_scores[dt_idx] dt_ids = dt_ids[dt_idx] dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx] dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx] gt_ig = np.concatenate([e["gt_ignore"] for e in E]) # num gt anns to consider num_gt = np.count_nonzero(gt_ig == 0) if num_gt == 0: continue tps = np.logical_and(dt_m, np.logical_not(dt_ig)) fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig)) tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float) dt_pointers[cat_idx][area_idx] = { "dt_ids": dt_ids, "tps": tps, "fps": fps, } for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) num_tp = len(tp) rc = tp / num_gt if num_tp: recall[iou_thr_idx, cat_idx, area_idx] = rc[-1] else: recall[iou_thr_idx, cat_idx, area_idx] = 0 # np.spacing(1) ~= eps pr = tp / (fp + tp + np.spacing(1)) pr = pr.tolist() # Replace each precision value with the maximum precision # value to the right of that recall level. This ensures # that the calculated AP value will be less suspectable # to small variations in the ranking. for i in range(num_tp - 1, 0, -1): if pr[i] > pr[i - 1]: pr[i - 1] = pr[i] rec_thrs_insert_idx = np.searchsorted(rc, self.params.rec_thrs, side="left") pr_at_recall = [0.0] * num_recalls try: for _idx, pr_idx in enumerate(rec_thrs_insert_idx): pr_at_recall[_idx] = pr[pr_idx] except Exception: pass precision[iou_thr_idx, :, cat_idx, area_idx] = np.array(pr_at_recall) self.eval = { "params": self.params, "counts": [num_thrs, num_recalls, num_cats, num_area_rngs], "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "precision": precision, "recall": recall, "dt_pointers": dt_pointers, } def _summarize(self, summary_type, iou_thr=None, area_rng="all", freq_group_idx=None): aidx = [idx for idx, _area_rng in enumerate(self.params.area_rng_lbl) if _area_rng == area_rng] if summary_type == "ap": s = self.eval["precision"] if iou_thr is not None: tidx = np.where(iou_thr == self.params.iou_thrs)[0] s = s[tidx] if freq_group_idx is not None: s = s[:, :, self.freq_groups[freq_group_idx], aidx] else: s = s[:, :, :, aidx] else: s = self.eval["recall"] if iou_thr is not None: tidx = np.where(iou_thr == self.params.iou_thrs)[0] s = s[tidx] s = s[:, :, aidx] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) return mean_s def summarize(self): """Compute and display summary metrics for evaluation results.""" if not self.eval: raise RuntimeError("Please run accumulate() first.") max_dets = self.params.max_dets self.results["AP"] = self._summarize("ap") self.results["AP50"] = self._summarize("ap", iou_thr=0.50) self.results["AP75"] = self._summarize("ap", iou_thr=0.75) self.results["APs"] = self._summarize("ap", area_rng="small") self.results["APm"] = self._summarize("ap", area_rng="medium") self.results["APl"] = self._summarize("ap", area_rng="large") self.results["APr"] = self._summarize("ap", freq_group_idx=0) self.results["APc"] = self._summarize("ap", freq_group_idx=1) self.results["APf"] = self._summarize("ap", freq_group_idx=2) self.stats = np.zeros((9,)) self.stats[0] = self._summarize("ap") self.stats[1] = self._summarize("ap", iou_thr=0.50) self.stats[2] = self._summarize("ap", iou_thr=0.75) self.stats[3] = self._summarize("ap", area_rng="small") self.stats[4] = self._summarize("ap", area_rng="medium") self.stats[5] = self._summarize("ap", area_rng="large") self.stats[6] = self._summarize("ap", freq_group_idx=0) self.stats[7] = self._summarize("ap", freq_group_idx=1) self.stats[8] = self._summarize("ap", freq_group_idx=2) key = "AR@{}".format(max_dets) self.results[key] = self._summarize("ar") for area_rng in ["small", "medium", "large"]: key = "AR{}@{}".format(area_rng[0], max_dets) self.results[key] = self._summarize("ar", area_rng=area_rng) self.print_results() def run(self): """Wrapper function which calculates the results.""" self.evaluate() self.accumulate() self.summarize() def print_results(self): template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}" for key, value in self.results.items(): max_dets = self.params.max_dets if "AP" in key: title = "Average Precision" _type = "(AP)" else: title = "Average Recall" _type = "(AR)" if len(key) > 2 and key[2].isdigit(): iou_thr = float(key[2:]) / 100 iou = "{:0.2f}".format(iou_thr) else: iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0], self.params.iou_thrs[-1]) if len(key) > 2 and key[2] in ["r", "c", "f"]: cat_group_name = key[2] else: cat_group_name = "all" if len(key) > 2 and key[2] in ["s", "m", "l"]: area_rng = key[2] else: area_rng = "all" print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value)) def get_results(self): if not self.results: print("Warning: results is empty. Call run().") return self.results ################################################################# # end of straight copy from lvis, just fixing constructor ################################################################# class LvisEvaluator(object): def __init__(self, lvis_gt, iou_types): assert isinstance(iou_types, (list, tuple)) # lvis_gt = copy.deepcopy(lvis_gt) self.lvis_gt = lvis_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = LVISEval(lvis_gt, iou_type=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) lvis_dt = LVISResults(self.lvis_gt, results) lvis_eval = self.coco_eval[iou_type] lvis_eval.lvis_dt = lvis_dt lvis_eval.params.img_ids = list(img_ids) lvis_eval.evaluate() eval_imgs = lvis_eval.eval_imgs eval_imgs = np.asarray(eval_imgs).reshape( len(lvis_eval.params.cat_ids), len(lvis_eval.params.area_rng), len(lvis_eval.params.img_ids) ) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_lvis_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def accumulate(self): for lvis_eval in self.coco_eval.values(): lvis_eval.accumulate() def summarize(self): for iou_type, lvis_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) lvis_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_lvis_detection(predictions) elif iou_type == "segm": return self.prepare_for_lvis_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_lvis_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_lvis_detection(self, predictions): lvis_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return lvis_results def prepare_for_lvis_segmentation(self, predictions): lvis_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return lvis_results def _merge_lists(listA, listB, maxN, key): result = [] indA, indB = 0, 0 while (indA < len(listA) or indB < len(listB)) and len(result) < maxN: if (indB < len(listB)) and (indA >= len(listA) or key(listA[indA]) < key(listB[indB])): result.append(listB[indB]) indB += 1 else: result.append(listA[indA]) indA += 1 return result # Adapted from https://github.com/achalddave/large-vocab-devil/blob/9aaddc15b00e6e0d370b16743233e40d973cd53f/scripts/evaluate_ap_fixed.py class LvisEvaluatorFixedAP(object): def __init__(self, gt: LVIS, topk=10000, fixed_ap=True): self.results = [] self.by_cat = {} self.gt = gt self.topk = topk self.fixed_ap = fixed_ap def update(self, predictions): cur_results = self.prepare(predictions) if self.fixed_ap: by_cat = defaultdict(list) for ann in cur_results: by_cat[ann["category_id"]].append(ann) for cat, cat_anns in by_cat.items(): if cat not in self.by_cat: self.by_cat[cat] = [] cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk] self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"]) else: by_id = defaultdict(list) for ann in cur_results: by_id[ann["image_id"]].append(ann) for id_anns in by_id.values(): self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300]) def synchronize_between_processes(self): if self.fixed_ap: all_cats = dist.all_gather(self.by_cat) self.by_cat = defaultdict(list) for cats in all_cats: for cat, cat_anns in cats.items(): self.by_cat[cat].extend(cat_anns) else: self.results = sum(dist.all_gather(self.results), []) def prepare(self, predictions): lvis_results = [] for original_id, prediction in predictions: if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return lvis_results def summarize(self): if not dist.is_main_process(): return if self.fixed_ap: self._summarize_fixed() else: self._summarize_standard() def _summarize_standard(self): results = LVISResults(self.gt, self.results) lvis_eval = LVISEval(self.gt, results, iou_type="bbox") lvis_eval.run() lvis_eval.print_results() def _summarize_fixed(self): results = [] missing_dets_cats = set() for cat, cat_anns in self.by_cat.items(): if len(cat_anns) < self.topk: missing_dets_cats.add(cat) results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]) if missing_dets_cats: print( f"\n===\n" f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n" f"Outputting {self.topk} detections for each class will improve AP further.\n" f"If using detectron2, please use the lvdevil/infer_topk.py script to " f"output a results file with {self.topk} detections for each class.\n" f"===" ) results = LVISResults(self.gt, results, max_dets=-1) lvis_eval = LVISEval(self.gt, results, iou_type="bbox") params = lvis_eval.params params.max_dets = -1 # No limit on detections per image. lvis_eval.run() lvis_eval.print_results() metrics = {k: v for k, v in lvis_eval.results.items() if k.startswith("AP")} print("copypaste: %s,%s", ",".join(map(str, metrics.keys())), "path") class LvisDumper(object): def __init__(self, topk=10000, fixed_ap=True, out_path="lvis_eval"): self.results = [] self.by_cat = {} self.topk = topk self.fixed_ap = fixed_ap self.out_path = out_path if dist.is_main_process(): if not os.path.exists(self.out_path): os.mkdir(self.out_path) def update(self, predictions): cur_results = self.prepare(predictions) if self.fixed_ap: by_cat = defaultdict(list) for ann in cur_results: by_cat[ann["category_id"]].append(ann) for cat, cat_anns in by_cat.items(): if cat not in self.by_cat: self.by_cat[cat] = [] cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk] self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"]) else: by_id = defaultdict(list) for ann in cur_results: by_id[ann["image_id"]].append(ann) for id_anns in by_id.values(): self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300]) def synchronize_between_processes(self): if self.fixed_ap: all_cats = dist.all_gather(self.by_cat) self.by_cat = defaultdict(list) for cats in all_cats: for cat, cat_anns in cats.items(): self.by_cat[cat].extend(cat_anns) else: self.results = sum(dist.all_gather(self.results), []) def prepare(self, predictions): lvis_results = [] for original_id, prediction in predictions: if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() lvis_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return lvis_results def summarize(self): if not dist.is_main_process(): return if self.fixed_ap: self._summarize_fixed() else: self._summarize_standard() def _summarize_standard(self): json_path = os.path.join(self.out_path, "results.json") print("dumping to ", json_path) with open(json_path, "w") as f: json.dump(self.results, f) print("dumped") def _summarize_fixed(self): results = [] missing_dets_cats = set() for cat, cat_anns in self.by_cat.items(): if len(cat_anns) < self.topk: missing_dets_cats.add(cat) results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]) if missing_dets_cats: print( f"\n===\n" f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n" f"Outputting {self.topk} detections for each class will improve AP further.\n" f"If using detectron2, please use the lvdevil/infer_topk.py script to " f"output a results file with {self.topk} detections for each class.\n" f"===" ) json_path = os.path.join(self.out_path, "results.json") print("dumping to ", json_path) with open(json_path, "w") as f: json.dump(results, f) print("dumped") def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def create_common_lvis_eval(lvis_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) lvis_eval.eval_imgs = eval_imgs lvis_eval.params.img_ids = img_ids
[ "torch.stack" ]
1.7.0
rstrudel/mdetr
177724cc60c7d63628dd14a5f26b21ea2cea45e3
1.7
import torch from torch import nn from .operation import Operation class Conv2d(Operation): """ module.weight: c_out x c_in x k_h x k_w module.bias: c_out x 1 Argument shapes in_data: n x (c_in)(kernel_size) x out_size out_grads: n x c_out x out_size kernel_size = (k_h)(k_w) out_size = output feature map size """ @staticmethod def batch_grads_weight( module: nn.Module, in_data: torch.Tensor, out_grads: torch.Tensor ): grads = torch.bmm( out_grads, in_data.transpose(2, 1) ) # n x c_out x (c_in)(kernel_size) return grads.view( -1, *module.weight.size() ) # n x c_out x c_in x k_h x k_w @staticmethod def batch_grads_bias(module: nn.Module, out_grads: torch.tensor): return out_grads.sum(axis=2) # n x c_out @staticmethod def cov_diag_weight(module, in_data, out_grads): grads = torch.bmm( out_grads, in_data.transpose(2, 1) ) # n x c_out x (c_in)(kernel_size) rst = grads.mul(grads).sum(dim=0) # c_out x (c_in)(kernel_size) return rst.view_as(module.weight) # c_out x c_in x k_h x k_w @staticmethod def cov_diag_bias(module, out_grads): grads = out_grads.sum(axis=2) # n x c_out return grads.mul(grads).sum(axis=0) # c_out x 1 @staticmethod def cov_kron_A(module, in_data): m = in_data.transpose(0, 1).flatten( start_dim=1 ) # (c_in)(kernel_size) x n(out_size) return torch.matmul( m, m.T ) # (c_in)(kernel_size) x (c_in)(kernel_size) @staticmethod def cov_kron_B(module, out_grads): out_size = out_grads.shape[-1] m = out_grads.transpose(0, 1).flatten(start_dim=1) # c_out x n(out_size) return torch.matmul(m, m.T).div(out_size) # c_out x c_out @staticmethod def gram_A(module, in_data1, in_data2): # n x (c_in)(kernel_size)(out_size) m1 = in_data1.flatten(start_dim=1) m2 = in_data2.flatten(start_dim=1) return torch.matmul(m1, m2.T) # n x n @staticmethod def gram_B(module, out_grads1, out_grads2): out_size = out_grads1.shape[-1] # n x (c_out)(out_size) m1 = out_grads1.flatten(start_dim=1) m2 = out_grads2.flatten(start_dim=1) return torch.matmul(m1, m2.T).div(out_size) # n x n
[ "torch.matmul" ]
1.7.0
rioyokotalab/asdfghjkl
f435c1e2527162fb07512b4ce5058460aab238b9
1.6
from argparse import ArgumentParser import torch from lasaft.source_separation.conditioned.cunet.dcun_base import Dense_CUNet, Dense_CUNet_Framework from lasaft.source_separation.sub_modules.control_models import pocm_control_model, dense_control_block from lasaft.utils.PoCM_utils import Pocm_Matmul, Pocm_naive class DenseCUNet_GPoCM(Dense_CUNet): def __init__(self, n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, mk_block_f, mk_ds_f, mk_us_f, first_conv_activation, last_activation, t_down_layers, f_down_layers, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, condition_to, control_type, control_n_layer, pocm_type, pocm_norm ): super(DenseCUNet_GPoCM, self).__init__( n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, mk_block_f, mk_ds_f, mk_us_f, first_conv_activation, last_activation, t_down_layers, f_down_layers, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, condition_to ) # select PoCM implementation: # both yield the same outputs, but 'matmul' is faster with gpus since it does not use loops. assert pocm_type in ['naive', 'matmul'] self.pocm = Pocm_naive if pocm_type == 'naive' else Pocm_Matmul # Select normalization methods for PoCM assert pocm_norm in [None, 'batch_norm'] # Make condition generator if control_type == "dense": self.condition_generator = pocm_control_model( dense_control_block(embedding_dim, control_n_layer), n_blocks, internal_channels, pocm_to=condition_to, pocm_norm=pocm_norm ) else: raise NotImplementedError self.activation = self.last_conv[-1] def forward(self, input_spec, input_condition): condition_embedding = self.embedding(input_condition) gammas, betas = self.condition_generator(condition_embedding) x = self.first_conv(input_spec) encoding_outputs = [] gammas_encoder, gammas_middle, gammas_decoder = gammas betas_encoder, betas_middle, betas_decoder = betas for i in range(self.n): x = self.encoders[i](x) if self.is_encoder_conditioned: g = self.pocm(x, gammas_encoder[i], betas_encoder[i]).sigmoid() x = g * x encoding_outputs.append(x) x = self.downsamplings[i](x) x = self.mid_block(x) if self.is_middle_conditioned: g = self.pocm(x, gammas_middle, betas_middle).sigmoid() x = g * x for i in range(self.n): x = self.upsamplings[i](x) x = torch.cat((x, encoding_outputs[-i - 1]), 1) x = self.decoders[i](x) if self.is_decoder_conditioned: g = self.pocm(x, gammas_decoder[i], betas_decoder[i]).sigmoid() x = g * x return self.last_conv(x) class DenseCUNet_GPoCM_Framework(Dense_CUNet_Framework): def __init__(self, n_fft, hop_length, num_frame, spec_type, spec_est_mode, conditional_spec2spec, optimizer, lr, dev_mode, train_loss, val_loss ): super(DenseCUNet_GPoCM_Framework, self).__init__( n_fft, hop_length, num_frame, spec_type, spec_est_mode, conditional_spec2spec, optimizer, lr, dev_mode, train_loss, val_loss ) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--control_n_layer', type=int, default=4) parser.add_argument('--control_type', type=str, default='dense') parser.add_argument('--pocm_type', type=str, default='matmul') parser.add_argument('--pocm_norm', type=str, default='batch_norm') return Dense_CUNet_Framework.add_model_specific_args(parser)
[ "torch.cat" ]
1.6.0
alswhdgus10/Conditioned-Source-Separation-LaSAFT
f8d8de82391fa04622bbe93e232bb627a9367feb
1.4
from typing import Optional, List, Tuple, Callable, Union, Dict, Type, Any from functools import partial import gym import torch as th import torch.nn as nn import numpy as np from stable_baselines3.common.policies import (BasePolicy, register_policy, MlpExtractor, create_sde_features_extractor, NatureCNN, BaseFeaturesExtractor, FlattenExtractor) from stable_baselines3.common.distributions import (make_proba_distribution, Distribution, DiagGaussianDistribution, CategoricalDistribution, MultiCategoricalDistribution, BernoulliDistribution, StateDependentNoiseDistribution) class PPOPolicy(BasePolicy): """ Policy class (with both actor and critic) for A2C and derivates (PPO). :param observation_space: (gym.spaces.Space) Observation space :param action_space: (gym.spaces.Space) Action space :param lr_schedule: (Callable) Learning rate schedule (could be constant) :param net_arch: ([int or dict]) The specification of the policy and value networks. :param device: (str or th.device) Device on which the code should run. :param activation_fn: (Type[nn.Module]) Activation function :param ortho_init: (bool) Whether to use or not orthogonal initialization :param use_sde: (bool) Whether to use State Dependent Exploration or not :param log_std_init: (float) Initial value for the log standard deviation :param full_std: (bool) Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: ([int]) Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: (bool) Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: (bool) Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: (Type[BaseFeaturesExtractor]) Features extractor to use. :param features_extractor_kwargs: (Optional[Dict[str, Any]]) Keyword arguments to pass to the feature extractor. :param normalize_images: (bool) Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: (Type[th.optim.Optimizer]) The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: (Optional[Dict[str, Any]]) Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__(self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Callable, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, device: Union[th.device, str] = 'auto', activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None): if optimizer_kwargs is None: optimizer_kwargs = {} # Small values to avoid NaN in ADAM optimizer if optimizer_class == th.optim.Adam: optimizer_kwargs['eps'] = 1e-5 super(PPOPolicy, self).__init__(observation_space, action_space, device, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, squash_output=squash_output) # Default network architecture, from stable-baselines if net_arch is None: if features_extractor_class == FlattenExtractor: net_arch = [dict(pi=[64, 64], vf=[64, 64])] else: net_arch = [] self.net_arch = net_arch self.activation_fn = activation_fn self.ortho_init = ortho_init self.features_extractor = features_extractor_class(self.observation_space, **self.features_extractor_kwargs) self.features_dim = self.features_extractor.features_dim self.normalize_images = normalize_images self.log_std_init = log_std_init dist_kwargs = None # Keyword arguments for gSDE distribution if use_sde: dist_kwargs = { 'full_std': full_std, 'squash_output': squash_output, 'use_expln': use_expln, 'learn_features': sde_net_arch is not None } self.sde_features_extractor = None self.sde_net_arch = sde_net_arch self.use_sde = use_sde self.dist_kwargs = dist_kwargs # Action distribution self.action_dist = make_proba_distribution(action_space, use_sde=use_sde, dist_kwargs=dist_kwargs) self._build(lr_schedule) def _get_data(self) -> Dict[str, Any]: data = super()._get_data() data.update(dict( net_arch=self.net_arch, activation_fn=self.activation_fn, use_sde=self.use_sde, log_std_init=self.log_std_init, squash_output=self.dist_kwargs['squash_output'] if self.dist_kwargs else None, full_std=self.dist_kwargs['full_std'] if self.dist_kwargs else None, sde_net_arch=self.dist_kwargs['sde_net_arch'] if self.dist_kwargs else None, use_expln=self.dist_kwargs['use_expln'] if self.dist_kwargs else None, lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone ortho_init=self.ortho_init, optimizer_class=self.optimizer_class, optimizer_kwargs=self.optimizer_kwargs, features_extractor_class=self.features_extractor_class, features_extractor_kwargs=self.features_extractor_kwargs )) return data def reset_noise(self, n_envs: int = 1) -> None: """ Sample new weights for the exploration matrix. :param n_envs: (int) """ assert isinstance(self.action_dist, StateDependentNoiseDistribution), 'reset_noise() is only available when using gSDE' self.action_dist.sample_weights(self.log_std, batch_size=n_envs) def _build(self, lr_schedule: Callable) -> None: """ Create the networks and the optimizer. :param lr_schedule: (Callable) Learning rate schedule lr_schedule(1) is the initial learning rate """ self.mlp_extractor = MlpExtractor(self.features_dim, net_arch=self.net_arch, activation_fn=self.activation_fn, device=self.device) latent_dim_pi = self.mlp_extractor.latent_dim_pi # Separate feature extractor for gSDE if self.sde_net_arch is not None: self.sde_features_extractor, latent_sde_dim = create_sde_features_extractor(self.features_dim, self.sde_net_arch, self.activation_fn) if isinstance(self.action_dist, DiagGaussianDistribution): self.action_net, self.log_std = self.action_dist.proba_distribution_net(latent_dim=latent_dim_pi, log_std_init=self.log_std_init) elif isinstance(self.action_dist, StateDependentNoiseDistribution): latent_sde_dim = latent_dim_pi if self.sde_net_arch is None else latent_sde_dim self.action_net, self.log_std = self.action_dist.proba_distribution_net(latent_dim=latent_dim_pi, latent_sde_dim=latent_sde_dim, log_std_init=self.log_std_init) elif isinstance(self.action_dist, CategoricalDistribution): self.action_net = self.action_dist.proba_distribution_net(latent_dim=latent_dim_pi) elif isinstance(self.action_dist, MultiCategoricalDistribution): self.action_net = self.action_dist.proba_distribution_net(latent_dim=latent_dim_pi) elif isinstance(self.action_dist, BernoulliDistribution): self.action_net = self.action_dist.proba_distribution_net(latent_dim=latent_dim_pi) self.value_net = nn.Linear(self.mlp_extractor.latent_dim_vf, 1) # Init weights: use orthogonal initialization # with small initial weight for the output if self.ortho_init: # TODO: check for features_extractor for module in [self.features_extractor, self.mlp_extractor, self.action_net, self.value_net]: # Values from stable-baselines, TODO: check why gain = { self.features_extractor: np.sqrt(2), self.mlp_extractor: np.sqrt(2), self.action_net: 0.01, self.value_net: 1 }[module] module.apply(partial(self.init_weights, gain=gain)) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class(self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs) def forward(self, obs: th.Tensor, deterministic: bool = False) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: (th.Tensor) Observation :param deterministic: (bool) Whether to sample or use deterministic actions :return: (Tuple[th.Tensor, th.Tensor, th.Tensor]) action, value and log probability of the action """ latent_pi, latent_vf, latent_sde = self._get_latent(obs) # Evaluate the values for the given observations values = self.value_net(latent_vf) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde=latent_sde) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) return actions, values, log_prob def _get_latent(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Get the latent code (i.e., activations of the last layer of each network) for the different networks. :param obs: (th.Tensor) Observation :return: (Tuple[th.Tensor, th.Tensor, th.Tensor]) Latent codes for the actor, the value function and for gSDE function """ # Preprocess the observation if needed features = self.extract_features(obs) latent_pi, latent_vf = self.mlp_extractor(features) # Features for sde latent_sde = latent_pi if self.sde_features_extractor is not None: latent_sde = self.sde_features_extractor(features) return latent_pi, latent_vf, latent_sde def _get_action_dist_from_latent(self, latent_pi: th.Tensor, latent_sde: Optional[th.Tensor] = None) -> Distribution: """ Retrieve action distribution given the latent codes. :param latent_pi: (th.Tensor) Latent code for the actor :param latent_sde: (Optional[th.Tensor]) Latent code for the gSDE exploration function :return: (Distribution) Action distribution """ mean_actions = self.action_net(latent_pi) if isinstance(self.action_dist, DiagGaussianDistribution): return self.action_dist.proba_distribution(mean_actions, self.log_std) elif isinstance(self.action_dist, CategoricalDistribution): # Here mean_actions are the logits before the softmax return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, MultiCategoricalDistribution): # Here mean_actions are the flattened logits return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, BernoulliDistribution): # Here mean_actions are the logits (before rounding to get the binary actions) return self.action_dist.proba_distribution(action_logits=mean_actions) elif isinstance(self.action_dist, StateDependentNoiseDistribution): return self.action_dist.proba_distribution(mean_actions, self.log_std, latent_sde) else: raise ValueError('Invalid action distribution') def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor: """ Get the action according to the policy for a given observation. :param observation: (th.Tensor) :param deterministic: (bool) Whether to use stochastic or deterministic actions :return: (th.Tensor) Taken action according to the policy """ latent_pi, _, latent_sde = self._get_latent(observation) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde) return distribution.get_actions(deterministic=deterministic) def evaluate_actions(self, obs: th.Tensor, actions: th.Tensor) -> Tuple[th.Tensor, th.Tensor, th.Tensor]: """ Evaluate actions according to the current policy, given the observations. :param obs: (th.Tensor) :param actions: (th.Tensor) :return: (th.Tensor, th.Tensor, th.Tensor) estimated value, log likelihood of taking those actions and entropy of the action distribution. """ latent_pi, latent_vf, latent_sde = self._get_latent(obs) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) return values, log_prob, distribution.entropy() MlpPolicy = PPOPolicy class CnnPolicy(PPOPolicy): """ CnnPolicy class (with both actor and critic) for A2C and derivates (PPO). :param observation_space: (gym.spaces.Space) Observation space :param action_space: (gym.spaces.Space) Action space :param lr_schedule: (Callable) Learning rate schedule (could be constant) :param net_arch: ([int or dict]) The specification of the policy and value networks. :param device: (str or th.device) Device on which the code should run. :param activation_fn: (Type[nn.Module]) Activation function :param ortho_init: (bool) Whether to use or not orthogonal initialization :param use_sde: (bool) Whether to use State Dependent Exploration or not :param log_std_init: (float) Initial value for the log standard deviation :param full_std: (bool) Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: ([int]) Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: (bool) Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: (bool) Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: (Type[BaseFeaturesExtractor]) Features extractor to use. :param features_extractor_kwargs: (Optional[Dict[str, Any]]) Keyword arguments to pass to the feature extractor. :param normalize_images: (bool) Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: (Type[th.optim.Optimizer]) The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: (Optional[Dict[str, Any]]) Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__(self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Callable, net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, device: Union[th.device, str] = 'auto', activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None): super(CnnPolicy, self).__init__(observation_space, action_space, lr_schedule, net_arch, device, activation_fn, ortho_init, use_sde, log_std_init, full_std, sde_net_arch, use_expln, squash_output, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs) register_policy("MlpPolicy", MlpPolicy) register_policy("CnnPolicy", CnnPolicy)
[ "torch.nn.Linear" ]
1.4.0
rolandgvc/stable-baselines3
805a87ed8b340c6a1a2e674468d5769a8cda38b0
1.8
import torch import random import argparse import numpy as np import ipdb as pdb import os, pwd, yaml import pytorch_lightning as pl from torch.utils.data import DataLoader, random_split import warnings warnings.filterwarnings('ignore') from train_spline import pretrain_spline from leap.tools.utils import load_yaml from leap.datasets.kitti import KittiMasksTwoSample from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint def main(args): assert args.exp is not None, "FATAL: "+__file__+": You must specify an exp config file (e.g., *.yaml)" current_user = pwd.getpwuid(os.getuid()).pw_name script_dir = os.path.dirname(__file__) rel_path = os.path.join('../leap/configs', '%s.yaml'%args.exp) abs_file_path = os.path.join(script_dir, rel_path) cfg = load_yaml(abs_file_path) print("######### Configuration #########") print(yaml.dump(cfg, default_flow_style=False)) print("#################################") pl.seed_everything(args.seed) data = KittiMasksTwoSample(path = os.path.join(cfg['ROOT'], cfg['DATASET']), transform = cfg['TRANSFORM'], max_delta_t = cfg['DT']) num_validation_samples = cfg['VAE']['N_VAL_SAMPLES'] train_data, val_data = random_split(data, [len(data)-num_validation_samples, num_validation_samples]) # Disable augmentation in validation set val_data.dataset.transform = None train_loader = DataLoader(train_data, batch_size=cfg['VAE']['TRAIN_BS'], pin_memory=cfg['VAE']['PIN'], num_workers=cfg['VAE']['CPU'], drop_last=True, shuffle=True) val_loader = DataLoader(val_data, batch_size=cfg['VAE']['VAL_BS'], pin_memory=cfg['VAE']['PIN'], num_workers=cfg['VAE']['CPU'], shuffle=False) if cfg['MODEL'] == "BetaVAE": from leap.baselines.BetaVAE.model import BetaKittiConv model = BetaKittiConv(nc=cfg['VAE']['NC'], z_dim=cfg['VAE']['LATENT_DIM'], hidden_dim=cfg['VAE']['ENC']['HIDDEN_DIM'], beta=cfg['BetaVAE']['BETA'], lr=cfg['BetaVAE']['LR'], correlation=cfg['MCC']['CORR'], decoder_dist=cfg['VAE']['DEC']['DIST']) elif cfg['MODEL'] == "FactorVAE": from leap.baselines.FactorVAE.model import FactorVAEKitti model = FactorVAEKitti(nc=cfg['VAE']['NC'], z_dim=cfg['VAE']['LATENT_DIM'], hidden_dim=cfg['VAE']['ENC']['HIDDEN_DIM'], gamma=cfg['FactorVAE']['GAMMA'], lr_VAE=cfg['FactorVAE']['LR_VAE'], lr_D=cfg['FactorVAE']['LR_D'], correlation=cfg['MCC']['CORR'], decoder_dist=cfg['VAE']['DEC']['DIST']) log_dir = os.path.join(cfg["LOG"], current_user, args.exp) checkpoint_callback = ModelCheckpoint(monitor='val_mcc', save_top_k=1, mode='max') trainer = pl.Trainer(default_root_dir=log_dir, gpus=cfg['VAE']['GPU'], val_check_interval = cfg['MCC']['FREQ'], max_epochs=cfg['VAE']['EPOCHS'], deterministic=True, callbacks=[checkpoint_callback]) # Train the model trainer.fit(model, train_loader, val_loader) if __name__ == "__main__": argparser = argparse.ArgumentParser(description=__doc__) argparser.add_argument( '-e', '--exp', type=str ) argparser.add_argument( '-s', '--seed', type=int, default=770 ) args = argparser.parse_args() main(args)
[ "torch.utils.data.DataLoader" ]
1.8.1
weirayao/leap
8d10b8413d02d3be49d5c02a13a0aa60a741d8da
1.5
import inspect import logging from abc import abstractmethod from typing import Dict, Generic, List, Sequence, Union import torch from torch.nn import Parameter, ParameterList import flair from flair.data import DT log = logging.getLogger("flair") class Embeddings(torch.nn.Module, Generic[DT]): """Abstract base class for all embeddings. Every new type of embedding must implement these methods.""" def __init__(self): """Set some attributes that would otherwise result in errors. Overwrite these in your embedding class.""" if not hasattr(self, "name"): self.name: str = "unnamed_embedding" if not hasattr(self, "static_embeddings"): # if the embeddings for a sentence are the same in each epoch, set this to True for improved efficiency self.static_embeddings = False super().__init__() @property @abstractmethod def embedding_length(self) -> int: """Returns the length of the embedding vector.""" raise NotImplementedError @property @abstractmethod def embedding_type(self) -> str: raise NotImplementedError def embed(self, data_points: Union[DT, List[DT]]) -> List[DT]: """Add embeddings to all words in a list of sentences. If embeddings are already added, updates only if embeddings are non-static.""" # if only one sentence is passed, convert to list of sentence if not isinstance(data_points, list): data_points = [data_points] if not self._everything_embedded(data_points) or not self.static_embeddings: self._add_embeddings_internal(data_points) return data_points def _everything_embedded(self, data_points: Sequence[DT]) -> bool: for data_point in data_points: if self.name not in data_point._embeddings.keys(): return False return True @abstractmethod def _add_embeddings_internal(self, sentences: List[DT]): """Private method for adding embeddings to all words in a list of sentences.""" pass def get_names(self) -> List[str]: """Returns a list of embedding names. In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). Then, the list contains the names of all embeddings in the stack.""" return [self.name] def get_named_embeddings_dict(self) -> Dict: return {self.name: self} @staticmethod def get_instance_parameters(locals: dict) -> dict: class_definition = locals.get("__class__") instance_parameter_names = set(inspect.signature(class_definition.__init__).parameters) # type: ignore instance_parameter_names.remove("self") instance_parameter_names.add("__class__") instance_parameters = { class_attribute: attribute_value for class_attribute, attribute_value in locals.items() if class_attribute in instance_parameter_names } return instance_parameters class ScalarMix(torch.nn.Module): """ Computes a parameterised scalar mixture of N tensors. This method was proposed by Liu et al. (2019) in the paper: "Linguistic Knowledge and Transferability of Contextual Representations" (https://arxiv.org/abs/1903.08855) The implementation is copied and slightly modified from the allennlp repository and is licensed under Apache 2.0. It can be found under: https://github.com/allenai/allennlp/blob/master/allennlp/modules/scalar_mix.py. """ def __init__(self, mixture_size: int, trainable: bool = False) -> None: """ Inits scalar mix implementation. ``mixture = gamma * sum(s_k * tensor_k)`` where ``s = softmax(w)``, with ``w`` and ``gamma`` scalar parameters. :param mixture_size: size of mixtures (usually the number of layers) """ super(ScalarMix, self).__init__() self.mixture_size = mixture_size initial_scalar_parameters = [0.0] * mixture_size self.scalar_parameters = ParameterList( [ Parameter( torch.tensor( [initial_scalar_parameters[i]], dtype=torch.float, device=flair.device, ), requires_grad=trainable, ) for i in range(mixture_size) ] ) self.gamma = Parameter( torch.tensor( [1.0], dtype=torch.float, device=flair.device, ), requires_grad=trainable, ) def forward(self, tensors: List[torch.Tensor]) -> torch.Tensor: """ Computes a weighted average of the ``tensors``. The input tensors an be any shape with at least two dimensions, but must all be the same shape. :param tensors: list of input tensors :return: computed weighted average of input tensors """ if len(tensors) != self.mixture_size: log.error( "{} tensors were passed, but the module was initialized to mix {} tensors.".format( len(tensors), self.mixture_size ) ) normed_weights = torch.nn.functional.softmax( torch.cat([parameter for parameter in self.scalar_parameters]), dim=0 ) normed_weights = torch.split(normed_weights, split_size_or_sections=1) pieces = [] for weight, tensor in zip(normed_weights, tensors): pieces.append(weight * tensor) return self.gamma * sum(pieces)
[ "torch.split", "torch.cat", "torch.tensor" ]
1.5.0
lukasgarbas/flair
041c85cf3d45940dccd453fc350767c1c85aad49
1.2
from overrides import overrides import torch from torch.nn import Linear from allennlp.common.checks import ConfigurationError from allennlp.modules.matrix_attention.legacy_matrix_attention import LegacyMatrixAttention from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder from allennlp.modules.similarity_functions import DotProductSimilarity, SimilarityFunction from allennlp.modules.similarity_functions import MultiHeadedSimilarity from allennlp.nn import util @Seq2SeqEncoder.register("intra_sentence_attention") class IntraSentenceAttentionEncoder(Seq2SeqEncoder): """ An ``IntraSentenceAttentionEncoder`` is a :class:`Seq2SeqEncoder` that merges the original word representations with an attention (for each word) over other words in the sentence. As a :class:`Seq2SeqEncoder`, the input to this module is of shape ``(batch_size, num_tokens, input_dim)``, and the output is of shape ``(batch_size, num_tokens, output_dim)``. We compute the attention using a configurable :class:`SimilarityFunction`, which could have multiple attention heads. The operation for merging the original representations with the attended representations is also configurable (e.g., you can concatenate them, add them, multiply them, etc.). Parameters ---------- input_dim : ``int`` required The dimension of the vector for each element in the input sequence; ``input_tensor.size(-1)``. projection_dim : ``int``, optional If given, we will do a linear projection of the input sequence to this dimension before performing the attention-weighted sum. similarity_function : ``SimilarityFunction``, optional The similarity function to use when computing attentions. Default is to use a dot product. num_attention_heads : ``int``, optional If this is greater than one (default is 1), we will split the input into several "heads" to compute multi-headed weighted sums. Must be used with a multi-headed similarity function, and you almost certainly want to do a projection in conjunction with the multiple heads. combination : ``str``, optional This string defines how we merge the original word representations with the result of the intra-sentence attention. This will be passed to :func:`~allennlp.nn.util.combine_tensors`; see that function for more detail on exactly how this works, but some simple examples are ``"1,2"`` for concatenation (the default), ``"1+2"`` for adding the two, or ``"2"`` for only keeping the attention representation. output_dim : ``int``, optional (default = None) The dimension of an optional output projection. """ def __init__( self, input_dim: int, projection_dim: int = None, similarity_function: SimilarityFunction = DotProductSimilarity(), num_attention_heads: int = 1, combination: str = "1,2", output_dim: int = None, ) -> None: super().__init__() self._input_dim = input_dim if projection_dim: self._projection = torch.nn.Linear(input_dim, projection_dim) else: self._projection = lambda x: x projection_dim = input_dim self._matrix_attention = LegacyMatrixAttention(similarity_function) self._num_attention_heads = num_attention_heads if isinstance(similarity_function, MultiHeadedSimilarity): if num_attention_heads == 1: raise ConfigurationError( "Similarity function has multiple heads but encoder doesn't" ) if num_attention_heads != similarity_function.num_heads: raise ConfigurationError( "Number of heads don't match between similarity function " "and encoder: %d, %d" % (num_attention_heads, similarity_function.num_heads) ) elif num_attention_heads > 1: raise ConfigurationError("Encoder has multiple heads but similarity function doesn't") self._combination = combination combined_dim = util.get_combined_dim(combination, [input_dim, projection_dim]) if output_dim: self._output_projection = Linear(combined_dim, output_dim) self._output_dim = output_dim else: self._output_projection = lambda x: x self._output_dim = combined_dim @overrides def get_input_dim(self) -> int: return self._input_dim @overrides def get_output_dim(self) -> int: return self._output_dim @overrides def is_bidirectional(self): return False @overrides def forward(self, tokens: torch.Tensor, mask: torch.Tensor): batch_size, sequence_length, _ = tokens.size() # Shape: (batch_size, sequence_length, sequence_length) similarity_matrix = self._matrix_attention(tokens, tokens) if self._num_attention_heads > 1: # In this case, the similarity matrix actually has shape # (batch_size, sequence_length, sequence_length, num_heads). To make the rest of the # logic below easier, we'll permute this to # (batch_size, sequence_length, num_heads, sequence_length). similarity_matrix = similarity_matrix.permute(0, 1, 3, 2) # Shape: (batch_size, sequence_length, [num_heads,] sequence_length) intra_sentence_attention = util.masked_softmax(similarity_matrix.contiguous(), mask) # Shape: (batch_size, sequence_length, projection_dim) output_token_representation = self._projection(tokens) if self._num_attention_heads > 1: # We need to split and permute the output representation to be # (batch_size, num_heads, sequence_length, projection_dim / num_heads), so that we can # do a proper weighted sum with `intra_sentence_attention`. shape = list(output_token_representation.size()) new_shape = shape[:-1] + [self._num_attention_heads, -1] # Shape: (batch_size, sequence_length, num_heads, projection_dim / num_heads) output_token_representation = output_token_representation.view(*new_shape) # Shape: (batch_size, num_heads, sequence_length, projection_dim / num_heads) output_token_representation = output_token_representation.permute(0, 2, 1, 3) # Shape: (batch_size, sequence_length, [num_heads,] projection_dim [/ num_heads]) attended_sentence = util.weighted_sum(output_token_representation, intra_sentence_attention) if self._num_attention_heads > 1: # Here we concatenate the weighted representation for each head. We'll accomplish this # just with a resize. # Shape: (batch_size, sequence_length, projection_dim) attended_sentence = attended_sentence.view(batch_size, sequence_length, -1) # Shape: (batch_size, sequence_length, combination_dim) combined_tensors = util.combine_tensors(self._combination, [tokens, attended_sentence]) return self._output_projection(combined_tensors)
[ "torch.nn.Linear" ]
1.2.0
mhagiwara/allennlp
a05add5293f091e9dbcaa9db0783e782d77714cf
1.2
from typing import Dict, List, Tuple, Optional from overrides import overrides import numpy import torch import torch.nn.functional as F from torch.nn import Linear from allennlp.common.checks import ConfigurationError from allennlp.common.util import END_SYMBOL, START_SYMBOL from allennlp.modules.seq2seq_decoders.seq_decoder import SeqDecoder from allennlp.data import Vocabulary from allennlp.modules import Embedding from allennlp.modules.seq2seq_decoders.decoder_net import DecoderNet from allennlp.nn import util from allennlp.nn.beam_search import BeamSearch from allennlp.training.metrics import Metric @SeqDecoder.register("auto_regressive_seq_decoder") class AutoRegressiveSeqDecoder(SeqDecoder): """ An autoregressive decoder that can be used for most seq2seq tasks. Parameters ---------- vocab : ``Vocabulary``, required Vocabulary containing source and target vocabularies. They may be under the same namespace (`tokens`) or the target tokens can have a different namespace, in which case it needs to be specified as `target_namespace`. decoder_net : ``DecoderNet``, required Module that contains implementation of neural network for decoding output elements max_decoding_steps : ``int``, required Maximum length of decoded sequences. target_embedder : ``Embedding``, required Embedder for target tokens. target_namespace : ``str``, optional (default = 'tokens') If the target side vocabulary is different from the source side's, you need to specify the target's namespace here. If not, we'll assume it is "tokens", which is also the default choice for the source side, and this might cause them to share vocabularies. beam_size : ``int``, optional (default = 4) Width of the beam for beam search. tensor_based_metric : ``Metric``, optional (default = None) A metric to track on validation data that takes raw tensors when its called. This metric must accept two arguments when called: a batched tensor of predicted token indices, and a batched tensor of gold token indices. token_based_metric : ``Metric``, optional (default = None) A metric to track on validation data that takes lists of lists of tokens as input. This metric must accept two arguments when called, both of type `List[List[str]]`. The first is a predicted sequence for each item in the batch and the second is a gold sequence for each item in the batch. scheduled_sampling_ratio : ``float`` optional (default = 0) Defines ratio between teacher forced training and real output usage. If its zero (teacher forcing only) and `decoder_net`supports parallel decoding, we get the output predictions in a single forward pass of the `decoder_net`. """ def __init__( self, vocab: Vocabulary, decoder_net: DecoderNet, max_decoding_steps: int, target_embedder: Embedding, target_namespace: str = "tokens", tie_output_embedding: bool = False, scheduled_sampling_ratio: float = 0, label_smoothing_ratio: Optional[float] = None, beam_size: int = 4, tensor_based_metric: Metric = None, token_based_metric: Metric = None, ) -> None: super().__init__(target_embedder) self._vocab = vocab # Decodes the sequence of encoded hidden states into e new sequence of hidden states. self._decoder_net = decoder_net self._max_decoding_steps = max_decoding_steps self._target_namespace = target_namespace self._label_smoothing_ratio = label_smoothing_ratio # At prediction time, we use a beam search to find the most likely sequence of target tokens. # We need the start symbol to provide as the input at the first timestep of decoding, and # end symbol as a way to indicate the end of the decoded sequence. self._start_index = self._vocab.get_token_index(START_SYMBOL, self._target_namespace) self._end_index = self._vocab.get_token_index(END_SYMBOL, self._target_namespace) self._beam_search = BeamSearch( self._end_index, max_steps=max_decoding_steps, beam_size=beam_size ) target_vocab_size = self._vocab.get_vocab_size(self._target_namespace) if self.target_embedder.get_output_dim() != self._decoder_net.target_embedding_dim: raise ConfigurationError( "Target Embedder output_dim doesn't match decoder module's input." ) # We project the hidden state from the decoder into the output vocabulary space # in order to get log probabilities of each target token, at each time step. self._output_projection_layer = Linear( self._decoder_net.get_output_dim(), target_vocab_size ) if tie_output_embedding: if self._output_projection_layer.weight.shape != self.target_embedder.weight.shape: raise ConfigurationError( "Can't tie embeddings with output linear layer, due to shape mismatch" ) self._output_projection_layer.weight = self.target_embedder.weight # These metrics will be updated during training and validation self._tensor_based_metric = tensor_based_metric self._token_based_metric = token_based_metric self._scheduled_sampling_ratio = scheduled_sampling_ratio def _forward_beam_search(self, state: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Prepare inputs for the beam search, does beam search and returns beam search results. """ batch_size = state["source_mask"].size()[0] start_predictions = state["source_mask"].new_full( (batch_size,), fill_value=self._start_index ) # shape (all_top_k_predictions): (batch_size, beam_size, num_decoding_steps) # shape (log_probabilities): (batch_size, beam_size) all_top_k_predictions, log_probabilities = self._beam_search.search( start_predictions, state, self.take_step ) output_dict = { "class_log_probabilities": log_probabilities, "predictions": all_top_k_predictions, } return output_dict def _forward_loss( self, state: Dict[str, torch.Tensor], target_tokens: Dict[str, torch.LongTensor] ) -> Dict[str, torch.Tensor]: """ Make forward pass during training or do greedy search during prediction. Notes ----- We really only use the predictions from the method to test that beam search with a beam size of 1 gives the same results. """ # shape: (batch_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (batch_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (batch_size, max_target_sequence_length) targets = target_tokens["tokens"] # Prepare embeddings for targets. They will be used as gold embeddings during decoder training # shape: (batch_size, max_target_sequence_length, embedding_dim) target_embedding = self.target_embedder(targets) # shape: (batch_size, max_target_batch_sequence_length) target_mask = util.get_text_field_mask(target_tokens) if self._scheduled_sampling_ratio == 0 and self._decoder_net.decodes_parallel: _, decoder_output = self._decoder_net( previous_state=state, previous_steps_predictions=target_embedding[:, :-1, :], encoder_outputs=encoder_outputs, source_mask=source_mask, previous_steps_mask=target_mask[:, :-1], ) # shape: (group_size, max_target_sequence_length, num_classes) logits = self._output_projection_layer(decoder_output) else: batch_size = source_mask.size()[0] _, target_sequence_length = targets.size() # The last input from the target is either padding or the end symbol. # Either way, we don't have to process it. num_decoding_steps = target_sequence_length - 1 # Initialize target predictions with the start index. # shape: (batch_size,) last_predictions = source_mask.new_full((batch_size,), fill_value=self._start_index) # shape: (steps, batch_size, target_embedding_dim) steps_embeddings = torch.Tensor([]) step_logits: List[torch.Tensor] = [] for timestep in range(num_decoding_steps): if self.training and torch.rand(1).item() < self._scheduled_sampling_ratio: # Use gold tokens at test time and at a rate of 1 - _scheduled_sampling_ratio # during training. # shape: (batch_size, steps, target_embedding_dim) state["previous_steps_predictions"] = steps_embeddings # shape: (batch_size, ) effective_last_prediction = last_predictions else: # shape: (batch_size, ) effective_last_prediction = targets[:, timestep] if timestep == 0: state["previous_steps_predictions"] = torch.Tensor([]) else: # shape: (batch_size, steps, target_embedding_dim) state["previous_steps_predictions"] = target_embedding[:, :timestep] # shape: (batch_size, num_classes) output_projections, state = self._prepare_output_projections( effective_last_prediction, state ) # list of tensors, shape: (batch_size, 1, num_classes) step_logits.append(output_projections.unsqueeze(1)) # shape (predicted_classes): (batch_size,) _, predicted_classes = torch.max(output_projections, 1) # shape (predicted_classes): (batch_size,) last_predictions = predicted_classes # shape: (batch_size, 1, target_embedding_dim) last_predictions_embeddings = self.target_embedder(last_predictions).unsqueeze(1) # This step is required, since we want to keep up two different prediction history: gold and real if steps_embeddings.shape[-1] == 0: # There is no previous steps, except for start vectors in ``last_predictions`` # shape: (group_size, 1, target_embedding_dim) steps_embeddings = last_predictions_embeddings else: # shape: (group_size, steps_count, target_embedding_dim) steps_embeddings = torch.cat([steps_embeddings, last_predictions_embeddings], 1) # shape: (batch_size, num_decoding_steps, num_classes) logits = torch.cat(step_logits, 1) # Compute loss. target_mask = util.get_text_field_mask(target_tokens) loss = self._get_loss(logits, targets, target_mask) # TODO: We will be using beam search to get predictions for validation, but if beam size in 1 # we could consider taking the last_predictions here and building step_predictions # and use that instead of running beam search again, if performance in validation is taking a hit output_dict = {"loss": loss} return output_dict def _prepare_output_projections( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Decode current state and last prediction to produce produce projections into the target space, which can then be used to get probabilities of each target token for the next step. Inputs are the same as for `take_step()`. """ # shape: (group_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (group_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (group_size, steps_count, decoder_output_dim) previous_steps_predictions = state.get("previous_steps_predictions") # shape: (batch_size, 1, target_embedding_dim) last_predictions_embeddings = self.target_embedder(last_predictions).unsqueeze(1) if previous_steps_predictions is None or previous_steps_predictions.shape[-1] == 0: # There is no previous steps, except for start vectors in ``last_predictions`` # shape: (group_size, 1, target_embedding_dim) previous_steps_predictions = last_predictions_embeddings else: # shape: (group_size, steps_count, target_embedding_dim) previous_steps_predictions = torch.cat( [previous_steps_predictions, last_predictions_embeddings], 1 ) decoder_state, decoder_output = self._decoder_net( previous_state=state, encoder_outputs=encoder_outputs, source_mask=source_mask, previous_steps_predictions=previous_steps_predictions, ) state["previous_steps_predictions"] = previous_steps_predictions # Update state with new decoder state, override previous state state.update(decoder_state) if self._decoder_net.decodes_parallel: decoder_output = decoder_output[:, -1, :] # shape: (group_size, num_classes) output_projections = self._output_projection_layer(decoder_output) return output_projections, state def _get_loss( self, logits: torch.LongTensor, targets: torch.LongTensor, target_mask: torch.LongTensor ) -> torch.Tensor: """ Compute loss. Takes logits (unnormalized outputs from the decoder) of size (batch_size, num_decoding_steps, num_classes), target indices of size (batch_size, num_decoding_steps+1) and corresponding masks of size (batch_size, num_decoding_steps+1) steps and computes cross entropy loss while taking the mask into account. The length of ``targets`` is expected to be greater than that of ``logits`` because the decoder does not need to compute the output corresponding to the last timestep of ``targets``. This method aligns the inputs appropriately to compute the loss. During training, we want the logit corresponding to timestep i to be similar to the target token from timestep i + 1. That is, the targets should be shifted by one timestep for appropriate comparison. Consider a single example where the target has 3 words, and padding is to 7 tokens. The complete sequence would correspond to <S> w1 w2 w3 <E> <P> <P> and the mask would be 1 1 1 1 1 0 0 and let the logits be l1 l2 l3 l4 l5 l6 We actually need to compare: the sequence w1 w2 w3 <E> <P> <P> with masks 1 1 1 1 0 0 against l1 l2 l3 l4 l5 l6 (where the input was) <S> w1 w2 w3 <E> <P> """ # shape: (batch_size, num_decoding_steps) relevant_targets = targets[:, 1:].contiguous() # shape: (batch_size, num_decoding_steps) relevant_mask = target_mask[:, 1:].contiguous() return util.sequence_cross_entropy_with_logits( logits, relevant_targets, relevant_mask, label_smoothing=self._label_smoothing_ratio ) def get_output_dim(self): return self._decoder_net.get_output_dim() def take_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take a decoding step. This is called by the beam search class. Parameters ---------- last_predictions : ``torch.Tensor`` A tensor of shape ``(group_size,)``, which gives the indices of the predictions during the last time step. state : ``Dict[str, torch.Tensor]`` A dictionary of tensors that contain the current state information needed to predict the next step, which includes the encoder outputs, the source mask, and the decoder hidden state and context. Each of these tensors has shape ``(group_size, *)``, where ``*`` can be any other number of dimensions. Returns ------- Tuple[torch.Tensor, Dict[str, torch.Tensor]] A tuple of ``(log_probabilities, updated_state)``, where ``log_probabilities`` is a tensor of shape ``(group_size, num_classes)`` containing the predicted log probability of each class for the next step, for each item in the group, while ``updated_state`` is a dictionary of tensors containing the encoder outputs, source mask, and updated decoder hidden state and context. Notes ----- We treat the inputs as a batch, even though ``group_size`` is not necessarily equal to ``batch_size``, since the group may contain multiple states for each source sentence in the batch. """ # shape: (group_size, num_classes) output_projections, state = self._prepare_output_projections(last_predictions, state) # shape: (group_size, num_classes) class_log_probabilities = F.log_softmax(output_projections, dim=-1) return class_log_probabilities, state @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics: Dict[str, float] = {} if not self.training: if self._tensor_based_metric is not None: all_metrics.update( self._tensor_based_metric.get_metric(reset=reset) # type: ignore ) if self._token_based_metric is not None: all_metrics.update(self._token_based_metric.get_metric(reset=reset)) # type: ignore return all_metrics @overrides def forward( self, encoder_out: Dict[str, torch.LongTensor], target_tokens: Dict[str, torch.LongTensor] = None, ) -> Dict[str, torch.Tensor]: state = encoder_out decoder_init_state = self._decoder_net.init_decoder_state(state) state.update(decoder_init_state) if target_tokens: output_dict = self._forward_loss(state, target_tokens) else: output_dict = {} if not self.training: predictions = self._forward_beam_search(state) output_dict.update(predictions) if target_tokens: if self._tensor_based_metric is not None: # shape: (batch_size, beam_size, max_sequence_length) top_k_predictions = output_dict["predictions"] # shape: (batch_size, max_predicted_sequence_length) best_predictions = top_k_predictions[:, 0, :] self._tensor_based_metric( # type: ignore best_predictions, target_tokens["tokens"] ) if self._token_based_metric is not None: output_dict = self.post_process(output_dict) predicted_tokens = output_dict["predicted_tokens"] self._token_based_metric( # type: ignore predicted_tokens, self.indices_to_tokens(target_tokens["tokens"][:, 1:]) ) return output_dict @overrides def post_process(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ This method trims the output predictions to the first end symbol, replaces indices with corresponding tokens, and adds a field called ``predicted_tokens`` to the ``output_dict``. """ predicted_indices = output_dict["predictions"] all_predicted_tokens = self.indices_to_tokens(predicted_indices) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict def indices_to_tokens(self, batch_indeces: numpy.ndarray) -> List[List[str]]: if not isinstance(batch_indeces, numpy.ndarray): batch_indeces = batch_indeces.detach().cpu().numpy() all_tokens = [] for indices in batch_indeces: # Beam search gives us the top k results for each source sentence in the batch # but we just want the single best. if len(indices.shape) > 1: indices = indices[0] indices = list(indices) # Collect indices till the first end_symbol if self._end_index in indices: indices = indices[: indices.index(self._end_index)] tokens = [ self._vocab.get_token_from_index(x, namespace=self._target_namespace) for x in indices ] all_tokens.append(tokens) return all_tokens
[ "torch.rand", "torch.cat", "torch.max", "torch.nn.functional.log_softmax", "torch.Tensor" ]
1.2.0
mhagiwara/allennlp
a05add5293f091e9dbcaa9db0783e782d77714cf
1.5
""" Author: Navid Shervani-Tabar """ import torch from torch import nn from torch.autograd import Variable from filter import scattering class VAEmod(nn.Module): def __init__(self, args): super(VAEmod, self).__init__() # -- training parameters self.device = args.device # -- graph parameters self.n_max_atom = args.n_node self.n_type_bond = args.n_bond_type self.n_atom_features = args.n_atom_type self.n_scat_atom_features = args.n_scat_atom_features # -- scattering parameters self.scat = scattering(args).to(self.device) self.sdim = args.sdim # -- network parameters self.leaky = nn.LeakyReLU(0.01, inplace=False) self.relu = nn.ReLU() self.dim_interm = 8 self.z_dim = args.z_dim scat_dim = self.sdim * self.n_scat_atom_features enc_dim = 400 h_1_dim = 2 * self.z_dim h_2_dim = 4 * self.z_dim h_3_dim = 8 * self.z_dim h_4_dim = self.n_max_atom * self.n_type_bond * self.dim_interm h_6_dim = self.n_max_atom * self.n_atom_features # -- encoder self.bn_1 = nn.BatchNorm1d(scat_dim) self.enc_fc_1 = nn.Linear(scat_dim, enc_dim) self.bn_2 = nn.BatchNorm1d(enc_dim) self.enc_fc_2 = nn.Linear(enc_dim, self.z_dim) self.enc_fc_3 = nn.Linear(enc_dim, self.z_dim) # -- weight network if bool(args.y_target): self.dec_fc_1 = nn.Linear(self.z_dim + 3, h_1_dim) else: self.dec_fc_1 = nn.Linear(self.z_dim, h_1_dim) self.dec_fc_2 = nn.Linear(h_1_dim, h_2_dim) self.dec_fc_3 = nn.Linear(h_2_dim, h_3_dim) self.dec_fc_4 = nn.Linear(h_3_dim, h_4_dim) # -- signal network self.SM = nn.Softmax(dim=3) if bool(args.y_target): self.dec_fc_5 = nn.Linear(self.n_max_atom * self.n_type_bond * self.n_max_atom + self.z_dim + 3, h_6_dim) else: self.dec_fc_5 = nn.Linear(self.n_max_atom * self.n_type_bond * self.n_max_atom + self.z_dim, h_6_dim) def encode(self, x): h_1 = self.bn_1(x) h_2 = self.relu(self.bn_2(self.enc_fc_1(h_1))) return self.enc_fc_2(h_2), self.enc_fc_3(h_2) def reparameterize(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() eps = Variable(std.data.new(std.size()).normal_()) return eps.mul(std).add_(mu) else: return mu def decode_W(self, z): # -- adjacency network (shared) h_1 = self.leaky((self.dec_fc_1(z))) h_2 = self.leaky((self.dec_fc_2(h_1))) h_3 = self.leaky((self.dec_fc_3(h_2))) h_4 = self.leaky((self.dec_fc_4(h_3))) h_4 = h_4.view(-1, self.n_max_atom, self.n_type_bond, self.dim_interm) h_4 = self.leaky(torch.matmul(h_4.permute(0, 2, 1, 3), h_4.permute(0, 2, 3, 1))) h_4 = h_4.permute(0, 2, 3, 1) return h_4 def decode_f(self, z, W): W = self.SM(W) # -- node network h_5 = W.reshape(-1, self.n_max_atom * self.n_max_atom * self.n_type_bond) h_5 = torch.cat((z, h_5), dim=1) h_5 = self.leaky((self.dec_fc_5(h_5))) h_5 = h_5.view(-1, self.n_max_atom, self.n_atom_features) return h_5 def decode(self, z): W = self.decode_W(z) f = self.decode_f(z, W) return [f, W] def forward(self, signal, adjacency, props): signal_in = torch.transpose(signal.reshape(-1, self.n_max_atom, self.n_atom_features), 2, 1) if props is not None: signal_in = torch.cat((signal_in, props.unsqueeze(2).repeat(1, 1, 9)), dim=1) mu, logvar = self.encode(self.scat(adjacency, signal_in).reshape(-1, self.sdim * self.n_scat_atom_features)) z = self.reparameterize(mu, logvar) # -- for constraint regularization z_prior = self.reparameterize(torch.zeros(mu.size(), device=self.device), torch.zeros(mu.size(), device=self.device)) if props is not None: return self.decode(torch.cat((z, props), dim=1)), mu, logvar, self.decode(torch.cat((z_prior, props), dim=1)) else: return self.decode(z), mu, logvar, self.decode(z_prior)
[ "torch.nn.Linear", "torch.cat", "torch.nn.Softmax", "torch.nn.LeakyReLU", "torch.nn.ReLU", "torch.nn.BatchNorm1d" ]
1.5.0
nshervt/GSVAE
6a7771a32634e39644be5549f1c24ee7507518b0
1.0
"""Copyright 2021 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at     https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import configargparse as cfargparse import os import torch import onmt.opts as opts from onmt.utils.logging import logger class ArgumentParser(cfargparse.ArgumentParser): def __init__( self, config_file_parser_class=cfargparse.YAMLConfigFileParser, formatter_class=cfargparse.ArgumentDefaultsHelpFormatter, **kwargs): super(ArgumentParser, self).__init__( config_file_parser_class=config_file_parser_class, formatter_class=formatter_class, **kwargs) @classmethod def defaults(cls, *args): """Get default arguments added to a parser by all ``*args``.""" dummy_parser = cls() for callback in args: callback(dummy_parser) defaults = dummy_parser.parse_known_args([])[0] return defaults @classmethod def update_model_opts(cls, model_opt): if model_opt.word_vec_size > 0: model_opt.src_word_vec_size = model_opt.word_vec_size model_opt.tgt_word_vec_size = model_opt.word_vec_size if model_opt.layers > 0: model_opt.enc_layers = model_opt.layers model_opt.dec_layers = model_opt.layers if model_opt.rnn_size > 0: model_opt.enc_rnn_size = model_opt.rnn_size model_opt.dec_rnn_size = model_opt.rnn_size model_opt.brnn = model_opt.encoder_type == "brnn" if model_opt.copy_attn_type is None: model_opt.copy_attn_type = model_opt.global_attention @classmethod def validate_model_opts(cls, model_opt): assert model_opt.model_type in ["text", "img", "audio"], \ "Unsupported model type %s" % model_opt.model_type # this check is here because audio allows the encoder and decoder to # be different sizes, but other model types do not yet same_size = model_opt.enc_rnn_size == model_opt.dec_rnn_size assert model_opt.model_type == 'audio' or same_size, \ "The encoder and decoder rnns must be the same size for now" assert model_opt.rnn_type != "SRU" or model_opt.gpu_ranks, \ "Using SRU requires -gpu_ranks set." if model_opt.share_embeddings: if model_opt.model_type != "text": raise AssertionError( "--share_embeddings requires --model_type text.") if model_opt.model_dtype == "fp16": logger.warning( "FP16 is experimental, the generated checkpoints may " "be incompatible with a future version") @classmethod def ckpt_model_opts(cls, ckpt_opt): # Load default opt values, then overwrite with the opts in # the checkpoint. That way, if there are new options added, # the defaults are used. opt = cls.defaults(opts.model_opts) opt.__dict__.update(ckpt_opt.__dict__) return opt @classmethod def validate_train_opts(cls, opt): if opt.epochs: raise AssertionError( "-epochs is deprecated please use -train_steps.") if opt.truncated_decoder > 0 and opt.accum_count > 1: raise AssertionError("BPTT is not compatible with -accum > 1") if opt.gpuid: raise AssertionError("gpuid is deprecated \ see world_size and gpu_ranks") if torch.cuda.is_available() and not opt.gpu_ranks: logger.info("WARNING: You have a CUDA device, \ should run with -gpu_ranks") @classmethod def validate_translate_opts(cls, opt): if opt.beam_size != 1 and opt.random_sampling_topk != 1: raise ValueError('Can either do beam search OR random sampling.') @classmethod def validate_preprocess_args(cls, opt): assert opt.max_shard_size == 0, \ "-max_shard_size is deprecated. Please use \ -shard_size (number of examples) instead." assert opt.shuffle == 0, \ "-shuffle is not implemented. Please shuffle \ your data before pre-processing." assert os.path.isfile(opt.train_src) \ and os.path.isfile(opt.train_tgt), \ "Please check path of your train src and tgt files!" assert not opt.valid_src or os.path.isfile(opt.valid_src), \ "Please check path of your valid src file!" assert not opt.valid_tgt or os.path.isfile(opt.valid_tgt), \ "Please check path of your valid tgt file!"
[ "torch.cuda.is_available" ]
1.0
brainsharks-fyp17/ZEST
036d5b92ebde6053ad789b95a257bda9db296926
1.1
######################################################################################################################## """ Description : Contains the utility functions for the module. Python version : 3.7.3 """ ######################################################################################################################## ################################################ Importing libraries ################################################### import re import numpy as np import pandas as pd import torch import torch.nn as nn import torch.autograd as autograd from torch.autograd import Variable from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score import torch.optim as optim import matplotlib.pyplot as plt ######################################################################################################################## def plot_loss_and_perplexity_for_language_model(data_list1, data_list2, epoch_list, figure_size=(7,1), dpi_value=300, figure_name=''): """ :param data_list1: loss list(dtype: list) :param data_list2: perplexity list(dtype: list) :param epoch_list: epoch list(dtype: list) :param figure_name: Name of the figure to be saved(dtype: string) :return: Plots the Loss and perplexity of the language model. """ fig1 = plt.figure(figsize=figure_size, dpi=dpi_value) plt.plot(epoch_list, data_list1, 'b', label='val_loss') plt.plot(epoch_list, data_list2, 'r', label='perplexity') plt.xlabel("Epochs") plt.ylabel("Loss and Perplexity") plt.title("Loss-Perplexity curve for " + figure_name + " data" ) fig1.savefig(figure_name + "_loss_curve.png", bbox_inches='tight') def batchify(data, bsz, device): """ :param data: data corpus(could be train, test, or validation dataset) :param bsz: Batch size(dtype: int32) :param device: GPU/CPU(dtype: torch.device) :return: dataset divided into batches """ # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) def repackage_hidden(h): """ :param h: hidden state(dtype: torch.tensor) :return: Wraps hidden states in new Tensors, to detach them from their history. """ if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) def make_batches(data, bptt, i): """ :param data: data corpus(could be train, test, or validation dataset) :param bptt: Backpropogation through time or sequence length(dtype: int32) :param i: Iterated chunks(dtype: int32) :return: subdivides the input data into chunks of length bptt and generates source and targets for model to train """ seq_len = min(bptt, len(data) - 1 - i) inputs = data[i:i+seq_len] targets = data[i+1:i+1+seq_len].view(-1) return inputs, targets def tag_sent_tsv_line_sup(sents, tagger, tag_type): """ :param sents: sentences in paragraphs(dtype:list of strings) :param tagger: POS/NER tagger from flair/nltk :param tag_type: tag type('pos'/'ner') :return: array of tagged sentences with their associated 'pos'/'ner' for supervised corpus """ tagger.predict(sents) tags = [] for s in sents: # tag a batch of sentence and pipe out tsv lines temp_tags = [str(t.get_tag(tag_type)) for t in s] # throws error for wrong tag type tags.append([re.sub(r'\([^)]*\)', '', tag) for tag in temp_tags]) return tags[0] def tag_sent_tsv_line_unsup(sents, tagger, tag_type): """ :param sents: sentences in paragraphs(dtype:list of strings) :param tagger: POS/NER tagger from flair/nltk :param tag_type: tag type('pos'/'ner') :return: array of tagged sentences with their associated 'pos'/'ner' for unsupervised corpus """ tagger.predict(sents) tags = [] for s in sents: # tag a batch of sentence and pipe out tsv lines temp_tags = [str(t.get_tag(tag_type)) for t in s] # throws error for wrong tag type tags.append([re.sub(r'\([^)]*\)', '', tag) for tag in temp_tags]) return tags def sent_2_index(seq, to_ix, cuda=False): """ :param seq: sequence list with pararaphs denoted by list of tokens(dtype:list). :param to_ix: word to index mappings(dtype:dict) :return: Long tensor for all the tokens converted to their respective ids """ var = autograd.Variable(torch.LongTensor([to_ix[w.lower()] if w.lower() in to_ix.keys() else to_ix["unk"] for w in seq])) return var def label_2_index(label, label_to_ix, cuda=False): """ :param label: sequence list of labels(dtype:list). :param label_to_ix: labels to index mappings(dtype:dict) :return: Long tensor for all the labels converted to their respective ids(negative being zero and positive being one) """ var = autograd.Variable(torch.LongTensor([label_to_ix[label]])) return var def evaluate_supervised_model(model, data, loss_function, word_to_ix, label_to_ix, data_acc_list, data_roc_list, data_loss_list, name ='valid'): """ :param model: trained model :param data: data to evaluated on(dtype: pandas.core.frame.DataFrame) :param loss_function: loss function used for evaluation :param word_to_ix: word to index mappings(dtype: dict) :param label_to_ix: label to index mappings(dtype: dict) :param data_acc_list: a list to collect accuracy at every epoch(dtype: list) :param data_roc_list: a list to collect roc score at every epoch(dtype: list) :param data_loss_list: a list to collect loss at every epoch(dtype: list) :param name: type of data(Could be 'train','test',or 'valid'. dtype: string) :return: evaluated accuracy and roc on the entire dataset, data_acc_list, data_roc_list, data_loss_list """ model.eval() avg_loss = 0.0 truth_res, pred_res = ([] for i in range(2)) with torch.no_grad(): for (para, label) in zip(data["review"],data["label"]): truth_res.append(label_to_ix[label]) para = sent_2_index(para, word_to_ix) label = label_2_index(label, label_to_ix) y_pred, value_dict = model(para, True) # The predicted results are processed through BCElosswithlogits, hence the outputs are # passed through the sigmoid layer to turn it into probabilities. pred_res.append(float(torch.sigmoid(torch.FloatTensor(y_pred)))) # Since the loss_function already has a sigmoid layer attached to it, we don't need to pass the predictions # again through another sigmoid layer. loss = loss_function(y_pred, label.type(torch.FloatTensor)) avg_loss += loss.item() avg_loss /= len(data) roc = roc_auc_score(np.array(truth_res), np.array(pred_res).round(), sample_weight=None) pred_res = [0 if values > 0.5 else 1 for values in pred_res] acc = accuracy_score(np.array(truth_res), np.array(pred_res).round(), sample_weight=None) data_roc_list.append(roc) data_loss_list.append(avg_loss) data_acc_list.append(acc) print(' '*16 + name + ':|avg_loss:%g|ROC:%g|Accuracy:%g|' % (avg_loss, roc, acc)) return acc, roc, data_acc_list, data_roc_list, data_loss_list def train_supervised_model(model, train_data, loss_function, optimizer, word_to_ix, label_to_ix, i, train_acc_list, train_roc_list, train_loss_list, batch_size=32, clip=5): """ :param model: the model to be trained :param train_data: Training data(dtype: pandas.core.frame.DataFrame) :param loss_function: loss function used for evaluation :param optimizer: Optimizer used while training :param word_to_ix: word to index mappings(dtype: dict) :param label_to_ix: label to index mappings(dtype: dict) :param i: number of steps passed(dtype: int) :param train_acc_list: a list to collect accuracy at every epoch(dtype: list) :param train_roc_list: a list to collect roc score at every epoch(dtype: list) :param train_loss_list: a list to collect loss at every epoch(dtype: list) :param batch_size: batch size(dtype: int) :param clip: clip rate(dtype: int) :return: train_acc_list, train_roc_list, train_loss_list """ model.train() truth_res, pred_res = ([] for i in range(2)) avg_loss = 0.0 count = 0 for (para, label) in zip(train_data["review"],train_data["label"]): truth_res.append(label_to_ix[label]) para = sent_2_index(para, word_to_ix) label = label_2_index(label, label_to_ix) y_pred, value_dict = model(para) # The predicted results are processed through BCElosswithlogits, hence the outputs are # passed through the sigmoid layer to turn it into probabilities. pred_res.append(float(torch.sigmoid(torch.FloatTensor(y_pred)))) # Since the loss_function already has a sigmoid layer attached to it, we don't need to pass the predictions # again through another sigmoid layer. loss = loss_function(y_pred, label.type(torch.FloatTensor)) loss.backward() current_loss = loss.item() avg_loss += current_loss count += 1 if count % 10000 == 0: print('|paragraphs: %d|loss :%g|' % (count, current_loss)) if count % batch_size == 0: # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. #raise Exception("Arrange clip as per your batch size") #raise Exception("Try with and without clipping") if clip != None: nn.utils.clip_grad_norm_(model.parameters(), clip) optimizer.step() optimizer.zero_grad() avg_loss /= len(train_data) print('-' * 100) train_loss_list.append(avg_loss) roc = roc_auc_score(np.array(truth_res), np.array(pred_res).round(), sample_weight=None) pred_res = [0 if values > 0.5 else 1 for values in pred_res] acc = accuracy_score(np.array(truth_res), np.array(pred_res).round(), sample_weight=None) train_roc_list.append(roc) train_acc_list.append(acc) print('|End of Epoch:%d|Training data:|avg_loss:%g|ROC:%g|Accuracy:%g|'%(int(i+1), avg_loss, roc, acc)) return train_acc_list, train_roc_list, train_loss_list def train_model_and_generate_plots(model, train_data, test_data, val_data, unsup_word_to_idx, label_to_idx, learning_rate, batch_size, nb_epochs, save_dir, description, early_stopping=5): """ :param model: the model to be trained :param train_data: Training data(dtype: pandas.core.frame.DataFrame) :param test_data: Test data(dtype: pandas.core.frame.DataFrame) :param val_data: Validation data(dtype: pandas.core.frame.DataFrame) :param unsup_word_to_idx: word to index mappings(dtype: dict) :param label_to_idx: label to index mappings(dtype: dict) :param learning_rate: Learning rate(dtype:float) :param nb_epochs: number of Epochs(dtype:int) :param save_dir: directory for the model to be saved(dtype:string) :param batch_size: Batch size(dtype:int) :param early_stopping: After how many steps should the model stop training if the val_roc doesn't change(dtype:int) :param description: Data desciption(Train,test, or validation; dtype:string) """ loss_function = nn.BCEWithLogitsLoss() optimizer = optimizer = optim.Adam(model.parameters(), lr=learning_rate) optimizer.zero_grad() train_acc_list, train_roc_list, train_loss_list, test_acc_list, test_roc_list, test_loss_list, val_acc_list, val_roc_list, val_loss_list, epoch_list = ([] for i in range(10)) #optimizer = torch.optim.SGD(model.parameters(), lr = 1e-2) no_up = 0 best_val_roc = 0.0 for i in range(nb_epochs): epoch_list.append(int(i+1)) print('epoch: %d start!' % int(i+1)) # Training the model optimizer.zero_grad() # pbar = tqdm(total=train_data.shape[0]) train_acc_list, train_roc_list, train_loss_list = train_supervised_model(model, train_data, loss_function, optimizer, unsup_word_to_idx, label_to_idx, i, train_acc_list, train_roc_list, train_loss_list, batch_size) # Hyper-tuning the model optimizer.zero_grad() val_acc, val_roc, val_acc_list, val_roc_list, val_loss_list = evaluate_supervised_model(model, val_data, loss_function, unsup_word_to_idx, label_to_idx, val_acc_list, val_roc_list, val_loss_list, 'validation data') # Testing the model optimizer.zero_grad() test_acc, test_roc, test_acc_list, test_roc_list, test_loss_list = evaluate_supervised_model(model,test_data, loss_function, unsup_word_to_idx, label_to_idx, test_acc_list, test_roc_list, test_loss_list, 'test data') # Un-comment the below lines if you want to save models with smallest change in val_acc and val_roc """if (val_acc > best_val_acc) and (val_roc <= best_val_roc): # Saving models on the basis of validation accuracy best_val_acc = val_acc torch.save(model.state_dict(), 'best_models_lstm_1500/acc_' + str(int(test_acc*100)) + "_roc_" + str(int(test_roc*100)) + '.pt') no_up = 0 elif (val_roc > best_val_roc) and (val_acc <= best_val_acc): # Saving models on the basis of validation roc best_val_roc = val_roc torch.save(model.state_dict(), 'best_models_lstm_1500/roc_' + str(int(test_roc*100)) + "_acc_" + str(int(test_acc*100)) + '.pt') no_up = 0 elif (val_roc > best_val_roc) and (val_acc > best_val_acc): # Saving models on the basis of validation roc and validation accuracy best_val_roc = val_roc best_val_acc = val_acc torch.save(model.state_dict(), 'best_models_lstm_1500/combined_roc_' + str(int(test_roc*100)) + "_acc_" + str(int(test_acc*100)) + '.pt') no_up = 0""" if val_roc > best_val_roc: torch.save(model.state_dict(), save_dir) best_val_acc = val_roc else: # early stopping no_up += 1 if no_up >= 5: break # Un-comment the below lines to generate training, test, and validation plots """ # Saving the lists in a dataframe so that it can be used to plot the variations wrt epochs. df = pd.DataFrame({"epochs":epoch_list, "train_acc": train_acc_list, "train_roc": train_roc_list, "train_loss":train_loss_list, "val_acc" : val_acc_list, "val_roc": val_roc_list, "val_loss" : val_loss_list, "test_acc" : test_acc_list, "test_roc": test_roc_list, "test_loss" : test_loss_list}) plot = df.plot(x="epochs",y=["train_acc","test_acc","val_acc"],title= "Accuracy curve") fig = plot.get_figure() fig.savefig(description + "_acc.png") plot = df.plot(x="epochs",y=["train_loss","test_loss","val_loss"],title="Loss curve") fig = plot.get_figure() fig.savefig(description + "_loss.png") plot = df.plot(x="epochs",y=["train_roc","test_roc","val_roc"],title="ROC curve") fig = plot.get_figure() fig.savefig(description + "_roc.png") """ return model
[ "torch.no_grad", "torch.FloatTensor", "torch.LongTensor", "torch.nn.BCEWithLogitsLoss" ]
1.1.0
vageeshSaxena/TX-Ray
80f96012bd7ab4c789b037bbfa996fa26c160701
1.9
# setting device on GPU if available, else CPU import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() # Additional Info when using cuda if device.type == 'cuda': print(torch.cuda.get_device_name(0)) print('Memory Usage:') print('Allocated:', round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1), 'GB') print('Cached: ', round(torch.cuda.memory_cached(0) / 1024 ** 3, 1), 'GB')
[ "torch.cuda.memory_cached", "torch.cuda.is_available", "torch.cuda.memory_allocated", "torch.cuda.get_device_name" ]
1.9.0
KirillPushkarev/valuenet
54ff6351e55d0b7c74b3d9db9ea8f686e3d855d9
1.2
import math import torch from torch import optim from models import BaseVAE from models.types_ import * from utils import data_loader import pytorch_lightning as pl from torchvision import transforms import torchvision.utils as vutils from torchvision.datasets import CelebA from torch.utils.data import DataLoader from cesm import * from Hurricane import * from exaalt import EXAALT from aramco import ARAMCO from exafel import * from nyx import * from qmcpack import * from miranda import * from turbulence import * class VAEXperiment(pl.LightningModule): def __init__(self, vae_model: BaseVAE, params: dict) -> None: super(VAEXperiment, self).__init__() self.model = vae_model self.params = params self.curr_device = None self.hold_graph = False if 'epsilon' not in self.params.keys(): self.params['epsilon']=-1 try: self.hold_graph = self.params['retain_first_backpass'] except: pass def forward(self, input: Tensor, **kwargs) -> Tensor: return self.model(input, **kwargs) def training_step(self, batch, batch_idx, optimizer_idx = 0,scalar=False): real_img, labels = batch self.curr_device = real_img.device results = self.forward(real_img, labels = labels) train_loss = self.model.loss_function(*results, M_N = self.params['batch_size']/ self.num_train_imgs, optimizer_idx=optimizer_idx, batch_idx = batch_idx) try: self.logger.experiment.log({key: val.item() for key, val in train_loss.items()}) except: pass if scalar: return train_loss['loss'] else: return train_loss def validation_step(self, batch, batch_idx, optimizer_idx = 0): real_img, labels = batch self.curr_device = real_img.device results = self.forward(real_img, labels = labels) val_loss = self.model.loss_function(*results, M_N = self.params['batch_size']/ self.num_val_imgs, optimizer_idx = optimizer_idx, batch_idx = batch_idx) return val_loss def validation_end(self, outputs): avg_loss = torch.stack([x['loss'] for x in outputs]).mean() tensorboard_logs = {'avg_val_loss': avg_loss} self.sample_images() return {'val_loss': avg_loss, 'log': tensorboard_logs} def sample_images(self): if self.params['dataset'] != 'celeba': return # Get sample reconstruction image test_input, test_label = next(iter(self.sample_dataloader)) test_input = test_input.to(self.curr_device) test_label = test_label.to(self.curr_device) recons = self.model.generate(test_input, labels = test_label) vutils.save_image(recons.data, f"{self.logger.save_dir}{self.logger.name}/version_{self.logger.version}/" f"recons_{self.logger.name}_{self.current_epoch}.png", normalize=True, nrow=12) # vutils.save_image(test_input.data, # f"{self.logger.save_dir}{self.logger.name}/version_{self.logger.version}/" # f"real_img_{self.logger.name}_{self.current_epoch}.png", # normalize=True, # nrow=12) try: samples = self.model.sample(144, self.curr_device, labels = test_label) vutils.save_image(samples.cpu().data, f"{self.logger.save_dir}{self.logger.name}/version_{self.logger.version}/" f"{self.logger.name}_{self.current_epoch}.png", normalize=True, nrow=12) except: pass del test_input, recons #, samples def configure_optimizers(self): optims = [] scheds = [] optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.params['LR'], weight_decay=self.params['weight_decay']) optims.append(optimizer) # Check if more than 1 optimizer is required (Used for adversarial training) try: if self.params['LR_2'] is not None: optimizer2 = optim.Adam(getattr(self.model,self.params['submodel']).parameters(), lr=self.params['LR_2']) optims.append(optimizer2) except: pass try: if self.params['scheduler_gamma'] is not None: scheduler = optim.lr_scheduler.ExponentialLR(optims[0], gamma = self.params['scheduler_gamma']) scheds.append(scheduler) # Check if another scheduler is required for the second optimizer try: if self.params['scheduler_gamma_2'] is not None: scheduler2 = optim.lr_scheduler.ExponentialLR(optims[1], gamma = self.params['scheduler_gamma_2']) scheds.append(scheduler2) except: pass return optims, scheds except: return optims @data_loader def train_dataloader(self): transform = self.data_transforms() self.params['epsilon']=float(self.params['epsilon']) if self.params['dataset'] == 'celeba': dataset = CelebA(root = self.params['data_path'], split = "train", transform=transform, download=True) elif self.params['dataset'] == 'cesm': dataset=CLDHGH(path=self.params['data_path'],start=0,end=50,size=self.params['img_size'],normalize=True,epsilon=self.params['epsilon']) elif self.params['dataset'] =='cesm_new': dataset=CESM(path=self.params['data_path'],start=0,end=50,size=self.params['img_size'],field=self.params['field'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) elif self.params['dataset'] =='nyx': dataset=NYX(path=self.params['data_path'],start=self.params['start'],end=self.params['end'],size=self.params['img_size'],field=self.params['field'],log=self.params['log'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) elif self.params['dataset'] =='exafel': dataset=EXAFEL(path=self.params['data_path'],start=0,end=300,size=self.params['img_size'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) elif self.params['dataset'] =='hurricane': dataset=Hurricane(path=self.params['data_path'],start=1,end=41,size=self.params['img_size'],field=self.params['field'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) elif self.params['dataset'] == 'exaalt': dataset=EXAALT(path=self.params['data_path'],start=0,end=4000) elif self.params['dataset'] == 'aramco': dataset=ARAMCO(path=self.params['data_path'],start=self.params['start'],end=self.params['end'],size=self.params['img_size'],global_max=0.0386,global_min=-0.0512,cache_size=self.params['cache_size'],epsilon=self.params['epsilon']) elif self.params['dataset'] == 'qmcpack': dataset=QMCPACK(path=self.params['data_path'],start=self.params['start'],end=self.params['end'],size=self.params['img_size'],global_max=20.368572,global_min=-21.25822,epsilon=self.params['epsilon']) elif self.params['dataset'] == 'miranda': dataset=MIRANDA(path=self.params['data_path'],start=self.params['start'],end=self.params['end'],size=self.params['img_size'],global_max=3,global_min=0.99,epsilon=self.params['epsilon']) elif self.params['dataset'] =='turbulence': dataset=Turbulence(path=self.params['data_path'],field=self.params['field'],side_length=self.params['side_length'],start=self.params['start'],end=self.params['end'],size=self.params['img_size'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) else: raise ValueError('Undefined dataset type') self.num_train_imgs = len(dataset) return DataLoader(dataset, batch_size= self.params['batch_size'], shuffle = True, drop_last=True,num_workers=0) @data_loader def val_dataloader(self): transform = self.data_transforms() self.params['epsilon']=float(self.params['epsilon']) if self.params['dataset'] == 'celeba': celeba=CelebA(root = self.params['data_path'],split = "test",transform=transform,download=True) self.sample_dataloader = DataLoader(celeba, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'cesm': #print(self.params['img_size']) dataset=CLDHGH(path=self.params['data_path'],start=50,end=52,size=self.params['img_size'],normalize=True) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] =='cesm_new': dataset=CESM(path=self.params['data_path'],start=50,end=52,size=self.params['img_size'],field=self.params['field'],global_max=self.params['max'],global_min=self.params['min']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] =='nyx': dataset=NYX(path=self.params['data_path'],start=3,end=4,size=self.params['img_size'],field=self.params['field'],log=self.params['log'],global_max=self.params['max'],global_min=self.params['min'],epsilon=self.params['epsilon']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] =='exafel': dataset=EXAFEL(path=self.params['data_path'],start=300,end=310,size=self.params['img_size'],global_max=self.params['max'],global_min=self.params['min']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] =='hurricane': dataset=Hurricane(path=self.params['data_path'],start=41,end=42,size=self.params['img_size'],field=self.params['field'],global_max=self.params['max'],global_min=self.params['min']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'exaalt': dataset=EXAALT(path=self.params['data_path'],start=4000,end=4400) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'aramco': dataset=ARAMCO(path=self.params['data_path'],start=1500,end=1503,size=self.params['img_size'],global_max=0.0386,global_min=-0.0512,cache_size=self.params['cache_size']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'qmcpack': dataset=QMCPACK(path=self.params['data_path'],start=0,end=2,size=self.params['img_size'],global_max=20.368572,global_min=-21.25822,epsilon=self.params['epsilon']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'miranda': dataset=MIRANDA(path=self.params['data_path'],start=0,end=1,size=self.params['img_size'],global_max=3,global_min=0.99,epsilon=self.params['epsilon']) self.sample_dataloader = DataLoader(dataset, batch_size= 144, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) elif self.params['dataset'] == 'turbulence': dataset=Turbulence_Val(self.params['img_size']) self.sample_dataloader = DataLoader(dataset, batch_size= 1, shuffle = True, drop_last=True) self.num_val_imgs = len(self.sample_dataloader) else: raise ValueError('Undefined dataset type') return self.sample_dataloader def data_transforms(self): SetRange = transforms.Lambda(lambda X: 2 * X - 1.) SetScale = transforms.Lambda(lambda X: X/X.sum(0).expand_as(X)) if self.params['dataset'] == 'celeba': transform = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.CenterCrop(148), transforms.Resize(self.params['img_size']), transforms.ToTensor(), SetRange]) else: transform = SetRange #raise ValueError('Undefined dataset type') return transform
[ "torch.optim.lr_scheduler.ExponentialLR", "torch.stack", "torch.utils.data.DataLoader" ]
1.2.0
Meso272/PyTorch-VAE
b1f80082a92c706969a63162ae083b9f7d15d9aa
0.4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """An example of how to pretrain a transformer encoder with BERT.""" import collections import itertools import typing import gensim.models.word2vec as word2vec import numpy as np import torch import torch.nn as nn import torch.optim as optim import transformer import transformer.bert as bert __author__ = "Patrick Hohenecker" __copyright__ = ( "Copyright (c) 2019, Patrick Hohenecker\n" "All rights reserved.\n" "\n" "Redistribution and use in source and binary forms, with or without\n" "modification, are permitted provided that the following conditions are met:\n" "\n" "1. Redistributions of source code must retain the above copyright notice, this\n" " list of conditions and the following disclaimer.\n" "2. Redistributions in binary form must reproduce the above copyright notice,\n" " this list of conditions and the following disclaimer in the documentation\n" " and/or other materials provided with the distribution.\n" "\n" "THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n" "ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n" "WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n" "DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR\n" "ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n" "(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n" "LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\n" "ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n" "(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n" "SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ) __license__ = "BSD-2-Clause" __version__ = "2019.1" __date__ = "23 Apr 2019" __maintainer__ = "Patrick Hohenecker" __email__ = "[email protected]" __status__ = "Development" # ==================================================================================================================== # # C O N S T A N T S # # ==================================================================================================================== # Token = collections.namedtuple("Token", ["index", "word"]) """This is used to store index-word pairs.""" DATA = [ "where the streets have no name", "we ' re still building then burning down love", "burning down love", "and when i go there , i go there with you", "it ' s all i can do" ] """list[str]: The already preprocessed training data.""" # SPECIAL TOKENS ##################################################################################################### SOS = Token(0, "<sos>") """The start-of-sequence token.""" EOS = Token(1, "<eos>") """The end-of-sequence token.""" PAD = Token(2, "<pad>") """The padding token.""" MASK = Token(3, "<mask>") """The mask token.""" # MODEL CONFIG ####################################################################################################### DIMENSIONS = (256, 32, 32) """tuple[int]: A tuple of d_model, d_k, d_v.""" DROPOUT_RATE = 0.1 """float: The used dropout rate.""" EMBEDDING_SIZE = DIMENSIONS[0] """int: The used embedding size.""" NUM_LAYERS = 6 """int: The number of layers in the trained transformer encoder.""" # TRAINING DETAILS ################################################################################################### GPU = False # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SET THIS TO True, IF YOU ARE USING A MACHINE WITH A GPU! """bool: Indicates whether to make use of a GPU.""" LEARNING_RATE = 0.0001 """float: The used learning rate.""" NUM_EPOCHS = 500 """int: The total number of training epochs.""" NUM_HEADS = 6 """int: The number of attention heads to use.""" # ==================================================================================================================== # # H E L P E R F U N C T I O N S # # ==================================================================================================================== # def prepare_data() -> typing.Tuple[typing.List[typing.List[str]], collections.OrderedDict]: """Preprocesses the training data, and creates the vocabulary. Returns: list[list[str]]: The training data as list of samples, each of which is a list of words. collections.OrderedDict: The vocabulary as an ``OrderedDict`` from words to indices. """ # gather all words that appear in the data all_words = set() for sample in DATA: all_words.update(sample.split(" ")) # create the vocabulary vocab = collections.OrderedDict( [ (SOS.word, SOS.index), (EOS.word, EOS.index), (PAD.word, PAD.index), (MASK.word, MASK.index) ] ) for idx, word in enumerate(sorted(all_words)): vocab[word] = idx + 4 # split, add <sos>...<eos>, and pad the dataset data = [[SOS.word] + sample.split(" ") + [EOS.word] for sample in DATA] max_len = max(len(sample) for sample in data) data = [sample + ([PAD.word] * (max_len - len(sample))) for sample in data] return data, vocab # ==================================================================================================================== # # M A I N # # ==================================================================================================================== # def main(): # fetch the training data data, vocab = prepare_data() # create the word embeddings with word2vec and positional embeddings emb_model = word2vec.Word2Vec( sentences=data, size=EMBEDDING_SIZE, min_count=1 ) for word in vocab.keys(): if word not in emb_model.wv: emb_model.wv[word] = np.zeros((EMBEDDING_SIZE,)) word_emb_mat = nn.Parameter( data=torch.FloatTensor([emb_model[word] for word in vocab.keys()]), requires_grad=False ) word_emb = nn.Embedding(len(vocab), EMBEDDING_SIZE) word_emb.weight = word_emb_mat pos_emb = nn.Embedding(len(data[0]), EMBEDDING_SIZE) pos_emb.weight.require_grad = True # turn the dataset into a tensor of word indices data = torch.LongTensor([[vocab[word] for word in sample] for sample in data]) # create the encoder, the pretraining loss, and the optimizer encoder = transformer.Encoder( NUM_LAYERS, # num_layers NUM_HEADS, # num_heads *DIMENSIONS, # dim_model / dim_keys / dim_values DROPOUT_RATE, # residual_dropout DROPOUT_RATE, # attention_dropout PAD.index # pad_index ) loss = bert.MLMLoss( encoder, word_emb, pos_emb, MASK.index ) optimizer = optim.Adam( itertools.chain(encoder.parameters(), loss.parameters()), lr=LEARNING_RATE ) # move to GPU, if possible if GPU: data = data.cuda() encoder.cuda() loss.cuda() # -> also moves embeddings to the GPU # pretrain the encoder for epoch in range(NUM_EPOCHS): # compute the loss optimizer.zero_grad() current_loss = loss(data) print("EPOCH", epoch + 1, ": LOSS =", current_loss.item()) # update the model current_loss.backward() optimizer.step() if __name__ == "__main__": main()
[ "torch.LongTensor" ]
0.4.1
phohenecker/pytorch-transformer
211406d82ac04a7b473bcdebda77cc3c2e9af0cf
1.8
from __future__ import division import re from collections import OrderedDict, defaultdict from functools import partial try: import apex except: print("No APEX!") import numpy as np import torch from det3d.builder import _create_learning_rate_scheduler # from det3d.datasets.kitti.eval_hooks import KittiDistEvalmAPHook, KittiEvalmAPHookV2 from det3d.core import DistOptimizerHook from det3d.datasets import DATASETS, build_dataloader from det3d.solver.fastai_optim import OptimWrapper from det3d.torchie.trainer import DistSamplerSeedHook, Trainer, obj_from_dict from det3d.utils.print_utils import metric_to_str from torch import nn from torch.nn.parallel import DistributedDataParallel from .env import get_root_logger def example_to_device(example, device=None, non_blocking=False) -> dict: assert device is not None example_torch = {} float_names = ["voxels", "bev_map"] for k, v in example.items(): if k in ["anchors", "anchors_mask", "reg_targets", "reg_weights", "labels"]: example_torch[k] = [res.to(device, non_blocking=non_blocking) for res in v] elif k in [ "voxels", "bev_map", "coordinates", "num_points", "points", "num_voxels", "cyv_voxels", "cyv_num_voxels", "cyv_coordinates", "cyv_num_points" ]: example_torch[k] = v.to(device, non_blocking=non_blocking) elif k == "calib": calib = {} for k1, v1 in v.items(): # calib[k1] = torch.tensor(v1, dtype=dtype, device=device) calib[k1] = torch.tensor(v1).to(device, non_blocking=non_blocking) example_torch[k] = calib else: example_torch[k] = v return example_torch def parse_losses(losses): log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError("{} is not a tensor or list of tensors".format(loss_name)) loss = sum(_value for _key, _value in log_vars.items() if "loss" in _key) log_vars["loss"] = loss for name in log_vars: log_vars[name] = log_vars[name].item() return loss, log_vars def parse_second_losses(losses): log_vars = OrderedDict() loss = sum(losses["loss"]) for loss_name, loss_value in losses.items(): if loss_name == "loc_loss_elem": log_vars[loss_name] = [[i.item() for i in j] for j in loss_value] else: log_vars[loss_name] = [i.item() for i in loss_value] return loss, log_vars def batch_processor(model, data, train_mode, **kwargs): if "local_rank" in kwargs: device = torch.device(kwargs["local_rank"]) else: device = None # data = example_convert_to_torch(data, device=device) example = example_to_device(data, device, non_blocking=False) del data if train_mode: losses = model(example, return_loss=True) loss, log_vars = parse_second_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(example["anchors"][0]) ) return outputs else: return model(example, return_loss=False) def batch_processor_ensemble(model1, model2, data, train_mode, **kwargs): assert 0, 'deprecated' if "local_rank" in kwargs: device = torch.device(kwargs["local_rank"]) else: device = None assert train_mode is False example = example_to_device(data, device, non_blocking=False) del data preds_dicts1 = model1.pred_hm(example) preds_dicts2 = model2.pred_hm(example) num_task = len(preds_dicts1) merge_list = [] # take the average for task_id in range(num_task): preds_dict1 = preds_dicts1[task_id] preds_dict2 = preds_dicts2[task_id] for key in preds_dict1.keys(): preds_dict1[key] = (preds_dict1[key] + preds_dict2[key]) / 2 merge_list.append(preds_dict1) # now get the final prediciton return model1.pred_result(example, merge_list) def flatten_model(m): return sum(map(flatten_model, m.children()), []) if len(list(m.children())) else [m] def get_layer_groups(m): return [nn.Sequential(*flatten_model(m))] def build_one_cycle_optimizer(model, optimizer_config): if optimizer_config.fixed_wd: optimizer_func = partial( torch.optim.Adam, betas=(0.9, 0.99), amsgrad=optimizer_config.amsgrad ) else: optimizer_func = partial(torch.optim.Adam, amsgrad=optimizer_cfg.amsgrad) optimizer = OptimWrapper.create( optimizer_func, 3e-3, # TODO: CHECKING LR HERE !!! get_layer_groups(model), wd=optimizer_config.wd, true_wd=optimizer_config.fixed_wd, bn_wd=True, ) return optimizer def build_optimizer(model, optimizer_cfg): """Build optimizer from configs. Args: model (:obj:`nn.Module`): The model with parameters to be optimized. optimizer_cfg (dict): The config dict of the optimizer. Positional fields are: - type: class name of the optimizer. - lr: base learning rate. Optional fields are: - any arguments of the corresponding optimizer type, e.g., weight_decay, momentum, etc. - paramwise_options: a dict with 3 accepted fileds (bias_lr_mult, bias_decay_mult, norm_decay_mult). `bias_lr_mult` and `bias_decay_mult` will be multiplied to the lr and weight decay respectively for all bias parameters (except for the normalization layers), and `norm_decay_mult` will be multiplied to the weight decay for all weight and bias parameters of normalization layers. Returns: torch.optim.Optimizer: The initialized optimizer. """ if hasattr(model, "module"): model = model.module optimizer_cfg = optimizer_cfg.copy() paramwise_options = optimizer_cfg.pop("paramwise_options", None) # if no paramwise option is specified, just use the global setting if paramwise_options is None: return obj_from_dict( optimizer_cfg, torch.optim, dict(params=model.parameters()) ) else: assert isinstance(paramwise_options, dict) # get base lr and weight decay base_lr = optimizer_cfg["lr"] base_wd = optimizer_cfg.get("weight_decay", None) # weight_decay must be explicitly specified if mult is specified if ( "bias_decay_mult" in paramwise_options or "norm_decay_mult" in paramwise_options ): assert base_wd is not None # get param-wise options bias_lr_mult = paramwise_options.get("bias_lr_mult", 1.0) bias_decay_mult = paramwise_options.get("bias_decay_mult", 1.0) norm_decay_mult = paramwise_options.get("norm_decay_mult", 1.0) # set param-wise lr and weight decay params = [] for name, param in model.named_parameters(): param_group = {"params": [param]} if not param.requires_grad: # FP16 training needs to copy gradient/weight between master # weight copy and model weight, it is convenient to keep all # parameters here to align with model.parameters() params.append(param_group) continue # for norm layers, overwrite the weight decay of weight and bias # TODO: obtain the norm layer prefixes dynamically if re.search(r"(bn|gn)(\d+)?.(weight|bias)", name): if base_wd is not None: param_group["weight_decay"] = base_wd * norm_decay_mult # for other layers, overwrite both lr and weight decay of bias elif name.endswith(".bias"): param_group["lr"] = base_lr * bias_lr_mult if base_wd is not None: param_group["weight_decay"] = base_wd * bias_decay_mult # otherwise use the global settings params.append(param_group) optimizer_cls = getattr(torch.optim, optimizer_cfg.pop("type")) return optimizer_cls(params, **optimizer_cfg) def train_detector(model, dataset, cfg, distributed=False, validate=False, logger=None,tb_writer=None): if logger is None: logger = get_root_logger(cfg.log_level) mix_prec = cfg.data.mix_prec print("==============================Mix Precision ? {}====================================".format(mix_prec)) # start training # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, dist=distributed ) for ds in dataset ] total_steps = cfg.total_epochs * len(data_loaders[0]) print(f"total_steps: {total_steps}") if distributed: model = apex.parallel.convert_syncbn_model(model) if cfg.lr_config.type == "one_cycle": # build trainer optimizer = build_one_cycle_optimizer(model, cfg.optimizer) lr_scheduler = _create_learning_rate_scheduler( optimizer, cfg.lr_config, total_steps ) cfg.lr_config = None else: optimizer = build_optimizer(model, cfg.optimizer) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.drop_step, gamma=.1) # lr_scheduler = None cfg.lr_config = None # put model on gpus if distributed: model = DistributedDataParallel( model.cuda(cfg.local_rank), device_ids=[cfg.local_rank], output_device=cfg.local_rank, # broadcast_buffers=False, find_unused_parameters=True, ) else: model = model.cuda() logger.info(f"model structure: {model}") trainer = Trainer( model, batch_processor, optimizer, lr_scheduler, cfg.work_dir, cfg.log_level,mix_prec = mix_prec,tb_writer=tb_writer, ) if distributed: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) else: optimizer_config = cfg.optimizer_config # register hooks trainer.register_training_hooks( cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config ) if distributed: trainer.register_hook(DistSamplerSeedHook()) # # register eval hooks # if validate: # val_dataset_cfg = cfg.data.val # eval_cfg = cfg.get('evaluation', {}) # dataset_type = DATASETS.get(val_dataset_cfg.type) # trainer.register_hook( # KittiEvalmAPHookV2(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: trainer.resume(cfg.resume_from,resume_optimizer=cfg.resume_optimizer) elif cfg.load_from: trainer.load_checkpoint(cfg.load_from) trainer.run(data_loaders, cfg.workflow, cfg.total_epochs, local_rank=cfg.local_rank)
[ "torch.device", "torch.tensor", "torch.optim.lr_scheduler.MultiStepLR" ]
1.8.0
yukke42/CenterPointTensorRT
c06ec5da881b4f44f22f9e4b67bebbd35b7d1ed3
1.8
# ------------------------------------------------------------------------------ # Portions of this code are from # det3d (https://github.com/poodarchu/Det3D/tree/56402d4761a5b73acd23080f537599b0888cce07) # Copyright (c) 2019 朱本金 # Licensed under the MIT License # ------------------------------------------------------------------------------ import logging from collections import defaultdict from det3d.core import box_torch_ops import torch from det3d.torchie.cnn import kaiming_init from torch import double, nn from det3d.models.losses.centernet_loss import FastFocalLoss, RegLoss, BinRotLoss from det3d.models.utils import Sequential, get_binrot_alpha, get_binrot_target from ..registry import HEADS from . import SepHead,DCNSepHead import copy try: from det3d.ops.dcn import DeformConv except: print("Deformable Convolution not built!") from det3d.core.utils.circle_nms_jit import circle_nms import numpy as np def _circle_nms(boxes, min_radius, post_max_size=83): """ NMS according to center distance """ keep = np.array(circle_nms(boxes.cpu().numpy(), thresh=min_radius))[:post_max_size] keep = torch.from_numpy(keep).long().to(boxes.device) return keep class FeatureAdaption(nn.Module): """Feature Adaption Module. Feature Adaption Module is implemented based on DCN v1. It uses anchor shape prediction rather than feature map to predict offsets of deformable conv layer. Args: in_channels (int): Number of channels in the input feature map. out_channels (int): Number of channels in the output feature map. kernel_size (int): Deformable conv kernel size. deformable_groups (int): Deformable conv group size. """ def __init__(self, in_channels, out_channels, kernel_size=3, deformable_groups=4): super(FeatureAdaption, self).__init__() offset_channels = kernel_size * kernel_size * 2 self.conv_offset = nn.Conv2d( in_channels, deformable_groups * offset_channels, 1, bias=True) self.conv_adaption = DeformConv( in_channels, out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, deformable_groups=deformable_groups) self.relu = nn.ReLU(inplace=True) self.init_offset() def init_offset(self): self.conv_offset.weight.data.zero_() def forward(self, x,): offset = self.conv_offset(x) x = self.relu(self.conv_adaption(x, offset)) return x @HEADS.register_module class CenterHeadBinRot(nn.Module): def __init__( self, in_channels=[128,], tasks=[], dataset='nuscenes', weight=0.25, code_weights=[], common_heads=dict(), logger=None, init_bias=-2.19, share_conv_channel=64, num_hm_conv=2, dcn_head=False, is_bin_rot = False, is_iou_aux = False, ): super(CenterHeadBinRot, self).__init__() # tasks = [ dict(num_class=3, class_names=['VEHICLE', 'PEDESTRIAN', 'CYCLIST']), ] # TODO num_classes : [3] num_classes = [len(t["class_names"]) for t in tasks] # TODO class_names : ['VEHICLE', 'PEDESTRIAN', 'CYCLIST'] self.class_names = [t["class_names"] for t in tasks] self.code_weights = code_weights self.weight = weight # weight between hm loss and loc loss self.dataset = dataset self.in_channels = in_channels self.num_classes = num_classes self.is_bin_rot = is_bin_rot self.is_iou_aux = is_iou_aux self.crit = FastFocalLoss() self.crit_reg = RegLoss() self.crit_rot = BinRotLoss() if is_bin_rot : assert (common_heads['rot'][0] == 8, "Binrot head need to set 8 channels !") # TODO common_heads={'reg': (2, 2), 'height': (1, 2), 'dim':(3, 2), 'rot':(8, 2)} # TODO box_n_dim = 7 self.box_n_dim = 9 if 'vel' in common_heads else 7 self.use_direction_classifier = False if not logger: logger = logging.getLogger("CenterHeadBinRot") self.logger = logger logger.info( f"num_classes: {num_classes}" ) # a shared convolution self.shared_conv = nn.Sequential( nn.Conv2d(in_channels, share_conv_channel, kernel_size=3, padding=1, bias=True), nn.BatchNorm2d(share_conv_channel), nn.ReLU(inplace=True) ) self.tasks = nn.ModuleList() print("Use HM Bias: ", init_bias) if dcn_head: print("Use Deformable Convolution in the CenterHead!") for num_cls in num_classes: heads = copy.deepcopy(common_heads) if not dcn_head: # num_cls = 3, num_hm_conv = 2 heads.update(dict(hm=(num_cls, num_hm_conv))) # share_conv_channel = 64 , init_bias = -2.19 self.tasks.append( SepHead(share_conv_channel, heads, bn=True, init_bias=init_bias, final_kernel=3)) else: self.tasks.append( DCNSepHead(share_conv_channel, num_cls, heads, bn=True, init_bias=init_bias, final_kernel=3)) logger.info("Finish CenterHead Initialization") def forward(self, x, *kwargs): ret_dicts = [] x = self.shared_conv(x) for task in self.tasks: ret_dicts.append(task(x)) return ret_dicts def _sigmoid(self, x): y = torch.clamp(x.sigmoid_(), min=1e-4, max=1-1e-4) return y def _compute_binrot_loc_loss(self,preds_dict,target_box,example,task_id): # Regression loss (SmoothL1 Loss ) for dimension, offset, height, rotation box_loss = self.crit_reg(preds_dict['anno_box'][:,:6],\ example['mask'][task_id], example['ind'][task_id], \ target_box[...,:-2]) # Specially for bin rot loss target_bin, target_res = get_binrot_target(target_box[...,-2],target_box[...,-1]) rot_loss = self.crit_rot(preds_dict['anno_box'][:,6:14],\ example['mask'][task_id], example['ind'][task_id], target_bin,target_res) box_loss *= box_loss.new_tensor(self.code_weights[:6]) rot_loss = rot_loss * self.code_weights[6] # loc_loss = (box_loss*box_loss.new_tensor(self.code_weights[:-8])).sum() loc_loss = box_loss.sum() + rot_loss return box_loss, rot_loss, loc_loss # TODO : For Training def loss(self, example, preds_dicts, **kwargs): rets = [] for task_id, preds_dict in enumerate(preds_dicts): # heatmap focal loss # heads = {'reg': (2, 2), 'height': (1, 2), 'dim':(3, 2), 'rot':(2, 8), 'hm' : (3,2)} preds_dict['hm'] = self._sigmoid(preds_dict['hm']) # TODO : FastFocalLoss ,defined in CornerNet, see in file models/losses/centernet_loss.py FastFocalLoss hm_loss = self.crit(preds_dict['hm'], example['hm'][task_id], example['ind'][task_id], example['mask'][task_id], example['cat'][task_id]) target_box = example['anno_box'][task_id] # reconstruct the anno_box from multiple reg heads if 'vel' in preds_dict: preds_dict['anno_box'] = torch.cat((preds_dict['reg'], preds_dict['height'], preds_dict['dim'], preds_dict['vel'], preds_dict['rot']), dim=1) else: preds_dict['anno_box'] = torch.cat((preds_dict['reg'], preds_dict['height'], preds_dict['dim'], preds_dict['rot']), dim=1) target_box = target_box[..., [0, 1, 2, 3, 4, 5, -2,-1]] # remove vel target ret = {} if self.is_bin_rot : box_loss, rot_loss, loc_loss = self._compute_binrot_loc_loss(preds_dict,target_box,example,task_id) else : box_loss = self.crit_reg(preds_dict['anno_box'], example['mask'][task_id], example['ind'][task_id], target_box) loc_loss = (box_loss*box_loss.new_tensor(self.code_weights)).sum() rot_loss = box_loss[6:8] loss = hm_loss + self.weight*loc_loss ret.update({'loss': loss, 'hm_loss': hm_loss.detach().cpu(), 'loc_loss':loc_loss, 'loc_loss_elem': box_loss.detach().cpu()[:6],\ 'rot_loss' : rot_loss.detach().cpu(), 'num_positive': example['mask'][task_id].float().sum()}) rets.append(ret) """convert batch-key to key-batch """ rets_merged = defaultdict(list) for ret in rets: for k, v in ret.items(): rets_merged[k].append(v) return rets_merged # TODO : For Inference @torch.no_grad() def predict(self, example, preds_dicts, test_cfg, **kwargs): """decode, nms, then return the detection result. Additionaly support double flip testing """ # get loss info rets = [] metas = [] double_flip = test_cfg.get('double_flip', False) post_center_range = test_cfg.post_center_limit_range if len(post_center_range) > 0: post_center_range = torch.tensor( post_center_range, dtype=preds_dicts[0]['hm'].dtype, device=preds_dicts[0]['hm'].device, ) for task_id, preds_dict in enumerate(preds_dicts): # convert N C H W to N H W C for key, val in preds_dict.items(): preds_dict[key] = val.permute(0, 2, 3, 1).contiguous() batch_size = preds_dict['hm'].shape[0] if "metadata" not in example or len(example["metadata"]) == 0: meta_list = [None] * batch_size else: meta_list = example["metadata"] batch_hm = torch.sigmoid(preds_dict['hm']) batch_dim = torch.exp(preds_dict['dim']) if self.is_bin_rot: batch_rot = get_binrot_alpha(preds_dict['rot']) else: batch_rots = preds_dict['rot'][..., 0:1] batch_rotc = preds_dict['rot'][..., 1:2] batch_rot = torch.atan2(batch_rots, batch_rotc) batch_reg = preds_dict['reg'] batch_hei = preds_dict['height'] batch, H, W, num_cls = batch_hm.size() batch_reg = batch_reg.reshape(batch, H*W, 2) batch_hei = batch_hei.reshape(batch, H*W, 1) batch_rot = batch_rot.reshape(batch, H*W, 1) batch_dim = batch_dim.reshape(batch, H*W, 3) batch_hm = batch_hm.reshape(batch, H*W, num_cls) ys, xs = torch.meshgrid([torch.arange(0, H), torch.arange(0, W)]) ys = ys.view(1, H, W).repeat(batch, 1, 1).to(batch_hm) xs = xs.view(1, H, W).repeat(batch, 1, 1).to(batch_hm) xs = xs.view(batch, -1, 1) + batch_reg[:, :, 0:1] ys = ys.view(batch, -1, 1) + batch_reg[:, :, 1:2] xs = xs * test_cfg.out_size_factor * test_cfg.voxel_size[0] + test_cfg.pc_range[0] ys = ys * test_cfg.out_size_factor * test_cfg.voxel_size[1] + test_cfg.pc_range[1] if 'vel' in preds_dict: batch_vel = preds_dict['vel'] batch_vel = batch_vel.reshape(batch, H*W, 2) batch_box_preds = torch.cat([xs, ys, batch_hei, batch_dim, batch_vel, batch_rot], dim=2) else: batch_box_preds = torch.cat([xs, ys, batch_hei, batch_dim, batch_rot], dim=2) metas.append(meta_list) if test_cfg.get('per_class_nms', False): pass # TODO TODO TODO : NEED TO ADD HERE CLS_SPECIFIC NMS else: rets.append(self.post_processing(batch_box_preds, batch_hm, test_cfg, post_center_range, task_id)) # Merge branches results ret_list = [] num_samples = len(rets[0]) ret_list = [] for i in range(num_samples): ret = {} for k in rets[0][i].keys(): if k in ["label_preds"]: flag = 0 for j, num_class in enumerate(self.num_classes): rets[j][i][k] += flag flag += num_class ret[k] = torch.cat([ret[i][k] for ret in rets]) else: ret[k] = torch.cat([ret[i][k] for ret in rets]) ret['metadata'] = metas[0][i] ret_list.append(ret) return ret_list @torch.no_grad() def post_processing(self, batch_box_preds, batch_hm, test_cfg, post_center_range, task_id): batch_size = len(batch_hm) prediction_dicts = [] for i in range(batch_size): box_preds = batch_box_preds[i] # batch_hm : (batch, H*W, 3 ) hm_preds = batch_hm[i] scores, labels = torch.max(hm_preds, dim=-1) score_mask = scores > test_cfg.score_threshold distance_mask = (box_preds[..., :3] >= post_center_range[:3]).all(1) \ & (box_preds[..., :3] <= post_center_range[3:]).all(1) mask = distance_mask & score_mask box_preds = box_preds[mask] scores = scores[mask] labels = labels[mask] boxes_for_nms = box_preds[:, [0, 1, 2, 3, 4, 5, -1]] if test_cfg.get('circular_nms', False): centers = boxes_for_nms[:, [0, 1]] boxes = torch.cat([centers, scores.view(-1, 1)], dim=1) selected = _circle_nms(boxes, min_radius=test_cfg.min_radius[task_id], post_max_size=test_cfg.nms.nms_post_max_size) else: selected = box_torch_ops.rotate_nms_pcdet(boxes_for_nms.float(), scores.float(), thresh=test_cfg.nms.nms_iou_threshold, pre_maxsize=test_cfg.nms.nms_pre_max_size, post_max_size=test_cfg.nms.nms_post_max_size) selected_boxes = box_preds[selected] selected_scores = scores[selected] selected_labels = labels[selected] prediction_dict = { 'box3d_lidar': selected_boxes, 'scores': selected_scores, 'label_preds': selected_labels, } prediction_dicts.append(prediction_dict) return prediction_dicts
[ "torch.sigmoid", "torch.cat", "torch.nn.ModuleList", "torch.max", "torch.arange", "torch.no_grad", "torch.nn.BatchNorm2d", "torch.from_numpy", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.tensor", "torch.atan2", "torch.exp" ]
1.8.0
yukke42/CenterPointTensorRT
c06ec5da881b4f44f22f9e4b67bebbd35b7d1ed3
1.7
import argparse import glob import logging import os import random import timeit import numpy as np import torch from transformers import (MODEL_FOR_QUESTION_ANSWERING_MAPPING, WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features) from evaluate import do_eval from training import do_train from utils import set_seed logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def setting(args): if args.doc_stride >= args.max_seq_length - args.max_query_length: logger.warning( "WARNING - You've set a doc stride which may be superior to the document length in some " "examples. This could result in errors when building features from the examples. Please reduce the doc " "stride or increase the maximum length to ensure the features are correctly built." ) if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s\n", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s\n", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = AutoModelForQuestionAnswering.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s\n", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") return args, tokenizer, model def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_TYPES), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.", ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.", ) parser.add_argument( "--verbose_logging", action="store_true", help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.", ) parser.add_argument( "--lang_id", default=0, type=int, help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)", ) parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() # =========================================================================== args, tokenizer, model = setting(args) # Training do_train(args, model, tokenizer) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory do_eval(args, tokenizer) if __name__ == "__main__": main()
[ "torch.device", "torch.distributed.init_process_group", "torch.cuda.device_count", "torch.cuda.set_device", "torch.cuda.is_available", "torch.distributed.barrier" ]
1.7.0
jojowither/Question-Answer-Project
f44ca52acc784e13295cb977cedb513854fac814
1.10
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from datetime import date import logging import numpy as np import os # A hack to get OpenMM and PyTorch to peacefully coexist os.environ["OPENMM_DEFAULT_PLATFORM"] = "OpenCL" import pickle import random import sys import time import torch from openfold.config import model_config from openfold.data import templates, feature_pipeline, data_pipeline from openfold.model.model import AlphaFold from openfold.model.primitives import Attention, GlobalAttention from openfold.np import residue_constants, protein import openfold.np.relax.relax as relax from openfold.utils.import_weights import ( import_jax_weights_, ) from openfold.utils.torchscript_utils import script_submodules_ from openfold.utils.tensor_utils import ( tensor_tree_map, ) from scripts.utils import add_data_args def script_primitives_(model): script_submodules_(model, [Attention, GlobalAttention]) def main(args): config = model_config(args.model_name) model = AlphaFold(config) model = model.eval() import_jax_weights_(model, args.param_path) script_primitives_(model) model = model.to(args.model_device) template_featurizer = templates.TemplateHitFeaturizer( mmcif_dir=args.template_mmcif_dir, max_template_date=args.max_template_date, max_hits=config.data.predict.max_templates, kalign_binary_path=args.kalign_binary_path, release_dates_path=None, obsolete_pdbs_path=args.obsolete_pdbs_path ) use_small_bfd=(args.bfd_database_path is None) data_processor = data_pipeline.DataPipeline( template_featurizer=template_featurizer, ) output_dir_base = args.output_dir random_seed = args.data_random_seed if random_seed is None: random_seed = random.randrange(sys.maxsize) feature_processor = feature_pipeline.FeaturePipeline(config.data) if not os.path.exists(output_dir_base): os.makedirs(output_dir_base) if(args.use_precomputed_alignments is None): alignment_dir = os.path.join(output_dir_base, "alignments") else: alignment_dir = args.use_precomputed_alignments # Gather input sequences with open(args.fasta_path, "r") as fp: lines = [l.strip() for l in fp.readlines()] tags, seqs = lines[::2], lines[1::2] tags = [l[1:] for l in tags] for tag, seq in zip(tags, seqs): fasta_path = os.path.join(args.output_dir, "tmp.fasta") with open(fasta_path, "w") as fp: fp.write(f">{tag}\n{seq}") logging.info("Generating features...") local_alignment_dir = os.path.join(alignment_dir, tag) if(args.use_precomputed_alignments is None): if not os.path.exists(local_alignment_dir): os.makedirs(local_alignment_dir) alignment_runner = data_pipeline.AlignmentRunner( jackhmmer_binary_path=args.jackhmmer_binary_path, hhblits_binary_path=args.hhblits_binary_path, hhsearch_binary_path=args.hhsearch_binary_path, uniref90_database_path=args.uniref90_database_path, mgnify_database_path=args.mgnify_database_path, bfd_database_path=args.bfd_database_path, uniclust30_database_path=args.uniclust30_database_path, small_bfd_database_path=args.small_bfd_database_path, pdb70_database_path=args.pdb70_database_path, use_small_bfd=use_small_bfd, no_cpus=args.cpus, ) alignment_runner.run( fasta_path, local_alignment_dir ) feature_dict = data_processor.process_fasta( fasta_path=fasta_path, alignment_dir=local_alignment_dir ) # Remove temporary FASTA file os.remove(fasta_path) processed_feature_dict = feature_processor.process_features( feature_dict, mode='predict', ) logging.info("Executing model...") batch = processed_feature_dict with torch.no_grad(): batch = { k:torch.as_tensor(v, device=args.model_device) for k,v in batch.items() } t = time.time() out = model(batch) logging.info(f"Inference time: {time.time() - t}") # Toss out the recycling dimensions --- we don't need them anymore batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch) out = tensor_tree_map(lambda x: np.array(x.cpu()), out) plddt = out["plddt"] mean_plddt = np.mean(plddt) plddt_b_factors = np.repeat( plddt[..., None], residue_constants.atom_type_num, axis=-1 ) unrelaxed_protein = protein.from_prediction( features=batch, result=out, b_factors=plddt_b_factors ) amber_relaxer = relax.AmberRelaxation( **config.relax ) # Relax the prediction. t = time.time() relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein) logging.info(f"Relaxation time: {time.time() - t}") # Save the relaxed PDB. relaxed_output_path = os.path.join( args.output_dir, f'{tag}_{args.model_name}.pdb' ) with open(relaxed_output_path, 'w') as f: f.write(relaxed_pdb_str) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "fasta_path", type=str, ) add_data_args(parser) parser.add_argument( "--use_precomputed_alignments", type=str, default=None, help="""Path to alignment directory. If provided, alignment computation is skipped and database path arguments are ignored.""" ) parser.add_argument( "--output_dir", type=str, default=os.getcwd(), help="""Name of the directory in which to output the prediction""", required=True ) parser.add_argument( "--model_device", type=str, default="cpu", help="""Name of the device on which to run the model. Any valid torch device name is accepted (e.g. "cpu", "cuda:0")""" ) parser.add_argument( "--model_name", type=str, default="model_1", help="""Name of a model config. Choose one of model_{1-5} or model_{1-5}_ptm, as defined on the AlphaFold GitHub.""" ) parser.add_argument( "--param_path", type=str, default=None, help="""Path to model parameters. If None, parameters are selected automatically according to the model name from openfold/resources/params""" ) parser.add_argument( "--cpus", type=int, default=4, help="""Number of CPUs with which to run alignment tools""" ) parser.add_argument( '--preset', type=str, default='full_dbs', choices=('reduced_dbs', 'full_dbs') ) parser.add_argument( '--data_random_seed', type=str, default=None ) args = parser.parse_args() if(args.param_path is None): args.param_path = os.path.join( "openfold", "resources", "params", "params_" + args.model_name + ".npz" ) if(args.model_device == "cpu" and torch.cuda.is_available()): logging.warning( """The model is being run on CPU. Consider specifying --model_device for better performance""" ) if(args.bfd_database_path is None and args.small_bfd_database_path is None): raise ValueError( "At least one of --bfd_database_path or --small_bfd_database_path" "must be specified" ) main(args)
[ "torch.no_grad", "torch.cuda.is_available", "torch.as_tensor" ]
1.10.0
cclauss/openfold
a933bc7479a13e4fcb95f7c7d7ffb9a6b55b0d4f
1.4
from easydict import EasyDict import torch from functools import partial from core.envs import SimpleCarlaEnv from core.policy import CILRSPolicy from core.eval import CarlaBenchmarkEvaluator from core.utils.others.tcp_helper import parse_carla_tcp from ding.utils import set_pkg_seed, deep_merge_dicts from ding.envs import AsyncSubprocessEnvManager from demo.cilrs.cilrs_env_wrapper import CILRSEnvWrapper cilrs_config = dict( env=dict( env_num=5, simulator=dict( town='Town01', disable_two_wheels=True, verbose=False, planner=dict( type='behavior', resolution=1, ), obs=( dict( name='rgb', type='rgb', size=[400, 300], position=[1.3, 0.0, 2.3], fov=100, ), ), ), wrapper=dict(), col_is_failure=True, stuck_is_failure=True, manager=dict( auto_reset=False, shared_memory=False, context='spawn', max_retry=1, ), ), server=[dict(carla_host='localhost', carla_ports=[9000, 9010, 2])], policy=dict( ckpt_path=None, model=dict( num_branch=4, pretrained=False, ), eval=dict( evaluator=dict( suite=['FullTown01-v1'], transform_obs=True, ), ) ), ) main_config = EasyDict(cilrs_config) def wrapped_env(env_cfg, host, port, tm_port=None): return CILRSEnvWrapper(SimpleCarlaEnv(env_cfg, host, port)) def main(cfg, seed=0): cfg.env.manager = deep_merge_dicts(AsyncSubprocessEnvManager.default_config(), cfg.env.manager) tcp_list = parse_carla_tcp(cfg.server) env_num = cfg.env.env_num assert len(tcp_list) >= env_num, \ "Carla server not enough! Need {} servers but only found {}.".format(env_num, len(tcp_list)) carla_env = AsyncSubprocessEnvManager( env_fn=[partial(wrapped_env, cfg.env, *tcp_list[i]) for i in range(env_num)], cfg=cfg.env.manager, ) carla_env.seed(seed) set_pkg_seed(seed) cilrs_policy = CILRSPolicy(cfg.policy, ['eval']).eval_mode if cfg.policy.ckpt_path is not None: state_dict = torch.load(cfg.policy.ckpt_path) cilrs_policy.load_state_dict(state_dict) evaluator = CarlaBenchmarkEvaluator(cfg.policy.eval.evaluator, carla_env, cilrs_policy) success_rate = evaluator.eval() evaluator.close() if __name__ == '__main__': main(main_config)
[ "torch.load" ]
1.4
L-Net-1992/DI-drive
cc7f47bedbf60922acbcf3a5f77fc8e274df62cf
1.4
# third party import pytest import torch as th # syft absolute import syft as sy @pytest.mark.parametrize("with_verify_key", [True, False]) def test_make_searchable(with_verify_key: bool) -> None: bob = sy.VirtualMachine(name="Bob") root_client = bob.get_root_client() client = bob.get_client() ten = th.tensor([1, 2]) ptr = ten.send(root_client) assert len(client.store) == 0 if with_verify_key: ptr.update_searchability(target_verify_key=client.verify_key) else: ptr.update_searchability() assert len(client.store) == 1 @pytest.mark.parametrize("with_verify_key", [True, False]) def test_make_unsearchable(with_verify_key: bool) -> None: bob = sy.VirtualMachine(name="Bob") root_client = bob.get_root_client() client = bob.get_client() ten = th.tensor([1, 2]) ptr = ten.send(root_client) if with_verify_key: ptr.update_searchability(target_verify_key=client.verify_key) else: ptr.update_searchability() assert len(client.store) == 1 if with_verify_key: ptr.update_searchability(searchable=False, target_verify_key=client.verify_key) else: ptr.update_searchability(searchable=False) assert len(client.store) == 0 def test_searchable_property() -> None: bob = sy.VirtualMachine(name="Bob") root_client = bob.get_root_client() client = bob.get_client() ten = th.tensor([1, 2]) ptr = ten.send(root_client) assert len(client.store) == 0 ptr.searchable = False assert len(client.store) == 0 ptr.searchable = True assert len(client.store) == 1 ptr.searchable = True assert len(client.store) == 1 ptr.searchable = False assert len(client.store) == 0 def test_tags() -> None: bob = sy.VirtualMachine(name="Bob") root_client = bob.get_root_client() ten = th.tensor([1, 2]) ten = ten.tag("tag1", "tag1", "other") assert ten.tags == ["tag1", "other"] # .send without `tags` passed in ptr = ten.send(root_client) assert ptr.tags == ["tag1", "other"] # .send with `tags` passed in ptr = ten.send(root_client, tags=["tag2", "tag2", "other"]) assert ten.tags == ["tag2", "other"] assert ptr.tags == ["tag2", "other"] def test_description() -> None: bob = sy.VirtualMachine(name="Bob") root_client = bob.get_root_client() ten = th.tensor([1, 2]) ten = ten.describe("description 1") assert ten.description == "description 1" # .send without `description` passed in ptr = ten.send(root_client) assert ptr.description == "description 1" # .send with `description` passed in ptr = ten.send(root_client, description="description 2") assert ten.description == "description 2" assert ptr.description == "description 2"
[ "torch.tensor" ]
1.4
aeroaks/PySyft
88220c38faf3cd72ddc63c73f3c0533695df53c9
1.10
from argparse import ArgumentParser from config_parser import get_config from utils.loss import LabelSmoothingLoss from utils.opt import get_optimizer from utils.scheduler import WarmUpLR, get_scheduler from utils.trainer import train from utils.load_SHREC import get_loaders from utils.misc import seed_everything, count_params, get_model import torch from torch import nn import numpy as np import wandb import os import yaml import random import time def training_pipeline(config): """Initiates and executes all the steps involved with model training. Args: config (dict) - Dict containing various settings for the training run. """ config["exp"]["save_dir"] = os.path.join(config["exp"]["exp_dir"], config["exp"]["exp_name"]) os.makedirs(config["exp"]["save_dir"], exist_ok=True) ###################################### # save hyperparameters for current run ###################################### config_str = yaml.dump(config) print("Using settings:\n", config_str) with open(os.path.join(config["exp"]["save_dir"], "settings.txt"), "w+") as f: f.write(config_str) ##################################### # initialize training items ##################################### # data loaders = get_loaders(config) # model model = get_model(config["hparams"]["model"]) model = model.to(config["hparams"]["device"]) print(f"Created model with {count_params(model)} parameters.") # loss if config["hparams"]["l_smooth"]: criterion = LabelSmoothingLoss(num_classes=config["hparams"]["model"]["num_classes"], smoothing=config["hparams"]["l_smooth"]) else: criterion = nn.CrossEntropyLoss() # optimizer optimizer = get_optimizer(model, config["hparams"]) # lr scheduler schedulers = { "warmup": None, "scheduler": None } if config["hparams"]["scheduler"]["n_warmup"]: schedulers["warmup"] = WarmUpLR(optimizer, total_iters=len(loaders["train"]) * config["hparams"]["scheduler"]["n_warmup"]) if config["hparams"]["scheduler"]["scheduler_type"] is not None: total_iters = len(loaders["train"]) * max(1, (config["hparams"]["n_epochs"] - config["hparams"]["scheduler"]["n_warmup"])) schedulers["scheduler"] = get_scheduler(optimizer, config["hparams"]["scheduler"]["scheduler_type"], total_iters) ##################################### # Training Run ##################################### print("Initiating training.") train(model, optimizer, criterion, loaders["train"], loaders["test"], schedulers, config) def main(args): config = get_config(args.conf) seed_everything(config["hparams"]["seed"]) if config["exp"]["wandb"]: if config["exp"]["wandb_api_key"] is not None: with open(config["exp"]["wandb_api_key"], "r") as f: os.environ["WANDB_API_KEY"] = f.read() else: wandb.login() with wandb.init(project=config["exp"]["proj_name"], name=config["exp"]["exp_name"], config=config["hparams"]): training_pipeline(config) else: training_pipeline(config) if __name__ == "__main__": parser = ArgumentParser("Driver code.") parser.add_argument("--conf", type=str, required=True, help="Path to config.yaml file.") args = parser.parse_args() main(args)
[ "torch.nn.CrossEntropyLoss" ]
1.10.0
ID56/Multimodal-Fusion-CRNN
1775ec0cb9d0878c2635860c291b343130296797