version
stringclasses
25 values
code
stringlengths
75
178k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
9
78
hexsha
stringlengths
40
40
1.0
############################################################################### # BSD 3-Clause License # # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Author & Contact: Guilin Liu ([email protected]) ############################################################################### import torch import torch.nn.functional as F from torch import nn, cuda from torch.autograd import Variable class PartialConv2d(nn.Conv2d): def __init__(self, *args, **kwargs): # whether the mask is multi-channel or not if "multi_channel" in kwargs: self.multi_channel = kwargs["multi_channel"] kwargs.pop("multi_channel") else: self.multi_channel = False if "return_mask" in kwargs: self.return_mask = kwargs["return_mask"] kwargs.pop("return_mask") else: self.return_mask = False super(PartialConv2d, self).__init__(*args, **kwargs) if self.multi_channel: self.weight_maskUpdater = torch.ones( self.out_channels, self.in_channels, self.kernel_size[0], self.kernel_size[1], ) else: self.weight_maskUpdater = torch.ones( 1, 1, self.kernel_size[0], self.kernel_size[1] ) self.slide_winsize = ( self.weight_maskUpdater.shape[1] * self.weight_maskUpdater.shape[2] * self.weight_maskUpdater.shape[3] ) self.last_size = (None, None, None, None) self.update_mask = None self.mask_ratio = None def forward(self, input, mask_in=None): assert len(input.shape) == 4 if mask_in is not None or self.last_size != tuple(input.shape): self.last_size = tuple(input.shape) with torch.no_grad(): if self.weight_maskUpdater.type() != input.type(): self.weight_maskUpdater = self.weight_maskUpdater.to(input) if mask_in is None: # if mask is not provided, create a mask if self.multi_channel: mask = torch.ones( input.data.shape[0], input.data.shape[1], input.data.shape[2], input.data.shape[3], ).to(input) else: mask = torch.ones( 1, 1, input.data.shape[2], input.data.shape[3] ).to(input) else: mask = mask_in self.update_mask = F.conv2d( mask, self.weight_maskUpdater, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=1, ) # for mixed precision training, change 1e-8 to 1e-6 self.mask_ratio = self.slide_winsize / (self.update_mask + 1e-8) # self.mask_ratio = torch.max(self.update_mask)/(self.update_mask + 1e-8) self.update_mask = torch.clamp(self.update_mask, 0, 1) self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask) raw_out = super(PartialConv2d, self).forward( torch.mul(input, mask) if mask_in is not None else input ) if self.bias is not None: bias_view = self.bias.view(1, self.out_channels, 1, 1) output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view output = torch.mul(output, self.update_mask) else: output = torch.mul(raw_out, self.mask_ratio) if self.return_mask: return output, self.update_mask else: return output
[ "torch.mul", "torch.no_grad", "torch.clamp", "torch.ones", "torch.nn.functional.conv2d" ]
1.0.0
dukebw/MichiGAN
3048e259dd2d368bb7a790a034e54d46f3da2a20
1.2
import torch from overrides import overrides from allennlp.modules.span_extractors.span_extractor import SpanExtractor from allennlp.modules.time_distributed import TimeDistributed from allennlp.nn import util @SpanExtractor.register("self_attentive") class SelfAttentiveSpanExtractor(SpanExtractor): """ Computes span representations by generating an unnormalized attention score for each word in the document. Spans representations are computed with respect to these scores by normalising the attention scores for words inside the span. Given these attention distributions over every span, this module weights the corresponding vector representations of the words in the span by this distribution, returning a weighted representation of each span. Parameters ---------- input_dim : ``int``, required. The final dimension of the ``sequence_tensor``. Returns ------- attended_text_embeddings : ``torch.FloatTensor``. A tensor of shape (batch_size, num_spans, input_dim), which each span representation is formed by locally normalising a global attention over the sequence. The only way in which the attention distribution differs over different spans is in the set of words over which they are normalized. """ def __init__(self, input_dim: int) -> None: super().__init__() self._input_dim = input_dim self._global_attention = TimeDistributed(torch.nn.Linear(input_dim, 1)) def get_input_dim(self) -> int: return self._input_dim def get_output_dim(self) -> int: return self._input_dim @overrides def forward(self, sequence_tensor: torch.FloatTensor, span_indices: torch.LongTensor, sequence_mask: torch.LongTensor = None, span_indices_mask: torch.LongTensor = None) -> torch.FloatTensor: dtype = sequence_tensor.dtype # both of shape (batch_size, num_spans, 1) span_starts, span_ends = span_indices.split(1, dim=-1) # shape (batch_size, num_spans, 1) # These span widths are off by 1, because the span ends are `inclusive`. span_widths = span_ends - span_starts # We need to know the maximum span width so we can # generate indices to extract the spans from the sequence tensor. # These indices will then get masked below, such that if the length # of a given span is smaller than the max, the rest of the values # are masked. max_batch_span_width = span_widths.max().item() + 1 # shape (batch_size, sequence_length, 1) global_attention_logits = self._global_attention(sequence_tensor) # Shape: (1, 1, max_batch_span_width) max_span_range_indices = util.get_range_vector(max_batch_span_width, util.get_device_of(sequence_tensor)).view(1, 1, -1) # Shape: (batch_size, num_spans, max_batch_span_width) # This is a broadcasted comparison - for each span we are considering, # we are creating a range vector of size max_span_width, but masking values # which are greater than the actual length of the span. # # We're using <= here (and for the mask below) because the span ends are # inclusive, so we want to include indices which are equal to span_widths rather # than using it as a non-inclusive upper bound. span_mask = (max_span_range_indices <= span_widths).to(dtype) raw_span_indices = span_ends - max_span_range_indices # We also don't want to include span indices which are less than zero, # which happens because some spans near the beginning of the sequence # have an end index < max_batch_span_width, so we add this to the mask here. span_mask = span_mask * (raw_span_indices >= 0).to(dtype) span_indices = torch.nn.functional.relu(raw_span_indices.to(dtype)).long() # Shape: (batch_size * num_spans * max_batch_span_width) flat_span_indices = util.flatten_and_batch_shift_indices(span_indices, sequence_tensor.size(1)) # Shape: (batch_size, num_spans, max_batch_span_width, embedding_dim) span_embeddings = util.batched_index_select(sequence_tensor, span_indices, flat_span_indices) # Shape: (batch_size, num_spans, max_batch_span_width) span_attention_logits = util.batched_index_select(global_attention_logits, span_indices, flat_span_indices).squeeze(-1) # Shape: (batch_size, num_spans, max_batch_span_width) span_attention_weights = util.masked_softmax(span_attention_logits, span_mask, memory_efficient=True, mask_fill_value=-1000) # Do a weighted sum of the embedded spans with # respect to the normalised attention distributions. # Shape: (batch_size, num_spans, embedding_dim) attended_text_embeddings = util.weighted_sum(span_embeddings, span_attention_weights) if span_indices_mask is not None: # Above we were masking the widths of spans with respect to the max # span width in the batch. Here we are masking the spans which were # originally passed in as padding. return attended_text_embeddings * span_indices_mask.unsqueeze(-1).to(dtype) return attended_text_embeddings
[ "torch.nn.Linear" ]
1.2.0
tkim135/allennlp
397f46bd83e24ad8c40a9febd2b5be49583012a6
0.3
import json import os import pickle import re import torch from tqdm import tqdm classes = { 'number':['0','1','2','3','4','5','6','7','8','9','10'], 'material':['rubber','metal'], 'color':['cyan','blue','yellow','purple','red','green','gray','brown'], 'shape':['sphere','cube','cylinder'], 'size':['large','small'], 'exist':['yes','no'] } def build_dictionaries(clevr_dir): def compute_class(answer): for name,values in classes.items(): if answer in values: return name raise ValueError('Answer {} does not belong to a known class'.format(answer)) cached_dictionaries = os.path.join(clevr_dir, 'questions', 'CLEVR_built_dictionaries.pkl') if os.path.exists(cached_dictionaries): print('==> using cached dictionaries: {}'.format(cached_dictionaries)) with open(cached_dictionaries, 'rb') as f: return pickle.load(f) quest_to_ix = {} answ_to_ix = {} answ_ix_to_class = {} json_train_filename = os.path.join(clevr_dir, 'questions', 'CLEVR_train_questions.json') #load all words from all training data with open(json_train_filename, "r") as f: questions = json.load(f)['questions'] for q in tqdm(questions): question = tokenize(q['question']) answer = q['answer'] #pdb.set_trace() for word in question: if word not in quest_to_ix: quest_to_ix[word] = len(quest_to_ix)+1 #one based indexing; zero is reserved for padding a = answer.lower() if a not in answ_to_ix: ix = len(answ_to_ix)+1 answ_to_ix[a] = ix answ_ix_to_class[ix] = compute_class(a) ret = (quest_to_ix, answ_to_ix, answ_ix_to_class) with open(cached_dictionaries, 'wb') as f: pickle.dump(ret, f) return ret def to_dictionary_indexes(dictionary, sentence): """ Outputs indexes of the dictionary corresponding to the words in the sequence. Case insensitive. """ split = tokenize(sentence) idxs = torch.LongTensor([dictionary[w] for w in split]) return idxs def collate_samples_from_pixels(batch): return collate_samples(batch, False, False) def collate_samples_state_description(batch): return collate_samples(batch, True, False) def collate_samples_images_state_description(batch): return collate_samples(batch, True, True) def collate_samples(batch, state_description, only_images): """ Used by DatasetLoader to merge together multiple samples into one mini-batch. """ batch_size = len(batch) if only_images: images = batch else: images = [d['image'] for d in batch] answers = [d['answer'] for d in batch] questions = [d['question'] for d in batch] # questions are not fixed length: they must be padded to the maximum length # in this batch, in order to be inserted in a tensor max_len = max(map(len, questions)) padded_questions = torch.LongTensor(batch_size, max_len).zero_() for i, q in enumerate(questions): padded_questions[i, :len(q)] = q if state_description: max_len = 12 #even object matrices should be padded (they are variable length) padded_objects = torch.FloatTensor(batch_size, max_len, images[0].size()[1]).zero_() for i, o in enumerate(images): padded_objects[i, :o.size()[0], :] = o images = padded_objects if only_images: collated_batch = torch.stack(images) else: collated_batch = dict( image=torch.stack(images), answer=torch.stack(answers), question=torch.stack(padded_questions) ) return collated_batch def tokenize(sentence): # punctuation should be separated from the words s = re.sub('([.,;:!?()])', r' \1 ', sentence) s = re.sub('\s{2,}', ' ', s) # tokenize split = s.split() # normalize all words to lowercase lower = [w.lower() for w in split] return lower def load_tensor_data(data_batch, cuda, invert_questions, volatile=False): # prepare input var_kwargs = dict(volatile=True) if volatile else dict(requires_grad=False) qst = data_batch['question'] if invert_questions: # invert question indexes in this batch qst_len = qst.size()[1] qst = qst.index_select(1, torch.arange(qst_len - 1, -1, -1).long()) img = torch.autograd.Variable(data_batch['image'], **var_kwargs) qst = torch.autograd.Variable(qst, **var_kwargs) label = torch.autograd.Variable(data_batch['answer'], **var_kwargs) if cuda: img, qst, label = img.cuda(), qst.cuda(), label.cuda() label = (label - 1).squeeze(1) return img, qst, label
[ "torch.autograd.Variable", "torch.LongTensor", "torch.stack", "torch.arange" ]
0.3.1
mesnico/RelationNetworks-CLEVR
b8e0e7af12408877c8a18d8f2802d88138605983
1.3
# Copyright 2018 Dong-Hyun Lee, Kakao Brain. # (Strongly inspired by original Google BERT code and Hugging Face's code) """ Fine-tuning on A Classification Task with pretrained Transformer """ import itertools import csv import os import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch import optim import tokenization import models # import optim import train import argparse from utils import set_seeds, get_device, truncate_tokens_pair class CsvDataset(Dataset): """ Dataset Class for CSV file """ labels = None def __init__(self, file, pipeline=[]): # cvs file and pipeline object Dataset.__init__(self) data = [] with open(file, "r") as f: # list of splitted lines : line is also list lines = csv.reader(f, delimiter='\t', quotechar=None) for instance in self.get_instances(lines): # instance : tuple of fields for proc in pipeline: # a bunch of pre-processing instance = proc(instance) data.append(instance) # To Tensors self.tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*data)] def __len__(self): return self.tensors[0].size(0) def __getitem__(self, index): return tuple(tensor[index] for tensor in self.tensors) def get_instances(self, lines): """ get instance array from (csv-separated) line list """ raise NotImplementedError class MRPC(CsvDataset): """ Dataset class for MRPC """ labels = ("0", "1") # label names def __init__(self, file, pipeline=[]): super().__init__(file, pipeline) def get_instances(self, lines): for line in itertools.islice(lines, 1, None): # skip header yield line[0], line[3], line[4] # label, text_a, text_b class MNLI(CsvDataset): """ Dataset class for MNLI """ labels = ("contradiction", "entailment", "neutral") # label names def __init__(self, file, pipeline=[]): super().__init__(file, pipeline) def get_instances(self, lines): for line in itertools.islice(lines, 1, None): # skip header yield line[-1], line[8], line[9] # label, text_a, text_b class SST(CsvDataset): """ Dataset class for SST """ labels = ("0", "1") # label names def __init__(self, file='data/', pipeline=[]): super().__init__(file, pipeline) def get_instances(self, lines): for line in itertools.islice(lines, 1, None): # skip header yield line[-1], line[0], None # label, text_a, text_b def dataset_class(task): """ Mapping from task string to Dataset Class """ table = {'mrpc': MRPC, 'sst': SST} return table[task] class Pipeline(): """ Preprocess Pipeline Class : callable """ def __init__(self): super().__init__() def __call__(self, instance): raise NotImplementedError class Tokenizing(Pipeline): """ Tokenizing sentence pair """ def __init__(self, preprocessor, tokenize): super().__init__() self.preprocessor = preprocessor # e.g. text normalization self.tokenize = tokenize # tokenize function def __call__(self, instance): label, text_a, text_b = instance label = self.preprocessor(label) tokens_a = self.tokenize(self.preprocessor(text_a)) tokens_b = self.tokenize(self.preprocessor(text_b)) \ if text_b else [] return (label, tokens_a, tokens_b) class AddSpecialTokensWithTruncation(Pipeline): """ Add special tokens [CLS], [SEP] with truncation """ def __init__(self, max_len=512): super().__init__() self.max_len = max_len def __call__(self, instance): label, tokens_a, tokens_b = instance # -3 special tokens for [CLS] text_a [SEP] text_b [SEP] # -2 special tokens for [CLS] text_a [SEP] _max_len = self.max_len - 3 if tokens_b else self.max_len - 2 truncate_tokens_pair(tokens_a, tokens_b, _max_len) # Add Special Tokens tokens_a = ['[CLS]'] + tokens_a + ['[SEP]'] tokens_b = tokens_b + ['[SEP]'] if tokens_b else [] return (label, tokens_a, tokens_b) class TokenIndexing(Pipeline): """ Convert tokens into token indexes and do zero-padding """ def __init__(self, indexer, labels, max_len=512): super().__init__() self.indexer = indexer # function : tokens to indexes # map from a label name to a label index self.label_map = {name: i for i, name in enumerate(labels)} self.max_len = max_len def __call__(self, instance): label, tokens_a, tokens_b = instance input_ids = self.indexer(tokens_a + tokens_b) segment_ids = [0]*len(tokens_a) + [1]*len(tokens_b) # token type ids input_mask = [1]*(len(tokens_a) + len(tokens_b)) label_id = self.label_map[label] # zero padding n_pad = self.max_len - len(input_ids) input_ids.extend([0]*n_pad) segment_ids.extend([0]*n_pad) input_mask.extend([0]*n_pad) return (input_ids, segment_ids, input_mask, label_id) class Classifier(nn.Module): """ Classifier with Transformer """ def __init__(self, cfg, n_labels): super().__init__() self.transformer = models.Transformer(cfg) self.fc = nn.Linear(cfg.hidden, cfg.hidden) self.activ = nn.ReLU() self.drop = nn.Dropout(cfg.p_drop_hidden) self.pool = nn.AdaptiveMaxPool1d(1) self.classifier = nn.Linear(cfg.hidden, n_labels) def forward(self, input_ids, segment_ids, input_mask): h = self.transformer(input_ids, segment_ids, input_mask) # only use the first h in the sequence h = self.pool(h.transpose(1, 2)).squeeze(-1) pooled_h = self.activ(self.fc(h)) logits = self.classifier(self.drop(pooled_h)) return logits #pretrain_file='../uncased_L-12_H-768_A-12/bert_model.ckpt', #pretrain_file='../exp/bert/pretrain_100k/model_epoch_3_steps_9732.pt', def main(task='mrpc', train_cfg='config/train_mrpc.json', model_cfg='config/albert_base.json', data_file='./data/MRPC/train.tsv', model_file=None, pretrain_file=None, data_parallel=True, vocab='./data/vocab.txt', save_dir='./saved/mrpc', max_len=128, mode='train'): cfg = train.Config.from_json(train_cfg) model_cfg = models.Config.from_json(model_cfg) set_seeds(cfg.seed) tokenizer = tokenization.FullTokenizer(vocab_file=vocab, do_lower_case=True) TaskDataset = dataset_class(task) # task dataset class according to the task pipeline = [Tokenizing(tokenizer.convert_to_unicode, tokenizer.tokenize), AddSpecialTokensWithTruncation(max_len), TokenIndexing(tokenizer.convert_tokens_to_ids, TaskDataset.labels, max_len)] dataset = TaskDataset(data_file, pipeline) data_iter = DataLoader(dataset, batch_size=cfg.batch_size, shuffle=True) model = Classifier(model_cfg, len(TaskDataset.labels)) model.train() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=cfg.lr, betas=(0.9, 0.999), eps=1e-06) trainer = train.Trainer(cfg, model, data_iter, optimizer, save_dir, get_device()) if mode == 'train': def get_loss(model, batch, global_step): # make sure loss is a scalar tensor input_ids, segment_ids, input_mask, label_id = batch logits = model(input_ids, segment_ids, input_mask) loss = criterion(logits, label_id) return loss trainer.train(get_loss, model_file, pretrain_file, data_parallel) elif mode == 'eval': def evaluate(model, batch): input_ids, segment_ids, input_mask, label_id = batch logits = model(input_ids, segment_ids, input_mask) _, label_pred = logits.max(1) result = (label_pred == label_id).float() #.cpu().numpy() accuracy = result.mean() return accuracy, result results = trainer.eval(evaluate, model_file, data_parallel) total_accuracy = torch.cat(results).mean().item() print('\n-----------------------------') print('[{}] Accuracy: {:.3f}'.format(task, total_accuracy)) print('-----------------------------\n') if __name__ == '__main__': ''' mrpc : 76.6/83.0 random weight init Accuracy: 0.701 electra : 150000 Accuracy: 0.701 masked : 200000 Accuracy: 0.699 ''' parser = argparse.ArgumentParser(description='GLUE Score') parser.add_argument('--pretrain', type=str, default='./saved/d_model_steps_150000.pt') parser.add_argument('--task', type=str, default='mrpc', choices=['mrpc', 'sst']) parser.add_argument('--cfg', type=str, default='config/train_mrpc.json') parser.add_argument('--train', type=str, default='./data/MRPC/train.tsv') parser.add_argument('--eval', type=str, default='./data/MRPC/dev.tsv') args = parser.parse_args() cfg = train.Config.from_json(args.cfg) os.makedirs(os.path.join('saved', args.task), exist_ok=True) main(mode='train', task=args.task, # pretrain_file=args.pretrain, data_file=args.train, train_cfg=args.cfg, ) main(mode='eval', task=args.task, data_file=args.eval, model_file='saved/{}/model_steps_{}.pt'.format(args.task, cfg.total_steps))
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.utils.data.Dataset.__init__", "torch.nn.ReLU", "torch.tensor", "torch.utils.data.DataLoader", "torch.nn.CrossEntropyLoss", "torch.nn.AdaptiveMaxPool1d" ]
1.3.1
theblackcat102/ALBERT-Pytorch
eebf3465cbc82c643dbe561b480bed0116f34d21
1.1
import torch.optim as optim from models import build_dual_model from dataset import MetricLearningDataset from torch.utils.data import DataLoader from augmentation import transform_train, transform_test from torch.autograd import Variable import math import torch import numpy as np from trainer.trainer import compute_knn from loss import CenterBatchCriterion, ClusterCriterion, ReconstructCriterion import matplotlib.pyplot as plt # deterministic behaviour torch.manual_seed(1024) torch.cuda.manual_seed(1024) torch.backends.cudnn.benchmark = True np.random.seed(1024) device = 'cuda:0' train_set = MetricLearningDataset('data', train=True, transform=transform_train) trn_loader = DataLoader(train_set, batch_size=32, shuffle=True, num_workers=4, drop_last=True) model = build_dual_model('default', pretrained=True, low_dim=128, n_cluster=75).to(device) # state = torch.load('checkpoint/test_val_loss/Sep-27-16_59_12/model_best.15.pth') state = torch.load('new_checkpoint/test/Sep-28-22_58_44/model_best.12.pth') model.load_state_dict(state['model']) optimizer = optim.SGD(model.parameters(), lr=1e-1) optimizer.load_state_dict(state['optimizer']) print(optimizer.param_groups[0]['lr']) ml_criterion = CenterBatchCriterion(1, 0.1, 64, 1) ml_criterion.to(device) rim_criterion = ClusterCriterion(1) rim_criterion.to(device) recon_criterion = ReconstructCriterion() recon_criterion.to(device) def find_lr(init_value = 1e-8, final_value=1e-1, beta = 0.98): num = len(trn_loader)-1 mult = (final_value / init_value) ** (1/num) lr = init_value optimizer.param_groups[0]['lr'] = lr avg_loss = 0. best_loss = 0. batch_num = 0 losses = [] log_lrs = [] # generate positive index train_set = trn_loader.dataset n_data = len(train_set) temp_loader = torch.utils.data.DataLoader(train_set, batch_size=100, shuffle=False, num_workers=4) train_set.transform = transform_test labels = np.zeros(n_data) model.mode = 'pool' out_index = 1 feat_dim = 1024 features = torch.zeros(n_data, feat_dim) labels = torch.Tensor(labels) ptr = 0 with torch.no_grad(): for batch_idx, (inputs, _, _) in enumerate(temp_loader): batch_size = inputs.size(0) real_size = min(batch_size, 100) inputs = inputs.to('cuda:0') batch_feat = model(inputs)[out_index] features[ptr:ptr + real_size, :] = batch_feat.cpu() ptr += 100 train_set.transform = transform_train model.mode = 'normal' # select nn Index dist_feat = np.array(torch.mm(features, features.t())) nn_index = compute_knn(dist_feat, labels, knn=1, epoch=1) train_set.nnIndex = nn_index for inputs1, inputs2, targets in trn_loader: batch_num += 1 #As before, get the loss for this mini-batch of inputs/outputs inputs1, inputs2, targets = inputs1.to(device), inputs2.to(device), targets.to(device) targets = targets.repeat(2) inputs = torch.cat((inputs1, inputs2), 0) optimizer.zero_grad() repr, cluster, emb = model(inputs) # Total loss rim_loss = rim_criterion(cluster) pred_cluster = torch.argmax(torch.softmax(cluster, dim=1), dim=1) unique_cluster = torch.unique(pred_cluster) centroid_embedding = torch.zeros(len(unique_cluster), 1024, 7, 7).to(device) index = pred_cluster == unique_cluster.view(-1, 1) for i in range(len(index)): centroid_embedding[i] = torch.mean(emb[index[i]], dim=0) emb_index = torch.argmax(unique_cluster == pred_cluster.view(-1, 1), dim=1) model.feat_ext.eval() x = model.flatten(centroid_embedding.detach().to(device)) x = model.feat_ext(x) centroid_repr = model.l2norm(x) model.feat_ext.train() ml_loss = ml_criterion(repr, centroid_repr, pred_cluster) # metric_loss = self.ml_criterion(repr) loss = ml_loss + 0.1 * rim_loss # loss = recon_loss + ml_loss + rim_loss #Compute the smoothed loss avg_loss = beta * avg_loss + (1-beta) * loss.item() smoothed_loss = avg_loss / (1 - beta**batch_num) #Stop if the loss is exploding if batch_num > 1 and smoothed_loss > 4 * best_loss: return log_lrs, losses #Record the best loss if smoothed_loss < best_loss or batch_num==1: best_loss = smoothed_loss #Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) #Do the SGD step loss.backward() optimizer.step() #Update the lr for the next step lr *= mult optimizer.param_groups[0]['lr'] = lr return log_lrs, losses logs, losses = find_lr() plt.plot(logs[10:-5],losses[10:-5]) plt.show() print(losses)
[ "torch.zeros", "torch.cat", "torch.cuda.manual_seed", "torch.unique", "torch.no_grad", "torch.softmax", "torch.manual_seed", "torch.utils.data.DataLoader", "torch.load", "torch.Tensor", "torch.mean" ]
1.1.0
aioz-ai/BMVC20_CBSwR
fd24336c3cba0b85c0fa2482bf82409457534266
1.4
from collections import namedtuple import os from ding.torch_utils.data_helper import to_device, to_dtype, to_tensor import torch from torchvision import transforms import numpy as np from typing import Dict, List, Any, Optional from .base_carla_policy import BaseCarlaPolicy from core.models import PIDController, CustomController from core.models.lbc_model import LBCBirdviewModel, LBCImageModel from core.utils.model_utils import common from ding.utils.data import default_collate, default_decollate STEPS = 5 SPEED_STEPS = 3 COMMANDS = 4 class LBCBirdviewPolicy(BaseCarlaPolicy): """ LBC driving policy with Bird-eye View inputs. It has an LBC NN model which can handle observations from several environments by collating data into batch. Each environment has a PID controller related to it to get final control signals. In each updating, all envs should use the correct env id to make the PID controller works well, and the controller should be reset when starting a new episode. :Arguments: - cfg (Dict): Config Dict. :Interfaces: reset, forward """ config = dict( model=dict(cuda=True, backbone='resnet18', input_channel=7, all_branch=False), steer_points=None, pid=None, gap=5, dt=0.1, crop_size=192, pixels_per_meter=5, ) def __init__(self, cfg: dict) -> None: super().__init__(cfg, enable_field=set(['eval', 'learn'])) self._controller_dict = dict() if self._cfg.model.cuda: if not torch.cuda.is_available(): print('[POLICY] No cuda device found! Use cpu by default') self._device = torch.device('cpu') else: self._device = torch.device('cuda') else: self._device = torch.device('cpu') self._one_hot = torch.FloatTensor(torch.eye(4)) self._transform = transforms.ToTensor() self._gap = self._cfg.gap self._dt = self._cfg.dt self._crop_size = self._cfg.crop_size self._pixels_per_meter = self._cfg.pixels_per_meter self._steer_points = self._cfg.steer_points self._pid = self._cfg.pid if self._steer_points is None: self._steer_points = {"1": 3, "2": 2, "3": 2, "4": 2} if self._pid is None: self._pid = { "1": { "Kp": 1.0, "Ki": 0.1, "Kd": 0 }, # Left "2": { "Kp": 1.0, "Ki": 0.1, "Kd": 0 }, # Right "3": { "Kp": 0.8, "Ki": 0.1, "Kd": 0 }, # Straight "4": { "Kp": 0.8, "Ki": 0.1, "Kd": 0 }, # Follow } self._speed_control_func = lambda: PIDController(K_P=1.0, K_I=0.1, K_D=2.5) self._turn_control_func = lambda: CustomController(self._pid) self._model = LBCBirdviewModel( self._cfg.model.backbone, self._cfg.model.input_channel, self._cfg.model.all_branch ) self._model.to(self._device) def _postprocess(self, steer, throttle, brake): control = {} control.update( { 'steer': np.clip(steer, -1.0, 1.0), 'throttle': np.clip(throttle, 0.0, 1.0), 'brake': np.clip(brake, 0.0, 1.0), } ) return control def _reset_single(self, data_id): if data_id in self._controller_dict: self._controller_dict.pop(data_id) self._controller_dict[data_id] = (self._speed_control_func(), self._turn_control_func()) def _reset(self, data_ids: Optional[List[int]] = None) -> None: if data_ids is not None: for id in data_ids: self._reset_single(id) else: for id in self._controller_dict: self._reset_single(id) def _forward_eval(self, data: Dict) -> Dict[str, Any]: """ Running forward to get control signal of `eval` mode. :Arguments: - data (Dict): Input dict, with env id in keys and related observations in values, :Returns: Dict: Control and waypoints dict stored in values for each provided env id. """ data_ids = list(data.keys()) data = default_collate(list(data.values())) birdview = to_dtype(data['birdview'], dtype=torch.float32).permute(0, 3, 1, 2) speed = data['speed'] command_index = [i.item() - 1 for i in data['command']] command = self._one_hot[command_index] if command.ndim == 1: command = command.unsqueeze(0) with torch.no_grad(): _birdview = birdview.to(self._device) _speed = speed.to(self._device) _command = command.to(self._device) if self._model._all_branch: _locations, _ = self._model(_birdview, _speed, _command) else: _locations = self._model(_birdview, _speed, _command) _locations = _locations.detach().cpu().numpy() map_locations = _locations actions = {} for index, data_id in enumerate(data_ids): # Pixel coordinates. map_location = map_locations[index, ...] map_location = (map_location + 1) / 2 * self._crop_size targets = list() for i in range(STEPS): pixel_dx, pixel_dy = map_location[i] pixel_dx = pixel_dx - self._crop_size / 2 pixel_dy = self._crop_size - pixel_dy angle = np.arctan2(pixel_dx, pixel_dy) dist = np.linalg.norm([pixel_dx, pixel_dy]) / self._pixels_per_meter targets.append([dist * np.cos(angle), dist * np.sin(angle)]) target_speed = 0.0 for i in range(1, SPEED_STEPS): pixel_dx, pixel_dy = map_location[i] prev_dx, prev_dy = map_location[i - 1] dx = pixel_dx - prev_dx dy = pixel_dy - prev_dy delta = np.linalg.norm([dx, dy]) target_speed += delta / (self._pixels_per_meter * self._gap * self._dt) / (SPEED_STEPS - 1) _cmd = data['command'][index].item() _sp = data['speed'][index].item() n = self._steer_points.get(str(_cmd), 1) targets = np.concatenate([[[0, 0]], targets], 0) c, r = ls_circle(targets) closest = common.project_point_to_circle(targets[n], c, r) v = [1.0, 0.0, 0.0] w = [closest[0], closest[1], 0.0] alpha = common.signed_angle(v, w) steer = self._controller_dict[data_id][1].run_step(alpha, _cmd) throttle = self._controller_dict[data_id][0].step(target_speed - _sp) brake = 0.0 if target_speed < 1.0: steer = 0.0 throttle = 0.0 brake = 1.0 control = self._postprocess(steer, throttle, brake) control.update({'map_locations': map_location}) actions[data_id] = {'action': control} return actions def _reset_eval(self, data_ids: Optional[List[int]] = None) -> None: """ Reset policy of `eval` mode. It will change the NN model into 'eval' mode and reset the controllers in providded env id. :Arguments: - data_id (List[int], optional): List of env id to reset. Defaults to None. """ self._model.eval() self._reset(data_ids) class LBCImagePolicy(BaseCarlaPolicy): """ LBC driving policy with RGB image inputs. It has an LBC NN model which can handle observations from several environments by collating data into batch. Each environment has a PID controller related to it to get final control signals. In each updating, all envs should use the correct env id to make the PID controller works well, and the controller should be reset when starting a new episode. :Arguments: - cfg (Dict): Config Dict. :Interfaces: reset, forward """ config = dict( model=dict(cuda=True, backbone='resnet34', all_branch=False), camera_args=dict( fixed_offset=4.0, fov=90, h=160, w=384, world_y=1.4, ), steer_points=None, pid=None, gap=5, dt=0.1, ) def __init__(self, cfg: Dict) -> None: super().__init__(cfg, enable_field=set(['eval', 'learn'])) self._controller_dict = dict() if self._cfg.model.cuda: if not torch.cuda.is_available(): print('[POLICY] No cuda device found! Use cpu by default') self._device = torch.device('cpu') else: self._device = torch.device('cuda') else: self._device = torch.device('cpu') self._one_hot = torch.FloatTensor(torch.eye(4)) self._transform = transforms.ToTensor() self._camera_args = self._cfg.camera_args self._fixed_offset = self._camera_args.fixed_offset w = float(self._camera_args.w) h = float(self._camera_args.h) self._img_size = np.array([w, h]) self._gap = self._cfg.gap self._dt = self._cfg.dt self._steer_points = self._cfg.steer_points self._pid = self._cfg.pid if self._steer_points is None: self._steer_points = {"1": 4, "2": 3, "3": 2, "4": 2} if self._pid is None: self._pid = { "1": { "Kp": 0.5, "Ki": 0.20, "Kd": 0.0 }, "2": { "Kp": 0.7, "Ki": 0.10, "Kd": 0.0 }, "3": { "Kp": 1.0, "Ki": 0.10, "Kd": 0.0 }, "4": { "Kp": 1.0, "Ki": 0.50, "Kd": 0.0 } } self._speed_control_func = lambda: PIDController(K_P=.8, K_I=.08, K_D=0.) self._turn_control_func = lambda: CustomController(self._pid) self._engine_brake_threshold = 2.0 self._brake_threshold = 2.0 self._model = LBCImageModel(self._cfg.model.backbone, False, all_branch=self._cfg.model.all_branch) self._model = self._model.to(self._device) def _reset_single(self, data_id): if data_id in self._controller_dict: self._controller_dict.pop(data_id) self._controller_dict[data_id] = (self._speed_control_func(), self._turn_control_func()) def _reset(self, data_ids: Optional[List[int]] = None) -> None: if data_ids is not None: for id in data_ids: self._reset_single(id) else: for id in self._controller_dict: self._reset_single(id) def _postprocess(self, steer, throttle, brake): control = {} control.update( { 'steer': np.clip(steer, -1.0, 1.0), 'throttle': np.clip(throttle, 0.0, 1.0), 'brake': np.clip(brake, 0.0, 1.0), } ) return control def _unproject(self, output, world_y=1.4, fov=90): cx, cy = self._img_size / 2 w, h = self._img_size f = w / (2 * np.tan(fov * np.pi / 360)) xt = (output[..., 0:1] - cx) / f yt = (output[..., 1:2] - cy) / f world_z = world_y / yt world_x = world_z * xt world_output = np.stack([world_x, world_z], axis=-1) if self._fixed_offset: world_output[..., 1] -= self._fixed_offset world_output = world_output.squeeze() return world_output def _forward_eval(self, data: Dict) -> Dict: """ Running forward to get control signal of `eval` mode. :Arguments: - data (Dict): Input dict, with env id in keys and related observations in values, :Returns: Dict: Control and waypoints dict stored in values for each provided env id. """ data_ids = list(data.keys()) data = default_collate(list(data.values())) rgb = to_dtype(data['rgb'], dtype=torch.float32).permute(0, 3, 1, 2) speed = data['speed'] command_index = [i.item() - 1 for i in data['command']] command = self._one_hot[command_index] if command.ndim == 1: command = command.unsqueeze(0) with torch.no_grad(): _rgb = rgb.to(self._device) _speed = speed.to(self._device) _command = command.to(self._device) if self._model.all_branch: model_pred, _ = self._model(_rgb, _speed, _command) else: model_pred = self._model(_rgb, _speed, _command) model_pred = model_pred.detach().cpu().numpy() pixels_pred = model_pred actions = {} for index, data_id in enumerate(data_ids): # Project back to world coordinate pixel_pred = pixels_pred[index, ...] pixel_pred = (pixel_pred + 1) * self._img_size / 2 world_pred = self._unproject(pixel_pred, self._camera_args.world_y, self._camera_args.fov) targets = [(0, 0)] for i in range(STEPS): pixel_dx, pixel_dy = world_pred[i] angle = np.arctan2(pixel_dx, pixel_dy) dist = np.linalg.norm([pixel_dx, pixel_dy]) targets.append([dist * np.cos(angle), dist * np.sin(angle)]) targets = np.array(targets) target_speed = np.linalg.norm(targets[:-1] - targets[1:], axis=1).mean() / (self._gap * self._dt) _cmd = data['command'][index].item() _sp = data['speed'][index].item() c, r = ls_circle(targets) n = self._steer_points.get(str(_cmd), 1) closest = common.project_point_to_circle(targets[n], c, r) v = [1.0, 0.0, 0.0] w = [closest[0], closest[1], 0.0] alpha = common.signed_angle(v, w) steer = self._controller_dict[data_id][1].run_step(alpha, _cmd) throttle = self._controller_dict[data_id][0].step(target_speed - _sp) brake = 0.0 # Slow or stop. if target_speed <= self._engine_brake_threshold: steer = 0.0 throttle = 0.0 if target_speed <= self._brake_threshold: brake = 1.0 control = self._postprocess(steer, throttle, brake) control.update({'map_locations': pixels_pred}) actions[data_id] = {'action': control} return actions def _reset_eval(self, data_ids: Optional[List[int]]) -> None: """ Reset policy of `eval` mode. It will change the NN model into 'eval' mode and reset the controllers in providded env id. :Arguments: - data_id (List[int], optional): List of env id to reset. Defaults to None. """ self._model.eval() self._reset(data_ids) def ls_circle(points): ''' Input: Nx2 points Output: cx, cy, r ''' xs = points[:, 0] ys = points[:, 1] us = xs - np.mean(xs) vs = ys - np.mean(ys) Suu = np.sum(us ** 2) Suv = np.sum(us * vs) Svv = np.sum(vs ** 2) Suuu = np.sum(us ** 3) Suvv = np.sum(us * vs * vs) Svvv = np.sum(vs ** 3) Svuu = np.sum(vs * us * us) A = np.array([[Suu, Suv], [Suv, Svv]]) b = np.array([1 / 2. * Suuu + 1 / 2. * Suvv, 1 / 2. * Svvv + 1 / 2. * Svuu]) cx, cy = np.linalg.solve(A, b) r = np.sqrt(cx * cx + cy * cy + (Suu + Svv) / len(xs)) cx += np.mean(xs) cy += np.mean(ys) return np.array([cx, cy]), r
[ "torch.device", "torch.no_grad", "torch.eye", "torch.cuda.is_available" ]
1.4
timothijoe/DI-drive
3cddefc85bbbca6bcdd8a4d796decacaf8d81778
1.4
import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, input_channel=7, num_classes=1000, zero_init_residual=False, bias_first=True): super(ResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(input_channel, 64, kernel_size=7, stride=2, padding=3, bias=bias_first) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves # like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x class ResNetv2(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNetv2, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(2) # TODO: THis is a super hardcoding ..., in order to fit my image size on resnet if block.__name__ == 'Bottleneck': self.fc = nn.Linear(6144, num_classes) else: self.fc = nn.Linear(1536, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x0 = self.maxpool(x) x1 = self.layer1(x0) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x = self.avgpool(x4) x = x.view(x.size(0), -1) x = self.fc(x) return x, [x0, x1, x2, x3, x4] # output, intermediate def get_layers_features(self, x): # Just get the intermediate layers directly. x = self.conv1(x) x = self.bn1(x) x0 = self.relu(x) x = self.maxpool(x0) x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x5 = self.avgpool(x4) x = x5.view(x.size(0), -1) x = self.fc(x) all_layers = [x0, x1, x2, x3, x4, x5, x] return all_layers model_funcs = { 'resnet18': (BasicBlock, [2, 2, 2, 2], -1), 'resnet34': (BasicBlock, [3, 4, 6, 3], 512), 'resnet50': (Bottleneck, [3, 4, 6, 3], -1), 'resnet101': (Bottleneck, [3, 4, 23, 3], -1), 'resnet152': (Bottleneck, [3, 8, 36, 3], -1), } def get_resnet(model_name='resnet18', pretrained=False, **kwargs): block, layers, c_out = model_funcs[model_name] model = ResNet(block, layers, **kwargs) if pretrained and kwargs.get('input_channel', 3) == 3: url = model_urls[model_name] print("Loading ResNet weights from : %s" % url) model.load_state_dict(model_zoo.load_url(url)) return model, c_out def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetv2(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model_dict = model_zoo.load_url(model_urls['resnet18']) # remove the fc layers del model_dict['fc.weight'] del model_dict['fc.bias'] state = model.state_dict() state.update(model_dict) model.load_state_dict(state) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetv2(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model_dict = model_zoo.load_url(model_urls['resnet34']) # remove the fc layers del model_dict['fc.weight'] del model_dict['fc.bias'] state = model.state_dict() state.update(model_dict) model.load_state_dict(state) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetv2(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model_dict = model_zoo.load_url(model_urls['resnet50']) # remove the fc layers del model_dict['fc.weight'] del model_dict['fc.bias'] state = model.state_dict() state.update(model_dict) model.load_state_dict(state) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetv2(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetv2(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model
[ "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.init.kaiming_normal_", "torch.utils.model_zoo.load_url", "torch.nn.init.constant_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.AdaptiveAvgPool2d" ]
1.4
timothijoe/DI-drive
3cddefc85bbbca6bcdd8a4d796decacaf8d81778
1.9
from conf import * import torch import random import numpy as np import os from typing import Dict, Tuple, Any from sklearn.metrics import roc_auc_score from scipy.special import expit, softmax from sklearn.metrics import precision_score def set_seed(seed=1234): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def global_average_precision_score(y_true, y_pred, ignore_non_landmarks=False): indexes = np.argsort(y_pred[1])[::-1] queries_with_target = (y_true < args.n_classes).sum() correct_predictions = 0 total_score = 0. i = 1 for k in indexes: if ignore_non_landmarks and y_true[k] == args.n_classes: continue if y_pred[0][k] == args.n_classes: continue relevance_of_prediction_i = 0 if y_true[k] == y_pred[0][k]: correct_predictions += 1 relevance_of_prediction_i = 1 precision_at_rank_i = correct_predictions / i total_score += precision_at_rank_i * relevance_of_prediction_i i += 1 return 1 / queries_with_target * total_score def comp_metric(y_true, logits, ignore_non_landmarks=False): score = global_average_precision_score(y_true, logits, ignore_non_landmarks=ignore_non_landmarks) return score def cos_similarity_matrix(a, b, eps=1e-8): a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None] a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n)) b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n)) sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1)) return sim_mt def get_topk_cossim(test_emb, tr_emb, batchsize = 64, k=10, device='cuda:0',verbose=True): tr_emb = torch.tensor(tr_emb, dtype = torch.float32, device=torch.device(device)) test_emb = torch.tensor(test_emb, dtype = torch.float32, device=torch.device(device)) vals = [] inds = [] for test_batch in test_emb.split(batchsize): sim_mat = cos_similarity_matrix(test_batch, tr_emb) vals_batch, inds_batch = torch.topk(sim_mat, k=k, dim=1) vals += [vals_batch.detach().cpu()] inds += [inds_batch.detach().cpu()] vals = torch.cat(vals) inds = torch.cat(inds) return vals, inds
[ "torch.device", "torch.cat", "torch.cuda.manual_seed", "torch.manual_seed", "torch.ones_like", "torch.topk" ]
1.9.0
iamkaiwei/kaggle-landmark-recognition-2020-1st-place
97df71ecfd37122730b7f0b29fde09ac36358609
0.4
import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F import math import copy import time import logging from torch.autograd import Variable import pdb from src.components.utils import * from src.components.encoder import * from src.components.decoder import * from src.components.self_attention import * class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Directional Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask),src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def make_model(args, src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) no_position = NoPositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(args, d_model, c(attn), c(attn), c(ff), dropout), N), nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab)) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def run_epoch(data_iter, model, loss_compute): "Standard Training and Logging Function" start = time.time() total_tokens = 0 total_loss = 0 tokens = 0 for i, batch in enumerate(data_iter): out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask) ntoks = batch.ntokens.float() loss = loss_compute(out, batch.trg_y, ntoks) total_loss += loss total_tokens += ntoks tokens += ntoks if i % 200 == 1: elapsed = time.time() - start + 1e-8 print("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / ntoks, tokens/elapsed)) start = time.time() tokens = 0 return total_loss / total_tokens
[ "torch.nn.Linear", "torch.nn.init.xavier_uniform_" ]
0.4.0
arkilpatel/Transformer-Computation-Analysis
82341f5f2f9cd0831e390f44b338165e45cd6413
1.1
import torch from tqdm import tqdm from ...utils.learning import adjust_learning_rate from ...utils.log import logger from ...base.module import Module from .config import DEVICE, DEFAULT_CONFIG from .model import Config, BiLstmCrf from .tool import cws_tool from .utils.convert import bis_cws seed = 2019 torch.manual_seed(seed) torch.cuda.manual_seed(seed) class CWS(Module): """ """ def __init__(self): self._model = None self._word_vocab = None self._tag_vocab = None def train(self, train_path, save_path=DEFAULT_CONFIG['save_path'], dev_path=None, vectors_path=None, **kwargs): train_dataset = cws_tool.get_dataset(train_path) if dev_path: dev_dataset = cws_tool.get_dataset(dev_path) word_vocab, tag_vocab = cws_tool.get_vocab(train_dataset, dev_dataset) else: word_vocab, tag_vocab = cws_tool.get_vocab(train_dataset) self._word_vocab = word_vocab self._tag_vocab = tag_vocab train_iter = cws_tool.get_iterator(train_dataset, batch_size=DEFAULT_CONFIG['batch_size']) config = Config(word_vocab, tag_vocab, save_path=save_path, vector_path=vectors_path, **kwargs) bilstmcrf = BiLstmCrf(config) self._model = bilstmcrf optim = torch.optim.Adam(bilstmcrf.parameters(), lr=config.lr) for epoch in range(config.epoch): bilstmcrf.train() acc_loss = 0 for item in tqdm(train_iter): print(item.text[0], "========") bilstmcrf.zero_grad() item_text_sentences = item.text[0] item_text_lengths = item.text[1] item_loss = (-bilstmcrf.loss(item_text_sentences, item_text_lengths, item.tag)) / item.tag.size(1) acc_loss += item_loss.view(-1).cpu().data.tolist()[0] item_loss.backward() optim.step() logger.info('epoch: {}, acc_loss: {}'.format(epoch, acc_loss)) logger.info("我在这里有些改进:进度条哈哈") if dev_path: dev_score = self._validate(dev_dataset) logger.info('dev score:{}'.format(dev_score)) adjust_learning_rate(optim, config.lr / (1 + (epoch + 1) * config.lr_decay)) config.save() bilstmcrf.save() def predict(self, text): self._model.eval() vec_text = torch.tensor([self._word_vocab.stoi[x] for x in text]) len_text = torch.tensor([len(vec_text)]).to(DEVICE) vec_predict = self._model(vec_text.view(-1, 1).to(DEVICE), len_text)[0] tag_predict = [self._tag_vocab.itos[i] for i in vec_predict] return bis_cws([x for x in text], tag_predict) def load(self, save_path=DEFAULT_CONFIG['save_path']): config = Config.load(save_path) bilstmcrf = BiLstmCrf(config) bilstmcrf.load() self._model = bilstmcrf self._word_vocab = config.word_vocab self._tag_vocab = config.tag_vocab def test(self, test_path): test_dataset = cws_tool.get_dataset(test_path) test_score = self._validate(test_dataset) logger.info('test score:{}'.format(test_score)) def _validate(self, dev_dataset): self._model.eval() dev_score_list = [] for dev_item in tqdm(dev_dataset): item_score = cws_tool.get_score(self._model, dev_item.text, dev_item.tag, self._word_vocab, self._tag_vocab) dev_score_list.append(item_score) return sum(dev_score_list) / len(dev_score_list)
[ "torch.manual_seed", "torch.cuda.manual_seed", "torch.tensor" ]
1.1.0
CNLPT/lightNLP
c7f128422ba5b16f514bb294145cb3b562e95829
1.0
# # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import logging import re import warnings from collections import namedtuple, OrderedDict, defaultdict from typing import Callable, Optional import torch import torch.nn as nn import distiller msglogger = logging.getLogger() QBits = namedtuple('QBits', ['acts', 'wts', 'bias']) # quantization bitwidth FP_BKP_PREFIX = 'float_' # float-point backup prefix def has_bias(module): return hasattr(module, 'bias') and module.bias is not None def hack_float_backup_parameter(module, name, num_bits): """ https://nervanasystems.github.io/distiller/design.html#quantization-aware-training The existing ``torch.nn.Parameter``, e.g. ``weights``, is replaced by a ``torch.nn.Parameter`` named ``float_weight``. To maintain the existing functionality of the module, we then register a ``buffer`` in the module with the original name - ``weights``. During training, ``float_weight`` will be passed to ``param_quantization_fn`` and the result will be stored in ``weight``. """ try: data = dict(module.named_parameters())[name].data except KeyError: raise ValueError('Module has no Parameter named ' + name) module.register_parameter(FP_BKP_PREFIX + name, nn.Parameter(data)) # create a new parameter with prefix delattr(module, name) # remove original parameter module.register_buffer(name, torch.zeros_like(data)) # store ``param_quantization_fn(fp32_weight)`` """ Add extra representation """ first = False if not hasattr(module, 'repr_mod'): setattr(module, 'repr_mod', ', \nDistiller_QuantAwareTrain: ') first = True module.original_extra_repr = module.extra_repr module.extra_repr = lambda: module.original_extra_repr() + module.repr_mod if not first: module.repr_mod += ' ; ' module.repr_mod += '{0} --> {1} bits'.format(name, num_bits) class _ParamToQuant(object): """ Represent a module parameter to be quantized """ def __init__(self, module, module_name, fp_attr_name, q_attr_name, num_bits): self.module = module self.module_name = module_name self.fp_attr_name = fp_attr_name self.q_attr_name = q_attr_name self.num_bits = num_bits def __repr__(self): return "ParamToQuant(module_name=%s,num_bits=%s)" % (self.module_name, self.num_bits) class Quantizer(object): """ Base class for quantizers. Args: model (``torch.nn.Module``): The model to be quantized optimizer (``torch.optim.Optimizer``): An optimizer instance, required in cases where the quantizer is going to perform changes to existing model parameters and/or add new ones. Specifically, when ``train_with_fp_copy`` is ``True``, this cannot be ``None``. bits_activations/weights/bias (``int``): Default number of bits to use when quantizing each tensor type. Value of ``None`` means do not quantize. overrides (OrderedDict): Dictionary mapping *regular expressions* of layer name patterns to dictionary with overrides of default values. The keys in the overrides dictionary should be parameter names that the Quantizer accepts default values for in its init function. The parameters 'bits_activations', 'bits_weights', and 'bits_bias' which are accepted by the base Quantizer are supported by default. Other than those, each sub-class of Quantizer defines the set of parameter for which it supports over-riding. OrderedDict is used to enable handling of overlapping name patterns. So, for example, one could define certain override parameters for a group of layers, e.g. 'conv*', but also define different parameters for specific layers in that group, e.g. 'conv1'. The patterns are evaluated eagerly - the first match wins. Therefore, the more specific patterns must come before the broad patterns. train_with_fp_copy (``bool``): If ``true``, will modify layers with weights to keep both a quantized and floating-point copy, such that the following flow occurs in each training iteration: 1. ``q_weights = quantize(fp_weights)`` 2. Forward through network using ``q_weights`` 3. In back-prop: 3.1 Gradients calculated with respect to ``q_weights`` 3.2 We also back-prop through the 'quantize' operation (STE) from step 1 4. Update ``fp_weights`` with gradients calculated in step 3.2 """ def __init__(self, model, optimizer=None, bits_activations=None, bits_weights=None, bits_bias=None, overrides=None, train_with_fp_copy=False): if overrides is None: overrides = OrderedDict() if not isinstance(overrides, OrderedDict): raise TypeError('overrides must be an instance of collections.OrderedDict or None') if train_with_fp_copy and optimizer is None: raise ValueError('optimizer cannot be None when train_with_fp_copy is True') self.default_qbits = QBits(acts=bits_activations, wts=bits_weights, bias=bits_bias) self.overrides = overrides self.model = model self.optimizer = optimizer # Stash some quantizer data in the model so we can re-apply the quantizer on a resuming model self.model.quantizer_metadata = {'type': type(self), # Quantizer type 'params': {'bits_activations': bits_activations, 'bits_weights': bits_weights, 'bits_bias': bits_bias, 'overrides': copy.deepcopy(overrides)}} # Re-assemble overriding bitwidths as a QBits object for k, v in self.overrides.items(): # regexp of module name -> override dict if any(old_bits_key in v.keys() for old_bits_key in ['acts', 'wts', 'bias']): raise ValueError("Using 'acts' / 'wts' / 'bias' to specify bit-width overrides is deprecated.\n" "Please use the full parameter names: " "'bits_activations' / 'bits_weights' / 'bits_bias'") qbits = QBits(acts=v.pop('bits_activations', self.default_qbits.acts), wts=v.pop('bits_weights', self.default_qbits.wts), bias=v.pop('bits_bias', self.default_qbits.bias)) v['bits'] = qbits # Prepare explicit mapping from each layer to QBits based on default + overrides patterns = [] regex_overrides = None if overrides: patterns = list(overrides.keys()) regex_overrides_str = '|'.join(['(^{0}$)'.format(pattern) for pattern in patterns]) # the first match wins regex_overrides = re.compile(regex_overrides_str) self.module_qbits_map = {} self.module_overrides_map = {} for module_full_name, module in model.named_modules(): # Need to account for scenario where model is parallelized with DataParallel, which wraps the original # module with a wrapper module called 'module' :) name_to_match = module_full_name.replace('module.', '', 1) qbits = self.default_qbits # perfect match (overrides: OrderedDict) override_entry = self.overrides.get(name_to_match, OrderedDict()) # match by regexp if regex_overrides: # if override dict specified m_overrides = regex_overrides.match(name_to_match) if m_overrides: # matching success group_idx = 0 # idx of matching pattern groups = m_overrides.groups() while groups[group_idx] is None: group_idx += 1 override_entry = copy.deepcopy(override_entry or self.overrides[patterns[group_idx]]) qbits = override_entry.pop('bits', self.default_qbits) # override_entry -> others + qbits self._add_qbits_entry(module_full_name, type(module), qbits) # update self.module_qbits_map self._add_override_entry(module_full_name, override_entry) # update module_overrides_map # Mapping from module type to function generating a replacement module suited for quantization # To be populated by child classes # Unspecified layer types return None by default. self.replacement_factory = defaultdict(lambda: None) # module_type -> wrapper_factory # Pointer to parameters quantization function, triggered during training process # To be populated by child classes self.param_quantization_fn = None self.train_with_fp_copy = train_with_fp_copy self.params_to_quantize = [] # A dictionary of replaced modules and their respective names. self.modules_processed = OrderedDict() def _add_qbits_entry(self, module_name, module_type, qbits): if module_type not in [nn.Conv2d, nn.Linear, nn.Embedding]: # For now we support weights quantization only for Conv, FC and Embedding layers (so, for example, we don't # support quantization of batch norm scale parameters) qbits = QBits(acts=qbits.acts, wts=None, bias=None) self.module_qbits_map[module_name] = qbits def _add_override_entry(self, module_name, entry): self.module_overrides_map[module_name] = entry def prepare_model(self): """ Traverses the model and replaces sub-modules with quantized counterparts according to the bit-width and overrides configuration provided to __init__(), and according to the replacement_factory as defined by the Quantizer sub-class being used. Note: If multiple sub-modules within the model actually reference the same module, then that module is replaced only once, according to the configuration (bit-width and/or overrides) of the first encountered reference. Toy Example - say a module is constructed using this bit of code: shared_relu = nn.ReLU self.relu1 = shared_relu self.relu2 = shared_relu When traversing the model, a replacement will be generated when 'self.relu1' is encountered. Let's call it `new_relu1'. When 'self.relu2' will be encountered, it'll simply be replaced with a reference to 'new_relu1'. Any override configuration made specifically for 'self.relu2' will be ignored. A warning message will be shown. """ self._prepare_model_impl() msglogger.info('Quantized model:\n\n{0}\n'.format(self.model)) def _prepare_model_impl(self): """ Iterates over the model and replaces modules with their quantized counterparts as defined by self.replacement_factory """ msglogger.info('Preparing model for quantization using {0}'.format(self.__class__.__name__)) self._pre_process_container(self.model) # replace modules # hack float backup parameters, populate ``self.params_to_quantize`` for module_name, module in self.model.named_modules(): qbits = self.module_qbits_map[module_name] curr_parameters = dict(module.named_parameters()) for param_name, param in curr_parameters.items(): n_bits = qbits.bias if param_name.endswith('bias') else qbits.wts if n_bits is None: continue fp_attr_name = param_name if self.train_with_fp_copy: hack_float_backup_parameter(module, param_name, n_bits) fp_attr_name = FP_BKP_PREFIX + param_name self.params_to_quantize.append(_ParamToQuant(module, module_name, fp_attr_name, param_name, n_bits)) param_full_name = '.'.join([module_name, param_name]) msglogger.info("Parameter '{0}' will be quantized to {1} bits".format(param_full_name, n_bits)) # If an optimizer was passed, assume we need to update it if self.optimizer: optimizer_type = type(self.optimizer) new_optimizer = optimizer_type(self._get_updated_optimizer_params_groups(), **self.optimizer.defaults) self.optimizer.__setstate__({'param_groups': new_optimizer.param_groups}) def _pre_process_container(self, container, prefix=''): # Iterate through model, insert quantization functions as appropriate for name, module in container.named_children(): full_name = prefix + name if module in self.modules_processed: # referencing to a module already replaced previous_name, previous_wrapper = self.modules_processed[module] warnings.warn("Module '{0}' references to same module as '{1}'." ' Replacing with reference the same wrapper.'.format(full_name, previous_name), UserWarning) if previous_wrapper: msglogger.debug('Module {0}: Replacing \n{1} with \n{2}'. format(full_name, module, previous_wrapper)) setattr(container, name, previous_wrapper) # point to previous wrapper else: msglogger.debug('Module {0}: Skipping \n{1}.'.format(full_name, module)) continue current_qbits = self.module_qbits_map[full_name] if current_qbits.acts is None and current_qbits.wts is None: if self.module_overrides_map[full_name]: raise ValueError("Adding overrides while not quantizing is not allowed.") # We indicate this module wasn't replaced by a wrapper msglogger.debug('Module {0}: Skipping \n{1}.'.format(full_name, module)) self.modules_processed[module] = full_name, None continue # We use a type hint comment to let IDEs know replace_fn is a function # replacement factory: module type -> func replace_fn = self.replacement_factory[type(module)] # type: Optional[Callable] # If the replacement function wasn't specified - continue without replacing this module. if replace_fn is not None: valid_kwargs, invalid_kwargs = distiller.filter_kwargs(self.module_overrides_map[full_name], replace_fn) if invalid_kwargs: raise TypeError("""Quantizer of type %s doesn't accept \"%s\" as override arguments for %s. Allowed kwargs: %s""" % (type(self), list(invalid_kwargs), type(module), list(valid_kwargs))) new_module = replace_fn(module, full_name, self.module_qbits_map, **valid_kwargs) msglogger.debug('Module {0}: Replacing \n{1} with \n{2}'.format(full_name, module, new_module)) # Add to history of prepared submodules self.modules_processed[module] = full_name, new_module setattr(container, name, new_module) # If a "leaf" module was replaced by a container, add the new layers to the QBits mapping if not distiller.has_children(module) and distiller.has_children(new_module): for sub_module_name, sub_module in new_module.named_modules(): self._add_qbits_entry(full_name + '.' + sub_module_name, type(sub_module), current_qbits) self.module_qbits_map[full_name] = QBits(acts=current_qbits.acts, wts=None, bias=None) if distiller.has_children(module): # For container we call recursively self._pre_process_container(module, full_name + '.') def _get_updated_optimizer_params_groups(self): """ Returns a list of model parameter groups and optimizer hyper-parameter overrides, as expected by the __init__ function of torch.optim.Optimizer. This is called after all model changes were made in prepare_model, in case an Optimizer instance was passed to __init__. Subclasses which add parameters to the model should override as needed. :return: List of parameter groups """ # Default implementation - just return all model parameters as one group return [{'params': self.model.parameters()}] def quantize_params(self): """ Quantize all parameters using self.param_quantization_fn (with the defined number of bits for each parameter) """ for ptq in self.params_to_quantize: q_param = self.param_quantization_fn(getattr(ptq.module, ptq.fp_attr_name), ptq) if self.train_with_fp_copy: setattr(ptq.module, ptq.q_attr_name, q_param) else: getattr(ptq.module, ptq.q_attr_name).data = q_param.data
[ "torch.zeros_like", "torch.nn.Parameter" ]
1.0.1
HatsuneMiku4/distiller
8fbacb01ebcb7d70c5d3ecb6a88093e6c4d42137
1.4
"""Functions for runtime type checking. More strict but slower than availabe static type checking. Off by default. """ import os from typing import Any, Optional, Tuple import torch def assert_joint_probability( x: torch.Tensor, shape: Tuple[int, ...], allow_improper: bool = False ) -> None: """Assert `x` is joint probability distribution over two variables Args: x: Possible joint probability distribution shape: Required shape allow_improper: Whether improper distribution (all zeros) is permitted """ if os.getenv("strict_type_check") == "1": norm = x.sum(dim=(-1, -2)) if allow_improper: norm[norm == 0] = 1 assert torch.isclose(norm, torch.Tensor([1.0]).to(norm.device)).all() assert x.shape[-1] == x.shape[-2] assert x.shape == shape def assert_prescription( x: torch.Tensor, shape: Tuple[int, ...], pure: bool = True, allow_improper: bool = False, ) -> None: """Assert `x` is valid prescription Args: x: Possible prescription shape: Required shape pure: Whether prescription is required to be deterministic allow_improper: Whether improper distribution (all zeros) is permitted """ if os.getenv("strict_type_check") == "1": norm = x.sum(dim=-1) if allow_improper: norm[norm == 0] = 1 assert torch.isclose(norm, torch.Tensor([1.0]).to(x.device)).all() assert (x >= 0).all() assert x.shape == shape if pure: max_vals = x.max(dim=-1).values if allow_improper: max_vals[max_vals == 0] = 1 assert (max_vals == 1).all() def assert_label_prescription( x: torch.Tensor, num_actions: int, shape: Tuple[int, ...] ) -> None: """Assert `x` is valid label prescription Args: x: Possible prescription num_actions: Number of action labels shape: Required shape """ if os.getenv("strict_type_check") == "1": assert x.dtype == torch.int64 assert (x >= 0).all() assert (x < num_actions).all() assert x.shape == shape def assert_shape( x: torch.Tensor, shape: Tuple[int, ...], dim: Optional[int] = None ) -> None: """Assert `x` has shape `shape` Args: x: Tensor shape: Required shape dim: If specified, enforce shape requirement only for axis `dim` """ if os.getenv("strict_type_check") == "1": if dim: assert (x.shape[dim],) == shape else: assert x.shape == shape def assert_num_dims(x: torch.Tensor, num_dims: int) -> None: """Assert `x` has `num_dims` dimensions Args: x: Tensor num_dims: Required number of dimensions """ if os.getenv("strict_type_check") == "1": assert len(x.shape) == num_dims def assert_element(x: Any, collection: Tuple[Any, ...]) -> None: """Assert `x` in `collection` Args: x: Anything collection: Tuple """ if os.getenv("strict_type_check") == "1": assert x in collection
[ "torch.Tensor" ]
1.4.0
tcfuji/capi
4c0f648216ae22d29c537318fb9a646d430cf310
0.6
import math import numpy as np from typing import Optional import torch import torch.nn.functional as F __all__ = [ "focal_loss_with_logits", "softmax_focal_loss_with_logits", "soft_jaccard_score", "soft_dice_score", "wing_loss", ] def to_tensor(x, dtype=None) -> torch.Tensor: if isinstance(x, torch.Tensor): if dtype is not None: x = x.type(dtype) return x if isinstance(x, np.ndarray): x = torch.from_numpy(x) if dtype is not None: x = x.type(dtype) return x if isinstance(x, (list, tuple)): x = np.array(x) x = torch.from_numpy(x) if dtype is not None: x = x.type(dtype) return x def focal_loss_with_logits( output: torch.Tensor, target: torch.Tensor, gamma: float = 2.0, alpha: Optional[float] = 0.25, reduction: str = "mean", normalized: bool = False, reduced_threshold: Optional[float] = None, eps: float = 1e-6, ) -> torch.Tensor: """Compute binary focal loss between target and output logits. See :class:`~pytorch_toolbelt.losses.FocalLoss` for details. Args: output: Tensor of arbitrary shape (predictions of the model) target: Tensor of the same shape as input gamma: Focal loss power factor alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range, high values will give more weight to positive class. reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. 'batchwise_mean' computes mean loss per sample in batch. Default: 'mean' normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf). reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347). References: https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py """ target = target.type(output.type()) logpt = F.binary_cross_entropy_with_logits(output, target, reduction="none") pt = torch.exp(-logpt) # compute the loss if reduced_threshold is None: focal_term = (1.0 - pt).pow(gamma) else: focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma) focal_term[pt < reduced_threshold] = 1 loss = focal_term * logpt if alpha is not None: loss *= alpha * target + (1 - alpha) * (1 - target) if normalized: norm_factor = focal_term.sum().clamp_min(eps) loss /= norm_factor if reduction == "mean": loss = loss.mean() if reduction == "sum": loss = loss.sum() if reduction == "batchwise_mean": loss = loss.sum(0) return loss def softmax_focal_loss_with_logits( output: torch.Tensor, target: torch.Tensor, gamma: float = 2.0, reduction="mean", normalized=False, reduced_threshold: Optional[float] = None, eps: float = 1e-6, ) -> torch.Tensor: """Softmax version of focal loss between target and output logits. See :class:`~pytorch_toolbelt.losses.FocalLoss` for details. Args: output: Tensor of shape [B, C, *] (Similar to nn.CrossEntropyLoss) target: Tensor of shape [B, *] (Similar to nn.CrossEntropyLoss) reduction (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`. 'batchwise_mean' computes mean loss per sample in batch. Default: 'mean' normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf). reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347). """ log_softmax = F.log_softmax(output, dim=1) loss = F.nll_loss(log_softmax, target, reduction="none") pt = torch.exp(-loss) # compute the loss if reduced_threshold is None: focal_term = (1.0 - pt).pow(gamma) else: focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma) focal_term[pt < reduced_threshold] = 1 loss = focal_term * loss if normalized: norm_factor = focal_term.sum().clamp_min(eps) loss = loss / norm_factor if reduction == "mean": loss = loss.mean() if reduction == "sum": loss = loss.sum() if reduction == "batchwise_mean": loss = loss.sum(0) return loss def soft_jaccard_score( output: torch.Tensor, target: torch.Tensor, smooth: float = 0.0, eps: float = 1e-7, dims=None, ) -> torch.Tensor: assert output.size() == target.size() if dims is not None: intersection = torch.sum(output * target, dim=dims) cardinality = torch.sum(output + target, dim=dims) else: intersection = torch.sum(output * target) cardinality = torch.sum(output + target) union = cardinality - intersection jaccard_score = (intersection + smooth) / (union + smooth).clamp_min(eps) return jaccard_score def soft_dice_score( output: torch.Tensor, target: torch.Tensor, smooth: float = 0.0, eps: float = 1e-7, dims=None, ) -> torch.Tensor: assert output.size() == target.size() if dims is not None: intersection = torch.sum(output * target, dim=dims) cardinality = torch.sum(output + target, dim=dims) else: intersection = torch.sum(output * target) cardinality = torch.sum(output + target) dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps) return dice_score def soft_tversky_score( output: torch.Tensor, target: torch.Tensor, alpha: float, beta: float, smooth: float = 0.0, eps: float = 1e-7, dims=None, ) -> torch.Tensor: assert output.size() == target.size() if dims is not None: intersection = torch.sum(output * target, dim=dims) # TP fp = torch.sum(output * (1.0 - target), dim=dims) fn = torch.sum((1 - output) * target, dim=dims) else: intersection = torch.sum(output * target) # TP fp = torch.sum(output * (1.0 - target)) fn = torch.sum((1 - output) * target) tversky_score = (intersection + smooth) / (intersection + alpha * fp + beta * fn + smooth).clamp_min(eps) return tversky_score def wing_loss(output: torch.Tensor, target: torch.Tensor, width=5, curvature=0.5, reduction="mean"): """Wing loss References: https://arxiv.org/pdf/1711.06753.pdf """ diff_abs = (target - output).abs() loss = diff_abs.clone() idx_smaller = diff_abs < width idx_bigger = diff_abs >= width loss[idx_smaller] = width * torch.log(1 + diff_abs[idx_smaller] / curvature) C = width - width * math.log(1 + width / curvature) loss[idx_bigger] = loss[idx_bigger] - C if reduction == "sum": loss = loss.sum() if reduction == "mean": loss = loss.mean() return loss def label_smoothed_nll_loss( lprobs: torch.Tensor, target: torch.Tensor, epsilon: float, ignore_index=None, reduction="mean", dim=-1, ) -> torch.Tensor: """NLL loss with label smoothing References: https://github.com/pytorch/fairseq/blob/master/fairseq/criterions/label_smoothed_cross_entropy.py Args: lprobs (torch.Tensor): Log-probabilities of predictions (e.g after log_softmax) """ if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(dim) if ignore_index is not None: pad_mask = target.eq(ignore_index) target = target.masked_fill(pad_mask, 0) nll_loss = -lprobs.gather(dim=dim, index=target) smooth_loss = -lprobs.sum(dim=dim, keepdim=True) # nll_loss.masked_fill_(pad_mask, 0.0) # smooth_loss.masked_fill_(pad_mask, 0.0) nll_loss = nll_loss.masked_fill(pad_mask, 0.0) smooth_loss = smooth_loss.masked_fill(pad_mask, 0.0) else: nll_loss = -lprobs.gather(dim=dim, index=target) smooth_loss = -lprobs.sum(dim=dim, keepdim=True) nll_loss = nll_loss.squeeze(dim) smooth_loss = smooth_loss.squeeze(dim) if reduction == "sum": nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() if reduction == "mean": nll_loss = nll_loss.mean() smooth_loss = smooth_loss.mean() eps_i = epsilon / lprobs.size(dim) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.from_numpy", "torch.nn.functional.log_softmax", "torch.nn.functional.nll_loss", "torch.log", "torch.exp", "torch.sum" ]
0.6.3
vietnhatthai/segmentation_models.pytorch
9052aa2a4f09a600f687120e69ad2b57c04cc0dd
1.4
# -*- coding: utf-8 -*- from collections.abc import Sequence import io import math import warnings from typing import Optional, Tuple import torch from torch import Tensor from torchaudio._internal import module_utils as _mod_utils import torchaudio __all__ = [ "spectrogram", "griffinlim", "amplitude_to_DB", "DB_to_amplitude", "compute_deltas", "compute_kaldi_pitch", "create_fb_matrix", "linear_fbanks", "create_dct", "compute_deltas", "detect_pitch_frequency", "DB_to_amplitude", "mu_law_encoding", "mu_law_decoding", "complex_norm", "angle", "magphase", "phase_vocoder", 'mask_along_axis', 'mask_along_axis_iid', 'sliding_window_cmn', "spectral_centroid", "apply_codec", "resample", "edit_distance", "pitch_shift", ] def spectrogram( waveform: Tensor, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: Optional[float], normalized: bool, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, return_complex: bool = True, ) -> Tensor: r"""Create a spectrogram or a batch of spectrograms from a raw audio signal. The spectrogram can be either magnitude-only or complex. Args: waveform (Tensor): Tensor of audio of dimension (..., time) pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size power (float or None): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. normalized (bool): Whether to normalize by magnitude after stft center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` onesided (bool, optional): controls whether to return half of results to avoid redundancy. Default: ``True`` return_complex (bool, optional): Indicates whether the resulting complex-valued Tensor should be represented with native complex dtype, such as `torch.cfloat` and `torch.cdouble`, or real dtype mimicking complex value with an extra dimension for real and imaginary parts. (See also ``torch.view_as_real``.) This argument is only effective when ``power=None``. It is ignored for cases where ``power`` is a number as in those cases, the returned tensor is power spectrogram, which is a real-valued tensor. Returns: Tensor: Dimension (..., freq, time), freq is ``n_fft // 2 + 1`` and ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ if power is None and not return_complex: warnings.warn( "The use of pseudo complex type in spectrogram is now deprecated." "Please migrate to native complex type by providing `return_complex=True`. " "Please refer to https://github.com/pytorch/audio/issues/1337 " "for more details about torchaudio's plan to migrate to native complex type." ) if pad > 0: # TODO add "with torch.no_grad():" back when JIT supports it waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant") # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) # default values are consistent with librosa.core.spectrum._spectrogram spec_f = torch.stft( input=waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=False, onesided=onesided, return_complex=True, ) # unpack batch spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:]) if normalized: spec_f /= window.pow(2.).sum().sqrt() if power is not None: if power == 1.0: return spec_f.abs() return spec_f.abs().pow(power) if not return_complex: return torch.view_as_real(spec_f) return spec_f def _get_complex_dtype(real_dtype: torch.dtype): if real_dtype == torch.double: return torch.cdouble if real_dtype == torch.float: return torch.cfloat if real_dtype == torch.half: return torch.complex32 raise ValueError(f'Unexpected dtype {real_dtype}') def griffinlim( specgram: Tensor, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: float, n_iter: int, momentum: float, length: Optional[int], rand_init: bool ) -> Tensor: r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation. Implementation ported from *librosa* [:footcite:`brian_mcfee-proc-scipy-2015`], *A fast Griffin-Lim algorithm* [:footcite:`6701851`] and *Signal estimation from modified short-time Fourier transform* [:footcite:`1172092`]. Args: specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames) where freq is ``n_fft // 2 + 1``. window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins hop_length (int): Length of hop between STFT windows. ( Default: ``win_length // 2``) win_length (int): Window size. (Default: ``n_fft``) power (float): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. n_iter (int): Number of iteration for phase recovery process. momentum (float): The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method. Values near 1 can lead to faster convergence, but above 1 may not converge. length (int or None): Array length of the expected output. rand_init (bool): Initializes phase randomly if True, to zero otherwise. Returns: torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given. """ assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum) assert momentum >= 0, 'momentum={} < 0'.format(momentum) # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) specgram = specgram.pow(1 / power) # initialize the phase if rand_init: angles = torch.rand( specgram.size(), dtype=_get_complex_dtype(specgram.dtype), device=specgram.device) else: angles = torch.full( specgram.size(), 1, dtype=_get_complex_dtype(specgram.dtype), device=specgram.device) # And initialize the previous iterate to 0 tprev = torch.tensor(0., dtype=specgram.dtype, device=specgram.device) for _ in range(n_iter): # Invert with our current estimate of the phases inverse = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length) # Rebuild the spectrogram rebuilt = torch.stft( input=inverse, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=True, pad_mode='reflect', normalized=False, onesided=True, return_complex=True, ) # Update our phase estimates angles = rebuilt if momentum: angles = angles - tprev.mul_(momentum / (1 + momentum)) angles = angles.div(angles.abs().add(1e-16)) # Store the previous iterate tprev = rebuilt # Return the final phase estimates waveform = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length) # unpack batch waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:]) return waveform def amplitude_to_DB( x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None ) -> Tensor: r"""Turn a spectrogram from the power/amplitude scale to the decibel scale. The output of each tensor in a batch depends on the maximum value of that tensor, and so may return different values for an audio clip split into snippets vs. a full clip. Args: x (Tensor): Input spectrogram(s) before being converted to decibel scale. Input should take the form `(..., freq, time)`. Batched inputs should include a channel dimension and have the form `(batch, channel, freq, time)`. multiplier (float): Use 10. for power and 20. for amplitude amin (float): Number to clamp ``x`` db_multiplier (float): Log10(max(reference value and amin)) top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) Returns: Tensor: Output tensor in decibel scale """ x_db = multiplier * torch.log10(torch.clamp(x, min=amin)) x_db -= multiplier * db_multiplier if top_db is not None: # Expand batch shape = x_db.size() packed_channels = shape[-3] if x_db.dim() > 2 else 1 x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1]) x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1)) # Repack batch x_db = x_db.reshape(shape) return x_db def DB_to_amplitude( x: Tensor, ref: float, power: float ) -> Tensor: r"""Turn a tensor from the decibel scale to the power/amplitude scale. Args: x (Tensor): Input tensor before being converted to power/amplitude scale. ref (float): Reference which the output will be scaled by. power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude. Returns: Tensor: Output tensor in power/amplitude scale. """ return ref * torch.pow(torch.pow(10.0, 0.1 * x), power) def _hz_to_mel(freq: float, mel_scale: str = "htk") -> float: r"""Convert Hz to Mels. Args: freqs (float): Frequencies in Hz mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) Returns: mels (float): Frequency in Mels """ if mel_scale not in ['slaney', 'htk']: raise ValueError('mel_scale should be one of "htk" or "slaney".') if mel_scale == "htk": return 2595.0 * math.log10(1.0 + (freq / 700.0)) # Fill in the linear part f_min = 0.0 f_sp = 200.0 / 3 mels = (freq - f_min) / f_sp # Fill in the log-scale part min_log_hz = 1000.0 min_log_mel = (min_log_hz - f_min) / f_sp logstep = math.log(6.4) / 27.0 if freq >= min_log_hz: mels = min_log_mel + math.log(freq / min_log_hz) / logstep return mels def _mel_to_hz(mels: Tensor, mel_scale: str = "htk") -> Tensor: """Convert mel bin numbers to frequencies. Args: mels (Tensor): Mel frequencies mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) Returns: freqs (Tensor): Mels converted in Hz """ if mel_scale not in ['slaney', 'htk']: raise ValueError('mel_scale should be one of "htk" or "slaney".') if mel_scale == "htk": return 700.0 * (10.0**(mels / 2595.0) - 1.0) # Fill in the linear scale f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels # And now the nonlinear scale min_log_hz = 1000.0 min_log_mel = (min_log_hz - f_min) / f_sp logstep = math.log(6.4) / 27.0 log_t = (mels >= min_log_mel) freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel)) return freqs def _create_triangular_filterbank( all_freqs: Tensor, f_pts: Tensor, ) -> Tensor: """Create a triangular filter bank. Args: all_freqs (Tensor): STFT freq points of size (`n_freqs`). f_pts (Tensor): Filter mid points of size (`n_filter`). Returns: fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`). """ # Adopted from Librosa # calculate the difference between each filter mid point and each stft freq point in hertz f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1) slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2) # create overlapping triangles zero = torch.zeros(1) down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter) up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter) fb = torch.max(zero, torch.min(down_slopes, up_slopes)) return fb def create_fb_matrix( n_freqs: int, f_min: float, f_max: float, n_mels: int, sample_rate: int, norm: Optional[str] = None, mel_scale: str = "htk", ) -> Tensor: r"""Create a frequency bin conversion matrix. Args: n_freqs (int): Number of frequencies to highlight/apply f_min (float): Minimum frequency (Hz) f_max (float): Maximum frequency (Hz) n_mels (int): Number of mel filterbanks sample_rate (int): Sample rate of the audio waveform norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``) Returns: Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``) meaning number of frequencies to highlight/apply to x the number of filterbanks. Each column is a filterbank so that assuming there is a matrix A of size (..., ``n_freqs``), the applied result would be ``A * create_fb_matrix(A.size(-1), ...)``. """ if norm is not None and norm != "slaney": raise ValueError("norm must be one of None or 'slaney'") # freq bins all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) # calculate mel freq bins m_min = _hz_to_mel(f_min, mel_scale=mel_scale) m_max = _hz_to_mel(f_max, mel_scale=mel_scale) m_pts = torch.linspace(m_min, m_max, n_mels + 2) f_pts = _mel_to_hz(m_pts, mel_scale=mel_scale) # create filterbank fb = _create_triangular_filterbank(all_freqs, f_pts) if norm is not None and norm == "slaney": # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels]) fb *= enorm.unsqueeze(0) if (fb.max(dim=0).values == 0.).any(): warnings.warn( "At least one mel filterbank has all zero values. " f"The value for `n_mels` ({n_mels}) may be set too high. " f"Or, the value for `n_freqs` ({n_freqs}) may be set too low." ) return fb def linear_fbanks( n_freqs: int, f_min: float, f_max: float, n_filter: int, sample_rate: int, ) -> Tensor: r"""Creates a linear triangular filterbank. Args: n_freqs (int): Number of frequencies to highlight/apply f_min (float): Minimum frequency (Hz) f_max (float): Maximum frequency (Hz) n_filter (int): Number of (linear) triangular filter sample_rate (int): Sample rate of the audio waveform Returns: Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_filter``) meaning number of frequencies to highlight/apply to x the number of filterbanks. Each column is a filterbank so that assuming there is a matrix A of size (..., ``n_freqs``), the applied result would be ``A * linear_fbanks(A.size(-1), ...)``. """ # freq bins all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) # filter mid-points f_pts = torch.linspace(f_min, f_max, n_filter + 2) # create filterbank fb = _create_triangular_filterbank(all_freqs, f_pts) return fb def create_dct( n_mfcc: int, n_mels: int, norm: Optional[str] ) -> Tensor: r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``), normalized depending on norm. Args: n_mfcc (int): Number of mfc coefficients to retain n_mels (int): Number of mel filterbanks norm (str or None): Norm to use (either 'ortho' or None) Returns: Tensor: The transformation matrix, to be right-multiplied to row-wise data of size (``n_mels``, ``n_mfcc``). """ # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II n = torch.arange(float(n_mels)) k = torch.arange(float(n_mfcc)).unsqueeze(1) dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels) if norm is None: dct *= 2.0 else: assert norm == "ortho" dct[0] *= 1.0 / math.sqrt(2.0) dct *= math.sqrt(2.0 / float(n_mels)) return dct.t() def mu_law_encoding( x: Tensor, quantization_channels: int ) -> Tensor: r"""Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1. Args: x (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law encoding """ mu = quantization_channels - 1.0 if not x.is_floating_point(): x = x.to(torch.float) mu = torch.tensor(mu, dtype=x.dtype) x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu) x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64) return x_mu def mu_law_decoding( x_mu: Tensor, quantization_channels: int ) -> Tensor: r"""Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: x_mu (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law decoding """ mu = quantization_channels - 1.0 if not x_mu.is_floating_point(): x_mu = x_mu.to(torch.float) mu = torch.tensor(mu, dtype=x_mu.dtype) x = ((x_mu) / mu) * 2 - 1.0 x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu return x @_mod_utils.deprecated( "Please convert the input Tensor to complex type with `torch.view_as_complex` then " "use `torch.abs`. " "Please refer to https://github.com/pytorch/audio/issues/1337 " "for more details about torchaudio's plan to migrate to native complex type.", version="0.11", ) def complex_norm( complex_tensor: Tensor, power: float = 1.0 ) -> Tensor: r"""Compute the norm of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`). Returns: Tensor: Power of the normed input tensor. Shape of `(..., )` """ # Replace by torch.norm once issue is fixed # https://github.com/pytorch/pytorch/issues/34279 return complex_tensor.pow(2.).sum(-1).pow(0.5 * power) @_mod_utils.deprecated( "Please convert the input Tensor to complex type with `torch.view_as_complex` then " "use `torch.angle`. " "Please refer to https://github.com/pytorch/audio/issues/1337 " "for more details about torchaudio's plan to migrate to native complex type.", version="0.11", ) def angle( complex_tensor: Tensor ) -> Tensor: r"""Compute the angle of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` Return: Tensor: Angle of a complex tensor. Shape of `(..., )` """ return torch.atan2(complex_tensor[..., 1], complex_tensor[..., 0]) @_mod_utils.deprecated( "Please convert the input Tensor to complex type with `torch.view_as_complex` then " "use `torch.abs` and `torch.angle`. " "Please refer to https://github.com/pytorch/audio/issues/1337 " "for more details about torchaudio's plan to migrate to native complex type.", version="0.11", ) def magphase( complex_tensor: Tensor, power: float = 1.0 ) -> Tuple[Tensor, Tensor]: r"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`) Returns: (Tensor, Tensor): The magnitude and phase of the complex tensor """ mag = complex_norm(complex_tensor, power) phase = angle(complex_tensor) return mag, phase def phase_vocoder( complex_specgrams: Tensor, rate: float, phase_advance: Tensor ) -> Tensor: r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``. Args: complex_specgrams (Tensor): Either a real tensor of dimension of ``(..., freq, num_frame, complex=2)`` or a tensor of dimension ``(..., freq, num_frame)`` with complex dtype. rate (float): Speed-up factor phase_advance (Tensor): Expected phase advance in each bin. Dimension of (freq, 1) Returns: Tensor: Stretched spectrogram. The resulting tensor is of the same dtype as the input spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``. Example - With Tensor of complex dtype >>> freq, hop_length = 1025, 512 >>> # (channel, freq, time) >>> complex_specgrams = torch.randn(2, freq, 300, dtype=torch.cfloat) >>> rate = 1.3 # Speed up by 30% >>> phase_advance = torch.linspace( >>> 0, math.pi * hop_length, freq)[..., None] >>> x = phase_vocoder(complex_specgrams, rate, phase_advance) >>> x.shape # with 231 == ceil(300 / 1.3) torch.Size([2, 1025, 231]) Example - With Tensor of real dtype and extra dimension for complex field >>> freq, hop_length = 1025, 512 >>> # (channel, freq, time, complex=2) >>> complex_specgrams = torch.randn(2, freq, 300, 2) >>> rate = 1.3 # Speed up by 30% >>> phase_advance = torch.linspace( >>> 0, math.pi * hop_length, freq)[..., None] >>> x = phase_vocoder(complex_specgrams, rate, phase_advance) >>> x.shape # with 231 == ceil(300 / 1.3) torch.Size([2, 1025, 231, 2]) """ if rate == 1.0: return complex_specgrams if not complex_specgrams.is_complex(): warnings.warn( "The support for pseudo complex type in `torchaudio.functional.phase_vocoder` and " "`torchaudio.transforms.TimeStretch` is now deprecated and will be removed " "from 0.11 release." "Please migrate to native complex type by converting the input tensor with " "`torch.view_as_complex`. " "Please refer to https://github.com/pytorch/audio/issues/1337 " "for more details about torchaudio's plan to migrate to native complex type." ) if complex_specgrams.size(-1) != 2: raise ValueError( "complex_specgrams must be either native complex tensors or " "real valued tensors with shape (..., 2)") is_complex = complex_specgrams.is_complex() if not is_complex: complex_specgrams = torch.view_as_complex(complex_specgrams) # pack batch shape = complex_specgrams.size() complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-2:])) # Figures out the corresponding real dtype, i.e. complex128 -> float64, complex64 -> float32 # Note torch.real is a view so it does not incur any memory copy. real_dtype = torch.real(complex_specgrams).dtype time_steps = torch.arange( 0, complex_specgrams.size(-1), rate, device=complex_specgrams.device, dtype=real_dtype) alphas = time_steps % 1.0 phase_0 = complex_specgrams[..., :1].angle() # Time Padding complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 2]) # (new_bins, freq, 2) complex_specgrams_0 = complex_specgrams.index_select(-1, time_steps.long()) complex_specgrams_1 = complex_specgrams.index_select(-1, (time_steps + 1).long()) angle_0 = complex_specgrams_0.angle() angle_1 = complex_specgrams_1.angle() norm_0 = complex_specgrams_0.abs() norm_1 = complex_specgrams_1.abs() phase = angle_1 - angle_0 - phase_advance phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi)) # Compute Phase Accum phase = phase + phase_advance phase = torch.cat([phase_0, phase[..., :-1]], dim=-1) phase_acc = torch.cumsum(phase, -1) mag = alphas * norm_1 + (1 - alphas) * norm_0 complex_specgrams_stretch = torch.polar(mag, phase_acc) # unpack batch complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-2] + complex_specgrams_stretch.shape[1:]) if not is_complex: return torch.view_as_real(complex_specgrams_stretch) return complex_specgrams_stretch def mask_along_axis_iid( specgrams: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. Args: specgrams (Tensor): Real spectrograms (batch, channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (2 -> frequency, 3 -> time) Returns: Tensor: Masked spectrograms of dimensions (batch, channel, freq, time) """ if axis not in [2, 3]: raise ValueError('Only Frequency and Time masking are supported') device = specgrams.device dtype = specgrams.dtype value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * mask_param min_value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * (specgrams.size(axis) - value) # Create broadcastable mask mask_start = min_value[..., None, None] mask_end = (min_value + value)[..., None, None] mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype) # Per batch example masking specgrams = specgrams.transpose(axis, -1) specgrams = specgrams.masked_fill((mask >= mask_start) & (mask < mask_end), mask_value) specgrams = specgrams.transpose(axis, -1) return specgrams def mask_along_axis( specgram: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. All examples will have the same mask interval. Args: specgram (Tensor): Real spectrogram (channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (1 -> frequency, 2 -> time) Returns: Tensor: Masked spectrogram of dimensions (channel, freq, time) """ if axis not in [1, 2]: raise ValueError('Only Frequency and Time masking are supported') # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) value = torch.rand(1) * mask_param min_value = torch.rand(1) * (specgram.size(axis) - value) mask_start = (min_value.long()).squeeze() mask_end = (min_value.long() + value.long()).squeeze() mask = torch.arange(0, specgram.shape[axis], device=specgram.device, dtype=specgram.dtype) mask = (mask >= mask_start) & (mask < mask_end) if axis == 1: mask = mask.unsqueeze(-1) assert mask_end - mask_start < mask_param specgram = specgram.masked_fill(mask, mask_value) # unpack batch specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:]) return specgram def compute_deltas( specgram: Tensor, win_length: int = 5, mode: str = "replicate" ) -> Tensor: r"""Compute delta coefficients of a tensor, usually a spectrogram: .. math:: d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2} where :math:`d_t` is the deltas at time :math:`t`, :math:`c_t` is the spectrogram coeffcients at time :math:`t`, :math:`N` is ``(win_length-1)//2``. Args: specgram (Tensor): Tensor of audio of dimension (..., freq, time) win_length (int, optional): The window length used for computing delta (Default: ``5``) mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``) Returns: Tensor: Tensor of deltas of dimension (..., freq, time) Example >>> specgram = torch.randn(1, 40, 1000) >>> delta = compute_deltas(specgram) >>> delta2 = compute_deltas(delta) """ device = specgram.device dtype = specgram.dtype # pack batch shape = specgram.size() specgram = specgram.reshape(1, -1, shape[-1]) assert win_length >= 3 n = (win_length - 1) // 2 # twice sum of integer squared denom = n * (n + 1) * (2 * n + 1) / 3 specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode) kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1) output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom # unpack batch output = output.reshape(shape) return output def _compute_nccf( waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int ) -> Tensor: r""" Compute Normalized Cross-Correlation Function (NCCF). .. math:: \phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}}, where :math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`, :math:`w` is the waveform, :math:`N` is the length of a frame, :math:`b_i` is the beginning of frame :math:`i`, :math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`. """ EPSILON = 10 ** (-9) # Number of lags to check lags = int(math.ceil(sample_rate / freq_low)) frame_size = int(math.ceil(sample_rate * frame_time)) waveform_length = waveform.size()[-1] num_of_frames = int(math.ceil(waveform_length / frame_size)) p = lags + num_of_frames * frame_size - waveform_length waveform = torch.nn.functional.pad(waveform, (0, p)) # Compute lags output_lag = [] for lag in range(1, lags + 1): s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] output_frames = ( (s1 * s2).sum(-1) / (EPSILON + torch.norm(s1, p=2, dim=-1)).pow(2) / (EPSILON + torch.norm(s2, p=2, dim=-1)).pow(2) ) output_lag.append(output_frames.unsqueeze(-1)) nccf = torch.cat(output_lag, -1) return nccf def _combine_max( a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99 ) -> Tuple[Tensor, Tensor]: """ Take value from first if bigger than a multiplicative factor of the second, elementwise. """ mask = (a[0] > thresh * b[0]) values = mask * a[0] + ~mask * b[0] indices = mask * a[1] + ~mask * b[1] return values, indices def _find_max_per_frame( nccf: Tensor, sample_rate: int, freq_high: int ) -> Tensor: r""" For each frame, take the highest value of NCCF, apply centered median smoothing, and convert to frequency. Note: If the max among all the lags is very close to the first half of lags, then the latter is taken. """ lag_min = int(math.ceil(sample_rate / freq_high)) # Find near enough max that is smallest best = torch.max(nccf[..., lag_min:], -1) half_size = nccf.shape[-1] // 2 half = torch.max(nccf[..., lag_min:half_size], -1) best = _combine_max(half, best) indices = best[1] # Add back minimal lag indices += lag_min # Add 1 empirical calibration offset indices += 1 return indices def _median_smoothing( indices: Tensor, win_length: int ) -> Tensor: r""" Apply median smoothing to the 1D tensor over the given window. """ # Centered windowed pad_length = (win_length - 1) // 2 # "replicate" padding in any dimension indices = torch.nn.functional.pad( indices, (pad_length, 0), mode="constant", value=0. ) indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1) roll = indices.unfold(-1, win_length, 1) values, _ = torch.median(roll, -1) return values def detect_pitch_frequency( waveform: Tensor, sample_rate: int, frame_time: float = 10 ** (-2), win_length: int = 30, freq_low: int = 85, freq_high: int = 3400, ) -> Tensor: r"""Detect pitch frequency. It is implemented using normalized cross-correlation function and median smoothing. Args: waveform (Tensor): Tensor of audio of dimension (..., freq, time) sample_rate (int): The sample rate of the waveform (Hz) frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``). win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``). freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``). freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``). Returns: Tensor: Tensor of freq of dimension (..., frame) """ # pack batch shape = list(waveform.size()) waveform = waveform.reshape([-1] + shape[-1:]) nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low) indices = _find_max_per_frame(nccf, sample_rate, freq_high) indices = _median_smoothing(indices, win_length) # Convert indices to frequency EPSILON = 10 ** (-9) freq = sample_rate / (EPSILON + indices.to(torch.float)) # unpack batch freq = freq.reshape(shape[:-1] + list(freq.shape[-1:])) return freq def sliding_window_cmn( specgram: Tensor, cmn_window: int = 600, min_cmn_window: int = 100, center: bool = False, norm_vars: bool = False, ) -> Tensor: r""" Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: specgram (Tensor): Tensor of audio of dimension (..., time, freq) cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) Returns: Tensor: Tensor matching input shape (..., freq, time) """ input_shape = specgram.shape num_frames, num_feats = input_shape[-2:] specgram = specgram.view(-1, num_frames, num_feats) num_channels = specgram.shape[0] dtype = specgram.dtype device = specgram.device last_window_start = last_window_end = -1 cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cmn_specgram = torch.zeros( num_channels, num_frames, num_feats, dtype=dtype, device=device) for t in range(num_frames): window_start = 0 window_end = 0 if center: window_start = t - cmn_window // 2 window_end = window_start + cmn_window else: window_start = t - cmn_window window_end = t + 1 if window_start < 0: window_end -= window_start window_start = 0 if not center: if window_end > t: window_end = max(t + 1, min_cmn_window) if window_end > num_frames: window_start -= (window_end - num_frames) window_end = num_frames if window_start < 0: window_start = 0 if last_window_start == -1: input_part = specgram[:, window_start: window_end - window_start, :] cur_sum += torch.sum(input_part, 1) if norm_vars: cur_sumsq += torch.cumsum(input_part ** 2, 1)[:, -1, :] else: if window_start > last_window_start: frame_to_remove = specgram[:, last_window_start, :] cur_sum -= frame_to_remove if norm_vars: cur_sumsq -= (frame_to_remove ** 2) if window_end > last_window_end: frame_to_add = specgram[:, last_window_end, :] cur_sum += frame_to_add if norm_vars: cur_sumsq += (frame_to_add ** 2) window_frames = window_end - window_start last_window_start = window_start last_window_end = window_end cmn_specgram[:, t, :] = specgram[:, t, :] - cur_sum / window_frames if norm_vars: if window_frames == 1: cmn_specgram[:, t, :] = torch.zeros( num_channels, num_feats, dtype=dtype, device=device) else: variance = cur_sumsq variance = variance / window_frames variance -= ((cur_sum ** 2) / (window_frames ** 2)) variance = torch.pow(variance, -0.5) cmn_specgram[:, t, :] *= variance cmn_specgram = cmn_specgram.view(input_shape[:-2] + (num_frames, num_feats)) if len(input_shape) == 2: cmn_specgram = cmn_specgram.squeeze(0) return cmn_specgram def spectral_centroid( waveform: Tensor, sample_rate: int, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, ) -> Tensor: r""" Compute the spectral centroid for each channel along the time axis. The spectral centroid is defined as the weighted average of the frequency values, weighted by their magnitude. Args: waveform (Tensor): Tensor of audio of dimension (..., time) sample_rate (int): Sample rate of the audio waveform pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size Returns: Tensor: Dimension (..., time) """ specgram = spectrogram(waveform, pad=pad, window=window, n_fft=n_fft, hop_length=hop_length, win_length=win_length, power=1., normalized=False) freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2, device=specgram.device).reshape((-1, 1)) freq_dim = -2 return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim) @_mod_utils.requires_sox() def apply_codec( waveform: Tensor, sample_rate: int, format: str, channels_first: bool = True, compression: Optional[float] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, ) -> Tensor: r""" Apply codecs as a form of augmentation. Args: waveform (Tensor): Audio data. Must be 2 dimensional. See also ```channels_first```. sample_rate (int): Sample rate of the audio waveform. format (str): File format. channels_first (bool): When True, both the input and output Tensor have dimension ``[channel, time]``. Otherwise, they have dimension ``[time, channel]``. compression (float): Used for formats other than WAV. For more details see :py:func:`torchaudio.backend.sox_io_backend.save`. encoding (str, optional): Changes the encoding for the supported formats. For more details see :py:func:`torchaudio.backend.sox_io_backend.save`. bits_per_sample (int, optional): Changes the bit depth for the supported formats. For more details see :py:func:`torchaudio.backend.sox_io_backend.save`. Returns: torch.Tensor: Resulting Tensor. If ``channels_first=True``, it has ``[channel, time]`` else ``[time, channel]``. """ bytes = io.BytesIO() torchaudio.backend.sox_io_backend.save(bytes, waveform, sample_rate, channels_first, compression, format, encoding, bits_per_sample ) bytes.seek(0) augmented, _ = torchaudio.sox_effects.sox_effects.apply_effects_file( bytes, effects=[["rate", f"{sample_rate}"]], channels_first=channels_first, format=format) return augmented @_mod_utils.requires_kaldi() def compute_kaldi_pitch( waveform: torch.Tensor, sample_rate: float, frame_length: float = 25.0, frame_shift: float = 10.0, min_f0: float = 50, max_f0: float = 400, soft_min_f0: float = 10.0, penalty_factor: float = 0.1, lowpass_cutoff: float = 1000, resample_frequency: float = 4000, delta_pitch: float = 0.005, nccf_ballast: float = 7000, lowpass_filter_width: int = 1, upsample_filter_width: int = 5, max_frames_latency: int = 0, frames_per_chunk: int = 0, simulate_first_pass_online: bool = False, recompute_frame: int = 500, snip_edges: bool = True, ) -> torch.Tensor: """Extract pitch based on method described in *A pitch extraction algorithm tuned for automatic speech recognition* [:footcite:`6854049`]. This function computes the equivalent of `compute-kaldi-pitch-feats` from Kaldi. Args: waveform (Tensor): The input waveform of shape `(..., time)`. sample_rate (float): Sample rate of `waveform`. frame_length (float, optional): Frame length in milliseconds. (default: 25.0) frame_shift (float, optional): Frame shift in milliseconds. (default: 10.0) min_f0 (float, optional): Minimum F0 to search for (Hz) (default: 50.0) max_f0 (float, optional): Maximum F0 to search for (Hz) (default: 400.0) soft_min_f0 (float, optional): Minimum f0, applied in soft way, must not exceed min-f0 (default: 10.0) penalty_factor (float, optional): Cost factor for FO change. (default: 0.1) lowpass_cutoff (float, optional): Cutoff frequency for LowPass filter (Hz) (default: 1000) resample_frequency (float, optional): Frequency that we down-sample the signal to. Must be more than twice lowpass-cutoff. (default: 4000) delta_pitch( float, optional): Smallest relative change in pitch that our algorithm measures. (default: 0.005) nccf_ballast (float, optional): Increasing this factor reduces NCCF for quiet frames (default: 7000) lowpass_filter_width (int, optional): Integer that determines filter width of lowpass filter, more gives sharper filter. (default: 1) upsample_filter_width (int, optional): Integer that determines filter width when upsampling NCCF. (default: 5) max_frames_latency (int, optional): Maximum number of frames of latency that we allow pitch tracking to introduce into the feature processing (affects output only if ``frames_per_chunk > 0`` and ``simulate_first_pass_online=True``) (default: 0) frames_per_chunk (int, optional): The number of frames used for energy normalization. (default: 0) simulate_first_pass_online (bool, optional): If true, the function will output features that correspond to what an online decoder would see in the first pass of decoding -- not the final version of the features, which is the default. (default: False) Relevant if ``frames_per_chunk > 0``. recompute_frame (int, optional): Only relevant for compatibility with online pitch extraction. A non-critical parameter; the frame at which we recompute some of the forward pointers, after revising our estimate of the signal energy. Relevant if ``frames_per_chunk > 0``. (default: 500) snip_edges (bool, optional): If this is set to false, the incomplete frames near the ending edge won't be snipped, so that the number of frames is the file size divided by the frame-shift. This makes different types of features give the same number of frames. (default: True) Returns: Tensor: Pitch feature. Shape: ``(batch, frames 2)`` where the last dimension corresponds to pitch and NCCF. """ shape = waveform.shape waveform = waveform.reshape(-1, shape[-1]) result = torch.ops.torchaudio.kaldi_ComputeKaldiPitch( waveform, sample_rate, frame_length, frame_shift, min_f0, max_f0, soft_min_f0, penalty_factor, lowpass_cutoff, resample_frequency, delta_pitch, nccf_ballast, lowpass_filter_width, upsample_filter_width, max_frames_latency, frames_per_chunk, simulate_first_pass_online, recompute_frame, snip_edges, ) result = result.reshape(shape[:-1] + result.shape[-2:]) return result def _get_sinc_resample_kernel( orig_freq: float, new_freq: float, gcd: int, lowpass_filter_width: int, rolloff: float, resampling_method: str, beta: Optional[float], device: torch.device = torch.device("cpu"), dtype: Optional[torch.dtype] = None): if not (int(orig_freq) == orig_freq and int(new_freq) == new_freq): warnings.warn( "Non-integer frequencies are being cast to ints and may result in poor resampling quality " "because the underlying algorithm requires an integer ratio between `orig_freq` and `new_freq`. " "Using non-integer valued frequencies will throw an error in release 0.10. " "To work around this issue, manually convert both frequencies to integer values " "that maintain their resampling rate ratio before passing them into the function " "Example: To downsample a 44100 hz waveform by a factor of 8, use " "`orig_freq=8` and `new_freq=1` instead of `orig_freq=44100` and `new_freq=5512.5` " "For more information or to leave feedback about this change, please refer to " "https://github.com/pytorch/audio/issues/1487." ) if resampling_method not in ['sinc_interpolation', 'kaiser_window']: raise ValueError('Invalid resampling method: {}'.format(resampling_method)) orig_freq = int(orig_freq) // gcd new_freq = int(new_freq) // gcd assert lowpass_filter_width > 0 kernels = [] base_freq = min(orig_freq, new_freq) # This will perform antialiasing filtering by removing the highest frequencies. # At first I thought I only needed this when downsampling, but when upsampling # you will get edge artifacts without this, as the edge is equivalent to zero padding, # which will add high freq artifacts. base_freq *= rolloff # The key idea of the algorithm is that x(t) can be exactly reconstructed from x[i] (tensor) # using the sinc interpolation formula: # x(t) = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - t)) # We can then sample the function x(t) with a different sample rate: # y[j] = x(j / new_freq) # or, # y[j] = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - j / new_freq)) # We see here that y[j] is the convolution of x[i] with a specific filter, for which # we take an FIR approximation, stopping when we see at least `lowpass_filter_width` zeros crossing. # But y[j+1] is going to have a different set of weights and so on, until y[j + new_freq]. # Indeed: # y[j + new_freq] = sum_i x[i] sinc(pi * orig_freq * ((i / orig_freq - (j + new_freq) / new_freq)) # = sum_i x[i] sinc(pi * orig_freq * ((i - orig_freq) / orig_freq - j / new_freq)) # = sum_i x[i + orig_freq] sinc(pi * orig_freq * (i / orig_freq - j / new_freq)) # so y[j+new_freq] uses the same filter as y[j], but on a shifted version of x by `orig_freq`. # This will explain the F.conv1d after, with a stride of orig_freq. width = math.ceil(lowpass_filter_width * orig_freq / base_freq) # If orig_freq is still big after GCD reduction, most filters will be very unbalanced, i.e., # they will have a lot of almost zero values to the left or to the right... # There is probably a way to evaluate those filters more efficiently, but this is kept for # future work. idx_dtype = dtype if dtype is not None else torch.float64 idx = torch.arange(-width, width + orig_freq, device=device, dtype=idx_dtype) for i in range(new_freq): t = (-i / new_freq + idx / orig_freq) * base_freq t = t.clamp_(-lowpass_filter_width, lowpass_filter_width) # we do not use built in torch windows here as we need to evaluate the window # at specific positions, not over a regular grid. if resampling_method == "sinc_interpolation": window = torch.cos(t * math.pi / lowpass_filter_width / 2)**2 else: # kaiser_window if beta is None: beta = 14.769656459379492 beta_tensor = torch.tensor(float(beta)) window = torch.i0(beta_tensor * torch.sqrt(1 - (t / lowpass_filter_width) ** 2)) / torch.i0(beta_tensor) t *= math.pi kernel = torch.where(t == 0, torch.tensor(1.).to(t), torch.sin(t) / t) kernel.mul_(window) kernels.append(kernel) scale = base_freq / orig_freq kernels = torch.stack(kernels).view(new_freq, 1, -1).mul_(scale) if dtype is None: kernels = kernels.to(dtype=torch.float32) return kernels, width def _apply_sinc_resample_kernel( waveform: Tensor, orig_freq: float, new_freq: float, gcd: int, kernel: Tensor, width: int, ): orig_freq = int(orig_freq) // gcd new_freq = int(new_freq) // gcd # pack batch shape = waveform.size() waveform = waveform.view(-1, shape[-1]) num_wavs, length = waveform.shape waveform = torch.nn.functional.pad(waveform, (width, width + orig_freq)) resampled = torch.nn.functional.conv1d(waveform[:, None], kernel, stride=orig_freq) resampled = resampled.transpose(1, 2).reshape(num_wavs, -1) target_length = int(math.ceil(new_freq * length / orig_freq)) resampled = resampled[..., :target_length] # unpack batch resampled = resampled.view(shape[:-1] + resampled.shape[-1:]) return resampled def resample( waveform: Tensor, orig_freq: float, new_freq: float, lowpass_filter_width: int = 6, rolloff: float = 0.99, resampling_method: str = "sinc_interpolation", beta: Optional[float] = None, ) -> Tensor: r"""Resamples the waveform at the new frequency using bandlimited interpolation. https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html Note: ``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in more efficient computation if resampling multiple waveforms with the same resampling parameters. Args: waveform (Tensor): The input signal of dimension (..., time) orig_freq (float): The original frequency of the signal new_freq (float): The desired frequency lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper but less efficient. (Default: ``6``) rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist. Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``) resampling_method (str, optional): The resampling method to use. Options: [``sinc_interpolation``, ``kaiser_window``] (Default: ``'sinc_interpolation'``) beta (float or None): The shape parameter used for kaiser window. Returns: Tensor: The waveform at the new frequency of dimension (..., time). """ assert orig_freq > 0.0 and new_freq > 0.0 if orig_freq == new_freq: return waveform gcd = math.gcd(int(orig_freq), int(new_freq)) kernel, width = _get_sinc_resample_kernel(orig_freq, new_freq, gcd, lowpass_filter_width, rolloff, resampling_method, beta, waveform.device, waveform.dtype) resampled = _apply_sinc_resample_kernel(waveform, orig_freq, new_freq, gcd, kernel, width) return resampled @torch.jit.unused def edit_distance(seq1: Sequence, seq2: Sequence) -> int: """ Calculate the word level edit (Levenshtein) distance between two sequences. The function computes an edit distance allowing deletion, insertion and substitution. The result is an integer. For most applications, the two input sequences should be the same type. If two strings are given, the output is the edit distance between the two strings (character edit distance). If two lists of strings are given, the output is the edit distance between sentences (word edit distance). Users may want to normalize the output by the length of the reference sequence. torchscipt is not supported for this function. Args: seq1 (Sequence): the first sequence to compare. seq2 (Sequence): the second sequence to compare. Returns: int: The distance between the first and second sequences. """ len_sent2 = len(seq2) dold = list(range(len_sent2 + 1)) dnew = [0 for _ in range(len_sent2 + 1)] for i in range(1, len(seq1) + 1): dnew[0] = i for j in range(1, len_sent2 + 1): if seq1[i - 1] == seq2[j - 1]: dnew[j] = dold[j - 1] else: substitution = dold[j - 1] + 1 insertion = dnew[j - 1] + 1 deletion = dold[j] + 1 dnew[j] = min(substitution, insertion, deletion) dnew, dold = dold, dnew return int(dold[-1]) def pitch_shift( waveform: Tensor, sample_rate: int, n_steps: int, bins_per_octave: int = 12, n_fft: int = 512, win_length: Optional[int] = None, hop_length: Optional[int] = None, window: Optional[Tensor] = None, ) -> Tensor: """ Shift the pitch of a waveform by ``n_steps`` steps. Args: waveform (Tensor): The input waveform of shape `(..., time)`. sample_rate (float): Sample rate of `waveform`. n_steps (int): The (fractional) steps to shift `waveform`. bins_per_octave (int, optional): The number of steps per octave (Default: ``12``). n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``). win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``). hop_length (int or None, optional): Length of hop between STFT windows. If None, then ``win_length // 4`` is used (Default: ``None``). window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window. If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``). Returns: Tensor: The pitch-shifted audio waveform of shape `(..., time)`. """ if hop_length is None: hop_length = n_fft // 4 if win_length is None: win_length = n_fft if window is None: window = torch.hann_window(window_length=win_length, device=waveform.device) # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) ori_len = shape[-1] rate = 2.0 ** (-float(n_steps) / bins_per_octave) spec_f = torch.stft(input=waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=True, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) phase_advance = torch.linspace(0, math.pi * hop_length, spec_f.shape[-2], device=spec_f.device)[..., None] spec_stretch = phase_vocoder(spec_f, rate, phase_advance) len_stretch = int(round(ori_len / rate)) waveform_stretch = torch.istft(spec_stretch, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=len_stretch) waveform_shift = resample(waveform_stretch, sample_rate / rate, float(sample_rate)) shift_len = waveform_shift.size()[-1] if shift_len > ori_len: waveform_shift = waveform_shift[..., :ori_len] else: waveform_shift = torch.nn.functional.pad(waveform_shift, [0, ori_len - shift_len]) # unpack batch waveform_shift = waveform_shift.view(shape[:-1] + waveform_shift.shape[-1:]) return waveform_shift
[ "torch.round", "torch.cat", "torch.view_as_real", "torch.stack", "torch.istft", "torch.nn.functional.pad", "torch.exp", "torch.stft", "torch.sum", "torch.sqrt", "torch.log1p", "torch.norm", "torch.view_as_complex", "torch.i0", "torch.abs", "torch.tensor", "torch.polar", "torch.zeros", "torch.device", "torch.real", "torch.cos", "torch.min", "torch.max", "torch.hann_window", "torch.linspace", "torch.clamp", "torch.nn.functional.conv1d", "torch.cumsum", "torch.pow", "torch.rand", "torch.arange", "torch.sin", "torch.ops.torchaudio.kaldi_ComputeKaldiPitch", "torch.sign", "torch.atan2", "torch.median" ]
1.4.0
jaeyeun97/audio
8a347b62cf5c907d2676bdc983354834e500a282
1.2
""" Fixtures for unit tests. """ import pytest import numpy as np import torch from lettuce import ( stencils, Stencil, get_subclasses, Transform, Lattice, moments ) STENCILS = list(get_subclasses(Stencil, stencils)) TRANSFORMS = list(get_subclasses(Transform, moments)) @pytest.fixture( params=["cpu", pytest.param( "cuda:0", marks=pytest.mark.skipif( not torch.cuda.is_available(), reason="CUDA not available.") )]) def device(request): """Run a test case for all available devices.""" return request.param @pytest.fixture(params=[torch.float32, torch.float64]) # not testing torch.float16 (half precision is not precise enough) def dtype_device(request, device): """Run a test case for all available devices and data types available on the device.""" if device == "cpu" and request.param == torch.float16: pytest.skip("Half precision is only available on GPU.") return request.param, device @pytest.fixture(params=STENCILS) def stencil(request): """Run a test for all stencils.""" return request.param @pytest.fixture(params=STENCILS) def lattice(request, dtype_device): """Run a test for all lattices (all stencils, devices and data types available on the device.)""" dtype, device = dtype_device return Lattice(request.param, device=device, dtype=dtype) @pytest.fixture() def f_lattice(lattice): """Run a test for all lattices; return a grid with 3^D sample distribution functions alongside the lattice.""" np.random.seed(1) # arbitrary, but deterministic return lattice.convert_to_tensor(np.random.random([lattice.Q] + [3] * lattice.D)), lattice @pytest.fixture(params=[Lattice]) def f_all_lattices(request, lattice): """Run a test for all lattices and lattices-of-vector; return a grid with 3^D sample distribution functions alongside the lattice. """ np.random.seed(1) f = np.random.random([lattice.Q] + [3] * lattice.D) Ltc = request.param ltc = Ltc(lattice.stencil, lattice.device, lattice.dtype) return ltc.convert_to_tensor(f), ltc @pytest.fixture(params=TRANSFORMS) def f_transform(request, f_all_lattices): Transform = request.param f, lattice = f_all_lattices if lattice.stencil in Transform.supported_stencils: return f, Transform(lattice) else: pytest.skip("Stencil not supported for this transform.")
[ "torch.cuda.is_available" ]
1.2
je-santos/lettuce
9455449b997eb245cd714c5759d7a7cd4c33b1dc
1.2
""" Collision models """ import torch from lettuce.equilibrium import QuadraticEquilibrium from lettuce.util import LettuceException __all__ = [ "BGKCollision", "KBCCollision2D", "KBCCollision3D", "MRTCollision", "RegularizedCollision", "SmagorinskyCollision", "TRTCollision", "BGKInitialization" ] class BGKCollision: def __init__(self, lattice, tau, force=None): self.force = force self.lattice = lattice self.tau = tau def __call__(self, f): rho = self.lattice.rho(f) u_eq = 0 if self.force is None else self.force.u_eq(f) u = self.lattice.u(f) + u_eq feq = self.lattice.equilibrium(rho, u) Si = 0 if self.force is None else self.force.source_term(u) return f - 1.0 / self.tau * (f - feq) + Si class MRTCollision: """Multiple relaxation time collision operator This is an MRT operator in the most general sense of the word. The transform does not have to be linear and can, e.g., be any moment or cumulant transform. """ def __init__(self, lattice, transform, relaxation_parameters): self.lattice = lattice self.transform = transform self.relaxation_parameters = lattice.convert_to_tensor(relaxation_parameters) def __call__(self, f): m = self.transform.transform(f) meq = self.transform.equilibrium(m) m = m - self.lattice.einsum("q,q->q", [1 / self.relaxation_parameters, m - meq]) f = self.transform.inverse_transform(m) return f class TRTCollision: """Two relaxation time collision model - standard implementation (cf. Krüger 2017) """ def __init__(self, lattice, tau, tau_minus=1.0): self.lattice = lattice self.tau_plus = tau self.tau_minus = tau_minus def __call__(self, f): rho = self.lattice.rho(f) u = self.lattice.u(f) feq = self.lattice.equilibrium(rho, u) f_diff_neq = ((f + f[self.lattice.stencil.opposite]) - (feq + feq[self.lattice.stencil.opposite])) / ( 2.0 * self.tau_plus) f_diff_neq += ((f - f[self.lattice.stencil.opposite]) - (feq - feq[self.lattice.stencil.opposite])) / ( 2.0 * self.tau_minus) f = f - f_diff_neq return f class RegularizedCollision: """Regularized LBM according to Jonas Latt and Bastien Chopard (2006)""" def __init__(self, lattice, tau): self.lattice = lattice self.tau = tau self.Q_matrix = torch.zeros([lattice.Q, lattice.D, lattice.D], device=lattice.device, dtype=lattice.dtype) for a in range(lattice.Q): for b in range(lattice.D): for c in range(lattice.D): self.Q_matrix[a, b, c] = lattice.e[a, b] * lattice.e[a, c] if b == c: self.Q_matrix[a, b, c] -= lattice.cs * lattice.cs def __call__(self, f): rho = self.lattice.rho(f) u = self.lattice.u(f) feq = self.lattice.equilibrium(rho, u) pi_neq = self.lattice.shear_tensor(f - feq) cs4 = self.lattice.cs ** 4 pi_neq = self.lattice.einsum("qab,ab->q", [self.Q_matrix, pi_neq]) pi_neq = self.lattice.einsum("q,q->q", [self.lattice.w, pi_neq]) fi1 = pi_neq / (2 * cs4) f = feq + (1. - 1. / self.tau) * fi1 return f class KBCCollision2D: """Entropic multi-relaxation time model according to Karlin et al. in two dimensions""" def __init__(self, lattice, tau): self.lattice = lattice assert lattice.Q == 9, LettuceException("KBC2D only realized for D2Q9") self.tau = tau self.beta = 1. / (2 * tau) # Build a matrix that contains the indices self.M = torch.zeros([3, 3, 9], device=lattice.device, dtype=lattice.dtype) for i in range(3): for j in range(3): self.M[i, j] = lattice.e[:, 0] ** i * lattice.e[:, 1] ** j def kbc_moment_transform(self, f): """Transforms the f into the KBC moment representation""" m = torch.einsum('abq,qmn', self.M, f) rho = m[0, 0] m = m / rho m[0, 0] = rho return m def compute_s_seq_from_m(self, f, m): s = torch.zeros_like(f) T = m[2, 0] + m[0, 2] N = m[2, 0] - m[0, 2] Pi_xy = m[1, 1] s[0] = m[0, 0] * -T s[1] = 1. / 2. * m[0, 0] * (0.5 * (T + N)) s[2] = 1. / 2. * m[0, 0] * (0.5 * (T - N)) s[3] = 1. / 2. * m[0, 0] * (0.5 * (T + N)) s[4] = 1. / 2. * m[0, 0] * (0.5 * (T - N)) s[5] = 1. / 4. * m[0, 0] * (Pi_xy) s[6] = -s[5] s[7] = 1. / 4 * m[0, 0] * Pi_xy s[8] = -s[7] return s def __call__(self, f): # the deletes are not part of the algorithm, they just keep the memory usage lower feq = self.lattice.equilibrium(self.lattice.rho(f), self.lattice.u(f)) # k = torch.zeros_like(f) m = self.kbc_moment_transform(f) delta_s = self.compute_s_seq_from_m(f, m) # k[0] = m[0, 0] # k[1] = m[0, 0] / 2. * m[1, 0] # k[2] = m[0, 0] / 2. * m[0, 1] # k[3] = -m[0, 0] / 2. * m[1, 0] # k[4] = -m[0, 0] / 2. * m[0, 1] # k[5] = 0 # k[6] = 0 # k[7] = 0 # k[8] = 0 m = self.kbc_moment_transform(feq) delta_s -= self.compute_s_seq_from_m(f, m) del m delta_h = f - feq - delta_s sum_s = self.lattice.rho(delta_s * delta_h / feq) sum_h = self.lattice.rho(delta_h * delta_h / feq) del feq gamma_stab = 1. / self.beta - (2 - 1. / self.beta) * sum_s / sum_h gamma_stab[gamma_stab < 1E-15] = 2.0 gamma_stab[torch.isnan(gamma_stab)] = 2.0 f = f - self.beta * (2 * delta_s + gamma_stab * delta_h) return f class KBCCollision3D: """Entropic multi-relaxation time-relaxation time model according to Karlin et al. in three dimensions""" def __init__(self, lattice, tau): self.lattice = lattice assert lattice.Q == 27, LettuceException("KBC only realized for D3Q27") self.tau = tau self.beta = 1. / (2 * tau) # Build a matrix that contains the indices self.M = torch.zeros([3, 3, 3, 27], device=lattice.device, dtype=lattice.dtype) for i in range(3): for j in range(3): for k in range(3): self.M[i, j, k] = lattice.e[:, 0] ** i * lattice.e[:, 1] ** j * lattice.e[:, 2] ** k def kbc_moment_transform(self, f): """Transforms the f into the KBC moment representation""" m = torch.einsum('abcq,qmno', self.M, f) rho = m[0, 0, 0] m = m / rho m[0, 0, 0] = rho return m def compute_s_seq_from_m(self, f, m): s = torch.zeros_like(f) T = m[2, 0, 0] + m[0, 2, 0] + m[0, 0, 2] N_xz = m[2, 0, 0] - m[0, 0, 2] N_yz = m[0, 2, 0] - m[0, 0, 2] Pi_xy = m[1, 1, 0] Pi_xz = m[1, 0, 1] Pi_yz = m[0, 1, 1] s[0] = m[0, 0, 0] * -T s[1] = 1. / 6. * m[0, 0, 0] * (2 * N_xz - N_yz + T) s[2] = s[1] s[3] = 1. / 6. * m[0, 0, 0] * (2 * N_yz - N_xz + T) s[4] = s[3] s[5] = 1. / 6. * m[0, 0, 0] * (-N_xz - N_yz + T) s[6] = s[5] s[7] = 1. / 4 * m[0, 0, 0] * Pi_yz s[8] = s[7] s[9] = - 1. / 4 * m[0, 0, 0] * Pi_yz s[10] = s[9] s[11] = 1. / 4 * m[0, 0, 0] * Pi_xz s[12] = s[11] s[13] = -1. / 4 * m[0, 0, 0] * Pi_xz s[14] = s[13] s[15] = 1. / 4 * m[0, 0, 0] * Pi_xy s[16] = s[15] s[17] = -1. / 4 * m[0, 0, 0] * Pi_xy s[18] = s[17] return s def __call__(self, f): # the deletes are not part of the algorithm, they just keep the memory usage lower feq = self.lattice.equilibrium(self.lattice.rho(f), self.lattice.u(f)) # k = torch.zeros_like(f) m = self.kbc_moment_transform(f) delta_s = self.compute_s_seq_from_m(f, m) # k[1] = m[0, 0, 0] / 6. * (3. * m[1, 0, 0]) # k[0] = m[0, 0, 0] # k[2] = -k[1] # k[3] = m[0, 0, 0] / 6. * (3. * m[0, 1, 0]) # k[4] = -k[3] # k[5] = m[0, 0, 0] / 6. * (3. * m[0, 0, 1]) # k[6] = -k[5] m = self.kbc_moment_transform(feq) delta_s -= self.compute_s_seq_from_m(f, m) del m delta_h = f - feq - delta_s sum_s = self.lattice.rho(delta_s * delta_h / feq) sum_h = self.lattice.rho(delta_h * delta_h / feq) del feq gamma_stab = 1. / self.beta - (2 - 1. / self.beta) * sum_s / sum_h gamma_stab[gamma_stab < 1E-15] = 2.0 # Detect NaN gamma_stab[torch.isnan(gamma_stab)] = 2.0 f = f - self.beta * (2 * delta_s + gamma_stab * delta_h) return f class SmagorinskyCollision: """Smagorinsky large eddy simulation (LES) collision model with BGK operator.""" def __init__(self, lattice, tau, smagorinsky_constant=0.17, force=None): self.force = force self.lattice = lattice self.tau = tau self.iterations = 2 self.tau_eff = tau self.constant = smagorinsky_constant def __call__(self, f): rho = self.lattice.rho(f) u_eq = 0 if self.force is None else self.force.u_eq(f) u = self.lattice.u(f) + u_eq feq = self.lattice.equilibrium(rho, u) S_shear = self.lattice.shear_tensor(f - feq) S_shear /= (2.0 * rho * self.lattice.cs ** 2) self.tau_eff = self.tau nu = (self.tau - 0.5) / 3.0 for i in range(self.iterations): S = S_shear / self.tau_eff S = self.lattice.einsum('ab,ab->', [S, S]) nu_t = self.constant ** 2 * S nu_eff = nu + nu_t self.tau_eff = nu_eff * 3.0 + 0.5 Si = 0 if self.force is None else self.force.source_term(u) return f - 1.0 / self.tau_eff * (f - feq) + Si class BGKInitialization: """Keep velocity constant.""" def __init__(self, lattice, flow, moment_transformation): self.lattice = lattice self.tau = flow.units.relaxation_parameter_lu self.moment_transformation = moment_transformation p, u = flow.initial_solution(flow.grid) self.u = flow.units.convert_velocity_to_lu(lattice.convert_to_tensor(u)) self.rho0 = flow.units.characteristic_density_lu self.equilibrium = QuadraticEquilibrium(self.lattice) momentum_names = tuple([f"j{x}" for x in "xyz"[:self.lattice.D]]) self.momentum_indices = moment_transformation[momentum_names] def __call__(self, f): rho = self.lattice.rho(f) feq = self.equilibrium(rho, self.u) m = self.moment_transformation.transform(f) meq = self.moment_transformation.transform(feq) mnew = m - 1.0 / self.tau * (m - meq) mnew[0] = m[0] - 1.0 / (self.tau + 1) * (m[0] - meq[0]) mnew[self.momentum_indices] = rho * self.u f = self.moment_transformation.inverse_transform(mnew) return f
[ "torch.zeros", "torch.zeros_like", "torch.isnan", "torch.einsum" ]
1.2
je-santos/lettuce
9455449b997eb245cd714c5759d7a7cd4c33b1dc
0.4
#!/usr/bin/env python3 import gym from collections import namedtuple import numpy as np from tensorboardX import SummaryWriter import torch import torch.nn as nn import torch.optim as optim HIDDEN_SIZE = 128 BATCH_SIZE = 16 PERCENTILE = 70 class Net(nn.Module): def __init__(self, obs_size, hidden_size, n_actions): super(Net, self).__init__() self.net = nn.Sequential( nn.Linear(obs_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, n_actions) ) def forward(self, x): return self.net(x) Episode = namedtuple('Episode', field_names=['reward', 'steps']) EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 'action']) def iterate_batches(env, net, batch_size): batch = [] episode_reward = 0.0 episode_steps = [] obs = env.reset() sm = nn.Softmax(dim=1) while True: obs_v = torch.FloatTensor([obs]) act_probs_v = sm(net(obs_v)) act_probs = act_probs_v.data.numpy()[0] action = np.random.choice(len(act_probs), p=act_probs) next_obs, reward, is_done, _ = env.step(action) episode_reward += reward episode_steps.append(EpisodeStep(observation=obs, action=action)) if is_done: batch.append(Episode(reward=episode_reward, steps=episode_steps)) episode_reward = 0.0 episode_steps = [] next_obs = env.reset() if len(batch) == batch_size: yield batch batch = [] obs = next_obs def filter_batch(batch, percentile): rewards = list(map(lambda s: s.reward, batch)) reward_bound = np.percentile(rewards, percentile) reward_mean = float(np.mean(rewards)) train_obs = [] train_act = [] for example in batch: if example.reward < reward_bound: continue train_obs.extend(map(lambda step: step.observation, example.steps)) train_act.extend(map(lambda step: step.action, example.steps)) train_obs_v = torch.FloatTensor(train_obs) train_act_v = torch.LongTensor(train_act) return train_obs_v, train_act_v, reward_bound, reward_mean if __name__ == "__main__": env = gym.make("CartPole-v0") env = gym.wrappers.Monitor(env, directory="mon", force=True) obs_size = env.observation_space.shape[0] n_actions = env.action_space.n net = Net(obs_size, HIDDEN_SIZE, n_actions) objective = nn.CrossEntropyLoss() optimizer = optim.Adam(params=net.parameters(), lr=0.01) writer = SummaryWriter(comment="-cartpole") for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE)): obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE) optimizer.zero_grad() action_scores_v = net(obs_v) loss_v = objective(action_scores_v, acts_v) loss_v.backward() optimizer.step() print("%d: loss=%.3f, reward_mean=%.1f, reward_bound=%.1f" % ( iter_no, loss_v.item(), reward_m, reward_b)) writer.add_scalar("loss", loss_v.item(), iter_no) writer.add_scalar("reward_bound", reward_b, iter_no) writer.add_scalar("reward_mean", reward_m, iter_no) if reward_m > 199: print("Solved!") break writer.close()
[ "torch.nn.Linear", "torch.nn.Softmax", "torch.FloatTensor", "torch.nn.ReLU", "torch.LongTensor", "torch.nn.CrossEntropyLoss" ]
0.4.1
castorfou/drl_handson
4f5a07611c483ad20022afd37961559131c5bf31
1.7
""" (c) 2020 Spencer Rose, MIT Licence Python Landscape Classification Tool (PyLC) Reference: An evaluation of deep learning semantic segmentation for land cover classification of oblique ground-based photography, MSc. Thesis 2020. <http://hdl.handle.net/1828/12156> Spencer Rose <[email protected]>, June 2020 University of Victoria Module: Evaluator Class File: evaluate.py """ import json import os import torch import utils.tex as tex import numpy as np import cv2 import utils.tools as utils from config import defaults, Parameters from utils.metrics import Metrics class Evaluator: """ Handles model test/evaluation functionality. Parameters ------ params: Parameters Updated parameters. """ def __init__(self, params=None): # initialize parameters, metrics self.meta = Parameters(params) if params is not None else defaults self.metrics = Metrics() # Model results self.fid = None self.logits = None self.mask_pred = None self.results = [] # data buffers self.y_true = None self.y_pred = None self.labels = [] # multi-image data buffers for aggregate evaluation self.aggregate = False self.y_true_aggregate = [] self.y_pred_aggregate = [] # Make output and mask directories for results self.model_path = None self.output_dir = os.path.join(defaults.output_dir, self.meta.id) self.masks_dir = utils.mk_path(os.path.join(self.output_dir, 'masks')) self.logits_dir = utils.mk_path(os.path.join(self.output_dir, 'logits')) self.metrics_dir = utils.mk_path(os.path.join(self.output_dir, 'metrics')) def load(self, mask_pred, meta, mask_true_path=None, scale=None): """ Initialize predicted/ground truth image masks for evaluation metrics. Parameters: ----------- mask_pred_logits: torch.tensor Unnormalized model logits for predicted segmentation [NCHW] meta: dict Reconstruction metadata. mask_true_path: str File path to ground-truth mask [CHW] """ # store metadata self.meta = meta # file identifier (include current scale) self.fid = self.meta.extract['fid'] # reconstruct unnormalized model outputs into mask data array self.mask_pred = mask_pred if mask_true_path: # load ground-truth data mask_true, w, h, w_scaled, h_scaled = utils.get_image( mask_true_path, ch=3, scale=scale, interpolate=cv2.INTER_NEAREST ) # check dimensions of ground truth mask and predicted mask if not (w_scaled == self.meta.extract['w_scaled'] and h_scaled == self.meta.extract['h_scaled']): print("Ground truth mask dims ({}px X {}px) do not match predicted mask dims ({}px X {}px).".format( w_scaled, h_scaled, self.meta.extract['w_scaled'], self.meta.extract['h_scaled'] )) exit(1) self.y_true = torch.as_tensor(torch.tensor(mask_true), dtype=torch.uint8).permute(2, 0, 1).unsqueeze(0) self.y_pred = torch.as_tensor(self.mask_pred, dtype=torch.uint8).permute(2, 0, 1).unsqueeze(0) # Class encode input predicted data self.y_pred = utils.class_encode(self.y_pred, self.meta.palette_rgb) self.y_true = utils.class_encode(self.y_true, self.meta.palette_rgb) # Verify same size of target == input assert self.y_pred.shape == self.y_true.shape, "Input dimensions {} not same as target {}.".format( self.y_pred.shape, self.y_true.shape) self.y_pred = self.y_pred.flatten() self.y_true = self.y_true.flatten() # load input data into metrics self.y_true_aggregate += [self.y_true] self.y_pred_aggregate += [self.y_pred] return self def update(self, meta): """ Update local metadata """ self.meta = meta return self def evaluate(self, aggregate=False): """ Compute evaluation metrics Parameters ---------- aggregate: bool Compute aggregate metrics for multiple data loads. """ self.aggregate = aggregate self.validate() self.metrics.f1_score(self.y_true, self.y_pred) self.metrics.jaccard(self.y_true, self.y_pred) self.metrics.mcc(self.y_true, self.y_pred) self.metrics.confusion_matrix(self.y_true, self.y_pred, labels=self.labels) self.metrics.report(self.y_true, self.y_pred, labels=self.labels) return self def validate(self): """ Validates mask data for computations. - Ensures all classes are represented in ground truth mask. """ self.labels = defaults.class_codes # aggregated metrics if self.aggregate: self.fid = 'aggregate_metrics' assert self.y_true_aggregate and self.y_pred_aggregate, \ "Aggregate evaluation failed. Data buffer is empty." print("\nReporting aggregate metrics ... ") print("\t - Total generated masks: {}".format(len(self.y_pred_aggregate))) print() # Concatenate aggregated data self.y_true = np.concatenate((self.y_true_aggregate)) self.y_pred = np.concatenate((self.y_pred_aggregate)) # ensure class coverage for idx in range(len(self.labels)): self.y_true[idx] = idx self.y_pred[idx] = idx return self def reset(self): """ Resets evaluator buffers. """ self.logits = None self.mask_pred = None self.results = [] self.meta = {} self.y_true = None self.y_pred = None def save_logits(self, logits): """ Save unnormalized model outputs (logits) to file. Parameters ---------- logits: list Unnormalized model outputs. Returns ------- logits_file: str Output path to model outputs file. """ # save unnormalized model outputs logits_file = os.path.join(self.logits_dir, self.fid + '_output.pth') if utils.confirm_write_file(logits_file): torch.save({"results": logits, "meta": self.meta}, logits_file) print("Model output data saved to \n\t{}.".format(logits_file)) return logits_file return def save_metrics(self): """ Save prediction evaluation results to files. Returns ------- metrics_file: str Output path to metrics data file. metrics_file: str Output path to confusion matrix PDF file. metrics_file: str Output path to confusion matrix data file. """ # Build output file paths metrics_file = os.path.join(self.metrics_dir, self.fid + '_eval.json') cmap_img_file = os.path.join(self.metrics_dir, self.fid + '_cmap.pdf') cmap_data_file = os.path.join(self.metrics_dir, self.fid + '_cmap.npy') # save evaluation metrics results as JSON file if utils.confirm_write_file(metrics_file): with open(metrics_file, 'w') as fp: json.dump(self.metrics.results, fp, indent=4) # save confusion matrix as PDF and data file if utils.confirm_write_file(cmap_img_file): self.metrics.cmap.get_figure().savefig(cmap_img_file, format='pdf', dpi=400) np.save(cmap_data_file, self.metrics.cmatrix) # clear metrics plot self.metrics.plt.clf() return metrics_file, cmap_img_file, cmap_data_file def save_tex(self): """ Save prediction evaluation results as LaTeX table to file. Returns ------- tex_file: str Output path to TeX data file. """ tex_file = os.path.join(self.metrics_dir, self.fid + '_metrics.tex') if utils.confirm_write_file(tex_file): with open(tex_file, 'w') as fp: fp.write(tex.convert_md_to_tex(self.meta)) return tex_file return def save_image(self): """ Reconstructs segmentation prediction as mask image. Output mask image saved to file (RGB -> BGR conversion) Note that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the bytes are reversed). Returns ------- mask_data: np.array Output mask data. """ # Build mask file path mask_file = os.path.join(self.masks_dir, self.fid + '.png') if self.mask_pred is None: print("Mask has not been reconstructed. Image save cancelled.") if utils.confirm_write_file(mask_file): # Reconstruct seg-mask from predicted tiles and write to file cv2.imwrite(mask_file, cv2.cvtColor(self.mask_pred, cv2.COLOR_RGB2BGR)) print("Output mask saved to: \n\t{}.".format(mask_file)) return mask_file return
[ "torch.save", "torch.tensor", "torch.as_tensor" ]
1.7.0
scrose/pylc
9c4c4e84a14cb3adc0b4226199e4cd5841384b0b
1.7
import torch import torch.utils.data as td from typing import Optional, Dict, Union from transformers import BatchEncoding from argparse import Namespace import numpy as np import pandas as pd from pytorch_quik import io Tensor_Target = Union[str, np.ndarray] Tensor_Data = Union[pd.DataFrame, torch.Tensor, BatchEncoding] def make_TensorDataset( tens: Tensor_Data, labels: Tensor_Target, ttype: Optional[str] = "train", data_types: Optional[Dict[int, type]] = None, args: Optional[Namespace] = None, ) -> td.TensorDataset: """Will turn a set of data into tensors in a torch TensorDataset for use in a Neural Network. Also provides the option of saving the TensorDataset Args: tens (Union[torch.Tensor, BatchEncoding]): Either a torch.Tensor, or if from transformers, a BatchEncoding. labels (Union[str, np.ndarray]): Can either be a string of the label name found in tens, or the actual labels as an np.ndarray args (Namespace, optional): The argparse arguments for the job. Defaults to None. ttype (str, optional): The type of dataset (train, valid, test). Defaults to "train". data_types (Dict[int, type], optional): If the tensor data types need to be changed for space considerations. Defaults to None. Returns: td.TensorDataset: The final TensorDataset """ if data_types is not None: for i, col in enumerate(tens): tens[col] = tens[col].astype(data_types[i]) if isinstance(labels, str): ttar = tens.pop(labels) if isinstance(tens, BatchEncoding): tds = td.TensorDataset( tens["input_ids"], tens["attention_mask"], torch.LongTensor(labels) ) else: tens = torch.tensor(tens.values) tens = tens.transpose(0, 1) ttar = torch.tensor(ttar.values) tds = td.TensorDataset(*tens, ttar) if args is not None: tds_id = io.id_str(ttype, args) torch.save(tds, tds_id) return tds def transform_TensorDataset( tds: td.TensorDataset, pop: Optional[str] = None, torch_types: Optional[Dict[int, torch.dtype]] = None, ) -> td.TensorDataset: """Transforms a torch.utils.data.TensorDataset by either popping out a tensor, changing the data types, or both. Args: tds (td.TensorDataset): The original TensorDataset pop (str, optional): The ordinal of the tensor to pop. Defaults to None. torch_types (Dict[int, torch.dtype], optional): The ordinal and new data type of each tensor. Defaults to None. Returns: td.TensorDataset: The final transformed TensorDataset """ tl = list(tds.tensors) if pop is not None: del tl[pop] if torch_types is not None: tl = [tens.type(torch_types[i]) for i, tens in enumerate(tl)] return td.TensorDataset(*tl)
[ "torch.LongTensor", "torch.save", "torch.tensor", "torch.utils.data.TensorDataset" ]
1.7.0
donchesworth/pytorch-quik
e59ea3393bf017a17ab92991f14fe3bd6c5b2d0c
1.5
import torch import torch.nn as nn class HEDLN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout, bidirectional, num_classes1, num_classes2): super(HEDLN, self).__init__() self.num_directions = 2 if bidirectional else 1 self.num_classes1 = num_classes1 self.num_classes2 = num_classes2 self.rnn1 = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, bidirectional=bidirectional) self.fc1 = nn.Linear(self.num_directions * hidden_size, num_classes1) self.act1 = nn.Sigmoid() # sigmoid+bce self.rnn2 = nn.LSTM(input_size + self.num_directions * hidden_size, hidden_size, num_layers, dropout=dropout, bidirectional=bidirectional) self.fc2 = nn.Linear(self.num_directions * hidden_size, num_classes2) self.act2 = nn.Sigmoid() # sigmoid+bce def forward(self, x): """ batch-first x: (seq_len, bz, input_size) rnn1_out: (seq_len, bz, num_directions * hidden_size) rnn2_out: (seq_len, bz, num_directions * hidden_size) logits1: (seq_len*bz, 2) logits2: (seq_len*bz, 3) """ T, B, S1 = x.shape rnn1_out, _ = self.rnn1(x) S2 = rnn1_out.shape[-1] fc1_in = rnn1_out.reshape(-1, S2) logits1 = self.fc1(fc1_in) logits1 = self.act1(logits1) # sigmoid+bce logits1 = logits1.reshape(T, B, self.num_classes1) # sigmoid+bce rnn2_in = torch.cat((x, rnn1_out), 2) rnn2_out, _ = self.rnn2(rnn2_in) fc2_in = rnn2_out.reshape(-1, S2) logits2 = self.fc2(fc2_in) logits2 = self.act2(logits2) # sigmoid+bce logits2 = logits2.reshape(T, B, self.num_classes2) # sigmoid+bce return logits1, logits2
[ "torch.nn.Linear", "torch.cat", "torch.nn.LSTM", "torch.nn.Sigmoid" ]
1.5.0
jiabijue/md_mrle
21830842ca4e663153b9abb94ca2db604059a91f
1.0
import numpy as np import torch import matplotlib.pyplot as plt import seaborn as sns # two_stage_baseline_data = [torch.load(f"sparse_dr_{i}M_eval.pt") for i in range(1, 5)] # curl_data = torch.load(f"curl_eval.pt") # dense_dr_data = torch.load(f"dense_dr_eval.pt") clrs = [ '#1f77b4', # muted blue '#ff7f0e', # safety orange '#2ca02c', # cooked asparagus green '#d62728', # brick red '#9467bd', # muted purple '#8c564b', # chestnut brown '#e377c2', # raspberry yogurt pink '#7f7f7f', # middle gray '#bcbd22', # curry yellow-green '#17becf' # blue-teal ] data = { '1cm': [[], [], []], '2cm': [[], [], []], '4cm': [[], [], []], '8cm': [[], [], []], '16cm': [[], [], []], } for i in range(50, 101, 10): for key in data: if key != '1cm' and (i == 90 or i == 100): continue try: results = torch.load(f'train_lengths/{i}p_{key}_rack_train_lengths.pt') except FileNotFoundError: continue episodes = [x / 64 for x in results[0]] mean = np.mean(episodes) std = np.std(episodes) data[key][0] += [i] data[key][1] += [mean] data[key][2] += [std] fig, ax = plt.subplots() plt.xlabel('Target success rate (%)') plt.ylabel('Number of episodes') with sns.axes_style("darkgrid"): for i, key in enumerate(data): x, mean, error = data[key] str_mean = [f"${mu}$" for mu in mean] print(" & ".join(str_mean)) mean = np.array(mean) error = np.array(error) ax.plot(x, mean, label=f"{key} pipeline", linewidth=0.9, color=clrs[i]) ax.fill_between(x, mean - error, mean + error, alpha=0.3, facecolor=clrs[i]) ax.legend(loc=2) # plt.xlim((0, 4000000)) plt.xticks([50, 60, 70, 80, 90, 100]) # plt.title("Success rate on Dish Rack over training time") plt.draw() plt.show() # plt.close(fig)
[ "torch.load" ]
1.0.1
harry-uglow/Curriculum-Reinforcement-Learning
cb050556e1fdc7b7de8d63ad932fc712a35ac144
1.11
#!/bin/python3 # The MIT License (MIT) # Copyright © 2021 Yuma Rao # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the “Software”), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of # the Software. # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """ Advanced server neuron. Example: $ python miners/text/advanced_server/main.py """ from time import time import bittensor import torch import wandb import pandas import datetime import traceback import sys import os from loguru import logger; logger = logger.opt(colors=True) from torch.nn.utils import clip_grad_norm_ from datetime import datetime,timedelta from threading import Lock os.environ['TOKENIZERS_PARALLELISM'] = 'false' def serve( config, gp_server= None, subtensor = None, wallet = None, metagraph = None, axon = None ): config.to_defaults() # Create Subtensor connection subtensor = bittensor.subtensor(config = config) if subtensor == None else subtensor # Load/Create our bittensor wallet. if wallet == None: wallet = bittensor.wallet( config = config ).create().register(subtensor=subtensor) else: wallet.register(subtensor=subtensor) # Load/Sync/Save our metagraph. if metagraph == None: metagraph = bittensor.metagraph ( subtensor = subtensor ).load().sync().save() else: metagraph.load().sync().save() # Instantiate the model we are going to serve on the network. # Creating a threading lock for updates to the model mutex = Lock() gp_server = gp_server.to(gp_server.device) # Create our optimizer. optimizer = torch.optim.SGD( [ {"params": gp_server.parameters()} ], lr = config.neuron.learning_rate, momentum = config.neuron.momentum, ) bittensor.tokenizer() timecheck = {} n_topk_peer_weights = subtensor.min_allowed_weights # Define our forward function. def forward_text ( inputs_x ): r""" Forward function that is called when the axon recieves a forward request from other peers Args: inputs_x ( :obj:`torch.Tensor`, `required`): torch inputs to be forward processed. Returns: outputs (:obj:`torch.FloatTensor`): The nucleus's outputs as a torch tensor of shape [batch_size, sequence_len, __network_dim__] """ return gp_server.encode_forward( inputs_x.to(gp_server.device) ) # Define our backward function. def backward_text (inputs_x, grads_dy ): r"""Backwards function that is called when the axon recieves a backwards request from other peers. Updates the server parameters with gradients through the chain. Args: inputs_x ( :obj:`torch.Tensor`, `required`): torch inputs from previous forward call. grads_dy ( :obj:`torch.Tensor`, `required`): torch grads of forward output. """ # -- normalized grads -- grads_dy = grads_dy/(grads_dy.sum() + 0.00001) with mutex: outputs_y = gp_server.encode_forward( inputs_x.to(gp_server.device) ) with torch.autograd.set_detect_anomaly(True): torch.autograd.backward ( tensors = [ outputs_y ], grad_tensors = [ grads_dy.to(gp_server.device) ], retain_graph=True ) logger.info('Backwards axon gradient applied') gp_server.backward_gradients += inputs_x.size(0) def priority(pubkey:str, request_type:bittensor.proto.RequestType, inputs_x) -> float: r"""Calculates the priority on requests based on stake and size of input Args: pubkey ( str, `required`): The public key of the caller. inputs_x ( :obj:`torch.Tensor`, `required`): torch inputs to be forward processed. request_type ( bittensor.proto.RequestType, `required`): the request type ('FORWARD' or 'BACKWARD'). """ try: uid = metagraph.hotkeys.index(pubkey) priority = metagraph.S[uid].item()/ sys.getsizeof(inputs_x) except: # zero priority for those who are not registered. priority = 0 return priority def blacklist(pubkey:str, request_type:bittensor.proto.RequestType) -> bool: r"""Axon security blacklisting, used to blacklist message from low stake members Args: pubkey ( str, `required`): The public key of the caller. request_type ( bittensor.proto.RequestType, `required`): the request type ('FORWARD' or 'BACKWARD'). """ def registration_check(): # If we allow non-registered requests return False = not blacklisted. is_registered = pubkey in metagraph.hotkeys if not is_registered: if config.neuron.blacklist_allow_non_registered: return False raise Exception('Registration blacklist') # Check for stake def stake_check() -> bool: # Check stake. uid = metagraph.hotkeys.index(pubkey) if request_type == bittensor.proto.RequestType.FORWARD: if metagraph.S[uid].item() < config.neuron.blacklist.stake.forward: raise Exception('Stake blacklist') return False elif request_type == bittensor.proto.RequestType.BACKWARD: if metagraph.S[uid].item() < config.neuron.blacklist.stake.backward: raise Exception('Stake blacklist') return False def validator_check(): uid = metagraph.hotkeys.index(pubkey) if (metagraph.W[uid] >0).sum() >= n_topk_peer_weights: return False raise Exception('Validator blacklist') # Check for time def time_check(): current_time = datetime.now() if pubkey in timecheck.keys(): prev_time = timecheck[pubkey] if current_time - prev_time >= timedelta(seconds=config.neuron.blacklist.time): timecheck[pubkey] = current_time return False else: timecheck[pubkey] = current_time raise Exception('Time blacklist') else: timecheck[pubkey] = current_time return False # Blacklist checks try: registration_check() stake_check() time_check() validator_check() return False #blacklisted except Exception as e: return True if axon == None: # Create our axon server axon = bittensor.axon ( config = config, wallet = wallet, forward_text = forward_text, backward_text = backward_text, blacklist = blacklist, priority = priority ) # Training Data dataset = bittensor.dataset(config=config) # load our old model if not config.neuron.restart : gp_server.load(config.neuron.full_path) if config.wandb.api_key != 'default': # --- Init Wandb. bittensor.wandb( config = config, cold_pubkey = wallet.coldkeypub.ss58_address, hot_pubkey = wallet.hotkey.ss58_address, root_dir = config.neuron.full_path ) nn = subtensor.neuron_for_pubkey(wallet.hotkey.ss58_address) # --- last sync block last_sync_block = subtensor.get_current_block() last_set_block = last_sync_block # -- Main Training loop -- try: # -- download files from the mountain data = next(dataset) # --- creating our chain weights # --- query the chain for the most current number of peers on the network chain_weights = torch.zeros(subtensor.n) uid = nn.uid chain_weights[uid] = 1 # -- serve axon to the network. axon.start().serve(subtensor = subtensor) while True: # --- Check registration and optionally re-register nn = subtensor.neuron_for_pubkey(wallet.hotkey.ss58_address) if not wallet.is_registered( subtensor = subtensor ): wallet.register( subtensor = subtensor ) axon.serve( subtensor = subtensor ) # Re-serve the erased axon data. nn = subtensor.neuron_for_pubkey(wallet.hotkey.ss58_address) # --- Run current_block = subtensor.get_current_block() end_block = current_block + config.neuron.blocks_per_epoch interation = 0 # --- Training step. while end_block >= current_block: if current_block != subtensor.get_current_block(): loss, _ = gp_server( next( dataset ).to(gp_server.device) ) if interation > 0 : losses += loss else: losses = loss interation += 1 current_block = subtensor.get_current_block() #Custom learning rate if gp_server.backward_gradients > 0: optimizer.param_groups[0]['lr'] = 1/(gp_server.backward_gradients) else: optimizer.param_groups[0]['lr'] = 0.1 # --- Update parameters if interation != 0 or gp_server.backward_gradients != 0: with mutex: logger.info('Backpropagation Started') if interation != 0: losses.backward() clip_grad_norm_(gp_server.parameters(), 1.0) optimizer.step() optimizer.zero_grad() logger.info('Backpropagation Successful: Model updated') nn = subtensor.neuron_for_pubkey(wallet.hotkey.ss58_address) gp_server.backward_gradients = 0 # --- logging data wandb_data = { 'block': end_block, 'loss': losses.cpu().item()/interation, 'stake': nn.stake, 'rank': nn.rank, 'incentive': nn.incentive, 'trust': nn.trust, 'consensus': nn.consensus, 'incentive': nn.incentive, 'dividends': nn.dividends, 'emission': nn.emission, } bittensor.__console__.print('[green]Current Status:[/green]', wandb_data) # Add additional wandb data for axon, metagraph etc. if config.wandb.api_key != 'default': if uid in metagraph.W: df = pandas.concat( [ bittensor.utils.indexed_values_to_dataframe( prefix = 'w_i_{}'.format(nn.uid), index = metagraph.uids, values = metagraph.W[:, uid] ), bittensor.utils.indexed_values_to_dataframe( prefix = 's_i'.format(nn.uid), index = metagraph.uids, values = metagraph.S ), axon.to_dataframe( metagraph = metagraph ), ], axis = 1) df['uid'] = df.index stats_data_table = wandb.Table( dataframe = df ) wandb_info_axon = axon.to_wandb() wandb.log( { **wandb_data, **wandb_info_axon }, step = current_block ) wandb.log( { 'stats': stats_data_table }, step = current_block ) wandb.log( { 'axon_query_times': wandb.plot.scatter( stats_data_table, "uid", "axon_query_time", title="Axon Query time by UID") } ) wandb.log( { 'in_weights': wandb.plot.scatter( stats_data_table, "uid", 'w_i_{}'.format(nn.uid), title="Inward weights by UID") } ) wandb.log( { 'stake': wandb.plot.scatter( stats_data_table, "uid", 's_i', title="Stake by UID") } ) # Save the model gp_server.save(config.neuron.full_path) if current_block - last_set_block > config.neuron.blocks_per_set_weights: # --- Setting weights try: last_set_block = current_block # Set self weights to maintain activity. did_set = subtensor.set_weights( uids=torch.arange(0,subtensor.n), weights = chain_weights, wait_for_inclusion = False, wallet = wallet, ) if did_set: logger.success('Successfully set weights on the chain') else: logger.error('Failed to set weights on chain. (Timeout)') except Exception as e: logger.error('Failure setting weights on chain with error: {}', e) if current_block - last_sync_block > config.neuron.metagraph_sync: metagraph.sync() last_sync_block = current_block except KeyboardInterrupt: # --- User ended session ---- axon.stop() dataset.close() except Exception as e: # --- Unknown error ---- logger.exception('Unknown exception: {} with traceback {}', e, traceback.format_exc())
[ "torch.zeros", "torch.autograd.set_detect_anomaly", "torch.arange" ]
1.11
opentensor/BitTensor
59de2d0fe48f3bd02ba5bff6159e6625bd6cb945
1.11
import binascii import multiprocessing import ctypes import struct import hashlib from Crypto.Hash import keccak import math import bittensor import random import rich import time import torch import numbers import pandas import requests from substrateinterface.utils import ss58 from substrateinterface import Keypair, KeypairType from typing import Any, Tuple, List, Union, Optional def indexed_values_to_dataframe ( prefix: Union[str, int], index: Union[list, torch.LongTensor], values: Union[list, torch.Tensor], filter_zeros: bool = False ) -> 'pandas.DataFrame': # Type checking. if not isinstance(prefix, str) and not isinstance(prefix, numbers.Number): raise ValueError('Passed prefix must have type str or Number') if isinstance(prefix, numbers.Number): prefix = str(prefix) if not isinstance(index, list) and not isinstance(index, torch.Tensor): raise ValueError('Passed uids must have type list or torch.Tensor') if not isinstance(values, list) and not isinstance(values, torch.Tensor): raise ValueError('Passed values must have type list or torch.Tensor') if not isinstance(index, list): index = index.tolist() if not isinstance(values, list): values = values.tolist() index = [ idx_i for idx_i in index if idx_i < len(values) and idx_i >= 0 ] dataframe = pandas.DataFrame(columns=[prefix], index = index ) for idx_i in index: value_i = values[ idx_i ] if value_i > 0 or not filter_zeros: dataframe.loc[idx_i] = pandas.Series( { str(prefix): value_i } ) return dataframe def unbiased_topk( values, k, dim=0, sorted = True, largest = True): r""" Selects topk as in torch.topk but does not bias lower indices when values are equal. Args: values: (torch.Tensor) Values to index into. k: (int): Number to take. Return: topk: (torch.Tensor): topk k values. indices: (torch.LongTensor) indices of the topk values. """ permutation = torch.randperm(values.shape[ dim ]) permuted_values = values[ permutation ] topk, indices = torch.topk( permuted_values, k, dim = dim, sorted=sorted, largest=largest ) return topk, permutation[ indices ] def hex_bytes_to_u8_list( hex_bytes: bytes ): hex_chunks = [int(hex_bytes[i:i+2], 16) for i in range(0, len(hex_bytes), 2)] return hex_chunks def u8_list_to_hex( values: list ): total = 0 for val in reversed(values): total = (total << 8) + val return total def create_seal_hash( block_hash:bytes, nonce:int ) -> bytes: nonce_bytes = binascii.hexlify(nonce.to_bytes(8, 'little')) block_bytes = block_hash.encode('utf-8')[2:] pre_seal = nonce_bytes + block_bytes seal = hashlib.sha256( bytearray(hex_bytes_to_u8_list(pre_seal)) ).digest() return seal def seal_meets_difficulty( seal:bytes, difficulty:int ): seal_number = int.from_bytes(seal, "big") product = seal_number * difficulty limit = int(math.pow(2,256))- 1 if product > limit: return False else: return True def solve_for_difficulty( block_hash, difficulty ): meets = False nonce = -1 while not meets: nonce += 1 seal = create_seal_hash( block_hash, nonce ) meets = seal_meets_difficulty( seal, difficulty ) if nonce > 1: break return nonce, seal def solve_for_difficulty_fast( subtensor, wallet, num_processes: int = None, update_interval: int = 500000 ) -> Tuple[int, int, Any, int, Any]: """ Solves the POW for registration using multiprocessing. Args: subtensor Subtensor to connect to for block information and to submit. wallet: Wallet to use for registration. num_processes: int Number of processes to use. update_interval: int Number of nonces to solve before updating block information. Note: - We should modify the number of processes based on user input. - We can also modify the update interval to do smaller blocks of work, while still updating the block information after a different number of nonces, to increase the transparency of the process while still keeping the speed. """ if num_processes == None: num_processes = multiprocessing.cpu_count() block_number = subtensor.get_current_block() difficulty = subtensor.difficulty block_hash = subtensor.substrate.get_block_hash( block_number ) while block_hash == None: block_hash = subtensor.substrate.get_block_hash( block_number ) block_bytes = block_hash.encode('utf-8')[2:] limit = int(math.pow(2,256)) - 1 nonce_limit = int(math.pow(2,64)) - 1 nonce = random.randint( 0, nonce_limit ) start_time = time.time() console = bittensor.__console__ status = console.status("Solving") #found_solution = multiprocessing.Value('q', -1, lock=False) # int found_solution = multiprocessing.Array('Q', [0, 0, 0], lock=True) # [valid, nonce_high, nonce_low] best_raw = struct.pack("d", float('inf')) best = multiprocessing.Array(ctypes.c_char, best_raw, lock=True) # byte array to get around int size of ctypes best_seal = multiprocessing.Array('h', 32, lock=True) # short array should hold bytes (0, 256) with multiprocessing.Pool(processes=num_processes, initializer=initProcess_, initargs=(solve_, found_solution, best, best_seal)) as pool: status.start() while found_solution[0] == 0 and not wallet.is_registered(subtensor): iterable = [( nonce_start, nonce_start + update_interval , block_bytes, difficulty, block_hash, block_number, limit) for nonce_start in list(range(nonce, nonce + update_interval*num_processes, update_interval))] result = pool.starmap(solve_, iterable=iterable) old_nonce = nonce nonce += update_interval*num_processes nonce = nonce % nonce_limit itrs_per_sec = update_interval*num_processes / (time.time() - start_time) start_time = time.time() difficulty = subtensor.difficulty block_number = subtensor.get_current_block() block_hash = subtensor.substrate.get_block_hash( block_number) while block_hash == None: block_hash = subtensor.substrate.get_block_hash( block_number) block_bytes = block_hash.encode('utf-8')[2:] with best_seal.get_lock(): message = f"""Solving time spent: {time.time() - start_time} Nonce: [bold white]{nonce}[/bold white] Difficulty: [bold white]{difficulty}[/bold white] Iters: [bold white]{int(itrs_per_sec)}/s[/bold white] Block: [bold white]{block_number}[/bold white] Block_hash: [bold white]{block_hash.encode('utf-8')}[/bold white] Best: [bold white]{binascii.hexlify(bytes(best_seal) or bytes(0))}[/bold white]""" status.update(message.replace(" ", "")) # exited while, found_solution contains the nonce or wallet is registered if found_solution[0] == 0: # didn't find solution status.stop() return None, None, None, None, None found_unpacked: int = found_solution[1] << 32 | found_solution[2] nonce, block_number, block_hash, difficulty, seal = result[ math.floor( (found_unpacked-old_nonce) / update_interval) ] status.stop() return nonce, block_number, block_hash, difficulty, seal def initProcess_(f, found_solution, best, best_seal): f.found = found_solution f.best = best f.best_seal = best_seal def solve_(nonce_start, nonce_end, block_bytes, difficulty, block_hash, block_number, limit): best_local = float('inf') best_seal_local = [0]*32 start = time.time() for nonce in range(nonce_start, nonce_end): # Create seal. nonce_bytes = binascii.hexlify(nonce.to_bytes(8, 'little')) pre_seal = nonce_bytes + block_bytes seal_sh256 = hashlib.sha256( bytearray(hex_bytes_to_u8_list(pre_seal)) ).digest() kec = keccak.new(digest_bits=256) seal = kec.update( seal_sh256 ).digest() seal_number = int.from_bytes(seal, "big") product = seal_number * difficulty if product < limit: with solve_.found.get_lock(): solve_.found[0] = 1; solve_.found[1] = nonce >> 32 solve_.found[2] = nonce & 0xFFFFFFFF # low 32 bits return (nonce, block_number, block_hash, difficulty, seal) if (product - limit) < best_local: best_local = product - limit best_seal_local = seal with solve_.best.get_lock(): best_value_as_d = struct.unpack('d', solve_.best.raw)[0] if best_local < best_value_as_d: with solve_.best_seal.get_lock(): solve_.best.raw = struct.pack('d', best_local) for i in range(32): solve_.best_seal[i] = best_seal_local[i] return None def create_pow( subtensor, wallet ): nonce, block_number, block_hash, difficulty, seal = solve_for_difficulty_fast( subtensor, wallet ) return None if nonce is None else { 'nonce': nonce, 'difficulty': difficulty, 'block_number': block_number, 'block_hash': block_hash, 'work': binascii.hexlify(seal) } def version_checking(): response = requests.get(bittensor.__pipaddress__) latest_version = response.json()['info']['version'] version_split = latest_version.split(".") latest_version_as_int = (100 * int(version_split[0])) + (10 * int(version_split[1])) + (1 * int(version_split[2])) if latest_version_as_int > bittensor.__version_as_int__: print('\u001b[31m Current Bittensor Version: {}, Latest Bittensor Version {} \n Please update to the latest version'.format(bittensor.__version__,latest_version)) def is_valid_ss58_address( address: str ) -> bool: """ Checks if the given address is a valid ss58 address. Args: address(str): The address to check. Returns: True if the address is a valid ss58 address for Bittensor, False otherwise. """ try: return ss58.is_valid_ss58_address( address, valid_ss58_format=bittensor.__ss58_format__ ) except (IndexError): return False def is_valid_ed25519_pubkey( public_key: Union[str, bytes] ) -> bool: """ Checks if the given public_key is a valid ed25519 key. Args: public_key(Union[str, bytes]): The public_key to check. Returns: True if the public_key is a valid ed25519 key, False otherwise. """ try: if isinstance( public_key, str ): if len(public_key) != 64 and len(public_key) != 66: raise ValueError( "a public_key should be 64 or 66 characters" ) elif isinstance( public_key, bytes ): if len(public_key) != 32: raise ValueError( "a public_key should be 32 bytes" ) else: raise ValueError( "public_key must be a string or bytes" ) keypair = Keypair( public_key=public_key, ss58_format=bittensor.__ss58_format__ ) ss58_addr = keypair.ss58_address return ss58_addr is not None except (ValueError, IndexError): return False def is_valid_destination_address( address: Union[str, bytes] ) -> bool: """ Checks if the given address is a valid destination address. Args: address(Union[str, bytes]): The address to check. Returns: True if the address is a valid destination address, False otherwise. """ if isinstance( address, str ): # Check if ed25519 if address.startswith('0x'): if not is_valid_ed25519_pubkey( address ): bittensor.__console__.print(":cross_mark: [red]Invalid Destination Public Key[/red]: {}".format( address )) return False # Assume ss58 address else: if not is_valid_ss58_address( address ): bittensor.__console__.print(":cross_mark: [red]Invalid Destination Address[/red]: {}".format( address )) return False elif isinstance( address, bytes ): # Check if ed25519 if not is_valid_ed25519_pubkey( address ): bittensor.__console__.print(":cross_mark: [red]Invalid Destination Public Key[/red]: {}".format( address )) return False else: bittensor.__console__.print(":cross_mark: [red]Invalid Destination[/red]: {}".format( address )) return False return True
[ "torch.randperm", "torch.topk" ]
1.11
opentensor/BitTensor
59de2d0fe48f3bd02ba5bff6159e6625bd6cb945
1.1
################################################################################## # Fast-SCNN: Fast Semantic Segmentation Network # Paper-Link: https://arxiv.org/pdf/1902.04502.pdf ################################################################################## import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary __all__ = ["FastSCNNX5"] class _ConvBNReLU(nn.Module): """Conv-BN-ReLU""" def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, **kwargs): super(_ConvBNReLU, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class _DSConv(nn.Module): """Depthwise Separable Convolutions""" def __init__(self, dw_channels, out_channels, kernel_size=3, stride=1, padding=1): super(_DSConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(dw_channels, dw_channels, kernel_size, stride, padding, groups=dw_channels, bias=False), nn.BatchNorm2d(dw_channels), nn.ReLU(True), nn.Conv2d(dw_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class _DWConv(nn.Module): """Depthwise Convolutions""" def __init__(self, dw_channels, out_channels, kernel_size=3, stride=1, padding=1): super(_DWConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(dw_channels, out_channels, kernel_size, stride, padding, groups=dw_channels, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class LinearBottleneck(nn.Module): """LinearBottleneck used in MobileNetV2""" def __init__(self, in_channels, out_channels, t=6, kernel_size=3, stride=1, padding=1): super(LinearBottleneck, self).__init__() self.use_shortcut = stride == 1 and in_channels == out_channels self.block = nn.Sequential( # pw _ConvBNReLU(in_channels, in_channels * t, 1), # dw _DWConv(in_channels * t, in_channels * t, kernel_size, stride, padding), # pw-linear nn.Conv2d(in_channels * t, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): out = self.block(x) if self.use_shortcut: out = x + out return out class PyramidPooling(nn.Module): """Pyramid pooling module""" def __init__(self, in_channels, out_channels, **kwargs): super(PyramidPooling, self).__init__() inter_channels = int(in_channels / 4) self.conv1 = _ConvBNReLU(in_channels, inter_channels, 1, **kwargs) self.conv2 = _ConvBNReLU(in_channels, inter_channels, 1, **kwargs) self.conv3 = _ConvBNReLU(in_channels, inter_channels, 1, **kwargs) self.conv4 = _ConvBNReLU(in_channels, inter_channels, 1, **kwargs) self.out = _ConvBNReLU(in_channels * 2, out_channels, 1) def pool(self, x, size): avgpool = nn.AdaptiveAvgPool2d(size) return avgpool(x) def upsample(self, x, size): return F.interpolate(x, size, mode='bilinear', align_corners=True) def forward(self, x): size = x.size()[2:] feat1 = self.upsample(self.conv1(self.pool(x, 1)), size) feat2 = self.upsample(self.conv2(self.pool(x, 2)), size) feat3 = self.upsample(self.conv3(self.pool(x, 3)), size) feat4 = self.upsample(self.conv4(self.pool(x, 6)), size) x = torch.cat([x, feat1, feat2, feat3, feat4], dim=1) x = self.out(x) return x class LearningToDownsample(nn.Module): """Learning to downsample module""" def __init__(self, dw_channels1=32, dw_channels2=48, out_channels=64, **kwargs): super(LearningToDownsample, self).__init__() self.conv = _ConvBNReLU(3, dw_channels1, 2, 2, 0) self.conv1 = _ConvBNReLU(dw_channels1, dw_channels1, 3, 1, 1) self.dsconv1 = _DSConv(dw_channels1, dw_channels2, 3, 2, 1) self.dsconv2 = _DSConv(dw_channels2, out_channels, 3, 2, 1) def forward(self, x): x = self.conv(x) x = self.conv1(x) x = self.dsconv1(x) x = self.dsconv2(x) return x class GlobalFeatureExtractor(nn.Module): """Global feature extractor module""" def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128, t=6, num_blocks=(3, 3, 3), **kwargs): super(GlobalFeatureExtractor, self).__init__() self.bottleneck1 = self._make_layer(LinearBottleneck, in_channels, block_channels[0], num_blocks[0], t, 3, 2, 1) self.bottleneck2 = self._make_layer(LinearBottleneck, block_channels[0], block_channels[1], num_blocks[1], t, 3, 2, 1) self.bottleneck3 = self._make_layer(LinearBottleneck, block_channels[1], block_channels[2], num_blocks[2], t, 3, 1, 1) self.ppm = PyramidPooling(block_channels[2], out_channels) def _make_layer(self, block, inplanes, planes, blocks, t=6, kernel_size=3, stride=1, padding=1): layers = [] layers.append(block(inplanes, planes, t, kernel_size, stride, padding)) for i in range(1, blocks): layers.append(block(planes, planes, t, 3, 1, 1)) return nn.Sequential(*layers) def forward(self, x): x = self.bottleneck1(x) x = self.bottleneck2(x) x = self.bottleneck3(x) x = self.ppm(x) return x class FeatureFusionModule(nn.Module): """Feature fusion module""" def __init__(self, highter_in_channels, lower_in_channels, out_channels, scale_factor=4, **kwargs): super(FeatureFusionModule, self).__init__() self.scale_factor = scale_factor self.dwconv = _DWConv(lower_in_channels, out_channels) self.conv_lower_res = nn.Sequential( nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels) ) self.conv_higher_res = nn.Sequential( nn.Conv2d(highter_in_channels, out_channels, 1), nn.BatchNorm2d(out_channels) ) self.relu = nn.ReLU(True) def forward(self, higher_res_feature, lower_res_feature): _, _, h, w = higher_res_feature.size() lower_res_feature = F.interpolate(lower_res_feature, size=(h, w), mode='bilinear', align_corners=True) lower_res_feature = self.dwconv(lower_res_feature) lower_res_feature = self.conv_lower_res(lower_res_feature) higher_res_feature = self.conv_higher_res(higher_res_feature) out = higher_res_feature + lower_res_feature return self.relu(out) class Classifer(nn.Module): """Classifer""" def __init__(self, dw_channels, num_classes): super(Classifer, self).__init__() self.dsconv1 = _DSConv(dw_channels, dw_channels) self.dsconv2 = _DSConv(dw_channels, dw_channels) self.conv = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(dw_channels, num_classes, 1) ) def forward(self, x): x = self.dsconv1(x) x = self.dsconv2(x) x = self.conv(x) return x # 该网络基本和context的网络相同,区别在于,将头部的shallownet变成了公共部分,然后再deepnet中增加了PPM class FastSCNNX5(nn.Module): def __init__(self, classes, aux=False, **kwargs): super(FastSCNNX5, self).__init__() self.aux = aux self.learning_to_downsample = LearningToDownsample(32, 48, 64) # 与contextnet的Shallow_net相似 self.global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6, [3, 3, 3]) # 与contextnet的deepnet相似,多了PPM self.feature_fusion = FeatureFusionModule(64, 128, 128) # 与context一样 self.classifier = Classifer(128, classes) # 与context一样 if self.aux: self.auxlayer = nn.Sequential( nn.Conv2d(64, 32, 3, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(True), nn.Dropout(0.1), nn.Conv2d(32, classes, 1) ) def forward(self, x): size = x.size()[2:] higher_res_features = self.learning_to_downsample(x) x = self.global_feature_extractor(higher_res_features) x = self.feature_fusion(higher_res_features, x) x = self.classifier(x) outputs = [] x = F.interpolate(x, size, mode='bilinear', align_corners=True) outputs.append(x) if self.aux: auxout = self.auxlayer(higher_res_features) auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) outputs.append(auxout) return x # return tuple(outputs) """print layers and params of network""" if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = FastSCNNX5(classes=19).to(device) summary(model, (3, 512, 1024)) from fvcore.nn.flop_count import flop_count # https://github.com/facebookresearch/fvcore from tools.flops_counter.ptflops import get_model_complexity_info from thop import profile # https://github.com/Lyken17/pytorch-OpCounter x = torch.randn(2, 3, 512, 1024).to(device) from fvcore.nn.jit_handles import batchnorm_flop_jit from fvcore.nn.jit_handles import generic_activation_jit supported_ops = { "aten::batch_norm": batchnorm_flop_jit, } flop_dict, _ = flop_count(model, (x,), supported_ops) flops_count, params_count = get_model_complexity_info(model, (3, 512, 1024), as_strings=False, print_per_layer_stat=True) input = x macs, params = profile(model, inputs=(input,)) print(flop_dict) print(flops_count, params_count) print(macs, params) ''' /home/ethan/anaconda3/envs/py36_cuda101/bin/python /home/ethan/codes/Efficient-Segmentation-Networks/model/FastSCNNX5.py ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 32, 256, 512] 384 BatchNorm2d-2 [-1, 32, 256, 512] 64 ReLU-3 [-1, 32, 256, 512] 0 _ConvBNReLU-4 [-1, 32, 256, 512] 0 Conv2d-5 [-1, 32, 256, 512] 9,216 BatchNorm2d-6 [-1, 32, 256, 512] 64 ReLU-7 [-1, 32, 256, 512] 0 _ConvBNReLU-8 [-1, 32, 256, 512] 0 Conv2d-9 [-1, 32, 128, 256] 288 BatchNorm2d-10 [-1, 32, 128, 256] 64 ReLU-11 [-1, 32, 128, 256] 0 Conv2d-12 [-1, 48, 128, 256] 1,536 BatchNorm2d-13 [-1, 48, 128, 256] 96 ReLU-14 [-1, 48, 128, 256] 0 _DSConv-15 [-1, 48, 128, 256] 0 Conv2d-16 [-1, 48, 64, 128] 432 BatchNorm2d-17 [-1, 48, 64, 128] 96 ReLU-18 [-1, 48, 64, 128] 0 Conv2d-19 [-1, 64, 64, 128] 3,072 BatchNorm2d-20 [-1, 64, 64, 128] 128 ReLU-21 [-1, 64, 64, 128] 0 _DSConv-22 [-1, 64, 64, 128] 0 LearningToDownsample-23 [-1, 64, 64, 128] 0 Conv2d-24 [-1, 384, 64, 128] 24,576 BatchNorm2d-25 [-1, 384, 64, 128] 768 ReLU-26 [-1, 384, 64, 128] 0 _ConvBNReLU-27 [-1, 384, 64, 128] 0 Conv2d-28 [-1, 384, 32, 64] 3,456 BatchNorm2d-29 [-1, 384, 32, 64] 768 ReLU-30 [-1, 384, 32, 64] 0 _DWConv-31 [-1, 384, 32, 64] 0 Conv2d-32 [-1, 64, 32, 64] 24,576 BatchNorm2d-33 [-1, 64, 32, 64] 128 LinearBottleneck-34 [-1, 64, 32, 64] 0 Conv2d-35 [-1, 384, 32, 64] 24,576 BatchNorm2d-36 [-1, 384, 32, 64] 768 ReLU-37 [-1, 384, 32, 64] 0 _ConvBNReLU-38 [-1, 384, 32, 64] 0 Conv2d-39 [-1, 384, 32, 64] 3,456 BatchNorm2d-40 [-1, 384, 32, 64] 768 ReLU-41 [-1, 384, 32, 64] 0 _DWConv-42 [-1, 384, 32, 64] 0 Conv2d-43 [-1, 64, 32, 64] 24,576 BatchNorm2d-44 [-1, 64, 32, 64] 128 LinearBottleneck-45 [-1, 64, 32, 64] 0 Conv2d-46 [-1, 384, 32, 64] 24,576 BatchNorm2d-47 [-1, 384, 32, 64] 768 ReLU-48 [-1, 384, 32, 64] 0 _ConvBNReLU-49 [-1, 384, 32, 64] 0 Conv2d-50 [-1, 384, 32, 64] 3,456 BatchNorm2d-51 [-1, 384, 32, 64] 768 ReLU-52 [-1, 384, 32, 64] 0 _DWConv-53 [-1, 384, 32, 64] 0 Conv2d-54 [-1, 64, 32, 64] 24,576 BatchNorm2d-55 [-1, 64, 32, 64] 128 LinearBottleneck-56 [-1, 64, 32, 64] 0 Conv2d-57 [-1, 384, 32, 64] 24,576 BatchNorm2d-58 [-1, 384, 32, 64] 768 ReLU-59 [-1, 384, 32, 64] 0 _ConvBNReLU-60 [-1, 384, 32, 64] 0 Conv2d-61 [-1, 384, 16, 32] 3,456 BatchNorm2d-62 [-1, 384, 16, 32] 768 ReLU-63 [-1, 384, 16, 32] 0 _DWConv-64 [-1, 384, 16, 32] 0 Conv2d-65 [-1, 96, 16, 32] 36,864 BatchNorm2d-66 [-1, 96, 16, 32] 192 LinearBottleneck-67 [-1, 96, 16, 32] 0 Conv2d-68 [-1, 576, 16, 32] 55,296 BatchNorm2d-69 [-1, 576, 16, 32] 1,152 ReLU-70 [-1, 576, 16, 32] 0 _ConvBNReLU-71 [-1, 576, 16, 32] 0 Conv2d-72 [-1, 576, 16, 32] 5,184 BatchNorm2d-73 [-1, 576, 16, 32] 1,152 ReLU-74 [-1, 576, 16, 32] 0 _DWConv-75 [-1, 576, 16, 32] 0 Conv2d-76 [-1, 96, 16, 32] 55,296 BatchNorm2d-77 [-1, 96, 16, 32] 192 LinearBottleneck-78 [-1, 96, 16, 32] 0 Conv2d-79 [-1, 576, 16, 32] 55,296 BatchNorm2d-80 [-1, 576, 16, 32] 1,152 ReLU-81 [-1, 576, 16, 32] 0 _ConvBNReLU-82 [-1, 576, 16, 32] 0 Conv2d-83 [-1, 576, 16, 32] 5,184 BatchNorm2d-84 [-1, 576, 16, 32] 1,152 ReLU-85 [-1, 576, 16, 32] 0 _DWConv-86 [-1, 576, 16, 32] 0 Conv2d-87 [-1, 96, 16, 32] 55,296 BatchNorm2d-88 [-1, 96, 16, 32] 192 LinearBottleneck-89 [-1, 96, 16, 32] 0 Conv2d-90 [-1, 576, 16, 32] 55,296 BatchNorm2d-91 [-1, 576, 16, 32] 1,152 ReLU-92 [-1, 576, 16, 32] 0 _ConvBNReLU-93 [-1, 576, 16, 32] 0 Conv2d-94 [-1, 576, 16, 32] 5,184 BatchNorm2d-95 [-1, 576, 16, 32] 1,152 ReLU-96 [-1, 576, 16, 32] 0 _DWConv-97 [-1, 576, 16, 32] 0 Conv2d-98 [-1, 128, 16, 32] 73,728 BatchNorm2d-99 [-1, 128, 16, 32] 256 LinearBottleneck-100 [-1, 128, 16, 32] 0 Conv2d-101 [-1, 768, 16, 32] 98,304 BatchNorm2d-102 [-1, 768, 16, 32] 1,536 ReLU-103 [-1, 768, 16, 32] 0 _ConvBNReLU-104 [-1, 768, 16, 32] 0 Conv2d-105 [-1, 768, 16, 32] 6,912 BatchNorm2d-106 [-1, 768, 16, 32] 1,536 ReLU-107 [-1, 768, 16, 32] 0 _DWConv-108 [-1, 768, 16, 32] 0 Conv2d-109 [-1, 128, 16, 32] 98,304 BatchNorm2d-110 [-1, 128, 16, 32] 256 LinearBottleneck-111 [-1, 128, 16, 32] 0 Conv2d-112 [-1, 768, 16, 32] 98,304 BatchNorm2d-113 [-1, 768, 16, 32] 1,536 ReLU-114 [-1, 768, 16, 32] 0 _ConvBNReLU-115 [-1, 768, 16, 32] 0 Conv2d-116 [-1, 768, 16, 32] 6,912 BatchNorm2d-117 [-1, 768, 16, 32] 1,536 ReLU-118 [-1, 768, 16, 32] 0 _DWConv-119 [-1, 768, 16, 32] 0 Conv2d-120 [-1, 128, 16, 32] 98,304 BatchNorm2d-121 [-1, 128, 16, 32] 256 LinearBottleneck-122 [-1, 128, 16, 32] 0 Conv2d-123 [-1, 32, 1, 1] 4,096 BatchNorm2d-124 [-1, 32, 1, 1] 64 ReLU-125 [-1, 32, 1, 1] 0 _ConvBNReLU-126 [-1, 32, 1, 1] 0 Conv2d-127 [-1, 32, 2, 2] 4,096 BatchNorm2d-128 [-1, 32, 2, 2] 64 ReLU-129 [-1, 32, 2, 2] 0 _ConvBNReLU-130 [-1, 32, 2, 2] 0 Conv2d-131 [-1, 32, 3, 3] 4,096 BatchNorm2d-132 [-1, 32, 3, 3] 64 ReLU-133 [-1, 32, 3, 3] 0 _ConvBNReLU-134 [-1, 32, 3, 3] 0 Conv2d-135 [-1, 32, 6, 6] 4,096 BatchNorm2d-136 [-1, 32, 6, 6] 64 ReLU-137 [-1, 32, 6, 6] 0 _ConvBNReLU-138 [-1, 32, 6, 6] 0 Conv2d-139 [-1, 128, 16, 32] 32,768 BatchNorm2d-140 [-1, 128, 16, 32] 256 ReLU-141 [-1, 128, 16, 32] 0 _ConvBNReLU-142 [-1, 128, 16, 32] 0 PyramidPooling-143 [-1, 128, 16, 32] 0 GlobalFeatureExtractor-144 [-1, 128, 16, 32] 0 Conv2d-145 [-1, 128, 64, 128] 1,152 BatchNorm2d-146 [-1, 128, 64, 128] 256 ReLU-147 [-1, 128, 64, 128] 0 _DWConv-148 [-1, 128, 64, 128] 0 Conv2d-149 [-1, 128, 64, 128] 16,512 BatchNorm2d-150 [-1, 128, 64, 128] 256 Conv2d-151 [-1, 128, 64, 128] 8,320 BatchNorm2d-152 [-1, 128, 64, 128] 256 ReLU-153 [-1, 128, 64, 128] 0 FeatureFusionModule-154 [-1, 128, 64, 128] 0 Conv2d-155 [-1, 128, 64, 128] 1,152 BatchNorm2d-156 [-1, 128, 64, 128] 256 ReLU-157 [-1, 128, 64, 128] 0 Conv2d-158 [-1, 128, 64, 128] 16,384 BatchNorm2d-159 [-1, 128, 64, 128] 256 ReLU-160 [-1, 128, 64, 128] 0 _DSConv-161 [-1, 128, 64, 128] 0 Conv2d-162 [-1, 128, 64, 128] 1,152 BatchNorm2d-163 [-1, 128, 64, 128] 256 ReLU-164 [-1, 128, 64, 128] 0 Conv2d-165 [-1, 128, 64, 128] 16,384 BatchNorm2d-166 [-1, 128, 64, 128] 256 ReLU-167 [-1, 128, 64, 128] 0 _DSConv-168 [-1, 128, 64, 128] 0 Dropout-169 [-1, 128, 64, 128] 0 Conv2d-170 [-1, 19, 64, 128] 2,451 Classifer-171 [-1, 19, 64, 128] 0 ================================================================ Total params: 1,146,851 Trainable params: 1,146,851 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 6.00 Forward/backward pass size (MB): 927.30 Params size (MB): 4.37 Estimated Total Size (MB): 937.67 ---------------------------------------------------------------- Skipped operation aten::relu_ 35 time(s) Skipped operation aten::add 7 time(s) Skipped operation aten::adaptive_avg_pool2d 4 time(s) Skipped operation aten::upsample_bilinear2d 6 time(s) Skipped operation aten::dropout 1 time(s) FastSCNNX5( 2.918 GMac, 100.000% MACs, (learning_to_downsample): LearningToDownsample( 1.383 GMac, 47.388% MACs, (conv): _ConvBNReLU( 0.063 GMac, 2.156% MACs, (conv): Sequential( 0.063 GMac, 2.156% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 3, 32, kernel_size=(2, 2), stride=(2, 2), bias=False) (1): BatchNorm2d(0.008 GMac, 0.288% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.004 GMac, 0.144% MACs, inplace=True) ) ) (conv1): _ConvBNReLU( 1.221 GMac, 41.835% MACs, (conv): Sequential( 1.221 GMac, 41.835% MACs, (0): Conv2d(1.208 GMac, 41.404% MACs, 32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.008 GMac, 0.288% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.004 GMac, 0.144% MACs, inplace=True) ) ) (dsconv1): _DSConv( 0.068 GMac, 2.318% MACs, (conv): Sequential( 0.068 GMac, 2.318% MACs, (0): Conv2d(0.009 GMac, 0.323% MACs, 32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.036% MACs, inplace=True) (3): Conv2d(0.05 GMac, 1.725% MACs, 32, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.003 GMac, 0.108% MACs, 48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.002 GMac, 0.054% MACs, inplace=True) ) ) (dsconv2): _DSConv( 0.031 GMac, 1.078% MACs, (conv): Sequential( 0.031 GMac, 1.078% MACs, (0): Conv2d(0.004 GMac, 0.121% MACs, 48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=48, bias=False) (1): BatchNorm2d(0.001 GMac, 0.027% MACs, 48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.013% MACs, inplace=True) (3): Conv2d(0.025 GMac, 0.863% MACs, 48, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.036% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.001 GMac, 0.018% MACs, inplace=True) ) ) ) (global_feature_extractor): GlobalFeatureExtractor( 0.994 GMac, 34.061% MACs, (bottleneck1): Sequential( 0.496 GMac, 17.009% MACs, (0): LinearBottleneck( 0.271 GMac, 9.282% MACs, (block): Sequential( 0.271 GMac, 9.282% MACs, (0): _ConvBNReLU( 0.211 GMac, 7.224% MACs, (conv): Sequential( 0.211 GMac, 7.224% MACs, (0): Conv2d(0.201 GMac, 6.901% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.006 GMac, 0.216% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.003 GMac, 0.108% MACs, inplace=True) ) ) (1): _DWConv( 0.009 GMac, 0.323% MACs, (conv): Sequential( 0.009 GMac, 0.323% MACs, (0): Conv2d(0.007 GMac, 0.243% MACs, 384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (2): Conv2d(0.05 GMac, 1.725% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.009% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.113 GMac, 3.864% MACs, (block): Sequential( 0.113 GMac, 3.864% MACs, (0): _ConvBNReLU( 0.053 GMac, 1.806% MACs, (conv): Sequential( 0.053 GMac, 1.806% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (1): _DWConv( 0.009 GMac, 0.323% MACs, (conv): Sequential( 0.009 GMac, 0.323% MACs, (0): Conv2d(0.007 GMac, 0.243% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (2): Conv2d(0.05 GMac, 1.725% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.009% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): LinearBottleneck( 0.113 GMac, 3.864% MACs, (block): Sequential( 0.113 GMac, 3.864% MACs, (0): _ConvBNReLU( 0.053 GMac, 1.806% MACs, (conv): Sequential( 0.053 GMac, 1.806% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (1): _DWConv( 0.009 GMac, 0.323% MACs, (conv): Sequential( 0.009 GMac, 0.323% MACs, (0): Conv2d(0.007 GMac, 0.243% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (2): Conv2d(0.05 GMac, 1.725% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.009% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck2): Sequential( 0.196 GMac, 6.729% MACs, (0): LinearBottleneck( 0.074 GMac, 2.537% MACs, (block): Sequential( 0.074 GMac, 2.537% MACs, (0): _ConvBNReLU( 0.053 GMac, 1.806% MACs, (conv): Sequential( 0.053 GMac, 1.806% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.002 GMac, 0.054% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.027% MACs, inplace=True) ) ) (1): _DWConv( 0.002 GMac, 0.081% MACs, (conv): Sequential( 0.002 GMac, 0.081% MACs, (0): Conv2d(0.002 GMac, 0.061% MACs, 384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.0 GMac, 0.013% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.007% MACs, inplace=True) ) ) (2): Conv2d(0.019 GMac, 0.647% MACs, 384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.003% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.061 GMac, 2.096% MACs, (block): Sequential( 0.061 GMac, 2.096% MACs, (0): _ConvBNReLU( 0.029 GMac, 1.001% MACs, (conv): Sequential( 0.029 GMac, 1.001% MACs, (0): Conv2d(0.028 GMac, 0.970% MACs, 96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (1): _DWConv( 0.004 GMac, 0.121% MACs, (conv): Sequential( 0.004 GMac, 0.121% MACs, (0): Conv2d(0.003 GMac, 0.091% MACs, 576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (2): Conv2d(0.028 GMac, 0.970% MACs, 576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.003% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): LinearBottleneck( 0.061 GMac, 2.096% MACs, (block): Sequential( 0.061 GMac, 2.096% MACs, (0): _ConvBNReLU( 0.029 GMac, 1.001% MACs, (conv): Sequential( 0.029 GMac, 1.001% MACs, (0): Conv2d(0.028 GMac, 0.970% MACs, 96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (1): _DWConv( 0.004 GMac, 0.121% MACs, (conv): Sequential( 0.004 GMac, 0.121% MACs, (0): Conv2d(0.003 GMac, 0.091% MACs, 576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (2): Conv2d(0.028 GMac, 0.970% MACs, 576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.003% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck3): Sequential( 0.284 GMac, 9.734% MACs, (0): LinearBottleneck( 0.071 GMac, 2.420% MACs, (block): Sequential( 0.071 GMac, 2.420% MACs, (0): _ConvBNReLU( 0.029 GMac, 1.001% MACs, (conv): Sequential( 0.029 GMac, 1.001% MACs, (0): Conv2d(0.028 GMac, 0.970% MACs, 96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (1): _DWConv( 0.004 GMac, 0.121% MACs, (conv): Sequential( 0.004 GMac, 0.121% MACs, (0): Conv2d(0.003 GMac, 0.091% MACs, 576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (1): BatchNorm2d(0.001 GMac, 0.020% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.010% MACs, inplace=True) ) ) (2): Conv2d(0.038 GMac, 1.294% MACs, 576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.107 GMac, 3.657% MACs, (block): Sequential( 0.107 GMac, 3.657% MACs, (0): _ConvBNReLU( 0.052 GMac, 1.766% MACs, (conv): Sequential( 0.052 GMac, 1.766% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.027% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.013% MACs, inplace=True) ) ) (1): _DWConv( 0.005 GMac, 0.162% MACs, (conv): Sequential( 0.005 GMac, 0.162% MACs, (0): Conv2d(0.004 GMac, 0.121% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (1): BatchNorm2d(0.001 GMac, 0.027% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.013% MACs, inplace=True) ) ) (2): Conv2d(0.05 GMac, 1.725% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): LinearBottleneck( 0.107 GMac, 3.657% MACs, (block): Sequential( 0.107 GMac, 3.657% MACs, (0): _ConvBNReLU( 0.052 GMac, 1.766% MACs, (conv): Sequential( 0.052 GMac, 1.766% MACs, (0): Conv2d(0.05 GMac, 1.725% MACs, 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.027% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.013% MACs, inplace=True) ) ) (1): _DWConv( 0.005 GMac, 0.162% MACs, (conv): Sequential( 0.005 GMac, 0.162% MACs, (0): Conv2d(0.004 GMac, 0.121% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (1): BatchNorm2d(0.001 GMac, 0.027% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.013% MACs, inplace=True) ) ) (2): Conv2d(0.05 GMac, 1.725% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (ppm): PyramidPooling( 0.017 GMac, 0.589% MACs, (conv1): _ConvBNReLU( 0.0 GMac, 0.000% MACs, (conv): Sequential( 0.0 GMac, 0.000% MACs, (0): Conv2d(0.0 GMac, 0.000% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (conv2): _ConvBNReLU( 0.0 GMac, 0.001% MACs, (conv): Sequential( 0.0 GMac, 0.001% MACs, (0): Conv2d(0.0 GMac, 0.001% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (conv3): _ConvBNReLU( 0.0 GMac, 0.001% MACs, (conv): Sequential( 0.0 GMac, 0.001% MACs, (0): Conv2d(0.0 GMac, 0.001% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (conv4): _ConvBNReLU( 0.0 GMac, 0.005% MACs, (conv): Sequential( 0.0 GMac, 0.005% MACs, (0): Conv2d(0.0 GMac, 0.005% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (out): _ConvBNReLU( 0.017 GMac, 0.582% MACs, (conv): Sequential( 0.017 GMac, 0.582% MACs, (0): Conv2d(0.017 GMac, 0.575% MACs, 256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.002% MACs, inplace=True) ) ) ) ) (feature_fusion): FeatureFusionModule( 0.221 GMac, 7.584% MACs, (dwconv): _DWConv( 0.013 GMac, 0.431% MACs, (conv): Sequential( 0.013 GMac, 0.431% MACs, (0): Conv2d(0.009 GMac, 0.323% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.036% MACs, inplace=True) ) ) (conv_lower_res): Sequential( 0.137 GMac, 4.708% MACs, (0): Conv2d(0.135 GMac, 4.636% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (conv_higher_res): Sequential( 0.07 GMac, 2.408% MACs, (0): Conv2d(0.068 GMac, 2.336% MACs, 64, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (relu): ReLU(0.001 GMac, 0.036% MACs, inplace=True) ) (classifier): Classifer( 0.32 GMac, 10.967% MACs, (dsconv1): _DSConv( 0.15 GMac, 5.140% MACs, (conv): Sequential( 0.15 GMac, 5.140% MACs, (0): Conv2d(0.009 GMac, 0.323% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.036% MACs, inplace=True) (3): Conv2d(0.134 GMac, 4.600% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.001 GMac, 0.036% MACs, inplace=True) ) ) (dsconv2): _DSConv( 0.15 GMac, 5.140% MACs, (conv): Sequential( 0.15 GMac, 5.140% MACs, (0): Conv2d(0.009 GMac, 0.323% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.036% MACs, inplace=True) (3): Conv2d(0.134 GMac, 4.600% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.002 GMac, 0.072% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.001 GMac, 0.036% MACs, inplace=True) ) ) (conv): Sequential( 0.02 GMac, 0.688% MACs, (0): Dropout(0.0 GMac, 0.000% MACs, p=0.1, inplace=False) (1): Conv2d(0.02 GMac, 0.688% MACs, 128, 19, kernel_size=(1, 1), stride=(1, 1)) ) ) ) [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>. [WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__._ConvBNReLU'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__._DSConv'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.LearningToDownsample'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__._DWConv'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.LinearBottleneck'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.PyramidPooling'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.GlobalFeatureExtractor'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.FeatureFusionModule'>. Treat it as zero Macs and zero Params. [INFO] Register zero_ops() for <class 'torch.nn.modules.dropout.Dropout'>. [WARN] Cannot find rule for <class '__main__.Classifer'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.FastSCNNX5'>. Treat it as zero Macs and zero Params. defaultdict(<class 'float'>, {'conv': 5.645221888, 'batchnorm': 0.251802112}) 2917503680.0 1146851 5775628544.0 1146851.0 Process finished with exit code 0 '''
[ "torch.cat", "torch.nn.Dropout", "torch.nn.Sequential", "torch.nn.functional.interpolate", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.nn.AdaptiveAvgPool2d", "torch.randn" ]
1.1.0
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
1.1
################################################################################## #ContextNetX10: Exploring Context and Detail for Semantic Segmentation in Real-time #Paper-Link: https://arxiv.org/abs/1805.04554 ################################################################################## import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary from fvcore.nn.flop_count import flop_count # https://github.com/facebookresearch/fvcore from tools.flops_counter.ptflops import get_model_complexity_info from thop import profile # https://github.com/Lyken17/pytorch-OpCounter __all__ = ["ContextNetX10"] class Custom_Conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, **kwargs): super(Custom_Conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class DepthSepConv(nn.Module): ''' We omit the nonlinear-ity between depth-wise and point-wise convolutions in our full resolution branch ''' def __init__(self, dw_channels, out_channels, kernel_size=3, stride=1, padding=1, **kwargs): super(DepthSepConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(dw_channels, dw_channels, kernel_size, stride, padding, groups=dw_channels, bias=False), nn.BatchNorm2d(dw_channels), nn.ReLU(True), #此处与原文不同 nn.Conv2d(dw_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class DepthConv(nn.Module): def __init__(self, dw_channels, out_channels, kernel_size=3, stride=1, padding=1, **kwargs): super(DepthConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(dw_channels, out_channels, kernel_size, stride, padding, groups=dw_channels, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True) ) def forward(self, x): return self.conv(x) class LinearBottleneck(nn.Module): def __init__(self, in_channels, out_channels, t=6, stride=2, **kwargs): super(LinearBottleneck, self).__init__() self.use_shortcut = stride == 1 and in_channels == out_channels self.block = nn.Sequential( Custom_Conv(in_channels, in_channels * t, 1,1,0), DepthConv(in_channels * t, in_channels * t, 3,stride,1), nn.Conv2d(in_channels * t, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): out = self.block(x) if self.use_shortcut: out = x + out #输出不含relu激活 return out class Shallow_net(nn.Module): ''' The first layer uses standard convolution while all other layers use depth-wise separable convolutions with kernel size 3 × 3. The stride is 2 for all but the last layer, where it is 1. ''' def __init__(self, dw_channels1=32, dw_channels2=64, out_channels=128, **kwargs): super(Shallow_net, self).__init__() self.conv0 = Custom_Conv(3, 3, 2, 1, 1) self.conv = Custom_Conv(3, dw_channels1, 3, 2, 0) self.dsconv1 = DepthSepConv(dw_channels1, dw_channels2, 3,2,1) self.dsconv2 = DepthSepConv(dw_channels2, out_channels, 3,2,1) self.dsconv3 = DepthSepConv(out_channels, out_channels, 3,1,1) def forward(self, x): x = self.conv0(x) x = self.conv(x) x = self.dsconv1(x) x = self.dsconv2(x) x = self.dsconv3(x) return x class Deep_net(nn.Module): def __init__(self, in_channels, block_channels, t, num_blocks, **kwargs): super(Deep_net, self).__init__() self.block_channels = block_channels self.t = t self.num_blocks = num_blocks self.conv_0 = Custom_Conv(3, 3, 2, 1, 1) self.conv_ = Custom_Conv(3, in_channels, 3, 2, 0) self.bottleneck1 = self._layer(LinearBottleneck, in_channels, block_channels[0], num_blocks[0], t[0], 1) self.bottleneck2 = self._layer(LinearBottleneck, block_channels[0], block_channels[1], num_blocks[1], t[1], 1) self.bottleneck3 = self._layer(LinearBottleneck, block_channels[1], block_channels[2], num_blocks[2], t[2], 2) self.bottleneck4 = self._layer(LinearBottleneck, block_channels[2], block_channels[3], num_blocks[3], t[3], 2) self.bottleneck5 = self._layer(LinearBottleneck, block_channels[3], block_channels[4], num_blocks[4], t[4], 1) self.bottleneck6 = self._layer(LinearBottleneck, block_channels[4], block_channels[5], num_blocks[5], t[5], 1) # 收尾部分缺少一个conv2d def _layer(self, block, in_channels, out_channels, blocks, t, stride): layers = [] layers.append(block(in_channels, out_channels, t, stride)) for i in range(1, blocks): layers.append(block(out_channels, out_channels, t, 1)) return nn.Sequential(*layers) def forward(self, x): x = self.conv_0(x) x = self.conv_(x) x = self.bottleneck1(x) x = self.bottleneck2(x) x = self.bottleneck3(x) x = self.bottleneck4(x) x = self.bottleneck5(x) x = self.bottleneck6(x) return x class FeatureFusionModule(nn.Module): def __init__(self, highter_in_channels, lower_in_channels, out_channels, scale_factor=4, **kwargs): super(FeatureFusionModule, self).__init__() self.scale_factor = scale_factor self.dwconv = DepthConv(lower_in_channels, out_channels, 3,1,1) #原文为DWConv (dilation 4) 3/1, f self.conv_lower_res = nn.Sequential( nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels) ) self.conv_higher_res = nn.Sequential( nn.Conv2d(highter_in_channels, out_channels, 1), nn.BatchNorm2d(out_channels) ) self.relu = nn.ReLU(True) def forward(self, higher_res_feature, lower_res_feature): _, _, h, w = higher_res_feature.size() lower_res_feature = F.interpolate(lower_res_feature, size=(h,w), mode='bilinear', align_corners=True) lower_res_feature = self.dwconv(lower_res_feature) lower_res_feature = self.conv_lower_res(lower_res_feature) higher_res_feature = self.conv_higher_res(higher_res_feature) out = higher_res_feature + lower_res_feature return self.relu(out) class Classifer(nn.Module): def __init__(self, dw_channels, num_classes, stride=1, **kwargs): super(Classifer, self).__init__() self.dsconv1 = DepthSepConv(dw_channels, dw_channels, 3,stride,1) self.dsconv2 = DepthSepConv(dw_channels, dw_channels, 3,stride,1) self.conv = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(dw_channels, num_classes, 1) ) def forward(self, x): x = self.dsconv1(x) x = self.dsconv2(x) x = self.conv(x) return x class ContextNetX10(nn.Module): def __init__(self, classes, aux=False, **kwargs): super(ContextNetX10, self).__init__() self.aux = aux self.spatial_detail = Shallow_net(32, 64, 128) self.context_feature_extractor = Deep_net(32, [32, 32, 48, 64, 96, 128], [1, 6, 6, 6, 6, 6], [1, 1, 3, 3, 2, 2]) self.feature_fusion = FeatureFusionModule(128, 128, 128) self.classifier = Classifer(128, classes) if self.aux: self.auxlayer = nn.Sequential( nn.Conv2d(128, 32, 3, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(True), nn.Dropout(0.1), nn.Conv2d(32, classes, 1) ) def forward(self, x): size = x.size()[2:] higher_res_features = self.spatial_detail(x) x_low = F.interpolate(x, scale_factor = 0.25, mode='bilinear', align_corners=True) x = self.context_feature_extractor(x_low) x = self.feature_fusion(higher_res_features, x) x = self.classifier(x) outputs = [] x = F.interpolate(x, size, mode='bilinear', align_corners=True) outputs.append(x) if self.aux: auxout = self.auxlayer(higher_res_features) auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) outputs.append(auxout) return x # return tuple(outputs) """print layers and params of network""" if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ContextNetX10(classes=11).to(device) summary(model, (3, 352, 480)) flops_count, params_count = get_model_complexity_info(model, (3, 352, 480), as_strings=False, print_per_layer_stat=True) print(flops_count/1000000000,'GMac', params_count/1000000, params_count/1024/1024*4,'MB') x = torch.randn(2, 3, 352, 480).to(device) input = x macs, params = profile(model, inputs=(input,)) print(macs/2000000000,'GMac', params/1000000, params/1024/1024*4,'MB') ''' /home/ethan/anaconda3/envs/py36_cuda101/bin/python /home/ethan/codes/Efficient-Segmentation-Networks/model/ContextNetX10.py /home/ethan/anaconda3/envs/py36_cuda101/lib/python3.6/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed " ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 3, 353, 481] 36 BatchNorm2d-2 [-1, 3, 353, 481] 6 ReLU-3 [-1, 3, 353, 481] 0 Custom_Conv-4 [-1, 3, 353, 481] 0 Conv2d-5 [-1, 32, 176, 240] 864 BatchNorm2d-6 [-1, 32, 176, 240] 64 ReLU-7 [-1, 32, 176, 240] 0 Custom_Conv-8 [-1, 32, 176, 240] 0 Conv2d-9 [-1, 32, 88, 120] 288 BatchNorm2d-10 [-1, 32, 88, 120] 64 ReLU-11 [-1, 32, 88, 120] 0 Conv2d-12 [-1, 64, 88, 120] 2,048 BatchNorm2d-13 [-1, 64, 88, 120] 128 ReLU-14 [-1, 64, 88, 120] 0 DepthSepConv-15 [-1, 64, 88, 120] 0 Conv2d-16 [-1, 64, 44, 60] 576 BatchNorm2d-17 [-1, 64, 44, 60] 128 ReLU-18 [-1, 64, 44, 60] 0 Conv2d-19 [-1, 128, 44, 60] 8,192 BatchNorm2d-20 [-1, 128, 44, 60] 256 ReLU-21 [-1, 128, 44, 60] 0 DepthSepConv-22 [-1, 128, 44, 60] 0 Conv2d-23 [-1, 128, 44, 60] 1,152 BatchNorm2d-24 [-1, 128, 44, 60] 256 ReLU-25 [-1, 128, 44, 60] 0 Conv2d-26 [-1, 128, 44, 60] 16,384 BatchNorm2d-27 [-1, 128, 44, 60] 256 ReLU-28 [-1, 128, 44, 60] 0 DepthSepConv-29 [-1, 128, 44, 60] 0 Shallow_net-30 [-1, 128, 44, 60] 0 Conv2d-31 [-1, 3, 89, 121] 36 BatchNorm2d-32 [-1, 3, 89, 121] 6 ReLU-33 [-1, 3, 89, 121] 0 Custom_Conv-34 [-1, 3, 89, 121] 0 Conv2d-35 [-1, 32, 44, 60] 864 BatchNorm2d-36 [-1, 32, 44, 60] 64 ReLU-37 [-1, 32, 44, 60] 0 Custom_Conv-38 [-1, 32, 44, 60] 0 Conv2d-39 [-1, 32, 44, 60] 1,024 BatchNorm2d-40 [-1, 32, 44, 60] 64 ReLU-41 [-1, 32, 44, 60] 0 Custom_Conv-42 [-1, 32, 44, 60] 0 Conv2d-43 [-1, 32, 44, 60] 288 BatchNorm2d-44 [-1, 32, 44, 60] 64 ReLU-45 [-1, 32, 44, 60] 0 DepthConv-46 [-1, 32, 44, 60] 0 Conv2d-47 [-1, 32, 44, 60] 1,024 BatchNorm2d-48 [-1, 32, 44, 60] 64 LinearBottleneck-49 [-1, 32, 44, 60] 0 Conv2d-50 [-1, 192, 44, 60] 6,144 BatchNorm2d-51 [-1, 192, 44, 60] 384 ReLU-52 [-1, 192, 44, 60] 0 Custom_Conv-53 [-1, 192, 44, 60] 0 Conv2d-54 [-1, 192, 44, 60] 1,728 BatchNorm2d-55 [-1, 192, 44, 60] 384 ReLU-56 [-1, 192, 44, 60] 0 DepthConv-57 [-1, 192, 44, 60] 0 Conv2d-58 [-1, 32, 44, 60] 6,144 BatchNorm2d-59 [-1, 32, 44, 60] 64 LinearBottleneck-60 [-1, 32, 44, 60] 0 Conv2d-61 [-1, 192, 44, 60] 6,144 BatchNorm2d-62 [-1, 192, 44, 60] 384 ReLU-63 [-1, 192, 44, 60] 0 Custom_Conv-64 [-1, 192, 44, 60] 0 Conv2d-65 [-1, 192, 22, 30] 1,728 BatchNorm2d-66 [-1, 192, 22, 30] 384 ReLU-67 [-1, 192, 22, 30] 0 DepthConv-68 [-1, 192, 22, 30] 0 Conv2d-69 [-1, 48, 22, 30] 9,216 BatchNorm2d-70 [-1, 48, 22, 30] 96 LinearBottleneck-71 [-1, 48, 22, 30] 0 Conv2d-72 [-1, 288, 22, 30] 13,824 BatchNorm2d-73 [-1, 288, 22, 30] 576 ReLU-74 [-1, 288, 22, 30] 0 Custom_Conv-75 [-1, 288, 22, 30] 0 Conv2d-76 [-1, 288, 22, 30] 2,592 BatchNorm2d-77 [-1, 288, 22, 30] 576 ReLU-78 [-1, 288, 22, 30] 0 DepthConv-79 [-1, 288, 22, 30] 0 Conv2d-80 [-1, 48, 22, 30] 13,824 BatchNorm2d-81 [-1, 48, 22, 30] 96 LinearBottleneck-82 [-1, 48, 22, 30] 0 Conv2d-83 [-1, 288, 22, 30] 13,824 BatchNorm2d-84 [-1, 288, 22, 30] 576 ReLU-85 [-1, 288, 22, 30] 0 Custom_Conv-86 [-1, 288, 22, 30] 0 Conv2d-87 [-1, 288, 22, 30] 2,592 BatchNorm2d-88 [-1, 288, 22, 30] 576 ReLU-89 [-1, 288, 22, 30] 0 DepthConv-90 [-1, 288, 22, 30] 0 Conv2d-91 [-1, 48, 22, 30] 13,824 BatchNorm2d-92 [-1, 48, 22, 30] 96 LinearBottleneck-93 [-1, 48, 22, 30] 0 Conv2d-94 [-1, 288, 22, 30] 13,824 BatchNorm2d-95 [-1, 288, 22, 30] 576 ReLU-96 [-1, 288, 22, 30] 0 Custom_Conv-97 [-1, 288, 22, 30] 0 Conv2d-98 [-1, 288, 11, 15] 2,592 BatchNorm2d-99 [-1, 288, 11, 15] 576 ReLU-100 [-1, 288, 11, 15] 0 DepthConv-101 [-1, 288, 11, 15] 0 Conv2d-102 [-1, 64, 11, 15] 18,432 BatchNorm2d-103 [-1, 64, 11, 15] 128 LinearBottleneck-104 [-1, 64, 11, 15] 0 Conv2d-105 [-1, 384, 11, 15] 24,576 BatchNorm2d-106 [-1, 384, 11, 15] 768 ReLU-107 [-1, 384, 11, 15] 0 Custom_Conv-108 [-1, 384, 11, 15] 0 Conv2d-109 [-1, 384, 11, 15] 3,456 BatchNorm2d-110 [-1, 384, 11, 15] 768 ReLU-111 [-1, 384, 11, 15] 0 DepthConv-112 [-1, 384, 11, 15] 0 Conv2d-113 [-1, 64, 11, 15] 24,576 BatchNorm2d-114 [-1, 64, 11, 15] 128 LinearBottleneck-115 [-1, 64, 11, 15] 0 Conv2d-116 [-1, 384, 11, 15] 24,576 BatchNorm2d-117 [-1, 384, 11, 15] 768 ReLU-118 [-1, 384, 11, 15] 0 Custom_Conv-119 [-1, 384, 11, 15] 0 Conv2d-120 [-1, 384, 11, 15] 3,456 BatchNorm2d-121 [-1, 384, 11, 15] 768 ReLU-122 [-1, 384, 11, 15] 0 DepthConv-123 [-1, 384, 11, 15] 0 Conv2d-124 [-1, 64, 11, 15] 24,576 BatchNorm2d-125 [-1, 64, 11, 15] 128 LinearBottleneck-126 [-1, 64, 11, 15] 0 Conv2d-127 [-1, 384, 11, 15] 24,576 BatchNorm2d-128 [-1, 384, 11, 15] 768 ReLU-129 [-1, 384, 11, 15] 0 Custom_Conv-130 [-1, 384, 11, 15] 0 Conv2d-131 [-1, 384, 11, 15] 3,456 BatchNorm2d-132 [-1, 384, 11, 15] 768 ReLU-133 [-1, 384, 11, 15] 0 DepthConv-134 [-1, 384, 11, 15] 0 Conv2d-135 [-1, 96, 11, 15] 36,864 BatchNorm2d-136 [-1, 96, 11, 15] 192 LinearBottleneck-137 [-1, 96, 11, 15] 0 Conv2d-138 [-1, 576, 11, 15] 55,296 BatchNorm2d-139 [-1, 576, 11, 15] 1,152 ReLU-140 [-1, 576, 11, 15] 0 Custom_Conv-141 [-1, 576, 11, 15] 0 Conv2d-142 [-1, 576, 11, 15] 5,184 BatchNorm2d-143 [-1, 576, 11, 15] 1,152 ReLU-144 [-1, 576, 11, 15] 0 DepthConv-145 [-1, 576, 11, 15] 0 Conv2d-146 [-1, 96, 11, 15] 55,296 BatchNorm2d-147 [-1, 96, 11, 15] 192 LinearBottleneck-148 [-1, 96, 11, 15] 0 Conv2d-149 [-1, 576, 11, 15] 55,296 BatchNorm2d-150 [-1, 576, 11, 15] 1,152 ReLU-151 [-1, 576, 11, 15] 0 Custom_Conv-152 [-1, 576, 11, 15] 0 Conv2d-153 [-1, 576, 11, 15] 5,184 BatchNorm2d-154 [-1, 576, 11, 15] 1,152 ReLU-155 [-1, 576, 11, 15] 0 DepthConv-156 [-1, 576, 11, 15] 0 Conv2d-157 [-1, 128, 11, 15] 73,728 BatchNorm2d-158 [-1, 128, 11, 15] 256 LinearBottleneck-159 [-1, 128, 11, 15] 0 Conv2d-160 [-1, 768, 11, 15] 98,304 BatchNorm2d-161 [-1, 768, 11, 15] 1,536 ReLU-162 [-1, 768, 11, 15] 0 Custom_Conv-163 [-1, 768, 11, 15] 0 Conv2d-164 [-1, 768, 11, 15] 6,912 BatchNorm2d-165 [-1, 768, 11, 15] 1,536 ReLU-166 [-1, 768, 11, 15] 0 DepthConv-167 [-1, 768, 11, 15] 0 Conv2d-168 [-1, 128, 11, 15] 98,304 BatchNorm2d-169 [-1, 128, 11, 15] 256 LinearBottleneck-170 [-1, 128, 11, 15] 0 Deep_net-171 [-1, 128, 11, 15] 0 Conv2d-172 [-1, 128, 44, 60] 1,152 BatchNorm2d-173 [-1, 128, 44, 60] 256 ReLU-174 [-1, 128, 44, 60] 0 DepthConv-175 [-1, 128, 44, 60] 0 Conv2d-176 [-1, 128, 44, 60] 16,512 BatchNorm2d-177 [-1, 128, 44, 60] 256 Conv2d-178 [-1, 128, 44, 60] 16,512 BatchNorm2d-179 [-1, 128, 44, 60] 256 ReLU-180 [-1, 128, 44, 60] 0 FeatureFusionModule-181 [-1, 128, 44, 60] 0 Conv2d-182 [-1, 128, 44, 60] 1,152 BatchNorm2d-183 [-1, 128, 44, 60] 256 ReLU-184 [-1, 128, 44, 60] 0 Conv2d-185 [-1, 128, 44, 60] 16,384 BatchNorm2d-186 [-1, 128, 44, 60] 256 ReLU-187 [-1, 128, 44, 60] 0 DepthSepConv-188 [-1, 128, 44, 60] 0 Conv2d-189 [-1, 128, 44, 60] 1,152 BatchNorm2d-190 [-1, 128, 44, 60] 256 ReLU-191 [-1, 128, 44, 60] 0 Conv2d-192 [-1, 128, 44, 60] 16,384 BatchNorm2d-193 [-1, 128, 44, 60] 256 ReLU-194 [-1, 128, 44, 60] 0 DepthSepConv-195 [-1, 128, 44, 60] 0 Dropout-196 [-1, 128, 44, 60] 0 Conv2d-197 [-1, 11, 44, 60] 1,419 Classifer-198 [-1, 11, 44, 60] 0 ================================================================ Total params: 875,615 Trainable params: 875,615 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 1.93 Forward/backward pass size (MB): 313.86 Params size (MB): 3.34 Estimated Total Size (MB): 319.14 ---------------------------------------------------------------- ContextNetX10( 0.579 GMac, 100.000% MACs, (spatial_detail): Shallow_net( 0.149 GMac, 25.694% MACs, (conv0): Custom_Conv( 0.008 GMac, 1.319% MACs, (conv): Sequential( 0.008 GMac, 1.319% MACs, (0): Conv2d(0.006 GMac, 1.055% MACs, 3, 3, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.176% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.088% MACs, inplace=True) ) ) (conv): Custom_Conv( 0.041 GMac, 6.998% MACs, (conv): Sequential( 0.041 GMac, 6.998% MACs, (0): Conv2d(0.036 GMac, 6.298% MACs, 3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) (1): BatchNorm2d(0.003 GMac, 0.467% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.233% MACs, inplace=True) ) ) (dsconv1): DepthSepConv( 0.028 GMac, 4.782% MACs, (conv): Sequential( 0.028 GMac, 4.782% MACs, (0): Conv2d(0.003 GMac, 0.525% MACs, 32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.058% MACs, inplace=True) (3): Conv2d(0.022 GMac, 3.732% MACs, 32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.233% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.001 GMac, 0.117% MACs, inplace=True) ) ) (dsconv2): DepthSepConv( 0.025 GMac, 4.257% MACs, (conv): Sequential( 0.025 GMac, 4.257% MACs, (0): Conv2d(0.002 GMac, 0.262% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=64, bias=False) (1): BatchNorm2d(0.0 GMac, 0.058% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.029% MACs, inplace=True) (3): Conv2d(0.022 GMac, 3.732% MACs, 64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) ) (dsconv3): DepthSepConv( 0.048 GMac, 8.339% MACs, (conv): Sequential( 0.048 GMac, 8.339% MACs, (0): Conv2d(0.003 GMac, 0.525% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.058% MACs, inplace=True) (3): Conv2d(0.043 GMac, 7.464% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) ) ) (context_feature_extractor): Deep_net( 0.237 GMac, 40.944% MACs, (conv_0): Custom_Conv( 0.0 GMac, 0.084% MACs, (conv): Sequential( 0.0 GMac, 0.084% MACs, (0): Conv2d(0.0 GMac, 0.067% MACs, 3, 3, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.011% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.006% MACs, inplace=True) ) ) (conv_): Custom_Conv( 0.003 GMac, 0.437% MACs, (conv): Sequential( 0.003 GMac, 0.437% MACs, (0): Conv2d(0.002 GMac, 0.394% MACs, 3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) (1): BatchNorm2d(0.0 GMac, 0.029% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.015% MACs, inplace=True) ) ) (bottleneck1): Sequential( 0.007 GMac, 1.181% MACs, (0): LinearBottleneck( 0.007 GMac, 1.181% MACs, (block): Sequential( 0.007 GMac, 1.181% MACs, (0): Custom_Conv( 0.003 GMac, 0.510% MACs, (conv): Sequential( 0.003 GMac, 0.510% MACs, (0): Conv2d(0.003 GMac, 0.467% MACs, 32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.029% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.015% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.175% MACs, (conv): Sequential( 0.001 GMac, 0.175% MACs, (0): Conv2d(0.001 GMac, 0.131% MACs, 32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (1): BatchNorm2d(0.0 GMac, 0.029% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.015% MACs, inplace=True) ) ) (2): Conv2d(0.003 GMac, 0.467% MACs, 32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.029% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck2): Sequential( 0.04 GMac, 6.940% MACs, (0): LinearBottleneck( 0.04 GMac, 6.940% MACs, (block): Sequential( 0.04 GMac, 6.940% MACs, (0): Custom_Conv( 0.018 GMac, 3.062% MACs, (conv): Sequential( 0.018 GMac, 3.062% MACs, (0): Conv2d(0.016 GMac, 2.799% MACs, 32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.175% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.087% MACs, inplace=True) ) ) (1): DepthConv( 0.006 GMac, 1.050% MACs, (conv): Sequential( 0.006 GMac, 1.050% MACs, (0): Conv2d(0.005 GMac, 0.787% MACs, 192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False) (1): BatchNorm2d(0.001 GMac, 0.175% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.087% MACs, inplace=True) ) ) (2): Conv2d(0.016 GMac, 2.799% MACs, 192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.029% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck3): Sequential( 0.068 GMac, 11.689% MACs, (0): LinearBottleneck( 0.025 GMac, 4.385% MACs, (block): Sequential( 0.025 GMac, 4.385% MACs, (0): Custom_Conv( 0.018 GMac, 3.062% MACs, (conv): Sequential( 0.018 GMac, 3.062% MACs, (0): Conv2d(0.016 GMac, 2.799% MACs, 32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.175% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.001 GMac, 0.087% MACs, inplace=True) ) ) (1): DepthConv( 0.002 GMac, 0.262% MACs, (conv): Sequential( 0.002 GMac, 0.262% MACs, (0): Conv2d(0.001 GMac, 0.197% MACs, 192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False) (1): BatchNorm2d(0.0 GMac, 0.044% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.022% MACs, inplace=True) ) ) (2): Conv2d(0.006 GMac, 1.050% MACs, 192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.011% MACs, 48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.021 GMac, 3.652% MACs, (block): Sequential( 0.021 GMac, 3.652% MACs, (0): Custom_Conv( 0.01 GMac, 1.673% MACs, (conv): Sequential( 0.01 GMac, 1.673% MACs, (0): Conv2d(0.009 GMac, 1.575% MACs, 48, 288, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.066% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.033% MACs, inplace=True) ) ) (1): DepthConv( 0.002 GMac, 0.394% MACs, (conv): Sequential( 0.002 GMac, 0.394% MACs, (0): Conv2d(0.002 GMac, 0.295% MACs, 288, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=288, bias=False) (1): BatchNorm2d(0.0 GMac, 0.066% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.033% MACs, inplace=True) ) ) (2): Conv2d(0.009 GMac, 1.575% MACs, 288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.011% MACs, 48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): LinearBottleneck( 0.021 GMac, 3.652% MACs, (block): Sequential( 0.021 GMac, 3.652% MACs, (0): Custom_Conv( 0.01 GMac, 1.673% MACs, (conv): Sequential( 0.01 GMac, 1.673% MACs, (0): Conv2d(0.009 GMac, 1.575% MACs, 48, 288, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.066% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.033% MACs, inplace=True) ) ) (1): DepthConv( 0.002 GMac, 0.394% MACs, (conv): Sequential( 0.002 GMac, 0.394% MACs, (0): Conv2d(0.002 GMac, 0.295% MACs, 288, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=288, bias=False) (1): BatchNorm2d(0.0 GMac, 0.066% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.033% MACs, inplace=True) ) ) (2): Conv2d(0.009 GMac, 1.575% MACs, 288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.011% MACs, 48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck4): Sequential( 0.031 GMac, 5.434% MACs, (0): LinearBottleneck( 0.013 GMac, 2.300% MACs, (block): Sequential( 0.013 GMac, 2.300% MACs, (0): Custom_Conv( 0.01 GMac, 1.673% MACs, (conv): Sequential( 0.01 GMac, 1.673% MACs, (0): Conv2d(0.009 GMac, 1.575% MACs, 48, 288, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.066% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.033% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.098% MACs, (conv): Sequential( 0.001 GMac, 0.098% MACs, (0): Conv2d(0.0 GMac, 0.074% MACs, 288, 288, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=288, bias=False) (1): BatchNorm2d(0.0 GMac, 0.016% MACs, 288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.008% MACs, inplace=True) ) ) (2): Conv2d(0.003 GMac, 0.525% MACs, 288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.009 GMac, 1.567% MACs, (block): Sequential( 0.009 GMac, 1.567% MACs, (0): Custom_Conv( 0.004 GMac, 0.733% MACs, (conv): Sequential( 0.004 GMac, 0.733% MACs, (0): Conv2d(0.004 GMac, 0.700% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.131% MACs, (conv): Sequential( 0.001 GMac, 0.131% MACs, (0): Conv2d(0.001 GMac, 0.098% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (2): Conv2d(0.004 GMac, 0.700% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): LinearBottleneck( 0.009 GMac, 1.567% MACs, (block): Sequential( 0.009 GMac, 1.567% MACs, (0): Custom_Conv( 0.004 GMac, 0.733% MACs, (conv): Sequential( 0.004 GMac, 0.733% MACs, (0): Conv2d(0.004 GMac, 0.700% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.131% MACs, (conv): Sequential( 0.001 GMac, 0.131% MACs, (0): Conv2d(0.001 GMac, 0.098% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (2): Conv2d(0.004 GMac, 0.700% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.004% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck5): Sequential( 0.031 GMac, 5.319% MACs, (0): LinearBottleneck( 0.011 GMac, 1.919% MACs, (block): Sequential( 0.011 GMac, 1.919% MACs, (0): Custom_Conv( 0.004 GMac, 0.733% MACs, (conv): Sequential( 0.004 GMac, 0.733% MACs, (0): Conv2d(0.004 GMac, 0.700% MACs, 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.131% MACs, (conv): Sequential( 0.001 GMac, 0.131% MACs, (0): Conv2d(0.001 GMac, 0.098% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (1): BatchNorm2d(0.0 GMac, 0.022% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.011% MACs, inplace=True) ) ) (2): Conv2d(0.006 GMac, 1.050% MACs, 384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.005% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.02 GMac, 3.401% MACs, (block): Sequential( 0.02 GMac, 3.401% MACs, (0): Custom_Conv( 0.009 GMac, 1.624% MACs, (conv): Sequential( 0.009 GMac, 1.624% MACs, (0): Conv2d(0.009 GMac, 1.575% MACs, 96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.033% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.016% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.197% MACs, (conv): Sequential( 0.001 GMac, 0.197% MACs, (0): Conv2d(0.001 GMac, 0.148% MACs, 576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (1): BatchNorm2d(0.0 GMac, 0.033% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.016% MACs, inplace=True) ) ) (2): Conv2d(0.009 GMac, 1.575% MACs, 576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.005% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (bottleneck6): Sequential( 0.057 GMac, 9.861% MACs, (0): LinearBottleneck( 0.023 GMac, 3.927% MACs, (block): Sequential( 0.023 GMac, 3.927% MACs, (0): Custom_Conv( 0.009 GMac, 1.624% MACs, (conv): Sequential( 0.009 GMac, 1.624% MACs, (0): Conv2d(0.009 GMac, 1.575% MACs, 96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.033% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.016% MACs, inplace=True) ) ) (1): DepthConv( 0.001 GMac, 0.197% MACs, (conv): Sequential( 0.001 GMac, 0.197% MACs, (0): Conv2d(0.001 GMac, 0.148% MACs, 576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (1): BatchNorm2d(0.0 GMac, 0.033% MACs, 576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.016% MACs, inplace=True) ) ) (2): Conv2d(0.012 GMac, 2.099% MACs, 576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.007% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): LinearBottleneck( 0.034 GMac, 5.934% MACs, (block): Sequential( 0.034 GMac, 5.934% MACs, (0): Custom_Conv( 0.017 GMac, 2.865% MACs, (conv): Sequential( 0.017 GMac, 2.865% MACs, (0): Conv2d(0.016 GMac, 2.799% MACs, 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.044% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.022% MACs, inplace=True) ) ) (1): DepthConv( 0.002 GMac, 0.262% MACs, (conv): Sequential( 0.002 GMac, 0.262% MACs, (0): Conv2d(0.001 GMac, 0.197% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (1): BatchNorm2d(0.0 GMac, 0.044% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.022% MACs, inplace=True) ) ) (2): Conv2d(0.016 GMac, 2.799% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (3): BatchNorm2d(0.0 GMac, 0.007% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) ) (feature_fusion): FeatureFusionModule( 0.093 GMac, 16.037% MACs, (dwconv): DepthConv( 0.004 GMac, 0.700% MACs, (conv): Sequential( 0.004 GMac, 0.700% MACs, (0): Conv2d(0.003 GMac, 0.525% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) ) (conv_lower_res): Sequential( 0.044 GMac, 7.639% MACs, (0): Conv2d(0.044 GMac, 7.523% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (conv_higher_res): Sequential( 0.044 GMac, 7.639% MACs, (0): Conv2d(0.044 GMac, 7.523% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (relu): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) (classifier): Classifer( 0.1 GMac, 17.325% MACs, (dsconv1): DepthSepConv( 0.048 GMac, 8.339% MACs, (conv): Sequential( 0.048 GMac, 8.339% MACs, (0): Conv2d(0.003 GMac, 0.525% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.058% MACs, inplace=True) (3): Conv2d(0.043 GMac, 7.464% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) ) (dsconv2): DepthSepConv( 0.048 GMac, 8.339% MACs, (conv): Sequential( 0.048 GMac, 8.339% MACs, (0): Conv2d(0.003 GMac, 0.525% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (1): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.058% MACs, inplace=True) (3): Conv2d(0.043 GMac, 7.464% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(0.001 GMac, 0.117% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.0 GMac, 0.058% MACs, inplace=True) ) ) (conv): Sequential( 0.004 GMac, 0.646% MACs, (0): Dropout(0.0 GMac, 0.000% MACs, p=0.1, inplace=False) (1): Conv2d(0.004 GMac, 0.646% MACs, 128, 11, kernel_size=(1, 1), stride=(1, 1)) ) ) ) 0.57947145 GMac 0.875615 3.3402061462402344 MB [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>. [WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.Custom_Conv'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.DepthSepConv'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.Shallow_net'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.DepthConv'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.LinearBottleneck'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.Deep_net'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.FeatureFusionModule'>. Treat it as zero Macs and zero Params. [INFO] Register zero_ops() for <class 'torch.nn.modules.dropout.Dropout'>. [WARN] Cannot find rule for <class '__main__.Classifer'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.ContextNetX10'>. Treat it as zero Macs and zero Params. 0.569441604 GMac 0.875615 3.3402061462402344 MB Process finished with exit code 0 '''
[ "torch.nn.Dropout", "torch.nn.Sequential", "torch.nn.functional.interpolate", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.randn" ]
1.1.0
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
1.1
################################################################################################### #ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network #Paper-Link: https://arxiv.org/pdf/1811.11431.pdf ################################################################################################### import os import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary from model.ESPNet_v2.ModelX4 import EESPNet, EESP from model.ESPNet_v2.cnn_utilsX4 import * from fvcore.nn.flop_count import flop_count #https://github.com/facebookresearch/fvcore from tools.flops_counter.ptflops import get_model_complexity_info from thop import profile #https://github.com/Lyken17/pytorch-OpCounter __all__ = ["EESPNet_SegX4"] class EESPNet_SegX4(nn.Module): def __init__(self, classes=19, s=2, pretrained=None, gpus=1): super().__init__() classificationNet = EESPNet(classes=1000, s=s) if gpus >=1: classificationNet = nn.DataParallel(classificationNet) # print(classificationNet) # load the pretrained weights if pretrained: if not os.path.isfile(pretrained): print('Weight file does not exist. Training without pre-trained weights') print('Model initialized with pretrained weights') classificationNet.load_state_dict(torch.load(pretrained)) self.net = classificationNet.module del classificationNet # delete last few layers del self.net.classifier del self.net.level5 del self.net.level5_0 if s <=0.5: p = 0.1 else: p=0.2 self.proj_L4_C = CBR(self.net.level4[-1].module_act.num_parameters, self.net.level3[-1].module_act.num_parameters, 1, 1) pspSize = 2*self.net.level3[-1].module_act.num_parameters self.pspMod = nn.Sequential(EESP(pspSize, pspSize //2, stride=1, k=4, r_lim=7), PSPModule(pspSize // 2, pspSize //2)) self.project_l3 = nn.Sequential(nn.Dropout2d(p=p), C(pspSize // 2, classes, 1, 1)) self.act_l3 = BR(classes) self.project_l2 = CBR(self.net.level2_0.act.num_parameters + classes, classes, 1, 1) self.project_l1 = nn.Sequential(nn.Dropout2d(p=p), C(self.net.level1.act.num_parameters + classes, classes, 1, 1)) def hierarchicalUpsample(self, x, factor=3): for i in range(factor): x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) return x def forward(self, input): out_l1, out_l2, out_l3, out_l4 = self.net(input, seg=True) out_l4_proj = self.proj_L4_C(out_l4) up_l4_to_l3 = F.interpolate(out_l4_proj, size=out_l3.size()[2:], mode='bilinear', align_corners=True) merged_l3_upl4 = self.pspMod(torch.cat([out_l3, up_l4_to_l3], 1)) proj_merge_l3_bef_act = self.project_l3(merged_l3_upl4) proj_merge_l3 = self.act_l3(proj_merge_l3_bef_act) out_up_l3 = F.interpolate(proj_merge_l3, scale_factor=2, mode='bilinear', align_corners=True) merge_l2 = self.project_l2(torch.cat([out_l2, out_up_l3], 1)) out_up_l2 = F.interpolate(merge_l2, scale_factor=2, mode='bilinear', align_corners=True) merge_l1 = self.project_l1(torch.cat([out_l1, out_up_l2], 1)) # if self.training: # return F.interpolate(merge_l1, scale_factor=2, mode='bilinear', align_corners=True), self.hierarchicalUpsample(proj_merge_l3_bef_act) # else: # return F.interpolate(merge_l1, scale_factor=2, mode='bilinear', align_corners=True) output = F.interpolate(merge_l1, scale_factor=2, mode='bilinear', align_corners=True) return output if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = EESPNet_SegX4(classes=11, s=2).to(device) summary(model, (3, 352, 480)) flops_count, params_count = get_model_complexity_info(model, (3, 352, 480), as_strings=False, print_per_layer_stat=True) print(flops_count / 1000000000, 'GMac', params_count / 1000000, params_count / 1024 / 1024 * 4, 'MB') x = torch.randn(2, 3, 352, 480).to(device) input = x macs, params = profile(model, inputs=(input,)) print(macs / 2000000000, 'GMac', params / 1000000, params / 1024 / 1024 * 4, 'MB') ''' /home/ethan/anaconda3/envs/py36_cuda101/bin/python /home/ethan/codes/Efficient-Segmentation-Networks/model/ESPNet_v2/SegmentationModelX4.py ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 32, 176, 240] 864 BatchNorm2d-2 [-1, 32, 176, 240] 64 PReLU-3 [-1, 32, 176, 240] 32 CBR-4 [-1, 32, 176, 240] 0 AvgPool2d-5 [-1, 32, 88, 120] 0 Conv2d-6 [-1, 32, 177, 241] 128 BatchNorm2d-7 [-1, 32, 177, 241] 64 PReLU-8 [-1, 32, 177, 241] 32 Conv2d-9 [-1, 16, 177, 241] 128 BatchNorm2d-10 [-1, 16, 177, 241] 32 PReLU-11 [-1, 16, 177, 241] 16 CBR1-12 [-1, 16, 177, 241] 0 Conv2d-13 [-1, 16, 88, 120] 144 CDilated1-14 [-1, 16, 88, 120] 0 Conv2d-15 [-1, 16, 88, 120] 144 CDilated1-16 [-1, 16, 88, 120] 0 Conv2d-17 [-1, 16, 88, 120] 144 CDilated1-18 [-1, 16, 88, 120] 0 Conv2d-19 [-1, 16, 88, 120] 144 CDilated1-20 [-1, 16, 88, 120] 0 BatchNorm2d-21 [-1, 64, 88, 120] 128 PReLU-22 [-1, 64, 88, 120] 64 BR-23 [-1, 64, 88, 120] 0 Conv2d-24 [-1, 96, 88, 120] 1,536 BatchNorm2d-25 [-1, 96, 88, 120] 192 CB-26 [-1, 96, 88, 120] 0 EESP1-27 [-1, 96, 88, 120] 0 Conv2d-28 [-1, 3, 88, 120] 81 BatchNorm2d-29 [-1, 3, 88, 120] 6 PReLU-30 [-1, 3, 88, 120] 3 CBR-31 [-1, 3, 88, 120] 0 Conv2d-32 [-1, 128, 88, 120] 384 BatchNorm2d-33 [-1, 128, 88, 120] 256 CB-34 [-1, 128, 88, 120] 0 PReLU-35 [-1, 128, 88, 120] 128 DownSampler-36 [-1, 128, 88, 120] 0 AvgPool2d-37 [-1, 128, 44, 60] 0 Conv2d-38 [-1, 128, 89, 121] 512 BatchNorm2d-39 [-1, 128, 89, 121] 256 PReLU-40 [-1, 128, 89, 121] 128 Conv2d-41 [-1, 20, 89, 121] 640 BatchNorm2d-42 [-1, 20, 89, 121] 40 PReLU-43 [-1, 20, 89, 121] 20 CBR1-44 [-1, 20, 89, 121] 0 Conv2d-45 [-1, 20, 44, 60] 180 CDilated1-46 [-1, 20, 44, 60] 0 Conv2d-47 [-1, 20, 44, 60] 180 CDilated1-48 [-1, 20, 44, 60] 0 Conv2d-49 [-1, 20, 44, 60] 180 CDilated1-50 [-1, 20, 44, 60] 0 Conv2d-51 [-1, 20, 44, 60] 180 CDilated1-52 [-1, 20, 44, 60] 0 BatchNorm2d-53 [-1, 80, 44, 60] 160 PReLU-54 [-1, 80, 44, 60] 80 BR-55 [-1, 80, 44, 60] 0 Conv2d-56 [-1, 128, 44, 60] 2,560 BatchNorm2d-57 [-1, 128, 44, 60] 256 CB-58 [-1, 128, 44, 60] 0 EESP1-59 [-1, 128, 44, 60] 0 Conv2d-60 [-1, 3, 44, 60] 81 BatchNorm2d-61 [-1, 3, 44, 60] 6 PReLU-62 [-1, 3, 44, 60] 3 CBR-63 [-1, 3, 44, 60] 0 Conv2d-64 [-1, 256, 44, 60] 768 BatchNorm2d-65 [-1, 256, 44, 60] 512 CB-66 [-1, 256, 44, 60] 0 PReLU-67 [-1, 256, 44, 60] 256 DownSampler-68 [-1, 256, 44, 60] 0 Conv2d-69 [-1, 64, 44, 60] 4,096 BatchNorm2d-70 [-1, 64, 44, 60] 128 PReLU-71 [-1, 64, 44, 60] 64 CBR-72 [-1, 64, 44, 60] 0 Conv2d-73 [-1, 64, 44, 60] 576 CDilated-74 [-1, 64, 44, 60] 0 Conv2d-75 [-1, 64, 44, 60] 576 CDilated-76 [-1, 64, 44, 60] 0 Conv2d-77 [-1, 64, 44, 60] 576 CDilated-78 [-1, 64, 44, 60] 0 Conv2d-79 [-1, 64, 44, 60] 576 CDilated-80 [-1, 64, 44, 60] 0 BatchNorm2d-81 [-1, 256, 44, 60] 512 PReLU-82 [-1, 256, 44, 60] 256 BR-83 [-1, 256, 44, 60] 0 Conv2d-84 [-1, 256, 44, 60] 16,384 BatchNorm2d-85 [-1, 256, 44, 60] 512 CB-86 [-1, 256, 44, 60] 0 PReLU-87 [-1, 256, 44, 60] 256 EESP-88 [-1, 256, 44, 60] 0 Conv2d-89 [-1, 64, 44, 60] 4,096 BatchNorm2d-90 [-1, 64, 44, 60] 128 PReLU-91 [-1, 64, 44, 60] 64 CBR-92 [-1, 64, 44, 60] 0 Conv2d-93 [-1, 64, 44, 60] 576 CDilated-94 [-1, 64, 44, 60] 0 Conv2d-95 [-1, 64, 44, 60] 576 CDilated-96 [-1, 64, 44, 60] 0 Conv2d-97 [-1, 64, 44, 60] 576 CDilated-98 [-1, 64, 44, 60] 0 Conv2d-99 [-1, 64, 44, 60] 576 CDilated-100 [-1, 64, 44, 60] 0 BatchNorm2d-101 [-1, 256, 44, 60] 512 PReLU-102 [-1, 256, 44, 60] 256 BR-103 [-1, 256, 44, 60] 0 Conv2d-104 [-1, 256, 44, 60] 16,384 BatchNorm2d-105 [-1, 256, 44, 60] 512 CB-106 [-1, 256, 44, 60] 0 PReLU-107 [-1, 256, 44, 60] 256 EESP-108 [-1, 256, 44, 60] 0 Conv2d-109 [-1, 64, 44, 60] 4,096 BatchNorm2d-110 [-1, 64, 44, 60] 128 PReLU-111 [-1, 64, 44, 60] 64 CBR-112 [-1, 64, 44, 60] 0 Conv2d-113 [-1, 64, 44, 60] 576 CDilated-114 [-1, 64, 44, 60] 0 Conv2d-115 [-1, 64, 44, 60] 576 CDilated-116 [-1, 64, 44, 60] 0 Conv2d-117 [-1, 64, 44, 60] 576 CDilated-118 [-1, 64, 44, 60] 0 Conv2d-119 [-1, 64, 44, 60] 576 CDilated-120 [-1, 64, 44, 60] 0 BatchNorm2d-121 [-1, 256, 44, 60] 512 PReLU-122 [-1, 256, 44, 60] 256 BR-123 [-1, 256, 44, 60] 0 Conv2d-124 [-1, 256, 44, 60] 16,384 BatchNorm2d-125 [-1, 256, 44, 60] 512 CB-126 [-1, 256, 44, 60] 0 PReLU-127 [-1, 256, 44, 60] 256 EESP-128 [-1, 256, 44, 60] 0 AvgPool2d-129 [-1, 256, 22, 30] 0 Conv2d-130 [-1, 256, 45, 61] 1,024 BatchNorm2d-131 [-1, 256, 45, 61] 512 PReLU-132 [-1, 256, 45, 61] 256 Conv2d-133 [-1, 44, 45, 61] 2,816 BatchNorm2d-134 [-1, 44, 45, 61] 88 PReLU-135 [-1, 44, 45, 61] 44 CBR1-136 [-1, 44, 45, 61] 0 Conv2d-137 [-1, 44, 22, 30] 396 CDilated1-138 [-1, 44, 22, 30] 0 Conv2d-139 [-1, 44, 22, 30] 396 CDilated1-140 [-1, 44, 22, 30] 0 Conv2d-141 [-1, 44, 22, 30] 396 CDilated1-142 [-1, 44, 22, 30] 0 Conv2d-143 [-1, 44, 22, 30] 396 CDilated1-144 [-1, 44, 22, 30] 0 BatchNorm2d-145 [-1, 176, 22, 30] 352 PReLU-146 [-1, 176, 22, 30] 176 BR-147 [-1, 176, 22, 30] 0 Conv2d-148 [-1, 256, 22, 30] 11,264 BatchNorm2d-149 [-1, 256, 22, 30] 512 CB-150 [-1, 256, 22, 30] 0 EESP1-151 [-1, 256, 22, 30] 0 Conv2d-152 [-1, 3, 22, 30] 81 BatchNorm2d-153 [-1, 3, 22, 30] 6 PReLU-154 [-1, 3, 22, 30] 3 CBR-155 [-1, 3, 22, 30] 0 Conv2d-156 [-1, 512, 22, 30] 1,536 BatchNorm2d-157 [-1, 512, 22, 30] 1,024 CB-158 [-1, 512, 22, 30] 0 PReLU-159 [-1, 512, 22, 30] 512 DownSampler-160 [-1, 512, 22, 30] 0 Conv2d-161 [-1, 128, 22, 30] 16,384 BatchNorm2d-162 [-1, 128, 22, 30] 256 PReLU-163 [-1, 128, 22, 30] 128 CBR-164 [-1, 128, 22, 30] 0 Conv2d-165 [-1, 128, 22, 30] 1,152 CDilated-166 [-1, 128, 22, 30] 0 Conv2d-167 [-1, 128, 22, 30] 1,152 CDilated-168 [-1, 128, 22, 30] 0 Conv2d-169 [-1, 128, 22, 30] 1,152 CDilated-170 [-1, 128, 22, 30] 0 Conv2d-171 [-1, 128, 22, 30] 1,152 CDilated-172 [-1, 128, 22, 30] 0 BatchNorm2d-173 [-1, 512, 22, 30] 1,024 PReLU-174 [-1, 512, 22, 30] 512 BR-175 [-1, 512, 22, 30] 0 Conv2d-176 [-1, 512, 22, 30] 65,536 BatchNorm2d-177 [-1, 512, 22, 30] 1,024 CB-178 [-1, 512, 22, 30] 0 PReLU-179 [-1, 512, 22, 30] 512 EESP-180 [-1, 512, 22, 30] 0 Conv2d-181 [-1, 128, 22, 30] 16,384 BatchNorm2d-182 [-1, 128, 22, 30] 256 PReLU-183 [-1, 128, 22, 30] 128 CBR-184 [-1, 128, 22, 30] 0 Conv2d-185 [-1, 128, 22, 30] 1,152 CDilated-186 [-1, 128, 22, 30] 0 Conv2d-187 [-1, 128, 22, 30] 1,152 CDilated-188 [-1, 128, 22, 30] 0 Conv2d-189 [-1, 128, 22, 30] 1,152 CDilated-190 [-1, 128, 22, 30] 0 Conv2d-191 [-1, 128, 22, 30] 1,152 CDilated-192 [-1, 128, 22, 30] 0 BatchNorm2d-193 [-1, 512, 22, 30] 1,024 PReLU-194 [-1, 512, 22, 30] 512 BR-195 [-1, 512, 22, 30] 0 Conv2d-196 [-1, 512, 22, 30] 65,536 BatchNorm2d-197 [-1, 512, 22, 30] 1,024 CB-198 [-1, 512, 22, 30] 0 PReLU-199 [-1, 512, 22, 30] 512 EESP-200 [-1, 512, 22, 30] 0 Conv2d-201 [-1, 128, 22, 30] 16,384 BatchNorm2d-202 [-1, 128, 22, 30] 256 PReLU-203 [-1, 128, 22, 30] 128 CBR-204 [-1, 128, 22, 30] 0 Conv2d-205 [-1, 128, 22, 30] 1,152 CDilated-206 [-1, 128, 22, 30] 0 Conv2d-207 [-1, 128, 22, 30] 1,152 CDilated-208 [-1, 128, 22, 30] 0 Conv2d-209 [-1, 128, 22, 30] 1,152 CDilated-210 [-1, 128, 22, 30] 0 Conv2d-211 [-1, 128, 22, 30] 1,152 CDilated-212 [-1, 128, 22, 30] 0 BatchNorm2d-213 [-1, 512, 22, 30] 1,024 PReLU-214 [-1, 512, 22, 30] 512 BR-215 [-1, 512, 22, 30] 0 Conv2d-216 [-1, 512, 22, 30] 65,536 BatchNorm2d-217 [-1, 512, 22, 30] 1,024 CB-218 [-1, 512, 22, 30] 0 PReLU-219 [-1, 512, 22, 30] 512 EESP-220 [-1, 512, 22, 30] 0 Conv2d-221 [-1, 128, 22, 30] 16,384 BatchNorm2d-222 [-1, 128, 22, 30] 256 PReLU-223 [-1, 128, 22, 30] 128 CBR-224 [-1, 128, 22, 30] 0 Conv2d-225 [-1, 128, 22, 30] 1,152 CDilated-226 [-1, 128, 22, 30] 0 Conv2d-227 [-1, 128, 22, 30] 1,152 CDilated-228 [-1, 128, 22, 30] 0 Conv2d-229 [-1, 128, 22, 30] 1,152 CDilated-230 [-1, 128, 22, 30] 0 Conv2d-231 [-1, 128, 22, 30] 1,152 CDilated-232 [-1, 128, 22, 30] 0 BatchNorm2d-233 [-1, 512, 22, 30] 1,024 PReLU-234 [-1, 512, 22, 30] 512 BR-235 [-1, 512, 22, 30] 0 Conv2d-236 [-1, 512, 22, 30] 65,536 BatchNorm2d-237 [-1, 512, 22, 30] 1,024 CB-238 [-1, 512, 22, 30] 0 PReLU-239 [-1, 512, 22, 30] 512 EESP-240 [-1, 512, 22, 30] 0 Conv2d-241 [-1, 128, 22, 30] 16,384 BatchNorm2d-242 [-1, 128, 22, 30] 256 PReLU-243 [-1, 128, 22, 30] 128 CBR-244 [-1, 128, 22, 30] 0 Conv2d-245 [-1, 128, 22, 30] 1,152 CDilated-246 [-1, 128, 22, 30] 0 Conv2d-247 [-1, 128, 22, 30] 1,152 CDilated-248 [-1, 128, 22, 30] 0 Conv2d-249 [-1, 128, 22, 30] 1,152 CDilated-250 [-1, 128, 22, 30] 0 Conv2d-251 [-1, 128, 22, 30] 1,152 CDilated-252 [-1, 128, 22, 30] 0 BatchNorm2d-253 [-1, 512, 22, 30] 1,024 PReLU-254 [-1, 512, 22, 30] 512 BR-255 [-1, 512, 22, 30] 0 Conv2d-256 [-1, 512, 22, 30] 65,536 BatchNorm2d-257 [-1, 512, 22, 30] 1,024 CB-258 [-1, 512, 22, 30] 0 PReLU-259 [-1, 512, 22, 30] 512 EESP-260 [-1, 512, 22, 30] 0 Conv2d-261 [-1, 128, 22, 30] 16,384 BatchNorm2d-262 [-1, 128, 22, 30] 256 PReLU-263 [-1, 128, 22, 30] 128 CBR-264 [-1, 128, 22, 30] 0 Conv2d-265 [-1, 128, 22, 30] 1,152 CDilated-266 [-1, 128, 22, 30] 0 Conv2d-267 [-1, 128, 22, 30] 1,152 CDilated-268 [-1, 128, 22, 30] 0 Conv2d-269 [-1, 128, 22, 30] 1,152 CDilated-270 [-1, 128, 22, 30] 0 Conv2d-271 [-1, 128, 22, 30] 1,152 CDilated-272 [-1, 128, 22, 30] 0 BatchNorm2d-273 [-1, 512, 22, 30] 1,024 PReLU-274 [-1, 512, 22, 30] 512 BR-275 [-1, 512, 22, 30] 0 Conv2d-276 [-1, 512, 22, 30] 65,536 BatchNorm2d-277 [-1, 512, 22, 30] 1,024 CB-278 [-1, 512, 22, 30] 0 PReLU-279 [-1, 512, 22, 30] 512 EESP-280 [-1, 512, 22, 30] 0 Conv2d-281 [-1, 128, 22, 30] 16,384 BatchNorm2d-282 [-1, 128, 22, 30] 256 PReLU-283 [-1, 128, 22, 30] 128 CBR-284 [-1, 128, 22, 30] 0 Conv2d-285 [-1, 128, 22, 30] 1,152 CDilated-286 [-1, 128, 22, 30] 0 Conv2d-287 [-1, 128, 22, 30] 1,152 CDilated-288 [-1, 128, 22, 30] 0 Conv2d-289 [-1, 128, 22, 30] 1,152 CDilated-290 [-1, 128, 22, 30] 0 Conv2d-291 [-1, 128, 22, 30] 1,152 CDilated-292 [-1, 128, 22, 30] 0 BatchNorm2d-293 [-1, 512, 22, 30] 1,024 PReLU-294 [-1, 512, 22, 30] 512 BR-295 [-1, 512, 22, 30] 0 Conv2d-296 [-1, 512, 22, 30] 65,536 BatchNorm2d-297 [-1, 512, 22, 30] 1,024 CB-298 [-1, 512, 22, 30] 0 PReLU-299 [-1, 512, 22, 30] 512 EESP-300 [-1, 512, 22, 30] 0 EESPNet-301 [[-1, 32, 176, 240], [-1, 128, 88, 120], [-1, 256, 44, 60], [-1, 512, 22, 30]] 0 Conv2d-302 [-1, 256, 22, 30] 131,072 BatchNorm2d-303 [-1, 256, 22, 30] 512 PReLU-304 [-1, 256, 22, 30] 256 CBR-305 [-1, 256, 22, 30] 0 Conv2d-306 [-1, 64, 44, 60] 8,192 BatchNorm2d-307 [-1, 64, 44, 60] 128 PReLU-308 [-1, 64, 44, 60] 64 CBR-309 [-1, 64, 44, 60] 0 Conv2d-310 [-1, 64, 44, 60] 576 CDilated-311 [-1, 64, 44, 60] 0 Conv2d-312 [-1, 64, 44, 60] 576 CDilated-313 [-1, 64, 44, 60] 0 Conv2d-314 [-1, 64, 44, 60] 576 CDilated-315 [-1, 64, 44, 60] 0 Conv2d-316 [-1, 64, 44, 60] 576 CDilated-317 [-1, 64, 44, 60] 0 BatchNorm2d-318 [-1, 256, 44, 60] 512 PReLU-319 [-1, 256, 44, 60] 256 BR-320 [-1, 256, 44, 60] 0 Conv2d-321 [-1, 256, 44, 60] 16,384 BatchNorm2d-322 [-1, 256, 44, 60] 512 CB-323 [-1, 256, 44, 60] 0 PReLU-324 [-1, 256, 44, 60] 256 EESP-325 [-1, 256, 44, 60] 0 Conv2d-326 [-1, 256, 22, 30] 2,304 C-327 [-1, 256, 22, 30] 0 Conv2d-328 [-1, 256, 11, 15] 2,304 C-329 [-1, 256, 11, 15] 0 Conv2d-330 [-1, 256, 6, 8] 2,304 C-331 [-1, 256, 6, 8] 0 Conv2d-332 [-1, 256, 3, 4] 2,304 C-333 [-1, 256, 3, 4] 0 Conv2d-334 [-1, 256, 44, 60] 327,680 BatchNorm2d-335 [-1, 256, 44, 60] 512 PReLU-336 [-1, 256, 44, 60] 256 CBR-337 [-1, 256, 44, 60] 0 PSPModule-338 [-1, 256, 44, 60] 0 Dropout2d-339 [-1, 256, 44, 60] 0 Conv2d-340 [-1, 11, 44, 60] 2,816 C-341 [-1, 11, 44, 60] 0 BatchNorm2d-342 [-1, 11, 44, 60] 22 PReLU-343 [-1, 11, 44, 60] 11 BR-344 [-1, 11, 44, 60] 0 Conv2d-345 [-1, 11, 88, 120] 1,529 BatchNorm2d-346 [-1, 11, 88, 120] 22 PReLU-347 [-1, 11, 88, 120] 11 CBR-348 [-1, 11, 88, 120] 0 Dropout2d-349 [-1, 43, 176, 240] 0 Conv2d-350 [-1, 11, 176, 240] 473 C-351 [-1, 11, 176, 240] 0 ================================================================ Total params: 1,239,922 Trainable params: 1,239,922 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 1.93 Forward/backward pass size (MB): 49542447760184.38 Params size (MB): 4.73 Estimated Total Size (MB): 49542447760191.05 ---------------------------------------------------------------- EESPNet_SegX4( 1.838 GMac, 100.000% MACs, (net): EESPNet( 0.762 GMac, 41.465% MACs, (level1): CBR( 0.041 GMac, 2.207% MACs, (conv): Conv2d(0.036 GMac, 1.986% MACs, 3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.003 GMac, 0.147% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.074% MACs, num_parameters=32) ) (level2_0): DownSampler( 0.054 GMac, 2.929% MACs, (eesp): EESP1( 0.043 GMac, 2.363% MACs, (proj_1x1): CBR1( 0.017 GMac, 0.929% MACs, (conv0): Conv2d(0.005 GMac, 0.297% MACs, 32, 32, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn0): BatchNorm2d(0.003 GMac, 0.149% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act0): PReLU(0.001 GMac, 0.074% MACs, num_parameters=32) (conv): Conv2d(0.005 GMac, 0.297% MACs, 32, 16, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=16) ) (spp_dw): ModuleList( 0.006 GMac, 0.331% MACs, (0): CDilated1( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 16, 16, kernel_size=(3, 3), stride=(2, 2), groups=16, bias=False) ) (1): CDilated1( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(2, 2), groups=16, bias=False) ) (2): CDilated1( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), dilation=(3, 3), groups=16, bias=False) ) (3): CDilated1( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(3, 3), dilation=(4, 4), groups=16, bias=False) ) ) (conv_1x1_exp): CB( 0.018 GMac, 0.993% MACs, (conv): Conv2d(0.016 GMac, 0.883% MACs, 64, 96, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.002 GMac, 0.110% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.002 GMac, 0.110% MACs, (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=64) ) (module_act): PReLU(0.0 GMac, 0.000% MACs, num_parameters=96) ) (avg): AvgPool2d(0.001 GMac, 0.074% MACs, kernel_size=3, stride=2, padding=1) (inp_reinf): Sequential( 0.008 GMac, 0.419% MACs, (0): CBR( 0.001 GMac, 0.052% MACs, (conv): Conv2d(0.001 GMac, 0.047% MACs, 3, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.002% MACs, num_parameters=3) ) (1): CB( 0.007 GMac, 0.368% MACs, (conv): Conv2d(0.004 GMac, 0.221% MACs, 3, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.003 GMac, 0.147% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act): PReLU(0.001 GMac, 0.074% MACs, num_parameters=128) ) (level3_0): DownSampler( 0.033 GMac, 1.785% MACs, (eesp): EESP1( 0.027 GMac, 1.478% MACs, (proj_1x1): CBR1( 0.017 GMac, 0.935% MACs, (conv0): Conv2d(0.006 GMac, 0.300% MACs, 128, 128, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (bn0): BatchNorm2d(0.003 GMac, 0.150% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act0): PReLU(0.001 GMac, 0.075% MACs, num_parameters=128) (conv): Conv2d(0.007 GMac, 0.375% MACs, 128, 20, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.023% MACs, 20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.012% MACs, num_parameters=20) ) (spp_dw): ModuleList( 0.002 GMac, 0.103% MACs, (0): CDilated1( 0.0 GMac, 0.026% MACs, (conv): Conv2d(0.0 GMac, 0.026% MACs, 20, 20, kernel_size=(3, 3), stride=(2, 2), groups=20, bias=False) ) (1): CDilated1( 0.0 GMac, 0.026% MACs, (conv): Conv2d(0.0 GMac, 0.026% MACs, 20, 20, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(2, 2), groups=20, bias=False) ) (2): CDilated1( 0.0 GMac, 0.026% MACs, (conv): Conv2d(0.0 GMac, 0.026% MACs, 20, 20, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), dilation=(3, 3), groups=20, bias=False) ) (3): CDilated1( 0.0 GMac, 0.026% MACs, (conv): Conv2d(0.0 GMac, 0.026% MACs, 20, 20, kernel_size=(3, 3), stride=(2, 2), padding=(3, 3), dilation=(4, 4), groups=20, bias=False) ) ) (conv_1x1_exp): CB( 0.007 GMac, 0.405% MACs, (conv): Conv2d(0.007 GMac, 0.368% MACs, 80, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.034% MACs, (bn): BatchNorm2d(0.0 GMac, 0.023% MACs, 80, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.011% MACs, num_parameters=80) ) (module_act): PReLU(0.0 GMac, 0.000% MACs, num_parameters=128) ) (avg): AvgPool2d(0.001 GMac, 0.074% MACs, kernel_size=3, stride=2, padding=1) (inp_reinf): Sequential( 0.004 GMac, 0.197% MACs, (0): CBR( 0.0 GMac, 0.013% MACs, (conv): Conv2d(0.0 GMac, 0.012% MACs, 3, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.000% MACs, num_parameters=3) ) (1): CB( 0.003 GMac, 0.184% MACs, (conv): Conv2d(0.002 GMac, 0.110% MACs, 3, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (level3): ModuleList( 0.194 GMac, 10.564% MACs, (0): EESP( 0.065 GMac, 3.521% MACs, (proj_1x1): CBR( 0.011 GMac, 0.616% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 256, 64, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.009% MACs, num_parameters=64) ) (spp_dw): ModuleList( 0.006 GMac, 0.331% MACs, (0): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) ) (1): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=64, bias=False) ) (2): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=64, bias=False) ) (3): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), groups=64, bias=False) ) ) (conv_1x1_exp): CB( 0.045 GMac, 2.427% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 256, 256, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.002 GMac, 0.110% MACs, (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (module_act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (1): EESP( 0.065 GMac, 3.521% MACs, (proj_1x1): CBR( 0.011 GMac, 0.616% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 256, 64, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.009% MACs, num_parameters=64) ) (spp_dw): ModuleList( 0.006 GMac, 0.331% MACs, (0): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) ) (1): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=64, bias=False) ) (2): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=64, bias=False) ) (3): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), groups=64, bias=False) ) ) (conv_1x1_exp): CB( 0.045 GMac, 2.427% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 256, 256, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.002 GMac, 0.110% MACs, (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (module_act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (2): EESP( 0.065 GMac, 3.521% MACs, (proj_1x1): CBR( 0.011 GMac, 0.616% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 256, 64, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.009% MACs, num_parameters=64) ) (spp_dw): ModuleList( 0.006 GMac, 0.331% MACs, (0): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) ) (1): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=64, bias=False) ) (2): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=64, bias=False) ) (3): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), groups=64, bias=False) ) ) (conv_1x1_exp): CB( 0.045 GMac, 2.427% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 256, 256, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.002 GMac, 0.110% MACs, (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (module_act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) ) (level4_0): DownSampler( 0.025 GMac, 1.357% MACs, (eesp): EESP1( 0.022 GMac, 1.207% MACs, (proj_1x1): CBR1( 0.013 GMac, 0.708% MACs, (conv0): Conv2d(0.003 GMac, 0.153% MACs, 256, 256, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), groups=256, bias=False) (bn0): BatchNorm2d(0.001 GMac, 0.076% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act0): PReLU(0.001 GMac, 0.038% MACs, num_parameters=256) (conv): Conv2d(0.008 GMac, 0.421% MACs, 256, 44, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.013% MACs, 44, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.007% MACs, num_parameters=44) ) (spp_dw): ModuleList( 0.001 GMac, 0.057% MACs, (0): CDilated1( 0.0 GMac, 0.014% MACs, (conv): Conv2d(0.0 GMac, 0.014% MACs, 44, 44, kernel_size=(3, 3), stride=(2, 2), groups=44, bias=False) ) (1): CDilated1( 0.0 GMac, 0.014% MACs, (conv): Conv2d(0.0 GMac, 0.014% MACs, 44, 44, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(2, 2), groups=44, bias=False) ) (2): CDilated1( 0.0 GMac, 0.014% MACs, (conv): Conv2d(0.0 GMac, 0.014% MACs, 44, 44, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), dilation=(3, 3), groups=44, bias=False) ) (3): CDilated1( 0.0 GMac, 0.014% MACs, (conv): Conv2d(0.0 GMac, 0.014% MACs, 44, 44, kernel_size=(3, 3), stride=(2, 2), padding=(3, 3), dilation=(4, 4), groups=44, bias=False) ) ) (conv_1x1_exp): CB( 0.008 GMac, 0.423% MACs, (conv): Conv2d(0.007 GMac, 0.405% MACs, 176, 256, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.0 GMac, 0.019% MACs, (bn): BatchNorm2d(0.0 GMac, 0.013% MACs, 176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.006% MACs, num_parameters=176) ) (module_act): PReLU(0.0 GMac, 0.000% MACs, num_parameters=256) ) (avg): AvgPool2d(0.001 GMac, 0.037% MACs, kernel_size=3, stride=2, padding=1) (inp_reinf): Sequential( 0.002 GMac, 0.095% MACs, (0): CBR( 0.0 GMac, 0.003% MACs, (conv): Conv2d(0.0 GMac, 0.003% MACs, 3, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.000% MACs, num_parameters=3) ) (1): CB( 0.002 GMac, 0.092% MACs, (conv): Conv2d(0.001 GMac, 0.055% MACs, 3, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (level4): ModuleList( 0.416 GMac, 22.623% MACs, (0): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (1): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (2): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (3): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (4): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (5): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (6): EESP( 0.059 GMac, 3.232% MACs, (proj_1x1): CBR( 0.011 GMac, 0.602% MACs, (conv): Conv2d(0.011 GMac, 0.588% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.009% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.005% MACs, num_parameters=128) ) (spp_dw): ModuleList( 0.003 GMac, 0.165% MACs, (0): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (1): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) ) (2): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=128, bias=False) ) (3): CDilated( 0.001 GMac, 0.041% MACs, (conv): Conv2d(0.001 GMac, 0.041% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=128, bias=False) ) ) (conv_1x1_exp): CB( 0.044 GMac, 2.391% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 512, 512, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.001 GMac, 0.055% MACs, (bn): BatchNorm2d(0.001 GMac, 0.037% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) (module_act): PReLU(0.0 GMac, 0.018% MACs, num_parameters=512) ) ) ) (proj_L4_C): CBR( 0.087 GMac, 4.735% MACs, (conv): Conv2d(0.087 GMac, 4.707% MACs, 512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.009% MACs, num_parameters=256) ) (pspMod): Sequential( 0.945 GMac, 51.406% MACs, (0): EESP( 0.076 GMac, 4.110% MACs, (proj_1x1): CBR( 0.022 GMac, 1.204% MACs, (conv): Conv2d(0.022 GMac, 1.177% MACs, 512, 64, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.018% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.009% MACs, num_parameters=64) ) (spp_dw): ModuleList( 0.006 GMac, 0.331% MACs, (0): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) ) (1): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) ) (2): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=64, bias=False) ) (3): CDilated( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=64, bias=False) ) ) (conv_1x1_exp): CB( 0.045 GMac, 2.427% MACs, (conv): Conv2d(0.043 GMac, 2.354% MACs, 256, 256, kernel_size=(1, 1), stride=(1, 1), groups=4, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (br_after_cat): BR( 0.002 GMac, 0.110% MACs, (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (module_act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) (1): PSPModule( 0.869 GMac, 47.296% MACs, (stages): ModuleList( 0.002 GMac, 0.111% MACs, (0): C( 0.002 GMac, 0.083% MACs, (conv): Conv2d(0.002 GMac, 0.083% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) ) (1): C( 0.0 GMac, 0.021% MACs, (conv): Conv2d(0.0 GMac, 0.021% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) ) (2): C( 0.0 GMac, 0.006% MACs, (conv): Conv2d(0.0 GMac, 0.006% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) ) (3): C( 0.0 GMac, 0.002% MACs, (conv): Conv2d(0.0 GMac, 0.002% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) ) ) (project): CBR( 0.867 GMac, 47.185% MACs, (conv): Conv2d(0.865 GMac, 47.075% MACs, 1280, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.074% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.001 GMac, 0.037% MACs, num_parameters=256) ) ) ) (project_l3): Sequential( 0.007 GMac, 0.405% MACs, (0): Dropout2d(0.0 GMac, 0.000% MACs, p=0.2, inplace=False) (1): C( 0.007 GMac, 0.405% MACs, (conv): Conv2d(0.007 GMac, 0.405% MACs, 256, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (act_l3): BR( 0.0 GMac, 0.005% MACs, (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.002% MACs, num_parameters=11) ) (project_l2): CBR( 0.016 GMac, 0.898% MACs, (conv): Conv2d(0.016 GMac, 0.879% MACs, 139, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.013% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): PReLU(0.0 GMac, 0.006% MACs, num_parameters=11) ) (project_l1): Sequential( 0.02 GMac, 1.087% MACs, (0): Dropout2d(0.0 GMac, 0.000% MACs, p=0.2, inplace=False) (1): C( 0.02 GMac, 1.087% MACs, (conv): Conv2d(0.02 GMac, 1.087% MACs, 43, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) ) 1.837661544 GMac 1.240402 4.731758117675781 MB [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [WARN] Cannot find rule for <class 'torch.nn.modules.activation.PReLU'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.CBR'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.CBR1'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.CDilated1'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'torch.nn.modules.container.ModuleList'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.CB'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.BR'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.ModelX4.EESP1'>. Treat it as zero Macs and zero Params. [INFO] Register count_avgpool() for <class 'torch.nn.modules.pooling.AvgPool2d'>. [WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.ModelX4.DownSampler'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.CDilated'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.ModelX4.EESP'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.ModelX4.EESPNet'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.C'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'model.ESPNet_v2.cnn_utilsX4.PSPModule'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'torch.nn.modules.dropout.Dropout2d'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.EESPNet_SegX4'>. Treat it as zero Macs and zero Params. 1.813505596 GMac 1.227267 4.681652069091797 MB Process finished with exit code 0 '''
[ "torch.cat", "torch.nn.functional.interpolate", "torch.cuda.is_available", "torch.load", "torch.nn.Dropout2d", "torch.randn", "torch.nn.DataParallel" ]
1.1.0
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
1.1
# *- coding: utf-8 -* ########################################################################### # https://github.com/Soulempty/BiSeNetV2-pytorch import torch import torch.nn as nn from torch.nn import functional as F from torchsummary import summary from utils.activations import NON_LINEARITY from fvcore.nn.flop_count import flop_count # https://github.com/facebookresearch/fvcore from tools.flops_counter.ptflops import get_model_complexity_info from thop import profile # https://github.com/Lyken17/pytorch-OpCounter __all__ = ['BiSeNetV2X28'] class conv2d(nn.Module): def __init__(self, in_dim, out_dim, k, pad, stride, groups=1, bias=False, use_bn=True, use_rl=True): super(conv2d, self).__init__() self.use_bn = use_bn self.use_rl = use_rl self.conv = nn.Conv2d(in_dim, out_dim, k, padding=pad, stride=stride, groups=groups, bias=bias) self.bn = nn.BatchNorm2d(out_dim) self.relu = nn.ReLU(inplace=True) def forward(self, bottom): if self.use_bn and self.use_rl: return self.relu(self.bn(self.conv(bottom))) elif self.use_bn: return self.bn(self.conv(bottom)) else: return self.conv(bottom) class StemBlock(nn.Module): def __init__(self): super(StemBlock, self).__init__() self.conv0 = conv2d(3, 3, 2, 1, 1) self.conv1 = conv2d(3, 16, 3, 0, 2) # self.conv_1x1 = conv2d(16, 8, 1, 0, 1) self.conv_2x2 = conv2d(16, 8, 2, 1, 1) self.conv_3x3 = conv2d(8, 16, 3, 0, 2) self.mpooling = nn.MaxPool2d(3, 2, 1) self.conv2 = conv2d(32, 16, 3, 1, 1) def forward(self, bottom): base = self.conv0(bottom) base = self.conv1(base) # conv_1 = self.conv_1x1(base) conv_2 = self.conv_2x2(base) conv_3 = self.conv_3x3(conv_2) pool = self.mpooling(base) cat = torch.cat([conv_3, pool], 1) res = self.conv2(cat) return res class ContextEmbeddingBlock(nn.Module): def __init__(self, in_dim): super(ContextEmbeddingBlock, self).__init__() self.gap = nn.AdaptiveAvgPool2d(1) # 1 self.bn1 = nn.BatchNorm2d(in_dim) self.conv1 = conv2d(in_dim, in_dim, 1, 0, 1) self.conv2 = conv2d(in_dim, in_dim, 3, 1, 1, use_bn=False, use_rl=False) def forward(self, bottom): gap = self.gap(bottom) bn = self.bn1(gap) conv1 = self.conv1(bn) feat = bottom + conv1 res = self.conv2(feat) return res class GatherExpansion(nn.Module): def __init__(self, in_dim, out_dim, stride=1, exp=6): super(GatherExpansion, self).__init__() exp_dim = in_dim * exp self.stride = stride self.conv1 = conv2d(in_dim, exp_dim, 3, 1, 1) self.dwconv2 = conv2d(exp_dim, exp_dim, 3, 1, 1, exp_dim, use_rl=False) self.conv_11 = conv2d(exp_dim, out_dim, 1, 0, 1, use_rl=False) self.dwconv1 = conv2d(exp_dim, exp_dim, 3, 1, 2, exp_dim, use_rl=False) self.dwconv3 = conv2d(in_dim, in_dim, 3, 1, 2, in_dim, use_rl=False) self.conv_12 = conv2d(in_dim, out_dim, 1, 0, 1, use_rl=False) self.relu = nn.ReLU(inplace=True) def forward(self, bottom): base = self.conv1(bottom) if self.stride == 2: base = self.dwconv1(base) bottom = self.dwconv3(bottom) bottom = self.conv_12(bottom) x = self.dwconv2(base) x = self.conv_11(x) res = self.relu(x + bottom) return res class BGA(nn.Module): def __init__(self, in_dim): super(BGA, self).__init__() self.in_dim = in_dim self.db_dwconv = conv2d(in_dim, in_dim, 3, 1, 1, in_dim, use_rl=False) self.db_conv1x1 = conv2d(in_dim, in_dim, 1, 0, 1, use_rl=False, use_bn=False) self.db_conv = conv2d(in_dim, in_dim, 3, 1, 2, use_rl=False) self.db_apooling = nn.AvgPool2d(3, 2, 1) self.sb_dwconv = conv2d(in_dim, in_dim, 3, 1, 1, in_dim, use_rl=False) self.sb_conv1x1 = conv2d(in_dim, in_dim, 1, 0, 1, use_rl=False, use_bn=False) self.sb_conv = conv2d(in_dim, in_dim, 3, 1, 1, use_rl=False) self.sb_sigmoid = nn.Sigmoid() self.conv = conv2d(in_dim, in_dim, 3, 1, 1, use_rl=False) def forward(self, db, sb): db_dwc = self.db_dwconv(db) db_out = self.db_conv1x1(db_dwc) # db_conv = self.db_conv(db) db_pool = self.db_apooling(db_conv) sb_dwc = self.sb_dwconv(sb) sb_out = self.sb_sigmoid(self.sb_conv1x1(sb_dwc)) # sb_conv = self.sb_conv(sb) sb_up = self.sb_sigmoid(F.interpolate(sb_conv, size=db_out.size()[2:], mode="bilinear", align_corners=True)) db_l = db_out * sb_up sb_r = F.interpolate(sb_out * db_pool, size=db_out.size()[2:], mode="bilinear", align_corners=True) res = self.conv(db_l + sb_r) return res class SegHead(nn.Module): def __init__(self, in_dim, out_dim, classes): super(SegHead, self).__init__() # self.size = size self.conv = conv2d(in_dim, out_dim, 3, 1, 1) self.classes = conv2d(out_dim, classes, 1, 0, 1, use_bn=False, use_rl=False) def forward(self, feat,size): x = self.conv(feat) x = self.classes(x) pred = F.interpolate(x, size=size, mode="bilinear", align_corners=True) return pred class DetailedBranch(nn.Module): def __init__(self): super(DetailedBranch, self).__init__() self.s1_conv1 = conv2d(3, 64, 3, 1, 2) self.s1_conv2 = conv2d(64, 64, 3, 1, 1) self.s2_conv1 = conv2d(64, 64, 3, 1, 2) self.s2_conv2 = conv2d(64, 64, 3, 1, 1) self.s2_conv3 = conv2d(64, 64, 3, 1, 1) self.s3_conv1 = conv2d(64, 128, 3, 1, 2) self.s3_conv2 = conv2d(128, 128, 3, 1, 1) self.s3_conv3 = conv2d(128, 128, 3, 1, 1) def forward(self, bottom): s1_1 = self.s1_conv1(bottom) s1_2 = self.s1_conv2(s1_1) s2_1 = self.s2_conv1(s1_2) s2_2 = self.s2_conv2(s2_1) s2_3 = self.s2_conv3(s2_2) s3_1 = self.s3_conv1(s2_3) s3_2 = self.s3_conv2(s3_1) s3_3 = self.s3_conv3(s3_2) return s3_3 class SemanticBranch(nn.Module): def __init__(self, classes): super(SemanticBranch, self).__init__() # self.training = True self.stem = StemBlock() self.s3_ge1 = GatherExpansion(16, 32, 2) self.s3_ge2 = GatherExpansion(32, 32) self.s4_ge1 = GatherExpansion(32, 64, 2) self.s4_ge2 = GatherExpansion(64, 64) self.s5_ge1 = GatherExpansion(64, 128, 2) self.s5_ge2 = GatherExpansion(128, 128) self.s5_ge3 = GatherExpansion(128, 128) self.s5_ge4 = GatherExpansion(128, 128) self.s5_ge5 = GatherExpansion(128, 128, exp=1) # if self.training: self.seghead1 = SegHead(16, 16, classes) self.seghead2 = SegHead(32, 32, classes) self.seghead3 = SegHead(64, 64, classes) self.seghead4 = SegHead(128, 128, classes) self.ceb = ContextEmbeddingBlock(128) def forward(self, bottom, size): stg12 = self.stem(bottom) # print(stg12.size()) stg3 = self.s3_ge1(stg12) stg3 = self.s3_ge2(stg3) # print(stg3.size()) stg4 = self.s4_ge1(stg3) stg4 = self.s4_ge2(stg4) # print(stg4.size()) stg5 = self.s5_ge1(stg4) stg5 = self.s5_ge2(stg5) stg5 = self.s5_ge3(stg5) stg5 = self.s5_ge4(stg5) stg5 = self.s5_ge5(stg5) # print(stg5.size()) out = self.ceb(stg5) # if self.training: seghead1 = self.seghead1(stg12,size) seghead2 = self.seghead2(stg3,size) seghead3 = self.seghead3(stg4,size) seghead4 = self.seghead4(stg5,size) return out, seghead1, seghead2, seghead3, seghead4 # else: # return out class BiSeNetV2X28(nn.Module): def __init__(self, classes): super(BiSeNetV2X28, self).__init__() # self.training = True self.db = DetailedBranch() self.sb = SemanticBranch(classes) self.bga = BGA(128) self.seghead = SegHead(128, 128, classes) self._init_params() # self.criterion = nn.CrossEntropyLoss(ignore_index=255) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, data, y=None): size = data.size()[2:] db = self.db(data) # if self.training: sb, head1, head2, head3, head4 = self.sb(data,size) # else: # sb = self.sb(data,size) bga = self.bga(db, sb) pred = self.seghead(bga,size) # if self.training: # main_loss = self.criterion(pred, y) # aux1_loss = self.criterion(head1, y) # aux2_loss = self.criterion(head2, y) # aux3_loss = self.criterion(head3, y) # aux4_loss = self.criterion(head4, y) # return pred.max(1)[1], main_loss, (aux1_loss, aux2_loss, aux3_loss, aux4_loss) return [pred,head1, head2, head3, head4] if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BiSeNetV2X28(classes=11).to(device) summary(model,(3, 352, 480)) flops_count, params_count = get_model_complexity_info(model, (3, 352, 480), as_strings=False, print_per_layer_stat=True) print(flops_count/1000000000,'GMac', params_count/1000000, params_count/1024/1024*4,'MB') x = torch.randn(2, 3, 352, 480).to(device) input = x macs, params = profile(model, inputs=(input,)) print(macs/2000000000,'GMac', params/1000000, params/1024/1024*4,'MB') # from fvcore.nn.jit_handles import batchnorm_flop_jit # from fvcore.nn.jit_handles import generic_activation_jit # # supported_ops = { # "aten::batch_norm": batchnorm_flop_jit, # } # flop_dict, _ = flop_count(model, (x,), supported_ops) # print(flop_dict) ''' /home/ethan/anaconda3/envs/py36_cuda101/bin/python /home/ethan/codes/Efficient-Segmentation-Networks/model/BiSeNetV2X28.py ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 176, 240] 1,728 BatchNorm2d-2 [-1, 64, 176, 240] 128 ReLU-3 [-1, 64, 176, 240] 0 conv2d-4 [-1, 64, 176, 240] 0 Conv2d-5 [-1, 64, 176, 240] 36,864 BatchNorm2d-6 [-1, 64, 176, 240] 128 ReLU-7 [-1, 64, 176, 240] 0 conv2d-8 [-1, 64, 176, 240] 0 Conv2d-9 [-1, 64, 88, 120] 36,864 BatchNorm2d-10 [-1, 64, 88, 120] 128 ReLU-11 [-1, 64, 88, 120] 0 conv2d-12 [-1, 64, 88, 120] 0 Conv2d-13 [-1, 64, 88, 120] 36,864 BatchNorm2d-14 [-1, 64, 88, 120] 128 ReLU-15 [-1, 64, 88, 120] 0 conv2d-16 [-1, 64, 88, 120] 0 Conv2d-17 [-1, 64, 88, 120] 36,864 BatchNorm2d-18 [-1, 64, 88, 120] 128 ReLU-19 [-1, 64, 88, 120] 0 conv2d-20 [-1, 64, 88, 120] 0 Conv2d-21 [-1, 128, 44, 60] 73,728 BatchNorm2d-22 [-1, 128, 44, 60] 256 ReLU-23 [-1, 128, 44, 60] 0 conv2d-24 [-1, 128, 44, 60] 0 Conv2d-25 [-1, 128, 44, 60] 147,456 BatchNorm2d-26 [-1, 128, 44, 60] 256 ReLU-27 [-1, 128, 44, 60] 0 conv2d-28 [-1, 128, 44, 60] 0 Conv2d-29 [-1, 128, 44, 60] 147,456 BatchNorm2d-30 [-1, 128, 44, 60] 256 ReLU-31 [-1, 128, 44, 60] 0 conv2d-32 [-1, 128, 44, 60] 0 DetailedBranch-33 [-1, 128, 44, 60] 0 Conv2d-34 [-1, 3, 353, 481] 36 BatchNorm2d-35 [-1, 3, 353, 481] 6 ReLU-36 [-1, 3, 353, 481] 0 conv2d-37 [-1, 3, 353, 481] 0 Conv2d-38 [-1, 16, 176, 240] 432 BatchNorm2d-39 [-1, 16, 176, 240] 32 ReLU-40 [-1, 16, 176, 240] 0 conv2d-41 [-1, 16, 176, 240] 0 Conv2d-42 [-1, 8, 176, 240] 128 BatchNorm2d-43 [-1, 8, 176, 240] 16 ReLU-44 [-1, 8, 176, 240] 0 conv2d-45 [-1, 8, 176, 240] 0 Conv2d-46 [-1, 8, 177, 241] 256 BatchNorm2d-47 [-1, 8, 177, 241] 16 ReLU-48 [-1, 8, 177, 241] 0 conv2d-49 [-1, 8, 177, 241] 0 Conv2d-50 [-1, 16, 88, 120] 1,152 BatchNorm2d-51 [-1, 16, 88, 120] 32 ReLU-52 [-1, 16, 88, 120] 0 conv2d-53 [-1, 16, 88, 120] 0 MaxPool2d-54 [-1, 16, 88, 120] 0 Conv2d-55 [-1, 16, 88, 120] 4,608 BatchNorm2d-56 [-1, 16, 88, 120] 32 ReLU-57 [-1, 16, 88, 120] 0 conv2d-58 [-1, 16, 88, 120] 0 StemBlock-59 [-1, 16, 88, 120] 0 Conv2d-60 [-1, 96, 88, 120] 13,824 BatchNorm2d-61 [-1, 96, 88, 120] 192 ReLU-62 [-1, 96, 88, 120] 0 conv2d-63 [-1, 96, 88, 120] 0 Conv2d-64 [-1, 96, 44, 60] 864 BatchNorm2d-65 [-1, 96, 44, 60] 192 conv2d-66 [-1, 96, 44, 60] 0 Conv2d-67 [-1, 16, 44, 60] 144 BatchNorm2d-68 [-1, 16, 44, 60] 32 conv2d-69 [-1, 16, 44, 60] 0 Conv2d-70 [-1, 32, 44, 60] 512 BatchNorm2d-71 [-1, 32, 44, 60] 64 conv2d-72 [-1, 32, 44, 60] 0 Conv2d-73 [-1, 96, 44, 60] 864 BatchNorm2d-74 [-1, 96, 44, 60] 192 conv2d-75 [-1, 96, 44, 60] 0 Conv2d-76 [-1, 32, 44, 60] 3,072 BatchNorm2d-77 [-1, 32, 44, 60] 64 conv2d-78 [-1, 32, 44, 60] 0 ReLU-79 [-1, 32, 44, 60] 0 GatherExpansion-80 [-1, 32, 44, 60] 0 Conv2d-81 [-1, 192, 44, 60] 55,296 BatchNorm2d-82 [-1, 192, 44, 60] 384 ReLU-83 [-1, 192, 44, 60] 0 conv2d-84 [-1, 192, 44, 60] 0 Conv2d-85 [-1, 192, 44, 60] 1,728 BatchNorm2d-86 [-1, 192, 44, 60] 384 conv2d-87 [-1, 192, 44, 60] 0 Conv2d-88 [-1, 32, 44, 60] 6,144 BatchNorm2d-89 [-1, 32, 44, 60] 64 conv2d-90 [-1, 32, 44, 60] 0 ReLU-91 [-1, 32, 44, 60] 0 GatherExpansion-92 [-1, 32, 44, 60] 0 Conv2d-93 [-1, 192, 44, 60] 55,296 BatchNorm2d-94 [-1, 192, 44, 60] 384 ReLU-95 [-1, 192, 44, 60] 0 conv2d-96 [-1, 192, 44, 60] 0 Conv2d-97 [-1, 192, 22, 30] 1,728 BatchNorm2d-98 [-1, 192, 22, 30] 384 conv2d-99 [-1, 192, 22, 30] 0 Conv2d-100 [-1, 32, 22, 30] 288 BatchNorm2d-101 [-1, 32, 22, 30] 64 conv2d-102 [-1, 32, 22, 30] 0 Conv2d-103 [-1, 64, 22, 30] 2,048 BatchNorm2d-104 [-1, 64, 22, 30] 128 conv2d-105 [-1, 64, 22, 30] 0 Conv2d-106 [-1, 192, 22, 30] 1,728 BatchNorm2d-107 [-1, 192, 22, 30] 384 conv2d-108 [-1, 192, 22, 30] 0 Conv2d-109 [-1, 64, 22, 30] 12,288 BatchNorm2d-110 [-1, 64, 22, 30] 128 conv2d-111 [-1, 64, 22, 30] 0 ReLU-112 [-1, 64, 22, 30] 0 GatherExpansion-113 [-1, 64, 22, 30] 0 Conv2d-114 [-1, 384, 22, 30] 221,184 BatchNorm2d-115 [-1, 384, 22, 30] 768 ReLU-116 [-1, 384, 22, 30] 0 conv2d-117 [-1, 384, 22, 30] 0 Conv2d-118 [-1, 384, 22, 30] 3,456 BatchNorm2d-119 [-1, 384, 22, 30] 768 conv2d-120 [-1, 384, 22, 30] 0 Conv2d-121 [-1, 64, 22, 30] 24,576 BatchNorm2d-122 [-1, 64, 22, 30] 128 conv2d-123 [-1, 64, 22, 30] 0 ReLU-124 [-1, 64, 22, 30] 0 GatherExpansion-125 [-1, 64, 22, 30] 0 Conv2d-126 [-1, 384, 22, 30] 221,184 BatchNorm2d-127 [-1, 384, 22, 30] 768 ReLU-128 [-1, 384, 22, 30] 0 conv2d-129 [-1, 384, 22, 30] 0 Conv2d-130 [-1, 384, 11, 15] 3,456 BatchNorm2d-131 [-1, 384, 11, 15] 768 conv2d-132 [-1, 384, 11, 15] 0 Conv2d-133 [-1, 64, 11, 15] 576 BatchNorm2d-134 [-1, 64, 11, 15] 128 conv2d-135 [-1, 64, 11, 15] 0 Conv2d-136 [-1, 128, 11, 15] 8,192 BatchNorm2d-137 [-1, 128, 11, 15] 256 conv2d-138 [-1, 128, 11, 15] 0 Conv2d-139 [-1, 384, 11, 15] 3,456 BatchNorm2d-140 [-1, 384, 11, 15] 768 conv2d-141 [-1, 384, 11, 15] 0 Conv2d-142 [-1, 128, 11, 15] 49,152 BatchNorm2d-143 [-1, 128, 11, 15] 256 conv2d-144 [-1, 128, 11, 15] 0 ReLU-145 [-1, 128, 11, 15] 0 GatherExpansion-146 [-1, 128, 11, 15] 0 Conv2d-147 [-1, 768, 11, 15] 884,736 BatchNorm2d-148 [-1, 768, 11, 15] 1,536 ReLU-149 [-1, 768, 11, 15] 0 conv2d-150 [-1, 768, 11, 15] 0 Conv2d-151 [-1, 768, 11, 15] 6,912 BatchNorm2d-152 [-1, 768, 11, 15] 1,536 conv2d-153 [-1, 768, 11, 15] 0 Conv2d-154 [-1, 128, 11, 15] 98,304 BatchNorm2d-155 [-1, 128, 11, 15] 256 conv2d-156 [-1, 128, 11, 15] 0 ReLU-157 [-1, 128, 11, 15] 0 GatherExpansion-158 [-1, 128, 11, 15] 0 Conv2d-159 [-1, 768, 11, 15] 884,736 BatchNorm2d-160 [-1, 768, 11, 15] 1,536 ReLU-161 [-1, 768, 11, 15] 0 conv2d-162 [-1, 768, 11, 15] 0 Conv2d-163 [-1, 768, 11, 15] 6,912 BatchNorm2d-164 [-1, 768, 11, 15] 1,536 conv2d-165 [-1, 768, 11, 15] 0 Conv2d-166 [-1, 128, 11, 15] 98,304 BatchNorm2d-167 [-1, 128, 11, 15] 256 conv2d-168 [-1, 128, 11, 15] 0 ReLU-169 [-1, 128, 11, 15] 0 GatherExpansion-170 [-1, 128, 11, 15] 0 Conv2d-171 [-1, 768, 11, 15] 884,736 BatchNorm2d-172 [-1, 768, 11, 15] 1,536 ReLU-173 [-1, 768, 11, 15] 0 conv2d-174 [-1, 768, 11, 15] 0 Conv2d-175 [-1, 768, 11, 15] 6,912 BatchNorm2d-176 [-1, 768, 11, 15] 1,536 conv2d-177 [-1, 768, 11, 15] 0 Conv2d-178 [-1, 128, 11, 15] 98,304 BatchNorm2d-179 [-1, 128, 11, 15] 256 conv2d-180 [-1, 128, 11, 15] 0 ReLU-181 [-1, 128, 11, 15] 0 GatherExpansion-182 [-1, 128, 11, 15] 0 Conv2d-183 [-1, 128, 11, 15] 147,456 BatchNorm2d-184 [-1, 128, 11, 15] 256 ReLU-185 [-1, 128, 11, 15] 0 conv2d-186 [-1, 128, 11, 15] 0 Conv2d-187 [-1, 128, 11, 15] 1,152 BatchNorm2d-188 [-1, 128, 11, 15] 256 conv2d-189 [-1, 128, 11, 15] 0 Conv2d-190 [-1, 128, 11, 15] 16,384 BatchNorm2d-191 [-1, 128, 11, 15] 256 conv2d-192 [-1, 128, 11, 15] 0 ReLU-193 [-1, 128, 11, 15] 0 GatherExpansion-194 [-1, 128, 11, 15] 0 AdaptiveAvgPool2d-195 [-1, 128, 1, 1] 0 BatchNorm2d-196 [-1, 128, 1, 1] 256 Conv2d-197 [-1, 128, 1, 1] 16,384 BatchNorm2d-198 [-1, 128, 1, 1] 256 ReLU-199 [-1, 128, 1, 1] 0 conv2d-200 [-1, 128, 1, 1] 0 Conv2d-201 [-1, 128, 11, 15] 147,456 conv2d-202 [-1, 128, 11, 15] 0 ContextEmbeddingBlock-203 [-1, 128, 11, 15] 0 Conv2d-204 [-1, 16, 88, 120] 2,304 BatchNorm2d-205 [-1, 16, 88, 120] 32 ReLU-206 [-1, 16, 88, 120] 0 conv2d-207 [-1, 16, 88, 120] 0 Conv2d-208 [-1, 11, 88, 120] 176 conv2d-209 [-1, 11, 88, 120] 0 SegHead-210 [-1, 11, 352, 480] 0 Conv2d-211 [-1, 32, 44, 60] 9,216 BatchNorm2d-212 [-1, 32, 44, 60] 64 ReLU-213 [-1, 32, 44, 60] 0 conv2d-214 [-1, 32, 44, 60] 0 Conv2d-215 [-1, 11, 44, 60] 352 conv2d-216 [-1, 11, 44, 60] 0 SegHead-217 [-1, 11, 352, 480] 0 Conv2d-218 [-1, 64, 22, 30] 36,864 BatchNorm2d-219 [-1, 64, 22, 30] 128 ReLU-220 [-1, 64, 22, 30] 0 conv2d-221 [-1, 64, 22, 30] 0 Conv2d-222 [-1, 11, 22, 30] 704 conv2d-223 [-1, 11, 22, 30] 0 SegHead-224 [-1, 11, 352, 480] 0 Conv2d-225 [-1, 128, 11, 15] 147,456 BatchNorm2d-226 [-1, 128, 11, 15] 256 ReLU-227 [-1, 128, 11, 15] 0 conv2d-228 [-1, 128, 11, 15] 0 Conv2d-229 [-1, 11, 11, 15] 1,408 conv2d-230 [-1, 11, 11, 15] 0 SegHead-231 [-1, 11, 352, 480] 0 SemanticBranch-232 [[-1, 128, 11, 15], [-1, 11, 352, 480], [-1, 11, 352, 480], [-1, 11, 352, 480], [-1, 11, 352, 480]] 0 Conv2d-233 [-1, 128, 44, 60] 1,152 BatchNorm2d-234 [-1, 128, 44, 60] 256 conv2d-235 [-1, 128, 44, 60] 0 Conv2d-236 [-1, 128, 44, 60] 16,384 conv2d-237 [-1, 128, 44, 60] 0 Conv2d-238 [-1, 128, 22, 30] 147,456 BatchNorm2d-239 [-1, 128, 22, 30] 256 conv2d-240 [-1, 128, 22, 30] 0 AvgPool2d-241 [-1, 128, 11, 15] 0 Conv2d-242 [-1, 128, 11, 15] 1,152 BatchNorm2d-243 [-1, 128, 11, 15] 256 conv2d-244 [-1, 128, 11, 15] 0 Conv2d-245 [-1, 128, 11, 15] 16,384 conv2d-246 [-1, 128, 11, 15] 0 Sigmoid-247 [-1, 128, 11, 15] 0 Conv2d-248 [-1, 128, 11, 15] 147,456 BatchNorm2d-249 [-1, 128, 11, 15] 256 conv2d-250 [-1, 128, 11, 15] 0 Sigmoid-251 [-1, 128, 44, 60] 0 Conv2d-252 [-1, 128, 44, 60] 147,456 BatchNorm2d-253 [-1, 128, 44, 60] 256 conv2d-254 [-1, 128, 44, 60] 0 BGA-255 [-1, 128, 44, 60] 0 Conv2d-256 [-1, 128, 44, 60] 147,456 BatchNorm2d-257 [-1, 128, 44, 60] 256 ReLU-258 [-1, 128, 44, 60] 0 conv2d-259 [-1, 128, 44, 60] 0 Conv2d-260 [-1, 11, 44, 60] 1,408 conv2d-261 [-1, 11, 44, 60] 0 SegHead-262 [-1, 11, 352, 480] 0 ================================================================ Total params: 5,361,434 Trainable params: 5,361,434 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 1.93 Forward/backward pass size (MB): 62196495155808.92 Params size (MB): 20.45 Estimated Total Size (MB): 62196495155831.31 ---------------------------------------------------------------- BiSeNetV2X28( 6.325 GMac, 100.000% MACs, (db): DetailedBranch( 3.797 GMac, 60.023% MACs, (s1_conv1): conv2d( 0.081 GMac, 1.282% MACs, (conv): Conv2d(0.073 GMac, 1.154% MACs, 3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.005 GMac, 0.085% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.003 GMac, 0.043% MACs, inplace=True) ) (s1_conv2): conv2d( 1.565 GMac, 24.746% MACs, (conv): Conv2d(1.557 GMac, 24.618% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.005 GMac, 0.085% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.003 GMac, 0.043% MACs, inplace=True) ) (s2_conv1): conv2d( 0.391 GMac, 6.187% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.021% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.011% MACs, inplace=True) ) (s2_conv2): conv2d( 0.391 GMac, 6.187% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.021% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.011% MACs, inplace=True) ) (s2_conv3): conv2d( 0.391 GMac, 6.187% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.021% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.011% MACs, inplace=True) ) (s3_conv1): conv2d( 0.196 GMac, 3.093% MACs, (conv): Conv2d(0.195 GMac, 3.077% MACs, 64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) (s3_conv2): conv2d( 0.39 GMac, 6.171% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) (s3_conv3): conv2d( 0.39 GMac, 6.171% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) ) (sb): SemanticBranch( 1.573 GMac, 24.866% MACs, (stem): StemBlock( 0.109 GMac, 1.720% MACs, (conv0): conv2d( 0.008 GMac, 0.121% MACs, (conv): Conv2d(0.006 GMac, 0.097% MACs, 3, 3, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.016% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) ) (conv1): conv2d( 0.02 GMac, 0.321% MACs, (conv): Conv2d(0.018 GMac, 0.288% MACs, 3, 16, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.021% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.011% MACs, inplace=True) ) (conv_1x1): conv2d( 0.006 GMac, 0.102% MACs, (conv): Conv2d(0.005 GMac, 0.085% MACs, 16, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) (conv_2x2): conv2d( 0.012 GMac, 0.189% MACs, (conv): Conv2d(0.011 GMac, 0.173% MACs, 8, 8, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) (conv_3x3): conv2d( 0.013 GMac, 0.200% MACs, (conv): Conv2d(0.012 GMac, 0.192% MACs, 8, 16, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.005% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.003% MACs, inplace=True) ) (mpooling): MaxPool2d(0.001 GMac, 0.011% MACs, kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (conv2): conv2d( 0.049 GMac, 0.777% MACs, (conv): Conv2d(0.049 GMac, 0.769% MACs, 32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.005% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.003% MACs, inplace=True) ) ) (s3_ge1): GatherExpansion( 0.165 GMac, 2.608% MACs, (conv1): conv2d( 0.149 GMac, 2.356% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 16, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.002 GMac, 0.032% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.016% MACs, inplace=True) ) (dwconv2): conv2d( 0.003 GMac, 0.044% MACs, (conv): Conv2d(0.002 GMac, 0.036% MACs, 96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.008% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.008 GMac, 0.131% MACs, (conv): Conv2d(0.008 GMac, 0.128% MACs, 96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.003 GMac, 0.044% MACs, (conv): Conv2d(0.002 GMac, 0.036% MACs, 96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.008% MACs, 96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.007% MACs, (conv): Conv2d(0.0 GMac, 0.006% MACs, 16, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=16, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.002 GMac, 0.024% MACs, (conv): Conv2d(0.001 GMac, 0.021% MACs, 16, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (s3_ge2): GatherExpansion( 0.17 GMac, 2.681% MACs, (conv1): conv2d( 0.148 GMac, 2.332% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 32, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.016% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) ) (dwconv2): conv2d( 0.006 GMac, 0.088% MACs, (conv): Conv2d(0.005 GMac, 0.072% MACs, 192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.016% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.016 GMac, 0.259% MACs, (conv): Conv2d(0.016 GMac, 0.256% MACs, 192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (s4_ge1): GatherExpansion( 0.16 GMac, 2.533% MACs, (conv1): conv2d( 0.148 GMac, 2.332% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 32, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.016% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) ) (dwconv2): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.018% MACs, 192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.008 GMac, 0.130% MACs, (conv): Conv2d(0.008 GMac, 0.128% MACs, 192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.018% MACs, 192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.004% MACs, (conv): Conv2d(0.0 GMac, 0.003% MACs, 32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.001 GMac, 0.023% MACs, (conv): Conv2d(0.001 GMac, 0.021% MACs, 32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (s4_ge2): GatherExpansion( 0.166 GMac, 2.622% MACs, (conv1): conv2d( 0.147 GMac, 2.320% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 64, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.008% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.004% MACs, inplace=True) ) (dwconv2): conv2d( 0.003 GMac, 0.044% MACs, (conv): Conv2d(0.002 GMac, 0.036% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.008% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.016 GMac, 0.258% MACs, (conv): Conv2d(0.016 GMac, 0.256% MACs, 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=64, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (s5_ge1): GatherExpansion( 0.158 GMac, 2.495% MACs, (conv1): conv2d( 0.147 GMac, 2.320% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 64, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.008% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.004% MACs, inplace=True) ) (dwconv2): conv2d( 0.001 GMac, 0.011% MACs, (conv): Conv2d(0.001 GMac, 0.009% MACs, 384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.002% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.008 GMac, 0.129% MACs, (conv): Conv2d(0.008 GMac, 0.128% MACs, 384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.001 GMac, 0.011% MACs, (conv): Conv2d(0.001 GMac, 0.009% MACs, 384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.002% MACs, 384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.002% MACs, (conv): Conv2d(0.0 GMac, 0.002% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=64, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.021% MACs, 64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (s5_ge2): GatherExpansion( 0.164 GMac, 2.593% MACs, (conv1): conv2d( 0.146 GMac, 2.314% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 128, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) ) (dwconv2): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.018% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.016 GMac, 0.257% MACs, (conv): Conv2d(0.016 GMac, 0.256% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (s5_ge3): GatherExpansion( 0.164 GMac, 2.593% MACs, (conv1): conv2d( 0.146 GMac, 2.314% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 128, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) ) (dwconv2): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.018% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.016 GMac, 0.257% MACs, (conv): Conv2d(0.016 GMac, 0.256% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (s5_ge4): GatherExpansion( 0.164 GMac, 2.593% MACs, (conv1): conv2d( 0.146 GMac, 2.314% MACs, (conv): Conv2d(0.146 GMac, 2.308% MACs, 128, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) ) (dwconv2): conv2d( 0.001 GMac, 0.022% MACs, (conv): Conv2d(0.001 GMac, 0.018% MACs, 768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.004% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.016 GMac, 0.257% MACs, (conv): Conv2d(0.016 GMac, 0.256% MACs, 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=768, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (s5_ge5): GatherExpansion( 0.027 GMac, 0.433% MACs, (conv1): conv2d( 0.024 GMac, 0.386% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv2): conv2d( 0.0 GMac, 0.004% MACs, (conv): Conv2d(0.0 GMac, 0.003% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_11): conv2d( 0.003 GMac, 0.043% MACs, (conv): Conv2d(0.003 GMac, 0.043% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dwconv3): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv_12): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (seghead1): SegHead( 0.027 GMac, 0.422% MACs, (conv): conv2d( 0.025 GMac, 0.393% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.005% MACs, 16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.003% MACs, inplace=True) ) (classes): conv2d( 0.002 GMac, 0.029% MACs, (conv): Conv2d(0.002 GMac, 0.029% MACs, 16, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (seghead2): SegHead( 0.026 GMac, 0.403% MACs, (conv): conv2d( 0.025 GMac, 0.389% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (classes): conv2d( 0.001 GMac, 0.015% MACs, (conv): Conv2d(0.001 GMac, 0.015% MACs, 32, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (seghead3): SegHead( 0.025 GMac, 0.394% MACs, (conv): conv2d( 0.024 GMac, 0.387% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (classes): conv2d( 0.0 GMac, 0.007% MACs, (conv): Conv2d(0.0 GMac, 0.007% MACs, 64, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (seghead4): SegHead( 0.025 GMac, 0.389% MACs, (conv): conv2d( 0.024 GMac, 0.386% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (classes): conv2d( 0.0 GMac, 0.004% MACs, (conv): Conv2d(0.0 GMac, 0.004% MACs, 128, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (ceb): ContextEmbeddingBlock( 0.024 GMac, 0.385% MACs, (gap): AdaptiveAvgPool2d(0.0 GMac, 0.000% MACs, output_size=1) (bn1): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): conv2d( 0.0 GMac, 0.000% MACs, (conv): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (conv2): conv2d( 0.024 GMac, 0.385% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) ) (bga): BGA( 0.562 GMac, 8.882% MACs, (db_dwconv): conv2d( 0.004 GMac, 0.059% MACs, (conv): Conv2d(0.003 GMac, 0.048% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (db_conv1x1): conv2d( 0.043 GMac, 0.684% MACs, (conv): Conv2d(0.043 GMac, 0.684% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (db_conv): conv2d( 0.097 GMac, 1.541% MACs, (conv): Conv2d(0.097 GMac, 1.539% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.003% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (db_apooling): AvgPool2d(0.0 GMac, 0.001% MACs, kernel_size=3, stride=2, padding=1) (sb_dwconv): conv2d( 0.0 GMac, 0.004% MACs, (conv): Conv2d(0.0 GMac, 0.003% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (sb_conv1x1): conv2d( 0.003 GMac, 0.043% MACs, (conv): Conv2d(0.003 GMac, 0.043% MACs, 128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (sb_conv): conv2d( 0.024 GMac, 0.385% MACs, (conv): Conv2d(0.024 GMac, 0.385% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (sb_sigmoid): Sigmoid(0.0 GMac, 0.000% MACs, ) (conv): conv2d( 0.39 GMac, 6.165% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (seghead): SegHead( 0.394 GMac, 6.229% MACs, (conv): conv2d( 0.39 GMac, 6.171% MACs, (conv): Conv2d(0.389 GMac, 6.155% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.005% MACs, inplace=True) ) (classes): conv2d( 0.004 GMac, 0.059% MACs, (conv): Conv2d(0.004 GMac, 0.059% MACs, 128, 11, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(0.0 GMac, 0.000% MACs, 11, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) ) 6.325178309 GMac 5.47396 20.881500244140625 MB [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>. [WARN] Cannot find rule for <class '__main__.conv2d'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.DetailedBranch'>. Treat it as zero Macs and zero Params. [INFO] Register zero_ops() for <class 'torch.nn.modules.pooling.MaxPool2d'>. [WARN] Cannot find rule for <class '__main__.StemBlock'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.GatherExpansion'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.SegHead'>. Treat it as zero Macs and zero Params. [INFO] Register count_adap_avgpool() for <class 'torch.nn.modules.pooling.AdaptiveAvgPool2d'>. [WARN] Cannot find rule for <class '__main__.ContextEmbeddingBlock'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.SemanticBranch'>. Treat it as zero Macs and zero Params. [INFO] Register count_avgpool() for <class 'torch.nn.modules.pooling.AvgPool2d'>. [WARN] Cannot find rule for <class 'torch.nn.modules.activation.Sigmoid'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.BGA'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.BiSeNetV2X28'>. Treat it as zero Macs and zero Params. 6.309839354 GMac 5.361434 20.452247619628906 MB Process finished with exit code 0 '''
[ "torch.cat", "torch.nn.MaxPool2d", "torch.nn.Sigmoid", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.functional.interpolate", "torch.nn.init.kaiming_normal_", "torch.nn.init.constant_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.nn.init.normal_", "torch.nn.AdaptiveAvgPool2d", "torch.randn" ]
1.1.0
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
1.2
from typing import Any, Iterator, Iterable, Tuple, List, Callable import warnings import _collections_abc import random import itertools import lineflow as lf from torch.utils.data import IterableDataset from torch.utils.data import get_worker_info class Dataset(IterableDataset): def __init__(self, dataset: Iterable[Any]) -> None: assert isinstance(dataset, _collections_abc.Iterable) self._dataset = dataset def __iter__(self) -> Iterator[Any]: iterable, self._dataset = itertools.tee(self._dataset) yield from iterable def all(self) -> List[Any]: return list(self) def apply(self, transformation_func: Callable[[Iterator[Any]], Iterator[Any]] ) -> 'ApplyDataset': return ApplyDataset(self, transformation_func) def batch(self, batch_size: int) -> 'BatchDataset': return BatchDataset(self, batch_size) def concat(self, *others: Tuple['Dataset']) -> 'ConcatDataset': return ConcatDataset(self, *others) def flat_map(self, map_func: Callable[[Any], Iterable[Any]]) -> 'FlatMapDataset': return FlatMapDataset(self, map_func) def filter(self, predicate: Callable[[Any], bool]) -> 'FilterDataset': return FilterDataset(self, predicate) def first(self) -> Any: return next(iter(self)) def map(self, map_func: Callable[[Any], Any]) -> 'MapDataset': return MapDataset(self, map_func) def parallel(self) -> 'ParallelDataset': return ParallelDataset(self) def shard(self, num_shards, index) -> 'ShardDataset': return ShardDataset(self, num_shards, index) def shuffle(self, buffer_size: int = None) -> 'ShuffleDataset': return ShuffleDataset(self, buffer_size) def sort(self, sort_key: Callable, buffer_size: int = None) -> 'SortDataset': return SortDataset(self, sort_key, buffer_size) def take(self, n) -> List[Any]: return list(itertools.islice(self, n)) def window(self, window_size: int, shift: int = None) -> 'WindowDataset': return WindowDataset(self, window_size, shift) def zip(self, *others: Tuple['Dataset']) -> 'ZipDataset': return ZipDataset(self, *others) __add__ = concat class ApplyDataset(Dataset): def __init__(self, dataset: Dataset, transformation_func: Callable[[Iterator[Any]], Iterator[Any]] ) -> None: super(ApplyDataset, self).__init__(dataset) assert callable(transformation_func) self._transformation_func = transformation_func def __iter__(self) -> Iterator[Any]: return self._transformation_func(self._dataset) class BatchDataset(Dataset): def __init__(self, dataset: Dataset, batch_size: int) -> None: super(BatchDataset, self).__init__(dataset) self._batch_size = batch_size def __iter__(self) -> Iterator[Any]: batch = [] for x in self._dataset: batch.append(x) if len(batch) == self._batch_size: yield batch batch = [] if batch: yield batch class ConcatDataset(Dataset): def __init__(self, dataset: Dataset, *others: Tuple[Dataset]) -> None: super(ConcatDataset, self).__init__(dataset) assert all(isinstance(d, Dataset) for d in others) self._others = others def __iter__(self): yield from itertools.chain(self._dataset, *self._others) class FlatMapDataset(Dataset): def __init__(self, dataset: Dataset, map_func: Callable[[Any], Iterable[Any]]) -> None: super(FlatMapDataset, self).__init__(dataset) assert callable(map_func) self._map_func = map_func def __iter__(self) -> Iterator[Any]: yield from lf.flat_map(self._map_func, self._dataset, lazy=True) class FilterDataset(Dataset): def __init__(self, dataset: Dataset, predicate: Callable[[Any], bool]) -> None: super(FilterDataset, self).__init__(dataset) assert callable(predicate) self._predicate = predicate def __iter__(self) -> Iterator[Any]: yield from filter(self._predicate, self._dataset) class MapDataset(Dataset): def __init__(self, dataset: Dataset, map_func: Callable[[Any], Any]) -> None: super(MapDataset, self).__init__(dataset) assert callable(map_func) self._map_func = map_func def __iter__(self) -> Iterator[Any]: yield from map(self._map_func, self._dataset) class ParallelDataset(Dataset): def __iter__(self) -> Iterator[Any]: worker_info = get_worker_info() if worker_info is None: warnings.warn( 'Parallel is not activated. Please refer to ' 'torch.utils.data.DataLoader.', RuntimeWarning, stacklevel=2 ) yield from self._dataset else: worker_id = worker_info.id num_workers = worker_info.num_workers yield from self._dataset.shard(num_workers, worker_id) class ShardDataset(Dataset): def __init__(self, dataset: Dataset, num_shards: int, index: int) -> None: super(ShardDataset, self).__init__(dataset) self._num_shards = num_shards self._index = index def __iter__(self) -> Iterator[Any]: yield from itertools.islice(self._dataset, self._index, None, self._num_shards) class ShuffleDataset(Dataset): def __init__(self, dataset: Dataset, buffer_size: int = None) -> None: super(ShuffleDataset, self).__init__(dataset) self._buffer_size = buffer_size def __iter__(self) -> Iterator[Any]: chunk = [] if self._buffer_size is None: for x in self._dataset: chunk.append(x) random.shuffle(chunk) yield from chunk else: for x in self._dataset: chunk.append(x) if len(chunk) == self._buffer_size: random.shuffle(chunk) yield from chunk chunk = [] if chunk: random.shuffle(chunk) yield from chunk class SortDataset(Dataset): def __init__(self, dataset: Dataset, sort_key: Callable, buffer_size: int = None) -> None: super(SortDataset, self).__init__(dataset) assert callable(sort_key) self._sort_key = sort_key self._buffer_size = buffer_size def __iter__(self) -> Iterator[Any]: if self._buffer_size is None: yield from sorted(self._dataset, key=self._sort_key) else: chunk = [] for x in self._dataset: chunk.append(x) if len(chunk) == self._buffer_size: chunk.sort(key=self._sort_key) yield from chunk chunk = [] if chunk: chunk.sort(key=self._sort_key) yield from chunk class WindowDataset(Dataset): def __init__(self, dataset: Dataset, window_size: int, shift: int = None) -> None: super(WindowDataset, self).__init__(dataset) self._window_size = window_size self._shift = shift or window_size def __iter__(self) -> Iterator[Any]: yield from lf.window(self._dataset, self._window_size, self._shift, lazy=True) class ZipDataset(Dataset): def __init__(self, dataset: Dataset, *others: Tuple[Dataset]) -> None: super(ZipDataset, self).__init__(dataset) assert all(isinstance(d, Dataset) for d in others) self._others = others def __iter__(self): yield from zip(self._dataset, *self._others)
[ "torch.utils.data.get_worker_info" ]
1.2.0
yasufumy/torchdata
ed837afa366638fb19656bcc234903d266ac2910
1.6
import os import torch from pathlib import Path from args import get_parser # set root path ROOT_PATH = Path(os.path.dirname(__file__)) # read parser parser = get_parser() args = parser.parse_args() # model name MODEL_NAME = 'LASAGNE' # define device CUDA = 'cuda' CPU = 'cpu' DEVICE = torch.device(CUDA if torch.cuda.is_available() else CPU) # fields INPUT = 'input' LOGICAL_FORM = 'logical_form' NER = 'ner' COREF = 'coref' GRAPH = 'graph' MULTITASK = 'multitask' # helper tokens START_TOKEN = '[START]' END_TOKEN = '[END]' CTX_TOKEN = '[CTX]' PAD_TOKEN = '[PAD]' UNK_TOKEN = '[UNK]' SEP_TOKEN = '[SEP]' NA_TOKEN = 'NA' # ner tag B = 'B' I = 'I' O = 'O' # model ENCODER_OUT = 'encoder_out' DECODER_OUT = 'decoder_out' # training EPOCH = 'epoch' STATE_DICT = 'state_dict' BEST_VAL = 'best_val' OPTIMIZER = 'optimizer' CURR_VAL = 'curr_val' # question types TOTAL = 'total' OVERALL = 'Overall' CLARIFICATION = 'Clarification' COMPARATIVE = 'Comparative Reasoning (All)' LOGICAL = 'Logical Reasoning (All)' QUANTITATIVE = 'Quantitative Reasoning (All)' SIMPLE_COREFERENCED = 'Simple Question (Coreferenced)' SIMPLE_DIRECT = 'Simple Question (Direct)' SIMPLE_ELLIPSIS = 'Simple Question (Ellipsis)' VERIFICATION = 'Verification (Boolean) (All)' QUANTITATIVE_COUNT = 'Quantitative Reasoning (Count) (All)' COMPARATIVE_COUNT = 'Comparative Reasoning (Count) (All)' # action related ENTITY = 'entity' RELATION = 'relation' TYPE = 'type' VALUE = 'value' PREV_ANSWER = 'prev_answer' ACTION = 'action' # other QUESTION_TYPE = 'question_type' IS_CORRECT = 'is_correct' QUESTION = 'question' ANSWER = 'answer' ACTIONS = 'actions' GOLD_ACTIONS = 'gold_actions' RESULTS = 'results' PREV_RESULTS = 'prev_results' CONTEXT_QUESTION = 'context_question' CONTEXT_ENTITIES = 'context_entities' BERT_BASE_UNCASED = 'bert-base-uncased'
[ "torch.cuda.is_available" ]
1.6.0
endrikacupaj/LASAGNE
6321ab5161999905b357bd9b67906dcac04b8644
1.6
import argparse import os import numpy as np import torch from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch.utils.data import DataLoader from tqdm import tqdm from transformers import BertTokenizer, BertConfig from model import Model from utils.data_utils import NluDataset, glue_processor, prepare_data device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def evaluate(model, data_raw, id_to_label, mode='dev'): model.eval() test_data = NluDataset(data_raw) test_dataloader = DataLoader(test_data, batch_size=32, collate_fn=test_data.collate_fn) slot_labels = id_to_label['slot_labels'] joint_all = 0 joint_correct = 0 s_preds = [] s_labels = [] i_preds = [] i_labels = [] epoch_pbar = tqdm(test_dataloader, desc="Evaluation", disable=False) for step, batch in enumerate(test_dataloader): batch = [b.to(device) if not isinstance(b, int) else b for b in batch] input_ids, segment_ids, input_mask, slot_ids, intent_id = batch with torch.no_grad(): intent_output, slot_output = model(input_ids, segment_ids, input_mask) # intent_evaluate intent_output = intent_output.argmax(dim=1) intent_output = intent_output.tolist() intent_label = intent_id.tolist() i_preds = i_preds + intent_output i_labels = i_labels + intent_label # slot_evaluate slot_output = slot_output.argmax(dim=2) slot_output = slot_output.tolist() slot_ids = slot_ids.tolist() for idx, (p, l) in enumerate(zip(slot_output, slot_ids)): p_text, l_text = align_predictions(p, l, slot_labels) joint_all += 1 if p_text == l_text and intent_label[idx] == intent_output[idx]: joint_correct += 1 s_preds.append(p_text) s_labels.append(l_text) epoch_pbar.update(1) epoch_pbar.close() res = { "joint_acc": joint_correct / joint_all, "intent_accuracy": cal_acc(i_preds, i_labels), "slot_accuracy_score": accuracy_score(s_labels, s_preds), "slot_precision": precision_score(s_labels, s_preds), "slot_recall": recall_score(s_labels, s_preds), "slot_f1": f1_score(s_labels, s_preds), } print('Evaluation on ', mode, ' dataset: ', res) return res def cal_acc(preds, labels): acc = sum([1 if p == l else 0 for p, l in zip(preds, labels)]) / len(labels) return acc def align_predictions(preds, slot_ids, id_to_label): aligned_labels = [] aligned_preds = [] for p, l in zip(preds, slot_ids): if l != -100: aligned_preds.append(id_to_label[p]) aligned_labels.append(id_to_label[l]) return aligned_preds, aligned_labels def set_seed(seed: int): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def main(args): # Init set_seed(args.seed) processor = glue_processor[args.task_name.lower()] tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True) # Data dev_examples = processor.get_dev_examples(args.data_dir) test_examples = processor.get_test_examples(args.data_dir) labels = processor.get_labels(args.data_dir) dev_data_raw = prepare_data(dev_examples, args.max_seq_len, tokenizer, labels) test_data_raw = prepare_data(test_examples, args.max_seq_len, tokenizer, labels) # Model model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = args.dropout model_config.num_intent = len(labels['intent_labels']) model_config.num_slot = len(labels['slot_labels']) model = Model(model_config) ckpt = torch.load(args.model_ckpt_path, map_location='cpu') model.load_state_dict(ckpt, strict=False) model.to(device) evaluate(model, dev_data_raw, labels, 'dev') evaluate(model, test_data_raw, labels, 'test') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--seed", default=42, type=int) parser.add_argument("--task_name", default='nlu', type=str) parser.add_argument("--data_dir", default='data/atis/', type=str) parser.add_argument("--model_path", default='assets/', type=str) parser.add_argument("--model_ckpt_path", default='outputs/model_best.bin', type=str) parser.add_argument("--max_seq_len", default=60, type=int) parser.add_argument("--batch_size", default=32, type=int) parser.add_argument("--dropout", default=0.1, type=float) args = parser.parse_args() args.vocab_path = os.path.join(args.model_path, 'vocab.txt') args.bert_config_path = os.path.join(args.model_path, 'config.json') print(args) main(args)
[ "torch.cuda.manual_seed_all", "torch.no_grad", "torch.manual_seed", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.load" ]
1.6.1
Dog0320/BERT-NLU
c760a09faee141526dbb241040d73d0870118f6d
1.9
""" learn2learn examples: https://github.com/learnables/learn2learn/tree/master/examples/vision 4CNN l2l hack: - since SL needs to have 64 output units, I unfortuantely, hardcoded mdl.cls = nn.Linear(...,64). doing the setter does change the .classifier to point to the right thing (see the setter decorator, also, I asserted the pointer to be the same and the weight norms, they are the same even print(self.model) shows a mismatch in out_features) and doing .X = Y in pytorch populates the modules. So now all models will have a .classifier and .cls modules. This means that the state_dict of the model will have both. So when you create the model you will either need to make sure to repalce_final_layer so that .model.cls = nn.Linear(...) is set and thus when you load the checkpoint both the cls and classifier layer will be registered by pytorch. Or (which is the solution I choose) is to have self.cls = self.classifier in the init so that it always has both modules. """ import learn2learn import torch from learn2learn.vision.models import CNN4Backbone, maml_init_ from torch import nn def cnn4_cifarsfs(ways: int, hidden_size=64, embedding_size=64 * 4, ) -> tuple[nn.Module, dict]: """ Based on: https://github.com/learnables/learn2learn/blob/master/examples/vision/anil_fc100.py """ model_hps: dict = dict(ways=ways, hidden_size=hidden_size, embedding_size=embedding_size) # model = learn2learn.vision.models.CNN4(output_size=ways, hidden_size=hidden_size, embedding_size=embedding_size, ) model = CNN4(output_size=ways, hidden_size=hidden_size, embedding_size=embedding_size, ) return model, model_hps class CNN4(torch.nn.Module): """ [[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/vision/models/cnn4.py) **Description** The convolutional network commonly used for MiniImagenet, as described by Ravi et Larochelle, 2017. This network assumes inputs of shapes (3, 84, 84). Instantiate `CNN4Backbone` if you only need the feature extractor. **References** 1. Ravi and Larochelle. 2017. “Optimization as a Model for Few-Shot Learning.” ICLR. **Arguments** * **output_size** (int) - The dimensionality of the network's output. * **hidden_size** (int, *optional*, default=64) - The dimensionality of the hidden representation. * **layers** (int, *optional*, default=4) - The number of convolutional layers. * **channels** (int, *optional*, default=3) - The number of channels in input. * **max_pool** (bool, *optional*, default=True) - Whether ConvBlocks use max-pooling. * **embedding_size** (int, *optional*, default=None) - Size of feature embedding. Defaults to 25 * hidden_size (for mini-Imagenet). **Example** ~~~python model = CNN4(output_size=20, hidden_size=128, layers=3) ~~~ """ def __init__( self, output_size, hidden_size=64, layers=4, channels=3, max_pool=True, embedding_size=None, ): super().__init__() if embedding_size is None: embedding_size = 25 * hidden_size self.features = CNN4Backbone( hidden_size=hidden_size, channels=channels, max_pool=max_pool, layers=layers, max_pool_factor=4 // layers, ) self.classifier = torch.nn.Linear( embedding_size, output_size, bias=True, ) maml_init_(self.classifier) self.hidden_size = hidden_size assert self.cls is self.classifier def forward(self, x): assert self.cls is self.classifier # this just makes sure that we are running final layer we want x = self.features(x) x = self.classifier(x) assert self.cls is self.classifier # this just makes sure that we are running final layer we want return x # https://stackoverflow.com/questions/71654047/how-does-one-get-the-object-in-a-python-object-inside-a-decorated-function-witho # unfortuantely needed, otherwise pytorch seems to add it to the modules and then if it does a backwards pass it # think there are parameters not being trained, although self.cls is self.classifier should return True @property def cls(self): return self.classifier @cls.setter def cls(self, new_cls): self.classifier = new_cls # - tests def wider_net_test(): model, _ = cnn4_cifarsfs(ways=64, hidden_size=1024, embedding_size=1024 * 4) x = torch.randn(8, 3, 32, 32) y = model(x) print(y) print(y.size()) def _reproduce_bug(): model, _ = cnn4_cifarsfs(ways=64, hidden_size=1024, embedding_size=1024 * 4) model.cls = model.classifier print(model) x = torch.randn(8, 3, 32, 32) y = model(x) print(y) print(y.size()) y.sum().backward() print() if __name__ == '__main__': # wider_net_test() _reproduce_bug() print('Done\a')
[ "torch.nn.Linear", "torch.randn" ]
1.9.1
patricks-lab/ultimate-utils
e32922d79eddba8cbe9f954a96ef2205491d8a4a
1.9
""" Notes: - 1. For the conv layer we have H' = H since H' = H+2p-k+1 = H' for p=1, k=3. i.e. same as previous layer - since stride=1 as default (so only moves by 1) since you want to see all the image for a conv. - 2. For the avg pool layer we have H' = H/2 i.e. half of previous layer - since stride=kernel_size as default (so you want to avg more significantly for pool layers e.g. for invariance) - 3. H = W should the true for this model and data, unless you feed rectangular data for some reason. For this model if H = 84, input layer H^(l)_{layer_type} = is the H at layer l for layer_type we have: - H^(l)_{conv} = H/2**(l-1) - H^(l)_{avg_pool} = H/2**(l) since, for the conv layer the height don't change and the pooling layer halves for each spatial dimension. """ from __future__ import division, print_function, absolute_import import pdb import copy from argparse import Namespace from collections import OrderedDict import torch import torch.nn as nn import numpy as np from typing import Optional # from automl.core.operations import SPP from uutils.torch_uu.models.spp import SPP def helloworld(msg="hello"): print(f'hello world with mgs: {msg}') def get_defaul_args_for_5cnn() -> Namespace: args: Namespace = Namespace() args.image_size = 84 args.bn_eps = 1e-3 args.bn_momentum = 0.95 args.n_classes = 5 args.filter_size = 32 args.levels = None args.spp = False return args def get_learner_from_args(args: Namespace) -> nn.Module: return Learner(args.image_size, args.bn_eps, args.bn_momentum, args.n_classes) def get_default_learner(image_size: int = 84, bn_eps: float = 1e-3, bn_momentum: float = 0.95, n_classes: int = 5, filter_size: int = 32, levels: Optional = None, spp: bool = False) -> nn.Module: """ Gets a 5CNN as in the paper "optimization as a model for few shot learning". Cbfin et al. in MAML also use the same hps: "For MiniImagenet, we used 32 filters per layer to reduce overfitting, as done by (Ravi & Larochelle, 2017)." Copy pasted from my script that ran experiments: args.bn_momentum = 0.95 args.bn_eps = 1e-3 args.grad_clip_mode = 'clip_all_together' args.image_size = 84 args.base_model = Learner(image_size=args.image_size, bn_eps=args.bn_eps, bn_momentum=args.bn_momentum, n_classes=args.n_classes).to(args.device) """ return Learner(image_size, bn_eps, bn_momentum, n_classes, filter_size, levels, spp) def get_default_learner_and_hps_dict(image_size: int = 84, bn_eps: float = 1e-3, bn_momentum: float = 0.95, n_classes: int = 5, filter_size: int = 32, levels: Optional = None, spp: bool = False, in_channels: int = 3 ) -> tuple[nn.Module, dict]: model_hps: dict = {'image_size': image_size, 'bn_eps': bn_eps, 'bn_momentum': bn_momentum, 'n_classes': n_classes, 'filter_size': filter_size, 'levels': levels, 'spp': spp, 'in_channels': in_channels} model: nn.Module = Learner(**model_hps) return model, model_hps def get_default_learner_from_default_args(args: Optional[Namespace] = None) -> nn.Module: if args is None: args = get_defaul_args_for_5cnn() mdl = get_learner_from_args(args) return mdl def get_feature_extractor_pool_layers(L: int = 4) -> list[str]: return [f'model.features.pool{i}' for i in range(1, L + 1)] def get_feature_extractor_conv_layers(L: int = 4, include_cls: bool = False) -> list[str]: """ Note: if the cls is present then we need B >= s*D since the output for it has shape [B, n_c] where n_c so we need, B >= 10*5 = 50 for example. s being used for B = 13 is s_cls = B/n_c = 13/5 = 2.6 s_cls = B/n_c = 26/5 = 5.2 """ layers: list[str] = [f'model.features.conv{i}' for i in range(1, L + 1)] if include_cls: layers: list[str] = layers + ['model.cls'] return layers def get_head_cls() -> list[str]: return ['model.cls'] def get_all_layers_minus_cls(L: int = 4) -> list[str]: layer_names: str = [] for l in range(1, L + 1): layer_name1: str = f'model.features.conv{l}' layer_name2: str = f'model.features.norm{l}' layer_name3: str = f'model.features.relu{l}' layer_name4: str = f'model.features.pool{l}' layer_names.append(layer_name1) layer_names.append(layer_name2) layer_names.append(layer_name3) layer_names.append(layer_name4) return layer_names def get_last_two_layers(layer_type: str = 'conv', include_cls: bool = True, start_L: int = 4, end_L: int = 4 ) -> list[str]: assert layer_type in ['conv', 'norm', 'relu', 'pool'] layers: list[str] = [f'model.features.{layer_type}{i}' for i in range(start_L, end_L + 1)] if include_cls: layers: list[str] = layers + ['model.cls'] return layers class Learner(nn.Module): def __init__(self, image_size, bn_eps: float, bn_momentum: float, n_classes: int, filter_size: int = 32, # Meta-LSTM & MAML use 32 filters levels: Optional = None, spp: bool = False, in_channels: int = 3, ): """[summary] Args: image_size ([type]): [description] bn_eps ([type]): [description] bn_momentum ([type]): [description] n_classes ([type]): [description] levels ([type], optional): [description]. Defaults to None. spp (bool, optional): [description]. Defaults to False. """ super().__init__() self.spp = spp # - note: "model" is also a Module self.model = nn.ModuleDict({'features': nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(in_channels=in_channels, out_channels=filter_size, kernel_size=3, padding=1)), ('norm1', nn.BatchNorm2d(filter_size, bn_eps, bn_momentum)), ('relu1', nn.ReLU(inplace=False)), ('pool1', nn.MaxPool2d(kernel_size=2)), ('conv2', nn.Conv2d(in_channels=filter_size, out_channels=filter_size, kernel_size=3, padding=1)), ('norm2', nn.BatchNorm2d(filter_size, bn_eps, bn_momentum)), ('relu2', nn.ReLU(inplace=False)), ('pool2', nn.MaxPool2d(kernel_size=2)), ('conv3', nn.Conv2d(in_channels=filter_size, out_channels=filter_size, kernel_size=3, padding=1)), ('norm3', nn.BatchNorm2d(filter_size, bn_eps, bn_momentum)), ('relu3', nn.ReLU(inplace=False)), ('pool3', nn.MaxPool2d(kernel_size=2)), ('conv4', nn.Conv2d(in_channels=filter_size, out_channels=filter_size, kernel_size=3, padding=1)), ('norm4', nn.BatchNorm2d(filter_size, bn_eps, bn_momentum)), ('relu4', nn.ReLU(inplace=False)), ('pool4', nn.MaxPool2d(kernel_size=2))])) }) if spp: spp_ = SPP(filter_size, levels) self.model.update({'spp': spp_}) self.model.update({'cls': nn.Linear(spp_.output_size, n_classes)}) else: clr_in = image_size // 2 ** 4 self.model.update({'cls': nn.Linear(filter_size * clr_in * clr_in, n_classes)}) # self.criterion = nn.CrossEntropyLoss() @property def cls(self): return self.model.cls @cls.setter def cls(self, new_cls): self.mode.cls = new_cls def forward(self, x): out = self.model.features(x) if self.spp: out = self.model.spp(out) else: out = torch.reshape(out, [out.size(0), -1]) outputs = self.model.cls(out) return outputs def get_flat_params(self): # return torch_uu.cat([p.view(-1) for p in self.model.parameters()], 0) pass def copy_flat_params(self, cI): # idx = 0 # for p in self.model.parameters(): # plen = p.view(-1).size(0) # p.data.copy_(cI[idx: idx+plen].view_as(p)) # idx += plen pass def transfer_params(self, learner_w_grad, cI): # Use load_state_dict only to copy the running mean/var in batchnorm, the values of the parameters # are going to be replaced by cI # self.load_state_dict(learner_w_grad.state_dict()) # # replace nn.Parameters with tensors from cI (NOT nn.Parameters anymore). # idx = 0 # for m in self.model.modules(): # if isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.Linear): # wlen = m._parameters['weight'].view(-1).size(0) # m._parameters['weight'] = cI[idx: idx+wlen].view_as(m._parameters['weight']).clone() # idx += wlen # if m._parameters['bias'] is not None: # blen = m._parameters['bias'].view(-1).size(0) # m._parameters['bias'] = cI[idx: idx+blen].view_as(m._parameters['bias']).clone() # idx += blen pass def reset_batch_stats(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.reset_running_stats() def load_model_5CNN_opt_as_model_for_few_shot(model_hps: dict) -> nn.Module: # - get the hps of the model & build the instance from uutils.torch_uu.models.learner_from_opt_as_few_shot_paper import Learner model: nn.Module = Learner(**model_hps) return model def replace_final_layer(args: Namespace, n_classes: int): if hasattr(args.model, 'cls'): args.model.cls = nn.Linear(args.model.cls.in_features, n_classes) # -- tests def pass_cifarfs_data_through_5cnn_model_test(): """ shape is torch.Size([3, 32, 32]) :return: """ # args = Namespace() # args.data_root = Path('~/data/CIFAR-FS/').expanduser() # args.data_aug = True # imagenet = CIFAR100(args.data_root, args.data_aug, 'train') # print(len(imagenet)) # print(imagenet.__getitem__(500)[0].shape) B = 4 CHW = [3, 32, 32] x = torch.randn([B] + CHW) mdl = get_default_learner() y = mdl(x) print(y.shape) if __name__ == '__main__': pass_cifarfs_data_through_5cnn_model_test() print('Done!\a')
[ "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.randn" ]
1.9.1
patricks-lab/ultimate-utils
e32922d79eddba8cbe9f954a96ef2205491d8a4a
1.0
import numpy as np import torch.nn as nn from .inventory import model_urls from .layer_factory import convbnrelu, InvertedResidualBlock, conv1x1 from .model_zoo import load_url from ..misc.utils import make_list __all__ = ["mobilenetv2"] class MobileNetv2(nn.Module): """MobileNet-v2 definition. More information about the model: https://arxiv.org/abs/1801.04381 Args: return_idx (list or int): indices of the layers to be returned during the forward pass. Attributes: mobilenet_config (list): list of definitions of each layer that includes expansion rate, number of output channels, number of repeats, stride. in_planes (int): number of channels in the stem block. """ # expansion rate, output channels, number of repeats, stride mobilenet_config = [ [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] in_planes = 32 # number of input channels num_layers = len(mobilenet_config) def __init__(self, return_idx=[6]): super(MobileNetv2, self).__init__() self.return_idx = make_list(return_idx) self.layer1 = convbnrelu( 3, self.in_planes, kernel_size=3, stride=2, act=nn.ReLU6(inplace=True) ) c_layer = 2 for t, c, n, s in self.mobilenet_config: layers = [] for idx in range(n): layers.append( InvertedResidualBlock( self.in_planes, c, expansion_factor=t, stride=s if idx == 0 else 1, ) ) self.in_planes = c setattr(self, "layer{}".format(c_layer), nn.Sequential(*layers)) c_layer += 1 self._out_c = [self.mobilenet_config[idx][1] for idx in self.return_idx] def forward(self, x): outs = [] x = self.layer1(x) outs.append(self.layer2(x)) # 16, x / 2 outs.append(self.layer3(outs[-1])) # 24, x / 4 outs.append(self.layer4(outs[-1])) # 32, x / 8 outs.append(self.layer5(outs[-1])) # 64, x / 16 outs.append(self.layer6(outs[-1])) # 96, x / 16 outs.append(self.layer7(outs[-1])) # 160, x / 32 outs.append(self.layer8(outs[-1])) # 320, x / 32 return [outs[idx] for idx in self.return_idx] def mobilenetv2(pretrained=True, **kwargs): """Constructs the mobilenet-v2 network. Args: pretrained (bool): whether to load pre-trained weights. Returns: `nn.Module` instance. """ model = MobileNetv2(**kwargs) if pretrained: model.load_state_dict(load_url(model_urls["mobilenetv2"])) return model
[ "torch.nn.ReLU6", "torch.nn.Sequential" ]
1.0.0
DrSleep/DenseTorch
f90bef075429d763fc08338dea8222d28b0a4516
1.0
import pytest import torch import kornia as kornia from torch.autograd import gradcheck from torch.testing import assert_allclose import utils # test utilities from common import device_type class TestPinholeCamera: def _create_intrinsics(self, batch_size, fx, fy, cx, cy): intrinsics = torch.eye(4).expand(batch_size, -1, -1) intrinsics[..., 0, 0] = fx intrinsics[..., 1, 1] = fy intrinsics[..., 0, 2] = cx intrinsics[..., 1, 2] = cy return intrinsics def _create_extrinsics(self, batch_size, tx, ty, tz): extrinsics = torch.eye(4).expand(batch_size, -1, -1) extrinsics[..., 0, -1] = tx extrinsics[..., 1, -1] = ty extrinsics[..., 2, -1] = tz return extrinsics def test_smoke(self): intrinsics = torch.eye(4)[None] extrinsics = torch.eye(4)[None] height = torch.ones(1) width = torch.ones(1) pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) assert isinstance(pinhole, kornia.PinholeCamera) def test_pinhole_camera_attributes(self): batch_size = 1 height, width = 4, 6 fx, fy, cx, cy = 1, 2, width / 2, height / 2 tx, ty, tz = 1, 2, 3 intrinsics = self._create_intrinsics(batch_size, fx, fy, cx, cy) extrinsics = self._create_extrinsics(batch_size, tx, ty, tz) height = torch.ones(batch_size) * height width = torch.ones(batch_size) * width pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) assert pinhole.batch_size == batch_size assert pinhole.fx.item() == fx assert pinhole.fy.item() == fy assert pinhole.cx.item() == cx assert pinhole.cy.item() == cy assert pinhole.tx.item() == tx assert pinhole.ty.item() == ty assert pinhole.tz.item() == tz assert pinhole.height.item() == height assert pinhole.width.item() == width assert pinhole.rt_matrix.shape == (batch_size, 3, 4) assert pinhole.camera_matrix.shape == (batch_size, 3, 3) assert pinhole.rotation_matrix.shape == (batch_size, 3, 3) assert pinhole.translation_vector.shape == (batch_size, 3, 1) def test_pinhole_camera_translation_setters(self): batch_size = 1 height, width = 4, 6 fx, fy, cx, cy = 1, 2, width / 2, height / 2 tx, ty, tz = 1, 2, 3 intrinsics = self._create_intrinsics(batch_size, fx, fy, cx, cy) extrinsics = self._create_extrinsics(batch_size, tx, ty, tz) height = torch.ones(batch_size) * height width = torch.ones(batch_size) * width pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) assert pinhole.tx.item() == tx assert pinhole.ty.item() == ty assert pinhole.tz.item() == tz # add offset pinhole.tx += 3. pinhole.ty += 2. pinhole.tz += 1. assert pinhole.tx.item() == tx + 3. assert pinhole.ty.item() == ty + 2. assert pinhole.tz.item() == tz + 1. # set to zero pinhole.tx = 0. pinhole.ty = 0. pinhole.tz = 0. assert pinhole.tx.item() == 0. assert pinhole.ty.item() == 0. assert pinhole.tz.item() == 0. def test_pinhole_camera_attributes_batch2(self): batch_size = 2 height, width = 4, 6 fx, fy, cx, cy = 1, 2, width / 2, height / 2 tx, ty, tz = 1, 2, 3 intrinsics = self._create_intrinsics(batch_size, fx, fy, cx, cy) extrinsics = self._create_extrinsics(batch_size, tx, ty, tz) height = torch.ones(batch_size) * height width = torch.ones(batch_size) * width pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) assert pinhole.batch_size == batch_size assert pinhole.fx.shape[0] == batch_size assert pinhole.fy.shape[0] == batch_size assert pinhole.cx.shape[0] == batch_size assert pinhole.cy.shape[0] == batch_size assert pinhole.tx.shape[0] == batch_size assert pinhole.ty.shape[0] == batch_size assert pinhole.tz.shape[0] == batch_size assert pinhole.height.shape[0] == batch_size assert pinhole.width.shape[0] == batch_size assert pinhole.rt_matrix.shape == (batch_size, 3, 4) assert pinhole.camera_matrix.shape == (batch_size, 3, 3) assert pinhole.rotation_matrix.shape == (batch_size, 3, 3) assert pinhole.translation_vector.shape == (batch_size, 3, 1) def test_pinhole_camera_scale(self): batch_size = 2 height, width = 4, 6 fx, fy, cx, cy = 1, 2, width / 2, height / 2 tx, ty, tz = 1, 2, 3 scale_val = 2.0 intrinsics = self._create_intrinsics(batch_size, fx, fy, cx, cy) extrinsics = self._create_extrinsics(batch_size, tx, ty, tz) height = torch.ones(batch_size) * height width = torch.ones(batch_size) * width scale_factor = torch.ones(batch_size) * scale_val pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) pinhole_scale = pinhole.scale(scale_factor) assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 0, 0], pinhole.intrinsics[..., 0, 0] * scale_val) # fx assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 1, 1], pinhole.intrinsics[..., 1, 1] * scale_val) # fy assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 0, 2], pinhole.intrinsics[..., 0, 2] * scale_val) # cx assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 1, 2], pinhole.intrinsics[..., 1, 2] * scale_val) # cy assert utils.check_equal_torch( pinhole_scale.height, pinhole.height * scale_val) assert utils.check_equal_torch( pinhole_scale.width, pinhole.width * scale_val) def test_pinhole_camera_scale_inplace(self): batch_size = 2 height, width = 4, 6 fx, fy, cx, cy = 1, 2, width / 2, height / 2 tx, ty, tz = 1, 2, 3 scale_val = 2.0 intrinsics = self._create_intrinsics(batch_size, fx, fy, cx, cy) extrinsics = self._create_extrinsics(batch_size, tx, ty, tz) height = torch.ones(batch_size) * height width = torch.ones(batch_size) * width scale_factor = torch.ones(batch_size) * scale_val pinhole = kornia.PinholeCamera(intrinsics, extrinsics, height, width) pinhole_scale = pinhole.clone() pinhole_scale.scale_(scale_factor) assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 0, 0], pinhole.intrinsics[..., 0, 0] * scale_val) # fx assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 1, 1], pinhole.intrinsics[..., 1, 1] * scale_val) # fy assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 0, 2], pinhole.intrinsics[..., 0, 2] * scale_val) # cx assert utils.check_equal_torch( pinhole_scale.intrinsics[..., 1, 2], pinhole.intrinsics[..., 1, 2] * scale_val) # cy assert utils.check_equal_torch( pinhole_scale.height, pinhole.height * scale_val) assert utils.check_equal_torch( pinhole_scale.width, pinhole.width * scale_val) '''@pytest.mark.parametrize("batch_size", [1, 2, 5, 6]) def test_scale_pinhole(batch_size, device_type): # generate input data device = torch.device(device_type) pinholes = torch.rand(batch_size, 12).to(device) scales = torch.rand(batch_size).to(device) pinholes_scale = kornia.scale_pinhole(pinholes, scales) assert utils.check_equal_torch( pinholes_scale[..., :6] / scales.unsqueeze(-1), pinholes[..., :6]) # evaluate function gradient pinholes = utils.tensor_to_gradcheck_var(pinholes) # to var scales = utils.tensor_to_gradcheck_var(scales) # to var assert gradcheck(kornia.scale_pinhole, (pinholes, scales,), raise_exception=True) @pytest.mark.parametrize("batch_size", [1, 2, 5, 6]) def test_pinhole_matrix(batch_size, device_type): # generate input data image_height, image_width = 32., 32. cx, cy = image_width / 2, image_height / 2 fx, fy = 1., 1. rx, ry, rz = 0., 0., 0. tx, ty, tz = 0., 0., 0. offset_x = 10. # we will apply a 10units offset to `i` camera eps = 1e-6 pinhole = utils.create_pinhole( fx, fy, cx, cy, image_height, image_width, rx, ry, rx, tx, ty, tz) pinhole = pinhole.repeat(batch_size, 1).to(torch.device(device_type)) pinhole_matrix = kornia.pinhole_matrix(pinhole) ones = torch.ones(batch_size) assert bool((pinhole_matrix[:, 0, 0] == fx * ones).all()) assert bool((pinhole_matrix[:, 1, 1] == fy * ones).all()) assert bool((pinhole_matrix[:, 0, 2] == cx * ones).all()) assert bool((pinhole_matrix[:, 1, 2] == cy * ones).all()) # functional assert kornia.PinholeMatrix()(pinhole).shape == (batch_size, 4, 4) # evaluate function gradient pinhole = utils.tensor_to_gradcheck_var(pinhole) # to var assert gradcheck(kornia.pinhole_matrix, (pinhole,), raise_exception=True) @pytest.mark.parametrize("batch_size", [1, 2, 5, 6]) def test_inverse_pinhole_matrix(batch_size, device_type): # generate input data image_height, image_width = 32., 32. cx, cy = image_width / 2, image_height / 2 fx, fy = 1., 1. rx, ry, rz = 0., 0., 0. tx, ty, tz = 0., 0., 0. offset_x = 10. # we will apply a 10units offset to `i` camera eps = 1e-6 pinhole = utils.create_pinhole( fx, fy, cx, cy, image_height, image_width, rx, ry, rx, tx, ty, tz) pinhole = pinhole.repeat(batch_size, 1).to(torch.device(device_type)) pinhole_matrix = kornia.inverse_pinhole_matrix(pinhole) ones = torch.ones(batch_size) assert utils.check_equal_torch(pinhole_matrix[:, 0, 0], (1. / fx) * ones) assert utils.check_equal_torch(pinhole_matrix[:, 1, 1], (1. / fy) * ones) assert utils.check_equal_torch( pinhole_matrix[:, 0, 2], (-1. * cx / fx) * ones) assert utils.check_equal_torch( pinhole_matrix[:, 1, 2], (-1. * cy / fx) * ones) # functional assert kornia.InversePinholeMatrix()(pinhole).shape == (batch_size, 4, 4) # evaluate function gradient pinhole = utils.tensor_to_gradcheck_var(pinhole) # to var assert gradcheck(kornia.pinhole_matrix, (pinhole,), raise_exception=True) @pytest.mark.parametrize("batch_size", [1, 2, 5, 6]) def test_homography_i_H_ref(batch_size, device_type): # generate input data device = torch.device(device_type) image_height, image_width = 32., 32. cx, cy = image_width / 2, image_height / 2 fx, fy = 1., 1. rx, ry, rz = 0., 0., 0. tx, ty, tz = 0., 0., 0. offset_x = 10. # we will apply a 10units offset to `i` camera eps = 1e-6 pinhole_ref = utils.create_pinhole( fx, fy, cx, cy, image_height, image_width, rx, ry, rx, tx, ty, tz) pinhole_ref = pinhole_ref.repeat(batch_size, 1).to(device) pinhole_i = utils.create_pinhole( fx, fy, cx, cy, image_height, image_width, rx, ry, rx, tx + offset_x, ty, tz) pinhole_i = pinhole_i.repeat(batch_size, 1).to(device) # compute homography from ref to i i_H_ref = kornia.homography_i_H_ref(pinhole_i, pinhole_ref) + eps i_H_ref_inv = torch.inverse(i_H_ref) # compute homography from i to ref ref_H_i = kornia.homography_i_H_ref(pinhole_ref, pinhole_i) + eps assert utils.check_equal_torch(i_H_ref_inv, ref_H_i) # evaluate function gradient assert gradcheck(kornia.homography_i_H_ref, (utils.tensor_to_gradcheck_var(pinhole_ref) + eps, utils.tensor_to_gradcheck_var(pinhole_i) + eps,), raise_exception=True)''' class TestNormalizePixelCoordinates: def test_small(self): height, width = 3, 4 grid = kornia.utils.create_meshgrid( height, width, normalized_coordinates=False) expected = kornia.utils.create_meshgrid( height, width, normalized_coordinates=True) grid_norm = kornia.normalize_pixel_coordinates( grid, height, width) assert_allclose(grid_norm, expected) def test_jit(self): @torch.jit.script def op_script(input: torch.Tensor, height: int, width: int) -> torch.Tensor: return kornia.normalize_pixel_coordinates(input, height, width) height, width = 3, 4 grid = kornia.utils.create_meshgrid( height, width, normalized_coordinates=False) actual = op_script(grid, height, width) expected = kornia.normalize_pixel_coordinates( grid, height, width) assert_allclose(actual, expected) def test_jit_trace(self): @torch.jit.script def op_script(input, height, width): return kornia.normalize_pixel_coordinates(input, height, width) # 1. Trace op height, width = 3, 4 grid = kornia.utils.create_meshgrid( height, width, normalized_coordinates=False) op_traced = torch.jit.trace( op_script, (grid, torch.tensor(height), torch.tensor(width),)) # 2. Generate new input height, width = 2, 5 grid = kornia.utils.create_meshgrid( height, width, normalized_coordinates=False).repeat(2, 1, 1, 1) # 3. Evaluate actual = op_traced( grid, torch.tensor(height), torch.tensor(width)) expected = kornia.normalize_pixel_coordinates( grid, height, width) assert_allclose(actual, expected)
[ "torch.eye", "torch.testing.assert_allclose", "torch.tensor", "torch.ones" ]
1.0.0
jiangwei221/kornia
a211d4952355e440b944b1bda8eed4c2a7457c2d
1.3
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import pytest import torch from scipy.linalg import sqrtm as scipy_sqrtm from torch.utils.data import Dataset from torchmetrics.image.fid import FID, sqrtm from torchmetrics.utilities.imports import _TORCH_FIDELITY_AVAILABLE torch.manual_seed(42) @pytest.mark.parametrize("matrix_size", [2, 10, 100, 500]) def test_matrix_sqrt(matrix_size): """ test that metrix sqrt function works as expected """ def generate_cov(n): data = torch.randn(2 * n, n) return (data - data.mean(dim=0)).T @ (data - data.mean(dim=0)) cov1 = generate_cov(matrix_size) cov2 = generate_cov(matrix_size) scipy_res = scipy_sqrtm((cov1 @ cov2).numpy()).real tm_res = sqrtm(cov1 @ cov2) assert torch.allclose(torch.tensor(scipy_res).float(), tm_res, atol=1e-3) @pytest.mark.skipif(not _TORCH_FIDELITY_AVAILABLE, reason="test requires torch-fidelity") def test_no_train(): """ Assert that metric never leaves evaluation mode """ class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.metric = FID() def forward(self, x): return x model = MyModel() model.train() assert model.training assert not model.metric.inception.training, 'FID metric was changed to training mode which should not happen' @pytest.mark.skipif(not _TORCH_FIDELITY_AVAILABLE, reason='test requires torch-fidelity') def test_fid_pickle(): """ Assert that we can initialize the metric and pickle it""" metric = FID() assert metric # verify metrics work after being loaded from pickled state pickled_metric = pickle.dumps(metric) metric = pickle.loads(pickled_metric) def test_fid_raises_errors_and_warnings(): """ Test that expected warnings and errors are raised """ with pytest.warns( UserWarning, match='Metric `FID` will save all extracted features in buffer.' ' For large datasets this may lead to large memory footprint.' ): _ = FID() if _TORCH_FIDELITY_AVAILABLE: with pytest.raises(ValueError, match='Integer input to argument `feature` must be one of .*'): _ = FID(feature=2) else: with pytest.raises( ValueError, match='FID metric requires that Torch-fidelity is installed.' 'Either install as `pip install torchmetrics[image-quality]`' ' or `pip install torch-fidelity`' ): _ = FID() @pytest.mark.skipif(not _TORCH_FIDELITY_AVAILABLE, reason='test requires torch-fidelity') def test_fid_same_input(): """ if real and fake are update on the same data the fid score should be 0 """ metric = FID(feature=192) for _ in range(2): img = torch.randint(0, 255, (5, 3, 299, 299), dtype=torch.uint8) metric.update(img, real=True) metric.update(img, real=False) assert torch.allclose(torch.cat(metric.real_features, dim=0), torch.cat(metric.fake_features, dim=0)) val = metric.compute() assert torch.allclose(val, torch.zeros_like(val), atol=1e-3) class _ImgDataset(Dataset): def __init__(self, imgs): self.imgs = imgs def __getitem__(self, idx): return self.imgs[idx] def __len__(self): return self.imgs.shape[0] @pytest.mark.skipif(not torch.cuda.is_available(), reason='test is too slow without gpu') @pytest.mark.skipif(not _TORCH_FIDELITY_AVAILABLE, reason='test requires torch-fidelity') def test_compare_fid(tmpdir, feature=2048): """ check that the hole pipeline give the same result as torch-fidelity """ from torch_fidelity import calculate_metrics metric = FID(feature=feature).cuda() # Generate some synthetic data img1 = torch.randint(0, 180, (100, 3, 299, 299), dtype=torch.uint8) img2 = torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8) batch_size = 10 for i in range(img1.shape[0] // batch_size): metric.update(img1[batch_size * i:batch_size * (i + 1)].cuda(), real=True) for i in range(img2.shape[0] // batch_size): metric.update(img2[batch_size * i:batch_size * (i + 1)].cuda(), real=False) torch_fid = calculate_metrics( _ImgDataset(img1), _ImgDataset(img2), fid=True, feature_layer_fid=str(feature), batch_size=batch_size ) tm_res = metric.compute() assert torch.allclose(tm_res.cpu(), torch.tensor([torch_fid['frechet_inception_distance']]), atol=1e-3)
[ "torch.cat", "torch.manual_seed", "torch.randint", "torch.cuda.is_available", "torch.tensor", "torch.zeros_like", "torch.randn" ]
1.3.1
vatch123/metrics
1841cad3839f5d1907a1bb8bb6a266de5c5333f9
1.4
""" Classifier head and layer factory Hacked together by / Copyright 2020 Ross Wightman """ from torch import nn as nn from torch.nn import functional as F from .adaptive_avgmax_pool import SelectAdaptivePool2d def _create_pool(num_features, num_classes, pool_type='avg', use_conv=False): flatten_in_pool = not use_conv # flatten when we use a Linear layer after pooling if not pool_type: assert num_classes == 0 or use_conv,\ 'Pooling can only be disabled if classifier is also removed or conv classifier is used' flatten_in_pool = False # disable flattening if pooling is pass-through (no pooling) global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=flatten_in_pool) num_pooled_features = num_features * global_pool.feat_mult() return global_pool, num_pooled_features def _create_fc(num_features, num_classes, use_conv=False): if num_classes <= 0: fc = nn.Identity() # pass-through (no classifier) elif use_conv: fc = nn.Conv2d(num_features, num_classes, 1, bias=True) else: fc = nn.Linear(num_features, num_classes, bias=True) return fc def create_classifier(num_features, num_classes, pool_type='avg', use_conv=False): global_pool, num_pooled_features = _create_pool(num_features, num_classes, pool_type, use_conv=use_conv) fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv) return global_pool, fc class ClassifierHead(nn.Module): """Classifier head w/ configurable global pooling and dropout.""" def __init__(self, in_chs, num_classes, pool_type='avg', drop_rate=0., use_conv=False): super(ClassifierHead, self).__init__() self.drop_rate = drop_rate self.global_pool, num_pooled_features = _create_pool(in_chs, num_classes, pool_type, use_conv=use_conv) self.fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv) self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() def forward(self, x): x = self.global_pool(x) if self.drop_rate: x = F.dropout(x, p=float(self.drop_rate), training=self.training) x = self.fc(x) x = self.flatten(x) return x
[ "torch.nn.Linear", "torch.nn.Identity", "torch.nn.Conv2d", "torch.nn.Flatten" ]
1.4.0
Robert-JunWang/pytorch-image-models
7c67d6aca992f039eece0af5f7c29a43d48c00e4
1.8
from torch import nn from torch.nn import functional as F from model.layers import SNConv2d class ReshapeNet(nn.Module): """The "initial reconstruction network" of SCSNet""" def __init__(self, in_channels, block_size=4): super().__init__() self.block_size = block_size self.conv = nn.Conv2d(in_channels, block_size ** 2, kernel_size=1) def forward(self, x): x = self.conv(x) out = self._permute(x) return out def _permute(self, x): B, C, H, W = x.shape x = x.permute(0, 2, 3, 1) x = x.view(B, H, W, self.block_size, self.block_size) x = x.permute(0, 1, 3, 2, 4).contiguous() out = x.view(-1, 1, H * self.block_size, W * self.block_size) return out class UpsampleNet(nn.Module): def __init__(self, sampling_ratio, upsamplenet_config): super().__init__() kernel_size = 4 first_out_channels = int(sampling_ratio * kernel_size ** 2) config = upsamplenet_config self.up1 = UpResBlock( in_channels=first_out_channels, out_channels=config["out_channels_1"], middle_channels=None, upsample=True, use_transpose_conv=config["use_transpose_conv"], spectral_norm=config["spectral_norm"], ) self.up2 = UpResBlock( in_channels=config["out_channels_1"], out_channels=config["out_channels_2"], middle_channels=None, upsample=True, use_transpose_conv=config["use_transpose_conv"], spectral_norm=config["spectral_norm"], ) def forward(self, x): x = self.up1(x) out = self.up2(x) # passed to UNet return out class UpResBlock(nn.Module): def __init__( self, in_channels, out_channels, middle_channels=None, upsample=True, use_transpose_conv=False, norm_type="instance", spectral_norm=True, init_type="xavier", ): super().__init__() self.upsample = upsample self.use_transpose_conv = use_transpose_conv if middle_channels is None: middle_channels = out_channels if use_transpose_conv: assert upsample is True self.conv1 = nn.ConvTranspose2d( in_channels, middle_channels, kernel_size=2, stride=2, padding=1, bias=False, ) self.conv2 = nn.ConvTranspose2d( middle_channels, out_channels, kernel_size=2, stride=2, padding=1, bias=False, ) else: # if transpose conv is not used. # The `_residual_block` method will decide whether or not it upsamples depending on `upsample == True/False` conv = SNConv2d if spectral_norm else nn.Conv2d self.conv1 = conv( in_channels, middle_channels, kernel_size=3, stride=1, padding=1, bias=False, ) self.conv2 = conv( middle_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False, ) self.bn1 = nn.BatchNorm2d(middle_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) def _upsample(self, x, conv_layer): if self.use_transpose_conv: return conv_layer(x) else: return conv_layer( F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) ) def _residual_block(self, x): x = self._upsample(x, self.conv1) if self.upsample else self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) out = self.relu(x) return out def _shortcut(self, x): return self._upsample(x, self.conv1) if self.upsample else self.conv1(x) def forward(self, x): return self._residual_block(x) + self._shortcut(x)
[ "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.functional.interpolate", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.8.1
stephenllh/bcs-unet
be534a25e28cbe3501278d0ee6e2417b2cd737d3
1.8
import os from pathlib import Path import time import argparse import warnings import numpy as np import cv2 import scipy.ndimage import scipy.io import math import torch import pytorch_lightning as pl from .learner import ReconNetLearner from utils import voltage2pixel, load_config parser = argparse.ArgumentParser() parser.add_argument( "-s", "--sampling_ratio", type=float, required=True, help="Sampling ratio in percentage", ) args = parser.parse_args() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" warnings.simplefilter("ignore") def setup(): inference_config = load_config("../config/inference_config.yaml") sr = args.sampling_ratio checkpoint_folder = f"../logs/ReconNet_STL10_{int(sr * 100):04d}/best" if not os.path.exists(checkpoint_folder): run_name = os.listdir(Path(checkpoint_folder).parent)[-1] checkpoint_path = ( f"{Path(checkpoint_folder).parent}/{run_name}/checkpoints/last.ckpt" ) message = ( f"The checkpoint from the run '{run_name}' is selected by default. " + "If this is not intended, change the name of the preferred checkpoint folder to 'best'." ) print(message) else: checkpoint_path = f"{checkpoint_folder}/checkpoints/last.ckpt" learner = ReconNetLearner.load_from_checkpoint(checkpoint_path=checkpoint_path) trainer = pl.Trainer( gpus=1 if inference_config["gpu"] else 0, logger=False, default_root_dir="../", ) return learner, trainer class RealDataset: def __init__(self, sampling_ratio, inference_config): self.real_data = inference_config["real_data"] self.phi = np.load(inference_config["measurement_matrix"]) self.c = int(sampling_ratio / 100 * 16) def __getitem__(self, idx): real_data = self.real_data[idx] path = os.path.join("../inference_input", real_data["filename"]) y_input = scipy.io.loadmat(path)["y"] y_input = y_input[ np.mod(np.arange(len(y_input)), len(y_input) // 64) < self.c ] # discard extra measurements y_input = torch.FloatTensor(y_input).permute(1, 0) y_input -= y_input.min() y_input /= real_data["max"] # Permute is necessary because during sampling, we used "channel-last" format. # Hence, we need to permute it to become channel-first to match PyTorch "channel-first" format y_input = y_input.view(-1, self.c) y_input = y_input.permute(1, 0).contiguous() y_input = y_input.view( -1, int(math.sqrt(y_input.shape[-1])), int(math.sqrt(y_input.shape[-1])) ) y_input = voltage2pixel( y_input, self.phi[: self.c], real_data["min"], real_data["max"] ) return y_input def __len__(self): return len(self.real_data) def deploy(learner): """Real experimental data""" inference_config = load_config("../config/inference_config.yaml") sr = args.sampling_ratio directory = f"../inference_images/ReconNet/SPI/{int(sr * 100):04d}" os.makedirs(directory, exist_ok=True) real_dataset = RealDataset(sr, inference_config) for x in real_dataset: prediction = learner(x.unsqueeze(0)) prediction = prediction.squeeze().squeeze().cpu().detach().numpy() prediction = scipy.ndimage.zoom(prediction, 4, order=0, mode="nearest") cv2.imwrite(f"{directory}/{time.time()}.png", prediction * 255) print("Finished reconstructing SPI images.") if __name__ == "__main__": learner, trainer = setup() deploy(learner)
[ "torch.FloatTensor" ]
1.8.1
stephenllh/bcs-unet
be534a25e28cbe3501278d0ee6e2417b2cd737d3
1.3
import os import argparse import time import numpy as np import torch import torch.nn as nn import torch.optim as optim import pickle as pkl parser = argparse.ArgumentParser('ODE demo') parser.add_argument('--method', type=str, choices=['dopri5', 'adams'], default='dopri5') parser.add_argument('--data_size', type=int, default=1000) parser.add_argument('--batch_time', type=int, default=10) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--niters', type=int, default=2000) parser.add_argument('--test_freq', type=int, default=20) parser.add_argument('--viz', action='store_true') parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--adjoint', action='store_true') parser.add_argument('--niki', action='store_true') args = parser.parse_args() if args.adjoint: from torchdiffeq import odeint_adjoint as odeint else: from torchdiffeq import odeint device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') true_y0 = torch.tensor([[2., 0.]]).to(device) t = torch.linspace(0., 25., args.data_size).to(device) true_A = torch.tensor([[-0.1, 2.0], [-2.0, -0.1]]).to(device) class Lambda(nn.Module): def forward(self, t, y): return torch.mm(y**3, true_A) with torch.no_grad(): true_y = odeint(Lambda(), true_y0, t, method='dopri5') def get_batch(): s = torch.from_numpy(np.random.choice(np.arange(args.data_size - args.batch_time, dtype=np.int64), args.batch_size, replace=False)) batch_y0 = true_y[s] # (M, D) batch_t = t[:args.batch_time] # (T) batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0) # (T, M, D) return batch_y0.to(device), batch_t.to(device), batch_y.to(device) def get_noised_batch(): s = torch.from_numpy(np.random.choice(np.arange(args.data_size - args.batch_time, dtype=np.int64), args.batch_size, replace=False)) batch_y0 = true_y[s] # (M, D) batch_y0 += torch.normal(mean=0., std=0.2, size=batch_y0.shape) batch_t = t[:args.batch_time] # (T) batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0) # (T, M, D) batch_y += torch.normal(mean=0., std=0.2, size=batch_y.shape) return batch_y0.to(device), batch_t.to(device), batch_y.to(device) def makedirs(dirname): if not os.path.exists(dirname): os.makedirs(dirname) if args.viz: makedirs('png') import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 4), facecolor='white') ax_traj = fig.add_subplot(131, frameon=False) ax_phase = fig.add_subplot(132, frameon=False) ax_vecfield = fig.add_subplot(133, frameon=False) plt.show(block=False) def visualize(true_y, pred_y, odefunc, itr): if args.viz: ax_traj.cla() ax_traj.set_title('Trajectories') ax_traj.set_xlabel('t') ax_traj.set_ylabel('x,y') ax_traj.plot(t.cpu().numpy(), true_y.cpu().numpy()[:, 0, 0], t.cpu().numpy(), true_y.cpu().numpy()[:, 0, 1], 'g-') ax_traj.plot(t.cpu().numpy(), pred_y.cpu().numpy()[:, 0, 0], '--', t.cpu().numpy(), pred_y.cpu().numpy()[:, 0, 1], 'b--') ax_traj.set_xlim(t.cpu().min(), t.cpu().max()) ax_traj.set_ylim(-2, 2) ax_traj.legend() ax_phase.cla() ax_phase.set_title('Phase Portrait') ax_phase.set_xlabel('x') ax_phase.set_ylabel('y') ax_phase.plot(true_y.cpu().numpy()[:, 0, 0], true_y.cpu().numpy()[:, 0, 1], 'g-') ax_phase.plot(pred_y.cpu().numpy()[:, 0, 0], pred_y.cpu().numpy()[:, 0, 1], 'b--') ax_phase.set_xlim(-2, 2) ax_phase.set_ylim(-2, 2) ax_vecfield.cla() ax_vecfield.set_title('Learned Vector Field') ax_vecfield.set_xlabel('x') ax_vecfield.set_ylabel('y') y, x = np.mgrid[-2:2:21j, -2:2:21j] dydt = odefunc(0, torch.Tensor(np.stack([x, y], -1).reshape(21 * 21, 2)).to(device)).cpu().detach().numpy() mag = np.sqrt(dydt[:, 0]**2 + dydt[:, 1]**2).reshape(-1, 1) dydt = (dydt / mag) dydt = dydt.reshape(21, 21, 2) ax_vecfield.streamplot(x, y, dydt[:, :, 0], dydt[:, :, 1], color="black") ax_vecfield.set_xlim(-2, 2) ax_vecfield.set_ylim(-2, 2) fig.tight_layout() plt.savefig('png/{:03d}'.format(itr)) plt.draw() plt.pause(0.001) class ODEFunc(nn.Module): def __init__(self): super(ODEFunc, self).__init__() self.net = nn.Sequential( nn.Linear(2, 50), nn.Tanh(), nn.Linear(50, 2), ) for m in self.net.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0, std=0.1) nn.init.constant_(m.bias, val=0) def forward(self, t, y): return self.net(y**3) class RunningAverageMeter(object): """Computes and stores the average and current value""" def __init__(self, momentum=0.99): self.momentum = momentum self.reset() def reset(self): self.val = None self.avg = 0 def update(self, val): if self.val is None: self.avg = val else: self.avg = self.avg * self.momentum + val * (1 - self.momentum) self.val = val if __name__ == '__main__': ii = 0 func = ODEFunc().to(device) optimizer = optim.RMSprop(func.parameters(), lr=1e-3) end = time.time() time_meter = RunningAverageMeter(0.97) loss_meter = RunningAverageMeter(0.97) total_int_time = 0. total_der_time = 0. losses = [] for itr in range(1, args.niters + 1): optimizer.zero_grad() batch_y0, batch_t, batch_y = get_noised_batch() # batch_y0 is just for convenience; batch_y has the same information a = time.time() if not args.niki: pred_y = odeint(func, batch_y0, batch_t).to(device) # Niki's alternative approach else: parallel_predictions = odeint(func, batch_y[:-1], batch_t[:2])[1] pred_y = torch.vstack([batch_y0[np.newaxis], parallel_predictions]) b = time.time() total_int_time += b - a # print('together, we get', n_pred_y.shape) # pred_ys = # print("times are", batch_t.shape) # print("starting points are", batch_y0.shape) # print("the predicted y is", pred_y.shape) # print("the true y is", batch_y.shape) # raise SystemExit loss = torch.mean(torch.abs(pred_y - batch_y)) c = time.time() loss.backward() d = time.time() total_der_time += d - c optimizer.step() time_meter.update(time.time() - end) if not args.niki: loss_meter.update(loss.item()) losses.append(loss.item()) else: with torch.no_grad(): untracked_pred_y = odeint(func, batch_y0, batch_t).to(device) untracked_loss = torch.mean(torch.abs(untracked_pred_y - batch_y)) loss_meter.update(untracked_loss.item()) losses.append(untracked_loss.item()) if itr % args.test_freq == 0: with torch.no_grad(): pred_y = odeint(func, true_y0, t) loss = torch.mean(torch.abs(pred_y - true_y)) print('Iter {:04d} | Total Loss {:.6f}'.format(itr, loss.item())) visualize(true_y, pred_y, func, ii) ii += 1 end = time.time() print("data size", args.data_size) print("batch time", args.batch_time) print("Niki integration?", args.niki) print("adjoint?", args.adjoint) print("the average integration time was", total_int_time / args.niters) print("the average differentiation time was", total_der_time / args.niters) print("the loss meter says:", "cur:", loss_meter.val, "avg:", loss_meter.avg) filename = f'data_size_{args.data_size}_batch_time_{args.batch_time}_niki_{args.niki}_adjoint_{args.adjoint}' with open(filename, 'wb') as f: pkl.dump(losses, f)
[ "torch.nn.Linear", "torch.cuda.is_available", "torch.vstack", "torch.nn.init.constant_", "torch.normal", "torch.abs", "torch.nn.init.normal_", "torch.tensor", "torch.nn.Tanh", "torch.linspace", "torch.mm", "torch.no_grad" ]
1.3.0
nikihowe/torchdiffeq
6d717af9d4e836294be314a9610e3baee764e31b
1.6
""" This script tests the approach on the BUCC 2018 shared task on finding parallel sentences: https://comparable.limsi.fr/bucc2018/bucc2018-task.html You can download the necessary files from there. We have used it in our paper (https://arxiv.org/pdf/2004.09813.pdf) in Section 4.2 to evaluate different multilingual models. This script requires that you have FAISS installed: https://github.com/facebookresearch/faiss """ from sentence_transformers import SentenceTransformer, models from collections import defaultdict import os import pickle from sklearn.decomposition import PCA import torch from bitext_mining_utils import * #Model we want to use for bitext mining. LaBSE achieves state-of-the-art performance model_name = 'LaBSE' model = SentenceTransformer(model_name) #Intput files for BUCC2018 shared task source_file = "bucc2018/de-en/de-en.training.de" target_file = "bucc2018/de-en/de-en.training.en" labels_file = "bucc2018/de-en/de-en.training.gold" # We base the scoring on k nearest neighbors for each element knn_neighbors = 4 # Min score for text pairs. Note, score can be larger than 1 min_threshold = 1 #Do we want to use exact search of approximate nearest neighbor search (ANN) #Exact search: Slower, but we don't miss any parallel sentences #ANN: Faster, but the recall will be lower use_ann_search = True #Number of clusters for ANN. Optimal number depends on dataset size ann_num_clusters = 32768 #How many cluster to explorer for search. Higher number = better recall, slower ann_num_cluster_probe = 5 #To save memory, we can use PCA to reduce the dimensionality from 768 to for example 128 dimensions #The encoded embeddings will hence require 6 times less memory. However, we observe a small drop in performance. use_pca = False pca_dimensions = 128 #We store the embeddings on disc, so that they can later be loaded from disc source_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(source_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension()) target_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(target_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension()) #Use PCA to reduce the dimensionality of the sentence embedding model if use_pca: # We use a smaller number of training sentences to learn the PCA train_sent = [] num_train_sent = 20000 with open(source_file, encoding='utf8') as fSource, open(target_file, encoding='utf8') as fTarget: for line_source, line_target in zip(fSource, fTarget): id, sentence = line_source.strip().split("\t", maxsplit=1) train_sent.append(sentence) id, sentence = line_target.strip().split("\t", maxsplit=1) train_sent.append(sentence) if len(train_sent) >= num_train_sent: break print("Encode training embeddings for PCA") train_matrix = model.encode(train_sent, show_progress_bar=True, convert_to_numpy=True) pca = PCA(n_components=pca_dimensions) pca.fit(train_matrix) dense = models.Dense(in_features=model.get_sentence_embedding_dimension(), out_features=pca_dimensions, bias=False, activation_function=torch.nn.Identity()) dense.linear.weight = torch.nn.Parameter(torch.tensor(pca.components_)) model.add_module('dense', dense) print("Read source file") source = {} with open(source_file, encoding='utf8') as fIn: for line in fIn: id, sentence = line.strip().split("\t", maxsplit=1) source[id] = sentence print("Read target file") target = {} with open(target_file, encoding='utf8') as fIn: for line in fIn: id, sentence = line.strip().split("\t", maxsplit=1) target[id] = sentence labels = defaultdict(lambda: defaultdict(bool)) num_total_parallel = 0 with open(labels_file) as fIn: for line in fIn: src_id, trg_id = line.strip().split("\t") if src_id in source and trg_id in target: labels[src_id][trg_id] = True labels[trg_id][src_id] = True num_total_parallel += 1 print("Source Sentences:", len(source)) print("Target Sentences:", len(target)) print("Num Parallel:", num_total_parallel) ### Encode source sentences source_ids = list(source.keys()) source_sentences = [source[id] for id in source_ids] if not os.path.exists(source_embedding_file): print("Encode source sentences") source_embeddings = model.encode(source_sentences, show_progress_bar=True, convert_to_numpy=True) with open(source_embedding_file, 'wb') as fOut: pickle.dump(source_embeddings, fOut) else: with open(source_embedding_file, 'rb') as fIn: source_embeddings = pickle.load(fIn) ### Encode target sentences target_ids = list(target.keys()) target_sentences = [target[id] for id in target_ids] if not os.path.exists(target_embedding_file): print("Encode target sentences") target_embeddings = model.encode(target_sentences, show_progress_bar=True, convert_to_numpy=True) with open(target_embedding_file, 'wb') as fOut: pickle.dump(target_embeddings, fOut) else: with open(target_embedding_file, 'rb') as fIn: target_embeddings = pickle.load(fIn) ##### Now we start to search for parallel (translated) sentences # Normalize embeddings x = source_embeddings y = target_embeddings print("Shape Source:", x.shape) print("Shape Target:", y.shape) x = x / np.linalg.norm(x, axis=1, keepdims=True) y = y / np.linalg.norm(y, axis=1, keepdims=True) # Perform kNN in both directions x2y_sim, x2y_ind = kNN(x, y, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe) x2y_mean = x2y_sim.mean(axis=1) y2x_sim, y2x_ind = kNN(y, x, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe) y2x_mean = y2x_sim.mean(axis=1) # Compute forward and backward scores margin = lambda a, b: a / b fwd_scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y, x, y2x_ind, y2x_mean, x2y_mean, margin) fwd_best = x2y_ind[np.arange(x.shape[0]), fwd_scores.argmax(axis=1)] bwd_best = y2x_ind[np.arange(y.shape[0]), bwd_scores.argmax(axis=1)] indices = np.stack([np.concatenate([np.arange(x.shape[0]), bwd_best]), np.concatenate([fwd_best, np.arange(y.shape[0])])], axis=1) scores = np.concatenate([fwd_scores.max(axis=1), bwd_scores.max(axis=1)]) seen_src, seen_trg = set(), set() #Extact list of parallel sentences bitext_list = [] for i in np.argsort(-scores): src_ind, trg_ind = indices[i] src_ind = int(src_ind) trg_ind = int(trg_ind) if scores[i] < min_threshold: break if src_ind not in seen_src and trg_ind not in seen_trg: seen_src.add(src_ind) seen_trg.add(trg_ind) bitext_list.append([scores[i], source_ids[src_ind], target_ids[trg_ind]]) # Measure Performance by computing the threshold # that leads to the best F1 score performance bitext_list = sorted(bitext_list, key=lambda x: x[0], reverse=True) n_extract = n_correct = 0 threshold = 0 best_f1 = best_recall = best_precision = 0 average_precision = 0 for idx in range(len(bitext_list)): score, id1, id2 = bitext_list[idx] n_extract += 1 if labels[id1][id2] or labels[id2][id1]: n_correct += 1 precision = n_correct / n_extract recall = n_correct / num_total_parallel f1 = 2 * precision * recall / (precision + recall) average_precision += precision if f1 > best_f1: best_f1 = f1 best_precision = precision best_recall = recall threshold = (bitext_list[idx][0] + bitext_list[min(idx + 1, len(bitext_list)-1)][0]) / 2 print("Best Threshold:", threshold) print("Recall:", best_recall) print("Precision:", best_precision) print("F1:", best_f1)
[ "torch.nn.Identity", "torch.tensor" ]
1.6.0
danielperezr88/sentence-transformers
56a7990c56c484e7948cf6400b54f27114bb267c
1.4
# -*- coding: utf-8 -* import torch import torch.nn as nn from videoanalyst.model.backbone.backbone_base import (TRACK_BACKBONES, VOS_BACKBONES) from videoanalyst.model.common_opr.common_block import conv_bn_relu from videoanalyst.model.module_base import ModuleBase @VOS_BACKBONES.register @TRACK_BACKBONES.register class TinyConv(ModuleBase ): # 将 TinyConv 先后注册到 TRACK_BACKBONES 和 VOS_BACKBONES 中 r""" TinyNet Customized, extremely pruned ConvNet Hyper-parameters ---------------- pretrain_model_path: string Path to pretrained backbone parameter file, Parameter to be loaded in _update_params_ """ default_hyper_params = {"pretrain_model_path": ""} def __init__(self): super(TinyConv, self).__init__() self.conv1 = conv_bn_relu(3, 32, stride=2, kszie=3, pad=0) self.pool1 = nn.MaxPool2d(3, stride=2, padding=0, ceil_mode=True) self.conv2a = conv_bn_relu(32, 64, stride=1, kszie=1, pad=0) self.conv2b = conv_bn_relu(64, 64, stride=2, kszie=7, pad=0, groups=64) self.conv3a = conv_bn_relu(64, 64, stride=1, kszie=3, pad=0) self.conv3b = conv_bn_relu(64, 64, stride=1, kszie=1, pad=0, has_relu=False) # initialization for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats stddev = m.stddev if hasattr(m, 'stddev') else 0.1 X = stats.truncnorm(-2, 2, scale=stddev) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.conv1(x) x = self.pool1(x) x = self.conv2a(x) x = self.conv2b(x) x = self.conv3a(x) x = self.conv3b(x) return x
[ "torch.nn.init.constant_", "torch.no_grad", "torch.nn.MaxPool2d" ]
1.4.0
ShiAngWang/video_analyst
de4f86363cc408695428b423e8d6e346aa35149b
1.1
import torch from MerCBO.graphGP.kernels.diffusionkernel import DiffusionKernel from MerCBO.graphGP.models.gp_regression import GPRegression from MerCBO.graphGP.inference.inference import Inference from MerCBO.graphGP.sampler.tool_partition import group_input from MerCBO.acquisition.acquisition_functions import expected_improvement def acquisition_expectation(x, inference_samples, partition_samples, n_vertices, acquisition_func=expected_improvement, reference=None): """ Using posterior samples, the acquisition function is also averaged over posterior samples :param x: 1d or 2d tensor :param inference_samples: inference method for each posterior sample :param partition_samples: :param n_vertices: :param acquisition_func: :param reference: :return: """ if x.dim() == 1: x = x.unsqueeze(0) acquisition_sample_list = [] for s in range(len(inference_samples)): hyper = inference_samples[s].model.param_to_vec() grouped_x = group_input(x, sorted_partition=partition_samples[s], n_vertices=n_vertices) pred_dist = inference_samples[s].predict(grouped_x, hyper=hyper, verbose=False) pred_mean_sample = pred_dist[0].detach() pred_var_sample = pred_dist[1].detach() acquisition_sample_list.append(acquisition_func(pred_mean_sample[:, 0], pred_var_sample[:, 0], reference=reference)) return torch.stack(acquisition_sample_list, 1).sum(1, keepdim=True) def inference_sampling(input_data, output_data, n_vertices, hyper_samples, log_beta_samples, partition_samples, freq_samples, basis_samples): """ :param input_data: :param output_data: :param n_vertices: :param hyper_samples: :param log_beta_samples: :param partition_samples: :param freq_samples: :param basis_samples: :return: """ inference_samples = [] for s in range(len(hyper_samples)): grouped_log_beta = torch.stack([torch.sum(log_beta_samples[s][subset]) for subset in partition_samples[s]]) kernel = DiffusionKernel(grouped_log_beta=grouped_log_beta, fourier_freq_list=freq_samples[s], fourier_basis_list=basis_samples[s]) model = GPRegression(kernel=kernel) model.vec_to_param(hyper_samples[s]) grouped_input_data = group_input(input_data=input_data, sorted_partition=partition_samples[s], n_vertices=n_vertices) inference = Inference((grouped_input_data, output_data), model=model) inference_samples.append(inference) return inference_samples def prediction_statistic(x, inference_samples, partition_samples, n_vertices): if x.dim() == 1: x = x.unsqueeze(0) mean_sample_list = [] std_sample_list = [] var_sample_list = [] for s in range(len(inference_samples)): grouped_x = group_input(input_data=x, sorted_partition=partition_samples[s], n_vertices=n_vertices) # print(grouped_x) hyper = inference_samples[s].model.param_to_vec() # pred_dist = inference_samples[s].predict(grouped_x) pred_dist = inference_samples[s].predict(grouped_x, hyper=hyper) pred_mean_sample = pred_dist[0] pred_var_sample = pred_dist[1] pred_std_sample = pred_var_sample ** 0.5 mean_sample_list.append(pred_mean_sample.data) std_sample_list.append(pred_std_sample.data) var_sample_list.append(pred_var_sample.data) return torch.cat(mean_sample_list, 1).mean(1, keepdim=True),\ torch.cat(std_sample_list, 1).mean(1, keepdim=True),\ torch.cat(var_sample_list, 1).mean(1, keepdim=True)
[ "torch.cat", "torch.stack", "torch.sum" ]
1.1.0
aryandeshwal/MerCBO
526dfbc05bb7be3a77a30d8943233707f1636f14
1.10
from ..base_module import RegressionModel, PairedModel from .base_model import CnnModel import torch.nn as nn class RegressionCnnModel(RegressionModel): def __init__(self, cfg, train_df = None, val_df = None, test_df = None): super().__init__(cfg, CnnModel(cfg), train_df, val_df, test_df) def forward(self, input, attn_mask): output = self.model(input, attn_mask).squeeze() return output def training_step(self, batch, batch_idx): y = batch.pop('target') output = self(batch['input_ids'], batch['attention_mask']) loss = self.criterion(y, output) self.log('train_loss', loss) return {'loss': loss} def validation_step(self, batch, batch_idx): y = batch.pop('target') output1 = self(batch['more_toxic_ids'], batch['more_toxic_mask']) output2 = self(batch['less_toxic_ids'], batch['less_toxic_mask']) loss = nn.MarginRankingLoss(margin = self.cfg['margin'])(output1, output2, y) acc = (output1 > output2).float().mean() return {'loss': loss, 'acc': acc} def predict_step(self, batch, batch_idx, dataloader_idx=0): output = self(batch['input_ids'], batch['attention_mask']).squeeze().cpu() return output class PairedCnnModel(PairedModel): def __init__(self, cfg, train_df = None, val_df = None, test_df = None): super().__init__(cfg, CnnModel(cfg), train_df, val_df, test_df) def forward(self, input, attn_mask): output = self.model(input, attn_mask).squeeze() return output def training_step(self, batch, batch_idx): y = batch.pop('target') output1 = self(batch['more_toxic_ids'], batch['more_toxic_mask']) output2 = self(batch['less_toxic_ids'], batch['less_toxic_mask']) loss = nn.MarginRankingLoss(margin = self.cfg['margin'])(output1, output2, y) acc = (output1 > output2).float().mean() self.log('train_loss', loss) self.log('train_acc', acc) return {'loss': loss, 'acc': acc} def validation_step(self, batch, batch_idx): y = batch.pop('target') output1 = self(batch['more_toxic_ids'], batch['more_toxic_mask']) output2 = self(batch['less_toxic_ids'], batch['less_toxic_mask']) loss = nn.MarginRankingLoss(margin = self.cfg['margin'])(output1, output2, y) acc = (output1 > output2).float().mean() return {'loss': loss, 'acc': acc} def predict_step(self, batch, batch_idx, dataloader_idx=0): output = self(batch['input_ids'], batch['attention_mask']).squeeze().cpu() return output
[ "torch.nn.MarginRankingLoss" ]
1.10.0
alexvishnevskiy/jigsaw
7fc2c4cd3700a54e9c5cbc02870bf4057b0a9fe3
1.4
# Copyright (c) 2021, Soohwan Kim. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from kospeech.models.jasper.model import Jasper batch_size = 3 sequence_length = 14321 dimension = 80 cuda = torch.cuda.is_available() device = torch.device('cuda' if cuda else 'cpu') inputs = torch.rand(batch_size, sequence_length, dimension).to(device) # BxTxD input_lengths = torch.LongTensor([14321, 14300, 13000]).to(device) print("Jasper 10x3 Model Test..") model = Jasper(num_classes=10, version='10x5').to(device) output = model.recognize(inputs, input_lengths) print(output) print(output.size()) print("Jasper 5x3 Model Test..") model = Jasper(num_classes=10, version='5x3').to(device) output = model.recognize(inputs, input_lengths) print(output) print(output.size())
[ "torch.device", "torch.cuda.is_available", "torch.LongTensor", "torch.rand" ]
1.4.0
daiyaanarfeen/kospeech
5aff5c7647e5cceceddf7b22c991777fc3792400
1.10
import random from pathlib import Path import cv2 import numpy as np import torch from vp_suite.base.base_dataset import VPDataset, VPData import vp_suite.constants as constants from vp_suite.utils.utils import set_from_kwarg class KITTIRawDataset(VPDataset): r""" Dataset class for the "raw data" regime of the "KITTI Vision Benchmark Suite", as described in "Vision meets Robotics: The KITTI Dataset" by Geiger et al. (http://www.cvlibs.net/publications/Geiger2013IJRR.pdf). Each sequence shows a short clip of 'driving around the mid-size city of Karlsruhe, in rural areas and on highways'. """ NAME = "KITTI raw" REFERENCE = "http://www.cvlibs.net/datasets/kitti/raw_data.php" IS_DOWNLOADABLE = "With Registered Account" DEFAULT_DATA_DIR = constants.DATA_PATH / "kitti_raw" VALID_SPLITS = ["train", "val", "test"] MIN_SEQ_LEN = 994 #: Minimum number of frames across all sequences (6349 in longest). ACTION_SIZE = 0 DATASET_FRAME_SHAPE = (375, 1242, 3) FPS = 10 #: Frames per Second. AVAILABLE_CAMERAS = [f"image_{i:02d}" for i in range(4)] #: Available cameras: [`greyscale_left`, `greyscale_right`, `color_left`, `color_right`]. camera = "image_02" #: Chosen camera, can be set to any of the `AVAILABLE_CAMERAS`. trainval_to_test_ratio = 0.8 #: The ratio of files that will be training/validation data (rest will be test data). train_to_val_ratio = 0.9 trainval_test_seed = 1234 #: The random seed used to separate training/validation and testing data. def __init__(self, split, **dataset_kwargs): super(KITTIRawDataset, self).__init__(split, **dataset_kwargs) self.NON_CONFIG_VARS.extend(["sequences", "sequences_with_frame_index", "AVAILABLE_CAMERAS"]) # set attributes set_from_kwarg(self, dataset_kwargs, "camera") set_from_kwarg(self, dataset_kwargs, "trainval_to_test_ratio") set_from_kwarg(self, dataset_kwargs, "train_to_val_ratio") set_from_kwarg(self, dataset_kwargs, "trainval_test_seed") set_from_kwarg(self, dataset_kwargs, "train_val_seed") # get video filepaths dd = Path(self.data_dir) sequence_dirs = [sub for d in dd.iterdir() for sub in d.iterdir() if dd.is_dir() and sub.is_dir()] if len(sequence_dirs) < 3: raise ValueError(f"Dataset {self.NAME}: found less than 3 sequences " f"-> can't split dataset -> can't use it") # slice accordingly slice_idx = max(1, int(len(sequence_dirs) * self.trainval_to_test_ratio)) random.Random(self.trainval_test_seed).shuffle(sequence_dirs) if self.split == "test": sequence_dirs = sequence_dirs[slice_idx:] else: sequence_dirs = sequence_dirs[:slice_idx] slice_idx = max(1, int(len(sequence_dirs) * self.train_to_val_ratio)) random.Random(self.train_val_seed).shuffle(sequence_dirs) if self.split == "train": sequence_dirs = sequence_dirs[:slice_idx] else: sequence_dirs = sequence_dirs[slice_idx:] # retrieve sequence lengths and store self.sequences = [] for sequence_dir in sorted(sequence_dirs): sequence_len = len(list(sequence_dir.rglob(f"{self.camera}/data/*.png"))) self.sequences.append((sequence_dir, sequence_len)) self.sequences_with_frame_index = [] # mock value, must not be used for iteration till sequence length is set def _set_seq_len(self): # Determine per video which frame indices are valid for sequence_path, frame_count in self.sequences: valid_start_idx = range(0, frame_count - self.seq_len + 1, self.seq_len + self.seq_step - 1) for idx in valid_start_idx: self.sequences_with_frame_index.append((sequence_path, idx)) def __getitem__(self, i) -> VPData: sequence_path, start_idx = self.sequences_with_frame_index[i] all_img_paths = sorted(list(sequence_path.rglob(f"{self.camera}/data/*.png"))) seq_img_paths = all_img_paths[start_idx:start_idx+self.seq_len:self.seq_step] # t items of [h, w, c] seq_imgs = [cv2.cvtColor(cv2.imread(str(fp.resolve())), cv2.COLOR_BGR2RGB) for fp in seq_img_paths] vid = np.stack(seq_imgs, axis=0) # [t, *self.DATASET_FRAME_SHAPE] vid = self.preprocess(vid) # [t, *self.img_shape] actions = torch.zeros((self.total_frames, 1)) # [t, a], actions should be disregarded in training logic data = {"frames": vid, "actions": actions, "origin": f"{sequence_path}, start frame: {start_idx}"} return data def __len__(self): return len(self.sequences_with_frame_index) @classmethod def download_and_prepare_dataset(cls): d_path = cls.DEFAULT_DATA_DIR d_path.mkdir(parents=True, exist_ok=True) # download and extract sequences if we can't find them in our folder yet try: _ = next(d_path.rglob(f"**/*.png")) print(f"Found image data in {str(d_path.resolve())} -> Won't download {cls.NAME}") except StopIteration: from vp_suite.utils.utils import run_shell_command import vp_suite.constants as constants prep_script = (constants.PKG_RESOURCES / 'get_dataset_kitti_raw.sh').resolve() run_shell_command(f"{prep_script} {cls.DEFAULT_DATA_DIR}")
[ "torch.zeros" ]
1.10.1
angelvillar96/vp-suite
3e7c7d852862bad09a771d754fc56a71abf0a25f
1.7
import copy import logging import math import numpy as np import PIL import scipy import torch from .preprocess import Preprocess from .. import utils LOG = logging.getLogger(__name__) class RotateBy90(Preprocess): def __init__(self, angle_perturbation=0.0, fixed_angle=None): super().__init__() self.angle_perturbation = angle_perturbation self.fixed_angle = fixed_angle def __call__(self, image, anns, meta): meta = copy.deepcopy(meta) anns = copy.deepcopy(anns) w, h = image.size if self.fixed_angle is not None: angle = self.fixed_angle else: rnd1 = float(torch.rand(1).item()) angle = int(rnd1 * 4.0) * 90.0 sym_rnd2 = (float(torch.rand(1).item()) - 0.5) * 2.0 angle += sym_rnd2 * self.angle_perturbation LOG.debug('rotation angle = %f', angle) assert meta['rotation']['angle'] == 0.0 meta['rotation']['angle'] = angle meta['rotation']['width'] = w meta['rotation']['height'] = h # rotate image if angle != 0.0: im_np = np.asarray(image) if im_np.shape[0] == im_np.shape[1] and angle == 90: im_np = np.swapaxes(im_np, 0, 1) im_np = np.flip(im_np, axis=0) elif im_np.shape[0] == im_np.shape[1] and angle == 270: im_np = np.swapaxes(im_np, 0, 1) im_np = np.flip(im_np, axis=1) elif im_np.shape[0] == im_np.shape[1] and angle == 180: im_np = np.flip(im_np, axis=0) im_np = np.flip(im_np, axis=1) else: im_np = scipy.ndimage.rotate(im_np, angle=angle, cval=127, reshape=False) image = PIL.Image.fromarray(im_np) LOG.debug('rotated by = %f degrees', angle) # rotate keypoints cangle = math.cos(angle / 180.0 * math.pi) sangle = math.sin(angle / 180.0 * math.pi) for ann in anns: xy = ann['keypoints'][:, :2] x_old = xy[:, 0].copy() - (w - 1) / 2 y_old = xy[:, 1].copy() - (h - 1) / 2 xy[:, 0] = (w - 1) / 2 + cangle * x_old + sangle * y_old xy[:, 1] = (h - 1) / 2 - sangle * x_old + cangle * y_old ann['bbox'] = utils.rotate_box(ann['bbox'], w - 1, h - 1, angle) LOG.debug('meta before: %s', meta) meta['valid_area'] = utils.rotate_box(meta['valid_area'], w - 1, h - 1, angle) # fix valid area to be inside original image dimensions original_valid_area = meta['valid_area'].copy() meta['valid_area'][0] = np.clip(meta['valid_area'][0], 0, w) meta['valid_area'][1] = np.clip(meta['valid_area'][1], 0, h) new_rb_corner = original_valid_area[:2] + original_valid_area[2:] new_rb_corner[0] = np.clip(new_rb_corner[0], 0, w) new_rb_corner[1] = np.clip(new_rb_corner[1], 0, h) meta['valid_area'][2:] = new_rb_corner - meta['valid_area'][:2] LOG.debug('meta after: %s', meta) return image, anns, meta
[ "torch.rand" ]
1.7.1
adujardin/openpifpaf
4fa79162f5529f5b0de72e2312aab54d410bee3f
1.6
import os, time import numpy as np import torch import torch.nn.functional as F from sklearn.metrics import roc_auc_score, auc, precision_recall_curve from skimage.measure import label, regionprops from tqdm import tqdm from visualize import * from model import load_decoder_arch, load_encoder_arch, positionalencoding2d, activation from utils import * from custom_datasets import * from custom_models import * OUT_DIR = './viz/' gamma = 0.0 theta = torch.nn.Sigmoid() log_theta = torch.nn.LogSigmoid() def train_meta_epoch(c, epoch, loader, encoder, decoders, optimizer, pool_layers, N): P = c.condition_vec L = c.pool_layers decoders = [decoder.train() for decoder in decoders] adjust_learning_rate(c, optimizer, epoch) I = len(loader) iterator = iter(loader) for sub_epoch in range(c.sub_epochs): train_loss = 0.0 train_count = 0 for i in range(I): # warm-up learning rate lr = warmup_learning_rate(c, epoch, i+sub_epoch*I, I*c.sub_epochs, optimizer) # sample batch try: image, _, _ = next(iterator) except StopIteration: iterator = iter(loader) image, _, _ = next(iterator) # encoder prediction image = image.to(c.device) # single scale with torch.no_grad(): _ = encoder(image) # train decoder e_list = list() c_list = list() for l, layer in enumerate(pool_layers): if 'vit' in c.enc_arch: e = activation[layer].transpose(1, 2)[...,1:] e_hw = int(np.sqrt(e.size(2))) e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW else: e = activation[layer].detach() # BxCxHxW # B, C, H, W = e.size() S = H*W E = B*S # p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1) c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC perm = torch.randperm(E).to(c.device) # BHW decoder = decoders[l] # FIB = E//N # number of fiber batches assert FIB > 0, 'MAKE SURE WE HAVE ENOUGH FIBERS, otherwise decrease N or batch-size!' for f in range(FIB): # per-fiber processing idx = torch.arange(f*N, (f+1)*N) c_p = c_r[perm[idx]] # NxP e_p = e_r[perm[idx]] # NxC if 'cflow' in c.dec_arch: z, log_jac_det = decoder(e_p, [c_p,]) else: z, log_jac_det = decoder(e_p) # decoder_log_prob = get_logp(C, z, log_jac_det) log_prob = decoder_log_prob / C # likelihood per dim loss = -log_theta(log_prob) optimizer.zero_grad() loss.mean().backward() optimizer.step() train_loss += t2np(loss.sum()) train_count += len(loss) # mean_train_loss = train_loss / train_count if c.verbose: print('Epoch: {:d}.{:d} \t train loss: {:.4f}, lr={:.6f}'.format(epoch, sub_epoch, mean_train_loss, lr)) # def test_meta_epoch(c, epoch, loader, encoder, decoders, pool_layers, N): # test if c.verbose: print('\nCompute loss and scores on test set:') # P = c.condition_vec decoders = [decoder.eval() for decoder in decoders] height = list() width = list() image_list = list() gt_label_list = list() gt_mask_list = list() test_dist = [list() for layer in pool_layers] test_loss = 0.0 test_count = 0 start = time.time() with torch.no_grad(): for i, (image, label, mask) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)): # save if c.viz: image_list.extend(t2np(image)) gt_label_list.extend(t2np(label)) gt_mask_list.extend(t2np(mask)) # data image = image.to(c.device) # single scale _ = encoder(image) # BxCxHxW # test decoder e_list = list() for l, layer in enumerate(pool_layers): if 'vit' in c.enc_arch: e = activation[layer].transpose(1, 2)[...,1:] e_hw = int(np.sqrt(e.size(2))) e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW else: e = activation[layer] # BxCxHxW # B, C, H, W = e.size() S = H*W E = B*S # if i == 0: # get stats height.append(H) width.append(W) # p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1) c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC # m = F.interpolate(mask, size=(H, W), mode='nearest') m_r = m.reshape(B, 1, S).transpose(1, 2).reshape(E, 1) # BHWx1 # decoder = decoders[l] FIB = E//N + int(E%N > 0) # number of fiber batches for f in range(FIB): if f < (FIB-1): idx = torch.arange(f*N, (f+1)*N) else: idx = torch.arange(f*N, E) # c_p = c_r[idx] # NxP e_p = e_r[idx] # NxC m_p = m_r[idx] > 0.5 # Nx1 # if 'cflow' in c.dec_arch: z, log_jac_det = decoder(e_p, [c_p,]) else: z, log_jac_det = decoder(e_p) # decoder_log_prob = get_logp(C, z, log_jac_det) log_prob = decoder_log_prob / C # likelihood per dim loss = -log_theta(log_prob) test_loss += t2np(loss.sum()) test_count += len(loss) test_dist[l] = test_dist[l] + log_prob.detach().cpu().tolist() # fps = len(loader.dataset) / (time.time() - start) mean_test_loss = test_loss / test_count if c.verbose: print('Epoch: {:d} \t test_loss: {:.4f} and {:.2f} fps'.format(epoch, mean_test_loss, fps)) # return height, width, image_list, test_dist, gt_label_list, gt_mask_list def test_meta_fps(c, epoch, loader, encoder, decoders, pool_layers, N): # test if c.verbose: print('\nCompute loss and scores on test set:') # P = c.condition_vec decoders = [decoder.eval() for decoder in decoders] height = list() width = list() image_list = list() gt_label_list = list() gt_mask_list = list() test_dist = [list() for layer in pool_layers] test_loss = 0.0 test_count = 0 A = len(loader.dataset) with torch.no_grad(): # warm-up for i, (image, _, _) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)): # data image = image.to(c.device) # single scale _ = encoder(image) # BxCxHxW # measure encoder only torch.cuda.synchronize() start = time.time() for i, (image, _, _) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)): # data image = image.to(c.device) # single scale _ = encoder(image) # BxCxHxW # measure encoder + decoder torch.cuda.synchronize() time_enc = time.time() - start start = time.time() for i, (image, _, _) in enumerate(tqdm(loader, disable = c.hide_tqdm_bar)): # data image = image.to(c.device) # single scale _ = encoder(image) # BxCxHxW # test decoder e_list = list() for l, layer in enumerate(pool_layers): if 'vit' in c.enc_arch: e = activation[layer].transpose(1, 2)[...,1:] e_hw = int(np.sqrt(e.size(2))) e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW else: e = activation[layer] # BxCxHxW # B, C, H, W = e.size() S = H*W E = B*S # if i == 0: # get stats height.append(H) width.append(W) # p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1) c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC # decoder = decoders[l] FIB = E//N + int(E%N > 0) # number of fiber batches for f in range(FIB): if f < (FIB-1): idx = torch.arange(f*N, (f+1)*N) else: idx = torch.arange(f*N, E) # c_p = c_r[idx] # NxP e_p = e_r[idx] # NxC # if 'cflow' in c.dec_arch: z, log_jac_det = decoder(e_p, [c_p,]) else: z, log_jac_det = decoder(e_p) # torch.cuda.synchronize() time_all = time.time() - start fps_enc = A / time_enc fps_all = A / time_all print('Encoder/All {:.2f}/{:.2f} fps'.format(fps_enc, fps_all)) # return height, width, image_list, test_dist, gt_label_list, gt_mask_list def train(c): run_date = datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S") L = c.pool_layers # number of pooled layers print('Number of pool layers =', L) encoder, pool_layers, pool_dims = load_encoder_arch(c, L) encoder = encoder.to(c.device).eval() #print(encoder) # NF decoder decoders = [load_decoder_arch(c, pool_dim) for pool_dim in pool_dims] decoders = [decoder.to(c.device) for decoder in decoders] params = list(decoders[0].parameters()) for l in range(1, L): params += list(decoders[l].parameters()) # optimizer optimizer = torch.optim.Adam(params, lr=c.lr) # data kwargs = {'num_workers': c.workers, 'pin_memory': True} if c.use_cuda else {} # task data if c.dataset == 'mvtec': train_dataset = MVTecDataset(c, is_train=True) test_dataset = MVTecDataset(c, is_train=False) elif c.dataset == 'stc': train_dataset = StcDataset(c, is_train=True) test_dataset = StcDataset(c, is_train=False) else: raise NotImplementedError('{} is not supported dataset!'.format(c.dataset)) # train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=c.batch_size, shuffle=True, drop_last=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=c.batch_size, shuffle=False, drop_last=False, **kwargs) N = 256 # hyperparameter that increases batch size for the decoder model by N print('train/test loader length', len(train_loader.dataset), len(test_loader.dataset)) print('train/test loader batches', len(train_loader), len(test_loader)) # stats det_roc_obs = Score_Observer('DET_AUROC') seg_roc_obs = Score_Observer('SEG_AUROC') seg_pro_obs = Score_Observer('SEG_AUPRO') if c.action_type == 'norm-test': c.meta_epochs = 1 for epoch in range(c.meta_epochs): if c.action_type == 'norm-test' and c.checkpoint: load_weights(encoder, decoders, c.checkpoint) elif c.action_type == 'norm-train': print('Train meta epoch: {}'.format(epoch)) train_meta_epoch(c, epoch, train_loader, encoder, decoders, optimizer, pool_layers, N) else: raise NotImplementedError('{} is not supported action type!'.format(c.action_type)) #height, width, test_image_list, test_dist, gt_label_list, gt_mask_list = test_meta_fps( # c, epoch, test_loader, encoder, decoders, pool_layers, N) height, width, test_image_list, test_dist, gt_label_list, gt_mask_list = test_meta_epoch( c, epoch, test_loader, encoder, decoders, pool_layers, N) # PxEHW print('Heights/Widths', height, width) test_map = [list() for p in pool_layers] for l, p in enumerate(pool_layers): test_norm = torch.tensor(test_dist[l], dtype=torch.double) # EHWx1 test_norm-= torch.max(test_norm) # normalize likelihoods to (-Inf:0] by subtracting a constant test_prob = torch.exp(test_norm) # convert to probs in range [0:1] test_mask = test_prob.reshape(-1, height[l], width[l]) test_mask = test_prob.reshape(-1, height[l], width[l]) # upsample test_map[l] = F.interpolate(test_mask.unsqueeze(1), size=c.crp_size, mode='bilinear', align_corners=True).squeeze().numpy() # score aggregation score_map = np.zeros_like(test_map[0]) for l, p in enumerate(pool_layers): score_map += test_map[l] score_mask = score_map # invert probs to anomaly scores super_mask = score_mask.max() - score_mask # calculate detection AUROC score_label = np.max(super_mask, axis=(1, 2)) gt_label = np.asarray(gt_label_list, dtype=np.bool) det_roc_auc = roc_auc_score(gt_label, score_label) _ = det_roc_obs.update(100.0*det_roc_auc, epoch) # calculate segmentation AUROC gt_mask = np.squeeze(np.asarray(gt_mask_list, dtype=np.bool), axis=1) seg_roc_auc = roc_auc_score(gt_mask.flatten(), super_mask.flatten()) save_best_seg_weights = seg_roc_obs.update(100.0*seg_roc_auc, epoch) if save_best_seg_weights and c.action_type != 'norm-test': save_weights(encoder, decoders, c.model, run_date) # avoid unnecessary saves # calculate segmentation AUPRO # from https://github.com/YoungGod/DFR: if c.pro: # and (epoch % 4 == 0): # AUPRO is expensive to compute max_step = 1000 expect_fpr = 0.3 # default 30% max_th = super_mask.max() min_th = super_mask.min() delta = (max_th - min_th) / max_step ious_mean = [] ious_std = [] pros_mean = [] pros_std = [] threds = [] fprs = [] binary_score_maps = np.zeros_like(super_mask, dtype=np.bool) for step in range(max_step): thred = max_th - step * delta # segmentation binary_score_maps[super_mask <= thred] = 0 binary_score_maps[super_mask > thred] = 1 pro = [] # per region overlap iou = [] # per image iou # pro: find each connected gt region, compute the overlapped pixels between the gt region and predicted region # iou: for each image, compute the ratio, i.e. intersection/union between the gt and predicted binary map for i in range(len(binary_score_maps)): # for i th image # pro (per region level) label_map = label(gt_mask[i], connectivity=2) props = regionprops(label_map) for prop in props: x_min, y_min, x_max, y_max = prop.bbox # find the bounding box of an anomaly region cropped_pred_label = binary_score_maps[i][x_min:x_max, y_min:y_max] # cropped_mask = gt_mask[i][x_min:x_max, y_min:y_max] # bug! cropped_mask = prop.filled_image # corrected! intersection = np.logical_and(cropped_pred_label, cropped_mask).astype(np.float32).sum() pro.append(intersection / prop.area) # iou (per image level) intersection = np.logical_and(binary_score_maps[i], gt_mask[i]).astype(np.float32).sum() union = np.logical_or(binary_score_maps[i], gt_mask[i]).astype(np.float32).sum() if gt_mask[i].any() > 0: # when the gt have no anomaly pixels, skip it iou.append(intersection / union) # against steps and average metrics on the testing data ious_mean.append(np.array(iou).mean()) #print("per image mean iou:", np.array(iou).mean()) ious_std.append(np.array(iou).std()) pros_mean.append(np.array(pro).mean()) pros_std.append(np.array(pro).std()) # fpr for pro-auc gt_masks_neg = ~gt_mask fpr = np.logical_and(gt_masks_neg, binary_score_maps).sum() / gt_masks_neg.sum() fprs.append(fpr) threds.append(thred) # as array threds = np.array(threds) pros_mean = np.array(pros_mean) pros_std = np.array(pros_std) fprs = np.array(fprs) ious_mean = np.array(ious_mean) ious_std = np.array(ious_std) # best per image iou best_miou = ious_mean.max() #print(f"Best IOU: {best_miou:.4f}") # default 30% fpr vs pro, pro_auc idx = fprs <= expect_fpr # find the indexs of fprs that is less than expect_fpr (default 0.3) fprs_selected = fprs[idx] fprs_selected = rescale(fprs_selected) # rescale fpr [0,0.3] -> [0, 1] pros_mean_selected = pros_mean[idx] seg_pro_auc = auc(fprs_selected, pros_mean_selected) _ = seg_pro_obs.update(100.0*seg_pro_auc, epoch) # save_results(det_roc_obs, seg_roc_obs, seg_pro_obs, c.model, c.class_name, run_date) # export visualuzations if c.viz: precision, recall, thresholds = precision_recall_curve(gt_label, score_label) a = 2 * precision * recall b = precision + recall f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0) det_threshold = thresholds[np.argmax(f1)] print('Optimal DET Threshold: {:.2f}'.format(det_threshold)) precision, recall, thresholds = precision_recall_curve(gt_mask.flatten(), super_mask.flatten()) a = 2 * precision * recall b = precision + recall f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0) seg_threshold = thresholds[np.argmax(f1)] print('Optimal SEG Threshold: {:.2f}'.format(seg_threshold)) export_groundtruth(c, test_image_list, gt_mask) export_scores(c, test_image_list, super_mask, seg_threshold) export_test_images(c, test_image_list, gt_mask, super_mask, seg_threshold) export_hist(c, gt_mask, super_mask, seg_threshold)
[ "torch.randperm", "torch.exp", "torch.tensor", "torch.utils.data.DataLoader", "torch.max", "torch.cuda.synchronize", "torch.nn.Sigmoid", "torch.arange", "torch.no_grad", "torch.optim.Adam", "torch.nn.functional.interpolate", "torch.nn.LogSigmoid" ]
1.6.0
Msmhasani/cflow-ad
bc8bcf796723ba885587a72a6fbbf45ecb4b7bf4
1.0
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # model file: example-models/ARM/Ch.21/radon_vary_intercept_nofloor_chr.stan import torch import pyro import pyro.distributions as dist def init_vector(name, dims=None): return pyro.sample(name, dist.Normal(torch.zeros(dims), 0.2 * torch.ones(dims)).to_event(1)) def validate_data_def(data): assert 'J' in data, 'variable not found in data: key=J' assert 'N' in data, 'variable not found in data: key=N' assert 'county' in data, 'variable not found in data: key=county' assert 'u' in data, 'variable not found in data: key=u' assert 'y' in data, 'variable not found in data: key=y' # initialize data J = data["J"] N = data["N"] county = data["county"] u = data["u"] y = data["y"] def init_params(data): params = {} # assign init values for parameters params["sigma_a"] = pyro.sample("sigma_a", dist.Uniform(0., 100.)) params["sigma_y"] = pyro.sample("sigma_y", dist.Uniform(0., 100.)) return params def model(data, params): # initialize data J = data["J"] N = data["N"] county = data["county"].long() - 1 u = data["u"] y = data["y"] # init parameters sigma_a = params["sigma_a"] sigma_y = params["sigma_y"] # initialize transformed parameters mu_a = pyro.sample("mu_a", dist.Normal(0., 1)) with pyro.plate("J", J): eta = pyro.sample("eta", dist.Normal(0., 1)) b = pyro.sample("b", dist.Normal(0., 1)) a = mu_a + sigma_a * eta with pyro.plate("data", N): y_hat = a[county] + u * b * 0.1 y = pyro.sample("y", dist.Normal(y_hat, sigma_y), obs=y)
[ "torch.zeros", "torch.ones" ]
1.0.1
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
1.0
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # model file: example-models/ARM/Ch.13/y_x.stan import torch import pyro import pyro.distributions as dist def init_vector(name, dims=None): return pyro.sample(name, dist.Normal(torch.zeros(dims), 0.2 * torch.ones(dims)).to_event(1)) def validate_data_def(data): assert 'N' in data, 'variable not found in data: key=N' assert 'x' in data, 'variable not found in data: key=x' assert 'y' in data, 'variable not found in data: key=y' # initialize data N = data["N"] x = data["x"] y = data["y"] def init_params(data): params = {} params["beta"] = init_vector("beta", dims=(2)) # vector params["sigma"] = pyro.sample("sigma", dist.Uniform(0., 1000.)) return params def model(data, params): # initialize data N = data["N"] x = data["x"] y = data["y"] # init parameters beta = params["beta"] sigma = params["sigma"] with pyro.plate("data", N): pyro.sample('obs', dist.Normal(beta[0] + beta[1] * x, sigma), obs=y)
[ "torch.zeros", "torch.ones" ]
1.0.1
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
1.0
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # model file: example-models/ARM/Ch.12/radon_no_pool.stan import torch import pyro import pyro.distributions as dist def init_vector(name, dims=None): return pyro.sample(name, dist.Normal(torch.zeros(dims), 0.2 * torch.ones(dims)).to_event(1)) def validate_data_def(data): assert 'N' in data, 'variable not found in data: key=N' assert 'J' in data, 'variable not found in data: key=J' assert 'county' in data, 'variable not found in data: key=county' assert 'x' in data, 'variable not found in data: key=x' assert 'y' in data, 'variable not found in data: key=y' # initialize data N = data["N"] J = data["J"] county = data["county"] x = data["x"] y = data["y"] def init_params(data): params = {} return params def model(data, params): # initialize data N = data["N"] J = data["J"] county = data["county"].long() - 1 x = data["x"] y = data["y"] # model block mu_a = pyro.sample("mu_a", dist.Normal(0., 1.)) sigma_a = pyro.sample("sigma_a", dist.HalfCauchy(2.5)) with pyro.plate("J", J): a = pyro.sample("a", dist.Normal(mu_a, sigma_a)) beta = pyro.sample("beta", dist.Normal(0., 1.)) sigma_y = pyro.sample("sigma_y", dist.HalfCauchy(2.5)) with pyro.plate("data", N): y_hat = beta * x + a[county] y = pyro.sample('y', dist.Normal(y_hat, sigma_y), obs=y)
[ "torch.zeros", "torch.ones" ]
1.0.1
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
1.0
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # model file: example-models/ARM/Ch.10/ideo_reparam.stan import torch import pyro import pyro.distributions as dist def init_vector(name, dims=None): return pyro.sample(name, dist.Normal(torch.zeros(dims), 0.2 * torch.ones(dims)).to_event(1)) def validate_data_def(data): assert 'N' in data, 'variable not found in data: key=N' assert 'party' in data, 'variable not found in data: key=party' assert 'score1' in data, 'variable not found in data: key=score1' assert 'z1' in data, 'variable not found in data: key=z1' assert 'z2' in data, 'variable not found in data: key=z2' # initialize data N = data["N"] party = data["party"] score1 = data["score1"] z1 = data["z1"] z2 = data["z2"] def init_params(data): params = {} # assign init values for parameters params["beta"] = init_vector("beta", dims=(4)) # vector params["sigma"] = pyro.sample("sigma", dist.Uniform(0., 100.)) return params def model(data, params): # initialize data N = data["N"] party = data["party"] score1 = data["score1"] z1 = data["z1"] z2 = data["z2"] # init parameters beta = params["beta"] sigma = params["sigma"] # initialize transformed parameters # model block with pyro.plate("data", N): score1 = pyro.sample('score1', dist.Normal(beta[0] + beta[1] * party + beta[2] * z1 + beta[3] * z2, sigma), obs=score1)
[ "torch.zeros", "torch.ones" ]
1.0.1
jpchen/pyro-models
b9e6ae6271e6cd622fbb4d34d67c450d5a954c9b
1.5
""" test: - running some numbers through two versions of sru, checking they come out the sam - save sru in older version, and loading in new version """ import torch import sru import pytest import sys EPSILON = 1e-6 ARTIFACT_DIR = 'test/regression/artifacts' @pytest.mark.parametrize( "sru_prev_version", ["2.3.5"] ) def test_regression(sru_prev_version): """ IMPORTANT: You need to run: test/regression/build_artifact.sh [SRU VERSION] and add the resulting artifact in test/regression/artifacts into github, for each sru_prev_version you want to test """ torch.manual_seed(2) # so the model is initialized differently than first stage artifact_path = f'{ARTIFACT_DIR}/{sru_prev_version}.pt' artifact_dict = torch.load(artifact_path) assert artifact_dict['sru.__version__'] == sru_prev_version model = sru.SRU(**artifact_dict['sru_kwargs']).eval() output_artifact = artifact_dict['outputs'] model.load_state_dict(artifact_dict['model_state']) with torch.no_grad(): output_current = model(artifact_dict['inputs']) assert len(output_artifact) == len(output_current) == 2 max_diff0 = (output_artifact[0] - output_current[0]).abs().max().item() max_diff1 = (output_artifact[1] - output_current[1]).abs().max().item() assert max_diff0 <= EPSILON assert max_diff1 <= EPSILON
[ "torch.manual_seed", "torch.no_grad", "torch.load" ]
1.5.1
visionscaper/sru
6e0038ec675be0a37d870865f7f8fa22f1ad2254
1.9
import torch from PIL import Image import io def get_yolov5(): # local best.pt model = torch.hub.load('./yolov5', 'custom', path='./model/best.pt', source='local') # local repo model.conf = 0.5 return model def get_image_from_bytes(binary_image, max_size=1024): input_image = Image.open(io.BytesIO(binary_image)).convert("RGB") width, height = input_image.size resize_factor = min(max_size / width, max_size / height) resized_image = input_image.resize( ( int(input_image.width * resize_factor), int(input_image.height * resize_factor), ) ) return resized_image
[ "torch.hub.load" ]
1.9.1
DanielChuDC/yolov5-fastapi
27eef7d52cf72cda0c14856a745a8798d51d9383
1.7
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any import pytest import torch import flash from flash.core.utilities.imports import _IMAGE_AVAILABLE, _IMAGE_TESTING, _TORCHVISION_AVAILABLE, _VISSL_AVAILABLE from flash.image import ImageClassificationData, ImageEmbedder from tests.helpers.task_tester import TaskTester if _TORCHVISION_AVAILABLE: from torchvision.datasets import FakeData else: FakeData = object class TestImageEmbedder(TaskTester): task = ImageEmbedder task_kwargs = dict( backbone="resnet18", ) is_testing = _IMAGE_TESTING is_available = _IMAGE_AVAILABLE # TODO: Resolve JIT script issues scriptable = False @property def example_forward_input(self): return torch.rand(1, 3, 64, 64) def check_forward_output(self, output: Any): assert isinstance(output, torch.Tensor) assert output.shape == torch.Size([1, 512]) @pytest.mark.skipif(torch.cuda.device_count() > 1, reason="VISSL integration doesn't support multi-GPU") @pytest.mark.skipif(not (_IMAGE_AVAILABLE and _VISSL_AVAILABLE), reason="vissl not installed.") @pytest.mark.parametrize( "backbone, training_strategy, head, pretraining_transform, embedding_size", [ ("resnet18", "simclr", "simclr_head", "simclr_transform", 512), ("resnet18", "barlow_twins", "barlow_twins_head", "barlow_twins_transform", 512), ("resnet18", "swav", "swav_head", "swav_transform", 512), ("vit_small_patch16_224", "simclr", "simclr_head", "simclr_transform", 384), ("vit_small_patch16_224", "barlow_twins", "barlow_twins_head", "barlow_twins_transform", 384), ], ) def test_vissl_training(backbone, training_strategy, head, pretraining_transform, embedding_size): datamodule = ImageClassificationData.from_datasets( train_dataset=FakeData(16), predict_dataset=FakeData(8), batch_size=4, ) embedder = ImageEmbedder( backbone=backbone, training_strategy=training_strategy, head=head, pretraining_transform=pretraining_transform, ) trainer = flash.Trainer( max_steps=3, max_epochs=1, gpus=torch.cuda.device_count(), ) trainer.fit(embedder, datamodule=datamodule) predictions = trainer.predict(embedder, datamodule=datamodule) for prediction_batch in predictions: for prediction in prediction_batch: assert prediction.size(0) == embedding_size @pytest.mark.skipif(not (_IMAGE_AVAILABLE and _VISSL_AVAILABLE), reason="vissl not installed.") @pytest.mark.parametrize( "backbone, training_strategy, head, pretraining_transform, expected_exception", [ ("resnet18", "simclr", "simclr_head", None, ValueError), ("resnet18", "simclr", None, "simclr_transform", KeyError), ], ) def test_vissl_training_with_wrong_arguments( backbone, training_strategy, head, pretraining_transform, expected_exception ): with pytest.raises(expected_exception): ImageEmbedder( backbone=backbone, training_strategy=training_strategy, head=head, pretraining_transform=pretraining_transform, ) @pytest.mark.skipif(not _IMAGE_TESTING, reason="torch vision not installed.") @pytest.mark.parametrize( "backbone, embedding_size", [ ("resnet18", 512), ("vit_small_patch16_224", 384), ], ) def test_only_embedding(backbone, embedding_size): datamodule = ImageClassificationData.from_datasets( predict_dataset=FakeData(8), batch_size=4, transform_kwargs=dict(image_size=(224, 224)), ) embedder = ImageEmbedder(backbone=backbone) trainer = flash.Trainer() predictions = trainer.predict(embedder, datamodule=datamodule) for prediction_batch in predictions: for prediction in prediction_batch: assert prediction.size(0) == embedding_size @pytest.mark.skipif(not _IMAGE_TESTING, reason="torch vision not installed.") def test_not_implemented_steps(): embedder = ImageEmbedder(backbone="resnet18") with pytest.raises(NotImplementedError): embedder.training_step([], 0) with pytest.raises(NotImplementedError): embedder.validation_step([], 0) with pytest.raises(NotImplementedError): embedder.test_step([], 0)
[ "torch.Size", "torch.rand", "torch.cuda.device_count" ]
1.7.1
ar90n/lightning-flash
61e1a2d3b72f8fbbffe6ace14fb5b5bb35c5f131
1.0
import torch from torch import nn from visdialch.utils import DynamicRNN class DiscriminativeDecoder(nn.Module): def __init__(self, config, vocabulary): super().__init__() self.config = config self.word_embed = nn.Embedding( len(vocabulary), config["word_embedding_size"], padding_idx=vocabulary.PAD_INDEX, ) self.option_rnn = nn.LSTM( config["word_embedding_size"], config["lstm_hidden_size"], config["lstm_num_layers"], batch_first=True, dropout=config["dropout"], ) # Options are variable length padded sequences, use DynamicRNN. self.option_rnn = DynamicRNN(self.option_rnn) def forward(self, encoder_output, batch): """Given `encoder_output` + candidate option sequences, predict a score for each option sequence. Parameters ---------- encoder_output: torch.Tensor Output from the encoder through its forward pass. (batch_size, num_rounds, lstm_hidden_size) """ options = batch["opt"] batch_size, num_rounds, num_options, max_sequence_length = ( options.size() ) options = options.view( batch_size * num_rounds * num_options, max_sequence_length ) options_length = batch["opt_len"] options_length = options_length.view( batch_size * num_rounds * num_options ) # Pick options with non-zero length (relevant for test split). nonzero_options_length_indices = options_length.nonzero().squeeze() nonzero_options_length = options_length[nonzero_options_length_indices] nonzero_options = options[nonzero_options_length_indices] # shape: (batch_size * num_rounds * num_options, max_sequence_length, # word_embedding_size) # FOR TEST SPLIT, shape: (batch_size * 1, num_options, # max_sequence_length, word_embedding_size) nonzero_options_embed = self.word_embed(nonzero_options) # shape: (batch_size * num_rounds * num_options, lstm_hidden_size) # FOR TEST SPLIT, shape: (batch_size * 1, num_options, # lstm_hidden_size) _, (nonzero_options_embed, _) = self.option_rnn( nonzero_options_embed, nonzero_options_length ) options_embed = torch.zeros( batch_size * num_rounds * num_options, nonzero_options_embed.size(-1), device=nonzero_options_embed.device, ) options_embed[nonzero_options_length_indices] = nonzero_options_embed # Repeat encoder output for every option. # shape: (batch_size, num_rounds, num_options, max_sequence_length) encoder_output = encoder_output.unsqueeze(2).repeat( 1, 1, num_options, 1 ) # Shape now same as `options`, can calculate dot product similarity. # shape: (batch_size * num_rounds * num_options, lstm_hidden_state) encoder_output = encoder_output.view( batch_size * num_rounds * num_options, self.config["lstm_hidden_size"], ) # shape: (batch_size * num_rounds * num_options) scores = torch.sum(options_embed * encoder_output, 1) # shape: (batch_size, num_rounds, num_options) scores = scores.view(batch_size, num_rounds, num_options) return scores
[ "torch.nn.LSTM", "torch.sum" ]
1.0.0
shubhamagarwal92/visdial-challenge-starter-pytorch
474ceb338b5f5dbed8236fc59212a4debcb40576
1.6
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import copy import gzip import json import lzma import os import re import shutil import sys import tarfile import tempfile import time import urllib from contextlib import closing, contextmanager from dataclasses import dataclass from functools import partial from hashlib import sha256 from pathlib import Path from typing import Dict, Optional, Union from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import numpy as np import posixpath import pyarrow as pa import requests from tqdm.auto import tqdm from .. import __version__, config from .filelock import FileLock from .logging import WARNING, get_logger logger = get_logger(__name__) # pylint: disable=invalid-name INCOMPLETE_SUFFIX = ".incomplete" def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str: """ Add hf_modules_cache to the python path. By default hf_modules_cache='~/.cache/huggingface/modules'. It can also be set with the environment variable HF_MODULES_CACHE. This is used to add modules such as `datasets_modules` """ hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE hf_modules_cache = str(hf_modules_cache) if hf_modules_cache not in sys.path: sys.path.append(hf_modules_cache) os.makedirs(hf_modules_cache, exist_ok=True) if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")): with open(os.path.join(hf_modules_cache, "__init__.py"), "w"): pass return hf_modules_cache @contextmanager def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False): """Temporarily set the random seed. This works for python numpy, pytorch and tensorflow.""" np_state = np.random.get_state() np.random.seed(seed) if set_pytorch and config.TORCH_AVAILABLE: import torch torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) if set_tensorflow and config.TF_AVAILABLE: import tensorflow as tf from tensorflow.python import context as tfpycontext tf_state = tf.random.get_global_generator() temp_gen = tf.random.Generator.from_seed(seed) tf.random.set_global_generator(temp_gen) if not tf.executing_eagerly(): raise ValueError("Setting random seed for TensorFlow is only available in eager mode") tf_context = tfpycontext.context() # eager mode context tf_seed = tf_context._seed tf_rng_initialized = hasattr(tf_context, "_rng") if tf_rng_initialized: tf_rng = tf_context._rng tf_context._set_global_seed(seed) try: yield finally: np.random.set_state(np_state) if set_pytorch and config.TORCH_AVAILABLE: torch.random.set_rng_state(torch_state) if torch.cuda.is_available(): torch.cuda.set_rng_state_all(torch_cuda_states) if set_tensorflow and config.TF_AVAILABLE: tf.random.set_global_generator(tf_state) tf_context._seed = tf_seed if tf_rng_initialized: tf_context._rng = tf_rng else: delattr(tf_context, "_rng") def is_remote_url(url_or_filename: str) -> bool: parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https", "s3", "gs", "hdfs", "ftp") def is_local_path(url_or_filename: str) -> bool: # On unix the scheme of a local path is empty (for both absolute and relative), # while on windows the scheme is the drive name (ex: "c") for absolute paths. # for details on the windows behavior, see https://bugs.python.org/issue42215 return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_relative_path(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename) def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str: if dataset: endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX else: endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX return "/".join((endpoint, identifier, filename)) def head_hf_s3( identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0 ) -> Union[requests.Response, Exception]: try: return http_head( hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset), max_retries=max_retries, ) except Exception as e: return e def hf_github_url(path: str, name: str, dataset=True, version: Optional[str] = None) -> str: from .. import SCRIPTS_VERSION version = version or os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION) if dataset: return config.REPO_DATASETS_URL.format(version=version, path=path, name=name) else: return config.REPO_METRICS_URL.format(version=version, path=path, name=name) def hf_hub_url(path: str, name: str, version: Optional[str] = None) -> str: version = version or config.HUB_DEFAULT_VERSION return config.HUB_DATASETS_URL.format(path=path, name=name, version=version) def url_or_path_join(base_name: str, *pathnames: str) -> str: if is_remote_url(base_name): return posixpath.join(base_name, *pathnames) else: return Path(base_name).joinpath(*pathnames).as_posix() def url_or_path_parent(url_or_path: str) -> str: if is_remote_url(url_or_path): return url_or_path[: url_or_path.rindex("/")] else: return os.path.dirname(url_or_path) def hash_url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".py"): filename += ".py" return filename @dataclass class DownloadConfig: """Configuration for our cached path manager Args: cache_dir: specify a cache directory to save the file to (overwrite the default cache dir). force_download: if True, re-dowload the file even if it's already cached in the cache dir. resume_download: if True, resume the download if incompletly recieved file is found. user_agent: Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract: if True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and overide the folder where it was extracted. max_retries: the number of times to retry an HTTP request if it fails. Defaults to 1. use_auth_token (Optional ``Union[str, bool]``): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, will get token from ~/.huggingface. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def cached_path( url_or_filename, download_config=None, **download_kwargs, ) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk ValueError: if it couldn't parse the url or filename correctly requests.exceptions.ConnectionError: in case of internet connection issue """ if download_config is None: download_config = DownloadConfig(**download_kwargs) cache_dir = download_config.cache_dir or os.path.join(config.HF_DATASETS_CACHE, "downloads") if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=download_config.force_download, proxies=download_config.proxies, resume_download=download_config.resume_download, user_agent=download_config.user_agent, local_files_only=download_config.local_files_only, use_etag=download_config.use_etag, max_retries=download_config.max_retries, use_auth_token=download_config.use_auth_token, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif is_local_path(url_or_filename): # File, but it doesn't exist. raise FileNotFoundError("Local file {} doesn't exist".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) if download_config.extract_compressed_file and output_path is not None: if ( not is_zipfile(output_path) and not tarfile.is_tarfile(output_path) and not is_gzip(output_path) and not is_xz(output_path) and not is_rarfile(output_path) ): return output_path # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" abs_output_path = os.path.abspath(output_path) output_path_extracted = os.path.join(cache_dir, "extracted", hash_url_to_filename(abs_output_path)) if ( os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not download_config.force_extract ) or (os.path.isfile(output_path_extracted) and not download_config.force_extract): return output_path_extracted # Prevent parallel extractions lock_path = output_path + ".lock" with FileLock(lock_path): shutil.rmtree(output_path_extracted, ignore_errors=True) os.makedirs(output_path_extracted, exist_ok=True) if tarfile.is_tarfile(output_path): tar_file = tarfile.open(output_path) tar_file.extractall(output_path_extracted) tar_file.close() elif is_gzip(output_path): os.rmdir(output_path_extracted) with gzip.open(output_path, "rb") as gzip_file: with open(output_path_extracted, "wb") as extracted_file: shutil.copyfileobj(gzip_file, extracted_file) elif is_zipfile(output_path): # put zip file to the last, b/c it is possible wrongly detected as zip with ZipFile(output_path, "r") as zip_file: zip_file.extractall(output_path_extracted) zip_file.close() elif is_xz(output_path): os.rmdir(output_path_extracted) with lzma.open(output_path) as compressed_file: with open(output_path_extracted, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) elif is_rarfile(output_path): if config.RARFILE_AVAILABLE: import rarfile rf = rarfile.RarFile(output_path) rf.extractall(output_path_extracted) rf.close() else: raise EnvironmentError("Please pip install rarfile") else: raise EnvironmentError("Archive format of {} could not be identified".format(output_path)) return output_path_extracted return output_path def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str: ua = "datasets/{}; python/{}".format(__version__, config.PY_VERSION) ua += "; pyarrow/{}".format(pa.__version__) if config.TORCH_AVAILABLE: ua += "; torch/{}".format(config.TORCH_VERSION) if config.TF_AVAILABLE: ua += "; tensorflow/{}".format(config.TF_VERSION) if config.BEAM_AVAILABLE: ua += "; apache_beam/{}".format(config.BEAM_VERSION) if isinstance(user_agent, dict): ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent return ua def get_authentication_headers_for_url(url: str, use_auth_token: Optional[Union[str, bool]] = None) -> dict: """Handle the HF authentication""" headers = {} if url.startswith("https://huggingface.co/"): token = None if isinstance(use_auth_token, str): token = use_auth_token elif bool(use_auth_token): from huggingface_hub import hf_api token = hf_api.HfFolder.get_token() if token: headers["authorization"] = "Bearer {}".format(token) return headers def _request_with_retry( verb: str, url: str, max_retries: int = 0, base_wait_time: float = 0.5, max_wait_time: float = 2, **params ) -> requests.Response: """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff Args: verb (str): HTTP verb, such as 'GET' or 'HEAD' url (str): The URL of the ressource to fetch max_retries (int): Maximum number of retries, defaults to 0 (no retries) base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between retries then grows exponentially, capped by max_wait_time. max_wait_time (float): Maximum amount of time between two retries, in seconds **params: Params to pass to `requests.request` """ tries, success = 0, False while not success: tries += 1 try: response = requests.request(verb.upper(), url, **params) success = True except requests.exceptions.ConnectTimeout as err: if tries > max_retries: raise err else: logger.info(f"{verb} request to {url} timed out, retrying... [{tries/max_retries}]") sleep_time = max(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff time.sleep(sleep_time) return response def ftp_head(url, timeout=2.0): try: with closing(urllib.request.urlopen(url, timeout=timeout)) as r: r.read(1) except Exception: return False return True def ftp_get(url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=2.0): try: logger.info(f"Getting through FTP {url} into {temp_file.name}") with closing(urllib.request.urlopen(url, timeout=timeout)) as r: shutil.copyfileobj(r, temp_file) except urllib.error.URLError as e: raise ConnectionError(e) def http_get(url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, max_retries=0): headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) if resume_size > 0: headers["Range"] = "bytes=%d-" % (resume_size,) response = _request_with_retry( verb="GET", url=url, stream=True, proxies=proxies, headers=headers, cookies=cookies, max_retries=max_retries ) if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None not_verbose = bool(logger.getEffectiveLevel() > WARNING) progress = tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc="Downloading", disable=not_verbose, ) for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def http_head( url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10, max_retries=0 ) -> requests.Response: headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) response = _request_with_retry( verb="HEAD", url=url, proxies=proxies, headers=headers, cookies=cookies, allow_redirects=allow_redirects, timeout=timeout, max_retries=max_retries, ) return response def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=10, resume_download=False, user_agent=None, local_files_only=False, use_etag=True, max_retries=0, use_auth_token=None, ) -> str: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk """ if cache_dir is None: cache_dir = config.HF_DATASETS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) original_url = url # Some parameters may be added connected = False response = None cookies = None etag = None # Try a first time to file the file on the local file system without eTag (None) # if we don't ask for 'force_download' then we spare a request filename = hash_url_to_filename(original_url, etag=None) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download and not use_etag: return cache_path # Prepare headers for authentication headers = get_authentication_headers_for_url(url, use_auth_token=use_auth_token) if user_agent is not None: headers["user-agent"] = user_agent # We don't have the file locally or we need an eTag if not local_files_only: if url.startswith("ftp://"): connected = ftp_head(url) try: response = http_head( url, allow_redirects=True, proxies=proxies, timeout=etag_timeout, max_retries=max_retries, headers=headers, ) if response.status_code == 200: # ok etag = response.headers.get("ETag") if use_etag else None for k, v in response.cookies.items(): # In some edge cases, we need to get a confirmation token if k.startswith("download_warning") and "drive.google.com" in url: url += "&confirm=" + v cookies = response.cookies connected = True # In some edge cases, head request returns 400 but the connection is actually ok elif ( (response.status_code == 400 and "firebasestorage.googleapis.com" in url) or (response.status_code == 405 and "drive.google.com" in url) or ( response.status_code == 403 and re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) ) ): connected = True logger.info("Couldn't get ETag version for url {}".format(url)) except (EnvironmentError, requests.exceptions.Timeout): # not connected pass # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if not connected: if os.path.exists(cache_path): return cache_path if local_files_only: raise FileNotFoundError( f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" " disabled. To enable file online look-ups, set 'local_files_only' to False." ) elif response is not None and response.status_code == 404: raise FileNotFoundError("Couldn't find file at {}".format(url)) raise ConnectionError("Couldn't reach {}".format(url)) # Try a second time filename = hash_url_to_filename(original_url, etag) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download: return cache_path # From now on, connected is True. # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): if resume_download: incomplete_path = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(incomplete_path, "a+b") as f: yield f temp_file_manager = _resumable_file_manager if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size else: resume_size = 0 else: temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False) resume_size = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name) # GET file object if url.startswith("ftp://"): ftp_get(url, temp_file, proxies=proxies, resume_size=resume_size, headers=headers, cookies=cookies) else: http_get( url, temp_file, proxies=proxies, resume_size=resume_size, headers=headers, cookies=cookies, max_retries=max_retries, ) logger.info("storing %s in cache at %s", url, cache_path) shutil.move(temp_file.name, cache_path) logger.info("creating metadata file for %s", cache_path) meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w", encoding="utf-8") as meta_file: json.dump(meta, meta_file) return cache_path def is_gzip(path: str) -> bool: """from https://stackoverflow.com/a/60634210""" with gzip.open(path, "r") as fh: try: fh.read(1) return True except OSError: return False def is_xz(path: str) -> bool: """https://tukaani.org/xz/xz-file-format-1.0.4.txt""" with open(path, "rb") as f: try: header_magic_bytes = f.read(6) except OSError: return False if header_magic_bytes == b"\xfd7zXZ\x00": return True else: return False def is_rarfile(path: str) -> bool: """https://github.com/markokr/rarfile/blob/master/rarfile.py""" RAR_ID = b"Rar!\x1a\x07\x00" RAR5_ID = b"Rar!\x1a\x07\x01\x00" with open(path, "rb", 1024) as fd: buf = fd.read(len(RAR5_ID)) if buf.startswith(RAR_ID) or buf.startswith(RAR5_ID): return True else: return False def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr) return fn return docstring_decorator
[ "torch.cuda.get_rng_state_all", "torch.cuda.manual_seed_all", "torch.cuda.set_rng_state_all", "torch.random.get_rng_state", "torch.random.manual_seed", "torch.cuda.is_available", "torch.random.set_rng_state" ]
1.6.0
source-data/datasets
987df6b4e9e20fc0c92bc9df48137d170756fd7b
1.3
import mmcv import numpy as np import torch from os import path as osp from torch.nn import functional as F from basicsr.data.transforms import mod_crop, totensor def read_img_seq(path, require_mod_crop=False, scale=1): """Read a sequence of images from a given folder path. Args: path (list[str] | str): List of image paths or image folder path. require_mod_crop (bool): Require mod crop for each image. Default: False. scale (int): Scale factor for mod_crop. Default: 1. Returns: Tensor: size (t, c, h, w), RGB, [0, 1]. """ if isinstance(path, list): img_paths = path else: img_paths = sorted([osp.join(path, v) for v in mmcv.scandir(path)]) imgs = [mmcv.imread(v).astype(np.float32) / 255. for v in img_paths] if require_mod_crop: imgs = [mod_crop(img, scale) for img in imgs] imgs = totensor(imgs, bgr2rgb=True, float32=True) imgs = torch.stack(imgs, dim=0) return imgs def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'): """Generate an index list for reading `num_frames` frames from a sequence of images. Args: crt_idx (int): Current center index. max_frame_num (int): Max number of the sequence of images (from 1). num_frames (int): Reading num_frames frames. padding (str): Padding mode, one of 'replicate' | 'reflection' | 'reflection_circle' | 'circle' Examples: current_idx = 0, num_frames = 5 The generated frame indices under different padding mode: replicate: [0, 0, 0, 1, 2] reflection: [2, 1, 0, 1, 2] reflection_circle: [4, 3, 0, 1, 2] circle: [3, 4, 0, 1, 2] Returns: list[int]: A list of indices. """ assert num_frames % 2 == 1, 'num_frames should be an odd number.' assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.' max_frame_num = max_frame_num - 1 # start from 0 num_pad = num_frames // 2 indices = [] for i in range(crt_idx - num_pad, crt_idx + num_pad + 1): if i < 0: if padding == 'replicate': pad_idx = 0 elif padding == 'reflection': pad_idx = -i elif padding == 'reflection_circle': pad_idx = crt_idx + num_pad - i else: pad_idx = num_frames + i elif i > max_frame_num: if padding == 'replicate': pad_idx = max_frame_num elif padding == 'reflection': pad_idx = max_frame_num * 2 - i elif padding == 'reflection_circle': pad_idx = (crt_idx - num_pad) - (i - max_frame_num) else: pad_idx = i - num_frames else: pad_idx = i indices.append(pad_idx) return indices def paired_paths_from_lmdb(folders, keys): """Generate paired paths from lmdb files. Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is: lq.lmdb ├── data.mdb ├── lock.mdb ├── meta_info.txt The data.mdb and lock.mdb are standard lmdb files and you can refer to https://lmdb.readthedocs.io/en/release/ for more details. The meta_info.txt is a specified txt file to record the meta information of our datasets. It will be automatically created when preparing datasets by our provided dataset tools. Each line in the txt file records 1)image name (with extension), 2)image shape, 3)compression level, separated by a white space. Example: `baboon.png (120,125,3) 1` We use the image name without extension as the lmdb key. Note that we use the same key for the corresponding lq and gt images. Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. Note that this key is different from lmdb keys. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ( 'The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ( 'The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')): raise ValueError( f'{input_key} folder and {gt_key} folder should both in lmdb ' f'formats. But received {input_key}: {input_folder}; ' f'{gt_key}: {gt_folder}') # ensure that the two meta_info files are the same with open(osp.join(input_folder, 'meta_info.txt')) as fin: input_lmdb_keys = [line.split('.')[0] for line in fin] with open(osp.join(gt_folder, 'meta_info.txt')) as fin: gt_lmdb_keys = [line.split('.')[0] for line in fin] if set(input_lmdb_keys) != set(gt_lmdb_keys): raise ValueError( f'Keys in {input_key}_folder and {gt_key}_folder are different.') else: paths = [] for lmdb_key in sorted(input_lmdb_keys): paths.append( dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)])) return paths def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl): """Generate paired paths from an meta information file. Each line in the meta information file contains the image names and image shape (usually for gt), separated by a white space. Example of an meta information file: ``` 0001_s001.png (480,480,3) 0001_s002.png (480,480,3) ``` Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. meta_info_file (str): Path to the meta information file. filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. Usually the filename_tmpl is for files in the input folder. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ( 'The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ( 'The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys with open(meta_info_file, 'r') as fin: gt_names = [line.split(' ')[0] for line in fin] paths = [] for gt_name in gt_names: basename, ext = osp.splitext(osp.basename(gt_name)) input_name = f'{filename_tmpl.format(basename)}{ext}' input_path = osp.join(input_folder, input_name) gt_path = osp.join(gt_folder, gt_name) paths.append( dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) return paths def paired_paths_from_folder(folders, keys, filename_tmpl): """Generate paired paths from folders. Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. Usually the filename_tmpl is for files in the input folder. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ( 'The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ( 'The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys input_paths = list(mmcv.scandir(input_folder)) gt_paths = list(mmcv.scandir(gt_folder)) assert len(input_paths) == len(gt_paths), ( f'{input_key} and {gt_key} datasets have different number of images: ' f'{len(input_paths)}, {len(gt_paths)}.') paths = [] for gt_path in gt_paths: basename, ext = osp.splitext(osp.basename(gt_path)) input_name = f'{filename_tmpl.format(basename)}{ext}' input_path = osp.join(input_folder, input_name) assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.') gt_path = osp.join(gt_folder, gt_path) paths.append( dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) return paths def generate_gaussian_kernel(kernel_size=13, sigma=1.6): """Generate Gaussian kernel used in `duf_downsample`. Args: kernel_size (int): Kernel size. Default: 13. sigma (float): Sigma of the Gaussian kernel. Default: 1.6. Returns: np.array: The Gaussian kernel. """ from scipy.ndimage import filters as filters kernel = np.zeros((kernel_size, kernel_size)) # set element at the middle to one, a dirac delta kernel[kernel_size // 2, kernel_size // 2] = 1 # gaussian-smooth the dirac, resulting in a gaussian filter return filters.gaussian_filter(kernel, sigma) def duf_downsample(x, kernel_size=13, scale=4): """Downsamping with Gaussian kernel used in the DUF official code. Args: x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w). kernel_size (int): Kernel size. Default: 13. scale (int): Downsampling factor. Supported scale: (2, 3, 4). Default: 4. Returns: Tensor: DUF downsampled frames. """ assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.' squeeze_flag = False if x.ndim == 4: squeeze_flag = True x = x.unsqueeze(0) b, t, c, h, w = x.size() x = x.view(-1, 1, h, w) pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2 x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect') gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale) gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze( 0).unsqueeze(0) x = F.conv2d(x, gaussian_filter, stride=scale) x = x[:, :, 2:-2, 2:-2] x = x.view(b, t, c, x.size(2), x.size(3)) if squeeze_flag: x = x.squeeze(0) return x
[ "torch.stack", "torch.from_numpy", "torch.nn.functional.pad", "torch.nn.functional.conv2d" ]
1.3
yicrane/BasicSR
5924d3bc20334381798099b7e841a26b6be90a4b
1.6
import os import logging import argparse import numpy as np from tqdm import tqdm import torch from torch.serialization import default_restore_location from seq2seq import models, utils from seq2seq.data.dictionary import Dictionary from seq2seq.data.dataset import Seq2SeqDataset, BatchSampler from seq2seq.beam import BeamSearch, BeamSearchNode def get_args(): """ Defines generation-specific hyper-parameters. """ parser = argparse.ArgumentParser('Sequence to Sequence Model') parser.add_argument('--cuda', default=False, help='Use a GPU') parser.add_argument('--seed', default=42, type=int, help='pseudo random number generator seed') # Add data arguments parser.add_argument('--data', default='assignments/03/prepared', help='path to data directory') parser.add_argument('--dicts', required=True, help='path to directory containing source and target dictionaries') parser.add_argument('--checkpoint-path', default='checkpoints_asg4/checkpoint_best.pt', help='path to the model file') parser.add_argument('--batch-size', default=None, type=int, help='maximum number of sentences in a batch') parser.add_argument('--output', default='model_translations.txt', type=str, help='path to the output file destination') parser.add_argument('--max-len', default=100, type=int, help='maximum length of generated sequence') # Add beam search arguments parser.add_argument('--beam-size', default=5, type=int, help='number of hypotheses expanded in beam search') # alpha hyperparameter for length normalization (described as lp in https://arxiv.org/pdf/1609.08144.pdf equation 14) parser.add_argument('--alpha', default=0.0, type=float, help='alpha for softer length normalization') return parser.parse_args() def main(args): """ Main translation function' """ # Load arguments from checkpoint torch.manual_seed(args.seed) state_dict = torch.load(args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu')) args_loaded = argparse.Namespace(**{**vars(state_dict['args']), **vars(args)}) args = args_loaded utils.init_logging(args) # Load dictionaries src_dict = Dictionary.load(os.path.join(args.dicts, 'dict.{:s}'.format(args.source_lang))) logging.info('Loaded a source dictionary ({:s}) with {:d} words'.format(args.source_lang, len(src_dict))) tgt_dict = Dictionary.load(os.path.join(args.dicts, 'dict.{:s}'.format(args.target_lang))) logging.info('Loaded a target dictionary ({:s}) with {:d} words'.format(args.target_lang, len(tgt_dict))) # Load dataset test_dataset = Seq2SeqDataset( src_file=os.path.join(args.data, 'test.{:s}'.format(args.source_lang)), tgt_file=os.path.join(args.data, 'test.{:s}'.format(args.target_lang)), src_dict=src_dict, tgt_dict=tgt_dict) test_loader = torch.utils.data.DataLoader(test_dataset, num_workers=1, collate_fn=test_dataset.collater, batch_sampler=BatchSampler(test_dataset, 9999999, args.batch_size, 1, 0, shuffle=False, seed=args.seed)) # Build model and criterion model = models.build_model(args, src_dict, tgt_dict) if args.cuda: model = model.cuda() model.eval() model.load_state_dict(state_dict['model']) logging.info('Loaded a model from checkpoint {:s}'.format(args.checkpoint_path)) progress_bar = tqdm(test_loader, desc='| Generation', leave=False) # Iterate over the test set all_hyps = {} for i, sample in enumerate(progress_bar): # Create a beam search object or every input sentence in batch batch_size = sample['src_tokens'].shape[0] searches = [BeamSearch(args.beam_size, args.max_len - 1, tgt_dict.unk_idx) for i in range(batch_size)] with torch.no_grad(): # Compute the encoder output encoder_out = model.encoder(sample['src_tokens'], sample['src_lengths']) # __QUESTION 1: What is "go_slice" used for and what do its dimensions represent? go_slice = \ torch.ones(sample['src_tokens'].shape[0], 1).fill_(tgt_dict.eos_idx).type_as(sample['src_tokens']) if args.cuda: go_slice = utils.move_to_cuda(go_slice) #import pdb;pdb.set_trace() # Compute the decoder output at the first time step decoder_out, _ = model.decoder(go_slice, encoder_out) # __QUESTION 2: Why do we keep one top candidate more than the beam size? log_probs, next_candidates = torch.topk(torch.log(torch.softmax(decoder_out, dim=2)), args.beam_size+1, dim=-1) # Create number of beam_size beam search nodes for every input sentence for i in range(batch_size): for j in range(args.beam_size): best_candidate = next_candidates[i, :, j] backoff_candidate = next_candidates[i, :, j+1] best_log_p = log_probs[i, :, j] backoff_log_p = log_probs[i, :, j+1] next_word = torch.where(best_candidate == tgt_dict.unk_idx, backoff_candidate, best_candidate) log_p = torch.where(best_candidate == tgt_dict.unk_idx, backoff_log_p, best_log_p) log_p = log_p[-1] # Store the encoder_out information for the current input sentence and beam emb = encoder_out['src_embeddings'][:,i,:] lstm_out = encoder_out['src_out'][0][:,i,:] final_hidden = encoder_out['src_out'][1][:,i,:] final_cell = encoder_out['src_out'][2][:,i,:] try: mask = encoder_out['src_mask'][i,:] except TypeError: mask = None node = BeamSearchNode(searches[i], emb, lstm_out, final_hidden, final_cell, mask, torch.cat((go_slice[i], next_word)), log_p, 1) # __QUESTION 3: Why do we add the node with a negative score? searches[i].add(-node.eval(args.alpha), node) #import pdb;pdb.set_trace() # Start generating further tokens until max sentence length reached for _ in range(args.max_len-1): # Get the current nodes to expand nodes = [n[1] for s in searches for n in s.get_current_beams()] if nodes == []: break # All beams ended in EOS # Reconstruct prev_words, encoder_out from current beam search nodes prev_words = torch.stack([node.sequence for node in nodes]) encoder_out["src_embeddings"] = torch.stack([node.emb for node in nodes], dim=1) lstm_out = torch.stack([node.lstm_out for node in nodes], dim=1) final_hidden = torch.stack([node.final_hidden for node in nodes], dim=1) final_cell = torch.stack([node.final_cell for node in nodes], dim=1) encoder_out["src_out"] = (lstm_out, final_hidden, final_cell) try: encoder_out["src_mask"] = torch.stack([node.mask for node in nodes], dim=0) except TypeError: encoder_out["src_mask"] = None with torch.no_grad(): # Compute the decoder output by feeding it the decoded sentence prefix decoder_out, _ = model.decoder(prev_words, encoder_out) # see __QUESTION 2 log_probs, next_candidates = torch.topk(torch.log(torch.softmax(decoder_out, dim=2)), args.beam_size+1, dim=-1) # Create number of beam_size next nodes for every current node for i in range(log_probs.shape[0]): for j in range(args.beam_size): best_candidate = next_candidates[i, :, j] backoff_candidate = next_candidates[i, :, j+1] best_log_p = log_probs[i, :, j] backoff_log_p = log_probs[i, :, j+1] next_word = torch.where(best_candidate == tgt_dict.unk_idx, backoff_candidate, best_candidate) log_p = torch.where(best_candidate == tgt_dict.unk_idx, backoff_log_p, best_log_p) log_p = log_p[-1] next_word = torch.cat((prev_words[i][1:], next_word[-1:])) # Get parent node and beam search object for corresponding sentence node = nodes[i] search = node.search # __QUESTION 4: How are "add" and "add_final" different? # What would happen if we did not make this distinction? # Store the node as final if EOS is generated if next_word[-1] == tgt_dict.eos_idx: node = BeamSearchNode( search, node.emb, node.lstm_out, node.final_hidden, node.final_cell, node.mask, torch.cat((prev_words[i][0].view([1]), next_word)), node.logp, node.length ) search.add_final(-node.eval(args.alpha), node) # Add the node to current nodes for next iteration else: node = BeamSearchNode( search, node.emb, node.lstm_out, node.final_hidden, node.final_cell, node.mask, torch.cat((prev_words[i][0].view([1]), next_word)), node.logp + log_p, node.length + 1 ) search.add(-node.eval(args.alpha), node) # #import pdb;pdb.set_trace() # __QUESTION 5: What happens internally when we prune our beams? # How do we know we always maintain the best sequences? for search in searches: search.prune() # Segment into sentences best_sents = torch.stack([search.get_best(n=1)[0][1].sequence[1:].cpu() for search in searches]) decoded_batch = best_sents.numpy() #import pdb;pdb.set_trace() output_sentences = [decoded_batch[row, :] for row in range(decoded_batch.shape[0])] # __QUESTION 6: What is the purpose of this for loop? temp = list() for sent in output_sentences: first_eos = np.where(sent == tgt_dict.eos_idx)[0] if len(first_eos) > 0: temp.append(sent[:first_eos[0]]) else: temp.append(sent) output_sentences = temp # Convert arrays of indices into strings of words output_sentences = [tgt_dict.string(sent) for sent in output_sentences] for ii, sent in enumerate(output_sentences): all_hyps[int(sample['id'].data[ii])] = sent # Write to file if args.output is not None: with open(args.output, 'w') as out_file: for sent_id in range(len(all_hyps.keys())): out_file.write(all_hyps[sent_id] + '\n') if __name__ == '__main__': args = get_args() main(args)
[ "torch.cat", "torch.stack", "torch.no_grad", "torch.softmax", "torch.ones", "torch.manual_seed", "torch.where", "torch.serialization.default_restore_location" ]
1.6.0
aditen/atmt
7bd17fecc095e019c9e79ec02788e1e979d7a8e8
1.1
import math import torch from torch.optim.optimizer import Optimizer from .types import OptFloat, OptLossClosure, Params __all__ = ('SGDP',) class SGDP(Optimizer): r"""Implements SGDP algorithm. It has been proposed in `Slowing Down the Weight Norm Increase in Momentum-based Optimizers`__ Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) momentum: momentum factor (default: 0) dampening: dampening for momentum (default: 0) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) delta: threhold that determines whether a set of parameters is scale invariant or not (default: 0.1) wd_ratio: relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1) nesterov: enables Nesterov momentum (default: False) Example: >>> import torch_optimizer as optim >>> optimizer = optim.SGDP(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/2006.08217 Note: Reference code: https://github.com/clovaai/AdamP """ def __init__( self, params: Params, lr: float = 1e-3, momentum: float = 0, dampening: float = 0, eps: float = 1e-8, weight_decay: float = 0, delta: float = 0.1, wd_ratio: float = 0.1, nesterov: bool = False, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if eps < 0.0: raise ValueError('Invalid epsilon value: {}'.format(eps)) if momentum < 0.0: raise ValueError('Invalid momentum value: {}'.format(momentum)) if dampening < 0.0: raise ValueError('Invalid dampening value: {}'.format(dampening)) if weight_decay < 0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) if delta < 0: raise ValueError('Invalid delta value: {}'.format(delta)) if wd_ratio < 0: raise ValueError('Invalid wd_ratio value: {}'.format(wd_ratio)) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, eps=eps, weight_decay=weight_decay, delta=delta, wd_ratio=wd_ratio, nesterov=nesterov, ) super(SGDP, self).__init__(params, defaults) @staticmethod def _channel_view(x): return x.view(x.size(0), -1) @staticmethod def _layer_view(x): return x.view(1, -1) @staticmethod def _cosine_similarity(x, y, eps, view_func): x = view_func(x) y = view_func(y) x_norm = x.norm(dim=1).add_(eps) y_norm = y.norm(dim=1).add_(eps) dot = (x * y).sum(dim=1) return dot.abs() / x_norm / y_norm def _projection(self, p, grad, perturb, delta, wd_ratio, eps): wd = 1 expand_size = [-1] + [1] * (len(p.shape) - 1) for view_func in [self._channel_view, self._layer_view]: cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): p_n = p.data / view_func(p.data).norm(dim=1).view( expand_size ).add_(eps) perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view( expand_size ) wd = wd_ratio return perturb, wd return perturb, wd def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] # State initialization if len(state) == 0: state['momentum'] = torch.zeros_like(p.data) # SGD buf = state['momentum'] buf.mul_(momentum).add_(grad, alpha=1 - dampening) if nesterov: d_p = grad + momentum * buf else: d_p = buf # Projection wd_ratio = 1 if len(p.shape) > 1: d_p, wd_ratio = self._projection( p, grad, d_p, group['delta'], group['wd_ratio'], group['eps'], ) # Weight decay if weight_decay != 0: p.data.mul_( 1 - group['lr'] * group['weight_decay'] * wd_ratio / (1 - momentum) ) # Step p.data.add_(d_p, alpha=-group['lr']) return loss
[ "torch.zeros_like" ]
1.1.0
muupan/pytorch-optimizer
efeea8fe4d06c5f4612f1f5bc34acf0c7d7682e1
1.2
import glob import random import time import os import os.path as osp import cv2 import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F from torchvision.ops import nms def mkdir_if_missing(dir): os.makedirs(dir, exist_ok=True) def float3(x): # format floats to 3 decimals return float(format(x, '.3f')) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def load_classes(path): """ Loads class labels at 'path' """ fp = open(path, 'r') names = fp.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def model_info(model): """ Prints out a line-by-line description of a PyTorch model ending with a summary. """ n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients print('\n%5s %50s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %50s %9s %12g %20s %12.3g %12.3g' % ( i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients\n' % (i + 1, n_p, n_g)) def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ Plots one bounding box on image img. """ tl = line_thickness or round(0.0004 * max(img.shape[0:2])) + 1 # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.03) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.03) torch.nn.init.constant_(m.bias.data, 0.0) def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] # x, y are coordinates of center # (x1, y1) and (x2, y2) are coordinates of bottom left and top right respectively. y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] # x, y are coordinates of center # (x1, y1) and (x2, y2) are coordinates of bottom left and top right respectively. y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x) y[:, 0] = (x[:, 0] - x[:, 2] / 2) # Bottom left x y[:, 1] = (x[:, 1] - x[:, 3] / 2) # Bottom left y y[:, 2] = (x[:, 0] + x[:, 2] / 2) # Top right x y[:, 3] = (x[:, 1] + x[:, 3] / 2) # Top right y return y def scale_coords(img_size, coords, img0_shape): # Rescale x1, y1, x2, y2 from 416 to image size gain_w = float(img_size[0]) / img0_shape[1] # gain = old / new gain_h = float(img_size[1]) / img0_shape[0] gain = min(gain_w, gain_h) pad_x = (img_size[0] - img0_shape[1] * gain) / 2 # width padding pad_y = (img_size[1] - img0_shape[0] * gain) / 2 # height padding coords[:, [0, 2]] -= pad_x coords[:, [1, 3]] -= pad_y coords[:, 0:4] /= gain coords[:, :4] = torch.clamp(coords[:, :4], min=0) return coords def ap_per_class(tp, conf, pred_cls, target_cls): """ Computes the average precision, given the recall and precision curves. Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # lists/pytorch to numpy tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls) # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = sum(target_cls == c) # Number of ground truth objects n_p = sum(i) # Number of predicted objects if (n_p == 0) and (n_gt == 0): continue elif (n_p == 0) or (n_gt == 0): ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = np.cumsum(1 - tp[i]) tpc = np.cumsum(tp[i]) # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(tpc[-1] / (n_gt + 1e-16)) # Precision precision_curve = tpc / (tpc + fpc) p.append(tpc[-1] / (tpc[-1] + fpc[-1])) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p) def compute_ap(recall, precision): """ Computes the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def bbox_iou(box1, box2, x1y1x2y2=False): """ Returns the IoU of two bounding boxes """ N, M = len(box1), len(box2) if x1y1x2y2: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] else: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1) inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1) inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2) inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)) b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M) b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M) return inter_area / (b1_area + b2_area - inter_area + 1e-16) def bbox_giou(box1, box2, x1y1x2y2=False): """ Returns the IoU of two bounding boxes """ N, M = len(box1), len(box2) # 先要把他们都转为xyxy if x1y1x2y2: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] else: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1) inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1) inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2) inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)) b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M) b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M) union = b1_area + b2_area - inter_area + 1e-16 iou = inter_area / union # DIoU cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union) / c_area # GIoU def bbox_diou(box1, box2, x1y1x2y2=False): """ Returns the IoU of two bounding boxes """ N, M = len(box1), len(box2) # 先要把他们都转为xyxy if x1y1x2y2: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] else: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1) inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1) inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2) inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)) b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M) b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M) iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) # DIoU cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 return iou - rho2 / c2 # DIoU # DiouLoss = 1 - DIOU,记得捡回去 def build_targets_max(target, anchor_wh, nA, nC, nGh, nGw): """ returns nT, nCorrect, tx, ty, tw, th, tconf, tcls """ nB = len(target) # number of images in batch txy = torch.zeros(nB, nA, nGh, nGw, 2).cuda() # batch size, anchors, grid size twh = torch.zeros(nB, nA, nGh, nGw, 2).cuda() tconf = torch.LongTensor(nB, nA, nGh, nGw).fill_(0).cuda() tcls = torch.ByteTensor(nB, nA, nGh, nGw, nC).fill_(0).cuda() # nC = number of classes tid = torch.LongTensor(nB, nA, nGh, nGw, 1).fill_(-1).cuda() for b in range(nB): t = target[b] t_id = t[:, 1].clone().long().cuda() t = t[:,[0,2,3,4,5]] nTb = len(t) # number of targets if nTb == 0: continue #gxy, gwh = t[:, 1:3] * nG, t[:, 3:5] * nG gxy, gwh = t[: , 1:3].clone() , t[:, 3:5].clone() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh gi = torch.clamp(gxy[:, 0], min=0, max=nGw -1).long() gj = torch.clamp(gxy[:, 1], min=0, max=nGh -1).long() # Get grid box indices and prevent overflows (i.e. 13.01 on 13 anchors) #gi, gj = torch.clamp(gxy.long(), min=0, max=nG - 1).t() #gi, gj = gxy.long().t() # iou of targets-anchors (using wh only) box1 = gwh box2 = anchor_wh.unsqueeze(1) inter_area = torch.min(box1, box2).prod(2) iou = inter_area / (box1.prod(1) + box2.prod(2) - inter_area + 1e-16) # Select best iou_pred and anchor iou_best, a = iou.max(0) # best anchor [0-2] for each target # Select best unique target-anchor combinations if nTb > 1: _, iou_order = torch.sort(-iou_best) # best to worst # Unique anchor selection u = torch.stack((gi, gj, a), 0)[:, iou_order] # _, first_unique = np.unique(u, axis=1, return_index=True) # first unique indices first_unique = return_torch_unique_index(u, torch.unique(u, dim=1)) # torch alternative i = iou_order[first_unique] # best anchor must share significant commonality (iou) with target i = i[iou_best[i] > 0.60] # TODO: examine arbitrary threshold if len(i) == 0: continue a, gj, gi, t = a[i], gj[i], gi[i], t[i] t_id = t_id[i] if len(t.shape) == 1: t = t.view(1, 5) else: if iou_best < 0.60: continue tc, gxy, gwh = t[:, 0].long(), t[:, 1:3].clone(), t[:, 3:5].clone() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh # XY coordinates txy[b, a, gj, gi] = gxy - gxy.floor() # Width and height twh[b, a, gj, gi] = torch.log(gwh / anchor_wh[a]) # yolo method # twh[b, a, gj, gi] = torch.sqrt(gwh / anchor_wh[a]) / 2 # power method # One-hot encoding of label tcls[b, a, gj, gi, tc] = 1 tconf[b, a, gj, gi] = 1 tid[b, a, gj, gi] = t_id.unsqueeze(1) tbox = torch.cat([txy, twh], -1) return tconf, tbox, tid def build_targets_thres(target, anchor_wh, nA, nC, nGh, nGw): ID_THRESH = 0.5 FG_THRESH = 0.5 BG_THRESH = 0.4 nB = len(target) # number of images in batch assert(len(anchor_wh)==nA) tbox = torch.zeros(nB, nA, nGh, nGw, 4).cuda() # batch size, anchors, grid size tconf = torch.LongTensor(nB, nA, nGh, nGw).fill_(0).cuda() tid = torch.LongTensor(nB, nA, nGh, nGw, 1).fill_(-1).cuda() for b in range(nB): t = target[b] t_id = t[:, 1].clone().long().cuda() t = t[:,[0,2,3,4,5]] nTb = len(t) # number of targets if nTb == 0: continue gxy, gwh = t[: , 1:3].clone() , t[:, 3:5].clone() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh gxy[:, 0] = torch.clamp(gxy[:, 0], min=0, max=nGw -1) gxy[:, 1] = torch.clamp(gxy[:, 1], min=0, max=nGh -1) gt_boxes = torch.cat([gxy, gwh], dim=1) # Shape Ngx4 (xc, yc, w, h) anchor_mesh = generate_anchor(nGh, nGw, anchor_wh) anchor_list = anchor_mesh.permute(0,2,3,1).contiguous().view(-1, 4) # Shpae (nA x nGh x nGw) x 4 #print(anchor_list.shape, gt_boxes.shape) iou_pdist = bbox_iou(anchor_list, gt_boxes) # Shape (nA x nGh x nGw) x Ng iou_max, max_gt_index = torch.max(iou_pdist, dim=1) # Shape (nA x nGh x nGw), both iou_map = iou_max.view(nA, nGh, nGw) gt_index_map = max_gt_index.view(nA, nGh, nGw) #nms_map = pooling_nms(iou_map, 3) id_index = iou_map > ID_THRESH fg_index = iou_map > FG_THRESH bg_index = iou_map < BG_THRESH ign_index = (iou_map < FG_THRESH) * (iou_map > BG_THRESH) tconf[b][fg_index] = 1 tconf[b][bg_index] = 0 tconf[b][ign_index] = -1 gt_index = gt_index_map[fg_index] gt_box_list = gt_boxes[gt_index] gt_id_list = t_id[gt_index_map[id_index]] #print(gt_index.shape, gt_index_map[id_index].shape, gt_boxes.shape) if torch.sum(fg_index) > 0: tid[b][id_index] = gt_id_list.unsqueeze(1) fg_anchor_list = anchor_list.view(nA, nGh, nGw, 4)[fg_index] delta_target = encode_delta(gt_box_list, fg_anchor_list) tbox[b][fg_index] = delta_target return tconf, tbox, tid def generate_anchor(nGh, nGw, anchor_wh): nA = len(anchor_wh) yy, xx =torch.meshgrid(torch.arange(nGh), torch.arange(nGw)) xx, yy = xx.cuda(), yy.cuda() mesh = torch.stack([xx, yy], dim=0) # Shape 2, nGh, nGw mesh = mesh.unsqueeze(0).repeat(nA,1,1,1).float() # Shape nA x 2 x nGh x nGw anchor_offset_mesh = anchor_wh.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, nGh,nGw) # Shape nA x 2 x nGh x nGw anchor_mesh = torch.cat([mesh, anchor_offset_mesh], dim=1) # Shape nA x 4 x nGh x nGw return anchor_mesh def encode_delta(gt_box_list, fg_anchor_list): px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \ fg_anchor_list[:, 2], fg_anchor_list[:,3] gx, gy, gw, gh = gt_box_list[:, 0], gt_box_list[:, 1], \ gt_box_list[:, 2], gt_box_list[:, 3] dx = (gx - px) / pw dy = (gy - py) / ph dw = torch.log(gw/pw) dh = torch.log(gh/ph) return torch.stack([dx, dy, dw, dh], dim=1) def decode_delta(delta, fg_anchor_list): px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \ fg_anchor_list[:, 2], fg_anchor_list[:,3] dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3] gx = pw * dx + px gy = ph * dy + py gw = pw * torch.exp(dw) gh = ph * torch.exp(dh) return torch.stack([gx, gy, gw, gh], dim=1) def decode_delta_map(delta_map, anchors): ''' :param: delta_map, shape (nB, nA, nGh, nGw, 4) :param: anchors, shape (nA,4) ''' nB, nA, nGh, nGw, _ = delta_map.shape anchor_mesh = generate_anchor(nGh, nGw, anchors) anchor_mesh = anchor_mesh.permute(0,2,3,1).contiguous() # Shpae (nA x nGh x nGw) x 4 anchor_mesh = anchor_mesh.unsqueeze(0).repeat(nB,1,1,1,1) pred_list = decode_delta(delta_map.view(-1,4), anchor_mesh.view(-1,4)) pred_map = pred_list.view(nB, nA, nGh, nGw, 4) return pred_map def pooling_nms(heatmap, kernel=1): pad = (kernel -1 ) // 2 hmax = F.max_pool2d(heatmap, (kernel, kernel), stride=1, padding=pad) keep = (hmax == heatmap).float() return keep * heatmap def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='standard'): """ Removes detections with lower object confidence score than 'conf_thres' Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_score, class_pred) Args: prediction, conf_thres, nms_thres, method = 'standard' or 'fast' """ output = [None for _ in range(len(prediction))] for image_i, pred in enumerate(prediction): # Filter out confidence scores below threshold # Get score and class with highest confidence v = pred[:, 4] > conf_thres v = v.nonzero().squeeze() if len(v.shape) == 0: v = v.unsqueeze(0) pred = pred[v] # If none are remaining => process next image nP = pred.shape[0] if not nP: continue # From (center x, center y, width, height) to (x1, y1, x2, y2) pred[:, :4] = xywh2xyxy(pred[:, :4]) # Non-maximum suppression if method == 'standard': nms_indices = nms(pred[:, :4], pred[:, 4], nms_thres) elif method == 'fast': nms_indices = fast_nms(pred[:, :4], pred[:, 4], iou_thres=nms_thres, conf_thres=conf_thres) else: raise ValueError('Invalid NMS type!') det_max = pred[nms_indices] if len(det_max) > 0: # Add max detections to outputs output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max)) return output def fast_nms(boxes, scores, iou_thres:float=0.5, top_k:int=200, second_threshold:bool=False, conf_thres:float=0.5): ''' Vectorized, approximated, fast NMS, adopted from YOLACT: https://github.com/dbolya/yolact/blob/master/layers/functions/detection.py The original version is for multi-class NMS, here we simplify the code for single-class NMS ''' scores, idx = scores.sort(0, descending=True) idx = idx[:top_k].contiguous() scores = scores[:top_k] num_dets = idx.size() boxes = boxes[idx, :] iou = jaccard(boxes, boxes) iou.triu_(diagonal=1) iou_max, _ = iou.max(dim=0) keep = (iou_max <= iou_thres) if second_threshold: keep *= (scores > self.conf_thresh) return idx[keep] @torch.jit.script def intersect(box_a, box_b): """ We resize both tensors to [A,B,2] without new malloc: [A,2] -> [A,1,2] -> [A,B,2] [B,2] -> [1,B,2] -> [A,B,2] Then we compute the area of intersect between box_a and box_b. Args: box_a: (tensor) bounding boxes, Shape: [n,A,4]. box_b: (tensor) bounding boxes, Shape: [n,B,4]. Return: (tensor) intersection area, Shape: [n,A,B]. """ n = box_a.size(0) A = box_a.size(1) B = box_b.size(1) max_xy = torch.min(box_a[:, :, 2:].unsqueeze(2).expand(n, A, B, 2), box_b[:, :, 2:].unsqueeze(1).expand(n, A, B, 2)) min_xy = torch.max(box_a[:, :, :2].unsqueeze(2).expand(n, A, B, 2), box_b[:, :, :2].unsqueeze(1).expand(n, A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) return inter[:, :, :, 0] * inter[:, :, :, 1] def jaccard(box_a, box_b, iscrowd:bool=False): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. Here we operate on ground truth boxes and default boxes. If iscrowd=True, put the crowd in box_b. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] Return: jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] """ use_batch = True if box_a.dim() == 2: use_batch = False box_a = box_a[None, ...] box_b = box_b[None, ...] inter = intersect(box_a, box_b) area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) * (box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B] area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) * (box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B] union = area_a + area_b - inter out = inter / area_a if iscrowd else inter / union return out if use_batch else out.squeeze(0) def return_torch_unique_index(u, uv): n = uv.shape[1] # number of columns first_unique = torch.zeros(n, device=u.device).long() for j in range(n): first_unique[j] = (uv[:, j:j + 1] == u).all(0).nonzero()[0] return first_unique def strip_optimizer_from_checkpoint(filename='weights/best.pt'): # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) a = torch.load(filename, map_location='cpu') a['optimizer'] = [] torch.save(a, filename.replace('.pt', '_lite.pt')) def plot_results(): """ Plot YOLO training results from the file 'results.txt' Example of what this is trying to plot can be found at: https://user-images.githubusercontent.com/26833433/63258271-fe9d5300-c27b-11e9-9a15-95038daf4438.png An example results.txt file: import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v1.txt') """ plt.figure(figsize=(14, 7)) s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision'] files = sorted(glob.glob('results*.txt')) for f in files: results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP x = range(1, results.shape[1]) for i in range(8): plt.subplot(2, 4, i + 1) plt.plot(x, results[i, x], marker='.', label=f) plt.title(s[i]) if i == 0: plt.legend()
[ "torch.cat", "torch.cuda.manual_seed", "torch.stack", "torch.LongTensor", "torch.load", "torch.exp", "torch.sum", "torch.nn.init.constant_", "torch.ByteTensor", "torch.manual_seed", "torch.nn.init.normal_", "torch.zeros_like", "torch.zeros", "torch.cuda.manual_seed_all", "torch.min", "torch.max", "torch.clamp", "torch.log", "torch.sort", "torch.unique", "torch.arange", "torch.nn.functional.max_pool2d" ]
1.2.0
tjulitianyi1997/Towards-Realtime-MOT-1
cda44e18022fd90411cb7f8911cb7ed9fd9b140d
1.3
import numbers import warnings from typing import Any, Callable, List, Optional, Union import torch import torch.nn as nn from torch.optim import Optimizer from ignite.contrib.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsHistHandler, BaseWeightsScalarHandler, ) from ignite.engine import Engine, EventEnum from ignite.handlers import global_step_from_engine __all__ = [ "TensorboardLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", "global_step_from_engine", ] class TensorboardLogger(BaseLogger): """ TensorBoard handler to log metrics, model/optimizer parameters, gradients during the training and validation. By default, this class favors `tensorboardX <https://github.com/lanpa/tensorboardX>`_ package if installed: .. code-block:: bash pip install tensorboardX otherwise, it falls back to using `PyTorch's SummaryWriter <https://pytorch.org/docs/stable/tensorboard.html>`_ (>=v1.2.0). Args: *args: Positional arguments accepted from `SummaryWriter <https://pytorch.org/docs/stable/tensorboard.html>`_. **kwargs: Keyword arguments accepted from `SummaryWriter <https://pytorch.org/docs/stable/tensorboard.html>`_. For example, `log_dir` to setup path to the directory where to log. Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log training loss at each iteration tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. tb_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration tb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) ) # Attach the logger to the trainer to log model's weights as a histogram after each epoch tb_logger.attach( trainer, event_name=Events.EPOCH_COMPLETED, log_handler=WeightsHistHandler(model) ) # Attach the logger to the trainer to log model's gradients norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model) ) # Attach the logger to the trainer to log model's gradients as a histogram after each epoch tb_logger.attach( trainer, event_name=Events.EPOCH_COMPLETED, log_handler=GradsHistHandler(model) ) # We need to close the logger with we are done tb_logger.close() It is also possible to use the logger as context manager: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * with TensorboardLogger(log_dir="experiments/tb_logs") as tb_logger: trainer = Engine(update_fn) # Attach the logger to the trainer to log training loss at each iteration tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) """ def __init__(self, *args: Any, **kwargs: Any): try: from tensorboardX import SummaryWriter except ImportError: try: from torch.utils.tensorboard import SummaryWriter except ImportError: raise RuntimeError( "This contrib module requires either tensorboardX or torch >= 1.2.0. " "You may install tensorboardX with command: \n pip install tensorboardX \n" "or upgrade PyTorch using your package manager of choice (pip or conda)." ) self.writer = SummaryWriter(*args, **kwargs) def close(self): self.writer.close() def _create_output_handler(self, *args: Any, **kwargs: Any): return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any): return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: tb_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on Tensorboard. tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Args: tag (str): common title for all produced plots. For example, "training" metric_names (list of str, optional): list of metric names to plot or a string "all" to plot all available metrics. output_transform (callable, optional): output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform (callable, optional): global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.contrib.handlers.tensorboard_logger.global_step_from_engine`. Note: Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) """ def __init__( self, tag: str, metric_names: Optional[List[str]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable] = None, ): super(OutputHandler, self).__init__(tag, metric_names, output_transform, global_step_transform) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'OutputHandler' works only with TensorboardLogger") metrics = self._setup_output_metrics(engine) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( "global_step must be int, got {}." " Please check the output of global_step_transform.".format(type(global_step)) ) for key, value in metrics.items(): if isinstance(value, numbers.Number) or isinstance(value, torch.Tensor) and value.ndimension() == 0: logger.writer.add_scalar("{}/{}".format(self.tag, key), value, global_step) elif isinstance(value, torch.Tensor) and value.ndimension() == 1: for i, v in enumerate(value): logger.writer.add_scalar("{}/{}/{}".format(self.tag, key, i), v.item(), global_step) else: warnings.warn("TensorboardLogger output_handler can not log metrics value type {}".format(type(value))) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration tb_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently tb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) Args: optimizer (torch.optim.Optimizer or object): torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name (str): parameter name tag (str, optional): common title for all produced plots. For example, "generator" """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = "{}/".format(self.tag) if self.tag else "" params = { "{}{}/group_{}".format(tag_prefix, self.param_name, i): float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } for k, v in params.items(): logger.writer.add_scalar(k, v, global_step) class WeightsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's weights as scalars. Handler iterates over named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar. Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) Args: model (torch.nn.Module): model to log weights reduction (callable): function to reduce parameters into scalar tag (str, optional): common title for all produced plots. For example, "generator" """ def __init__(self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None): super(WeightsScalarHandler, self).__init__(model, reduction, tag=tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'WeightsScalarHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = "{}/".format(self.tag) if self.tag else "" for name, p in self.model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_scalar( "{}weights_{}/{}".format(tag_prefix, self.reduction.__name__, name), self.reduction(p.data), global_step ) class WeightsHistHandler(BaseWeightsHistHandler): """Helper handler to log model's weights as histograms. Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model) ) Args: model (torch.nn.Module): model to log weights tag (str, optional): common title for all produced plots. For example, "generator" """ def __init__(self, model: nn.Module, tag: Optional[str] = None): super(WeightsHistHandler, self).__init__(model, tag=tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'WeightsHistHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = "{}/".format(self.tag) if self.tag else "" for name, p in self.model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_histogram( tag="{}weights/{}".format(tag_prefix, name), values=p.data.detach().cpu().numpy(), global_step=global_step, ) class GradsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's gradients as scalars. Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar. Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) Args: model (torch.nn.Module): model to log weights reduction (callable): function to reduce parameters into scalar tag (str, optional): common title for all produced plots. For example, "generator" """ def __init__(self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None): super(GradsScalarHandler, self).__init__(model, reduction, tag=tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'GradsScalarHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = "{}/".format(self.tag) if self.tag else "" for name, p in self.model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_scalar( "{}grads_{}/{}".format(tag_prefix, self.reduction.__name__, name), self.reduction(p.grad), global_step ) class GradsHistHandler(BaseWeightsHistHandler): """Helper handler to log model's gradients as histograms. Examples: .. code-block:: python from ignite.contrib.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model) ) Args: model (torch.nn.Module): model to log weights tag (str, optional): common title for all produced plots. For example, "generator" """ def __init__(self, model: nn.Module, tag: Optional[str] = None): super(GradsHistHandler, self).__init__(model, tag=tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, EventEnum]): if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'GradsHistHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = "{}/".format(self.tag) if self.tag else "" for name, p in self.model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_histogram( tag="{}grads/{}".format(tag_prefix, name), values=p.grad.detach().cpu().numpy(), global_step=global_step )
[ "torch.utils.tensorboard.SummaryWriter" ]
1.3
ibotdotout/ignite
d2da93d2ff0aab139218e578dee1d0dc8c6481db
1.9
from typing import Any from typing import Callable import torch from torch import Tensor from torch.testing import assert_close def assert_monotone( fn: Callable[[Tensor], Tensor], x1: Tensor, x2: Tensor, increasing: bool = False, allow_equal: bool = False, ) -> None: """Assert ``fn`` is monotone function for :math:`x_1 > x_2`: .. math:: f(x_1) > f(x_2) Args: fn (callable[[torch.Tensor], torch.Tensor]): Function to test. x1 (torch.Tensor): The first tensor. x2 (torch.Tensor): The second tensor. increasing (bool, default=True): Whether to test increasing monotonicity. Only False is supported. allow_equal (bool, default=False): Whether to allow :math:`f(x_1) = f(x_2)`. Only False is supported. Returns: None Raises: AssertionError: If fn is not monotone. """ assert not increasing, "not supported" assert not allow_equal, "not supported" assert (x1 > x2).all(), "x1 > x2 must be satisfied" assert (fn(x1) < fn(x2)).all() def assert_convex( fn: Callable[[Tensor], Tensor], x1: Tensor, x2: Tensor, alpha: float ) -> None: """Assert convexity. .. math:: f(\\alpha * x_1 + (1 - \\alpha) * x_2) \\leq \\alpha * f(x_1) + (1 - \\alpha) * f(x_2) Args: fn (callable[[torch.Tensor], torch.Tensor]): Function to test. It should return a tensor with a single element. x1 (torch.Tensor): The first tensor. x2 (torch.Tensor): The second tensor. alpha (float): The parameter alpha. """ y = fn(alpha * x1 + (1 - alpha) * x2) y1 = fn(x1) y2 = fn(x2) assert y <= alpha * y1 + (1 - alpha) * y2 def assert_cash_invariant( fn: Callable[[Tensor], Tensor], x: Tensor, c: float, **kwargs: Any ) -> None: """Assert cash invariance. .. math:: f(x + c) = f(x) - c Args: fn (callable): Function to test cash invariance. x (torch.Tensor): The input tensor. c (float): The parameter c. """ assert_close(fn(x + c), fn(x) - c, **kwargs) def assert_cash_equivalent( fn: Callable[[Tensor], Tensor], x: Tensor, c: float, **kwargs: Any ) -> None: """Assert ``c`` is the cash equivalent of ``x``. ``fn(x) = fn(torch.full_like(x, c))`` Args: fn (callable): Function to test cash equivalent. x (torch.Tensor): The input tensor. c (float): The parameter c. **kwargs: Keyword arguments to pass to ``assert_close``. """ assert_close(fn(x), fn(torch.full_like(x, c)), **kwargs)
[ "torch.full_like" ]
1.9.0
YieldLabs/pfhedge
a5ba9d054a8418cb8b27bb67d81a8fc8fb83ef57
1.8
import sys import time from typing import Any, Dict, List, Optional, Tuple, Type, Union import gym import numpy as np import torch as th from torch.nn import functional as F from stable_baselines3.active_tamer.policies import SACPolicy from stable_baselines3.common.buffers import ReplayBuffer from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.human_feedback import HumanFeedback from stable_baselines3.common.noise import ActionNoise from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm from stable_baselines3.common.online_learning_interface import FeedbackInterface from stable_baselines3.common.type_aliases import ( GymEnv, MaybeCallback, RolloutReturn, Schedule, TrainFreq, ) from stable_baselines3.common.utils import polyak_update, should_collect_more_steps from stable_baselines3.common.vec_env import VecEnv class ProbeTamerOptim(OffPolicyAlgorithm): """ TAMER + Soft Actor-Critic (SAC): Probe the user everytime abstract state changes for feedback. Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, This implementation borrows code from original implementation (https://github.com/haarnoja/sac) from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo (https://github.com/rail-berkeley/softlearning/) and from Stable Baselines (https://github.com/hill-a/stable-baselines) Paper: https://arxiv.org/abs/1801.01290 Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html Note: we use double q target and not value target as discussed in https://github.com/hill-a/stable-baselines/issues/270 :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: The environment to learn from (if registered in Gym, can be str) :param learning_rate: learning rate for adam optimizer, the same learning rate will be used for all networks (Q-Values, Actor and Value function) it can be a function of the current progress remaining (from 1 to 0) :param buffer_size: size of the replay buffer :param learning_starts: how many steps of the model to collect transitions for before learning starts :param batch_size: Minibatch size for each gradient update :param tau: the soft update coefficient ("Polyak update", between 0 and 1) :param gamma: the discount factor :param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit like ``(5, "step")`` or ``(2, "episode")``. :param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``) Set to ``-1`` means to do as many gradient steps as steps done in the environment during the rollout. :param action_noise: the action noise type (None by default), this can help for hard exploration problem. Cf common.noise for the different action noise type. :param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``). If ``None``, it will be automatically selected. :param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation. :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 :param ent_coef: Entropy regularization coefficient. (Equivalent to inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off. Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value) :param target_update_interval: update the target network every ``target_network_update_freq`` gradient steps. :param target_entropy: target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``) :param use_sde: Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling during the warm up phase (before learning starts) :param create_eval_env: Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param policy_kwargs: additional arguments to be passed to the policy on creation :param verbose: the verbosity level: 0 no output, 1 info, 2 debug :param seed: Seed for the pseudo random generators :param device: Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: Whether or not to build the network at the creation of the instance """ def __init__( self, policy: Union[str, Type[SACPolicy]], env: Union[GymEnv, str], abstract_state, trained_model = None, learning_rate: Union[float, Schedule] = 3e-4, buffer_size: int = 1_000_000, # 1e6 learning_starts: int = 5, batch_size: int = 2, tau: float = 0.005, gamma: float = 0.99, train_freq: Union[int, Tuple[int, str]] = 1, gradient_steps: int = 1, action_noise: Optional[ActionNoise] = None, replay_buffer_class: Optional[ReplayBuffer] = None, replay_buffer_kwargs: Optional[Dict[str, Any]] = None, optimize_memory_usage: bool = False, ent_coef: Union[str, float] = "auto", target_update_interval: int = 1, target_entropy: Union[str, float] = "auto", use_sde: bool = False, sde_sample_freq: int = -1, use_sde_at_warmup: bool = False, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", save_every: int = 2500, _init_setup_model: bool = True, model_name: str = "ProbeTamerOptim", render: bool = False, ): super(ProbeTamerOptim, self).__init__( policy, env, SACPolicy, learning_rate, buffer_size, learning_starts, batch_size, tau, gamma, train_freq, gradient_steps, action_noise, replay_buffer_class=replay_buffer_class, replay_buffer_kwargs=replay_buffer_kwargs, policy_kwargs=policy_kwargs, tensorboard_log=tensorboard_log, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, use_sde=use_sde, sde_sample_freq=sde_sample_freq, use_sde_at_warmup=use_sde_at_warmup, optimize_memory_usage=optimize_memory_usage, save_every=save_every, supported_action_spaces=(gym.spaces.Box), model_name=model_name, render=render, ) self.target_entropy = target_entropy self.log_ent_coef = None # type: Optional[th.Tensor] # Entropy coefficient / Entropy temperature # Inverse of the reward scale self.ent_coef = ent_coef self.target_update_interval = target_update_interval self.ent_coef_optimizer = None self.abstract_state = abstract_state self.curr_abstract_state = 0 self.trained_model = trained_model if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super(ProbeTamerOptim, self)._setup_model() self._create_aliases() # Target entropy is used when learning the entropy coefficient if self.target_entropy == "auto": # automatically set target entropy if needed self.target_entropy = -np.prod(self.env.action_space.shape).astype( np.float32 ) else: # Force conversion # this will also throw an error for unexpected string self.target_entropy = float(self.target_entropy) # The entropy coefficient or entropy can be learned automatically # see Automating Entropy Adjustment for Maximum Entropy RL section # of https://arxiv.org/abs/1812.05905 if isinstance(self.ent_coef, str) and self.ent_coef.startswith("auto"): # Default initial value of ent_coef when learned init_value = 1.0 if "_" in self.ent_coef: init_value = float(self.ent_coef.split("_")[1]) assert ( init_value > 0.0 ), "The initial value of ent_coef must be greater than 0" # Note: we optimize the log of the entropy coeff which is slightly different from the paper # as discussed in https://github.com/rail-berkeley/softlearning/issues/37 self.log_ent_coef = th.log( th.ones(1, device=self.device) * init_value ).requires_grad_(True) self.ent_coef_optimizer = th.optim.Adam( [self.log_ent_coef], lr=self.lr_schedule(1) ) else: # Force conversion to float # this will throw an error if a malformed string (different from 'auto') # is passed self.ent_coef_tensor = th.tensor(float(self.ent_coef)).to(self.device) def _create_aliases(self) -> None: self.actor = self.policy.actor self.critic = self.policy.critic self.critic_target = self.policy.critic_target def train( self, gradient_steps: int, human_feedback_gui: HumanFeedback = None, batch_size: int = 64, ) -> None: # Switch to train mode (this affects batch norm / dropout) self.policy.set_training_mode(True) # Update optimizers learning rate optimizers = [self.actor.optimizer, self.critic.optimizer] if self.ent_coef_optimizer is not None: optimizers += [self.ent_coef_optimizer] # Update learning rate according to lr schedule self._update_learning_rate(optimizers) ent_coef_losses, ent_coefs = [], [] actor_losses, critic_losses = [], [] for gradient_step in range(gradient_steps): # Sample replay buffer replay_data = self.replay_buffer.sample( batch_size, env=self._vec_normalize_env ) # We need to sample because `log_std` may have changed between two gradient steps if self.use_sde: self.actor.reset_noise() # Action by the current actor for the sampled state actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations) log_prob = log_prob.reshape(-1, 1) ent_coef_loss = None if self.ent_coef_optimizer is not None: # Important: detach the variable from the graph # so we don't change it with other losses # see https://github.com/rail-berkeley/softlearning/issues/60 ent_coef = th.exp(self.log_ent_coef.detach()) ent_coef_loss = -( self.log_ent_coef * (log_prob + self.target_entropy).detach() ).mean() ent_coef_losses.append(ent_coef_loss.item()) else: ent_coef = self.ent_coef_tensor ent_coefs.append(ent_coef.item()) # Optimize entropy coefficient, also called # entropy temperature or alpha in the paper if ent_coef_loss is not None: self.ent_coef_optimizer.zero_grad() ent_coef_loss.backward() self.ent_coef_optimizer.step() with th.no_grad(): # Select action according to policy next_actions, next_log_prob = self.actor.action_log_prob( replay_data.next_observations ) # Compute the next Q values: min over all critics targets next_q_values = th.cat( self.critic_target(replay_data.next_observations, next_actions), dim=1, ) next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True) # add entropy term next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1) # td error + entropy term target_q_values = ( replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values ) # Get current Q-values estimates for each critic network # using action from the replay buffer current_q_values = self.critic( replay_data.observations, replay_data.actions ) # Compute critic loss critic_loss = 0.5 * sum( [ F.mse_loss(current_q, target_q_values) for current_q in current_q_values ] ) critic_losses.append(critic_loss.item()) # Optimize the critic self.critic.optimizer.zero_grad() critic_loss.backward() self.critic.optimizer.step() # Compute actor loss # Alternative: actor_loss = th.mean(log_prob - qf1_pi) # Mean over all critic networks q_values_pi = th.cat( self.critic.forward(replay_data.observations, actions_pi), dim=1 ) min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True) actor_loss = (ent_coef * log_prob - min_qf_pi).mean() actor_losses.append(actor_loss.item()) if human_feedback_gui: human_feedback_gui.updateLoss(actor_loss.item()) # Optimize the actor self.actor.optimizer.zero_grad() actor_loss.backward() self.actor.optimizer.step() # Update target networks if gradient_step % self.target_update_interval == 0: polyak_update( self.critic.parameters(), self.critic_target.parameters(), self.tau ) self._n_updates += gradient_steps self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/ent_coef", np.mean(ent_coefs)) self.logger.record("train/actor_loss", np.mean(actor_losses)) self.logger.record("train/critic_loss", np.mean(critic_losses)) if len(ent_coef_losses) > 0: self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses)) def learn( self, total_timesteps: int, human_feedback_gui: FeedbackInterface, human_feedback: HumanFeedback, callback: MaybeCallback = None, log_interval: int = 1, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "ProbeTamerOptim", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True, ) -> OffPolicyAlgorithm: return super(ProbeTamerOptim, self).learn( total_timesteps=total_timesteps, human_feedback_gui=human_feedback_gui, human_feedback=human_feedback, callback=callback, log_interval=log_interval, eval_env=eval_env, eval_freq=eval_freq, n_eval_episodes=n_eval_episodes, tb_log_name=tb_log_name, eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps, ) def _excluded_save_params(self) -> List[str]: return super(ProbeTamerOptim, self)._excluded_save_params() + [ "actor", "critic", "critic_target", ] def _get_torch_save_params(self) -> Tuple[List[str], List[str]]: state_dicts = ["policy", "actor.optimizer", "critic.optimizer"] if self.ent_coef_optimizer is not None: saved_pytorch_variables = ["log_ent_coef"] state_dicts.append("ent_coef_optimizer") else: saved_pytorch_variables = ["ent_coef_tensor"] return state_dicts, saved_pytorch_variables def collect_rollouts( self, env: VecEnv, callback: BaseCallback, train_freq: TrainFreq, replay_buffer: ReplayBuffer, action_noise: Optional[ActionNoise] = None, learning_starts: int = 0, log_interval: Optional[int] = None, human_feedback: HumanFeedback = None, human_feedback_gui: FeedbackInterface = None, ) -> RolloutReturn: """ Collect experiences and store them into a ``ReplayBuffer``. :param env: The training environment :param callback: Callback that will be called at each step (and at the beginning and end of the rollout) :param train_freq: How much experience to collect by doing rollouts of current policy. Either ``TrainFreq(<n>, TrainFrequencyUnit.STEP)`` or ``TrainFreq(<n>, TrainFrequencyUnit.EPISODE)`` with ``<n>`` being an integer greater than 0. :param action_noise: Action noise that will be used for exploration Required for deterministic policy (e.g. TD3). This can also be used in addition to the stochastic policy for SAC. :param learning_starts: Number of steps before learning for the warm-up phase. :param replay_buffer: :param log_interval: Log data every ``log_interval`` episodes :return: """ # Switch to eval mode (this affects batch norm / dropout) self.policy.set_training_mode(False) episode_rewards, total_timesteps = [], [] num_collected_steps, num_collected_episodes = 0, 0 assert isinstance(env, VecEnv), "You must pass a VecEnv" assert env.num_envs == 1, "ProbeTamerOptim only support single environment" assert train_freq.frequency > 0, "Should at least collect one step or episode." if self.use_sde: self.actor.reset_noise() callback.on_rollout_start() continue_training = True while should_collect_more_steps( train_freq, num_collected_steps, num_collected_episodes ): done = False episode_reward, episode_timesteps = 0.0, 0 while not done: if ( self.use_sde and self.sde_sample_freq > 0 and num_collected_steps % self.sde_sample_freq == 0 ): # Sample a new noise matrix self.actor.reset_noise() # Select action randomly or according to policy action, buffer_action = self._sample_action( learning_starts, action_noise ) # Rescale and perform action if self.render: env.render() new_obs, reward, done, infos = env.step(action) next_abstract_state = self.abstract_state(new_obs) simulated_human_reward = 0 human_feedback_received = False if self.curr_abstract_state != next_abstract_state: self.curr_abstract_state = next_abstract_state critic_rewards = self.trained_model.critic.forward( th.from_numpy(self._last_obs).to(self.device), th.from_numpy(action).to(self.device), ) simulated_human_reward, _ = th.min( th.cat(critic_rewards, dim=1), dim=1, keepdim=True ) simulated_human_reward = simulated_human_reward.cpu()[0][0] human_feedback_received = True self.num_timesteps += 1 episode_timesteps += 1 num_collected_steps += 1 # Give access to local variables callback.update_locals(locals()) # Only stop training if return value is False, not when it is None. if callback.on_step() is False: return RolloutReturn( 0.0, num_collected_steps, num_collected_episodes, continue_training=False, ) # Retrieve reward and episode length if using Monitor wrapper self._update_info_buffer(infos, done) if human_feedback_received: self.apply_uniform_credit_assignment( replay_buffer, float(simulated_human_reward), 40, 0 ) # reward[0] += simulated_human_reward episode_reward += reward[0] # Store data in replay buffer (normalized action and unnormalized observation) self._store_transition( replay_buffer, buffer_action, new_obs, reward, done, infos ) if human_feedback_gui: human_feedback_gui.updateReward(episode_reward) self._update_current_progress_remaining( self.num_timesteps, self._total_timesteps ) # For DQN, check if the target network should be updated # and update the exploration schedule # For SAC/TD3, the update is done as the same time as the gradient update # see https://github.com/hill-a/stable-baselines/issues/900 self._on_step() if not should_collect_more_steps( train_freq, num_collected_steps, num_collected_episodes ): break if done: num_collected_episodes += 1 self._episode_num += 1 episode_rewards.append(episode_reward) total_timesteps.append(episode_timesteps) if action_noise is not None: action_noise.reset() # Log training infos if log_interval is not None and self._episode_num % log_interval == 0: self._dump_logs() mean_reward = np.mean(episode_rewards) if num_collected_episodes > 0 else 0.0 callback.on_rollout_end() return RolloutReturn( mean_reward, num_collected_steps, num_collected_episodes, continue_training )
[ "torch.cat", "torch.min", "torch.no_grad", "torch.ones", "torch.nn.functional.mse_loss", "torch.from_numpy" ]
1.8.1
corgiTrax/stable-baselines3
95dc5e30ab6a21225da4b718953e83870e4f146b
1.1
import torch class FGM(object): """ refer to the paper: FGM(Fast Gradient Method) Adversarial training methods for semi-supervised text classification """ def __init__(self, model): self.model = model self.backup = {} def attack(self, epsilon=1e-6, emd_name="embedding"): for name, param in self.model.named_parameters(): if param.requires_grad and emd_name in name: self.backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0 and not torch.isnan(norm): r_at = epsilon * param.grad / norm param.data.add_(r_at) def restore(self, emd_name="embedding"): for name, param in self.model.named_parameters(): if param.requires_grad and emd_name in name: assert name in self.backup param.data = self.backup[name] self.backup = {} class PGD(object): """ refer to the paper: PGD(Projected Gradient Descent) Towards Deep Learning Models Resistant to Adversarial Attacks """ def __init__(self, model): self.model = model self.emb_backup = {} self.grad_backup = {} def attack(self, epsilon=1., alpha=0.3, emb_name="embedding", is_first_attack=False): for name, param in self.model.named_parameters(): if param.requires_grad and emb_name in name: if is_first_attack: self.emb_backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0 and not torch.isnan(norm): r_at = alpha * param.grad / norm param.data.add_(r_at) param.data = self.project(name, param.data, epsilon) def restore(self, emb_name="embedding"): for name, param in self.model.named_parameters(): if param.requires_grad and emb_name in name: assert name in self.emb_backup param.data = self.emb_backup[name] self.emb_backup = {} def project(self, param_name, param_data, epsilon): r = param_data - self.emb_backup[param_name] if torch.norm(r) > epsilon: r = epsilon * r / torch.norm(r) return self.emb_backup[param_name] + r def backup_grad(self): for name, param in self.model.named_parameters(): if param.requires_grad: self.grad_backup[name] = param.grad.clone() def restore_grad(self): for name, param in self.model.named_parameters(): if param.requires_grad: param.grad = self.grad_backup[name]
[ "torch.norm", "torch.isnan" ]
1.1
zhengmidon/jingju_baseline
4c6ef80ac14b4640efb1f81cde38df2ac35eacd2
1.1
import re import librosa import numpy as np import torch from scipy.interpolate import interp1d from sklearn.preprocessing import normalize device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") skeleton_line_pairs = [(0, 1, 'b'), (1, 2, 'darkred'), (2, 3, 'r'), (3, 4, 'orange'), (1, 5, 'darkgreen'), (5, 6, 'limegreen'), (6, 7, 'darkseagreen')] dir_vec_pairs = [(0, 1, 0.26), (1, 2, 0.18), (2, 3, 0.14), (1, 4, 0.22), (4, 5, 0.36), (5, 6, 0.33), (1, 7, 0.22), (7, 8, 0.36), (8, 9, 0.33)] # adjacency and bone length def normalize_string(s): """ lowercase, trim, and remove non-letter characters """ s = s.lower().strip() s = re.sub(r"([,.!?])", r" \1 ", s) # isolate some marks s = re.sub(r"(['])", r"", s) # remove apostrophe s = re.sub(r"[^a-zA-Z,.!?]+", r" ", s) # replace other characters with whitespace s = re.sub(r"\s+", r" ", s).strip() return s def remove_tags_marks(text): reg_expr = re.compile('<.*?>|[.,:;!?]+') clean_text = re.sub(reg_expr, '', text) return clean_text def extract_melspectrogram(y, sr=16000): melspec = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=1024, hop_length=512, power=2) log_melspec = librosa.power_to_db(melspec, ref=np.max) # mels x time log_melspec = log_melspec.astype('float16') return log_melspec def calc_spectrogram_length_from_motion_length(n_frames, fps): ret = (n_frames / fps * 16000 - 1024) / 512 + 1 return int(round(ret)) def resample_pose_seq(poses, duration_in_sec, fps): n = len(poses) x = np.arange(0, n) y = poses f = interp1d(x, y, axis=0, kind='linear', fill_value='extrapolate') expected_n = duration_in_sec * fps x_new = np.arange(0, n, n / expected_n) interpolated_y = f(x_new) if hasattr(poses, 'dtype'): interpolated_y = interpolated_y.astype(poses.dtype) return interpolated_y def time_stretch_for_words(words, start_time, speech_speed_rate): for i in range(len(words)): if words[i][1] > start_time: words[i][1] = start_time + (words[i][1] - start_time) / speech_speed_rate words[i][2] = start_time + (words[i][2] - start_time) / speech_speed_rate return words def make_audio_fixed_length(audio, expected_audio_length): n_padding = expected_audio_length - len(audio) if n_padding > 0: audio = np.pad(audio, (0, n_padding), mode='symmetric') else: audio = audio[0:expected_audio_length] return audio def convert_dir_vec_to_pose(vec): vec = np.array(vec) if vec.shape[-1] != 3: vec = vec.reshape(vec.shape[:-1] + (-1, 3)) if len(vec.shape) == 2: joint_pos = np.zeros((10, 3)) for j, pair in enumerate(dir_vec_pairs): joint_pos[pair[1]] = joint_pos[pair[0]] + pair[2] * vec[j] elif len(vec.shape) == 3: joint_pos = np.zeros((vec.shape[0], 10, 3)) for j, pair in enumerate(dir_vec_pairs): joint_pos[:, pair[1]] = joint_pos[:, pair[0]] + pair[2] * vec[:, j] elif len(vec.shape) == 4: # (batch, seq, 9, 3) joint_pos = np.zeros((vec.shape[0], vec.shape[1], 10, 3)) for j, pair in enumerate(dir_vec_pairs): joint_pos[:, :, pair[1]] = joint_pos[:, :, pair[0]] + pair[2] * vec[:, :, j] else: assert False return joint_pos def convert_pose_seq_to_dir_vec(pose): if pose.shape[-1] != 3: pose = pose.reshape(pose.shape[:-1] + (-1, 3)) if len(pose.shape) == 3: dir_vec = np.zeros((pose.shape[0], len(dir_vec_pairs), 3)) for i, pair in enumerate(dir_vec_pairs): dir_vec[:, i] = pose[:, pair[1]] - pose[:, pair[0]] dir_vec[:, i, :] = normalize(dir_vec[:, i, :], axis=1) # to unit length elif len(pose.shape) == 4: # (batch, seq, ...) dir_vec = np.zeros((pose.shape[0], pose.shape[1], len(dir_vec_pairs), 3)) for i, pair in enumerate(dir_vec_pairs): dir_vec[:, :, i] = pose[:, :, pair[1]] - pose[:, :, pair[0]] for j in range(dir_vec.shape[0]): # batch for i in range(len(dir_vec_pairs)): dir_vec[j, :, i, :] = normalize(dir_vec[j, :, i, :], axis=1) # to unit length else: assert False return dir_vec
[ "torch.cuda.is_available" ]
1.1.0
er1ca/Gesture-Generation-from-Trimodal-Context
6d988a7211a4d8294e1ef4b45c45ee25d12455d2
1.1
import logging import torch import torch.nn.functional as F loss_i = 0 def custom_loss(output, target, args, epoch): n_element = output.numel() # mae mse_loss = F.mse_loss(output, target) mse_loss *= args.loss_regression_weight # continuous motion diff = [abs(output[:, n, :] - output[:, n-1, :]) for n in range(1, output.shape[1])] cont_loss = torch.sum(torch.stack(diff)) / n_element cont_loss *= args.loss_kld_weight # motion variance norm = torch.norm(output, 2, 1) # output shape (batch, seq, dim) var_loss = -torch.sum(norm) / n_element var_loss *= args.loss_reg_weight loss = mse_loss + cont_loss + var_loss # debugging code global loss_i if loss_i == 1000: logging.debug('(custom loss) mse %.5f, cont %.5f, var %.5f' % (mse_loss.item(), cont_loss.item(), var_loss.item())) loss_i = 0 loss_i += 1 return loss def train_iter_seq2seq(args, epoch, in_text, in_lengths, target_poses, net, optim): # zero gradients optim.zero_grad() # generation outputs = net(in_text, in_lengths, target_poses, None) # loss loss = custom_loss(outputs, target_poses, args, epoch) loss.backward() # optimize torch.nn.utils.clip_grad_norm_(net.parameters(), 5) optim.step() return {'loss': loss.item()}
[ "torch.nn.functional.mse_loss", "torch.norm", "torch.stack", "torch.sum" ]
1.1.0
er1ca/Gesture-Generation-from-Trimodal-Context
6d988a7211a4d8294e1ef4b45c45ee25d12455d2
1.3
import inspect import logging import warnings from typing import Callable, Dict, List, Optional, Sequence, Union import numpy as np import pandas as pd import torch from scvi._compat import Literal logger = logging.getLogger(__name__) Number = Union[int, float] class DifferentialComputation: """ Unified class for differential computation. This class takes a function from a model like `SCVI` or `TOTALVI` and takes outputs from this function with respect to the adata input and computed Bayes factors as described in [Lopez18]_, [Xu20]_, or [Boyeau19]_. Parameters ---------- model_fn Function in model API to get values from. adata AnnData setup with scvi """ def __init__(self, model_fn, adata): self.adata = adata self.model_fn = model_fn def get_bayes_factors( self, idx1: Union[List[bool], np.ndarray], idx2: Union[List[bool], np.ndarray], mode: Literal["vanilla", "change"] = "vanilla", batchid1: Optional[Sequence[Union[Number, str]]] = None, batchid2: Optional[Sequence[Union[Number, str]]] = None, use_observed_batches: Optional[bool] = False, n_samples: int = 5000, use_permutation: bool = False, m_permutation: int = 10000, change_fn: Optional[Union[str, Callable]] = None, m1_domain_fn: Optional[Callable] = None, delta: Optional[float] = 0.5, cred_interval_lvls: Optional[Union[List[float], np.ndarray]] = None, ) -> Dict[str, np.ndarray]: r""" A unified method for differential expression inference. Two modes coexist: - the `"vanilla"` mode follows protocol described in [Lopez18]_ and [Xu20]_ In this case, we perform hypothesis testing based on the hypotheses .. math:: M_1: h_1 > h_2 ~\text{and}~ M_2: h_1 \leq h_2. DE can then be based on the study of the Bayes factors .. math:: \log p(M_1 | x_1, x_2) / p(M_2 | x_1, x_2). - the `"change"` mode (described in [Boyeau19]_) This mode consists of estimating an effect size random variable (e.g., log fold-change) and performing Bayesian hypothesis testing on this variable. The `change_fn` function computes the effect size variable :math:`r` based on two inputs corresponding to the posterior quantities (e.g., normalized expression) in both populations. Hypotheses: .. math:: M_1: r \in R_1 ~\text{(effect size r in region inducing differential expression)} .. math:: M_2: r \notin R_1 ~\text{(no differential expression)} To characterize the region :math:`R_1`, which induces DE, the user has two choices. 1. A common case is when the region :math:`[-\delta, \delta]` does not induce differential expression. If the user specifies a threshold delta, we suppose that :math:`R_1 = \mathbb{R} \setminus [-\delta, \delta]` 2. Specify an specific indicator function: .. math:: f: \mathbb{R} \mapsto \{0, 1\} ~\text{s.t.}~ r \in R_1 ~\text{iff.}~ f(r) = 1. Decision-making can then be based on the estimates of .. math:: p(M_1 \mid x_1, x_2). Both modes require to sample the posterior distributions. To that purpose, we sample the posterior in the following way: 1. The posterior is sampled `n_samples` times for each subpopulation. 2. For computational efficiency (posterior sampling is quite expensive), instead of comparing the obtained samples element-wise, we can permute posterior samples. Remember that computing the Bayes Factor requires sampling :math:`q(z_A \mid x_A)` and :math:`q(z_B \mid x_B)`. Currently, the code covers several batch handling configurations: 1. If ``use_observed_batches=True``, then batch are considered as observations and cells' normalized means are conditioned on real batch observations. 2. If case (cell group 1) and control (cell group 2) are conditioned on the same batch ids. This requires ``set(batchid1) == set(batchid2)`` or ``batchid1 == batchid2 === None``. 3. If case and control are conditioned on different batch ids that do not intersect i.e., ``set(batchid1) != set(batchid2)`` and ``len(set(batchid1).intersection(set(batchid2))) == 0``. This function does not cover other cases yet and will warn users in such cases. Parameters ---------- mode one of ["vanilla", "change"] idx1 bool array masking subpopulation cells 1. Should be True where cell is from associated population idx2 bool array masking subpopulation cells 2. Should be True where cell is from associated population batchid1 List of batch ids for which you want to perform DE Analysis for subpopulation 1. By default, all ids are taken into account batchid2 List of batch ids for which you want to perform DE Analysis for subpopulation 2. By default, all ids are taken into account use_observed_batches Whether posterior values are conditioned on observed batches n_samples Number of posterior samples use_permutation Activates step 2 described above. Simply formulated, pairs obtained from posterior sampling will be randomly permuted so that the number of pairs used to compute Bayes Factors becomes `m_permutation`. m_permutation Number of times we will "mix" posterior samples in step 2. Only makes sense when `use_permutation=True` change_fn function computing effect size based on both posterior values m1_domain_fn custom indicator function of effect size regions inducing differential expression delta specific case of region inducing differential expression. In this case, we suppose that :math:`R \setminus [-\delta, \delta]` does not induce differential expression (LFC case) cred_interval_lvls List of credible interval levels to compute for the posterior LFC distribution Returns ------- Differential expression properties """ # if not np.array_equal(self.indices, np.arange(len(self.dataset))): # logger.warning( # "Differential expression requires a Posterior object created with all indices." # ) eps = 1e-8 # used for numerical stability # Normalized means sampling for both populations scales_batches_1 = self.scale_sampler( selection=idx1, batchid=batchid1, use_observed_batches=use_observed_batches, n_samples=n_samples, ) scales_batches_2 = self.scale_sampler( selection=idx2, batchid=batchid2, use_observed_batches=use_observed_batches, n_samples=n_samples, ) px_scale_mean1 = scales_batches_1["scale"].mean(axis=0) px_scale_mean2 = scales_batches_2["scale"].mean(axis=0) # Sampling pairs # The objective of code section below is to ensure than the samples of normalized # means we consider are conditioned on the same batch id batchid1_vals = np.unique(scales_batches_1["batch"]) batchid2_vals = np.unique(scales_batches_2["batch"]) create_pairs_from_same_batches = ( set(batchid1_vals) == set(batchid2_vals) ) and not use_observed_batches if create_pairs_from_same_batches: # First case: same batch normalization in two groups logger.debug("Same batches in both cell groups") n_batches = len(set(batchid1_vals)) n_samples_per_batch = ( m_permutation // n_batches if m_permutation is not None else None ) scales_1 = [] scales_2 = [] for batch_val in set(batchid1_vals): # Select scale samples that originate from the same batch id scales_1_batch = scales_batches_1["scale"][ scales_batches_1["batch"] == batch_val ] scales_2_batch = scales_batches_2["scale"][ scales_batches_2["batch"] == batch_val ] # Create more pairs scales_1_local, scales_2_local = pairs_sampler( scales_1_batch, scales_2_batch, use_permutation=use_permutation, m_permutation=n_samples_per_batch, ) scales_1.append(scales_1_local) scales_2.append(scales_2_local) scales_1 = np.concatenate(scales_1, axis=0) scales_2 = np.concatenate(scales_2, axis=0) else: logger.debug("Ignoring batch conditionings to compare means") if len(set(batchid1_vals).intersection(set(batchid2_vals))) >= 1: warnings.warn( "Batchids of cells groups 1 and 2 are different but have an non-null " "intersection. Specific handling of such situations is not implemented " "yet and batch correction is not trustworthy." ) scales_1, scales_2 = pairs_sampler( scales_batches_1["scale"], scales_batches_2["scale"], use_permutation=use_permutation, m_permutation=m_permutation, ) # Core of function: hypotheses testing based on the posterior samples we obtained above if mode == "vanilla": logger.debug("Differential expression using vanilla mode") proba_m1 = np.mean(scales_1 > scales_2, 0) proba_m2 = 1.0 - proba_m1 res = dict( proba_m1=proba_m1, proba_m2=proba_m2, bayes_factor=np.log(proba_m1 + eps) - np.log(proba_m2 + eps), scale1=px_scale_mean1, scale2=px_scale_mean2, ) elif mode == "change": logger.debug("Differential expression using change mode") # step 1: Construct the change function def lfc(x, y): return np.log2(x) - np.log2(y) if change_fn == "log-fold" or change_fn is None: change_fn = lfc elif not callable(change_fn): raise ValueError("'change_fn' attribute not understood") # step2: Construct the DE area function if m1_domain_fn is None: delta = delta if delta is not None else 0.5 def m1_domain_fn(samples): return np.abs(samples) >= delta change_fn_specs = inspect.getfullargspec(change_fn) domain_fn_specs = inspect.getfullargspec(m1_domain_fn) if (len(change_fn_specs.args) != 2) | (len(domain_fn_specs.args) != 1): raise ValueError( "change_fn should take exactly two parameters as inputs; m1_domain_fn one parameter." ) try: change_distribution = change_fn(scales_1, scales_2) is_de = m1_domain_fn(change_distribution) except TypeError: raise TypeError( "change_fn or m1_domain_fn have has wrong properties." "Please ensure that these functions have the right signatures and" "outputs and that they can process numpy arrays" ) proba_m1 = np.mean(is_de, 0) change_distribution_props = describe_continuous_distrib( samples=change_distribution, credible_intervals_levels=cred_interval_lvls, ) change_distribution_props = { "lfc_" + key: val for (key, val) in change_distribution_props.items() } res = dict( proba_de=proba_m1, proba_not_de=1.0 - proba_m1, bayes_factor=np.log(proba_m1 + eps) - np.log(1.0 - proba_m1 + eps), scale1=px_scale_mean1, scale2=px_scale_mean2, **change_distribution_props, ) else: raise NotImplementedError("Mode {mode} not recognized".format(mode=mode)) return res @torch.no_grad() def scale_sampler( self, selection: Union[List[bool], np.ndarray], n_samples: Optional[int] = 5000, n_samples_per_cell: Optional[int] = None, batchid: Optional[Sequence[Union[Number, str]]] = None, use_observed_batches: Optional[bool] = False, give_mean: Optional[bool] = False, ) -> dict: """ Samples the posterior scale using the variational posterior distribution. Parameters ---------- selection Mask or list of cell ids to select n_samples Number of samples in total per batch (fill either `n_samples_total` or `n_samples_per_cell`) n_samples_per_cell Number of time we sample from each observation per batch (fill either `n_samples_total` or `n_samples_per_cell`) batchid Biological batch for which to sample from. Default (None) sample from all batches use_observed_batches Whether normalized means are conditioned on observed batches or if observed batches are to be used give_mean Return mean of values Returns ------- type Dictionary containing: `scale` Posterior aggregated scale samples of shape (n_samples, n_vars) where n_samples correspond to either: - n_bio_batches * n_cells * n_samples_per_cell or - n_samples_total `batch` associated batch ids """ # Get overall number of desired samples and desired batches if batchid is None and not use_observed_batches: categorical_mappings = self.adata.uns["_scvi"]["categorical_mappings"] batchid = categorical_mappings["_scvi_batch"]["mapping"] if use_observed_batches: if batchid is not None: raise ValueError("Unconsistent batch policy") batchid = [None] if n_samples is None and n_samples_per_cell is None: n_samples = 5000 elif n_samples_per_cell is not None and n_samples is None: n_samples = n_samples_per_cell * len(selection) if (n_samples_per_cell is not None) and (n_samples is not None): warnings.warn( "n_samples and n_samples_per_cell were provided. Ignoring n_samples_per_cell" ) n_samples = int(n_samples / len(batchid)) if n_samples == 0: warnings.warn( "very small sample size, please consider increasing `n_samples`" ) n_samples = 2 # Selection of desired cells for sampling if selection is None: raise ValueError("selections should be a list of cell subsets indices") selection = np.asarray(selection) if selection.dtype is np.dtype("bool"): if len(selection) < self.adata.shape[0]: raise ValueError("Mask must be same length as adata.") selection = np.asarray(np.where(selection)[0].ravel()) # Sampling loop px_scales = [] batch_ids = [] for batch_idx in batchid: idx = np.random.choice(np.arange(self.adata.shape[0])[selection], n_samples) px_scales.append( self.model_fn(self.adata, indices=idx, transform_batch=batch_idx) ) batch_idx = batch_idx if batch_idx is not None else np.nan batch_ids.append([batch_idx] * px_scales[-1].shape[0]) px_scales = np.concatenate(px_scales) batch_ids = np.concatenate(batch_ids).reshape(-1) if px_scales.shape[0] != batch_ids.shape[0]: raise ValueError("sampled scales and batches have inconsistent shapes") if give_mean: px_scales = px_scales.mean(0) return dict(scale=px_scales, batch=batch_ids) def pairs_sampler( arr1: Union[List[float], np.ndarray, torch.Tensor], arr2: Union[List[float], np.ndarray, torch.Tensor], use_permutation: bool = True, m_permutation: int = None, sanity_check_perm: bool = False, weights1: Union[List[float], np.ndarray, torch.Tensor] = None, weights2: Union[List[float], np.ndarray, torch.Tensor] = None, ) -> tuple: """ Creates more pairs. In a context where we want to estimate a double sum, virtually increases the number of samples by considering more pairs so as to better estimate the double summation operation Parameters ---------- arr1 samples from population 1 arr2 samples from population 2 use_permutation Whether to mix samples from both populations m_permutation param sanity_check_perm: If True, resulting mixed arrays arr1 and arr2 are mixed together In most cases, this parameter should remain False sanity_check_perm TODO weights1 probabilities associated to array 1 for random sampling weights2 probabilities associated to array 2 for random sampling Returns ------- type new_arr1, new_arr2 """ if use_permutation is True: # prepare the pairs for sampling n_arr1 = arr1.shape[0] n_arr2 = arr2.shape[0] if not sanity_check_perm: # case1: no permutation, sample from A and then from B u, v = ( np.random.choice(n_arr1, size=m_permutation, p=weights1), np.random.choice(n_arr2, size=m_permutation, p=weights2), ) first_set = arr1[u] second_set = arr2[v] else: # case2: permutation, sample from A+B twice (sanity check) u, v = ( np.random.choice(n_arr1 + n_arr2, size=m_permutation), np.random.choice(n_arr1 + n_arr2, size=m_permutation), ) concat_arr = np.concatenate((arr1, arr2)) first_set = concat_arr[u] second_set = concat_arr[v] else: first_set = arr1 second_set = arr2 return first_set, second_set def credible_intervals( ary: np.ndarray, confidence_level: Union[float, List[float], np.ndarray] = 0.94 ) -> np.ndarray: """ Calculate highest posterior density (HPD) of array for given credible_interval. Taken from the arviz package The HPD is the minimum width Bayesian credible interval (BCI). This implementation works only for unimodal distributions. Parameters ---------- ary posterior samples confidence_level confidence level Returns ------- type intervals minima, intervals maxima """ if ary.ndim > 1: hpd = np.array( [ credible_intervals(row, confidence_level=confidence_level) for row in ary.T ] ) return hpd # Make a copy of trace ary = ary.copy() n = len(ary) ary = np.sort(ary) interval_idx_inc = int(np.floor(confidence_level * n)) n_intervals = n - interval_idx_inc interval_width = ary[interval_idx_inc:] - ary[:n_intervals] if len(interval_width) == 0: raise ValueError( "Too few elements for interval calculation. " "Check that credible_interval meets condition 0 =< credible_interval < 1" ) min_idx = np.argmin(interval_width) hdi_min = ary[min_idx] hdi_max = ary[min_idx + interval_idx_inc] return np.array([hdi_min, hdi_max]) def describe_continuous_distrib( samples: Union[np.ndarray, torch.Tensor], credible_intervals_levels: Optional[Union[List[float], np.ndarray]] = None, ) -> dict: """ Computes properties of distribution based on its samples. Parameters ---------- samples samples of shape (n_samples, n_features) credible_intervals_levels Confidence in (0, 1) of credible intervals to be computed Returns ------- type properties of distribution """ dist_props = dict( mean=samples.mean(0), median=np.median(samples, 0), std=samples.std(0), min=samples.min(0), max=samples.max(0), ) credible_intervals_levels = ( [] if credible_intervals_levels is None else credible_intervals_levels ) for confidence in credible_intervals_levels: intervals = credible_intervals(samples, confidence_level=confidence) interval_min, interval_max = intervals[:, 0], intervals[:, 1] conf_str = str(confidence)[:5] dist_props["confidence_interval_{}_min".format(conf_str)] = interval_min dist_props["confidence_interval_{}_max".format(conf_str)] = interval_max return dist_props def save_cluster_xlsx( filepath: str, de_results: List[pd.DataFrame], cluster_names: List ): """ Saves multi-clusters DE in an xlsx sheet. Parameters ---------- filepath xslx save path de_results list of pandas Dataframes for each cluster cluster_names list of cluster names """ writer = pd.ExcelWriter(filepath, engine="xlsxwriter") for i, x in enumerate(cluster_names): de_results[i].to_excel(writer, sheet_name=str(x)) writer.close()
[ "torch.no_grad" ]
1.3
gitter-badger/scvi-tools
8948405f6b393baede73ccd6a0a5ac0824e16c0d
1.1
import torch import copy from utils.misc import deprecated def unprocessed_collate(batch): """ A dummy function to prevent Pytorch's data loader from converting and stacking batch data. :param batch: :return: """ return batch # List of data tuples (sequence, timeline, label) @deprecated def custom_collate(batch): """This helper function only works for batch training many-to-one RNN.""" data = [item[0] for item in batch] start = [item[1] for item in batch] end = [item[2] for item in batch] target = [item[3] for item in batch] target = torch.LongTensor(target) return [data, start, end, target] @deprecated def pad_tensor(vec, pad, dim): """ Warning: DO NOT use this function to pad sequence, otherwise the model will not learn probably :param vec: tensor to pad :param pad: the size to pad to :param dim: dimension to pad :return: a new tensor padded to 'pad' in dimension 'dim' """ pad_size = list(vec.shape) pad_size[dim] = pad - vec.size(dim) return torch.cat([vec.float(), torch.zeros(*pad_size)], dim=dim) @deprecated class PadCollate: """ A variant of callate_fn that pads according to the longest sequence in a batch of sequences. Warning: DO NOT use this helper for torch data loader, or the model will not learn probably. """ def __init__(self, dim=0): """ :param dim: the dimension to be padded (dimension of time in sequences) """ self.dim = dim def pad_collate(self, batch): """ :param batch: list of (tensor, label) :returns xs: a tensor of all examples in 'batch' after padding ys: a LongTensor of all labels in batch """ # find longest sequence max_len = max(map(lambda x: x[0].shape[self.dim], batch)) # pad according to max_len batch = map(lambda x: (pad_tensor(x[0], pad=max_len, dim=self.dim), x[1]), batch) temp = copy.deepcopy(batch) # stack all xs = torch.stack(list(map(lambda x: x[0], batch)), dim=0) ys = torch.LongTensor(list(map(lambda x: x[1], temp))) return xs, ys def __call__(self, batch): return self.pad_collate(batch) def get_gaussian_confidence(t, event_time, sigma): """Event can be either start or end of an action. Time is actually frame index for actual sequences.""" return torch.exp(-0.5 * torch.pow((t - event_time) / sigma, 2.)) def get_confidence_matrix(label_tensor: torch.tensor, num_classes: int, sigma: float): seq_len = len(label_tensor) confidence_mat = torch.zeros(seq_len, num_classes + 1, 2) last_label_idx = num_classes # denotes unknown action start_frames = [] end_frames = [] for frame_idx, label_idx in enumerate(label_tensor, 0): assert label_idx <= num_classes, 'Unexpected index of action class found.' if label_idx != last_label_idx and label_idx != num_classes: # transition of action class if last_label_idx == num_classes: # start of an action start_frames.append((label_idx, frame_idx)) elif frame_idx != seq_len - 1: # end of an action end_frames.append((label_idx, frame_idx)) last_label_idx = label_idx elif frame_idx == seq_len - 1 and label_idx != num_classes: # end of an action is the same as end of the sequence (trimmed action sequence) end_frames.append((label_idx, frame_idx)) for start_frame in start_frames: confidence_mat[:, start_frame[0], 0] += get_gaussian_confidence(torch.FloatTensor(range(0, seq_len)), start_frame[1], sigma) for end_frame in end_frames: confidence_mat[:, end_frame[0], 1] += get_gaussian_confidence(torch.FloatTensor(range(0, seq_len)), end_frame[1], sigma) confidence_mat = torch.clamp(confidence_mat, min=0, max=1) return confidence_mat @deprecated def get_confidence_matrix_old(seq_len: int, timeline: torch.tensor, label_idx: int, num_classes: int, sigma: float): # This version does not work with multi-class sequence timeline = timeline.squeeze() confidence_mat = torch.zeros(seq_len, num_classes + 1, 2) start = int(timeline[0].long().numpy()) end = int(timeline[-1].long().numpy()) confidence_mat[:, label_idx, :] = timeline.expand(2, seq_len).permute(1, 0) # TODO timeline == seq_len confidence_mat[:, label_idx, 0] = get_gaussian_confidence(confidence_mat[:, label_idx, 0], start, sigma) confidence_mat[:, label_idx, 1] = get_gaussian_confidence(confidence_mat[:, label_idx, 1], end, sigma) return confidence_mat def is_model_on_gpu(model: torch.nn.Module): return next(model.parameters()).is_cuda
[ "torch.zeros", "torch.LongTensor", "torch.clamp", "torch.pow" ]
1.1.0
howieraem/KinectActionDetection
ff64030e9fa2eb3d512b5cc1dae79e6a07ab8e5c
1.10
#################################################################################################################################################### #################################################################################################################################################### """ Dataloader definitions for all the datasets used in our paper. The datasets need to be downloaded manually and placed inside a same folder. Specify your folder location in the following line # directory containing all the datasets ROOT_DATA_DIR = Path("") """ #################################################################################################################################################### #################################################################################################################################################### import os import random import numpy as np from PIL import Image from pathlib import Path import torch from torch.utils.data import Dataset import torchvision.transforms.functional as TF from torchvision.datasets import FashionMNIST as TFashionMNIST from torchvision.datasets import CIFAR10 as TCIFAR10 from torchvision.datasets import SVHN as TSVHN from torchvision.datasets import Omniglot as TOmniglot from torchvision.datasets import Places365 as TPlaces365 from torchvision.datasets import LSUN as TLSUN from torchvision.datasets import MNIST as TMNIST import albumentations as album from collections import defaultdict #################################################################################################################################################### #################################################################################################################################################### # directory containing all the datasets ROOT_DATA_DIR = Path("") #################################################################################################################################################### class BaseDatasetCar(Dataset): """ Base class for all dataset classes for the vehicle interior. """ def __init__(self, root_dir, car, split, make_scene_impossible, make_instance_impossible, augment=False, nbr_of_samples_per_class=-1): # path to the main folder self.root_dir = Path(root_dir) # which car are we using? self.car = car # train or test split self.split = split # are we using training data self.is_train = True if "train" in self.split else False # normal or impossible reconstruction loss? self.make_scene_impossible = make_scene_impossible self.make_instance_impossible = make_instance_impossible # pre-process the data if necessary self._pre_process_dataset() # load the data into the memory self._get_data() # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.RandomBrightnessContrast(always_apply=False, p=0.4, brightness_limit=(0.0, 0.33), contrast_limit=(0.0, 0.33), brightness_by_max=False), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False # dict to match the concatenations of the three seat position classes into a single integer self.label_str_to_int = {'0_0_0': 0, '0_0_3': 1, '0_3_0': 2, '3_0_0': 3, '0_3_3': 4, '3_0_3': 5, '3_3_0': 6, '3_3_3': 7} # the revers of the above, to transform int labels back into strings self.int_to_label_str = {v:k for k,v in self.label_str_to_int.items()} def _get_subset_of_data(self): # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, label in enumerate(self.labels): # make sure its a string label = self._get_classif_str(label) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # only take the subset of indices based on how many samples per class to keep self.images = [x for idx, x in enumerate(self.images) if idx in keep_indices] self.labels = [x for idx, x in enumerate(self.labels) if idx in keep_indices] def __len__(self): """ Return the total number of samples in the dataset. """ # number of images to use return len(self.images) def _get_data(self): # get all folders with the sceneries if self.car.lower() == "all": self.folders = sorted(list(self.root_dir.glob(f"*/pp_{self.split}_64/*"))) else: self.folders = sorted(list(self.root_dir.glob(f"{self.car}/pp_{self.split}_64/*"))) # placeholder for all images and labels self.images = [] self.labels = [] # for each folder for idx, folder in enumerate(self.folders): # get classification labels for each seat from folder name classif_labels = self._get_classif_label(folder) # each scene will be an array of images self.images.append([]) # get all the images for this scene files = sorted(list(folder.glob("*.png"))) # for each file for file in files: # open the image specified by the path # make sure it is a grayscale image img = np.array(Image.open(file).convert("L")) # append the image to the placeholder self.images[idx].append(img) # append label to placeholder self.labels.append(classif_labels) def _get_classif_label(self, file_path): # get the filename only of the path name = file_path.stem # split at GT gts = name.split("GT")[-1] # split the elements at _ # first element is empty string, remove it clean_gts = gts.split("_")[1:] # convert the strings to ints clean_gts = [int(x) for x in clean_gts] # convert sviro labels to compare with other datasets for index, value in enumerate(clean_gts): # everyday objects and child seats to background if value in [1,2,4,5,6]: clean_gts[index] = 0 return clean_gts def _get_classif_str(self, label): return str(label[0]) + "_" + str(label[1]) + "_" + str(label[2]) def _pre_process_dataset(self): # get all the subfolders inside the dataset folder data_folder_variations = self.root_dir.glob("*") # for each variation for folder in data_folder_variations: # for each split for pre_processed_split in ["pp_train_64", "pp_test_64"]: # create the path path_to_preprocessed_split = folder / pre_processed_split path_to_vanilla_split = folder / pre_processed_split.split("_")[1] # if no pre-processing for these settings exists, then create them if not path_to_preprocessed_split.exists(): print("-" * 37) print(f"Pre-process and save data for folder: {folder} and split: {pre_processed_split} and downscale size: 64 ...") self.pre_process_and_save_data(path_to_preprocessed_split, path_to_vanilla_split) print("Pre-processing and saving finished.") print("-" * 37) def pre_process_and_save_data(self, path_to_preprocessed_split, path_to_vanilla_split): """ To speed up training, it is beneficial to do the rudementary pre-processing once and save the data. """ # create the folders to save the pre-processed data path_to_preprocessed_split.mkdir() # get all the files in all the subfolders files = list(path_to_vanilla_split.glob(f"**/*.png")) # for each image for curr_file in files: # open the image specified by the path img = Image.open(curr_file).convert("L") # center crop the image using the smaller size (i.e. width or height) # to define the new size of the image (basically we remove only either the width or height) img = TF.center_crop(img, np.min(img.size)) # then resize the image to the one we want to use for training img = TF.resize(img, 64) # create the folder for the experiment save_folder = path_to_preprocessed_split / curr_file.parent.stem save_folder.mkdir(exist_ok=True) # save the processed image img.save(save_folder / curr_file.name) def _get_positive(self, rand_indices, positive_label, positive_images): # get all the potential candidates which have the same label masked = [idx for idx, x in enumerate(self.labels) if x==positive_label] # if there is no other image with the same label if not masked: new_rand_indices = random.sample(range(0,len(positive_images)), 2) positive_input_image = positive_images[new_rand_indices[0]] positive_output_image = positive_images[new_rand_indices[1]] if self.make_scene_impossible else positive_images[new_rand_indices[0]] positive_input_image = TF.to_tensor(positive_input_image) positive_output_image = TF.to_tensor(positive_output_image) else: # choose one index randomly from the masked subset index = np.random.choice(masked) positive_input_image = self.images[index][rand_indices[0]] positive_output_image = self.images[index][rand_indices[1]] if self.make_scene_impossible else self.images[index][rand_indices[0]] positive_input_image = TF.to_tensor(positive_input_image) positive_output_image = TF.to_tensor(positive_output_image) return positive_input_image, positive_output_image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels images = self.images[index] label = self.labels[index] str_label = self._get_classif_str(label) # randomly selected # .) the input images # .) the output images rand_indices = random.sample(range(0,len(images)), 2) # get the image to be used as input input_image = images[rand_indices[0]] # get the image to be used for the reconstruction error output_image = images[rand_indices[1]] if self.make_scene_impossible else images[rand_indices[0]] # make sure its a tensor input_image = TF.to_tensor(input_image) output_image = TF.to_tensor(output_image) if self.make_instance_impossible: _, output_image = self._get_positive(rand_indices, label, images) # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: input_image = torch.from_numpy(self.augment(image=np.array(input_image)[0])["image"][None,:]) return {"image":input_image, "target":output_image, "gt": self.label_str_to_int[str_label]} #################################################################################################################################################### class SVIRO(BaseDatasetCar): """ https://sviro.kl.dfki.de You only need the grayscale images for the whole scene. Make sure to have a folder structure as follows: SVIRO ├── aclass │ ├── train │ │ └──── grayscale_wholeImage │ └── test │ └──── grayscale_wholeImage ⋮ ⋮ ⋮ └── zoe ├── train │ └──── grayscale_wholeImage └── test └──── grayscale_wholeImage """ def __init__(self, car, which_split, make_instance_impossible, augment): # path to the main folder root_dir = ROOT_DATA_DIR / "SVIRO" # call the init function of the parent class super().__init__(root_dir=root_dir, car=car, split=which_split, make_scene_impossible=False, make_instance_impossible=make_instance_impossible, augment=augment) def _get_data(self): # get all the png files, i.e. experiments if self.car.lower() == "all": self.files = sorted(list(self.root_dir.glob(f"*/{self.split}/grayscale_wholeImage_pp_640_64/*.png"))) else: self.files = sorted(list(self.root_dir.glob(f"{self.car}/{self.split}/grayscale_wholeImage_pp_640_64/*.png"))) # placeholder for all images and labels self.images = [] self.labels = [] # for each file for file in self.files: # get classification labels for each seat from folder name classif_labels = self._get_classif_label(file) # do not get child seats or everyday objects if 1 in classif_labels or 2 in classif_labels or 4 in classif_labels or 5 in classif_labels or 6 in classif_labels: continue # open the image specified by the path # make sure it is a grayscale image img = np.array(Image.open(file).convert("L")) # each scene will be an array of images # append the image to the placeholder self.images.append([img]) # append label to placeholder self.labels.append(classif_labels) def _get_classif_label(self, file_path): # get the filename only of the path name = file_path.stem # split at GT gts = name.split("GT")[-1] # split the elements at _ # first element is empty string, remove it clean_gts = gts.split("_")[1:] # convert the strings to ints clean_gts = [int(x) for x in clean_gts] return clean_gts def _pre_process_dataset(self): # get all the subfolders inside the dataset folder data_folder_variations = self.root_dir.glob("*/*") # for each variation for folder in data_folder_variations: # create the path path_to_preprocessed_split = folder / "grayscale_wholeImage_pp_640_64" path_to_vanilla_split = folder / "grayscale_wholeImage" # if no pre-processing for these settings exists, then create them if not path_to_preprocessed_split.exists(): print("-" * 37) print(f"Pre-process and save data for folder: {folder} and downscale size: 64 ...") self.pre_process_and_save_data(path_to_preprocessed_split, path_to_vanilla_split) print("Pre-processing and saving finished.") print("-" * 37) def pre_process_and_save_data(self, path_to_preprocessed_split, path_to_vanilla_split): """ To speed up training, it is beneficial to do the rudementary pre-processing once and save the data. """ # create the folders to save the pre-processed data path_to_preprocessed_split.mkdir() # get all the files in all the subfolders files = list(path_to_vanilla_split.glob("*.png")) # for each image for curr_file in files: # open the image specified by the path img = Image.open(curr_file).convert("L") # center crop the image using the smaller size (i.e. width or height) # to define the new size of the image (basically we remove only either the width or height) img = TF.center_crop(img, np.min(img.size)) # then resize the image to the one we want to use for training img = TF.resize(img, 64) # create the path to the file save_path = path_to_preprocessed_split / curr_file.name # save the processed image img.save(save_path) def _get_positive(self, positive_label): # get all the potential candidates from the real images which have the same label as the synthetic one masked = [idx for idx, x in enumerate(self.labels) if x==positive_label] # choose one index randomly from the masked subset index = np.random.choice(masked) input_image = self.images[index][0] input_image = TF.to_tensor(input_image) return input_image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index][0] label = self.labels[index] str_label = self._get_classif_str(label) # transform it for pytorch (normalized and transposed) image = TF.to_tensor(image) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt": self.label_str_to_int[str_label]} #################################################################################################################################################### class SVIROUncertainty(BaseDatasetCar): """ https://sviro.kl.dfki.de Make sure to have a folder structure as follows: SVIRO-Illumination └── sharan ├── train ├── test-adults ├── test-objects └── test-adults-and-objects """ def __init__(self, car, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = ROOT_DATA_DIR / "SVIRO-Uncertainty" # call the init function of the parent class super().__init__(root_dir=root_dir, car=car, split=which_split, make_scene_impossible=False, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) def _get_data(self): # get all the png files, i.e. experiments self.files = sorted(list(self.root_dir.glob(f"{self.car}/pp_{self.split}_64/*/ir.png"))) # placeholder for all images and labels self.images = [] self.labels = [] # for each file for file in self.files: # get classification labels for each seat from folder name classif_labels = self._get_classif_label(file.parent) # open the image specified by the path # make sure it is a grayscale image img = np.array(Image.open(file).convert("L")) # each scene will be an array of images # append the image to the placeholder self.images.append([img]) # append label to placeholder self.labels.append(classif_labels) def _pre_process_dataset(self): # get all the subfolders inside the dataset folder data_folder_variations = self.root_dir.glob("*") # for each variation for folder in data_folder_variations: # for each split for pre_processed_split in ["pp_train-adults_64", "pp_train-adults-and-seats_64", "pp_test-adults_64", "pp_test-objects_64", "pp_test-seats_64", "pp_test-adults-and-objects_64", "pp_test-adults-and-seats_64", "pp_test-adults-and-seats-and-objects_64"]: # create the path path_to_preprocessed_split = folder / pre_processed_split path_to_vanilla_split = folder / pre_processed_split.split("_")[1] # if no pre-processing for these settings exists, then create them if not path_to_preprocessed_split.exists(): print("-" * 37) print(f"Pre-process and save data for folder: {folder} and split: {pre_processed_split} and downscale size: 64 ...") self.pre_process_and_save_data(path_to_preprocessed_split, path_to_vanilla_split) print("Pre-processing and saving finished.") print("-" * 37) def pre_process_and_save_data(self, path_to_preprocessed_split, path_to_vanilla_split): """ To speed up training, it is beneficial to do the rudementary pre-processing once and save the data. """ # create the folders to save the pre-processed data path_to_preprocessed_split.mkdir() # get all the files in all the subfolders files = list(path_to_vanilla_split.glob(f"**/ir.png")) + list(path_to_vanilla_split.glob(f"**/rgb.png")) # for each image for curr_file in files: # open the image specified by the path img = Image.open(curr_file).convert("L") if "ir" in curr_file.name else Image.open(curr_file).convert("RGB") # center crop the image using the smaller size (i.e. width or height) # to define the new size of the image (basically we remove only either the width or height) img = TF.center_crop(img, np.min(img.size)) # then resize the image to the one we want to use for training img = TF.resize(img, 64) # create the folder for the experiment save_folder = path_to_preprocessed_split / curr_file.parent.stem save_folder.mkdir(exist_ok=True) # save the processed image img.save(save_folder / curr_file.name) def _get_positive(self, positive_label): # get all the potential candidates from the real images which have the same label as the synthetic one masked = [idx for idx, x in enumerate(self.labels) if x==positive_label] # choose one index randomly from the masked subset index = np.random.choice(masked) input_image = self.images[index][0] input_image = TF.to_tensor(input_image) return input_image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index][0] label = self.labels[index] str_label = self._get_classif_str(label) # transform it for pytorch (normalized and transposed) image = TF.to_tensor(image) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt": self.label_str_to_int[str_label]} #################################################################################################################################################### class Fashion(TFashionMNIST): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, train=self.is_train, download=False) # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def _get_subset_of_data(self): self.images = self.data self.labels = self.targets # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, label in enumerate(self.labels): # make sure its a string label = self._get_classif_str(label) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # only take the subset of indices based on how many samples per class to keep self.data = [x for idx, x in enumerate(self.images) if idx in keep_indices] self.targets = [x for idx, x in enumerate(self.labels) if idx in keep_indices] def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.targets)-1) if int(self.targets[index]) == positive_label: image = self.data[index] image = Image.fromarray(image.numpy(), mode='L') image = TF.resize(image, [64, 64]) image = TF.to_tensor(image) return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.data[index] label = int(self.targets[index]) # doing this so that it is consistent with all other datasets to return a PIL Image image = Image.fromarray(image.numpy(), mode='L') # transform it for pytorch (normalized and transposed) image = TF.resize(image, [64, 64]) image = TF.to_tensor(image) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class MNIST(TMNIST): def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/MNIST") # train or test split, digits or letters self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, train=self.is_train, download=False) # only get a subset of the data self._get_subset_of_data() # dict to transform integers to string labels self.int_to_label_str = {x:str(x) for x in range(10)} # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, label in enumerate(self.targets): # make sure its a string label = self._get_classif_str(label) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self.targets[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image current_image = Image.fromarray(self.data[idx].numpy(), mode="L") # transform it for pytorch (normalized and transposed) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # get label current_label = self.targets[idx] # keep it self.images.append(current_image) self.labels.append(current_label) del self.targets del self.data def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class GTSRB(Dataset): string_labels_to_integer_dict = dict() def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # train or test self.is_train = True if which_split.lower() == "train" else False if which_split.lower() == "train": self.folder = "train_png" elif which_split.lower() == "test": self.folder = "test_png" elif which_split.lower() == "ood": self.folder = "ood_png" else: raise ValueError # path to the main folder self.root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/GTSRB") / self.folder # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.RandomBrightnessContrast(always_apply=False, p=0.4, brightness_limit=(0.0, 0.33), contrast_limit=(0.0, 0.33), brightness_by_max=False), album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): """ Return the total number of samples in the dataset. """ # number of images to use return len(self.images) def _get_subset_of_data(self): self.all_images = list(self.root_dir.glob("*/*.png")) self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, img in enumerate(self.all_images): # get the label label = self._get_label_from_path(img) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self.all_images[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image current_image = Image.open(self.all_images[idx]).convert("L") # transform it for pytorch (normalized and transposed) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # get label current_label = self._get_label_from_path(self.all_images[idx]) # keep it self.images.append(current_image) self.labels.append(current_label) def _get_label_from_path(self, path): # get the name from the parent folder if self.folder == "ood": if int(path.parent.name) < 10: return int(path.parent.name) else: return int(path.parent.name)-10 else: return int(path.parent.name)-10 def _get_positive(self, positive_label): # get all the potential candidates from the real images which have the same label as the synthetic one masked = [idx for idx, x in enumerate(self.labels) if x==positive_label] # choose one index randomly from the masked subset index = np.random.choice(masked) input_image = self.images[index] return input_image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = self.labels[index] if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class CIFAR10(TCIFAR10): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/CIFAR10") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, train=self.is_train, download=False) # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.RandomBrightnessContrast(always_apply=False, p=0.4, brightness_limit=(0.0, 0.33), contrast_limit=(0.0, 0.33), brightness_by_max=False), album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, label in enumerate(self.targets): # make sure its a string label = self._get_classif_str(label) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self.data[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image current_image = Image.fromarray(self.data[idx]).convert("L") # transform it for pytorch (normalized and transposed) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # get label current_label = self.targets[idx] # keep it self.images.append(current_image) self.labels.append(current_label) del self.targets del self.data def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class SVHN(TSVHN): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/SVHN") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, split="train" if self.is_train else "test", download=False) # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.RandomBrightnessContrast(always_apply=False, p=0.4, brightness_limit=(0.0, 0.33), contrast_limit=(0.0, 0.33), brightness_by_max=False), album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.targets = self.labels self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, label in enumerate(self.targets): # make sure its a string label = self._get_classif_str(label) # increase the counter for this label counter[label] += 1 # if we are above the theshold for this label if counter[label] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self.data[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image current_image = Image.fromarray(np.transpose(self.data[idx], (1, 2, 0))).convert("L") # transform it for pytorch (normalized and transposed) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # get label current_label = self.targets[idx] # keep it self.images.append(current_image) self.labels.append(current_label) del self.targets del self.data def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class Omniglot(TOmniglot): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/Omniglot") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, background=self.is_train, download=False) # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, (_, character_class) in enumerate(self._flat_character_images): # increase the counter for this label counter[character_class] += 1 # if we are above the theshold for this label if counter[character_class] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self._flat_character_images[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image image_name, character_class = self._flat_character_images[idx] image_path = os.path.join(self.target_folder, self._characters[character_class], image_name) current_image = Image.open(image_path, mode='r').convert('L') # transform it for pytorch (normalized and transposed) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # keep it self.images.append(current_image) self.labels.append(character_class) def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class Places365(TPlaces365): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/Places365") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, split="train-standard" if self.is_train else "val", small=True, download=False) # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx, (_, target) in enumerate(self.imgs): # increase the counter for this label counter[target] += 1 # if we are above the theshold for this label if counter[target] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx, _ in enumerate(self.imgs[0:10_000])] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: # get the image file, target = self.imgs[idx] current_image = self.loader(file) # transform it for pytorch (normalized and transposed) current_image = TF.rgb_to_grayscale(current_image, num_output_channels=1) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # keep it self.images.append(current_image) self.labels.append(target) def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### class LSUN(TLSUN): # dict to transform integers to string labels int_to_label_str = {x:str(x) for x in range(10)} def __init__(self, which_split, make_instance_impossible, nbr_of_samples_per_class, augment): # path to the main folder root_dir = Path(f"/data/local_data/workingdir_g02/sds/data/LSUN") # train or test split self.split = which_split self.is_train = True if self.split.lower() == "train" else False # normal or impossible reconstruction loss? self.make_instance_impossible = make_instance_impossible # number of samples to keep for each class self.nbr_of_samples_per_class = nbr_of_samples_per_class # call the init function of the parent class super().__init__(root=root_dir, classes="train" if self.is_train else "test") # only get a subset of the data self._get_subset_of_data() # augmentations if needed if augment: self.augment = album.Compose( [ album.Blur(always_apply=False, p=0.4, blur_limit=7), album.MultiplicativeNoise(always_apply=False, p=0.4, elementwise=True, multiplier=(0.75, 1.25)), ] ) else: self.augment = False def _get_classif_str(self, label): return int(label) def __len__(self): return len(self.images) def _get_subset_of_data(self): self.images = [] self.labels = [] # if we are training if self.nbr_of_samples_per_class > 0: # keep track of samples per class counter = defaultdict(int) # and the corresponding indices keep_indices = [] # for each label for idx in range(self.length): target = 0 for ind in self.indices: if idx < ind: break target += 1 # increase the counter for this label counter[target] += 1 # if we are above the theshold for this label if counter[target] >= (self.nbr_of_samples_per_class+1): # then skip it continue else: # otherwise keep track of the label keep_indices.append(idx) # testing else: keep_indices = [idx for idx in range(10_000)] # only take the subset of indices based on how many samples per class to keep for idx in keep_indices: target = 0 sub = 0 for ind in self.indices: if idx < ind: break target += 1 sub = ind db = self.dbs[target] idx = idx - sub current_image, _ = db[idx] # transform it for pytorch (normalized and transposed) current_image = TF.rgb_to_grayscale(current_image, num_output_channels=1) current_image = TF.resize(current_image, [64, 64]) current_image = TF.to_tensor(current_image) # keep it self.images.append(current_image) self.labels.append(target) def _get_positive(self, positive_label): while True: index = random.randint(0, len(self.labels)-1) if int(self.labels[index]) == positive_label: image = self.images[index] return image def __getitem__(self, index): """ Return an element from the dataset based on the index. Parameters: index -- an integer for data indexing """ # get the image and labels image = self.images[index] label = int(self.labels[index]) if self.make_instance_impossible: output_image = self._get_positive(label) else: output_image = image.clone() # augment image if necessary (we need 0-channel input, not 1-channel input) if self.augment: image = torch.from_numpy(self.augment(image=np.array(image)[0])["image"][None,:]) return {"image":image, "target":output_image, "gt":label} #################################################################################################################################################### def print_dataset_statistics(dataset, which_dataset, which_split): # if a vehicle dataset if which_dataset.lower() in ["sviro", "sviro_uncertainty"]: # get the int label for all labels labels = np.array([dataset.label_str_to_int["_".join([str(y) for y in x])] for x in dataset.labels]) int_to_label_str = dataset.int_to_label_str elif hasattr(dataset, "labels"): labels = np.array(dataset.labels) int_to_label_str = None elif hasattr(dataset, "targets"): labels = np.array(dataset.targets) int_to_label_str = None else: print("No targets or labels attribute.") return unique_labels, labels_counts = np.unique(labels, return_counts=True) if int_to_label_str is None: int_to_label_str = {x:str(x) for x in unique_labels} print("=" * 37) print("Dataset used: \t", dataset) print("Split: \t\t", which_split) print("Samples: \t", len(dataset)) print("-" * 37) # print the label and its number of occurences for label, count in zip(unique_labels, labels_counts): print(f"Label {int_to_label_str[label]}: {count}") print("=" * 37) #################################################################################################################################################### def create_dataset(which_dataset, which_factor, which_split, make_scene_impossible=False, make_instance_impossible=False, augment=False, batch_size=64, shuffle=True, nbr_of_samples_per_class=-1, print_dataset=True): # create the dataset if which_dataset.lower() == "sviro": dataset = SVIRO(car=which_factor, which_split=which_split, make_instance_impossible=make_instance_impossible, augment=augment) elif which_dataset.lower() == "sviro_uncertainty": dataset = SVIROUncertainty(car=which_factor, which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "fashion": dataset = Fashion(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "mnist": dataset = MNIST(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "gtsrb": dataset = GTSRB(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "cifar10": dataset = CIFAR10(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "svhn": dataset = SVHN(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "omniglot": dataset = Omniglot(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "places365": dataset = Places365(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) elif which_dataset.lower() == "lsun": dataset = LSUN(which_split=which_split, make_instance_impossible=make_instance_impossible, nbr_of_samples_per_class=nbr_of_samples_per_class, augment=augment) else: raise ValueError if len(dataset) == 0: raise ValueError("The length of the dataset is zero. There is probably a problem with the folder structure for the dataset you want to consider. Have you downloaded the dataset and used the correct folder name and folder tree structure?") # for reproducibility # https://pytorch.org/docs/1.9.0/notes/randomness.html?highlight=reproducibility g = torch.Generator() g.manual_seed(0) def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) # create loader for the defined dataset train_loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=4, pin_memory=True, worker_init_fn=seed_worker, generator=g, ) if print_dataset: print_dataset_statistics(dataset, which_dataset, which_split) return train_loader ####################################################################################################################################################
[ "torch.initial_seed", "torch.Generator", "torch.utils.data.DataLoader" ]
1.10
SteveCruz/icpr2022-autoencoder-attractors
0935179b514fd49e1d2410005d91ff49db9978ac
1.0
import os import sys import torch import mydatasets import torch.autograd as autograd import argparse import torchtext.data as data torch.manual_seed(3) parser = argparse.ArgumentParser(description='Predictor api') parser.add_argument('--snapshot', type=str, default='saved-models/best-cnn.pt', help='filename of model snapshot [default: None]') requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument('--input', help='Input file name', required=True) parser.add_argument('--output', type=str, default = 'output.txt', help='File path of the predictions') # Path to training data for vocab parser.add_argument('--dataset-dir', default='data', help = 'dataset directory path which contains negetive/positive/neutral files') parser.add_argument('--rnn', action = 'store_true', default = False, help = 'activate char rnn') parser.add_argument('--max-length', type=int, default=600, help='The maximum number of characters in sequence.') parser.add_argument('--min-freq', type=int, default=20, help='The minimum frequency of a character to be a vocab member') parser.add_argument('-batch-size', type=int, default=64, help='batch size for training [default: 64]') args = parser.parse_args() tokenizer = lambda sent: list(sent[::-1]) #For building the same vocab an easier alternative would be to save vocab but the dataset size is not large. # Umm I couldn't find a fix for it. print("\nLoading data...") text_field = data.Field(lower=True, tokenize = tokenizer, fix_length = args.max_length) label_field = data.Field(sequential=False) train_iter, dev_iter = mydatasets.load_twitter_dataset_vocab(text_field, label_field, args.dataset_dir, args.min_freq, args.batch_size, args.rnn) # Optimal for inferencing one instance at a time. def predict(text, model, text_field, label_feild, cuda_flag): assert isinstance(text, str) model.eval() text = text_field.tokenize(text) text = [[text_field.vocab.stoi[x] for x in text]] x = torch.tensor(text) x = autograd.Variable(x) if args.rnn: output = model(x, torch.Tensor([len(text)])) else: output = model(x) _, predicted = torch.max(output, 1) return label_feild.vocab.itos[predicted.data[0]+1] if __name__ == '__main__': model = torch.load(args.snapshot, map_location=lambda storage, loc: storage) model.cpu() model.eval() output_file = open(args.output, 'w') input_file = open(args.input) for line in input_file: line = line.strip() prediction = predict(line, model, text_field, label_field, True) output_file.write(prediction + "\n") output_file.close() input_file.close()
[ "torch.max", "torch.autograd.Variable", "torch.manual_seed", "torch.tensor", "torch.load" ]
1.0.0
rangwani-harsh/char-cnn-char-rnn-sentiment-analysis
48238232ba053f8c12e66383fd65fc075c532dad
1.7
import argparse import torch import torch.nn as nn import torch.utils.data as data import torchvision from tqdm import tqdm import utils from model import DummyModel def main(): parser = argparse.ArgumentParser(fromfile_prefix_chars='@') # Type of experiment parser.add_argument('--test_type', type=str, default='accuracy', help="Experiment type") # Training environment configuration parser.add_argument('--num_gpus', type=int, default=2, help="Number of GPUs to use") parser.add_argument('--deterministic', action='store_true', default=False, help="Deterministic mode for reproducibility") parser.add_argument('--random_seed', type=int, default=7343, help="Random seed (optional)") # Dataset and trained model (for resume training) parser.add_argument('--dataset', type=str, help="Name of the dataset to use") parser.add_argument('--model_checkpoint', type=str, help="Path to the model checkpoints") args = parser.parse_args() if args.deterministic: utils.set_deterministic(args.random_seed) run(args) def run(args): model = DummyModel() rgb_mean = (0.4914, 0.4822, 0.4465) rgb_std = (0.2023, 0.1994, 0.2010) dataset_test = torchvision.datasets.CIFAR10('./data/datasets', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(rgb_mean, rgb_std), ])) evaluator = Evaluator(args, model) evaluator.load_checkpoint(args.model_checkpoint) evaluator.eval(dataset_test) class Evaluator: def __init__(self, args, model): self.args = args self.model = nn.DataParallel(model, device_ids=[i for i in range(self.args.num_gpus)]).cuda(0) def eval(self, dataset): test_type = self.args.test_type.lower() if test_type == 'accuracy': self.test_accuracy(dataset) else: print('Unknown test type') def test_accuracy(self, dataset): print('Accuracy test started.') self.model.eval() criterion = nn.CrossEntropyLoss() loader = data.DataLoader(dataset, 256) total_loss = 0 total_correct_samples = 0 total_samples = 0 total_steps = 0 for i, batch in enumerate(tqdm(loader)): images, labels = batch images = images.cuda(0) labels = labels.cuda(0) batch_size = labels.size(0) logits = self.model(images) loss = criterion(logits, labels) correct_samples = self.count_correct(logits, labels.data) total_loss += loss.item() total_correct_samples += correct_samples total_samples += batch_size total_steps += 1 total_loss = total_loss / total_steps total_acc = total_correct_samples / total_samples print('Accuracy test completed.') print(f' Test loss: {total_loss}') print(f' Test accuracy: {total_acc}') def count_correct(self, logits, labels): _, preds = torch.max(logits, 1) num_correct = preds.eq(labels).sum().item() return num_correct def load_checkpoint(self, checkpoint_name): path = utils.get_data_path('model_checkpoints', checkpoint_name) map_location = {'cuda:%d' % 0: 'cuda:%d' % 0} self.model.load_state_dict(torch.load(path, map_location)) if __name__ == '__main__': main()
[ "torch.max", "torch.nn.CrossEntropyLoss", "torch.load", "torch.utils.data.DataLoader" ]
1.7.0
agemor/pytorch-project-template
9b43db0578d6ea0aa40d2fec577cb50e86e57c7d
1.7
from pathlib import Path from copy import deepcopy from argparse import ArgumentParser import torch from torch.nn import BCEWithLogitsLoss from torchvision.models import resnet import pytorch_lightning as pl from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.metrics.classification import Precision, Recall, F1 from datasets.oscd_datamodule import ChangeDetectionDataModule from models.segmentation import get_segmentation_model from models.moco2_module import MocoV2 class SiamSegment(LightningModule): def __init__(self, backbone, feature_indices, feature_channels): super().__init__() self.model = get_segmentation_model(backbone, feature_indices, feature_channels) self.criterion = BCEWithLogitsLoss() self.prec = Precision(num_classes=1, threshold=0.5) self.rec = Recall(num_classes=1, threshold=0.5) self.f1 = F1(num_classes=1, threshold=0.5) def forward(self, x1, x2): return self.model(x1, x2) def training_step(self, batch, batch_idx): img_1, img_2, mask, pred, loss, prec, rec, f1 = self.shared_step(batch) self.log('train/loss', loss, prog_bar=True) self.log('train/precision', prec, on_step=False, on_epoch=True, prog_bar=True) self.log('train/recall', rec, on_step=False, on_epoch=True, prog_bar=True) self.log('train/f1', f1, on_step=False, on_epoch=True, prog_bar=True) tensorboard = self.logger.experiment global_step = self.trainer.global_step tensorboard.add_image('train/img_1', img_1[0], global_step) tensorboard.add_image('train/img_2', img_2[0], global_step) tensorboard.add_image('train/mask', mask[0], global_step) tensorboard.add_image('train/out', pred[0], global_step) return loss def validation_step(self, batch, batch_idx): img_1, img_2, mask, pred, loss, prec, rec, f1 = self.shared_step(batch) self.log('val/loss', loss, prog_bar=True) self.log('val/precision', prec, on_step=False, on_epoch=True, prog_bar=True) self.log('val/recall', rec, on_step=False, on_epoch=True, prog_bar=True) self.log('val/f1', f1, on_step=False, on_epoch=True, prog_bar=True) tensorboard = self.logger.experiment global_step = self.trainer.global_step tensorboard.add_image('val/img_1', img_1[0], global_step) tensorboard.add_image('val/img_2', img_2[0], global_step) tensorboard.add_image('val/mask', mask[0], global_step) tensorboard.add_image('val/out', pred[0], global_step) return loss def shared_step(self, batch): img_1, img_2, mask = batch out = self(img_1, img_2) pred = torch.sigmoid(out) loss = self.criterion(out, mask) prec = self.prec(pred, mask.long()) rec = self.rec(pred, mask.long()) f1 = self.f1(pred, mask.long()) return img_1, img_2, mask, pred, loss, prec, rec, f1 def configure_optimizers(self): # params = self.model.parameters() params = set(self.model.parameters()).difference(self.model.encoder.parameters()) optimizer = torch.optim.Adam(params, lr=1e-3, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.95) return [optimizer], [scheduler] if __name__ == '__main__': pl.seed_everything(42) parser = ArgumentParser() parser.add_argument('--gpus', type=int, default=1) parser.add_argument('--data_dir', type=str) parser.add_argument('--patch_size', type=int, default=96) parser.add_argument('--backbone_type', type=str, default='imagenet') parser.add_argument('--ckpt_path', type=str, default=None) args = parser.parse_args() datamodule = ChangeDetectionDataModule(args.data_dir) if args.backbone_type == 'random': backbone = resnet.resnet18(pretrained=False) elif args.backbone_type == 'imagenet': backbone = resnet.resnet18(pretrained=True) elif args.backbone_type == 'pretrain': model = MocoV2.load_from_checkpoint(args.ckpt_path) backbone = deepcopy(model.encoder_q) else: raise ValueError() model = SiamSegment(backbone, feature_indices=(0, 4, 5, 6, 7), feature_channels=(64, 64, 128, 256, 512)) model.example_input_array = (torch.zeros((1, 3, 96, 96)), torch.zeros((1, 3, 96, 96))) experiment_name = args.backbone_type logger = TensorBoardLogger(save_dir=str(Path.cwd() / 'logs' / 'oscd'), name=experiment_name) checkpoint_callback = ModelCheckpoint(filename='{epoch}', save_weights_only=True) trainer = Trainer(gpus=args.gpus, logger=logger, callbacks=[checkpoint_callback], max_epochs=100, weights_summary='full') trainer.fit(model, datamodule=datamodule)
[ "torch.zeros", "torch.sigmoid", "torch.optim.Adam", "torch.optim.lr_scheduler.ExponentialLR", "torch.nn.BCEWithLogitsLoss" ]
1.7.1
SaeidAbdolian/seasonal-contrast
5395c027922569f5c5b1785ad1ccddd839749c36
0.27
# Copyright 2021 MosaicML. All Rights Reserved. import functools import numpy as np import pytest import torch from PIL import Image from torch.utils.data import DataLoader from composer.algorithms import ColOut, ColOutHparams from composer.algorithms.colout.colout import ColOutTransform, colout_batch from composer.core import Event, State from composer.loggers import Logger from tests.common import RandomImageDataset def verify_shape_image(orig: Image.Image, new: Image.Image, p_row: float, p_col: float) -> None: """Verify the shape of a transformed PIL Image.""" H_o, W_o = orig.height, orig.width H_n, W_n = new.height, new.width H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert (H_n, W_n) == (H_t, W_t), f"Image shape mismatch: {(H_n, W_n)} != {(H_t, W_t)}" def verify_shape_tensor(orig: torch.Tensor, new: torch.Tensor, p_row: float, p_col: float) -> None: """Verify the shape of a transformed image tensor.""" C, H_o, W_o = orig.shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new.shape == (C, H_t, W_t), f"Image tensor shape mismatch: {new.shape} != {(C, H_t, W_t)}" def verify_shape_batch(orig: torch.Tensor, new: torch.Tensor, p_row: float, p_col: float) -> None: """Verify the shape of a transformed batch of images.""" N, C, H_o, W_o = orig.shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new.shape == (N, C, H_t, W_t), f"Image batch shape mismatch: {new.shape} != {(N, C, H_t, W_t)}" @pytest.fixture(params=[False, True]) def batch(request) -> bool: """Algorithm batch parameter.""" return request.param @pytest.fixture(params=[0, 0.15]) def p_row(request) -> float: """Algorithm p_row parameter.""" return request.param @pytest.fixture def p_col(p_row) -> float: """Algorithm p_col parameter.""" return p_row @pytest.fixture(params=[1, 3]) def C(request) -> int: """Number of image channels. Testing BW and RGB. """ return request.param @pytest.fixture def H(request) -> int: """Default image height.""" return 32 @pytest.fixture def W(H) -> int: """Default image width (equal to height)""" return H @pytest.fixture def fake_image(H: int, W: int, C: int) -> Image.Image: """Fake PIL Image.""" rng = np.random.RandomState(0) return Image.fromarray((255 * rng.uniform(size=(H, W, C)).squeeze()).astype(np.uint8)) @pytest.fixture def fake_image_tensor(H: int, W: int, C: int) -> torch.Tensor: """Fake image tensor.""" torch.manual_seed(0) return torch.rand(C, H, W) @pytest.fixture def fake_image_batch(H: int, W: int, C: int) -> torch.Tensor: """Fake batch of images.""" torch.manual_seed(0) return torch.rand(16, C, H, W) @pytest.fixture def colout_algorithm(p_row: float, p_col: float, batch: bool) -> ColOut: """Reusable algorithm instance.""" return ColOut(p_row, p_col, batch) class TestColOutTransform: def test_single_image_drop_size(self, fake_image: Image.Image, p_row: float, p_col: float): """Test application to single PIL image.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image) verify_shape_image(fake_image, new_image, p_row, p_col) @pytest.mark.parametrize("W", [48]) def test_rectangular_image(self, fake_image: Image.Image, p_row: float, p_col: float): """Test application to a rectangular PIL image.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image) verify_shape_image(fake_image, new_image, p_row, p_col) # type: ignore def test_single_image_tensor_drop_size(self, fake_image_tensor: torch.Tensor, p_row: float, p_col: float): """Test application to a single torch image tensor.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image_tensor) verify_shape_tensor(fake_image_tensor, new_image, p_row, p_col) # type: ignore def test_reproducibility_image(self, fake_image_tensor: torch.Tensor, p_row: float, p_col: float): """Test that transform is reproducible given the same seed.""" transform_1 = ColOutTransform(p_row, p_col) transform_2 = ColOutTransform(p_row, p_col) torch.manual_seed(42) new_image_1 = transform_1(fake_image_tensor) torch.manual_seed(42) new_image_2 = transform_2(fake_image_tensor) assert torch.allclose(new_image_1, new_image_2) class TestColOutFunctional: def test_reproducibility_batch(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test that batch augmentation is reproducible given the same seed.""" transform_1 = functools.partial(colout_batch, p_row=p_row, p_col=p_col) transform_2 = functools.partial(colout_batch, p_row=p_row, p_col=p_col) torch.manual_seed(42) new_batch_1 = transform_1(fake_image_batch) torch.manual_seed(42) new_batch_2 = transform_2(fake_image_batch) assert isinstance(new_batch_1, torch.Tensor) assert isinstance(new_batch_2, torch.Tensor) assert torch.allclose(new_batch_1, new_batch_2) def test_batch_drop_size(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test application to a batch of images.""" colout = functools.partial(colout_batch, p_row=p_row, p_col=p_col) new_batch = colout(fake_image_batch) assert isinstance(new_batch, torch.Tensor) verify_shape_batch(fake_image_batch, new_batch, p_row, p_col) @pytest.mark.parametrize("p_col", [0.05, 0.25]) def test_rectangle_batch_drop_size(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test that unequal values of p_row and p_col work properly.""" colout = functools.partial(colout_batch, p_row=p_row, p_col=p_col) new_batch = colout(fake_image_batch) assert isinstance(new_batch, torch.Tensor) verify_shape_batch(fake_image_batch, new_batch, p_row, p_col) class TestColOutAlgorithm: @pytest.mark.parametrize("event,batch", [(Event.AFTER_DATALOADER, True), (Event.FIT_START, False)]) def test_match_correct(self, event: Event, colout_algorithm: ColOut, minimal_state: State): """Algo should match AFTER_DATALOADER if batch else FIT_START.""" assert colout_algorithm.match(event, minimal_state) @pytest.mark.parametrize("event,batch", [(Event.FIT_START, True), (Event.AFTER_DATALOADER, False), (Event.EPOCH_END, True)]) def test_match_incorrect(self, event: Event, colout_algorithm: ColOut, minimal_state: State): """Algo should NOT match FIT_START if batch else AFTER_DATALOADER.""" assert not colout_algorithm.match(event, minimal_state) @pytest.mark.parametrize("batch", [True]) def test_apply_batch(self, fake_image_batch: torch.Tensor, colout_algorithm: ColOut, minimal_state: State, empty_logger: Logger): """Apply the algorithm to a fake batch.""" p_row = colout_algorithm.p_row p_col = colout_algorithm.p_col minimal_state.batch = (fake_image_batch, torch.Tensor()) colout_algorithm.apply(Event.AFTER_DATALOADER, minimal_state, empty_logger) last_input, _ = minimal_state.batch verify_shape_batch(fake_image_batch, last_input, p_row, p_col) @pytest.mark.parametrize("batch", [False]) def test_apply_sample(self, colout_algorithm: ColOut, minimal_state: State, empty_logger: Logger): """Test that augmentation is added to dataset and functioning properly.""" p_row = colout_algorithm.p_row p_col = colout_algorithm.p_col dataset = RandomImageDataset(is_PIL=True) dataloader = DataLoader(dataset) original_image, _ = dataset[0] assert isinstance(original_image, Image.Image) minimal_state.train_dataloader = dataloader colout_algorithm.apply(Event.INIT, minimal_state, empty_logger) new_image, _ = dataset[0] assert isinstance(new_image, Image.Image) verify_shape_image(original_image, new_image, p_row, p_col) def test_colout_hparams(): hparams = ColOutHparams() algorithm = hparams.initialize_object() assert isinstance(algorithm, ColOut) @pytest.mark.parametrize("p_row,p_col", [(1.5, 0.15), (0.15, 1.5)]) def test_invalid_hparams(p_row: float, p_col: float): """Test that invalid hyperparameters error. Ideally this could be caught by the Hparams, but that's not yet supported in yahp. """ with pytest.raises(ValueError): ColOut(p_row, p_col, False)
[ "torch.rand", "torch.manual_seed", "torch.utils.data.DataLoader", "torch.allclose", "torch.Tensor" ]
0.27
vahidfazelrezai/composer
a18a1bc3d965b0877f782e1d43a39a4ce6721c24
0.4
import torch import torch.nn as nn import torch.nn.functional as F from src.base.base_net import BaseNet class CIFAR10_LeNet(BaseNet): def __init__(self): super().__init__() # 这里的这个fc的输出维度和mnist的不同 self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 4 * 4, self.rep_dim, bias=False) def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.fc1(x) return x class CIFAR10_LeNet_Autoencoder(BaseNet): def __init__(self): super().__init__() self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) # Encoder (must match the Deep SVDD network above) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 4 * 4, self.rep_dim, bias=False) self.bn1d = nn.BatchNorm1d(self.rep_dim, eps=1e-04, affine=False) # Decoder self.deconv1 = nn.ConvTranspose2d(int(self.rep_dim / (4 * 4)), 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d4 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d5 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.deconv3 = nn.ConvTranspose2d(64, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d6 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.deconv4 = nn.ConvTranspose2d(32, 3, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv4.weight, gain=nn.init.calculate_gain('leaky_relu')) def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.bn1d(self.fc1(x)) x = x.view(x.size(0), int(self.rep_dim / (4 * 4)), 4, 4) x = F.leaky_relu(x) x = self.deconv1(x) x = F.interpolate(F.leaky_relu(self.bn2d4(x)), scale_factor=2) x = self.deconv2(x) x = F.interpolate(F.leaky_relu(self.bn2d5(x)), scale_factor=2) x = self.deconv3(x) x = F.interpolate(F.leaky_relu(self.bn2d6(x)), scale_factor=2) x = self.deconv4(x) x = torch.sigmoid(x) return x
[ "torch.nn.Linear", "torch.sigmoid", "torch.nn.MaxPool2d", "torch.nn.BatchNorm2d", "torch.nn.ConvTranspose2d", "torch.nn.Conv2d", "torch.nn.BatchNorm1d", "torch.nn.init.calculate_gain", "torch.nn.functional.leaky_relu" ]
0.4.1
Flsahkong/Deep-SVDD-PyTorch
c20442fb394f679222ae49d299bcb3c95e2d67c8
1.4
import os, sys os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"]="0" from opt import get_opts import torch import torchvision.transforms as transforms from collections import defaultdict from torch.utils.data import DataLoader from datasets import dataset_dict # models from models.nerf import Embedding, NeRF from models.rendering import render_rays # optimizer, scheduler, visualization from utils import * # losses from losses import loss_dict, FeatureLoss # metrics from metrics import * # pytorch-lightning from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.loggers.test_tube import TestTubeLogger def image_loader(image_name, imsize): image = Image.open(image_name) loader = transforms.Compose([ transforms.Resize(imsize), # scale imported image transforms.ToTensor()] # transform it into a torch tensor ) # fake batch dimension required to fit network's input dimensions image = loader(image).unsqueeze(0) return image.to(torch.float) class NeRFSystem(LightningModule): def __init__(self, hparams): super(NeRFSystem, self).__init__() self.hparams = hparams self.stage = hparams.stage if self.stage == 'style': style_img_path = self.hparams.style_img print(style_img_path) self.style_img = image_loader( image_name=style_img_path, imsize=self.hparams.img_wh[0] ) self.loss = FeatureLoss( style_img=self.style_img, style_weight=1000000, content_weight=1 ) else: self.loss = loss_dict[hparams.loss_type]() self.embedding_xyz = Embedding(3, 10) # 10 is the default number self.embedding_dir = Embedding(3, 4) # 4 is the default number self.embeddings = [self.embedding_xyz, self.embedding_dir] self.nerf_coarse = NeRF(stage=self.stage) if self.stage == 'style': load_ckpt(self.nerf_coarse, hparams.ckpt_path, model_name='nerf_coarse') self.models = [self.nerf_coarse] if hparams.N_importance > 0: self.nerf_fine = NeRF(stage=self.stage) if self.stage == 'style': load_ckpt(self.nerf_fine, hparams.ckpt_path, model_name='nerf_fine') self.models += [self.nerf_fine] def decode_batch(self, batch): rays = batch['rays'] # (B, 8) rgbs = batch['rgbs'] # (B, 3) # TODO you can also collect the valid mask here during val/style # validation step (stage = style): # - rays.shape = [1, w*h, 8] # - rgbs.shape =[1, w*h, 3] # train step (stage = style): # - rays.shape = [1, w*h, 8] # - rgbs.shape =[1, w*h, 3] return rays, rgbs def forward(self, rays): """Do batched inference on rays using chunk.""" B = rays.shape[0] results = defaultdict(list) for i in range(0, B, self.hparams.chunk): rendered_ray_chunks = \ render_rays(self.models, self.embeddings, rays[i:i+self.hparams.chunk], self.hparams.N_samples, self.hparams.use_disp, self.hparams.perturb, self.hparams.noise_std, self.hparams.N_importance, self.hparams.chunk, # chunk size is effective in val mode self.train_dataset.white_back) for k, v in rendered_ray_chunks.items(): results[k] += [v] for k, v in results.items(): results[k] = torch.cat(v, 0) return results def prepare_data(self): dataset = dataset_dict[self.hparams.dataset_name] kwargs = {'root_dir': self.hparams.root_dir, 'img_wh': tuple(self.hparams.img_wh)} if self.hparams.dataset_name == 'llff': kwargs['spheric_poses'] = self.hparams.spheric_poses kwargs['val_num'] = self.hparams.num_gpus self.train_dataset = dataset( split='train', stage=self.stage, **kwargs ) self.val_dataset = dataset( split='val', stage=self.stage, **kwargs ) def configure_optimizers(self): self.optimizer = get_optimizer(self.hparams, self.models) scheduler = get_scheduler(self.hparams, self.optimizer) return [self.optimizer], [scheduler] def train_dataloader(self): if self.stage == 'density': return DataLoader( self.train_dataset, shuffle=True, num_workers=4, batch_size=self.hparams.batch_size, pin_memory=True ) elif self.stage == 'style': return DataLoader( self.train_dataset, shuffle=True, num_workers=4, batch_size=1, # style one image at a time pin_memory=True ) def val_dataloader(self): return DataLoader(self.val_dataset, shuffle=False, num_workers=4, # set back to 4 after debug batch_size=1, # validate one image (H*W rays) at a time pin_memory=True) def training_step(self, batch, batch_nb): log = {'lr': get_learning_rate(self.optimizer)} if self.stage == 'density': rays, rgbs = self.decode_batch(batch) results = self(rays) log['train/loss'] = loss = self.loss(results, rgbs) elif self.stage == 'style': rays, rgbs = self.decode_batch(batch) rays = rays.squeeze() # (H*W, 8) rgbs = rgbs.squeeze() # (H*W, 3) results = self(rays) target = self._prepare_for_feature_loss(rgbs) #(1,3,W,H) course_result = self._prepare_for_feature_loss(results['rgb_coarse']) #(1,3,W,H) course_loss, _, _ = self.loss(course_result, target) if 'rgb_fine' in results: fine_result = self._prepare_for_feature_loss(results['rgb_fine']) #(1,3,W,H) fine_loss, _, _ = self.loss(fine_result, target) loss = fine_loss + course_loss else: loss = course_loss log['train/loss'] = loss typ = 'fine' if 'rgb_fine' in results else 'coarse' with torch.no_grad(): psnr_ = psnr(results[f'rgb_{typ}'], rgbs) log['train/psnr'] = psnr_ self.log('train/loss', loss, prog_bar=True) self.log('train/psnr', psnr_, prog_bar=True) return loss def _prepare_for_feature_loss(self, img:torch.tensor): '''img of shape (H*W, 3) -> (1, 3, w, h)''' img = img.permute(1,0) #(3, H*W) img = img.view(3, self.hparams.img_wh[0], self.hparams.img_wh[1]) #(3,W,H) img = img.unsqueeze(0) # (1,3,W,H) return img def validation_step(self, batch, batch_nb): rays, rgbs = self.decode_batch(batch) rays = rays.squeeze() # (H*W, 8) rgbs = rgbs.squeeze() # (H*W, 3) results = self(rays) if self.stage == 'density': log = {'val_loss': self.loss(results, rgbs)} elif self.stage == 'style': target = self._prepare_for_feature_loss(rgbs) #(1,3,W,H) course_result = self._prepare_for_feature_loss(results['rgb_coarse']) #(1,3,W,H) course_loss, _, _ = self.loss(course_result, target) if 'rgb_fine' in results: fine_result = self._prepare_for_feature_loss(results['rgb_fine']) #(1,3,W,H) fine_loss, _, _ = self.loss(fine_result, target) loss = fine_loss + course_loss else: loss = course_loss log = {'val_loss': loss} typ = 'fine' if 'rgb_fine' in results else 'coarse' if batch_nb == 0: W, H = self.hparams.img_wh img = results[f'rgb_{typ}'].view(H, W, 3).cpu() img = img.permute(2, 0, 1) # (3, H, W) img_gt = rgbs.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W) depth = visualize_depth(results[f'depth_{typ}'].view(H, W)) # (3, H, W) stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W) self.logger.experiment.add_images('val/GT_pred_depth', stack, self.global_step) log['val_psnr'] = psnr(results[f'rgb_{typ}'], rgbs) return log def validation_epoch_end(self, outputs): mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean() mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean() self.log('val/loss', mean_loss, prog_bar=True) self.log('val/psnr', mean_psnr, prog_bar=True) # return {'progress_bar': {'val_loss': mean_loss, # 'val_psnr': mean_psnr}, # 'log': {'val/loss': mean_loss, # 'val/psnr': mean_psnr} # } if __name__ == '__main__': hparams = get_opts() system = NeRFSystem(hparams) checkpoint_callback = ModelCheckpoint( dirpath=os.path.join(f'ckpts/{hparams.exp_name}','{epoch:d}'), monitor='val/loss', mode='min', save_top_k=5,) logger = TestTubeLogger( save_dir="logs", name=hparams.exp_name, debug=False, create_git_tag=False ) trainer = Trainer( max_epochs=hparams.num_epochs, checkpoint_callback=checkpoint_callback, # resume_from_checkpoint=hparams.ckpt_path, # causes problems with 2 stage training logger=logger, weights_summary=None, progress_bar_refresh_rate=1, gpus=hparams.num_gpus, distributed_backend= None, num_sanity_val_steps=1, benchmark=True, profiler=hparams.num_gpus==1 ) trainer.fit(system)
[ "torch.cat", "torch.stack", "torch.utils.data.DataLoader", "torch.no_grad" ]
1.4.0
Jake-Jay/StyleNeRF_pl
c9cc35bc0453a72f51b63512b3517e5f79da12a6
1.6
from torch.nn import * import torch import torch.nn.functional as F class BCEDiceLoss(Module): def __init__(self): super().__init__() def forward(self, input, target): bce = F.binary_cross_entropy_with_logits(input, target) smooth = 1e-10 input = torch.sigmoid(input) num = target.size(0) input = input.view(num, -1) target = target.view(num, -1) intersection = (input * target) dice = (2. * intersection.sum(1) + smooth) / (input.sum(1) + target.sum(1) + smooth) dice = 1 - dice.sum() / num return 0.5 * bce + dice
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.sigmoid" ]
1.6.0
Ian-Dx/DxTorchUtils
af1d522f58f1b7baed8f661757dd45c13343ddcd
1.8
from __future__ import annotations from typing import Any, Iterable, Optional, Tuple, Union import torch, warnings from .protocols import _DeviceMovable CPU = torch.device('cpu') GPU = torch.device('cuda') def data_parallel(raw_model: torch.nn.Module, *args, **kwargs) -> Tuple[Union[torch.nn.Module, torch.nn.parallel.DataParallel], bool]: """ Make a `torch.nn.Module` data parallel - Parameters: - raw_model: A target `torch.nn.Module` - Returns: A `tuple` of either data paralleled `torch.nn.parallel.DataParallel` model if CUDA is available or a raw model if not, and a `bool` flag of if the model data paralleled successfuly. """ if torch.cuda.is_available(): model = torch.nn.parallel.DataParallel(raw_model, *args, **kwargs) return model, True else: warnings.warn(f"[Device Warning]: CUDA is not available, unable to use multi-GPUs.", ResourceWarning) return raw_model, False def empty_cache() -> None: """Empty CUDA cache""" if torch.cuda.is_available(): torch.cuda.empty_cache() def find(specified: Optional[torch.device] = None) -> Tuple[torch.device, torch.device]: """ Find available devices - Pameters: - specified: An optional `torch.device` of specified - Returns: A `tuple` of CPU in `torch.device` and available device in `torch.device` """ if specified is None: return (CPU, GPU) if torch.cuda.is_available() else (CPU, CPU) else: warnings.warn(f"[Device Warning]: Using specified device {specified}.", ResourceWarning) return CPU, specified def move_to_device(target: Any, device: torch.device) -> Any: """ Move a target variable to device - Parameters: - target: `Any` type of target - device: A `torch.device` of target device - Returns: The same type of target but moved to target device """ if isinstance(target, _DeviceMovable): target = target.to(device) elif isinstance(target, dict): target = {k: move_to_device(t, device) for k, t in target.items()} elif isinstance(target, Iterable): target = [move_to_device(t, device) for t in target] return target
[ "torch.device", "torch.nn.parallel.DataParallel", "torch.cuda.is_available", "torch.cuda.empty_cache" ]
1.8.2
kisonho/torchmanager
ac01c61a132238bc0d39bf2173dfd37f44dbbf30
1.1
import os from argparse import Namespace import numpy as np import torch # from pl_examples import LightningTemplateModel from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TestTubeLogger, TensorBoardLogger from tests.base import LightningTestModel from tests.base.datasets import PATH_DATASETS # generate a list of random seeds for each test RANDOM_PORTS = list(np.random.randint(12000, 19000, 1000)) ROOT_SEED = 1234 torch.manual_seed(ROOT_SEED) np.random.seed(ROOT_SEED) RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000)) ROOT_PATH = os.path.abspath(os.path.dirname(__file__)) def run_model_test_no_loggers(trainer_options, model, min_acc=0.50): # save_dir = trainer_options['default_root_dir'] # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(trainer.logger, trainer.checkpoint_callback.dirpath, path_expt=trainer_options.get('default_root_dir')) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(dataloader, pretrained_model, min_acc=min_acc) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() def run_model_test(trainer_options, model, on_gpu=True): save_dir = trainer_options['default_root_dir'] # logger file to get meta logger = get_default_testtube_logger(save_dir, False) # logger file to get weights checkpoint = init_checkpoint_callback(logger) # add these to the trainer options trainer_options['checkpoint_callback'] = checkpoint trainer_options['logger'] = logger # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(logger, trainer.checkpoint_callback.dirpath) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] [run_prediction(dataloader, pretrained_model) for dataloader in test_loaders] if trainer.use_ddp or trainer.use_ddp2: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \ trainer.init_optimizers(pretrained_model) # test HPC loading / saving trainer.hpc_save(save_dir, logger) trainer.hpc_load(save_dir, on_gpu=on_gpu) def get_default_hparams(continue_training=False, hpc_exp_number=0): _ = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) args = { 'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28 * 28, 'learning_rate': 0.001 * 8, 'optimizer_name': 'adam', 'data_root': PATH_DATASETS, 'out_features': 10, 'hidden_dim': 1000, } if continue_training: args['test_tube_do_checkpoint_load'] = True args['hpc_exp_number'] = hpc_exp_number hparams = Namespace(**args) return hparams def get_default_model(lbfgs=False): # set up model with these hyperparams hparams = get_default_hparams() if lbfgs: setattr(hparams, 'optimizer_name', 'lbfgs') setattr(hparams, 'learning_rate', 0.002) model = LightningTestModel(hparams) return model, hparams def get_default_testtube_logger(save_dir, debug=True, version=None): # set up logger object without actually saving logs logger = TestTubeLogger(save_dir, name='lightning_logs', debug=debug, version=version) return logger def get_data_path(expt_logger, path_dir=None): # some calls contain only experiment not complete logger expt = expt_logger.experiment if hasattr(expt_logger, 'experiment') else expt_logger # each logger has to have these attributes name, version = expt_logger.name, expt_logger.version # only the test-tube experiment has such attribute if hasattr(expt, 'get_data_path'): return expt.get_data_path(name, version) # the other experiments... if not path_dir: path_dir = ROOT_PATH path_expt = os.path.join(path_dir, name, 'version_%s' % version) # try if the new sub-folder exists, typical case for test-tube if not os.path.isdir(path_expt): path_expt = path_dir return path_expt def load_model(exp, root_weights_dir, module_class=LightningTestModel, path_expt=None): # load trained model path_expt_dir = get_data_path(exp, path_dir=path_expt) tags_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_CSV_TAGS) checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x] weights_dir = os.path.join(root_weights_dir, checkpoints[0]) trained_model = module_class.load_from_checkpoint( checkpoint_path=weights_dir, tags_csv=tags_path ) assert trained_model is not None, 'loading model failed' return trained_model def load_model_from_checkpoint(root_weights_dir, module_class=LightningTestModel): # load trained model checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x] weights_dir = os.path.join(root_weights_dir, checkpoints[0]) trained_model = module_class.load_from_checkpoint( checkpoint_path=weights_dir, ) assert trained_model is not None, 'loading model failed' return trained_model def run_prediction(dataloader, trained_model, dp=False, min_acc=0.5): # run prediction on 1 batch for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) if dp: output = trained_model(batch, 0) acc = output['val_acc'] acc = torch.mean(acc).item() else: y_hat = trained_model(x) # acc labels_hat = torch.argmax(y_hat, dim=1) acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) acc = torch.tensor(acc) acc = acc.item() assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})" def assert_ok_model_acc(trainer, key='test_acc', thr=0.5): # this model should get 0.80+ acc acc = trainer.training_tqdm_dict[key] assert acc > thr, f"Model failed to get expected {thr} accuracy. {key} = {acc}" def reset_seed(): seed = RANDOM_SEEDS.pop() torch.manual_seed(seed) np.random.seed(seed) def set_random_master_port(): port = RANDOM_PORTS.pop() os.environ['MASTER_PORT'] = str(port) def init_checkpoint_callback(logger, path_dir=None): exp_path = get_data_path(logger, path_dir=path_dir) ckpt_dir = os.path.join(exp_path, 'checkpoints') os.mkdir(ckpt_dir) checkpoint = ModelCheckpoint(ckpt_dir) return checkpoint
[ "torch.manual_seed", "torch.tensor", "torch.mean", "torch.argmax", "torch.sum" ]
1.1
baldassarreFe/pytorch-lightning
3f1e4b953f84ecdac7dada0c6b57d908efc9c3d3
1.0
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utils to train DistilBERT adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) """ import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def git_log(folder_path: str): """ Log commit info. """ repo = git.Repo(folder_path, search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), } with open(os.path.join(folder_path, "git_log.json"), "w") as f: json.dump(repo_infos, f, indent=4) def init_gpu_params(params): """ Handle single and multi-GPU / multi-node. """ if params.n_gpu <= 0: params.local_rank = 0 params.master_port = -1 params.is_master = True params.multi_gpu = False return assert torch.cuda.is_available() logger.info("Initializing GPUs") if params.n_gpu > 1: assert params.local_rank != -1 params.world_size = int(os.environ["WORLD_SIZE"]) params.n_gpu_per_node = int(os.environ["N_GPU_NODE"]) params.global_rank = int(os.environ["RANK"]) # number of nodes / node ID params.n_nodes = params.world_size // params.n_gpu_per_node params.node_id = params.global_rank // params.n_gpu_per_node params.multi_gpu = True assert params.n_nodes == int(os.environ["N_NODES"]) assert params.node_id == int(os.environ["NODE_RANK"]) # local job (single GPU) else: assert params.local_rank == -1 params.n_nodes = 1 params.node_id = 0 params.local_rank = 0 params.global_rank = 0 params.world_size = 1 params.n_gpu_per_node = 1 params.multi_gpu = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode params.is_master = params.node_id == 0 and params.local_rank == 0 params.multi_node = params.n_nodes > 1 # summary PREFIX = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes) logger.info(PREFIX + "Node ID : %i" % params.node_id) logger.info(PREFIX + "Local rank : %i" % params.local_rank) logger.info(PREFIX + "World size : %i" % params.world_size) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node) logger.info(PREFIX + "Master : %s" % str(params.is_master)) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node)) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu)) logger.info(PREFIX + "Hostname : %s" % socket.gethostname()) # set GPU device torch.cuda.set_device(params.local_rank) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed") torch.distributed.init_process_group( init_method="env://", backend="nccl", ) def set_seed(args): """ Set the random seed. """ np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed)
[ "torch.cuda.manual_seed_all", "torch.distributed.init_process_group", "torch.manual_seed", "torch.cuda.set_device", "torch.cuda.is_available" ]
1.0
sripadh8/transformers
9f6a0fa573b25c90191d58443661db7d187de511
1.2
#!/usr/bin/env python """ ImageNet Validation Script This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import os import csv import glob import time import logging import torch import torch.nn as nn import torch.nn.parallel from collections import OrderedDict from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models from timm.data import Dataset, DatasetTar, create_loader, resolve_data_config from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92', help='model architecture (default: dpn92)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=1000, help='Number classes in dataset') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true', help='disable test time pool') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--fp16', action='store_true', default=False, help='Use half precision (fp16)') parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') def validate(args): # might as well try to validate something args.pretrained = args.pretrained or not args.checkpoint args.prefetcher = not args.no_prefetcher # create model model = create_model( args.model, num_classes=args.num_classes, in_chans=3, pretrained=args.pretrained) if args.checkpoint: load_checkpoint(model, args.checkpoint, args.use_ema) param_count = sum([m.numel() for m in model.parameters()]) logging.info('Model %s created, param count: %d' % (args.model, param_count)) data_config = resolve_data_config(vars(args), model=model) model, test_time_pool = apply_test_time_pool(model, data_config, args) if args.torchscript: torch.jit.optimized_execution(True) model = torch.jit.script(model) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() else: model = model.cuda() if args.fp16: model = model.half() criterion = nn.CrossEntropyLoss().cuda() #from torchvision.datasets import ImageNet #dataset = ImageNet(args.data, split='val') if os.path.splitext(args.data)[1] == '.tar' and os.path.isfile(args.data): dataset = DatasetTar(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map) else: dataset = Dataset(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map) crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] loader = create_loader( dataset, input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, pin_memory=args.pin_mem, fp16=args.fp16, tf_preprocessing=args.tf_preprocessing) batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.eval() end = time.time() with torch.no_grad(): for i, (input, target) in enumerate(loader): if args.no_prefetcher: target = target.cuda() input = input.cuda() if args.fp16: input = input.half() # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.log_freq == 0: logging.info( 'Test: [{0:>4d}/{1}] ' 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Prec@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Prec@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5)) results = OrderedDict( top1=round(top1.avg, 4), top1_err=round(100 - top1.avg, 4), top5=round(top5.avg, 4), top5_err=round(100 - top5.avg, 4), param_count=round(param_count / 1e6, 2), img_size=data_config['input_size'][-1], cropt_pct=crop_pct, interpolation=data_config['interpolation']) logging.info(' * Prec@1 {:.3f} ({:.3f}) Prec@5 {:.3f} ({:.3f})'.format( results['top1'], results['top1_err'], results['top5'], results['top5_err'])) return results def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if os.path.isdir(args.checkpoint): # validate all checkpoints in a path with same model checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') checkpoints += glob.glob(args.checkpoint + '/*.pth') model_names = list_models(args.model) model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] else: if args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models(pretrained=True) model_cfgs = [(n, '') for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model) model_cfgs = [(n, '') for n in model_names] if len(model_cfgs): results_file = args.results_file or './results-all.csv' logging.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: for m, c in model_cfgs: args.model = m args.checkpoint = c result = OrderedDict(model=args.model) r = validate(args) result.update(r) if args.checkpoint: result['checkpoint'] = args.checkpoint results.append(result) except KeyboardInterrupt as e: pass results = sorted(results, key=lambda x: x['top1'], reverse=True) if len(results): write_results(results_file, results) else: validate(args) def write_results(results_file, results): with open(results_file, mode='w') as cf: dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
[ "torch.nn.CrossEntropyLoss", "torch.jit.script", "torch.no_grad", "torch.jit.optimized_execution" ]
1.2.0
FDSJK/pytorch-image-models
5eb0e363a63e823f27810ea6bf5b6b8e136c4176
1.5
import os import gym import numpy as np import torch from gym.spaces.box import Box from gym.spaces.dict import Dict from baselines import bench from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines.common.vec_env import VecEnvWrapper from baselines.common.vec_env.dummy_vec_env import DummyVecEnv # from baselines.common.vec_env.shmem_vec_env import ShmemVecEnv from pytorchBaselines.a2c_ppo_acktr.shmem_vec_env import ShmemVecEnv from baselines.common.vec_env.vec_normalize import \ VecNormalize as VecNormalize_ try: import dm_control2gym except ImportError: pass try: import roboschool except ImportError: pass try: import pybullet_envs except ImportError: pass def make_env(env_id, seed, rank, log_dir, allow_early_resets, config=None, envNum=1, ax=None, test_case=-1): def _thunk(): if env_id.startswith("dm"): _, domain, task = env_id.split('.') env = dm_control2gym.make(domain_name=domain, task_name=task) else: env = gym.make(env_id) is_atari = hasattr(gym.envs, 'atari') and isinstance( env.unwrapped, gym.envs.atari.atari_env.AtariEnv) if is_atari: env = make_atari(env_id) env.configure(config) envSeed = seed + rank if seed is not None else None # environment.render_axis = ax env.thisSeed = envSeed env.nenv = envNum if envNum > 1: env.phase = 'train' else: env.phase = 'test' if ax: env.render_axis = ax if test_case >= 0: env.test_case = test_case env.seed(seed + rank) if str(env.__class__.__name__).find('TimeLimit') >= 0: env = TimeLimitMask(env) # if log_dir is not None: env = bench.Monitor( env, None, allow_early_resets=allow_early_resets) print(env) if isinstance(env.observation_space, Box): if is_atari: if len(env.observation_space.shape) == 3: env = wrap_deepmind(env) elif len(env.observation_space.shape) == 3: raise NotImplementedError( "CNN models work only for atari,\n" "please use a custom wrapper for a custom pixel input env.\n" "See wrap_deepmind for an example.") # If the input has shape (W,H,3), wrap for PyTorch convolutions obs_shape = env.observation_space.shape if len(obs_shape) == 3 and obs_shape[2] in [1, 3]: env = TransposeImage(env, op=[2, 0, 1]) return env return _thunk def make_vec_envs(env_name, seed, num_processes, gamma, log_dir, device, allow_early_resets, num_frame_stack=None, config=None, ax=None, test_case=-1): envs = [ make_env(env_name, seed, i, log_dir, allow_early_resets, config=config, envNum=num_processes, ax=ax, test_case=test_case) for i in range(num_processes) ] if len(envs) > 1: envs = ShmemVecEnv(envs, context='fork') else: envs = DummyVecEnv(envs) if isinstance(envs.observation_space, Box): if len(envs.observation_space.shape) == 1: if gamma is None: envs = VecNormalize(envs, ret=False, ob=False) else: envs = VecNormalize(envs, gamma=gamma, ob=False, ret=False) envs = VecPyTorch(envs, device) if num_frame_stack is not None: envs = VecPyTorchFrameStack(envs, num_frame_stack, device) elif isinstance(envs.observation_space, Box): if len(envs.observation_space.shape) == 3: envs = VecPyTorchFrameStack(envs, 4, device) return envs # Checks whether done was caused my timit limits or not class TimeLimitMask(gym.Wrapper): def step(self, action): obs, rew, done, info = self.env.step(action) if done and self.env._max_episode_steps == self.env._elapsed_steps: info['bad_transition'] = True return obs, rew, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) # Can be used to test recurrent policies for Reacher-v2 class MaskGoal(gym.ObservationWrapper): def observation(self, observation): if self.env._elapsed_steps > 0: observation[-2:] = 0 return observation class TransposeObs(gym.ObservationWrapper): def __init__(self, env=None): """ Transpose observation space (base class) """ super(TransposeObs, self).__init__(env) class TransposeImage(TransposeObs): def __init__(self, env=None, op=[2, 0, 1]): """ Transpose observation space for images """ super(TransposeImage, self).__init__(env) assert len(op) == 3, "Error: Operation, " + str(op) + ", must be dim3" self.op = op obs_shape = self.observation_space.shape self.observation_space = Box( self.observation_space.low[0, 0, 0], self.observation_space.high[0, 0, 0], [ obs_shape[self.op[0]], obs_shape[self.op[1]], obs_shape[self.op[2]] ], dtype=self.observation_space.dtype) def observation(self, ob): return ob.transpose(self.op[0], self.op[1], self.op[2]) class VecPyTorch(VecEnvWrapper): def __init__(self, venv, device): """Return only every `skip`-th frame""" super(VecPyTorch, self).__init__(venv) self.device = device # TODO: Fix data types def reset(self): obs = self.venv.reset() if isinstance(obs, dict): for key in obs: obs[key]=torch.from_numpy(obs[key]).to(self.device) else: obs = torch.from_numpy(obs).float().to(self.device) return obs def step_async(self, actions): if isinstance(actions, torch.LongTensor): # Squeeze the dimension for discrete actions actions = actions.squeeze(1) actions = actions.cpu().numpy() self.venv.step_async(actions) def step_wait(self): obs, reward, done, info = self.venv.step_wait() if isinstance(obs, dict): for key in obs: obs[key] = torch.from_numpy(obs[key]).to(self.device) else: obs = torch.from_numpy(obs).float().to(self.device) reward = torch.from_numpy(reward).unsqueeze(dim=1).float() return obs, reward, done, info def render_traj(self, path, episode_num): if self.venv.num_envs == 1: return self.venv.envs[0].env.render_traj(path, episode_num) else: for i, curr_env in enumerate(self.venv.envs): curr_env.env.render_traj(path, str(episode_num) + '.' + str(i)) class VecNormalize(VecNormalize_): def __init__(self, *args, **kwargs): super(VecNormalize, self).__init__(*args, **kwargs) self.training = True def _obfilt(self, obs, update=True): if self.ob_rms: if self.training and update: self.ob_rms.update(obs) obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) return obs else: return obs def train(self): self.training = True def eval(self): self.training = False # Derived from # https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_frame_stack.py class VecPyTorchFrameStack(VecEnvWrapper): def __init__(self, venv, nstack, device=None): self.venv = venv self.nstack = nstack wos = venv.observation_space # wrapped ob space self.shape_dim0 = wos.shape[0] low = np.repeat(wos.low, self.nstack, axis=0) high = np.repeat(wos.high, self.nstack, axis=0) if device is None: device = torch.device('cpu') self.stacked_obs = torch.zeros((venv.num_envs, ) + low.shape).to(device) observation_space = gym.spaces.Box( low=low, high=high, dtype=venv.observation_space.dtype) VecEnvWrapper.__init__(self, venv, observation_space=observation_space) def step_wait(self): obs, rews, news, infos = self.venv.step_wait() self.stacked_obs[:, :-self.shape_dim0] = \ self.stacked_obs[:, self.shape_dim0:].clone() for (i, new) in enumerate(news): if new: self.stacked_obs[i] = 0 self.stacked_obs[:, -self.shape_dim0:] = obs return self.stacked_obs, rews, news, infos def reset(self): obs = self.venv.reset() if torch.backends.cudnn.deterministic: self.stacked_obs = torch.zeros(self.stacked_obs.shape) else: self.stacked_obs.zero_() self.stacked_obs[:, -self.shape_dim0:] = obs return self.stacked_obs def close(self): self.venv.close()
[ "torch.zeros", "torch.device", "torch.from_numpy" ]
1.5.0
sriyash421/CrowdNav_DSRNN
968f54f1f37ae65ee0a13a5a8e96eda1af1916ab
1.3
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ Usage: import torch model = torch.hub.load('ultralytics/yolov5_', 'yolov5s', pretrained=True, channels=3, classes=80) """ dependencies = ['torch', 'yaml'] import torch from models.yolo import Model from utils import google_utils def create(name, pretrained, channels, classes): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ model = Model('models/%s.yaml' % name, channels, classes) if pretrained: ckpt = '%s.pt' % name # checkpoint filename google_utils.attempt_download(ckpt) # download if not found locally state_dict = torch.load(ckpt)['model'].state_dict() state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].numel() == v.numel()} # filter model.load_state_dict(state_dict, strict=False) # load return model def yolov5s(pretrained=False, channels=3, classes=80): """YOLOv5-small model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5s', pretrained, channels, classes) def yolov5m(pretrained=False, channels=3, classes=80): """YOLOv5-medium model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5m', pretrained, channels, classes) def yolov5l(pretrained=False, channels=3, classes=80): """YOLOv5-large model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5l', pretrained, channels, classes) def yolov5x(pretrained=False, channels=3, classes=80): """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5x', pretrained, channels, classes)
[ "torch.load" ]
1.3.0
paszti96/RODSIE_yolov5
2419802dbd897028f02ad45232342316d4a73233
1.8
""" Test a finetuned model. """ import torch import torch.nn.functional as F import numpy as np import pandas as pd import wandb from transformers import MBart50TokenizerFast, MBartForConditionalGeneration, MBartConfig from datasets import load_dataset from itertools import combinations import time from common.preprocess import pad_sequence, filter_languages from common.utils import accuracy_fn, to_devices from common.metrics import BLEU from common import data_logger as logging from hyperparams.schedule import WarmupDecay from finetune import LANG_CODES from common.preprocess import detokenize from common.utils import mask_after_stop def main(params): """ Evaluates a finetuned model on the test or validation dataset.""" # load model and tokenizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50") config = MBartConfig.from_pretrained("facebook/mbart-large-50") model = MBartForConditionalGeneration(config).to(device) checkpoint_location = params.location+'/'+params.name+'/checkpoint/checkpoint' model, _, _, _ = logging.load_checkpoint(checkpoint_location, device, model) def pipeline(dataset, langs, batch_size, max_len): cols = ['input_ids_' + l for l in langs] def tokenize_fn(example): """apply tokenization""" l_tok = [] for lang in langs: encoded = tokenizer.encode(example[lang]) encoded[0] = tokenizer.lang_code_to_id[LANG_CODES[lang]] l_tok.append(encoded) return {'input_ids_' + l: tok for l, tok in zip(langs, l_tok)} def pad_seqs(examples): """Apply padding""" ex_langs = list(zip(*[tuple(ex[col] for col in cols) for ex in examples])) ex_langs = tuple(pad_sequence(x, batch_first=True, max_len=max_len) for x in ex_langs) return ex_langs dataset = filter_languages(dataset, langs) dataset = dataset.map(tokenize_fn) dataset.set_format(type='torch', columns=cols) num_examples = len(dataset) print('-'.join(langs) + ' : {} examples.'.format(num_examples)) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=pad_seqs) return dataloader, num_examples # load data if params.split == 'val': test_dataset = load_dataset('ted_multi', split='validation') elif params.split == 'test': test_dataset = load_dataset('ted_multi', split='test') elif params.split == 'combine': test_dataset = load_dataset('ted_multi', split='validation+test') else: raise NotImplementedError # preprocess splits for each direction test_dataloaders = {} for l1, l2 in combinations(params.langs, 2): test_dataloaders[l1+'-'+l2], _ = pipeline(test_dataset, [l1, l2], params.batch_size, params.max_len) # evaluate the model def evaluate(x, y, y_code, bleu): y_inp, y_tar = y[:,:-1].contiguous(), y[:,1:].contiguous() enc_mask = (x != 0) x, y_inp, y_tar, enc_mask = to_devices( (x, y_inp, y_tar, enc_mask), device) model.eval() y_pred = model.generate(input_ids=x, decoder_start_token_id=y_code, attention_mask=enc_mask, max_length=x.size(1)+1, num_beams=params.num_beams, length_penalty=params.length_penalty, early_stopping=True) bleu(y_pred[:, 1:], y_tar) test_results = {} for direction, loader in test_dataloaders.items(): alt_direction = '-'.join(reversed(direction.split('-'))) bleu1, bleu2 = BLEU(), BLEU() bleu1.set_excluded_indices([0, 2]) bleu2.set_excluded_indices([0, 2]) x_code = tokenizer.lang_code_to_id[LANG_CODES[direction.split('-')[0]]] y_code = tokenizer.lang_code_to_id[LANG_CODES[direction.split('-')[-1]]] start_ = time.time() for i, (x, y) in enumerate(loader): if params.test_batches is not None: if i > params.test_batches: break evaluate(x, y, y_code, bleu1) if not params.single_direction: evaluate(y, x, x_code, bleu2) if i % params.verbose == 0: bl1, bl2 = bleu1.get_metric(), bleu2.get_metric() print('Batch {} Bleu1 {:.4f} Bleu2 {:.4f} in {:.4f} secs per batch'.format( i, bl1, bl2, (time.time() - start_)/(i+1))) bl1, bl2 = bleu1.get_metric(), bleu2.get_metric() test_results[direction] = [bl1] test_results[alt_direction] = [bl2] print(direction, bl1, bl2) # save test_results pd.DataFrame(test_results).to_csv(params.location+'/'+params.name+'/test_results.csv', index=False) class ExamplesLogger: def __init__(self, params): self.params = params self.input_examples = [] self.target_examples = [] self.pred_examples = [] def log_examples(self, input_batch, target_batch, prediction_batch, tokenizer): prediction_batch = mask_after_stop(prediction_batch, stop_token=2) if isinstance(tokenizer, list): inp_tokenizer = tokenizer[0] out_tokenizer = tokenizer[1] else: inp_tokenizer = tokenizer out_tokenizer = tokenizer det_input = str(detokenize(input_batch, inp_tokenizer, batch=False)[0]) det_target = str(detokenize(target_batch, out_tokenizer, batch=False)[0]) det_pred = str(detokenize(prediction_batch, out_tokenizer, batch=False)[0]) self.target_examples.append(det_target) self.pred_examples.append(det_pred) self.input_examples.append(det_input) def dump_examples(self): with open(self.params.location+'/'+self.params.name + '_examples.txt', 'w') as f: for inp, pred, target in zip(self.input_examples, self.pred_examples, self.target_examples): f.write("Input: {} \n \n".format(inp)) f.write("Target: {} \n \n".format(target)) f.write("Prediction: {} \n \n".format(pred)) f.write("---------------------------------- \n \n") if __name__ == '__main__': from common.finetune_arguments import parser params = parser.parse_args() main(params)
[ "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.8.1
IanYHWu/tied-representation-learning
bda9814dc40cf552f7bdd2ade78f5e2958a7ea83
1.3
import torch def euclidean_metric(a, b): return torch.cdist(a, b, p=2)
[ "torch.cdist" ]
1.3.0
aiyolo/prototypical-network-pytorch-lightning
e6fb9397f98314cd8f4b42282ca3f28e46c51d4a
1.8
import torch import torch.nn as nn class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.l1 = nn.Linear(input_size, hidden_size) self.l2 = nn.Linear(hidden_size, hidden_size) self.l3 = nn.Linear(hidden_size, num_classes) self.relu = nn.ReLU() def forward(self, x): out = self.l1(x) out = self.relu(out) out = self.l2(out) out = self.relu(out) out = self.l3(out) # no activation and no softmax at the end return out
[ "torch.nn.Linear", "torch.nn.ReLU" ]
1.8.1
thomasbreydo/mental-health-nlp-chatbot
62cb6f558f8e3282f24f4699770e838a272cc346
1.5
import torch.utils.data as torchdata from modules.data.utils import collate_fn from modules.data.dataset import ICDAR class ICDARDataLoader: def __init__(self, config): self.config = config self.batch_size = config['data_loader']['batch_size'] self.shuffle = config['data_loader']['shuffle'] self.num_workers = config['data_loader']['workers'] self.val_split_ratio = self.config['validation']['validation_split'] data_root = config['data_loader']['data_dir'] input_size = config['data_loader']['input_size'] icdar_dataset = ICDAR(data_root, input_size) if self.val_split_ratio > 0: self.__train_set, self.__val_set = self.__train_val_split(icdar_dataset) else: self.__train_set = icdar_dataset def train(self): trainLoader = torchdata.DataLoader(self.__train_set, num_workers=self.num_workers, batch_size=self.batch_size, shuffle=self.shuffle, collate_fn=collate_fn) return trainLoader def val(self): assert self.val_split_ratio > 0, 'Error: call val() method' shuffle = self.config['validation']['shuffle'] valLoader = torchdata.DataLoader(self.__val_set, num_workers=self.num_workers, batch_size=self.batch_size, shuffle=shuffle, collate_fn=collate_fn) return valLoader def __train_val_split(self, ds): """ :param ds: dataset :return: """ split = self.val_split_ratio try: split = float(split) except: raise RuntimeError('Train and val splitting ratio is invalid.') val_len = int(split * len(ds)) train_len = len(ds) - val_len train, val = torchdata.random_split(ds, [train_len, val_len]) return train, val
[ "torch.utils.data.random_split", "torch.utils.data.DataLoader" ]
1.5.0
ishin-pie/e2e-scene-text-spotting
a3f5ba1f486c5d52bb6263aff6663a03ab4effbf
0.2
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union import numpy as np import torch T = TypeVar("T") V = TypeVar("V") K = TypeVar("K") X = TypeVar("X") Y = TypeVar("Y") def not_none(val: Optional[T]) -> T: """ Unbox an optional type. Args: val: the value to cast to a non ``None`` type Retruns: V: ``val`` when ``val`` is not ``None`` Throws: ValueError if ``val`` is ``None`` """ if val is None: raise ValueError("Argument to `not_none` was None.") return val def checked_cast(typ: Type[T], val: V) -> T: """ Cast a value to a type (with a runtime safety check). Returns the value unchanged and checks its type at runtime. This signals to the typechecker that the value has the designated type. Like `typing.cast`_ ``check_cast`` performs no runtime conversion on its argument, but, unlike ``typing.cast``, ``checked_cast`` will throw an error if the value is not of the expected type. The type passed as an argument should be a python class. Args: typ: the type to cast to val: the value that we are casting Returns: the ``val`` argument, unchanged .. _typing.cast: https://docs.python.org/3/library/typing.html#typing.cast """ if not isinstance(val, typ): raise ValueError(f"Value was not of type {type}:\n{val}") return val def checked_cast_optional(typ: Type[T], val: Optional[V]) -> Optional[T]: """Calls checked_cast only if value is not None.""" if val is None: return val return checked_cast(typ, val) def checked_cast_list(typ: Type[T], old_l: List[V]) -> List[T]: """Calls checked_cast on all items in a list.""" new_l = [] for val in old_l: val = checked_cast(typ, val) new_l.append(val) return new_l def checked_cast_dict( key_typ: Type[K], value_typ: Type[V], d: Dict[X, Y] ) -> Dict[K, V]: """Calls checked_cast on all keys and values in the dictionary.""" new_dict = {} for key, val in d.items(): val = checked_cast(value_typ, val) key = checked_cast(key_typ, key) new_dict[key] = val return new_dict # pyre-fixme[34]: `T` isn't present in the function's parameters. def checked_cast_to_tuple(typ: Tuple[Type[V], ...], val: V) -> T: """ Cast a value to a union of multiple types (with a runtime safety check). This function is similar to `checked_cast`, but allows for the type to be defined as a tuple of types, in which case the value is cast as a union of the types in the tuple. Args: typ: the tuple of types to cast to val: the value that we are casting Returns: the ``val`` argument, unchanged """ if not isinstance(val, typ): raise ValueError(f"Value was not of type {type!r}:\n{val!r}") # pyre-fixme[7]: Expected `T` but got `V`. return val def numpy_type_to_python_type(value: Any) -> Any: """If `value` is a Numpy int or float, coerce to a Python int or float. This is necessary because some of our transforms return Numpy values. """ if isinstance(value, np.integer): value = int(value) # pragma: nocover (covered by generator tests) if isinstance(value, np.floating): value = float(value) # pragma: nocover (covered by generator tests) return value def torch_type_to_str(value: Any) -> str: """Converts torch types, commonly used in Ax, to string representations.""" if isinstance(value, torch.dtype): return str(value) if isinstance(value, torch.device): return checked_cast(str, value.type) # pyre-fixme[16]: device has to attr. type raise ValueError(f"Object {value} was of unexpected torch type.") def torch_type_from_str( identifier: str, type_name: str ) -> Union[torch.dtype, torch.device]: if type_name == "device": return torch.device(identifier) if type_name == "dtype": return getattr(torch, identifier[6:]) raise ValueError(f"Unexpected type: {type_name} for identifier: {identifier}.")
[ "torch.device" ]
0.2.2
EricZLou/Ax
3f8fc6f4a055e93cb69fda3799be41ee9572ef02
1.4
import numpy as np import torch from dg_util.python_utils import misc_util from dg_util.python_utils import pytorch_util as pt_util from dg_util.python_utils.tensor_dataset import TensorDataset class NPZDataset(TensorDataset): """ Convenience class for fast reading of saved numpy image arrays without the need for slicing and concating. """ def __init__(self, args, path, data_subset, num_data_points=None, contiguous=True): with torch.no_grad(): self.args = args self.data_subset = data_subset npz_dataset = np.load(path.format(data_subset=data_subset)) data = npz_dataset["data"] labels = pt_util.from_numpy(npz_dataset["labels"]) if num_data_points is None: num_data_points = len(data) if num_data_points < len(data): np.random.seed(0) rand_inds = np.random.choice(len(data), num_data_points, replace=False) data = data[rand_inds] labels = labels[rand_inds] assert len(data.shape) == 4 if data.shape[1] == 3: data = data.transpose(0, 2, 3, 1) data = misc_util.resize(data, (args.input_width, args.input_height), height_channel=1, width_channel=2) data = pt_util.from_numpy(data).permute(0, 3, 1, 2) if contiguous: data = data.contiguous() super(NPZDataset, self).__init__(data, labels, self.args.batch_size)
[ "torch.no_grad" ]
1.4.0
gabrielsluz/vince
f4e17a2cf70c080a7e01e46d15537e33224c869b
1.1
from typing import List, Dict, Tuple import pickle import torch import numpy as np from ditk import logging from copy import deepcopy from easydict import EasyDict from torch.utils.data import Dataset from ding.utils import DATASET_REGISTRY, import_module from ding.rl_utils import discount_cumsum @DATASET_REGISTRY.register('naive') class NaiveRLDataset(Dataset): def __init__(self, cfg) -> None: assert type(cfg) in [str, EasyDict], "invalid cfg type: {}".format(type(cfg)) if isinstance(cfg, EasyDict): self._data_path = cfg.policy.collect.data_path elif isinstance(cfg, str): self._data_path = cfg with open(self._data_path, 'rb') as f: self._data: List[Dict[str, torch.Tensor]] = pickle.load(f) def __len__(self) -> int: return len(self._data) def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]: return self._data[idx] @DATASET_REGISTRY.register('d4rl') class D4RLDataset(Dataset): def __init__(self, cfg: dict) -> None: import gym try: import d4rl # register d4rl enviroments with open ai gym except ImportError: logging.warning("not found d4rl env, please install it, refer to https://github.com/rail-berkeley/d4rl") # Init parameters data_path = cfg.policy.collect.get('data_path', None) env_id = cfg.env.env_id # Create the environment if data_path: d4rl.set_dataset_path(data_path) env = gym.make(env_id) dataset = d4rl.qlearning_dataset(env) if cfg.policy.collect.get('normalize_states', None): dataset = self._normalize_states(dataset) self._data = [] self._load_d4rl(dataset) def __len__(self) -> int: return len(self._data) def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]: return self._data[idx] def _load_d4rl(self, dataset: Dict[str, np.ndarray]) -> None: for i in range(len(dataset['observations'])): trans_data = {} trans_data['obs'] = torch.from_numpy(dataset['observations'][i]) trans_data['next_obs'] = torch.from_numpy(dataset['next_observations'][i]) trans_data['action'] = torch.from_numpy(dataset['actions'][i]) trans_data['reward'] = torch.tensor(dataset['rewards'][i]) trans_data['done'] = dataset['terminals'][i] self._data.append(trans_data) def _normalize_states(self, dataset, eps=1e-3): self._mean = dataset['observations'].mean(0, keepdims=True) self._std = dataset['observations'].std(0, keepdims=True) + eps dataset['observations'] = (dataset['observations'] - self._mean) / self._std dataset['next_observations'] = (dataset['next_observations'] - self._mean) / self._std return dataset @property def mean(self): return self._mean @property def std(self): return self._std @DATASET_REGISTRY.register('hdf5') class HDF5Dataset(Dataset): def __init__(self, cfg: dict) -> None: try: import h5py except ImportError: logging.warning("not found h5py package, please install it trough 'pip install h5py' ") data_path = cfg.policy.collect.get('data_path', None) data = h5py.File(data_path, 'r') self._load_data(data) if cfg.policy.collect.get('normalize_states', None): self._normalize_states() def __len__(self) -> int: return len(self._data['obs']) def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]: return {k: self._data[k][idx] for k in self._data.keys()} def _load_data(self, dataset: Dict[str, np.ndarray]) -> None: self._data = {} for k in dataset.keys(): logging.info(f'Load {k} data.') self._data[k] = dataset[k][:] def _normalize_states(self, eps=1e-3): self._mean = self._data['obs'].mean(0, keepdims=True) self._std = self._data['obs'].std(0, keepdims=True) + eps self._data['obs'] = (self._data['obs'] - self._mean) / self._std self._data['next_obs'] = (self._data['next_obs'] - self._mean) / self._std @property def mean(self): return self._mean @property def std(self): return self._std @DATASET_REGISTRY.register('d4rl_trajectory') class D4RLTrajectoryDataset(Dataset): # from infos.py from official d4rl github repo REF_MIN_SCORE = { 'halfcheetah': -280.178953, 'walker2d': 1.629008, 'hopper': -20.272305, } REF_MAX_SCORE = { 'halfcheetah': 12135.0, 'walker2d': 4592.3, 'hopper': 3234.3, } # calculated from d4rl datasets D4RL_DATASET_STATS = { 'halfcheetah-medium-v2': { 'state_mean': [ -0.06845773756504059, 0.016414547339081764, -0.18354906141757965, -0.2762460708618164, -0.34061527252197266, -0.09339715540409088, -0.21321271359920502, -0.0877423882484436, 5.173007488250732, -0.04275195300579071, -0.036108363419771194, 0.14053793251514435, 0.060498327016830444, 0.09550975263118744, 0.06739100068807602, 0.005627387668937445, 0.013382787816226482 ], 'state_std': [ 0.07472999393939972, 0.3023499846458435, 0.30207309126853943, 0.34417077898979187, 0.17619241774082184, 0.507205605506897, 0.2567007839679718, 0.3294812738895416, 1.2574149370193481, 0.7600541710853577, 1.9800915718078613, 6.565362453460693, 7.466367721557617, 4.472222805023193, 10.566964149475098, 5.671932697296143, 7.4982590675354 ] }, 'halfcheetah-medium-replay-v2': { 'state_mean': [ -0.12880703806877136, 0.3738119602203369, -0.14995987713336945, -0.23479078710079193, -0.2841278612613678, -0.13096535205841064, -0.20157982409000397, -0.06517726927995682, 3.4768247604370117, -0.02785065770149231, -0.015035249292850494, 0.07697279006242752, 0.01266712136566639, 0.027325302362442017, 0.02316424623131752, 0.010438721626996994, -0.015839405357837677 ], 'state_std': [ 0.17019015550613403, 1.284424901008606, 0.33442774415016174, 0.3672759234905243, 0.26092398166656494, 0.4784106910228729, 0.3181420564651489, 0.33552637696266174, 2.0931615829467773, 0.8037433624267578, 1.9044333696365356, 6.573209762573242, 7.572863578796387, 5.069749355316162, 9.10555362701416, 6.085654258728027, 7.25300407409668 ] }, 'halfcheetah-medium-expert-v2': { 'state_mean': [ -0.05667462572455406, 0.024369969964027405, -0.061670560389757156, -0.22351515293121338, -0.2675151228904724, -0.07545716315507889, -0.05809682980179787, -0.027675075456500053, 8.110626220703125, -0.06136331334710121, -0.17986927926540375, 0.25175222754478455, 0.24186332523822784, 0.2519369423389435, 0.5879552960395813, -0.24090635776519775, -0.030184272676706314 ], 'state_std': [ 0.06103534251451492, 0.36054104566574097, 0.45544400811195374, 0.38476887345314026, 0.2218363732099533, 0.5667523741722107, 0.3196682929992676, 0.2852923572063446, 3.443821907043457, 0.6728139519691467, 1.8616976737976074, 9.575807571411133, 10.029894828796387, 5.903450012207031, 12.128185272216797, 6.4811787605285645, 6.378620147705078 ] }, 'walker2d-medium-v2': { 'state_mean': [ 1.218966007232666, 0.14163373410701752, -0.03704913705587387, -0.13814310729503632, 0.5138224363327026, -0.04719110205769539, -0.47288352251052856, 0.042254164814949036, 2.3948874473571777, -0.03143199160695076, 0.04466355964541435, -0.023907244205474854, -0.1013401448726654, 0.09090937674045563, -0.004192637279629707, -0.12120571732521057, -0.5497063994407654 ], 'state_std': [ 0.12311358004808426, 0.3241879940032959, 0.11456084251403809, 0.2623065710067749, 0.5640279054641724, 0.2271878570318222, 0.3837319612503052, 0.7373676896095276, 1.2387926578521729, 0.798020601272583, 1.5664079189300537, 1.8092705011367798, 3.025604248046875, 4.062486171722412, 1.4586567878723145, 3.7445690631866455, 5.5851287841796875 ] }, 'walker2d-medium-replay-v2': { 'state_mean': [ 1.209364652633667, 0.13264022767543793, -0.14371201395988464, -0.2046516090631485, 0.5577612519264221, -0.03231537342071533, -0.2784661054611206, 0.19130706787109375, 1.4701707363128662, -0.12504704296588898, 0.0564953051507473, -0.09991033375263214, -0.340340256690979, 0.03546293452382088, -0.08934258669614792, -0.2992438077926636, -0.5984178185462952 ], 'state_std': [ 0.11929835379123688, 0.3562574088573456, 0.25852200388908386, 0.42075422406196594, 0.5202291011810303, 0.15685082972049713, 0.36770978569984436, 0.7161387801170349, 1.3763766288757324, 0.8632221817970276, 2.6364643573760986, 3.0134117603302, 3.720684051513672, 4.867283821105957, 2.6681625843048096, 3.845186948776245, 5.4768385887146 ] }, 'walker2d-medium-expert-v2': { 'state_mean': [ 1.2294334173202515, 0.16869689524173737, -0.07089081406593323, -0.16197483241558075, 0.37101927399635315, -0.012209027074277401, -0.42461398243904114, 0.18986578285694122, 3.162475109100342, -0.018092676997184753, 0.03496946766972542, -0.013921679928898811, -0.05937029421329498, -0.19549426436424255, -0.0019200450042262673, -0.062483321875333786, -0.27366524934768677 ], 'state_std': [ 0.09932824969291687, 0.25981399416923523, 0.15062759816646576, 0.24249176681041718, 0.6758718490600586, 0.1650741547346115, 0.38140663504600525, 0.6962361335754395, 1.3501490354537964, 0.7641991376876831, 1.534574270248413, 2.1785972118377686, 3.276582717895508, 4.766193866729736, 1.1716983318328857, 4.039782524108887, 5.891613960266113 ] }, 'hopper-medium-v2': { 'state_mean': [ 1.311279058456421, -0.08469521254301071, -0.5382719039916992, -0.07201576232910156, 0.04932365566492081, 2.1066856384277344, -0.15017354488372803, 0.008783451281487942, -0.2848185896873474, -0.18540096282958984, -0.28461286425590515 ], 'state_std': [ 0.17790751159191132, 0.05444620922207832, 0.21297138929367065, 0.14530418813228607, 0.6124444007873535, 0.8517446517944336, 1.4515252113342285, 0.6751695871353149, 1.5362390279769897, 1.616074562072754, 5.607253551483154 ] }, 'hopper-medium-replay-v2': { 'state_mean': [ 1.2305138111114502, -0.04371410980820656, -0.44542956352233887, -0.09370097517967224, 0.09094487875699997, 1.3694725036621094, -0.19992674887180328, -0.022861352190375328, -0.5287045240402222, -0.14465883374214172, -0.19652697443962097 ], 'state_std': [ 0.1756512075662613, 0.0636928603053093, 0.3438323438167572, 0.19566889107227325, 0.5547984838485718, 1.051029920578003, 1.158307671546936, 0.7963128685951233, 1.4802359342575073, 1.6540331840515137, 5.108601093292236 ] }, 'hopper-medium-expert-v2': { 'state_mean': [ 1.3293815851211548, -0.09836531430482864, -0.5444297790527344, -0.10201650857925415, 0.02277466468513012, 2.3577215671539307, -0.06349576264619827, -0.00374026270583272, -0.1766270101070404, -0.11862941086292267, -0.12097819894552231 ], 'state_std': [ 0.17012375593185425, 0.05159067362546921, 0.18141433596611023, 0.16430604457855225, 0.6023368239402771, 0.7737284898757935, 1.4986555576324463, 0.7483318448066711, 1.7953159809112549, 2.0530025959014893, 5.725032806396484 ] }, } def __init__(self, dataset_path: str, context_len: int, rtg_scale: float) -> None: self.context_len = context_len # load dataset with open(dataset_path, 'rb') as f: self.trajectories = pickle.load(f) if isinstance(self.trajectories[0], list): # for our collected dataset, e.g. cartpole/lunarlander case trajectories_tmp = [] original_keys = ['obs', 'next_obs', 'action', 'reward'] keys = ['observations', 'next_observations', 'actions', 'rewards'] for key, o_key in zip(keys, original_keys): trajectories_tmp = [ { key: np.stack( [ self.trjectories[eps_index][transition_index][o_key] for transition_index in range(len(self.trajectories[eps_index])) ], axis=0 ) } for eps_index in range(len(self.trajectories)) ] self.trajectories = trajectories_tmp states = [] for traj in self.trajectories: traj_len = traj['observations'].shape[0] states.append(traj['observations']) # calculate returns to go and rescale them traj['returns_to_go'] = discount_cumsum(traj['rewards'], 1.0) / rtg_scale # used for input normalization states = np.concatenate(states, axis=0) self.state_mean, self.state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6 # normalize states for traj in self.trajectories: traj['observations'] = (traj['observations'] - self.state_mean) / self.state_std def get_state_stats(self) -> Tuple[np.ndarray, np.ndarray]: return deepcopy(self.state_mean), deepcopy(self.state_std) def get_d4rl_dataset_stats(self, env_d4rl_name: str) -> Dict[str, list]: return self.D4RL_DATASET_STATS[env_d4rl_name] def __len__(self) -> int: return len(self.trajectories) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: traj = self.trajectories[idx] traj_len = traj['observations'].shape[0] if traj_len >= self.context_len: # sample random index to slice trajectory si = np.random.randint(0, traj_len - self.context_len) states = torch.from_numpy(traj['observations'][si:si + self.context_len]) actions = torch.from_numpy(traj['actions'][si:si + self.context_len]) returns_to_go = torch.from_numpy(traj['returns_to_go'][si:si + self.context_len]) timesteps = torch.arange(start=si, end=si + self.context_len, step=1) # all ones since no padding traj_mask = torch.ones(self.context_len, dtype=torch.long) else: padding_len = self.context_len - traj_len # padding with zeros states = torch.from_numpy(traj['observations']) states = torch.cat( [states, torch.zeros(([padding_len] + list(states.shape[1:])), dtype=states.dtype)], dim=0 ) actions = torch.from_numpy(traj['actions']) actions = torch.cat( [actions, torch.zeros(([padding_len] + list(actions.shape[1:])), dtype=actions.dtype)], dim=0 ) returns_to_go = torch.from_numpy(traj['returns_to_go']) returns_to_go = torch.cat( [ returns_to_go, torch.zeros(([padding_len] + list(returns_to_go.shape[1:])), dtype=returns_to_go.dtype) ], dim=0 ) timesteps = torch.arange(start=0, end=self.context_len, step=1) traj_mask = torch.cat( [torch.ones(traj_len, dtype=torch.long), torch.zeros(padding_len, dtype=torch.long)], dim=0 ) return timesteps, states, actions, returns_to_go, traj_mask def hdf5_save(exp_data, expert_data_path): try: import h5py except ImportError: logging.warning("not found h5py package, please install it trough 'pip install h5py' ") import numpy as np dataset = dataset = h5py.File('%s_demos.hdf5' % expert_data_path.replace('.pkl', ''), 'w') dataset.create_dataset('obs', data=np.array([d['obs'].numpy() for d in exp_data]), compression='gzip') dataset.create_dataset('action', data=np.array([d['action'].numpy() for d in exp_data]), compression='gzip') dataset.create_dataset('reward', data=np.array([d['reward'].numpy() for d in exp_data]), compression='gzip') dataset.create_dataset('done', data=np.array([d['done'] for d in exp_data]), compression='gzip') dataset.create_dataset('next_obs', data=np.array([d['next_obs'].numpy() for d in exp_data]), compression='gzip') def naive_save(exp_data, expert_data_path): with open(expert_data_path, 'wb') as f: pickle.dump(exp_data, f) def offline_data_save_type(exp_data, expert_data_path, data_type='naive'): globals()[data_type + '_save'](exp_data, expert_data_path) def create_dataset(cfg, **kwargs) -> Dataset: cfg = EasyDict(cfg) import_module(cfg.get('import_names', [])) return DATASET_REGISTRY.build(cfg.policy.collect.data_type, cfg=cfg, **kwargs)
[ "torch.zeros", "torch.arange", "torch.from_numpy", "torch.ones", "torch.tensor" ]
1.1.0
kxzxvbk/DI-engine
268d77db3cb54401b2cfc83e2bc3ec87c31e7b83
1.1
"""The code is adapted from https://github.com/nikhilbarhate99/min-decision-transformer """ from typing import List, Dict, Any, Tuple, Union from collections import namedtuple from torch.distributions import Normal, Independent from ding.torch_utils import Adam, to_device from ditk import logging from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \ qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_nstep_return_data from ding.model import model_wrap from ding.utils.data.dataset import D4RLTrajectoryDataset from ding.utils import POLICY_REGISTRY from ding.utils.data import default_collate, default_decollate from datetime import datetime from ding.torch_utils import one_hot import numpy as np import torch.nn.functional as F import torch import gym import copy import os import csv from .dqn import DQNPolicy @POLICY_REGISTRY.register('dt') class DTPolicy(DQNPolicy): r""" Overview: Policy class of DT algorithm in discrete environments. """ config = dict( # (str) RL policy register name (refer to function "POLICY_REGISTRY"). type='dt', # (bool) Whether to use cuda for network. cuda=False, # (bool) Whether the RL algorithm is on-policy or off-policy. on_policy=False, # (bool) Whether use priority(priority sample, IS weight, update priority) priority=False, # (float) Reward's future discount factor, aka. gamma. discount_factor=0.97, # (int) N-step reward for target q_value estimation nstep=1, obs_shape=4, action_shape=2, # encoder_hidden_size_list=[128, 128, 64], dataset='medium', # medium / medium-replay / medium-expert rtg_scale=1000, # normalize returns to go max_eval_ep_len=1000, # max len of one episode num_eval_ep=10, # num of evaluation episodes batch_size=64, # training batch size wt_decay=1e-4, warmup_steps=10000, max_train_iters=200, context_len=20, n_blocks=3, embed_dim=128, dropout_p=0.1, learn=dict( # (bool) Whether to use multi gpu multi_gpu=False, # batch_size=64, learning_rate=1e-4, # ============================================================== # The following configs are algorithm-specific # ============================================================== ), # collect_mode config collect=dict(), eval=dict(), # other config other=dict(), ) def _init_learn(self) -> None: r""" Overview: Learn mode init method. Called by ``self.__init__``. Init the optimizer, algorithm config, main and target models. """ self.stop_value = self._cfg.stop_value self.env_name = self._cfg.env_name dataset = self._cfg.dataset # medium / medium-replay / medium-expert # rtg_scale: scale of `return to go` # rtg_target: max target of `return to go` # Our goal is normalize `return to go` to (0, 1), which will favour the covergence. # As a result, we usually set rtg_scale == rtg_target. self.rtg_scale = self._cfg.rtg_target # normalize returns to go self.rtg_target = self._cfg.rtg_target # max target reward_to_go self.max_eval_ep_len = self._cfg.max_eval_ep_len # max len of one episode self.num_eval_ep = self._cfg.num_eval_ep # num of evaluation episodes lr = self._cfg.learn.learning_rate # learning rate wt_decay = self._cfg.wt_decay # weight decay warmup_steps = self._cfg.warmup_steps # warmup steps for lr scheduler max_train_iters = self._cfg.max_train_iters self.context_len = self._cfg.context_len # K in decision transformer n_blocks = self._cfg.n_blocks # num of transformer blocks embed_dim = self._cfg.embed_dim # embedding (hidden) dim of transformer dropout_p = self._cfg.dropout_p # dropout probability # # load data from this file # dataset_path = f'{self._cfg.dataset_dir}/{env_d4rl_name}.pkl' # saves model and csv in this directory self.log_dir = self._cfg.log_dir if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) # training and evaluation device self.device = torch.device(self._device) self.start_time = datetime.now().replace(microsecond=0) self.start_time_str = self.start_time.strftime("%y-%m-%d-%H-%M-%S") # prefix = "dt_" + env_d4rl_name self.prefix = "dt_" + self.env_name save_model_name = self.prefix + "_model_" + self.start_time_str + ".pt" self.save_model_path = os.path.join(self.log_dir, save_model_name) self.save_best_model_path = self.save_model_path[:-3] + "_best.pt" log_csv_name = self.prefix + "_log_" + self.start_time_str + ".csv" log_csv_path = os.path.join(self.log_dir, log_csv_name) self.csv_writer = csv.writer(open(log_csv_path, 'a', 1)) csv_header = (["duration", "num_updates", "eval_avg_reward", "eval_avg_ep_len", "eval_d4rl_score"]) self.csv_writer.writerow(csv_header) dataset_path = self._cfg.learn.dataset_path logging.info("=" * 60) logging.info("start time: " + self.start_time_str) logging.info("=" * 60) logging.info("device set to: " + str(self.device)) logging.info("dataset path: " + dataset_path) logging.info("model save path: " + self.save_model_path) logging.info("log csv save path: " + log_csv_path) self._env = gym.make(self.env_name) self.state_dim = self._cfg.model.state_dim self.act_dim = self._cfg.model.act_dim self._learn_model = self._model self._optimizer = torch.optim.AdamW(self._learn_model.parameters(), lr=lr, weight_decay=wt_decay) self._scheduler = torch.optim.lr_scheduler.LambdaLR( self._optimizer, lambda steps: min((steps + 1) / warmup_steps, 1) ) self.max_env_score = -1.0 def _forward_learn(self, data: list) -> Dict[str, Any]: r""" Overview: Forward and backward function of learn mode. Arguments: - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs'] Returns: - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. """ self._learn_model.train() timesteps, states, actions, returns_to_go, traj_mask = data timesteps = timesteps.to(self.device) # B x T states = states.to(self.device) # B x T x state_dim actions = actions.to(self.device) # B x T x act_dim returns_to_go = returns_to_go.to(self.device) # B x T x 1 traj_mask = traj_mask.to(self.device) # B x T action_target = torch.clone(actions).detach().to(self.device) # The shape of `returns_to_go` may differ with different dataset (B x T or B x T x 1), # and we need a 3-dim tensor if len(returns_to_go.shape) == 2: returns_to_go = returns_to_go.unsqueeze(-1) # if discrete if not self._cfg.model.continuous: actions = one_hot(actions.squeeze(-1), num=self.act_dim) state_preds, action_preds, return_preds = self._learn_model.forward( timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go ) traj_mask = traj_mask.view(-1, ) # only consider non padded elements action_preds = action_preds.view(-1, self.act_dim)[traj_mask > 0] if self._cfg.model.continuous: action_target = action_target.view(-1, self.act_dim)[traj_mask > 0] else: action_target = action_target.view(-1)[traj_mask > 0] if self._cfg.model.continuous: action_loss = F.mse_loss(action_preds, action_target) else: action_loss = F.cross_entropy(action_preds, action_target) self._optimizer.zero_grad() action_loss.backward() torch.nn.utils.clip_grad_norm_(self._learn_model.parameters(), 0.25) self._optimizer.step() self._scheduler.step() return { 'cur_lr': self._optimizer.state_dict()['param_groups'][0]['lr'], 'action_loss': action_loss.detach().cpu().item(), } def evaluate_on_env(self, state_mean=None, state_std=None, render=False): eval_batch_size = 1 # required for forward pass results = {} total_reward = 0 total_timesteps = 0 # state_dim = env.observation_space.shape[0] # act_dim = env.action_space.shape[0] if state_mean is None: self.state_mean = torch.zeros((self.state_dim, )).to(self.device) else: self.state_mean = torch.from_numpy(state_mean).to(self.device) if state_std is None: self.state_std = torch.ones((self.state_dim, )).to(self.device) else: self.state_std = torch.from_numpy(state_std).to(self.device) # same as timesteps used for training the transformer # also, crashes if device is passed to arange() timesteps = torch.arange(start=0, end=self.max_eval_ep_len, step=1) timesteps = timesteps.repeat(eval_batch_size, 1).to(self.device) self._learn_model.eval() with torch.no_grad(): for _ in range(self.num_eval_ep): # zeros place holders # continuous action actions = torch.zeros( (eval_batch_size, self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self.device ) # discrete action # TODO # actions = torch.randint(0,self.act_dim,[eval_batch_size, self.max_eval_ep_len, 1], # dtype=torch.long, device=self.device) states = torch.zeros( (eval_batch_size, self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self.device ) rewards_to_go = torch.zeros( (eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self.device ) # init episode running_state = self._env.reset() running_reward = 0 running_rtg = self.rtg_target / self.rtg_scale for t in range(self.max_eval_ep_len): total_timesteps += 1 # add state in placeholder and normalize states[0, t] = torch.from_numpy(running_state).to(self.device) # states[0, t] = (states[0, t].cpu() - self.state_mean.cpu().numpy()) / self.state_std.cpu().numpy() states[0, t] = (states[0, t] - self.state_mean) / self.state_std # calcualate running rtg and add it in placeholder running_rtg = running_rtg - (running_reward / self.rtg_scale) rewards_to_go[0, t] = running_rtg if t < self.context_len: _, act_preds, _ = self._learn_model.forward( timesteps[:, :self.context_len], states[:, :self.context_len], actions[:, :self.context_len], rewards_to_go[:, :self.context_len] ) act = act_preds[0, t].detach() else: _, act_preds, _ = self._learn_model.forward( timesteps[:, t - self.context_len + 1:t + 1], states[:, t - self.context_len + 1:t + 1], actions[:, t - self.context_len + 1:t + 1], rewards_to_go[:, t - self.context_len + 1:t + 1] ) act = act_preds[0, -1].detach() # if discrete if not self._cfg.model.continuous: act = torch.argmax(act) running_state, running_reward, done, _ = self._env.step(act.cpu().numpy()) # add action in placeholder actions[0, t] = act total_reward += running_reward if render: self._env.render() if done: break results['eval/avg_reward'] = total_reward / self.num_eval_ep results['eval/avg_ep_len'] = total_timesteps / self.num_eval_ep return results def evaluate(self, total_update_times, state_mean=None, state_std=None, render=False): results = self.evaluate_on_env(state_mean, state_std, render) eval_avg_reward = results['eval/avg_reward'] eval_avg_ep_len = results['eval/avg_ep_len'] eval_d4rl_score = self.get_d4rl_normalized_score(results['eval/avg_reward'], self.env_name) * 100 time_elapsed = str(datetime.now().replace(microsecond=0) - self.start_time) log_str = ( "=" * 60 + '\n' + "time elapsed: " + time_elapsed + '\n' + "num of updates: " + str(total_update_times) + '\n' + '\n' + "eval avg reward: " + format(eval_avg_reward, ".5f") + '\n' + "eval avg ep len: " + format(eval_avg_ep_len, ".5f") + '\n' + "eval d4rl score: " + format(eval_d4rl_score, ".5f") ) logging.info(log_str) log_data = [time_elapsed, total_update_times, eval_avg_reward, eval_avg_ep_len, eval_d4rl_score] log_csv_name = self.prefix + "_log_" + self.start_time_str + ".csv" log_csv_path = os.path.join(self.log_dir, log_csv_name) self.csv_writer.writerow(log_data) # save model logging.info("eval_avg_reward: " + format(eval_avg_reward, ".5f")) eval_env_score = eval_avg_reward if eval_env_score >= self.max_env_score: logging.info("saving max env score model at: " + self.save_best_model_path) torch.save(self._learn_model.state_dict(), self.save_best_model_path) self.max_env_score = eval_env_score logging.info("saving current model at: " + self.save_model_path) torch.save(self._learn_model.state_dict(), self.save_model_path) return self.max_env_score >= self.stop_value def get_d4rl_normalized_score(self, score, env_name): env_key = env_name.split('-')[0].lower() assert env_key in D4RLTrajectoryDataset.REF_MAX_SCORE, \ f'no reference score for {env_key} env to calculate d4rl score' d4rl_max_score, d4rl_min_score = D4RLTrajectoryDataset.REF_MAX_SCORE, D4RLTrajectoryDataset.REF_MIN_SCORE return (score - d4rl_min_score[env_key]) / (d4rl_max_score[env_key] - d4rl_min_score[env_key]) def _state_dict_learn(self) -> Dict[str, Any]: return { 'model': self._learn_model.state_dict(), # 'target_model': self._target_model.state_dict(), 'optimizer': self._optimizer.state_dict(), } def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: self._learn_model.load_state_dict(state_dict['model']) # self._target_model.load_state_dict(state_dict['target_model']) self._optimizer.load_state_dict(state_dict['optimizer']) def default_model(self) -> Tuple[str, List[str]]: return 'dt', ['ding.model.template.decision_transformer'] def _monitor_vars_learn(self) -> List[str]: return ['cur_lr', 'action_loss']
[ "torch.zeros", "torch.device", "torch.arange", "torch.no_grad", "torch.from_numpy", "torch.nn.functional.mse_loss", "torch.ones", "torch.nn.functional.cross_entropy", "torch.clone", "torch.argmax" ]
1.1.0
kxzxvbk/DI-engine
268d77db3cb54401b2cfc83e2bc3ec87c31e7b83
0.4
# CometML needs to be imported first. try: import comet_ml except ImportError: pass from model import SampleRNN, Predictor from model import CNNSeq2SampleRNN from optim import gradient_clipping from nn import sequence_nll_loss_bits from trainer import Trainer from trainer.plugins import ( TrainingLossMonitor, ValidationPlugin, AbsoluteTimeMonitor, SaverPlugin, GeneratorPlugin, StatsPlugin ) from dataset import NpzDataset, DataLoader import torch from torch.utils.trainer.plugins import Logger from natsort import natsorted from functools import reduce import os import shutil import sys from glob import glob import re import argparse import utils import pickle default_params = { # model parameters 'n_rnn': 1, 'dim': 1024, 'learn_h0': True, 'q_levels': 256, 'seq_len': 1024, 'weight_norm': True, 'batch_size': 128, # 'batch_size': 128, 64 'val_frac': 0.5, # 0.05, 'test_frac': 0.5, # 0, # Test has already been separated for COGNIMUSE # training parameters 'keep_old_checkpoints': False, 'datasets_path': 'datasets', 'results_path': 'results', 'epoch_limit': 1000, # default: 1000 'resume': True, 'sample_rate': 16000, 'n_samples': 1, 'sample_length': 48000, # 3s -> 30000, # 8s -> 80000 'loss_smoothing': 0.99, 'cuda': True, 'comet_key': None, # 'npz_filename': 'video_feats_HSL_10fps_pad_train.npz', # 'npz_filename_test': 'video_feats_HSL_10fps_pad_test.npz', 'npz_filename': 'video_feats_HSL_10fps_origAudio_pad_train.npz', 'npz_filename_test': 'video_feats_HSL_10fps_origAudio_pad_test.npz', 'cnn_pretrain': 'cnnseq/cnn2_origAudio_res_vanilla_HSL_bin_1D_CrossEntropy_ep_40_bs_30_lr_0.001_we_0.0001_adam_76.78perf/', 'cnn_seq2seq_pretrain': 'cnnseq/cnnseq2seq2_origAudio_HSL_bin_1D_res_stepPred_8_ep_20_bs_30_relu_layers_2_size_128_lr_0.001_we_1e-05_asgd_trainSize_3182_testSize_1139_cost_audio/', } tag_params = [ 'exp', 'frame_sizes', 'n_rnn', 'dim', 'learn_h0', 'q_levels', 'seq_len', 'batch_size', 'dataset', 'val_frac', 'test_frac' ] def param_to_string(value): if isinstance(value, bool): return 'T' if value else 'F' elif isinstance(value, list): return ','.join(map(param_to_string, value)) else: return str(value) def make_tag(params): return '-'.join( key + ':' + param_to_string(params[key]) for key in tag_params if key not in default_params or params[key] != default_params[key] ) def setup_results_dir(params): def ensure_dir_exists(path): if not os.path.exists(path): os.makedirs(path) tag = make_tag(params) results_path = os.path.abspath(params['results_path']) ensure_dir_exists(results_path) results_path = os.path.join(results_path, tag) if not os.path.exists(results_path): os.makedirs(results_path) elif not params['resume']: shutil.rmtree(results_path) os.makedirs(results_path) for subdir in ['checkpoints', 'samples']: ensure_dir_exists(os.path.join(results_path, subdir)) return results_path # Includes load CNNSeq2Sample def load_last_checkpoint(checkpoints_path, model_type='samplernn'): if model_type == 'samplernn': pattern = SaverPlugin.last_pattern else: pattern = SaverPlugin.last_pattern_cnnseq2sample checkpoints_pattern = os.path.join( checkpoints_path, pattern.format('*', '*') ) checkpoint_paths = natsorted(glob(checkpoints_pattern)) if len(checkpoint_paths) > 0: checkpoint_path = checkpoint_paths[-1] checkpoint_name = os.path.basename(checkpoint_path) match = re.match( pattern.format(r'(\d+)', r'(\d+)'), checkpoint_name ) epoch = int(match.group(1)) iteration = int(match.group(2)) return (torch.load(checkpoint_path), epoch, iteration) else: return None def tee_stdout(log_path): log_file = open(log_path, 'a', 1) stdout = sys.stdout class Tee: def write(self, string): log_file.write(string) stdout.write(string) def flush(self): log_file.flush() stdout.flush() sys.stdout = Tee() def make_data_loader(overlap_len, params, npz_filename=None): npz_filename = params['npz_filename'] if npz_filename is None else npz_filename path = os.path.join(params['datasets_path'], params['dataset'], npz_filename) def data_loader(split_from, split_to, eval): dataset = NpzDataset( path, overlap_len, params['q_levels'], split_from, split_to ) return DataLoader( dataset, batch_size=params['batch_size'], seq_len=params['seq_len'], overlap_len=overlap_len, shuffle=(not eval), drop_last=(not eval) ) return data_loader def main(exp, frame_sizes, dataset, **params): params = dict( default_params, exp=exp, frame_sizes=frame_sizes, dataset=dataset, **params ) results_path = setup_results_dir(params) tee_stdout(os.path.join(results_path, 'log')) # Save samplernn parameters in .json for future audio generation import json with open(os.path.join(results_path, 'sample_rnn_params.json'), 'w') as fp: json.dump(params, fp, sort_keys=True, indent=4) # Model model = SampleRNN( frame_sizes=params['frame_sizes'], n_rnn=params['n_rnn'], dim=params['dim'], learn_h0=params['learn_h0'], q_levels=params['q_levels'], weight_norm=params['weight_norm'], batch_size=params['batch_size'] ) print("CUDA num: {}".format(torch.cuda.device_count())) predictor = Predictor(model) if params['cuda']: model = model.cuda() predictor = predictor.cuda() model_cnnseq2sample = CNNSeq2SampleRNN(params).cuda() optimizer = gradient_clipping(torch.optim.Adam(predictor.parameters())) data_loader = make_data_loader(model.lookback, params) data_loader_test = make_data_loader(model.lookback, params, npz_filename=params['npz_filename_test']) # test_split = 1 - params['test_frac'] # val_split = test_split - params['val_frac'] trainer = Trainer( predictor, model_cnnseq2sample, sequence_nll_loss_bits, optimizer, # data_loader(0, val_split, eval=False), data_loader(0, 1, eval=False), cuda=params['cuda'] ) checkpoints_path = os.path.join(results_path, 'checkpoints') checkpoint_data = load_last_checkpoint(checkpoints_path) checkpoint_data_cnnseq2sample = load_last_checkpoint(checkpoints_path, model_type='cnnseq2sample') if checkpoint_data is not None: (state_dict, epoch, iteration) = checkpoint_data (state_dict_cnnseq2sample, epoch, iteration) = checkpoint_data_cnnseq2sample trainer.epochs = epoch trainer.iterations = iteration predictor.load_state_dict(state_dict) model_cnnseq2sample.load_state_dict(state_dict_cnnseq2sample) trainer.register_plugin(TrainingLossMonitor( smoothing=params['loss_smoothing'] )) trainer.register_plugin(ValidationPlugin( # data_loader(val_split, test_split, eval=True), # data_loader_test(0, 1, eval=True) data_loader_test(0, params['val_frac'], eval=True), data_loader_test(params['val_frac'], 1, eval=True) # data_loader(test_split, 1, eval=True) )) trainer.register_plugin(AbsoluteTimeMonitor()) trainer.register_plugin(SaverPlugin( checkpoints_path, params['keep_old_checkpoints'] )) trainer.register_plugin(GeneratorPlugin( os.path.join(results_path, 'samples'), params['n_samples'], params['sample_length'], params['sample_rate'] )) trainer.register_plugin( Logger([ 'training_loss', 'validation_loss', 'test_loss', 'time' ]) ) trainer.register_plugin(StatsPlugin( results_path, iteration_fields=[ 'training_loss', ('training_loss', 'running_avg'), 'time' ], epoch_fields=[ 'validation_loss', 'test_loss', 'time' ], plots={ 'loss': { 'x': 'iteration', 'ys': [ 'training_loss', ('training_loss', 'running_avg'), 'validation_loss', 'test_loss', ], 'log_y': True } } )) trainer.run(params['epoch_limit']) if __name__ == '__main__': parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, argument_default=argparse.SUPPRESS ) def parse_bool(arg): arg = arg.lower() if 'true'.startswith(arg): return True elif 'false'.startswith(arg): return False else: raise ValueError() parser.add_argument('--exp', required=True, help='experiment name') parser.add_argument( '--frame_sizes', nargs='+', type=int, required=True, help='frame sizes in terms of the number of lower tier frames, \ starting from the lowest RNN tier' ) parser.add_argument( '--dataset', required=True, help='dataset name - name of a directory in the datasets path \ (settable by --datasets_path)' ) parser.add_argument( '--n_rnn', type=int, help='number of RNN layers in each tier' ) parser.add_argument( '--dim', type=int, help='number of neurons in every RNN and MLP layer' ) parser.add_argument( '--learn_h0', type=parse_bool, help='whether to learn the initial states of RNNs' ) parser.add_argument( '--q_levels', type=int, help='number of bins in quantization of audio samples' ) parser.add_argument( '--seq_len', type=int, help='how many samples to include in each truncated BPTT pass' ) parser.add_argument( '--weight_norm', type=parse_bool, help='whether to use weight normalization' ) parser.add_argument('--batch_size', type=int, help='batch size') parser.add_argument( '--val_frac', type=float, help='fraction of data to go into the validation set' ) parser.add_argument( '--test_frac', type=float, help='fraction of data to go into the test set' ) parser.add_argument( '--keep_old_checkpoints', type=parse_bool, help='whether to keep checkpoints from past epochs' ) parser.add_argument( '--datasets_path', help='path to the directory containing datasets' ) parser.add_argument( '--results_path', help='path to the directory to save the results to' ) parser.add_argument('--epoch_limit', type=int, help='how many epochs to run') parser.add_argument( '--resume', type=parse_bool, default=True, help='whether to resume training from the last checkpoint' ) parser.add_argument( '--sample_rate', type=int, help='sample rate of the training data and generated sound' ) parser.add_argument( '--n_samples', type=int, help='number of samples to generate in each epoch' ) parser.add_argument( '--sample_length', type=int, help='length of each generated sample (in samples)' ) parser.add_argument( '--npz_filename', help='Filename with npz data for train' ) parser.add_argument( '--npz_filename_test', help='Filename with npz data for test' ) parser.add_argument( '--cnn_pretrain', help='Filename with pretrained CNN' ) parser.add_argument( '--cnn_seq2seq_pretrain', help='Filename with pretrained CNN-Seq2Seq' ) parser.add_argument( '--loss_smoothing', type=float, help='smoothing parameter of the exponential moving average over \ training loss, used in the log and in the loss plot' ) parser.add_argument( '--cuda', type=parse_bool, help='whether to use CUDA' ) parser.add_argument( '--comet_key', help='comet.ml API key' ) parser.add_argument( '--seq2seq_model_type', type=str, help='Seq2Seq model optoins. Options=[seq2seq (lstm), seq2seq_gru (gru)]' ) parser.set_defaults(**default_params) main(**vars(parser.parse_args()))
[ "torch.cuda.device_count", "torch.utils.trainer.plugins.Logger", "torch.load" ]
0.4.1
gcunhase/Scene2Wav
99a3ad6c9f2cea1d58590a0bb834203bc525ced8
1.6
import os # os.environ["CUDA_VISIBLE_DEVICES"] = '1' import torch torch.multiprocessing.set_sharing_strategy('file_system') import random import numpy as np from tqdm import tqdm from torch_geometric.data import DataLoader, DataListLoader from torch_geometric.nn.data_parallel import DataParallel import scipy.sparse as sp import argparse import warnings warnings.simplefilter('ignore', sp.SparseEfficiencyWarning) from modeling.GATIRec import GATIRec from utils.logger import load_yaml from utils.metrics import Evaluator from dataloaders.datasets.MovieLens import DynamicMovieLens from dataloaders.datasets.Flixster import Flixster from dataloaders.datasets.Douban import Douban from dataloaders.datasets.YahooMusic import YahooMusic class Transfer(object): def __init__(self): self.config = load_yaml('config/transfer.yaml') self.device = 'cpu' self.cuda = self._init_gpu() # if cuda, device:'cpu'->'cuda' self.model = self._init_model() if self.config['ensemble']: self.models = self._init_models() self.evaluator = Evaluator() def _init_gpu(self): cuda = torch.cuda.is_available() and self.config['is_cuda'] if cuda: self.device = 'cuda:0' # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(x) for x in self.config['gpu_ids']]) return cuda def _init_model(self): input_embedding = self.config['input_embedding'] edge_classes = self.config['edge_classes'] heads = self.config['heads'] layers = self.config['layers'] input_channels = self.config['input_channels'] if input_embedding else 4 attention = True model = GATIRec(input_channels=input_channels, EGAT_heads=heads, EGAT_output_channels=32, EGAT_layers=layers, edge_classes=edge_classes, multiply_by=1, activation='elu', decoder_choice='mlp', concat_nodes_feature=True, edge_embedding='cumsum', add_self_feature=True, input_embedding=input_embedding, attention=attention) checkpoint = torch.load(self.config['checkpoint_path']) model.load_state_dict(checkpoint['state_dict']) if self.cuda: device_ids = [i for i in range(len(self.config['gpu_ids']))] if len(device_ids) > 1: model = DataParallel(model, device_ids=device_ids) model = model.to(self.device) return model def _init_models(self): input_embedding = self.config['input_embedding'] edge_classes = self.config['edge_classes'] heads = self.config['heads'] layers = self.config['layers'] input_channels = self.config['input_channels'] if input_embedding else 4 attention = True checkpoint_epochs = [50, 60, 70, 80] models = [] for epoch in checkpoint_epochs: model = GATIRec(input_channels=input_channels, EGAT_heads=heads, EGAT_output_channels=32, EGAT_layers=layers, edge_classes=edge_classes, multiply_by=1, activation='elu', decoder_choice='mlp', concat_nodes_feature=True, edge_embedding='cumsum', add_self_feature=True, input_embedding=input_embedding, attention=attention) checkpoint_path = os.path.join(self.config['ensemble_path'],'checkpoint_epoch0{}.pth.tar'.format(epoch)) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['state_dict']) models.append(model) models = torch.nn.ModuleList(models) return models.to(self.device) def testing(self, dataset_name='ml_100k'): one_hot_flag = not self.config['input_embedding'] if dataset_name == 'flixster': dataset = Flixster(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag, transfer=True) self.model.set_multiply_by(self.config['flixster_multiply_by']) elif dataset_name == 'douban': dataset = Douban(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag) self.model.set_multiply_by(self.config['douban_multiply_by']) elif dataset_name == 'yahoo_music': dataset = YahooMusic(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag, transfer=True) self.model.set_multiply_by(self.config['yahoo_music_multiply_by']) else: dataset = DynamicMovieLens(root=self.config['dataset_root'], dataset=self.config['pretrain_dataset'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag) self.model.set_multiply_by(1) dataloader = DataLoader(dataset, batch_size=self.config['batch_size'], shuffle=False, num_workers=self.config['num_workers'], pin_memory=self.cuda) self.model.eval() self.evaluator.reset() tbar = tqdm(dataloader) with torch.no_grad(): for i, sample in enumerate(tbar): data = sample data.to(self.device, non_blocking=True) data_y = data.y preds = self.model(data) self.evaluator.add_batch(preds.cpu().numpy(), data_y.cpu().numpy()) torch.cuda.empty_cache() rmse = self.evaluator.rmse() log_string = '[dataset: %s, numSamples: %d] rmse: %f' % ( dataset_name, len(dataloader.dataset), rmse) print(log_string) def ensemble_testing(self, dataset_name='ml_100k'): one_hot_flag = not self.config['input_embedding'] if dataset_name == 'flixster': dataset = Flixster(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag, transfer=True) for i in range(4): self.models[i].set_multiply_by(self.config['flixster_multiply_by']) elif dataset_name == 'douban': dataset = Douban(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag) for i in range(4): self.models[i].set_multiply_by(self.config['douban_multiply_by']) elif dataset_name == 'yahoo_music': dataset = YahooMusic(root=self.config['dataset_root'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag, transfer=True) for i in range(4): self.models[i].set_multiply_by(self.config['yahoo_music_multiply_by']) else: dataset = DynamicMovieLens(root=self.config['dataset_root'], dataset=self.config['pretrain_dataset'], max_neighbors=self.config['max_neighbors'], split='test', one_hot_flag=one_hot_flag) for i in range(4): self.models[i].set_multiply_by(1) dataloader = DataLoader(dataset, batch_size=self.config['batch_size'], shuffle=False, num_workers=self.config['num_workers'], pin_memory=self.cuda) self.models.eval() self.evaluator.reset() tbar = tqdm(dataloader) with torch.no_grad(): for i, sample in enumerate(tbar): data = sample data.to(self.device, non_blocking=True) data_y = data.y outs = [] for j in range(4): preds = self.models[j](data).view(1, -1) outs.append(preds) outs = torch.cat(outs, 0).mean(0) self.evaluator.add_batch(outs.cpu().numpy(), data_y.cpu().numpy()) torch.cuda.empty_cache() rmse = self.evaluator.rmse() log_string = '[dataset: %s, numSamples: %d] rmse: %f' % (dataset_name, len(dataloader.dataset), rmse) print(log_string) def start(self): if self.config['ensemble']: self.ensemble_testing('flixster') self.ensemble_testing('douban') self.ensemble_testing('yahoo_music') else: self.testing('flixster') self.testing('douban') self.testing('yahoo_music') if __name__ == '__main__': tr = Transfer() tr.start()
[ "torch.cat", "torch.nn.ModuleList", "torch.no_grad", "torch.cuda.empty_cache", "torch.cuda.is_available", "torch.load", "torch.multiprocessing.set_sharing_strategy" ]
1.6.0
kaai520/GATI-Rec
1cc2efbbeeef2705add0256dfec2262da1df7119
1.10
from typing import Dict, Any import random import numpy as np import torch class Callback: def __init__(self, update_frequency_type: str = 'batch', update_frequency: int = 100): self.update_frequency_type = update_frequency_type self.update_frequency = update_frequency self._num_batches = 0 self._epoch = 0 self._batch = 0 self._step = 0 # Random states to stash self._random_state = None self._numpy_random_state = None self._torch_random_state = None def on_training_begin(self, num_batches: int, train: bool): self._num_batches = num_batches self._epoch = 0 self._batch = 0 self._step = 0 self._on_training_begin(train) def on_train_batch_begin(self, batch: int, train: bool): self._batch = batch if self.update_frequency_type == 'batch' and batch % self.update_frequency == 0: self._step = batch / self.update_frequency + self._epoch * (self._num_batches + 1) self._on_train_batch_begin(batch, train) def on_train_batch_end(self, batch: int, logs: Dict[str, Any], train: bool): if self.update_frequency_type == 'batch' and batch % self.update_frequency == 0: self._on_train_batch_end(batch, logs, train) def on_train_epoch_begin(self, epoch: int, train: bool): self._epoch = epoch if self.update_frequency_type == 'epoch' and epoch % self.update_frequency == 0: self._step = self._epoch self._on_train_epoch_begin(epoch, train) def on_train_epoch_end(self, epoch: int, logs: Dict[str, Any], train: bool): if self.update_frequency_type == 'epoch' and epoch % self.update_frequency == 0: self._on_train_epoch_end(epoch, logs, train) def _stash_random_state(self): self._random_state = random.getstate() self._numpy_random_state = np.random.get_state() self._torch_random_state = torch.get_rng_state() def _pop_stashed_random_state(self): if self._random_state is not None: random.setstate(self._random_state) np.random.set_state(self._numpy_random_state) torch.set_rng_state(self._torch_random_state) self._random_state = None self._numpy_random_state = None self._torch_random_state = None # To be implemented by the subclasses def _on_training_begin(self, train: bool): pass def _on_train_batch_begin(self, batch: int, train: bool): pass def _on_train_batch_end(self, batch: int, logs: Dict[str, Any], train: bool): pass def _on_train_epoch_begin(self, epoch: int, train: bool): pass def _on_train_epoch_end(self, epoch: int, logs: Dict[str, Any], train: bool): pass
[ "torch.set_rng_state", "torch.get_rng_state" ]
1.10.1
paulosoaresua/mlbase
8b60b80fd1745d6565fd38e9bc9d2e203033ae27
1.10
import torch import torch.nn as nn from mlbase.model.base_model import BaseModel from typing import List from mlbase.callback.callback import Callback from mlbase.callback.validation_check import ValidationCheck from torch.utils.data import Dataset, DataLoader import random import numpy as np class ModelRunner: def __init__(self, model: BaseModel, optimizer: torch.optim): self._model = model self._optimizer = optimizer self._initial_epoch = 0 self._initial_batch = 0 self._random_state_initializers = None def reset(self): self._initial_epoch = 0 self._initial_batch = 0 self._random_state_initializers = None def load(self, in_dir: str, save_point: int = None): if save_point is None: # Retrieve the last saved model in the folder pass filename = f"{in_dir}/model.{save_point}.pt" data_package = torch.load(filename) self._model.load_state_dict(data_package['model_state_dict']) self._optimizer.load_state_dict(data_package['optimizer_state_dict']) random.setstate(data_package['random_state']) np.random.set_state(data_package['numpy_random_state']) torch.set_rng_state(data_package['torch_random_state']) self._initial_epoch = data_package['epoch'] + 1 def train(self, training_set: Dataset, epochs: int, batch_size: int, callbacks: List[Callback], shuffle: bool): self._model.train() self._model.stop_training = False training_data_loader = DataLoader(training_set, batch_size=batch_size, shuffle=shuffle) # All occurrences of a ValidationCheck callback must be the first ones so that other callbacks # have access to the measures computed by the former. for i in range(len(callbacks)): if isinstance(callbacks[i], ValidationCheck): callback = callbacks.pop(i) callbacks.insert(0, callback) for callback in callbacks: callback.on_training_begin(len(training_data_loader), True) for epoch in range(self._initial_epoch, epochs): for callback in callbacks: callback.on_train_epoch_begin(epoch, True) for batch, data in enumerate(training_data_loader): self._model.log_keys.clear() for callback in callbacks: callback.on_train_batch_begin(batch, True) loss = self._model.calculate_loss(data) self._optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(self._model.parameters(), 5.0) self._optimizer.step() for callback in callbacks: callback.on_train_batch_end(batch, self._model.log_keys, True) # Clear the log because if it's preserved and there's a callback per epoch to save the log, # it will save the result from the last batch. Callbacks per epoch should be combined with a # ValidationCheck or a EpochSummary callback so results can be computed over a full dataset. self._model.log_keys.clear() for callback in callbacks: callback.on_train_epoch_end(epoch, self._model.log_keys, True) if self._model.stop_training: break self._model.eval()
[ "torch.set_rng_state", "torch.load", "torch.utils.data.DataLoader" ]
1.10.1
paulosoaresua/mlbase
8b60b80fd1745d6565fd38e9bc9d2e203033ae27
1.1
import argparse import experiment_buddy import torch import torch.nn as nn from altmin import get_mods, get_codes, update_codes, update_last_layer_, update_hidden_weights_adam_ from altmin import scheduler_step from models import LeNet from models import test from utils import get_devices, load_dataset # Training settings parser = argparse.ArgumentParser(description='Online Alternating-Minimization with SGD') parser.add_argument('--dataset', default='mnist', metavar='D', help='name of dataset') parser.add_argument('--data-augmentation', action='store_true', default=False, help='enables data augmentation') parser.add_argument('--batch-size', type=int, default=200, metavar='B', help='input batch size for training') parser.add_argument('--epochs', type=int, default=50, metavar='E', help='number of epochs to train (default: 50)') parser.add_argument('--n-iter-codes', type=int, default=5, metavar='N', help='number of internal iterations for codes optimization') parser.add_argument('--n-iter-weights', type=int, default=1, metavar='N', help='number of internal iterations in learning weights') parser.add_argument('--lr-codes', type=float, default=0.3, metavar='LR', help='learning rate for codes updates') parser.add_argument('--lr-out', type=float, default=0.008, metavar='LR', help='learning rate for last layer weights updates') parser.add_argument('--lr-weights', type=float, default=0.008, metavar='LR', help='learning rate for hidden weights updates') parser.add_argument('--lr-half-epochs', type=int, default=8, metavar='LH', help='number of epochs after which learning rate if halfed') parser.add_argument('--no-batchnorm', action='store_true', default=True, help='disables batchnormalization') parser.add_argument('--lambda_c', type=float, default=0.0, metavar='L', help='codes sparsity') parser.add_argument('--lambda_w', type=float, default=0.0, metavar='L', help='weight sparsity') parser.add_argument('--mu', type=float, default=0.003, metavar='M', help='initial mu parameter') parser.add_argument('--d-mu', type=float, default=0.0 / 300, metavar='M', help='increase in mu after every mini-batch') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-interval', type=int, default=1000, metavar='N', help='how many batches to wait before saving test performance (if set to zero, it does not save)') parser.add_argument('--log-first-epoch', action='store_true', default=False, help='whether or not it should test and log after every mini-batch in first epoch') parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training') args = parser.parse_args() experiment_buddy.register_defaults(vars(args)) tb = experiment_buddy.deploy("") # Check cuda device, num_gpus = get_devices("cuda:0" if not args.no_cuda and torch.cuda.is_available() else "cpu", seed=args.seed) # Load data and model model_name = "lenet" if model_name == 'feedforward' or model_name == 'binary': model_name += '_' + str(args.n_hidden_layers) + 'x' + str(args.n_hiddens) print('\nOnline alternating-minimization with sgd') print('* Loading dataset {}'.format(args.dataset)) print('* Loading model {}'.format(model_name)) train_loader, test_loader, n_inputs = load_dataset(args.dataset, batch_size=args.batch_size, conv_net=True, num_workers=0) window_size = train_loader.dataset.data[0].shape[0] if len(train_loader.dataset.data[0].shape) == 3: num_input_channels = train_loader.dataset.data[0].shape[2] else: num_input_channels = 1 model = LeNet(num_input_channels=num_input_channels, window_size=window_size, bias=True).to(device) criterion = nn.CrossEntropyLoss() if __name__ == "__main__": # Save everything in a `ddict` # SAV = ddict(args=args.__dict__) # Store training and test performance after each training epoch # SAV.perf = ddict(tr=[], te=[]) # Store test performance after each iteration in first epoch # SAV.perf.first_epoch = [] # Store test performance after each args.save_interval iterations # SAV.perf.te_vs_iterations = [] # Expose model modules that has_codes model = get_mods(model, optimizer='Adam', optimizer_params={'lr': args.lr_weights}, scheduler=lambda epoch: 1 / 2 ** (epoch // args.lr_half_epochs)) model[-1].optimizer.param_groups[0]['lr'] = args.lr_out # Initial mu and increment after every mini-batch mu = args.mu mu_max = 10 * args.mu step = 0 for epoch in range(1, args.epochs + 1): print('\nEpoch {} of {}. mu = {:.4f}, lr_out = {}'.format(epoch, args.epochs, mu, model[-1].scheduler.get_lr())) for batch_idx, (data, targets) in enumerate(train_loader): data, targets = data.to(device), targets.to(device) # (1) Forward model.train() with torch.no_grad(): outputs, codes = get_codes(model, data) # (2) Update codes codes, num_gradients = update_codes(codes, model, targets, criterion, mu, lambda_c=args.lambda_c, n_iter=args.n_iter_codes, lr=args.lr_codes) step += num_gradients # (3) Update weights num_gradients = update_last_layer_(model[-1], codes[-1], targets, criterion, n_iter=args.n_iter_weights) step += num_gradients num_gradients = update_hidden_weights_adam_(model, data, codes, lambda_w=args.lambda_w, n_iter=args.n_iter_weights) step += num_gradients # Store all iterations of first epoch test_accuracy, test_loss = test(model, data_loader=test_loader, label=" - Test") tb.add_scalar("test/accuracy", test_accuracy, step) tb.add_scalar("test/loss", test_loss, step) # Outputs to terminal loss = criterion(outputs, targets) tb.add_scalar("train/epoch", epoch, step) tb.add_scalar("train/loss", loss, step) # Increment mu if mu < mu_max: mu = mu + args.d_mu scheduler_step(model) # Print performances # SAV.perf.tr += [test(model, data_loader=train_loader, label="Training")] # SAV.perf.te += [test(model, data_loader=test_loader, label="Test")] train_accuracy, train_loss = test(model, data_loader=train_loader) tb.add_scalar("train/accuracy", train_accuracy, step) tb.add_scalar("train/loss", train_loss, step) test_accuracy, test_loss = test(model, data_loader=test_loader) tb.add_scalar("test/accuracy", test_accuracy, step) tb.add_scalar("test/loss", test_loss, step)
[ "torch.no_grad", "torch.cuda.is_available", "torch.nn.CrossEntropyLoss" ]
1.1.0
manuel-delverme/online-alt-min
83f2c7d8bf9d6c8de8a8812e4fee73f9b58e05ad
1.0
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task. """ import collections import inspect import math import os import random import re import shutil import sys import time import warnings from logging import StreamHandler from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from tqdm.auto import tqdm # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split default_hp_search_backend, get_reporting_integration_callbacks, hp_params, is_fairscale_available, is_optuna_available, is_ray_tune_available, run_hp_search_optuna, run_hp_search_ray, ) import numpy as np import torch from packaging import version from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler, SequentialSampler from . import __version__ from .configuration_utils import PretrainedConfig from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from .debug_utils import DebugOption, DebugUnderflowOverflow from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled from .dependency_versions_check import dep_version_check from .file_utils import ( CONFIG_NAME, WEIGHTS_NAME, PushToHubMixin, is_apex_available, is_datasets_available, is_in_notebook, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_torch_tpu_available, is_training_run_on_sagemaker, ) from .modelcard import TrainingSummary from .modeling_utils import PreTrainedModel, unwrap_model from .optimization import Adafactor, AdamW, get_scheduler from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedSamplerWithLoop, DistributedTensorGatherer, IterableDatasetShard, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, ShardSampler, distributed_broadcast_scalars, distributed_concat, find_batch_size, get_parameter_names, nested_concat, nested_detach, nested_numpify, nested_truncate, nested_xla_mesh_reduce, reissue_pt_warnings, ) from .trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalLoopOutput, EvalPrediction, HPSearchBackend, PredictionOutput, ShardedDDPOption, TrainerMemoryTracker, TrainOutput, default_compute_objective, default_hp_space, denumpify_detensorize, get_last_checkpoint, set_seed, speed_metrics, ) from .training_args import ParallelMode, TrainingArguments from .utils import logging from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES _is_torch_generator_available = False _is_native_amp_available = False DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from .utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback if is_apex_available(): from apex import amp if version.parse(torch.__version__) >= version.parse("1.6"): _is_torch_generator_available = True _is_native_amp_available = True from torch.cuda.amp import autocast if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl if is_fairscale_available(): dep_version_check("fairscale") import fairscale from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP from fairscale.nn.wrap import auto_wrap from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.distributed as dist from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP else: import torch.distributed as dist if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat if is_training_run_on_sagemaker(): logging.add_handler(StreamHandler(sys.stdout)) if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`): The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed. .. note:: :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel` provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. args (:class:`~transformers.TrainingArguments`, `optional`): The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided. data_collator (:obj:`DataCollator`, `optional`): The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise. train_dataset (:obj:`torch.utils.data.dataset.Dataset` or :obj:`torch.utils.data.dataset.IterableDataset`, `optional`): The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Note that if it's a :obj:`torch.utils.data.dataset.IterableDataset` with some randomization and you are training in a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that internally sets the seed of the RNGs used. eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. tokenizer (:class:`PreTrainedTokenizerBase`, `optional`): The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`): A function that instantiates the model to be used. If provided, each call to :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function. The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in :doc:`here <callback>`. If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method. optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of :class:`~transformers.AdamW` on your model and a scheduler given by :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`. Important attributes: - **model** -- Always points to the core model. If using a transformers model, it will be a :class:`~transformers.PreTrainedModel` subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``, the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to :obj:`False` if model parallel or deepspeed is used, or if the default ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` . - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called while in ``train``) """ from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, model_init: Callable[[], PreTrainedModel] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) self.args = args # Seed must be set before instantiating the model when using model set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # set the correct log level depending on the node log_level = args.get_process_log_level() logging.set_verbosity(log_level) # force device and distributed setup init explicitly args._setup_devices if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. " "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.", FutureWarning, ) self.model_init = model_init if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel: self.is_model_parallel = True else: self.is_model_parallel = False # Setup Sharded DDP training self.sharded_ddp = None if len(args.sharded_ddp) > 0: if args.deepspeed: raise ValueError( "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if args.local_rank == -1: raise ValueError("Using sharded DDP only works in distributed training.") elif not is_fairscale_available(): raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.") elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None: raise ImportError( "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found " f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`." ) elif ShardedDDPOption.SIMPLE in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.SIMPLE elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_2 elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_3 # one place to sort out whether to place the model on device or not # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment # 3. full fp16 eval - since the model needs to be half'ed first # 4. Sharded DDP - same as MP self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or args.deepspeed or (args.fp16_full_eval and not args.do_train) or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3]) ): self.place_model_on_device = False default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.tokenizer = tokenizer if self.place_model_on_device: model = model.to(args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1 # later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument." "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) # Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create clone of distant repo and output directory if needed if self.args.push_to_hub: self.init_git_repo() if self.is_world_process_zero(): os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0: raise ValueError("train_dataset does not implement __len__, max_steps has to be specified") self._signature_columns = None # Mixed precision setup self.use_apex = False self.use_amp = False self.fp16_backend = None if args.fp16: if args.fp16_backend == "auto": self.fp16_backend = "amp" if _is_native_amp_available else "apex" else: self.fp16_backend = args.fp16_backend logger.info(f"Using {self.fp16_backend} fp16 backend") if args.fp16 and not args.deepspeed: # deepspeed manages its own fp16 if self.fp16_backend == "amp": self.use_amp = True if is_sagemaker_mp_enabled(): self.scaler = smp.amp.GradScaler() elif self.sharded_ddp is not None: self.scaler = ShardedGradScaler() else: self.scaler = torch.cuda.amp.GradScaler() else: if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex." ) self.use_apex = True # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error. if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0: raise ValueError( "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass " "along 'max_grad_norm': 0 in your hyperparameters." ) # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.state = TrainerState() self.control = TrainerControl() # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then # returned to 0 every time flos need to be logged self.current_flos = 0 self.hp_search_backend = None self.use_tune_checkpoints = False default_label_names = ( ["start_positions", "end_positions"] if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values() else ["labels"] ) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) # very last self._memory_tracker.stop_and_update_metrics() def add_callback(self, callback): """ Add a callback to the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it. If the callback is not found, returns :obj:`None` (and no error is raised). Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will pop the first member of that class found in the list of callbacks. Returns: :class:`~transformer.TrainerCallback`: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return dataset if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. signature = inspect.signature(self.model.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += ["label", "label_ids"] columns = [k for k in self._signature_columns if k in dataset.column_names] ignored_columns = list(set(dataset.column_names) - set(self._signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set " logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." ) if version.parse(datasets.__version__) < version.parse("1.4.0"): dataset.set_format( type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"] ) return dataset else: return dataset.remove_columns(ignored_columns) def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]: if not isinstance(self.train_dataset, collections.abc.Sized): return None generator = None if self.args.world_size <= 1 and _is_torch_generator_available: generator = torch.Generator() generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item())) # Build the sampler. if self.args.group_by_length: if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset): lengths = ( self.train_dataset[self.args.length_column_name] if self.args.length_column_name in self.train_dataset.column_names else None ) else: lengths = None model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None if self.args.world_size <= 1: return LengthGroupedSampler( self.train_dataset, self.args.train_batch_size, lengths=lengths, model_input_name=model_input_name, generator=generator, ) else: return DistributedLengthGroupedSampler( self.train_dataset, self.args.train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, lengths=lengths, model_input_name=model_input_name, seed=self.args.seed, ) else: if self.args.world_size <= 1: if _is_torch_generator_available: return RandomSampler(self.train_dataset, generator=generator) return RandomSampler(self.train_dataset) elif ( self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL] and not self.args.dataloader_drop_last ): # Use a loop for TPUs when drop_last is False to have all batches have the same size. return DistributedSamplerWithLoop( self.train_dataset, batch_size=self.args.per_device_train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) else: return DistributedSampler( self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) def get_train_dataloader(self) -> DataLoader: """ Returns the training :class:`~torch.utils.data.DataLoader`. Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") if isinstance(train_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: train_dataset = IterableDatasetShard( train_dataset, batch_size=self.args.train_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( train_dataset, batch_size=self.args.train_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) train_sampler = self._get_train_sampler() return DataLoader( train_dataset, batch_size=self.args.train_batch_size, sampler=train_sampler, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]: # Deprecated code if self.args.use_legacy_prediction_loop: if is_torch_tpu_available(): return SequentialDistributedSampler( eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal() ) elif is_sagemaker_mp_enabled(): return SequentialDistributedSampler( eval_dataset, num_replicas=smp.dp_size(), rank=smp.dp_rank(), batch_size=self.args.per_device_eval_batch_size, ) elif self.args.local_rank != -1: return SequentialDistributedSampler(eval_dataset) else: return SequentialSampler(eval_dataset) if self.args.world_size <= 1: return SequentialSampler(eval_dataset) else: return ShardSampler( eval_dataset, batch_size=self.args.per_device_eval_batch_size, num_processes=self.args.world_size, process_index=self.args.process_index, ) def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: """ Returns the evaluation :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation") if isinstance(eval_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: eval_dataset = IterableDatasetShard( eval_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( eval_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) eval_sampler = self._get_eval_sampler(eval_dataset) return DataLoader( eval_dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if is_datasets_available() and isinstance(test_dataset, datasets.Dataset): test_dataset = self._remove_unused_columns(test_dataset, description="test") if isinstance(test_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: test_dataset = IterableDatasetShard( test_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( test_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) test_sampler = self._get_eval_sampler(test_dataset) # We use the same batch_size as for eval. return DataLoader( test_dataset, sampler=test_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, pin_memory=self.args.dataloader_pin_memory, ) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer` and/or :obj:`create_scheduler`) in a subclass. """ self.create_optimizer() self.create_scheduler(num_training_steps) def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: decay_parameters = get_parameter_names(self.model, [nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if n in decay_parameters], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if is_sagemaker_mp_enabled(): self.optimizer = smp.DistributedOptimizer(self.optimizer) def create_scheduler(self, num_training_steps: int): """ Setup the scheduler. The optimizer of the trainer must have been set up before this method is called. Args: num_training_steps (int): The number of training steps to do. """ if self.lr_scheduler is None: warmup_steps = ( self.args.warmup_steps if self.args.warmup_steps > 0 else math.ceil(num_training_steps * self.args.warmup_ratio) ) self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps, ) def num_examples(self, dataloader: DataLoader) -> int: """ Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset. Will raise an exception if the underlying dataset does not implement method :obj:`__len__` """ return len(dataloader.dataset) def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """HP search setup code""" self._trial = trial if self.hp_search_backend is None or trial is None: return if self.hp_search_backend == HPSearchBackend.OPTUNA: params = self.hp_space(trial) elif self.hp_search_backend == HPSearchBackend.RAY: params = trial params.pop("wandb", None) for key, value in params.items(): if not hasattr(self.args, key): raise AttributeError( f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`." ) old_attr = getattr(self.args, key, None) # Casting value to the proper type if old_attr is not None: value = type(old_attr)(value) setattr(self.args, key, value) if self.hp_search_backend == HPSearchBackend.OPTUNA: logger.info("Trial:", trial.params) if self.args.deepspeed: # Rebuild the deepspeed config to reflect the updated training parameters from transformers.deepspeed import HfDeepSpeedConfig self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args) def _report_to_hp_search( self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float] ): if self.hp_search_backend is None or trial is None: return self.objective = self.compute_objective(metrics.copy()) if self.hp_search_backend == HPSearchBackend.OPTUNA: import optuna trial.report(self.objective, epoch) if trial.should_prune(): raise optuna.TrialPruned() elif self.hp_search_backend == HPSearchBackend.RAY: from ray import tune if self.control.should_save: self._tune_save_checkpoint() tune.report(objective=self.objective, **metrics) def _tune_save_checkpoint(self): from ray import tune if not self.use_tune_checkpoints: return with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir: output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}") self.save_model(output_dir) if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) def call_model_init(self, trial=None): model_init_argcount = len(inspect.signature(self.model_init).parameters) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(trial) else: raise RuntimeError("model_init should have 0 or 1 argument.") if model is None: raise RuntimeError("model_init should not return None.") return model def _wrap_model(self, model, training=True): if is_sagemaker_mp_enabled(): # Wrapping the base model twice in a DistributedModel will raise an error. if isinstance(self.model_wrapped, smp.model.DistributedModel): return self.model_wrapped return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps) # already initialized its own DDP and AMP if self.deepspeed: return self.deepspeed # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again if unwrap_model(model) is not model: return model # Mixed precision training with apex (torch < 1.6) if self.use_apex and training: model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level) # Multi-gpu training (should be after apex fp16 initialization) if self.args.n_gpu > 1: model = nn.DataParallel(model) # Note: in torch.distributed mode, there's no point in wrapping the model # inside a DistributedDataParallel as we'll be under `no_grad` anyways. if not training: return model # Distributed training (should be after apex fp16 initialization) if self.sharded_ddp is not None: # Sharded DDP! if self.sharded_ddp == ShardedDDPOption.SIMPLE: model = ShardedDDP(model, self.optimizer) else: mixed_precision = self.args.fp16 cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3 # XXX: Breaking the self.model convention but I see no way around it for now. if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp: model = auto_wrap(model) self.model = model = FullyShardedDDP( model, mixed_precision=mixed_precision, reshard_after_forward=zero_3, cpu_offload=cpu_offload, ).to(self.args.device) elif is_sagemaker_dp_enabled(): model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) elif self.args.local_rank != -1: if self.args.ddp_find_unused_parameters is not None: find_unused_parameters = self.args.ddp_find_unused_parameters elif isinstance(model, PreTrainedModel): # find_unused_parameters breaks checkpointing as per # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021 find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False) else: find_unused_parameters = True model = nn.parallel.DistributedDataParallel( model, device_ids=[self.args.local_rank], output_device=self.args.local_rank, find_unused_parameters=find_unused_parameters, ) return model def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): The trial run or the hyperparameter dictionary for hyperparameter search. kwargs: Additional keyword arguments used to hide deprecated arguments """ # memory metrics - must set up as early as possible self._memory_tracker.start() args = self.args self.is_in_train = True # do_train is not a reliable argument, as it might not be set and .train() still called, so # the following is a workaround: if args.fp16_full_eval and not args.do_train: self.model = self.model.to(args.device) if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. set_seed(args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") if resume_from_checkpoint is not None: if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}") logger.info(f"Loading model from {resume_from_checkpoint}).") if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)): config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME)) checkpoint_version = config.transformers_version if checkpoint_version is not None and checkpoint_version != __version__: logger.warn( f"You are resuming training from a checkpoint trained with {checkpoint_version} of " f"Transformers but your current version is {__version__}. This is not recommended and could " "yield to errors or unwanted behaviors." ) if args.deepspeed: # will be resumed in deepspeed_init pass else: # We load the model state dict on the CPU to avoid an OOM error. state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self.model = self.model.to(args.device) self.model_wrapped = self.model # Keeping track whether we can can len() on the dataset or not train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) # Data loader and number of training steps train_dataloader = self.get_train_dataloader() # Setting up training control variables: # number of training epochs: num_train_epochs # number of training steps per epoch: num_update_steps_per_epoch # total number of training steps to execute: max_steps total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size if train_dataset_is_sized: num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) if args.max_steps > 0: max_steps = args.max_steps num_train_epochs = args.max_steps // num_update_steps_per_epoch + int( args.max_steps % num_update_steps_per_epoch > 0 ) # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's # the best we can do. num_train_samples = args.max_steps * total_train_batch_size else: max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch) num_train_epochs = math.ceil(args.num_train_epochs) num_train_samples = len(self.train_dataset) * args.num_train_epochs else: # see __init__. max_steps is set when the dataset has no __len__ max_steps = args.max_steps num_train_epochs = int(args.num_train_epochs) num_update_steps_per_epoch = max_steps num_train_samples = args.max_steps * total_train_batch_size if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: debug_overflow = DebugUnderflowOverflow(self.model) # noqa delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE if args.deepspeed: deepspeed_engine, optimizer, lr_scheduler = deepspeed_init( self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint ) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine self.optimizer = optimizer self.lr_scheduler = lr_scheduler elif not delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) self.state = TrainerState() self.state.is_hyper_param_search = trial is not None model = self._wrap_model(self.model_wrapped) # for the rest of this function `model` is the outside model, whether it was wrapped or not if model is not self.model: self.model_wrapped = model if delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) # Check if saved optimizer or scheduler states exist self._load_optimizer_and_scheduler(resume_from_checkpoint) # important: at this point: # self.model is the Transformers Model # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. # Train! num_examples = ( self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_steps}") self.state.epoch = 0 start_time = time.time() epochs_trained = 0 steps_trained_in_current_epoch = 0 steps_trained_progress_bar = None # Check if continuing training from a checkpoint if resume_from_checkpoint is not None and os.path.isfile( os.path.join(resume_from_checkpoint, "trainer_state.json") ): self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json")) epochs_trained = self.state.global_step // num_update_steps_per_epoch if not args.ignore_data_skip: steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) steps_trained_in_current_epoch *= args.gradient_accumulation_steps else: steps_trained_in_current_epoch = 0 logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {self.state.global_step}") if not args.ignore_data_skip: logger.info( f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` " "flag to your launch command, but you will resume the training on data already seen by your model." ) if self.is_local_process_zero() and not args.disable_tqdm: steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch) steps_trained_progress_bar.set_description("Skipping the first batches") # Update the references self.callback_handler.model = self.model self.callback_handler.optimizer = self.optimizer self.callback_handler.lr_scheduler = self.lr_scheduler self.callback_handler.train_dataloader = train_dataloader self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None self.state.trial_params = hp_params(trial) if trial is not None else None # This should be the same if the state has been saved but in case the training arguments changed, it's safer # to set this after the load. self.state.max_steps = max_steps self.state.num_train_epochs = num_train_epochs self.state.is_local_process_zero = self.is_local_process_zero() self.state.is_world_process_zero = self.is_world_process_zero() # tr_loss is a tensor to avoid synchronization of TPUs through .item() tr_loss = torch.tensor(0.0).to(args.device) # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses self._total_loss_scalar = 0.0 self._globalstep_last_logged = self.state.global_step model.zero_grad() self.control = self.callback_handler.on_train_begin(args, self.state, self.control) # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. if not args.ignore_data_skip: for epoch in range(epochs_trained): # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break for epoch in range(epochs_trained, num_train_epochs): if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch) elif isinstance(train_dataloader.dataset, IterableDatasetShard): train_dataloader.dataset.set_epoch(epoch) if is_torch_tpu_available(): parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device) epoch_iterator = parallel_loader else: epoch_iterator = train_dataloader # Reset the past mems state at the beginning of each epoch if necessary. if args.past_index >= 0: self._past = None steps_in_epoch = ( len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps ) self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 if steps_trained_progress_bar is not None: steps_trained_progress_bar.update(1) if steps_trained_in_current_epoch == 0: self._load_rng_state(resume_from_checkpoint) continue elif steps_trained_progress_bar is not None: steps_trained_progress_bar.close() steps_trained_progress_bar = None if step % args.gradient_accumulation_steps == 0: self.control = self.callback_handler.on_step_begin(args, self.state, self.control) if ( ((step + 1) % args.gradient_accumulation_steps != 0) and args.local_rank != -1 and args._no_sync_in_gradient_accumulation ): # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): tr_loss += self.training_step(model, inputs) else: tr_loss += self.training_step(model, inputs) self.current_flos += float(self.floating_point_ops(inputs)) # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps if self.deepspeed: self.deepspeed.step() if (step + 1) % args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch ): # Gradient clipping if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed: # deepspeed does its own clipping if self.use_amp: # AMP: gradients need unscaling self.scaler.unscale_(self.optimizer) if hasattr(self.optimizer, "clip_grad_norm"): # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping self.optimizer.clip_grad_norm(args.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): # Some models (like FullyShardedDDP) have a specific way to do gradient clipping model.clip_grad_norm_(args.max_grad_norm) else: # Revert to normal clipping otherwise, handling Apex or full precision nn.utils.clip_grad_norm_( amp.master_params(self.optimizer) if self.use_apex else model.parameters(), args.max_grad_norm, ) # Optimizer step optimizer_was_run = True if self.deepspeed: pass # called outside the loop elif is_torch_tpu_available(): xm.optimizer_step(self.optimizer) elif self.use_amp: scale_before = self.scaler.get_scale() self.scaler.step(self.optimizer) self.scaler.update() scale_after = self.scaler.get_scale() optimizer_was_run = scale_before <= scale_after else: self.optimizer.step() if optimizer_was_run and not self.deepspeed: self.lr_scheduler.step() model.zero_grad() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_in_epoch self.control = self.callback_handler.on_step_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: if is_torch_tpu_available(): # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) else: logger.warning( "You enabled PyTorch/XLA debug metrics but you don't have a TPU " "configured. Check your training configuration if this is unexpected." ) if self.control.should_training_stop: break if args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: # Wait for everyone to get here so we are sur the model has been saved by process 0. if is_torch_tpu_available(): xm.rendezvous("load_best_model_at_end") elif args.local_rank != -1: dist.barrier() logger.info( f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." ) # We load the model state dict on the CPU to avoid an OOM error. if args.local_rank == 0: print("Only loading from rank 0") state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME), map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) if self.deepspeed: self.deepspeed.load_checkpoint( self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False ) # add remaining tr_loss self._total_loss_scalar += tr_loss.item() train_loss = self._total_loss_scalar / self.state.global_step metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps) self.store_flos() metrics["total_flos"] = self.state.total_flos metrics["train_loss"] = train_loss self.is_in_train = False self._memory_tracker.stop_and_update_metrics(metrics) self.log(metrics) self.control = self.callback_handler.on_train_end(args, self.state, self.control) return TrainOutput(self.state.global_step, train_loss, metrics) def _load_state_dict_in_model(self, state_dict): load_result = self.model.load_state_dict(state_dict, strict=False) if len(load_result.missing_keys) != 0: if set(load_result.missing_keys) == set(self.model._keys_to_ignore_on_save): self.model.tie_weights() else: logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.") if len(load_result.unexpected_keys) != 0: logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.") def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch): if self.control.should_log: logs: Dict[str, float] = {} tr_loss_scalar = tr_loss.item() # reset tr_loss to zero tr_loss -= tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._total_loss_scalar += tr_loss_scalar self._globalstep_last_logged = self.state.global_step self.store_flos() self.log(logs) metrics = None if self.control.should_evaluate: metrics = self.evaluate() self._report_to_hp_search(trial, epoch, metrics) if self.control.should_save: self._save_checkpoint(model, trial, metrics=metrics) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def _load_rng_state(self, checkpoint): # Load RNG states from `checkpoint` if checkpoint is None: return local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank != -1: rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that " "wasn't launched in a distributed fashion, reproducibility is not guaranteed." ) return else: rng_file = os.path.join(checkpoint, "rng_state.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( "Didn't find an RNG file, if you are resuming a training that was launched in a distributed " "fashion, reproducibility is not guaranteed." ) return checkpoint_rng_state = torch.load(rng_file) random.setstate(checkpoint_rng_state["python"]) np.random.set_state(checkpoint_rng_state["numpy"]) torch.random.set_rng_state(checkpoint_rng_state["cpu"]) if torch.cuda.is_available(): if self.args.local_rank != -1: torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"]) else: torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"]) if is_torch_tpu_available(): xm.set_rng_state(checkpoint_rng_state["xla"]) def _save_checkpoint(self, model, trial, metrics=None): # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we # want to save except FullyShardedDDP. # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model" # Save model checkpoint checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" if self.hp_search_backend is not None and trial is not None: if self.hp_search_backend == HPSearchBackend.OPTUNA: run_id = trial.number else: from ray import tune run_id = tune.get_trial_id() run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}" run_dir = os.path.join(self.args.output_dir, run_name) else: run_dir = self.args.output_dir self.store_flos() output_dir = os.path.join(run_dir, checkpoint_folder) self.save_model(output_dir) if self.deepspeed: # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed # config `stage3_gather_fp16_weights_on_model_save` is True self.deepspeed.save_checkpoint(output_dir) # Save optimizer and scheduler if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer.consolidate_state_dict() if is_torch_tpu_available(): xm.rendezvous("saving_optimizer_states") xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) elif is_sagemaker_mp_enabled(): if smp.dp_rank() == 0: # Consolidate the state dict on all processed of dp_rank 0 opt_state_dict = self.optimizer.state_dict() # Save it and the scheduler on the main process if self.is_world_process_zero(): torch.save(opt_state_dict, os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) elif self.is_world_process_zero() and not self.deepspeed: # deepspeed.save_checkpoint above saves model/optim/sched torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) # Determine the new best metric / best model checkpoint if metrics is not None and self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics[metric_to_check] operator = np.greater if self.args.greater_is_better else np.less if ( self.state.best_metric is None or self.state.best_model_checkpoint is None or operator(metric_value, self.state.best_metric) ): self.state.best_metric = metric_value self.state.best_model_checkpoint = output_dir # Save the Trainer state if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) # Save RNG state in non-distributed training rng_states = { "python": random.getstate(), "numpy": np.random.get_state(), "cpu": torch.random.get_rng_state(), } if torch.cuda.is_available(): if self.args.local_rank == -1: # In non distributed, we save the global CUDA RNG state (will take care of DataParallel) rng_states["cuda"] = torch.cuda.random.get_rng_state_all() else: rng_states["cuda"] = torch.cuda.random.get_rng_state() if is_torch_tpu_available(): rng_states["xla"] = xm.get_rng_state() # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may # not yet exist. os.makedirs(output_dir, exist_ok=True) local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank == -1: torch.save(rng_states, os.path.join(output_dir, "rng_state.pth")) else: torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth")) # Maybe delete some older checkpoints. if self.is_world_process_zero(): self._rotate_checkpoints(use_mtime=True, output_dir=run_dir) def _load_optimizer_and_scheduler(self, checkpoint): """If optimizer and scheduler states exist, load them.""" if checkpoint is None: return if self.deepspeed: # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init return if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile( os.path.join(checkpoint, "scheduler.pt") ): # Load in optimizer and scheduler states if is_torch_tpu_available(): # On TPU we have to take some extra precautions to properly load the states on the right device. optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu") with warnings.catch_warnings(record=True) as caught_warnings: lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu") reissue_pt_warnings(caught_warnings) xm.send_cpu_data_to_device(optimizer_state, self.args.device) xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device) self.optimizer.load_state_dict(optimizer_state) self.lr_scheduler.load_state_dict(lr_scheduler_state) else: map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device self.optimizer.load_state_dict( torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=map_location) ) with warnings.catch_warnings(record=True) as caught_warnings: self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt"))) reissue_pt_warnings(caught_warnings) if self.use_amp and os.path.isfile(os.path.join(checkpoint, "scaler.pt")): self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, "scaler.pt"))) def hyperparameter_search( self, hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None, compute_objective: Optional[Callable[[Dict[str, float]], float]] = None, n_trials: int = 20, direction: str = "minimize", backend: Optional[Union["str", HPSearchBackend]] = None, hp_name: Optional[Callable[["optuna.Trial"], str]] = None, **kwargs, ) -> BestRun: """ Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise. .. warning:: To use this method, you need to have provided a ``model_init`` when initializing your :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler. Args: hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`): A function that defines the hyperparameter search space. Will default to :func:`~transformers.trainer_utils.default_hp_space_optuna` or :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend. compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`): A function computing the objective to minimize or maximize from the metrics returned by the :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`. n_trials (:obj:`int`, `optional`, defaults to 100): The number of trial runs to test. direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`): Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or several metrics. backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`): The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna. kwargs: Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For more information see: - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ Returns: :class:`transformers.trainer_utils.BestRun`: All the information about the best run. """ if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError( "At least one of optuna or ray should be installed. " "To install optuna run `pip install optuna`." "To install ray run `pip install ray[tune]`." ) backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and not is_optuna_available(): raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.") if backend == HPSearchBackend.RAY and not is_ray_tune_available(): raise RuntimeError( "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`." ) self.hp_search_backend = backend if self.model_init is None: raise RuntimeError( "To use hyperparameter search, you need to pass your model through a model_init function." ) self.hp_space = default_hp_space[backend] if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray best_run = run_hp_search(self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if self.state.epoch is not None: logs["epoch"] = round(self.state.epoch, 2) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output) self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs) def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if isinstance(v, torch.Tensor): kwargs = dict(device=self.args.device) if self.deepspeed and inputs[k].dtype != torch.int64: # NLP models inputs are int64 and those get adjusted to the right dtype of the # embedding. Other models such as wav2vec2's inputs are already float and thus # may need special handling to match the dtypes of the model kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype())) inputs[k] = v.to(**kwargs) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if is_sagemaker_mp_enabled(): scaler = self.scaler if self.use_amp else None loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler) return loss_mb.reduce_mean().detach().to(self.args.device) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.args.gradient_accumulation_steps > 1 and not self.deepspeed: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: # loss gets scaled under gradient_accumulation_steps in deepspeed loss = self.deepspeed.backward(loss) else: loss.backward() return loss.detach() def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss def is_local_process_zero(self) -> bool: """ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. """ return self.args.local_process_index == 0 def is_world_process_zero(self) -> bool: """ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be :obj:`True` for one process). """ # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global # process index. if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.args.process_index == 0 def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. Will only save from the main process. """ if output_dir is None: output_dir = self.args.output_dir if is_torch_tpu_available(): self._save_tpu(output_dir) elif is_sagemaker_mp_enabled(): # Calling the state_dict needs to be done on the wrapped model and on all processes. state_dict = self.model_wrapped.state_dict() if self.is_world_process_zero(): self._save(output_dir, state_dict=state_dict) elif ( ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp ): state_dict = self.model.state_dict() if self.is_world_process_zero(): self._save(output_dir, state_dict=state_dict) elif self.deepspeed: # this takes care of everything as long as we aren't under zero3 if self.is_world_process_zero(): self._save(output_dir) if is_deepspeed_zero3_enabled(): # It's too complicated to try to override different places where the weights dump gets # saved, so since under zero3 the file is bogus, simply delete it. The user should # either user deepspeed checkpoint to resume or to recover full weights use # zero_to_fp32.py stored in the checkpoint. if self.is_world_process_zero(): file = os.path.join(output_dir, WEIGHTS_NAME) if os.path.isfile(file): # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights") os.remove(file) # now save the real model if stage3_gather_fp16_weights_on_model_save=True # if false it will not be saved. # This must be called on all ranks self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME) elif self.is_world_process_zero(): self._save(output_dir) def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info(f"Saving model checkpoint to {output_dir}") if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained( output_dir, save_config=self.is_world_process_zero(), state_dict=self.model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save) if self.tokenizer is not None and self.is_world_process_zero(): self.tokenizer.save_pretrained(output_dir) def _save(self, output_dir: Optional[str] = None, state_dict=None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving model checkpoint to {output_dir}") # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): if state_dict is None: state_dict = self.model.state_dict() unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") if state_dict is None: state_dict = self.model.state_dict() torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, state_dict=state_dict) if self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def store_flos(self): # Storing the number of floating-point operations that went into the model if self.args.local_rank != -1: self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item() self.current_flos = 0 else: self.state.total_flos += self.current_flos self.current_flos = 0 def _sorted_checkpoints( self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False ) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")] for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match is not None and regex_match.groups() is not None: ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] # Make sure we don't delete the best model. if self.state.best_model_checkpoint is not None: best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint))) for i in range(best_model_index, len(checkpoints_sorted) - 2): checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i] return checkpoints_sorted def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None: if self.args.save_total_limit is None or self.args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir) if len(checkpoints_sorted) <= self.args.save_total_limit: return # If save_total_limit=1 with load_best_mode_at_end=True, we could end up deleting the last checkpoint, which # we don't do to allow resuming. save_total_limit = self.args.save_total_limit if ( self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1 and checkpoints_sorted[-1] != self.state.best_model_checkpoint ): save_total_limit = 2 number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") shutil.rmtree(checkpoint) def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ # memory metrics - must set up as early as possible self._memory_tracker.start() eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self.log(output.metrics) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test" ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:obj:`Dataset`): Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__` ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "test_bleu" if the prefix is "test" (default) .. note:: If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ # memory metrics - must set up as early as possible self._memory_tracker.start() test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self._memory_tracker.stop_and_update_metrics(output.metrics) return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics) def evaluation_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> EvalLoopOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size logger.info(f"***** Running {description} *****") if isinstance(dataloader.dataset, collections.abc.Sized): logger.info(f" Num examples = {self.num_examples(dataloader)}") else: logger.info(" Num examples: Unknown") logger.info(f" Batch size = {batch_size}") model.eval() self.callback_handler.eval_dataloader = dataloader # Do this before wrapping. eval_dataset = dataloader.dataset if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None # Initialize containers # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps) losses_host = None preds_host = None labels_host = None # losses/preds/labels on CPU (final containers) all_losses = None all_preds = None all_labels = None # Will be useful when we have an iterable dataset so don't know its length. observed_num_examples = 0 # Main evaluation loop for step, inputs in enumerate(dataloader): # Update the observed num examples observed_batch_size = find_batch_size(inputs) if observed_batch_size is not None: observed_num_examples += observed_batch_size # Prediction step loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) # Update containers on host if loss is not None: losses = self._nested_gather(loss.repeat(batch_size)) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: logits = self._pad_across_processes(logits) logits = self._nested_gather(logits) preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels = self._pad_across_processes(labels) labels = self._nested_gather(labels) labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = ( labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) ) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) # Number of samples if not isinstance(eval_dataset, IterableDataset): num_samples = len(eval_dataset) elif isinstance(eval_dataset, IterableDatasetShard): num_samples = eval_dataset.num_examples else: num_samples = observed_num_examples # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of # samplers has been rounded to a multiple of batch_size, so we truncate. if all_losses is not None: all_losses = all_losses[:num_samples] if all_preds is not None: all_preds = nested_truncate(all_preds, num_samples) if all_labels is not None: all_labels = nested_truncate(all_labels, num_samples) # Metrics! if self.compute_metrics is not None and all_preds is not None and all_labels is not None: metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if all_losses is not None: metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples) def _nested_gather(self, tensors, name=None): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): if name is None: name = "nested_gather" tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return tensors # Copied from Accelerate. def _pad_across_processes(self, tensor, pad_index=-100): """ Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they can safely be gathered. """ if isinstance(tensor, (list, tuple)): return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()}) elif not isinstance(tensor, torch.Tensor): raise TypeError( f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors." ) if len(tensor.shape) < 2: return tensor # Gather all sizes size = torch.tensor(tensor.shape, device=tensor.device)[None] sizes = self._nested_gather(size).cpu() max_size = max(s[1] for s in sizes) if tensor.shape[1] == max_size: return tensor # Then pad to the maximum size old_size = tensor.shape new_size = list(old_size) new_size[1] = max_size new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index new_tensor[:, : old_size[1]] = tensor return new_tensor def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. Return: Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if is_sagemaker_mp_enabled(): raw_outputs = smp_forward_only(model, inputs) if has_labels: if isinstance(raw_outputs, dict): loss_mb = raw_outputs["loss"] logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"]) else: loss_mb = raw_outputs[0] logits_mb = raw_outputs[1:] loss = loss_mb.reduce_mean().detach().cpu() logits = smp_nested_concat(logits_mb) else: loss = None if isinstance(raw_outputs, dict): logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys) else: logits_mb = raw_outputs logits = smp_nested_concat(logits_mb) else: if has_labels: loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] return (loss, logits, labels) def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]): """ For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method. Args: inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. Returns: :obj:`int`: The number of floating-point operations. """ if hasattr(self.model, "floating_point_ops"): return self.model.floating_point_ops(inputs) else: return 0 def init_git_repo(self): """ Initializes a git repo in :obj:`self.args.push_to_hub_model_id`. """ if not self.is_world_process_zero(): return use_auth_token = True if self.args.push_to_hub_token is None else self.args.push_to_hub_token repo_url = PushToHubMixin._get_repo_url_from_name( self.args.push_to_hub_model_id, organization=self.args.push_to_hub_organization, use_auth_token=use_auth_token, ) self.repo = PushToHubMixin._create_or_get_repo( self.args.output_dir, repo_url=repo_url, use_auth_token=use_auth_token ) # By default, ignore the checkpoint folders if not os.path.exists(os.path.join(self.args.output_dir, ".gitignore")): with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer: writer.writelines(["checkpoint-*/"]) def create_model_card( self, language: Optional[str] = None, license: Optional[str] = None, tags: Optional[str] = None, model_name: Optional[str] = None, finetuned_from: Optional[str] = None, tasks: Optional[str] = None, dataset_tags: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, dataset_args: Optional[Union[str, List[str]]] = None, ): training_summary = TrainingSummary.from_trainer( self, language=language, license=license, tags=tags, model_name=model_name, finetuned_from=finetuned_from, tasks=tasks, dataset_tags=dataset_tags, dataset=dataset, dataset_args=dataset_args, ) model_card = training_summary.to_model_card() with open(os.path.join(self.args.output_dir, "README.md"), "w") as f: f.write(model_card) def push_to_hub(self, commit_message: Optional[str] = "add model", **kwargs) -> str: """ Upload `self.model` and `self.tokenizer` to the 🤗 model hub on the repo `self.args.push_to_hub_model_id`. Parameters: commit_message (:obj:`str`, `optional`, defaults to :obj:`"add model"`): Message to commit while pushing. kwargs: Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`. Returns: The url of the commit of your model in the given repository. """ if not self.is_world_process_zero(): return self.create_model_card(model_name=self.args.push_to_hub_model_id, **kwargs) self.save_model() return self.repo.push_to_hub(commit_message=commit_message) # # Deprecated code # def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info(f"***** Running {description} *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Batch size = {batch_size}") losses_host: torch.Tensor = None preds_host: Union[torch.Tensor, List[torch.Tensor]] = None labels_host: Union[torch.Tensor, List[torch.Tensor]] = None world_size = max(1, self.args.world_size) eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size) if not prediction_loss_only: # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass # a batch size to the sampler) make_multiple_of = None if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler): make_multiple_of = dataloader.sampler.batch_size preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) model.eval() if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None self.callback_handler.eval_dataloader = dataloader for step, inputs in enumerate(dataloader): loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) if loss is not None: losses = loss.repeat(batch_size) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) eval_loss = eval_losses_gatherer.finalize() preds = preds_gatherer.finalize() if not prediction_loss_only else None label_ids = labels_gatherer.finalize() if not prediction_loss_only else None if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if eval_loss is not None: metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def _gather_and_numpify(self, tensors, name): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return nested_numpify(tensors)
[ "torch.cat", "torch.cuda.amp.autocast", "torch.Generator", "torch.cuda.random.set_rng_state", "torch.random.get_rng_state", "torch.cuda.random.set_rng_state_all", "torch.cuda.is_available", "torch.load", "torch.cuda.random.get_rng_state_all", "torch.nn.DataParallel", "torch.utils.data.sampler.RandomSampler", "torch.tensor", "torch.empty", "torch.random.set_rng_state", "torch.nn.parallel.DistributedDataParallel", "torch.utils.data.sampler.SequentialSampler", "torch.cuda.amp.GradScaler", "torch.distributed.barrier", "torch.cuda.random.get_rng_state", "torch.distributed.get_local_rank", "torch.utils.data.dataloader.DataLoader", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
1.0
rejinjoy18/transformers
71346c4a9099d84685c91fab626d0b8b1704ef08
1.8
import torch from colossalai.gemini.tensor import stateful_op_impl from ..stateful_tensor import StatefulTensorV2 from packaging import version @stateful_op_impl(torch.nn.functional.linear) def stateful_linear(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor = args[0] weight = args[1] if version.parse(torch.__version__) > version.parse("1.11.0"): if len(args) == 3: bias = args[2] else: bias = None else: bias = kwargs.get('bias', None) if isinstance(bias, StatefulTensorV2): bias = bias.torch_tensor() # Add communication logic before and after linear call. if isinstance(weight, StatefulTensorV2): return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias) else: return torch.nn.functional.linear(input_tensor, weight, bias)
[ "torch.nn.functional.linear" ]
1.8
weiplanet/ColossalAI
ab962b9735ea323eb84c5bc4bce534bf2376960e
1.5
import torch import torch.nn as nn from torch.autograd import Variable from abc import ABCMeta, abstractmethod class AbstractPrimitive(nn.Module, metaclass=ABCMeta): """ Use this class when creating new operations for edges. This is required because we are agnostic to operations at the edges. As a consequence, they can contain subgraphs which requires naslib to detect and properly process them. """ def __init__(self, kwargs): super().__init__() self.init_params = {k: v for k, v in kwargs.items() if k != 'self' and not k.startswith('_') and k != 'kwargs'} @abstractmethod def forward(self, x, edge_data): """ The forward processing of the operation. """ raise NotImplementedError() @abstractmethod def get_embedded_ops(self): """ Return any embedded ops so that they can be analysed whether they contain a child graph, e.g. a 'motif' in the hierachical search space. If there are no embedded ops, then simply return `None`. Should return a list otherwise. """ raise NotImplementedError() @property def get_op_name(self): return type(self).__name__ class Identity(AbstractPrimitive): """ An implementation of the Identity operation. """ def __init__(self, **kwargs): super().__init__(locals()) def forward(self, x, edge_data): return x def get_embedded_ops(self): return None class Zero(AbstractPrimitive): """ Implementation of the zero operation. It removes the connection by multiplying its input with zero. """ def __init__(self, stride, **kwargs): """ When setting stride > 1 then it is assumed that the channels must be doubled. """ super().__init__(locals()) self.stride = stride def forward(self, x, edge_data): if self.stride == 1: return x.mul(0.) else: return x[:, :, ::self.stride, ::self.stride].mul(0.) def get_embedded_ops(self): return None def __repr__(self): return "Zero (stride={})".format(self.stride) class Zero1x1(AbstractPrimitive): """ Implementation of the zero operation. It removes the connection by multiplying its input with zero. """ def __init__(self, stride, **kwargs): """ When setting stride > 1 then it is assumed that the channels must be doubled. """ super().__init__(locals()) self.stride = stride def forward(self, x, edge_data): if self.stride == 1: return x.mul(0.) else: x = x[:, :, ::self.stride, ::self.stride].mul(0.) return torch.cat([x, x], dim=1) # double the channels TODO: ugly as hell def get_embedded_ops(self): return None def __repr__(self): return "Zero1x1 (stride={})".format(self.stride) class SepConv(AbstractPrimitive): """ Implementation of Separable convolution operation as in the DARTS paper, i.e. 2 sepconv directly after another. """ def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True, **kwargs): super().__init__(locals()) self.kernel_size = kernel_size self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_in, affine=affine), nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x, edge_data=None): return self.op(x) def get_embedded_ops(self): return None @property def get_op_name(self): op_name = super().get_op_name op_name += '{}x{}'.format(self.kernel_size, self.kernel_size) return op_name class DilConv(AbstractPrimitive): """ Implementation of a dilated separable convolution as used in the DARTS paper. """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True, **kwargs): super().__init__(locals()) self.kernel_size = kernel_size self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x, edge_data): return self.op(x) def get_embedded_ops(self): return None @property def get_op_name(self): op_name = super().get_op_name op_name += '{}x{}'.format(self.kernel_size, self.kernel_size) return op_name class Stem(AbstractPrimitive): """ This is used as an initial layer directly after the image input. """ def __init__(self, C_out, **kwargs): super().__init__(locals()) self.seq = nn.Sequential( nn.Conv2d(3, C_out, 3, padding=1, bias=False), nn.BatchNorm2d(C_out)) def forward(self, x, edge_data): return self.seq(x) def get_embedded_ops(self): return None class Sequential(AbstractPrimitive): """ Implementation of `torch.nn.Sequential` to be used as op on edges. """ def __init__(self, *args, **kwargs): super().__init__(locals()) self.primitives = args self.op = nn.Sequential(*args) def forward(self, x, edge_data): return self.op(x) def get_embedded_ops(self): return list(self.primitives) class MaxPool(AbstractPrimitive): def __init__(self, kernel_size, stride, **kwargs): super().__init__(locals()) self.maxpool = nn.MaxPool2d(kernel_size, stride=stride, padding=1) def forward(self, x, edge_data): x = self.maxpool(x) return x def get_embedded_ops(self): return None class MaxPool1x1(AbstractPrimitive): """ Implementation of MaxPool with an optional 1x1 convolution in case stride > 1. The 1x1 convolution is required to increase the number of channels. """ def __init__(self, kernel_size, stride, C_in=None, C_out=None, affine=True, **kwargs): super().__init__(locals()) self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size, stride=stride, padding=1) if stride > 1: assert C_in is not None and C_out is not None self.conv = nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x, edge_data): x = self.maxpool(x) if self.stride > 1: x = self.conv(x) x = self.bn(x) return x def get_embedded_ops(self): return None class AvgPool(AbstractPrimitive): """ Implementation of Avergae Pooling. """ def __init__(self, kernel_size, stride, **kwargs): super().__init__(locals()) self.avgpool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) def forward(self, x, edge_data): x = self.avgpool(x) return x def get_embedded_ops(self): return None class AvgPool1x1(AbstractPrimitive): """ Implementation of Avergae Pooling with an optional 1x1 convolution afterwards. The convolution is required to increase the number of channels if stride > 1. """ def __init__(self, kernel_size, stride, C_in=None, C_out=None, affine=True, **kwargs): super().__init__(locals()) self.stride = stride self.avgpool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if stride > 1: assert C_in is not None and C_out is not None self.conv = nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x, edge_data): x = self.avgpool(x) if self.stride > 1: x = self.conv(x) x = self.bn(x) return x def get_embedded_ops(self): return None class ReLUConvBN(AbstractPrimitive): def __init__(self, C_in, C_out, kernel_size, stride=1, affine=True, **kwargs): super().__init__(locals()) self.kernel_size = kernel_size pad = 0 if stride == 1 and kernel_size == 1 else 1 self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=pad, bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x, edge_data): return self.op(x) def get_embedded_ops(self): return None @property def get_op_name(self): op_name = super().get_op_name op_name += '{}x{}'.format(self.kernel_size, self.kernel_size) return op_name class Concat1x1(nn.Module): """ Implementation of the channel-wise concatination followed by a 1x1 convolution to retain the channel dimension. """ def __init__(self, num_in_edges, C_out, affine=True, **kwargs): super().__init__() self.conv = nn.Conv2d(num_in_edges * C_out, C_out, kernel_size=1, stride=1, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x): """ Expecting a list of input tensors. Stacking them channel-wise and applying 1x1 conv """ x = torch.cat(x, dim=1) x = self.conv(x) x = self.bn(x) return x
[ "torch.cat", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.5.0
deepdad/NASLib-1
6c93788f145187fe8cda446531f5b9f98e4ab48b
1.5
from typing import List, Optional import torch from torch import nn import numpy as np import logging from src.utils.pytorch_linear_reg_utils import fit_linear, linear_reg_pred, outer_prod, add_const_col from src.data.data_class import TrainDataSet, TestDataSet, TrainDataSetTorch, TestDataSetTorch logger = logging.getLogger() class DeepGMMModel: def __init__(self, primal_net: nn.Module, dual_net: nn.Module ): self.primal_net = primal_net self.dual_net = dual_net def predict_t(self, treatment: torch.Tensor): self.primal_net.train(False) return self.primal_net(treatment) def predict(self, treatment: np.ndarray): treatment_t = torch.tensor(treatment, dtype=torch.float32) return self.predict_t(treatment_t).data.numpy() def evaluate_t(self, test_data: TestDataSetTorch): target = test_data.structural with torch.no_grad(): pred = self.predict_t(test_data.treatment) return (torch.norm((target - pred)) ** 2) / target.size()[0] def evaluate(self, test_data: TestDataSet): return self.evaluate_t(TestDataSetTorch.from_numpy(test_data)).data.item()
[ "torch.norm", "torch.no_grad", "torch.tensor" ]
1.5.0
liyuan9988/DeepFeatureIV
54b04e9e9e4c88d4859ea65d34ceb69dd1b58bc2
0.4
""" Loss functions for recommender models. The pointwise, BPR, and hinge losses are a good fit for implicit feedback models trained through negative sampling. The regression and Poisson losses are used for explicit feedback models. """ import torch import torch.nn.functional as F from spotlight.torch_utils import assert_no_grad def my_own_loss(positive_predictions, negative_predictions, mask=None): """ modified copy of Hinge pairwise loss function. Parameters ---------- positive_predictions: tensor Tensor containing predictions for known positive items. negative_predictions: tensor Tensor containing predictions for sampled negative items. mask: tensor, optional A binary tensor used to zero the loss from some entries of the loss tensor. Returns ------- loss, float The mean value of the loss function. """ loss = torch.clamp(negative_predictions - positive_predictions + 1.0, 0.0) if (mask is not None and mask.sum()>0): mask = mask.float() loss = loss * mask ret_loss = loss.sum() / mask.sum() else: ret_loss = loss.mean() return ret_loss def pointwise_loss(positive_predictions, negative_predictions, mask=None): """ Logistic loss function. Parameters ---------- positive_predictions: tensor Tensor containing predictions for known positive items. negative_predictions: tensor Tensor containing predictions for sampled negative items. mask: tensor, optional A binary tensor used to zero the loss from some entries of the loss tensor. Returns ------- loss, float The mean value of the loss function. """ positives_loss = (1.0 - F.sigmoid(positive_predictions)) negatives_loss = F.sigmoid(negative_predictions) loss = (positives_loss + negatives_loss) if mask is not None: mask = mask.float() loss = loss * mask return loss.sum() / mask.sum() return loss.mean() def bpr_loss(positive_predictions, negative_predictions, mask=None): """ Bayesian Personalised Ranking [1]_ pairwise loss function. Parameters ---------- positive_predictions: tensor Tensor containing predictions for known positive items. negative_predictions: tensor Tensor containing predictions for sampled negative items. mask: tensor, optional A binary tensor used to zero the loss from some entries of the loss tensor. Returns ------- loss, float The mean value of the loss function. References ---------- .. [1] Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press, 2009. """ loss = (1.0 - F.sigmoid(positive_predictions - negative_predictions)) if mask is not None: mask = mask.float() loss = loss * mask return loss.sum() / mask.sum() return loss.mean() def hinge_loss(positive_predictions, negative_predictions, mask=None): """ Hinge pairwise loss function. Parameters ---------- positive_predictions: tensor Tensor containing predictions for known positive items. negative_predictions: tensor Tensor containing predictions for sampled negative items. mask: tensor, optional A binary tensor used to zero the loss from some entries of the loss tensor. Returns ------- loss, float The mean value of the loss function. """ loss = torch.clamp(negative_predictions - positive_predictions + 1.0, 0.0) if mask is not None: mask = mask.float() loss = loss * mask return loss.sum() / mask.sum() return loss.mean() def adaptive_hinge_loss(positive_predictions, negative_predictions, mask=None): """ Adaptive hinge pairwise loss function. Takes a set of predictions for implicitly negative items, and selects those that are highest, thus sampling those negatives that are closes to violating the ranking implicit in the pattern of user interactions. Approximates the idea of weighted approximate-rank pairwise loss introduced in [2]_ Parameters ---------- positive_predictions: tensor Tensor containing predictions for known positive items. negative_predictions: tensor Iterable of tensors containing predictions for sampled negative items. More tensors increase the likelihood of finding ranking-violating pairs, but risk overfitting. mask: tensor, optional A binary tensor used to zero the loss from some entries of the loss tensor. Returns ------- loss, float The mean value of the loss function. References ---------- .. [2] Weston, Jason, Samy Bengio, and Nicolas Usunier. "Wsabie: Scaling up to large vocabulary image annotation." IJCAI. Vol. 11. 2011. """ highest_negative_predictions, _ = torch.max(negative_predictions, 0) return hinge_loss(positive_predictions, highest_negative_predictions.squeeze(), mask=mask) def regression_loss(observed_ratings, predicted_ratings): """ Regression loss. Parameters ---------- observed_ratings: tensor Tensor containing observed ratings. predicted_ratings: tensor Tensor containing rating predictions. Returns ------- loss, float The mean value of the loss function. """ assert_no_grad(observed_ratings) return ((observed_ratings - predicted_ratings) ** 2).mean() def poisson_loss(observed_ratings, predicted_ratings): """ Poisson loss. Parameters ---------- observed_ratings: tensor Tensor containing observed ratings. predicted_ratings: tensor Tensor containing rating predictions. Returns ------- loss, float The mean value of the loss function. """ assert_no_grad(observed_ratings) return (predicted_ratings - observed_ratings * torch.log(predicted_ratings)).mean() def logistic_loss(observed_ratings, predicted_ratings): """ Logistic loss for explicit data. Parameters ---------- observed_ratings: tensor Tensor containing observed ratings which should be +1 or -1 for this loss function. predicted_ratings: tensor Tensor containing rating predictions. Returns ------- loss, float The mean value of the loss function. """ assert_no_grad(observed_ratings) # Convert target classes from (-1, 1) to (0, 1) observed_ratings = torch.clamp(observed_ratings, 0, 1) return F.binary_cross_entropy_with_logits(predicted_ratings, observed_ratings, size_average=True)
[ "torch.nn.functional.binary_cross_entropy_with_logits", "torch.nn.functional.sigmoid", "torch.max", "torch.clamp", "torch.log" ]
0.4.0
paprocki-r/spotlight
a7dd31bf5e225b9e8ec8dc6ffcd0f2093d43336c